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Abstract

Buildings play a pivotal role in the ongoing worldwide energy transition, accounting for 30%

of the global energy consumption. With traditional engineering solutions reaching their limits

to tackle such large-scale problems, data-driven methods and Machine Learning (ML) tools

are gaining momentum. In particular, Neural Networks (NNs) are becoming prominent, both

for modeling tasks or as control policies in Deep Reinforcement Learning (DRL) agents.

Despite their remarkable achievements, NNs however suffer from poor generalization to

unseen data and may fail to adhere to the fundamental laws of physics. Consequently, the

first part of this thesis focuses on merging physical insights into NNs, proposing the novel

Physically Consistent Neural Network (PCNN) architecture. In PCNNs, a physics-inspired

module leveraging established domain expertise runs in parallel to a black-box NN to ensure

the model is aligned with the principles of physics. Applying PCNNs to multi-zone building

thermal modeling, we prove that they are consistent with the laws of thermodynamics by

design, as required, while simultaneously achieving state-of-the-art modeling performance

among data-driven methods on a case study.

The second part of this thesis starts by discussing the characteristics of an ideal building

controller, identifying model-free DRL control policies as strong candidates. We then illustrate

how DRL agents can not only significantly surpass baseline controllers but also achieve near-

optimal performance. Finally, we propose to enforce expert-designed rules on DRL agents

to avoid suboptimal decisions and accelerate learning. Collectively, these investigations on

single-zone temperature case studies point toward the potential of DRL agents being deployed

from scratch in buildings and autonomously acquiring near-optimal behaviors within complex

environments in a reasonable amount of time, bypassing the need for engineering-heavy

control solutions.

Despite their versatile capabilities, however, the black-box nature of NNs may not be ideal

in practice. To tackle this issue, the last part of this thesis focuses on using automatic back-

propagation for System Identification (SI), extending beyond building-specific contexts. We

introduce SIMBa, a general-purpose SI toolbox leveraging ML tools to identify structured

linear state-space models from data. SIMBa facilitates the seamless incorporation of prior

domain expertise while simultaneously ensuring model stability and achieving impressive per-

formance across various SI tasks from both simulated and real-world data. Finally, we present

one extension of SIMBa to identify irreversible port-Hamiltonian dynamics, creating nonlinear

models that inherently adhere to the laws of thermodynamics and paving the way for the

identification of general structured nonlinear systems through the power of backpropagation.
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Abstract

Altogether, this thesis investigates diverse strategies to merge prior knowledge and ML tech-

niques, encompassing both the adaptation of NNs to align with underlying physics and the

utilization of automatic backpropagation to extract structured models from data. Overall, our

results hint at the effectiveness of merging both worlds, leveraging the large-scale capabilities

of ML tools to solve complex problems while anchoring their solutions in the foundational

expertise of domain-specific knowledge.

Keywords: Machine Learning, Deep Reinforcement Learning, System Identification, Prior

knowledge integration, Building thermal modeling, Building control.
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Résumé

Les bâtiments jouent un rôle essentiel dans la transition énergétique puisqu’ils représentent

30% de la consommation énergétique mondiale. Les solutions d’ingénierie traditionnelles at-

teignant leurs limites pour résoudre de tels problèmes de grande échelle, les méthodes basées

sur les données et l’Apprentissage Machine (AM) progressent. Les Réseaux de Neurones (RNs),

notamment, suscitent un intérêt grandissant, que ce soit pour des tâches de modélisation ou

en tant que contrôleurs entraînés par Apprentissage par Renforcement (AR).

Malgré leurs avantages, les RNs ne sont cependant pas capable de réagir à de nouvelles

données en général et peuvent ne pas respecter les lois de la physique. Par conséquent,

la première partie de cette thèse introduit les RNs Physiquement Cohérents (RNPCs). Ils

contiennent deux modules en parallèle, le premier s’assurant le respect des lois physiques et le

second comprenant un RN pour s’ajuster aux données mesurées. En appliquant les RNPCs à

une étude de cas de modélisation thermique de bâtiment, nous prouvons qu’ils sont cohérents

avec les lois de la thermodynamique, comme requis, tout en atteignant la meilleure précision

parmi les méthodes testées.

La deuxième partie de ce travail commence par aborder les caractéristiques d’un contrôleur

de bâtiment idéal, identifiant l’AR comme un candidat intéressant. Nous illustrons ensuite

comment l’AR peut non seulement surpasser significativement les contrôleurs de référence,

mais aussi atteindre des performances quasi-optimales. Enfin, nous proposons d’imposer des

règles conçues par des experts lors de l’apprentissage pour éviter les décisions sous-optimales

et accélérer la convergence. Dans l’ensemble, les cas d’étude simplifiés analysés indiquent le

potentiel de l’AR pour apprendre à des RNs à acquérir autonomement des comportements

quasi-optimaux dans des environnements complexes et en un laps de temps raisonnable.

Malgré leurs capacités polyvalentes, cependant, la nature boîte noire des RNs peut ne pas être

idéale en pratique. Pour résoudre ce problème, la dernière partie de cette thèse se concentre sur

l’utilisation d’outils développés pour les RNs appliqués à l’identification de modèles physiques

traditionels, pour les bâtiments mais pas seulement. Nous présentons SIMBa, qui identifie

des modèles linéaires structurés à partir de données grâce à ces outils. Enfin, nous proposons

une extension de SIMBa pour identifier des modèles port-Hamiltonien irréversibles, modèles

non linéaires qui respectent intrinsèquement les lois de la thermodynamique. Collectivement,

ces investigations ouvrent la voie à l’identification de systèmes non linéaires structurés grâce

aux outils développer pour les RNs.

Dans l’ensemble, cette thèse explore diverses stratégies pour fusionner les connaissances

préalables et les techniques d’AM. Elle englobe à la fois l’adaptation des RNs pour les aligner

v



Résumé

sur la physique sous-jacente et l’utilisation d’outils développés pour les RNs pour identifier

des modèles traditionels à partir de données. Collectivement, nos résultats suggèrent l’ef-

ficacité du mélange des deux mondes, exploitant les capacités à grande échelle des outils

d’AM pour résoudre des problèmes complexes tout s’assurant que les solutions respectent les

connaissances des experts du domaine.

Mots-clés : Apprentissage machine, Apprentissage par renforcement, Identification de systèmes,

Intégration de connaissances expertes, Modélisation thermique de bâtiments, Contrôle de bâti-

ments.
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1 Introduction

In the global shift towards sustainable energy to combat climate change, the emergence of new

technologies will play a pivotal role. As energy systems become increasingly interconnected

and, as a result, more intricate, expert- and engineering-based methods to optimize their

operations indeed reach their limits. Conversely, purely data-driven solutions, particularly

those relying on Neural Networks (NNs), have gained popularity in recent years but still lack

performance and safety guarantees for real-world applications. Hybrid methods fusing prior

knowledge and emerging technologies are thus bound to become leaders of the transition.

These approaches have the potential to address complex problems while retaining the valuable

insights acquired from decades of understanding and describing physical systems.

1.1 Decreasing the energy intensity of the building sector

As of 2022, building operations accounted for 30% of the global final energy demand and 26%

of the global energy-related carbon emissions1 worldwide [1]. Notably, almost half of that

energy was solely dedicated to space and water heating [2], with an additional approximately

10% contributed by space cooling.2 Collectively, almost 60% of the total energy usage in

buildings — equivalent to 18% of the global final energy consumption — can hence be traced

back to space and water heating as well as space cooling operations, making them primary

targets for energy consumption reduction investigations.

Large-scale electrification of energy systems — coupled with a phase-out of fossil-based elec-

tricity generation technologies — has been identified as one of the most promising pathways

for their decarbonization [4]. Alternatively, instead of modifying the energy supply mix, one

can directly intervene at the building level to decrease the associated energy demand. This typ-

1This can be broken down into 8% directly stemming from buildings and the other 18% being indirect emissions
linked to the production of electricity and heat used in buildings.

2Approximated from the fact that cooling energy demand has been steadily growing since 2018 when it was
responsible for roughly 7% of the total building energy budget, i.e. one-fifth of the electricity consumption in
buildings [3], which itself represents 35% of the total building energy consumption [1].
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Chapter 1. Introduction

ically involves the construction of more efficient buildings and appliances [5], the retrofit of old

edifices [6], or the introduction of advanced control methods in existing infrastructures [7].3

This thesis focuses on the last option, aiming to provide insights into data-driven methods to

decrease the energy intensity of existing buildings through smart control algorithms.

1.1.1 The need for advanced building control algorithms

While prior research has demonstrated the potential for substantial energy savings by adjusting

building temperature setpoints [8], such considerations always have to be weighed against the

comfort of the occupants. Indeed, it is imperative to maintain indoor temperatures within an

acceptable range, as extremes can lead to discomfort [9], and energy minimization should not

come at the expense of occupant well-being [10]. Remarkably, each person might perceive

thermal comfort differently, resulting in personalized preferences [11]. To make matters worse,

both objectives are usually conflicting, with higher levels of thermal comfort often coming at

the price of additional energy consumption — and the relationship between the amount of

energy used and the subsequent comfort of the occupants is complex, giving rise to highly

nontrivial trade-offs.

Beyond the preferences and thermal comfort requirements of the occupants rendering the

building energy optimization problem challenging in general, their behavior also directly influ-

ences the amount of energy needed to maintain satisfactory indoor conditions. In commercial

buildings, different occupancy patterns can lead to energy consumption variations from 30%

to 150%, for example [12]. On top of that, buildings can be significantly impacted by external

weather conditions, especially if not well insulated. Adding to the complexity, each building is

unique and hence requires a tailored controller — unlike industrial processes, for example,

where the same solution can be applied repeatedly once it has been optimized.

Altogether, this calls for control solutions able to minimize building energy consumption

without compromising occupant comfort, regardless of the circumstances or the specific

characteristics of the building, a very challenging control problem in general [13].

1.1.2 The rise of data-driven methods

Despite the known advantages of advanced control methods, the building automation indus-

try still mainly relies on Rule-Based Controllers (RBCs) [7, 14]. However, RBCs are reactive

controllers, i.e., they cannot anticipate environmental changes, and hence generally perform

suboptimally [15]. Furthermore, manually tuning them to achieve good performance — or

retuning them when the operating conditions change — is highly time-consuming [16].

3Note that advanced control methods will also be required to maximize the utility of private Photovoltaic (PV)
electricity production and subsequently decrease the electricity demand of buildings.
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1.1 Decreasing the energy intensity of the building sector

A model-based paradigm

These shortcomings of RBCs can be addressed with proactive control methods, often lever-

aging Model Predictive Control (MPC), which can simultaneously achieve impressive energy

savings and thermal comfort improvement over standard baselines [17, 18]. MPC relies on a

model of the building under control and disturbance predictions to anticipate environmental

changes and find optimal control inputs [7]. More recently, high-fidelity models have also

been used as simulators to train (Deep) Reinforcement Learning ((D)RL) agents — which learn

via trial and error [19] — before deploying them in physical buildings [14]. Overall, accurate

building thermal models are thus nowadays of paramount importance in building control

applications.

Constructing a model from first principles and calibrating its parameters to achieve good

performance is, however, a time-consuming and engineering-heavy endeavor [20, 21]. To

alleviate this workload, data-driven modeling methods gained considerable momentum in

the past years, taking advantage of the increasing amount of data collected in buildings [22].

Traditionally, one uses data to identify the parameters of simplified physics-based models,

leading to the gray-box modeling paradigm. Nevertheless, this parameter identification

process is generally nontrivial [23] and yields a trade-off between model complexity and

accuracy [24].

Alternatively, statistical patterns can directly be derived from data using Machine Learning

(ML) tools, adopting a black-box modeling approach and bypassing the need for engineering

altogether [25]. Following their successes in a wide variety of tasks [26], NNs have recently

been applied to thermal building modeling as well [25]. Although they achieve impressive per-

formance, however, vanilla NNs are completely physics-agnostic, which can lead to spurious

behaviors in practice [27]. Further work is hence required to design black-box models con-

sistent with known system properties, typically stemming from the underlying physical laws,

before such data-driven paradigms achieve widespread adoption in practical applications.

A model-free vision

Despite the accomplishments of model-based building control methods and the latest ad-

vances in data-driven modeling,4 we argue in Chapter 3 that model-free DRL algorithms

provide a valid alternative with interesting potential for widespread adoption. They could

indeed bypass the need for accurate models altogether, avoiding the associated pitfalls and

paving the way for building-agnostic yet well-performing control solutions. Furthermore,

they are ideal candidates for controllers being deployed from scratch in buildings, potentially

removing the need for engineering throughout the entire process.

However, because of the slow thermal dynamics of buildings5 and the high sample com-

4This includes our investigations in Chapters 2 and 4.
5A new control input is usually applied every 10–15 min due to the high time constant of thermal dynamics [28].
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Figure 1.1: Schematic representation of this thesis, which lies at the intersection of tradi-
tional methods and Neural Networks, leveraging data to integrate both approaches. We
first propose to introduce prior physical and system knowledge into NN-based models
and controllers in Chapters 2 and 3, respectively, before bringing the automatic differenti-
ation paradigm for structured system identification in Chapter 4.

plexity of DRL algorithms [29], it often takes months for a vanilla model-free DRL policy to

converge [20, 30]. Furthermore, DRL agents rely on exploration to find optimal actions and

might hence incur unacceptable discomfort for the occupants or high energy bills during the

learning phase [31]. Additional work is thus needed to create DRL agents rapidly converging

toward effective solutions and satisfying the comfort needs of the occupants at all times to

promote widespread acceptance.

1.2 Marrying Neural Networks and traditional methods

As depicted in Figure 1.1, vanilla NNs habitually rely on Automatic Differentiation (AD) and

the backpropagation algorithm to optimize some performance criterion on the measured

data without requiring any prior knowledge about the system to model or control. On the

other hand, traditional methods generally build upon expert knowledge of the system and/or

the underlying physical laws to design structured models or controllers, which are then often

calibrated using data.

To tackle the aforementioned building modeling and control challenges, this thesis provides

insights into hybrid data-driven methods fusing NNs, physical knowledge, and system proper-

ties for modeling or controller design. It thus lies at the intersection of these paradigms and is

separated into three main Chapters as sketched in Figure 1.1.

Specifically, to exemplify the power of approaches combining the strengths of both NNs and

4



1.2 Marrying Neural Networks and traditional methods

traditional methods, we first investigate how to alleviate the system- and physics-agnosticism

of NN models through prior knowledge integration in Chapter 2. Similarly, we then analyze

how to incorporate expert intuition into model-free DRL control policies in Chapter 3. Col-

lectively, these examinations allow us to enforce desired properties on NNs, moving away

from vanilla architectures. Conversely, Chapter 4 looks at traditional System Identification (SI)

techniques and investigates how to leverage AD to solve challenging SI tasks. These analyses

showcase the benefits of leveraging ML tools to address complex problems that typically

exceed the capabilities of traditional approaches.

Chapter 2: Physically Consistent Neural Networks for thermal building modeling

Despite their remarkable performance, NNs also come with significant challenges: they are

infamous for their brittleness and can fail spectacularly on previously unseen data [27]. This is

critical for control-oriented models: if the NN model fails to capture the underlying physical

laws, the associated controller might subsequently make spurious decisions [32]. Indeed,

when a building model does not capture a physically meaningful relationship between cooling

power inputs and temperatures, for example, this can mislead a controller to turn on the air

conditioning when it is snowing outside because it thinks — according to the model — that

this will increase the indoor temperature, similarly to what was observed in [30, 33].

The field of Physics-inspired ML (PiML) has recently emerged to tackle these challenges and

bridge the gap between physics-grounded yet limited methods and highly expressive but

physics-agnostic ML models [34, 35]. The majority of these recent advancements hinge on

Physics-inspired NNs (PiNNs), which typically integrate a physical loss term in addition to

the conventional data-driven counterpart. This steers NNs towards solutions that not only fit

the data well but also align with the underlying physical laws [36]. However, these rules are

not enforced but rather encouraged through the additional loss term and PiNNs may still fall

short of consistently adhering to them even after extensive training.

To guarantee adherence to the required laws at all times, researchers have hence investigated

various ways to directly encode physics in NNs by design, giving rise to Lagrangian NNs [37] or

Hamiltonian NNs [38], among others. However, such a tailored architecture has never been

applied to building thermal modeling, where compliance with the laws of thermodynamics

is required to ensure energy transfers and heat gains are captured accurately.

Main contributions

In response to the identified need for thermodynamically consistent NNs, Chapter 2 presents

one potential solution, dubbed Physically Consistent Neural Networks (PCNNs), specifically

applied to building thermal modeling. The key idea is to let a physics-inspired module run in

parallel to an NN, the former guaranteeing compliance with the laws of physics and the latter

capturing highly nonlinear behaviors. This chapter is heavily inspired by the following papers:

5



Chapter 1. Introduction

[39] Loris Di Natale, Bratislav Svetozarevic, Philipp Heer, and Colin Jones. Physically con-

sistent neural networks for building thermal modeling: theory and analysis. Applied

Energy, 325:119806, 2022.

[40] Loris Di Natale, Bratislav Svetozarevic, Philipp Heer, and Colin Jones. Towards scalable

physically consistent neural networks: An application to data-driven multi-zone thermal

building models. Applied Energy, 340:121071, 2023.

In the examined case studies, PCNNs achieve performance on par with vanilla NNs despite

their constrained architecture to follow the laws of thermodynamics. On the other hand,

they surpassed other physically consistent data-driven methods by 20–30%. Although these

investigations were limited to a single building, they hint that PCNNs can indeed achieve state-

of-the-art modeling performance among data-driven methods while respecting the underlying

physical laws by design, thereby alleviating the engineering burden of traditional physics-

based approaches. Notably, the modularity of PCNNs could allow them to be applied beyond

building thermal modeling, paving the way towards generic hybrid methods merging NNs

and prior expert knowledge for physical system modeling.

Chapter 3: Prospects and hurdles of Deep Reinforcement Learning for building
control

After discussing the use of NNs for thermal modeling in-depth in Chapter 2, we turn to NN

controllers trained via DRL in Chapter 3. We first identify seven key characteristics of an ideal

building controller, namely optimality, robustness to disturbances, constraint satisfaction,

adaptability, scalability, transferability, and convergence speed. After thoroughly comparing

with other control methods, we argue that model-free DRL agents are well-positioned for

widespread adoption according to these requirements. Indeed, they can circumvent the

challenges associated with the intricate design of accurate models, leading to good adaptability,

scalability, and transferability properties [41, 42].

On the other hand, while DRL agents have been compared to MPC controllers in [13, 43, 44],

for example, their optimality gap — how close to the optimal performance they are — is seldom

discussed. Furthermore, as highlighted in Section 1.1.2, vanilla DRL policies suffer from slow

convergence speed and might behave inadequately during the exploration phase, i.e., violate

the comfort of the occupants. These concerns naturally hinder real-world experiments and

call for data-efficient constrained DRL solutions [14].

Main contributions

Following the need for advanced building control methods to decrease the energy intensity of

the sector discussed in Section 1.1, Chapter 3 proposes characteristics of an ideal building

controller and a contrastive analysis of some of the existing methods in light of these require-

ments. Having recognized model-free DRL agents as promising candidates, we then offer
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insights to address some of the critical unresolved questions about these controllers, drawing

inspiration from the works in:

[45] Loris Di Natale, Bratislav Svetozarevic, Philipp Heer, and Colin Jones. Near-optimal

deep reinforcement learning policies from data for zone temperature control. In 2022

IEEE 17th International Conference on Control & Automation (ICCA). IEEE, 2022.

[46] Loris Di Natale, Bratislav Svetozarevic, Philipp Heer, and Colin Jones. Computationally

Efficient Reinforcement Learning: Targeted Exploration leveraging Simple Rules. In

2023 62nd IEEE Conference on Decision and Control (CDC), pages 2334–2339. IEEE, 2023.

Specifically, we show that model-free DRL agents exhibit the potential to achieve near-optimal

performance in various settings. Furthermore, they can be constrained to avoid critical failures

and converge within a reasonable timeframe. Although these results have yet to be confirmed

in different case studies, they hint at the potential of system-agnostic DRL control policies

to ensure the comfort of the occupants while learning to minimize energy consumption

from scratch and without engineering overhead, a first step towards generic and widely

applicable building controllers.

Chapter 4: Leveraging automatic differentiation for system identification

Instead of introducing prior knowledge in NNs, either for modeling or control purposes, Chap-

ter 4 turns the problem around and investigates how to leverage ML tools to help traditional SI

approaches [47]. Therein, we are particularly interested in methods allowing the integration

of desired system properties in the identified model, a nontrivial task with traditional tools.

Throughout this chapter, we argue that casting the SI problem in an ML framework can help

mitigate some of the associated issues.

For example, in the common case of discrete-time Linear Time-Invariant (LTI) state-space

SI, we frequently require the identified model to be stable [48]. Notably, stability can be

enforced by modifying the state-space matrices a posteriori [49], but this correction might

incur significant performance loss [50]. Alternatively, one can leverage free parametrizations

of stable matrices, such as in [51], to ensure stability by design. These methods, however, can

only identify generic matrices; there is no mechanism to integrate prior knowledge about

the system beyond stability. This may become crucial in practical applications where the

state-space matrices are known to have specific sparsity patterns, for example [52]. Conversely,

prior knowledge of the system matrices can be enforced through the COSMOS framework [53],

for example, but at the expense of stability guarantees.

To make matters worse, extending beyond linear state-space SI to enforce more generic system

properties — typically stemming from physical laws — generally adds further complexity to

the problem. Indeed, while fitting linear models to minimize the one-step-ahead prediction

error simplifies to a Least Squares (LS) optimization problem [54], identifying other types

of dynamical models or minimizing the multi-step-ahead prediction error often becomes

7
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more intricate [55]. Overall, identifying generic systems by minimizing the multi-step-ahead

prediction error while incorporating desired structural properties like stability, sparsity, or

adherence to physical principles remains challenging.

Main contributions

Motivated by these shortcomings of existing methods, Chapter 4 introduces the open-source

system-agnostic SIMBa (System Identification Methods leveraging Backpropagation) tool-

box. It leverages automatic differentiation to simultaneously optimize the multi-step-ahead

prediction error, ensure the stability of the identified model, and allow for prior knowledge

integration for linear state-space SI. Subsequently, we present an extension of SIMBa to

identify nonlinear systems while maintaining thermodynamic consistency using Irreversible

port-Hamiltonian (IPH) modeling. This chapter is heavily influenced by the following papers:

[56] Loris Di Natale,† Muhammad Zakwan,† Bratislav Svetozarevic, Philipp Heer, Giancarlo

Ferrari Trecate, and Colin Jones. Stable linear subspace identification: A Machine

Learning approach. Submitted to ECC 2024, arXiv:2311.03197, 2023.

[57] Loris Di Natale,† Muhammad Zakwan,† Philipp Heer, Giancarlo Ferrari Trecate, and

Colin Jones. SIMBa: System Identification Methods leveraging Backpropagation. Sub-

mitted to IEEE Transactions on Control Systems Technology. arXiv:2311.13889, 2023.

[58] Muhammad Zakwan,† Loris Di Natale,† Bratislav Svetozarevic, Philipp Heer, Colin

Jones, and Giancarlo Ferrari Trecate. Physically consistent neural ODEs for learning

multi-physics systems. IFAC-PapersOnLine 56(2), 5855-5860, 2023.
† Authors contributed equally.

Across thorough numerical experiments, our findings indicate that SIMBa outperforms tra-

ditional stable state-space SI methods by more than 25% in the majority of instances. In

specific applications, the performance gains can exceed 90%. Similar conclusions are drawn

for the nonlinear extension leveraging IPH dynamics, which significantly outperforms classical

methods. Collectively, these investigations highlight the potential of ML tools to help scale

traditional SI methods to more complex problems. This introduces a novel paradigm for the

identification of structured models from data.

Credit assignment

Chapter 4 stems from a highly fruitful collaboration with Muhammad Zakwan, with the first

two authors of the ensuing papers [56–58] equally sharing the workload. While all the results

are reported here for completeness, any merit or credit is thus shared between the two authors.

In general, Muhammad Zakwan spearheaded the theoretical contributions while the author

of this thesis led the software development and numerical investigations. Note that since the

text in this chapter is largely inspired by co-authored papers [56–58], portions of it will likely

appear in Muhammad Zakwan’s thesis in a similar fashion.
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1.3 Putting everything together

While Chapters 2 and 3 are devoted to building energy consumption reduction applications,

we stress here that the methods presented therein may be applied to different fields. They

exemplify possibilities to leverage prior and system knowledge to enforce desired properties

on NNs, enhancing their reliability and enabling potential widespread real-world applications

of this emerging technology. In contrast, Chapter 4 underscores the often untapped potential

of ML tools, especially the automatic differentiation framework, to help traditional SI methods

tackle previously hard-to-grasp problems. We postulate that analogous techniques to those

employed in SIMBa could be utilized to support the integration of ML tools into the design of

traditional control methods, addressing the missing link in Figure 1.1.

Remarkably, since NNs also rely on backpropagation during training, they could be seamlessly

incorporated into SIMBa, typically to capture unmodeled effects in parallel with the known

parametrized dynamics. Interestingly, in that case, SIMBa would recover the PCNN architec-

ture discussed in Chapter 2, with a physics-inspired module and an NN running in parallel.

In other words, enforcing desired system properties on standard NNs or, conversely, starting

from a traditional physics-grounded model and introducing an NN in parallel to capture

complex dynamics both give rise to similar final model architectures.

Although we do not discuss it in detail throughout this work, similar remarks can be made for

controllers. For example, we focus on ensuring that NN-based control policies follow some

ground rules at all times through computationally inexpensive modifications in Chapter 3,

which is conceptually related to the modified PCNN architecture in the modeling case. Con-

versely, one could start from a known controller — to ensure minimal performance guarantees

— and subsequently enhance its performance by adding an NN in parallel, in a similar vein to

what is proposed in Chapter 4 for models.

Overall, this thesis provides two alternative perspectives on hybrid methods, either starting

from the point of view of ML or control engineers and complementing it with the other

perspective, and highlights their similarity. Altogether, our investigations show the efficacy

of integrating traditional and emerging methods to achieve and exceed state-of-the-art

performance while ensuring desired properties are respected.
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2 Physically Consistent Neural Networks
for thermal building modeling

Given the importance of accurate thermal building models discussed in Section 1.1.2, this

chapter is devoted to the development of a novel Physically Consistent Neural Network (PCNN)

architecture. PCNNs merge traditional physics-based insights and Neural Networks to si-

multaneously retain physical consistency and achieve state-of-the-art performance among

data-driven methods while naturally scaling to large-scale multi-zone buildings.

2.1 The need for physically consistent Neural Networks

Fueled by the ever-growing available computing capacity and amount of data being collected

in various applications, Machine Learning recently entered the Deep Learning (DL) era [26].

Indeed, NNs with hundreds of thousands of parameters are nowadays routinely trained [59].

While their complex architectures allow them to achieve state-of-the-art performance on very

different tasks [60–64], deep NNs also come with significant practical challenges, typically

stemming from their data inefficiency and lack of generalization to unseen data [27, 65, 66].

NNs indeed often require millions of samples to be trained accurately, leading to heavy

computational burdens. Furthermore, they might subsequently fail to provide meaningful

solutions on new data they were not trained on, i.e., fail to generalize. Throughout this

chapter, we aim to analyze this generalization issue, proposing the novel PCNN architecture

as one potential solution.

2.1.1 The generalization issue of Neural Networks

First observed in 2013, this intriguing NN behavior is best visualized on image recognition and

classification tasks, where adding small perturbations — indistinguishable to the human eye —

on the input image can change the decision of a state-of-the-art NN from a “dog” to a “camel”,

for example [66]. Similarly, NNs can attain superhuman performance on image recognition

tasks and yet fail when the background changes [67, 68]. This led to the development of

adversarial DL, where people look for different ways to fool NNs, exemplifying the brittleness
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of their predictions [69, 70].

More subtle and maybe more worryingly, NNs can learn shortcuts [27], which means they

might fit the training data well without fundamentally understanding the problem, hence

failing to generalize. For example, they can generate captions without ever looking at the

corresponding images [71]. In a similar vein, an NN could detect pneumonia from X-ray scans

with good accuracy only by looking at hospital-specific tokens and correlating it with each

hospital’s pneumonia prevalence, never examining the lungs [72]. While these are only a few

examples — more details can be found in [27] —, they clearly indicate how NNs can find

ways to perform extremely well without fundamentally solving the task at hand. These flawed

models are however unable to generalize and cannot be deployed in real-world applications

since we have no means to know how they will react to new conditions.

To circumvent this generalization issue, researchers often rely on better data sets that cover

the entire spectrum of inputs and allow NNs to react to any situation. This however requires

vast computational resources and is only possible in fields where a significant amount of

data is available, such as for tasks related to natural language processing [60] or images [73].

Additionally, to ensure some level of generalization, practitioners typically separate the data

into training and validation sets, the former being used to train the network and the latter to

assess its performance on unseen data to avoid overfitting the training data [74]. However,

classical NNs cannot be robust to input modifications that do not exist in the entire data set.

Implications for thermal building models

Although PCNNs might be applied to model various physical systems, we are mainly interested

in models able to predict the evolution of the temperature inside a building over time through-

out this chapter. As discussed above, even though NNs achieve state-of-the-art performance

on such time series modeling tasks [75], we cannot trust classical NNs to perform well in

all situations and grasp the underlying physical laws. They might indeed violate the laws of

thermodynamics despite achieving high accuracy during training, something problematic for

control-oriented applications, where the controller subsequently needs to capture the impact

of heating and cooling correctly, as mentioned in Section 1.2.

To make matters worse, even if several years of building operation data are available, one

will always face an input coverage problem. Indeed, buildings are usually inhabited and

operated in a typical fashion to maintain a comfortable temperature for the occupants —

heating when it gets cold in winter and cooling when it gets hot in summer. Most data sets are

hence inherently incomplete and we cannot hope to learn robust NNs that grasp the effect of

heating in summer, for example [20, 30, 33].

This is illustrated in Figure 2.1, where one can compare the temperature predictions of a

classical linear physics-based Resistance-Capacitance (RC) model, a classical Long Short-

Term Memory network (LSTM), and a PCNN under different heating and cooling power inputs
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in one thermal zone. Interestingly, the plotted LSTM achieved a superior accuracy than both

other models on the training data — overfitting it, as detailed in Section 2.5.1 and Table 2.2 —

but clearly failed to capture the impact of heating and cooling. This hints that only measuring

the accuracy of predictions of NNs might sometimes hide spectacularly flawed behaviors

they picked up, similarly to what was observed in [27].

2.1.2 Introducing physics-based prior knowledge

In general, classical NNs suffer from underspecification, as reported in a large-scale study

from Google [76], which might explain their brittleness. As a promising countermeasure,

researchers started to include prior knowledge — also known as inductive biases — into NNs

to facilitate their training and improve their performance. This led to the success of the

CNN, RNN, and graph NN families, among others, which are specially designed to capture

spatial invariance [77], temporal dependencies [78] and structural relations [79] in the data,

respectively. When interested in modeling a physical system, such as the thermal dynamics of

a building, we often know the underlying physical laws and can hence similarly look to impose

constraints on NNs to help them learn meaningful solutions.

In recent years, pioneered by the physics-guided NNs of Karpatne et al. [80, 81] and the more

general physics-informed DL framework originally proposed by Raissi et al. [82–84], Physics-

informed or Physics-inspired NN (PiNN) designs flourished [85–87]. While many works modify

the loss function of NNs to steer the learning towards physically meaningful solutions [36, 88],

these schemes cannot provide any guarantee about the final model respecting the desired

constraints. Furthermore, measurement errors or unmeasured heat losses, for example, can

corrupt data samples, which might consequently not follow the expected physical laws exactly,

making it hard for NNs to simultaneously drive the data- and physics-based losses to zero [89].

To avoid these issues, more systematic approaches directly alter the networks’ architecture

to ensure the underlying physical laws are followed by design, typically capturing Lagrangian

or Hamiltonian dynamics [37, 38, 65]. Additionally, since the desired properties are hard-

coded in such models, the loss function does not need to be altered, which avoids common

pitfalls of classical PiNNs, such as the difficult trade-off between the accuracy and the physical

consistency of the model, which can also increase the amount of data needed [90, 91].

Despite this progress, NNs tailored to capture the laws of thermodynamics — a requirement

of building thermal models — were never developed. To this end, we propose the novel PCNN

architecture in this chapter, which includes existing knowledge of the system at its core. The

main idea is to introduce a physics-inspired module capturing known physical dynamics in

parallel to the main NN, injecting an inductive bias in PCNNs such that they do not need to

learn everything from data, but only what we cannot easily characterize a priori.

Methodologically, PCNNs are close to the physics-interpretable shallow NNs, where the inputs

are also processed by two parallel modules, one to retain physical exactness when possible
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Figure 2.1: Temperature predictions of a linear physically consistent model and the
proposed PCNN compared to a classical LSTM under different control inputs. The gray-
shaded areas represent the span of the linear model predictions to provide a visual
comparison with both black-box methods. While the LSTM presents a lower training
error than the PCNN (see Section 2.5.1), indicating a good fit to the data, it does not
capture the impact of the different heating/cooling powers applied to the system, e.g.,
predicting higher temperatures when cooling is on than when heating is. The specific
structure of PCNNs introduced in Section 2.3, on the other hand, allows them to retain
physical consistency, similarly to classical physics-based models, while improving the
prediction accuracy (see Section 2.5.1).
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Figure 2.2: Structural differences between the different existing methods, starting from
first principles on the left and using more and more data towards black-box approaches.

and one to capture nonlinearities through a shallow NN [92]. Also related in spirit to the PCNN

architecture, Hu et al. introduced a specific learning pipeline, where the output of the forward

NN is fed back through a physics-inspired NN structure to reconstruct the input and hence

ensure the forward process retains physical consistency [93].

2.2 Towards prior knowledge-infused Neural Network building ther-

mal models

Existing building thermal models can be broadly classified into three categories: physics-

based, black-box, and hybrid methods, as pictured in Figure 2.2. Given the focus of this section

on PiNNs and to emphasize differences with classical gray-box models, we furthermore split

hybrid methods into two different parts in this literature overview. Due to the numerous works

on building modeling, we only provide a short summary of the strengths and weaknesses of

the various techniques herein, and more details can be found in dedicated reviews, such as

in [22, 25, 94–100].

2.2.1 From first principles to data-driven models

Since the evolution of the temperature in a thermal zone is governed by the laws of thermo-

dynamics, the most natural way to model it is to write down the corresponding Ordinary

Differential Equations (ODEs) and then use custom solvers or discretization schemes to prop-

agate them through time, such as in [101, 102]. These physics-based methods, also known as

first principles or white-box models, dominated the field early on when the lack of available

data hindered the development of data-driven models [94].

Since they are grounded in first principles, natural advantages of these approaches include
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Figure 2.3: General pipeline of data-driven building thermal modeling frameworks, where
data is collected from the real building, potentially stored in a database, and then used to
train or calibrate a data-driven model. The picture on the right is a schematic representa-
tion of the proposed PCNN architecture detailed in Section 2.3

their interpretability and generalization [94, 97]. On the other hand, due to the complexity of

detailed thermal models, assumptions and simplifications have to be made, such as in the

choice of the ODEs, which can limit their accuracy [103]. Moreover, the more precision desired,

the more knowledge and time are required to design the model and find the corresponding

parameters — the coefficients of the ODEs —, typically concerning the building envelope and

the HVAC system [104, 105].

To alleviate this engineering burden, allow more complex structures to be modeled, and

accelerate the entire pipeline, custom modeling tools such as EnergyPlus, Modelica, TRNSYS,

or IDA ICE are often used in practice [106–108]. Such detailed simulation tools however still

require expert knowledge and access to many design parameters that are often not directly

available [109], which makes them infamously hard to calibrate [21, 110, 111]. Moreover, while

no training is required, solving the complex underlying ODEs to simulate each time step can

entail a significant computational burden at run-time [112].

In recent years, owing to the growing amount of data collected in buildings, researchers started

to employ data-driven approaches instead, bypassing the cumbersome procedures and expert

knowledge required to set up classical physics-based models [100]. This gave rise to so-called

gray- or black-box frameworks, both of which use historical data collected in buildings for

calibration or training purposes, as sketched in Figure 2.3.

2.2.2 Black-box models

As opposed to white-box methods, black-box models do not rely on first principles but solely

derive patterns from historical data. The most widely used approaches for building thermal
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modeling rely on multiple linear or support vector regressions, NNs, and ensembles, apart

from the classical AutoRegressive Integrated Moving Average (ARIMA) models [100].

Black-box models are generally easier to deploy — since no expert knowledge is required at

the design stage —, more flexible, and thus often more scalable than physics-based ones [25,

99, 113]. Furthermore, since they do not have to follow a predefined underlying architecture,

black-box methods are generally more expressive, capable of capturing unknown nonlinear

dynamics, and hence usually perform better [97]. Finally, they are generally easier to transfer

from one building to another as similar model architectures can be used despite their different

dynamics. Since all the parameters are learned from data, these approaches can indeed fit

a large number of buildings simultaneously, such as in [114], where 1’000 households were

automatically modeled with the same architecture.

On the other hand, black-box models often lack generalization guarantees outside of the data

they are trained on [94, 99]. Furthermore, they need historical data as input, sometimes in

large amounts, to achieve satisfactory accuracy [99]. The data additionally has to be exciting

enough, i.e., to cover the different operating conditions of the building, something not trivial,

as discussed in Section 2.1.1. While data imbalance issues can, for example, be tackled through

the creation of sub-models [115], this does not scale well with the number of operating points.

Moreover, black-box models are sensitive to the features — or the feature extraction method —

used as inputs [103].

Remarkably, all these issues are amplified when NNs are involved. Nonetheless, very recently,

as a consequence of the growing amount of available data and surfing on the boom of DL

applications, many studies leveraged their expressiveness for building thermal modeling, e.g.,

in [15, 20, 100, 116, 117]. Due to the nonconvexity of classical NNs, which makes them hard to

use in optimization procedures, researchers also used specific control-oriented models, such

as Input Convex NNs (ICNNs) [118].

2.2.3 Hybrid methods

Hybrid methods combine physics-based knowledge with historical data, striking a trade-

off between both worlds. Note that some researchers use the term “hybrid methods” for

approaches first building an accurate physics-based model and then generating data with

it to train a black-box surrogate to accelerate the inference procedure at run-time, such as

in [112, 119], which is out of the scope of this overview and hence not covered here.

Classical gray-box models

When a control-oriented thermal building model is designed, typically for MPC, data is in

most cases used to identify the parameters of a simplified physics-based model [95], usually

a low-order RC model, such as in [23, 109, 120–124]. Such gray-box approaches require less

expert knowledge than pure physics-based models since simplified equations are used. On
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the other hand, the chosen ODEs incorporate physical knowledge in the models, so that less

information has to be learned from data compared to pure black-box models, in turn implying

that less historical data is usually required to fit their parameters [95]. Overall, gray-box models

are particularly popular due to their ease of implementation, interpretability, close ties to the

underlying physics, and because they can be designed to be linear.1

Despite these advantages, the parameter identification procedure of RC models is generally

nontrivial and sensitive to the data quality [23, 126]. Additionally, some nonlinearities might

not be well-captured [113], partially explaining why low-order models often perform better

than complex ones [24, 127, 128]. Higher-order models furthermore entail more complexity,

which can hinder their generalization to unseen data and hence also advocates in favor of

low-complexity frameworks [24]. In sum, gray-box approaches allow for a trade-off between

the accuracy and the complexity of building models [24]. As a partial solution to this dilemma,

a framework to test the flexibility, scalability, and interoperability of gray-box approaches and

select the right model architecture was proposed in [23].

Due to the effectiveness of low-complexity architectures, we rely on linear first-order RC

modeling techniques inspired by Bünning et al. [129] and simplified versions of Maasoumy

et al. [120, 121, 130] to construct the physics-inspired module of PCNNs in this chapter, as

detailed in Appendix A.1 and Section 2.3. This low-complexity physics-inspired module

is particularly effective in the case of PCNNs since the black-box module simultaneously

captures unmodeled complex nonlinearities in parallel.

Residual models

Alternatively or additionally, one can leverage historical data to compute the error of a model

— often a simplified first principles one — and then fit these residuals with another method to

improve performance, such as in [131, 132]. Notably, such approaches are classically separated

into two distinct steps, first designing or learning the physics-based model and then fitting its

residual error, typically with an NN. We will refer to this type of model as residual models in

the remainder of this chapter. They are to be contrasted with the proposed PCNNs, which are

conceptually close but where both modules are trained simultaneously.

2.2.4 Physics-inspired Neural Network building models

When applying NNs to physical systems, one should always keep their well-known general-

ization issue discussed in Section 2.1.1 in mind to ensure the underlying physical laws are

respected. Despite the recent popularity of the field, to the best of the authors’ knowledge,

PiNNs were only applied to thermal building modeling in [89, 133–139].

Gokhale et al. and Chen et al. relied on the classical PiNN framework, augmenting the loss

1This characteristic is particularly desirable in MPC applications since an appropriate choice of objective
function then renders the optimization problem to solve at each time step convex and thus tractable [125].
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function of their NNs and creating latent states to include some physical intuition in otherwise

standard networks [133, 134]. Similarly, Liang et al. trained seven different NNs to predict

different quantities of interest and augmented the loss function of each network to steer their

outputs towards physically meaningful relations [89]. In another line of work, Nagarathinam

et al. designed a specific PiNN architecture for building control [135]. Wang et al. introduced a

block lower-triangular NN formulation that retains causality and is well-suited to multi-steps

ahead predictions in MPC [136]. However, none of these works can provide guarantees about

the physical consistency of their solutions in general.

On the other hand, Drgoňa et al. used NNs to replace the matrices in linear models of build-

ing dynamics, which allowed them to enforce the stability and dissipativity of the learned

system by constraining the eigenvalues of one of the NNs using the Perron-Frobenius theo-

rem [137]. The state-space matrices were similarly replaced by NNs in [138], with additional

nonlinearities and tailored RNN architectures, to predict indoor air quality.

Finally, building on the PCNNs originally proposed in [39], Xiao et al. recently extended

them to simultaneously predict the temperature and humidity in a multi-zone building [139].

They additionally modified the physics-inspired module to incorporate nonlinearities without

jeopardizing compliance with the underlying physical laws.

2.3 Physically Consistent Neural Networks

With all the considerations about the brittleness of NNs and the ensuing need for them to

respect the underlying physical laws outlined in Section 2.1 in mind, this section details the

proposed Physically Consistent Neural Network (PCNN) architecture. Focusing on a building

thermal modeling case study, we show how PCNNs guarantee the required compliance with

the laws of thermodynamics while leveraging the expressiveness of NNs to achieve state-of-

the-art performance among data-driven methods.

A note on the topology of buildings

Throughout this chapter, two thermal zones are said to be adjacent if they share at least one

common wall in a building B, and the collection of zones adjacent to a given zone z form its

neighborhood N (z). We consider a zone to be included in its own neighborhood, i.e., z ∈N (z).

Similarly, a zone is connected with the outside if it comprises at least one external wall.

To generalize the notion of neighborhood, we define the n-hop neighborhood N n(z) as the set

of zones that can be reached in n steps from zone z, moving to an adjacent zone at each step.

Note that, by definition, we have N 1(z) =N (z), and y ∈N n(z) ⇐⇒ z ∈N n(y).

Throughout this chapter, we assume the building to be connected, i.e., there is no zone (or

group of zones) isolated from the rest. This assumption is trivial in practice since one can

easily train several separate models if this condition is not met.
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2.3.1 Physically consistent building thermal dynamics

While PCNNs can be applied to model a wide spectrum of physical systems, we focus herein

on describing building thermal dynamics. We deem the temperature model of a building B
with m thermal zones to be physically consistent if the following conditions are met for each

zone z ∈B:

∂T z
i

∂v z
j

> 0, ∀0 ≤ j < i , (2.1)

∂T z
i

∂T out
j

> 0, ∀0 ≤ j < i , (2.2)

∂T z
i

∂T y
j

> 0, ∀0 ≤ j < i , ∀y ∈N i− j (z) , (2.3)

where T z is the temperature in zone z, v z the heating or cooling power input applied therein,

T out the outside temperature, and the subscripts indicate the time step.

In words, (2.1) implies that applying more heating power v z
j at a given time step j in any

zone z leads to higher temperatures T z
i for all subsequent time steps i > j . That is to say,

heating a zone has the expected and intuitive impact of increasing its future temperature,

following the laws of thermodynamics. Note that cooling powers are defined to be negative by

convention in this chapter, ensuring lower zone temperatures when more cooling is applied,

as expected. Similarly, (2.2) encodes the fact that higher ambient temperatures induce higher

temperatures inside, and (2.3) guarantees that higher temperatures in zone y ∈N n(z) lead to

higher temperatures in zone z after n steps.

Remark 1 (Extensions of physical consistency). Note that the definition of physical consistency

proposed in (2.1)–(2.3) can easily be extended for applications where additional criteria need

to be met by the learned model, for example, to enforce physically consistent temperature

predictions with respect to solar gains.

Remark 2 (Generalization of the approach). Equations (2.1)–(2.3) can be seamlessly adapted to

other fields beyond building modeling where simple physical rules can be encoded in a similar

fashion. One can then construct a PCNN architecture following the principles presented in

the rest of this section to ensure the learned model respects the desired criteria. With such

an architecture, the NN running on top of the simplified physics will capture unmodeled

phenomena, increasing the representation power of the model.

2.3.2 Single-zone Physically Consistent Neural Network building models

Conceptually, the key idea of the proposed PCNN architecture is to let a black-box and a

physics-inspired module running in parallel to compute the next output at each step, as

depicted on the right of Figure 2.3. The black-box module captures potentially complex

nonlinearities while the physics-inspired one ensures that predefined rules are respected,
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which are typically representing physical laws and encoded by conditions similar to the ones

in (2.1)–(2.3). One possible PCNN architecture modeling the evolution of the temperature

in a single thermal zone z while respecting (2.1)-(2.3) is detailed in Figure 2.4. It can be

mathematically described as

Dz
k+1 = Dz

k + f z (xz
k ) (2.4)

E z
k+1 = E z

k +az
h max{g z (uz

k ),0}+az
c min{g z (uz

k ),0}

−bz (T z
k −T out

k )− ∑
y∈N (z)

cz
y (T z

k −T y
k ) (2.5)

T z
k+1 = Dz

k+1 +E z
k+1 (2.6)

Dz
0 = T z (0)

E z
0 = 0 ,

where D ∈R represents the evolution of the black-box module, E ∈R is the energy accumulator,

i.e., the physics-inspired module, and T (0) is the initial temperature measurement.

