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Abstract
The goal of this work is to use anisotropic adaptive finite elements for the numerical
simulation of aluminium electrolysis. The anisotropic adaptive criteria are based on a
posteriori error estimates derived for simplified problems. First, we consider the elliptic
problem −∇ · (µ · ∇u) = f with µ > 0 smooth, but strongly varying. We then study the
steady Stokes equation −µ∆u +∇p = f with µ > 0 constant and finally the nonlinear
p-Laplace problem −∇((µ + |∇u|p−2)∇u) = f with µ ≥ 0 constant and p ≥ 2. In
particular, we focus on continuous piecewise linear finite elements with possibly large
aspect ratio. Whenever possible, error estimates are proven to be equivalent to the
numerical error with constants independent from the mesh aspect ratio. Numerical
experiments confirming these predictions are presented.

Adaptive strategies based on the derived error estimates are proposed. Numerical
experiments show sharpness of the estimates on adapted meshes. For a given accuracy
the computational time is reduced.

Finally, numerical simulations of the aluminium electrolysis process, using adaptive
meshes, are considered. The fluid-flow problem without and with gas is studied. Numeri-
cal results confirming a reduction of the computational time are presented.

Key words: A posteriori error estimates, Adaptive algorithms, Anisotropic finite el-
ements, Elliptic problem, Nonlinear equation, p-Laplacian problem, Stokes equation,
Aluminium electrolysis.
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Résumé
Le but de ce travail est d’utiliser des éléments finis anisotropes adaptatifs pour la
simulation numérique de l’électrolyse d’aluminium. Les critères d’adaptation anisotropes
sont basés sur des estimateurs d’erreur a posteriori, dérivés pour des problèmes simplifiés.
Dans un premier temps, nous considérons le problème elliptique −∇ · (µ · ∇u) = f , où la
fonction µ > 0 est régulière, mais peut avoir de fort gradients. Nous étudions ensuite
l’équation de Stokes stationnaire −µ∆u + ∇p = f , avec µ > 0 constant. Finalement,
nous nous intéressons au problème p-Laplacien nonlinéaire −∇((µ + |∇u|p−2)∇u) = f ,
avec µ ≥ 0 constant et p ≥ 2. Nous nous concentrons en particulier sur des éléments
finis continus, linéaires par morceaux, pouvant avoir un grand rapport d’aspect. Lorsque
cela est possible, l’équivalence des estimateurs d’erreur et de l’erreur numérique est
démontrée, avec des constantes indépendantes du rapport d’aspect du maillage. Des
résultats numériques confirmant ces prédictions sont présentés.

Des stratégies d’adaptation basées sur les estimateurs d’erreur dérivés sont proposées.
Les expériences numériques démontrent la précision des estimateurs sur des maillages
adaptés. En particulier, pour une précision donnée, le temps de calcul est réduit.

Finalement, des simulations numériques du processus d’électrolyse d’aluminium réali-
sées avec des maillages adaptatifs sont présentées. Le problème d’écoulement des fluides,
avec et sans gaz, est présenté. Des résultats numériques confirmant une réduction du
temps de calcul sont discutés.

Mots clefs : Estimateurs d’erreur a posteriori, Algorithmes adaptatifs, Elements fi-
nis anisotropes, Problèmes elliptiques, Problème nonlinéaire, P-Laplacian, Equation de
Stokes, Electrolysis d’aluminium.
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Notations

We introduce some notations used along this work.
Let Ω ⊂ Rd, d = 2, 3 a Lipschitz domain with boundary ∂Ω. For 1 ≤ p < +∞ we

define

• Lp(Ω) = {v : Ω→ R : v measurable and such that
∫

Ω |u|p < +∞}

• L2
0(Ω) = {v ∈ L2(Ω) :

∫
Ω v = 0}

• L∞(Ω) = {v : Ω→ R : v measurable and ∃C > 0 such that |v| ≤ C a.e.}

Let n ∈ N+, α = (α1, . . . , αn) ∈ Nn be a multi-index and |α| = ∑n
i=1 αi, we define

• Dαv = ∂|α|v
∂

α1
x1 ···∂αn

xn

Let m ∈ N+ and 1 ≤ p ≤ ∞, the following Sobolev spaces are defined

• W m,p(Ω) = {v : Ω→ R : Dαv ∈ Lp(Ω) ∀ |α| ≤ m}

• W m,p
0 (Ω) = {v ∈ W m,p(Ω) : v|∂Ω = 0}, where v|∂Ω = 0 has to be understood in

terms of traces.

