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I am just a child who has never grown up.
I still keep asking this “how” and “why” questions.

Occasionally, I find an answer.
— Stephen Hawking
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Abstract

The ability to reason, plan and solve highly abstract problems is a hallmark of human
intelligence. Recent advancements in artificial intelligence, propelled by deep neural
networks, have revolutionized disciplines like computer vision and natural language
processing. However, in spite of the amazing progress that we are witnessing, the
challenge of creating models that can acquire human-level reasoning abilities sample
efficiently persists. To make a step forward, it is crucial to acknowledge that all models
inherently carry inductive biases and that human-level intelligence cannot be general
and requires the incorporation of appropriate knowledge priors.

Following this chain of thought, this study aims to scrutinize and enhance the reason-
ing abilities of neural networks by incorporating proper knowledge priors and biasing
learning through structured representations. Due to the complexity of the problem at
hand, we aim to investigate it through multiple lenses. The thesis unfolds into three
main parts, each focusing on distinct tasks and perspectives.

In the first part of the thesis, our research revolves around reasoning and planning
in interactive textual environments. We introduce novel environments for evaluating
commonsense reasoning skills and decision-making abilities of neural agents. Then,
we investigate whether graph-structured representations can serve as appropriate
inductive biases for knowledge representation and reasoning with neural agents. We
propose agents that use graphs both as a source of prior knowledge and as a model
of the state of the world, showing that they act more sample efficiently. Further, we
introduce a general algorithm inspired by case-based reasoning to train on-policy
agents, improving their planning and out-of-distribution generalization abilities.

In the second part, we isolate core factual reasoning challenges and investigate how
language models can reason and benefit from prior knowledge. We delve into language-
understanding tasks and introduce an efficient method to navigate large-scale knowl-
edge graphs and answer natural language questions requiring complex logical reason-
ing and robustness to distributional shifts. Then, we introduce a method to enhance
language models with prior knowledge in entity-linking tasks, showing improvements
by infusing appropriate structure in the latent space.

Finally, driving inspiration from developmental science, we focus on the core knowl-
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Abstract

edge priors of human intelligence, concentrating our efforts on geometry and topology
priors. We introduce a variant of the transformer model that incorporates lattice
symmetry priors, showing that it is 2 orders of magnitude more sample efficient than
standard transformers on fundamental geometric reasoning.
The contributions of this thesis span several fronts. We achieve state-of-the-art results
on several benchmarks, including popular textual environments, standard question
answering and entity linking datasets, as well as geometric reasoning tasks. Our text-
based neural agents are more sample efficient and resilient to distributional shifts than
the baselines. The proposed question answering model is orders of magnitude more
scalable than competitive approaches and achieves compositional generalization out
of the training distribution. Our entity linking method achieves results comparable to
large generative models with 18 times more parameters.

Keywords: Reasoning, Textual reinforcement learning, Text-based games, Common-
sense reasoning, Case-based reasoning, Knowledge graphs, Question answering.
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Résumé

La capacité de raisonner, de planifier et de résoudre des problèmes très abstraits est
une caractéristique de l’intelligence humaine. Les progrès récents de l’intelligence
artificielle, propulsés par les réseaux neuronaux profonds, ont révolutionné des disci-
plines telles que la vision par ordinateur et le traitement du langage naturel. Cependant,
malgré les progrès étonnants auxquels nous assistons, le défi de créer des modèles
capables d’acquérir efficacement des capacités de raisonnement au niveau humain
persiste. Pour faire un pas en avant, il est crucial de reconnaître que tous les modèles
comportent intrinsèquement des biais inductifs et que l’intelligence humaine ne peut
pas être générale et nécessite l’incorporation de connaissances préalables appropriées.

Suivant cette chaîne de pensée, cette étude vise à examiner et à améliorer les capacités
de raisonnement des réseaux de neurones en intégrant des connaissances préalables
appropriées et en biaisant l’apprentissage par le biais de représentations structurées.
En raison de la complexité du problème en question, nous visons à l’étudier sous plu-
sieurs angles. La thèse se déroule en trois parties principales, chacune se concentrant
sur des tâches et des perspectives distinctes.

Dans la première partie de la thèse, nos recherches s’articulent autour du raisonnement
et de la planification dans des environnements textuels interactifs. Nous introduisons
de nouveaux environnements pour évaluer les capacités de raisonnement de bon sens
et les capacités de prise de décision des agents neuronaux. Ensuite, nous étudions si
les représentations structurées sous forme de graphes peuvent servir de biais inductifs
appropriés pour la représentation des connaissances et le raisonnement avec des
agents neuronaux. Nous proposons des agents qui utilisent les graphiques à la fois
comme source de connaissances préalables et comme modèle de l’état du monde,
démontrant qu’ils agissent de manière plus efficace en échantillonnant. De plus, nous
introduisons un algorithme général inspiré du raisonnement basé sur des cas pour
former des agents sur la politique, améliorant ainsi leurs capacités de planification et
de généralisation hors distribution.

Dans la deuxième partie, nous isolons les principaux défis du raisonnement factuel
et étudions comment les modèles linguistiques peuvent raisonner et bénéficier de
connaissances antérieures. Nous approfondissons les tâches de compréhension du
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Abstract

langage et introduisons une méthode efficace pour naviguer dans des graphiques
de connaissances à grande échelle et répondre à des questions en langage naturel
nécessitant un raisonnement logique complexe et une robustesse aux changements
de distribution. Ensuite, nous introduisons une méthode pour améliorer les modèles
de langage avec des connaissances préalables dans les tâches de liaison d’entités,
montrant des améliorations en insufflant une structure appropriée dans l’espace
latent.
Enfin, en nous inspirant de la science du développement, nous nous concentrons sur
les connaissances préalables fondamentales de l’intelligence humaine, en concentrant
nos efforts sur les connaissances préalables de la géométrie et de la topologie. Nous
introduisons une variante du modèle de transformateur qui intègre les a priori de
symétrie de réseau, montrant qu’il est 2 ordres de grandeur plus efficace en matière
d’échantillon que les transformateurs standards sur le raisonnement géométrique
fondamental.
Les contributions de cette thèse couvrent plusieurs fronts. Nous obtenons des résultats
de pointe sur plusieurs benchmarks, notamment des environnements textuels popu-
laires, des réponses aux questions standard et des ensembles de données de liaison
d’entités, ainsi que des tâches de raisonnement géométrique. Nos agents neuronaux
basés sur du texte sont plus efficaces en matière d’échantillons et plus résilients aux
changements de distribution que les lignes de base. Le modèle de réponse aux ques-
tions proposé est d’un ordre de grandeur plus évolutif que les approches compétitives
et permet une généralisation compositionnelle en dehors de la distribution de la for-
mation. Notre méthode de liaison d’entités permet d’obtenir des résultats comparables
aux grands modèles génératifs avec 18 fois plus de paramètres.

Mots clefs : Raisonnement, Apprentissage par renforcement textuel, Jeux textuels,
Raisonnement par cas, Knowledge graphs, Question answering.
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Sommario

La capacità di ragionare, pianificare e risolvere problemi altamente astratti è un segno
distintivo dell’intelligenza umana. I recenti progressi nell’intelligenza artificiale, ali-
mentati dalle reti neurali profonde, hanno rivoluzionato discipline come la visione
artificiale e l’elaborazione del linguaggio naturale. Tuttavia, nonostante gli straordinari
progressi a cui stiamo assistendo, rimane intatta la sfida di creare modelli in grado di
acquisire in modo efficiente capacità di ragionamento di livello umano. Per progredire,
è fondamentale riconoscere che tutti i modelli portano intrinsecamente bias induttivi e
che l’intelligenza di livello umano non può essere generale e richiede l’incorporazione
di adeguate conoscenze a priori.

Seguendo tale catena di pensiero, questo studio mira ad esaminare e migliorare le
capacità di ragionamento delle reti neurali incorporando adeguati bias induttivi e
influenzando l’apprendimento attraverso rappresentazioni strutturate. A causa del-
la complessità del problema in questione, puntiamo ad indagarlo da punti di vista
differenti. A tal fine, la tesi si sviluppa in tre parti principali, ciascuna focalizzata su
prospettive e obiettivi distinti.

La prima parte della tesi si concentra su problemi di ragionamento e pianificazione in
ambienti testuali interattivi. Introduciamo nuovi ambienti per valutare le capacità di ra-
gionamento e pianificazione degli agenti neurali e investighiamo se le rappresentazioni
strutturate a grafo possano servire come bias induttivi appropriati. Proponiamo agenti
che utilizzano grafi sia come fonte di conoscenza a priori che come modello dello stato
dell’ambiente, dimostrando che agiscono in modo più efficiente. Inoltre, introduciamo
un algoritmo generale ispirato al ragionamento basato sui casi per addestrare agenti
on-policy, migliorando le loro capacità di pianificazione e generalizzazione fuori dalla
distribuzione di training.

Nella seconda parte, isoliamo il problema del ragionamento fattuale e analizziamo
le capacità di ragionamento dei language model. Lo studio si concentra su compiti
di comprensione del linguaggio e introduciamo un metodo efficiente per esplorare
knowledge graph di grandi dimensioni e rispondere a domande in linguaggio natu-
rale che richiedono ragionamenti logici complessi e robustezza a cambiamenti di
distribuzione. Inoltre, introduciamo un metodo per migliorare i language model in
task di entity linking, infondendo una struttura appropriata nello spazio latente delle
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Abstract

rappresentazioni delle entità.
Infine, traiamo ispirazione dalla psicoligia cognitiva e ci concentriamo sui knowledge
prior dell’intelligenza umana, specificamente su prior di geometria e topologia. Intro-
duciamo una variante del trasformer che incorpora i prior del gruppo di simmetria dei
lattici, dimostrando che è due ordini di grandezza più efficiente rispetto ai trasformer
standard su compiti di ragionamento geometrico.
I contributi di questa tesi spaziano su più fronti. Otteniamo risultati allo stato dell’arte
su diversi benchmark, inclusi ambienti testuali, dataset di question answering ed entity
linking, nonché task di ragionamento geometrico. I nostri agenti neurali basati su testo
sono più efficienti e resilienti a cambiamenti distribuzionali rispetto alle controparti
testuali. Il modello di question answering proposto è ordini di grandezza più efficiente
degli altri approcci e generalizza al di fuori della distribuzione di training. Il nostro
metodo di entity linking raggiunge risultati paragonabili a modelli generativi di grandi
dimensioni con 18 volte più parametri.

Parole chiave: Ragionamento, Reinforcement learning testuale, Giochi testuali, Ragio-
namento basato su casi, Grafi di conoscenza, Question answering.
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Zusammenfassung

Die Fähigkeit, hochabstrakte Probleme zu denken, zu planen und zu lösen, ist ein
Kennzeichen der menschlichen Intelligenz. Jüngste Fortschritte in der künstlichen
Intelligenz, vorangetrieben durch tiefe neuronale Netze, haben Disziplinen wie Com-
puter Vision und natürliche Sprachverarbeitung revolutioniert. Doch trotz der erstaun-
lichen Fortschritte, die wir erleben, bleibt die Herausforderung bestehen, Modelle zu
erstellen, die auf effiziente Weise Denkfähigkeiten auf menschlicher Ebene erwerben
können. Um einen Schritt nach vorne zu machen, ist es wichtig anzuerkennen, dass
alle Modelle von Natur aus induktive Verzerrungen aufweisen und dass Intelligenz
auf menschlicher Ebene nicht allgemein sein kann und die Einbeziehung geeigneter
Wissensvorkenntnisse erfordert.

Diesem Gedankengang folgend zielt diese Studie darauf ab, die Denkfähigkeiten neu-
ronaler Netze zu untersuchen und zu verbessern, indem geeignete Wissensvoraus-
setzungen einbezogen und das Lernen durch strukturierte Darstellungen beeinflusst
werden. Aufgrund der Komplexität des vorliegenden Problems ist es unser Ziel, es aus
mehreren Blickwinkeln zu untersuchen. Die Arbeit gliedert sich in drei Hauptteile, die
sich jeweils auf unterschiedliche Aufgaben und Perspektiven konzentrieren.

Im ersten Teil der Arbeit dreht sich unsere Forschung um das Denken und Planen
in interaktiven Textumgebungen. Wir stellen neuartige Umgebungen zur Bewertung
der Fähigkeiten des gesunden Menschenverstandes und der Entscheidungsfähigkeit
neuronaler Agenten vor. Anschließend untersuchen wir, ob graphstrukturierte Darstel-
lungen als geeignete induktive Verzerrungen für die Wissensdarstellung und das Den-
ken mit neuronalen Agenten dienen können. Wir schlagen Agenten vor, die Graphen
sowohl als Quelle für Vorwissen als auch als Modell des Zustands der Welt nutzen und
zeigen, dass sie effizienter agieren. Darüber hinaus führen wir einen allgemeinen Algo-
rithmus ein, der auf fallbasiertem Denken basiert, um richtlinienkonforme Agenten zu
schulen und ihre Planungs- und Out-of-Distribution-Generalisierungsfähigkeiten zu
verbessern.

Im zweiten Teil isolieren wir die zentralen Herausforderungen beim sachlichen Denken
und untersuchen, wie Sprachmodelle schlussfolgern und von Vorwissen profitieren
können. Wir befassen uns mit Sprachverständnisaufgaben und stellen eine effiziente
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Methode zum Navigieren in großen Wissensgraphen und zur Beantwortung natürlich-
sprachlicher Fragen vor, die komplexes logisches Denken und Robustheit gegenüber
Verteilungsverschiebungen erfordern. Anschließend stellen wir eine Methode zur Ver-
besserung von Sprachmodellen mit Vorkenntnissen in Entitätsverknüpfungsaufgaben
vor und zeigen Verbesserungen durch die Einführung einer geeigneten Struktur in den
latenten Raum.
Schließlich konzentrieren wir uns, inspiriert von der Entwicklungswissenschaft, auf
die Kernwissensprioritäten der menschlichen Intelligenz und konzentrieren unsere
Bemühungen auf Geometrie- und Topologieprioritäten. Wir stellen eine Variante des
Transformatormodells vor, die Priors der Gittersymmetrie berücksichtigt, und zeigen,
dass es aufgrund grundlegender geometrischer Überlegungen zwei Größenordnungen
effizienter bei der Stichprobe ist als Standardtransformatoren.
Die Beiträge dieser Arbeit erstrecken sich über mehrere Fronten. Wir erzielen hoch-
moderne Ergebnisse bei mehreren Benchmarks, darunter gängige Textumgebungen,
Datensätze zur Standardfragebeantwortung und Entitätsverknüpfung sowie geometri-
sche Denkaufgaben. Unsere textbasierten neuronalen Agenten sind stichprobeneffizi-
enter und widerstandsfähiger gegenüber Verteilungsverschiebungen als die Basislinien.
Das vorgeschlagene Frage-Antwort-Modell ist um Größenordnungen skalierbarer als
konkurrierende Ansätze und erreicht eine kompositorische Verallgemeinerung aus der
Trainingsverteilung. Unsere Entity-Linking-Methode erzielt mit 18-mal mehr Parame-
tern vergleichbare Ergebnisse wie große generative Modelle.

Stichwörter: Argumentation, Textuelles Verstärkungslernen, Textspiele, Fallbasiertes
Denken, Wissensgraphen, Beantwortung von Fragen.
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1 Introduction

1.1 A surprisingly old debate

With the dawn of our current era of deep learning and neural networks, the pace
and impact of new advances in the field of Artificial Intelligence (AI) have become
astounding. Deep neural networks have fueled a remarkable progress in an extremely
wide range of tasks, leading to dramatic improvements in broad research areas like
computer vision and natural language understanding (Krizhevsky et al. 2012; LeCun
et al. 2015; Mikolov et al. 2013; Vaswani et al. 2017; Devlin et al. 2019; OpenAI 2023).
Nevertheless, although neural networks are extremely suited to pattern recognition,
classification, and perception tasks, the design of models that can deliberate, think,
and reason using knowledge still opens the path to several research challenges and
opportunities (Bengio 2017; Marcus 2020; Marcus 2018). Indeed, problems that involve
reasoning operations, such as deduction, induction, abduction, spatial or temporal
reasoning, and probabilistic inference are still difficult to solve with neural networks
(Lippi 2016; Atzeni, Sachan, et al. 2023; Kassner, Krojer, et al. 2020). Even in light
of the amazing progress that we have witnessed with large language models (LLMs)
(OpenAI 2023; Radford et al. 2019; Brown et al. 2020), the ability to acquire reasoning
skills sample efficiently remains one of their main limitations, as they may “hallucinate”
facts and make reasoning mistakes (OpenAI 2023; Kassner, Krojer, et al. 2020).

Reasoning problems are often better solved with search algorithms and traditional
symbolic approaches (Muggleton et al. 1994; Cropper et al. 2019; Marcus 2020). The
challenge of solving them with deep learning has recently prompted an intriguing
connection between the current status of AI research and theories in cognitive psy-
chology. In particular, recently, the theory on fast and slow thinking proposed by
Kahneman (2011) has been regarded to have fascinating connections with AI research
(Bengio 2019; Booch et al. 2021; Ganapini et al. 2022). Kahneman’s work postulates
the existence of two different modes of thinking and decision-making processes that
occur in the human mind. These two modes are termed System 1 and System 2 respec-
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tively. System 1 thinking is fast, intuitive, and automatic. It operates effortlessly and
quickly, often relying on heuristics or mental shortcuts to make decisions. This mode
of thinking is efficient for everyday tasks such as recognizing faces, reading emotions,
and navigating familiar environments. However, it can also lead to cognitive biases
and errors because it relies on mental shortcuts rather than deep analysis. On the
other hand, System 2 thinking is slow, deliberate, and analytical. It requires critical
thinking, problem-solving, and rational decision-making. This mode of thinking is
used for complex tasks, such as solving mathematical problems or evaluating evidence
in a logical and systematic manner.

Deep learning models, despite their remarkable success, often exhibit a dominance of
System 1-like behavior, excelling in pattern recognition but struggling with systematic
symbolic reasoning. This connection has spawned several debates in the AI commu-
nity on how to reach models with better reasoning abilities. These debates can be
summarized into two main lines of thoughts, one arguing that symbolic reasoning can
be achieved with an approach purely based on deep learning and neural networks
(Bengio 2019; Bengio 2017; A. Goyal et al. 2022), and another one that advocates for
hybrid approaches between neural networks and symbolic methods (Marcus 2020;
Marcus 2018).

At the root of this debate, we can distinguish two main approaches to AI (Broeck 2019).
The first is an inductive vision, which:

approaches the problem of designing intelligent machines by postulating
a large number of very simple information processing elements, arranged
in a [...] network, and certain processes for facilitating or inhibiting their
activity. (Feigenbaum and Feldman)

The latter, on the other hand, is a deductive vision, which postulates that:

intelligent performance by a machine is an end difficult enough to achieve
starting from scratch, and so [it requires building into the] systems as much
complexity of information processing as [...] able to understand and com-
municate to a computer. (Feigenbaum and Feldman)

From the definitions above, we can see that the inductive approach reminds of deep
learning, whereas the deductive one resembles symbolic methods. Despite being
seemingly a very recent distinction, the quotes above are from the book of Feigenbaum
et al. (1963), which dates back to 60 years ago. Clearly, Feigenbaum et al. (1963) did
not use the terms that are popular today, but referred to the inductive and deductive
approaches as neural cybernetics and cognitive model builders respectively. Thus, we
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see that this debate that we have recently experienced in AI research has actually
shaped the field since its early stages.

We could argue that the roots of this debate extend even further into the past, as we can
trace it back to the age-old philosophical distinction between nature and nurture. The
question of whether intelligence is innate (nature) or it is acquired from environmental
factors (nurture) has been a source of fascination and controversy throughout the
history of human thought. Contemporary perspectives recognize the intertwined
nature of these factors, emphasizing their complex interplay in understanding human
development and cognition (Spelke et al. 2007).

Embracing this modern vision, in this thesis we aim to investigate the hypothesis that
neural networks can learn symbolic reasoning tasks sample efficiently, by introducing
proper knowledge priors and inductive biases, in the form of architectural assump-
tions, to guide learning towards specific, structured hierarchical representations and
computations. To verify this hypothesis, we focus on several tasks, as detailed in Sec-
tion 1.3. In the remainder of this chapter, we explain how neural networks can benefit
from knowledge priors and we provide the main motivation and a summary of the
work described in this thesis.

1.2 The need for knowledge priors in deep learning

1.2.1 Some limitations of deep learning today

Despite the remarkable achievements that the AI community has witnessed with
the advent of deep learning, it is crucial to acknowledge the limitations that persist
in the field. Understanding these limitations is essential for both researchers and
practitioners, as it informs the responsible and effective application of deep learning
technologies and it provides guidance for further research.

The aim of this thesis, is to research methods for learning complex tasks involving sym-
bolic reasoning with neural networks. As we have already mentioned, deep learning
approaches struggle with this kind of tasks. To be more precise, however, two main
limitations of current deep learning models are mostly relevant.

Out-of-distribution generalization. Many recent works have highlighted the chal-
lenges faced by deep learning in dealing with distributional shifts between the training
set and the test set. We refer to this setting as out-of-distribution (OOD) generalization,
as we aim to generalize out of the training distribution. This is particularly impor-
tant in symbolic reasoning tasks, as we expect the model to be able to learn symbolic
rules that generalize irrespectively of the distribuion of atomic symbols in the training
set. Conventional supervised learning, which relies on independent and identically
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distributed (i.i.d.) data, is usually inadequate for addressing OOD generalization, as
distributional shifts undermine this foundational assumption (Lake, Ullman, et al.
2017; Lake and Baroni 2018; Bahdanau, Murty, et al. 2019). Therefore, the development
of algorithms capable of robust OOD generalization has emerged as a key research
focus, encompassing disentangled representation learning (T. Wang et al. 2021; Lo-
catello et al. 2019), causal representation learning (Schölkopf et al. 2021; M. Yang et al.
2021), and optimization techniques (Sagawa et al. 2019). Finally, evaluating OOD
generalization performance presents significant hurdles, which fueled the cretion of
datasets and unique evaluation metrics distinct from traditional i.i.d. benchmarks
(Lake and Baroni 2018; Keysers et al. 2020). In this thesis, we introduce a dataset to
measure OOD generalization in the context of textual reinforcement learning (Chapter
2) and we evaluate methods on this and other benchmarks in Chapters 2, 3, and 4. In
Chapter 5, we evaluate OOD generalization on the dataset of Keysers et al. (2020).

Sample efficiency. Neural networks, particularly deep ones, often require vast
datasets to generalize well and make accurate predictions. When data is scarce, these
models may struggle to learn meaningful patterns and can easily overfit, memorizing
the training data rather than generalizing to unseen examples. This limitation is
especially significant in domains where collecting data is expensive or time-consuming,
hindering the practicality of deploying deep learning techniques. Learning from few
examples is an active area of research today, to make these models more applicable
in data-constrained scenarios (Vinyals et al. 2016; Snell et al. 2017; Prabhudesai et al.
2021). Sample efficiency is particularly relevant in reasoning tasks, as we expect the
model to be able to infer generalizable rules from few examples. As we will detail
later, sample efficiency is a recurrent theme in this thesis. In Chapters 2, 3, and 6, we
use prior knowledge to improve the sample efficiency. In Chapter 4, we introduce a
reinforcement learning algorithm inspired by case-based reasoning to improve sample
efficiency and generalization performance of the models. Finally, Chapter 7 focuses on
few-shot learning of geometric reasoning tasks, as we aim to infer a reasoning chain
from a very limited number of examples.

1.2.2 Infusing knowledge priors in neural networks

In order to move towards AI models with human-level reasoning abilities, it is essential
to address the limitations above. Several recent works advocate for the need of infusing
proper knowledge priors and inductive biases in neural networks (Battaglia et al. 2018;
Bengio 2017; Bengio, Deleu, et al. 2020; Hudson et al. 2018; Lake, Ullman, et al. 2017;
Lake and Baroni 2018). After all, by the “no free lunch” theorem of machine learning,
every model is biased and will favor some hypothesis class over the others. Therefore,
we could argue that there is no completely general intelligence and some knowledge
priors or inductive biases are needed. It becomes then a crucial problem to identify
proper biases and knowledge priors to guide the learning process.
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An early approach to guide learning towards more structured computations was the
introduction of neural networks augmented with an external memory. The main in-
tuition was that this could allow the model to efficiently reason over variables and
represent structured data over long time scales. Among the initial contributions in this
field, Neural Turing Machines (NTM) (Graves, Wayne, and Danihelka 2014) and Mem-
ory Networks (Weston et al. 2015) had great success and have been widely employed.
Other examples of memory-augmented architectures include Dynamic Memory Net-
works (Kumar et al. 2016), End-to-end Memory Networks (Sukhbaatar et al. 2015),
and the Differentiable Neural Computer (DNC) (Graves, Wayne, Reynolds, et al. 2016).
More recently, Csordas et al. (2019) also proposed some interesting improvements to
the DNC.

Recently, the use of graph neural networks (GNN) (Kipf et al. 2017; Gori et al. 2005) and
graph-structured data has also been a popular approach to bias the learning process
with structured information. Although the idea of developing and studying neural
networks capable of manipulating and natively processing graph-structured inputs
dates back to more than ten years ago (Gori et al. 2005; Scarselli et al. 2009), this kind of
models has recently discovered and gained an unprecedented and wider popularity on
several different tasks and domains (Battaglia et al. 2018). Such architectures have been
proved useful for many problems that require reasoning on a set of discrete entities,
such as combinatorial optimization (Khalil et al. 2017) and satisfiability (Selsam et al.
2018). More recently, Kool et al. (2019) successfully applied a model based on the
Transformer architecture (Vaswani et al. 2017) to solve routing problems on graphs,
like the well-known Traveling Salesman Problem (TSP). Some of the most interesting
and promising contributions in this field include message-passing neural networks
(Gilmer et al. 2017) and non-local neural networks (X. Wang et al. 2018). Also, the
graph networks, that have been introduced by Battaglia et al. (2018), generalize several
previous works, thereby providing a fundamental building block for applying deep
learning to structured knowledge.

Human-level capabilities like abstract symbolic reasoning require the possibility of
compositionally constructing new inferences and behaviors from known building
blocks. Therefore, recent research advocated that compositionality should also be
incorporated directly into the architecture of the models (Battaglia et al. 2018). Several
lines of research are indeed addressing these issues by leveraging the use of proper
inductive biases towards more structured cognitive models (Bengio 2017; Bengio,
Deleu, et al. 2020; Hudson et al. 2018; Bahdanau, Murty, et al. 2019).

1.2.3 Knowledge priors and human intelligence

Research in cognitive psychology has also postulated the idea that human intelligence
is based on some core knowledge priors (Spelke et al. 2007). The Core Knowledge
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theory challenges two prevailing views of human cognition. One view posits that the
human mind is a flexible and general learning system, capable of adapting to various
experiences. The opposing view suggests that the human mind comprises specialized
mechanisms, each evolved to serve specific functions. Instead, the Core Knowledge
theory proposes that humans possess a limited number of distinct systems of core
knowledge, which form the basis for cognitive development. These core knowledge
systems are foundational and serve as the building blocks for more advanced cognitive
abilities and fall into four main categories.

• Objectness priors: this system enables the representation of inanimate objects
and their mechanical interactions, such as understanding the principles of object
permanence and gravity.

• Agentness and goal-directedness priors: it involves the recognition of agents
and their goal-directed actions, allowing individuals to comprehend and predict
the behavior of others.

• Numerical priors: this system pertains to numerical relationships, including
ordering, addition, and subtraction, providing a fundamental sense of quantity
and numerical concepts.

• Geometry and topology priors: humans possess an innate understanding of
places in the spatial layout and their geometric relationships, allowing for navi-
gation and spatial reasoning.

The Core Knowledge theory posits that these foundational systems serve as the basis for
the development of more complex cognitive skills and belief systems, challenging the
dichotomy between a single general-purpose learning system and numerous special-
ized mechanisms in the study of human cognition. Recently, this theory has inspired
the development of AI benchmarks, like the Abstraction and Reasoning Corpus (ARC)
(Chollet 2019). In Chapter 7, we draw inspiration from this theory and we propose a
method to infuse a category of Core Knowledge priors (geometry and topology priors)
in transformer models.

1.3 A problem that requires multiple perspectives

Enhancing neural networks with the capacity for efficient reasoning over structured
data is a complex problem that is difficult to formalize precisely, as it encompasses
several applications and tasks. Therefore, we believe that the complexity of the problem
necessitates the development of approaches that draw from multiple perspectives and
applications. To comprehensively explore this multifaceted research challenge, we
turn our attention to a series of distinct yet interconnected tasks.
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1.3.1 Symbolic reasoning in interactive environments

Interactive environments serve as a fertile ground for investigating complex reason-
ing problems, offering a unique platform to explore a multitude of challenges that
arise from long-term planning and intricate decision-making processes. Moreover,
reinforcement learning problems are generally well suited for researching neural mod-
els that are robust to the limitations mentioned in Section 1.2.1. Indeed, agents in
interactive environments often face several challenges, including:

• changes in distribution, due to either their own actions or the actions of the
other agents;

• partial observability, meaning that they only have access to observations that
might not provide a complete representation of the state of the environment;

• combinatorial action spaces, as the structure of the action space can become
combinatorially large in some settings, depending on the problem and the num-
ber of agents;

• long-term credit assignment, as actions taken in the past can turn useful several
time steps later in the future.

Experiencing distributional shifts implies that the model needs to generalize robustly
out of the training distribution. The problems of long-term credit assignment and
combinatorial action spaces result in high sample complexity, hence the agents need
to be able to learn a generalizable policy sample efficiently.

Within the realm of interactive environments, we have chosen to concentrate our
efforts on textual environments, namely environments where observations, actions
and feedback are expressed in the form of natural language text. In this context, text-
based games have recently emerged as a promising framework to drive advances
in RL research (Côté et al. 2018; M. Hausknecht et al. 2020). Indeed, this setting
provides a rich use case for studying grounded language learning and how information
from text can be utilized in sequential planning and decision making (Ammanabrolu
and M. J. Hausknecht 2020; Narasimhan et al. 2015; Zahavy et al. 2018). Prior work
has explored text-based RL on textual games originally designed for humans, like
multi-user dungeon games (Narasimhan et al. 2015) and text-adventure games like
Zork (Zahavy et al. 2018). Recently, research has also shifted towards games explicitly
designed for machine-learning agents (Adolphs et al. 2019), as artificial games can
have well-defined goals and controllable complexity. As an example, Côté et al. (2018)
introduced TextWorld, a sandbox learning environment for training and evaluating RL
agents on text-based games.

This task allows us to assess several hypotheses and investigate different research
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questions. First, we aim to understand whether using prior structured knowledge
can improve the sample efficiency and the generalization capabilities of a neural
agent based on a large language model. We assess this hypothesis in Chapter 2, using
commonsense knowledge extracted from a knowledge graph (Speer et al. 2017). Then,
in Chapter 3, we verify whether the use of graph-based representations can provide
a helpful inductive bias for reasoning and planning operations. Finally, we explore
reasoning approaches for sample-efficient reinforcement learning by proposing an
algorithm inspired by case-based reasoning in Chapter 4. We provide an outline of the
thesis and more details in Section 1.4.

1.3.2 Factual reasoning in static contexts

Though interactive environments enable us to explore the capabilities of neural net-
works for reasoning and planning in complex scenarios, this task severely restricts
the amount of factual knowledge that the model can leverage and reason upon, as
the environments feature a limited number of domain-specific entities. Therefore,
our research focuses also on a different set of tasks. More precisely, we aim to investi-
gate the ability of neural networks and language models to reason over prior factual
knowledge provided to the model. When combined with the insights gained from inter-
active environments, this additional perspective contributes to a more comprehensive
understanding of reasoning capabilities within neural networks.

To probe the ability of language models and neural networks to perform factual rea-
soning, we focus on language understanding tasks and provide the model with access
to factual information in the form of a knowledge graph (KG). We aim to investigate
two main properties of neural networks:

• the ability of the model to reason over the information in the KG efficiently and
generalize compositionally out of the training distribution;

• the extent to which prior knowledge can improve performance of the model on
language understanding tasks, both in terms of generalization and efficiency.

For the former property, we consider the task of knowledge-based question answering
(KBQA), namely answering natural language questions over a knowledge base. This task
allows us to probe the ability of the model to access factual information efficiently and
perform logical deductions over the retrieved knowledge, even when the knowledge
graph comprises millions of edges. Additionally, it allows us to investigate the ability of
the model to generalize to reasoning patterns robustly, even when the distribution of
questions in the training set is different from the distribution in the test set (Keysers
et al. 2020).

On the other hand, to investigate whether language models can benefit from prior
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knowledge, we consider an entity linking task. Entity linking is a well-known task in
natural language processing (NLP) and involves the disambiguation and identification
of entities mentioned within textual data. It has been shown that prior knowledge of
the type of a mention can greatly improve downstream performance (Raiman et al.
2018). While language models should already have this kind of knowledge (Aghajanyan
et al. 2022) and be able to achieve high performance on entity disambiguation tasks
(state-of-the-art performance is generally achieved by large generative models), our
goal is to investigate whether reasoning over prior structured knowledge can improve
their efficiency and the downstream performance of smaller models. Therefore, we will
use a knowledge graph without explicit type labels to provide additional information
to the language model. The model then has to reason over prior knowledge to infer the
type of the mention and link it to the correct entity.

1.3.3 Geometric reasoning in abstract symbolic tasks

The two lines of work described above aim at assessing and enhancing the reasoning
capabilities of neural networks by using knowledge graphs as either an inductive bias
or a source of prior knowledge. In our pursuit of infusing knowledge priors in neural
networks, however, a key research question is what kind of priors should be infused
in the model to improve reasoning abilities, sample efficiency and generalization
(Battaglia et al. 2018).

As mentioned in Section 1.2.3, the Core Knowledge priors for human intelligence
have been studied extensively in developmental science (Spelke et al. 2007), following
the theory that humans are endowed with a small number of separable systems of
core knowledge, so that new flexible skills and belief systems can build on these core
foundations. Recent research in artificial intelligence (AI) has postulated the idea that
the same priors should be incorporated in AI systems (Chollet 2019), but it is an open
question how to incorporate these priors in neural networks.

Following this chain of thought, the Abstraction and Reasoning Corpus (ARC) (Chollet
2019) was proposed as an AI benchmark built on top of the Core Knowledge priors from
developmental science. The dataset contains a collection of synthetic tasks, where
for each task, the model needs to learn a reasoning chain from a small number of
input-output pairs (3.3 input-output pairs on average for each task). Chollet (2019)
posits that infusing this kind of priors into neural models is a challenging first step
towards human-level AI and that “solving this specific subproblem is critical to general
AI progress”. Further, he argues that ARC “cannot be meaningfully approached by
current machine learning techniques, including Deep Learning”.

As the problem of infusing all Core Knowledge priors in neural networks is remarkably
complex, we focus on one category, specifically geometry and topology priors. This
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allows us to draw connections to other lines of research that have proposed methods
to incorporate geometric priors in neural networks by rendering them invariant (or
equivariant) to specific transformations (Bronstein et al. 2021). However, as we focus
on geometric reasoning, in this thesis, we rather aim to design models that can learn
functions involving geometric transformations of their input efficiently, rather than
being oblivious to such transformations. As each task in ARC is defined in terms
of a very small number of input-output pairs (3.3 on average), this problem allows
us to study and enhance the sample efficiency of neural networks when learning
fundamental geometric transformations.

1.4 Thesis outline

The thesis is organized into three main parts, each addressing one of the three perspec-
tives described in Section 1.3. Each part is structured as described below.

Part I: Symbolic and commonsense reasoning in textual environments

Part I endeavors to address the research path outlined in Section 1.3.1, dealing with
symbolic and commonsense reasoning in interactive textual environments.

Chapter 2 examines the problem of infusing RL agents with commonsense knowledge
in the context of textual environments requiring commonsense and symbolic reason-
ing. Such knowledge would allow agents to efficiently act in the world by pruning
out implausible actions, and perform look-ahead planning to determine how current
actions might affect future world states. We design a new text-based gaming environ-
ment called TextWorld Commonsense (TWC) for training and evaluating RL agents
with a specific kind of commonsense knowledge about objects, their attributes, and
affordances. We also introduce several baseline RL agents which track the sequential
context and dynamically retrieve the relevant commonsense knowledge from Con-
ceptNet (Speer et al. 2017). We show that agents which incorporate commonsense
knowledge in TWC perform better, while acting more efficiently. We conduct user-
studies to estimate human performance on TWC and show that there is ample room
for future improvement, confirming that our benchmark is suitable to drive further
research in this area.

Chapter 3 builds on the work described in Chapter 2 and proposes an agent that
models that state of the world using a graph-based representation (similar to the work
of Ammanabrolu and M. J. Hausknecht (2020) and Adhikari et al. (2020)) and chooses
its own actions by reasoning jointly using prior knowledge and such a representation
of state of the game. We show that agents that reason jointly on the state graph and
commonsense knowledge graph outperform baseline agents while being more sample
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efficient, confirming our hypothesis that knowledge graphs are good inductive biases
for knowledge representation and that prior and local knowledge are complementary.

Finally, Chapter 4 reuses the same model of Chapter 3, but we propose a general
method inspired by case-based reasoning to train agents and generalize out of the
training distribution. The case-based reasoner collects instances of positive expe-
riences from the agent’s interaction with the world in the past and later reuses the
collected experiences to act efficiently. We show that the proposed approach consis-
tently improves existing methods, obtains good out-of-distribution generalization,
and achieves new state-of-the-art results on widely used environments.

Part II: Factual reasoning in language-understanding tasks

In this part, we shift our attention to the ability of neural networks and language
models to reason over factual knowledge, following the motivation outlined in Section
1.3.2. As mentioned above, we use two well-known language-understanding tasks to
probe the ability of language models and neural networks for factual reasoning.

Chapter 5 focuses on question answering and reasoning over knowledge graphs, explor-
ing a method for reasoning over factual knowledge efficiently while using a language
model to produce question representations. State-of-the-art approaches to reasoning
over KGs usually scale with the number of edges and can only be applied effectively
on small instance-dependent subgraphs (H. Sun, Dhingra, et al. 2018; H. Sun, Bedrax-
Weiss, et al. 2019; Saxena et al. 2020). We address this issue by showing that multi-hop
and more complex logical reasoning can be accomplished separately without losing
expressive power. Motivated by this insight, we propose an approach to multi-hop
reasoning that scales linearly with the number of relation types in the graph, which
is usually significantly smaller than the number of edges or nodes. This produces a
set of candidate solutions for more complex reasoning problems, that can be provably
refined to recover the original solution. Our experiments on knowledge-based ques-
tion answering show that our approach solves the multi-hop MetaQA dataset (Zhang
et al. 2018), achieves a new state-of-the-art on the more challenging WebQuestionsSP
(Yih et al. 2015), is orders of magnitude more scalable than competitive approaches,
and can achieve compositional generalization out of the training distribution on the
benchmark of Keysers et al. (2020).

Chapter 6 proposes an approach to infusing prior factual knowledge in entity link-
ing methods based on dense retrieval. Concretely, following Raiman et al. (2018), we
introduce an method for infusing structural information in the space of entity represen-
tations, using prior knowledge of entity types. Inspired by duck typing in programming
languages, we define the type of an entity based on its relations with other entities in
a knowledge graph. Then, porting the concept of box embeddings (Vilnis et al. 2018;
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Dasgupta et al. 2020; Abboud et al. 2020) to spherical polar coordinates, we represent
relations as boxes on the hypersphere. We optimize the model to place entities in-
side the boxes corresponding to their relations, thereby clustering together entities of
similar type. Our experiments show that our method sets new state-of-the-art results
on standard entity-disambiguation benchmarks. It improves the performance of the
model by up to 7.9 F1 points, outperforms other type-aware approaches, and matches
the results of generative models with 18 times more parameters.