The linear physics-inspired module. First, E is influenced by the power input to the zone

v := g (u) ∈R at each step, which depends on the control input u, such as the opening pattern

of radiator valves, transformed into thermal power by a function g . These inputs are scaled by

a constant ah > 0 in the heating and ac > 0 in the cooling case to represent their effect on the

air mass in the room. Since cooling power inputs are defined to be negative, cooling the zone

lowers the energy accumulated in E , as expected. Second, from the laws of thermodynamics,

we know that the modeled zone loses energy through heat transfers to the environment and

neighboring zones. We hence subtract these effects, which are proportional to the corre-

sponding temperature gradients with the outside temperature T out and the temperature in

neighboring zones T y , scaled by parameters b and cy , respectively.

The design of (2.5) is heavily inspired by the classical linear RC building model derived in

Appendix A.1.1. The main difference between the generic RC model (A.1) and (2.5) is that

PCNNs treat nonlinear solar and additional unknown heat gains using NNs or other nonlinear

functions in D instead of relying on engineering-based solutions.

Note that the physics-inspired parameters ah , ac , b, and {cy }y∈N (z) are learned from data

simultaneously to the parameters of the black-box module, which is one of the main reasons

behind the effectiveness of PCNNs, as discussed in Section 2.5.2.

Remark 3 (Losses to the environment). For clarity of notation, we assume throughout this

chapter that every zone has an external wall. In practice, this assumption is trivially lifted by

forcing bz = 0 on all the zones located in the interior of the building.

Remark 4 (Design of g ). In some buildings, we can directly measure the heating or cooling power

input to the zone, i.e., g (u) = u. When this is not possible, e.g., when u controls the opening of

the valves in radiators, we need to process the controllable inputs into power inputs through

some function g . This function might be engineered, for example, as g (u) = u ∗ṁ ∗ (T w −T )
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Figure 2.4: The proposed PCNN architecture to model a single zone z, comprised of an
orange black-box and a green physics-inspired module, both evolving recursively through
the prediction horizon. The dependence on z is dropped and only one neighboring zone
z ′ ∈N (z), denoted neigh, is considered for clarity of presentation. The control inputs
u, transformed into power inputs by the function g , and the losses to the environment
b(T −T out ) and neighboring zone c(T −T nei g h) all influence an energy accumulator E ,
which accumulates or dissipates energy at each time step depending on the received heat
gains or losses. Here, the red/blue branching signals a different treatment of the power
inputs in the heating and cooling case, respectively, since they are scaled by different
constants ah and ac . The accumulated energy is then added to the unforced dynamics
D , modeled by a residual NN that takes all the features apart from u, T out , and T nei g h –
gathered in x – as input, to get the final zone temperature prediction T .
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for a radiator with mass flow ṁ, water temperature T w , and u recording the position of the

valves in [0,1]. Alternatively, it can be learned from data, e.g., using NNs. However, this learned

function should be strictly monotonically increasing, i.e., ∂g (u)
∂u > 0, with g (0) = 0: no energy

is consumed when there is no control input, g (u) < 0 when cooling is on, and g (u) > 0 when

heating is applied. Importantly, since everything is trained together in an end-to-end fashion in

PCNNs, g can seamlessly be learned in parallel to the other parameters.

The black-box module. Running in parallel with the physics-inspired module, the black-

box module processes all inputs not treated in E , such as solar gains and time information,

gathered in x ∈Rn , through a potentially highly nonlinear function f . That is to say, it captures

the unforced temperature dynamics when no heating or cooling is applied and heat losses

are neglected. The independence of f on u, T out, and T will allow us to prove the physical

consistency of PCNNs with respect to these inputs in Section 2.3.4.

In practice, the black-box module can typically be designed with residual NNs, choosing f

in (2.4) to be any recurrent NN architecture to grasp time dependencies in the data. While

f is composed of an encoder-LSTM-decoder structure in our case (see Section 2.4.3), any

NN architecture — and even differentiable functions that do not contain NNs — can be

used without affecting the physical consistency of the predictions. Nonetheless, due to the

sequential nature of temperature dynamics and the expressiveness of NNs, we suspect them

to be a good choice in general.

Remark 5 (Coupling between D and E ). Note that since Tk = Dk +Ek , the nonlinear black-box

module D influences the evolution of the energy accumulator E in Equation (2.5), which is

one of the main differences with classical residual techniques, where the physics-based and

black-box modules are usually completely separated. This furthermore requires learning the

parameters ah , ac , b, and {cy }y∈N (z) simultaneously to f .

2.3.3 Extensions to the multi-zone setting

While the PCNN architecture described in Section 2.3.2 works well for single-zone modeling,

we also propose three possible extensions to simultaneously capture the evolution of the

temperature in several interconnected zones exchanging energy, i.e., in a whole building. The

only additional information required is the topology of the modeled building — which zones

are adjacent and which have an external wall —, and multi-zone PCNNs then learn its thermal

behavior from data without additional engineering overhead.

Remark 6 (Unknown topology). If the topology is unknown, one can assume each pair of zones

to be adjacent and every zone to have an external wall and then learn to put non-existing

connection parameters to zero from data.
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Figure 2.5: X-PCNN: the temperature of each of the m zones is predicted separately.

X-PCNNs: learning several single-zone PCNNs

The most natural and straightforward multi-zone extension is to separately learn one single-

zone PCNN for each of the zones to model, as depicted in Figure 2.5. Since this method

involves duplicating the original structure for each zone and fitting them independently

before combining them, we will refer to the final model as the X-PCNN architecture.

For this model to be physically consistent, however, one needs to ensure that cz
y = c y

z for each

pair of adjacent zones y and z in (2.5). This ensures that the amount of energy flowing from z

to y always equals the amount of energy received by y from z, and vice versa. Since each zone

is modeled and trained separately in this case, such a condition cannot be imposed during

the learning phase, and we thus rely on a heuristic to correct the parameters and enforce this

desired property a posteriori. Once the models have been trained, for every pair of adjacent

zones z and y , we compute the average value identified by both PCNNs and define

cz y = c y z :=
cz

y + c y
z

2
. (2.7)

We then replace cz
y with cz y in (2.5) for all y ∈N (z) and for all z ∈B.

M-PCNNs: sharing the physics-inspired module

To avoid the hand-crafted correction (2.7), which might significantly impact the parameters

learned by each PCNN, one can fuse all the physics-inspired modules together, again lever-

aging our prior knowledge of the underlying physical laws. This gives rise to the so-called

M-PCNN architecture, pictured in Figure 2.6, where distinct black-box modules are assigned

to each zone, but the physics-inspired module is shared. It thus outputs a vector E ∈ Rm

24



2.3 Physically Consistent Neural Networks

D1

Physics-inspired
module

In
pu

ts
+

E1

Em

T1

Tm

…
…

…

Black-box module

DmBlack-box module

. .
 .

Figure 2.6: M-PCNN: the physics-inspired module is shared but multiple black-box
modules are learned, one for each zone.

containing the energy accumulated in each zone at each step:

Ek+1 = Ek +ah ⊙max{g (u)k ,0}+ac ⊙min{g (u)k ,0}

−b ⊙ (Tk −T out
k )−∆Tk (2.8)

E0 = 0 ,

where bold notations correspond to vectorized quantities in Rm , one dimension for each

zone — ah = [a1
h , ..., am

h ]T , and similarly for ac , b, and u —, ⊙ stands for the element-wise

product of two vectors, and g (u)k = [g 1(u1
k ), ..., g m(um

k )]T . Since there is a unique ambient

temperature impacting all the zones, we furthermore define T out = [T out , ...,T out ]T ∈ Rm .

Finally,∆Tk ∈Rm corresponds to energy transfer between each zone and its neighborhood:

∆T z
k = ∑

y∈N (z)
cz y (T z

k −T y
k ) , ∀z ∈B , (2.9)

where the superscript z denotes the z-th entry of a vector. By definition, we know cz y = c y z if

y and z are adjacent since both represent the same heat transfer coefficient, which is easily

enforced during training since all the zones are now modeled simultaneously.

Each dimension of T ∈Rm , i.e., the temperature in each zone z, is then computed as the sum

of the physics-inspired and black-box modules:

T z
k+1 = Dz

k+1 +E z
k+1 (2.10)

Dz
k+1 = Dz

k + f z (xz
k ) (2.11)

Dz
0 = T z (0) .
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Figure 2.7: S-PCNN: both the black-box and physics-inspired modules are shared by all
the zones..

S-PCNNs: sharing both modules

To reduce computational complexity and introduce parameter sharing between the zones —

which are typically similar in the same building —, we propose a third architecture, dubbed

S-PCNN, where both the black-box and physics-inspired modules are shared. In other words,

the black-box module now has m outputs corresponding to the main dynamics of each of the

zones, as pictured in Figure 2.7. Using the vectorized notations as before, with D ∈Rm , we can

write the equations of this architecture as follows:

Dk+1 = Dk + f̃ (x̃k ) (2.12)

Ek+1 = Ek +ah ⊙max{g (u)k ,0}+ac ⊙min{g (u)k ,0}

−b ⊙ (Tk −T out
k )−∆Tk (2.13)

Tk+1 = Dk+1 +Ek+1 (2.14)

D0 = T (0)

E0 = 0 ,

where the physics-inspired module is the same as for the M-PCNN but we now only have

one shared nonlinear function f̃ :Rd ′ →Rm transforming the inputs x̃ ∈Rd ′
. Throughout this

work, we only consider external inputs that are shared by all the zones — solar irradiation and

time information —, leading to d ′ = d and x̃ := xz , ∀z ∈B.

Remark 7 (Zone-dependent inputs). If some measurements differ zone by zone, one can either

stack them in a vector x̃ = [(x1)⊤, ..., (xm)⊤]⊤ and use (2.12) or for example design a shared

function f̃ :Rd →R and modify (2.12) to D z
k+1 = D z

k + f̃ (xz
k ), ∀z ∈B.
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2.3.4 PCNNs are consistent with the laws of thermodynamics

After applying the transformation (2.7) ensuring that heat transfer coefficients are physically

consistent, one can vectorize the X-PCNN physics-inspired module (2.5) to get

Ek+1 = Ek +ah ⊙max{g (u)k ,0}+ac ⊙min{g (u)k ,0}

−b ⊙ (Tk −T out
k )−∆Tk , (2.15)

using the definition of∆T from (2.9). As can be seen directly, this expression is the same as the

ones describing M- and S-PCNN physics-inspired modules in (2.8) and (2.13). This means all

the proposed multi-zone PCNNs rely on the same physics-inspired module at inference time,

with however possibly different parameter values learned during training. This is intuitively

expected since they all model the same thermal effects and hence must follow the same

physical principles.

In a similar vein, we can rewrite the black-box modules of the X- and M-PCNN architectures

in vectorized form as

Dk+1 = Dk + f̄ (x̄k ) , (2.16)

where f̄ = [ f 1(x1), ..., f m(xm)]T and x̄ = [(x1)⊤, ..., (xm)⊤]⊤ groups the different inputs.

Leveraging the reformulations in (2.15) and (2.16), we can hence mathematically represent

each of the three proposed architectures as

Tk+1 = Dk+1 +Ek+1

= Tk + f (xk )+ah ⊙max{g (u)k ,0}+ac ⊙min{g (u)k ,0}

−b ⊙ (Tk −T out
k )−∆Tk (2.17)

D0 = T (0)

E0 = 0 ,

where f (xk ) stands for f̃ (x̃k ) or f̄ (x̄k ) for S-PCNNs, respectively X- and M-PCNNs. The only

structural difference between the three proposed models — once the heat transfer coefficients

of the X-PCNN have been adjusted by (2.7) — hence comes from the form of f (x). Remarkably,

however, this does not impact their physical consistency, as demonstrated in the following

two propositions.

Proposition 1 (Physically consistent heat propagation). Independently of the structure of f

and x , any model of the form (2.17) satisfies:

∂T z
i

∂T y
j

≥ 0, ∀z, y ∈B, ∀0 ≤ j < i , (2.18)
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with equality if and only if y ∉N (i− j )(z), as long the following conditions hold:

bz + ∑
y∈N (z)

cz y < 1, ∀z ∈B , (2.19)

cz y > 0, ∀z ∈B, ∀y ∈N (z) . (2.20)

Proof. See Appendix A.2.1.

In words, Proposition 1 shows that heat propagates from any zone y to all the other zones z as

physically expected, i.e., higher temperatures in zone y will lead to higher temperatures in all

the other zones z ∈N n(y) after n steps.

This proposition can then be used to prove that heating or cooling any zone ultimately in-

creases, respectively decreases, the temperature in the whole building through heat transfers,

and that higher ambient temperatures also ultimately heat the entire building. These two facts

are formalized in the next proposition.

Proposition 2 (Physically consistent impact of power inputs and ambient temperatures).

Independently of the structure of f and x , any model of the form (2.17) satisfies

∂T z
i

∂u y
j

≥ 0, ∀z, y ∈B, ∀0 ≤ j < i , (2.21)

with equality if and only if y ∉N (i− j−1)(z), and

∂T z
i

∂T out
j

> 0, ∀z ∈B, ∀0 ≤ j < i , (2.22)

as long as (2.19)-(2.20) hold and:

az
h , az

c ,bz > 0, ∀z ∈B, (2.23)

∂g (u)

∂u
> 0, (2.24)

g (0) = 0. (2.25)

Proof. See Appendix A.2.2.

Corollary 1 (Physical consistency of multi-zone thermal PCNNs). Independently of the struc-

ture of f and x , any model of the form (2.17) respects the criteria (2.1)-(2.3) if

bz + ∑
y∈N (z)

cz y < 1, ∀z ∈B, (2.26)

az
h , az

c ,bz ,cz y > 0, ∀z ∈B, ∀y ∈N (z), (2.27)

∂g (u)

∂u
> 0, g (0) = 0. (2.28)
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Proof. Assuming that (2.26)–(2.28) hold, we can apply Propositions 1 and 2. Setting z =
y in (2.21) and recalling that any zone is in its own neighborhood — which implies strict

positiveness of (2.21) —, PCNNs satisfy (2.1). The satisfaction of (2.2) directly follows from the

second part of Proposition 2. Finally, according to Proposition 1, (2.18) is strictly positive if

and only if y ∈N (i− j )(z), satisfying (2.3).

Remark 8 (Inputs of f ). While the structure of f does not impact the validity of Propositions

1 and 2, its inputs do. In particular, f has to be independent of {T, u,T out } for the first step

of the proofs of both propositions to hold in general. If f = f (x ,E ) for example, the satisfac-

tion of (2.19) would not be sufficient to guarantee the required nonnegativity of the partial

derivatives in (2.18).

Corollary 1 proves that each of the proposed multi-zone PCNN architectures remains physi-

cally consistent as long as all the parameters ah , ac , b, and {c y z }z∈B,y∈N (z) are small positive

constants. Note that this makes intuitive sense: all these parameters correspond to inverses

of resistances and capacitances, hence small positive numbers, in real buildings since the

physics-inspired module is inspired by classical RC modeling techniques (see Appendix A.1.1).

Interestingly, (2.26)-(2.28) can easily be enforced during training without modifying the clas-

sical BackPropagation Through Time (BPTT) algorithm, hence allowing us to rely on well-

established ML tools to train our models, as detailed in Section 2.4.3.

Advantages of PCNNs

The strength of our approach lies in the fact that all the models will remain physically consis-

tent whatever the structure of f is, being shared or not,2 composed of NNs or other nonlin-

earities. This gives the user complete freedom in the design of the black-box module without

jeopardizing the consistency of the model. Similarly, all the parameters of the physics-inspired

module might for example be time-varying or computed as nonlinear functions of external

inputs without impacting the physical consistency of the model as long as they stay small and

positive at all times.

As already mentioned in Remark 2, the very generic structure of PCNNs can also be applied

to model complex phenomena beyond thermal modeling, typically where only part of the

physics is well understood. Indeed, it is always possible to adapt the structure of the physics-

inspired module, which might also include nonlinearities, let the black-box module capture

completely unknown dynamics in parallel, and seamlessly learn everything simultaneously in

an end-to-end pipeline. This allows one to take advantage of the power of representation of

NNs while grounding their solution in existing domain expertise.

Remark 9 (A control perspective). The PCNNs proposed in (2.17) are power input-affine. This

makes such models interesting in control applications, typically for MPC schemes aimed at

decreasing the energy consumption of buildings.

2This is the main difference between the M-PCNN and S-PCNN architectures in our case, for example.
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2.3.5 Training from data

Applying (2.17) recursively over the prediction horizon, starting from the measured tempera-

ture T (0), PCNNs can predict the evolution of the temperature in the building while satisfying

the criteria in (2.1)-(2.3). One important key to the effectiveness and generality of PCNNs

comes from the fact that all the parameters ah , ac , b, {c y z }z∈B,y∈N (z), and f are learned simul-

taneously from data using BPTT. This allows us to alleviate the engineering burden associated

with classical modeling techniques since PCNNs do not require any prior knowledge about

the building structure or parameters beyond topology information.

Throughout this chapter, we assume access to a training data set of time series measurements

D = {(
x (s)(0),u(s)(0),T (s)(0),T out,(s)(0)

)
, ...,

(
x (s)(ls),u(s)(ls),T (s)(ls),T out,(s)(ls)

)}N
s=1, where ls is

the length and N the number of sequences in the training data, processed as detailed in

Section 2.4.1. We then optimize all the parameters of both the physics-inspired and black-box

modules together by minimizing the Mean Square Error (MSE) over the prediction horizon:

min
ah ,ac ,b,{c y z }z∈B,y∈N (z), f

Ldata

s.t. (2.17)

with

Ldata := 1

|Z |
∑

s∈Z

[
1

ls

ls−1∑
k=0

[
1

m

m∑
z=1

(
T z,(s)

k+1 −T z,(s)(k +1)
)2

]]
, (2.29)

where a batch Z of series is randomly sampled from the training data at each iteration and we

leverage PyTorch’s BPTT implementation [140].

2.4 Presentation of the case study

To assess the quality of the PCNN architectures detailed in Section 2.3, we carry out extensive

performance analyses on a case study, where the objective is to predict the temperature dy-

namics in a bedroom or the entire building over three days with 15 min time steps. Throughout

the rest of this chapter, we assume direct thermal power input measurements to be available,

hence setting g (u) === u.

2.4.1 The Urban Mining and Recycling unit

We take advantage of NEST, a vertically integrated district located in Duebendorf, Switzerland,

and pictured in Figure 2.8 [141]. NEST is composed of several residential and office units, and

we focus our attention on the Urban Mining and Recycling (UMAR) unit, circled in white.

UMAR is an apartment composed of two bedrooms, with a living room in between them,

and two small bathrooms that are neglected throughout this work. We are thus modeling
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UMAR

Figure 2.8: NEST building, Duebendorf, and the UMAR unit circled in white © Zooey
Braun, Stuttgart.

three thermal zones arranged in a line in this chapter, i.e., Zone 2 is connected to Zones 1

and 3, and each zone has at least one external wall. All the rooms are equipped with radiant

heating/cooling panels in the ceiling and controlled by opening and closing valves to let hot

or cold water flow through them depending on the season.

We rely on three years of data collected between May 2019 and May 2022 and preprocessed

as explained in Appendix A.4. This involved downsampling the data to 15 min intervals,

smoothing the time series, and disaggregating the thermal power consumption of UMAR into

the consumption of each zone.3 Besides these computed thermal power inputs, the data set

also contains measurements of the temperature in each zone and outside, the horizontal solar

irradiation on-site, time information, and the status of the system, i.e., whether it is in heating

or cooling mode. The data has been split into nonoverlapping training and validation datasets,

each containing up to 75 h-long time series.4

2.4.2 Benchmark models

To analyze the performance of the proposed PCNN architectures, we perform an extensive ab-

lation study and compare them to state-of-the-art gray- and black-box methods. An overview

of all the data-driven models used in this work, and whether they are physically consistent,

can be found in Table 2.1.

3Since individual room power consumption measurements are not available, we approximated them by disag-
gregating the total consumption of UMAR using the design mass flows and the amount of time the valves in each
room are open.

4This corresponds to the prediction horizon of three days plus the 3 h used to warm start NNs (see Section 2.4.3).
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Category Model Physical consistency
Linear ✓

Gray-box Res ✗

Res-cons ✓

ARX ✗

Black-box
ARX-KF ✗

LSTM ✗

PiNN ✗

X-PCNN (Ours) ✓

PCNNs M-PCNN (Ours) ✓

S-PCNN (Ours) ✓

Table 2.1: Physical consistency of the methods investigated in this work.

Gray-box baselines

Linear models. First, it makes intuitive sense to investigate the accuracy of the physics-

inspired module of PCNNs on its own, leading to the following linear gray-box model architec-

ture, hereafter referred to as the Linear models:

Tk+1 = Tk +ah ⊙max{uk ,0}+ac ⊙min{uk ,0}

−b ⊙ (Tk −T out
k )−∆Tk +e ⊙Q wi n

k , (2.30)

where Q wi n
k gathers the solar irradiation on the windows of each zone in a vector, engineered

from the measured irradiation on a horizontal surface as detailed in Appendix A.3. Since there

is no black-box module taking care of the impact of the sun on building temperatures in this

model, we indeed need to include it manually. This can be done efficiently for UMAR but does

not generalize to arbitrary buildings when shading effects come into play, for example, limiting

the applications of such linear models. As for the other heat gains, e gathers the trainable

scaling parameters reflecting the impact of solar gains on each zone temperature in a vector.

The classical least squares parameter identification procedure presented in Appendix A.1.2

was used to identify single-zone linear models, where ah and ac were not distinguished. In

the single-zone case, the linear model has a sampling time of 1 min, we thus keep the power

input fixed over intervals of 15 min when we compare its predictions with the ones of PCNNs.

This identification procedure however gave rise to physically inconsistent parameters in the

multi-zone case, prompting us to instead identify az
h , az

c , bz , {cz y }y∈N (z), and ez for each zone

z using Bayesian Optimization (BO), as detailed in Appendix A.5. As for X-PCNNs, the heat

transfer coefficients between two adjacent thermal zones were then averaged based on (2.7).

Residual models. A natural extension of the aforementioned linear model is to consider

residual models, where the idea is to fit the errors of the linear model predictions with a

black-box module to improve its performance. Assuming the linear model in (2.30) to provide

predictions T̂k+1, a residual model fits a function fRes :Rd ′+2m+1 →Rm , typically modeled with
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NNs, to the residual errors. In other words, it minimizes

LRes := 1

|Z |
∑

s∈Z

[
1

ls

ls−1∑
k=0

[
1

m

m∑
z=1

(
f z

Res(T (s)
k , x (s)

k ,u(s)
k ,T out ,(s)

k )−
(
T z,(s)(k +1)− T̂ z,(s)

k+1

))2
]]

,

(2.31)

instead of Ldata. The residual model then predicts temperatures as

Tk+1 = T̂k+1 + fRes(Tk , xk ,uk ,T out
k ) . (2.32)

This model is dubbed Res in the rest of this paper, and fRes has the same structure as the

proposed PCNNs’ black-box module for fair comparisons.

Remarkably, such residual models cannot be guaranteed to respect the underlying physical

laws in general since fRes is not independent of zone temperatures, power inputs, and ambient

temperatures. Since they can be seen as being composed of a physics-inspired and a black-box

module in (2.32), similarly to PCNNs, we can indeed use similar arguments to prove their

physical consistency and hence derive similar necessary conditions on the structure of fRes as

the one discussed in Remark 8.

Consequently, we also investigate the performance of a physically consistent residual model in

this work, dubbed Res-cons, where the black-box function learning the residuals only depends

on x , as PCNNs. It fits a function fRes-cons :Rd ′ →Rm to the residuals, trained similarly to its

physically inconsistent counterpart, with the following temperature predictions:

Tk+1 = T̂k+1 + fRes-cons(xk ) . (2.33)

Note that residual models first fit the base model to the data and then use black-box methods

to fit the residual errors while PCNNs learn both modules together. This also implies that the

physics-inspired module reflects the main dynamics of residual models, with small corrections

from the NN on top, while it only ensures the physical consistency of PCNN architectures,

letting more expressive functions like NNs capture the main system dynamics.

Black-box baselines

Autoregressive model with exogenous inputs. As a first black-box method, we analyze

the performance of an AutoRegressive model with eXogenous inputs (ARX model), where

autoregressive lags of the states and inputs are used to predict the next state:

Tk+1 =α0Tk +α1Tk−1 + . . .+αδTk−δ+β0x̂k +β1x̂k−1 + . . .+βδx̂k−δ , (2.34)

x̂k = [uk ,T out
k ,Q sun

k ]T ,
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where Q sun
k ∈R is the solar irradiation measurement on a horizontal surface, and the param-

eters α0, . . . ,αδ ∈Rm×m , β0, . . . ,βδ ∈Rm×(m+2) are identified through least square regression

using the scikit-learn library [142]. For a fair comparison, we set δ= 11, i.e., we use infor-

mation from the last 3 h to define the next temperatures, the same amount of information

provided to warm-start NNs (see Section 2.4.3).

We also implemented an advanced ARX model relying on the statsmodels package [143],

which includes Kalman smoothing and filtering operations out-of-the-box, dubbed ARX-KF, to

compare PCNNs to an existing toolbox. We set β1, . . . ,βδ = 0 so that only current information

on external inputs is used. Since the identification procedure was harder in that case, we

identified each zone z separately, with:

x̂ z
k = [uz

k ,T out
k ,Q sun

k ,T y1

k ,T y2

k , . . . ,T
y|N (z)|

k ]T ,

where y1, . . . , y|N (z)| ∈N (z) are the zones adjacent to z.

Note that ARX models cannot be enforced to be physically consistent for multi-step-ahead

predictions in general due to the autoregressive terms; they transform (2.26)-(2.28) into highly

nonlinear constraints. Although it is thus hard to assess the physical consistency for ARX

models in practice, we could observe that automatic identification of the ARX-KF model

assigned a negative scaling parameter for the power input to Zone 2, meaning that heating

this zone will lead to lower temperatures. This is sufficient to confirm ARX-FK is not physically

consistent — and similar issues were found for the classical ARX model.

Remark 10 (Kalman filtering and smoothing). Kalman filtering and smoothing operations

could be included during the data processing phase, potentially impacting the performance

of all the models. In this chapter, however, we focus on methods working on unfiltered data,

typically involving NNs. Nonetheless, we also provide ARX-KF as an example of what can be

achieved with existing toolboxes on a laptop compared to NN-based methods that might require

access to Graphical Processing Units (GPUs) for training.

Neural Network models. As another natural ablation of PCNNs, we also investigate the quality

of the black-box module alone. Instead of treating the power inputs and temperatures in a

separate module, everything is fed in the black-box function fLSTM :Rd ′+2m+1 →Rm , leading

to the LSTM model

Tk+1 = Tk + fLSTM(Tk ,uk , xk ,T out
k ) . (2.35)

As expected, such classical NN-based methods are naturally physically inconsistent and might

fail to capture the underlying physical laws even if they fit the data well (see Section 1.2). For

fair comparisons, the LSTMs considered in this work have the same encoder-LSTM-decoder

architecture as the corresponding PCNNs.

Finally, we also implemented standard physics-informed NNs, hereafter PiNNs, again relying

on the same architecture as the black-box modules of PCNNs. However, their loss function is
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modified to steer the learning toward physically meaningful solutions:

LPiNN =Ldata +λLphys , (2.36)

where λ is a tuning hyperparameter. Since the purpose of Lphys is to capture physical in-

consistencies and penalize them, we naturally design it to bias the model towards solutions

satisfying the desired properties (2.1) and (2.2). Consequently, we penalize negative gradients

of the final predicted temperatures, i.e., at time ls , with respect to control inputs and ambient

temperatures observed along the horizon:

Lphys =
1

|Z |
∑

s∈Z

 1

ls

ls−1∑
k=0

 1

m

m∑
z=1

 m∑
y=1

r

−∂T z,(s)
ls

∂u y,(s)
k

+ r

− ∂T z,(s)
ls

∂T out ,(s)
k

 , (2.37)

where r (x) = max{x,0}, also known as the Rectified Linear Unit (ReLU) function. Since we are

interested in physically consistent models in this work, we empirically fixed λ= 100, which

ensures the loss term is dominated by the physical inconsistencies, thereby steering the PiNN

towards interesting solutions. The nontrivial tuning of this hyperparameter [91] is left for

future work.

Note that, in building temperature modeling, one can also augment the outputs of NNs to

predict not only zone temperatures but also the temperatures of their respective thermal mass,

for example, and then penalize deviations of the latter from the predictions of a physics-based

model in Lphys to incorporate prior knowledge in PiNNs [134]. However, this requires access to

a physics-based model, introducing engineering overhead. Moreover, it can enforce unwanted

biases since the physics-based model might be inaccurate and steer PiNN predictions away

from the truth. Consequently, in this work, we penalize the gradients of the temperature

predictions instead, according to our definition of physical consistency in Section 2.3.1, which

bypasses the need for a physics-based model and only relies on measured quantities while

still incorporating knowledge about the underlying laws of physics in PiNNs.

Remark 11 (Computational complexity). To ensure a model is following the underlying physical

laws at all times, one should check the gradients throughout the prediction horizon, and not only

for the last predictions, as proposed in (2.37). However, since each gradient computation requires

one forward and one backward pass of the data, the computational complexity grows linearly

with the number of predictions to analyze. Consequently, we only compute the gradients of the

last temperature predictions with respect to all the control inputs and ambient temperatures

observed along the horizon to steer PiNNs toward expected solutions, alleviating the associated

computational burden.

2.4.3 Implementation details

Throughout our case study, we assume direct access to the thermal power of each room, hence

selecting g to be the identity mapping, which naturally satisfies Condition (2.28).
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Physics-inspired parameters

To ensure the physical consistency of the proposed multi-zone PCNNs, fulfilling the condi-

tions (2.26) and (2.27), we parametrize the log value of each parameter. In other words, we

learn ãz
h , ãz

c , b̃z , c̃z y , ∀z ∈B, ∀y ∈N (z) and define:

w = w0 exp(w̃), ∀w = {az
h , az

c ,bz ,cz y } , (2.38)

where w0 is the initial value of the parameter. Starting from w̃ = 0, PCNNs hence learn to

scale the initial value w0 instead of modifying it directly, which is numerically more stable and

ensures that w stays small enough. On the other hand, the exponential function keeps all the

parameters positive at all times. Note that they are learned simultaneously to the parameters

in the black-box module: when backpropagation is used to update the parameters of the NNs,

we also leverage the propagated gradients to update the parameters of the physics-inspired

module.

As a consequence of this choice, the initialization of the physics-inspired parameters, i.e.,

the choice of w0, is critical. Indeed, as they are inspired by the known physics of buildings,

they must correspond to meaningful values. Furthermore, due to the recurrent use of these

parameters to modify the state of the energy accumulator along the prediction horizon, wrong

values would have a large impact on the quality of the model and the PCNNs might get stuck

in local minima. In practice, we saw that using rules of thumb to initialize those parameters to

plausible values using our prior knowledge led to good results, as presented in Section 2.5.1.

In particular, we define initial values such that, ∀z ∈B:

• For az
h and az

c : The temperature in the zone rises/drops by 1 ◦C in 2 h when the 1000 W

heating/cooling power is applied.5

• For bz and cz y : The temperature drops by 1.5 ◦C in 6 h when the exogenous temperature

is 25 ◦C lower.

These rules of thumb can be derived from historical data, for example looking at how much

time it generally takes for the temperature to rise by 1 ◦C when the zone is heated with 1000 W

for az
h , respectively to drop by 1.5 ◦C when it is 25 ◦C colder outside and heating is off for bz .

Similar investigations will give plausible initial values for cz y and az
c .

Remark 12 (Upperbound on s). While b̃z or c̃z y can in principle grow uncontrollably and

lead to a violation of the necessary condition (2.26), this was not an issue in our experiments.

Nonetheless, if required, one can introduce bounds on the learned values s̃, typically leveraging

activation functions like the sigmoid or hyperbolic tangent to control their range.

5In the single-zone case, 1000 W was replaced by the maximum thermal power, around 1.6 kW.
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Black-box architecture

In the multi-zone case, each function f has the same encoder-LSTM-decoder architecture,

which is repeated when several modules are required for X-PCNNs and M-PCNNs. Both the

encoder and decoder are feedforward NNs with 32 hidden units and the LSTM comprises

two layers with dimension 64 and is followed by a normalization layer. This architecture was

selected over larger ones since we did not observe any significant decrease in performance.

However, for single-zone PCNNs — simply referred to as PCNNs hereafter —, both the encoder

and decoder have two layers of 128 units and the LSTM is composed of two layers of size 512

to ensure the black-box module is expressive enough.6

The input of each black-box module, x ∈ R6, gathers the solar irradiation on a horizontal

surface and the time information (see Appendix A.4). We let the initial hidden and cell states

of the LSTM be learned during training and additionally give the model a warm start of 3 h.

In other words, NNs first predict the last 12 time steps in the past, where we feed the true

temperatures back to the network to initialize all the internal states, before predicting the

temperature over the given horizon. This was empirically shown to improve performance.

NNs share a common learning rate of 5e−4, manually selected small enough to ensure stable

convergence, and a batch size of 4’096, to maximize the utility of the GPUs.

Performance assessment

To validate the performance of each model, we rely on the Mean Absolute Error (MAE) and

Mean Absolute Percentage Error (MAPE):

MAE = 1

|Z |
∑

s∈Z

[
1

ls

ls−1∑
k=0

[
1

m

m∑
z=1

|T z,(s)
k+1 −T z,(s)(k +1)|

]]
(2.39)

MAPE = 1

|Z |
∑

s∈Z

[
1

ls

ls−1∑
k=0

[
1

m

m∑
z=1

|T z,(s)
k+1 −T z,(s)(k +1)|

T z,(s)(k +1)

]]
. (2.40)

The PCNNs are implemented in PyTorch [140] and were trained on NVIDIA P100 GPUs.

Code status

An up-to-date version of PCNNs can be found on https://github.com/Cemempamoi/pcnn,

while the versions used in [39] and [40] are referenced in the respective papers.

6We later carried out a small experiment to assess the impact of the NN architecture on multi-zone PCNNs and
could decrease its size for subsequent experiments, leading to the smaller architecture of dimensions 32–64.
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2.5 Performance analysis and comparison to other methods

In this section, we present various results obtained from the previously detailed case study.

We first analyze the performance of single-zone PCNNs trained on data from Zone 3, detailing

their behavior, before providing an in-depth comparison of multi-zone PCNNs with other

state-of-the-art data-driven methods in modeling the thermal behavior of the entire UMAR

unit.

2.5.1 Investigating the behavior of single-zone PCNNs

To understand the behavior of PCNNs, we start by investigating their performance on a single-

zone modeling task, focusing on Zone 3 of UMAR. All the results discussed hereafter were

obtained by comparing the multi-step prediction performance of the different models on

almost 2’000 three-day-long time series from the validation set. Each model is recursively

applied to predict the temperature for 288 steps (three days) assuming knowledge of all the

inputs, and compared to the true measured temperatures.

While we only discuss one PCNN in depth throughout this section — the one that achieved the

lowest validation loss in Table 2.2 —, Appendix A.6 provides additional insights, analyzing the

impact of the random seed and choice of thermal zone to model. The results are consistent in

all cases, hinting at the robustness, respectively the flexibility, of the proposed approach.

Improving the generalization issue of NNs

As presented in Table 2.2, while PCNNs could not attain the performance of classical LSTMs

on the training data due to their constrained structure to follow the underlying physical laws,

they obtained lower errors on the validation set. This confirms that PCNNs solve part of the

generalization issue of classical NNs, having a smaller tendency to overfit the training data

but retaining enough expressiveness to perform well on previously unseen data. In other

words, the physics-informed module inside PCNNs seems to give them useful information,

allowing them to beat the performance of classical unconstrained LSTMs.

Since physical consistency is required for control-oriented thermal models, as discussed in

Section 2.1, and LSTMs fail to satisfy this criterion, as pictured in Figure 2.1, we focus on

comparing the best-found PCNN from Table 2.2 to the linear baseline model hereafter. This

analysis is aimed at providing insights into the significance of the black-box module running

in parallel to the physics-inspired base to capture nonlinear effects without jeopardizing the

needed physical consistency of the model.
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LSTMs PCNNs (ours)
Seed Training loss Validation loss Training loss Validation loss

0 0.57 2.28 1.83 1.93
1 0.57 1.92 1.85 1.65
2 1.14 2.30 2.06 1.75
3 0.97 2.22 2.28 1.73
4 1.00 1.77 1.90 1.97

Mean 0.85 2.10 1.99 1.81

Table 2.2: Comparison of the training and validation loss for five LSTMs and PCNNs,
scaled by 103.
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Figure 2.9: Mean and standard deviation of the error at each time step of the prediction
horizon for both the RC model in blue and the PCNN in green, where the statistics were
computed from almost 2000 predictions from the validation set.

Performance improvement compared to the linear model

Since predicting the evolution of the temperature for several time steps ahead entails a recur-

sive use of the architecture in Figure 2.4, we leverage the ability of LSTMs in the black-box

module to handle long sequences of data to minimize the error over long horizons. On the

other hand, the linear baseline was fitted to optimize the single-step accuracy, as commonly

done in the literature. However, this leads to error propagation over time, as pictured in

Figure 2.9, where we plotted the MAE and one standard deviation for both models over the

validation set, i.e., unseen data. Note that while the physics-based baseline used here is not

optimal, it was nonetheless tuned to obtain good accuracy, with an average error below 1 ◦C

after 24 h.

One can observe the PCNN providing better predictions than the baseline in general, which is

supported by the MAEs reported at key points along the horizon in Table 2.3. In particular, the

PCNN can keep a good accuracy even on long horizons, with an error more than 40% lower
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Hours ahead Linear model PCNN (ours)
1 h 0.19◦C 0.31 ◦C
6 h 0.58 ◦C 0.55◦C

12 h 0.78 ◦C 0.66◦C
24 h 0.93 ◦C 0.77◦C
48 h 1.30 ◦C 0.88◦C
72 h 1.48 ◦C 0.88◦C

Table 2.3: Comparison of the MAE of the two models over the prediction horizon.
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Figure 2.10: Scatter plot of the MAEs of both models on each test sequence, with the black
diagonal line representing equal performance.

than its counterpart after three days. On the other hand, it presents slightly higher errors at the

beginning because of the implemented warm-start (see Section 2.4.3): since they firstly predict

past data — the last 3 h — PCNNs might indeed start predicting the three-day-long validation

sequences from a temperature different from the true one. Nonetheless, since we observed

that the warm start benefited the overall performance of PCNNs during our experiments, we

kept it in the final implementations.

To investigate the MAEs obtained by both models on each validation sequence, we also provide

the corresponding scatter plot in Figure 2.10. In general, the PCNN dominates the baseline,

with its error rarely being significantly larger than the one of the physics-based model, which

would be represented by points over the black diagonal line. On the other hand, towards the

lower right side of this figure, we find sequences where the PCNN presents a significantly

better accuracy than the linear model.

This superiority of the PCNN over the linear RC baseline is confirmed by the error distributions

of both models in Figure 2.11, with the errors of the PCNN (green) clustered below 1 ◦C and

almost always below 2 ◦C while the errors of the baseline in blue are much more spread out.

This indicates that the PCNN is robust with respect to different inputs, even on unseen data.
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Figure 2.11: Distribution of the MAE of both models over the test sequences, with the
50% and 90% quantiles marked in red, respectively black.

Altogether, we can conclude that this PCNN is less prone to extreme errors and keeps the

majority of errors lower than the linear physics-based baseline, proving its robustness and

effectiveness. Remarkably, all the results were obtained over three years of data, hence under

various weather conditions and during all the seasons, which also hints that exogenous

variables do not impact the quality of the model much. Overall, it shows the effectiveness of

training both modules simultaneously over long horizons leveraging BPTT to improve upon

classical physics-based techniques. This would be especially valuable when engineering the

solar gains of a thermal zone from the global solar irradiation measurements — as done for the

linear model in Appendix A.3 — would become cumbersome and lead to even higher errors

for classical engineering-based models.

Remark 13 (Link to Chapter 4). In the case of UMAR, as discussed in Appendix A.3, we can

accurately model solar gains, such that a linear model of the form (2.30) might achieve an

accuracy similar to the one of PCNNs treating solar gains as black-box inputs. Consequently,

we suspect the training procedure to have a significant impact on the observed performance

gap between both models, hinting at the potential of BPTT to identify structured (here gray-box)

models. This hypothesis will be analyzed in-depth in Chapter 4, confirming the ability of BPTT

to improve upon traditional SI techniques in such settings where prior knowledge is available.

Empirical analysis of the physical consistency of single-zone PCNNs

After the detailed analysis of PCNN’s performance, let us now provide an empirical and

visual examination of the physical consistency of PCNNs, formally proven in Section 2.3.4, to

showcase how PCNNs retain physical consistency even on unseen data, avoiding the classical

generalization issue of NNs discussed in Section 2.1. To that end, we randomly sampled a

sequence from the validation data set and compared the temperature predictions of both the
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linear baseline and the PCNN analyzed above in Figure 2.12 when:

• the original and true thermal power inputs are applied (blue),

• no power is used (black), hereafter named uncontrolled,

• only the first half of the power inputs are used (red),

• only the second half of the input is applied (orange),

where we separate the power inputs in half with respect to their magnitudes, i.e., so that both

the red and orange control sequences apply roughly the same total power. For reference, we

also added the ground truth in dashed blue.

Firstly, comparing the blue predictions with the dashed ground truth, we see both models

performing well, exemplifying the results discussed above. Remarkably, the proposed PCNN is

able to accurately match the ground truth despite the large amount of heating power applied

and the temperature rising to more than 30 ◦C, something unusual in real settings and hence

not well covered by the training data.

Furthermore, looking at the three other cases, for which there is no ground truth anymore,

both models again show similar behaviors, the visual consequence of both of them being

physically consistent. The red predictions deviate from the blue ones at the same point in

time for both models since, as expected, we should get lower temperatures as soon as we

stop heating the zone. Similar conclusions can be drawn by comparing the orange and black

temperature predictions. Finally, looking at the uncontrolled predictions, one can observe

smoother patterns for the PCNN due to the unforced base dynamics being captured by LSTMs

instead of the more aggressive linear regression at the core of the linear model.

To clarify the differences between both models’ physical behaviors, we can subtract the

uncontrolled predictions from the other curves for both models. The result is pictured in

Figure 2.13 and allows us to assess the impact of the three different control sequences on the

final predictions. As expected, both models still exhibit similar behaviors, with predictions

diverging from the uncontrolled dynamics — from zero in Figure 2.13 — as soon as the heating

is turned on. On the other hand, when it is turned off, the gap slowly closes (second half

of the red curve) because of the higher inside temperature leading to higher energy losses

to the environment and the neighboring zone. Note that the impact of the latter is hard to

distinguish here since it is an order of magnitude smaller than the losses to the outside.

One can empirically assess the difference in the parameters ah , ac , b, and c learned by both

models leveraging plots such as Figure 2.13. For example, ah is smaller for the PCNN since

the differences with the uncontrolled dynamics are generally smaller. In other words, heating

has a smaller impact on the PCNN zone temperatures. Despite not being visible in that plot,

a similar conclusion can be drawn about the cooling parameter ac . Concerning heat losses,

the PCNN learned parameters b and c entailing roughly the same amount of energy transfer

as the baseline, which is particularly observable in the red curves having a similar slope in

both cases after one day. However, we cannot separate the effect of b and c in these plots since
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Figure 2.12: Comparison between the linear model (top) and the PCNN (middle) temper-
ature predictions given the bottom heating power inputs, over three days. In blue, one
can assess the precision of both models compared to the ground truth (dashed) when
the original total power inputs is used. Then, the red and orange curves show the result
when heating is only turned on roughly during the first day, respectively the second and
third one. Finally, the black uncontrolled dynamics reflect the case when no heating is
applied. For comparison purposes, we shaded the span of the linear model predictions
in the middle plot.
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Figure 2.13: Difference between each temperature prediction and the black baseline (no
power) in Figure 2.12, for the linear model (top) and the proposed black-box structure
(middle), given the bottom power inputs. Note that the blue curve corresponds to the use
of the full power input sequences, i.e., both the red and orange ones.
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losses to the outside and the neighboring zone are lumped together. Each model could indeed

assign more importance to one or the other energy transfer, and further analyses would be

required to investigate and clarify this relation between b and c.

2.5.2 Benchmarking multi-zone PCNNs

While accurate zone temperature models are important, in practice, we are often interested

in modeling the thermal dynamics of a whole building. Consequently, this section provides

a comprehensive analysis of the methods presented in Section 2.4.2 and Table 2.4 to model

the three zones in UMAR simultaneously. Similarly to the single-zone case, all the results

discussed hereafter were obtained by comparing the multi-step prediction performance of

the different models on more than 750 three-day-long time series from the validation set.

To incorporate the fact that UMAR consists of three thermal zones, the MAE of a model is

then defined as its average performance over these zones. Altogether, this will allow us to

understand the trade-offs between the physical consistency, accuracy, and computational

complexity of the various examined data-driven building modeling methods examined.

Robustness to randomness. For consistency, all the NN-based models7 were run with several

random seeds. Remarkably, it does not impact performance significantly, with standard

deviations in the range of 0.01 – 0.04 and 0 – 0.2% for the MAE and MAPE, respectively, as

detailed in Table 2.4. This corresponds to a variation in performance of maximum 3% and is

often smaller than the observed discrepancy in accuracy between different models, hinting

that the observed performance gaps are significant.

As for the single-zone case in Section 2.5.1, this exemplifies the robustness of PCNNs, which

do not seem significantly impacted by the random seed in general, or at least similarly to

classical NNs. In this specific case study, the X-PCNN and M-PCNN architectures seem slightly

more robust than the S-PCNN one, but the latter sometimes outperforms M-PCNNs. Overall,

X-PCNNs seem to have the upper hand, attaining consistently high performance even under

different random seeds, but more analyses with different data sets and case studies have to be

conducted before drawing any definitive conclusion.

Overall performance comparison

Unless stated otherwise, the results discussed hereafter were obtained by the best-performing

seed for each model, achieving the errors reported in Table 2.4. As can be observed, all the

proposed PCNN architectures attain state-of-the-art accuracy, both in terms of MAE and

MAPE. They are followed by physically inconsistent black-box methods, especially the ones

7The LSTM, PiNN, and PCNN architectures. Despite also being composed of an NN, residual models are not
considered as NN-based models in this work since their main dynamics are still captured by the underlying linear
model, and not the NN.