• Hm(Ω) = W m,2(Ω)

• Hm
0 (Ω) = W m,2

0 (Ω)

Let x = (x1, . . . , xd) ∈ Rd, 1 ≤ p < ∞ and A ∈ Rd×d, the following discrete norms
notations are used

• p-norm : || · ||p =
(∑d

i=1 |xi|p
)1/p

• infinity norm : ||x||∞ = max
1≤i≤d

|xi|

• ||A||p = sup
||x||p ̸=0

||Ax||p
||x||p

When no confusion is possible, we refer to the p-norm as | · |. Let 1 ≤ p <∞, the following
continuous norms notations are used

• for v ∈ Lp(Ω), ||v||Lp(Ω) =
(∫

Ω ||v||pp
)1/p
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Notations

• for v ∈W m,p(Ω), ||v||W m,p(Ω) =

 ∑
|α|≤m

||Dαv||pLp(Ω)

1/p

• for v ∈W m,p(Ω), |v|W m,p(Ω) =

 ∑
|α|=m

||Dαv||pLp(Ω)

1/p

• for v ∈ L∞(Ω), ||v||L∞(Ω) = inf{C ≥ 0 : |v| ≤ C a.e.}

Additionally we introduce the following frequent notations.

• For h > 0, Th is a mesh of Ω in element Kj of diameter hKj ≤ h. We have
Ω = ∪Kj∈Th

Kj with Ki ∩Kj = ∅ if i ̸= j.

• When d = 2, we consider triangular meshes.

• When d = 3, we consider tetrahedral meshes.

• We define ∂Ki a boundary element of K for i = 1, . . . , d + 1 (an edge of triangle K

when d = 2 and a face of thetrahedron K when d = 3).

• We set h = max
K∈Th

hK as the mesh size.

• ρK is the diameter of the largest inscribed ball in K.

• γK = hK
ρK

is the aspect ratio of K.

• We note ∆K the patch of element K, i.e. the set of elements sharing a vertex with
K.

• K̂ is a reference element and TK : K̂ → K is an affine transformation.

• We refer to ri,K as the ith unit vector corresponding to the ith stretching direction
of K and λi,K as the corresponding value of stretching. Both with respect to the
affine map TK .

• Ĉ denotes a positive constant depending only on K̂, which may vary from line to
line.

• u usually denotes the exact solution of a PDE.

• Vh is the usual finite elements space of continuous, piecewise linear, function, on
element K with zero value of ∂Ω.

• uh denotes the piecewise continuous finite elements solution of a PDE.

• For any v ∈W m,p(K) we denote v̂ ∈W m,p(K̂) the corresponding function defined
on the reference element K̂ through changes of variable TK .
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Introduction

This work is financially supported by Rio Tinto Aluminium and motivated by the
numerical simulation of aluminium electrolysis.

Aluminium is a widely used element in industrial productions, but can not be found
in its pure form in nature. It is thus necessary to produce aluminium from other existing
minerals. Hall-Héroult process produces pure aluminium (Al) from alumina (Al2O3).
It is a complex method with an important carbon footprint. According to [24], it is
responsible for 1.7% of the worldwide carbon footprint and for 3% of the worldwide electric
current consumption. Optimizing such a process is thus essential. Measures and practical
experiments are often expensive, complicate or even not possible. The development of
mathematical models to describe such a phenomena is therefore fundamental.