Part III: Geometric reasoning in abstract symbolic tasks

Finally, Part III focuses on sample-efficient geometric reasoning, as anticipated in
Section 1.3.3. As mentioned in Section 1.3.3, the Abstraction and Reasoning Corpus
(ARC) (Chollet 2019) and its most recent language-complete instantiation (LARC)
(Acquaviva et al. 2021) have been postulated as an important step towards general
AI, as they require models that build on fundamental knowledge priors. Yet, even
state-of-the-art machine learning models struggle to achieve meaningful performance
on these problems, falling behind non-learning based approaches.

To address this issue, Chapter 7 focuses on geometry priors and introduces LATFORMER,
a model that incorporates lattice symmetry priors in attention masks. We show that,
for any transformation of the hypercubic lattice, there exists a binary attention mask
that implements that group action. Furthermore, we show that these masks are the
Kronecker product of convolutions of the identity. Hence, our study motivates a mod-
ification to the standard attention mechanism, where attention weights are scaled
using soft masks generated by a convolutional neural network. Experiments on syn-
thetic geometric reasoning show that LATFORMER requires 2 orders of magnitude fewer
data than standard attention and transformers to learn geometric transformations.
Moreover, our results on ARC and LARC tasks provide preliminary evidence that these
complex datasets do not lie out of the reach of deep learning models.

1.5 List of contributions

The work described in this thesis resulted in the following publications.

• Chapter 2: Keerthiram Murugesan, Atzeni, Kapanipathi, Shukla, et al. (2021),
Text-based RL Agents with Commonsense Knowledge: New Challenges, Environ-
ments and Baselines, 35th AAAI Conference on Artificial Intelligence, AAAI 2021.

• Chapter 3: Keerthiram Murugesan, Atzeni, Kapanipathi, Talamadupula, et al.
(2021), Efficient Text-based Reinforcement Learning by Jointly Leveraging State and
Commonsense Graph Representations, Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics, ACL 2021.
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• Chapter 4: Atzeni, S. Z. Dhuliawala, et al. (2022), Case-based Reasoning for Better
Generalization in Textual Reinforcement Learning, International Conference on
Learning Representations, ICLR 2022.

• Chapter 5: Atzeni, Bogojeska, et al. (2021), SQALER: Scaling Question Answering
by Decoupling Multi-Hop and Logical Reasoning, Advances in Neural Information
Processing Systems, NeurIPS 2021.

• Chapter 6: Atzeni, Plekhanov, et al. (2023), Polar Ducks and Where to Find
Them: Enhancing Entity Linking with Duck Typing and Polar Box Embeddings,
Proceedings the 2023 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2023.

• Chapter 7: Atzeni, Sachan, et al. (2023), Infusing Lattice Symmetry Priors in
Attention Mechanisms for Sample-Efficient Abstract Geometric Reasoning, Inter-
national Conference on Machine Learning, ICML 2023.

During my doctoral studies, I also co-authored the following papers, which are not
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• Hoang et al. (2022), SCERL: A Benchmark for Intersecting Language and Safe Re-
inforcement Learning, Second Language and Reinforcement Learning Workshop
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2022.

• Krivosheev, Atzeni, Mirylenka, Scotton, Miksovic, et al. (2021), Business Entity
Matching with Siamese Graph Convolutional Networks, The 35th AAAI Conference
on Artificial Intelligence, AAAI 2021.
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2 Prior structured knowledge for rea-
soning in interactive environments

2.1 Introduction

Enhancing machine learning models with the ability to perform symbolic reasoning is
regarded as a key step to reach systematic generalization and improved sample effi-
ciency in complex tasks (Marcus 2020; Battaglia et al. 2018; Lake and Baroni 2018; Mar-
cus 2018). In particular, reasoning in interactive, partially-observable environments
poses several challenges, as learning agents need to perform look-ahead planning on
how action trajectories will affect future world states.

Interactive contexts and reinforcement learning (RL) settings provide an ideal use
case for studying these challenges, as agents often experience shifts in distribution
either due to their own actions or to the actions of other agents. Furthermore, this
setting involves planning and systematically generalizing in environments that require
reasoning skills and sequential decision making. In this area, text-based games (TBG)
(Narasimhan et al. 2015; Côté et al. 2018; Ammanabrolu and Riedl 2019) are a task
that is quickly gaining attention, as agents must interact with an external environment
using only the modality of text. These games provide several additional challenges,
including partial observability, sparse rewards, long-term dependencies and combi-
natorial action spaces. Moreover, agents need to build a model of the state of the
environment from natural language observations, so the best performing agents still
struggle to achieve meaningful performance on TBGs.

Research on TBGs has used as benchmarks both text-adventure games originally
intended for human players (M. Hausknecht et al. 2020; Ammanabrolu and M. J.
Hausknecht 2020) and games specifically designed for research purposes (Côté et al.
2018). However, the former category includes difficult games where the goal is not well-
defined whereas the latter comprises simple games that severely restrict the amount of
reasoning and commonsense knowledge that the agent needs.
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Observation
You've entered a kitchen. You
see a dishwasher and a fridge.
Here's a dining table. You see a
dirty plate and a  red apple on the
table. 

Goal

Clean up the kitchen

ConceptNet

Agent

Best action trajectory

1. Take the red apple from the table
2. Take the dirty plate from the table
3. Open the fridge
4. Put the red apple in the fridge
5. Open the dishwasher
6. Put the dirty plate in the

dishwasher

Plausible Actions
1. Open the dishwasher
2. Put the dirty plate in the fridge
3. Put the red apple in the dishwasher
4. ...

Fridge
AtLocation

Plate Dishwasher
AtLocation

Apple

Figure 2.1: Illustration of a TWC game. The agent is given an initial observation (top left) and
has to produce the list of actions (bottom right) that are necessary to achieve the goal (bottom
center) using relevant commonsense knowledge from ConceptNet (bottom left).

In order to address these issues, the work described in this chapter builds on the
hypothesis that biasing learning with the use of symbolic graph structured repre-
sentations, like knowledge graphs (KGs), could improve both sample efficiency and
generalization performance. In particular, the contributions of the work described in
this chapter are as follows.

• We introduce a novel text-based RL environment, called TextWorld Common-
sense (or TWC), that requires agents to perform commonsense reasoning to
achieve the goal. Achieving goals in this environment requires commonsense
knowledge about objects, their properties, locations, and affordances. Efficient
use of commonsense knowledge would improve sample efficiency by reducing
exploration. Moreover, it would help the agent to perform look-ahead planning
and determine how current actions might affect future world states.

• We propose an approach that allows the agent to perform commonsense reason-
ing over an external knowledge graph. Concretely, we rely on ConceptNet (Speer
et al. 2017) as the source of prior knowledge and design a framework where the
agent can combine textual information with prior commonsense knowledge
dynamically retrieved from this KG.

Figure 2.1 shows a high-level view of both the approach and the novel text-based
environments for commonsense reasoning.

In this chapter, we describe the creation and evaluation of TWC. Our experimental
results point out that agents with access to the KG generalize better and more effi-
ciently than their text-only counterparts. Moreover, we notice a pronounced gap in
performance between automated agents and humans, showing that TWC provides a
challenging test-bed for RL agents and can act as a spur to further research in this area.
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2.2 TextWorld Commonsense (TWC)

Existing text-based games (Adhikari et al. 2020; Côté et al. 2018) severely restrict the
amount and variety of commonsense knowledge that an agent needs to know and
exploit. Solving these tasks mostly requires local knowledge about the environment
and the involved commonsense reasoning is usually limited and easy to learn directly
from the games. Thus, this section proposes a new domain, TextWorld Common-
sense (TWC), which allows generating text-based environments where agents can take
advantage from performing commonsense reasoning on external KGs.

2.2.1 Constructing TWC

The novel domain introduced in this report, TextWorld Commonsense, enables gener-
ating text-based games where the high-level goal is always to tidy up a house by placing
objects in their commonsensical locations, as in the example depicted in Figure 2.1.
TWC consists of mainly two components:

• a dataset that pairs a set of entities to commonsensical properties of these objects
like their usual locations;

• a framework that, based on the TWC dataset, allows generating text-based envi-
ronments of different difficulty levels to train and evaluate RL agents.

TWC dataset. The TWC environments were generated based on a novel ad-hoc
dataset, in order to avoid biasing the games towards any existing KB. A set of vocab-
ulary terms was collected from public sources of information that are orthogonal to
commonly used KGs like ConceptNet. These terms were then manually inspected and
aggregated in order to build a dataset with several kinds of objects that are typically
found in a house environment. The initial set of unique objects was then augmented
by adding attributes that may or may not change their target location, as shown in the
examples in Table 2.1. The resulting dataset includes a total of 8 room types and more
than 900 entities, which can be grouped in three categories: objects, supporters, and
containers. Objects are entities that can be carried by the agent, whereas supporters
and containers are locations where those objects can be placed. The dataset includes
triples of the form ⟨o, r, l⟩, whenever it is deemed commonsensical to have an object o
within room r on the supporter/container l.

TWC environments. The TWC dataset has been used to generate a novel set of
text-based environments requiring commonsense reasoning. The TextWorld (Côté
et al. 2018) engine was employed to generate the natural language observations, and
the environments were grouped into three difficulty levels (easy, medium, and hard)
depending on the total number of objects and rooms in the game. Table 2.2 provides
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Count Examples

Rooms 8 kitchen, bedroom
Supporters/Containers 56 dishwasher, wardrobe
Unique Objects 190 plate, dress
Total Objects 872 dirty plate, clean red dress
Total Entities 928 dirty plate, dishwasher

Table 2.1: Number of entities, supporters/containers, and rooms in the TWC domain.

#Objects #Objects to find #Rooms

Easy 1 1 1
Medium 2, 3 1, 2, 3 1
Hard 6, 7 5, 6, 7 1, 2

Table 2.2: Specification of the different difficulty levels in the TWC games. The number
of objects that the agent has to find may be lower than the total number of objects in the
environment, as the agent may be already carrying some objects at the beginning of the game.

the detailed specification of the games, whereas Figure 2.2 shows an example of a game
belonging to the medium difficulty level. For each difficulty level, we provide a training
set and two test sets. The training sets include games that were constructed out of 2

3 of
the unique objects reported in Table 2.1. The first test set was built based on the same
pool of objects as in the training games. In the following, we will refer to this set as the
in-distribution test set. The second test set uses the remaining 1

3 objects and is called
the out-of-distribution test set. This allows investigating the ability of the agents to
achieve systematic generalization to unseen entities.

-= Corridor =-
You're now in the corridor.

You see a shoe cabinet. What a letdown! The shoe cabinet is empty! You see an umbrella stand. The umbrella stand is standard. Unfortunately,
there isn't a thing on it. You see a coat hanger. The coat hanger is usual. Looks like someone's already been here and taken everything off
it, though. You see a hat rack. But the thing is empty. Oh! Why couldn't there just be stuff on it? Oh, great. Here's a key holder. But there
isn't a thing on it.

There is a pair of climbing shoes, a brown cap and a white cap on the floor.

You are carrying nothing.

> take the climbing shoes

You pick up the climbing shoes from the ground.

> insert climbing shoes into shoe cabinet

You put the climbing shoes into the shoe cabinet.

Your score has just gone up by one point.

> take the brown cap

You pick up the brown cap from the ground.

> put the brown cap on the hat rack

You put the brown cap on the hat rack.

Your score has just gone up by one point.

> take the white cap

You pick up the white cap from the ground.

> put the white cap on the hat rack

You put the white cap on the hat rack.

Your score has just gone up by one point.

Figure 2.2: Sample game walkthrough for a game with medium difficulty level. Best viewed in
colors. Highlights are not available to the agents and are shown for illustrative purpose only.

20



Prior structured knowledge for reasoning in interactive environments Chapter 2

Correctness Completeness

Rated Commonsense 669 47
Rated NOT Commonsense 31 253

Table 2.3: Statistics from the human annotations to verify TWC

2.2.2 Verifying TWC

We assessed the TWC domain by means of a twofold evaluation aimed at verifying
the quality of the dataset and benchmarking human performance on the proposed
text-based environments.

The evaluation of the dataset had the purpose of ensuring that the proposed TWC
domain in fact reflects commonsense knowledge. In particular, given ⟨o, r, l⟩ triples
(where o denotes an object, r denotes a room, and l a location within that room, as
defined in Section 2.2.1), we set up two annotation tasks aimed at verifying that:

• goal triples in the TWC dataset are commonsensical to humans (TWC is correct);

• non-goal triples, which are not in the dataset, are not commonsensical to humans
(TWC is complete).

A total of 1000 triple annotations (700 on goal triples to assess correctness and 300
on non-goal triples to assess completeness) was collected from 10 annotators. Each
triple was labeled by at least 3 annotators. Table 2.3 shows the overall agreement of
the annotators with the TWC dataset, which demonstrates that TWC reflects human
commonsense knowledge. For the overall annotation exercise, we can report inter-
annotator agreement statistics, as the overall annotation is not imbalanced in terms
of label marginals. We report a Krippendorff ’s alpha (Krippendorff 2018) value of
ακ = 0.74, which shows that annotators had strong agreement when rating the triples.

2.2.3 Human performance on TWC

To complete our benchmarking of the TWC domain, we collected the performance
of human players on the TWC text-based games. Human players were given access
to a user interface aimed at recording all their interactions with the environment. At
each step, the players were shown the current context of the game in text format and a
drop-down list of all possible actions. A total of 16 annotators played games spread
across the easy, medium, and hard levels. Each difficulty level had 5 games, both from
the train and test distributions, for a total of 30 unique games. Each unique game was
annotated by a minimum of 3 annotators. The results are presented in Table 2.4, along
with the experimental results, to allow for direct comparison with the agents.
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2.3 Infusing prior knowledge in neural agents

Text-based games can be seen as partially observable Markov decision processes
(POMDP) (Kaelbling et al. 1998) where the system dynamics are determined by an MDP,
but the agent cannot directly observe the underlying state. The agent receives a reward
at every time step and its goal is to maximize the expected discounted sum of rewards.
The TWC games allow the agent to perceive and interact with the environment via
text. Thus, the observation at time step t, ot, can be presented as a sequence of tokens,
ot = (o1t , . . . , o

N
t ). Similarly, denoting as At the set of available actions at time step t,

each action a ∈ At is also a sequence of tokens a = (a1, . . . , aM ). The goal of this project
is to design RL agents that can reason over a knowledge graph, hence we assume the
agents also have access to a commonsense KG and are allowed to use it while selecting
actions. To model TWC, we design a framework that can: (a) learn representations of
various actions; (b) learn from sequential context; (c) dynamically retrieve the relevant
commonsense knowledge; (d) integrate the retrieved commonsense knowledge with
the context; and (e) predict next action. A block diagram of the framework is shown in
Figure 2.3.

2.3.1 Observation encoder

We learn representations of the natural language observations by feeding them to a
recurrent network. Given the current observation ot, the models relies on pre-trained
word embeddings to represent ot as a sequence of d-dimensional vectors x1

t , . . . ,x
N
t ,

where each xk
t ∈ Rd is the word embedding of the k-th observed token okt , k = 1, . . . , N .

Then, a bidirectional GRU encoder (Cho et al. 2014) is used to process the sequence
x1
t , . . . ,x

N
t to get the representation of the current observation ot = hN

t , where hk
t =

GRU(hk−1
t ,xk

t ), for k = 1, . . . , N , and h0
t = 0.

2.3.2 Action encoder

Actions in our framework are expressed in natural language. We encode an action akt
in the set of admissible actions at time step t, At in a way similar to what described
above for observations. Each toke of an action akt is encoded using pre-trained word
embeddings (Pennington et al. 2014) and we use a bidirectional GRU to get a final
representation of an action akt , which we denote as ⅁k

t ∈ Rd.

2.3.3 Context encoder

A key challenge for our RL agent is in modeling context, i.e. the history of observations.
The context is modeled using another recurrent encoder over the observations ot. A
GRU network is used to encode the sequence of previous observations up to ot into
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You’ve entered a kitchen.
You see a dishwasher and a
fridge. Here’s a dining table.

You see a dirty plate and a
red apple on the table.

Observation (Ot)

Take apple from table

Word embeddings

Action (a)

GRU
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Figure 2.3: Overview of our framework’s decision making at any given time step. The frame-
work comprises of the following components (visually shown in color): (a) action encoder
which encodes all admissible actions, (b) observation encoder which encodes the observation
ot, (c) context encoder, which encodes the dynamic context, (d) a dynamic commonsense
subgraph of ConceptNet GCt extracted by the agent, (e) a knowledge integration component,
which combines the information from textual observations and the extracted common sense
subgraph, and (f) an action selection module. ⊕ denotes the concatenation operator.

a vector st = GRU(st−1,ot), with s0 = 0. We refer to st as the state vector, or the
context encoding. The context encoding will be used in addition to the commonsense
knowledge in the final action prediction.

2.3.4 Dynamic commonsense subgraph

Our model retrieves commonsense knowledge from ConceptNet in the form of a graph
GCt . This graph is updated dynamically at each time step t. GCt is constructed by
mapping the textual observation ot at time t to ConceptNet and combining it with the
graph at previous time step GCt−1.

At each time step, we extract noun chunks from the observations ot and then perform
a max sub-string match with all the concepts in ConceptNet. This results in a set of
entities for the observation ot at time t. We then combine this set of entities with the
ones already in GCt−1 to get VCt , the set of nodes of GCt . VCt consists of all the concepts
observed by the agent until time step t, including the description of the room, the
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current observation, and the objects in the inventory. Given VCt , we describe three
different techniques that automatically extract the commonsense graph GCt from
external knowledge.

Direct Connections (DC). This is the baseline approach to construct GCt . We fetch
direct links between each of the concepts in VCt from ConceptNet.

Contextual Direct Connections (CDC). Since the goal of the agent is to clean up the
house by putting objects into its appropriate locations, we hypothesize that adding
links only between objects and containers may benefit the agent instead of links
between all concepts as done by Direct Connections, as we might overwhelm the agent
with noise. To accomplish this goal, we split the entities VCt into objects and containers.
Since we know the entities from the inventory in VCt constitutes objects, no explicit
labelling is needed as we consider the remaining entities as containers. We retain only
the edges between objects and containers from ConceptNet.

Neighborhood (NG). Previous techniques only focus on connecting links between
observed concepts VCt from external knowledge. In addition to the direct relations, it
may be beneficial to include concepts from external knowledge that are related to VCt ,
but have not been directly observed from the game. Therefore, for each concept in VCt ,
we include all its neighboring concepts and associated links.

2.3.5 Knowledge integration

We enhance the text-based RL agent by allowing it to jointly contextualize information
from both the commonsense subgraph and the observation representation. We call
this step knowledge integration. We encode the commonsense graph using a graph
encoder followed by a co-attention layer.

Graph encoder. The graph GCt is encoded as follows. First, pre-trained Numberbatch
(Speer et al. 2017) embeddings are used to map the set of nodes VCt to a feature matrix

[v1
t , . . . ,v

|VC
t |

t ]⊤ ∈ R|VC
t |×f . Here, vi

t ∈ Rf is the average embedding of words in node
vi ∈ VCt . Then, these node embeddings are updated at each time step by message
passing between the nodes of GCt with Graph Attention Networks (GATs) (Velickovic

et al. 2018). This results in feature matrix G = [z1t , z
2
t , · · · , z

|VC
t |

t ]⊤ that better captures
the conceptual relations between the nodes in the subgraph.

Context-graph attention. In order to combine the observational context and the
retrieved commonsense graph, the agent relies on a bidirectional attention flow layer
between these representations to re-contextualize the graph for the current state of
the game (Yu et al. 2018). Following Yu et al. (2018), we compute a similarity matrix
S ∈ RN×|VC

t | between the context and entities in the extracted commonsense subgraph
using a trilinear function (Yu et al. 2018). In particular, the similarity between the
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context encoding vector for each token hi
t and a node encoding zjt in the commonsense

subgraph is computed asSij = w⊤
S [z

j
t ;h

i
t; z

j
t◦hi

t]where ◦ denotes element-wise product
and wS is a learnable parameter. A softmax function is applied row-wise and column-
wise on S to get respectively the scores S̄G for the context-to-graph attention and S̄O

for the graph-to-context attention. Then, the attended context and graph vectors are

computed as A = S̄⊤
O · O and B = S̄⊤

O · (S̄G ·G), where G = [z1t , z
2
t , · · · , z

|Vt|
t ]⊤ and

O = [h1
t ,h

2
t , · · · ,hN

t ]⊤ are the commonsense graph and observation encodings. The
attention vectors are then combined together and the final graph encoding vectors U
are calculated as U = W⊤

U [G;A;G ◦A;G ◦B] where WU is a learnable parameter.

2.3.6 Action selection

The agent applies a general attention over the nodes of GCt using the state vector
and the action encoding [st;a

t
i] (Luong et al. 2015). The attention score for each

node is computed as αi = [st;a
t
i]WgU, and the commonsense graph encoding for

action ati is given as gt
i = α⊤

i U. The action to take is chosen based on the context
encoding st, the commonsense graph encoding gt

i and the action encoding ati. These
encodings are concatenated into a single vector rti = [st;g

t
i;a

t
i]. Then, a probability

score is computed for each action ai ∈ At using a feed-forward network as pt =

softmax(W1·ReLU(W2·rt+b2)+b1), where W1,W2,b1, andb2 are learnable parameters
of the model. The final action is then given by the one with the maximum probability
score, namely ât = argmaxi pt,i.

2.4 Experiments

Given that the quality of the proposed TWC environment has already been evaluated
in Section 2.2.2, the experiments discussed in this section primarily focus on verifying
the following hypotheses:

• agents that utilize knowledge graphs can achieve better performance on TWC
than their text-based counterparts;

• TWC can aid research in the use of knowledge graphs because of the gap between
human performance and the best knowledge-aware agents.

The performance of the various agents is measured based both on the normalized
score (reward) achieved by the agent and the number of steps (actions) taken. Each
agent was trained for 100 episodes and the results were averaged over 10 runs. The
maximum number of actions was limited to 50 for all agents. Following one of the
winning strategies in the FirstTextWorld Competition (Adolphs et al. 2019), we use the
Advantage Actor-Critic framework (Mnih et al. 2016) to train the agents.
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Figure 2.4: Performance evaluation (showing mean and standard deviation averaged over 10
runs) for the three difficulty levels: Easy (left), Medium (middle), Hard (right) using normalized
score and the number of steps taken.

2.4.1 RL agents in TWC

We evaluate our framework on the TWC games. As a reference, we consider a ran-
dom agent that randomly picks an action at each time step. We consider two types of
experiment settings based on the type of information available to the RL agents: (1)
Text-based RL agents have access to the textual description (observation) of the cur-
rent state of the game provided by the TWC environment; and (2) Commonsense-based
RL agents have access to both the observation and ConceptNet.

Text-only baseline agents. As baselines, we picked various SOTA text-based agents
that utilize observation only: (1) LM-NSP uses language models such as BERT (Devlin
et al. 2019) and GPT2 (Radford et al. 2019) with the observation and the action pair as
a Next Sentence Prediction (NSP) task; (2) LSTM-A2C (Narasimhan et al. 2015) uses
the observed text to select the next action; (3) DRRN (J. He et al. 2016) utilizes the
relevance between the observation and action spaces for better convergence; and
(4) KG-A2C (Ammanabrolu and M. J. Hausknecht 2020) uses knowledge of the game
environment generated from the observation to guide the agent’s exploration. For
these baselines, we use GloVe (Pennington et al. 2014) embeddings for text.

The results on these baselines are reported in Table 2.4. For each difficulty level, we
report: the agents’ performance; the optimal number of steps to solve the gameI;
and the human performance. The performance of GPT2-NSP and BERT-NSP shows
that even powerful pretrained models if not tuned to this task have difficulty in these

IThe optimal number of steps was computed by considering the objects already in the agent’s posses-
sion, the number of objects to “put” (goals), and the number of rooms in the instance.
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Figure 2.5: Training curves for the medium level games (showing mean and standard deviation
averaged over 3 runs) with the different techniques for the commonsense sub-graph extraction.

commonsense RL games, as they do not capture commonsense relationships between
entities. Baselines such as LSTM-A2C, DRRN, and KG-A2C have a competitive advan-
tage over the LM-NSP baselines, as they effectively adapt to the sequential interaction
with the environment to improve performance. Among these baselines, DRRN and
KG-A2C perform better than LSTM-A2C as they utilize the structure of the state and
action spaces for efficient exploration of the environment.

Commonsense-based agents. We introduce commonsense knowledge in two ways.
The first is the agent Text + Numberbatch, which replaces GloVe embeddings in the
LSTM-A2C agent with Numberbatch (Nb) embeddings (Speer et al. 2017) which were
trained on text and ConceptNet. This is the naive approach to augment text informa-
tion with commonsense knowledge. The results in Table 2.4 show that introducing
Nb embeddings allows achieving a noticeable gain (an average of 3 steps in easy and 7

steps in medium level games) over GloVe embeddings.

In order to explicitly use commonsense knowledge, we experiment with the three
different mechanisms outlined in Section 2.3.3 for retrieving relevant information from
ConceptNet (DC, CDC and NG). These methods retrieve both the concepts and structure
in the relevant sub-graphs from ConceptNet, which are leveraged by our co-attention
mechanism (Section 2.3.5). The comparison of the agents’ performance with different
retrieving mechanisms is shown in Fig 2.5. The results show that CDC performs the best
among other mechanisms, particularly compared to DC. Unlike DC that includes all the
links between observed concepts from ConceptNet, CDC restricts links to those between
observed objects and containers. This selection of relevant links from ConceptNet
improves the performance of the agent.

Given that CDC performs best, we compare results on text-based models with CDC-
augmented commonsense knowledge to other baselines. Table 2.4 shows results for
text-based agents initialized with GloVe or Nb embeddings, and augmented with com-
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monsense knowledge. We see that the commonsense-based RL agents perform better
than text-based RL agents in the easy and medium level games. This is not surprising,
as these instances mostly involve picking an object and placing it in a container in the
same room. Both the text-based and commonsense RL agents struggle in the hard
level, as these games have more than one room and multiple objects and containers.
We also notice that the average number of steps taken by the commonsense-based
RL agents are noticeably lower than the other agents as it efficiently uses common-
sense knowledge to rule out implausible actions. This proves that TWC is a promising
test-bed where commonsense knowledge helps.

Our results show that the agents still have much room for improvement in terms of
retrieving and combining knowledge with observations. As a starting point for showing
that there is headroom, we switched the retrieval mechanism to manually selected
information from ConceptNet. We manually retrieved the relevant commonsense
knowledge by extracting the commonsensical paths between entities in ConceptNet,
corresponding to objects in the TWC games and their goal locations. The manual
subgraph includes all the relevant shortest paths between an object and its location,
within a 2-hop neighborhood expansion of both nodes. Since the extracted subgraph
can be very large even for the easy games, further pruning was performed to remove
noise. We emphasize that the manual annotation can be error-prone or result in
manual subgraphs that lack potentially useful information. Thus, the manual graphs
should not be taken as a gold standard. In Table 2.4, agents that are augmented with
the manual graph perform better than the other automated retrieval mechanisms
(average reduction of 2 − 5 steps on easy and medium). Figure 2.4 shows training
curves for the Text-only, Text+Commonsense and Text+Manual agents on the three
difficulty levels. We notice that infusing commonsense knowledge allows achieving
faster convergence both in terms of the number of steps taken by the agents and the
final score.

Human performance on TWC. We also present the results of human performance in
TWC. The O and H columns in Table 2.4 (two per condition) present these results. A
quick comparison of these numbers reveals two major results: (1) human performance
H is very close to the optimal number of steps O in all 3 conditions; and (2) there is
significant headroom between H and all of the other agents in the table, including
the ones with the manual graph. This confirms that there is still much progress to
be made in retrieving and encoding the commonsense knowledge effectively to solve
such problems; and that TWC can spur further research.

2.4.2 Generalization

Table 2.4 reports the results both for test games that belong to the same distribution
used at training time (IN), and games that were generated from a different set of entities
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Easy Medium Hard
O H #Steps Norm. Score O H #Steps Norm. Score O H #Steps Norm. Score

IN

GPT2-NSP

2.
00
±

0.
00

2.
12
±

0.
49

30.36± 0.00 0.64± 0.00

3.
60
±

0.
55

5.
33
±

2.
06

42.12± 0.00 0.70± 0.00

15
.0

0
±

2.
00

15
.0

0
±

3.
29 50.00± 0.00 0.36± 0.00

BERT-NSP 25.20± 0.00 0.76± 0.00 34.72± 0.00 0.88± 0.00 50.00± 0.00 0.52± 0.00
LSTM-A2C 17.59± 3.11 0.86± 0.04 37.99± 6.03 0.74± 0.11 49.21± 0.58 0.54± 0.04
DRRN . 18.88± 2.69 0.81± 0.08 33.41± 2.81 0.73± 0.06 46.20± 4.86 0.44± 0.01
KG-A2C 17.65± 3.62 0.85± 0.07 37.18± 4.86 0.72± 0.07 49.36± 7.50 0.46± 0.10
Text
+Commonsense 14.18± 6.47 0.89± 0.10 34.67± 6.65 0.78± 0.07 48.45± 2.50 0.51± 0.10
+Manual 13.70± 1.85 0.92± 0.03 29.26± 0.94 0.88± 0.03 46.43± 3.67 0.54± 0.04
+Numberbatch 11.79± 3.04 0.96± 0.03 27.10± 5.06 0.85± 0.06 44.22± 4.86 0.57± 0.00
+Nb+Commonsense 14.43± 3.08 0.93± 0.06 25.11± 2.33 0.87± 0.04 43.27± 0.70 0.45± 0.00
+Nb+Manual 13.37± 5.63 0.92± 0.07 23.51± 1.28 0.91± 0.06 42.87± 0.65 0.52± 0.01

O
U

T

GPT2-NSP

2.
00
±

0.
00

2.
24
±

0.
75

40.28± 0.00 0.46± 0.00

4.
40
±

1.
14

4.
40
±

1.
85

44.96± 0.00 0.38± 0.00

14
.6

0
±

2.
67

17
.6

7
±

3.
31 50.00± 0.00 0.14± 0.00

BERT-NSP 24.76± 0.00 0.72± 0.00 41.12± 0.00 0.55± 0.00 50.00± 0.00 0.27± 0.00
LSTM-A2C 19.89± 1.86 0.79± 0.01 43.70± 5.52 0.52± 0.18 50.00± 0.00 0.27± 0.01
DRRN . 19.49± 4.89 0.84± 0.08 40.49± 4.41 0.56± 0.07 50.00± 0.00 0.18± 0.10
KG-A2C 18.00± 3.24 0.87± 0.05 43.08± 4.13 0.54± 0.17 49.96± 0.00 0.22± 0.00
Text
+Commonsense 19.14± 3.32 0.83± 0.07 41.01± 6.97 0.56± 0.13 49.99± 0.01 0.28± 0.05
+Manual 16.86± 2.26 0.89± 0.04 39.95± 2.46 0.71± 0.06 49.97± 0.04 0.26± 0.11
+Numberbatch 19.77± 2.50 0.81± 0.15 34.54± 2.89 0.80± 0.04 49.95± 0.08 0.29± 0.02
+Nb+Commonsense 20.84± 1.13 0.83± 0.03 33.43± 2.11 0.71± 0.09 50.00± 0.00 0.25± 0.01
+Nb+Manual 18.24± 4.63 0.83± 0.09 30.12± 4.62 0.84± 0.03 49.99± 0.02 0.22± 0.05

Table 2.4: Generalization results for within distribution (IN ) and out-of-distribution (OUT )
games. O represents the optimal #steps needed to accomplish the goals. H represents human-
level performance. All agents were restricted to a max of 50 steps.

(OUT). We see a similar trend on both these settings. The commonsense-enhanced
agent outperforms the text-only agent in all cases. However, all agents including those
that utilize commonsense knowledge show similar drop in performance from IN to
OUT distribution. This is in contrast to the use of the knowledge graphs in other NLP
tasks such as textual entailment where knowledge graphs have shown to be robust to
changes in the underlying (training and testing) environment (Kapanipathi et al. 2020;
Q. Chen et al. 2018). The task of designing knowledge-enabled agents that are robust
to such changes is another open challenge for the community that can be evaluated by
TWC. We will make some steps to address this challenge in Chapter 4.

Results summary. Our results establish that TWC is an environment where agents
augmented with commonsense knowledge show better performance than their text-
based counterparts. Based on the experiments with manually retrieved sub-graphs,
optimal steps, and the human performance numbers, we show that TWC has enough
headroom for future research efforts to: (1) retrieve more relevant commonsense
knowledge for KBs; and (2) for new agents/techniques to exploit such knowledge.

2.5 Related work

Textual reinforcement learning. Games are a rich domain for studying grounded
language and how information from text can be utilized in control. Recent work
has explored text-based RL games to learn strategies for CivII (Branavan et al. 2012),
multi-user dungeon games (Narasimhan et al. 2015), etc. Our work builds on the
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TextWorld (Côté et al. 2018) sandbox learning environment. Since its introduction,
there has been a large body of work devoted to improving performance on this bench-
mark. A recent line of work on TextWorld learns symbolic representations of the agent’s
belief. Notably, Ammanabrolu and Riedl (2019) proposed KG-DQN and Adhikari et al.
(2020) proposed GATA. Both approaches represent the game state as a belief graph.
This graph is used to prune the action space, enabling efficient exploration, in a differ-
ent way from our work which uses common sense. The LeDeepChef system (Adolphs
et al. 2019) is also related to our work. They achieve transfer by additionally supervising
the model with a list of the most common food items in FreeBase (Bollacker et al. 2008),
allowing their agent to generalize to hitherto unseen recipes and ingredients. Zahavy
et al. (2018) propose the Action-Elimination Deep Q-Network (AE-DQN), which learns
to predict invalid actions in the text-adventure game Zork. This network allows the
model to efficiently handle the large action space. The use of commonsense knowledge
in our work potentially has the same effect of down-weighting implausible actions.

External knowledge for efficient RL. There have been few attempts on adding prior
or external knowledge to RL approaches. Notably, Garnelo et al. (2016) proposed
Deep Symbolic RL, which combines aspects of symbolic AI with neural networks and
RL as a way to introduce commonsense priors. There has also been work on policy
transfer (Bianchi, Celiberto Jr, et al. 2015), which studies how knowledge acquired in
one environment can be re-used in another one; and experience replay (Z. Wang et al.
2017; L.-J. Lin 1992; L.-J. Lin 1993) which studies how an agent’s previous experiences
can be stored and then later reused. In this chapter, we use commonsense knowledge
as a way to improve sample efficiency in text-based RL agents. To the best of our
knowledge, there is no prior work that practically explores how commonsense can be
used to make RL agents more efficient. The most relevant prior work is by Martin et al.
(2018), who use commonsense rules to build agents that can play tabletop role-playing
games. However, the commonsense rules in their work are manually engineered, while
our commonsense knowledge is extracted from ConceptNet.

Commonsense in NLP. Recently, there has been a lot of work in NLP to utilize com-
monsense for QA, NLI, etc. (Sap et al. 2019; Talmor et al. 2018). Many of these ap-
proaches seek to effectively utilize ConceptNet by reducing the noise retrieved from
it (B. Y. Lin et al. 2019; Kapanipathi et al. 2020). This is also a key challenge in TWC.

2.6 Conclusion

We created a novel environment (TWC) to evaluate the performance on RL agents on
text-based games requiring commonsense knowledge. We introduced a framework of
agents which tracks the state of the world; uses the sequential context to dynamically
retrieve relevant commonsense knowledge from a knowledge graph; and learns to
combine the two different modalities. Our agents equipped with common sense
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achieve their goals with greater efficiency and less exploration when compared to
a text-only model, thus showing the value of our new environments and models.
Therefore, we believe that our TWC environment provides interesting challenges and
can be effectively used to fuel further research in this area.
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3 Joint reasoning over prior and
belief knowledge graphs

3.1 Introduction

In Chapter 2, we introduced a novel RL environment for benchmarking common-
sense reasoning abilities of neural agents. The hypothesis behind TWC is that prior
commonsense knowledge allows the agent to understand how current actions might
affect future world states. This enables improved look-ahead planning (Juba 2016),
thus leading to sample-efficient selection of actions at each step and driving the agent
closer to optimal performance.

A recent line of work in TBGs aims has shown that reasoning over symbolic repre-
sentations of the agent’s belief can greatly improve generalization performance. No-
tably, Ammanabrolu and Riedl (2019) proposed KG-DQN and Ammanabrolu and M. J.
Hausknecht (2020) proposed KG-A2C. The idea behind both approaches is to represent
the game state as a belief graph, which is constructed from natural language observa-
tions using information extraction tools and hand-crafted rules. Recently, Adhikari
et al. (2020) proposed the graph-aided transformer agent (GATA), an approach to
construct and update a latent belief graph in the form of a learned adjacency matrix.
This graph is not constructed from scratch at each step, but rather it is updated after
each interaction with the environment based on the current observation. The graph
updater is pre-trained and not fine-tuned during exploration. Similar approaches for
building dynamic belief graphs have also been explored in the context of machine
comprehension of procedural text (Das, Munkhdalai, et al. 2018).

In this chapter, we posit that to efficiently act in such text-based gaming environments,
an agent must be able to effectively track the state of the game and use it to jointly
retrieve and leverage the relevant commonsense knowledge. Figure 3.1 shows how
state and prior knowledge are complementary and can be used jointly to improve
sample efficiently and generalization. Thus, we propose a technique to: (a) track the
state of the game in the form of a symbolic graph that represents the agent’s current
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Observation: You’ve entered a kitchen. You see a dishwasher and
a fridge. Here’s a dining table. You see a red apple and a dirty
plate on the table.

State graph 
construction

Commonsense 
Knowledge Retrieval

Goal: Clean up the kitchen

1. Take the apple
2. Put the apple
in the fridge
3. Take the dirty 
plate
4. Put the plate
in the dishwasher

Best action trajectoryState Graph Commonsense graph

Bidirectional Knowledge graph attEntion (BiKE)

Apple Fridge

Plate Dishwasher

Table
Kitchen

on
on in

in
in

Apple Fridge

Plate Dishwasher

AtLocation

AtLocation

Fruit
IsA

Dish
IsA

Washing
dishes

UsedFor

Figure 3.1: An illustration of a TBG that requires both the state representation of the game as
well as the external commonsense knowledge for efficient exploration and learning the best
action trajectory. The observation text feeds into the state and commonsense graphs; and the
best action trajectory is computed based on information from both graphs.

belief of the state of the world (Ammanabrolu and M. J. Hausknecht 2020; Adhikari
et al. 2020); (b) retrieve the relevant commonsense knowledge from ConceptNet (Speer
et al. 2017), and (c) jointly leverage the state graph and the retrieved commonsense
graph. This combined information is then used to select the optimal action. In this
chapter, we show that the agent that models the state graph and use commonsense
graph into the reinforcement learning framework achieves better sample complexity
and highest rewards across three difficulty levels. Qualitative analyses reveal how the
agent balances the information from state and commonsense graphs to efficiently
explore this challenging environment.

3.2 Model and architecture

Text-based games can be framed as partially observable Markov decision processes
(POMDPs) (Spaan 2012). A POMDP is a tuple (S,A,O, T , E , r), where S denotes the
set of states,A denotes the action space,O denotes the observation space, T denotes
the state transition probabilities, E denotes the conditional observation emission
probability, and r : S ×A → R is the reward function. The observation ot at time step
t depends on the current state. Both observations and actions are rendered in text.
The agent receives a reward at every time step t: rt = r(ot, at), and the agent’s goal is
to maximize the expected discounted sum of rewards: E[

∑
t γ

trt], where γ ∈ [0, 1] is a
discount factor.