8While the LSTM and S-PCNN models were run on five seeds due to their slightly higher sensitivity, the other
results were obtained over three seeds leading to very consistent performance.

45



Chapter 2. Physically Consistent Neural Networks for thermal building modeling

Category Model
Physical Best Best MAE MAPE

consistency MAE MAPE distribution distribution

Gray-box
Linear ✓ 1.79 7.5% - -
Res-cons ✓ 1.50 6.4% - -
X-PCNN (Ours) ✓ 1.17 4.9% 1.18±±±0.01 5.0%±±±0.0%

PCNNs M-PCNN (Ours) ✓ 1.25 5.3% 1.26±0.01 5.4%±0.0%
S-PCNN (Ours) ✓ 1.22 5.1% 1.27±0.04 5.4%±0.2%

Gray-box Res ✗ 1.79 7.7% - -
ARX ✗ 1.68 7.1% - -

Black-box
ARX-KF ✗ 1.35 5.6% - -
LSTM ✗ 1.27 5.5% 1.33±0.04 5.7%±0.2%
PiNN ✗ 1.37 5.8% 1.38±0.01 5.9%±0.1%

Table 2.4: Physical consistency, best MAE, and best MAPE of the methods investigated in
this work. The mean performance of the five NN-based model architectures, as well as
the corresponding standard deviation, over three to five runs,8 is also reported. Note that
the linear and LSTM models correspond to learning only the physics-inspired module of
S-PCNNs, respectively the black-box one. Furthermore, Res-cons is equivalent to fitting
both modules of S-PCNNs sequentially, showcasing the importance of learning all the
parameters of PCNNs simultaneously to attain state-of-the-art accuracy.

relying on very expressive NNs. As expected, the least expressive class of methods, the gray-

box one, performs the worst. Combining these results with the physical consistency of each

method, we can conclude that the proposed PCNN architectures indeed take the best out of

both gray- and black-box methods in this case study, attaining the best performance while

respecting the underlying physical laws, without trade-off, hinting at their potential to

become state-of-the-art thermal building models.

While X-PCNNs achieve the lowest error here, we suspect this performance to be influenced by

the analyzed case study. Indeed, the temperature dynamics in UMAR are strongly impacted by

solar gains, which reduces the importance of energy exchanges between the zones. This might

explain why it is possible to fit the overall building dynamics well even when independently

training one model for each zone and why the post hoc correction (2.7) does not seem to have

any significant impact on the final model performance. We suspect this required correction

might have a stronger influence on multi-zone buildings where temperature dynamics are

less impacted by weather conditions and more governed by energy exchanges between the

zones, which may, in turn, decrease the quality of X-PCNNs.

Remarkably, both residual models (Res and Res-cons), while conceptually close to PCNNs,9

are unable to achieve similar performance. This hints towards the benefits of learning all the

parameters together in an end-to-end fashion instead of first identifying the linear part and

then fitting the residual errors.

9Especially Res-cons, where the only difference in architecture comes from the solar irradiation processing.
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Finally, these results suggest that the black-box modules of PCNNs can process raw solar

irradiation data and infer its impact on zone temperatures. Indeed, PCNNs outperform gray-

box models, which have access to engineered solar gains (Appendix A.3). Interestingly, since

the impact of the sun is implicitly computed by NNs, PCNNs could easily be applied to any

building, even when shading comes into play, making the engineered processing of solar data

required for gray-box models much more complex.

Physical consistency can be helpful for Neural Networks. Remarkably, in this case study,

enforcing the physical consistency of LSTMs, as in PCNNs, seems to improve their accuracy

despite the introduced constraints, confirming the benefits of the ongoing trend in ML re-

search to include prior knowledge in NN architectures. Even if it might intuitively seem that

introducing structural constraints should hinder the expressiveness of NNs, our results add

to the literature suggesting that it can on the contrary be helpful. Moreover, one can draw

similar conclusions with the two residual models investigated in this work, with Res-cons

clearly outperforming its physically inconsistent counterpart despite both models relying

on the same linear basis. Altogether, this points towards the advantages of grounding NN

architectures in the underlying physics to ensure that they learn meaningful solutions.

Comparing physically consistent methods. PCNNs are on average 30 – 35% and 17 – 22%

more accurate than the other physically consistent methods, namely the Linear and Res-cons

model, respectively. The MAE of the physically consistent models over three days is plotted in

Figure 2.14, showing that the proposed PCNNs not only perform better on average but along

the entire prediction horizon, except during the first few hours, where all models attain similar

performance. The main reason behind this behavior is the warm start of PCNNs, which often

gives erroneous first predictions, but they offer much stronger performance in the long run.

At the end of the horizon, PCNNs indeed present an error 34 – 41% and 10 – 18% lower than

Linear and Res-cons, respectively, with the best performance again achieved by the X-PCNN.

The necessity of physical consistency

Knowing that physical consistency was beneficial in our case study, PCNNs even outperform-

ing black-box methods, let us now visualize the thermal behavior of one S-PCNN and one

PiNN in Figure 2.15. For this analysis, the thermal power is turned off in Zone 1 and 2 and we

examine the impact of heating (red), cooling (blue), or providing no power input (black) in

Zone 3. Note that the heating pattern corresponds to the true power inputs measured in Zone

3 in March 2021, which we mirrored to create the cooling pattern. This is similar to what was

performed in Figures 2.1 and 2.12 in the single-zone case, but we now also expect physically

meaningful energy exchanges between the connected thermal zones.

As one can immediately realize, following the laws of thermodynamics, heating or cooling

Zone 3 increases or decreases its temperature, respectively, in the S-PCNN model. This effect

is then propagated to the adjacent Zone 2, and later to Zone 1, impacting their temperatures

even though they are neither heated nor cooled, as anticipated. Note that while only the
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Figure 2.14: MAE of all the physically consistent methods over the prediction horizon
averaged over the three zones and the time series of three days in the validation data set.

temperature predictions of one S-PCNN are pictured in Figure 2.15, similar effects were

observed for all the PCNNs we trained. This is expected since all of them share the same

physics-inspired module to ensure they follow criteria (2.1)-(2.3).

On the other hand, all power inputs lead to almost indistinguishable temperature predictions

for the PiNN and the LSTM plotted in Appendix A.7. Despite fitting the data well (see Table 2.2),

these models are hence obviously flawed and can be misleading in practical applications.

We can sometimes even observe lower temperature predictions when heating is turned on

than when the zones are cooled, a clear sign of physical inconsistency (see Appendix A.7 for

zoomed-in results). This exemplifies the issue of shortcut learning in the case of thermal

modeling, where NNs manage to fit the data well without respecting the underlying physics.

Interestingly, Res did capture a much more significant impact of heating and cooling but

remains completely oblivious to the underlying physics, with cooling often resulting in higher

temperatures than heating. This illustrates the need to consider physical consistency when

designing residual models as well, such as in the proposed Res-cons architecture. In general,

all these observations suggest that physical consistency should always be considered when

dealing with NNs for physical systems.

PiNNs cannot guarantee physical consistency. This analysis illustrates how PiNNs only steer

the learning towards interesting solutions without providing any guarantees concerning the

actual behavior of the model. In fact, trained PiNNs always gave very similar predictions to

LSTMs in our experiments, as can also be seen by comparing Figures A.4 and A.5. This hints

that the additional physics-inspired loss term in LPiNN did not have much impact on the final

solution found despite the large λ used. While tuning this hyperparameter might lead to better

results, it is a cumbersome task and would still never guarantee the physical consistency of

the final model, as discussed in Section 2.1, and was thus not considered in this section.
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Figure 2.15: Visualization of heat propagation for an S-PCNN and a PiNN. The bottom
plots show the heating (red) and cooling (blue) power inputs applied to Zone 3 while
heating and cooling are turned off in Zone 1 and 2, compared to the situation when
no power is applied (black). The other plots depict the corresponding temperature
predictions of each model in the three zones.
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Low errors are not always correlated with good models

Very importantly, our results point out a somewhat counter-intuitive and often overlooked

characteristic of NNs: contrary to physics-based models, a good fit to the data does not

necessarily imply that the quality of the model is good. In our case, the PiNNs and LSTMs

were indeed able to fit the data well while completely discarding the impact of heating and

cooling, i.e., solely mapping external conditions to building temperatures. When modeling

physical systems, one should hence always make sure NNs do not simply find shortcuts to fit

the data without respecting the underlying physical laws. This calls for physically grounded

architectures, such as PCNNs, for applications where physical consistency is critical.

We suspect that LSTMs and PiNNs were able to achieve high accuracy without considering

the impact of heating and cooling because of the specific data used in this case study. First,

windows cover the entire East facade of UMAR, rendering the building especially sensitive to

solar gains and external weather conditions. Second, while different controllers were applied

during the data collection, all of them had the same objective of maintaining the building

temperature in a comfortable range and hence reacted similarly to external conditions. Cou-

pling these facts, it seems indeed plausible to accurately predict building temperatures solely

based on external conditions and without considering heating and cooling inputs. In other

words, we suspect the very expressive LSTMs and PiNNs to have learned the closed-loop

response of the system instead of the expected open-loop one, hence implicitly accounting for

the influence of power inputs instead of explicitly modeling their effect. This might explain

how they found non-physical shortcuts modeling the evolution of inside temperatures well.

Interestingly, the linear model also failed to capture any significant impact of heating and

cooling (see Appendix A.7), showing that it is also possible to fit this data well while almost

discarding these inputs without jeopardizing physical consistency.

Numerical analysis of physical consistency

To strengthen the theoretical and visual claims in Table 2.4 and Figure 2.15 about the physical

consistency of NN-based models, we can carry out a numerical investigation of the gradients

of their temperature predictions. Since gradients can be retrieved automatically through

the torch.autograd module [140], it allows us to empirically assess if criteria (2.1) and (2.2)

are respected, a necessary condition to ensure physical consistency. Following Remark 11,

we investigate the gradients of the temperature predictions at the end of the three-day-long

horizon with respect to the power inputs and ambient temperatures observed at each time

step. This corresponds to the gradients used to steer the learning of PiNNs in (2.37), except

for the X-PCNN, for which fewer gradients can be automatically recovered, as detailed in

Appendix A.8. Note that we are only interested in the sign of each gradient, which should be

positive according to (2.1) and (2.2) — their magnitude cannot be compared since they do not

have any physical meaning.10

10This stems from the fact that NN-based models are fitted to normalized, hence dimensionless, data.
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Figure 2.16: Distribution of the gradients of the temperatures at the end of the prediction
horizon with respect to power inputs and external temperatures observed along the
horizon for the NN-based models.

Over the entire validation data set, we have access to more than two million gradient values

for each model, except the X-PCNN, with slightly over one million values, as computed in

Appendix A.9. The resulting density histograms are shown in Figure 2.16, where one can

directly observe negative gradients only for the two black-box models not grounded in the

underlying physics. In fact, penalizing negative gradients in LPiNN decreased the magnitude

of the PiNN gradients, steering them to zero, but did not significantly change the proportion

of negative ones. In other words, it did not improve the physical consistency of PiNNs since

they still violate conditions (2.1) and (2.2) almost as often as classical LSTMs.

Interestingly, the small magnitude of the PiNN and LSTM gradients corroborate what can

be seen in Figure 2.15, with very little impact of heating and cooling for these models. On

the other hand, thanks to their physics-inspired module, the proposed PCNN architectures
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keep all the gradients that require positivity in R+ and with larger magnitudes, as desired and

observed in Figure 2.15 for the S-PCNN, providing a numerical argument supporting their

physical consistency.

Computational complexity to train the different models

As final comparison metric between the models analyzed throughout this case study, Fig-

ure 2.17 presents the time required by each model per training iteration. Importantly, these

numbers are subject to implementation considerations and have to be taken with a grain of

salt. Nonetheless, all of the NN-based models used the same backbone architecture, which

allows relative comparisons, for example between the three proposed PCNNs, between the

two residuals models, or between LSTMs and PiNNs. Note that the linear and ARX models

are not considered here since their “training” procedure is very different: it neither requires

access to GPUs nor relies on gradient descent.

First, as expected, PiNNs take more time to run than classical LSTMs since each batch has to be

forwarded and backwarded through the networks twice, once to compute the predictions used

in Ldata and another time to calculate the gradients in Lphys. Second, residual models need

access to the predictions of the underlying linear model at each step to compute the residual

errors before fitting them, which also entails a clear computational overhead compared to

LSTMs. Finally, PCNNs need to compute both the black-box module output Dk and the

physics-inspired module predictions Ek at each step k along the horizon, which also entails

additional overhead on top of classical black-box models. Interestingly, this is comparable

to what happens in residual models, explaining to some extent why the latter and S-PCNNs

require similar amounts of resources.

Compared to S-PCNNs, M-PCNNs and X-PCNNs are significantly more computationally

intensive. This intuitively follows from the shared black-box module of S-PCNNs reducing the

number of parameters to fit compared to M-PCNNs. On the other hand, X-PCNNs require

learning several models separately — one for each zone — instead of everything together,

which multiplies the computational overhead needed to create and move data to the GPU

at each iteration and leads to an increased computational burden compared to M-PCNNs.

Stemming from these remarks, we would expect these differences between the various PCNN

architectures to grow if we were to apply them to larger buildings with more thermal zones.

Remark 14 (Parallelizing X-PCNNs). The training times reported here correspond to the total

time required to train each model for one iteration, i.e., the sum of the training times of each

single-zone PCNNs in the case of X-PCNNs, to represent the total amount of computations

needed. In practice, however, the different single-zone PCNNs could easily be trained in parallel

since they are independent, which can significantly decrease the effective training time of X-

PCNNs (dividing it approximately by three in our setting with three zones). This would make

them the fastest multi-zone PCNNs to deploy but at the cost of additional computational

complexity.
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Figure 2.17: Average training time per iteration of the methods relying on a GPU.

2.5.3 Summary

The proposed multi-zone PCNNs respect the underlying physics by design and at all times

despite requiring little engineering, contrary to classical physically consistent methods. On

the other hand, they outperformed state-of-the-art black-box methods in terms of accuracy

on a case study, hinting that the constrained structure introduced to ensure they follow some

ground rules does not hinder their expressiveness. Our analyses showed little difference

between S-, M-, and X-PCNNs in general, with S-PCNNs entailing the least computational

complexity and X-PCNNs attaining the best accuracy on the analyzed case study.

Remarkably, PCNNs showed significantly better performance than classical physically consis-

tent data-driven methods, with accuracy improvements of 30 – 35% and 17 – 22% compared

to a linear and a residual model, respectively. While these results were obtained on a specific

building, the significant performance gaps suggest that this trend would be observed for other

applications, making PCNNs state-of-the-art building thermal models.

Our investigations also illustrated a well-known pitfall of classical PiNNs and LSTMs, which

can find shortcuts to fit the data well without respecting the underlying physical laws. This

exemplifies the need to not solely consider the fit to the data as a measure of the quality of NNs

but also ensure that their predictions make sense from a physical point of view. Our findings

thus support the current trend to incorporate inductive biases, i.e., prior knowledge, in NNs to

alleviate their infamous generalization issues, leading to more principled architectures — like

the proposed PCNNs.
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2.6 Conclusion and outlook

In this chapter, we proposed a novel physically consistent NN architecture, providing fully

data-driven control-oriented multi-zone building thermal models with little engineering

overhead. The main idea of PCNNs is to let a physics-inspired and a black-box module run in

parallel, the former guaranteeing the compliance of the output with the underlying physical

laws — the laws of thermodynamics in the case of building temperature modeling — and the

latter capturing unknown nonlinear dynamics, typically relying on NNs. We formally proved

their physical consistency and extensively benchmarked them against other state-of-the-art

data-driven methods.

To conclude the chapter, this section proposes an overview of opportunities, challenges, and

potentially interesting future investigations regarding PCNNs.

2.6.1 The potential of Physically Consistent Neural Networks

PCNNs provide an alternative to engineering-heavy physics-based approaches, leveraging

NNs to capture nonlinear and other hard-to-model behaviors without jeopardizing the desired

physical consistency. Furthermore, they are highly flexible since the same architecture can be

used for different buildings, again reducing the engineering overhead compared to white-box

methods.

Extending the current architecture. While the physics-inspired module used throughout this

work ensures physically consistent temperature predictions with respect to power inputs and

ambient temperatures, this could be modified or extended. If other physical principles shall

be respected, one can easily modify the form of the energy accumulator to account for the new

desired properties. For example, ensuring a consistent impact of solar gains might be critical

for some applications. Similarly, while we only considered trainable constant parameters in the

physics-inspired module herein, it could be extended to capture more complex phenomena,

like time-varying parameters or parameters that depend on other factors. Note that the

physics-inspired module does not have to be linear and might incorporate nonlinearities for

more expressiveness without jeopardizing physical consistency, similar to what was proposed

in [139]. Thanks to the BPTT training procedure of PCNNs, the parameters of the physics-

inspired module can be seamlessly learned from data11 in parallel with the parameters of the

black-box one.

Furthermore, while the only nonlinear gains considered in this chapter come from solar

irradiation, the flexibility of the black-box module could also allow it to capture other unknown

or hard-to-model heat gains, such as the ones stemming from occupants. If data on these new

heat gains is available, one could indeed easily feed it to the black-box module together with

solar irradiation measurements and time information to let the NNs learn their impact on

zone temperatures.

11Note that the same training procedure will be used for SIMBa in Chapter 4.
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Going beyond temperature predictions. Given the importance and complexity of the comfort

of the occupants in buildings, many different parameters need to be controlled to ensure

adequate Indoor Air Quality (IAQ), and not only the temperature [144]. Since more and more

factors need to be accounted for, it will further increase the engineering burden associated

with traditional physics-based methods to model all the required variables. On the other hand,

assuming data to be available, PCNNs can easily be extended to model more complex IAQ

criteria. Such an extension was proposed in [139], where the physics-inspired module was

augmented to accommodate humidity predictions on top of temperature ones.

Accelerating white-box models. Due to their performance, PCNNs would also be potential

candidates for accelerating ODE-based models, which typically incur a considerable computa-

tional burden at run-time, similarly to what was proposed in [112, 119]. Indeed, one could first

use such a high-performance model to generate a large data set, train a PCNN to approximate

the corresponding dynamics, and then leverage the latter for faster inference. This would shift

the computational load from inference to training, which is preferable for some applications,

at the cost of a yet-to-be-quantified performance loss. Compared to classical pipelines relying

on vanilla NNs, however, PCNNs would guarantee compliance with the underlying physical

laws at run-time.

Tackling other applications. Finally, while we only discuss how to apply PCNNs to building

thermal modeling in this work, they could be leveraged to model many other dynamical

systems, provided historical data is available. Indeed, engineers usually have at least an

approximate understanding of the physics driving any system of interest — and expect models

to follow these principles. This prior understanding can be formulated in the physics-inspired

module, similar to what we did in this work for buildings, before letting an NN simultaneously

adapt to the data to grasp any unmodeled or not well-understood phenomena. Interestingly,

this could alleviate the computational burden of calibrating accurate physics-based models: a

simplified physics-inspired module might be enough to fit the data well when an NN captures

the residual physics in parallel.

2.6.2 Limitations of Physically Consistent Neural Networks

If PCNNs achieved consistent and state-of-the-art performance throughout our investigations,

we cannot draw any definitive conclusions since we only benchmarked them on a single case

study. Indeed, PCNNs might fail to model other buildings with different thermal dynamics

accurately, and all the results presented herein hence have to be taken with a grain of salt.

On the other hand, however, UMAR is not an easy case study, with temperatures routinely

rising above 26 ◦C even in winter. Due to its east-facing glass facade, solar gains indeed play a

crucial role, and their nonlinear nature is challenging to capture. Our results are thus a good

indication of PCNNs’ ability to model nontrivial effects.

Apart from the specificity of the case study, another potential source of quantitative errors

in the results comes from the many hyperparameters of NNs — and hence PCNNs. They
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were not tuned to optimality in all the cases but rather empirically set to achieve consistent

performance. While we would not expect drastic changes for better hyperparameters, and

none that would modify our conclusions, it could still have a quantifiable impact. However,

as long as PCNNs, PiNNs, and LSTMs use the same hyperparameters, we expect the results

presented in this chapter to hold, with PCNNs achieving the best performance overall.

Beyond these considerations specific to our numerical experiments, the widespread deploy-

ment of PCNNs for building thermal modeling still faces several challenges.

Building topology. First, while only requiring access to the topology of the building signif-

icantly reduces the engineering burden compared to traditional physics-based methods, it

might not be trivial in practice. For example, the layout of the zones is usually easy to recover

from design plans, but the link with the data is often missing. In other words, knowing which

data point corresponds to which thermostat and in which zone that thermostat is located

can be complicated. While automatic topology discovery — recovering the topology of the

building from data — could solve that issue, it remains an open problem in the building sector.

Alternatively, one could borrow ideas from the automatic gray-box identification in [145]

and greedily add nodes to the topological graph to discover the topology, for example. How-

ever, this implies training several PCNNs at each step and would hence incur a significant

computational burden that would not be feasible in practice, at least for large-scale buildings.

Behavior of the physics-inspired module. The initialization and convergence of the physics-

inspired module parameters are additional significant limitations necessitating further care

before any full-scale deployment of PCNNs. Since these physics-inspired parameters are

learned in parallel with very expressive NNs, their initial value plays a key role. Indeed, the

NNs might otherwise try to capture all the trends in the data and discard the physics-inspired

module — i.e., setting its parameters to values close to zero —, for example, similarly to what

could be observed for LSTMs and PiNNs in our experiments in Section 2.5.2. Although this

would never violate the physical consistency of PCNNs, it could lead to meaningless solutions

if the physics-inspired parameters take unrealistic values.

While the hand-crafted initialization rules described in Section 2.4.3 and used throughout this

chapter perform well for such a small-scale case study, an automated framework detecting

plausible values from data would be required to tackle large-scale buildings with several hun-

dreds of zones. Worryingly, we observed that the quality of the solution can vary significantly

if these parameters are initialized to unrealistic values. In other words, PCNNs do not always

recover physically consistent parameters from data without meaningful initial values.

To make matters worse, even after being initialized to plausible values, these physics-inspired

parameters only represent a tiny fraction of the total number of parameters while significantly

influencing PCNN predictions. The impact of backpropagation on the parameters of the

physics-inspired module requires further analysis, especially since we tune the hundreds

of parameters of the black-box module in parallel. On the one hand, we do not want the

physics-inspired parameters to change too much from the initial guess since they need to be

56



2.6 Conclusion and outlook

consistent with the physical world; on the other, if they move too little, they will not adapt to

the data to improve accuracy. The optimal trade-off between these two paradigms to achieve

robust learning and performance remains an open question.

Data availability. Finally and critically, before considering the deployment of PCNNs, be it

for building modeling or any other application, the appropriate data has to be available. This

entails having access to all the necessary data points in sufficient quantity and high quality. As

discussed, NNs are indeed notoriously data-hungry and suffer from poor generalization. In

other words, they will try to fit undesired trends if some are present in the data.

In the case of building modeling, for example, we assumed throughout our work to have

access to individual zone power inputs, which are usually unavailable. While it can be pos-

sible to disaggregate the total power measurement into zonal ones based on system design

information, as was done for UMAR, it is not always possible to access the required data in

practice. This disaggregation function, instead of being engineered, could be learned from

data simultaneously to the other parameters of the physics-inspired and black-box modules,

as mentioned in Remark 4, but the efficacy of such a scheme to capture the true individual

powers remains an open question. Note, however, that an approximate solution might be

sufficient in practice: as long as the right total amount of thermal power is provided to the

building, it will then be distributed among the zones through heat transfers, following the laws

of physics encoded in PCNNs.

2.6.3 Outlook

Beyond training PCNNs on other data sets and buildings to assess their robustness, some of the

aforementioned limitations must be addressed before widespread adoption and large-scale

experiments. In particular, understanding how to automatically initialize the physics-inspired

module parameters and the impact the training procedure has on them requires further

analyses. Setting different learning rates for both modules and investigating what happens to

the gradient of these sensible parameters could be helpful in that regard.

Improving initialization. Instead of the data-based solution proposed in this work, one could

alternatively use SI techniques to first fit the physics-inspired module to the data. Setting

D ≡ 0 and E0 = T (0), this procedure would find a solution where the physical parameters

approximately fit the data. One could then initialize all the NN weights to zero — instead of

random values — so that the PCNN learns to improve upon the performance of the physics-

inspired module, similarly to what was discussed in [146].

Note that this resembles residual models, but we would expect the physics-inspired parameters

to be updated in parallel with the NNs in the second step to adjust to the fact that the black-box

module now captures some nonlinearities in the data. In other words, in this scheme, both

modules would still be learned together, as proposed in this work and contrary to residual

models. However, the physics-inspired module would be initialized through SI techniques,
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and the black-box one would start at zero, replacing the hand-crafted-rule-based and random

initialization of both modules, respectively, used throughout this work. Interestingly, such an

approach could be seamlessly integrated with the SIMBa toolbox for SI proposed in Chapter 4,

which also relies on BPTT, as the PCNNs proposed in this chapter.

Improving learning. In a similar vein, instead of fitting PCNNs from scratch for each new

modeling task, one could investigate how to transfer (parts of) an existing PCNN trained

with another data set or on a different building. This is a popular research topic, with several

open questions, such as: What amount of data is needed for a successful transfer? What

part of PCNNs can be transferred? How can we handle different building topologies? These

questions recently gave rise to Transfer Learning (TL) [147], a field gaining in popularity in

building applications [148] that might provide some answers. However, PCNNs have their

peculiarities rendering them more challenging to transfer than vanilly NNs. In particular, the

physics-inspired module needs to comply with the desired physical laws on the new data set.

Alternatively, training a PCNN with a large number of parameters to capture the dynamics of a

wide variety of buildings, only requiring little fine-tuning towards good performance on any

new building, could be a promising approach, similar to what was done in [114].

To ease the training of PCNNs and alleviate some of the associated computational burden

further, one could leverage curriculum learning, where the prediction horizon is gradually

increased during training, starting from one-step-ahead predictions [149]. This would allow

PCNNs to start by solving easier problems and converge to meaningful solutions before

gradually increasing the difficulty. Additionally, to simplify the learning task, the temperature

measurements data set — or the time series of any quantity of interest — could first be

decomposed into sub-components with less complex dynamics, for example, leveraging the

Fourier or wavelet decompositions. This improved the final modeling performance in [150],

for example.

Capturing more complex behaviors. These training improvements would incidentally help

to apply PCNNs to larger-scale case studies and increase in importance if more complex

indoor air quality models — not only considering the inside temperature — are desired. As

we move towards more occupant-centric building control frameworks, ever-more complex

building models will indeed be required. It would hence be interesting to investigate how

to extend the simple physics-inspired module used throughout this work to capture more

complex IAQ phenomena, in line with the humidity predictions introduced in [139].

Analyzing data requirements. In general, it would be intriguing to analyze how different

hyperparameters and — more importantly — the quantity and quality of the data influence

PCNNs. While we leveraged three years of data throughout this work, which covers all seasons

and various operating conditions, such a data set is rarely available in practice. Consequently,

it is important to understand what data PCNNs require to achieve given performance criteria.

For example, it might be possible to learn a good model for each season separately, using

(much) less data in each case than required to train a PCNN performing well all year round.

58



2.6 Conclusion and outlook

Related to these investigations, it would be interesting to assess the potential of continuous

learning, where recently collected data points could be used to retrain PCNNs periodically after

a shorter offline training phase. This could allow PCNNs to adapt online to the slowly changing

environmental conditions, among others. If the PCNN is only expected to be accurate for a

short period of time, it might indeed be possible to maintain a well-performing model from

limited amounts of recent data, bypassing the expensive offline training phase covering all

possible operational conditions.

On the other end of the data spectrum, how to deal with large data sets — for example,

consisting of hundreds or thousands of buildings — at a reasonable computational cost

remains an open question. Leveraging techniques from federated learning and doing spatial

and/or temporal downsampling to cluster similar buildings together, similar to what was done

in [114], could speed up the learning in these cases.

Impact of other research fields. Apart from improvements to PCNNs, several other domains

could help the widespread deployment of PCNNs. As mentioned in the limitations above,

these include advances in automatic topology discovery and automatic power disaggregation

algorithms. Going one step further, it could be interesting to intervene before the data collec-

tion starts, introducing systematic procedures to link data points and the physical building

when the system is set up, following the concept of linked data, for example [151]. Depending

on the implementation of such a scheme, the building topology could also be stored with the

data so that PCNNs could have direct access to all the required information and be seamlessly

trained without any engineering effort.

Applications. Whenever PCNNs achieve state-of-the-art accuracy, as in our case for UMAR

in this work, they could be subsequently deployed in many different applications, especially

around control. First, since they are physically consistent, they can be leveraged as trustworthy

simulation environments for DRL agents, as proposed in Chapter 3. Maybe more importantly

for practical applications nowadays — given the early stage of DRL research —, it could be

interesting to use PCNNs as thermal models in MPC controllers. In particular, since the

PCNN architecture analyzed in this chapter is power input-affine, it would result in convex

optimization procedures inside the MPC for an appropriate choice of cost function [125].

Consequently, it would provide a low-complexity MPC formulation — despite relying on NNs

in the black-box module — while bypassing the need for engineering-heavy models.

Going beyond buildings. Finally, to investigate the general potential of the proposed ar-

chitecture with a physics-inspired module being complemented by a black-box one, other

applications beyond building thermal modeling would be required. In practice, engineers

often have access to simplified physical models of the system and these could be leveraged as

physics-inspired modules. With highly expressive NNs simultaneously grasping unmodeled

effects from data, we would expect PCNNs to generally achieve high accuracy, but this theory

remains to be tested. It showed promising results for gas piston systems, for example (see

Chapter 4), but more case studies are required before drawing any definitive conclusion.
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2.6.4 Concluding remarks

This chapter introduced a novel NN architecture, dubbed PCNN, introducing expert knowl-

edge in a physics-inspired module to ground the predictions in the underlying physics. Despite

being limited to a single case study, empirical analyses showed PCNNs can achieve impressive

performance, surpassing other data-driven methods. They allow us to use NNs while avoiding

some of their pitfalls, mainly linked to their lack of generalization. Indeed, PCNNs achieved

better performance on the validation data than classical LSTMs despite being outperformed

on the training one. One should keep in mind, however, that this issue is not fully solved:

there is still an NN in the pipeline that can behave undesirably in some situations. PCNNs

are indeed only physically consistent with respect to the inputs treated accordingly in the

physics-inspired module.

Nonetheless, overall, we hope that PCNNs can pave the way for potentially large-scale NN-

based models able to simultaneously provide state-of-the-art performance and physical

guarantees for building thermal modeling and beyond.
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3 Prospects and hurdles of Deep Re-
inforcement Learning for building
control

Following the discussion on the importance of advanced building control methods in Sec-

tion 1.1, this chapter investigates the potential of DRL policies in that context. We start by

defining the characteristics of an ideal building controller and discussing the advantages and

disadvantages of existing control methods. Along this analysis, we argue in favor of compu-

tationally lightweight, constrained, and efficient model-free DRL solutions. We then report

two case studies supporting the feasibility of such controllers in Sections 3.3–3.4, paving the

way towards model-free DRL agents that could be deployed from scratch in buildings and

automatically learn to optimize operations at large-scale.

3.1 The potential of model-free Deep Reinforcement Learning

Buildings are characterized by slow thermal dynamics, i.e., it takes several minutes for heating

to have a noticeable impact on the temperature, for example. Practitioners thus often choose

a time step of 10–15 min for high-level controllers focused on energy minimization [28]. This

implies that only a few control decisions and data samples can be taken daily, rendering

real-world experiments challenging [14, 144]. Furthermore, occupants play a major role

in terms of disturbances — they provide additional heat gains and can open doors and

windows, for example — and comfort preferences [144, 152]. This adds to the fact that every

building presents distinct thermal dynamics and Heating, Ventilation, and Air Conditioning

(HVAC) facilities and reacts differently to various disturbances. These disturbances — mainly

stemming from weather conditions and the behavior of the occupants — can also vary widely

from one building to another depending on its location or the occupants’ habits, among others.

Overall, we hence require adaptive control solutions able to adjust to each building [28].

Throughout this chapter, we differentiate between offline methods, which use a fixed historical

data set to train a model or a control policy before deploying it on the system, and online

approaches, which learn a model or a control policy while controlling the system and collecting

data. Note that both ideas can be combined, and we may then refer to the offline and online

phases as the pre-training and fine-tuning procedures, respectively.
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3.1.1 Requirements of an ideal building controller

To ensure its widespread adoption, we argue that an ideal building controller should meet

the following requirements, inspired and adapted from the points raised in [15, 28, 153, 154]:

R1. Optimality: First, an ideal controller should naturally achieve optimal system-wide

performance, i.e., use the least possible energy while satisfying the comfort of the

occupants.

R2. Robustness to disturbances: Building thermal dynamics are heavily impacted by dis-

turbances, and an ideal controller should be robust and react accordingly to perform

optimally in any condition — during a sunny summer day or a snowy winter one and

whether occupants are present or not, for example.

R3. Constraint satisfaction: Although maintaining a comfortable indoor environment is a

soft constraint in our setting — violations will not break the system and might not even

affect the occupants —, any controller deployed in a real-world application needs to

respect the preferences of the occupants to avoid complaints to achieve widespread

adoption. This calls for control solutions that can handle (soft) constraints, i.e., limit the

total time and amount of constraint violations.

R4. Lifetime adaptability: An ideal controller should detect changes in building dynamics

due to different occupant preferences, retrofitting operations, or aging of the compo-

nents. It should continuously adapt its behavior and provide adequate responses. This

is also known as continuous commissioning [155].

R5. Scalability: Deploying an advanced thermal controller in a modern smart building

might entail coupling it with solar Photovoltaic (PV) electric energy production, bat-

teries, Battery Electric Vehicles (BEVs), and appliance scheduling, among others [41].

Furthermore, occupants might be sensitive not only to the indoor temperature but also

to the relative humidity and air movements, for example, and react differently to these

conditions depending on their personalized comfort preferences [144]. These issues

naturally amplify with the size of the building to optimize, and an ideal control solution

should thus be able to deal with large numbers of variables and control actions.

R6. Transferability: Since every building is different, an ideal control method should be

system-agnostic and out-of-the-box to undergo widespread adoption. This is required to

alleviate the engineering effort associated with manual interventions during deployment

and avoid prohibitively expensive solutions.1

R7. Fast convergence (online): While online methods naturally need time to adapt to a

building when deployed, contrary to offline ones, an ideal controller should not take

months or years before reaching satisfactory performance. It could otherwise consume

significant amounts of energy and incur unacceptable discomfort for the occupants.

1In this chapter, transferability refers to system-agnostic methods that can seamlessly be deployed in any
building once they have been developed. This is slightly different from its classical definition in the TL literature,
where transferring a policy generally refers to taking information from one building, transferring (part of) the
corresponding data, model [147], or control policy [156] to another one, and then fine-tuning the controller on the
new task. TL could benefit any data-driven controller, alleviating R6 and R7 to some extent. However, whether it
can fully solve the transferability issue in practice — according to our definition — remains an open question.
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Method

Requirement
R1 R2 R3 R4 R5 R6 R7

Optimality Robustness
Constraint

Adaptabilitya Scalability
Transfer- Fast

satisfaction ability convergence
RBC – – – o – – – – – /
BO-RBC o + + ++ – – + –
MPC + ++ ++ – – –b – –b /
DPC + o o – o – /
DeePC o + ++ +c – – – o
Online MPC + + + + –b –b +
Vanilla DRL ++d – – – – ++ ++ ++ – –
Safe DRL o – ++ + o ++ – –
Backup-DRL o – + + ++ ++ – –
Online MBDRL + – – – ++ –b +b o
MPC-DRL + + + ++ – –b –b o
IL-DRL + – o ++ – – +
ReL-DRL + o – ++ – – +
Offline DRL ++d + + ++ –b –b /
Potential

++d ,e + f ++ f ++ ++ ++ + f
of CEO-DRL

Glossary: RBC: Rule-based control, BO-RBC: RBC tuned with Bayesian Optimization, MPC: Model Predictive Control with

Glossary: a fixed model learned before deployment, DPC: Differentiable Predictive Control, DeePC: Data-enabled Predictive Control,

Glossary: Online MPC: MPC with online model update, Vanilla DRL: Online model-free Deep Reinforcement Learning,

Glossary: Safe DRL: Constrained policy optimization methods, Backup-DRL: DRL with safety backup controllers,

Glossary: Online MBDRL: Model-based DRL with online model update, MPC-DRL: Methods merging MPC and DRL,

Glossary: IL-DRL: DRL with Imitation Learning (IL), i.e., the policy first learns to imitate an existing controller offline,

Glossary: ReL-DRL: DRL with Residual Learning (ReL), i.e., the DRL agent interacts with another controller for assistance,

Glossary: Offline DRL: DRL agents leveraging a building simulator to train offline before deployment,

Glossary: Potential of CEO-DRL: The potential of Constrained and Efficient Online model-free DRL algorithms discussed in this chapter.

Keys: “– –”: particularly challenging, “–”: not met in general, “o”: neutral or unknown,

Keys: “+”: partially met (i.e., nontrivial or not always met), “++”: met in general, “/”: not applicable.
a While any offline method can be extended to be updated online and satisfy R4, we consider them separately for clarity here.
b These challenges might be alleviated through the use of data-driven modeling techniques like PCNNs (Chapter 2) or SIMBa (Chapter 4).
c While the vanilla version of DeePC does not adapt to new data online, recent indications hint that it can indeed be done [157].
d Since they do not rely on the accuracy of a model online, these methods might outperform model-based approaches.
e Analyzed in Section 3.3.
f Analyzed in Section 3.4.

Table 3.1: Qualitative assessment of the potential of different building control methods
to satisfy the seven identified requirements of an ideal controller, summarized from the
discussion in Sections 3.1.2 and 3.1.3.
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Chapter 3. Prospects and hurdles of Deep Reinforcement Learning for building control

In light of the aforementioned seven requirements of an ideal building control method, let us

now discuss the advantages and disadvantages of existing approaches. A qualitative summary

of the following two sections can be found in Table 3.1.

3.1.2 From classical to data-driven adaptive control methods

RBC: Rule-based controllers

While manually tuned RBCs still dominate current building industry practices, they usually

fail to achieve system-wide optimal performance, even for simple problems, and hence do not

meet R1 and R5 in general [15, 28]. Furthermore, an RBC will only satisfy R2–R3 if it has been

expertly tuned to react to every disturbance and constraint, a challenging task even for a single

control variable [158]. This also means that R4–R6 are generally not met by RBCs: adapting

to changes online would indeed require retuning the parameters every time the dynamics or

the occupants change, and scalability and transferability cannot be achieved with a controller

that requires heavy manual tuning for each application [16].

BO-RBC: Automatic tuning of rule-based controllers

Since the main issues with RBCs stem from the tedious manual tuning procedure required

to achieve good performance, automatic tuning algorithms, typically based on Bayesian

Optimization (BO) [159], might lead to significant improvement. This allows RBCs to satisfy

R4 and R6 since they can be optimized from scratch on any building and keep updating

the parameters throughout their lifetime. BO-RBC combinations were already successfully

demonstrated for building control in [160, 161]. Remarkably, vanilla BO can be extended to

handle contextual inputs and constraints, hence naturally meeting R2–R3 [162–164]. However,

R1 remains an open question in general, as the performance of RBCs is limited by the chosen

rules.

Worse yet, R5 is not met by these autotuning methods since BO is infamously known for

its computational complexity in high dimensions [165]. To mitigate this scalability issue,

DRL could also be used for RBC tuning (as in [166], for example), but the efficacy of such a

scheme has yet to be tested for building control and might fail to incorporate constraints (R3).

Furthermore, it would most likely be hindered by the slow dynamics of buildings since DRL

is infamous for its poor sample complexity [29]. Although this might be mitigated to some

extent through entropy maximization to ensure sufficient exploration of the state-space, as

proposed by [167], it still took several hundreds of episodes to converge on a straightforward

proportional-integral-derivative controller tuning problem. If the building RBC parameters

are only updated daily, like in [160, 161], for example, it might take months or years to find

well-performing parameters, jeopardizing R7. Note that, despite being more sample efficient

than DRL, tuning three parameters with BO — and only for the heating season — still took

several months to converge in [161].
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MPC: Model Predictive Control

MPC is arguably the most popular advanced building control method, but it has not yet

been widely accepted by the industry, mainly because of the high associated engineering and

installation costs [7, 28, 168, 169]. Since it relies on an explicit model of the system to predict

future trajectories and then solves a constrained optimization problem at each step, MPC

achieves near-optimality, is robust to disturbances, and satisfies constraints by design (R1–R3),

provided detailed forecasts of the disturbances are available and the model is accurate. These

are however strong assumptions in practice.

On the other hand, in its offline form, i.e., when the model is not adapted online, R4 is not

satisfied [13]. Furthermore, the model of the building’s thermal dynamics — or any variable of

interest — at the core of any MPC controller plays a crucial role; imprecise models can indeed

lead to poor control performance [170, 171]. This shifts the burden back to finding accurate

building models, a nontrivial task, as extensively discussed in Section 2.1.2. MPC thus satisfies

neither scalability nor transferability in general (R5–R6), especially if it relies on cumbersome

white-box models.

Leveraging data-driven models. To alleviate the burden of engineering models, one can

instead use gray- or black-box models in MPC, such as linear [172], random forest [17], Gaus-

sian process [173], or NN [174] models, for example. Note that there is usually a trade-off

here between model complexity — often positively correlated to the final performance of

MPC in building applications [175] — and the associated computational complexity of the

optimization problem at inference time. This influences the ability of MPC controllers to

simultaneously meet R1 and R5: more complex models will be required to solve large-scale

problems with satisfactory performance (R1), leading to more complicated optimization

procedures and thus hindering R5.

Interestingly, the PCNNs proposed in Chapter 2 could be ideal candidates to solve this trade-

off since they can be input-affine (Remark 9) — leading to convex optimization procedures

inside the MPC for adequate choices of cost function [125] — while reaching state-of-the-art

accuracy without engineering overhead. Consequently, a PCNN-MPC framework could be

expected to simultaneously achieve near-optimality and scalability (R1 and R5), provided

accurate disturbance forecasts are available.

As a predictive control method, MPC indeed relies on disturbance forecasts to optimize the

control inputs, and it is known to be sensitive to their precision [171, 176]. This limits its ability

to scale to more complex problems in general (R5) — even if a well-performing model of the

dynamics were accessible for any building — since each disturbance would need an accurate

forecast model (the PV production or the BEV schedule, for example). In fact, solely grasping

the impact of occupants is a complex task with a research field of its own [177–179]. Coupled

with the fact that possibly extensive data sets would be required for each building to develop

such data-driven MPCs, transferability is still out of reach of standard MPC controllers (R6).
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Remark 15. Combining ideas from PCNNs in Chapter 2 and SIMBa in Chapter 4 may enable

the creation of a pipeline capable of simultaneously identifying the behavior of all the variables

and disturbances from historical data. This could be a significant step towards MPC controllers

satisfying all the requirements except R4, but significant effort is still required to create building-

agnostic identification methods capable of capturing all the complexities of the building control

problem to achieve scalability and transferability (R5–R6). Furthermore, such a controller could

only be deployed after an initial data collection phase.

DPC: Differentiable Predictive Control

As another means to reconciliate performance and scalability (R1 and R5) for MPCs, Drgoňa

et al. recently introduced the Differentiable Predictive Control (DPC) framework [180]. DPC

only requires an offline data set to learn a neural state-space model and a control policy able

to handle state and input constraints. In other words, it acts as a proxy for an MPC, bypassing

the optimization procedure, similar in spirit to approximate MPC frameworks like [181, 182].

DPC was applied to building control in [183] and presents the potential to meet both R1 and

R5, as PCNN-MPC.

On the other hand, it has the same drawbacks as other data-driven MPCs concerning data and

forecast requirements, which hinder scalability and transferability (R5–R6). Since it relies on

NNs, DPC might also suffer from their generalization issue (Section 2.1.1) and perform poorly

for unexpected disturbances (R2). Additionally, it might fail to respect constraints (R3) since

the latter are only incorporated through penalties in the loss function and not hard-coded like

in MPC [183].

DeePC: Behavioral approaches

To avoid pitfalls associated with finding a suitable model for MPC, researchers have recently

leveraged Willem’s fundamental lemma [184] for direct controller design. For Linear Time-

Invariant (LTI) systems, this lemma gives sufficient conditions under which any trajectory

of a system can be represented as a linear combination of the input/output Hankel matrix’

columns. In other words, all future trajectories of an LTI system can be predicted from a past

one, provided the latter is sufficiently excited. This recently led to the rise of Data-enabled

Predictive Control (DeePC) approaches, where past data is used instead of a model to predict

future trajectories [185]. It has been applied to building control in [186, 187], for example.

As a predictive method, DeePC naturally satisfies constraints R3 as long as the building dy-

namics are linear and the historical data set is sufficiently excited. However, the vanilla DeePC

version assumes no measurement noise and is not robust to disturbances in practices [188].

To satisfy R2, one can instead leverage one of the several schemes introduced to robustify

DeePC against noise, such as [188, 189]. On top of these improvements, one can consider

online time-varying Hankel matrices to adapt to the changing building dynamics online and
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satisfy R4. However, this raises questions about which data to retain and discard at each step to

attain the best performance in general [190]. A very promising direction to solve this dilemma

was recently provided in [157], where an efficient update algorithm was proposed. It allows for

fast online computations even with a growing amount of data by transforming the original

DeePC problem into a lower-dimensional one of fixed complexity.

On the other hand, for the lemma to hold, one needs to ensure the persistency of excitation of

the inputs, which requires an additional mechanism for real-world experiments, as discussed

in [188], complicating the deployment of DeePC. To make matters worse, the data require-

ments for DeePC to perform adequately likely differ from one building to another, with two

to thirty days being selected in [188, 190] depending on the setting, for example. Note that

less data might be required if the Hankel matrix is periodically updated online to capture new

conditions. Combined with the notorious difficulty of tuning DeePC controllers [188, 191],

this approach does not scale or transfer well yet (R5–R6).

Finally and more critically, DeePC relies on the linearity of the underlying system to lever-

age Willem’s fundamental lemma. While the temperature dynamics of a thermal zone are

approximately linear, this characteristic will not persist for more complex case studies (R5),

and we cannot expect DeePC to achieve global near-optimal performance in general (R1).