Aluminium electrolysis can be modelled using partial differential equations (PDEs),
whose exact solution is in most case out of reach. Numerical methods to build, efficiently
and, with some guarantees, an approximated solution therefore need to be addressed.
Since the geometry of the computational domain is complex, we will use the finite element
method.

Let Ω ⊂ Rd, d = 2, 3, be the computational domain of a stationary partial differential
equation F (u) = 0 with F a differential operator and u the solution. When using finite
elements, a so-called mesh, of Ω is needed. Given h > 0, let Th be a partition of Ω in
non-overlapping polyhedrons K with diameter hK less or equal than h. We denote uh the
approximate solution computed using the mesh Th. Assessing the precision of the finite
element method is fundamental. If ||u− uh|| is a measure of the committed error, typical
questions are : does ||u− uh|| go to 0 when h does ? How fast ? This kind of questions
are addressed by a priori error analysis, which provides bounds of the form

||u− uh|| ≤ Chα||Dβu|| (1)

with α > 0 and Dβ the derivative of order β > 0. The right hand side of the a priori
error estimates involves the unknown exact solution. Having a computable right hand
side could be very useful. This is the goal of a posteriori error analysis, which aim to
derive error estimates of the form

||u− uh|| ≤ Cη(uh), (2)

1



Introduction

where C should be independent of u and h and η(uh) is computable once uh is known.
Several classes of meshes can be considered and their characteristics may influence

the error ||u− uh||. We focus in particular on

• shape regular meshes : meshes having aspect ratio of each element uniformly
bounded by a constant independent of h ;

• anisotropic meshes : meshes with possible large aspect ratio.

A posteriori error estimates were first derived for shape regular meshes [8, 72, 58, 27, 71, 7,
1, 73, 12], the constant C in (2) depending on the aspect ratio. However having meshes with
large aspect ratio can be considerably useful, typically when dealing with boundary layers
or regions where the solution u has strong variations. In order to cope with this kind of
meshes, a new framework has been introduced [33, 34, 43, 6]. New anisotropic a posteriori
error estimates have been developed [43, 55, 74, 51, 23, 33, 34, 32, 62, 60, 52, 16, 14].

One of the first goal of this work is to derive a posteriori error estimates able to deal
with anisotropic meshes and to prove and check numerically an equivalence with the
numerical error, that is to say

C1η(uh) ≤ ||u− uh|| ≤ C2η(uh).

Moreover we aim to prove the following characteristics of the error estimator Cη(uh)

• Independence of η(uh)
||u−uh|| from the solution u,

• Independence of η(uh)
||u−uh|| from the aspect ratio,

• Independence of η(uh)
||u−uh|| from the parameters of the PDE.

A second subject of interest is to implement adaptive finite elements. For a given
accuracy, adaptive finite elements demonstrated their efficiency to solve PDEs at a reduced
computational cost. The adaptive criteria is often based on an a posteriori error estimator.
In the isotropic framework many works have been presented [10, 72, 58, 27, 71, 7, 1, 55, 75].
With the development of the new anisotropic framework, adaptive finite elements with
large aspect ratio have been also studied [3, 15, 38, 65, 62, 5, 4, 32, 58]. In this work we
present algorithms based on adaptive finite elements with possible large aspect ratio.
The main goal of these algorithms is to build sequences of meshes, having possible large
aspect ratio, for a prescribed accuracy. Roughly speaking, for a given accuracy TOL, we
aim to construct meshes such that

||u− uh|| ≃ η(uh) ≃ TOL.

Consequently, the computational time to obtain an approximated solution for a given
accuracy is reduced. This approach could be very useful, when simulating aluminium
electrolysis, which requires huge computations.

To summarize, our main goals are :

2



Introduction

• to derive a posteriori error estimates useful also when large aspect ratio meshes are
considered ;

• to use adaptive finite elements based on the estimates to reduce the computational
time needed to reach a given level of accuracy.

• to apply these algorithms to the numerical simulation of aluminium electrolysis.