The high-level architecture of our model contains three major components: (a) the
input encoder; (b) a graph-based knowledge extractor; and (c) the action prediction
module. The input encoding layers are used to encode the observation ot at time step t
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Figure 3.2: Visualization of our overall approach with BiKE

and the list of admissible actions using GRUs (Ammanabrolu and M. J. Hausknecht
2020), as described in Chapter 2. This allows us to obtain a representation ot for the
observation ot at time step t. Similarly, we obtain a representation ak

t for each action
akt in the set of admissible actions at time step t,At.

The graph-based knowledge extractor collects relevant knowledge from complemen-
tary knowledge sources: the game state and external commonsense knowledge. We
allow information from each knowledge source to guide and direct better represen-
tation learning for the other. Recent efforts have demonstrated the use of primarily
two different types of knowledge sources for TextWorld RL Agents. A State Graph (SG)
captures state information (Ammanabrolu and Riedl 2019) about the environment
represented via a semantic graph. The example in Figure 3.2 shows that information
such as Apple→ on→ Table is extracted from the textual observations from the environ-
ment. Specifically, Ammanabrolu and Riedl (2019) create such knowledge graphs by
extracting information using OpenIE (Angeli et al. 2015) and some manual heuristics.
A Commonsense Graph (CG) captures external commonsense knowledge (Keerthiram
Murugesan, Atzeni, Kapanipathi, Shukla, et al. 2021) between entities (from common-
sense knowledge sources such as ConceptNet). We posit that RL agents can make use
of information from both these graphs during different sub-tasks, enabling efficient
learning. The state graph provides the agent with a symbolic way of representing its
current perception of the game state, including its understanding of the surroundings.
On the other hand, the commonsense graph provides the agent with complementary
knowledge about what actions make sense in a given state, thus enabling more efficient
exploration of the very large natural language action space.
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We combine the state information with commonsense knowledge using a Bidirectional
Knowledge-graph attEntion (BiKE) mechanism, which re-contextualizes the state and
commonsense graphs based on each other for optimal action trajectories. Figure 3.2
provides a compact visualization.

3.3 Knowledge integration using BiKE

The graph-based knowledge extractor produces m entities vC1 , v
C
2 , · · · , vCm for the com-

monsense graph GCt and n entities vS1 , v
S
2 , · · · , vSn for the state graph GSt (for ease of

notation, we omit the subscript t from the nodes of both graphs). Note that the entities
extracted for GCt are based on the vocabulary used in ConceptNet, and may not neces-
sarily be the same set of entities in GSt (see Figure 3.1). We embed the extracted entities
in both graphs using Numberbatch (Speer et al. 2017). We then encode both graphs
using a graph attention network (Velickovic et al. 2018), in order to share information
among the nodes by message passing. We thus get a representation vS

i , i = 1, . . . n, for
each node in GSt , and a representation vC

j , j = 1, . . .m, for each node in GCt .

We aim to use the state and the commonsense knowledge graphs to improve the
agent’s exploration strategy. Inspired by bidirectional attention mechanism in question
answering (Seo et al. 2017), we introduce a bidirectional attention flow between GSt
and GCt to fuse the knowledge from these two graphs. The information flow across the
graphs allows the model to learn commonsense-aware state graph representations,
and state-aware commonsense knowledge graph representations.

In details, we compute a graph similarity matrix S ∈ Rn×m across the graph entities
to learn a state-to-commonsense graph attention function and a commonsense-to-
state graph attention function. An entry of the matrix Sij = g(vS

i ,v
C
j ) captures how

each node vSi in the graph GSt is linked to a node vCj in the other graph GCt , and vice
versa. Here g is a learnable function that maps vS

i and vC
j to a similarity score. In

our implementation, we learn g using a simple feed-foward network with 2 layers
and ReLU activations. We compute the state-to-commonsense graph attention values
A by taking a softmax along the rows of S: this signifies the attention bestowed by
each state graph node on the nodes of the commonsense graph. Similarly, we get
the commonsense-to-state graph attention values Ā by taking a softmax along the
columns of S. Then, we calculate an aggregated representation of the whole state
graph GSt as:

gS
t =

1

n

n∑
i=1

fS

(
vS
i ,

m∑
j=1

Aijv
C
j

)
,

where fS is a learnable function implemented as a 2-layer feed-forward network with
ReLU activation functions. Similarly, we obtain an embedding for the commonsense
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graph GCt as:

gC
t =

1

m

m∑
j=1

fC

(
vC
j ,

n∑
i=1

Āijv
S
i

)
.

where fC is another learnable function implemented as a 2-layer feed-forward network
with ReLU activation functions.

Finally, we compute a score for an action akt ∈ At as h(ot,a
k
t , g

S
t , g

C
t ), where h is

a learnable function that projects the concatenation [ot;a
k
t ; g

S
t ; g

C
t ] to the score for

action akt ∈ At.

3.4 Experiments

We generate a set of games with 3 difficulty levels using the TWC (Keerthiram Muruge-
san, Atzeni, Kapanipathi, Shukla, et al. 2021) framework: (i) easy level, which has 1

room containing 1 to 3 objects; (ii) medium level, which has 1 or 2 rooms with 4 or 5
objects; and (iii) hard level, a mix of games with a high number of objects (6 or 7 objects
in 1 or 2 rooms) or high number of rooms (3 or 4 rooms containing 4 or 5 objects).

We compare 5 text-based RL agents: (a) a text-only agent (Text), which selects the best
action based only on the encoding of the history of observations; (b) DRRN (J. He et al.
2016; Narasimhan et al. 2015), which relies on the relevance between the observation
and action spaces; (c) an agent enhanced with access to an external commonsense
knowledge graph (+Commonsense) (Keerthiram Murugesan, Atzeni, Kapanipathi,
Shukla, et al. 2021); (d) an agent that, following Ammanabrolu and M. J. Hausknecht
(2020), models the state of the world as a symbolic graph (+State); and (e) the agent
BiKE described in Section 3.2, which relies on both state and commonsense graph
representations. The agents are trained over 100 episodes with a 50-step maximum. All
policies are learned using Actor-Critic (Mnih et al. 2016).

3.4.1 Sample efficiency and generalization performance

Figure 3.3 shows the learning curves for the text-only agent and the agents equipped
with state and/or commonsense graph representations at training time. For reference,
we also report the performance of an agent that selects a random action at each
time step (Random). We notice that, overall, agents equipped with either state or
commonsense graph representations perform better than their text-only counterparts,
both in terms of the number of steps taken and the normalized score. In particular, the
BiKE agent outperforms all other agents in all difficulty levels, showing that symbolic
state representations and prior commonsense knowledge can be jointly used for better
sample efficiency and results. Table 3.1 shows the performance of the agents on the
test set. Following Keerthiram Murugesan, Atzeni, Kapanipathi, Shukla, et al. (2021),
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Figure 3.3: Performance evaluation (showing mean and standard deviation averaged over 3
runs) for the three difficulty levels: Easy (left), Medium (middle), Hard (right) using normalized
score and the number of steps taken.

Easy Medium Hard
#Steps Norm. Score #Steps Norm. Score #Steps Norm. Score

IN

Text 23.83± 2.16 0.88± 0.04 44.08± 0.93 0.60± 0.02 49.84± 0.38 0.30± 0.02
DRRN 22.08± 4.17 0.82± 0.06 44.04± 1.64 0.59± 0.02 49.82± 0.61 0.29± 0.01
+Commonsense (TWC) 20.59± 5.01 0.89± 0.06 42.61± 0.65 0.62± 0.03 48.45± 1.13 0.32± 0.04
+State (KG-A2C) 22.10± 2.91 0.86± 0.06 41.61± 0.37 0.62± 0.03 48.00± 0.61 0.32± 0.00
+State + Commonsense (BiKE) 18.27± 1.13 0.94± 0.02 39.34± 0.72 0.64± 0.02 47.19± 0.64 0.34± 0.02

O
U

T

Text 29.90± 2.92 0.78± 0.02 45.90± 0.22 0.55± 0.01 50.00± 0.00 0.20± 0.02
DRRN 29.71± 1.81 0.76± 0.05 45.18± 1.19 0.56± 0.02 50.00± 0.00 0.21± 0.02
+Commonsense (TWC) 27.74± 4.46 0.78± 0.07 44.89± 1.52 0.58± 0.01 50.00± 0.00 0.19± 0.03
+State (KG-A2C) 28.34± 3.63 0.80± 0.07 43.05± 2.52 0.59± 0.01 50.00± 0.00 0.21± 0.00
+State + Commonsense (BiKE) 25.59± 1.92 0.83± 0.01 41.01± 1.61 0.61± 0.01 50.00± 0.00 0.23± 0.02

Table 3.1: Test-set performance results for within distribution (IN ) and out-of-distribution
(OUT ) games.

we compared our agents on two test sets: (IN) uses the same entities as the training set,
and (OUT) uses entities that were not included in the training set. The experimental
results show that the BiKE agent generalizes better than all the baselines across the 3
difficulty levels.

3.4.2 Qualitative analysis

From Figure 3.3 and Table 3.1, we notice that the +Commonsense agent performs
better on the easy level, whereas the +State agent performs better on the medium and
hard levels. This suggests that the state representation can be leveraged to drive ex-
ploration and interaction with objects in environments with multiple rooms; whereas
prior commonsense knowledge allows the agent to act more efficiently by selecting the
appropriate commonsensical locations of different objects. In order to investigate this
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State graph Commonsense graph
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(a) Average relevance of the main action tem-
plates to the state and commonsense graphs
across the hard games.
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Easy Medium Hard
#Steps Norm. Score #Steps Norm. Score #Steps Norm. Score

IN

Text 23.83 ± 2.16 0.88 ± 0.04 45.90 ± 0.22 0.60 ± 0.02 49.84 ± 0.38 0.30 ± 0.02
DRRN 22.08 ± 4.17 0.82 ± 0.06 45.18 ± 1.19 0.59 ± 0.02 49.82 ± 0.61 0.29 ± 0.01
+Commonsense (TWC) 20.59 ± 5.01 0.89 ± 0.06 44.89 ± 1.52 0.62 ± 0.03 48.45 ± 1.13 0.32 ± 0.04
+State (KG-A2C) 22.10 ± 2.91 0.86 ± 0.06 43.05 ± 2.52 0.62 ± 0.03 48.00 ± 0.61 0.32 ± 0.00
+State + Commonsense (BiGAF) 18.27 ± 1.13 0.94 ± 0.02 41.01 ± 1.61 0.64 ± 0.02 47.19 ± 0.64 0.34 ± 0.02

O
U

T

Text 29.90 ± 2.92 0.78 ± 0.02 44.08 ± 0.93 0.55 ± 0.01 50.00 ± 0.00 0.20 ± 0.02
DRRN 29.71 ± 1.81 0.76 ± 0.05 44.04 ± 1.64 0.56 ± 0.02 50.00 ± 0.00 0.21 ± 0.02
+Commonsense (TWC) 27.74 ± 4.46 0.78 ± 0.07 42.61 ± 0.65 0.58 ± 0.01 50.00 ± 0.00 0.19 ± 0.03
+State (KG-A2C) 28.34 ± 3.63 0.80 ± 0.07 41.61 ± 0.37 0.59 ± 0.01 50.00 ± 0.00 0.21 ± 0.00
+State + Commonsense (BiGAF) 25.59 ± 1.92 0.83 ± 0.01 39.34 ± 0.72 0.61 ± 0.01 50.00 ± 0.00 0.23 ± 0.02

Table 1: Test-set performance results for within distribution (IN) and out-of-distribution (OUT) games.

(a) Average relevance of the main action templates to the
state and commonsense graphs across the hard games

Timestep t t +1 t +2

Room Living Room Living Room Bedroom

Action Taken take checkered
jumper go west

insert checkered
jumper into wardrobe

Most relevant graph State graph State graph Commonsense graph

Most relevant nodes checkered jumper checkered jumper,
exit to west wardrobe

(b) Example of most relevant graphs and nodes by action taken in an
excerpt of a game in the hard difficulty level

Figure 4: Analysis of the relevance given to the state and commonsense graphs (a) and to their nodes (b) by action taken

4.1 Improving RL Performance with State
and Commonsense Knowledge

Figure 3 shows the learning curves for the text-only
agent and the agents equipped with state and/or
commonsense graph representations at training
time. For reference, we also report the performance
of an agent that selects a random action at each time
step (Random). We notice that, overall, agents
equipped with either state or commonsense graph
representations perform better than their text-only
counterparts, both in terms of the number of steps
taken and the normalized score. In particular, the
BiGAF agent (defined in Section 2) outperforms
all other agents in all difficulty levels, showing
that symbolic state representations and prior com-
monsense knowledge can be jointly used for better
sample efficiency and results.

4.2 Qualitative Analysis
Table 1 shows the performance of the agents on
the test set. Following Murugesan et al. (2021), we
compared our agents on two test sets: (IN) uses
the same entities as the training set, and (OUT)
uses entities that were not included in the training
set. From Figure 3 and Table 1, we notice that
the +Commonsense agent performs better on the
easy level, whereas the +State agent performs bet-
ter on the medium and hard levels. This suggests
that the state representation can be leveraged to
drive exploration and interaction with objects in
environments with multiple rooms; whereas prior
commonsense knowledge allows the agent to act
more efficiently by selecting the appropriate com-
monsensical locations of different objects. In order
to investigate this hypothesis, we computed the av-

erage importance given by the agent to the state
graph and the commonsense graph when selecting
the different action templates shown in Figure 4a.
For each action template, the figure shows the nor-
malized attention weight given to the two graphs,
averaged across 5 runs of all games in the hard
difficulty level. We notice that actions requiring in-
formation about the goal of the game, like the put
and insert actions, benefit more from attending
to the commonsense graph; whereas actions aimed
at exploring the environment and collecting objects,
like the go and take actions, benefit more from
the state representation.

As a further qualitative analysis, we report in
Figure 4b an example of the most attended nodes
and graphs in an excerpt of a game belonging to
the medium difficulty level. As noted above, the
take and go actions rely more on the state graph,
whereas the insert action relies on the common-
sense graph. Among the nodes in these graphs, the
entities mentioned in the action receive the highest
attention score.

5 Conclusion

We hypothesize that in order to be sample-efficient
in text-based games, agents must be able to jointly
track the state of the game and retrieve the rel-
evant commonsense knowledge. We proposed a
technique that models both forms of knowledge as
graphs and combines them using a novel graph co-
attention mechanism. We show that the resulting
agent is more sample-efficient than approaches that
consider neither or only one of these graphs.

(b) Example of most relevant graphs and nodes (by ac-
tion taken) for one example game excerpted from the
hard difficulty level.

Figure 3.4: Relevance given to the: (a) state and commonsense graphs; and to (b) their nodes
(by action taken).

hypothesis, we computed the average importance given by the agent to the state graph
and the commonsense graph when selecting the different action templates shown
in Figure 3.4a. For each action template, the figure shows the normalized attention
weight given to the two graphs, averaged across 5 runs of all games in the hard difficulty
level. Actions requiring information about the goal of the game, like put and insert,
benefit more from attending to the commonsense graph; whereas actions aimed at
exploring the environment and collecting objects, like go and take, benefit more from
the state representation.

As further qualitative analysis, we report an example of the most attended nodes and
graphs from an excerpt of a game belonging to the hard difficulty level in Figure 3.4b.
As noted above, the take and go actions rely more on the state graph, whereas the
insert action relies on the commonsense graph. Among the nodes in these graphs,
the entities that are finally mentioned in the action receive the highest attention score.
This shows how our agent is able to transfer the bidirectional attention over graphs
into specific game instances.

3.5 Conclusion

In this chapter, we showed that in order to be sample-efficient in TBGs, agents must be
able to jointly track the state of the game and relevant commonsense knowledge. We
proposed a technique that models both forms of knowledge as graphs, and combines
them using Bidirectional Knowledge-graph attEntion (BiKE). The resulting agent was
found to be more sample-efficient than approaches that considered neither or only
one of these graphs.
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4 Case-based reasoning for textual
reinforcement learning

4.1 Introduction

As we have seen in Chapters 2 and 3, state-of-the-art agents in textual reinforcement
learning are still very inefficient and suffer from insufficient generalization to novel en-
vironments (Ammanabrolu and M. J. Hausknecht 2020; Adhikari et al. 2020; Keerthiram
Murugesan, Atzeni, Kapanipathi, Shukla, et al. 2021; K. Murugesan et al. 2021). Even
the agent of Chapter 3 requires 5 to 10 times more steps than a human to accomplish
even simple household tasks (Keerthiram Murugesan, Atzeni, Kapanipathi, Shukla,
et al. 2021). As the agents are purely neural architectures requiring significant training
experience and computation, they fail to efficiently adapt to new environments and
use their past experiences to reason in novel situations. This is in stark contrast to
human learning which is much more robust, efficient and generalizable (Lake, Ullman,
et al. 2017).

Motivated by this fundamental difference in learning, we propose new agents for
TBGs that rely on case-based reasoning (CBR) (Aamodt et al. 1994) to efficiently act
in the world. CBR draws its foundations in cognitive science (Schank 1983; Kolodner
1983) and mimics the process of solving new tasks based on solutions to previously
encountered similar tasks. Concretely, we design a general CBR framework that enables
an agent to collect instances of past situations which led to a positive reward (known
as cases) while interacting with the world. During decision making, the agent retrieves
a case most similar to the current situation and then applies it after appropriately
mapping the case to the current context.

The CBR agent stores past experiences, along with the actions it performed, in a
repository called its memory. In order to efficiently use these stored experiences, the
agent should be able to represent relevant contextual information from the state of
the game in a compact way, while retaining the property that contexts that require
similar actions receive similar representations. We represent the state of the game as a
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knowledge graph (Ammanabrolu and M. J. Hausknecht 2020) and we address these
challenges by utilizing (a) seeded message propagation that focuses only on a subset
of relevant nodes and (b) vector quantization (Ballard 2000) to efficiently map similar
contexts to similar discrete representations. Vector quantization allows the model to
significantly compress the context representations while retaining their semantics;
thereby, allowing for a scalable implementation of CBR in RL settings. An illustration
of the proposed framework is shown in Figure 4.1.

Our experiments show that CBR can be used to consistently boost the performance
of various on-policy RL agents proposed in the literature for TBGs. We obtain a new
state-of-the-art on the TextWorld Commonsense (Keerthiram Murugesan, Atzeni, Kapa-
nipathi, Shukla, et al. 2021) dataset and we achieve better or comparable scores on 24
of the 33 games in the Jericho suite (M. Hausknecht et al. 2020) compared to previous
work. We also show that CBR agents are resilient to domain shifts and suffer only
marginal drops in performance (6%) on out-of-distribution settings when compared
to their counterparts (35%).

4.2 Preliminaries

Problem statement. Following the formulation of Chapters 2 and 3, we model a
TBG as a Partially Observable Markov Decision Process (POMDP) (S,A,O, T , E , r),
where S is the set of states of the environment of the game,A is the natural language
action space,O is the set of observations or sequences of words describing the current
state, T are the conditional transition probabilities from one state to another, E are
the conditional observation probabilities, r : S ×A → R is the reward function, which
maps a state and action to a scalar reward that the agent receives.

Case-based reasoning. Case-based reasoning (CBR) is the process of solving new
problems based on the solution of previously seen similar problems. Generally, CBR
assumes access to a memory that stores past problems (known as cases) and their
solutions. When a new problem is encountered, CBR will (i) retrieve a similar problem
and its solution from memory; (ii) reuse the solution by mapping it to the current
problem; (iii) revise the solution by testing it and checking whether it is a viable way to
address the new problem; and (iv) retain the solution in memory if the adaptation to
the new problem was successful.

4.3 Case-based reasoning in reinforcement learning

This section introduces our framework inspired by CBR for improving generalization
in TBGs. Even though we situate our work in TBGs, it serves as a good starting point
for applying CBR in more general RL settings. We consider an on-policy RL agent
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Figure 4.1: Overview of the proposed approach and architecture of the CBR agent. A memory
stores actions that have been used successfully in previous interactions. The context of the
game is learned from the state knowledge graph using a graph attention mechanism. Actions
are retrieved from the memory based on this context representation and mapped to the current
state. If no valid action is obtained using CBR, a neural agent explores the most likely action.

that, at any given time step t, has access to a memoryMt, that can be used to retrieve
previous experiences. The memory contains key-value pairs, where the keys are a
context representation of a game state and values are actions that were taken by the
agent w.r.t to this context. As mentioned in Section 4.2, case-based reasoning can be
formalized as a four-step process. We describe our proposed methodology for each
step below. Algorithm 1 provides a detailed formalization of our approach.

Retrieve. Given the state of the game st and the valid actionsAt, we want to retrieve
from the memoryMt previous experiences that might be useful in decision-making at
the current state. To this end, for each admissible action at ∈ At, we define a context
selector ct = context(st, at). The context selector is an action-specific representation of
the state, namely the portion of the state that is relevant to the execution of an action.
We will explain later how the context selector is defined in our implementation. For
each context ct, we retrieve from the memory the context-action pair (cMt , aMt ), such
that cMt has maximum similarity with ct. We denote as δ = sim(ct, c

M
t ) ∈ [0, 1] the

relevance score given to the retrieved action. Only actions aMt with a relevance score
above a retriever threshold τ are retrieved fromMt. We denote asAM

t the final set of
action-relevance pairs returned by the retriever, as shown in Algorithm 1.

Reuse. The goal of the reuse step is to adapt the actions retrieved from the memory
based on the current state. This is accomplished by a reuse function, that is applied
to each retrieved action to construct a set Ãt of candidate actions that should be
applicable to the current state, each paired with a confidence level.

Revise. If any of the action candidates Ãt is a valid action, then the one with the high-
est relevance δ is executed, otherwise a neural agent π is used to select the best action
a⋆t . We denote with rt = r(st, a

⋆
t ) the obtained reward. Note that π can be an existing

agent for TBGs (Keerthiram Murugesan, Atzeni, Kapanipathi, Talamadupula, et al.
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Algorithm 1: CBR in Text-based RL

• Retrieve
Let Ct = {context(st, at) | at ∈ At} be a set of context selectors for state st at

time step t
AM

t ← ∅
for ct ∈ Ct do

Let (cMt , aMt ) = argmax(cMt ,aMt )∈Mt
sim(ct, c

M
t )

Let δ = sim(ct, c
M
t )

if δ > τ then
AM

t ← AM
t ∪ {(aMt , δ)}

end
end

• Reuse
Build a set of action candidates:
Ãt = {reuse(aMt , st, δ) | (aMt , δ) ∈ AM

t }

• Revise
ifAt ∩ Ãt ̸= ∅ then

Let a⋆t , δ
⋆ = argmaxãt,δ∈Ãt

δ

else
a⋆t = argmaxat∈At π(at|st)

end
Let rt = r(st, a

⋆
t ) be the reward obtained at time step t by executing action a⋆t

• Retain
Let c⋆t = context(st, a⋆t ) be the context of action a⋆t
T = {(c⋆t , a⋆t ), . . . , (c⋆t−m+1, a

⋆
t−m+1)}

Let T̃ be a set of k pairs sampled from T according to a retain probability
if rt > 0 then
Mt+1 ←Mt ∪ T̃

end

2021; Keerthiram Murugesan, Atzeni, Kapanipathi, Shukla, et al. 2021; Ammanabrolu
and M. J. Hausknecht 2020).

Retain. Finally, the retain step stores successful experiences as new cases in the
memory, so that they can be retrieved in the future. In principle, this can be accom-
plished by storing actions for which the agent obtained positive rewards. However,
we found that storing previous actions as well can result in improved performance.
Whenever rt > 0, a retain function is used to compute the probability of each previous
context-action pair to be stored in the memory and a set of k past pairs are sampled
and stored accordingly. In our experiments, the retain function selects the k most
recent actions, but other implementations are possible, as discussed in Section 4.9.
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4.4 A CBR policy agent to generalize in text-based games

Designing an agent that can act efficiently in TBGs using the described approach poses
several challenges. Above all, efficient memory use is crucial to making the approach
practical and scalable. Since the context selectors are used as keys for accessing values
in the memory, their representation needs to be such that contexts where similar
actions were taken receive similar representations. At the same time, as the state space
is exponential, context representations need to be focused only on relevant portions of
the state and they need to be compressed and compact.

4.4.1 Representing the context through seeded graph attention

State space as a knowledge graph. Following previous works (Ammanabrolu and
Riedl 2019; Ammanabrolu and M. J. Hausknecht 2020; Keerthiram Murugesan, Atzeni,
Kapanipathi, Talamadupula, et al. 2021), we represent the state of the game as a
dynamic knowledge graph Gt = (Vt,Rt, Et), where a node v ∈ Vt represents an entity
in the game, r ∈ Rt is a relation type, and an edge v r−→ v′ ∈ Et represents a relation of
type r ∈ Rt between entities v, v′ ∈ Vt. In TBGs, the space of valid actionsAt can be
modeled as a template-based action space, where actions at are instances of a finite
set of templates with a given set of entities, denoted as Vat ⊆ Vt. As an example, the
action “kill orc with sword” can be seen as an instance of the template “kill v1 with v2”,
where v1 and v2 are “orc” and “sword” respectively.

Seeded graph attention. The state graph Gt and the entities Vat are provided as input
to the agent for each action at ∈ At, in order to build an action-specific contextualized
representation of the state. A pre-trained BERT model (Devlin et al. 2019) is used to
get a representation h

(0)
v ∈ Rd for each node v ∈ Vt. Inspired by H. Sun, Dhingra, et al.

(2018), we propose a seeded graph attention mechanism (GAT), so that the propagation
of messages is weighted more for nodes close to the entities Vat . Let α(l)

vu denote the
attention coefficients given by a graph attention network (Velickovic et al. 2018) at
layer l for nodes v, u ∈ Vt. Then, for each node v ∈ Vt, we introduce a coefficient β(l)v

that scales with the amount of messages received by node v at layer l:

β(1)
v =

{
1

|Vat |
if v ∈ Vat

0 otherwise
, β(l+1)

v = (1− λ)β(l)
v + λ

∑
u∈Nv

α(l)
vuβ

(l)
u ,

whereNv denotes the neighbors of v, considering the graph as undirected. Note that,
at layer l = 1, only the nodes in Vat receive messages, whereas for increasing values of
l, β(l)v will be non-zero for their (l − 1)-hop neighbors as well. The representation of
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each v ∈ Vt is then updated as:

h(l)
v = FFN(l)

(
h(l−1)
v + β(l)

v

∑
u∈Nv

α(l)
vuW

(l)h(l−1)
u

)
,

where FFN(l+1) is a 2-layer feed-forward network with ReLU non-linearity and W(l) ∈
Rd×d are learnable parameters. Finally, we compute a continuous contextualized
representation cat of the state by summing the linear projections of the hidden repre-
sentations of each v ∈ Vat and passing the result through a feed-forward network.

4.4.2 Memory access through context quantization

Given a continuous representation cat of the context, we need an efficient way to
access the memoryMt to retrieve or store actions based on such a context selector.
Storing and retrieving based on the continuous representation cat would be impractical
for scalability reasons. Additionally, since the parameters of the agent change over
the training time, the same context would result in several duplicated entries in the
memory even with a pre-trained agent over different episodes.

Discretization of the context. To address these problems, we propose to use vector
quantization (Ballard 2000) before reading or writing to memory. Following previous
work (T. Chen et al. 2018; Sachan 2020), we learn a discretization function ϕ : Rd → ZD

K ,
that maps the continuous representation cat into a K-way D-dimensional code ct ∈
ZD
K , with |ZK | = K (we refer to ct as a KD code). With reference to Section 4.3, then we

will use ct = context(st, at) = ϕ(cat) as the context selector used to access the memory
Mt. In order to implement the discretization function, we define a set of K key vectors
ki ∈ Rd, i = 1, . . . ,K, and we divide each vector inD partitions kj

i ∈ Rd/D, j = 1, . . . , D.
Similarly, we divide cat in D partitions cjat ∈ Rd/D, j = 1, . . . , D. Then, we compute
the j-th code zj of ct by nearest neighbor search, as zj = argmini ∥cjat − kj

i∥22. We
use the straight-through estimator (Bengio, Léonard, et al. 2013) to address the non
differentialbility of the argmin operator.

Memory access. The KD codes introduced above are used to provide a memory-
efficient representation of the keys in the memory. Then, given the KD code represent-
ing the current context selector ct, we query the memory by computing a similarity
measure sim(ct, c

M
t ) between ct and each cMt inMt. The similarity function is defined

as the fraction of codes shared by ct and cMt . The context-action pair with the highest
similarity is returned as a result of the memory access, together with a relevance score
δ representing the value of the similarity measure.
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4.4.3 Symbolic action reuse and revise policy

We use a simple purely symbolic reuse function to adapt the actions retrieved from the
memory to the current state. Let ct be the context selector computed based on state
st and the entities Vat , as explained in Sections 4.4.1 and 4.4.2. Denote with (cMt , aMt )

the context-action pair retrieved fromMt with confidence δ. Then, the reuse function
reuse(aMt , st, δ) constructs the action candidate ãt as the action with the same template
as aMt applied to the entities Vat . If the reuse step cannot generate a valid action, we
revert to the neural policy agent π that outputs a probability distribution over the
current admissible actionsAt.

4.5 Training

In Section 4.3, we have introduced an on-policy RL agent that relies on case-based
reasoning to act in the world efficiently. This agent can be trained in principle using
any online RL method. This section discusses the training strategies and learning
objectives used in our implementation.

Objective. Two main portions of the model need to be trained: (a) the retriever,
namely the neural network that computes the context representation and accesses
the memory through its discretization, and (b) the main neural agent π which is used
in the revise step. Note that π can be any on-policy agent designed for text-based
games (Ammanabrolu and M. J. Hausknecht 2020; Keerthiram Murugesan, Atzeni,
Kapanipathi, Talamadupula, et al. 2021; Keerthiram Murugesan, Atzeni, Kapanipathi,
Shukla, et al. 2021). All agents π used in our experiments are trained with an Advantage
Actor-Critic (A2C) method. For optimizing the parameters of π, we use the same
learning objectives defined by Adolphs et al. (2019), as explained below. Whenever the
executed action a⋆t is not chosen by the model π but it comes from the symbolic reuse
step, then we optimize instead an additional objective for the retriever, namely the
following contrastive loss (Hadsell et al. 2006):

L(t)r =
1

2
(1− yt)(1− sim(ct, c

M
t ))2 +

1

2
ytmax{0, µ− 1 + sim(ct, c

M
t )}2,

where ct denotes the context selector of the action executed at time step t, cMt is
the corresponding key entry retrieved from Mt, µ is the margin parameter of the
contrastive loss, and yt = 1 if rt > 0, yt = 0 otherwise. This objective encourages the
retriever to produce similar representations for two contexts where reusing an action
yielded a positive reward.

Pretraining. To make learning more stable and allow the agent to act more efficiently,
we found it beneficial to pretrain the retriever. This minimizes large shifts in the context
representations over the training time. We run a baseline agent (Ammanabrolu and
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M. J. Hausknecht 2020) to collect instances of the state graph and actions that yielded
positive rewards. Then we train the retriever to encode with similar representations
the contexts for which similar actions (i.e., actions with the same template) were used.
This is achieved using the same contrastive loss defined above.

Training details. All agents used in our experiments are trained with an Advantage
Actor Critic (A2C) method according to the general scheme defined below. We use the
n-step temporal difference method (Sutton et al. 2018) to compute the return R(st, at)
of a single time step t in a session of length T as:

R(st, at) = γT−tV (sT ) +

T−t∑
i=0

γir(st+i, at+i),

where V (sT ) denotes the value of sT computed by the critic network, γ is the discount
factor, and r is the reward function. We then compute the advantage A(st, at) =

R(st, at) − V (st). The final objective term consists of four separate objectives. First,
we have L(t)π that denotes the objective of the policy, which tries to maximize the the
advantage A:

L(t)π = −A(st, a⋆t ) log π(a⋆t |st).

We then add the objective of the critic as:

L(t)v =
1

2

(
R(st, a

⋆
t )− V (st)

)2
.

L(t)v encourages the value of the critic V to better estimate the rewardR by reducing the
mean squared error between them. To prevent the policy from assigning a large weight
on a single action, we perform entropy regularization by introducing an additional
term:

L(t)e = η ·
∑
at∈At

π(at|st) · log π(at|st).

The η parameter helps balance the exploration-exploitation trade-off for the policy.
The sum of the above objectives defines the loss when the neural agent π is used to
select the action a⋆t . In case actions are reused from the memory, then we use the
contrastive loss as discussed in Section 4.5, namely we compute the loss as:

L(t)r =
1

2
(1− yt)(1− sim(ct, c

M
t ))2 +

1

2
ytmax{0, µ− 1 + sim(ct, c

M
t )}2.

4.6 Main experimental results

This section provides a detailed evaluation of our approach. We assess quantitatively
the performance of CBR combined with existing RL approaches and we demonstrate its
capability to improve sample efficiency and generalize out of the training distribution.
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Easy Medium Hard
#Steps Norm. Score #Steps Norm. Score #Steps Norm. Score

Text 23.83± 2.16 0.88± 0.04 44.08± 0.93 0.60± 0.02 49.84± 0.38 0.30± 0.02
TPC 20.59± 5.01 0.89± 0.06 42.61± 0.65 0.62± 0.03 48.45± 1.13 0.32± 0.04
KG-A2C 22.10± 2.91 0.86± 0.06 41.61± 0.37 0.62± 0.03 48.00± 0.61 0.32± 0.00
BiKE 18.27± 1.13 0.94± 0.02 39.34± 0.72 0.64± 0.02 47.19± 0.64 0.34± 0.02

CBR-only 22.13± 1.98 0.80± 0.05 43.76± 1.23 0.62± 0.03 48.12± 1.30 0.33± 0.06
Text + CBR 17.53± 3.36 0.93± 0.04 39.10± 1.77 0.66± 0.04 47.11± 1.21 0.34± 0.02
TPC + CBR 16.81± 3.12 0.94± 0.03 37.05± 1.61 0.67± 0.03 47.25± 1.56 0.37± 0.03
KG-A2C + CBR 15.91± 2.52 0.95± 0.03 36.13± 1.65 0.66± 0.05 46.11± 1.13 0.40± 0.04
BiKE + CBR 15.72± 1.15 0.95± 0.04 35.24± 1.22 0.67± 0.03 45.21± 0.87 0.42± 0.04

Table 4.1: Test-set performance for TWC in-distribution games

Next, we provide qualitative insights and examples of the behavior of the model and we
perform an ablation study to understand the role played by the different components
of the architecture.

4.6.1 Experimental setup

Agents. We consider several agents obtained by plugging existing RL methods in the
revise step. We first define two simple approaches: CBR-only, where we augment a ran-
dom policy with the CBR approach, and Text + CBR, which relies on the CBR method
combined with a simple GRU-based policy network that consumes as input the textual
observation from the game. Next, we select three recently proposed TBG approaches:
Text+Commonsense (TPC, the agent of Chapter 2) (Keerthiram Murugesan, Atzeni,
Kapanipathi, Shukla, et al. 2021), KG-A2C (Ammanabrolu and M. J. Hausknecht 2020),
and BiKE (Keerthiram Murugesan, Atzeni, Kapanipathi, Talamadupula, et al. 2021)
(the agent of Chapter 3, to create the TPC + CBR, KG-A2C + CBR and BiKE + CBR
agents. We consider the original agents that are not trained with CBR as baselines.

Datasets. We empirically verify the efficacy of our approach on TextWorld Common-
sense (TWC) (Keerthiram Murugesan, Atzeni, Kapanipathi, Shukla, et al. 2021) and
Jericho (M. Hausknecht et al. 2020). Jericho is a well-known and challenging learning
environment including 33 interactive fiction games. TWC is an environment which
builds on TextWorld (Côté et al. 2018) and provides a suite of games requiring common-
sense knowledge. TWC allows agents to be tested on two settings: the in-distribution
games, where the objects that the agent encounters in the test set are the same as the
objects in the training set, and the out-of-distribution games which have no entity in
common with the training set. For each of these settings, TWC provides three difficulty
levels: easy, medium, and hard.

Evaluation metrics. Following the same experimental setup of Chapter 2 (Keerthiram
Murugesan, Atzeni, Kapanipathi, Shukla, et al. 2021), we evaluate the agents on TWC
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Easy Medium Hard
#Steps Norm. Score #Steps Norm. Score #Steps Norm. Score

Text 29.90± 2.92 0.78± 0.02 45.90± 0.22 0.55± 0.01 50.00± 0.00 0.20± 0.02
TPC 27.74± 4.46 0.78± 0.07 44.89± 1.52 0.58± 0.01 50.00± 0.00 0.19± 0.03
KG-A2C 28.34± 3.63 0.80± 0.07 43.05± 2.52 0.59± 0.01 50.00± 0.00 0.21± 0.00
BiKE 25.59± 1.92 0.83± 0.01 41.01± 1.61 0.61± 0.01 50.00± 0.00 0.23± 0.02

CBR-only 23.43± 2.09 0.80± 0.04 44.03± 1.75 0.63± 0.04 48.71± 1.15 0.31± 0.03
Text + CBR 20.91± 1.72 0.89± 0.02 40.32± 1.27 0.66± 0.04 47.89± 0.87 0.32± 0.06
TPC + CBR 18.90± 1.91 0.92± 0.01 37.30± 1.00 0.66± 0.02 47.54± 1.67 0.34± 0.03
KG-A2C + CBR 18.21± 1.32 0.90± 0.02 37.02± 1.22 0.68± 0.03 47.10± 1.12 0.38± 0.02
BiKE + CBR 17.15± 1.45 0.93± 0.03 35.45± 1.40 0.67± 0.03 45.91± 1.32 0.40± 0.03

Table 4.2: Test-set performance for TWC out-of-distribution games

based on the number of steps (#Steps) required to achieve the goal (lower is better)
and the normalized cumulative reward (Norm. Score) obtained by the agent (larger
is better). On Jericho, we follow previous work (M. Hausknecht et al. 2020; X. Guo
et al. 2020; Ammanabrolu and M. J. Hausknecht 2020) and we report the average score
achieved over the last 100 training episodes.

4.6.2 Results on TextWorld Commonsense

Table 4.1 reports the results on TWC for the in-distribution set of games. Overall, we
observe that CBR consistently improves the performance of all the baselines. The per-
formance boost is large enough that even a simple method as Text + CBR outperforms
all considered baselines except BiKE.

Out-of-distribution generalization. CBR’s ability to retrieve similar cases should
allow our method to better generalize to new and unseen problems. We test this
hypothesis on the out-of-distribution games in TWC . The results of this experiment
are reported in Table 4.2. We notice that all existing approaches fail to generalize
out of the training distribution and suffer a substantial drop in performance in this
setting. However, when coupled with CBR, the drop is minor (on average 6% with CBR
vs 35% without on the hard level). Interestingly, even the CBR-only agent achieves
competitive results compared to the top-performing baselines.

Sample efficiency. Another key benefit of our approach comes as better sample
efficiency. With its ability to explicitly store prior solutions effectively, CBR allows
existing algorithms to learn faster. Figure 4.2 shows the learning curves for our best
agents and the corresponding baselines. The plots report the performance of the agent
over the training episodes, both in terms of the number of steps and the normalized
score. Overall, we observe that the CBR agents obtain faster convergence to their
counterparts on all difficulty levels.
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Figure 4.2: Performance on TWC (showing mean and standard deviation averaged over 5 runs)
for the three difficulty levels: easy (left), medium (middle), Hard (right) using normalized score
and number of steps.