Finally, as MPC and DPC, DeePC still relies on forecasts of all the disturbances, complicating

its deployment in large-scale applications and transferability (R5–R6), as discussed above.

Online MPC: Model Predictive Control with online model update

To alleviate the issues stemming from finding accurate building models — or a substantial

amount of high-quality data for data-driven techniques —, one can learn or refine the model

online while controlling the system [192]. Traditional approaches usually start from a model

learned offline and periodically refit its parameters given the newly collected data to improve

the performance of MPC controllers [33, 193–196].

In a similar vein, any of the data-driven MPC or DPC approaches discussed above could

be extended to satisfy R4 by periodically updating their corresponding model online. Each

method would keep its advantages (R1–R3) and inconveniences (R5–R6), mainly stemming

from the need for accurate disturbance forecasts if the models can be fully learned online,

like in [197]. However, this is the exception rather than the rule since most approaches first

initialize the models offline [193–196] and hence suffer from the same pitfalls as classical

methods during that phase. On the other hand, for data-driven modeling techniques, less data

might be required than in the purely offline case since the model is then fine-tuned online to

improve its accuracy under new circumstances [33].

Even if a model were to be fully identified online, similarly to the discussion on adaptive

DeePC, the optimal updating procedure and frequency remain open questions, with models

being updated weekly using the past month of data in [195] or being updated daily using the
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entire data set in [196], for example. Additionally, it is likely building- and problem-dependent,

further complicating scalability and transferability (R5–R6). Finally, since the model is updated

online in that case, the performance could suffer during the learning phase (R7). Nonetheless,

online MPC seems to quickly provide acceptable results in practice, mainly thanks to its

ability to incorporate constraints. This allows it to usually not behave catastrophically online,

especially after some offline model pre-training, as exemplified by the results in [193–197].

A promising pipeline. One promising approach was proposed in [33], where an online

NN-MPC was coupled with an outlier detector and a fallback controller. The main idea of the

former is to detect whether the NN model can be trusted before applying the MPC control

inputs to the building and fall back to the safe controller otherwise. Remarkably, this avoids

the pitfalls associated with the generalization issue of NNs (Section 2.1.1). Since the NN is

periodically re-trained, it safely learns to accurately capture new operating points, in turn

decreasing the need for the backup controller throughout the deployment time.

This scheme provides a generic solution applicable to many buildings and enjoys promising

scalability and transferability properties, alleviating R5–R6 to some extent. However, distur-

bance forecasts are still required, and using NNs as models might lead to complex optimization

procedures for the MPC at inference time, complicating large-scale applications (R5).2 Fur-

thermore, more complex problems would require NNs with more parameters to be accurately

modeled. This, in turn, would necessitate larger data sets to initially fit the model offline and

achieve satisfactory performance online in a reasonable amount of time, i.e., avoid falling back

to the backup controller too often during the learning phase (R7). Nonetheless, we suspect that

leveraging PCNNs (Chapter 2) in such a pipeline might lead to controllers satisfying R1–R6.

3.1.3 Deep Reinforcement Learning

Instead of anticipating the impact of various actions in order to choose the best one, as in the

predictive methods discussed above, RL agents traditionally directly interact with the system

and do not require access to a model. At each time step, they choose an action depending on

the observed state of the environment,3 get rewarded for it, and the environment moves to the

next state. All RL algorithms aim at maximizing long-term rewards via trial and error [19].

DRL — RL with NN-based control policies — rose to prominence after achieving ground-

breaking and even superhuman performance on Atari games in 2013 [198]. However, its main

successes are often limited to simulated environments or systems that can be accurately

modeled (for example, [199–201]). State-of-the-art real-world applications of DRL are indeed

usually only possible after first training in simulation in fields like robotics [202], plasma

control [64], or drone racing [203], among others. This stems from the challenges arising from

real-world DRL applications, including the fact that agents should be able to learn from limited

2This can be alleviated in practice by using input-affine NNs, such as the PCNNs proposed in Chapter 2.
3The system is often referred to as the environment in the RL literature; both words will be used interchangeably

throughout this chapter.
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samples and respect system constraints at all times [204]. Indeed, robots or drones can only

fail in simulation to avoid breaking the physical system, for example — and failures are gener-

ally required to teach DRL agents how to avoid them due to their trial-and-error paradigm.

Even if the right choice of DRL algorithm and hyperparameters can lead to successful learning

on real robots, efficiency and stability remain significant challenges in practice [205].

Note that there is some confusion around the meaning of model-free and model-based DRL

in the literature. The latter traditionally encompasses algorithms leveraging a model of the

environment (possibly learned online) to improve the learning efficiency by generating arti-

ficial trajectories, going beyond the standard trial-and-error nature of DRL. However, it can

also refer to DRL pipelines requiring access to a model — typically for offline pre-training

— even if the training algorithm itself does not use the model and still relies purely on trial

and error. Throughout this work, we follow the latter definition, arguing that any need for a

model, be it for pre-training or as part of the learning algorithm, inherently renders a method

model-based.

Applying DRL to building control

Following its success on various tasks, DRL has recently also gained popularity in the context of

building control, replacing its old tabular RL counterpart [14, 31, 41, 206]. However, it remains

very data-inefficient in practice [29, 207], and DRL agents struggle to converge to meaningful

solutions in a reasonable amount of time — mainly because of the slow thermal building

dynamics. A vanilla model-free DRL agent can indeed take months or years to converge to

satisfactory performance, all the while not guaranteeing the comfort of the occupants [14, 30,

31, 208]. Even after achieving satisfactory training performance, DRL agents might still react

unexpectedly to new environmental conditions the NN-based policy has never seen before,

i.e., fail to generalize (Section 2.1.1). Thus, neither R2–R3 nor R7 are generally met [13].

Final performance potential. On the other hand, if the agents continuously update their pol-

icy while interacting with the system, they naturally adapt to changing building dynamics and

hence meet R4. Furthermore, although the final performance of DRL agents remains an open

question in practice, there are indications that they can indeed find well-performing control

policies [209–212], or at least achieve a performance close to MPC [213], hence addressing

R1. This contradicts the findings in [13] to some extent, where a tuned MPC significantly

outperformed many DRL agents with different hyperparameters. However, the MPC had per-

fect knowledge of all disturbances, and some hyperparameter choices still led to DRL agents

achieving near-optimal performance. This confirms that finding the right hyperparameters

and reward function to get the best performance out of DRL agents is generally challenging —

and probably building-dependent [43].

Scalability and transferability potential. Since it learns solely from interactions with the

environment, DRL is system-agnostic and hence presents great transferability potential (R6).

Additionally, there are indications that DRL agents can scale to complex building control prob-
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lems and hence satisfy R5 [14, 41, 206]. Scalability is also usually less challenging compared

to optimization-based predictive methods since DRL policies only require a forward pass

through an NN at inference time, a relatively computationally lightweight operation [213].

Furthermore, DRL agents only require access to the current state of the system online in

principle, implicitly learning to anticipate future disturbances and bypassing the need for

accurate forecasts of predictive methods, which also helps meet R5–R6.4

Meeting constraints (R3)

Safe DRL. First, one could borrow tools from the vast safe RL literature [216, 217] based on

constrained policy optimization [218, 219], for example, to handle constraints and satisfy R3.

Alternatively, one could learn neural Lyapunov or barrier functions in parallel with the control

policy to guarantee the stability or safety of DRL agents [220]. However, these approaches

would not improve the robustness to new disturbances (R2) while adding further computa-

tional complexity, hence impacting the scalability and convergence speed and jeopardizing

R5 and R7 further.

Backup-DRL. To ensure the satisfaction of the occupants at deployment time and avoid

catastrophic failures of the agents, many practical implementations of DRL in buildings

leverage backup controllers [20, 214, 221, 222]. Usually, people either fall back on some

known safe policy [223–225] or correct the actions of the agent [226] as soon as they are

deemed unsafe.5 Classifying actions as safe or unsafe can be achieved by defining ad-hoc

rules [222–225], constructing a shield from temporal logic specifications [227], learning when

to switch [228, 229], or using a model (see below), among others. One key limitation here is that

agents are saturated and usually cannot learn from their mistakes [226]; frequent interventions

of the backup controller might hence hinder learning, leading to slower convergence R7 and

potentially inducing sub-optimality R1.

Addressing robustness, constraint satisfaction, and convergence speed (R2, R3, and R7)

Despite the pitfalls associated with finding accurate building models discussed in Chapter 2,

researchers often turn back to model-based methods to help DRL agents to satisfy R2, R3, and

R7 in practice. Rather than solely relying on interactions with the system, as in the model-free

case, Model-Based DRL (MBDRL) agents indeed leverage a model of the environment to

help with robustness, constraint satisfaction, or data efficiency, i.e., reduce the number of

interactions with the physical system. This section provides a non-exhaustive overview of

possible approaches.

4Note that if disturbance forecasts are available, they can also be included in DRL applications, either extending
the state space [43] or biasing Q-values towards forecasts for better estimation of future returns [214], for example.
This might improve performance and should hence be considered whenever possible [212, 215].

5We follow the traditional characterization of safe and unsafe actions even if we are dealing with soft constraints
that do not pose safety challenges per se. In this chapter, an unsafe action could be an action incurring discomfort
to the occupants or leading to unreasonable energy consumption, for example.
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Online MBDRL. To alleviate the issues linked to R7 to some extent, traditional MBDRL

methods leverage models for planning — also known as hallucinating trajectories — during

learning and artificially augment the data collection frequency, decreasing the number of

interactions required with the environment [20, 230–234]. While this alleviates the sample

complexity problem of model-free DRL agents to some extent (R7), it raises several new

issues concerning the construction of an accurate model online to achieve scalability and

transferability (R5–R6), as in the online MPC case discussed above. For example, enough

data must first be collected before a well-performing and hence trustworthy model of the

environment can be built and leveraged [235]. Furthermore, if the model is learned online,

one has to ensure the DRL agent explores the environment sufficiently — but safely — to

build a representative model [230]. Worryingly, a small bias in the model can significantly

impact the final performance of DRL agents [236]. To make matters worse, optimizing the

model accuracy can be uncorrelated with maximizing the rewards, leading to suboptimal

control policies that maximize the rewards for the learned model but achieve suboptimal

performance on the real system [237, 238].

All these problems are amplified if NNs are used as models, as is often the case in MBDRL,

since their generalization issues could generate misleading trajectories and bias the control

policy towards wrong behaviors, limiting the ability of such controllers to be robust to new

disturbances and handle constraints to satisfy R2–R3 [20, 32, 210, 232, 234, 239, 240]. Note

that using NNs is not necessary, and it might be possible to accelerate convergence (R7) by

leveraging low-complexity models instead, as demonstrated in [241], for example.

Leveraging SIMBa. Alternatively, one could apply automatic linear or almost linear SI tools

like SIMBa from Chapter 4 to design promising online MBDRL applications. A framework

like SIMBa could indeed retain good model accuracy but low complexity, decreasing the

amount of data required to find accurate models and thus potentially allowing for online-only

MBDRL. As for other online methods, however, the model update procedure and frequency to

achieve good performance over the lifetime of the building (R1, R4) remains an open question,

hindering its widespread adoption and application to large-scale problems (R5–R6).

MPC-DRL: Merging MPC and DRL. To deal with R2–R3, several works proposed merging DRL’s

ability to learn online and MPC’s robustness capability to handle constraints. For example,

DRL has been used to modify the cost function parameters [242, 243] or learn the system

model [238] of MPC frameworks online. Given the ability of DRL to account for long-term

rewards, it can also be merged as the final cost in an MPC, shortening the horizon of the

optimization problem to decrease the associated computational burden [239]. Alternatively,

DRL has also been leveraged to learn lifting functions in Koopman-based approaches, inducing

convex optimization procedures that are easier to solve online [244]. Conversely, inspired

by MPC’s predictive nature, a model can be leveraged to predict which actions are safe. One

can then modify unsafe actions of DRL agents at each time step leveraging differentiable

projections [245], solving an optimization problem [226], or using heuristic corrections [209,

246], for example.
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While it does alleviate issues of DRL related to robustness and constraint satisfaction (R2–R3),

merging DRL and MPC however introduces additional computational complexity and reliance

on models6 and disturbances forecasts,7 hence jeopardizing the inherent scalability and

transferability of vanilla DRL methods (R5–R6), as discussed for MPC.

IL-DRL: Imitation learning. To augment the data efficiency of DRL agents, one can also

leverage behavioral cloning [247] or learn from expert demonstrations [248, 249], such as

applied for building control in [30, 42, 238]. We collectively refer to these approaches as

Imitation Learning (IL) herein. The main idea is to pre-train DRL agents by first imitating

another controller offline on a fixed data set, i.e., learning to replicate the behavior of the

controller used for the data collection. This can potentially increase the robustness, the

ability to handle constraints, and the convergence speed of DRL policies (R2–R3, R7), but it

is naturally heavily influenced by the quality of the controller to imitate [153]. Furthermore,

as a supervised learning task, it falls under the same generalization issues to unseen data

as classical NNs (see Section 2.1.1): it might require access to a large historical data set and

control policies solely learned offline cannot be expected to perform well in states that are not

represented in the data [250].

The dependence on the data collection controller introduces new challenges on top of data

availability in terms of scalability and transferability for IL. Indeed, since implementing well-

performing building-agnostic controllers for large-scale problems is nontrivial, as discussed,

having access to a good baseline to imitate in any large-scale case study is a strong assumption

that is often not met in practice (R5–R6). Furthermore, even a pre-trained policy can still

require one year to converge to the performance of a baseline controller when deployed in the

building [251] — even if it converges faster than when learning from scratch, it might not be

sufficient to satisfy R7. Nonetheless, other works reported promising results, with IL-based

DRL policies achieving performance similar to the baseline after a few days only and rapidly

learning to improve upon it in [30], for example. In general, IL allows one to warm start control

policies and can be very useful in practice, but it should then be combined with other methods

to ensure satisfactory performance on physical systems.

ReL-DRL: Residual learning. Rather than directly imitating a controller from data, if the

baseline or expert policy is known, DRL agents can be trained to improve the performance of

this base controller instead of learning everything from scratch, leading to various forms of

Residual Learning (ReL) [212, 252, 253]. For example, one can separate the learning problem

into different sub-tasks, letting DRL agents optimize the most complex ones while taking care

of the other cases with RBCs [213]. Alternatively, both controllers can be merged, computing

the final control input as a weighted sum of the prior and DRL controllers [246, 254]. In other

lines of work, RBCs were used as guidance for DRL agents in the initial stage of learning in [255]

or to restrict exploration by restraining the agent’s outputs to lie close to the RBC ones [212].

6Even if the model is learned, such as in Gnu-RL, finding the right structure is still not trivial [238].
7Except when the MPC is run with a single-step horizon [239].
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ReL can significantly accelerate convergence [213] to help meet R7 but is naturally limited

by the quality of the baseline controller, unless a fading mechanism is leveraged to decrease

its importance over time, such as in [255]. ReL hence requires access to a well-performing

prior controller, limiting its widespread adoption for large-scale applications, as discussed for

IL (R5–R6). Finally, it does not solve robustness and constraint satisfaction issues in general

since the DRL policy can usually overrule the baseline controller and behave similarly to a

vanilla DRL agent (R2–R3).

Offline DRL. Instead of imitating or complementing a prior controller, one can also leverage

a simulation environment to pre-train agents offline [64, 202, 203], as applied for building

control in [15, 208], for example.8 We can expect these agents to satisfy R7, i.e., they should

perform well since the start of the deployment in the physical building as long as the simulator

is accurate.

Indeed, the main challenge stemming from offline DRL training is the Sim2Real gap, i.e., the

performance drop between simulations and real-world deployments [257, 258]. Because of the

generalization issue of NN-based policies (Section 2.1.1), adequate performance can not be

ensured in situations not represented in simulation (R2) [259]. Soft data augmentation [260]

or the more classical domain randomization [261] approach can alleviate this problem to

some extent. The main idea behind domain randomization is to run extensive simulations

with different parameters and disturbances to train DRL agents to react to any situation and

constraints, which can help in satisfying R2–R3. One can go further and pre-train agents to

react not only to various external conditions but also to building characteristics, temperature

setpoints, or electricity prices, for example, similarly to what was done in [42], as a step

towards satisfying R6. However, such a scheme drastically increases the training time required

to incorporate all possible scenarios in DRL agents.

Note that there are no guarantees that such a pre-train agent will satisfy the comfort of

the occupants after deployment (R3), as the constraints are not hard-coded in the control

policy [123]. Additionally, with or without domain randomization, the quality of the learned

policy naturally depends on the accuracy of the chosen simulator, which has to accurately

capture the main building dynamics for DRL policies to perform well [20, 32, 239, 240]. While

offline pre-training does help mitigate issues related to R2–R3, it might thus not always satisfy

these requirements. In sum, it shifts the burden back to modeling [262] and hence suffers

from the same pitfalls as the other offline model-based methods in terms of scalability and

transferability (R5–R6).

Leveraging PCNNs. Remarkably, merging offline DRL with the state-of-the-art data-driven

PCNNs provided in Chapter 2 to pre-train agents could potentially achieve impressive per-

formance without any heavy engineering, as hinted in [154]. At the cost of significant com-

8Note that, contrary to MPC applications, the simulator does not require any specific (low-complexity) structure
since no optimization needs to be run at each step [43]. Nonetheless, previous works hinted that low-complexity
simulators could already allow DRL agents to learn desired behaviors, such as preheating, provided the model is
physically consistent [256].
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putational complexity to introduce extensive domain randomization analyses with PCNNs

— to improve the robustness and constraint handling of DRL agents, going towards the satis-

faction of R2–R3 — and then letting DRL agents learn over the entire deployment period to

adapt to new building dynamics (R4), this could be a step towards controllers meeting all the

requirements. However, this pipeline depends on the availability of large amounts of historical

data to first fit PCNNs. This is typically unavailable in new buildings or buildings where one

would want to install such new technology, limiting the scalability and transferability of such

a pipeline (R5–R6). Furthermore, its final performance remains to be carefully analyzed (R1).

3.1.4 Towards computationally efficient constrained near-optimal online DRL

In light of the discussions above, the rest of this chapter aims to provide tools paving the

way toward DRL agents able to fulfill all the seven requirements R1–R7. Although several

interesting research directions exist, we postulate that model-free DRL algorithms make

ideal candidates to avoid the scalability and transferability issues linked to models (R5–R6).

Additionally, vanilla model-free DRL agents performed close to MBDRL on two out of three

case studies in [233], especially on the most complex one. This hints at their ability to compete

with more computationally intensive model-based DRL solutions. Nagy et al. even reported

results where the model-free version outperformed the model-based one [210]. On top of that,

online model-free DRL can achieve performance close to offline pre-trained agents after a

few weeks in [30, 43], suggesting that model-free DRL has the potential to rapidly perform

comparably to its model-based pre-trained counterpart. Despite these promises, however,

there is still a need for efficient DRL agents converging in a reasonable time for any building

(R7) and that can react to any disturbance (R2) and satisfy the comfort of the occupants at

all times (R3), all the while achieving near-optimal performance (R1).

Since we cannot afford to wait weeks for each DRL agent to converge on a physical building

and assess its performance, we naturally turn back to simulations for our analyses, leveraging

the PCNNs proposed in Chapter 2 as simulation environments in the rest of this chapter.9

This allows us to test various hypotheses and investigate solutions paving the way for system-

agnostic model-free DRL building controllers satisfying R1–R7.

Summarized contributions

Despite adaptability, scalability, and transferability (R4–R6) being important requirements

for real-world deployments, as discussed above, they are generally satisfied by model-free

online DRL algorithms and are not considered in detail in the rest of this chapter. Instead,

we focus on a relatively simple case study where DRL agents minimize the thermal energy

consumption of a single zone while maintaining the temperature inside in a comfortable

9We also subsequently deployed one of the trained agents in the corresponding physical building for a qualitative
assessment of the Sim2Real gap, confirming the validity of our results (Section 3.3.4).
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range for the occupants. Our investigations can thus be seen as a proof of concept or feasibility

study of model-free DRL controllers achieving near-optimality under any condition while

guaranteeing the comfort of the occupant and converging in a reasonable amount of time,

hence satisfying R1–R3 and R7. Since our implementations do not add any computational

complexity, we argue they should not significantly hinder the ability of DRL controllers to be

scaled and transferred to other buildings (R5–R6).

Near-optimality of model-free DRL. After some preliminaries in Section 3.2, Section 3.3

first provides an extensive analysis of the final performance achieved by model-free DRL

agents in this case study, delivering additional evidence of their ability to reach near-optimal

performance and thus meet R1. These investigations complement the results found in [209–

211], but in several different settings and using a more accurate simulation environment.

Safe and computationally efficient DRL. As a first step towards the satisfaction of R2–R3, and

R7, Section 3.4 then analyzes one way to transfer expert knowledge to DRL agents. This will

allow us to simultaneously guarantee adequate indoor thermal comfort for the occupants in

any conditions (going towards the satisfaction of R2–R3) and avoid exploring sub-optimal

state-action pairs for faster convergence (R7). Remarkably, the proposed interventions are

computationally lightweight to avoid jeopardizing scalability and transferability (R5–R6).

Altogether, while limited to a single case study and the low-complexity framework of only

controlling one zone temperature, our investigations point towards the ability of model-free

DRL controllers to meet R1–R7. In practice, this would mean such controllers could be

deployed from scratch in any building and learn to optimize their operations, bypassing

the need for historical data or accurate models while being computationally inexpensive.

3.2 Preliminaries

3.2.1 Basics of Reinforcement Learning

RL problems are usually formulated as Markov Decision Processes (MDPs), which are rep-

resented by tuples < S ,A,P ,ρ0,r,γ >, where S is the state space, A the action space, P =
P(s′|s, a) the probability of transitioning from state s ∈ S to s′ ∈ S when action a ∈ A is taken,

ρ0 the initial state distribution, r = r (s, a) the reward function, and 0 < γ < 1 the discount

factor [19].

At each time step t , given an observation st of the state of the environment, the RL agent

chooses at . The environment then transitions to st+1 according to P and sends the new state

and r (st , at ) to the agent. The objective of any RL algorithm is to find a policy π(a|st ) that

maximizes the expected discounted cumulative returns:

J (π) = Es0∼ρ0, at∼π(·|st ), st+1∼P(st ,at )

[ ∞∑
t=0

γt r (st , at )

]
. (3.1)
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To that end, many algorithms rely on learning an approximation of this objective, namely the

Q-function, which estimates the expected return the agent will receive if it takes action a in

state s and then follows the current policy π:

Qπ(s, a) = Eat∼π(·|st ), st+1∼P(st ,at )

[ ∞∑
t=0

γt r (st , at )|s0 = s, a0 = a

]
. (3.2)

The Q-function and policy are often dubbed the critic and actor, respectively.

In our experiments, we rely on the ϵ-greedy strategy for exploration, i.e., we apply the following

action to the environment at each step during training:

a(s) = clip(π(s)+ϵ, alow, ahigh), ϵ∼N (0,σ) , (3.3)

where the noisy actions are clipped element-wise between alow and ahigh, the predefined

action bounds from the environment, and ϵ is the Gaussian exploration noise with a standard

deviation of σ. All the transition tuples (st , at ,rt , st+1) observed by the agent are stored in a

replay buffer.

3.2.2 Actor-critic algorithms

In practice, policies and Q-functions are often parametrized with NNs as πθ and Qφ, respec-

tively, leading to DRL. Numerous algorithms have been developed to maximize (3.1) [263].

Among the countless improvements and techniques presented in various contributions, we

can point out the influence of target networks, which we use in this work [264]. The idea is

to keep a copy of the actor and critic in memory, only updating them slowly to decrease the

usual overestimation bias of Q-values and stabilize the learning process.

In this work, we are interested in deterministic actor-critic methods stemming from the Deep

Deterministic Policy Gradient (DDPG) algorithm [265], where both πθ and Qφ are optimized in

parallel leveraging gradient descent. While different flavors exist, most actor-critic algorithms

compute the gradient of the critic using a variant of the Temporal Difference (TD) loss [265]

∇̂φQφ =∇φ
[

1

|Z |
∑

(s,a,r,s′)∈Z

(
Qφ(s, a)− y(a,r, s′)

)2

]
(3.4)

y(a,r, s′) = (
r +γQφ,targ(s′,πθ,targ(s)′)

)
, (3.5)

where a batch Z of past transitions is sampled from the replay buffer and used to estimate

expectations. Leveraging the policy gradient theorem [266], one can similarly use the critic to

estimate the actor gradient as

∇̂θπθ =−∇θ
[

1

|Z |
∑

s∈Z
Qφ(s,πθ(s))

]
. (3.6)
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Note that these gradients are easily computed using automatic differentiation when the actor

and the critic are parametrized with NNs.

In this chapter, we rely on the Twin Delayed Deep Deterministic (TD3) policy gradient algo-

rithm, which introduces a few modifications over DDPG to limit the well-known overestima-

tion bias of Q-functions plaguing vanilla actor-critic algorithms [267]:

• Inspired from the success of Double Q-learning [268], two critic networks are learned in

parallel, and the smallest of the two approximated Q-values is used as the target in (3.5)

to limit overestimation.

• To avoid the policy exploiting overestimated Q-values, noise is added to the action a′

before it is evaluated by the critics in (3.5).

• To avoid instability arising from fast-changing Q-functions, the actor and target networks

are updated less frequently than the critics.

Remarkably, however, these adjustments do not impact the actor gradient in (3.6), allowing us

to seamlessly integrate the proposed gradient modifications detailed in Section 3.4 into TD3.

3.2.3 Problem setting

Action space. Throughout this chapter, the task of the agents is to control the heating or

cooling power of one bedroom in UMAR (i.e., Zone 1 or 3 from Section 2.4.1) at each time step

of 15 min. To be specific, we defined A= [−1,1], i.e., alow =−1 and ahigh = 1, which is then

linearly transformed to power inputs being applied to the zone as

Pt =


at+1
2 P max

heat =: Vt P max
heat , in the heating case,

1−at
2 P max

cool =: Vt P max
cool , in the cooling case,

(3.7)

where P max
heat and P max

cool stand for the maximal heating and cooling power, respectively.

We also use the valve opening percentage Vt ∈ [0,1] — assumed to be proportional to the

thermal power input to the zone throughout this work — when controlling the physical

building. Indeed, we cannot directly control individual zone power inputs during real-world

experiments, only the valves, and we can only fully open or close them.10 We hence turn

to pulse-width modulations: if the agent decides to use the full power, we open the valves

for 15 min, and if it wants to use a fraction of the power instead, we open the valves for the

corresponding fraction of time.

Remark 16 (Valve openings as proxy for thermal power). In practice, the amount of energy

transferred to the room also depends on the temperature gradient between the water in the pipes

10In fact, we only have access to the temperature setpoint in each zone of the physical building, with an internal
mechanism triggering the valves. However, writing a very high or very low setpoint, e.g., 28 ◦C or 16 ◦C, invariably
fully opens the valves or closes them, respectively, in the heating case, and conversely during the cooling season.
Although the valves might sometimes take time to open and close, we assume throughout this work to be able to
either fully open or close the valves at any given time.

77



Chapter 3. Prospects and hurdles of Deep Reinforcement Learning for building control

and the air in the zone. We do not have control over the water temperature but it can be assumed

to stay roughly constant in the case of UMAR. Since heating/cooling are always required at

similar zone temperatures — to maintain the comfort of the occupants —, the latter can also be

assumed to be approximately constant during experiments. This leads to a roughly constant

temperature gradient, which makes the valve opening percentage approximately proportional

to the maximum available thermal power, as assumed herein.

State space. Throughout our analyses, we will use the PCNNs developed in Chapter 2 as

simulation environments. Consequently, the state s observed by the agents at each time

step is similar to the PCNN inputs: it is composed of zone temperatures (of the controlled

and neighboring zone), ambient conditions (the ambient temperature and solar irradiation

measured on a flat surface), and time information (sine and cosine functions of the month

of the year and time of the day, and the day of the week, as discussed in Appendix A.4).

Additionally, agents know the current temperature comfort bounds and the case they are in.11

To have more expressive policies aware of the evolution of the environment in time, we also

add 12 autoregressive terms of the zone temperatures and ambient conditions so that agents

know the state of these variables during the last three hours when making decisions.

Reward function design. All agents aim to minimize energy consumption while respecting

predefined dynamic temperature comfort bounds for the occupants. While we require the

temperature to stay between 23 and 24 ◦C during the night — from 20 h to 8 h —, it can be

relaxed during the day, when bedrooms are generally unoccupied. Consequently, the lower

bound is relaxed by two degrees, from 23 ◦C to 21 ◦C, during the day in the heating case.

Conversely, the upper bound is increased by two degrees throughout the day in the cooling

case. Comfort violations over a given period are then expressed in Kelvin Hours, summing the

difference between the zone temperature and the bounds at each time step.

Mathematically, throughout our experiments, DRL agents optimize a trade-off between energy

consumption and comfort violations, maximizing the following reward function:

r (st , at ) =−max{Lt −Tt ,Tt −Ut ,0}−αPt , (3.8)

where Lt and Ut represent the lower and upper comfort bounds on the temperature Tt at time

t , respectively, and α is a weighting factor. As a rule of thumb, we designed the nominal value

of α such that agents receive the same penalty for using a power of 1 kW and for being 0.5 ◦C

outside of the comfort bounds.

Remark 17 (High temperature bounds). The comfort bounds used throughout this chapter

correspond to relatively high indoor temperatures during the heating season; the lower bounds

11We refer to the case as whether the system is in heating or cooling mode. This is required since UMAR is
heated/cooled by letting hot/cold water flow through the ceiling panels. On the other hand, agents can only open
or close the corresponding valves; they cannot modify the water temperature and decide whether to heat or cool.
In other words, if the zone temperature is too high and the system is in heating mode, DRL agents cannot cool the
room, and the optimal decision is to do nothing.
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could be decreased in practice to avoid wasting energy. However, we choose 23 ◦C here to reflect

the measured temperatures in UMAR in winter and create a challenging control scheme: due to

the sensitivity of UMAR to solar gains, the temperature inside is often maintained above 21 ◦C

without heating. Consequently, setting artificially high comfort bounds ensures the controllers

can be compared on a nontrivial task.

Hyperparameters. In our implementations, we arbitrarily chose three hidden layers of 512

neurons for all the NNs — the critic, the actor, and their target networks — to ensure policies

could be expressive enough. We use a slightly modified version of the Adam optimizer [269]

with a learning rate of 10−4, and we rely on the TD3 implementation from the tianshou
library [270]. Finally, we set γ= 0.95.

Remark 18 (Discount factor). Note that, for building control applications, the discount factor

gamma has to be selected close to one. Indeed, an optimal controller should present preheating

and precooling behaviors, i.e., it should start heating or cooling the room at the end of the

afternoon to meet the comfort bounds tightening at 20 h every day. This costs more energy in

the early evening but avoids later penalties due to comfort violations. Such desired behaviors

can only be captured by controllers that are not too myopic, i.e., take long-term rewards into

account. This is not the case when γ<< 1, as also noted in [271], for example.

Training procedure. To train and evaluate the agents, we create 15 h to 75 h-long sequences of

data with no missing values,12 hereafter referred to as trajectories. They were processed from

three years of operational data as explained in Section 2.4.1 and separated into a training and

a validation set. The agents are trained on trajectories randomly sampled from the training set

and regularly evaluated on the validation set to assess their performance. To learn policies

robust to measurement noise, we add independent Gaussian noise to the zone temperature

measurement during training.

3.2.4 Baselines

To analyze the performance of the DRL agents, we compare them to two classical RBC base-

lines. Baseline 1 is tracking a reference 0.5 ◦C away from the bound, turning the heating on

and off as soon as the target temperature is met during the heating season. Baseline 2 is a

classical rule-based controller with a one-degree hysteresis, i.e., it starts heating at full power

when the temperature reaches the lower bound and until one degree has been gained. During

the cooling season, both baselines use similar strategies, starting to cool once the temperature

reaches the upper bound or the reference half a degree from it.

Since we randomly sample a trajectory from historical data at the beginning of each episode,

the initial zone temperature might be out of the comfort bounds, leading to unavoidable

12Each sequence is composed of 3 h of past data — required to warm-start the PCNN simulator from Chapter 2
and build the autoregressive terms of the agents’ observations — and a 12 h to 72 h prediction horizon under the
control of the agents.
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penalties for any controller. We thus implemented an additional agent fully opening or

closing the valves13 until the zone temperature reaches the bounds for the first time in each

episode.14 This allows us to keep track of these unavoidable comfort penalties throughout our

experiments.

Remark 19 (The difference between both bedrooms). The two bedrooms in UMAR have

a similar architecture. We took advantage of that situation during real-world experiments,

deploying a rule-based controller in the bedroom not controlled by the DRL agent for qualitative

comparison purposes. However, since one bedroom is adjacent to another unit while the other

has two external walls, they present slightly different thermal dynamics. Nonetheless, it still

allows for analyses of the behavior of both controllers under similar external conditions.

3.3 Deep Reinforcement Learning can achieve near-optimal perfor-

mance

Before any DRL controller can achieve widespread adoption, guarantees of near-optimal

performance in general are required (R1). In particular, this must be independent of the

desired trade-off between energy consumption and comfort violations —α in (3.8) — or choice

of random seed, to which DRL is known to be sensitive [272]. However, while DRL has been

compared to rule-based controllers in the literature, for example, in [15, 20, 32, 116, 256, 273],

it was rarely benchmarked against advanced control methods, apart from limited comparisons

to MPC in [13, 43, 44, 213, 233], for example.

In particular, the optimality gap of DRL agents has rarely been addressed in building control

applications [274]. Notable exceptions include the analyses in [209–212], but these studies are

limited to the investigation of a single agent in simplified first-principles-based simulators.

Thus, they shed only little light on the ability of DRL agents to find well-performing control

policies in general. On the other hand, the often-used complex building models based on

EnergyPlus [106] or NNs [15]) are often highly nonlinear, making it difficult to compute the

optimal control inputs for benchmarking purposes and explaining the lack of studies on the

optimality gap.

Leveraging PCNNs. In this chapter, we proposed to use the PCNNs developed throughout

Chapter 2 as simulators. As discussed in Chapter 2, they achieve state-of-the-art modeling

performance without jeopardizing physical consistency, making them suitable simulators

for DRL applications while incorporating nonlinear behaviors typically not captured by first

principles models. Remarkably, the PCNNs proposed in Chapter 2 are input-affine (Remark 9),

allowing us to set up tractable Linear Programs (LPs) for the optimization of control inputs.

13Depending on whether the initial temperature is too high or too low and whether we are in the heating or
cooling season.

14An example is pictured in Figure 3.2, where the temperature is too high at the trajectory during the heating
season. All controllers thus first have to wait for the temperature to drop to the comfortable range and receive
unavoidable comfort violation penalties.
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In the rest of this section, we analyze the impact of different trade-offs in the reward function

and random seeds on DRL agents and compare them to the theoretical performance upper

bound that could be achieved with perfect knowledge of all the disturbances. With these

investigations, we provide more indications toward the ability of model-free DRL agents to

achieve near-optimal performance in various settings (R1). However, this in-depth analysis

is limited to a single case study — one of the two bedrooms in UMAR —, and whether such

conclusions could be drawn for any building in general remains an open question.

3.3.1 Computing optimal control inputs with PCNNs

To compute the optimal power inputs on a validation trajectory s of length ls , we assume

perfect knowledge of all the disturbances T out, T neigh, and D over the horizon. Given a

PCNN (2.4)–(2.6), we need to solve the following optimization problem, where the objective

function is designed to match the reward of the agents and zone indices were dropped for

clarity since agents only control a single zone:

min
P0,...,Pls−1

ls−1∑
k=0

α̃Pk +ϵL
k+1 +ϵU

k+1 (3.9)

s.t . Ek+1 = Ek +qPk −b(Tk −T out
k )− c(Tk −T neigh

k ) (3.10)

Tk+1 = Ek+1 +Dk+1 (3.11)

E0 = 0

Lk+1 −ϵL
k+1 ≤ Tk+1 ≤Uk+1 +ϵU

k+1 , ∀k = 0, ..., ls −1 , (3.12)

P max
cool ≤ Pk ≤ P max

heat , ∀k = 0, ..., ls −1 .

Here, we solve for the optimal thermal power inputs, which appear linearly in the objective

function (3.9) and constraint (3.10), showing it is indeed an LP. Note that knowing the optimal

thermal power inputs directly allows one to recover the optimal control inputs from (3.7).

We use α̃ in the LP, which equals the weighting factor α in heating cases and −α during the

cooling season, so that it always penalizes the absolute value of the power used, as in the

reward function (3.8). Similarly, ϵL
k+1 and ϵU

k+1 capture comfort violations in (3.12) and are

penalized in the objective function to reflect the reward function of the agents. Since we

know each bedroom only has a single neighboring zone and an external wall, (2.5) simplifies

to (3.10), where q stands for either ah or ac in (2.5) depending on the case.15

The key property of PCNNs rendering this optimization feasible is the fact that the highly

nonlinear unforced dynamics D are independent of the power inputs P and can hence be

computed a priori for the entire horizon (knowing all external conditions). They are then

used as external variables to compute the temperature evolution in (3.11). This LP can be

solved very efficiently with common tools, which allows us to compute the optimal solution

15We assume the case to be fixed for any given trajectory, i.e., the system is either in heating or cooling mode and
does not switch over the horizon, which allows us to set the value of α̃ and q before the optimization.
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Figure 3.1: Convergence rate of DRL agents with different random seeds in green, with
the median in bold and the maximal reward attained by each agent in dashed lines. For
reference, the baseline and optimal performance are also shown in dashed lines.

for thousands of trajectories in a feasible time.16

3.3.2 Performance analysis

The impact of randomness

Since DRL policies are notoriously sensitive to randomness [272], we first trained 10 agents

with different random seeds to compare their performance. Figure 3.1 reports the average

performance of each agent on a fixed set of 50 sequences from the validation set after each

training epoch, with the median performance of the 10 agents in bold. The bottom plot is a

zoomed-in version of the top one for clarity. Here, one epoch represents 5’000 training time

steps in the environment, i.e., slightly over 50 days of data from the training set. To complete

these results, the best performance attained by each agent over the training horizon is reported

in dashed lines in Figure 3.1 and in Table 3.2, along with the rewards that the two rule-based

baselines achieve on the 50 validation sequences and the optimal ones computed from (3.9).

Overall, one can see the performance of each agent fluctuating significantly along training,

but most agents could find a control policy achieving rewards between −2.25 and −2.3 on the

50 validation sequences. All DRL agents present comparable learning patterns: they converge

to policies achieving similar performance to the baselines after approximately 20 epochs and

16The code and data can be found on https://gitlab.nccr-automation.ch/loris.dinatale/NoDRL.
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3.3 Deep Reinforcement Learning can achieve near-optimal performance

Agent Rewards Agent Rewards Agent Rewards
DRL agent 1 -2.29 DRL agent 2 -2.25

Baseline 1 -2.99 DRL agent 3 -2.27 DRL agent 4 -2.51
Baseline 2 -3.08 DRL agent 5 -2.25 DRL agent 6 -2.34
Optimum -2.09 DRL agent 7 -2.28 DRL agent 8 -2.29

DRL agent 9 -2.30 DRL agent 10 -2.28

Table 3.2: Performance of all the controllers on the 50 fixed trajectories from the valida-
tion set compared to the optimal one, reported from Figure 3.1. For DRL agents, this
corresponds to the best-attained rewards on this set over the training period.

consistently outperform them afterwards. Nonetheless, we can see a few exceptions along the

training pattern, with some agents’ performance plummetting for a few epochs but recovering

quickly. It is also noteworthy that one of the agents performed significantly worse than the

others, only reaching a best reward of −2.51. This proves that DRL agents are also sensitive to

the choice of random seed in our setting, one should always train several agents to rule out

the possibility of the random seed significantly impacting the quality of the results.

Deep Reinforcement Learning agents learn expected behaviors

Interestingly, all agents captured the expected and desired preheating and precooling be-

haviors. Indeed, they learned to take action earlier than the other controllers, especially

the rule-based ones, to anticipate constraint tightenings, as pictured in green Figure 3.2, for

example. They usually heat or cool the zone until the temperature is slightly above or below

the comfort bound in the late afternoons in the heating or cooling case, respectively, and

then stop to avoid wasting energy. This often results in the temperature reaching the bound

again just before the constraints are relaxed at 8 h. Overall, this strategy is not far from the

optimal one in black, which consists of waiting until the last moment to preheat or precool

the room at full power to meet the constraint tightening exactly. It then leverages its full

knowledge of the environment to input just enough energy in the system for the temperature

to stay exactly at the desired limit and avoid comfort penalties unless, for example, solar heat

gains are expected to create more violations later. Finally, due to their reactive nature, both

reactive baselines in red and orange cannot anticipate constraint tightenings and relaxations,

leading to comfort violations in the early evening hours. Furthermore, they do not account

for the impact of future disturbances — typically solar gains —, leading to overheating and

overcooling behaviors, for example, towards the end of the horizon in Figure 3.2.

In the particular case of Figure 3.2, the DRL agent consumed slightly more energy than the

optimal solution, 5.47 kWh against 5.32 kWh, and incurred slightly more comfort violations,

2.9 Kh against 2.1 Kh.17 This difference mainly comes from the DRL agent slightly heating the

room after midnight on March 20, contrary to the optimal solution, which also incurs slightly

17After subtraction of the unavoidable comfort violations of 11.9 Kh stemming from the very high temperature
at the beginning of the trajectory.
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Figure 3.2: Example of the behavior of a DRL agent over 3 days, compared to the baselines
and the optimal solution. The zone temperature (with the comfort bounds in dashed
gray) and corresponding thermal power input are respectively reported in the first two
plots. The bottom two gather the cumulative comfort violations and energy consumption
of each controller.
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achieved by the baselines and DRL agents compared to the optimal solution and after
the subtraction of the unavoidable penalties, and the corresponding performance gaps.

higher temperatures over the day and hence more comfort violations.

In general, DRL agents tend to converge to risk-averse policies in our setting because of the

noisy observations returned by the environment during the training phase. Indeed, they

usually slightly overheat or overcool the zone when the constraints are tightened, ending

up further away from the bounds than strictly necessary. This allows them to avoid comfort

penalties stemming from the noisy temperature measurement jumping outside the comfort

zone they observed during training.

Generalization to the entire validation data set

To estimate the best performance of DRL agents, this section focuses on the policies achieving

the maximum reward on the 50 validation trajectories for each agent. We analyzed their

average performance on almost 2’000 three-day-long trajectories from the validation set in

terms of rewards, energy consumption, and comfort violations. In the top plot of Figure 3.3,

one can observe the mean performance achieved by the different random seeds on each

metric, compared to the baseline and the optimal ones, after subtraction of the unavoidable

penalties. The bottom plot then shows the corresponding performance gap of each controller

compared to the theoretical optimal one.
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Figure 3.4: Sensitivity analysis of DRL agents and the optimal solution to different weight-
ing factors in (3.8), decreasing it from left to right along the dashed lines. The trade-off
obtained by both baselines is also plotted for reference, as well as the one struck by the
agents ran with different seeds in Section 3.3.2 in shaded green crosses.

Notably, with the chosen parameters, DRL agents could converge to a near-optimal solution.

They found a relatively similar trade-off between energy consumption and comfort violations

as the optimal solution, consuming the same amount of energy at the cost of slightly increased

comfort violations of a little over 25%. This is, however, still significantly better than what

the baselines can do, both in terms of energy savings and comfort improvements, where

their performance drop is over 35% and 110%, respectively. Altogether, these results confirm

that DRL agents can converge to policies that not only significantly outperform classical

controllers but simultaneously attain near-optimal performance.

3.3.3 Sensitivity to the weighting factor

To assess the impact of the weighting factor in (3.8), this section investigates the trade-offs

between energy consumption and comfort violations reached by all the controllers for different

choices ofα. To that end, we trained agents in the same environment, with a fixed random seed,

but multiplying or dividing the nominal α by increasing powers of two to reflect situations

where more and more importance is put on decreasing the energy consumption or the amount

of comfort violations, respectively. The resulting trade-offs between both objectives for the

DRL policies and the optimal solutions are plotted in Figure 3.4, where the weighting factor

was decreased from 4α to 1
16α from the left to the right along the dashed Pareto frontiers. The

performance of the baselines is also reported for reference.

As can be observed, the agent could generally strike a trade-off similar to the optimal one,

usually consuming approximately the same amount of energy at the cost of slightly more
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comfort violations, as long as the weighting factor is not too big. Once α is multiplied by 4,

the agent indeed struggles to find an interesting solution: it uses very little energy but does

not improve the comfort of the occupants much compared to the baselines (top left green

cross). When we tried to increase α by a factor of 8, the agent quickly converged to a very poor

policy that never used energy at all, and this result is hence discarded here. On the other hand,

decreasing the weighting factor impacts the quality of the solution less: policies consume

slightly more energy each time, slowly reducing the amount of comfort violations.

It is important to remember here that the choices of random seed again impact the results,

which could explain why the trade-off obtained by the agent with a weighting factor of 1
8λ is

slightly higher than the Pareto front. This is confirmed by the shaded green markers showing

the trade-offs achieved by the agents discussed in Section 3.3.2, where we see the impact of

different random seeds for the same weighting factor. All random seeds usually lead to similar

solutions, but we can also observe the outlier pointed out previously (top left shaded green

marker). Interestingly, despite obtaining worse rewards than all the other agents, it still lies

near the Pareto front. In other words, it seems this agent converged to a solution that was not

optimal in this situation but might be the expected behavior under different circumstances.

To summarize, one should be careful with the design of the weighting factor, as it might

impact the quality of the solution. However, a wide range of values — from 2α to 1
16α —

could be selected and still lead to near-optimal behaviors in this case study. Remarkably, this

parameter can thus be adjusted to reflect the preferences of the building occupants without

significant performance drop. In general, choosing a value that is too large seems to be more

problematic than the contrary. Finally, while the random seed seems to impact which region

of the Pareto frontier the solution converges to, our experiments hint that DRL agents usually

strike a trade-off near the Pareto frontier of all DRL policies. However, they diverge from it

when they try to use too little energy, confirming that small values for α may be safer

3.3.4 Real-world deployment

To confirm that PCNNs provide a meaningful simulation environment to train DRL control

policies, we deployed one of the above-analyzed agents in the physical building to assess

the Sim2Real gap. Taking advantage of UMAR having two almost identical bedrooms, we

simultaneously deployed Baseline 2 in the other one, and the resulting temperatures and

control inputs are reported in Figure 3.5, adapted from [154]. As mentioned in Section 3.2,

since we do not have access to the thermal power input to the rooms in the physical building,

we used the valve opening as a proxy for energy consumption (see Remark 16).