The present work is divided in two parts : the first part (Chapter 1 to Chapter 4)
deals with theoretical foundations and numerical experiments on academic problems.
The second part (Chapter 5) is dedicated to the industrial application to aluminium
electrolysis.

In Chapter 1 the anisotropic finite elements setting [33, 34], used in the whole thesis
is presented. Useful anisotropic interpolation error estimates in the Lp norm are proved.

In Chapter 2, the elliptic problem

−∇ · (µ∇u) = f in Ω,

u = 0 on ∂Ω,

where µ > 0 is smooth but strongly varying, is studied. In Section 2.2, an anisotropic a
posteriori error estimator is presented. Upper and a new lower bound for the numerical
error ||µ1/2∇(u− uh)||L2(Ω) are proved. The equivalence between the error estimator and
the numerical error, up to higher order terms, is demonstrated (Theorem 2.1). In Section
2.3, numerical experiments confirming theoretical predictions on non-adapted meshes
are discussed. Adaptive algorithms, based on a posteriori error estimates, are introduced
in section 2.4. Finally, numerical experiments with adapted-meshes, proving theoretical
predictions and efficiency of the algorithms are discussed. This chapter is based on [29].

In Chapter 3 the steady Stokes problem

−div(µ∇u) +∇p = f in Ω,

div(u) = 0 in Ω,

u = 0 on ∂Ω,

where µ > 0 is a constant, is presented. In Section 3.2 an upper bound of the numerical
error is demonstrated (Theorem 3.1) and an error indicator for the semi-norm µ||∇(u−
uh)||L2(Ω) is introduced. In Section 3.3 numerical experiments with non-adapted meshes
showing sharpness of the error indicator are presented. We then present numerical results
of adaptive algorithms based on the error indicator (Section 3.4).

Chapter 4 is based on [56]. The nonlinear p-Laplacian problem

−∇ · ((µ + |∇u|p−2)∇u) = f in Ω,

u = 0 on ∂Ω

3
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where µ ≥ 0 is a constant, is considered. In section 4.2 anisotropic a posteriori error
estimates for the W 1,p

0 norms and a quasi-norm are presented. A lower bound, for the
quasi-norm only, is demonstrated and equivalence, up to higher order terms, of quasi-norm
numerical error and error estimator is shown (Theorem 4.3). Numerical experiment with
non-adapted meshes are discussed in Section 4.3. Applications of adaptive algorithms
with the new error estimators are reported in Section 4.4.

In Chapter 5 an application to aluminium electrolysis is presented. Sections 5.2 and
5.3 are dedicated to the study of adaptive meshes for the fluid-flow problem. An error
indicator to construct adapted meshes for the fluid-domain is presented. Two different
adaptation strategies are discussed and numerical experiments showing the benefits of
adaptive meshes, when solving the fluid-flow problem are presented. In Section 5.4 we test
our adaptive approach, when solving the fluid-flow problem taking into account a mixture
model for diluted gas in the liquid flow. Numerical results are presented. In section 5.5 a
different fluid domain is considered and numerical experiments with adaptive meshes are
shown. A new adaptive strategy with an interest for industrial computation is discussed.

4



1 Mathematical setting

The goal of this chapter is to present the anisotropic setting which will be useful in the
whole thesis. The framework of [33, 34] is used. Let Ω ⊂ Rd be a polygon for d = 2 and a
polyhedron for d = 3. For any h > 0, let Th be any conformal mesh of Ω into elements K

(triangles for d = 2, tetrahedra for d = 3) of diameter hK ≤ h. Let Vh be the usual finite
elements space of continuous, piecewise linear, functions, on elements K of Th, with zero
value on ∂Ω. For any K ∈ Th we denote by TK : K̂ → K one of the affine transformation
mapping the reference element K̂ into K defined by

x = TK(x̂) = MK x̂ + tK , (1.1)

where MK ∈ Rd×d and tK ∈ Rd. Since MK is invertible, it admits a singular value
decomposition MK = RT

KΛKPK , where RK and PK are orthogonal matrices and

ΛK =


λ1,K

. . .
λd,K

 , λ1,K ≥ · · · ≥ λd,K > 0, RK =


rT

1,K
...

rT
d,K

 .