4.6.3 Performance on the Jericho games

We evaluate our best performing variant from the experiments on TWC (BiKE + CBR)
against existing approaches on the 33 games in the Jericho environment. We compare
our approach against strong baselines, including TDQN (M. Hausknecht et al. 2020),
DRRN (J. He et al. 2016), KG-A2C (Ammanabrolu and M. J. Hausknecht 2020), MPRC-
DQN (X. Guo et al. 2020), and RC-DQN (X. Guo et al. 2020). The same experimental
setting and handicaps as the baselines are used, as we train for 100 000 steps and we
assume access to valid actions. Table 4.3 summarizes the results of the Jericho games.
We observe that our CBR agent achieves comparable or better performance than any
baseline on 24 (73%) of the games, strictly outperforming all the other agents in 18
games, thereby setting new state-of-the-art results on Jericho.

4.6.4 Qualitative analysis and ablation studies

Insights on the model. Figure 4.3 provides two examples showing the BiKE + CBR
agent interacting with the zork1 game. In the example on top, the agent retrieves
an experience that can be successfully reused and turned into a valid action at the
current time step. The heat maps visualize the value of the context similarity function
defined in Section 4.4 for the top entries in the memory. In the negative example at
the bottom instead, the agent retrieves an action that is not useful and needs to fall
back to the neural policy π. Figure 4.4 (top) shows the fraction of times that actions
retrieved from the memory are reused successfully in the TWC games. We observe
that, both for in-distribution and out-of-distribution games, the trained agent relies on
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Game
Human
(max)

Human
(Walkthrough-100)

TDQN DRRN KG-A2C MPRC-DQN RC-DQN BiKE + CBR

905 1 1 0 0 0 0 0 0
acorncourt 30 30 1.6 10 0.3 10 10 12.2
adventureland 100 42 0 20.6 0 24.2 21.7 27.3
afflicted 75 75 1.3 2.6 – 8 8 3.2
awaken 50 50 0 0 0 0 0 0
detective 360 350 169 197.8 207.9 317.7 291.3 326.1
dragon 25 25 -5.3 -3.5 0 0.04 4.84 8.3
inhumane 90 70 0.7 0 3 0 0 24.2
library 30 30 6.3 17 14.3 17.7 18.1 22.3
moonlit 1 1 0 0 0 0 0 0
omniquest 50 50 16.8 10 3 10 10 17.2
pentari 70 60 17.4 27.2 50.7 44.4 43.8 52.1
reverb 50 50 0.3 8.2 – 2 2 6.5
snacktime 50 50 9.7 0 0 0 0 22.1
temple 35 20 7.9 7.4 7.6 8 8 7.8
ztuu 100 100 4.9 21.6 9.2 85.4 79.1 87.2
advent 350 113 36 36 36 63.9 36 62.1
balances 51 30 4.8 10 10 10 10 11.9
deephome 300 83 1 1 1 1 1 1
gold 100 30 4.1 0 – 0 0 2.1
jewel 90 24 0 1.6 1.8 4.46 2 6.4
karn 170 40 0.7 2.1 0 10 10 0
ludicorp 150 37 6 13.8 17.8 19.7 17 23.8
yomomma 35 34 0 0.4 – 1 1 1
zenon 20 20 0 0 3.9 0 0 4.1
zork1 350 102 9.9 32.6 34 38.3 38.8 44.3
zork3 7 3 0 0.5 0.1 3.63 2.83 3.2
anchor 100 11 0 0 0 0 0 0
enchanter 400 125 8.6 20 12.1 20 20 36.3
sorcerer 400 150 5 20.8 5.8 38.6 38.3 24.5
spellbrkr 600 160 18.7 37.8 21.3 25 25 41.2
spirit 250 8 0.6 0.8 1.3 3.8 5.2 4.2
tryst205 350 50 0 9.6 – 10 10 13.4

Best agent 6 (18%) 6 (18%) 5 (15%) 12 (36%) 10 (30%) 24 (73%)

Table 4.3: Average raw score on the Jericho games. We denote with colors the difficulty of the
games (green for possible games, yellow for difficult games and red for extreme games). The last
row reports the fraction and the absolute number of games where an agent achieves the best
score. We additionally report human performance (Human – max) and the 100-step results
from a human-written walkthrough (Human – Walkthrough 100). Results are taken from the
original papers or “−” is used if a result was not reported.

CBR from 60% to approximately 70% of the times. Figure 4.4 (bottom) further shows
the fraction of times that the neural agent would have been able to select a rewarded
action as well, when the CBR reuses a successful action. The plot shows that, for the
out-of-distribution games, the neural agent would struggle to select good actions when
the CBR is used.

Main ablation studies. In order to understand the role of the main modules of our
CBR agent, we designed some ablation studies. First, instead of using the seeded GAT,
we define the context of a state-action pair context(st, at) as just one of the entities that
at is applied to. This definition suits well the TWC games because rewarded actions
are always applied to one target object and a location for that object (see Appendix B.1
for details). Note that, since the set of entities is discrete, no context quantization is
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Figure 4.3: Examples from the zork1 game,
showing the content of the memory and the
context similarities, in a situation where the
agent is able to reuse a previous experience and
in a case where the revise step is needed.
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Figure 4.4: Fraction of times that a retrieved
action is reused successfully on TWC (top).
Fraction of times that the neural agent would
have picked a rewarded action when CBR is
used successfully (bottom).

Easy Medium Hard

IN

BiKE + CBR (w/o GAT) 16.32± 1.10 36.13± 1.40 45.72± 0.63
BiKE + CBR (w/o VQ) 22.67± 1.23 43.18± 2.10 49.21± 0.55

O
U

T BiKE + CBR (w/o GAT) 18.15± 1.51 37.10± 1.41 46.70± 0.71
BiKE + CBR (w/o VQ) 27.75± 2.11 44.55± 1.67 50.00± 0.00

Table 4.4: Results of the ablation study on TWC , evaluated
based on the number of steps (#Steps) to solve the games.
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Figure 4.5: Number of en-
tries in the memory over
training.

needed. We report the performance of the resulting BiKE + CBR (w/o GAT) agent in
Table 4.4. The results show that CBR on TWC is effective even with this simple context
definition, but the lower performance of the agent demonstrates the advantage of
incorporating additional context information. Finally, we investigate the role played by
vector quantization, by experimenting with an agent (BiKE + CBR w/o VQ) that stores
the continuous context representations. In general, this poses scalability challenges,
but since TWC has only 5 games per difficulty level, each with a small number of
objects, we were able to evaluate the performance of this agent on the three levels
separately. The results, reported in Table 4.4, show that this agent performs much
worse than the other CBR implementations. This happens because storing continuous
representations over the training results in duplicated entries in the memory and
makes it harder to retrieve meaningful experiences. Figure 4.5 demonstrates how
the size (number of entries) in the memory grows over the training time. In this
experiment, we trained the agent on all difficulty levels at the same time, resulting in
the implementation running out of memory (OOM) on the GPU.
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4.7 Enhancing baseline agents with CBR on Jericho

In this section, we report additional experimental results on a subset of the Jericho
games, in order to show the performance improvement obtained by different baseline
agents when enhanced with case-based reasoning. Table 4.5 shows the results obtained
when coupling the agents described in Section 4.6.1 with CBR. Similarly to what we
discussed for TWC in Section 4.6.2, we observe that CBR consistently improves the
performance of all the agents. The best performing agent is BiKE + CBR, which is the
agent that we evaluated on the complete set of games in Section 4.6.3.

Game KG-A2C KG-A2C + CBR Text Text + CBR TPC TPC + CBR BiKE BiKE + CBR

detective 207.9 255.6 205.8 242.3 245.6 315.1 278.2 326.1
inhumane 3 15.6 1.1 14.5 4.5 18.3 9.2 24.2
snacktime 0 15.5 8.1 9.8 15.7 19.3 18.8 22.1
karn 0 0 0 0 0 0 0 0
zork1 34 34.2 31.5 38.2 36 39.2 39.5 44.3
zork3 0.1 1.7 0 1.6 1.7 1.9 2.5 3.2
enchanter 12.1 26.2 10.1 26.4 13.2 24.5 19.7 36.3
spellbrkr 21.3 36.1 20.4 33.2 38.1 40.2 38.8 41.2

Table 4.5: Additional results on Jericho showing the performance improvement obtained by
enhancing several baseline agents with CBR.

4.8 Ablation study on memory access

In this section, we investigate the effectiveness of our approach based on vector quan-
tization for efficient memory access. We consider several variants, where VQ is either
dropped completely or replaced with other techniques.

4.8.1 Alternatives to vector quantization

All the agents we consider are variants of the best-performing agent on Jericho and
TWC , namely the BiKE + CBR agent. We experiment with the following techniques.

• BiKE + CBR (w/o VQ) completely removes the vector quantization and stores the
continuous context representations as keys in the case memory. In order to make
this feasible, for the experiments on Jericho, we limit the size of the memory to the
5000 most recent entries.

• BiKE + CBR (RP) relies on random projection (RP) in order to reduce the dimen-
sionality of the context representations stored by the CBR approach. In this case,
each context representation is projected into a p-dimensional space using a random
matrix R ∈ Rp×d, with components drawn from a normal distribution N(0, 1p) with
mean 0 and standard deviation 1

p .
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• BiKE + CBR (SRP) employs sign random projection (SRP): context representations
are projected to a p-dimensional space and then discretized by applying an element-
wise sign function.

• BiKE + CBR (LSH) replaces vector quantization with locality sensitive hashing
(LSH). In this case, context representations are converted into h-bit hash codes for l
different hash tables. The retrieve step selects the representation with the highest
cosine similarity to the query context encoding, among the vectors falling in the
same bucket.

4.8.2 Results and discussion

Table 4.6 shows the scores achieved by each variant of the BiKE + CBR method on
a subset of the Jericho games. We notice that the approaches relying on continuous
context representations (w/o VQ and RP) perform poorly compared to the others and
to the plain BiKE agent. This confirms our hypothesis that CBR needs discrete context
representations to make the retrieve step more stable.

The BiKE + CBR (LSH) agent, which relies on locality sensitive hashing, achieves
competitive results and consistently outperforms the BiKE agent. However, we observe
that our BiKE + CBR agent, based on vector quantization, achieves better results on
almost all the games, confirming the benefit of learning the discrete representation as
well. Note also that LSH requires storing the complete continuous representations to
be able to detect false positives, namely contexts with the same hash code as the query
vector, but low cosine similarity. This makes this alternative less memory efficient
compared to our implementation based on VQ.

Game BiKE + CBR (w/o VQ) BiKE + CBR (RP) BiKE + CBR (SRP) BiKE + CBR (LSH) BiKE + CBR

detective 205.2 203.1 223.2 319.1 326.1
inhumane 1.5 3.2 1.1 20.1 24.2
snacktime 9.1 14.3 13.2 20.3 22.1
karn 0 0 0 0 0
zork1 31.5 36.3 40.5 41.2 44.3
zork3 0 2.7 2.7 3.6 3.2
enchanter 10.2 9.2 10.6 35.3 36.3
spellbrkr 21.3 23.8 30.8 39.3 41.2

Table 4.6: Ablation study showing the results obtained on a subset of the Jericho games when
the vector quantization is removed (w/o VQ) or replaced with random projection (RP), sign
random projection (SRP) or locality sensitive hashing (LSH).

4.9 Ablation study on the retain module

In this section, we evaluate different alternatives to select which actions should be
retained in the memory of the agent.
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4.9.1 Alternatives for the retain module

In our main experiments described in Section 4.6, the retain module has been imple-
mented to store the last k context-action pairs in the memory, whenever the reward
obtained by the agent is positive. For Jericho, we set k = 3, as specified in Appendix
B.3. However, other design choices are possible. We consider the following variants of
the BiKE + CBR agent.

• BiKE + CBR (rewarded action only) retains only the rewarded context-action pair,
without sampling any of the previous actions. This variant is a simple implementa-
tion that works well in practice, but may fail to identify useful actions that were not
rewarded.

• BiKE + CBR (TD error) samples previous context-action pairs based on the tem-
poral difference (TD) error. In details, the agent still retains k context-action pairs:
whenever the reward rt at time step t is positive, the rewarded context-action pair
(c⋆t , a

⋆
t ) is retained, together with k − 1 additional pairs sampled from the current

trajectory, with a probability proportional to the TD error.

4.9.2 Results and discussion

Table 4.7 shows the scores obtained by the agents on a subset of the Jericho games.
Our main implementation storing the last k = 3 actions achieves the best results,
whereas the BiKE + CBR (rewarded action only) agent performs slightly worse than
the other two implementations. The agent based on the TD error achieves competitive
results and a state-of-the-art score on the snacktime game. We observe that all variants
perform well in practice and achieve overall better results than the baselines reported
in Table 4.3.

Game BiKE + CBR (rewarded action only) BiKE + CBR (TD error) BiKE + CBR

detective 324.1 324.8 326.1
inhumane 20.1 23.5 24.2
snacktime 20.3 23.4 22.1
karn 0 0 0
zork1 40.2 42.4 44.3
zork3 3.2 3.2 3.2
enchanter 35.3 34.1 36.3
spellbrkr 40.3 40.8 41.2

Table 4.7: Ablation study showing the results obtained on a subset of the Jericho games when
only the context-action pair achieving positive reward is retained (rewarded action only),
when context-action pairs are sampled using the TD error (TD error), and when the last 3 pairs
are retained (BiKE + CBR).
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4.10 Training the agent and the retriever jointly

In this experiment, we try to understand if training the neural agent and the CBR
retriever jointly would improve upon our choice of just training the two networks
separately. Our implementation works by training the neural agent π and the CBR
retriever separately with different objectives. However, we can make the neural agent
aware of the CBR retriever and train the two networks jointly. In this case, we need to
modify the architecture of the neural agent π in order to take into account the action
candidates Ãt produced by the CBR. In details, we compute an action selector by
attention between the valid actionsAt and the candidates Ãt and we concatenate this
action selector to the vector used by the neural agent to score admissible actions. Then,
the agent and the retriever can be trained jointly, optimizing an objective given by the
sum of all the losses in Section 4.5.

Table 4.8 and 4.9 show the results obtained by the baseline agents when they are
trained jointly with the CBR retriever. On TWC , we observe that the joint variants of
the agents achieve comparable results with their counterparts in Table 4.1 and 4.2. On
Jericho, the agents trained jointly with the retriever achieve strong results, but they
perform slightly worse than our main approach that keeps the retriever separate from
the neural agent. This shows that the joint version is slightly harder to train. Also, it
brings the disadvantage that the architecture of the neural agent has to be changed
to take the CBR into account, whereas our main approach that keeps the retriever
separate allows readily plugging any on-policy agent for TBGs.

Easy Medium Hard
#Steps Norm. Score #Steps Norm. Score #Steps Norm. Score

IN

Text + CBR (joint) 17.91± 3.80 0.91± 0.04 40.22± 1.70 0.65± 0.05 47.94± 1.10 0.33± 0.02
TPC + CBR (joint) 16.80± 1.97 0.94± 0.04 36.12± 1.32 0.67± 0.03 46.10± 0.72 0.41± 0.03
KG-A2C + CBR (joint) 16.40± 1.89 0.95± 0.05 36.50± 1.13 0.68± 0.03 46.58± 0.91 0.40± 0.06
BiKE + CBR (joint) 16.01± 1.37 0.94± 0.03 35.93± 1.11 0.67± 0.05 46.11± 1.14 0.42± 0.04

O
U

T

Text + CBR (joint) 21.47± 2.32 0.88± 0.07 39.10± 1.33 0.67± 0.02 48.10± 0.92 0.31± 0.03
TPC + CBR (joint) 17.89± 1.82 0.93± 0.01 38.11± 1.33 0.65± 0.03 47.92± 1.55 0.34± 0.03
KG-A2C + CBR (joint) 18.19± 2.12 0.93± 0.02 37.72± 2.91 0.66± 0.03 47.53± 1.11 0.40± 0.04
BiKE + CBR (joint) 18.12± 1.21 0.94± 0.05 35.77± 1.05 0.69± 0.05 46.16± 1.00 0.40± 0.04

Table 4.8: Test-set results obtained on TWC in-distribution (IN) and out-of-distribution (OUT)
games training different neural agents and the CBR retriever jointly.

4.11 Multi-paragraph text-based retriever

This section describes an alternative to our graph-based retriever, which only relies on
the textual observations without modeling the state of the game as a graph.

Recent work (X. Guo et al. 2020) has shown that enriching the current observation
with relevant observations retrieved from the history of interactions with the envi-
ronment can achieve competitive results on Jericho. Therefore, in order to assess the
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Game KG-A2C + CBR (joint) Text + CBR (joint) TPC + CBR (joint) BiKE + CBR (joint)

detective 250.1 241.5 316.2 324.2
inhumane 15.1 13.2 16.3 24.1
snacktime 13.2 11.2 20.1 21.8
karn 0 0 0 0
zork1 36.4 36.5 36.3 43.7
zork3 1.5 1.5 1.8 3.6
enchanter 25.1 26.1 21.1 35.6
spellbrkr 32.3 33.3 39.2 41.8

Table 4.9: Results obtained on a subset of the Jericho games training different neural agents
and the CBR retriever jointly. Bold values indicate when the joint variant achieves better scores
than the main counterparts reported in Table 4.5.

effectiveness of our graph-based implementation, we compare to a multi-paragraph
text-based retriever (MTPR) inspired by the work of X. Guo et al. (2020). In this case,
we do not model the state as a graph and, subsequently, we remove the seeded graph
attention mechanism from the retriever. Instead, given the current natural language
observation ot, we compute an action-specific representation following X. Guo et al.
(2020), concatenating ot with the n most recent observations that share objects with
it or with the given action. The encoded observation is then discretized using vector
quantization as in our main architecture.

We evaluated the text-based retriever on Jericho, integrating it in the same baseline
agents described in Section 4.6.1. Table 4.10 shows the scores obtained by the agents.
We observe that, overall, the graph-based retriever performs better on the vast majority
of the games. This result confirms the ability of our approach based on seeded graph
attention to extract relevant information from the state of the game, compared to a
retriever that only relies on text information.

Game KG-A2C + CBR (MPTR) Text + CBR (MPTR) TPC + CBR (MPTR) BiKE + CBR (MPTR)

detective 245.2 233.7 302.3 321.2
inhumane 13.4 13.2 12.3 20.3
snacktime 12.1 8.2 18.1 19.5
karn 0 0 0 0
zork1 36.2 36.2 37.4 42.2
zork3 0.8 1.2 3.2 3.6
enchanter 19.3 24.3 20.2 32.1
spellbrkr 31.3 30.3 39.3 40.8

Table 4.10: Results obtained on a subset of the Jericho games using the multi-paragraph text-
based retriever (MPTR) instead of the graph-based one. Bold values indicate when the MPTR
variant achieves better scores than the main counterparts reported in Table 4.5.
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4.12 Case-based reasoning and OOD generalization

Our experiments on TWC allowed assessing the hypothesis that case-based reasoning
can be used to tackle out-of-distribution (OOD) generalization in text-based games.
Table 4.11 shows the absolute OOD generalization gap of the different agents evaluated
in our experiments. Note that this table does not report any new result, but it simply
provides the absolute difference between the values in Table 4.1 and 4.2. We observe
that the agents relying on CBR achieve a considerably better generalization perfor-
mance out of the training distribution, almost comparable to the results obtained
on the same distribution as the training data. In some cases, the normalized score
achieved by the CBR agents in the out-of-distribution games equals the score obtained
in the in-distribution games. This happens because case-based reasoning forces the
agent to map contexts including entities that were not seen at training time to the most
similar contexts in the CBR memory. CBR allows the agent to solve completely new
problems and generalize by effectively retrieving past cases and mapping the retrieved
actions from the training distribution to the most similar options in the OOD setting.
Note that the only good OOD generalization gap for the agents that are not relying on
CBR (the #Steps of the Text agent on the Hard level) is an artifact of the experiment, as
all agents were limited to a maximum of 50 steps.

Figure B.1 shows a nice example of the capability of the agent to generalize OOD. In
this case, entity embeddings were used as the context representations, and we observe
that entities that are not included in the training distribution are correctly mapped to
the right cluster. This shows that the CBR approach learns effective and generalizable
context representations based on the objective of the games. These representations
are then used by the agent to select relevant experiences and map the actions used at
training time to the most viable alternative in the OOD test set.

Easy Medium Hard

#Steps Norm. Score #Steps Norm. Score #Steps Norm. Score

Text 6.07 0.10 1.82 0.05 0.16 0.10
TPC 7.15 0.11 2.28 0.04 1.55 0.13
KG-A2C 6.24 0.06 1.44 0.03 2.00 0.11
BiKE 7.32 0.11 1.67 0.03 2.81 0.11

CBR-only 1.30 0.00 0.27 0.01 0.59 0.02
Text + CBR 3.38 0.04 1.22 0.00 0.78 0.02
TPC + CBR 2.09 0.02 0.25 0.01 0.29 0.03
KG-A2C + CBR 2.30 0.05 0.89 0.02 0.99 0.02
BiKE + CBR 1.43 0.02 0.21 0.00 0.70 0.02

Table 4.11: Absolute out-of-distribution generalization gap in TWC
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4.13 Related work

We have already covered a survey of text-based reinforcement learning in Section 2.5.
In the context of RL, CBR has been used to speed up and improve transfer learning
in heuristic-based RL. Celiberto Jr et al. (2011) and Bianchi, Santos, et al. (2018) have
shown that cases collected from one domain can be used as heuristics to achieve faster
convergence when learning an RL algorithm on a different domain. In contrast to these
works, we present a scalable way of using CBR alongside deep RL methods in settings
with very large state spaces. More recently, CBR has been successfully applied in the
field of knowledge-based reasoning. Das, Godbole, et al. (2020) and Das, Zaheer, et al.
(2021) show that CBR can effectively learn to generate new logical reasoning chains
from prior cases, to answer questions on knowledge graphs.

4.14 Conclusion

In this work, we proposed new agents for TBGs using case-based reasoning. In contrast
to expensive deep RL approaches, CBR simply builds a collection of its past experiences
and uses the ones relevant to the current situation to decide upon its next action in
the game. Our experiments showed that CBR when combined with existing RL agents
can make them more efficient and aid generalization in out-of-distribution settings.
Even though CBR was quite successful in the TBGs explored in our work, future work
is needed to understand the limitations of CBR in such settings.
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5 Scaling KBQA by decoupling mulit-
hop and logical reasoning

5.1 Introduction

Enhancing machine learning models with the ability to reason over structured data
has been a major challenge (Marcus 2020; Lake and Baroni 2018) and has historically
required complex systems made of several hand-crafted or learned components (Yao
et al. 2014; Ferrucci et al. 2010). Recently, the paradigm has shifted to deep learning
approaches (H. Sun, Arnold, et al. 2020; H. Sun, Bedrax-Weiss, et al. 2019), where neural
networks are used to reason over structured knowledge or a text corpus. In this work,
we assume that the source of knowledge is a structured knowledge graph (KG) and we
tackle the problem of knowledge-based question answering (KBQA), namely finding
answers to natural language queries involving multi-hop and logical reasoning over
the KG.

Answering queries over a knowledge graph involves many challenges, among which
scalability is a major issue. Real-world KGs often contain millions of nodes and even
a 2-hop neighborhood of the entities mentioned in the query may comprise tens of
thousands of nodes. Many state-of-the-art approaches (H. Sun, Dhingra, et al. 2018;
H. Sun, Bedrax-Weiss, et al. 2019; Saxena et al. 2020) address the challenge of scalability
by building small query-dependent subgraphs. To this end, they usually use simple
heuristics (H. Sun, Dhingra, et al. 2018) or, in some cases, iterative procedures based on
learned classifiers (H. Sun, Bedrax-Weiss, et al. 2019). This preprocessing step is usually
needed because each forward pass in end-to-end neural networks for KBQA scales
at least linearly with the number of edges in the subgraph. Training neural networks
involves repeated evaluation, which renders even a linear complexity impractical for
graphs of more than a few tens thousands of nodes.

In order to address this issue, we introduce a novel approach called SQALER (Scaling
Question Answering by Leveraging Edge Relations). The method first learns a model
that generates a set of candidate answers (entities in the KG) by multi-hop reasoning :
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the candidate solutions are obtained by starting from the set of entities mentioned in
the question and seeking those that provide an answer by chained relational following
operations. We refer to this module as the relation-level model. We show that this
multi-hop reasoning step can be done efficiently and provably generates a set of
candidates including all the actual answers to the original question. SQALER then uses
a second-stage edge-level model that recovers the real answers by performing logical
reasoning on a subgraph in the vicinity of the candidate solutions. A visual summary
of our approach is depicted in Figure 5.1.

The main contributions and takeaway messages of this work are the following:

1. KBQA can be addressed by first performing multi-hop reasoning on the KG and
then refining the result with more sophisticated logical reasoning without losing
expressive power (we will elaborate this claim in more details in Section 5.2.3).

2. Multi-hop reasoning can be accomplished efficiently with a method that scales
linearly with the number of relation types in the KG, which are usually signifi-
cantly fewer than the number of facts or entities.

In the remainder of the chapter, we first provide an extensive overview of our approach
and a theoretical analysis of the expressive power and the computational complexity
of SQALER. Our experimental results show that SQALER achieves better reasoning
performance than state-of-the-art approaches, generalizes compositionally out of
the training distribution, and scales to the size of real-world knowledge graphs with
millions of entities.

5.2 Scaling KBQA with relation and edge-level reasoning

This section provides a detailed description of our approach. We start by defining
the problem formally and giving an intuitive overview of SQALER. Then, we discuss
the approach in more details and we analyze both its computational complexity and
expressive power.

Problem statement. We denote a knowledge graph as G = (V,R, E), where v ∈ V
represents an entity or node in G, r ∈ R is a relation type, and we write v r−→ v′ to denote
an edge in E labeled with relation type r ∈ R between two entities v, v′ ∈ V . We extend
the same notation to sets of nodes by writing Vi

r−→ Vj if Vj = {vj ∈ V | vi
r−→ vj , vi ∈ Vi}.

Given a knowledge graph G = (V,R, E) and a natural language question Q, expressed
as a sequence of tokens Q = (q1, q2, . . . , q|Q|), in knowledge-based question answering
the objective is to identify a set of nodesAQ ⊆ V representing the correct answers to
Q. Following previous work (H. Sun, Dhingra, et al. 2018; H. Sun, Bedrax-Weiss, et al.
2019; H. Sun, Arnold, et al. 2020), we assume that the set of entities mentioned in the

64



Scaling KBQA by decoupling mulit-hop and logical reasoning Chapter 5

question VQ ⊆ V is given. These nodes are also called the anchor nodes of the question
and in practice are commonly obtained using an entity-linking module.

Overview. KBQA can be cast as an entity seeking problem on G by translating Q into
a set of nodes VQ ⊆ V (the starting points of the search) and seeking for nodes that
provide an answer (H. Sun, Dhingra, et al. 2018; H. Sun, Bedrax-Weiss, et al. 2019; H.
Sun, Arnold, et al. 2020). Attempting to findAQ directly on G is prohibitive in practice,
as even the most efficient graph-based neural networks generally scale at least linearly
with the number of edges. Our approach mitigates this issue by breaking the problem
in two subproblems.

(a) We first utilize a relation-level model ϕ to obtain a set of candidate answers ÃQ, such
thatAQ ⊆ ÃQ. We refer to ϕ as “relation-level” because, as we will see, it operates on
the coalesced graph, a simplified representation of G, where edges of the same relation
type are coalesced. The coalesced graph is constructed before training and incurs a
one-time linear cost. By exploiting it during training, the relation-level model scales
with the number of (distinct) relation types in the KG, which are usually significantly
fewer than the number of edges or entities.

(b) The candidate answers are then refined using an edge-level model ψ applied on a
subgraph G(ÃQ) of the original knowledge graph in the vicinity of ÃQ. We should note
that the refining step is not always necessary. Indeed, we found that a relation-level
model is sufficient to perfectly solve tasks like multi-hop question answering (Zhang
et al. 2018). Figure 5.1 shows an overview of our approach.

5.2.1 Relational coalescing for efficient knowledge seeking

Our approach relies on a relation-level model ϕ that operates as a knowledge seeker
in G. The model identifies a node v as a candidate v ∈ ÃQ based on the sequence of
relations that connect it with VQ. This can be achieved by using a neural network ϕ
to predict how likely it is that the correct answer is reached from VQ by following a
sequence of relations R.

Reachability. To define how our method works, it will help to formalize the concept
of reachability. Let R = (r1, . . . , r|R|) be a sequence of relations. We say that “v is
R-reachable from VQ” if there exists a path P = (v1, . . . , v|R|, v) in G such that:

v1 ∈ VQ and vi
ri−→ vi+1 for every i = 1, . . . , |R|.

That is, we can reach v by starting from a node in VQ and following a sequence of
edges with relation types R. We also denote by reachG(VQ, R) the set of nodes that are
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Figure 5.1: Overview of our approach. A relation-level model operates on a coalesced represen-
tation of the original KG to generate a set of candidate answers ÃQ. This approximate solution
is then refined by an edge-level model applied on a subgraph of the original KG.

R-reachable from VQ:

reachG(VQ, R) = {v ∈ V | v is R-reachable from VQ}.

Relational coalescing. Given a knowledge graph G, a question Q, and a set of entity
mentions VQ, we consider a representation of the graph G̃Q = (ṼQ, R̃Q, ẼQ), which
allows us to efficiently compute sets of nodes that are reachable from VQ. We refer to
this representation as the question-dependent coalesced KG, because edges with the
same relation type are coalesced, as shown in Figure 5.1. The nodes of G̃Q are sets of
nodes of G that are reachable from VQ by following any possible sequence of relations
originating from VQ. The graph G̃Q has an edge Vi

r−→ Vj if Vj is the set of nodes that
are reachable from Vi by following relation r. For convenience, we include a relation
type self ∈ R̃Q to denote self loops. We refer the reader to Appendix C.1 for a formal
definition of G̃Q. The coalesced graph can be precomputed once as a preprocessing
step for each question Q and incurs a one-time linear cost. In practice, however, we do
not need to compute and store all the nodes in G̃Q but only edge labels. This makes
learning efficient because each forward/backward pass scales with the number of
relation types and does not depend on the number of nodes or edges in the KG.

Knowledge seeking in G̃Q. The coalesced graph allows us to provide approximate an-
swers to input questions in an efficient manner. Specifically, we seek k ≥ 1 sequences
of relations R⋆i , such that:

AQ ⊆ ÃQ =

k⋃
i=1

reachG(VQ, R⋆i ).

We can achieve this by using a model ϕ that only considers relation sequences originat-

66



Scaling KBQA by decoupling mulit-hop and logical reasoning Chapter 5

ing from VQ. The model predicts the likelihood ϕ : ẼQ → [0, 1] of following a certain
edge in a relation sequence from VQ to ÃQ. Then, given R = (r1, . . . , r|R|) and a node
in the coalesced graph VQ, we can compute the likelihood of R by multiplying the
likelihood of all edges traversed by R in G̃Q:

P(R | Q, G̃Q,VQ) ∝
|R|∏
i=1

ϕ(reachG(VQ, R1→i−1), ri, reachG(VQ, R1→i) | Q),

where R1→i = (r1, . . . , ri) is the subsequence of R up to the i-th relation. We generate
ÃQ by selecting the top k relation sequences R⋆i with maximum likelihood P(R⋆i |
Q, G̃Q,VQ). This can be done by an efficient search algorithm, such as beam search
starting from VQ. Then, we compute ÃQ as the union of all target nodes of the selected
relation sequences. More details about the knowledge-seeking algorithm are provided
in Appendix C.2.

5.2.2 Refining the solution on the original KG

In certain cases, like multi-hop question answering (Zhang et al. 2018), the set of can-
didate answers ÃQ may already be a reasonable estimate ofAQ. We will substantiate
this claim experimentally in Section 5.4. In general, however, we recoverAQ by using
an edge-level model ψ applied on a subgraph G(ÃQ) of G. Specifically, we construct
G(ÃQ) as the subgraph induced by the set of nodes V(ÃQ), which includes all nodes
visited when following the top-k relation sequences along with their neighbors (see
Figure 5.1 for an example). Any existing method for KBQA can be used to instantiate ψ
by running it on G(ÃQ) rather than G. We opted to use a Graph Convolutional Network
(GCN) conditioned on the input question with the same architecture as in (H. Sun,
Dhingra, et al. 2018). The edge-level model is constrained to predict an answer among
the candidates generated by the relation-level model.

5.2.3 Analysis of scalability and expressive power

This section provides a scalability analysis of our approach and shows that the relation-
level model scales linearly with the number of relation types in the graph. Then, we
analyse the expressive power of SQALER and we show the class of logical queries that it
can answer.

Computational complexity. As mentioned, we do not evaluate the likelihood ϕ for
all edges in G̃Q, but we generate the most likely relation sequences using a knowledge-
seeking procedure based on the beam search algorithm. At any given time step, only the
β most likely relation sequences are retained and further explored at the next iteration.
Hence, the time complexity required by our algorithm isO(τmax · β · d+max(G̃Q)), where
τmax is the maximum allowed number of decoding time steps and d+max(G̃Q) is the
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maximum outdegree of G̃Q. Note that d+max(G̃Q) is bounded by the number of relations
in the graph, whereas τmax and β are constant parameters of the algorithm and are
usually small. This gives a time complexity of:

O(τmax · β · |R|) = O(|R|).

Hence, the knowledge-seeking algorithm scales linearly with the number of relations
in the KG. The space complexity is also O(τmax · β · |R|). A more detailed analysis is
provided in Appendix C.2.

Expressive power. Given a natural language question Q, we can represent the
inferential chain needed to obtain AQ from VQ as a logical query Q on G. As an
example, the question in Figure 5.2, “Who starred in films directed by George Lucas?”,
can be represented by the logical query: Q[V?] = V?.∃V : Directed(George_Lucas,V) ∧
Starred(V,V?). We denote with V? the target variable of the query and we say that v ∈ V
satisfies Q if Q[v] = True. A query Q is an existential positive first-order (EPFO) query if
it involves the existential quantification (∃), conjunction (∧), and disjunction (∨) (Dalvi
et al. 2012) of literals corresponding to relations in the KG. Each literal is of the form
r(V,V′), where V is either a node in VQ or an existentially quantified bound variable,
and V′ is either an existentially quantified bound variable or the target variable. A
literal r(V,V′) is satisfied if V r−→ V′, for r ∈ R. Any EPFO query can be represented
in disjunctive normal form (DNF) (Davey et al. 2002), namely as a disjunction of
conjunctions. Note that, we do not consider queries with universal quantification (∀),
as we assume that in real-world KGs no entity connects to all the others. Then, the
following theorem holds for any knowledge graph and EPFO query.

Theorem 5.2.1. Let G = (V,R, E) be a knowledge graph and VQ ⊆ V denote a set of
entities in G. Let Q be a valid existential positive first-order query on G and let n∨ be the
number of disjunction operators in the disjunctive normal form of Q. Then, there exist
k ≤ n∨ + 1 sequences of relations R⋆i ∈ R∗ such that:

AQ ⊆
k⋃

i=1

reachG(VQ, R⋆i ),

where AQ = {v ∈ V | Q[v] = True} is the denotation set of Q, namely the entities
satisfying Q.

This shows that sampling n∨ + 1 sequences of relations allows generating a set of
candidate answers ÃQ that does not miss any of the real answersAQ. Then, assuming
that the edge-level model ψ can recover AQ from ÃQ, our approach can be used to
answer any EPFO query on G. More details about the expressive power of SQALER and
the proof of Theorem 5.2.1 are provided in Appendix C.3.
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Figure 5.2: Architecture of the SQALER relation-level model. A question encoder is used to
obtain a representation of tokens in the input natural language question. Then a graph-guided
decoder is applied to obtain the likelihood of output relation sequences. The decoder is
constrained to only attend to valid relations according to the structure of the coalesced KG.

5.3 Architecture of the relation-level model

For the relation-level model ϕ, we propose an auto-encoder, where the the decoder
is constrained to follow sequences of relations in the coalesced representation G̃Q.
We train the network with weak supervision, assuming that a sequence of relations is
correct if it reaches a set of candidate answers ÃQ that is the smallest reachable superset
of the AQ. We found it useful to pretrain the model in order to infuse knowledge
from the KG. In this case, we train the model to predict a path in the KG, given the
representations of the source and target nodes. More details about training strategies
are given in Appendix C.4.

The architecture of the model, as shown in Figure 5.2, includes three main components:
a question encoder, a relation encoder and a graph-guided decoder. We explain each
one below.

Question encoder. The encoder receives as input a natural language question, which
comprises a sequence of tokens Q = (q1, q2, . . . , q|Q|). The question is encoded using a
pre-trained BERT (Devlin et al. 2019) model and processed with the same positional
encoding technique used in (Vaswani et al. 2017). The resulting embeddings are then
fed into nl = 3 transformer encoder layers (Vaswani et al. 2017). This results in a matrix
Q ∈ R|Q|+1×dmodel , where the first row vector is an overall representation of the whole
query Q (derived from the embedding of the [CLS] token introduced by BERT) and

69



Chapter 5 Scaling KBQA by decoupling mulit-hop and logical reasoning

each remaining row represents the final dmodel-dimensional encoding of a token in the
input question.

Relation encoder. The relation encoder produces a representation r ∈ Rdmodel for each
relation type r ∈ R. We decided to encode relations based on their surface form, with
the same pre-trained BERT model used in the question encoder. In this case, only the
embedding of the [CLS] token is used in order to get the final representation r of each
relation type r ∈ R. At inference time, or in case the BERT model is not fine-tuned, the
embeddings of the relations can be precomputed as a preprocessing step to improve
the efficiency of the approach.

Graph-guided decoder. The decoder’s job is to predict a sequence of relations
leading from VQ to ÃQ in G̃Q. At any time step t, it receives as input a sequence of
relations Rt = (self, r1, . . . , rt−1) and predicts the next relation rt (self is used as a
special token to denote the start of decoding). Note that the input sequence uniquely
determines a node Vt in the graph G̃Q, namely the node reachable from VQ by following
Rt. The decoder thus selects rt by choosing amongst the outgoing edges Ẽt of Vt. We
use the same number of layers nl both for the question encoder and the decoder.
Let Xl

t = [xl
0, . . . ,x

l
t−1]

⊤ ∈ Rt×dmodel denote the hidden state of the l-th layer of the
decoder preceding time step t. Note that X0

t is the representation of the sequence
Rt, obtained by using the relation encoder described above and the same positional
encoding technique used in the question encoder. For each decoder layer, we perform
self-attention over the target sequence Xl

t by computing:

x̄l
t = Attention(xl

t,X
l
t,X

l
t),

where Attention is a function that performs multi-head scaled dot-product attention
(Vaswani et al. 2017) with skip connections and layer normalization (Ba et al. 2016).
The above step allows each relation in the decoded sequence to attend to all the others
predicted up to time step t. We then let the result attend to the question as:

x̄Q,l
t = Attention(x̄l

t,Q,Q).

This is done in order to update the current state of the decoder based on the input
question. Next, let Rt ∈ R|Ẽt|×dmodel denote the encoding of the relations labeling all
edges in Ẽt. We constrain the decoded sequence to follow the structure of the graph by
attending only to valid relations as follows:

x̄R,l
t = Attention(x̄Q,l

t ,Rt,Rt).

We get the hidden state of the next layer xl+1
t by processing the result with a feed

forward network. The model outputs a categorical distribution ϕ(e | Q) ∈ [0, 1] over
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the edges e ∈ Ẽt, by applying a softmax function as follows:

ϕ(Vi
r−→ Vj | Q) =

exp(r⊤xnl
t )∑

V ′
i

r′−→V ′
j∈Ẽt

exp(r′⊤xnl
t )
,

where xnl
t is the output of the final layer of the decoder, whereas r and r′ denote the

representations of relations r and r′ respectively.

5.4 Experiments

This section presents an evaluation of our approach with respect to both reasoning
performance and scalability. We first show that SQALER reaches state-of-the-art results
on popular KBQA benchmarks and can generalize compositionally out of the train-
ing distribution. Then, we demonstrate the scalability of our approach on KGs with
millions of nodes. We refer the reader to Appendix C.5 for more details.