Remarkably, the agent and the baseline both show similar temperature behaviors to what was

observed in simulation, in Figure 3.2, for example. Despite the short span of the experiment,

the DRL agent maintained the temperature close to the lower bound, as expected, thereby

saving energy compared to the hysteresis controller — except when the default controller took

over when the connection was lost for a few hours (shaded gray).
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Figure 3.5: One bedroom of UMAR controlled by a classical rule-based controller (red),
the other by the proposed DRL agent (green), adapted from from [154]. The connection
was interrupted in the shaded area and default controllers took over.

This brief investigation hints that PCNNs provide accurate simulation environments to train

meaningful DRL policies and that the results obtained throughout this chapter are likely to

extrapolate to the physical building despite the Sim2Real transfer.

3.3.5 Achieving near-optimal performance has a cost

Overall, these investigations on the impact of the random seed and weighting factor balancing

energy consumption and comfort violations indicate that DRL control policies generally not

only outperformed rule-based baselines but could also achieve near-optimality. Specifically,

although different random seeds sometimes lead to lower-quality solutions in terms of rewards,

they all seem to lie near the Pareto frontier of energy consumption and comfort violations.

Remarkably, various choices of reward functions led to near-optimal solutions — until α is

chosen too large. Altogether, this provides nonnegligible evidence of the ability of DRL to

achieve near-optimal performance in diverse settings and hence satisfying R1.

On the other hand, one should keep in mind that these results are limited to a single-zone

temperature control case study and might not generalize to different buildings or more com-

plex case studies. Additionally, in line with previous works discussed in Section 3.1.3, these

DRL agents strongly suffer from data inefficiency, taking 20 episodes of more than 50 days

of data — almost three years (!) — to converge to a performance comparable to RBCs. Con-

sequently, the next section introduces a few modifications to vanilla DRL agents to improve

their convergence speed, towards the satisfaction of R7.
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3.4 Constraining agents and accelerating convergence

As detailed in Section 3.1.3 and confirmed by our investigations in Section 3.3, vanilla model-

free DRL agents are severely impacted by their data inefficiency, i.e., they typically require

a significant number of interactions with the environment to converge. This mainly stems

from the trial-and-error paradigm at the core of RL algorithms, which relies on an extensive

exploration of the state-action space to find optimal policies. This not only leads to significant

computational costs but also limits the deployment of DRL methods on physical systems

without pre-training in simulation [64, 202, 203].

To speed up the training of DRL agents, researchers have investigated how to leverage expert

demonstrations [248, 249], but this requires access to an expert policy that is not always

available in practice. Instead, we postulate in this section that prior knowledge of physical

systems often allows us to design simple rules that RL agents should follow a priori, such

as “Do not heat the room if it is already 26 ◦C”; we indeed know this action will always be

suboptimal in that state, there is no need for agents to explore its consequences. Critically,

this rule applies to any building and does not jeopardize R7. Remarkably, incorporating such

expert knowledge in control policies has already been identified as a promising step towards

more efficient physics-informed RL algorithms [275].

Constraining and accelerating DRL. In this section, we propose Efficient Agents (EAs), which

incorporate computationally lightweight modifications of actor-critic algorithms to encode

simple rules in DRL agents. Specifically, we introduce artificial state-dependent constraints on

the agents’ actions to restrict exploration to interesting regions of the state-action space. In

other words, the key idea is to avoid visiting state-action pairs that are known to be suboptimal

by the expert to accelerate the convergence towards meaningful solutions and thus increase

the efficiency of DRL (R7). In the case of building control, we leverage this framework to

concurrently ensure DRL agents do not violate the occupants’ comfort too often and react as

expected to external disturbances, towards the satisfaction of R2–R3.

Note that while state-dependent bounds were concurrently introduced in [276], they are

enforced a posteriori in the environment instead of directly modifying the agent’s behavior

and do not necessarily improve convergence speed (R7). On the other hand, prior knowledge

successfully accelerated learning in [277]. However, rules were only used to guide DRL agents,

there is hence no guarantee that the desired prior knowledge will be respected (R2–R3).

3.4.1 Constraining Reinforcement Learning agents

To bound the decisions taken by RL agents, one typically defines some constrained set of

actions and either projects the actions of the agents on this set at each time step or switches to a

fallback controller when needed [223–225].18 The main challenge with these operations is that

18In the case of discrete action spaces, one can also mask unsafe or undesired actions, avoiding the need for
backup controllers, such as in [212, 278].
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they are generally not differentiable and hence cannot be learned by RL agents, i.e., they will

never correct their mistakes if no additional mechanism is used to let them know when they

have been saturated. Three notable exceptions were provided in [245, 279, 280], who leveraged

differentiable optimization layers [245], modified the policy updates to account for projections

[279], and used linear constraints to derive a closed-form solution of the projection step [280].

This linear assumption was lifted in [281], but only to correct the agents’ actions online, as

it cannot be used in training since no closed-form solution exists anymore. However, these

methods either entail additional computational burden and require access to a model of the

system [245, 279] or rely on a learned linearization of the constraints [280]. Alternatively, one

could apply tools from the safe RL literature relying on constrained policy optimization [216,

218, 219]. However, this would again introduce engineering and computational overhead,

defeating the main purpose of this section, which aims at reducing the computational burden

of actor-critic algorithms by leveraging simple engineering intuition.

State and action constraints. The complexity of the methods discussed above often stems

from the fact that they are designed to impose state constraints on DRL agents. This is a more

challenging problem since it generally leads to complex safe action sets for the agent at each

step. Here, however, we argue that prior knowledge can straightforwardly be used to accelerate

the training of DRL agents through simple state-dependent box constraints on their actions,

which allows us to leverage less computationally intensive tools.

To alleviate the issue of non-differentiability of the projection without increasing either the

engineering or the computational burden, one can let agents learn when to switch to the

fallback controller [229]. However, the satisfaction of the constraints could not be guaranteed

any more. Alternatively, Reward Shaping (RS) heuristics might be used in various forms to

penalize agents when constraints are violated or let them know when they were saturated [225,

227, 282]. While such methods might accelerate the learning process to some extent, they are

indirect, i.e., they only influence the learned policies through the reward function that the

agent will learn to optimize over time. Moreover, shaping the reward function simultaneously

impacts the learning process of both the actor and the critic.

A computationally inexpensive solution for constrained and efficient DRL

In this section, we propose to constrain the actions of DRL agents by clipping them according

to expert-designed state-dependent bounds and subsequently modify the gradient update

step of the actor to let agents learn from their mistakes and accelerate their convergence

to expected actions. Importantly, contrary to RS, these interventions only affect the actor,

allowing the critic to learn the true Q-values.

Notably, our method bypasses the need for complex projection steps and does not require

access to a fallback controller or an expert policy. Moreover and critically, the proposed

modifications do not impact the computational complexity of the learning algorithm, are

straightforward to design and implement, and can be coupled with any actor-critic algorithms.
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Note that, in stark contrast with [277], where the expert knowledge is potentially overridden

by the policy, our method enforces the wanted behaviors on agents at all times.

In a case study relying on a PCNN simulator, the proposed EAs converge up to six to seven

times faster than classical agents and two to three times faster than RS-based ones while

retaining good final performance. This hints that the proposed computationally inexpensive

modifications can efficiently leverage expert knowledge to accelerate DRL algorithms.

3.4.2 Efficient actor-critic agents

This section details how to encode prior knowledge as simple rules in deterministic actor-critic

algorithms19 to limit the exploration of known suboptimal state-action pairs; first saturating

actions taken by the control policy accordingly and then modifying the gradient update of the

actor to let agents learn from their mistakes.

State-dependent action saturation

In many cases, prior knowledge allows us to design state-dependent upper and lower bounds

amax(s) and amin(s), respectively, on the actions we expect well-performing control policies

πθ(s) to take in a given state s, with

alow ≤ amin(s) ≤ amax(s) ≤ ahigh . (3.13)

To limit the exploration of known suboptimal state-action pairs, we modify (3.3) accordingly

to force agents to follow the provided prior knowledge:

a(s) = clip(πθ(s)+ϵ, amin(s), amax(s)) . (3.14)

Note that these bounds, stemming from prior knowledge, are also enforced at test time when

ϵ= 0 to ensure an agent would never heat a room when the temperature is already too hot, for

example, neither during the training nor the deployment phase.

Actor gradient modification

The major problem with the clipping operation in (3.14) is its non-differentiability. Worse yet,

its subdifferentials go to zero whenever agents are saturated (see (3.17)), making any backward

flow of information on the overriding process impossible. As a countermeasure, to let agents

learn from their mistakes, we also modify the actor gradient (3.6) to

∇̂EA
θ πθ =−∇θ

(
1

|B |
∑

(s,a)∈B

[
Qφ(s,πθ(s))− λ

2
(πθ(s)−a(s))2

])
, (3.15)

19While the presented analyses deal with deterministic actor-critic agents for clarity, the results can easily be
extended to the stochastic case.
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where λ is a hyperparameter. The second term on the right-hand side of (3.15) penalizes

actions chosen by the policy πθ(s) if they deviate from the constrained action a(s) in (3.14)

that was applied to the environment, steering the agent’s decisions towards expected actions.20

Note that one could include this penalty in the reward function as

r RS(st , at ) =−max{Lt −Tt ,Tt −Ut ,0}−αPt − λ

2
(πθ(s)−a(s))2 , (3.16)

and then maximize (3.1) instead of directly changing the gradient update step. Remarkably,

however, RS also impacts the learning process of the critic in (3.4) when applied to actor-critic

frameworks, contrary to our method. We will show the empirical benefits of the proposed

modification (3.15) over RS-based penalties in terms of convergence speed in Section 3.4.3.

Implications of the gradient modification

Let C (s) = {
a ∈R : amin(s) ≤ a ≤ amax(s)

}
capture the expert-designed rules for any given state

s.21 Grouping all the parameters θ of the policy in a vector and recalling the definition of the

action a(s) applied to the environment in state s from (3.14), we can define its subgradient

∇θa(s) as

a(s) =


ami n(s), if π(s) < ami n(s),

πθ(s)+ϵ, if πθ(s) ∈C (s),

amax (s), if π(s) > amax (s).

=⇒ ∇θa(s) =
∇θπθ(s), if πθ(s) ∈C (s),

0, else,
(3.17)

where ∇θπθ(s) is the actor gradient. We can then rewrite the gradient of EAs (3.15) as:

∇̂EA
θ πθ =− 1

|Z |
∑

(s,a)∈Z

[
∇θQφ(s,πθ(s))−∇θ

(
λ

2
(πθ(s)−a(s))2

)]
=− 1

|Z |
∑

(s,a)∈Z

[
∇θQφ(s,πθ(s))− (λ (eθ(s)) (∇θπθ(s)−∇θa(s)))

]
,

where we introduce the error term eθ(s) =πθ(s)−a(s). We hence get the following modified

actor gradient, where we omit (s, a) ∈Z for clarity:

∇̂EA
θ πθ =

− 1
|Z |

∑
Z

[
∇θQφ(s,πθ(s))

]
, if πθ(s) ∈C (s),

− 1
|Z |

∑
Z

[
∇θQφ(s,πθ(s))−λeθ(s)∇θπθ(s)

]
, else.

Remarkably, the additional penalty term in (3.15) hence allows us to solve the issue of the

subdifferentials of the clipping operator being zero when actions are saturated, modifying

20This additional penalty was also used in [245] to improve the robustness of differentiable layer-based RL for
state-constrained problems.

21Without loss of generality, we assume that a ∈R in this analysis for clarity. This assumption can easily be lifted
for multi-dimensional problems.
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Figure 3.6: Representation of the action bounds used in this work.

the gradients only when the constraints are not met. Indeed, as long as the action chosen by

the agent respects the constraints provided by the expert, the classical gradient (3.6) is used.

On the other hand, as soon as the constraints are not met, the gradient is modified in the

direction eθ(s). This accelerates the convergence of πθ(s) to C (s) despite the subdifferential

of the clipped action being zero, confirming the graphical intuition from [245, Fig. 2]. This

allows EAs to learn from their mistakes and — we hypothesize — helps them rapidly converge

to meaningful and well-performing policies.

Design of the saturation rules

In the context of room temperature control, we intuitively know that an optimal policy should

gradually stop heating when the temperature reaches the upper comfort bound and slowly

start heating as soon as the lower bound is not met (and vice versa for cooling), typically to

avoid criticism from the occupants. To encode these simple rules, we design state-dependent

action bounds as follows:

amin(st ) = clip

(
(Lt −m)−Tt

n −m
, 0, 1

)2

∗2−1 (3.18)

amax(st ) = 1−2∗clip

(
Tt − (Ut +m)

n −m
, 0, 1

)2

, (3.19)

with n ≥ m ≥ 0 representing design parameters to leave more or less freedom to the agents. In

words, we start constraining the action of the agents as soon as the temperature deviates from

the comfort bounds for more than m degrees. We then quadratically increase the constraint

until n degrees have been reached, where the agent is forced to use the maximum or minimum

power, as pictured in Fig. 3.6. As can be seen, amin(st ) > −1 only when the temperature is

below the lower comfort bound, and amax(st ) < 1 only when it exceeds the upper one. This

means EAs are not constrained and can freely explore the state-action space to minimize

energy consumption as long as the comfort of the occupants is satisfied.
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Agent Reward Agent Reward Agent Reward
Classical 1 -2.64 Classical 2 -2.75
RS 0 / 1 -2.58 EA 0 / 1 -2.85 EA 0.5 / 1 -2.83
RS 0 / 0.5 -2.44 EA 0 / 0.5 -2.58 EA 0.25 / 0.5 -2.74
RS 0 / 0.25 -2.37 EA 0 / 0.25 -2.51 EA 0.2 / 0.25 -2.62
RS 0 / 0.1 -3.69 EA 0 / 0.1 -2.46 EA 0.075 / 0.1 -2.46

Table 3.3: Best reward obtained by each agent on the validation set of 50 trajectories over
the first 500 epochs.

3.4.3 Performance analysis of Efficient Agents

To investigate the influence of m and n on the proposed scheme, which measure how much

prior knowledge is transmitted to DRL agents, we train different EAs (EA m / n). For com-

parison purposes, we also train agents with the classical actor gradient (3.6) but the re-

ward (3.16) as another computationally inexpensive means to incorporate prior knowledge in

DRL agents (RS m / n). Finally, we benchmark these modifications against two classical DRL

agents using the actor gradient (3.6) and reward (3.8) with different random seeds (Classical 1

and 2).22

All the agents were again trained on up to three-day-long episodes randomly sampled from

three years of data. To better compare their convergence rapidity, we increase the evaluation

frequency compared to Section 3.3: we assess their performance after each 96 steps of 15 min

instead of 5’000, i.e., one day’s worth of data, hereafter also referred to as an epoch. As before,

all the agents are evaluated on a fixed testing set of 50 unseen three-day-long trajectories after

each epoch to monitor their progress during the first 500 epochs. Throughout this section,

we manually set λ= 100 for EAs to ensure the constraints are enforced as fast as possible and

λ= 10 for RSs since higher penalties led to learning instability. While we empirically observed

a more robust performance of EAs with various choices of λ compared to RSs, a complete

sensitivity analysis of this hyperparameter is left for future work.

Final performance

The best reward obtained by all the trained agents on the 50 validation sequences over the

first 500 epochs can be found in Table 3.3. The corresponding trade-offs between energy

consumption and comfort violations over the entire validation set are plotted in Figure 3.7,

where the gray markers were reported from Figure 3.4 for reference.

These results illustrate how tighter parameters m and n, i.e., higher levels of prior knowledge,

allow EAs (colored crosses) and RSs (colored triangles) to converge to better solutions in this

limited training regime. The only exception is RS 0 / 0.1: it did not converge (see Table 3.3)

22The code and data used to generate the results are available on https://gitlab.nccr-automation.ch/loris.
dinatale/efficient-drl.
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Figure 3.7: Best trade-off between average energy consumption and comfort violations
obtained by each agent on almost 2’000 validation trajectories over 500 epochs. For
DRL agents, it corresponds to the best rewards obtained on the 50 validation sequences
reported in Table 3.3. For comparison purposes, the performance of the two industrial
baselines and an agent trained for 125’000 epochs (Best Agent) and the optimal trade-off
achievable (Optimum) are reported in gray from Figure 3.4.

and is hence not plotted in Figure 3.7. In particular, tighter constraints allow EAs to reduce

the amount of comfort violations without significantly increasing energy consumption. On

the other hand, classical DRL agents (black crosses) usually use less energy at the cost of

additional comfort violations in this early training phase before converging to near-optimal

solutions after longer training times, as detailed in Section 3.3.

Visualization of the impact of prior knowledge

To intuitively understand the effect of action saturation, we can visualize its impact on some

EAs in Figure 3.8. The behavior of all agents is plotted before training on the left, and after

on the right, for the same three days during the heating season in March. For completeness,

Table 3.4 reports the aggregated metrics of each agent on the right plot. Focusing on the left

plot, we see the untrained classical DRL agent in black letting the temperature diverge to
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Figure 3.8: Behavior of a classical DRL agent and EAs with various m and n parameters
minimizing the heating power consumption (bottom) while maintaining the temperature
in the gray dotted predefined bounds (top) over three days in March. Left: Performance
before training, where EAs are saturated once they exceed the bounds by n degrees.
Right: Performance after training, showing how all agents converged to similar solutions,
confirming the results in Table 3.3.

Agent Classical 1 EA (ours)
m / n - 0 / 1 0 / 0.5 0 / 0.25
Reward -0.68 -0.69 -0.89 -0.60
Comfort violations [Kh] 1.28 1.18 2.23 0.65
Energy consumption [kWh] 5.03 5.38 5.54 5.46

Table 3.4: Reward, sum of comfort violations, and aggregated energy consumption of
each agent over the three days depicted on the right of Figure 3.8.

an uncomfortably high range (out of the bounds of the plot) as it starts exploring the state

space using roughly constant heating power. On the other hand, all the EAs are forced to

stop heating once they are n degrees out of bounds. Consequently, even before training, such

agents will not overheat the room and keep it at acceptable temperatures for the occupants,

corresponding to what we expect from good control policies. However, note that EAs can

present control input oscillations due to the impact of external disturbances, mainly the solar

gains around noon, triggering the saturation mechanism on and off.

On the right plot, after training, one can observe that all EAs generally make comparable

decisions — still being sometimes saturated, which ensures compliance with prior expert

knowledge —, which leads to similar temperature patterns. On the other hand, the classical

agent presents a slightly different behavior, with smoother control profiles. Interestingly, this

agent is the only one heating in the early afternoon; EAs wait until the end of the afternoon
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to heat the room with higher power and meet the comfort bound tightening at 20 h instead.

This allows the classical agent to use less energy than EAs over these three days but can incur

additional comfort violations (see Table 3.4), as expected from Figure 3.7.

Data efficiency of the proposed gradient modification

A comparison of the convergence speed of various agents over the first 300 epochs is plotted

in Figure 3.9, where the vertical lines and annotations illustrate the number of days required

to attain performance on par with the two baselines. In general, EAs reach this threshold

significantly earlier than classical DRL agents, in as little as 29 days instead of roughly 200, an

improvement of almost an order of magnitude. In particular, the smaller n is chosen (from

left to right in Figure 3.9), the faster the convergence of the EAs in green and blue. Intuitively,

this makes sense, as tighter constraints enforce more prior knowledge on the EAs, allowing

them to find meaningful solutions more quickly, without losing time exploring suboptimal

state-action pairs. On the other hand, the influence of m is less marked, with m ̸= 0 (blue)

and m = 0 (green) leading to very similar convergence patterns in the bottom row of plots in

Figure 3.9. Nonetheless, as expected, we still observe that smaller values of m tend to incur

faster convergence since it further restrains the agents’ freedom according to prior knowledge.

Remarkably, RS does not seem to drastically speed up training in this case study (red). While

RS 0 / 0.25 does converge twice as fast as the classical DRL agents, we can also observe that

RS 0 / 0.1 did not converge at all, hinting at the fragility of this scheme in general. Even

when they find meaningful solutions, RSs remain two to three times slower than their EA

counterparts, hinting at the superiority of the proposed gradient modification for accelerated

convergence. On the other hand, RS seems to lead to more consistent performance than

classical agents and EAs after a few hundred epochs, which is confirmed by their impressive

final performance in Figure 3.7 and Table 3.3. Consequently, merging both approaches could

yield impressive results in practice, initially using (3.15) to improve the convergence speed

and gradually diminishing its impact to let the influence of (3.16) increase and stabilize the

final performance.

3.4.4 Towards agents that can be deployed from scratch in physical buildings

Accerlerating convergence (R7). Overall, these results support our claim that, as long as

the rules provided to the agents are well-defined and correspond to expected behaviors, the

modifications proposed in Section 3.4.2 can greatly accelerate the convergence of DRL agents,

helping them to satisfy R7. Interestingly and as expected, incorporating more specific expert

knowledge in EAs — through smaller m and n, hence enforcing tighter constraints — further

improves their learning speed. While they remained two to three times slower than EAs in our

case study, RSs benefited from a similar relationship between the amount of prior knowledge

used and the subsequent convergence speed.
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Figure 3.9: Convergence speed of various EAs with different m and n parameters in green
and blue, compared to agents using RS in red and two classical agents in black (one in the
top plots, one in the bottom ones). The vertical lines and annotations specify the number
of days of data required to obtain a reward of −2.95 for each agent, corresponding to the
average performance of the two baselines.

Interestingly, the proposed actor gradient update modification provided the desired speedup

for various choices of m and n, contrary to RS, hinting at its robustness. Despite converging

6–7 faster than vanilla agents, however, EAs still required 30 days to achieve performance on

par with the baselines in this case study. Furthermore, these findings are not guaranteed to

transfer to other applications or more complex case studies. This could be a hurdle for real-

world deployments as occupants might expect better performance than baseline controllers

after a few days, irrespective of building characteristics.

Near-optimality (R1). Critically, these convergence speed improvements do not significantly

impact the quality of the final solution compared to classical unconstrained agents, as shown

in Figure 3.7. This hints that the proposed modifications do not significantly hinder the ability

of EAs to satisfy R1, and we postulate that the analyses proposed in Section 3.3.2 for vanilla

DRL policies would also hold for EAs in the long-term.

Satisfying constraints (R3). Notably, the action saturation in (3.14) enforces soft guarantees
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to respect the comfort of the occupants, creating DRL agents able to meet R3. Indeed, while

we cannot ensure that the indoor temperature will never leave the predefined bounds, EAs will

always react as expected whenever violations occur, turning the heating on if the temperature

inside gets too cold, for example. Such a response would probably avoid complaints from the

occupants in real-world deployments, especially if EAs quickly learn to avoid these situations.

Impoving robustness (R2). Finally, these soft guarantees also pave the way towards DRL

agents simultaneously meeting R2 to some extent. Indeed, they ensure the inside temperature

will remain comfortable for the occupants at all times, under any weather conditions, for

example. However, ensuring near-optimal performance under any external condition remains

a challenge in general: while we can ensure NN-based control policies do not behave catas-

trophically when subjected to disturbances they have not been trained to handle with such

constraints, we cannot expect them to make optimal decisions in these cases.

3.5 Conclusion and outlook

In this chapter, we started by discussing seven requirements of an ideal building controller,

arguing in favor of online model-free DRL algorithms, which have the potential to bypass the

need for building and disturbance models and the related pitfalls in terms of scalability and

transferability (R5–R6). However, the final performance of such controllers, their ability to

handle disturbances and constraints, and their convergence speed (R1–R3, R7) remain open

questions. Consequently, we then provided in-depth analyses of the potential of DRL policies

to meet these requirements in a zone temperature case study. First, we reported evidence

pointing towards their capability to achieve near-optimal performance in different settings

(R1) in Section 3.3. Then, Section 3.4 proposed computationally inexpensive modifications

of actor-critic algorithms to find well-performing policies in a few weeks of data (addressing

R7 to some extent) while providing adequate comfort under different internal and external

conditions (towards the satisfaction of R2–R3).

3.5.1 Limitations of our experiments

Naturally, the main limitation of our investigations comes from the single low-complexity

framework the agents were evaluated in throughout this chapter, namely the thermal control

of a single bedroom in UMAR in simulation. Furthermore, while PCNNs grasp nonlinear

dynamics through their black-box module, they remain input-affine and might not capture

the full complexity of building thermal dynamics to evaluate DRL agents adequately. However,

experimental demonstrations in UMAR, such as the one depicted in Figure 3.5, revealed

similar behaviors to what could be observed in simulations, hinting at the efficacy of PCNNs to

produce accurate dynamics. Nonetheless, to validate our findings, one would have to expand

all the analyses to different buildings and scale to more complex problems, incorporating

interactions with batteries and PV panels, for example. In other words, this would assess the

ability of the proposed methods to handle R5-R6 simultaneously to R1–R3 and R7.
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Apart from these considerations, it is noteworthy that we did not strive to achieve the best

performance in the proposed case study, instead focusing on comparisons and analyses of

different agents. It would probably be possible to improve the quality of each solution through

a thorough hyperparameter selection procedure, for example. In practice, one should also

investigate the impact of the state-space S ; some variables might not be required, while

other ones, typically weather forecasts, could be very valuable to improve performance [215].

Similarly, more informative reward functions might help DRL agents converge faster to ex-

pected behaviors. For example, one could reward them according to the relative performance

improvement they achieve compared to a baseline instead of their absolute performance,

similarly to [251].

Note that although we focused on building applications throughout this chapter, it would

be of interest to carry out similar investigations in other fields. In particular, one could

analyze whether DRL policies generally achieve near-optimality and whether adapting the

modifications proposed in Section 3.4 to other domains can also accelerate learning. However,

the latter would require principled solutions to transfer generic prior knowledge into rules

enforceable on the agents’ actions. Moreover, its applicability would be constrained to soft-

constrained systems, as the proposed EA implementations cannot ensure the fulfillment of

state constraints.

3.5.2 Potential pathways towards the satisfaction of R1–R7

Overall, our investigations hint that computationally inexpensive interventions on model-free

DRL agents can allow them to meet almost all the desired requirements R1–R7. Nonetheless,

additional efforts are still required to achieve robustness and reasonable convergence times

in practice (R2 and R7) and assess whether our conclusions hold for larger-scale case studies

and different buildings (R5–R6). Let us now mention possible pathways toward DRL agents

meeting these requirements, opening the discussion on potentially interesting future works. A

combination of progress in several fields mentioned below will probably be required to design

controllers that can be deployed from scratch in any building.

Accelerating convergence. First, although we managed to accelerate the convergence of

DRL agents by a factor of six to seven in Section 3.4, EAs still required a month of data to

achieve performance on par with the two baselines in a low-complexity zone temperature

control case study. To make matters worse, this training time is bound to increase when scaling

DRL policies to control whole buildings. It could thus lead to high energy bills and occupant

discomfort — even if soft guarantees are enforced — during a relatively long initial learning

phase. This calls for measures leading to even faster online convergence to satisfy R7 and

achieve widespread acceptance.

To that end, it would be interesting to investigate the impact of data selection in the train-

ing process of DRL agents. For example, convergence to a meaningful solution might be

accelerated by considering consecutive days of data in the training phase instead of randomly
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sampled ones. Remarkably, this corresponds to the situation a DRL agent deployed and trained

from scratch on a physical building would face. On one hand, well-performing policies might

be found faster since it would avoid training the NN policy to react to widely different inputs.

On the other hand, it could lead to issues once the external conditions change severely — from

summer to winter, for example — if the policy converges to a local minimum too early during

training.

As an additional and potentially concurrent approach to improve the convergence speed of

DRL algorithms, one could explore the systematic decomposition of building control problems

into simpler and more complex sub-tasks. This would allow practitioners to use standard

rule-based controllers in the former cases and only leverage DRL for hard-to-specify tasks, for

example, which might significantly accelerate learning, as in [213]. Note that this is closely

related to the proposed EAs in Section 3.4, where we force agents to follow expert knowledge

when the temperature is too far from the comfort bounds; one could instead let a baseline

take over in that case, solely training the DRL agent to optimize the control inputs when

the temperature is in the comfort range and the optimal behavior unknown. Similarly, one

could train several agents, each handling different situations (for example, one per season),

to simplify their learning task. However, while each agent would converge faster, whether

the total training time, energy consumption, and occupant discomfort would decrease is an

interesting question.

Improving EAs. To achieve strong final performance (R1) despite constraining the agents as

proposed in Section 3.4 to satisfy R2–R3 and R7, it might be interesting to investigate annealing

strategies on λ or leverage primal-dual optimization tools on (3.15). The latter could indeed

adaptively tune the influence of the additional penalty in the actor gradient and let agents

learn more expressive policies after the initial exploration phase [283]. Additionally, given the

final performance of RS-based agents, it might be worth analyzing how to merge their modified

reward function (3.16) with EAs to simultaneously achieve near-optimal final performance

and rapid convergence towards it.

Physics-inspired DRL. Even if imposing constraints on the agents’ actions to enforce soft

guarantees on the indoor conditions does ensure DRL control policies cannot act inadequately,

they might still perform significantly sub-optimally under new disturbances and not meet R2.

While pre-training with extensive simulations is the best and most widely used countermea-

sure to date, it is limited by its reliance on accurate simulators. Instead, knowledge-informed

or Physics-inspired DRL (PiDRL) provides an interesting alternative pathway to alleviate the

brittleness of NN control policies. Similarly to what was done in Chapter 2 to guarantee

PCNNs respect the underlying laws of thermodynamics, one could indeed ensure DRL agents

understand the main factors driving thermal building dynamics to steer their policies towards

expected behaviors.

While the system’s physics is often leveraged to characterize unsafe actions [223, 224, 278]

or design more informative reward functions [225], it might be leveraged to capture more
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abstract concepts. For example, in the case of building control, it could be of interest to

design control policies explicitly encoding expected dependences on indoor temperatures,

presence of occupants, or any other impactful factor. Inspired by the architecture of PCNNs in

Chapter 2, one could similarly design a modular control policy enforcing agents to react to

some conditions according to expert intuition through a knowledge-infused module while

letting an NN learn the best responses to disturbances harder to optimize against in parallel.

This could lead to control policies guaranteed to react as expected in critical cases, as a further

step towards the general satisfaction of R2. Note that the modifications proposed in Section 3.4

are one possible way to enforce DRL agents to react to out-of-bounds temperatures as expected

and might hence provide a basis for more generic PiDRL building control policies.

Transfer Learning. Since it would allow one to warm-start the training of DRL agents from

a well-performing initial control policy, TL is another potential solution to increase their

data efficiency and go toward the satisfaction of R6–R7. However, which part of control

policies can be transferred without significant performance drop remains a challenging field

of research [156]. For example, when a DRL agent learned in a single zone was subsequently

deployed to control the whole building, it showed overfitting, and manual interventions were

required to avoid catastrophic behaviors in [284]. Nonetheless, if significant advances were

made in TL, it could further accelerate the online convergence speed of building DRL control

policies — and potentially significantly.

Going beyond traditional TL, one could investigate the potential of designing a general build-

ing control policy, i.e., pre-training one or a few large-scale NNs to optimize different building

architectures, appliances, comfort parameters, weather conditions, and so on, a priori, simi-

larly to [42]. This would call for a systematic simulation procedure and an extensive learning

phase but could then be leveraged to potentially accelerate convergence online (R7) in any

new building (R6) and help ensure DRL agents behave adequately under all the simulated

disturbances (R2).

Multi-agent Reinforcement Learning. As advocated by [14, 31, 206], for example, significant

progress still needs to be made on multi-agent RL algorithms to optimize interconnected

complex systems like large-scale buildings or neighborhoods. While single DRL agents might

have interesting scalability properties, they indeed cannot be expected to control whole

districts, and cooperation among several agents acting on a smaller scale will be required to

tackle R5 to its full extent. Even at the building level, letting a single agent control multiple

zones might not be optimal, as observed in [285], where learning one distinct control policy

for each zone, while increasing the computational burden, led to better final performance, for

example.

The field of multi-agent RL is however still nascent, with many open problems linked to

non-stationarity, communication (what to communicate to which agent(s) and when), co-

ordination (how to reach consensus), credit assignment (if the agents share a common goal,

how to recover which action(s) of which agent(s) led to good rewards), scalability, and partial
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observability (agents do not have access to the full state of the environment or other agents’

internal information) [286, 287]. Note that given the sensitivity of building operation data,

letting several agents communicate would furthermore incur privacy issues, advocating for

federated learning-inspired techniques, such as in [288].

Occupant-centric control. Given the importance of the occupants — stemming from their

preferences and behavior [12] —, more efforts should be directed towards occupant-centered

solutions. While most studies still only consider maintaining the inside temperature in a

comfortable range [206], accommodating the thermal comfort of the occupants to some

extent, it is nowadays well-known that the concept of “comfort” goes beyond these simple

considerations [144].

However, how to represent comfort preferences more accurately is an open field of research

and a challenging problem. This is due to the lack of data — and its quality whenever it is

available — and the significant related privacy issues, among other factors [289]. Remarkably,

model-free DRL agents could incorporate personalized comfort preferences [10]. For example,

it would be possible to directly learn control policies from the feedback of the occupants [290],

opening many avenues for occupant-centered yet energy-efficient solutions.

Interpretable controllers. We hypothesized that an ideal controller would satisfy R1–R7
in this chapter, implying that it should perform near-optimally under any circumstance

(R1–R2). With these two requirements, we implicitly assumed that such a controller would

receive the people’s trust since it would always make meaningful decisions. Thus, we did not

list interpretability amongst the requirements. However, in practice, especially in the early

development phase, explainability of a controller’s decisions might be crucial to foster its

acceptance.

To bypass the limited expressiveness of RBC tuning methods like [161, 167], which are inter-

pretable but inherently upper-bounded by the structure of the underlying RBC, one could

turn to policy distillation techniques instead [291]. The idea here is to first fit an NN policy

to the control problem, typically through DRL, and then reduce it to an interpretable tree or

set of rules with minimal performance loss. In other words, a low-complexity interpretable

controller replaces the NN policy, mimicking its behavior. Such efforts to make DRL algorithms

more transparent are inscribed in the scope of explainable RL, a field which has been growing

in popularity in the last years [292].

3.5.3 A practical perspective

To conclude this chapter, we want to emphasize here that we only investigated the theoretical

promises of model-free DRL agents in-depth as we argue they exhibit strong potential to

fulfill the pre-defined seven requirements of ideal building controllers. However, in practical

applications, the best choice of method often hinges on the “engineering budget” and the

availability of models or data.
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Naturally, if an accurate building model exists, it should be leveraged in model-based DRL

methods or to pre-train model-free DRL agents to accelerate their convergence online and

train them to handle different disturbances and constraints (R2–R3, R7). If disturbance fore-

casts are also easily accessible,23 MPC-based applications would probably achieve impressive

performance — provided the optimization problem can be solved quickly enough with the

hardware on-site at each time step.

Otherwise, if only data is available — in quantity and quality —, one could use it to build

an accurate simulator and recover a building model to be leveraged as discussed above.

Alternatively, one could rely on IL techniques to warm-start DRL control policies (R7) or follow

DPC-based approaches, for example. Provided disturbance forecasts are accessible, the latter

could attain compelling performance, especially if the model could be updated online without

compromising the controller’s quality.

Finally, online methods would have to be applied in cases where neither a model nor an

extensive data set is available at deployment time. Model-based approaches might achieve

strong performance but require learning and maintaining an accurate building model online.

Alternatively, model-free DRL algorithms, especially with the proposed modifications in Sec-

tion 3.4, could directly learn how to optimize building operations while treating the system as

a black box. However, they might still require several months to converge to a well-performing

policy. In sum, neither of these approaches can provide performance guarantees for practical

applications yet, and the best solution to date might be to collect data for a few days or weeks

and then fall back to one of the options discussed above.

23In the case of building control, the main disturbances usually stem from weather conditions and occupant
behavior. While weather forecasts are generally accessible, predicting the latter is more challenging.
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While Neural Networks recently gained massive attention thanks to their ability to solve

very complex modeling tasks [59–64], they are generally system-agnostic (Section 2.1). Even

when known physics is enforced upon them, as discussed with PCNNs throughout Chapter 2,

for example, they remain uninterpretable, and people often prefer more structured and ex-

plainable models in practice [293]. Indeed, it might not be desirable to use black-box NNs

in applications where some properties of the model to identify are known — like stability or

physical properties. Additionally, NNs might perform sub-optimally in such cases, where

learning a model with the expected structure can lead to better performance [294]. Contrary

to NNs, traditional System Identification (SI) approaches, which matured decades ago [47],

can enforce desired system properties — but they struggle to scale in general.

In this chapter, we start from the fact that the availability of state-of-the-art open-source

libraries like PyTorch [140] and TensorFlow [295] has been key to the success of NNs in fitting

million of parameters on large-scale problems. In particular, Automatic Differentiation (AD),

at the core of the backpropagation algorithm [296], the backbone of NN training, nowadays

benefits from extremely efficient implementations. Consequently, we propose to leverage

these recently developed tools to help scale traditional SI methods and identify structured

models from data.

The main output of these investigations is the SIMBa open-source toolbox (System Identifi-

cation Methods leveraging Backpropagation) on https://github.com/Cemempamoi/simba.

Relying on novel linear-matrix-inequality-based free parameterizations of Schur matrices,

SIMBa can enforce desired system properties without jeopardizing the stability of linear state-

space models. Extensive numerical simulations show it consistently outperforms traditional

methods — and sometimes significantly — when identifying different systems with and with-

out state measurements, from simulated or real-world data, and while enforcing various

properties. Finally, we also propose one extension of this framework to identify nonlinear

systems following the laws of thermodynamics in Section 4.6.
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Notations used throughout the chapter

Let Iq and 1q×q be the identity and all-one matrix of dimension q , respectively. Given a matrix

H ∈R2q×2q , we define its block components H11, H12, H21, H22 ∈Rq×q as[
H11 H12

H21 H22

]
:= H .

For a symmetric matrix F ∈Rq×q , F ≻ 0 means it is positive definite. For a matrix K ∈Rq×q ,

λmin(K ) and λmax(K ) refer to its minimum and maximum eigenvalue, respectively, and

|λ(K )|max := max
i=1,...,n

|λi (K )|

to its maximum absolute eigenvalue. σ :=R→]0,1[ corresponds to the sigmoid function

σ(r ) = 1

1+e−r

and σ−1 to its inverse. || · ||p represents the p-norm of a vector. Finaly, A matrix J is skew-

symmetric if J =−J⊤. The Poisson bracket of Z ,G ∈ C∞(Rn) with respect to a skew-symmetric

matrix J is defined as

{Z ,G}J = ∂Z⊤(x)

∂x
J
∂G(x)

∂x
.

4.1 Towards structured stable linear system identification

Given their effectiveness at grasping complex nonlinear patterns from data, NNs have re-

cently been used for nonlinear system identification, where traditional SI methods struggle

to compete [297–299]. NNs can be leveraged to create deep state-space models [294], deep

subspace encoders [300], or deep autoencoders [301], for example. While applying NNs to

identify nonlinear systems can perform well, it might underperform for linear systems, for

example, where methods assuming model linearity can achieve better accuracy [294].

Although nonlinear SI has attracted significant attention in recent years, the identification

of Linear Time Invariant (LTI) models is, however, still of paramount importance to many

applications. Indeed, linear models come with extensive theoretical properties [302] and lead

to convex optimization problems when combined with convex cost functions in a Model

Predictive Controller [125], for example. Moreover, to date, numerous industrial applications

still rely on the availability of linear models to conduct simulations, perform perturbation

analysis, or design robust controllers following classical model-based techniques, such as H2,

H∞, and µ-synthesis [303].

In Sections 4.2-4.5, we show how one can leverage ML tools — backpropagation and uncon-

strained Gradient Descent (GD) — for the identification of stable linear models, presenting a

novel toolbox of System Identification Methods leveraging Backpropagation (SIMBa). Our
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research is related to the efforts in [146, 183, 304–306], where backpropagation was also used

to identify LTI state-space models but only as part of specific frameworks and without consid-

ering stability constraints.

4.1.1 Problem setting

Sections 4.2–4.5 are concerned with the identification of discrete-time linear time-invariant

state-space models of the form

xk+1 = Axk +Buk (4.1a)

yk =C xk +Duk , (4.1b)

where x ∈Rn ,u ∈Rm , y ∈Rp are the states, inputs, and outputs, respectively. The objective is

to identify A ∈Rn×n , B ∈Rn×m , C ∈Rp×n , and D ∈Rp×m from data.

Throughout this chapter, we assume access to a data setDi /o = {
(
u(0), y(0)

)
, ...,

(
u(ls), y(ls)

)
}N

s=1

of N input-output measurement trajectories s of length ls . Note that, for some applica-

tions, one might have direct access to state measurements, in which case (4.1b) is omit-

ted and only A and B need to be identified from a data set of input-state measurements

Di /s = {(u(0), x(0)) , ..., (u(ls), x(ls))}N
s=1. In our experiments, we split the data into a training, a

validation, and a test set of trajectories Dtrain, Dval, and Dtest, respectively, as often done in ML

pipelines [307].

When we want to enforce the asymptotic stability of (4.1), we need to ensure A is Schur, i.e., all

its eigenvalues λi (A) satisfy |λi (A)| < 1,∀i = 1, ...,n [308]. Finally, to discuss sparsity patterns of

various matrices, we will use binary masks M ∈ {0,1}q×s and denote with M :=M⊙ M̄ sparse

matrices M ∈Rq×s , where M is the corresponding sparsity pattern, M̄ can be any matrix of

appropriate dimensions, and ⊙ denotes the Hadamard product between two matrices.

4.1.2 Subspace identification for linear systems

State-of-the-art implementations of linear state-space SI often rely on subspace identifica-

tion [54], such as the acclaimed MATLAB system identification toolbox [309] or the SIPPY
Python package [50]. Both of them provide the three traditional Subspace Identification

Methods (SIMs), namely N4SID [310], MOESP [311] and CVA [312]. Remarkably, these three

methods were later unified under a single theory in [313], proving they rely on similar concepts.

In addition to these traditional methods, SIPPY also proposes an implementation of PARsimo-

nious SIMs (PARSIMs), namely PARSIM-S [314], PARSIM-P [315], and PARSIM-K [316], which

enforce causal models by removing non-causal terms. While the former two methods do not

work with closed-loop data since they assume no correlation between the output noise and

the input, PARSIM-K was specifically designed to alleviate this assumption.
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4.1.3 Enforcing stability

In practice, when the system is known to be stable, one usually requires the identified model

to be stable as well [48]. In this case, post-hoc corrections can be applied to the state-space

matrices identified by SIMs to guarantee stability [49]. However, this is impossible for PARSIMs

and might cause severe performance drops on traditional SIMs [50]. Apart from such post-

hoc modifications, one can also modify the Least Squares (LS) estimation at the heart of

many identification procedures to ensure stability. This can be achieved by either introducing

custom weighting factors [317] or rewriting it as a constrained optimization problem [318, 319],

for example.

Alternatively, one can leverage parametrizations of Schur matrices, such as the ones proposed

in [320, 321], and then use projected gradients to approximate the LS solution while ensuring

the resulting model remains stable at each step, for example [51]. A similar idea was utilized

in [322], where the Perron-Frobenius theorem was leveraged to bound the eigenvalues of A

and hence ensure the system remains stable at all times, even during the learning phase.

Finally, instead of directly constraining the state-space matrices, one can simultaneously learn

a model and a corresponding Lyapunov function for it, typically NN-based, thereby ensuring

its stability by design [323]. This approach presents the advantage of naturally extending to

nonlinear SI, contrary to all the others, but comes with a significant computational burden.

Note that while SIMBa does not explicitly learn a Lyapunov function, it implicitly defines one

to guarantee stability (see Section 4.2). However, instead of learning it with an NN, we leverage

Linear Matrix Inequalities (LMIs) to parametrize Schur matrices, inspired from [324].

4.1.4 Prior knowledge integration

In addition to maintaining the stability of the system, it can be beneficial, and sometimes

necessary, to convey expert knowledge or desired properties to the identified model in practice.

Specifically, there is a growing interest in methods that can incorporate known properties

in the state-space matrices to identify — to enforce desired sparsity patterns, for example.

This information might indeed be known a priori: one may have insights on which states

are measured, which inputs impact which states, or which states exchange information, i.e.,

the topology of a networked system. Such requirements led to the development of SIMs

specifically tailored for distributed systems with different topologies, where the state-space

matrices are known to have specific sparsity patterns [52, 325–327].

Beyond sparsity patterns, an expert might have prior knowledge about the structure of the

system stemming from known physical properties, for example. To ensure the identified

model follows the desired dynamics, one typically writes down the corresponding state and

output equations manually and then identifies the unknown parameters from data. Such

gray-box modeling approaches have been successfully applied to building [122], chemical

process [328], or robotic system [329] modeling, among others. These considerations were
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recently unified in the COSMOS framework, which allows one to identify structured linear

systems from input-output data [53]. It is based on rewriting the LS estimate in SIMs as

a rank-constrained optimization problem to enforce the matrices to belong to the desired

parametrized set. However, COSMOS minimizes the one-step-ahead prediction error and

does not guarantee the stability of the identified system.

We note here that knowledge integration also encompasses the careful initialization of all

the parameters, which has already been shown to improve performance in the context of

nonlinear SI [146]. While this is not needed for classical subspace methods, which rely on

deterministic LS solutions [54], it can have a significant impact on the convergence rate and

quality of the solutions of gradient-based algorithms like SIMBa [330].

4.1.5 Summarized contributions

To summarize, none of the above methods allowing prior knowledge integration considered

the stability of the resulting system. Additionally, they usually rely on one-step-ahead fitting

criteria. To maintain state-of-the-art performance without losing stability guarantees when

enforcing desired system properties, such as predefined sparsity patterns or known values

of state-space matrices, we introduce SIMBa, a structured linear SI toolbox that allows for

detailed prior knowledge integration without jeopardizing the stability of the identified model.

Leveraging novel free parameterizations of Schur matrices and well-established ML tools

for multi-step prediction error minimization, we show how SIMBa can significantly outper-

form traditional stable SI methods found in the MATLAB SI toolbox [309] through extensive

numerical experiments.