In the above notations, r1,K , . . . , rd,K are the unit vectors corresponding to the directions
of stretching of K and λ1,K ≥ · · · ≥ λd,K > 0 to the corresponding amplitude. A
geometrical interpretation is shown in Figure 1.1 for d = 2. Note that, since TK is not
uniquely defined, then neither λi,K , ri,K , i = 1, . . . , d are.

In the standard isotropic finite elements theory, interpolation estimates involve
constants that may depend on the aspect ratio, and thus yield a posteriori error estimates
that are not optimal when using anisotropic finite elements. In next proposition we
present interpolation estimates, independent of the mesh aspect ratio.

Let Rh : W 1,p(Ω) → Vh be Clément’s interpolant with p ≥ 2 [22]. When using
anisotropic meshes, some additional geometrical assumptions must be made in order to
ensure that the constants involved in the interpolation estimates will not depend on the
mesh aspect ratio. From now, it is assumed that

1. For each K, the cardinality of ∆K, that is the union of elements sharing a vertex
with K, is uniformly bounded from above, independently of the mesh geometry.

5



Chapitre 1. Mathematical setting

2. For each K, the diameter of ∆K̂ = T −1
K (∆K) is uniformly bounded from above,

independently of the mesh geometry.
In particular, the second assumption excludes too distorted meshes, see for instance
Figure 1.2 for an example of acceptable and unacceptable patch.

x̂1

x̂2

1

1

r2,K

r1,K

λ2,K λ1,KK̂
K

TK

Figure 1.1 : Transformation TK mapping the usual reference element K̂ into a triangle
K. The reference triangle is stretched in the direction r1,K (resp. r2,K), with amplitude
λ1,K (resp. λ2,K).
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Figure 1.2 : Top : example of acceptable patch : the size of ∆K̂ is independent of
the aspect ratio H/h. Bottom : example of non-acceptable patch where the size of ∆K̂
depends of the aspect ratio H/h.
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It guarantees that all the quantities vary smoothly in the neighborhood of every
element K. In practice, these assumptions seem to be fulfilled when using available
anisotropic mesh generators [46, 39]. Proceeding as in [33, 34] for the case p = 2 and
d = 2, we obtain the following.

Proposition 1.1 (Anisotropic Clément interpolation error estimate in the Lp norm). Let
p ≥ 2, there exists a constant Ĉ > 0 depending only on the reference element K̂ such that
for all v ∈W 1,p(Ω), for all K ∈ Th and its elements boundaries ∂Ki for i = 1, . . . , d + 1
we have


d∏

j=1
λj,K

|∂Ki|



1/p

||v −Rh(v)||Lp(∂Ki) + ||v −Rh(v)||Lp(K) ≤ Ĉωp,K(v), (1.2)

where

(ωp,K(v))p =
d∑

i=1
λp

i,K ||∇v · ri,K ||pLp(∆K). (1.3)

Before proving the proposition, we introduce the following Lemma, which is a genera-
lization of what presented in Lemma 2.2 and 2.1 in [33].

Lemma 1.1. Let v ∈W 1,p(K) and v̂ ∈W 1,p(K̂) the corresponding function defined on
the reference element K̂. Then there exist a constant Ĉ > 0 such that

||∇̂v̂||p
Lp(K̂) ≤ Ĉ

d∑
i=1


λp

i,K

d∏
j=1

λj,K

 ||∇v · ri,K ||pLp(K). (1.4)

Similarly there exists a constant Ĉ > 0 such that

||∇v||pLp(K) ≤ Ĉ
d∑

i=1


d∏

j=1
λj,K

λp
i,K

 ||∇̂v̂ · pi,K ||pLp(K̂), (1.5)

where pi,K are the ith vectors of matrix PK introduced after (1.1). Suppose now that
v ∈W 2,p(K) and v̂ ∈W 2,p(K̂). Then there exists a constant Ĉ > 0 such that

||Ĥ(v̂)||p
Lp(K̂) ≤ Ĉ

d∑
i,j=1

(λi,Kλj,K)p

d∏
l=1

λl,K

∫
K

(
rT

i,KH(v)rj,K

)p
. (1.6)
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Chapitre 1. Mathematical setting