5.4.1 Experimental setup

Datasets. We evaluate the reasoning performance of our approach on MetaQA
(Zhang et al. 2018) and WebQuestionsSP (Yih et al. 2015). MetaQA includes multi-hop
questions over the WikiMovies KB (Miller et al. 2016) and we consider both 2-hop
(MetaQA 2) and 3-hop (MetaQA 3) queries. WebQuestionsSP (WebQSP) comprises
more complex questions answerable over a subset of Freebase (Bollacker et al. 2008), a
large KG with millions of entities. We further assess the compositional generalization
ability of SQALER on the Compositional Freebase Questions (CFQ) dataset (Keysers et al.
2020). Each question in CFQ is obtained by composing primitive elements (atoms).
Whereas the training and test distribution of atoms are similar, the test set contains
different compounds, namely new ways of composing these atoms. CFQ comprises
three dataset splits (MCD1, MCD2, and MCD3), with maximal compound divergence
(MCD) between the training and test distributions. We refer the reader to Appendix
C.5.1 for an extensive description of the datasets.

Evaluation protocol. In our experiments on MetaQA and WebQuestionsSP, we assess
the performance of three variants of our approach: (a) a version that only makes use
of the relation-level model without the refinement step (SQALER – Unrefined), (b) a
model that utilizes a key-value memory network to identify the correct answers from
the candidates (SQALER – KV-MemNN), and (c) a model that uses a GNN architecture
for the refinement step (SQALER – GNN), as explained in Section 5.2.2. Following
previous work (H. Sun, Dhingra, et al. 2018; H. Sun, Bedrax-Weiss, et al. 2019; H. Sun,
Arnold, et al. 2020; Saxena et al. 2020), we evaluate the models based on the Hits@1
metric. On the CFQ dataset, we evaluate the accuracy of the refined model with the
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MetaQA 2 MetaQA 3 WebQSP

KV-MemNN (Miller et al. 2016) 82.7 48.9 46.7
GRAFT-Net (H. Sun, Dhingra, et al. 2018) 94.8 77.7 70.3
ReifKB + mask (Cohen, H. Sun, et al. 2020) 95.4 79.7 52.7
PullNet (H. Sun, Bedrax-Weiss, et al. 2019) 99.9 91.4 69.7
EmbedKGQA (Saxena et al. 2020) 98.8 94.8 66.6
EmQL (H. Sun, Arnold, et al. 2020) 98.6 99.1 75.5

SQALER – Unrefined 99.9 99.9 70.6
SQALER – KV-MemNN 99.9 99.9 72.1
SQALER – GNN 99.9 99.9 76.1

Table 5.1: Hits@1 on MetaQA and WebQuestionsSP

GNN based on whether it predicts exactly the same answers given by the corresponding
SPARQL query.

5.4.2 Main results

KBQA Performance. Table 5.1 summarizes the results of our experiments on the
two benchmark datasets. For the two multi-hop MetaQA datasets, we achieve state-
of-the-art performance by only using the relation-level model of SQALER. As shown in
Table 5.1, SQALER outperforms all the baselines on MetaQA 3, demonstrating the ability
of our approach to perform multi-hop reasoning over a KG. For the more complex
questions in the WebQuestionsSP dataset, the unrefined SQALER model achieves better
performance than all but one (EmQL) of the baselines. To achieve such performance,
however, EmQL creates a custom set of logical operations tailored towards the specifics
of the target KG and the kind of questions in the dataset, while our approach is agnostic
with respect to such details. Combining the relation and edge-level models improves
the performance on WebQSP. In particular, SQALER – GNN outperforms all considered
baselines on the three datasets.

Compositional generalization. In order to evaluate the compositional generalization
ability of SQALER, we performed additional experiments on the CFQ dataset. Table 5.2
shows the accuracy on the three MCD splits and the mean accuracy (MCD-mean) in
comparison to the other methods in the leaderboard. Note that the other approaches
address a semantic parsing task and require additional supervision, as they are trained
to predict the target query. On the other hand, we aim to predict directly the set of
answers to the input question. The experiment shows that SQALER is able to achieve
compositional generalization with an accuracy comparable to the state-of-the-art
model on CFQ for semantic parsing.

Subgraph extraction. We analyzed the candidate solutions produced by the relation-
level model in order to evaluate the suitability of our approach to building small
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MCD1 MCD2 MCD3 MCD-mean

LSTM + Attention (Keysers et al. 2020) 0.289± 0.018 0.050± 0.008 0.108± 0.006 0.149± 0.011
Transformer (Vaswani et al. 2017) 0.349± 0.011 0.082± 0.003 0.106± 0.011 0.179± 0.009
Universal Transformer (Dehghani et al. 2019) 0.374± 0.022 0.081± 0.016 0.113± 0.003 0.189± 0.014
Evolved Transformer (So et al. 2019) 0.424± 0.010 0.093± 0.008 0.108± 0.002 0.208± 0.007
T5-11B (Raffel et al. 2020) 0.614± 0.048 0.301± 0.022 0.312± 0.057 0.409± 0.043
T5-11B-mod (J. Guo et al. 2019) 0.616± 0.124 0.313± 0.128 0.333± 0.023 0.421± 0.091
HPD (Y. Guo et al. 2020) 0.720± 0.075 0.661± 0.064 0.639± 0.057 0.673± 0.041
SQALER – GNN 0.734± 0.039 0.653± 0.040 0.627± 0.045 0.671± 0.041

Table 5.2: Accuracy and 95% confidence interval on the CFQ dataset
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Figure 5.3: Attention weights given by the relation-level model to the edges of the coalesced
graph for two questions in WebQuestionsSP. Thicker and darker edges represent higher atten-
tion weights.

question subgraphs that are likely to contain the answers to a natural language ques-
tion. For this purpose, we computed the precision and recall of the set of candidate
answers with varying number of relation sequences sampled by the relation-level
model. Figure 5.3 shows the top relation sequences predicted by the relation-level
model on two questions from the test set of WebQuestionsSP. The precision and recall
curves are shown in Figure 5.4. As expected, on MetaQA the recall is high for all values
of k, because selecting the most likely sequence of relations is sufficient to solve the
multi-hop question answering task. On WebQuestionsSP, only 3 sequences of relations
are sufficient to obtain a recall of 0.91, and we can improve it to 0.95 by generating still
small subgraphs consisting of only 10 sequences of relations.

5.4.3 Efficiency and scalability

We analyze the efficiency of our approach on synthetic KBs (as in (Cohen, F. Yang,
et al. 2017; Cohen, H. Sun, et al. 2020)) and then compare the scalability of different
preprocessing methods on the KGs of MetaQA and WebQuestiontsSP. First, we perform
experiments on KBs where the relational coalescing has no effect: the outdegree of
each node is equal to the number of relation types and all edges originating from a
node have different relation labels. We perform two experiments on such KBs. In
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Figure 5.4: Precision and recall of the top k sequences of relations on MetaQA 2 (left), MetaQA
3 (center) and WebQSP (right)

the first one (Figure 5.5a), the number of relation types is fixed to |R| = 10 and the
number of entities varies from |V| = 102 to |V| = 106. In the second task (Figure
5.5b), the number of entities is fixed to |V| = 5000 and the number of relations varies
from |R| = 1 to |R| = 103. The single answer node is always two-hops away from the
entities mentioned in the question. We compare SQALER (unrefined) against a GNN-
based approach (GRAFT-Net (H. Sun, Dhingra, et al. 2018)) and a key-value memory
network (KV-MemNN (Miller et al. 2016)). The approaches are evaluated based on the
queries per second at inference time with a mini-batch size of 1. The results show that
increasing the number of entities has negligible impact on the performance of SQALER,
whereas GRAFT-Net and the key-value memory network are limited to graphs with less
than 10k nodes. This shows that, in large KGs like Freebase, the baselines would not be
able to handle even a 2-hop neighborhood of the entities mentioned in the question
(we refer the reader to Appendix C.5.5 for more details). Finally, from the results in
Figure 5.5b, we see that the throughput of our approach decreases with the number of
relation types. However, in practice, we can leverage the GPU to score the edges of the
graph in parallel. This is why we observe only a minor drop in performance when the
number of relation types grows from |R| = 1 to |R| = 100.

In order to assess the scalability of the proposed relational coalescing operation, we
further compare commonly used preprocessing methods on the KG of WebQuestionsSP.
We evaluate the time required to extract complete 2-hop neighborhoods of the entities
mentioned in the question and the time to perform Personalized Page Rank (PPR) on
such graphs. The results are shown in Figure 5.5c. Note that, at inference time, we can
perform the coalescing only on the portion of the graph explored by the model, which
makes SQALER much more efficient. At training time, the preprocessing is comparable
to the 2-hop neighborhood extraction. Finally, Figure 5.5d shows the performance of
the models with the respective preprocessing step at inference time on synthetic KBs
with growing number of edges.

74



Scaling KBQA by decoupling mulit-hop and logical reasoning Chapter 5

102 103 104 105 106

Number of entities

0

10

20

30

40

50

Q
ue

rie
s/

se
c

26.9 24.3 22.1 21.3 20.7

42.2
37.7

11.4

OOM OOM

7.6
2.2 0.1 OOM OOM

SQUALER
GRAFT-Net
KV-MemNN

(a)

100 101 102 103

Number of relations

0

10

20

30

40

50

Q
ue

rie
s/

se
c

21.9 20.2
16.8

5.1

38.4

13.8

OOM OOM
5.8

1.5 OOM OOM

SQUALER
GRAFT-Net
KV-MemNN

(b)

2-hop Coalescing
(Preprocessing)

PPR Coalescing
(Inference)

10
1

10
0

10
1

Q
ue

rie
s/

se
c

MetaQA 3
WebQSP

(c)

100 101 102 103

Number of edges

0

10

20

30

40

50

Q
ue

rie
s/

se
c

21.4
15.2 12.7 10.18.7
2.4

OOM OOM
2.3

0.1 OOM OOM

SQUALER + Coalescing
GRAFT-Net + PPR
KV-MemNN + PPR

(d)

Figure 5.5: Inference time in queries/sec on synthetic KBs with increasing number of enti-
ties (a) and relation types (b). Time required by different preprocessing steps on the KG of
WebQuestionsSP and MetaQA (c). Complete inference and preprocessing time on synthetic
KBs with increasing number of edges (d). We set the queries/sec to 0 when the model runs
out-of-memory (OOM).

5.4.4 Incomplete knowledge graphs

In order to evaluate the capability of our approach to cope with missing information
in the knowledge graph, we performed two additional experiments. In the first exper-
iment, we evaluated our approach (the SQALER – GNN variant) on WebQuestionsSP
using incomplete knowledge graphs with only 50% of the original edges (50% KG).
Then, following previous work (H. Sun, Dhingra, et al. 2018; H. Sun, Bedrax-Weiss,
et al. 2019), we tried to mitigate the missing information using additional sources of
external knowledge. In particular, for each question, we used the same text documents
extracted from Wikipedia as done by H. Sun, Dhingra, et al. (2018) (50% KG + Text).
In this experiment, the relation-level model is unaware of the additional source of
knowledge, but the information from the text documents is infused into the edge-level
GNN with the same strategy used in GRAFT-Net (H. Sun, Dhingra, et al. 2018) (note
that this makes the edge-level GNN-based model essentially equivalent to the full
version of GRAFT-Net, with both KG and text support). We compare our approach
against GRAFT-Net and PullNet, namely the two baselines designed for open-domain
question answering with incomplete KGs and text documents.
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50% KG 50% KG + Text

GRAFT-Net (H. Sun, Dhingra, et al. 2018) 48.2 49.9
PullNet (H. Sun, Bedrax-Weiss, et al. 2019) 50.3 51.9
SQALER – GNN 53.5 55.2

Table 5.3: Hits@1 on WebQuestionsSP with incomplete KGs (50% of the edges) and additional
text documents

The results of the experiments are reported in Table 5.3. We observe that, despite
not being designed for incomplete KGs, SQALER outperforms the baselines on both
experimental settings. This is not surprising, as GRAFT-Net relies on a simple heuristic
process to construct question subgraphs and PullNet is constrained to follow the
structure of the incomplete graph, because its iterative retrieval process can only
expand nodes that are reachable from the set of anchor entities. This means that, in
principle, any node retrieved by PullNet’s iterative process can also be reached by
SQALER’s relation-level model. Similarly to the baselines, we note only a minor gain in
performance when using the text documents as an additional source of information.

5.5 Related work

Several lines of research in the past few years have focused on introducing deep
learning approaches aimed at reasoning over structured knowledge. In particular, this
chapter is closely related to methods for learning to traverse KGs (Das, S. Dhuliawala, et
al. 2018; Das, Neelakantan, et al. 2017; Guu et al. 2015) and recent works on answering
conjunctive queries using deep learning approaches (Hamilton et al. 2018; Daza et al.
2020). In this context, several KB and query embedding methods have been proposed
(Q. Wang et al. 2017). Many KB embedding approaches support the same operation
performed by our relation-level model, namely relation projection (Cohen, H. Sun,
et al. 2020; H. Sun, Arnold, et al. 2020; Hamilton et al. 2018; Ren, Hu, et al. 2020).
Some KB embedding methods also explicitly learn to follow chains of relations and
traverse KGs (Guu et al. 2015; Y. Lin et al. 2015; Das, Neelakantan, et al. 2017). Notably,
Query2Box (Ren, Hu, et al. 2020) is a query embedding method that represents sets
using box embeddings and the more recent beta embeddings (Ren and Leskovec 2020)
extend the framework to support a complete set of first-order logic operators. The
main difference with our model is that these methods operate on vector space, whereas
our approach is constrained on the graph structure and learns to traverse the KG while
keeping the ability to scale to large graphs. Also, our method answers questions in
natural language, while the above methods are primarily designed for query answering.
Recently, H. Sun, Arnold, et al. (2020) introduced EmQL, a query embedding method
which has also been integrated in a question answering model.

Other lines of research on KBQA have focused on unsupervised semantic parsing
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(Atzeni and Atzori 2018c; Atzeni and Atzori 2018b; Atzeni and Atzori 2018a) or on
the introduction of supervised models, like graph neural networks (GNNs) designed
for reasoning over knowledge graphs (H. Sun, Dhingra, et al. 2018; H. Sun, Bedrax-
Weiss, et al. 2019; Yasunaga et al. 2021). These approaches pose the KBQA problem
as a node classification task. For this reason, they have been applied succesfully
only on small query-dependent graphs. Cohen, H. Sun, et al. (2020) addressed the
problem of creating a representation of a symbolic KB that enables building neural KB
inference modules that are scalable enough to perform non-trivial inferences with large
graphs. Another recent work (Saxena et al. 2020) has explored using KG embeddings
for question answering and handle incompleteness in the KG.

In our work, we combine relation projection with an edge-level GNN to address the
KBQA problem. The same idea of combining GNNs with relational following was
introduced in Gretel (J. Cordonnier et al. 2019), which learns to complete natural paths
in a graph given a path prefix. Also, our idea of accelerating GNNs by operating on
a reduced graph representation has strong connections with graph coarsening and
sparsification (Loukas 2019; Loukas and Vandergheynst 2018; Batson et al. 2013).

Methods based on reinforcement learning (RL) have also been proposed to perform
multi-hop reasoning over knowledge graphs. Xiong et al. (2017) proposed DeepPath,
which relies on a policy-based agent that learns to reason over multi-hop paths by
sampling relations at each step. Also, Das, S. Dhuliawala, et al. (2018) introduced
MINERVA, a RL agent that learns how to navigate the graph conditioned only on an
input entity and on a query. These approaches are designed for simple query answering
and KB completion rather than KBQA. A main difference with our work is that SQALER

samples multiple paths and employs an edge-level model to reach higher expressivity.

5.6 Conclusion

This chapter introduced SQALER, a scalable approach to reasoning and question an-
swering over KGs. Our method is expressive and can reach state-of-the-art perfor-
mance on widely used and challenging datasets. Further, SQALER scales with the
number of (distinct) relation types in the graph and can effectively handle large-scale
knowledge graphs with millions of entities. Our empirical evaluation also showed
that our approach can generalize compositionally and that it can be used to generate
question-dependent subgraphs that strike a good trade-off between precision and
recall. This may effectively boost the performance of future KBQA methods relying on
our subgraph extraction as a preprocessing step.

Overall, our work proposes an improvement to existing KBQA technology which carries
impact to several practical applications. Nevertheless, we remind that the deployment
of such models needs to be done cautiously. KBQA replaces a mature technology
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(traditional KBs and query languages) with less understood methods. The underlying
KB may be incomplete, contain misinformation or biases that could negatively affect
the decisions of the learned model. We hope that our work will spur further research
in this area and contribute to the development of reliable KBQA systems.
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6 Infusing structured knowledge in
downstream entity-linking tasks

6.1 Introduction

State-of-the-art approaches to entity linking, namely the task of linking mentions of
entities in a text to the corresponding entries in a knowledge base (Ferragina et al.
2010; Ganea et al. 2017), are nowadays large generative models (Aghajanyan et al. 2022;
De Cao et al. 2021) which perform entity retrieval in a autoregressive way, effectively
capturing relations between the context of a mention and entity descriptions. Though
this category of methods achieves the best results, the preferred choice in large-scale
applications are often still methods based on dense retrieval (Botha et al. 2020; Ayoola
et al. 2022; Wu et al. 2020), as they are easier to train and can be more than one order
of magnitude faster (Ayoola et al. 2022). These approaches learn to represent entities
and mentions separately in the same embedding space, so that at inference time, the
method only requires encoding the mention and retrieving the most similar entity.
Despite being efficient, methods based on dense retrieval have the drawback of being
very sensitive to the structure of the embedding space, thereby reaching lower accuracy
compared to generative models.

To address this issue, in this chapter we aim to close the gap with generative approaches
by infusing structural information in the latent space of retrieval-based methods.
Recent work (Mulang et al. 2020; Ayoola et al. 2022) has shown the benefit of infusing
prior factual knowledge in the models. In particular, Raiman et al. (2018) reported that
prior knowledge of the type of a mention would result in nearly perfect disambiguation
performance (99.0 micro-F1 points on the popular AIDA-CoNLL benchmark of Hoffart
et al. (2011)). Motivated by this insight, prior methods used type labels extracted from
knowledge graphs (KGs) to improve downstream results (Ayoola et al. 2022; S. Chen
et al. 2020; Orr et al. 2021), but as KGs can be highly incomplete, we aim to define type
information in a fuzzy and more fine-grained manner.

Inspired by the concept of duck typing in programming languages, in this chap-
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The first time a World Cup final was
settled in a penalty shootout was in 1994,
when Italy lost to Brazil.

Mention
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Figure 6.1: Entity disambiguation flow in DUCK. A mention encoder and an entity encoder
learn to represent mentions and entity descriptions respectively. Following the concept of duck
typing, relations in a knowledge graph are used to determine entity types (the right side of the
figure shows how we can distinguish football teams and countries based on their relations).
Relations are represented as box embeddings in polar coordinates and the model is optimized
to place entities inside the boxes corresponding to their relations.

ter we propose DUCK (Disambiguating Using Categories extracted from Knowledge),
a novel approach to infusing prior type information in the latent space of entity-
disambiguation methods based on dense retrieval. Extending duck typing to the realm
of knowledge graphs, we loosely define the type of an entity based on the relations that
it has with other entities in the graph. An example showing how the relations in a KG
like Wikidata (Vrandečić et al. 2014) can be used to determine the type of an entity is
depicted in Figure 6.1 (right).

Building on recent work on region-based representations (Vilnis et al. 2018; Dasgupta
et al. 2020; Abboud et al. 2020), we introduce box embeddings in spherical polar
coordinates and we propose to model relations using this representation, as shown in
Figure 6.1. Then, we optimize the model to structure the latent space in such a way
that entities fall within the boxes corresponding to their relations, so that entities that
share many relations (which are assumed to be of the same type in our duck-typing
formulation) will be clustered together.

We used our approach to train a bi-encoder model with the same architecture of
Wu et al. (2020) and we performed a thorough evaluation of DUCK on popular entity
disambiguation benchmarks. Our experiments show that DUCK achieves new state-of-
the-art results on well-known datasets, exceeds the performance of other type-aware
models (trained on 10 times more data), and matches the overall results of much more
expensive generative models, with more than 18 times more parameters than DUCK.
Moreover, our ablation studies show that incorporating type information using box
embeddings in polar coordinates improves the performance of the model by up to 7.9
micro-F1 points. Finally, qualitative analyses provide evidence that our definition of
duck typing results in a clear clustering of types and that our model is able to predict
the correct relations of an entity despite the incompleteness of the KG.
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6.2 Preliminaries

To start with, we briefly introduce some relevant background that our work builds on
and we formalize the entity-disambiguation problem.

Problem statement. The goal of entity disambiguation (ED) is to link entity mentions
in a piece of text to the entity they refer to in a reference knowledge base (KB). For
each entity e, we assume we have an entity description expressed as a sequence of
tokens se = (s

(1)
e , . . . , s

(|se|)
e ). Similarly, each mention m is associated with a sequence

of tokens sm = (s
(1)
m , . . . , s

(|m|)
m ), representing the mention itself and its context. We

further assume that the reference KB is a knowledge graph G = (E ,R), where E is a
set of entities andR is a set of relations, namely boolean functions r : E × E −→ {0, 1}
denoting whether a relation exists between two entities in E . Then, given a set of entity-
mention pairsD = {(m1, e

⋆
m1

), . . . , (m|D|, e
⋆
m|D|

)}, we aim to learn a model f :M−→ E ,
such that the entity predicted by the model for a given mention êm = f(m) is the
correct entity e⋆m. Notice that, in this chapter, we use a slightly different notation for
knowledge graphs and entities. This is done for ease of notation and to be more aligned
with the literature on entity linking.

Dense-retrieval methods. Methods based on dense retrieval (Wu et al. 2020; Ayoola
et al. 2022) learn to represent mentions and entities in the same latent space, often
optimizing a cross-entropy objective of the form:

LED(m) = −s(m, e⋆m) + log
∑
j

exp(s(m, ej)),

where s is a similarity function between entities and mentions. This objective encour-
ages the representation of mention m to be close to the representation of the correct
entity e⋆m and far from other entities ej . The similarity function s(m, e) between a
mention m and an entity e is usually chosen to be the dot product between learned
representations m, e ∈ Rd of the mention and entity respectively.

6.3 DUCK: enhancing entity disambiguation with duck typing

Our method builds on dense-retrieval methods and aims to enhance their performance
using fine-grained type information.

6.3.1 Modeling fine-grained type information from knowledge graphs

Duck typing on knowledge graphs. Duck typing is a well-known concept in dy-
namically typed programming languages and is based on the overall idea of loosely
defining the type of an object based on its properties. Extending this concept to
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KGs, without any need for type labels, we can describe the type of an entity e ∈ E in
terms of its set of relationsI. With slight abuse of notation, we will denote this set as
R(e) = {r ∈ R | ∃e′ ∈ E : r(e, e′) = 1}. An example of how the set of relations of an
entity can be used to determine its type is shown in Figure 6.1. For a better qualitative
analysis showing how duck typing works in real-world knowledge graphs, we refer
the reader to Appendix D.1, where we show several examples taken from Wikidata
(Vrandečić et al. 2014).

Relations as polar box embeddings. Inspired by region-based representations
(Vendrov et al. 2016; Lai et al. 2017), and particularly by box embeddings (Vilnis et
al. 2018; X. Li et al. 2019; Dasgupta et al. 2020), we represent relations as regions
of the space. Our similarity function s, the dot product, is the product of the two
norms of the entity and mention embeddings and the cosine of the angle between
them. Since we are using this similarity to rank entities for a given mention, the
norm of the mention embedding is irrelevant, whereas the entity norms encode a
“prior” over entities. Therefore, we choose to represent relations as boxes in spherical
polar coordinates, as shown in Figure 6.1. This representation allows guaranteeing
that the cosine of the angle between two embeddings falling in the same region is
constrained by the boundaries of the box. At the same time, it keeps boxes open on the
radial coordinate, so as to leave the training free to use entity norms to encode prior
probabilities without interference from type information. Concretely, we parameterize
the box corresponding to a relation as a pair of vectors:

Box(r) = (φφφ−
r ,φφφ

+
r ),

where φφφ−
r ,φφφ

+
r ∈ Rd−1 are vector of angles denoting respectively the bottom-left and

top-right corners of the box in spherical coordinates. For an entity e ∈ E , we say that
e ∈ Box(r), if the expression in polar coordinatesφφφe of the entity representation e is
between φφφ−

r and φφφ+
r across all dimensions. Then, our goal is to structure the latent

space in such a way that e ∈ Box(r+) for every r+ ∈ R(e) and e /∈ Box(r−) for every
r− ∈ R \ R(e).

6.3.2 Duck typing as an optimization problem

In order to achieve the goal mentioned above, we need to turn the intuition of Section
6.3.1 into an optimization problem. To this end, it helps to define a distance function
between an entity and a box.

Entity-box distance. Following Abboud et al. (2020), who defined a similar function
for box embeddings in cartesian coordinates, we define the distance between an entity

IMore precisely, the set of relations where e is the subject, namely the first argument of r.
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and a box as:

dist(e, r) =

{
∥(φφφe − φ̄φφr)/(δδδr + 1)∥2 if e ∈ Box(r)

∥(|φφφe − φ̄φφr| ◦ (δδδr + 1)− κκκ)∥2 otherwise,

where φ̄φφr = (φφφ−
r + φφφ+

r )/2 is the center of the box corresponding to relation r, δδδr =

φφφ+
r − φφφ−

r is a vector containing the width of the box along each dimension, ◦ is the
Hadamard product, / is element-wise division, and κκκ is a vector of width-dependent
scaling coefficients defined as:

κκκ =
δδδr
2
◦ (δδδr −

1

δδδr + 1
+ 1).

Intuitively, this function heavily penalizes entities outside the box, with higher distance
values and gradients, whereas it mildly pushes entities lying already inside the box
towards the center. We refer the reader to Appendix D.2 for more considerations and
analyses on the distance function.

Loss function for typing. To encourage an entity e ∈ E to lie inside all boxes repre-
senting the relationsR(e) and outside the other boxes, we use a negative-sampling loss
similar to the one of H. Sun, Bedrax-Weiss, et al. (2019). Our loss function is defined as:

LDuck(e) =− Er+ [log σ(γ − dist(e, r+))]− Er− [log σ(dist(e, r−)− γ)].

Above, γ ∈ R is a margin parameter, σ is the sigmoid function, r+ is a relation of entity
e, drawn uniformly from the set of relationsR(e), whereas r− is a relation drawn from
the set of relationsR \R(e) according to the probability distribution:

p̂(r−i | e) =
exp(−α · dist(e, r−i ))∑

r−j ∈R\R(e) exp(−α · dist(e, r−j ))

where α ∈ [0, 1] is a temperature parameter. The lower α, the closer the distribution is
to a uniform distribution, whereas higher values of α result in more weight given to
boxes that are close to the entity. Notice that this objective forces the distance between
an entity e and relations r+ ∈ R(e) to be small, while keeping the entity far from boxes
corresponding to the negative relations r−. Hence, optimizing the objective LDuck will
result in clustering together entities that share many relations.

Overall optimization objective. We train the model to optimize jointly the entity-
disambiguation loss of Section 6.2 and the duck-typing lossLDuck. Although we defined
the loss LDuck for entities, we calculate it for mentions as well, defining the set of
relations of a mention based on the ground-truth entity R(m) = R(e⋆m). In order
to prevent boxes from growing too large during training, we further introduce an L2
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regularization term l2 on the size of the boxes:

l2 =
1

d− 1
Er[δδδ

⊤
r δδδr].

Then, our final optimization objective is:

L(m) = LED(m) + λDuck(LDuck(e
⋆
m) + LDuck(m) + λl2 l2),

where λDuck, λl2 ∈ [0, 1] are hyperparameters defining the weight of each component
of the loss.

6.4 A bi-encoder model with duck typing

Building on prior work, we used the method described in Section 6.3 to train a bi-
encoder model with the same architecture of Wu et al. (2020). Compared to Wu et
al. (2020), DUCK adds just a relation encoder which is only used at training time to
represent relations as boxes.

6.4.1 Bi-encoder

Bi-encoders, introduced in this context by Wu et al. (2020), are a popular and effi-
cient architecture for entity-disambiguation models based on dense retrieval. These
methods rely on two different encoders fentity and fmention to represent entities and
mentions respectively.

Entity encoder. Given a textual description of an entity e ∈ E , expressed as a sequence
of tokens se = (s

(1)
e , . . . , s

(|se|)
e ), we learn an entity representation e ∈ Rd as:

e = fentity(se).

Concretely, following prior work (Wu et al. 2020), we extract entity descriptions se
from Wikipedia, and we structure each description se using the title of the Wikipedia
page associated with entity e followed by the initial sentences of the body of the page,
separated by a reserved token. We truncate entity descriptions se to a maximum
sequence length of ne. For the entity encoder fentity, we used a pre-trained RoBERTa
model (Liu et al. 2019), resorting to the encoding of the [CLS] token for the final entity
representation e.

Mention encoder. We model a mention as a sequence of tokens sm = (s
(1)
m , . . . , s

(|sm|)
m )

denoting both the mention itself and the context surrounding it, up to a maximum
mention length nm. Following Wu et al. (2020), we used reserved tokens to denote the
start and the end of a mention and separate it from the left and right context. We then
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calculate mention representations as:

m = fmention(sm),

where fmention is a mention encoder based on a pre-trained RoBERTa model and the
final mention representation m is obtained using the encoding of the [CLS] token.
Overall, our bi-encoder is the same as the one used by Wu et al. (2020), with the
only difference that we rely on RoBERTa instead of BERT (Devlin et al. 2019) as the
underlying language model.

6.4.2 Relation encoder

Relation modeling. Similarly to what we described for entities in Section 6.4.1, we
model a relation r ∈ R as a sequence of tokensR = (R(1), . . . , R(|R|)). These sequences
are extracted from Wikidata (Vrandečić et al. 2014), using the English label of the
property and its description, separated by a reserved token. Based on R, we then
compute a relation embedding r for each relation r ∈ R as:

r = frelation(R),

where frelation is a relation encoder similar to fentity and fmention, which computes
the relation representation r as the embedding of the [CLS] token produced by a
pre-trained RoBERTa model.

Learning boxes in polar coordinates. Given a relation representation r calculated as
described above, we parametrize a box as a pair of vectors Box(r) = (φφφ−

r ,φφφ
+
r ), where:

φφφ−
r = σ(FFN−(r)) · π,

φφφ+
r = φφφ−

r + δmin + σ(FFN+(r)) · (π −φφφ−
r − δmin).

Above, FFN− and FFN+ are 2-layer feed-forward networks, σ is the sigmoid function,
and δmin is a margin parameter denoting the minimum width of a box across any
dimension. Calculating the corners of a box in this manner allows us to achieve two
main objectives: (i) all components ofφφφ−

r andφφφ+
r range from 0 to π, hence they assume

valid values in the spherical coordinate system, and (ii)φφφ+
r is greater thanφφφ−

r across all
dimensions, so that boxes are never empty and the model does not have to learn how
to produce non-degenerate regions. Notice that, in a spherical coordinate system, only
one of the coordinates is allowed to range from 0 to 2π, while all remaining coordinates
will range from 0 to π. For simplicity, we constrain all coordinates in the interval [0, π],
thereby reducing all representations to half of the hypersphere.
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6.4.3 Training and inference

Training. We train DUCK by optimizing the overall objective defined in Section 6.3.
In order to compute the loss LDuck, we calculate the representationsφφφe,φφφm ∈ Rd−1 by
converting to spherical coordinates the entity and mention representations e and m

produced by the entity and mention encoders respectively. To make training more
efficient, the relation representations r are pre-computed and kept fixed at training
time. We use the dot product between entity and mention representations to evaluate
the entity disambiguation loss LED:

s(e,m) = e⊤m.

The expectations in the loss LDuck are estimated across all relations r+ ∈ R(e) and by
sampling k relations r− ∈ R \R(e) according to p̂(r− | e). The L2 regularization on the
width of the boxes is performed across all relations in a batch.

Inference. At inference time, our approach is not different from the method of Wu
et al. (2020), as we only need to calculate entity and mention representations using the
bi-encoder described in Section 6.4.1. We then match a mention m to the entity that
maximizes the similarity function s:

êm = argmax
e∈Em

s(e,m),

where Em ⊆ E is a set of candidate entities for mention m. In practice, we can precom-
pute all entity embeddings, so that inference only requires one forward pass through
the mention encoder and selecting the entity with the highest similarity.

6.5 Experiments

This section provides a thorough evaluation of our approach. First, we show that DUCK

achieves new state-of-the-art results on popular datasets for entity disambiguation,
closing the gap between retrieval-based methods and more expensive generative
models. Then, we discuss several ablation studies, showing that incorporating type
information using box embeddings in polar coordinates improves the performance of
the model. Finally, we dig into qualitative analyses, showing that our model is able to
place entities in the correct boxes despite the incompleteness of the information in
the KG.

6.5.1 Experimental setup

In order to perform a fair comparison of DUCK with other methods, we reproduce the
same experimental setup of prior work (De Cao et al. 2021; Le et al. 2019): using the
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Method AIDA MSNBC AQUAINT ACE2004 CWEB WIKI Avg.

Dense retrieval
Ganea et al. (2017) 92.2 93.7 88.5 88.5 77.9 77.5 86.4
Y. Yang et al. (2018) 95.9 92.6 89.9 88.5 81.8 79.2 88.0
Shahbazi et al. (2019) 93.5 92.3 90.1 88.7 78.4 79.8 87.1
X. Yang et al. (2019) 93.7 93.8 88.2 90.1 75.6 78.8 86.7
Le et al. (2019) 89.6 92.2 90.7 88.1 78.2 81.7 86.8
Fang et al. (2019) 94.3 92.8 87.5 91.2 78.5 82.8 87.9
Wu et al. (2020)† 79.6 80.0 80.3 82.5 64.2 75.5 77.0

Generative models
De Cao et al. (2021) 93.3 94.3 89.9 90.1 77.3 87.4 88.8
Aghajanyan et al. (2022) (CM3-Medium) 93.5 94.2 90.1 90.4 76.5 86.9 88.6
Aghajanyan et al. (2022) (CM3-Large) 94.8 94.8 91.1 91.4 78.4 88.7 89.8

Type-aware models
S. Chen et al. (2020) 93.7 94.5 89.1 90.8 78.2 81.0 86.7
Orr et al. (2021)‡ 80.9 80.5 74.2 83.6 70.2 76.2 77.6
Ayoola et al. (2022) (Wikipedia) 87.5 94.4 91.8 91.6 77.8 88.7 88.6
Ayoola et al. (2022) (fine-tuned) 93.9 94.1 90.8 90.8 79.4 87.4 89.4
DUCK (Wikipedia) 91.0 95.1 91.3 95.4 76.9 86.1 89.3
DUCK (fine-tuned) 93.7 94.6 91.3 95.0 78.2 85.9 89.8

Table 6.1: Micro-F1 (InKB) results on six entity-disambiguation datasets. Bold indicates the
best model, underline indicates the second best results. Our results are highlighted in gray.
†Model without candidate set, results from De Cao et al. (2021). ‡Results from Ayoola et al.
(2022).

same datasets, the same candidate sets, and comparing the models based on the InKB
micro-F1 score. Following De Cao et al. (2021) and Wu et al. (2020), we train the model
on the BLINK data (Wu et al. 2020), consisting of 9M mention-entity pairs extracted
from Wikipedia. Entity descriptions are taken from the Wikipedia snapshot of Petroni
et al. (2021). Then, we measure in-domain and out-of-domain generalization by fine-
tuning the model on the training set of the AIDA-CoNLL dataset and evaluating on six
test sets: AIDA (Hoffart et al. 2011), MSNBC (Cucerzan 2007), AQUAINT (Milne et al.
2008), ACE2004 (Ratinov et al. 2011), CWEB (Gabrilovich et al. 2013) and WIKI (D. Guo
et al. 2018).

6.5.2 Entity disambiguation results

We compared DUCK against three main categories of approaches: (a) methods based
on dense retrieval, (b) generative models, and (c) type-aware retrieval-based models,
namely other approaches to add type information to retrieval-based methods (DUCK

pertains to this category). We report the results both for the model trained only on the
BLINK data and for the model fine-tuned on AIDA, referring to the former as DUCK

(Wikipedia) and to the latter as DUCK (fine-tuned).

Main results. Table 6.1 shows the results obtained by DUCK in comparison with other
methods belonging to the three categories listed above. First, we notice that DUCK

obtains state-of-the-art results on MSNBC and ACE2004, second best performance on
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AQUAINT, and state-of-the-art results on average across all datasets. We also observe
that DUCK outperforms all the other type-aware models, namely the methods of S.
Chen et al. (2020), Orr et al. (2021) and Ayoola et al. (2022), showing the effectiveness
of our approach to define type information and infuse it in the model. In addition, it is
worth noticing that DUCK exceeds the results of recent generative models like GENRE
(De Cao et al. 2021) and CM3-Medium. This is particularly impressive considering
that generative models are notoriously more expensive than bi-encoder models and
require one order of magnitude more time per mention at inference (Ayoola et al. 2022).
Finally, we see that DUCK meets the average performance of CM3-Large (Aghajanyan
et al. 2022), a generative model that, with its 13 billion parameters, is almost 5 times
larger than CM3-Medium (2.7 billion parameters) and more than 18 times larger than
DUCK (717 million parameters).

Knowledge-aware methods. DUCK uses a knowledge graph (Wikidata) to infuse
additional information in the model. While some methods listed in Table 6.1 use
indeed type information extracted from Wikidata (Ayoola et al. 2022; Orr et al. 2021; S.
Chen et al. 2020), other existing knowledge-aware methods for entity disambiguation
have reported results in different experimental settings, evaluating on AIDA, with
the candidate set of Pershina et al. (2015). In order to compare with these methods,
we evaluated DUCK on the candidate set of Pershina et al. (2015), and we report the
results in Table 6.2. Interestingly, our model outperforms both DeepType (Raiman et al.
2018) and the methods of (Mulang et al. 2020) and Onoe et al. (2020). State-of-the-art
results in this setting are obtained by Ayoola et al. (2022), confirming the overall good
performance obtained by this method on AIDA in Table 6.1. However, notice that
(a) Ayoola et al. (2022) trained the model on a custom Wikipedia dump, consisting of
100M mention-entity pairs (more than one order of magnitude larger than our dataset)
and (b) DUCK obtains excellent results even in an out-of-domain scenario (without
fine-tuning on AIDA), reaching 94.3 micro-F1 points (an improvement of 5.1 points
with respect to Ayoola et al. (2022)).

Method AIDA

Onoe et al. (2020) 85.9
Raiman et al. (2018) 94.9
Mulang et al. (2020) 94.9
Ayoola et al. (2022) (Wikipedia) 89.1
Ayoola et al. (2022) (fine-tuned) 97.1
DUCK (Wikipedia) 94.3
DUCK (fine-tuned) 96.4

Table 6.2: Micro-F1 (InKB) results of knowledge-aware methods on the candidate set of Per-
shina et al. (2015).

88



Infusing structured knowledge in downstream entity-linking tasks Chapter 6

Method AIDA MSNBC AQUAINT ACE2004 CWEB WIKI Avg.