SIMBa is open-sourced and system-agnostic: it can seamlessly identify both multi-input-multi-

output and multi-input-multi-state data, optimize different multi-steps-ahead performance

metrics, deal with large-scale systems, multiple trajectories, and missing data, and comes with

smooth GPU-integration. Due to its GD-based backbone, it incurs significant computational

burdens, requiring from several minutes to over an hour to train compared to the few seconds

needed for conventional methods. However, it consistently — and sometimes significantly

— outperforms traditional approaches on a wide variety of problems in terms of accuracy,

even while enforcing prior knowledge on the state-space matrices. SIMBa could hence be

very beneficial in applications where performance is critical or system properties must be

respected.

Altogether, Sections 4.2–4.5 propose a new paradigm for SI of large-scale structured linear

systems without losing stability guarantees. While it comes with a large computational burden,

SIMBa also presents interesting extension potential, for example, to include tailored nonlin-

earities, similarly to what is proposed in Section 4.6, or to facilitate stable Koopman-based

approaches like [304–306, 331].

109



Chapter 4. Leveraging automatic differentiation for system identification

4.2 Free parametrizations of Schur matrices

To efficiently leverage PyTorch’s automatic differentiation implementations, which cannot

deal with constrained optimization problems, we require A to be Schur by design. This will then

allow us to run unconstrained Gradient Descent (GD) in the search space without jeopardizing

the stability of the identified system. Throughout this section, inspired by [324], we leverage

Linear Matrix Inequalities (LMIs) to design matrices that simultaneously guarantee stability

and capture various system properties.

Credit assignment. The results of this section stem from a collaboration between Muhammad

Zakwan and the author of this thesis in [56, 57]. Although their development was primarily

spearheaded by Muhammad Zakwan, they are reported here for completeness since they will

be leveraged in Section 4.4, but the proofs are deferred to the appendix.

4.2.1 Dense Schur matrices

Let us first provide one possible free parametrization of Schur matrices with arbitrary structure

and bounded eigenvalues.

Proposition 3. For any W ∈R2n×2n , V ∈Rn×n , 0 < γ≤ 1, and ϵ> 0, let

S :=W ⊤W +ϵI2n . (4.2)

Then

A = S12

[
1

2

(
S11

γ2 +S22

)
+V −V ⊤

]−1

(4.3)

is Schur with |λi (A)| < γ,∀i = 1, ...,n .

Proof. See Appendix B.1.

Note that γ is a user-defined parameter bounding the eigenvalues of A in a circle of the

corresponding radius centered at the origin, potentially enforcing desired system properties

on the learned matrix. Importantly, Proposition 3 captures all Schur matrices, as detailed in

the following corollary.

Corollary 2. For any given Schur matrix A and ϵ > 0, there exists W ∈ R2n×2n , V ∈ Rn×n

satisfying (4.3) for S as in (4.2).

Proof. See Appendix B.2.
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4.2.2 Discretized continuous-time systems

Many linearized real-world systems are continuous-time, i.e., of the form

ẋ = Āx + B̄u (4.4a)

y =C x +Du . (4.4b)

After a forward Euler discretization, (4.4) becomes

xk+1 =
(
In +δĀ

)
xk +δB̄uk

yk =C xk +Duk ,

where δ> 0 is the discretization step.1 In particular, the matrix A we want to identify from

discrete-time data samples while ensuring stability now takes the form

A := In +δĀ. (4.5)

In other words, if the data in Di /o or Di /s has been collected from a continuous-time system,

then A will be close to identity. Note that a similar behavior would also be expected from

slow-changing systems. The following proposition offers a parametrization of A that takes this

desired structure into account.

Proposition 4. For any W ∈R2n×2n , V ∈Rn×n , and ϵ> 0, let

S :=W ⊤W +ϵI2n . (4.6)

Then

A = In −2
(
S11 +V −V ⊤)−1

S12S−1
22 S21 (4.7)

is a Schur matrix.

Proof. See Appendix B.3.

Contrary to Proposition 3 and as evident from (4.7), the matrix A will be steered towards

the identity matrix here, as desired. If the given data stems from a continuous-time or slow-

changing discrete-time system, this might ease SIMBa’s learning procedure, and we will

leverage it in Section 4.4.6. Importantly, Proposition 4 does not sacrifice any representation

power, as stated in the following corollary.

Corollary 3. For any given Schur matrix A and ϵ > 0, there exists W ∈ R2n×2n , V ∈ Rn×n

satisfying (4.7) for S as in (4.6).

Proof. See Appendix B.4.
1While different discretization schemes exist, we focus on the forward Euler one herein as it allows us to derive

another meaningful parametrization of Schur matrices.
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Remark 20. The discretization step δ does not appear in (4.7). While it might seem counter-

intuitive at first glance, this is not an issue in practice: changing the discretization step would

indeed modify the data collection for Di /o or Di /s , thereby naturally changing the solution

found by SIMBa through GD and hence the form of A. In other words, A implicitly depends on

δ, as expected.

4.2.3 Sparse Schur matrices

Let us now assume the sparsity pattern M of A is given. This might arise in cases where

the system to identify is a networked system with a known topology, for example. The fol-

lowing proposition shows how to parameterize such sparse matrices without losing stability

guarantees.

Proposition 5. For a given sparsity pattern M ∈ {0,1}n×n , any W ∈R2n×2n , V ∈Rn×n , and ϵ> 0,

let

S :=W ⊤W +ϵI2n (4.8)

and construct the diagonal matrix N with entries

Ni i := max

{∑
j ̸=i

Mi j ,
∑
j ̸=i

M j i

}
+ϵ, ∀i = 1, ...,n . (4.9)

Then, the matrix

A =M⊙
(
S12

[
N ⊙

(
1

2
(S11 +S22)+V −V ⊤

)]−1)
(4.10)

is Schur and presents the desired sparsity pattern M.

Proof. See Appendix B.5.

For a given sparsity pattern M and small positive constant ϵ, one can thus define N and use

the free parametrization (4.10) to compute Schur matrices presenting the desired sparsity

pattern from some V and W .

Remark 21. Contrary to Propositions 3 and 4, Proposition 5 is conservative; it cannot capture all

sparse Schur matrices. This stems from two steps in Appendix B.5. First, we have to restrict our

search to systems admitting diagonal Lyapunov functions to leverage the associative property of

Hadamard products with diagonal matrices. Second, satisfying (B.10)–(B.11) is only a sufficient

condition for (B.9) to hold.

Remark 22. Setting M :=1n×n would provide another parametrization of dense Schur matri-

ces, potentially replacing Proposition 3. However, this is not advised in practice since (4.10) is

more conservative than (4.3), as discussed in Remark 21.
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4.2.4 An alternative general parametrization

To showcase the power of PyTorch, which can differentiate through the computation of

eigenvalues, the following proposition offers an alternative free parametrization of any Schur

matrix. Contrary to the other parametrizations, it relies on scaling arguments instead of LMIs.

Proposition 6. For a given sparsity pattern M ∈ {0,1}n×n , 0 < γ≤ 1, and any matrix V ∈Rn×n

and constant η ∈R, leveraging the sigmoid function σ, the matrix

A = σ(η)γ

|λ(M⊙V )|max
(M⊙V ) (4.11)

is Schur stable with |λi (A)| < γ,∀i = 1, ...,n, and presents the desired sparsity pattern M.

Proof. See Appendix B.6.

As can be seen, Propositions 5 and 6 can be used interchangeably; they both provide a free

parametrization of sparse and stable matrices. Contrary to its conservative counterpart,

however, Proposition 6 can capture all Schur matrices – including sparse ones —, as shown in

the following corollary.

Corollary 4. Any Schur matrix A satisfies (4.11) for some M ∈ {0,1}n×n , 0 < γ≤ 1, V ∈ Rn×n ,

and η ∈R.

Proof. See Appendix B.7

Interestingly, defining M := 1n×n in Proposition 6, we recover a free parametrization of

generic matrices, providing an alternative to Proposition 3. However, according to Corol-

lary 4, this would not come at the cost of expressiveness, contrary to Proposition 5. Similarly,

parametrizing V as in (4.5) and using M :=1n×n , we recover a parametrization of matrices

close to identity interchangeable with Proposition 4. Overall, Proposition 6 hence allows us to

characterize any type of Schur matrix discussed throughout this Section.

Remark 23. Proposition 6 is philosophically related to [323], where a Lyapunov function is

learned simultaneously to nominal system dynamics. At each step, the dynamics are then

projected onto the Lyapunov function to guarantee asymptotic stability. Similarly, (4.11) can be

seen as a projection onto some (unknown) Lyapunov function. However, the latter is implicitly

defined through the scaling of A instead of being learned, hence alleviating the associated

computational burden.

Remark 24. Propositions 3 and 5 can be adapted for continuous-time systems of the form (4.4)

leveraging techniques similar to [332]. On the other hand, the scaling approach deployed in

Proposition 6 to control the magnitude of the eigenvalues of A cannot be straightforwardly

adapted to the continuous-time setting, where the real part of each eigenvalue has to be negative

to ensure stability.
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Figure 4.1: Main steps of running SIMBa in Python.

4.2.5 Using free parametrizations

Propositions 3–6 imply one can choose any ϵ > 0, 0 < γ ≤ 1, M ∈ {0,1}n×n , V ∈ Rn×n , W ∈
R2n×2n , and η ∈R — depending on the setting — and construct a stable matrix A as in (4.3),

(4.7), (4.10), or (4.11). In practice, ϵ should be set to a small constant2 and γ and M are

problem-specific and user-defined since they stem from prior knowledge about the system.

Therefore, all constrained parameters are defined by the user a priori.

SIMBa then searches for V , W , and η optimizing some performance criterion, as detailed in

Section 4.3. Since these parameters are not constrained, SIMBa can use unconstrained GD for

this task. Propositions 3–6 hence allow us to leverage the full power of PyTorch’s AD to fit the

data without jeopardizing stability, constructing a Schur matrix A from the free parameters V ,

W , and η at every iteration.

4.3 The SIMBa toolbox

SIMBa is implemented in Python to leverage the efficient AD framework of PyTorch [140]. It

is open-sourced on https://github.com/Cemempamoi/simba. For given data sets Dtrain, Dval,

and Dtest, SIMBa can be initialized, fit, and saved in a few lines of codes, as exemplified in

Figure 4.1. For completeness, we also provide a MATLAB interface inspired by the traditional

MATLAB SI toolbox [309], as shown in Figure 4.2. The rest of this section details the main

parameters of SIMBa.

2We use ϵ= 1e-6 in our experiments.
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4.3 The SIMBa toolbox

Figure 4.2: Main steps to call SIMBa from MATLAB.

Credit assignment. The SIMBa toolbox stems from a collaboration between Muhammad

Zakwan and the author of this thesis in [56, 57], although the software development was

spearheaded by the author of this thesis.

4.3.1 Optimization framework

Given input-output data Di /o , SIMBa iteratively runs gradient descent on batches of trajec-

tories Z ∈Dtrain randomly sampled from the training data set — thus seamlessly handling

training data sets consisting of several trajectories. We leverage PyTorch’s implementation of

AD to solve the following optimization problem:

min
A,B ,C ,D,x(s)

0

1

|Z |
∑
s∈Z

[
1

ls

ls∑
k=0

m(s)
k Ltrain

(
y (s)(k), y (s)

k

)]
(4.12)

s.t. y (s)
k =C x(s)

k +Du(s)(k) (4.13)

x(s)
k+1 = Ax(s)

k +Bu(s)(k) . (4.14)

In words, SIMBa minimizes the multi-step-ahead prediction error, using the training loss

Ltrain as performance criterion. In this paper, we rely on the Mean Square Error (MSE), i.e.,

Ltrain(y, ŷ) = ||y − ŷ ||22. However, SIMBa’s flexibility — backed by PyTorch’s ability to handle

any differentiable function — allows one to design custom (differentiable) loss functions and

pass them through the train_loss parameter. In some applications, it might be interesting

to optimize the Mean Absolute Error (MAE) or the Mean Absolute Percentage Error (MAPE), for

example, which are more robust against outliers or different output magnitudes, respectively.

In many cases, identifying the matrix D is not required, which is achieved in SIMBa by setting

id_D=False, removing the second term of (4.13). Similarly, if x(s)(0) is known, learn_x0 can
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be toggled to False and SIMBa will fix x(s)
0 := x(s)(0) instead of optimizing it. The number

of sequences |Z | used for each gradient update can be controlled through the batch_size
parameter. Finally, m(s)

k ∈ {0,1} in (4.12), with

m(s)
k =

0, with probability p or if y (s)(k) is NaN,

1, otherwise.

In words, these binary variables let SIMBa discard missing values from the objective function,

allowing it to seamlessly work with incomplete data sets. Additionally, the user can define a

dropout = p parameter to randomly remove data points from the objective with probability

p, providing empirical robustness to the training procedure.

4.3.2 Input-state identification

When state measurements are available in Di /s , one can set input_output=False, dropping

(4.13), and modifying the objective to

min
A,B

1

|Z |
∑
s∈Z

[
1

ls

ls∑
k=0

m(s)
k Ltrain

(
x(s)(k), x(s)

k

)]
. (4.15)

Furthermore, for autonomous systems, the autonomous flag can be toggled, in which case

the minimization on B is also discarded, as well as the corresponding second term on the

right-hand-side of (4.14). Similarly to Section 4.3.1, m(s)
k are binary variables that can be forced

to zero either to discard missing values or as a means of regularization.

Since the state x is known, one can break given training trajectories into segments of length

horizon. The stride defines how many steps should be taken between the starts of two

segments. Note that if stride is smaller than horizon, then segments of data will overlap, i.e.,

data points will appear several times in consecutive segments. If the user is interested in the

model performance over a specific horizon length, this can be specified with horizon_val,

and the number of segments can also be controlled with stride_val. Note that setting

horizon or horizon_val to None keeps entire trajectories.

4.3.3 Training procedure

SIMBa iteratively runs one step of gradient descent on (4.12) or (4.15) for max_epochs epochs.

Here, we define an epoch as one pass through the training data, i.e., every trajectory has been

drawn in a batch Z . After each epoch, the validation data is used to assess the current model

performance by computing

1

|Dval|
∑

s∈Dval

[
1

ls

ls∑
k=0

Lval

(
y (s)(k), y (s)

k

)]
or

1

|Dval|
∑

s∈Dval

[
1

ls

ls∑
k=0

Lval

(
x(s)(k), x(s)

k

)]
,
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in the input-output or input-state case, respectively. This evaluation metric is used to avoid

SIMBa overfitting the training data: the best parameters, stored in memory, are only over-

written if the current parameters improve the performance on the validation set, and not the

training one [307]. At the end of the training, to get a better estimate of the true performance

of the identified model, we evaluate it on the unseen test data set with

1

|Dtest|
∑

s∈Dtest

[
1

ls

ls∑
k=0

Lval

(
y (s)(k), y (s)

k

)]
or

1

|Dtest|
∑

s∈Dtest

[
1

ls

ls∑
k=0

Lval

(
x(s)(k), x(s)

k

)]
.

Throughout this work, we also rely on the MSE for validation and testing, setting Lval =Ltrain,

but this can be modified through the val_loss parameter. This gives the users the freedom

to evaluate SIMBa on a different metric than the training one. It can be tailored to specific

applications: SIMBa would then return the model performing best with respect to the chosen

evaluation criterion, irrespective of the training procedure.

Note that (4.12) or (4.15) can be highly nonconvex, in which case gradient descent cannot be

expected to find the global optimum and will most likely settle in a local one instead. SIMBa

is thus sensitive to its initialization and some hyperparameters and might converge to very

different solutions depending on these choices.

4.3.4 Initialization

To start SIMBa in a relevant part of the search space, one can set init_from_matlab_or_ls
to True. This prompts SIMBa to run a traditional SI method, i.e., either

• the MATLAB SI toolbox [309] or the Python SIPPY package [50] for input-output sys-

tems,3 or

• a traditional LS optimization in the input-state case,

before training. Depending on the setting, the chosen initialization method returns matrices

A∗ and potentially B∗, C∗, and D∗. These are then used as initial choices of state-space

matrices in SIMBa, so that it starts learning from the best solution found by traditional SI

methods.

However, to ensure the often-desired stability of A, SIMBa relies on the free parameterizations

in Propositions 3–6, in which case it is not possible to directly initialize the matrix A to A∗. We

thus again resort to PyTorch to approximate it by solving the following optimization problem

with unconstrained GD:

min
W,V ,η

Linit
(

A, A∗)
(4.16)

s.t. A as in (4.3), (4.7), (4.10), or (4.11) , (4.17)

3Since several traditional SI methods are available, SIMBa uses the one achieving the best performance on the
validation set.
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with Linit the desired loss function. We use the MSE throughout our numerical experiments

but custom functions can be passed through the init_loss parameter.

Similarly to what was mentioned in Section 4.3.3 concerning SIMBa’s training, this procedure is

not guaranteed to find the global optimal solution, i.e., to converge to A∗. Consequently, even

initialized instances of SIMBa might perform very differently from the initialization method,

sometimes incurring large performance drops. Nonetheless, throughout our experiments, it

usually worked well, finding an A close to A∗.

Remark 25. Note that A might be initialized exactly in the specific case when Proposition 6 is

leveraged for stability and γ> |λ(A∗)|max, as detailed in the proof of Corollary 4. On the other

hand, although Corollaries 2–3 demonstrate that any Schur matrix A∗ can be parametrized

as (4.3) or (4.7), respectively, they only show the existence of such a parametrization and cannot

be used in practice to construct it.

4.3.5 Prior knowledge integration

If certain sparsity patterns are desired for A, B , C , or D , they can be passed through mask_{X},

replacing {X} with the name of the corresponding matrices. If the mask of B is given as MB ,

for example, (4.14) is modified to

x(s)
k+1 = Ax(s)

k + (MB ⊙B)u(s)(k) (4.18)

to force the desired entries of B to zero while letting SIMBa learn the others.

Similarly, {X}_init is used to initialize a given matrix to a specific value, and learn_{X}=False
drops the corresponding matrix from the optimization, fixing it at its initial value. To control

the magnitude of the eigenvalues of A in the free parameterizations of Propositions 3 and 6,

one can set max_eigenvalue = γ.

Finally, stable_A=True enforces the stability of A: setting naive_A=True leverages Proposi-

tion 6 while toggling LMI_A uses Propositions 3–5. Specifically, if delta is not None but takes

the value δ, hinting we are expecting A to be close to the identity matrix, then Proposition 4

is used instead of Proposition 3. Similarly, if mask_A is not None, hence requiring a sparse

system, Proposition 5 is leveraged.

When stable_A=True, the minimization over A in (4.12) or (4.15) is replaced by a minimiza-

tion over W , V , and/or η — depending on which of the four Propositions is used — and

constraint (4.17) is added to the corresponding optimization problem.

4.3.6 Tuning of critical hyperparameters

As for NNs, which heavily rely on the same backpropagation backbone, the learning_rate
is an important parameter: too large values lead to unstable training while too small ones
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slow the convergence speed. In general, throughout our empirical analyses, the default value

of 1e-3 showed very robust performance, and we couple it with a high number of epochs to

ensure SIMBa can converge close to a local minimizer. However, this is problem-dependent,

and the rate might be increased to accelerate learning if no instability is observed. Similarly,

init_learning_rate controls the learning rate of the initialization in (4.16)–(4.17) when

required. It also defaults to 1e-3 due to its robust performance when coupled with a high

number of init_epochs.

To promote stable learning, we implemented a gradient clipping operation, pointwise sat-

urating the gradients of all the parameters to avoid taking overly aggressive update steps

during GD. These can be controlled through grad_clip and init_grad_clip during the

training and initialization phase, respectively. The default values of 100, respectively 0.1, were

empirically tuned to achieve good performance. Although it might come at the cost of a slower

convergence, our numerical investigations showed gradient clipping can significantly improve

the quality of the solution found by SIMBa.

4.4 Benchmarking SIMBa through numerical experiments

As described in Section 4.3, SIMBa can identify models from input-output and input-state

measurements while seamlessly enforcing desired system properties such as stability or prior

knowledge on the state-space matrices. This Section provides numerical examples showcasing

its ability to outperform traditional SI methods in a wide variety of case studies. It exemplifies

how SIMBa leverages Propositions 3–6 to guarantee the stability of the identified model while

achieving state-of-the-art fitting performance. Interestingly, our investigations hint that

integrating prior knowledge, while being easy, does not impact the quality of the solution

found by SIMBa in general. On the contrary, it seems that domain knowledge injection can be

helpful to improve performance.

Sections 4.4.1–4.4.4 first analyze the behavior of SIMBa on different simulated input-output

data sets. Throughout Sections 4.4.1–4.4.2, we fix x0 = 0, which allows us to compare SIMBa

with SIPPY’s implementations of SIMs and PARSIMs [50].4 To assess the impact of prior

knowledge integration, Sections 4.4.3–4.4.4 subsequently compare SIMBa’s performance to

the one of the MATLAB SI toolbox [309]. When dealing with real-world input-output data

in Section 4.4.5, however, enforcing x0 = 0 — as is done in SIPPY — leads to suboptimal

performance, and we compare SIMBa with the performance of MATLAB’s SI toolbox when x0

is estimated. Section 4.4.6 then exemplifies how SIMBa can surpass the standard LS method

and the state-of-the-art SOC approach for stable SI from [333] on a real-world input-state SI

task. Finally, Section 4.4.7 details the computational burden associated with SIMBa.5

4In these cases where x0 = 0, the results found by MATLAB’s SI toolbox [309] turn out to be either comparable
or slightly worse than SIPPY’s solutions. They are thus not reported herein.

5For reproducibility, the code and data used for these experiments can be found on https://gitlab.nccr-
automation.ch/loris.dinatale/simba-ecc [56] and https://gitlab.nccr-automation.ch/loris.dinatale/simba [57].
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Method 0.25-quantile Median 0.75-quantile
SIMBa 1.00 1.02 1.14
CVA 1.12 1.30 1.80
MOESP 1.15 1.34 1.93
N4SID 1.20 1.42 1.97
PARSIM-K 1.00 1.04 1.22
PARSIM-S 1.53 3.65 37.5
PARSIM-P 1.73 5.37 84.2

Table 4.1: Normalized MSE of each method compared to the best one, corresponding to
Figure 4.3.

Credit assignment. The numerical experiments in this section stem from a collaboration

between Muhammad Zakwan and the author of this thesis in [56, 57], although it was spear-

headed by the author of this thesis.

4.4.1 Comparison using random stable models

To assess the performance of SIMBa on standard SI problems, we started by generating 50

random stable discrete-time state-space models, from which we simulated one trajectory

of 300 steps, starting from x0 = 0, for the training, validation, and testing data, respectively.

For the three trajectories, each dimension of u ∈Rm was generated as a Generalised Binary

Noise (GBN) signal with a switching probability of 0.1 [50]. We then added white output noise

v ∼N (0,0.25) to the training data. For this experiment, we arbitrarily chose n = 5, m = 3, r = 3,

set LMI_A=True to leverage Proposition 3, and kept the other parameters of SIMBa at their

default value, except for the number of epochs, increased to 50’000 to ensure convergence.

The performance of each SI method on the testing trajectory is plotted in Figure 4.3, where

green indicates SIMBa, blue other stable SI methods, and red PARSIMs, which cannot enforce

stability. For each system, the MSE of each method x was normalized with respect to the

best-attained performance by any approach as MSEx /MSEbest to generate the box plots, and

the corresponding key metrics are reported in Table 4.1. For a better visual representation,

we overlaid the corresponding clouds of points, where we added random noise on the x-axis

to distinguish them better. Note that this zoomed-in plot does not show one instance where

SIMBa did not converge and attained poor performance, while it discards three such instances

for PARSIM-K and many points with a normalized MSE between 3 and 7 for the methods in

blue.

Overall, SIMBa shows the most robust performance, with 75% of its instances achieving an

error within 14% of the best performance and half of them being near-optimal (see Table 4.1).

The only method coming close is PARSIM-K, but its performance is slightly more spread out

and it cannot guarantee stability. If we only look at other stable SI methods, their median

accuracy is at least 30% worse than the best one half of the time. In fact, their performance
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Figure 4.3: Performance of input-output state-space SI methods on 50 randomly gener-
ated systems, where the MSEs have been normalized by the best-obtained error for each
system. The performance of SIMBa (ours) is plotted in green, other stable SI methods in
blue, while red indicates methods without stability guarantees. Key metrics are reported
in Table 4.1 for clarity.

drop is more than 12% three times out of four, compared to approximately one-fourth of

the time for SIMBa, and their accuracy on the various systems is significantly more spread

out. To summarize, SIMBa takes the best out of both worlds, simultaneously achieving

state-of-the-art performance and stability guarantees.

4.4.2 Comparing Propositions 3 and 6 using random systems

To complement the results in Section 4.4.1 showing the superiority of SIMBa on randomly

generated systems when leveraging Proposition 3 to guarantee stability, we generated 50

additional stable discrete systems using the same settings to compare the performance when

Proposition 6 is used instead. Note that both free parametrizations can capture all stable

matrices and thus find the true solution (see Corollaries 2 and 4). For each system, we defined

two instances of SIMBa, one with LMI_A=True (SIMBa-3) and another with naive_A=True
(SIMBa-6).

First, the normalized performance of each SI method on the testing trajectory from 30 systems

is plotted in Figure 4.4, where green indicates SIMBa, blue other stable SI methods, and red

PARSIM methods, which cannot enforce stability. We observe similar performance between

both parametrizations, with a slight edge on Proposition 3. It achieved a median performance

8.2% worse than the best method on the different systems, compared to the 9.8% of SIMBa-6,
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Figure 4.4: Performance of input-output state-space identification methods on 30 ran-
domly generated systems, where the MSEs have been normalized by the best-obtained er-
ror for each system. The performance of SIMBa (ours) — either relying on the parametriza-
tion proposed in Proposition 3 or 6 — is plotted in green, other stable SI methods in blue,
and unstable ones in red.

as reported in Table 4.2 for clarity. Note that PARSIM-K achieves impressive performance

in this setting — it is the only traditional SI method able to compete with SIMBa in terms

of accuracy, confirming the trend observed in Section 4.4.1. However, it cannot guarantee

the stability of the identified model. On the other hand, other stable SI methods reached

a performance drop of more than 20% compared to the best method half of the time (see

Table 4.2).

Note that SIMBa-6 additionally shows a slightly less robust performance than SIMBa-3, with a

wider interquartile range. This hints that while the free parametrization in Proposition 6 does

capture all stable matrices, it might be numerically less stable than the LMI-based one from

Proposition 3.

Finally, for completeness, we used the other 20 generated systems to assess the impact of

data standardization on the final performance. Before the SI procedure, each dimension

of the dataset was processed to have zero mean and unit standard deviation, removing the

effect of different dimensions having different magnitudes, as is often done in practice. As

pictured in Figure 4.5, however, little impact can be seen, with the different methods reaching

similar performance to what was observed in Figure 4.4. On the contrary, there seems to be a

slightly wider gap between SIMBa-3 and the other stable SI approaches in blue. Similarly to the

previous case, SIMBa-6 again slightly underperformed compared to its counterpart leveraging

Proposition 3, providing additional indications that the parametrization in Proposition 6
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Method 0.25-quantile Median 0.75-quantile
SIMBa-3 1.01 1.08 1.18
SIMBa-6 1.02 1.10 1.30
CVA 1.12 1.20 1.54
MOESP 1.20 1.30 1.64
N4SID 1.26 1.37 1.67
PARSIM-K 1.00 1.00 1.09
PARSIM-S 1.47 4.75 30.91
PARSIM-P 2.40 7.00 223.76

Table 4.2: Performance drop of each method compared to the best one, reported from
Figure 4.4.

might be numerically more challenging.

Since little performance difference can be observed between Figures 4.3–4.5, data standard-

ization does not seem to impact SIMBa’s performance significantly in general. Interestingly,

this means even the gradient-based SIMBa can be run to fit data with different orders of

magnitudes accurately. We suspect gradient clipping to be an important reason behind this

strong performance, but further analyses would be required to understand the behavior of GD

in SIMBa fully.

4.4.3 Introducing prior knowledge

As a next case study, we analyzed the effect of incorporating various levels of prior knowledge

— i.e., enforcing known sparsity patterns or true values of one or several of the state-space

matrices — into SIMBa without jeopardizing stability. To that end, we used the same simula-

tion settings as in Sections 4.4.1–4.4.2 to create 10 systems but with n = 7, m = 6, p = 5, and

trajectories of length 500. Before generating the data, however, we randomly set 60% of the

entries of A, B , C , and D to zero.6 We let SIMBa run for 25’000 epochs. To ensure stability, we

set LMI_A=True to leverage Proposition 5 or 3 when mask_A is known or not, respectively, or

naive_A=True to use Proposition 6. When the latter parametrization of Schur matrices was

leveraged, we additionally ran several instances of SIMBa to assess the impact of randomness

— the random seed and initialization of the parameters — on its performance, and we report

here the median and minimum error achieved on each of the ten generated systems. This

shows what can be expected on average but also the best attainable performance with SIMBa-

6. For comparison, the same tasks were solved with the ssest function from the MATLAB SI

toolbox [309].

The resulting normalized errors are presented in Figure 4.6, where the plot has been generated

as in Sections 4.4.1–4.4.2, and the bottom figure is a zoomed-in version for better visualization

of the differences between the various instances of SIMBa. The known system properties

6We made sure that A remained stable after this sparsification procedure.
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Figure 4.5: Performance of input-output state-space identification methods on 20 ran-
domly generated systems, where the data has been standardized and the MSEs have been
normalized by the best-obtained error for each system. The performance of SIMBa (ours)
— either relying on the parametrization proposed in Proposition 3 or 6 — is plotted in
green, other stable SI methods in blue, and potentially unstable ones in red.

incorporated in each SIMBa or MATLAB instance is encoded in square brackets in their name,

where “X ” or “mX ” indicates that the true matrix X or its true sparsity pattern was given

through {X}_init or mask_{X}, respectively.7 For example, [mBC D] represents instances

with knowledge of C , D, and the sparsity pattern of B . In practice, this could correspond to

a system where D ≡ 0 and we know which states are measured (i.e., C is known) and which

inputs act on which states but not their exact impact (i.e., the sparsity pattern of B is known).

This is encoded in SIMBa by setting learn_C=learn_D=False, passing the known matrices C

and D as C_init and D_init, respectively, and defining mask_B to be the true known sparsity

pattern of B .

In general, except for SIMBa-3 [mBC D],8 increasing levels of prior knowledge are positively

reflected in SIMBa’s performance when leveraging Propositions 3 or 6 in this case study

(from right to left in Figure 4.6), hinting at the efficacy of system properties incorporation

in SIMBa. On the one hand, this makes intuitive sense since we pass true information to

SIMBa, restricting the search space. On the other hand, enforcing fixed matrices or sparsity

patterns reduces the expressiveness of the model to fit the training data well — and GD might

get stuck in a poor local minimum. Indeed, the set of all possible state-space matrices, over

7When the true matrix X is given to SIMBa, learn_{X} is set to False, so that it is not modified during learning.
8Interestingly, MATLAB also struggled to converge to meaningful solutions in this case, hinting that the task of

fitting a Schur A and selected entries of B was not trivial in this experiment.
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Figure 4.6: Normalized MSE of each method on test input-output data from 10 randomly
generated systems with sparse matrices A, B , C , and D. The letters in square brackets
encode which matrices X or sparsity pattern mX , respectively, are assumed to be known
and fixed. Both plots show the same data with a different zoom to appreciate the differ-
ence between SIMBa (ours) — either relying on Proposition 3, 5 or 6 — in green and the
ssest function in the MATLAB SI toolbox (in blue). Note that SIMBa-6 was run with eight
different random seeds on each system, and we report both the median and minimum
error.
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which SIMBa optimizes,9 contains the sparse matrices the other instances are optimizing over.

SIMBa might hence find state-space matrices achieving a better MSE without respecting the

desired system properties. Although SIMBa-5 [mABC D] seems to have been impacted and

stuck in local minima, the other informed versions of SIMBa all achieved errors within 25% of

the best one in almost all cases.

In contrast, MATLAB only achieved reasonable accuracy in three of the seven experiments,

when either no or little prior knowledge was enforced (on the right of Fig. 4.6), or when only

the values of A with known sparsity pattern needed to be learned from data (on the left of

the plot). These results provide evidence that enforcing desired system properties, even if

our assumptions are correct, might deteriorate MATLAB’s performance significantly. On

the contrary, SIMBa converged to accurate solutions throughout our experiments, typically

significantly outperforming standard SI methods.

The only setting where MATLAB outperformed SIMBa was when only selected entries of A had

to be learned, assuming all other matrices to be known (mABC D). Nevertheless, as can be

seen in the top of Fig. 4.6, MATLAB did not converge to a meaningful solution on one system,

only obtaining a testing accuracy more than five times lower than the best one. In contrast,

SIMBa-6mi n [mABC D] showed a more consistent performance across the different systems,

never achieving an error more than 11% off the best one.

Altogether, our investigations hint that SIMBa indeed allows one to impose known or desired

system properties without sacrificing significant model performance in general, contrary

to MATLAB. There is however one critical exception: Proposition 5 seems to impose overly

conservative conditions on sparse Schur matrices, in line with Remark 21, and often led to

poor testing accuracy in this case study (SIMBa-5 [mABC D]).

4.4.4 Identifying sparse Schur matrices

To complement Section 4.4.3 and assess the efficacy of Proposition 6 in parametrizing sparse

Schur matrices, this Section offers another set of more challenging identification experiments,

where Schur A matrices with known sparsity patterns have to be identified simultaneously to

other state-space matrices. To that end, we used the same simulation settings and ten systems

as in Section 4.4.3, running several randomly initialized instances of SIMBa-6 and reporting

both the corresponding median and best performance. All the results on the testing data are

plotted in Fig. 4.7, with the bottom figure being a zoomed-in version to better appreciate the

impact of prior knowledge on SIMBa.

As can be seen, apart from the mABC D case already discussed in the previous Section, where

MATLAB could attain lower errors, SIMBa always performed significantly better than the

baseline. In fact, MATLAB failed to converge to meaningful solutions in all the other experi-

ments, consistently producing errors that were often orders of magnitude more severe than

9More specifically, it optimizes over the space of stable matrices A and generic matrices B , C , and D .

126



4.4 Benchmarking SIMBa through numerical experiments

1.0

3.0

5.0

7.0

9.0

No
rm

al
ize

d 
M

SE

M
AT

LA
B 

[m
A
BC

D
]

SI
M

Ba
-6

m
in

 [m
A
BC

D
]

SI
M

Ba
-6

m
ed

 [m
A
BC

D
]

SI
M

Ba
-6

m
in

 [m
A
CD

]
SI

M
Ba

-6
m

ed
 [m

A
CD

]
M

AT
LA

B 
[m

A
CD

]
SI

M
Ba

-6
m

in
 [m

A
D

]
SI

M
Ba

-6
m

ed
 [m

A
D

]
M

AT
LA

B 
[m

A
D

]
SI

M
Ba

-6
m

in
 [m

A
]

SI
M

Ba
-6

m
ed

 [m
A
]

M
AT

LA
B 

[m
A
]

Method

1.0
1.05

1.1
1.15

1.2
1.25

1.3

No
rm

al
ize

d 
M

SE

Figure 4.7: Performance of each method, normalized by the best one, on test input-
output data from 10 randomly generated systems with sparse matrices A, B , C , and D.
The performance of SIMBa (ours) — relying on Proposition 6 — is plotted in green, the
one of the ssest function in the MATLAB SI toolbox in blue, and the bottom plot is a
zoomed-in version of the top one for better visualization. Note that SIMBa was run with
10 different random seeds on each system, and we report both the median and minimum
error.
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the best result attained by SIMBa. Notably, while the quality of the solutions found by MATLAB

significantly deteriorates with the number of parameters to identify simultaneously to the

sparse Schur matrices A (from left to right in Figure 4.7), SIMBa could keep similarly low errors

in all cases. Furthermore, in line with the observations made in the previous Section, we

can observe a positive correlation between SIMBa’s accuracy and the quantity of pre-existing

knowledge about the state-space matrices to identify.

On the other hand, SIMBa showed sensitivity to randomness on some systems, with the

minimum error achieved being distinctly lower than the median one. However, this did not

seem to significantly impact SIMBa’s best performance. Indeed, SIMBa-6mi n could achieve

low testing error on all the systems, with its accuracy remaining within 22% of the best one in

all cases and within 10% three times out of four. Although running several instances of SIMBa

naturally incurs additional computational cost, these results hint that it can be beneficial to

find a better-performing model.

Collectively, these results show that introducing prior knowledge on the sparsity of A does

not necessarily come at the price of performance, complementing what was observed in

Section 4.4.3 for other knowledge integration schemes. Altogether, this shows how SIMBa can

conform to system properties desired by the user without significantly suffering in terms of

performance.

4.4.5 Performance on real-world input-output data

After extensive analyses in simulation, we now leverage DAISY, a database for SI [334], to test

our framework on real-world data. In particular, we investigate the performance of SIMBa in

detail on the data collected in a 120 MW power plant in Pont-sur-Sambre, France, where m = 5

and p = 3. It gathers 200 data points with a sampling time of δ= 1228.8 seconds. Here, we

first standardized the input and output data so that each dimension is zero-mean and has a

standard deviation of one.10 We used the first 100 and 150 samples for training and validation,

respectively, and held out the last 50 ones for testing the final performance of the models.11

We investigate four variations of SIMBa, encoded in their names: an “i” indicates instances

with init_from_matlab_or_ls=True, and an “L” that SIMBa was run for more epochs to

ensure convergence. Specifically, the number of epochs with “L” is pushed from 10’000 to

20’000 for SIMBa_i and from 25’000 to 50’000 otherwise. We set dropout=0, learn_x0=True
— since it is unknown —, and leave the other parameters at their default values. Since the true

order of the system is unknown, one could leverage MATLAB’s SI toolbox to first find the most

appropriate n and then run SIMBa to gain time. Here, we instead show that SIMBa dominates

all the other methods from the MATLAB SI toolbox for any choice of n. The PARSIMs are

10Standardization generally has little impact on the performance, as analyzed in Section 4.4.2.
11Since x0 is estimated by SIMBa at training time, overlapping the training and validation data allows us to use

the same initial state to validate its performance after each epoch. However, we let it run for 50 more steps to assess
its extrapolation capability and avoid overfitting the training data. For testing, we rely on MATLAB’s findstate
function to estimate x0.
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Figure 4.8: MSE of the different methods on the power plant test data for different choices
of state dimension n, normalized by the best performance obtained by MATLAB’s SI
toolbox (red crosses and triangles). Black and green data show the performance of
SIMBa over 10 runs with random initialization for shorter (SIMBa) and longer (SIMBa_L)
training times, respectively. Finally, blue crosses triangles represent the performance of
one initialized version of SIMBa, SIMBa_i, and a prolonged version SIMBa_iL.

not analyzed here since they all diverged for at least one value n due to instability. Similarly,

the stable methods from SIPPY achieved poor accuracy due to their assumption that x0 = 0,

which seems too restrictive for this data, and are thus omitted for clarity.

Figure 4.8 reports the MSE of the different methods on the testing data normalized by the

best performance obtained by MATLAB’s SI toolbox. This either corresponds to N4SID12 (red

crosses) or the Prediction Error Method (PEM) (orange triangles). The latter aims at improving

the performance of the model found by N4SID and is thus expected to perform better on

the training data. Both randomly initialized versions of SIMBa, reported in black and green,

were run with 10 different seeds and the boxplot and clouds of points were generated as for

Figure 4.3. Since randomness has much less impact on initialized versions of SIMBa, we only

report one instance of SIMBa_i and SIMBa_iL for clarity. Note that fitting a model with n ≥ 7

on N = 100 data samples is an ill-posed problem, with more parameters than data points.

Interestingly, however, SIMBa still manages to outperform MATLAB in some cases in this

overparametrized setting, especially when it is initialized from MATLAB’s solution.

Impressively, SIMBa consistently attained the best performance for meaningful choices of

12Note that we set N4Weight='auto' — to automatically recover the best performance between the classical
N4SID, CVA, and MOESP methods — and Focus='simulation' for a fair comparison with SIMBa, which is
optimizing for the performance over the entire trajectory.
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n ≤ 6 given the training data size. While the influence of randomness is non-negligible for

randomly initialized versions, SIMBa always achieves the best accuracy, with improvements

of up to 73–86% compared to MATLAB for different choices of n. Furthermore, half of the

time, it outperforms the latter by more than 30–50% and 82% for n ≥ 3 and n = 2, respectively.

When being initialized with the solution of traditional SIMs, SIMBa always started from state-

space matrices identified by MATLAB’s PEM method, which achieves the best performance

amongst the baselines on the validation data.13 Interestingly, SIMBa always improves PEM’s

performance on the testing set — but sometimes not beyond N4SID, which attains the best

accuracy amongst the baselines on this unseen data. In other words, PEM tends to overfit

the training data and might start off SIMBa near a poor local minimum. While initializing

with MATLAB’s solution allows one to converge faster, cutting the associated computational

burden, it might hence not always improve the final performance.

A note on the training complexity

Here, SIMBa_L was run for five times more epochs than SIMBa_i, for example. Despite the

small overhead required to fit A during the initialization procedure in (4.16), training SIMBa_i

still takes approximately only 20% of the time required to fit SIMBa_L. In this experiment,

training SIMBa ranged from 5 to 25 min on a MacBook Pro 2.6 GHz 6-Core Intel Core i7 laptop,

irrespective of the choice of n. Additionally, the training time is directly proportional to the

training data length: doubling its size would double SIMBa’s fitting time. More run-time

analyses can be found in Section 4.4.7.

4.4.6 Performance on real-world input-state data

To showcase SIMBa’s versatility, we finally turn to an input-state data set collected from the

Franka Emika Panda robotic arm and provided in [333]. We have access to eight trajectories

of length N = 400 collected at 50 Hz with n = 17 and m = 7. We fixed one validation and one

test trajectory, respectively, and used a subset of the remaining six trajectories as training data.

Since the robot is a continuous-time system, we leveraged Proposition 4, setting delta= 1
50

and LMI_A=True. As we are now dealing with input-state data, traditional SIMs performed

poorly, and we hence compare SIMBa to LS and its state-of-the-art stable version, SOC [333].

Here, we also used the ability of SIMBa to work with batched data, breaking the training trajec-

tories into 10-step long segments, overlapping at each time step, — i.e., setting horizon=10
and stride=1 — to facilitate training for this more complex problem. This gave rise to approx-

imately 400 to 2’400 training sequences of 10 steps whether one to six trajectories were used

for training. Since we are interested in the final performance of SIMBa over entire trajectories,

we set horizon_val=None to select the best model accordingly. We let instances initialized

with the LS solution (SIMBa_i) and randomly initialized ones (SIMBa) run for 20’000 and

13Except for n = 2, where SIMBa was initialized from PARSIM-K.
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Figure 4.9: MSE of each method on the test trajectory of the Franka data set after training
from different trajectories. Black and green data show the performance of SIMBa over 10
runs with random initialization for shorter (SIMBa) and longer (SIMBa_L) training times,
respectively. The MSE of LS and SOC are reported in orange triangles and red crosses,
respectively.

40’000 epochs, respectively, with a batch size of 128.

The MSE of each method on the test trajectory is reported in Figure 4.9 with a logarithmic

scale, where the x-axis enumerates which trajectories were used for training. Similarly to the

previous Section, SIMBa was run 10 times in each case to assess the impact of randomness.

As expected, we see a general tendency of all the methods to find more accurate solutions

with more training data. Interestingly, SIMBa often performs better than SIMBa_i on this data,

hinting that initializing SIMBa with the matrices found through LS might stick it in relatively

poor local minima.

Overall, SIMBa generally outperforms LS and SOC, and often significantly, especially when

more training data is available. The only exceptions come from SIMBa_i when one or two

trajectories only are used for training, where we can see performance drops for some instances.

On the other hand, SIMBa always outperforms LS and SOC, and with an impressive median

performance improvement compared to SOC of over 70% and as high as 95%, as reported in

Figure 4.10. Here, the improvement is computed as

Improvement = 100

(
1− MSESIMBa

MSESOC

)
.
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Figure 4.10: Improvement of SIMBa over SOC on the test data from the Franka robotic
arm for different training trajectories, reported from Figure 4.9.

Moreover, looking at the best-achieved performance of SIMBa and SIMBa_i, they attained

improvements of over 90% compared to SOC as soon as more than three training trajectories

were used. When only one or two trajectories were leveraged for training, SIMBa_i achieved

42% or 51% better performance than SOC, respectively, and this improvement increases to

77% or 80% for SIMBa.

In general, we suspect the observed performance gaps to be heavily impacted by the ability

of SIMBa to minimize the error over multiple steps, compared to myopic classical LS-based

methods. This showcases the usefulness of backpropagation-based approaches, which can

handle complex fitting criteria instead of the classical one-step-ahead prediction error.

4.4.7 Training complexity

To conclude these numerical investigations, this section provides insights into the training

time of different versions of SIMBa. Except for Section 4.4.5, all the experiments were run on a

Bizon ZX5000 G2 workstation. Note that while a GPU interface is implemented, we did not use

it to obtain the results presented in this section, setting device=’cpu’. Indeed, using GPUs

for such small-scale problems generally slows the overall training time since the overhead

required to move data and models to the GPU at each iteration is higher than the subsequent

optimization time gain.

First, as reported in Table 4.3, each instance of SIMBa ran for slightly less than 1 h in Sec-

tion 4.4.3, which is several orders of magnitude slower than the few seconds required to fit
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Table 4.3: Average running time in seconds of each method in Section 4.4.3.

Prior
MATLAB SIMBa

knowledge
– 1.67 3729

mD 1.05 3713
mC D 0.96 3512

C D 0.82 3388
mBC D 0.83 3671

BC D 0.55 3130
mABC D 0.28 3100

traditional SI methods, typically using the MATLAB SI toolbox. Interestingly, however, enforc-

ing prior knowledge did not significantly impact its run-time. Since fewer parameters need to

be learned from data, informed versions tended to take less time per epoch. This stems from

SIMBa’s architecture and unconstrained training procedure in (4.12) or (4.15). It allows SIMBa

to seamlessly guarantee the desired system properties through modifications of (4.13)–(4.14)

— for example, to (4.18) — without additional computational burden.

Note that these SIMBa instances were run for 25’000 epochs, and doubling that number would

hence double their training time to approximately 2 h. The training procedure would then

be comparable to SIMBa_L in Section 4.4.5, where SIMBa needed approximately 25 min for

50’000 epochs, i.e., around five times less. However, the latter was trained over 100 data points,

compared to 500 in Section 4.4.3, revealing an approximately linear relationship between the

horizon length and training complexity.