DUCK w/o types (Wikipedia) 85.0 93.1 87.5 87.5 73.6 84.5 85.2
DUCK w/o types (fine-tuned) 89.1 92.5 87.4 87.1 74.9 83.8 85.8

DUCK cartesian coord. (Wikipedia) 90.6 94.9 91.3 95.0 76.5 85.1 88.9
DUCK cartesian coord. (fine-tuned) 92.1 94.0 90.6 95.4 77.5 85.5 89.2

DUCK w/o candidate set (Wikipedia) 87.4 89.9 85.2 88.8 69.1 82.0 83.7
DUCK w/o candidate set (fine-tuned) 90.9 90.5 86.3 89.2 71.1 81.9 85.0

Table 6.3: Micro-F1 results achieved by several ablations of DUCK

6.5.3 Ablation studies

In order to provide more insights into the performance of the model, we performed
several ablation studies. Ablations. First, to understand the impact of duck typing
on downstream entity-disambiguation performance, we performed an ablation where
we removed the contribution of the LDuck terms and the L2 regularization l2 from
the loss function (DUCK w/o types). In this case, we only train the model using the
entity-disambiguation loss LED, without infusing any type information. Hence, this
model is equivalent to Wu et al. (2020). In addition, we assessed the benefit of using
box embeddings in spherical polar coordinates by experimenting with a version of the
model where boxes are expressed in cartesian coordinates (DUCK cartesian coord). In
this case, we parametrize a box as a pair of vectors Box(r) = (r−, r+), where

r− = FFN−(r),

r+ = r− +ReLU(FFN+(r)) + δ′min.

As before, δ′min is a margin parameter that defines the minimum width of a box, FFN−

and FFN+ are feed-forward networks, and ReLU(x) = max(0, x) is the ReLU activation
function. Finally, we report the results obtained by DUCK when no candidate set is
provided (DUCK w/o candidate set). In this case, we score each mention against the
whole set of entities (which amounts to almost 6M entities).

Results. Table 6.3 shows the results achieved by the ablations described above.
both for the model trained on the entity-mention pairs extracted from Wikipedia and
for the model fine-tuned on AIDA. Including entity types boosts the performance by
approximately 4 micro-F1 points and up to 7.9 points on ACE2004. The results further
show the benefit of using spherical coordinates and that the model achieves good
performance even without a candidate set.

6.5.4 Qualitative analyses

This section complements the quantitative results discussed so far with some qualita-
tive analyses. First, we look into the placement of entities and boxes in the latent space,
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Flag Sport Director Italy Italy national
football team

Fantastic Beasts and
Where to Find Them

Czech Republic The Invincibles (en. football) A Secret Life (film) country sport orig. lang. of film or TV show
France New England Tea Men The Dream (1989 film) GeoNames ID head coach genre
Austria EMKA Racing The Prodigal (1983 film) flag image country publication date
Poland Los Angeles Heroes A Time to Sing (film) legislative body inception form of creative work
Sweden Hamline Pipers football Modern Romance (film) cat. for ppl. born here cat. for memb. of team language of work or name
Mexico La Máquina A Sinful Life locator map image Facebook ID main subject
Germany A. J. Foyt Enterprises The Devil’s Arithmetic (film) Commons gallery owned by distributed by
D. R. of Congo Atlético Minero Unchained (film) shares border with country for sport director
Italy Artiach (cycling team) As Is (film) continent league cast member
Argentina PS Barito Putera U-20 Identity Crisis (film) named after social media followers spoken text audio

Table 6.4: Qualitative analysis of the boxes predicted by DUCK. The left side of the table shows
the closest entities to a box, ranked according to the distance function defined in Section
6.3. The right part of the table shows the closest boxes to a given entity. Correct predictions
are highlighted in green, whereas predictions that do not match relations in Wikidata are
highlighted in red. Best viewed in color.

SOCCER - [...] Alan Shearer was named as the
new England captain. [...] Shearer takes the
captaincy on a trial basis, but new coach Glenn
Hoddle said he saw no reason why the former
Blackburn and Southampton skipper should not
make the post his own.

BOXING - PANAMA’S ROBERTO DURAN
FIGHTS THE SANDS OF TIME:
[...]  Panamanian boxing legend Roberto
Hands of Stone Duran climbs into the ring
on Saturday in another age defying attempt
to sustain his long career [...].

SOCCER - ROMANIA BEAT LITHUANIA IN
UNDER 21 MATCH.
[...] Romania beat Lithuania 2-1 (halftime 1-
1) in their European under 21 soccer match
on Friday [...].

DUCK: Blackburn Rovers F.C.

DUCK w/o types: Eddie Blackburn

Football team

Footballer

DUCK: Panama

DUCK w/o types: Panama Lewis

Country
Boxing
trainer

DUCK:
Lithuania national football team
DUCK w/o types:
Lithuania nat. under-21 football team

Football
team

Football
team

Figure 6.2: Examples of the predictions of DUCK and DUCK w/o types, showing cases where
DUCK predicts the correct entity (left and center) and where it predicts a wrong one (right).
Mentions are highlighted in bold green.

then we discuss examples from the validation set of AIDA where type information
helps DUCK in the disambiguation.

Analysis of the boxes. Table 6.4 shows a qualitative analysis of the relative placement
of entities and boxes in the latent space. In the left side of the table, we looked into
three boxes corresponding to the relations flag, sport, and director, and we reported
the top 10 entities that are closer to the center of the box. The examples show a clear
clustering of types, as all entities closer to the box flag are countries, entities inside the
box sport are sport teams, and entities inside the box director are movies. For the latter
box, we observe that the model predicts two movies that, in Wikidata, are missing the
relation director, showing the ability of the model to robustly deal with incomplete
information. In the right side of Table 6.4, we show which boxes are closer to three
entities, namely a country, a football team and a movie, according to the distance
function defined in Section 6.3. The examples show that the model is able to correctly
place entities of different types in different boxes.

Examples. Figure 6.2 shows examples of the entities predicted by our method,
for inputs where the prediction of DUCK differs from the ablation that does not use
type information. The first two examples (left and center), clearly show how type
information can help the disambiguation in cases where some keywords in the context
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of the mention misleads the model to making a wrong prediction. The third example
(right) shows a case where DUCK predicts correctly the type of the mention, but fails to
leverage some contextual information and links it to a wrong entity. This is likely due
to the two entities sharing most boxes and being very close in the embedding space.

6.6 Related work

Our work builds on top of the bi-encoder architecture of Wu et al. (2020) and was
partially motivated by the work of Raiman et al. (2018), who showed the benefit of
using type information for entity disambiguation. Previous research has employed
a variety of methods to model mentions and entities using neural networks (Z. He
et al. 2013; Y. Sun et al. 2015; Yamada et al. 2016; Ganea et al. 2017; Kolitsas et al.
2018). Our method falls within a recent line of work that has proposed approaches
to use type information in the disambiguation process (Raiman et al. 2018; Khalife
et al. 2019; Onoe et al. 2020; S. Chen et al. 2020; Orr et al. 2021; Ayoola et al. 2022). The
closest method to DUCK is the one of Ayoola et al. (2022), who used type information to
improve the performance of a bi-encoder model similar to the one of Wu et al. (2020).
The main difference between DUCK and the model of Ayoola et al. (2022) is that they
used type labels extracted from Wikidata instead of our duck-typing approach, they
represented types as points in the latent space, and they improved the performance
of the model by using global entity priors (i.e., prior probabilities of an entity given a
mention) extracted from count statistics. Broadly speaking, our method falls within the
scope of recent research in machine learning and natural language processing (NLP)
to infuse prior knowledge in neural models (Lake, Ullman, et al. 2017; Lake and Baroni
2018). Research in NLP has proposed several methods to achieve this goal, like infusing
commonsense knowledge extracted from knowledge graphs (KG) in attention-based
models (Bosselut et al. 2019; Keerthiram Murugesan, Atzeni, Kapanipathi, Shukla, et al.
2021), constraining attention weights in transformers using graph-structured data
(Sartran et al. 2022), and improving reasoning abilities of language models with graph
neural networks (Yasunaga et al. 2021; Atzeni, Bogojeska, et al. 2021).

6.7 Conclusion

This chapter introduced DUCK, a method to improve the performance of entity dis-
ambiguation models using fine-grained type information. The overall idea underlying
our method was inspired by the concept of duck typing, as we loosely defined types
without any need for type labels. We introduced box embeddings in spherical polar
coordinates and we showed that using this form of representation allows effectively
clustering entities of the same type. Crucially, we show that infusing structural infor-
mation in the latent space is sufficient to close the gap between efficient methods
based on dense retrieval and generative models.
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7 Infusing Lattice Symmetry Priors
in Attention Mechanisms

7.1 Introduction

Throughout this thesis, we have seen that infusing inductive biases and knowledge
priors in neural networks is regarded as a critical step to improve their sample effi-
ciency (Battaglia et al. 2018; Bengio 2017; Lake, Ullman, et al. 2017; Lake and Baroni
2018; Bahdanau, Murty, et al. 2019). As discussed in Section 1.3.3, there has been
extensive exploration of the Core Knowledge priors associated with human intelligence
in developmental science (Spelke et al. 2007). This theory posits that humans possess
a limited set of distinct systems of core knowledge, forming foundational elements
upon which new adaptable skills and belief systems can be constructed. In the realm
of artificial intelligence, recent studies propose integrating these same priors into AI
systems (Chollet 2019). However, it remains unclear how to incorporate these priors
into neural networks.

The Abstraction and Reasoning Corpus (ARC) (Chollet 2019) was introduced as an
AI benchmark that requires models that can leverage the Core Knowledge priors of
developmental science to learn more efficiently. According to Chollet (2019), con-
structing algorithms grounded in these priors represents an essential step for general
AI progress. As claimed by Chollet (2019) and confirmed by our experiments, the
ARC dataset requires models that are extremely efficient and cannot be meaningfully
undertaken using popular architectures like transformers and attention.

An important category of Core Knowledge priors includes geometry and topology pri-
ors. Indeed, significant attention has been devoted to incorporating such priors in
deep learning architectures by rendering neural networks invariant (or equivariant) to
transformations represented through group actions (Bronstein et al. 2021). However,
group-invariant learning helps to build models that systematically ignore specific
transformations applied to the input (such as translations or rotations).
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Figure 7.1: We consider problems that involve learning a geometric transformation on the
input data as a sub-problem. The displayed task (taken from ARC) entails learning to map,
for each pair, the left to the right image. We investigate how to solve such tasks more sample-
efficiently by imbuing self-attention with the ability to exploit lattice symmetry priors.

We take a complementary perspective and aim to help neural networks to learn func-
tions that incorporate geometric transformations of their input (rather than to be
invariant to such transformations). In particular, we focus on group actions that
belong to the symmetry group of a lattice. These transformations are pervasive in
machine learning applications, as basic transformations of sequences, images, and
other higher-dimensional regular grids fall in this category. While attention and trans-
formers can in principle learn these kind of group actions, we show that they require a
significant amount of training data to do so.

To address this sample complexity issue, we introduce LATFORMER, a model that
relies on attention masks in order to learn actions belonging to the symmetry group
of a lattice, such as translation, rotation, reflection, and scaling, in a differentiable
manner. We show that, for any such action, there exists an attention mask such that an
untrained self-attention mechanism initialized to the identity function performs that
action. We further prove that these attention masks can be expressed as convolutions
of the identity, which motivates a modification to the standard attention module where
the attention weights are modulated by a mask generated by a convolutional neural
network (CNN).

Our experiments focus on abstract geometric reasoning and, more specifically, on ARC
and its variants, as they are widely regarded as challenging benchmarks for machine
learning models (Acquaviva et al. 2021; Chollet 2019). On these datasets, we aim to
reduce the gap between neural networks and hand-engineered search algorithms. To
probe the sample efficiency of our method, we compared its ability to learn synthetic
geometric transformations against Transformers and attention modules. Then, we
annotated ARC tasks based on the knowledge priors they require, and we evaluated
LATFORMER on the ARC tasks requiring geometric knowledge priors. Finally, we per-
formed experiments on the more recent Language-complete ARC (LARC) (Acquaviva
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et al. 2021), which enriches ARC tasks with natural-language descriptions, and we
compared our model against strong baselines based on neural program synthesis. Our
results provide evidence that LATFORMER can learn geometric transformations with
2 orders of magnitude fewer training data than transformers and attention. We also
significantly reduce the gap between neural and classical approaches on ARC, provid-
ing the first neural network that reaches good performance on ARC tasks requiring
geometric knowledge priors.

7.2 Formalizing the group-action learning problem

To build intuition on the kind of basic priors that we aim to infuse in neural networks,
Figure 7.1 shows a task borrowed from ARC (Chollet 2019). The task entails learning
to fill out the yellow patches in the leftmost image (input) so that the resulting image
satisfies a 90◦ rotation symmetry. The learner is given only a small set of input-output
pairs: the ARC tasks have 3.3 training examples on average. Though the task is challeng-
ing for a general neural network (due to the small number of examples), it becomes
easier under the prior knowledge of discrete two-dimensional point groups, one of
which is the cyclic group of 4-fold rotations C4. Under this prior, it can be solved by the
composition of a group action (rotating each image x by some g ∈ C4) and a shallow
neural network with a non-linear activation (mapping yellow to zero and taking a
pixel-wise max).

More formally, we are interested in helping neural networks learn lattice transfor-
mations in a sample efficient manner by infusing knowledge priors in the model.
Motivated by ARC, we focus on learning geometric transformations that belong to the
symmetry group of a lattice. This pertains to the more general problem of learning
group actions given the input and the output of the transformation. We refer to this
problem as group-action learning.

Concretely, we consider input-output transformations involving a group element g
taken from some known group G that can be expressed under the general formulation:

y = f(g ◦ x, x), g = g(x) ∈ G (group-action learning ).

Above, x ∈ Rdin and y ∈ Rdout are input and output examples, f, g are unknown func-
tions, and ◦ denotes the application of a group action. The group element g can depend
on the input data itself. More generally, even the function f could depend on more
than one transformation of x, with actions belonging to various groups of interest.

It is important to stress that group-action learning is the exact antithesis of the typical
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(a) Translation by (1, 1) (b) Rotation by 90◦ (c) Vertical reflection (d) Horiz. reflection

Figure 7.2: Examples of attention masks implementing transformations in two dimensions,
including: (a) translation by 1 pixel on both axes, (b) rotation by 90◦ counterclockwise, (c)
vertical reflection and (d) horizontal reflection around the center. White represents value 1 and
black 0.

group invariant and equivariant learning problems (Bronstein et al. 2021):

y = f(g ◦ x) for every g ∈ G (invariant learning),

g ◦ y = f(g ◦ x) for every g ∈ G (equivariant learning ).

Intuitively speaking, whereas in group-action learning one aims to learn functions that
involve specific (and data-dependent) transformations of our data by actions of the
group, in in/equivariant learning the goal is to build models that are oblivious to such
actions in a systematic manner.

7.3 Attention masks for core geometry priors

This section prepares some theoretical grounding for LATFORMER, our approach to
learn the transformations for lattice symmetry groups in the form of attention masks.
The section defines attention masks and explains how they can be leveraged to incor-
porate geometry priors when solving group action learning problems on sequences
and images.

7.3.1 Modulating attention weights with soft masking

Consider the scaled dot-product attention mechanism as defined in Vaswani et al.
(2017). In our formulation, we consider real-valued masks M ∈ [0, 1]nQ×nK that rescale
attention weights:

A = softmax
(QK⊤
√
d

)
⊙M ,

where Q ∈ RnQ×d is the query parameter of the attention mechanism, K ∈ RnK×d

is the key, d is the dimensionality of the model, nQ and nK are the sizes of the sets
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encoded by the query and key matrices respectively, and⊙ is the Hadamard product.
Attention masks have been widely used to constrain the values of the attention weights
and are usually binary masks applied before the softmax activation (Vaswani et al.
2017; Sartran et al. 2022). However, as we aim to learn M , we apply the mask after
the softmax operation in order to avoid squashing the gradient. Therefore, we rescale
the attention weights to sum to 1 when calculating the output X of the attention
mechanism:

MaskedAttention(Q,K,V ;M) =
A

A · 1nK1
⊤
nK

V ,

with 1n being a vector of ones of size n and V ∈ Rd×nK being the value parameter of
the attention mechanism. Though masking can also be applied in cross-attention, in
the following we primarily focus on self-attention, where Q = K = V = X. For ease
of notation, we write MaskedAttention(X;M) whenever the query, key and value are
the same matrix X.

7.3.2 Existence of attention masks for lattice symmetry actions

This section discusses group actions that can be represented by attention masks. To
develop intuition, let us first consider the simple example of translation in a one-
dimensional lattice. Supposing that x = (x1, . . . , xn)

⊤ is a vector of n elements, we
have:

MaskedAttention(x;M) = (xn, x1, . . . , xn−1)
⊤

with:

M =


0 0 · · · 1

1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

 .

Hence, when M is the circulant permutation matrix shown above, we have that the
mask shifts the input x by one element to the right.

Beyond translation, it is natural to ask what kinds of group actions we can perform
with attention masks on data with a more high-dimensional topological structure. The
following theorem provides existence statements for data whose underlying topological
space is a hypercubic lattice (such as sequences, images and higher-dimensional
regular grids).

Theorem 7.3.1 (Existence). Let Gm be the symmetry group of the m-dimensional hyper-
cubic lattice, including translational symmetry, 4-fold rotational symmetry and vertical,
horizontal and diagonal reflections. Let X ∈ Rn×d be a vectorized representation of an
m-dimensional tensor X ∈ Rl1×···×lm , with n = l1 · . . . · lm. For any group action g ∈ Gm,
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Transformation Fourier shift Size of X

Identity o(gi)k = 0 n = l1

Translation (by δ) o(gi)k = −δ n = l1

Reflection
o(gi)1 = (n− 1),
o(g)k = o(g)k−1 − 2

n = l1

Rotation (90◦)
o(gi)k =k · (l1 − 1)−

⌊(k − 1)/l1⌋
n = l1 × l2

Upscaling (by h)
o(gi)k =(k − 1 mod h)+

(h− 1) · ⌊(k − 1)/h⌋
n = l1

Table 7.1: Fourier shifts for the transformations on the 1-dimensional and square lattices. We
denote with o(gi)k the k-th component of the vector o(gi) ∈ Rn, for k = 1, . . . , n. As stated
in Theorem 7.3.2, attention masks for higher-dimensional lattices can be obtained by the
Kronecker product of primitive masks defined over the 1-dimensional and square lattices.
Composition of actions is given by matrix multiplication of the masks.

there exists an attention mask Mg ∈ {0, 1}n×n, such that:

MaskedAttention(X;Mg) = g ◦X.

In other words, Theorem 7.3.1 states that any translation, rotation or reflection can be
expressed in terms of an attention mask. Figure 7.2 shows some examples of masks
corresponding to translation, rotation and reflection operations on square lattices.

In the following, we adopt the convention of writing Mg to mean the mask that imple-
ments action g. For more details and for a proof of Theorem 7.3.1, we refer the reader
to Appendix E.3.

7.3.3 Representing attention masks for lattice transformations

To facilitate the learning of lattice symmetries, one needs to determine methods to
parameterize the set of feasible group elements. Fortunately, as precised in the fol-
lowing theorem, the attention masks considered in Theorem 7.3.1 can be expressed
conveniently under the same general formulation.

Theorem 7.3.2 (Representation). Let Gm be the symmetry group of the m-dimensional
hypercubic lattice and g ∈ Gm be an action on a tensor X ∈ Rl1×···×lm . Then, there exist
some primitive attention masks Mgi ∈ {0, 1}ni×ni such that

Mg =
⊗
i

Mgi and

F(Mgi) = F(Ini) exp(−
2πj

ni
o(gi) r

⊤
ni
),
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where Mg ∈ {0, 1}n×n is an attention mask implementing g, gi ∈ Gmi for some mi ∈
{1, 2} is an action on the one-dimensional or square lattice,⊗ is the Kronecker product,
F is the Fourier transform applied column-wise, Ini is the ni × ni identity matrix, j is
the imaginary unit, rni = (1, 2, . . . , ni)

⊤, and o(gi) is defined as in Table 7.1.

To obtain an intuitive understanding of Theorem 7.3.2, it helps to revisit the example
of translation by δ = 1 of a sequence x ∈ Rn on the 1-dimensional lattice (m = 1).
Consulting Table 7.1, we find that o(g) is a vector containing−1 at every position and
we know Mg is the permutation circulant matrix of Section 7.3.2. Indeed, by the time-
shifting property of the Fourier transform, Mg can be obtained by shifting the rows of
the identity by−1. In general, vector o(g) has a convenient intuitive interpretation as
its k-th component represents the relative position (with respect to k) of the element
that the k-th row of X attends to. For instance, in the one-dimensional example of
translation by one element to the right, each element attends to the one immediately
before. Hence, we have o(g)k = −1 for any k = 1, . . . , n.

For higher-dimensional lattices, attention masks can be expressed as the Kronecker
product of the attention masks for lower-dimensional cases. For instance, on the
square lattice, a translation by 1 pixel on both dimensions is the Kronecker product
of the two circulant matrices corresponding to a translation by 1 pixel on the one-
dimensional lattice, as shown in Figure 7.2a. On more than one dimension, we can
additionally define 4-fold rotations, still following the same formulation, with o(gi)

defined as in Table 7.1.

Although strictly not a symmetry operation, scaling transformations of the lattice can
also be defined in terms of attention masks under the same general formulation of
Theorem 7.3.2, as reported in Table 7.1. Therefore, for completeness, we will consider
scaling transformations as well in our experiments.

Notice that Theorem 7.3.2 allows us to derive a way to calculate the attention masks.
In particular, we can express our attention masks as a convolution operation on the
identity, as stated below.

Corollary 7.3.3. Let Gm be the symmetry group of the m-dimensional hypercubic lattice
and let Mg ∈ Rn×n be an attention mask implementing action g ∈ Gm. Then:

Mg[:, i] = F−1(exp(−2πj

n
· o(g) · r⊤n ))[:, i]⋆In[:, i],

where ⋆ denotes the convolution operation.

In other words, we can represent any mask in our framework as the Kronecker product
of convolutions of the identity matrix with predefined kernels. This motivates us to
design a convolutional neural network that produces our attention masks by successive
convolutions of the identity.
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7.4 The LATFORMER architecture

While in principle the problem of inferring group actions from input-output pairs
can be solved via search over finite groups, in practice the size of the group for lattice
symmetry actions makes this approach unfeasibleI. Moreover, we are interested in
learning unknown functions jointly with the transformation, which cannot be solved
by searching on the space of group actions. Using a neural agent to search the space
of possible actions would be a viable alternative, but this would make the problem
non-differentiable and we would need to resort to reinforcement learning methods.

In this work, we aim to solve the problem in a differentiable way. Inspired by the obser-
vations above, we introduce LATFORMER, which incorporates the insights of Section
7.3 into a neural architecture. We propose to use gated CNNs to parameterize the
masks and we introduce an additional smoothing technique for easier optimization.

7.4.1 Lattice mask experts as convolutional networks

Attention modules in neural networks usually include an attention mechanism with
learnable linear transformations of the inputsII followed by a feed-forward network
(FFN), as in the Transformer encoder layer (Vaswani et al. 2017).

To infuse core geometry priors in the attention module, we propose to modulate the
attention weights with a mask generated by an additional layer, as shown in Figure
7.3a. We refer to this layer as Lattice mask expert, as it specializes towards specific
transformations of the lattice. To understand the purpose of this layer, it is useful to
remember that, by the analysis conducted in Section 7.3, even if the attention and FFN
layers are initialized to the identity function, the mask expert can generate attention
masks that produce precise geometric transformations of the input.

By Corollary 7.3.3, we know that each group action on the lattice can be represented by
a mask that is a convolution of the identity and we have an analytical expression to
calculate the kernels of the convolution. We can leverage this notion to design CNNs
that produce attention masks corresponding to specific group actions by following the
general formulation:

M0 = I,

Ml+1 = αl Conv(Ml,Kl) + (1− αl)Ml for l = 0, . . . , L− 1,

Above, ML is the predicted mask, αl = σl(X;θθθ) = FFNl(X, θθθ) is the output of a gating
function, θθθ is a learnable parameter, and Kl is the kernel of the l-th convolutional layer
whose weights are determined based on Corollary 7.3.3 and Table 7.1.

IThe size of the groups we consider grows with a polynomial of n and exponentially with m.
IIFor simplicity, we omitted linear transformations in the definition of MaskedAttention.
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Masked Attention

Lattice Mask Expert

FFN

(a)



 


Lattice Translation Expert


 




 
 
 


(b)

Figure 7.3: A LATFORMER layer (a) and an architecture for a Lattice translation expert (b). The
LATFORMER layer (a) is a standard Transformer encoder layer augmented with a Lattice mask
expert constrained to generate attention masks corresponding to a geometric transformation
of the input. The Lattice translation expert (b) is a particular instance of a Lattice mask expert
that produces translation masks. In the architecture above, every convolutional layer is meant
to shift the input by a power of 2 and can be skipped by a gating function (denoted as σ).

As an example, Figure 7.3b shows an architecture that generates translation masks.
Following Theorem 7.3.2, the expert computes the translations along the two dimen-
sions separately and then aggregates the resulting masks doing the Kronecker product.
Hence, a Lattice translation expert with L convolutional layers for each dimension
can generate any translation up to δ = 2L − 1 elements per dimension. At inference
time, the values of the gates can be discretized, in such a way that the generated mask
provably performs a meaningful group action.

Similarly to the expert in Figure 7.3b, we can define gated CNNs for rotation, reflection,
and scaling. The product of experts (i.e., the combination of more actions) can be
obtained by either chaining the experts or multiplying the attention masks generated
by different experts. For more details, we refer the reader to Appendix E.1.

7.4.2 Mask smoothing for easier training

The framework described so far parameterizes discrete transformations of a lattice
in a differentiable manner. Nevertheless, to improve the training of LATFORMER, we
found it beneficial to also apply a smoothing operation on the attention masks. Our
approach entails defining an adjacency relation between group elements and applying
graph convolution with a heat kernel on the corresponding graph. This encourages
the optimizer to favor weight updates that change the masks in a smooth manner with
respect to the geodesic distance implied by the graph. Concretely, we define the neigh-
bors of each element gi on the lattice as those gj = e ◦ gi reachable by an application of
a primitive action e, such as translation by a single pixel in one dimension, rotation
by 90◦, and vertical/horizontal reflection. The notion of neighborhood gives rise to a
graph whose vertex set is the lattice group and that contains one edge for every pair of
neighboring actions.

As before, it helps to consider different kinds of transformations separately. For in-
stance, as shown in Figure 7.4, for 2D rotations the underlying graph is a cycle with 4
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Smooth rotation mask

Figure 7.4: Rotational smoothing can be obtained by heat diffusion over the cyclic graph of
rotation masks.

elements due to the underlying point group for 4-fold rotations being the cyclic group
C4. Performing heat diffusion can be achieved by repeated neighborhood averaging
over the cycle and yields a smoothed rotation mask that performs all rotations at the
same time (rightmost image in Figure 7.4). We can extend the same approach to all
lattice transformations: for instance, in the case of translation, the underlying graph is
a grid and the smoothing operation is akin to convolution with a Gaussian kernel.

To train LATFORMER with smoothed masks, we compute two predictions: one with the
non-smooth mask predicted by the model and one with a smoothed version of the
same mask. The final loss is the sum of two cross-entropy losses calculated separately
for the two predictions.

7.5 Experiments

To evaluate our method, we first developed a set of synthetic tasks in order to compare
LATFORMER to attention modules and Transformers with respect to sample efficiency
in learning basic geometric transformations. Then, we annotated the ARC tasks based
on the knowledge priors they require, and we assessed the performance of our method
on this challenging dataset. Finally, we experimented with the LARC (Acquaviva et
al. 2021) dataset and compared our method to stronger baselines based on neural
program synthesis. We report additional experimental results in Appendix E.2.4.

7.5.1 Sample efficiency on geometric transformations

As a preliminary study, we probed the ability of LATFORMER to learn geometric trans-
formations efficiently. To this end, we compared the performance of our model to a
transformer (Vaswani et al. 2017) and an attention module (the same architecture as
our approach, without the mask expert) on synthetic tasks with increasing number of
examples. Inspired by ARC, we generated a set tasks where the model needs to infer
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Figure 7.5: Sample efficiency of our method compared to the baselines on synthetic tasks on
translation (a), rotation (b), reflection (c) and scaling (d). The y axis denotes the mean accuracy
across tasks belonging to the same category, whereas the error shade is the standard deviation.

a geometric transformation from input-output pairs. The input is a grid taken from
the ARC tasks and the output is either a translation, rotation, reflection or scaling of
the input. The specific transformation applied to the input grid defines the task and is
consistent across all examples in the same task.

We evaluated the models based on the mean accuracy across tasks. Figure 7.5 shows
the accuracy of our model compared to the baselines and to a version of LATFORMER

without smoothing. The plots show that LATFORMER can generalize better and from
fewer examples than transformers and attention modules both with absolute positional
encodings (Vaswani et al. 2017) and relative positional encodings (Shaw et al. 2018).
Additionally, our results show that the smoothing operation described in Section 7.4.2
is helpful for larger groups. More details are reported in Appendix E.2.1.

7.5.2 Geometric reasoning on ARC tasks

To assess the ability of our approach to learn efficiently on a more challenging use
case, we focused on a subset of the ARC dataset (Chollet 2019) requiring geometric
priors for which our method could be a principled solution. To this end, we annotated
the ARC tasks based on the knowledge priors they require, using the list of priors
provided by Chollet (2019) as a reference. Appendix E.2.2 provides more details about
the annotation of ARC and Figure E.2a in the Appendix shows the knowledge priors
that we considered and their distribution across the ARC tasks.

We assessed the performance of our model on the tasks that require only the geometric
transformations that we addressed in this work, namely translation, rotation, reflection
and scaling. Table 7.2 shows our results compared to neural baselines, including CNNs,
attention with relative positional encodings (Shaw et al. 2018), PixelCNN (Gul et al.
2019), and Transformers (Vaswani et al. 2017), and a Differentiable Neural Computer
(Graves, Wayne, Reynolds, et al. 2016) with spectral regularization (Kolev et al. 2020).
We additionally compared to a Transformer model that has access to precomputed
transformations of the input (Transformer + data augmentation). Precomputing all
group actions is only feasible for smaller groups (rotation, reflection and scaling).
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Translate Rotate + Translate Reflect + Translate Scale + Translate

CNN 0.019 0.000 0.000 0.000
Attention (abs. pos.) 0.019 0.000 0.023 0.000
Attention (rel. pos.) 0.019 0.000 0.023 0.000
PixelCNN 0.019 0.000 0.000 0.000
Transformer 0.038 0.000 0.045 0.000
Differentiable Neural Computer 0.038 0.000 0.045 0.000
Transformer + data augmentation - 0.200 0.184 0.091
LatFormer 0.365 0.800 0.591 0.545

Search over hand-crafted DSL 0.673 0.400 0.614 0.727

Table 7.2: Performance on ARC tasks that involve lattice symmetry priors.

Further, Table 7.2 reports the performance obtained by a search algorithm applied on
top of a hand-engineered domain-specific language (DSL). This approach searches all
possible programs in the DSL that can map the input grids to the corresponding output
grids successfully. We use the implementation of Wind (2020), which obtained the best
results at the ARC Kaggle competition out of almost 1000 submissions III. This approach
does not use any learnable component and the results are provided as a reference. We
notice that LATFORMER significantly reduces the gap between neural networks and
the current best approach for ARC, even outperforming the search algorithm for one
category of tasks.

Though we restrict to only a subset of the tasks and there is definitely room for im-
provement even on these tasks, we reach considerably better performance than the
baselines. Therefore, we believe our results advocate for the applicability of end-to-end
differentiable models even on problems requiring sample-efficient abstract reasoning.
To the extent of our knowledge, this is the first evidence of a neural network achieving
this performance on ARC tasks.

7.5.3 Comparison with neural program synthesis

Recently, Acquaviva et al. (2021) introduced the Language-complete Abstraction and
Reasoning Corpus (LARC), which provides natural language descriptions of 88% of
the ARC tasks, generated by human participants who where asked to communicate to
other humans a set of precise instructions to solve a task.

Acquaviva et al. (2021) evaluated several models based on neural program synthesis
on LARC. All models generate symbolic programs from a carefully designed domain-
specific language (DSL) following a generate-and-check strategy. First a neural model
generates a program from the grammar of the DSL (Ellis et al. 2020) and then then
program is checked against the input-output pairs to ensure that it can generate all
training examples.

IIIhttps://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/
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Translate Rotate + Translate Reflect + Translate Scale + Translate

LARC (IO) 0.17 0.00 0.42 1.00
LARC (IO + NL) 0.17 0.00 0.42 1.00
LARC (IO + NL pseudo) 0.25 0.00 0.42 1.00
LatFormer 0.33 1.00 0.50 1.00
LatFormer + NL 0.33 1.00 0.58 1.00

Table 7.3: Comparison of LATFORMER with neural program synthesis methods with access to
both input-output pairs and natural language descriptions on LARC

We compare against the following baselines identified by Acquaviva et al. (2021). LARC
(IO) is a model that has only access to input-output pairs, as our LATFORMER. LARC
(IO + NL) has access to the natural language descriptions as well and uses a pre-trained
T5 model (Raffel et al. 2020) to represent the text. LARC (IO + NL pseudo) uses pseudo-
annotation to encourage the learning of compositional relationships between language
and programs: during training, the model is given additional synthetic language-to-
program pairs generated by annotating primitive examples in the DSL with linguistic
comments. We refer the reader to Appendix E.2.3 for more details.

In order to compare to the work of Acquaviva et al. (2021), we evaluated their models
on the set of LARC tasks that correspond to ARC tasks in our subset requiring geo-
metric knowledge priors. Additionally, following Acquaviva et al. (2021) we allowed
LATFORMER to access the textual descriptions by using a pre-trained T5 model to gener-
ate a representation of the text. This embedding is provided as input both to the Lattice
Mask Expert and the FFN layers of LATFORMER (LatFormer + NL). Table 7.3 shows
the results of our experiments on the LARC dataset. The program-synthesis methods
require a training stage on a portion of the tasks. Therefore, the LATFORMER models
where only evaluated on the same testing tasks of LARC, using the same train-test split
of Acquaviva et al. (2021). Overall, our results show that LATFORMER performs better
than program synthesis on the subset of tasks requiring geometric priors, with no need
for a carefully designed DSL. This advantage comes to the expense of being restricted
to tasks involving geometric priors, whereas program-synthesis approaches can be
used on a wider set of tasks. We also observe that the natural language descriptions
marginally helped our model on one category of tasks. Our findings corroborate with
Acquaviva et al. (2021) in this remark.

7.6 Related work

Our work was inspired by a previous investigation of self-attention layers which identi-
fied sufficient conditions such that they can perform convolution when equipped with
relative positional encodings (J.-B. Cordonnier et al. 2020; Andreoli 2019). Rather than
relying on relative encodings, we here show how soft-masking can be used to learn
sample efficiently more general input transformations.
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To the extent of our knowledge, the group-action learning problem has not been
explicitly and generally formulated in previous work. That being said, many previous
works have focused on specific instances, such as learning to sort (Graves, Wayne,
and Danihelka 2014; Reed et al. 2015; Y. Li et al. 2020) by selecting an element of the
permutation group Sn, docking/folding by roto-translating objects according to an
action in the special Euclidean group SE(3) (Sverrisson et al. 2022; Stärk et al. 2022;
Jumper et al. 2021), and graph spectrum generation where the learned actions belong
to the Stiefel manifold (Martinkus et al. 2022).

Our work is similar in spirit to recent efforts in neuro-symbolic visual reasoning (Justin
Johnson, Hariharan, Maaten, Hoffman, et al. 2017; Justin Johnson, Hariharan, Maaten,
Fei-Fei, et al. 2017; Y. Goyal et al. 2017; Mao et al. 2019; Higgins et al. 2018). Many
approaches based on attention mechanisms have been proposed in the past few years
(Hudson et al. 2018; Hudson et al. 2019). Our work differentiates from previous lines of
research in that we aim to learn basic geometric reasoning in a sample-efficient way,
rather than modeling relationships between high-level concepts.

Finally, some recent works came to our same conclusion on the advantages of using
attention masks to incorporate prior knowledge in neural networks. As an example,
Yan et al. (2020) focus on the task of learning subroutines (e.g., sorting algorithms)
and use a CNN to generate an attention mask for a Transformer encoder. They show
that learning the attention mask allows them to generalize to longer sequences than
the ones provided at training time. Similarly, Sartran et al. (2022) used precomputed
attention masks to incorporate syntactic biases in language models.

7.7 Conclusion

Motivated by the long-term ambitious goal of infusing core knowledge priors in neural
networks, this chapter focused on how to help deep learning models to learn geometric
transformations efficiently. Specifically, we proposed to incorporate lattice symmetry
biases into attention mechanisms by modulating the attention weights using learned
soft masks. We have shown that attention masks implementing the actions of the
symmetry group of a hypercubic lattice exist, and we provided a way to represent these
masks. This motivated us to introduce LATFORMER, a model that generates attention
masks corresponding to lattice symmetry priors using a CNN. Our results on synthetic
tasks show that our model can generalize better than the same attention modules
without masking and Transformers. Moreover, the performance of our method on
a subset of ARC provides the first evidence that deep learning can be used on this
dataset, which is widely considered as an important open challenge for AI research.
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8 Conclusion and Future Work

8.1 Conclusion

In this thesis, we have explored the reasoning abilities of neural models across a
variety of tasks and we have proposed methods to improve their sample efficiency and
generalization performance by leveraging proper knowledge priors.

In Part I, we focused on reasoning in complex interactive environments requiring prior
knowledge about the world, language understanding, and look-ahead planning. In
Chapter 2, we learned that providing prior knowledge structured as a graph can signifi-
cantly improve sample efficiency and generalization performance. Interestingly, we
observed this behavior when using a knowledge graph to infuse simple commonsense
knowledge in the model, even though recent work (Davison et al. 2019; Bosselut et al.
2019; Cui et al. 2021) has shown that pre-trained language models (which in our case
where used to encode observations and actions) can directly identify commonsense
facts. This confirms findings form other works (B. Y. Lin et al. 2019; Klein et al. 2019;
Kassner and Schütze 2020), which argued that structured commonsense reasoning is
not captured well by pretrained language models like BERT (Devlin et al. 2019) and
RoBERTa (Liu et al. 2019).

The observations of Chapter 2 suggest that graph-based representations can be a good
inductive bias for symbolic reasoning. In order to verify this hypothesis, Chapter 3 fur-
ther enhanced the model of Chapter 2 with a knowledge graph that is constructed from
the natural language observations provided by the environment. Notice that the model
of Chapter 2 already encodes this information, but using a graph-based representation
results in improved sample efficiency and higher generalization performance. This
confirms that the results of Chapter 2 do not stem only from the additional knowledge
but rather from the use of graph-structured representations as an inductive bias.

To conclude Part I, in Chapter 4 we proposed a method inspired by case-based rea-
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soning (Aamodt et al. 1994) to train the agent of Chapter 3, reaching dramatic im-
provements in both sample efficiency and out-of-distribution generalization. This
shows that existing reasoning algorithms can be used to guide the design of neural
architectures rendering the model more aligned to reasoning tasks, in a way similar to
the concept of algorithmic alignment introduced by K. Xu et al. (2020).

Part II focused on factual reasoning in language-understanding tasks. As real-world
knowledge graphs can comprise millions of nodes and edges, in Part I we relied on
heuristics to retrieve relevant information. To address this issue, in Chapter 5 we
introduced a method for reasoning over knowledge graphs that scales with the number
of relation types, rather than the number of nodes or edges. We tested our approach
on question answering tasks, reaching state-of-the-art results on well-known datasets.

Similarly, in Chapter 6, we focused on an entity-linking task, showing the benefit of
infusing prior knowledge in the model. Concretely, we demonstrated a method to
infuse prior knowledge of entity type in a simple model based on dense retrieval.
Our results on standard entity linking benchmarks show that our model achieves
results comparable to the performance of large generative models with 18 times more
parameters.

Finally, in Part III we drove inspiration from developmental science and turned our
attention to the Core Knowledge priors of human intelligence (Spelke et al. 2007).
Concretely, we focused on geometry and topology priors and we proposed a model
that incorporates these priors in the form of attention masks. We showed promis-
ing results on geometric reasoning tasks, as the model was able to learn geometric
transformations from a very limited number of examples.

8.2 Future work

The work described in this thesis has many interesting avenues for further research. To
start with, the method described in Chapter 7 is limited to actions on the symmetry
group of the hypercubic lattice and it is not immediately extendable to other groups.
For instance, though permutation matrices are still convolutions of the identity and
they can be generated by a CNN, providing an architecture with predefined kernels
that can compute any permutation matrix is not feasible. We believe that this can
be addressed by still keeping the same overall idea of modulating attention weights
using soft attention masks, possibly with a different parametrization of the masks.
Recently, Otto et al. (2023) proposed a general framework to incorporate symmetry
into machine learning models in three ways: enforcing known symmetries, discovering
unknown symmetries and promoting symmetry during training. Though they focus on
incorporating symmetry into the model, rather than learning the group action, it would
be interesting to explore the connections between their framework and our definition
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of group-action learning in Chapter 7. We believe our formalism could provide a way
to both enforce symmetry during training and discover unknown symmetries as well.
Future work might focus on this research direction and on extending our work to cover
a wider set of the ARC tasks.

Similarly, in Part III, we focused only on one category of Core Knowledge priors, namely
geometry and topology priors. However, Core Knowledge priors further include mathe-
matical priors, objectness priors and goal-directedness priors. Infusing these priors
into neural models remains an interesting direction for future research. Concretely,
we do not envision models like the one described in Chapter 7 replacing standard
transformer models, but we might see them combined with transformers and other
architectures in modular networks, akin to the sparse expert models proposed by
Fedus et al. (2022), Zoph et al. (2022), and Du et al. (2022).

It would be interesting to extend the method of Chapter 5 to a complete set of first-
order queries, including negation. We believe this could be achieved using an approach
similar to the method of H. Sun, Bedrax-Weiss, et al. (2019). While H. Sun, Bedrax-
Weiss, et al. (2019) rely on standard count-min sketches, we believe negation could
be modelled by learned hash function to produce a compact representation of the
denotation set of the query. This has two key benefits: (i) learned hash functions can
be optimized to minimize the number of collisions, leading to improved empirical
performance, and (ii) we can impose a regularization on the embedding space in order
to learn a model that recovers the negation of a compressed answer set. This would
allow supporting a complete set of first-order logical reasoning operations including
negation as well.

Finally, it is important to acknowledge that in the last few years we have witnessed
tremendous progress in artificial intelligence, especially driven by the introduction of
large language models (OpenAI 2023; Brown et al. 2020; Radford et al. 2019). These
models exhibit remarkable capabilities in a wide range of complex tasks, including
mathematical problems, coding, and many others. They have also been able to show
impressive reasoning abilities, but their main limitations lie in their robustness and
reliability, as they “hallucinate” facts and make reasoning mistakes (OpenAI 2023).
Recent work has also shown that some language models can learn simple symbolic
rules but struggle with more complex ones. Even when high test accuracy seems to
imply successful learning, the application of these rules is actually flawed (Kassner,
Krojer, et al. 2020). Also, there is ample room for improvement especially in terms
of sample efficiency and energy efficiency. In the near future, the AI community will
probably focus on these challenges, rather than traditional language understanding
tasks. I envision the field will at some point move towards more structured cognitive
models, like the one proposed by LeCun (2022). This will hopefully address some of
these limitations and allow us to move closer to the goal of building models that can
learn as efficiently as humans.
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A Appendix of Chapter 2

A.1 Overlap between TWC and ConceptNet

There is definitely some overlap between the resources used to build TWC and Con-
ceptNet. However, as we discuss below, the overlap is limited and it is non-trivial for the
agents to explore the knowledge graph and retrieve relevant commonsense knowledge.
Indeed, only 12.2% of the goal entity-location pairs defined in the TWC dataset can
be directly matched to a single triplet in ConceptNet. Hence, we can state that it is
fair and challenging to use ConceptNet as an external source of information. At the
same time, we claim that external commonsense knowledge sources can be actually
useful in solving text-based games. We submit that 85.9% of the unique entities in
TWC match exactly one node in ConceptNet. Moreover, 66.1% of the time, the goal
location of a given entity is in its 3-hop neighborhood in ConceptNet (42.7% for a 2-hop
neighborhood). This shows that an external source of commonsense like ConceptNet
can help to reduce exploration while solving the games, but needs to be explored
effectively. As an example, the relation between the entity cap and the goal location
hat_rack can be derived from ConceptNet by following the path: cap→ relatedTo→
head→ relatedTo→ hat→ atLocation→ hat_rack.

A.2 Sample TWC games

In this section, we show and analyze an example of a TWC game instance from each
difficulty level. Figures A.1, 2.2, and A.2 provide such examples together with the
optimal solution to each of the analyzed games. In all figures, we highlight all objects
(in red), their candidate locations (in green) and the actions taken by the agent (in
blue). Note that this information is not available to the agent and is only used for
illustrative purposes.

Figure A.1 shows a walk-through of an easy game. This game has only 1 room and 1
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-= Laundry Room =-
You find yourself in a laundry room. An usual one. Okay, just remember what you're here to do, and everything will go great.

You make out a washing machine. But the thing is empty. What a horrible day! You make out a clothes drier. The clothes drier is empty! This is
the worst thing that could possibly happen, ever! You scan the room, seeing a suspended shelf. Unfortunately, there isn't a thing on it. You
see a work table. On the work table you can see a pair of dirty gray underpants. You make out a bench. Looks like someone's already been here
and taken everything off it, though. Aw, here you were, all excited for there to be things on it!

You are carrying nothing.

> take the dirty gray underpants from the work table

You take the dirty gray underpants from the work table.

> insert the dirty gray underpants into the washing machine

You put the dirty gray underpants into the washing machine.

Your score has just gone up by one point.

Figure A.1: Example of a game walkthrough belonging to the easy difficulty level. Best viewed
in colors. Highlights are not available to the agents and are shown for illustrative purpose only.

object. We recall that this holds for all the games in the easy difficulty level. The game
takes place in the Laundry Room, and the goal of the agent is to identify the correct
location for the only object, in this case the dirty gray underpants. As all the easy
games, the agent can reach the goal with a sequence of steps consisting of only two
actions. The first action is used by the agent to take the object, and then the second
action is aimed at putting the object in its goal location. In general, the goal location is
not unique, but in the example shown in Figure A.1, there is only one correct location,
namely the washing machine. Commonsense knowledge is required in the second step
in order to detect the correct location among all the possible candidates.

The relatively large number of possible locations makes the easy games more challeng-
ing than they might look like. In our example, the locations that are not considered
commonsensical for the dirty gray underpants are the following: clothes drier,
shelf, work table and bench. Note that the clothes drier could have been a com-
monsensical location for the entity gray underpants, but the attribute dirty plays a
key role. This shows that incorporating only knowledge in the form of single facts ex-
tracted from the knowledge graph is not sufficient to solve the games. On the contrary,
the agent needs to aggregate commonsense knowledge from multiple triples in the
knowledge graph, as previously discussed in Section A.1.

Figure 2.2 shows an example of a more complex game belonging to the medium
difficulty level. All medium-level games have only 1 room and either 2 or 3 objects. The
game shown in Figure 2.2 has 3 objects, namely a pair of climbing shoes, a brown cap
and a white cap. A total of 6 steps is required to solve the game in the optimal case.
These actions are reported in Figure 2.2. We can see that, similarly to what we have
seen for the easy games, 2 steps for each object are needed. Every time that an object
is placed in its goal location, the agent receives a reward, but no reward is given for the
action of taking an object. Hence, the maximum final score that the agent can achieve
is always equal to the number of objects, in this case 3.
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Finally, Figure A.2 shows an example of the most complex games in TWC, namely the
hard games. The game includes two rooms (Kitchen and Backyard) and the agent
needs to place a total of 7 objects in the corresponding goal location. At the beginning
of the game, the agent is already carrying an object (some milk), so it only needs to
find 6 of the remaining objects. Since the game has more than 1 room, reaching the
final goal may require more than 2 steps for each object. This happens because some
objects may need to be carried across rooms and the in this case the agent has to visit
back the initial room. In this examples, the wet azure skirt in the Kitchen has to be
carried back to the the Backyard and placed in the clothesline. The provided optimal
solution to the analysed game consists of the 15 actions reported in Figure A.2.

A.3 Hyperparameters and reproducibility

In addition to the hyperparameters reported in Chapter 2, we usefollowingd the exper-
imental settings of Table A.1.

Hyperparameter Setting

Batchsize 1
Hidden dimension 300
Max. # Steps 50
Discount Factor (γ) 0.9

Table A.1: Hyperparameters used by the agents

The agents were trained in parallel on two machines with the specifications listed in
Table A.2.

Resource Setting

CPU Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz
Memory 128GB
GPUs 2 x NVIDIA Tesla V100 16 GB
Disk1 100GB
Disk2 600GB
OS Ubuntu 18.04-64 Minimal for VSI.

Table A.2: Resources used by the agents

Each agent was trained on a single GPU for approximately 12 hours for the Text agent
and 16 hours for the Text + Commonsense agent for each run.
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-= Backyard =-
You've entered a backyard.

You see a BBQ. The BBQ is recent. On the BBQ you make out a wooden spoon. You see a clothesline. The clothesline is typical. But the thing is
empty. Hm. Oh well, what's that over there? It looks like it's a patio chair. On the patio chair you can see a wet white jumper. You see a
patio table. The patio table is stylish. The patio table appears to be empty. Hey, want to see a workbench? Look over there, a workbench. On
the workbench you see a clean pot. Something scurries by right in the corner of your eye. Probably nothing.

There is an open sliding patio door leading west.

You are carrying:
some milk

> take the wet white jumper from the patio chair

You take the wet white jumper from the patio chair.

> put the wet white jumper on the clothesline

You put the wet white jumper on the clothesline.

Your score has just gone up by one point.

> take the spoon from the BBQ

You take the spoon from the BBQ.

> take the clean pot from the workbench

You take the clean pot from the workbench.

> go west

-= Kitchen =-
You find yourself in a kitchen. A normal kind of place. The room is well lit.

You can see a fridge. The fridge is empty! This is the worst thing that could possibly happen, ever! As if things weren't amazing enough
already, you can even see a kitchen cupboard. The kitchen cupboard is empty, what a horrible day! You hear a noise behind you and spin around,
but you can't see anything other than a cutlery drawer. What a letdown! The cutlery drawer is empty! If you haven't noticed it already, there
seems to be something there by the wall, it's a dishwasher. The light flickers for a second, but nothing else happens. The dishwasher is
empty! You see a dining table. The dining table is massive. On the dining table you make out a dirty pot. You can make out a counter. On the
counter you see a can opener. You can make out a stove! The stove is conventional. But oh no! there's nothing on this piece of junk. Aw, here
you were, all excited for there to be things on it! You can see a dining chair. Now why would someone leave that there? On the dining chair
you can see a wet azure skirt.

There is an open sliding patio door leading east.

> insert the milk into the fridge

You put the milk into the fridge.

Your score has just gone up by one point.

> insert the spoon into the cutlery drawer

You put the spoon into the cutlery drawer.

Your score has just gone up by one point.

> insert the clean pot into the cupboard

You put the clean pot into the cupboard.

Your score has just gone up by one point.

> take the dirty pot from the dining table

You take the dirty pot from the dining table.

> insert the dirty pot into the dishwasher

You put the dirty pot into the dishwasher.

Your score has just gone up by one point.

> take the wet azure skirt from the chair

You take the wet azure skirt from the chair.

> take the can opener from the counter

You take the can opener from the counter.

> insert the can opener into the cupboard

You put the can opener into the cupboard.

Your score has just gone up by one point.

> go east

-= Backyard =-
You've entered a backyard.

You see a BBQ. The BBQ is recent. But there isn't a thing on it. Hm. Oh well You see a clothesline. The clothesline is typical. On the
clothesline you can see a wet white jumper. What's that over there? It looks like it's a patio chair. Now why would someone leave that there?
Unfortunately, there isn't a thing on it. You see a patio table. The patio table is stylish. The patio table appears to be empty. Hey, want to
see a workbench? Look over there, a workbench. But oh no! there's nothing on this piece of junk.

There is an open sliding patio door leading west.

> put wet azure skirt on clothesline

You put the wet azure skirt on the clothesline.

Your score has just gone up by one point.

Figure A.2: Example of a game walkthrough belonging to the hard difficulty level. Best viewed
in colors. Highlights are not available to the agents and are shown for illustrative purpose only.
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B.1 Additional results using entities as context selectors

As mentioned in Section 4.6.4, we performed an ablation study where the seeded graph
attention and the state graph where not used in the retriever. Instead, we represent
the context as just a single focus entity. This choice suits very well the TWC games, as
the goal of each game is to tidy up a house by putting objects in their commonsensical
locations. Hence, each rewarded action in TWC is of the form “put o on s” or “insert o
in c”, where o is an entity of type object, s is a supporter, and c is a container (Keerthiram
Murugesan, Atzeni, Kapanipathi, Talamadupula, et al. 2021; Côté et al. 2018). As an
example, a rewarded action could be “insert dirty singlet in washing machine”, where
dirty singlet is the object and washing machine is the container.

Representing the context as just single entities of type object, means that the memory
of the CBR agent is storing what action to apply to each object in the game, and
therefore the agent is in practice constructing a registry where each object is paired
with its commonsensical location. Let cv, cu be two context entities. The retriever then
computes the similarity between the contexts as:

sim(cv, cu) = cosine(FFN(hv),FFN(hu)),

where cosine denotes the cosine similarity, FFN is a 2-layer feed-forward network and
hv,hu are the BERT encodings of the [CLS] token for objects v and u respectively. The
retriever is therefore encouraged to map objects that should be placed in the same
location (either a supporter or a container) to similar representations.

Figure B.1 depicts a t-SNE (Maaten et al. 2008) visualization of the representations
FFN(hv) learned by the retriever of the BiKE + CBR (w/o GAT) agent. The plot shows
that entities that belong to the same location are mapped to similar representations.
This holds both for objects in the in-distribution games and for objects in the out-of-
distribution games.
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Figure B.1: Visualization of the entity representations learned by the retriever. Colors denote
the target location of each object.

We evaluated all the CBR agents with the simple retriever defined above. Table B.1
reports the results for the in-distribution and out-of-distribution games. The results
confirm that the entity-based context selection performs well and achieves good
out-of-distribution generalization. However, we remark that the complete retriever
described in Section 4.4 consistently achieves better results, showing the importance
of incorporating additional structured information.

Easy Medium Hard
#Steps Norm. Score #Steps Norm. Score #Steps Norm. Score

IN

CBR (w/o GAT) 22.70± 2.05 0.81± 0.07 44.13± 1.15 0.62± 0.04 48.05± 1.30 0.33± 0.05
Text + CBR (w/o GAT) 19.01± 3.99 0.89± 0.05 40.10± 1.52 0.67± 0.05 47.80± 1.32 0.33± 0.02
TPC + CBR (w/o GAT) 17.15± 2.91 0.94± 0.04 38.32± 1.76 0.66± 0.03 47.22± 1.35 0.36± 0.03
KG-A2C + CBR (w/o GAT) 16.67± 2.30 0.96± 0.03 38.05± 1.84 0.66± 0.04 46.45± 1.02 0.38± 0.02
BiKE + CBR (w/o GAT) 16.32± 1.10 0.95± 0.03 36.13± 1.40 0.67± 0.04 45.72± 0.63 0.41± 0.03

O
U

T

CBR (w/o GAT) 23.90± 2.17 0.79± 0.05 44.71± 1.50 0.61± 0.04 48.87± 1.89 0.31± 0.03
Text + CBR (w/o GAT) 21.64± 2.52 0.88± 0.02 41.12± 1.21 0.66± 0.05 48.00± 1.10 0.32± 0.06
TPC + CBR (w/o GAT) 19.82± 2.13 0.92± 0.03 39.34± 1.01 0.67± 0.02 47.33± 1.30 0.36± 0.04
KG-A2C + CBR (w/o GAT) 19.07± 2.50 0.92± 0.02 38.41± 1.94 0.65± 0.04 46.89± 2.21 0.37± 0.03
BiKE + CBR (w/o GAT) 18.15± 1.51 0.92± 0.03 37.10± 1.41 0.67± 0.03 46.70± 0.71 0.39± 0.03

Table B.1: Test-set performance for TWC in-distribution (IN) and out-of-distribution (OUT)
games using entities as context selectors.

B.2 Additional baselines on Jericho

Several methods have been proposed recently for text-based games. In order to
keep the results in Table 4.3 more compact, we only included well-known and top-
performing baselines that were evaluated on the full (or almost) set of Jericho games.
For completeness, this section compares our best agent (BiKE + CBR) with the follow-
ing additional methods:

• Q*BERT (Ammanabrolu, Tien, et al. 2020) is a deep reinforcement learning agent
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that plays text games by building a knowledge graph of the world and answering
questions about it;

• Trans-v-DRRN (Y. Xu et al. 2020) relies on a lightweight transformer encoder to
model the state of the game;

• DBERT-DRRN (Singh et al. 2021) makes use of DistilBERT (Sanh et al. 2019) fine-
tuned on an independent set of human gameplay transcripts.

Table B.2 shows the scores obtained by these baselines compared to our agent en-
hanced with CBR. Overall, we observe that the BiKE + CBR agent outperforms the
baselines on the majority of the games, confirming the effectiveness of case-based
reasoning as a viable approach to boost the performance of text-based RL agents.

Game Q*BERT Trans-v-DRRN DBERT-DRRN BiKE + CBR

905 - - - 0
acorncourt - 10 - 12.2
adventureland - 25.6 - 27.3
afflicted - 2 - 3.2
awaken - - - 0
detective 246.1 288.8 - 326.1
dragon - - - 8.3
inhumane - - 32.8 24.2
library 10.0 17 17 22.3
moonlit - - - 0
omniquest - - 4.9 17.2
pentari 48.2 34.5 - 52.1
reverb - 10.7 6.1 6.5
snacktime - - 20 22.1
temple 7.9 7.9 8 7.8
ztuu 5 4.8 - . 87.2
advent - - - 62.1
balances 9.8 - - 11.9
deephome 1 - - 1
gold - - - 2.1
jewel - - 6.5 6.4
karn - - - 0
ludicorp 17.6 16 12.5 23.8
yomomma - - 0.5 1
zenon - - - 4.1
zork1 33.6 36.4 44.7 44.3
zork3 - 0.19 0.2 3.2
anchor - - - 0
enchanter - 20.0 - 36.3
sorcerer - - - 24.5
spellbrkr - 40 38.2 41.2
spirit - - 2.1 4.2
tryst205 - 9.6 9.3 13.4

Table B.2: Average raw score on the Jericho games. Results are taken from the original papers
or “−” is used if a result was not reported.

B.3 Hyperparameters and reproducibility

All CBR agents are trained using the same hyperparameter settings and the same
hardware/software configuration. As mentioned in Section 4.4, we use a pre-trained
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BERT model (Devlin et al. 2019) to represent initial node features in the state graph.
BERT is only used to compute the initial representations of the entities and is not
fine-tuned. We use the following hyperparameters for our experiments.

• We set the hidden dimensionality of the model to d = 768 and we use 12 attention
heads for the graph attention network, each applied to 64-dimensional inputs.

• We use nl = 2 seeded GAT layers for TWC and nl = 3 for Jericho.

• On both datasets, we apply a dropout regularization on the seeded GAT with
probability of 0.1 at each layer.

• Similarly, for the experiments on TWC, we only sample the most recent context-
action pair from T , whereas we sample k = 3 pairs for Jericho. We used k = 2 for
the scalability analysis depicted in Figure 4.5.

• The retriever threshold is kept constant to τ = 0.7 across all experiments.

• On TWC, we train the agents for 100 episodes and a maximum of 50 steps for
each episode. On Jericho, as mentioned, we follow previous work and we train
for 100 000 valid steps, starting a new episode every 100 steps or whenever the
games ends.

• We set the discount factor γ to 0.9 on all experiments.

• For the ablation study on memory access, we set the output dimensionality of
the RP and SRP methods to p = 64. For LSH, we set the number of hash tables to
l = 16 and the length of the hash codes of h = 8 bits. We artificially limit the size
of each bucket to the 4 most recent entries.

Experiments were parallelized on a cluster where each node was dedicated to a separate
run. The configuration of the execution nodes is as reported in Table B.3.

Resource Setting

CPU Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz
Memory 128GB
GPUs 1 x NVIDIA Tesla k80 12 GB
Disk1 100GB
Disk2 600GB
OS Ubuntu 18.04-64 Minimal for VSI

Table B.3: Hardware and software configuration used to train the agents
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C.1 Formal definition of the coalesced representation

Given a knowledge graph G = (V,R, E) and a set of entities VQ, we can provide an
alternative recursive definition of reachG(VQ, R) as:

reachG(VQ, (r1, r2, . . . , r|R|)) =


VQ if |R| = 0

reachG(V ′Q, (r2, . . . , r|R|)) if VQ
r1−→ V ′Q

∅ otherwise

where V ′Q is the set of nodes reachable from VQ by an r1 relation.

Then, we can define the coalesced representation G̃Q = (ṼQ, R̃Q, ẼQ) as follows:

• ṼQ = {reachG(VQ, R) | R ∈ R∗} are the nodes R-reachable from VQ by R ∈ R∗,
where ∗ is the Kleene star;

• R̃Q = R ∪ {self} is the original set of relations augmented with the self-loop
relation type self, which denotes the empty sequence self ∈ R∗;

• edge Vi
r−→ Vj belongs to ẼQ if and only if Vj = reachG(Vi, r), with r ∈ R̃Q.

Intuitively, this operation can be seen as coalescing relations in the original knowledge
graph G and adding self loops. In practice, we do not need to compute all the nodes in
G̃Q but only edge labels.

C.2 Computational complexity

The knowledge seeking procedure described in Section 5.2.1 applies a search algorithm
over the graph G̃Q to obtain the most likely set of relation sequences originating from
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VQ. The exact knowledge seeking procedure adopted in our experiments is based on
the beam search algorithm and is detailed in Algorithm 2. The algorithm is designed
to scale with the number of relation types in the original knowledge graph, which
is usually much smaller than the number of edges (facts) or nodes (entities). In this
section, we describe the algorithm in more details and we provide an extensive analysis
of the computational complexity of our approach.

Overview of the knowledge seeking procedure. At each iteration, Algorithm 2
updates a set Bt containing triples of the form (Vt, Rt, wt). We denote with Vt =

reachG(VQ, Rt) the set of nodes reachable from VQ by following Rt, whereas Rt repre-
sents a relation sequence constructed iteratively by applying the relation-level model
on edges of G̃Q up to time step t. The last element of the tuples wt is the total accu-
mulated negative log-likelihood of Rt, computed as explained in Section 5.2.1. At the
beginning of the algorithm, V1 = VQ is the set of entities mentioned in the natural

Algorithm 2: Knowledge Seeking

Input :a coalesced knowledge graph G̃Q; a set of starting entities VQ; the beam
width β; the maximum number of iterations τmax; and the number of
relation sequences to be returned k ≤ β

Output :A set of k tuples of the form (ÃQ, R,w), representing the k most likely
candidate answers ÃQ, the sequence of relations R to reach ÃQ, and
the negative log-likelihood w of R

t← 1
Bt ← {(VQ, self, 0)}

repeat
Bt+1 ← ∅
for (Vt, Rt, wt) ∈ Bt do

if Rt = (r0, . . . , self) and t > 1 then
Bt+1 ← Bt+1 ∪ {(Vt, Rt, wt)}

else
Ẽt ← {Vt

rt−→ Vt+1 ∈ ẼQ}
for Vt

rt−→ Vt+1 ∈ Ẽt do
Rt+1 = (Rt, rt)

wt+1 ← wt − log ϕ(Vt
rt−→ Vt+1)

Bt+1 ← Bt+1 ∪ {(Vt+1, Rt+1, wt+1)}
end

end
end
Bt+1 ← min(Bt+1, β)
t← t+ 1

until Bt = Bt−1 or t > τmax

return min(Bt, k)
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language question, R1 = self is the empty relation sequence and we set the initial
negative log-likelihood w1 = 0. The algorithm receives as input a parameter β which
specifies the beam width, namely the number of relation sequences that are expanded
at each iteration. At time step t, we compute the set Ẽt of all edges originating from Vt
in G̃Q. Then, the relation sequences Rt are expanded with the relation types labeling
edges in Ẽt. The likelihood of the new relation sequences is calculated based on wt and
the likelihood assigned by the relation-level model to the relation type appended to
Rt. At the end of each iteration, the function min(Bt+1, β) in Algorithm 2 retains for the
next time step only the β tuples (Vt+1, Rt+1, wt+1) ∈ Bt+1 with the minimum negative
log-likelihood wt+1. Note that, in Algorithm 2, relation sequences ending with the
self relation type are not expanded after the first time step. As explained in Section
5.3, indeed, the self relation type is used to signal both the start and the end of the
decoding process.

Time complexity. At time step t, for each triple (Vt, Rt, wt) ∈ Bt, the algorithm
computes ϕ for all edges Ẽt originating from Vt. This means that the relation-level
model described in Section 5.3 is queried |Bt| · |Ẽt| times at iteration t. Note that we
do not need to compute the likelihood ϕ(Vi

r−→ Vj) for all edges Vi
r−→ Vj in ẼQ. Let

d+max(G̃Q) be the maximum outdegree of nodes in G̃Q. At time step t, the size of the set
Bt+1 is restricted to β for the next iteration by the operation min(Bt+1, β). Since |Bt|
is bounded by β and |Ẽt| is bounded by d+max(G̃Q), at any iteration, the relation-level
model is queried at most β · d+max(G̃Q) times. Each of such queries takes constant
time. The function min(Bt+1, β) selects the β tuples in Bt+1 with the smallest negative
log-likelihood. This can be done on average in O(|Bt+1|) time. At iteration t, the set
Bt+1 is initialized as the empty set and updated by adding at most β · d+max(G̃Q) tuples
(one element for each query to the relation-level model). Therefore, the expected
time complexity of the function min(Bt+1, β) isO(β · d+max(G̃Q)). Now, note that by the
definition of G̃Q, we have d+max(G̃Q) ≤ |R̃Q| = |R| + 1. Hence, the number of queries
to the relation-level model is bounded by β · (|R| + 1) and the time complexity of
min(Bt+1, β) is alsoO(β · |R|). The maximum depth reached by the knowledge seeking
procedure starting from VQ is bounded by τmax, because Algorithm 2 performs at most
τmax iterations of the main outer loop. The final step min(Bt, k) selects the k most
likely tuples and can be run on average inO(β) time. This yields a final computational
complexity of

O(τmax · β · |R|) = O(|R|).

Note that τmax and β are constant parameters of the algorithm and are usually small.
In our experiments, we set τmax = 3 for MetaQA 3 and τmax = 2 for MetaQA 2 and
WebQSP. We set the beam width β = 10, obtaining only minor improvements with
respect to a greedy search with β = 1. Therefore, we obtain that that time complexity
of the knowledge seeking procedure scales linearly with the number of relation types
and does not depend on the number of nodes or edges in G.
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Space complexity. For each iteration t, Algorithm 2 constructs Bt+1 by analyzing all
edges originating from each node Vt stored in the tuples (Vt, Rt, wt) ∈ Bt. From the
considerations reported above, the size of Bt+1 isO(β · |R|). Although for notational
convenience we are representing Bt as a set of triples, in practice we can avoid storing
intermediate nodes Vt and construct the set of candidate answers by following Rt at
the final iteration. Therefore, we only need to store relation sequences Rt and their
negative log-likelihood wt. Each tuple requires O(τmax) space, as |Rt| is bounded by
τmax. The space complexity of the algorithm is thusO(τmax · β · |R|).

C.3 Expressive power

As mentioned in Section 5.2.3, the approach described in this chapter can be used to
answer any valid existential positive first order query on a knowledge graph G. In order
to prove this, we first consider the simpler class of conjunctive queries. We will show a
result similar to Theorem 5.2.1 for conjunctive queries, and then we will extend this
result to the wider class of EPFO queries.

C.3.1 Conjunctive queries

Given a knowledge graph G = (V,R, E) and a non-empty set of nodes VQ ⊆ V , a con-
junctive query on G is a query involving only existential quantification and conjunction
operations, of the type:

Q[V?] = V?.∃V1, . . . ,Vm : e1 ∧ e2 ∧ · · · ∧ e|Q|,

such that each literal ei is an atomic formula of the form r(V,V′), where V ∈ VQ ∪
{V1, . . . ,Vm}, V′ ∈ {V?,V1, . . . ,Vm}, V ̸= V′, and r(V,V′) is satisfied if and only if
V

r−→ V′, r ∈ R.

In general, for any query Q, we can define its dependency graph as the graph with
nodes VQ ∪ {V?,V1, . . . ,Vm}. The edges of the graph are the literals {e1, . . . , e|Q|}, as
each literal is of the form r(V,V′) and defines an edge between V and V′ (Hamilton et al.
2018). Figure C.1 shows an example of the dependency graph of a conjunctive query.

We say that a query is valid if its dependency graph is a directed acyclic graph (DAG),
with VQ as the source nodes and the target variable V? as the unique sink node. In the
following, we will always consider valid queries, as this ensures that the query has no
redundancies nor contradictions.

Lemma C.3.1. Let G = (V,R, E) be a knowledge graph and Q be a valid conjunctive
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query on G. Then, there exists a sequence of relations R⋆ ∈ R∗ such that:

AQ ⊆ reachG(VQ, R⋆),

where AQ = {v ∈ V | Q[v] = True} is the denotation set of Q, namely the entities
satisfying Q.

Proof. We proceed by induction on the number of literals |Q|.

Base case. Assume |Q| = 1. Then, since Q is valid, the query is of the form:

Q[V?] = V?.r(v,V?),

with {v} = VQ. We have:

AQ = {v′ ∈ V | Q[v′] = True}

= {v′ ∈ V | v r−→ v′}
= reachG(VQ, r).

Hence the sequence with only relation r is sufficient to generate the set of correct
answersAQ.

Inductive step. Let Q be a conjunctive query of the form:

Q[V?] = V?.∃V1, . . . ,Vm : e1 ∧ e2 ∧ · · · ∧ e|Q|.

Assume that there exists a sequence of relations R⋆ ∈ R∗, such that:

AQ = {v ∈ V | Q[v] = True} ⊆ reachG(VQ, R⋆).

Consider a query Q′ constructed by adding a literal e|Q|+1 to Q, and let A′
Q be the

denotation set of Q′, namely the set of nodes satisfying Q′. The conjunctive query Q′

may or may not have the same target variable of Q.

If Q′ shares the same target variable of Q, then Q′ is of the form:

Q′[V?] = V?.∃V1, . . . ,Vm : e1 ∧ e2 ∧ · · · ∧ e|Q| ∧ e|Q+1|.

Note that:

A′
Q = {v ∈ V | Q′[v] = True}
⊆ {v ∈ V | Q[v] = True}
⊆ reachG(VQ, R⋆).
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Hence, if Q and Q′ share the same target variable, the same sequence of relations that
generates candidate answers for Q can be used to generate candidate answers for Q′.

If Q and Q′ do not have the same target variable, then we can write Q′ as:

Q′[V′
?] = V′

?.∃V?,V1, . . . ,Vm : e1 ∧ e2 ∧ · · · ∧ e|Q| ∧ e|Q+1|.

Since Q′ is a valid conjunctive query on G, e|Q+1| is of the form r(V?,V
′
?). Then we have:

A′
Q = {v′ ∈ V | Q′[v′] = True}

= {v′ ∈ V | ∃V?,V1, . . . ,Vm : e1 ∧ e2 ∧ · · · ∧ e|Q| ∧ V?
r−→ v′}

= {v′ ∈ V | ∃v ∈ AQ : v
r−→ v′}

= reachG(AQ, r)

⊆ reachG(reachG(VQ, R⋆), r)
= reachG(VQ, (R⋆, r)).

Therefore, the sequence (R⋆, r) can be used to generate the answers to Q′.

C.3.2 Existential Positive First-Order Queries

Any EPFO query can be expressed in disjunctive normal form (DNF), namely a disjunc-
tion of one or more conjunctions:

Q[V?] = V?.∃V1, . . . ,Vm : C1 ∨ C2 ∨ · · · ∨ Cn∨+1,

such that:

• each Ci is a conjunction of literals of the form Ci = ei1 ∧ ei2 ∧ · · · ∧ ei|Ci|

• each literal eij is a formula of the form r(V,V′), where V ∈ VQ ∪ {V1, . . . ,Vm},
V′ ∈ {V?,V1, . . . ,Vm}, V ̸= V′, and r(V,V′) = True if and only if V r−→ V′, r ∈ R.

As above, we assume that the Q is a valid query on G, namely all Ci are valid conjunctive
queries. As shown in Figure C.1, we can represent any EPFO query Q with a computa-
tion graph containing the operations that are required to answer Q. Specifically, each
atomic formula can be represented as a relation projection, whereas conjunctions and
disjunctions can be represented as intersection and union operations respectively.

Proof of Theorem 5.2.1 We assume that Q is expressed in disjuctive normal form
and we denote with n∨ the number of disjunction (∨) operators in Q. We proceed by
induction on n∨.
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Base case. Assume n∨ = 0. Then, Q is a conjunctive query, and by Lemma C.3.1, there
exists R⋆ ∈ R∗ such that:

AQ = {v ∈ V | Q[v] = True} ⊆ reachG(VQ, R⋆).

Inductive step. Let Q be an EPFO query in DNF:

Q[V?] = V?.∃V1, . . . ,Vm : C1 ∨ C2 ∨ · · · ∨ Cn∨+1.

Consider the subquery Q′ consisting of the conjunction terms C1 ∨ C2 ∨ · · · ∨ Cn∨ and
assume that there exist k ≤ n∨ sequences of relations R⋆i such that:

A′
Q = {v ∈ V | Q′[v] = True} ⊆

k⋃
i=1

reachG(VQ, R⋆i ).

Note that Cn∨+1 is a valid conjunctive query and by Lemma C.3.1 there existsR⋆k+1 ∈ R∗

such that:
{v ∈ V | Cn∨+1[v]} ⊆ reachG(VQ, R⋆k+1).

Then, it holds that:

AQ = {v ∈ V | Q[v] = True}
= {v ∈ V | Q′[v] ∨ Cn∨+1[v]}
= A′

Q ∪ {v ∈ V | Cn∨+1[v]}

⊆
k⋃

i=1

reachG(VQ, R⋆i ) ∪ {v ∈ V | Cn∨+1[v]}

⊆
k+1⋃
i=1

reachG(VQ, R⋆i ).

C.4 Training strategies

In this section we describe the training strategies that we used to optimize the parame-
ters of our relation-level model and improve generalization performance.

Supervision. For the experiments on KBQA, we assume that we only have access
to pairs of questions and answers, i.e. the actual inferential chain leading from the
question to the answer is latent. Therefore, we resort to weak supervision to train
the model. Since at training time the set AQ is known, we can compute all relation
sequencesR⋆, such that ÃQ = reachG(VQ, R⋆) is the smallest reachable superset of VQ.
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Edge-level model
Relation-level model


Question: Which American actors appeared in movies

                  directed by George Lucas or James Cameron?

Computation Graph: Coalesced Representation:

citizen

George_Lucas
United_States

directed starred

Dependency Graph:

Logical query (DNF):

James_Cameron

United_States citizen

Relation Projection Intersection Union

starred

citizen
George_Lucas

United_States

directed

directed starred James_Cameron

Figure C.1: Example of a natural language question and the corresponding EPFO query ex-
pressed in DNF (top left); the dependency graph of the EPFO query (top right); the computation
needed to answer the query in the original KG (bottom left); and the computation performed
by our approach in the coalesced representation (bottom right). Note that, for completeness,
we represent two paths in the coalesced representation, but only one is sufficient.

If the smallest reachable superset ofAQ is not unique, all relation sequences leading
to any superset ofAQ of minimum cardinality are considered. Note that the set of all
possible relation sequences of a given length originating from VQ in G̃Q is much smaller
than the set of all possible paths starting from nodes in VQ in G, as shown in Appendix
C.5.5. Since the CFQ dataset contains boolean questions (where the answer is not a
set of entities), for the experiment on compositional generalization we use the logical
parsing provided in the dataset to compute the correct sequences of relations. We
assume these sequences of relations are stored in such a way that the set of relations
exiting from the a node in G̃Q can be accessed efficiently in constant time. Then, at
any decoding time step t, an edge is labeled as positive if and only if it belongs to a
sequence of relations leading to ÃQ. The model is then trained using teacher forcing,
namely we feed into the decoder relation sequences leading from VQ to ÃQ. We do not
have multiple decoding time steps at training time, as the whole sequence is provided
at once, and relation types are appropriately masked so that they cannot attend to
items in future positions.

Path dropout. Previous work (H. Sun, Dhingra, et al. 2018) has shown that randomly
removing facts from the knowledge base at training time can be beneficial for gen-
eralization. Inspired by such insight, we employ a similar technique to enhance the
performance of our model. Specifically, in the first epochs, we randomly remove paths
that are not labeled as correct with probability pdrop, in order to make the problem
easier for the model. This probability is the linearly decreased to 0 during training. We
set the initial pdrop to 0.5 and we gradually lower it to 0 until half of the training epochs
have been run.
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Pretraining and fine tuning. For the experiments on WebQuestionsSP and CFQ,
we found it beneficial to pretrain our model in order to incorporate knowledge from
Freebase into the layers of the decoder. Specifically, we sampled a total of 500k 1-hop or
2-hop paths and we trained the model to predict the sequence of relations connecting
two nodes, given the embeddings of the source node and the target node of the path.
In order to do this, we replace the encoder with a simple 2-layer feed-forward net-
work, with a ReLU non-linearity. This network receives as input two 100-dimensional
embeddings for the source and target nodes of the path, and maps them to a dmodel-
dimensional representation. This representation is then fed into the decoder to predict
the relations connecting the two nodes. We use a concatenation of 50-dimensional
random and 50-dimensional pretrained TransE (Bordes et al. 2013) embeddings (Han
et al. 2018) to represent the entities in the KG. Moreover, on WebQuestionsSP we ob-
served that it was helpful to fine-tune BERT in order to produce better representations
of the relations in the knowledge graph. The same BERT model is still used to encode
both the questions and relation types.

C.5 Experimental Details

C.5.1 Datasets

KBQA datasets. We performed our experiments on KBQA on two widely adopted
datasets, namely MetaQA (Zhang et al. 2018) and WebQuestionsSP (Yih et al. 2015). We
provide below a detailed description of each one.

• MetaQAI (Zhang et al. 2018) is a multi-hop question answering dataset including
400K question-answer pairs. Questions are answerable using the WikiMovies
knowledge base. The dataset includes 1-hop, 2-hop and 3-hop questions. It is
provided under the Creative Commons Public License Attribution 3.0 UnportedII.
We evaluated our approach both on the 2-hop questions (MetaQA 2) and 3-hop
(MetaQA 3) questions.

• WebQuestionsSP (Yih et al. 2015) comprises 4737 questions over a subset of
Freebase, which is provided under the CC BY 2.5 licenseIII. The questions in this
dataset are answerable by performing relational following for up to two hops and
an optional relational filtering operation on the result.

Table C.1 shows the number of questions in the training, development and test splits
of each dataset. We use the same splits as in (H. Sun, Dhingra, et al. 2018). Table 3

Ihttps://github.com/yuyuz/MetaQA
IIhttps://creativecommons.org/licenses/by/3.0/

IIIhttps://creativecommons.org/licenses/by/2.5/
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reports instead the number of triples (edges), entities (nodes) and relations in the KGs
used in our experiments.