For completeness, the training times of the SIMBa instances analyzed in Section 4.4.6 are

shown in Figure 4.11, exposing the expected linear impact of leveraging more and more

training data. However, five to six times more data can be used before doubling the training

time, leveled by PyTorch’s capability to process several trajectories in parallel. Unsurprisingly,

on the other hand, doubling the number of iterations approximately yields twice longer fitting

times (comparing SIMBa_i to SIMBa).

As a final remark, we would like to highlight here that all the analyzed instances of SIMBa

were usually run for more epochs than required to ensure convergence. In practice, one could

interrupt the training once the validation error stagnates or augments, showing SIMBa started

to overfit the training data. To illustrate this, Figure 4.12 reports the time required by SIMBa to

achieve its best performance on the validation data set — these state-space matrices are the

ones ultimately employed to assess its performance on the testing data. As can be seen, SIMBa

sometimes identifies the best-performing solution in considerably less time than the total

allowed training time. Similarly, the learning rate could be increased in practice to converge

faster to these solutions; however, a comprehensive analysis of its influence was out of the

scope of this thesis.
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Figure 4.11: Time required by the different instances of SIMBa (in seconds) to obtain
the results reported in Figure 4.9. Note that this does not include approximately 130 s
required to initialize SIMBa_i for 150’000 epochs.
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Figure 4.12: Time required for SIMBa to achieve its best validation error (in seconds), to
compare with the corresponding total training times shown in Figure 4.11.
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4.5 Discussion of SIMBa’s potential and limitations

With the previous investigations showcasing SIMBa’s performance on various system iden-

tification tasks, let us now briefly summarise how to best use the toolbox to maximize its

performance and discuss potentially interesting extensions to it.

4.5.1 A summary of SIMBa’s capabilities

Computational complexity. While SIMBa can achieve significant performance gains over

traditional methods in many different settings, the associated computational burden can be

significant. Indeed, even simple systems take several minutes to be fit, and this can grow

significantly with longer training trajectories or when more epochs are required, as detailed in

Section 4.4.7. Despite its ability to leverage out-of-the-box ML tools and GPUs, SIMBa is hence

not well-suited for problems that demand fast solutions. In practice, traditional methods,

which can be trained in a matter of seconds, are thus generally a good starting point. On

the other hand, for cases where achieving the best performance is critical or when desired

system properties need to be preserved, SIMBa can be extremely beneficial, as presented in

Section 4.4.

During our investigations, we saw that randomness could play a significant role; running

several instances of SIMBa might greatly improve its performance. Although initializing its

state matrices with the one found by classical methods usually accelerates convergence, we

also observed cases where randomly initialized versions achieve better final performance.

Both options should hence be considered in practice.

Enforcing additional system properties. The free parameterizations from Propositions 3–

6 can be leveraged to guarantee the stability of the identified model. While Proposition 6

can characterize any Schur matrix, it seems to be more sensitive to randomness and more

numerically challenging than the other parametrizations. In practice, Propositions 3 and 4

should thus be preferred, and only the too-conservative Proposition 5 should be discarded

and replaced by Proposition 6.

Hyperparameter tuning. In general, the provided default parameters perform well — they

have indeed demonstrated robust performance across the variety of case studies analyzed in

Section 4.4. To get the most out of SIMBa, one might however want to increase the number of

training epochs, for example. On the other, the learning rate of 0.001 chosen in this work is

sometimes slower than required. This default option proved to be robust across various tasks,

but it might be possible to accelerate learning by taking larger parameter updates at each step

on some problems.
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4.5.2 Potential extensions

Augmenting the training procedure. Throughout Section 4.4, we did not strain to obtain

the best performance on each case study but focused on fair comparisons between different

methods under identical conditions. In practical applications, one should combine SIMBa —

or any SI method — with data processing procedures, such as standardization, detrending, or

filtering, to improve performance. In general, an interface with MATLAB’s SI toolbox, which

comes with many useful helper functions, would be an interesting extension to SIMBa.

Apart from better integration of such existing tools, to facilitate training on nonconvex long-

horizon objectives, curriculum learning could be adopted. In this framework, the training

starts with the minimization of the one-step-ahead prediction error and then gradually in-

creases the prediction horizon toward the desired one [149]. This could help SIMBa in the

early stage of training, accelerating the first iterations by simplifying the problem — similar

in spirit to the proposed initialization from the solution of classical SI methods — before

leveraging the full power of automatic backpropagation for long-horizon optimization.

Enforcing additional system properties. Interestingly, Proposition 6 could also be used to

generate affinely parametrized Schur matrices, similar to those examined in [335], for example.

The generality of this free parametrization could thus allow SIMBa to guarantee stability while

enforcing desired properties on A beyond specific sparsity patterns.

Introducing nonlinearities. In parallel with these efforts to enforce additional system

properties, including nonlinearities may be crucial for some applications. Indeed, linear

models might not be flexible enough to fit more complex systems. Thanks to the AD backbone

used by SIMBa, NNs can be seamlessly added on top of the linear model, learning patterns

that are not well-captured by the linear part. This would lead to models with an architecture

similar to the PCNNs discussed in Chapter 2. Otherwise, inspired by the SINDy toolbox [336],

if the class of nonlinearities impacting the dynamics are known, one could extend the state

description to f (x) ∈Rn′
, for example, including polynomials like f (x) = [x⊤, (x2)⊤]⊤, and then

fit a linear model of the form xk+1 = A f (xk )+Bu(k). Finally, a more cumbersome approach

would be to discard the linear framework altogether, write custom dynamics, and then leverage

automatic backpropagation as proposed herein to find the required parameters, similar to

what is proposed in Section 4.6 for irreversible port-Hamiltonian systems.

Integration in Koopman-based methods. To conclude this discussion, we want to point out

a potential link to Koopman-based approaches like [331], where traditional SI methods were

used to identify linear models in the corresponding lifted space. Thanks to SIMBa’s construc-

tion relying on unconstrained GD, the lifting functions could also be learned simultaneously

with the lifted linear model, similar in spirit to [304–306], potentially improving the accuracy

of the end-to-end pipeline without jeopardizing stability.
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4.6 A nonlinear extension: Physically Consistent Neural ODEs

This section proposes an extension of SIMBa to identify models respecting the laws of thermo-

dynamics. To that end, we leverage nonlinear Irreversible Port-Hamiltonian (IPH) dynamics

throughout this section, allowing us to train NNs without jeopardizing the first and second

laws of thermodynamics.

4.6.1 The need for physically consistent neural ODEs

Simultaneously to the development of PiNNs to encode prior knowledge in NNs discussed in

Section 2.1, higher-level connections between NNs and dynamical systems have also been

studied. It shows that some classes of NNs can be interpreted as discretized dynamical sys-

tems [337]. On the other hand, Neural Ordinary Differential Equations (NODEs) were proposed

in [338], where inputs are transformed through a continuous-time ODE embedding trainable

parameters. In other words, NODEs learn the parameters of an ODE to fit the data, making

them particularly suitable to model complex dynamical systems [38, 339]. Furthermore, their

interpretation as ODEs allows one to borrow tools from dynamical system theory to analyze

their properties [340–342]. However, similarly to classical NNs and PiNNs (see Section 2.1),

NODEs can be physically inconsistent in general.

As one possible countermeasure to this brittleness, this section proposes Physically Consistent

NODEs (PC-NODEs). They leverage IPH dynamics instead of linear models and are trained

like NODEs, which corresponds to the learning procedure of SIMBa. Thanks to the IPH

formulation, we can guarantee that PC-NODEs respect the first and second laws of ther-

modynamics at all times and by construction, solving the issue of physically inconsistent

NODEs for thermodynamic systems. Moreover, unlike black-box NNs, since they rely on the

same AD backbone as SIMBa, PC-NODEs allow us to embed desired structural properties into

the trainable parameters of the IPH model. This guarantees that the required skew-symmetry

of the interconnection matrix and prescribed sparsity patterns, for example, are satisfied.

Thanks to their modularity IPH models characterize many multi-physics systems, including

thermodynamic, mechanical, chemical, or electrical systems [343, 344]. Furthermore, iden-

tifying system dynamics in the IPH form provides several benefits, as one can then design

stabilizing controllers and scale to distributed systems via interconnection with other pas-

sive port-Hamiltonian systems [343]. To showcase the flexibility of the proposed PC-NODEs,

we demonstrate how they can be leveraged to model thermal building dynamics and the

dynamics of a simulated gas-piston system.

Remark 26. PC-NODEs can be seen as both an extension of SIMBa (Sections 4.2–4.5) to a

specific case study or as a particular application of the PCNNs proposed in Chapter 2, which

also respect the laws of thermodynamics. Indeed, replacing the linear physics-inspired module

of PCNNs used throughout Section 2.3 by the IPH framework described in this section would

lead to the same model structure, with an NN running in parallel with the physics-grounded
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module. However, PC-NODEs do not require separation of the inputs going through the NN and

the physical module, as detailed in (4.19).

4.6.2 Learning Irreversible port-Hamiltonian dynamics with PC-NODEs

An IPH system is described as [343, 345]:

ẋ = R

(
x,
∂H(x)

∂x
,
∂S(x)

∂x

)
J
∂H(x)

∂x
+ g

(
x,
∂H(x)

∂x

)
u +W

(
x,
∂H(x)

∂x

)
, (4.19)

where x ∈Rn is the state, u ∈Rm the control input, and the different functions and matrices

satisfy the following properties:14

P1. the Hamiltonian function H and the entropy function S are maps from C∞(Rn) to →R;

P2. the interconnection matrix J ∈Rn×n is constant and skew-symmetric;

P3. the real function R is defined as

R

(
x,
∂H

∂x
,
∂S

∂x

)
= γ

(
x,
∂H

∂x

)
{S, H }J , (4.20)

where γ⪰ 0 is a nonnegative function of the states and co-states of the system;

P4. the two vector fields W and g satisfy W (x, ∂H
∂x ) ∈Rn and g (x, ∂H

∂x ) ∈Rn×m .

We have used the blue color to denote functions that can be parameterized — for example,

using NNs — and identified from data as described below, giving rise to the proposed PC-

NODEs. As long as the trainable parameters respect the constraints and properties listed above,

the learned model will obey the first and second laws of thermodynamics by construction.

Indeed, by the skew-symmetry of J (P2), setting W = u ≡ 0, we have

d H

d t
= ∂H⊤

∂x
ẋ = ∂H⊤

∂x

[
R J

∂H

∂x

]
(P3)= R

[
∂H⊤

∂x
J
∂H

∂x

]
= 0 , (4.21)

which proves the conservation of energy when no input or disturbance affects the system.

Similarly, we can show the irreversible creation of entropy in the system as follows [345]:

dS

d t
= ∂S⊤

∂x
ẋ = ∂S⊤

∂x

[
R J

∂H

∂x

]
(P3)= R

[
∂S⊤

∂x
J
∂H

∂x

]
(4.20)= γ

(
x,
∂H

∂x

)
{S, H }2

J ≥ 0 ,

as long as γ⪰ 0 (P3) when W = u ≡ 0.

Training PC-NODEs

Several NODE training procedures have been proposed in the literature relying on the adjoint

sensitivity method [338] or AD [346], for example. In this work, as in [337], we first discretize

14To have concise notation throughout the section, the dependence on x and partial derivatives is dropped when
it is clear from the context.
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PC-NODE (4.19) using the forward-Euler method with sampling period h > 0, leading to

xi+1 = xi +h

(
R J

∂H(xi )

∂xi
+W + g ui

)
, (4.22)

where xi and xi+1 represent the current and next state, respectively. In practice, the step-size

h is chosen sufficiently small to interpret the states in (4.22) as a sampled version of the state

x(t ) of system (4.19).

We then assume to have access to a dataset of N sampled full-state trajectories

D :=
{(

u(0)(s), x(0)(s)) ,
(
u(1)(s), x(1)(s)) , · · ·(u(ℓ)(s), x(ℓ)(s))}N

s=1
,

where ℓ is the total number of time steps for each trajectory of measured states x and inputs u.

Similarly to SIMBa in (4.15), we train system (4.22) to minimize

min
R,J ,H ,W ,g

1

|Z |
∑
s∈Z

[
1

ℓ

l∑
i=1

L(x(i )(s), x(s)
i )

]
(4.23)

s.t. x(s)
i+1 = x(s)

i +h

(
R J

∂H(x(s)
i )

∂x(s)
i

+W + g u(i )(s)

)
x(s)

0 = x(0)(s) ,

where Z is a batch of data randomly sampled from the training data set. While we optimize

the MSE L(x, x̂) = ||x − x̂||22 in this section, this can easily be replaced by other loss functions.

As for SIMBa, we implement the proposed PC-NODEs using PyTorch [140], which allows us

to easily propagate the inputs through the NODE and then rely on automatic BPTT [347] to

run GD on the trainable parameters. However, in general, it does not allow one to introduce

constraints on the parameters directly. In particular, it cannot guarantee that either J or R

satisfy P2 or P3, respectively. Nonetheless, as exemplified with two case studies in the next

section, prior knowledge of the systems often allows one to design free parametrizations of J

and R satisfying these conditions by design and hence allowing for unconstrained GD, similarly

to what was proposed in Sections 4.2–4.5.

Remark 27. Besides modifying the loss function L, one can also introduce weighted penalty

terms in equation (4.23), to promote sparse solutions with ||J ||1, for example.

4.6.3 Irreversible port-Hamiltonian model formulations

To demonstrate the variety of systems that can be represented with IPH dynamics, let us detail

how to model the thermal dynamics of a building and a gas-piston system and how to design

the blue parameters to ensure properties P1–P4 are respected.15

15The code and data can be found on https://gitlab.nccr-automation.ch/loris.dinatale/pc-node.
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Figure 4.13: A pictorial description of the thermal behavior of the three zones in UMAR,
where yellow arrows represent energy flows.

Credit assignment. The developments in this section stem from a collaboration between

Muhammad Zakwan and the author of this thesis in [58]. Although they were spearheaded

by Muhammad Zakwan, they are reported here for completeness since they will be used in

Section 4.6.4, but the proofs are deferred to the appendix.

Thermal building dynamics

The thermal dynamics of a building can be seen as n connected thermal zones exchanging

energy among themselves and with the outside. In this section, we assume that they are

additionally impacted by various heat gains stemming from heating or cooling operations and

solar irradiation. Here we consider the thermal dynamics of UMAR (Section 2.4.1), which can

be pictorially represented as depicted in Figure 4.13.

Inspired by the IPH formulation of heat exchangers [343], we model the entropy S ∈Rn in each

zone as

Ṡ = J̃ (T )
∂H(S)

∂S
+Be (T )Te +

[
Bs Bh Bc

]Qs

Qh

Qc

 , (4.24)

where T ∈Rn represents the temperature in each zone. For clarity, we separated the different

external inputs u, with Te ∈R corresponding to the ambient temperature, and Qs , Qh , Qc ∈Rn

to solar, heating, and cooling gains for each zone, respectively. Bs , Bh , and Bc are n×n diagonal

matrices gathering trainable scaling parameters reflecting the impact of these gains on the

entropy of each zone. Be (T ) ∈Rn is a diagonal matrix modeling the heat losses to the outside,

with entries

Be (T )zz =λze
(Te −Ti )

(Ti Te )

for each zone z, where {λze }n
z=1 are the trainable parameters. Finally, the skew-symmetric
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matrix J̃ (T ) ∈Rz×z , lumping together R and J in this case, is parametrized as

J̃i j (T ) =− J̃ j i (T ) =

 0 λ12
(T2−T1)
(T1T2) 0

λ12
(T1−T2)
(T1T2) 0 λ23

(T3−T2)
(T2T3)

0 λ23
(T2−T3)
(T2T3) 0

 .

This reflects the topology of the building, i.e., the fact that Zone 1 and 3 are only exchanging

energy with the adjacent Zone 2 and not among each other.

Interestingly, by the definition of entropy, and recalling that the Hamiltonian H represents the

energy of the system, we have ∂H(S)
∂S = T . Hence, there is no need to parametrize the partial

derivatives of the Hamiltonian function in this case since they can be computed explicitly

from the state of the system — assuming a constant volume for each zone — as

Ti+1 =
[

exp

(
S(t f )−S(ti )

mc

)]
Ti ,

as detailed in Appendix B.8.

Proposition 7 (Consistency and monotonicity). PC-NODE (4.24) is consistent with the first

and second laws of thermodynamics and monotonic with respect to all inputs, i.e., Te , Qs , Qh ,

and Qc , if the learned parameters satisfy

Bs ,Bh ,Bc ⪰ 0, and λz y ,λze ∈R+, ∀z, y = 1, . . . ,n.

Proof. See Appendix B.9 for a sketch of the proof and [344] for more details.

Remark 28. The dependence of J̃ on T in (4.24) violates property P2 stating it should be a

constant matrix. While state-dependent connection matrices break the consistency of the

system with the first and second laws of thermodynamics in general [343], we show that PC-

NODE (4.24) remains consistent in the proof of Proposition 7. The key idea is to decompose J̃

into a sum of terms with constant interconnection matrices.

Remark 29. Exploiting the linearity of the PC-NODE (4.24), one can show that it is almost

equivalent to well-known RC dynamics (Appendix A.1.1), which model the energy of each zone

instead of their entropy. This relation holds since both quantities are linked by definition as

dS = d H
T ⇐⇒ d H = T dS. Multiplying (4.24) by the temperature of each zone elementwise, one

can hence recover an energy model of the building. The only difference with RC modeling will

then be that the training parameters in the diagonal matrices Bs(T ), Bh(T ), and Bc (T ) depend

on the corresponding zone temperatures instead of being constant. Since the zone temperatures

are however approximately constant (in Kelvin) in buildings, IPH building models are indeed

similar to classical RC ones.
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Figure 4.14: Sketch of the gas piston system.

Gas Piston system

Consider a typical gas piston system where the piston is subject to friction, influenced by an

external force F (t ) = u, and its elasticity is modeled by a spring, as sketched in Figure 4.14. Let

us define the state of the system as x = [S,V , q, p]⊤, where S is the entropy and V the volume

of the gas, and q and p are the position and momentum of the piston, respectively. Inspired

by [345], the system can be described by the following nonlinear IPH dynamics:

ẋ =
[

R

(
x,
∂S

∂x
,
∂H(x)

∂x

)
J0 + J1

]
∂H(x)

∂x
+G⊤u , (4.25)

with

J0 =


0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0

 , J1 =


0 0 0 0

0 0 0 α

0 0 0 β

0 −α −β 0

 ,
∂H(x)

∂x
=


T

−P

K q

v

 , G =


0

0

0

1

 , R = µv

T
,

where T is the temperature and P the pressure of the gas, K the spring constant, and v = p
m

represents the speed of the piston with mass m and friction coefficient µ.

Since the entropy is a state of the system, ∂S
∂x = [1,0,0,0]⊤, which implies that P2 becomes

R

(
x,
∂S

∂x
,
∂H(x)

∂x

)
= γ

(
x,
∂H(x)

∂x

)
∂S

∂x

⊤
J0
∂H(x)

∂x
= γ

(
x,
∂H(x)

∂x

)
∂H(x)

∂p
. (4.26)

The function R is thus well-defined and can be derived from γ and H . To showcase the flexibil-

ity of the proposed PC-NODEs, we assume the Hamiltonian to be unknown and parametrize

it as a single-layer NN with the form

H(x;θ) = log[cosh(K x +b)]⊤14 , (4.27)

where θ = {K ,b}. Such an architecture is chosen for its elegance because it allows us to
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4.6 A nonlinear extension: Physically Consistent Neural ODEs

compute the required partial derivatives in closed form [342]:

∂H(x;θ)

∂x
= K ⊤ tanh(K x +b) . (4.28)

We parametrize γ as a single layer NN γ : R8 → R+, where positivity is obtained by feeding

the output through a sigmoid function, which is sufficient to satisfy P2. Finally, we assume

the sparsity pattern of J1 to be known but not its parameters {α,β} to demonstrate how prior

knowledge might be incorporated into the learning process.16

Remark 30. Although PC-NODE (4.25) is slightly different from the generic representation

in (4.19), the key system properties are still conserved. Indeed, one can always decompose the

product between R and J in a sum of products without violating the first and second laws

of thermodynamics as long as each term in the sum respects condition (4.20) and the skew-

symmetry of J . See the proof of Proposition 7 in Appendix B.9 for more details.

Remark 31. In practice, any NN can be chosen to parametrize H(x) since the gradients ∂H(x)
∂x

are readily available through backpropagation. Furthermore, if one is not interested in the

Hamiltonian itself — which is not required in (4.22) —, it is also possible to directly parametrize

the gradient flow with an NN, bypassing the need for expensive backpropagation operations.

Remark 32. Since we assume no thermal exchanges between the gas and the ambient air, the

gas entropy can never decrease according to the second law of thermodynamics.

4.6.4 Applications and results

Credit assignment. The software and numerical experiments in this section stem from a

collaboration between Muhammad Zakwan and the author of this thesis in [58], although they

were spearheaded by the author of this thesis.

Thermal dynamics of UMAR

For this first application, we use the data described in Section 2.4.1 and analyze our model’s

accuracy over more than 750 sequences of three days of validation data. Note that Qs in (4.24)

represents solar gains in each zone, derived from irradiation measurements on a flat surface

as detailed in Appendix A.3. Averaged over the three zones and all the time series, the MAE

propagation over the 72 h horizon is depicted in Figure 4.15, computed as in (2.39). Since

PC-NODE (4.24) is linear, we also plot the performance of a classical linear ARX model with 12

lag terms for reference, where the number of lags was tuned empirically and the parameters

fit to the data through LS identification, similarly to [348], for example.

As can be readily seen, thanks to the underlying physics captured by the Hamiltonian frame-

work, the PC-NODE can fit the data significantly better, especially over long horizons. Indeed,

16In the true system, α is the area of the piston and β= 1.
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Figure 4.15: MAE of the ARX model and PC-NODE over the prediction horizon averaged
over the three zones and the validation time series.

it seems to be less prone to compounding errors: it improves the accuracy by 38.9% compared

to the ARX on average over the entire prediction length, but this proportion rises to 55.8% at

the end of the 72 h-long horizon.

To provide a visual comparison of the behavior of both models, we plotted their temperature

predictions over a sampled 72 h-long trajectory in August 2021 in Figure 4.16, with the ground

truth measurements for reference. This figure hints that the ARX model is more sensitive to

the various external gains, tending to overestimate their impact. This can, for example, be

observed towards the end of the horizon, just before noon: when the sun rises, increasing

the temperature of the building, the ARX cannot accurately capture this behavior, contrary to

the PC-NODE. While only one sampled trajectory is presented here for brevity, these effects

generally hold across the validation data and explain the better performance of the PC-NODE

in general observed in Figure 4.15.

Remark 33. The performance of the PC-NODE in Figure 4.15 can be qualitatively compared to

the one of PCNNs in Figure 2.14. Indeed, they all model UMAR over a three-day-long horizon

from three years of data. However, the PC-NODE receives engineered solar gains as input while

PCNNs in Chapter 2 process them through their black-box module. Since the both achieved

similar performance, this confirms the ability of NNs to accurately capture the impact of the

sun in the black-box module of PCNNs.

Gas piston system

For the gas piston system, we generated a synthetic dataset of 10’000 samples from sys-

tem (4.25) using the odeint framework from scipy [349]. We simulated it from T (0) = 290K

and x(0) = [0,0.001,0.3,0]⊤ with m = 5kg, α= 0.033m2, β= 1, µ= 1, and K = 10Nm−1, and

a sampling time of h = 0.01s. The gas temperature over the horizon has been computed as
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Figure 4.16: August 18–20, 2021: Temperature predictions of the PC-NODE and ARX
model on a sampled validation trajectory, compared to the true measurements.

presented in Appendix B.8 and the pressure P was derived from the ideal gas law PV = nRT .

The data was split into 40 trajectories of 250 steps and we added Gaussian noise N (0,0.2σd )

on each dimension d of the state — where σd corresponds to the standard deviation of the

dth dimension of x — before training the models. To ease the training of the NNs used in PC-

NODE (4.25), the data was additionally normalized between 0.1 and 0.9 for each dimension.

Despite not having access to the true Hamiltonian function and learning it as an NN from data,

and even in the presence of white noise, PC-NODE (4.25) accurately recovered the position of

the system, as pictured in Figure 4.17 (bottom) for four sampled trajectories. However, a vanilla

NODE, i.e., ẋ = fθ(x) [338], where fθ is an NN with two hidden layers of 32 neurons each, is

also able to fit this data very well. On the other hand, the evolution of the entropy is more

challenging to capture, as pictured on the top of Figure 4.17, where we scaled it and removed

the noisy data for clarity. In that case, the PC-NODE clearly outperforms the vanilla NODE

thanks to its embedded physical consistency. Remarkably, the NODE sometimes predicts a

decrease in entropy, which is inconsistent with the underlying physics (see Remark 32) and

does not happen with the PC-NODE.
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Figure 4.17: Sampled trajectories of the piston position and the entropy of the gas (×103)
over time for a classical NODE (red) and the proposed PC-NODE (green). The noisy data
can be found in shaded gray for the position and the ground truth in black.

4.7 Conclusion and outlook

In this chapter, we proposed to leverage automatic differentiation to help scale traditional

system identification procedures.

SIMBa. We first presented the open-source SIMBa toolbox for the identification of stable

discrete-time linear state-space models. Relying on novel LMI-based free parametrizations

of Schur matrices to ensure the stability of the identified model despite enforcing desired

properties, such as sparsity, we showed how SIMBa outperforms traditional SI methods,

and often by more than 25%. Throughout our experiments, this performance gap increased

significantly when sparsity patterns or known values of the state-space matrices to identify

needed to be respected, in which case MATLAB often failed to recover meaningful solutions

while SIMBa still achieved state-of-the-art accuracy. Furthermore, on a real-world robot data

set, SIMBa often improved state-of-the-art input-state identification methods by more than

70%, with the gap widening as more and more training data was made available.

On the other hand, the consistent and significant performance gains observed across the

different experiments proposed in this work come with a large computational burden. SIMBa

indeed incurred training times ranging from several minutes to two hours in our experiments.

This might be mitigated in practice by reducing the number of training epochs, augmenting

the step size, or initializing SIMBa with matrices known to perform well. However, the latter
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does not necessarily improve the final performance.

PC-NODEs. We then tackled the more complex case where models need to respect the

first and second laws of thermodynamics. To that end, we extended SIMBa beyond linear

models and leveraged IPH dynamics, leading to PC-NODEs. The latter again showed strong

performance gains over standard methods while respecting the underlying physical laws.

Similarly to what was observed in the rest of this thesis, enforcing desired properties did not

come at the cost of accuracy, with PC-NODEs outperforming vanilla NODEs.

Link with Chapter 2. Thanks to their AD backbone, both SIMBa and PC-NODEs could train

NNs in parallel with their main module to capture unmodeled dynamics. Apart from minor

modification, this would allow one to recover the PCNN architecture discussed in Chapter 2.

In other words, grounding NNs with prior knowledge (PCNNs) or augmenting traditional SI

methods with NNs — leveraging the backpropagation-based training procedure introduced in

this chapter — would lead to similar solutions.

Outlook. As detailed in Section 4.5, in future works, it would be interesting to analyze

the theoretical implications of SIMBa and the potential links to traditional SI methods. In

a similar vein, SIMBa’s potential to be incorporated in Koopman-based approaches with

stability guarantees is worth investigating. Leveraging the seamless capacity of PyTorch to

incorporate various differentiable nonlinear functions, as proposed in Section 4.6, for example,

we postulate that SIMBa has the potential to serve as the foundation for a general tool for

knowledge-grounded structured nonlinear system identification.

147





5 Concluding remarks

The escalating impact of climate change is compelling the world into a global energy tran-

sition. Addressing the resulting challenges necessitates the introduction of innovative and

revolutionary technologies to the market. Throughout this thesis, we postulated that Neural

Networks (NNs) and Machine Learning (ML) are poised to assume an increasingly crucial role

in this fight — as well as in many other applications.

Grounding Neural Networks with established expert knowledge

In general, relying on brittle vanilla black-box NNs for real-world deployment is not advisable,

especially for systems as critical as energy infrastructures. There is thus a widespread need

to enforce desired properties on NNs and guarantee they behave adequately under diverse

circumstances. Consequently, Chapters 2 and 3 introduced various approaches to ensure NNs

adhere to the domain knowledge accumulated over years of engineering, both for modeling

and control purposes.

First, the numerical experiments in Chapter 2 hinted that the proposed Physically Consistent

NNs (PCNNs) can simultaneously achieve state-of-the-art performance and compliance with

the underlying laws of thermodynamics for building thermal modeling applications. Second,

the investigations in Chapter 3 pointed to the potential of model-free Deep Reinforcement

Learning (DRL) agents to satisfy all the requirements of ideal building controllers — and to

how fusing expert knowledge in NN control policies might be key in attaining this objective.

While these two chapters focus primarily on one single case study building, the majority of

insights and conclusions are likely to extrapolate to other buildings and domains. This hence

contributes to the expanding body of literature showing how constraining NNs according

to expert knowledge can be extremely beneficial — if not necessary — to facilitate their

widespread adoption in real-world applications.
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Leveraging Machine Learning tools for traditional system identification methods

Rather than focusing on grounding NNs in prior system knowledge, which might perform

suboptimally due to their complexity, Chapter 4 suggested leveraging ML tools to help identify

traditional models. In addition to enhancing interpretability, which makes them more reliable

than NNs in practical scenarios, these knowledge-grounded models can ensure that desired

system properties are respected at all times. However, calibrating such models with traditional

System Identification (SI) methods is generally challenging. To mitigate this issue, Chapter 4

demonstrated the benefits of leveraging backpropagation — the core of NN training — for this

task.

In the case of linear systems, this led to the development of the open-source SIMBa toolbox.

It can guarantee the stability of the identified model and incorporate desired properties on

the state-space matrices, such as sparsity patterns, while consistently and often significantly

outperforming traditional SI approaches. To showcase how SIMBa could be extended to more

complex case studies beyond linear systems, we then detailed a nonlinear extension relying

on irreversible port-Hamiltonian dynamics. It could guarantee compliance with the first and

second law of thermodynamics by design without compromising performance.

Notably, thanks to the automatic differentiation backbone of the proposed training procedure,

NNs could seamlessly be learned on top of the knowledge-infused dynamics to capture

unmodeled aspects. In this particular scenario, one would recover the PCNN architecture

from Chapter 2, which instead introduces a physics-inspired module in parallel to NNs to

ensure adherence to specific properties of the modeled system.

The positive impact of merging expert knowledge and Machine Learning

In summary, our investigations hint at the advantages of fusing prior system knowledge

into any model or controller. When learning is involved, we argue one should restrict the

search space to plausible or desired solutions. This might introduce sometimes significant

conservatism but will ensure the solution behaves as expected. Notably, when certain aspects

of the problem are challenging to quantify, NNs might be leveraged to learn them from data,

typically running in parallel with a knowledge-based module.

Interestingly, prior knowledge integration did not induce significant performance drops

throughout our analyses. On the contrary, it generally improved the quality of the solution,

showing how constraining learning methods can help find well-performing solutions consis-

tent with desired properties. To conclude, we hope our investigations will lay the groundwork

for universal and scalable methods fusing prior knowledge and ML tools for modeling and

controlling diverse systems.
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A Appendices - Chapter 2

A.1 Resistance-capacitance building model

A.1.1 General resistance-capacitance models

In general, we can describe the thermal dynamics of a thermal zone with the following ODE:

C
dT

d t
= dQheat

d t
+ dQ i r r

d t
+ dQocc

d t
+∑ dQcond

d t
+∑ dQconv

d t
,

where T is the temperature, C the heat capacitance of the air mass, and the various heat flows

Q respectively represent the impact of the heating/cooling system (negative values represent

cooling energy), the solar irradiation, the occupants, heat conduction, and heat convection,

where both sums are taken over the number of surfaces adjacent to the measured volume of

air.

In this work, we lump conductive and convective transfers together and split them into two

heat transfers: one to represent transfers to the neighboring zone — assuming there is only

one for ease of exposition — and the other to gather losses to the environment. Both are

proportional to the corresponding temperature gradient between the zone temperature and

the neighboring zone or the outside temperature, respectively. Additionally, we process the

horizontal solar irradiation data to reflect the solar gains through the windows as presented in

Appendix A.3 and group the heat gains from the occupants and other unmodeled effects in

Qr est , scaled by a parameter η.

Altogether, we can rewrite the thermal dynamics as:

dT

d t
= 1

C

dQheat

d t
+ ϵ

C

dQ i r r

d t
+ η

C

dQr est

d t
− 1

C Rout

d(T −T out )

d t
− 1

C Rnei g h

d(T −T nei g h)

d t

with ϵ representing the lumped permissivity of the windows and exterior walls, Rout and

Rnei g h the thermal resistance of the walls adjacent to the outside, respectively the neighboring
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zone, and T out and T nei g h the temperature outside, respectively in the neighboring zone. We

then discretize this ODE with the Euler forward method and the time step ∆t , yielding:

Tk+1 = Tk +∆t ∗ [
1

C
Qheat

k + ϵ

C
Q i r r

k + η

C
Qr est

k − 1

C Rout
(Tk −T out

k )− 1

C Rnei g h
(Tk −T nei g h

k )]

Grouping the constants together and defining new parameters a, b, c, e1 and e2, we can

reformulate it as follows:

Tk+1 = Tk +aQheat
k −b(Tk −T out

k )− c(Tk −T nei g h
k )+e1Q i r r

k +e2Qr est
k (A.1)

A.1.2 Single-zone linear model

In this work, to create a simple linear model to use as a comparison baseline to single-zone

PCNNs, we assume no knowledge of the occupants and other heat gains and discard the

corresponding term e2Qr est
k in (A.1). Reordering the terms, we get:

Tk+1 −Tk =


Qheat

k
−(Tk −T out

k )

−(Tk −T nei g h
k )

Q i r r


T 

a

b

c

e1


∆Tk+1 := yT

k p,

where ∆T represents the temperature difference, y groups the factors influencing it, and p the

unknown parameters. Doing this for every time step, we can create matrices of data, grouping

all the temperature differences in matrix X and the external factors in Y :
∆T1

...

∆TN

=


yT

1
...

yT
N

p

X := Y p

Finally, we can use Least Squares to identify the parameters:

Y T X = Y T Y p

p = (Y T Y )−1Y T X .
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A.2 Proofs of the main theoretical results

A.2.1 Proof of Proposition 1

The proof works by induction on i . Based on (2.17), we can immediately write, ∀z, y ∈B:

∂T z
j+1

∂T y
j

=


1−bz −∑

y∈N (z) cz y , if y = z,

cz y , if y ∈N (z),

0, otherwise,

(A.2)

where we used the definition of∆T in (2.9). By definition, if (2.19) and (2.20) hold, we hence

get positive derivatives if y = z or y ∈N (z) and zeros for any other choice of y , satisfying (2.18)

and completing the base case of the induction. Let us now assume that:

∂T x
h

∂T y
j

≥ 0, ∀y, x ∈B, ∀ j < h < i , (A.3)

with equality if and only if y ∉N (h− j )(x), and show that the proposition holds for time step i .

Since we know the temperature in zone z at time i is potentially impacted by the temperature

in the entire building at the previous step, we can decompose the partial derivative of interest

as follows:

∂T z
i

∂T y
j

= ∑
x∈B

∂T z
i

∂T x
i−1

∂T x
i−1

∂T y
j

, (A.4)

for all y, z ∈B. Since (2.17) is time-invariant, we know that:

∂T z
i

∂T x
i−1

=
∂T z

j+1

∂T x
j

≥ 0,

with equality if and only if x ∉N (z) by the base case of the induction (A.2) if (2.19) and (2.20)

hold. Similarly, by the induction hypothesis (A.3), we know that:

∂T x
i−1

∂T y
j

≥ 0, ∀y, x ∈B,

with equality if and only if y ∉N (i− j−1)(x). Putting the last two equations together, we see that:

∂T z
i

∂T y
j

≥ 0,

with equality only if each term of the sum in Equation (A.4) is zero. By the previous arguments,

this means y ∉N (i− j−1)(x) or x ∉N (z) for all zones x. This is equivalent to say that there is no

path from y to z in (i − j ) steps, i.e., y ∉N (i− j )(z), which concludes the inductive step. □
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A.2.2 Proof of Proposition 2

We start by noticing that ∀y ∈B, (2.17) implies:

∂T y
j+1

∂u y
j

=
∂T y

j+1

∂g y (uy
j )

∂g y (uy
j )

∂u y
j

=


ay

h

∂g y (uy
j )

∂u y
j

, if u y
j > 0,

ay
c
∂g y (uy

j )

∂u y
j

, if u y
j < 0,

0, otherwise,

(A.5)

∂T x
j+1

∂u y
j

=
∂T x

j+1

∂g y (u y
j )

∂g y (u y
j )

∂u y
j

= 0 ∀x ∈B, x ̸= y, (A.6)

∂T y
j+1

∂T out
j

= by , (A.7)

Note that this proves that (2.21) and (2.22) hold for the case i = j +1 as long as ay
h , ay

c ,by > 0,

∀y ∈B, ∂g (u)
∂u > 0, and g (u) = 0.

When i > j +1, Proposition 1 implies that

∂T z
i

∂T y
j+1

≥ 0, ∀z, y ∈B, ∀0 ≤ j < i −1, (A.8)

with equality if and only if y ∉N (i− j−1)(z) if the conditions in (2.19) and (2.20) hold. Relying

on the fact that the temperatures at time k + i are potentially influenced by the temperatures

in the whole building at time j +1, we have:

∂T z
i

∂u y
j

= ∑
x∈B

∂T z
i

∂T x
j+1

∂T x
j+1

∂g y (u y
j )

∂g y (u y
j )

∂u y
j

(A.9)

= ∂T z
i

∂T y
j+1

∂T y
j+1

∂g y (u y
j )

∂g y (u y
j )

∂u y
j

≥ 0, (A.10)

where the second equality follows from (A.6) and the inequality holds as long as (2.19) and

(2.20) are respected and ay
h , ay

c > 0, ∀y ∈ B, by Proposition 1. Furthermore, equality is only

reached if y ∉N (i− j−1)(z).

Similarly, we have:

∂T z
i

∂T out
j

= ∑
y∈B

∂T z
i

∂T y
j+1

∂T y
j+1

∂T out
j

= ∑
y∈B

∂T z
i

∂T y
j+1

by > 0, (A.11)

where the strict inequality is respected as long as by > 0, ∀y ∈ B. Indeed, since z ∈ N (z)

by definition, Proposition 1 then implies that at least one of the terms in the sum is strictly

positive, while the others are nonnegative. □
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A.3 Solar irradiation preprocessing

A.3 Solar irradiation preprocessing

To compute the solar irradiation on the windows of a thermal zone z from the measured irra-

diation on a horizontal surface Q sun , we rely on the altitude and azimuth angles, respectively

φ and θ, of the sun. The former captures the elevation of the sun above the horizon while the

latter represents its deviation from the north, in the clockwise direction.

North
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Figure A.1: Sketch of the azimuth angles used to compute the solar irradiation on the
windows of a building from the irradiation on a fixed vertical surface.

First, using the altitude of the sun and basic trigonometry, one can easily show that the

measured irradiation on a horizontal surface corresponds to Q sun = I sinφ, where I is the

global solar irradiation. Similarly, we know that the irradiation on a vertical surface following

the sun, i.e., tracking its azimuth angle to stay perpendicular to the incoming rays, can be

computed as I ver t = I cosφ, or

I ver t =Q sun cosφ

sinφ
. (A.12)

Since building facades and windows have a fixed orientation in practice and do not follow the

sun azimuth, we again use basic trigonometry to compute the irradiation on a north-south

aligned surface facing east as I ver t sinθ. Finally, if the facade is not exactly facing east, we also

need to account for its own "azimuth" θ0, i.e., how much it is rotated clockwise starting from

an east-facing position (Figure A.1), which leads to:

Qwi n = I ver t sin(θ−θ0) =Q sun cosφ

sinφ
sin(θ−θ0). (A.13)

Once this has been done for each zone z, we can populate the required vector Q wi n used by

gray-box architectures in this work.
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As one can readily be observed, this processing only requires access to the elevation and

azimuth angles of the sun, and to the orientation of the facade of interest. Furthermore, both

solar angles solely depend on the geographical position of the building, i.e., its latitude and

longitude, and the time at which the measurement was taken. The position and orientation

of a building can easily be found on plans or Google Maps, and we used the Astral Python

library (https://astral.readthedocs.io/en/latest/) to compute the solar angles corresponding

to each time step in our data.

Note that, while this processing works very well for unobstructed facades when its orientation

is known, it cannot be used when for example other buildings or trees exist in front of the

windows and create shading patterns. In that case, one has to rely on architectures that

can automatically process horizontal solar irradiation measurements depending on time

information, such as the LSTMs used in the black-box module of PCNNs. Nonetheless, we can

use it in this paper since UMAR is not obstructed, leading to a very efficient computation of

the true solar irradiation patterns on the windows of each zone.

A.4 Details on the data processing

A.4.1 NEST data

Data from all the sensors in NEST is sampled and stored at a frequency of one minute. Con-

cerning the solar irradiation data, we delete constant streaks of more than 20 h than indicate

a fault of the sensor – where deleting refers to setting the values to NaN – and clip the mea-

surement at 0 since it cannot be negative. For the outside temperature, we delete constant

streaks of more than 30 min. Both measurements are then smoothed with a Gaussian filter

with σ= 2. For power inputs, we delete constant streaks of more than 1 day and smooth the

measurements with a Gaussian filter with σ= 1. Finally, the temperature measurements in

both the room of interest and the neighboring one are smoothed with σ= 5.

Before using the created data, we linearly interpolate all the missing values when less than

30 min of information is missing. When we use it to train and test PCNNs, the data is subsam-

pled to 15 minute intervals through averaging.

The month and time of day variables are represented by sine and cosine functions to introduce

periodicity, so that the last month has a value close to the first month of the year for example.

Mathematically, two variables are created:

t si n
m = sin(

m

12
2π), t cos

m = cos(
m

12
2π), (A.14)

where the months m are labeled linearly and in order from 1 to 12. The same processing is

done for the time step during the day, replacing the factor 12 in Equation (A.14) by 96, the

number of 15 min intervals in one day.
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A.5 Linear model identification

Once the data had been subsampled, discarding the 23% of incomplete measurements, i.e.

where at least the information from one sensor is missing, we were left with over 80’000 data

points. Since the proposed PCNN architectures are based on NNs in our implementations

(see Section 2.4.3), they are not able to handle missing values, which prompted us to create a

data set of time series without missing values.

As we aimed to design models that can predict the temperature dynamics over three-day-long

horizons, we truncated each sequence to a maximum of three days and separated the heating

and cooling seasons. We allowed the time series to overlap each hour, i.e., every four steps,

to increase the data efficiency of the approach. Finally, since we implemented a warm-start

period of 3 h for all the models, we also made sure the last 3 h of data exists for each time series.

To avoid very short time series, we also ensured they always span at least 12 h. Altogether, this

allowed us to create more than 11’000 sequences of data without missing values, which were

split in a training and a validation set with proportions 80%-20%, respectively denoted Dt and

Dv , and where Dt ∩Dv =;. Finally, the data is normalized between 0.1 and 0.9. For all NNs,

the validation set is used to select the best set of weights along the training procedure.

A.4.2 Individual room energy consumption

As mentioned in Section 2.4.1, UMAR has a unique power meter and we need to disaggregate

this global measurement P tot into individual consumption for each room. To that end, we use

the design mass flow ṁi of room i , something known from technical construction sheets. At

each time step t , we then approximate the power consumed by each room, P i , as follows:

P i
t =

ui
t ṁi

t∑
k uk

t ṁk
t

P tot
t , (A.15)

where ui is the amount of time the valves are opened and we sum over all the k = 5 rooms in

UMAR. In words, we approximate the individual energy consumption of each to be propor-

tional to the amount of water flowing through its ceiling panels.

A.5 Linear model identification

As is classically done in linear system identification, we first used the least squares method to

find the parameters az
h , az

c , bz , cz y , ez best fitting the training data for each thermal zone z

and neighboring zone y ∈N (z), such as in Appendix A.1.2. However, ensuring none of these

parameters is negative, which is necessary to respect the underlying physics, produced c23 = 0.

This is clearly not physically meaningful, as it would mean there is no heat transfer from Zone

3 to Zone 2. Consequently, we also implemented a BO framework, relying on the bayes_opt
Python library [350]. This allowed us to extensively search for the best physically consistent

parameters — constraining them to be positive — for each zone over a five-step prediction

horizon. We let BO run for 2’300 iterations, starting from 200 random initial points.

157



Appendix A. Appendices - Chapter 2

1h 6h 12h 24h 48h 72h
Hour ahead

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
A

E
[◦

C
]

Figure A.2: MAE of six PCNNs with different random seeds at six chosen prediction steps
in gray and the average in green, where the statistics were computed from almost 2000
predictions from the validation set.

A.6 Additional single-zone PCNN results

A.6.1 Robustness of PCNNs

To analyze the robustness of the PCNN discussed in Section 2.5.1, we trained five other PCNNs

with the same architecture but different random seeds. As pictured in Figure A.2, all six

models provide similar accuracy over the validation and the horizon of three days, except at

the beginning of the prediction horizon. Two out of the six PCNNs trained indeed showed

oscillatory behavior on the first prediction steps, leading to higher errors.

A.6.2 Flexibility of PCNNs

To test the flexibility of our approach, we additionally trained five PCNNs to model Zone

1, again with five different random seeds. As can be observed in Figure A.3, the models

again present a similar accuracy over the prediction horizon, hinting at the robustness of the

approach. Furthermore, the shown MAEs are similar to the errors obtained on Zone 3 (see

Figure A.2), except towards the end of the prediction horizon, where the error is 20−40%

higher. Nonetheless, the performance of PCNNs is comparable for both rooms, which is

particularly interesting since no engineering was required to transfer the model between them:

we used the same architecture for both bedrooms, simply changing the training and validation

data sets. The training and validation errors displayed in Table A.1 confirm these conclusions.
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Figure A.3: MAE on the other bedroom in UMAR at key time steps of the prediction hori-
zon for the PCNN with five different random seeds, where the statistics were computed
from almost 2000 predictions from the validation set.

Seed Training loss Validation loss
0 1.82 2.42
1 1.66 2.44
2 1.58 2.52
3 1.66 2.54
4 1.66 2.39

Mean 1.68 2.46

Table A.1: Training and validation losses of five PCNNs on Zone 1, scaled by 103.
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Starting Learned
Parameter value value

ah 2 2.01
ac 2 1.97
b 1.5 1.50
c 1.5 1.51

Table A.2: Comparison between the initial and learned values of the PCNN parameters,
in degrees Celsius. For ah and ac , it represents how many degrees are gained in 4 h when
heating/cooling at full power, while for b and c it represents how many degrees are lost
through heat transfer in 6 h when the exogenous temperature is 25 ◦C lower.

A.6.3 Learned parameters

To complete the analysis of the PCNN presented in Section 2.5.1, we also display the final

values of the parameters ah , ac , b, and c in Table A.2. Overall, we see that the parameters do

not change much, and the same conclusion was drawn for the other PCNNs trained during

our experiments. Out of the six PCNNs plotted in Figure A.2, only two modified the values

substantially, even though by a maximum of 10%− 15%, and they correspond to the two

models showing the worst performance overall.

A.7 Visualization of predictions

To complement Figure 2.15, the same experiment was carried on with the linear model and an

LSTM, and zoomed-in predictions can be found in Figures A.4 and A.5. Note that each subplot

uses a custom scale to better visualize the impact of different power inputs. We additionally

shaded physically inconsistent behaviors in each subplot in gray, i.e., whenever the predicted

temperature when cooling is applied is higher than when heating is applied or no power input

is used, or when the temperature when heating is applied is lower than when no power is used.

This confirms that the identified linear model failed to fully capture the impact of heating

and cooling but still behaves in a physically consistent manner, e.g., with heating leading to

higher temperatures than cooling, similar to the behavior that can be observed for the S-PCNN

in Figure 2.15. On the other hand, both the PiNN and LSTM show inconsistent behaviors,

especially in Zone 2 around the beginning of the prediction horizon.

A.8 X-PCNN gradients

In the case of X-PCNNs, at inference time, we use each single-zone PCNN to predict the

next temperature in the corresponding zone. The new temperatures in the building are then

updated in the data of all the single-zone PCNNs so they can predict the next step. This is

required because the single-zone PCNNs cannot evolve independently over the prediction

horizon since they depend on temperatures in neighboring zones at each step. However,
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Figure A.4: Visualization of heat propagation for the linear baseline and a PiNN. The
bottom plots show the heating (red) and cooling (blue) power inputs applied to Zone 3
while heating and cooling are turned off in Zone 1 and 2, compared to the situation when
no power is applied (black). The other plots depict the corresponding temperature predic-
tions of each model in the three zones. Gray-shaded areas mark physical inconsistencies
in the PiNN predictions.
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Figure A.5: Visualization of heat propagation for the linear model and an LSTM. The
bottom plots show the heating (red) and cooling (blue) power inputs applied to Zone 3
while heating and cooling are turned off in Zone 1 and 2, compared to the situation when
no power is applied (black). The other plots depict the corresponding temperature predic-
tions of each model in the three zones. Gray-shaded areas mark physical inconsistencies
in the LSTM predictions.
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A.9 Number of numerical gradient values

overwriting the data at each step breaks the automatic backpropagation of PyTorch, and we

cannot automatically compute the gradient of the temperature in zone z with respect to power

inputs or temperatures in another zone y without implementation overhead. We can only

retrieve gradients with respect to each single-zone PCNN’s power inputs uz and the ambient

temperature.

Intuitively, these available gradients are expected to be larger in magnitude than the gradients

with respect to power inputs in other zones since they have a direct impact on the zone of

interest. This explains the absence of low gradient values (< 10−3) in Figure 2.16 for X-PCNNs

compared to M- and S-PCNNs. Even if we can only compute parts of the gradients automati-

cally, we still show them in Figure 2.16 for reference. Note that as we already know X-PCNNs

are physically consistent since they satisfy the criteria of Corollary 1, these implementation

considerations do not put the physical consistency of this architecture in jeopardy.

A.9 Number of numerical gradient values

The numerical investigation of NN-based model gradients in Section 2.5.2 is carried out on

the validation data set of more than 750 three-day long sequences (288 steps). Following

Remark 11, for each of the three zones, we compute the gradients of its last temperature pre-

dictions with respect to power inputs in all the zones (3 values) and the ambient temperature

(1 value) at each step, giving rise to more than 750×3×288× (3+1) = 2′592′000 values. In

the case of X-PCNNs, we only have access to half of these values since we do not compute

gradients with respect to power inputs in other zones (Appendix A.8), which still leaves us with

more than 1 million values.
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B.1 Proof of Proposition 3

We want to ensure that the magnitude of all the eigenvalues of A is bounded by γ. From

[351, Theorem 2.2], we know this is the case if and only if the following LMI holds for some

symmetric Q =Q⊤ ≻ 0: [
γQ AQ

⋆ γQ

]
≻ 0 .

Taking its Schur complement, this is equivalent to

γQ − A
Q⊤

γ
A⊤ ≻ 0 . (B.1)

Defining the transformation T = [I ,−A] and introducing a free parameter G ∈Rn×n , this can

be rewritten as

γQ − AG A⊤− A⊤G⊤A

+ AG A⊤+ A⊤G⊤A− A
Q⊤

γ
A⊤ ≻ 0

⇐⇒ T

[
γQ AG

G⊤A⊤ G⊤+G − Q⊤
γ

]
T ⊤ ≻ 0

⇐⇒
[

γQ AG

G⊤A⊤ G⊤+G − Q⊤
γ

]
≻ 0 . (B.2)

In words, A is Schur with eigenvalues bounded by γ if and only if there exist Q ≻ 0 and G such

that (B.2) holds.

Let us now parametrize the left-hand side of the above LMI by the matrix S in (4.2). Remarkably,

since S is positive definite by construction for any choice of W , (B.2) will always be satisfied,

ensuring the stability of A.
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Finally, define

S11 := γQ, S12 = S⊤
21 := AG S22 :=G⊤+G − Q⊤

γ
.

This allows us to recover Q = S11
γ , which is positive definite and symmetric by construction.

We then note that

G⊤+G = Q

γ
+S22 = S11

γ2 +S22 (B.3)

needs to hold. Since S11 and S22 are symmetric, (B.3) holds for any V ∈Rn×n if we set

G = 1

2

(
S11

γ2 +S22

)
+V −V ⊤ .

Remembering that A = S12G−1 then concludes the proof. □

B.2 Proof of Corollary 2

Let A be a Schur matrix and ϵ> 0. Setting γ= 1 in the proof of Proposition B.1, we know there

exists Q =Q⊤ ≻ 0 and G such that (B.2) holds, i.e.,[
Q AG

G⊤A⊤ G⊤+G −Q

]
=: Γ≻ 0 .

Then, for any α> 0, αQ and αG are valid alternative choices of Lyapunov function and free

parameter because αQ =αQ⊤ ≻ 0 and[
αQ A(αG)

αG⊤A⊤ αG⊤+αG −αQ

]
=αΓ≻ 0 .

Since Γ is positive definite, λmin(Γ) > 0, and we can set

α := 2ϵ

λmin(Γ)
> 0 , ∆ :=αΓ−ϵI2n .

Then, according to Weyl’s inequality [352], we have

λmin(∆) ≥λmin(αΓ)−λmax(ϵI2n) =αλmin(Γ)−ϵ= 2ϵ−ϵ= ϵ> 0 ,

so that ∆=∆⊤ ≻ 0. We can then define W =∆ 1
2 , set V = 0 and construct A as in (4.3), with S as

in (4.2). □
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B.3 Proof of Proposition 4

We need to show that A as defined in (4.3) is Schur, i.e., the autonomous system

xk+1 = Axk (B.4)

is stable. This is equivalent to finding a matrix Q =Q⊤ ≻ 0 that solves the following Lyapunov

inequality [308]:

Q − A⊤Q A ≻ 0 . (B.5)

By definition of A, we have

Q − A⊤Q A ≻ 0

⇐⇒ Q − (In +δĀ)⊤Q(In +δĀ) ≻ 0

⇐⇒ Q −Q −δQ Ā−δĀ⊤Q −δ2 Ā⊤Q Ā ≻ 0

⇐⇒ −δQ Ā−δĀ⊤Q −δ2 Ā⊤Q Ā ≻ 0 .

Let us decompose Ā as Ā = E−1F for suitable matrices E and F . We can then rewrite the last

inequality as

−δQE−1F −δF⊤E−⊤Q −δ2F⊤E−⊤QE−1F ≻ 0 .

Defining P = E−⊤QE−1 ≻ 0 and dividing by δ, this can be rewritten as

−QE−1F −F⊤E−⊤Q −δF⊤PF ≻ 0 . (B.6)

Since Q = E⊤PE , (B.6) is equivalent to

−E⊤PF −F⊤PE −δF⊤PF ≻ 0 .

Using Schur’s complement, this can be rewritten as[
−E⊤PF −F⊤PE F⊤

F 1
δP−1

]
≻ 0 . (B.7)

We then parametrize the left-hand side of the above LMI with S from (4.6). Critically, (B.7) will

always be satisfied since S is positive definite by construction for any choice of W , ensuring

the stability of A. Since S22 = S⊤
22, we can then recover

P = S−1
22

δ
, F = S21 = S⊤

12 .

Knowing that S⊤
11 = S11 by definition and that

−E⊤PF −F⊤PE = S11
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needs to hold, we can set

F⊤PE =−S11

2
+V −V ⊤ =⇒ E−1 =−2

(
S11 +V −V ⊤)−1

F⊤P ,

for any V ∈Rn×n . Since Ā = E−1F , this leads to

Ā =−2
(
S11 +V −V ⊤)−1

F⊤PF =−2

δ

(
S11 +V −V ⊤)−1

S12S−1
22 S21

=⇒ A = I +δĀ = I −2
(
S11 +V −V ⊤)−1

S12S−1
22 S21 .

□

B.4 Proof of Corollary 3

Let A be a Schur matrix and ϵ > 0. Setting E = In and F = Ā in the proof of Proposition 4,

there exists a Lyapunov function P = P⊤ ≻ 0 such that (B.7) holds. Similarly to the proof of

Corollary 2, for any α> 0, αE , αF , and P
α are valid alternative choices since[

−αE⊤ P
ααF −αF⊤ P

ααE αF⊤

αF 1
δαP−1

]
≻ 0

and (αE)−1αF = Ā. One can then set V = 0 and follow the proof of Corollary 2 to find suitable

values for α and W such that (4.7) holds for S as in (4.6). □

B.5 Proof of Proposition 5

B.5.1 Preliminaries

Throughout the proof below, we will use the following properties of the Hadamard product,

for any matrices K ,L, M ∈Rn×n and diagonal matrix Λ ∈Rn×n [352]:

(P1) (K ⊙L)+ (K ⊙M) = K ⊙ (L+M) ,

(P2) (L⊙M)⊤ = (L⊤⊙M⊤) ,

(P3) (K ⊙L)(Λ⊙M) = K ⊙ (L(Λ⊙M)) ,

where the last property holds since Λ is diagonal.

B.5.2 Proof of Proposition 5

As in the proof of Proposition 4, we need to find a symmetric matrix Q = Q⊤ ≻ 0 such that

Q − A⊤Q A ≻ 0. Following the proof of Proposition 3 for γ = 1, one can show that this is

168



B.5 Proof of Proposition 5

equivalent to finding Q =Q⊤ ≻ 0 such that[
Q AG

G⊤A⊤ G⊤+G −Q

]
≻ 0 , (B.8)

where G ∈Rn×n is a free parameter. In this sparse case, we consider diagonal Q and G matrices

of the form

Q = N ⊙P , G = N ⊙H ,

for some P, H ∈Rn×n and with N defined in (4.9). Note here that this also implies Q =Q⊤, as

required in (B.8). Recalling that we want to identify a matrix A of the form A =M⊙ Ã for some

Ã, (B.8) can be written as[
N ⊙P

(M⊙ Ã
)

(N ⊙H)

(∗)⊤ (N ⊙H)⊤+ (N ⊙H)− (N ⊙P )

]
(P1)=

[
N ⊙P

(M⊙ Ã
)

(N ⊙H)

(∗)⊤ N ⊙ (
H⊤+H −P

)]≻ 0 ,

where (∗)⊤ represents the transpose of the upper right block. Since N is a diagonal matrix,

using (P3), we can rewrite the above LMI as[
N ⊙P M⊙ (Ã(N ⊙H))

(M⊙ (Ã(N ⊙H)))⊤ N ⊙ (
H⊤+H −P

)]≻ 0

(P2)⇐⇒
[

N ⊙P M⊙ (Ã(N ⊙H))

M⊤⊙ (Ã(N ⊙H))⊤ N ⊙ (
H⊤+H −P

)]≻ 0

⇐⇒
[

N M
(∗)⊤ N

]
⊙

[
P Ã(N ⊙H)

(∗)⊤ H⊤+H −P

]
≻ 0 . (B.9)

A sufficient condition for the above Hadamard product to be positive semi-definite is to ensure

that both factors are individually positive semi-definite [353], i.e.,[
N M

(∗)⊤ N

]
≻ 0 (B.10)[

P Ã(N ⊙H)

(∗)⊤ H⊤+H −P

]
≻ 0 . (B.11)

Since M is fixed and known, (B.10) is satisfied by construction of N in (4.9) according to the

Levy–Desplanques theorem [352]. To satisfy (B.11), as in Proposition 4, we parametrize its

left-hand side with S in (4.8), which allows us to recover

P = S11 , H +H⊤ = S22 +P = S11 +S22 .

169



Appendix B. Appendices - Chapter 4

As before, by symmetry of S11 and S22, for any V ∈Rn×n , the right equation is satisfied for

H = 1

2
(S11 +S22)+V −V ⊤ .

Finally,

Ã = S12(N ⊙H)−1 = S12

[
N ⊙

(
1

2
(S11 +S22)+V −V ⊤

)]−1

=⇒ A =M⊙ Ã =M⊙
(
S12

[
N ⊙

(
1

2
(S11 +S22)+V −V ⊤

)]−1)
.

□

B.6 Proof of Proposition 6

First, the desired sparsity pattern is achieved because

σ(η)γ

|λ(M⊙V )|max
(M⊙V ) =M⊙

(
σ(η)γ

|λ(M⊙V )|max
V

)
by definition of the Hadamard product since the maximum eigenvalue is a scalar.

To show that A is Schur with eigenvalues in a circle of radius γ centered at the origin, suppose

β is an eigenvalue of (M⊙V ) corresponding to the eigenvector e, i.e., (M⊙V )e =βe. Then,

Ae = σ(η)γ

|λ(M⊙V )|max
(M⊙V )e = σ(η)γ

|λ(M⊙V )|max
βe =:αe ,

so that e is still an eigenvector of A, with eigenvalue α. By definition of |λ(M⊙V )|max and

since 0 <σ(η) < 1, we obtain

|α| = σ(η)γ

|λ(M⊙V |max
|β| < |β|

|λ(M⊙V )|max
γ≤ γ ,

hence, concluding the proof. □

B.7 Proof of Corollary 4

One can set M :=1n×n , V := A, γ such that |λ(A)|max < γ≤ 1, which exists since the matrix A

is Schur, and η :=σ−1
(|λ(A)|max/γ

)
, which is well-defined since |λ(A)|max/γ< 1 by definition

of γ.
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B.8 Temperature computation

By definition, the energy U of a mass m of air can be described as U (T ) = mc(T )T , where

c is the specific heat capacity of air and T is temperature. Assuming we deal with an ideal

gas, we also know that PV = nRT , for a given absolute gas pressure P , volume V , n moles

of substance, and where R ≈ 8.31JK−1 mol−1 is the universal gas constant. This allows us to

rewrite the time derivative of entropy, by definition satisfying T Ṡ = U̇ +PV̇ as [354]

dS

d t
= 1

T

dU

d t
+ P

T

dV

d t
= 1

T

d

d t
(mc(T )T )+ nRT

V T

d

d t
V .

Since the temperature does not change abruptly, we can assume a constant heat capacity

c(T ) ≈ c and obtain

dS

d t
≈ mc

dT
d t

T
+nR

dV
d t

V
= mc

d [lnT ]

d t
+nR

d [lnV ]

d t
. (B.12)

Integrating (B.12) on both sides from an initial time ti to a final time t f , we get∫ t f

ti

dS

d t
d t = mc

∫ t f

ti

d lnT

d t
d t +nR

∫ t f

ti

d lnV

d t
d t ,

leading to

S(t f )−S(ti ) = mc ln
T (t f )

T (ti )
+nR ln

V (t f )

V (ti )
= ln

[(
T (t f )

T (ti )

)mc (
V (t f )

V (ti )

)nR
]

.

We can thus compute the final temperatures as

T (t f ) =
[

exp

(
S(t f )−S(ti )

mc

)(
V (t f )

V (ti )

) −nR
mc

]
T (ti ) .

B.9 Proof of Proposition 7

Let us define E = {(i , j )| Zones i and j are adjacent}, the set of connections between the ther-

mal zones, and consider the following decomposition of J̃ (T ), for Rk :Rn 7→R:

J̃ (T ) = ∑
k∈E

Rk (T )Jk Rk (T ) =λi j
(T j −Ti )

(Ti T j )
,

where Jk is an N ×N constant skew-symmetric matrix with zeroes everywhere, except (Jk )i j =
−(Jk ) j i = 1, for k = (i , j ).
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Then, for Te ,Qs ,Qh ,Qc ≡ 0, we have:

d H

d t
= ∂H(S)

∂S

⊤
Ṡ = ∂H(S)

∂S

⊤[∑
k∈E

Rk (T )Jk

]
∂H(S)

∂S
= ∑

k∈E

[
∂H(S)

∂S

⊤
Rk (T )Jk

∂H(S)

∂S

]
= 0 ,

since each term of the sum is zero, as in equation (4.21), because each Jk is now constant

and each Rk (T ) satisfies condition P2. This proves the required conservation of energy of the

system.

In order to verify the irreversible creation of total entropy S t , we note that for Te ,Qs ,Qh ,Qc ≡ 0,

Rk (T ) =
(
λi j

Ti T j

)
{S t , H }Jk ,

as in the case of two heat exchangers [343]. Since the total entropy S t is the sum of the entropy

in each zone d , we get

Ṡt =
z∑

d=1
(Ṡ)d =

z∑
d=1

([∑
k∈E

RkJk

]
∂H(S)

∂S

)
d

= ∑
k∈E

Rk (T )
z∑

d=1

(
Jk

∂H

∂S

)
d

= ∑
k∈E

Rk (T )

(
1
⊤
nJk

∂H

∂S

)
= ∑

k∈E
Rk (T )

(
∂S t

∂S

⊤
Jk

∂H

∂S

)
= ∑

k∈E

λi j

Ti T j
{S t , H }2

Jk
≥ 0 ,

since Rk (T ) ∈R and ∂S t

∂S =1z by definition, and the inequality holds if all {λi j }(i , j )∈E are positive

since temperatures (defined in Kelvin) are positive.

Finally, if all the input matrices Be ,Bs ,Bh , and Bc are positive definite, monotonicity follows

from the fact that PC-NODE (4.24) is affine in input by construction. □
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[183] Ján Drgoňa, Aaron Tuor, Elliott Skomski, Soumya Vasisht, and Draguna Vrabie. Deep learning explicit

differentiable predictive control laws for buildings. IFAC-PapersOnLine, 54(6):14–19, 2021.

[184] Jan C Willems, Paolo Rapisarda, Ivan Markovsky, and Bart LM De Moor. A note on persistency of excitation.

Systems & Control Letters, 54(4):325–329, 2005.

[185] Ivan Markovsky and Florian Dörfler. Behavioral systems theory in data-driven analysis, signal processing,

and control. Annual Reviews in Control, 52:42–64, 2021.

[186] Venkatesh Chinde, Yashen Lin, and Matthew J Ellis. Data-enabled predictive control for building HVAC

systems. Journal of Dynamic Systems, Measurement, and Control, 144(8):081001, 2022.

[187] Edward O’Dwyer, Eric C Kerrigan, Paola Falugi, Marta Zagorowska, and Nilay Shah. Data-driven predictive

control with improved performance using segmented trajectories. IEEE Transactions on Control Systems

Technology, 2022.

[188] Yingzhao Lian, Jicheng Shi, Manuel Koch, and Colin Neil Jones. Adaptive robust data-driven building control

via bilevel reformulation: An experimental result. IEEE Transactions on Control Systems Technology, 2023.

[189] Jeremy Coulson, John Lygeros, and Florian Dörfler. Distributionally robust chance constrained data-enabled

predictive control. IEEE Transactions on Automatic Control, 67(7):3289–3304, 2021.

[190] Manuel Koch and Colin N Jones. Comparison of behavioral systems theory and conventional linear

models for predicting building zone temperature in long-term in situ measurements. arXiv preprint

arXiv:2302.04063, 2023.

[191] Manuel Koch and Colin N Jones. A comparison of methods to eliminate regularization weight tuning from

data-enabled predictive control. arXiv preprint arXiv:2305.00807, 2023.

[192] Lukas Hewing, Kim P Wabersich, Marcel Menner, and Melanie N Zeilinger. Learning-based model predictive

control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems, 3:

269–296, 2020.

[193] Shiyu Yang, Man Pun Wan, Wanyu Chen, Bing Feng Ng, and Deqing Zhai. An adaptive robust model

predictive control for indoor climate optimization and uncertainties handling in buildings. Building and

Environment, 163:106326, 2019.

182



Bibliography

[194] Tingting Zeng and Prabir Barooah. An autonomous MPC scheme for energy-efficient control of building

HVAC systems. In 2020 American control conference (ACC), pages 4213–4218. IEEE, 2020.

[195] Ruixin Lv, Zhongyuan Yuan, Bo Lei, Jiacheng Zheng, and Xiujing Luo. Model predictive control with adaptive

building model for heating using the hybrid air-conditioning system in a railway station. Energies, 14(7):

1996, 2021.

[196] Shiyu Yang, Man Pun Wan, Wanyu Chen, Bing Feng Ng, and Swapnil Dubey. Model predictive control with

adaptive machine-learning-based model for building energy efficiency and comfort optimization. Applied

Energy, 271:115147, 2020.

[197] Marko Tanaskovic, David Sturzenegger, Roy Smith, and Manfred Morari. Robust adaptive model predictive

building climate control. Ifac-Papersonline, 50(1):1871–1876, 2017.

[198] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex

Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep

reinforcement learning. nature, 518(7540):529–533, 2015.

[199] Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian, Thomas J

Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Outracing champion Gran

Turismo drivers with deep reinforcement learning. Nature, 602(7896):223–228, 2022.

[200] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc

Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement learning algorithm

that masters chess, shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018.

[201] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn

Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure

prediction with AlphaFold. Nature, 596(7873):583–589, 2021.

[202] Hao Ju, Rongshun Juan, Randy Gomez, Keisuke Nakamura, and Guangliang Li. Transferring policy of deep

reinforcement learning from simulation to reality for robotics. Nature Machine Intelligence, 4(12):1077–1087,

2022.

[203] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and Davide

Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature, 620(7976):982–987,

2023.

[204] Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal, and Todd

Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and analysis. Machine

Learning, 110(9):2419–2468, 2021.

[205] Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine. How to train your

robot with deep reinforcement learning: lessons we have learned. The International Journal of Robotics

Research, 40(4-5):698–721, 2021.

[206] Mengjie Han, Ross May, Xingxing Zhang, Xinru Wang, Song Pan, Da Yan, Yuan Jin, and Liguo Xu. A review of

reinforcement learning methodologies for controlling occupant comfort in buildings. Sustainable Cities

and Society, 51:101748, 2019.

[207] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast reinforce-

ment learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

[208] Zhiang Zhang and Khee Poh Lam. Practical implementation and evaluation of deep reinforcement learning

control for a radiant heating system. In Proceedings of the 5th Conference on Systems for Built Environments,

pages 148–157, 2018.

[209] Chao Huang, Hongcai Zhang, Long Wang, Xiong Luo, and Yonghua Song. Mixed deep reinforcement

learning considering discrete-continuous hybrid action space for smart home energy management. Journal

of Modern Power Systems and Clean Energy, 10(3):743–754, 2022.

[210] Adam Nagy, Hussain Kazmi, Farah Cheaib, and Johan Driesen. Deep reinforcement learning for optimal

control of space heating. arXiv preprint arXiv:1805.03777, 2018.

[211] Giuseppe Tommaso Costanzo, Sandro Iacovella, Frederik Ruelens, Tim Leurs, and Bert J Claessens. Ex-

perimental analysis of data-driven control for a building heating system. Sustainable Energy, Grids and

Networks, 6:81–90, 2016.

183



Bibliography

[212] Roberto Rocchetta, Lorenzo Nespoli, Vasco Medici, Saverio Basso, Marco Derboni, and Matteo Salani.

Rule-based deep reinforcement learning for optimal control of electrical batteries in an energy community.

In Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023), 2023.

[213] Xinlei Zhou, Shan Xue, Han Du, and Zhenjun Ma. Optimization of building demand flexibility using

reinforcement learning and rule-based expert systems. Applied Energy, 350:121792, 2023.

[214] Frederik Ruelens, Bert J Claessens, Stijn Vandael, Bart De Schutter, Robert Babuška, and Ronnie Belmans.

Residential demand response of thermostatically controlled loads using batch reinforcement learning. IEEE

Transactions on Smart Grid, 8(5):2149–2159, 2016.

[215] Minghao Chen, Zhiyuan Xie, Yi Sun, and Shunlin Zheng. The predictive management in campus heating

system based on deep reinforcement learning and probabilistic heat demands forecasting. Applied Energy,

350:121710, 2023.

[216] Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and Alois Knoll. A

review of safe reinforcement learning: Methods, theory and applications. arXiv preprint arXiv:2205.10330,

2022.

[217] Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and Angela P

Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement learning. Annual

Review of Control, Robotics, and Autonomous Systems, 5:411–444, 2022.

[218] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In International

conference on machine learning, pages 22–31. PMLR, 2017.

[219] Thiago D Simão, Nils Jansen, and Matthijs TJ Spaan. AlwaysSafe: Reinforcement learning without safety

constraint violations during training. In Proceedings of the 20th International Conference on Autonomous

Agents and MultiAgent Systems. International Foundation for Autonomous Agents and Multiagent Systems,

2021.

[220] Charles Dawson, Sicun Gao, and Chuchu Fan. Safe control with learned certificates: A survey of neural

lyapunov, barrier, and contraction methods for robotics and control. IEEE Transactions on Robotics, 2023.

[221] Oscar De Somer, Ana Soares, Koen Vanthournout, Fred Spiessens, Tristan Kuijpers, and Koen Vossen. Using

reinforcement learning for demand response of domestic hot water buffers: A real-life demonstration. In

2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), pages 1–7. IEEE, 2017.

[222] Qisong Yang, Thiago D Simão, Nils Jansen, Simon H Tindemans, and Matthijs TJ Spaan. Reinforcement

Learning by Guided Safe Exploration. arXiv preprint arXiv:2307.14316, 2023.

[223] Hongzi Mao, Malte Schwarzkopf, Hao He, and Mohammad Alizadeh. Towards safe online reinforcement

learning in computer systems. In NeurIPS Machine Learning for Systems Workshop, 2019.

[224] Rolando Bautista-Montesano, Renato Galluzzi, Kangrui Ruan, Yongjie Fu, and Xuan Di. Autonomous

navigation at unsignalized intersections: A coupled reinforcement learning and model predictive control

approach. Transportation Research Part C: Emerging Technologies, 139:103662, 2022.

[225] Hui Hwang Goh, Yifeng Huang, Chee Shen Lim, Dongdong Zhang, Hui Liu, Wei Dai, Tonni Agustiono Kurni-

awan, and Saifur Rahman. An Assessment of Multi-Stage Reward Function Design for Deep Reinforcement

Learning-Based Microgrid Energy Management. IEEE Transactions on Smart Grid, 2022.

[226] Ruihang Wang, Xinyi Zhang, Xin Zhou, Yonggang Wen, and Rui Tan. Toward physics-guided safe deep rein-

forcement learning for green data center cooling control. In 2022 ACM/IEEE 13th International Conference

on Cyber-Physical Systems (ICCPS), pages 159–169. IEEE, 2022.

[227] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and Ufuk Topcu.

Safe reinforcement learning via shielding. In Proceedings of the AAAI conference on artificial intelligence,

volume 32, 2018.

[228] Alexander W Goodall and Francesco Belardinelli. Approximate Shielding of Atari Agents for Safe Exploration.

arXiv preprint arXiv:2304.11104, 2023.

[229] Linhai Xie, Sen Wang, Stefano Rosa, Andrew Markham, and Niki Trigoni. Learning with training wheels:

speeding up training with a simple controller for deep reinforcement learning. In 2018 IEEE international

conference on robotics and automation (ICRA), pages 6276–6283. IEEE, 2018.

[230] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for model based

reinforcement learning. In International conference on machine learning, pages 7953–7963. PMLR, 2020.

184



Bibliography

[231] Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. arXiv preprint

arXiv:1906.08649, 2019.

[232] Ramij R Hossain, Tianzhixi Yin, Yan Du, Renke Huang, Jie Tan, Wenhao Yu, Yuan Liu, and Qiuhua Huang.

Efficient Learning of Voltage Control Strategies via Model-based Deep Reinforcement Learning. arXiv

preprint arXiv:2212.02715, 2022.

[233] Scott Jeen, Alessandro Abate, and Jonathan M Cullen. Low Emission Building Control with Zero-Shot

Reinforcement Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages

14259–14267, 2023.

[234] Xianzhong Ding, Alberto Cerpa, and Wan Du. Multi-zone HVAC Control with Model-Based Deep Reinforce-

ment Learning. arXiv preprint arXiv:2302.00725, 2023.

[235] Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-based reinforcement learning with a generative model

is minimax optimal. In Conference on Learning Theory, pages 67–83. PMLR, 2020.

[236] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learning in a

handful of trials using probabilistic dynamics models. Advances in neural information processing systems,

31, 2018.

[237] Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in model-based

reinforcement learning. arXiv preprint arXiv:2002.04523, 2020.

[238] Bingqing Chen, Zicheng Cai, and Mario Bergés. Gnu-rl: A precocial reinforcement learning solution for

building hvac control using a differentiable mpc policy. In Proceedings of the 6th ACM international

conference on systems for energy-efficient buildings, cities, and transportation, pages 316–325, 2019.

[239] Javier Arroyo, Carlo Manna, Fred Spiessens, and Lieve Helsen. Reinforced model predictive control (RL-

MPC) for building energy management. Applied Energy, 309:118346, https://doi.org/10.1016/j.apenergy.

2021.118346, 2022.

[240] Simeng Liu and Gregor P Henze. Experimental analysis of simulated reinforcement learning control for

active and passive building thermal storage inventory: Part 2: Results and analysis. Energy and buildings, 38

(2):148–161, 2006.

[241] Tyler Westenbroek, Jacob Levy, and David Fridovich-Keil. Feedback is All You Need: Real-World Reinforce-

ment Learning with Approximate Physics-Based Models. arXiv preprint arXiv:2307.08168, 2023.

[242] Arash Bahari Kordabad, Rafal Wisniewski, and Sebastien Gros. Safe Reinforcement Learning Using Wasser-

stein Distributionally Robust MPC and Chance Constraint. IEEE Access, 2022.

[243] Peixiao Fan, Jun Yang, Song Ke, Yuxin Wen, Yonghui Li, and Lilong Xie. Load frequency control strategy for

islanded multimicrogrids with V2G dependent on learning-based model predictive control. IET Generation,

Transmission & Distribution, 2023.

[244] Daniel Mayfrank, Alexander Mitsos, and Manuel Dahmen. End-to-End Reinforcement Learning of Koopman

Models for Economic Nonlinear MPC. arXiv preprint arXiv:2308.01674, 2023.

[245] Bingqing Chen, Priya L Donti, Kyri Baker, J Zico Kolter, and Mario Bergés. Enforcing policy feasibility

constraints through differentiable projection for energy optimization. In Proceedings of the Twelfth ACM

International Conference on Future Energy Systems, pages 199–210, 2021.

[246] Qingang Zhang, Muhammad Haiqal Bin Mahbod, Chin-Boon Chng, Poh-Seng Lee, and Chee-Kong Chui.

Residual Physics and Post-Posed Shielding for Safe Deep Reinforcement Learning Method. IEEE Transactions

on Cybernetics, 2022.

[247] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint

arXiv:1805.01954, 2018.

[248] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcoming

exploration in reinforcement learning with demonstrations. In 2018 IEEE international conference on

robotics and automation (ICRA), pages 6292–6299. IEEE, 2018.

[249] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan,

Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 32, 2018.

[250] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,

and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

185

https://doi.org/10.1016/j.apenergy.2021.118346
https://doi.org/10.1016/j.apenergy.2021.118346


Bibliography

[251] Ruoxi Jia, Ming Jin, Kaiyu Sun, Tianzhen Hong, and Costas Spanos. Advanced building control via deep

reinforcement learning. Energy Procedia, 158:6158–6163, 2019.

[252] Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. Residual policy learning. arXiv preprint

arXiv:1812.06298, 2018.

[253] Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll, Juan Aparicio

Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforcement learning for robot control. In 2019

International Conference on Robotics and Automation (ICRA), pages 6023–6029. IEEE, 2019.

[254] Debaprasad Dutta and Simant R Upreti. A reinforcement learning-based transformed inverse model strategy

for nonlinear process control. Computers & Chemical Engineering, 178:108386, 2023.

[255] Jinxiong Lu, Gokhan Alcan, and Ville Kyrki. Integrating Expert Guidance for Efficient Learning of Safe

Overtaking in Autonomous Driving Using Deep Reinforcement Learning. arXiv preprint arXiv:2308.09456,

2023.

[256] Loris Di Natale, Bratislav Svetozarevic, Philipp Heer, and CN Jones. Deep Reinforcement Learning for room

temperature control: a black-box pipeline from data to policies. In Journal of Physics: Conference Series,

volume 2042, page 012004. IOP Publishing, 2021.

[257] Sebastian Höfer, Kostas Bekris, Ankur Handa, Juan Camilo Gamboa, Melissa Mozifian, Florian Golemo, Chris

Atkeson, Dieter Fox, Ken Goldberg, John Leonard, et al. Sim2Real in robotics and automation: Applications

and challenges. IEEE transactions on automation science and engineering, 18(2):398–400, 2021.

[258] Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexander Clegg, Erik Wijmans, Stefan Lee, Manolis

Savva, Sonia Chernova, and Dhruv Batra. Sim2real predictivity: Does evaluation in simulation predict

real-world performance? IEEE Robotics and Automation Letters, 5(4):6670–6677, 2020.

[259] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to benchmark

reinforcement learning. In International conference on machine learning, pages 2048–2056. PMLR, 2020.

[260] Nicklas Hansen and Xiaolong Wang. Generalization in reinforcement learning by soft data augmentation.

In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 13611–13617. IEEE, 2021.

[261] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain ran-

domization for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ

international conference on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017.

[262] Lei Yang, Zoltan Nagy, Philippe Goffin, and Arno Schlueter. Reinforcement learning for optimal control of

low exergy buildings. Applied Energy, 156:577–586, 2015.

[263] OpenAI. Part 2: Kinds of RL Algorithms, 2018. URL https://spinningup.openai.com/en/latest/spinningup/

rl_intro2.html#a-taxonomy-of-rl-algorithms. Accessed: 25.11.2022.

[264] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-learning. In

Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[265] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,

and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,

2015.

[266] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic

policy gradient algorithms. In International conference on machine learning, pages 387–395. PMLR, 2014.

[267] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic

methods. In International Conference on Machine Learning, pages 1587–1596. PMLR, 2018.

[268] Hado Hasselt. Double Q-learning. Advances in neural information processing systems, 23:2613–2621, 2010.

[269] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.

On the Variance of the Adaptive Learning Rate and Beyond. In Proceedings of the Eighth International

Conference on Learning Representations (ICLR 2020), April 2020.

[270] Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang Su, and Jun

Zhu. Tianshou: A Highly Modularized Deep Reinforcement Learning Library. Journal of Machine Learning

Research, 23(267):1–6, 2022. URL http://jmlr.org/papers/v23/21-1127.html.

[271] José Vázquez-Canteli, Jérôme Kämpf, and Zoltán Nagy. Balancing comfort and energy consumption of a

heat pump using batch reinforcement learning with fitted Q-iteration. Energy Procedia, 122:415–420, 2017.

186

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#a-taxonomy-of-rl-algorithms
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#a-taxonomy-of-rl-algorithms
http://jmlr.org/papers/v23/21-1127.html


Bibliography

[272] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep rein-

forcement learning that matters. In Proceedings of the AAAI conference on artificial intelligence, volume 32,

2018.

[273] William Valladares, Marco Galindo, Jorge Gutierrez, Wu-Chieh Wu, Kuo-Kai Liao, Jen-Chung Liao, Kuang-

Chin Lu, and Chi-Chuan Wang. Energy optimization associated with thermal comfort and indoor air control

via a deep reinforcement learning algorithm. Building and Environment, 155:105–117, 2019.

[274] Moritz Frahm, Thomas Dengiz, Philipp Zwickel, Heiko Maaß, Jörg Matthes, and Veit Hagenmeyer. Occupant-

oriented demand response with multi-zone thermal building control. Applied Energy, 347:121454, 2023.

[275] Yan Du, Fangxing Li, Kuldeep Kurte, Jeffrey Munk, and Helia Zandi. Demonstration of Intelligent HVAC

Load Management With Deep Reinforcement Learning: Real-World Experience of Machine Learning in

Demand Control. IEEE Power and Energy Magazine, 20(3):42–53, 2022.

[276] Bram De Cooman, Johan Suykens, and Andreas Ortseifen. Enforcing Hard State-Dependent Action Bounds

on Deep Reinforcement Learning Policies. In Machine Learning, Optimization, and Data Science: 8th

International Workshop, LOD 2022, Certosa di Pontignano, Italy, September 19–22, 2022, Revised Selected

Papers, Part II, pages 193–218. Springer, 2023.

[277] Peng Zhang, Jianye Hao, Weixun Wang, Hongyao Tang, Yi Ma, Yihai Duan, and Yan Zheng. KoGuN: ac-

celerating deep reinforcement learning via integrating human suboptimal knowledge. arXiv preprint

arXiv:2002.07418, 2020.

[278] Ramij R Hossain, Kaveri Mahapatra, Qiuhua Huang, and Renke Huang. Physics-informed Deep Reinforce-

ment Learning-based Adaptive Generator Out-of-step Protection for Power Systems. In 2023 IEEE Power &

Energy Society General Meeting (PESGM), pages 1–5. IEEE, 2023.

[279] Sebastien Gros, Mario Zanon, and Alberto Bemporad. Safe reinforcement learning via projection on a safe

set: How to achieve optimality? IFAC-PapersOnLine, 53(2):8076–8081, 2020.

[280] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval Tassa. Safe

exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[281] Ruihang Wang, Xinyi Zhang, Xin Zhou, Yonggang Wen, and Rui Tan. Toward Physics-Guided Safe Deep

Reinforcement Learning for Green Data Center Cooling Control. In 2022 ACM/IEEE 13th International

Conference on Cyber-Physical Systems (ICCPS), pages 159–169. IEEE, 2022.

[282] Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and Changjie Fan.

Learning to utilize shaping rewards: A new approach of reward shaping. Advances in Neural Information

Processing Systems, 33:15931–15941, 2020.

[283] Nikos Komodakis and Jean-Christophe Pesquet. Playing with duality: An overview of recent primal? dual

approaches for solving large-scale optimization problems. IEEE Signal Processing Magazine, 32(6):31–54,

2015.

[284] Xuyang Zhong, Zhiang Zhang, Ruijun Zhang, and Chenlu Zhang. End-to-End Deep Reinforcement Learning

Control for HVAC Systems in Office Buildings. Designs, 6(3):52, 2022.

[285] Xuebo Liu, Yingying Wu, Bo Liu, and Hongyu Wu. A Multi-Agent Deep Deterministic Policy Gradient Method

for Multi-Zone HVAC Control. In 2023 IEEE Power & Energy Society General Meeting (PESGM), pages 1–5.

IEEE, 2023.

[286] Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial Intelligence

Review, pages 1–49, 2022.

[287] Annie Wong, Thomas Bäck, Anna V Kononova, and Aske Plaat. Deep multiagent reinforcement learning:

Challenges and directions. Artificial Intelligence Review, 56(6):5023–5056, 2023.

[288] Jiechao Gao, Wenpeng Wang, Fateme Nikseresht, Viswajith Govinda Rajan, and Bradford Campbell. PFDRL:

Personalized Federated Deep Reinforcement Learning for Residential Energy Management. In Proceedings

of the 52nd International Conference on Parallel Processing, pages 402–411, 2023.

[289] Zixin Jiang and Bing Dong. OCCUPIED: Long-term Field Experiment Results from an Occupant-Centric

Control in an Office Building. Energy and Buildings, page 113435, 2023.

[290] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier Rando, Rachel

Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems and fundamental limitations

of reinforcement learning from human feedback. arXiv preprint arXiv:2307.15217, 2023.

187



Bibliography

[291] Seongkwon Cho and Cheol Soo Park. Rule reduction for control of a building cooling system using explain-

able AI. Journal of Building Performance Simulation, 15(6):832–847, 2022.

[292] Thomas Hickling, Abdelhafid Zenati, Nabil Aouf, and Phillippa Spencer. Explainability in Deep Rein-

forcement Learning, a Review into Current Methods and Applications. arXiv preprint arXiv:2207.01911,

2022.

[293] Dang Minh, H Xiang Wang, Y Fen Li, and Tan N Nguyen. Explainable artificial intelligence: a comprehensive

review. Artificial Intelligence Review, pages 1–66, 2022.

[294] Daniel Gedon, Niklas Wahlström, Thomas B Schön, and Lennart Ljung. Deep state space models for

nonlinear system identification. IFAC-PapersOnLine, 54(7):481–486, 2021.

[295] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,

Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion

Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,

Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-

Scale Machine Learning on Heterogeneous Systems, 2015. URL https://www.tensorflow.org/. Software

available from tensorflow.org.

[296] Paul Werbos. Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD

thesis, Committee on Applied Mathematics, Harvard University, Cambridge, MA, 1974.

[297] Lennart Ljung, Carl Andersson, Koen Tiels, and Thomas B Schön. Deep learning and system identification.

IFAC-PapersOnLine, 53(2):1175–1181, 2020.

[298] Marco Forgione and Dario Piga. Continuous-time system identification with neural networks: Model

structures and fitting criteria. European Journal of Control, 59:69–81, 2021.

[299] Steven L Brunton and J Nathan Kutz. Data-driven science and engineering: Machine learning, dynamical

systems, and control. Cambridge University Press, 2022.

[300] Gerben I Beintema, Maarten Schoukens, and Roland Tóth. Deep subspace encoders for nonlinear system

identification. Automatica, 156:111210, 2023.

[301] Daniele Masti and Alberto Bemporad. Learning nonlinear state–space models using autoencoders. Auto-

matica, 129:109666, 2021.

[302] Wilson J Rugh. Linear system theory. Prentice-Hall, Inc., 1996.

[303] IS Khalil, JC Doyle, and K Glover. Robust and optimal control. Prentice hall, 1996.

[304] Jan C Schulze and Alexander Mitsos. Data-Driven Nonlinear Model Reduction Using Koopman Theory:

Integrated Control Form and NMPC Case Study. IEEE Control Systems Letters, 6:2978–2983, 2022.

[305] Jan C Schulze, Danimir T Doncevic, and Alexander Mitsos. Identification of MIMO Wiener-type Koopman

models for data-driven model reduction using deep learning. Computers & Chemical Engineering, 161:

107781, 2022.

[306] Hyungjin Choi, Valerio De Angelis, and Yuliya Preger. Data-driven Battery Modeling based on Koopman

Operator Approximation using Neural Network. In 2023 IEEE Power & Energy Society General Meeting

(PESGM), pages 1–5. IEEE, 2023.

[307] Michael A Lones. How to avoid machine learning pitfalls: a guide for academic researchers. arXiv preprint

arXiv:2108.02497, 2021.

[308] Maurício C De Oliveira, Jacques Bernussou, and José C Geromel. A new discrete-time robust stability

condition. Systems & control letters, 37(4):261–265, 1999.

[309] Lennart Ljung. System identification toolbox: User’s guide. Citeseer, 1995.

[310] Peter Van Overschee and Bart De Moor. N4SID: Subspace algorithms for the identification of combined

deterministic-stochastic systems. Automatica, 30(1):75–93, 1994.

[311] Michel Verhaegen and Patrick Dewilde. Subspace model identification part 2. Analysis of the elementary

output-error state-space model identification algorithm. International journal of control, 56(5):1211–1241,

1992.

[312] Wallace E Larimore. Canonical variate analysis in identification, filtering, and adaptive control. In 29th IEEE

Conference on Decision and control, pages 596–604. IEEE, 1990.

188

https://www.tensorflow.org/


Bibliography

[313] Peter Van Overschee and Bart De Moor. A unifying theorem for three subspace system identification

algorithms. Automatica, 31(12):1853–1864, 1995.

[314] S Joe Qin, Weilu Lin, and Lennart Ljung. A novel subspace identification approach with enforced causal

models. Automatica, 41(12):2043–2053, 2005.

[315] S Joe Qin and Lennart Ljung. Parallel QR implementation of subspace identification with parsimonious

models. IFAC Proceedings Volumes, 36(16):1591–1596, 2003.

[316] Gabriele Pannocchia and Mirco Calosi. A predictor form PARSIMonious algorithm for closed-loop subspace

identification. Journal of Process Control, 20(4):517–524, 2010.

[317] Wen-bing Huang, Le le Cao, Fuchun Sun, Deli Zhao, Huaping Liu, and Shanshan Yu. Learning Stable Linear

Dynamical Systems with the Weighted Least Square Method. In IJCAI, volume 1599, page 1605, 2016.

[318] Byron Boots, Geoffrey J Gordon, and Sajid Siddiqi. A constraint generation approach to learning stable

linear dynamical systems. Advances in neural information processing systems, 20, 2007.

[319] Seth L Lacy and Dennis S Bernstein. Subspace identification with guaranteed stability using constrained

optimization. IEEE Transactions on automatic control, 48(7):1259–1263, 2003.

[320] Nicolas Gillis, Michael Karow, and Punit Sharma. A note on approximating the nearest stable discrete-time

descriptor systems with fixed rank. Applied Numerical Mathematics, 148:131–139, 2020.

[321] Wouter Jongeneel, Tobias Sutter, and Daniel Kuhn. Efficient learning of a linear dynamical system with

stability guarantees. IEEE Transactions on Automatic Control, 2022.
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