Train Dev Test

MetaQA 2 118 980 14 872 14 872
MetaQA 3 114 196 14 274 14 274
WebQSP 2 848 250 1 639

Table C.1: Number of questions in the training, development and test sets

Triples Entities Relations

MetaQA 392 906 43 230 18
WebQSP 23 587 078 7 448 928 575

Table C.2: Size of the knowledge graphs used for MetaQA and WebQuestionsSP

Compositional generalization. Our experiments on compositional generalization
rely on the Compositional Freebase Questions (CFQ) dataset. It includes a total of
239 357 English question-answer pairs that are answerable using the public Freebase
data (Bollacker et al. 2008). CFQ is released under the CC-BY-4.0 licenseIV provides
train-test splits designed to measure the compositional generalization ability of a
machine-learning model. Each question is composed of primitive elements (atoms),
which include entity mentions, predicates and question patterns. These atoms can be
combined in different ways (compounds) to instantiate the specific examples in the
dataset. The train-test splits are designed with the twofold goal of:

1. minimizing atom divergence: the atoms present in the test set are also included
in the training set and their distribution in the test set is as similar as possible to
their distribution in the test set;

2. maximizing compound divergence: the distribution of compounds in the test set
is as different as possible from their distribution in the training set.

The dataset provides three different splits (MCD1, MCD2, MCD3), with maximum
compound divergence (MCD) and low atom divergence. For each question, both a
logical parsing and the expected answers are included. Hence, CFQ can be used both
for semantic parsing and end-to-end question answering.

C.5.2 Baselines

KBQA Baselines. On WebQuestionsSP and MetaQA, we compared our approach
against the following baselines.

IVhttps://creativecommons.org/licenses/by/4.0/
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• KV-MemNN is a key-value memory network (Miller et al. 2016) that makes use
of a memory of key-value pairs to store the triples from the KG. Keys are joint
representation of the subject and relation of each triple, whereas the objects of
the triples are used as the corresponding values.

• ReifKB (Cohen, H. Sun, et al. 2020) uses a compact encoding for representing
symbolic KGs, called a sparse-matrix reified KG, which can be distributed across
multiple GPUs, allowing efficient symbolic reasoning.

• GRAFT-Net (H. Sun, Dhingra, et al. 2018) is a graph neural network designed
to reason over question-specific subgraphs. The message-passing scheme is
conditioned on the input question and takes inspiration from personalized page
rank to perform a directed propagation of the messages starting from the entities
mentioned in the question.

• PullNet (H. Sun, Bedrax-Weiss, et al. 2019) builds on top of GRAFT-Net and im-
proves the quality of the question-specific subgraphs with an iterative process
based on a learned classifier. This classifier selects which node should be ex-
panded at each iteration and it is a further GNN with the same architecture as
GRAFT-Net.

• EmbedKGQA (Saxena et al. 2020) uses KG embeddings for multi-hop question
answering.

• EmQL (H. Sun, Arnold, et al. 2020) relies on a query embedding method that com-
bines a count-min sketch representation for entity sets with logical operations
implemented via neural retrieval over embedded KG triples.

CFQ Baselines. For the experiment on compositional generalization, we compare
to the best-performing baselines in CFQ’s public leaderboardV. These baselines are
all designed for semantic parsing and are encoder-decoder architectures trained to
output a formal query given a natural language question. Keysers et al. (2020) evaluated
the compositional generalization capabilities of three sequence-to-sequence models,
namely one based on LSTMs (Hochreiter et al. 1997) equipped with an attention
mechanism (Bahdanau, Cho, et al. 2015) (LSTM + Attention), a Transformer (Vaswani
et al. 2017) and a Universal Transformer (Dehghani et al. 2019). Furrer et al. (2020)
conducted a study that assessed the performance of three more models. The Evolved
Transformer (So et al. 2019) is a variation of the Transformer discovered with an
evolutionary neural architecture search seeded with the original model of Vaswani et al.
(2017). The Text-to-Text Transfer Transformer (T5) (Raffel et al. 2020) is a model pre-
trained to treat every task as a text-to-text problem. Furrer et al. (2020) fine-tuned all
variants, including the largest one with 11 billion parameters (T5-11B). Following the

Vhttps://github.com/google-research/google-research/tree/master/cfq
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technique introduced by J. Guo et al. (2019), Furrer et al. (2020) further implemented
the variant T5-11B-mod, which learns to predict an intermediate representation of the
SPARQL query which is closer to the formulation of the questions in natural language.
Finally, Y. Guo et al. (2020) introduced the Hierarchical Poset Decoding (HPD), which
enforces partial permutation invariance, thus taking into account semantics and
capturing higher-level compositionality.

C.5.3 Hyperparameters and reproducibility

We train the relation-level model for 300 epochs on both datasets. We use a mini-
batch size of 128 for MetaQA and 32 for WebQuestionsSP. We set the dimension of the
embeddings to dmodel = 768, as we use 12 attention heads applied to tensors of size
64. We optimize the model using the AdamW optimizer (Loshchilov et al. 2019), with
weight decay of 10−3. The initial learning rate is set to 10−4 for MetaQA and 5 · 10−6

for WebQuestionsSP. We apply dropout regularization, with probability 0.1 on both
the encoder and the decoder layers. We use a beam width β = 10 for the knowledge
seeking algorithm described in Appendix C.2.

BERT is fine-tuned for WebQuestionsSP, whereas the weights are kept fixed for MetaQA.
For experiments on WebQuestionsSP, we found beneficial to pretrain our model in
order to incorporate knowledge from Freebase into the layers of the decoder, as ex-
plained in Appendix C.4. Specifically, we sampled a total of 500k 1-hop or 2-hop paths
and we trained the model to predict the sequence of relations connecting two nodes,
given the embeddings of the source node and the target node of the path.

For the GCN-based edge-level model, we used the same implementation and hyperpa-
rameters of the version available at: https://github.com/OceanskySun/GraftNet. All
experiments were performed on a NVIDIA Tesla V100 GPU with 16 GB of memory.

C.5.4 Discussion and qualitative examples

In our experiments on KBQA, for each model, we selected the entity v⋆ ∈ V with the
highest likelihood to be a correct answer. The answer to the question is considered cor-
rect if v⋆ ∈ AQ. For the unrefined SQALER model, we report the expected performance
selecting v⋆ uniformly at random from ÃQ.

The high performance of the unrefined model on MetaQA confirms our hypothesis
that the relation-level model applied on the coalesced representation is sufficient
for tasks such as multi-hop question answering. On WebQuestionsSP, the edge-level
model is needed because relation projection is not sufficient to answer some of the
questions in the dataset. Figure C.2 shows some examples of the relation sequences
predicted by our model on the test set of WebQuestionsSP. For examples (a) and (b),

136

https://github.com/OceanskySun/GraftNet


Appendix of Chapter 5 Chapter C

(a)

place_of_death

What town was martin
luther king assassinated in?

(b)

religion

religions

religionsreligions

rel
igi

on
s

religion

religion

religion

What are the religions
practiced in indonesia?

Entity mentions Candidates Answers

(c)

parents

parents

Who is the mother
of prince michael jackson?

(d)

ed
uc

ati
on

education

education
educationeducation

institution

institution

institution

institution

institution

What highschool did harper
lee go to?

Figure C.2: Example of relation sequences predicted by the unrefined relation-level model on
the test set of WebQuestionsSP

the relation-level model is sufficient, as the set of candidates ÃQ is the same as the
set of the actual answers AQ. However, examples (c) and (d) demonstrate the need
for an edge-level model, as following a sequence of relations is not always sufficient
to obtain the correct answer. Note that the edge-level model is applied on a 1-hop
neighborhood expansion of the graphs depicted in Figure C.2 and constrained to select
an answer among the candidates ÃQ. Figure C.2 also shows that the answer paths
for 2-hop questions in WebQuestionsSP always contain compound value type (CVT)
entities in the middle (depicted with cyan nodes in the image). These are special entity
types that are used in Freebase to describe n-ary relationships between entities. EmQL
uses different encodings for CVT nodes and the real entities, while SQALER does not
depend on the KG specifics.

C.5.5 Analysis of relational coalescing

In order to answer a question that requires multi-hop reasoning over a KG correctly,
one should ideally either consider the full KG or a complete subgraph consisting of
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Figure C.3: Number of paths by path length in the original and coalesced graphs for MetaQA
(right) and WebQuestionsSP (left)
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all possible multi-hop neighbors of the entities mentioned in the question. However,
such subgraphs can be very large, as shown in Table C.3. The subgraphs we analyzed
include 3-hop neighbors for MetaQA 3 and both 1 and 2-hop neighbors of the entities
mentioned in the question for WebQSP. The average number of nodes for MetaQA 3
exceeds 10k and for the larger Freebase KG there are question subgraphs with millions
of nodes. This makes impractical to perform KBQA on complete subgraphs with
models that scale with the number of edges or nodes in the graph.

MetaQA 3 WebQSP

Mean nodes 8.6k 36k
Max nodes 30k 1.6M

Mean facts 49k 211k
Max facts 230k 9.5M

Table C.3: Size of the subgraphs including all neighbors of the entities mentioned in a question

As a further analysis, we investigate the computational advantage of relational coa-
lescing by computing the number of paths originating from the entities mentioned
in the questions both in the original KG and in the coalesced representation. Figure
C.3 presents the results for both MetaQA and WebQuestionsSP. The experiment shows
that relation coalescing allows reducing the number of paths by up to 2 orders of
magnitude on both datasets. This directly impacts both the memory requirements
and the efficiency of our approach. For MetaQA we analyzed paths of length up to 3,
whereas for WebQuestionsSP we consider paths of length 1 or 2, as the dataset does
not include 3-hop questions.
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D.1 Duck typing on knowledge graphs

To get more insights into our definition of duck typing on knowledge graphs, we
performed a qualitative analysis of entities that share a large number of relations in
Wikidata (Vrandečić et al. 2014). Precisely, we used the cardinality of the symmetric
difference between the sets of relations of two entities e1, e2 ∈ E , defined as:

distKG(e1, e2) = |R(e1)△R(e2)|
= |(R(e1) \ R(e2)) ∪ (R(e2) \ R(e1))|
= |(R(e1) ∪R(e2)) \ (R(e1) ∩R(e2))|

as a measure of the distance between the types of two entities e1 and e2. Notice that
the distance defined above can be expressed as the Hamming distance between binary
encodings of the sets of relations, hence we can efficiently retrieve the neighbors
of a given entity on GPU, following the method of Jeff Johnson et al. (2021). If our
definition of duck typing works well, we expect entities with low distance to be likely
of the same type. Table D.1 shows the top-10 neighbors that minimize the distance
function defined above for several entities. We emphasize that these lists of neighbors
are not produced by our model, rather they are examples of the prior knowledge that
we aimed to infuse in DUCK. This analysis shows that our notion of duck typing carries
fine-grained type information, as it allows detecting countries, cities, highly influential
computer scientists and mathematicians, football players, singers, politicians, animals,
companies, scientific awards and more.

D.2 Entity-box distance

This section provides more details on the entity-box distance function defined in
Section 6.3.2. A plot of the distance function in the uni-dimensional case, for a scalar
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Italy London Rome Alan Turing Ada Lovelace

Portugal Istanbul Milan Bernhard Riemann Lady Byron
Spain Madrid Florence Kurt Gödel Rosalind Franklin
Norway Istanbul Province Naples John von Neumann Elizabeth Fry
Greece Stockholm Venice Herbert A. Simon Catherine Dickens
Poland Cairo Turin John Forbes Nash Jr. Rosina Bulwer Lytton
Denmark Buenos Aires Palermo Claude Shannon Lady Emmeline Stuart-Wortley
Belgium Manchester Rio de Janeiro Nikolai Lobachevsky Eleanor Marx
Hungary Amsterdam Genoa Benoit Mandelbrot Wilhelmina Powlett, Duchess of Cleveland
Finland Milan Bologna Willard Van Orman Quine Rachel Russell, Lady Russell
Republic of Ireland Ankara Lisbon Niels Henrik Abel Martha Jefferson

Cristiano Ronaldo Justin Bieber Donald Trump Lion Jaguar

Lionel Messi Harry Styles Joe Biden Tiger Cougar
Luis Suárez Chris Brown Mrs. Bill Clinton Leopard Ocelot
Gerard Piqué Ed Sheeran Barack Obama’s Cheetah Giant anteater
Neymar Eminem George W. Bush Jaguar Giant armadillo
Manuel Neuer Camila Cabello Al Gore Red panda Chimpanzee
Paul Pogba Nick Jonas Kamala Harris Giant panda Bonobo
Ronaldinho Jordin Sparks Elizabeth Warren Cougar Indian rhinoceros
Luka Modrić Richard Marx Bill Clinton Okapi Giant otter
Antoine Griezmann Niall Horan Michael Bloomberg Hippopotamus Black rhinoceros
Gareth Bale Shawn Mendes Benjamin Netanyahu Fennec fox Pronghorn

Jaguar Cars Maserati Veliko Tarnovo Gracilinanus Fields Medal

Land Rover Lancia Kluczbork Scolomys IEEE Medal of Honor
Steyr-Daimler-Puch VinFast Yambol Aethalops Kavli Prize
MG Cars McLaren Automotive Kyustendil Oligoryzomys Rosenstiel Award
Gulf Oil Massimo Dutti Targovishte Raphicerus Paul Ehrlich and Ludwig Darmstaedter Prize
British Motor Corporation chapter Mate Pančevo Vesper mouse Albert Einstein World Award of Science
Safeway (UK) Infiniti Kragujevac Rhabdomys Canada Gairdner International Award
Rover Group Peroni Brewery Ruse, Bulgaria Balantiopteryx Earle K. Plyler Prize for Molecular Spectroscopy
Rover Company Lotus Cars Sombor Arielulus Dannie Heineman Prize for Mathematical Physics
MIPS Technologies Colruyt (supermarket) Vratsa Bassariscus Bôcher Memorial Prize
F. W. Woolworth Company Overkill Software Pazardzhik Microsciurus NAS Award in Chemical Sciences

Table D.1: Top 10 entities with the most similar set of relations to a given entity in Wikidata
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Figure D.1: Plot of the entity-box distance in the uni-dimensional case, for boxes centered at
π/2 with different scalar widths δr

entity representation e and several boxes centered at π/2 with different scalar widths
δr is shown in Figure D.1. The plot shows that the distance function has different
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slopes for entities inside and outside the boxes. This is meant to strongly penalize
entities that lie outside boxes corresponding to their relations, as it ensures that outside
points receive high gradient through which they can more easily reach their target box.
Additionally, recalling the expression for dist(e, r) given in Section 6.3.2, notice that the
distance depends on the width of the box. More precisely, whenever an entity is inside
its target box, the distance inversely correlates with box size. This allows maintaining
low distance values inside large boxes while providing a gradient to keep points inside.
For entities outside their target boxes, the distance linearly correlates with the width of
the box, to penalize points outside larger boxes more severely.

D.3 Details on the model

In order to train DUCK, we need to convert the entity representations e into spherical
polar coordinates (the same applies to the mention representations m). This can be
done as follows:

φe,1 = arccos

 e1√
e2d + e2d−1 + · · ·+ e21


φe,2 = arccos

 e2√
e2d + e2d−1 + · · ·+ e22


...

φe,d−2 = arccos

 ed−2√
e2d + e2d−1 + e2d−2



φe,d−1 =


arccos

(
ed−1√
e2d+e2d−1

)
if ed ≥ 0

2π − arccos

(
ed−1√
e2d+e2d−1

)
if ed < 0

where ei is the i-th entry of the entity representation e ∈ Rd and φe,i is the i-th compo-
nent of the representation in spherical coordinatesφφφe ∈ Rd−1. Looking at the equations
above, we notice that in a spherical coordinate systems, all angles range from 0 to π,
with the only exception of the last coordinate φe,d−1, which ranges from 0 to π if ed is
positive and from π to 2π otherwise. In order to make the definition of the boxes and
of the entity-box distance simpler, we decided to constrain the last coordinate in the
range [0, π] as well. We achieved this objective by constraining the last coordinate of
the entity and mention representations to be positive, applying an absolute value to
the last dimension of the output of the entity and mention encoders. This essentially
restricts all representations and boxes to be on half of the hypersphere, more precisely
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on the portion where ed > 0. We apply this transformation before computing the
overall optimization objective of Section 6.3.2.

D.4 Training details

To train DUCK, we need to select negative entities ej for the entity-disambiguation
loss LED of Section 6.3. Having high-quality negative entities is crucial to achieve high
performance, thus we trained DUCK in several stages.

First, we trained the model using, as negative entities for each mention, all entities
in the same batch. In order to provide more meaningful information, we further
added entities that maximize a prior probability p̂(e|m), extracted from count statistics
derived from large text corpora. In details, we used the prior probabilities of Ayoola
et al. (2022). Notice that, differently from Ayoola et al. (2022), we do not use these
prior probabilities at inference time, but we only use them to provide better negative
entities to the model in this first training stage. For each mention, we included in a
batch 3 negative entities that maximize the prior probability, limiting the total number
of entities in a batch to 32 (per GPU). In this stage, we use a batch size of 16 mentions
(per GPU), which means that, for some mentions, we do not have the entities that
maximize the prior probability. This is not an issue, as we still use all entities in the
same batch as negatives for every mention. To compute the loss LDuck, we used a
sampling temperature α = 0.1. Furthermore, in order to provide a better training
signal and counteract missing information in the knowledge graph, we only trained
the model using entities that have at least 5 relations.

We trained the model for 1 epoch on 8 GPUs, validating on the BLINK validation set
every 5000 gradient steps. Then, we used the model that maximizes the validation
performance to produce a representation for every entity, and we mined the closest
representations for each entity in Wikipedia. This step is usually referred to as hard-
negative mining. We used these hard negatives to train the model again, starting from
the same checkpoint used for the negative mining. We used a batch size of 16, with
3 negative examples for each mention and up to 32 entities in a batch. We increased
the sampling temperature for the boxes to α = 0.5, keeping a threshold of at least 5
relations for each entity. We trained the model for one more epoch, validating every
5000 gradient steps as before.

Finally, we repeated the hard-negative mining process and kept training the model
for 10 000 additional gradient steps, using a batch size of 4, 5 hard negatives for each
mention and up to 3 entities that maximize the prior probability p̂(e|m) (if distinct
from the negatives). We did gradient accumulation for 4 steps, increased the maximum
length of a mention from 128 tokens to 512, and set the sampling temperature to
α = 1.0. In this final stage, we assumed the model had already learned to place entities
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Member of political party Member of sports team Cast member

Richard Nixon Justin Moore (soccer) A Time to Sing (film)
Édouard Philippe Scott Jones (Puerto Rican footballer) A Secret Life (film)
Kaname Tajima Blake Camp The Dream (1989 film)
Laurent Fabius Miles Robinson (soccer) Can You Hear the Laughter? The Story of Freddie Prinze
Albert II, Prince of Monaco Simon Thomas (soccer) I Was a Teenage TV Terrorist
Joe Biden Scott Wilson (footballer, born 1993) A Sinful Life
François Hollande Scott Jenkins (soccer) The Morning After (1986 film)
Jean-Marc Ayrault Ali Mohamed (footballer) Cries Unheard: The Donna Yaklich Story
Ursula von der Leyen Scott Fraser (footballer, born 1995) My Sex Life... or How I Got into an Argument
Yasutomo Suzuki Justin Willis (soccer) Enemies, A Love Story (film)

Table D.2: Closest Wikipedia entities to different boxes according to the entity-box distance
function. Correct predictions are highlighted in green, whereas predictions that do not match
relations in Wikidata are highlighted in red. Best viewed in color.

Member of political party Member of sports team Cast member

Ronald Reagan Tayfun Korkut The Crying Game
Jacques Chirac Lilian Thuram Ice Cold in Alex
George H. W. Bush Scott Sanders (baseball) Michael Collins (film)
Madeleine Albright Roberto Carlos (footballer) Viva Zapata!
Deng Xiaoping Tony Adams (footballer) On the Waterfront
Bob Dole Stuart McCall Lawrence of Arabia (film)
Masoud Barzani Joakim Persson My Turn (memoir)
Yasser Arafat Cosmin Contra Aidan Quinn
Bill Clinton Todd Martin Der Spiegel
Liam Neeson Geoff Aunger Julia Roberts

Table D.3: Closest entities (extracted from the validation set of the AIDA dataset) to different
boxes according to the entity-box distance function. Correct predictions are highlighted in
green, whereas predictions that do not match relations in Wikidata are highlighted in red. Only
6 entities in AIDA have the relation Cast member and the model is able to correctly retrieve all
of them, has shown above. Best viewed in color.

in their target boxes, hence we used all entities in the dataset, regardless of the number
of relations they have in Wikidata.

D.5 Additional qualitative results

Following the qualitative analyses of Section 6.5.4, in this section we provide additional
results and further examples.

Analysis of the boxes. Table D.2 shows additional examples of the top-10 entities
lying closer to the center of a box. This analysis is performed on all entities in Wikipedia
(approximately 6M entities for the English language) and complements the examples
reported on the left side of Table 6.4. In this case, we analyzed three more relations,
namely member of political party, member of sports team, and cast member. The model
correctly reports politicians for the first box, athletes for the second, and movies for
the latter, confirming the clustering of entity types that we noticed in Section 6.5.4.
Additionally, the model appears robust to missing information in the knowledge graph,

143



Chapter D Appendix of Chapter 6

DUCK: Berlin

DUCK w/o types: Berlin Marathon

City
Sport
Event

DUCK:
Red Star Belgrade
DUCK w/o types:
KK Crvena zvezda

Basketball
team

Football
team

CRICKET: [...] Australia will
defend the Ashes in a six test
series against England   [...] in
London [...]

Watched by an array of former Olympic
sprint champions at the Berlin grand
prix meeting, Mitchell made a brilliant
start in the 100 metres [...] and held off
Bailey's strong finish to win in 10.08
seconds [...].

BASKETBALL [...] -
Result in an international basketball
tournament on Friday: Red
Star (Yugoslavia) beat Dinamo
(Russia) 92-90 [...].

DUCK:
London
DUCK w/o types:
London Cricket Club

Cricket
Club

City

Figure D.2: Further examples of the predictions of DUCK and DUCK w/o types. Mentions
highlighted in bold green.

being able to predict the relation cast member for movies that are missing it in the KG.

We performed the same analysis, using the same set of relation, on the entities appear-
ing in the validation set of the AIDA dataset. The results are reported in Table D.3. Since
AIDA contains news articles, the dataset includes several mentions of politicians and
athletes, and the model is able to correctly cluster the two types of entities (with only
one error in the top 10 predictions for the relation member of political party). On the
other hand, the dataset includes only 6 entities that are movies (more precisely, entities
with the relation cast member). Interestingly, the top-10 entities closer to the center
of the box corresponding to the relation cast member are all the movies mentioned in
AIDA. The remaining 4 entities listed in Table D.3 include two actors (Aidan Quinn and
Julia Roberts), suggesting that the embedding space carries semantic information and
that actors are closer to movies than other entities.

Examples. Figure D.2 shows further examples of the predictions of DUCK and the
ablation DUCK w/o types. Confirming the insights of Figure 6.2, the first two examples
(left and center), show that DUCK is usually able to predict entities of the correct type
and how this can help the model in making the correct prediction. The third example
(right) shows a case where the model predicts a wrong entity, as it links the mention to
a football team, though the context clearly suggests that the correct entity should be a
basketball team instead. This suggests that, in some rare cases, DUCK might give too
much weight to the prior knowledge about the relations of candidate entities, loosing
knowledge coming from the description of the entity and from contextual information
about the mention.

D.6 Hyperparameters and reproducibility

We trained DUCK using the AdamW optimizer (Loshchilov et al. 2019) on 8 NVIDIA
A100 GPUs, each with 40 GB of memory. Following Ayoola et al. (2022), we initialized
the learning rate to 0 and linearly increased it up to 1.00× 10−5 over the first 5000 steps.
To avoid catastrophic forgetting, we set a maximum learning rate of 1.00× 10−6 when
fine-tuning on AIDA. We limited the number of entities in a batch (which are used

144



Appendix of Chapter 6 Chapter D

to compute the loss term LED) to 32 per GPU, but we shared entity representations
across all devices when computing the loss, reaching an effective maximum number
of entities of 32× 8 = 256 per batch. We increased the maximum length of a mention
to 512 tokens at inference time. Table D.4 reports the values of all hyperparameters of
the model for reproducibility of our results.

Hyperparameter Value

Learning rate (max) 1.00× 10−5

Learning rate warm-up steps 5000
γ 2
λDuck 0.1
λl2 0.1
Number of negative boxes k 512
δmin 0.1
δ′min 0.1
d 1024
α See Appendix D.4
Max entity length ne 128
Max mention length nm See Appendix D.4
Max relation length nr 256
Batch size See Appendix D.4
Max num. entities per batch (per GPU) 32

Table D.4: Hyperparameter values of DUCK
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E.1 Additional details on the model

This section describes the LATFORMER architecture providing additional details that
were not covered in Section 7.4.1. As mentioned in Section 7.4.1, it is possible to
design convolutional neural networks that perform all considered transformations of
the lattice. Figure E.1 shows the architecture of the four expert models that generate
translation, rotation, reflection and scaling masks.






 


Lattice Translation Expert


 




 
 
 





Lattice Rotation Expert


 





Lattice Reflection Expert













Lattice Scaling Expert

Figure E.1: Model architecture of all the mask experts that we considered.

All models are CNNs applied to the identity matrix. In the figure, we use the following
notation:

• M
(δ)
T denotes an attention mask implementing a translation by δ along one

dimension;

• M
(90)
R denotes an attention mask implementing a translation by 90◦;

• MF denotes an attention mask implementing a reflection along one dimension;
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• M
(h)
S denotes an attention mask implementing an upscaling by h along one

dimension.

Using Corollary 7.3.3, we can derive the kernels of the convolutional layers shown
in Figure E.1. These kernels are frozen at training time, the model only learns the
gating function, denoted as σ in the figure. Notice that all the models follow the same
overall structure. However, for scaling, we also learn an additional gate, denoted as
σ(MS ,M

⊤
S ) in the Figure E.1. This gate allows the model to transpose the mask and

serves the purpose of implementing down-scaling operations (down-scaling is the
transpose of up-scaling).

The composition of more actions can be obtained by combining different experts. This
can be done either by chaining the experts or by matrix multiplication of the masks. In
preliminary experiments, we did not notice any significant difference in performance
between the two options and we rely on the latter in our implementation.

E.2 Additional experiments and details on the setup

This section provides additional details on the experimental setup of all our experi-
ments, including further information on the generation of the synthetic tasks and the
data annotation process for ARC.

E.2.1 Experiments on synthetic data

We considered four categories of tasks, namely translation, rotation, reflection and
scaling. Each task is defined in terms of input-output pairs, which are sampled from
the set of all ARC grids and padded to the size of 30 × 30 cells. To each input grid, a
synthetic transformation is applied in order to obtain the corresponding output grid.
For each task in each category, we generated 2048 training pairs and 100 test pairs.

For translation tasks, we have a total of 900 possible translations in a 30× 30 grid. How-
ever, generating data and training models on 900 tasks is computationally expensive,
so we randomly sampled 5 translations in the interval [1, 29]× [1, 29], obtaining a total
of 100 translation tasks. Rotation tasks include all 4-fold rotations except the identity.
Similarly, reflection tasks involve horizontal, vertical and diagonal reflections. Scaling
tasks include all possible up/down scaling transformations of the input grid by factors
of [2, 5]× [2, 5] for a total of 32 scaling tasks.

The models are evaluated based on the mean accuracy on each category. For each task
we compute the accuracy on the test set based on how many of the predicted images
match exactly the ground truth.
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Figure E.2: Distribution of the considered core knowledge priors across the ARC tasks (a) and
user interface built to annotate the dataset (b).

E.2.2 Experiments on ARC

In order to experiment with ARC, we first performed an annotation of the dataset to
identify the underlying knowledge priors for each task. To this end, we built a user
interface where the annotator could browse the tasks and label them by selecting any
combination of the available knowledge priors. Figure E.2b shows the user interface
provided to the annotator, whereas Figure E.2a shows the distribution of knowledge
priors across the ARC tasks. Most tasks follow in more than one of the categories
represented in Figure E.2a.

ARC can be regarded as a meta-learning benchmark, as it provides a set of training
tasks and a set of unseen tasks to evaluate the performance of the model learned on
the meta-training data. It is important to emphasize that we do not target this use case,
as we instead use the same setup as in the synthetic data and learn each task from
scratch using only its training set.

Though simple and elegant, the supervised-learning formulation prevents our models
from reusing knowledge that can be shared between different tasks. In order to mit-
igate this issue, we rely on a data-augmentation strategy. At training time, for each
model and every iteration, we augment each grid 10 times by mapping each color to
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a different color (using the same mapping across training examples). The rationale
behind this data-augmentation strategy is that (1) we assume that for tasks involving
only geometric knowledge priors to be not affected by color mapping and (2) all models
(including LATFORMER) need to learn a function from d-dimensional color representa-
tions to categorical variables, hence it is beneficial if all colors are represented in the
training set.

All models are evaluated based on the ratio of solved tasks and a task is considered
solved if the model can predict the correct output grid for all examples in the test set.

E.2.3 Experiments on LARC

All baselines relying on program synthesis for the experiment on LARC are taken from
the work of Acquaviva et al. (2021). They share an underlying formulation based on
the generate-and-check strategy. The program synthesizer generates a program prog
given a natural program natprog (which can defined by either the input-output pairs
alone or by input-output pairs and the corresponding natural language description)
from the following distribution:

Psynth(prog | natprog) ∝ Pgen(prog | natprog)1[prog ⊢ IO].

Above, Pgen is the generative distribution and 1[prog ⊢ IO] is the checker. The genera-
tive distribution proposes programs by first generating a tree bigram over the grammar
of a DSL and then enumerating deterministically programs from a probabilistic context
free grammar fitted to this bigram distribution in decreasing probability. For simplicity,
Acquaviva et al. (2021) used an unconditioned generatorPsynth(prog) (i.e., a fitted prior)
when language is absent, and language-conditioned models Psynth(prog | NL) when a
natural language description NL is given.

Once a program has been proposed, the checker validates the program prog by execut-
ing it on the interpreter, ensuring that prog(x) = y for all input-output pairs (x, y) ∈ IO,
where IO denotes the set of input-output pairs. The key strength of this approach lies
in its generalizability, as programs that can be checked successfully on all training
examples are likely to generalize.

E.2.4 Additional experiments on image registration

As an additional experiment, to assess the applicability of our LATFORMER on natural
images, we performed experiments on multimodal image registration, namely the
problem of spatially aligning images from different modalities. Image registration
is a well-studied problem in computer vision and we do not aim to establish state-
of-the-art performance. The main purpose of this experiment is giving a hint on
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Aerial data Cytological data

α-AMD SIFT LatFormer α-AMD SIFT LatFormer

CycleGAN (A −→ B) 5.3± 3.1 67.2± 16.8 68.3± 4.5 74.2± 3.8 30.2± 4.2 68.3± 2.2
CycleGAN (B −→ A) 65.7± 6.7 84.0± 2.5 86.1± 3.1 21.3± 1.8 18.2± 3.5 24.2± 3.3
DRIT++ (A −→ B) 35.3± 2.4 38.1± 8.1 38.2± 5.9 50.4± 12.1 24.2± 2.7 62.7± 10.2
DRIT++ (B −→ A) 20.2± 2.1 38.3± 4.5 43.2± 4.1 30.1± 4.5 5.2± 3.1 15.6± 3.5
pixel2pixel (A −→ B) 84.2± 4.0 98.7± 0.4 89.3± 2.2 53.2± 6.9 9.5± 1.0 61.2± 5.5
pixel2pixel (B −→ A) 68.2± 7.5 87.5± 4.03 89.7± 3.3 0.2± 0.1 4.0± 1.0 4.2± 1.1
StarGAN (A −→ B) 63.1± 7.8 7.4± 2.7 72.2± 6.3 60.2± 12.2 12.2± 2.0 59.5± 5.9
StarGAN (B −→ A) 52.1± 4.0 7.9± 1.3 53.3± 4.0 20.8± 3.9 4.1± 0.9 13.4± 3.1
CoMIR 94.2± 5.7 100.0± 0.0 90.2± 3.3 76.2± 12.1 74.1± 6.3 78.1± 3.4

Table E.1: Results of the experiment on image registration. The rows represent different models
trained to translate images from modality A to B (A −→ B) or viceversa (B −→ A).

the applicability of our method to natural images beyond ARC. We refer the reader to
SuperGlue (Sarlin et al. 2020) and COTR (Jiang et al. 2021) to have a sense of approaches
specifically designed for this task.

Popular approaches to multimodal image registrations work in two stages: first, they
learn a model that converts one modality into the other (or to transfer both modalities
in the same representation as proposed by Pielawski et al. (2020)), then they align
the two images using traditional techniques. We follow the experimental setup of
Lu et al. (2021) and experiment with two datasets, one containing aerial views of a
urban neighborhood and one containing cytological images. The images we employ
are views of the same scene, but they are taken with different modalities and they are
translated with respect to one another. We use the code of the authors to generate data
involving only translations. Lu et al. (2021) additionally consider small rotations, but
these transformations are not actions in the symmetry group of a lattice, so we are not
interested in resolving them.

We employ several state-of-the-art methods for modality translation and we compare
our method to α-AMD (Lindblad et al. 2014) and SIFT (Lowe 1999) based on the
success rate metric defined by Lu et al. (2021). A registration is considered successful if
the relative registration error (i.e., the residual distance between the reference patch
and the transformed patch after registration normalized by the height and width of
the patch) is below 2%. Table E.1 reports our results on the image registration tasks
and shows that our approach performs well on both datasets coupled with different
methods for modality translation. We use the same models of Lu et al. (2021) for the
modality translation task. Then, in order to solve the image registration task, we divide
each image into 30× 30 patches and we run our model to predict the translation from
one patch in an image to its counterpart in the corresponding image.
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E.3 Deferred Proofs

We prove both Theorem 7.3.1 and 7.3.2 by induction on the dimensionality of the
hypercubic lattice m.

E.3.1 Base case for theorems 1 and 2

First, it is useful to notice that whenever M ∈ {0, 1}n×n has exactly a single 1 per row,
in other words M · 1n = 1n, then, for any X ∈ Rn×d

MaskedAttention(X;M) =
A

A · 1n1⊤n
X

=
softmax

(
XX⊤
√
d

)
⊙M

softmax
(
XX⊤√

d

)
⊙M · 1n1⊤n

X

= M ·X.

In order to prove the theorem, we need to show that, for any action g ∈ G1, including
translations, reflections and rotations, there exists a mask Mg such that:

MaskedAttention(X;Mg) = g ◦X.

Let us consider different families of actions separately. Translation. As mentioned in
Section 7.3.2, in the 1-dimensional case, a translation by one element to the right for a
vector x = (x1, x2, . . . , xn)

⊤ is given by the circulant permutation matrix:

M = M
(1)
T =


0 0 0 · · · 1

1 0 0 · · · 0

0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0

 .

This holds because M
(1)
T · 1n = 1n, so:

MaskedAttention(x;M
(1)
T ) = M

(1)
T · x = (xn, x1, x2, . . . , xn−1)

⊤.

In general, a translation by δ elements is given by the circulant matrix M
(δ)
T = (M

(1)
T )δ.

Therefore, masks implementing translation operations exist in the 1-dimensional
case and they are circulant permutation matrices. This is enough for a base case for
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Theorem 7.3.1.

For Theorem 7.3.2, simply notice that:

M
(δ)
T = F−1

(
F(In) exp(−

2πj

n
o
(δ)
T r⊤n )

)
where o

(δ)
T =


−δ
−δ

...
−δ

 .

This comes directly from the time-shifting property of the Fourier transform.

Reflection. In the 1-dimensional case, the reflection of a vector x = (x0, x1, . . . , xn)
⊤

is:
MaskedAttention(x;MF ) = MF · x = (xn, xn−1, . . . , x2, x1)

⊤

with

MF =


0 · · · 0 0 1

0 · · · 0 1 0

0 · · · 1 0 0
... · · ·

...
...

...
1 · · · 0 0 0

 .

The attention mask MF can be obtained by shifting the rows of the identity matrix by:

oF =


n− 1

n− 3

n− 5
...
1

 .

Therefore, by the time-shifting property of the Fourier transform we have:

MF = F−1
(
F(In) exp(−

2πj

n
oF r⊤n )

)
.

Rotation. Rotation (4-fold) is not defined in one dimension, so for a base case we
need to consider the square lattice. Let X ∈ Rl1·l2 be a vectorized representaiton of a
n = l1 × l2 dimensional matrix. We need to define a vector oR ∈ Rn such that:

M
(90)
R = F−1

(
F(In) exp(−

2πj

n
oR r⊤n )

)
is a rotation mask. Since rotation is a permutation of the identity, we know the vector
exists. As X is vectorized, the o

(90)
R needs to take into account the size of the first di-

mension l1. For example, in order to perform a rotation on a vectorized representation,
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we need to map the first element of X to the position (l1 − 1). The reader can check
that the vector given by

(o
(90)
R )k = k · (l1 − 1)− ⌊(k − 1)/l1⌋

satisfies the equation above.

Scaling. Although scaling is not a group action of the symmetry group of the lattice,
we pointed out that it still can be defined within the same general formulation as
the other transformations. We can take the 1-dimensional lattice as a base case and
consider a vector x = (x0, x1, . . . , xn)

⊤. Let h ∈ N be a parameter specifying the filter
size of the scaling operation. As an example, for h = 2 we have:

MaskedAttention(x;M
(h)
S ) = M

(h)
S · x = (x1, x1, x2, x2, . . . , x⌊n/2⌋)

⊤,

where:

M
(h)
S =



1 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 0 0


.

This kind of matrix can also be obtained by shifting the rows of the identity as follows:

M
(h)
S = F−1

(
F(In) exp(−

2πj

n
o
(h)
S r⊤n )

)
,

where (o
(h)
S )k = (k − 1 mod h) + (h− 1) · ⌊(k − 1)/h⌋.

E.3.2 Inductive step for theorems 1 and 2

Suppose that Mg1 ∈ {0, 1}n1×n1 and Mg2 ∈ {0, 1}n2×n2 are attention masks imple-
menting actions g1 ∈ Gm1 and g2 ∈ Gm2 on some tensors X1 ∈ Rl1×···×lm1 and
X2 ∈ Rl′1×···×l′m2 , with n1 = l1 · . . . · lm1 and n2 = l′1 · . . . · l′m2

. Consider a tensor
X ∈ Rl1×···×lm1×l′1×···×l′m2 and its vectorization X ∈ Rn with n = n1n2.

We have:

MaskedAttention(X;Mg1 ⊗Mg2) =

= (Mg1 ⊗Mg2)X

= (Mg1 ⊗ In2)(In1 ⊗Mg2)X

= MaskedAttention(MaskedAttention(X; In1 ⊗Mg2);Mg1 ⊗ In2).
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Now notice that:

MaskedAttention(X; In1 ⊗Mg2) = (In1 ⊗Mg2)X

= vec(Mg2 vec
−1(X) In1)

= vec(Mg2 vec
−1(X)),

and similarly

MaskedAttention(X;Mg1 ⊗ In2) = (Mg1 ⊗ In2)X

= vec(In2 vec
−1(X)M⊤

g1)

= vec((Mg1 vec
−1(X)⊤)⊤).

Therefore, we conclude that performing masked attention with the mask Mg1⊗Mg2 on
X is equivalent to applying g1 on the first m1 dimensions and g2 on the last m2 dimen-
sions of X. This provides a way for building attention masks for higher-dimensional
lattices using the primitive masks defined in Section E.3.1, proving both Theorem 7.3.1
and 7.3.2.

E.3.3 Proof of Corollary 1

The proof of Corollary 1 follows immediately from Theorem 7.3.2 and from the prop-
erty of the Fourier transform according to which multiplying in the Fourier domain
implements a convolution in the original domain.
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