Here we define the Hessian matrix H(v) ∈ Rd×d

(H(v))i,j = ∂2v

∂xi∂xj
, i, j = 1, . . . , d

and ||H(v)||pLp(K) =
∫

K
||H(v)||pp, where for x ∈ Rd

||H(v)||p = sup
||x||p ̸=0

||H(v)x||p
||x||p

represents the matrix p-norm for d× d matrices.

Remark 1.1. Notice that when p = 2, then (1.4), (1.5) and (1.6) are equalities and are
available for d = 2 in [33, 34].

Proof. Using the affine map (1.1) previously defined we have

||∇̂v̂||p
Lp(K̂) = ||MT

K∇v||p
Lp(K̂) =

∫
K̂
||P T

KΛKRK∇v||pp.

On finite spaces the following relations between vectorial norms can be proved : let
x ∈ Rd, then we have

||x||p ≤ ||x||2,

||x||2 ≤ d1/2−1/p||x||p,

where || · ||p and || · ||2 represent the p-norm and 2-norm respectively. Using these relations,
the orthogonality properties of PK and defining Φ = ΛKRK∇v we have

||∇̂v̂||p
Lp(K̂) ≤

∫
K̂
||P T

KΛKRK∇v||p2 =
∫

K̂
< P T

KΦ, P T
KΦ >p/2

=
∫

K̂
< P T

KPKΦ, Φ >p/2=
∫

K̂
||Φ||p2 ≤ d1/2−1/p

∫
K̂
||Φ||pp,

where < ·, · > represents the scalar product associated with the 2-norm in Rd. We thus
have

||∇̂v̂||p
Lp(K̂) ≤ d1/2−1/p

∫
K̂

d∑
i=1

λp
i,K |∇v · ri,K |p = d1/2−1/p 1

d∏
i=1

λi,K

∫
K

d∑
i=1

λp
i,K |∇v · ri,K |p

= Ĉ
d∑

i=1


λp

i,K

d∏
j=1

λj,K

 ||∇v · ri,K ||pLp(K).

Which conclude the proof of (1.4). Inequality (1.5) is proven in a similar way. To prove
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(1.6), we use the fact that for any symmetric matrix A ∈ Rd×d and for any x ∈ Rd we
have

||A||p := sup
||x||p ̸=0

||Ax||p
||x||p

≤ d1/2−1/p sup
||x||2 ̸=0

||Ax||2
||x||2

≤ d1/2−1/p||A||F ,

where || · ||F is the Frobenius norm. Thus, we obtain

||Ĥ(v̂)||p
Lp(K̂) ≤ Ĉ

∫
K̂

(
||P T

KΛRKH(v)RT
KΛPK ||2F

)p/2
.

Using again orthogonality properties of PK and defining Q = ΛKRK , we have

||Ĥ(v̂)||p
Lp(K̂) ≤ Ĉ

∫
K̂

(
||QH(v)QT ||2F

)p/2
≤ Ĉ

∫
K̂

 d∑
i,j=1

(
λi,Kλj,KrT

i,KH(v)rj,K

)2
p/2

≤ Ĉ
d∑

i,j=1

∫
K̂

(λi,Kλj,K)p
(
rT

i,KH(v)rj,K

)p

≤ Ĉ
d∑

i,j=1

(λi,Kλj,K)p

d∏
l=1

λl,K

∫
K

(
rT

i,KH(v)rj,K

)p
,

which concludes the proof.

We are now able to prove Proposition 1.1.

Proof. (Proposition 1.1) We have, using properties presented in [22]

||v −Rh(v)||pLp(K) =

 d∏
j=1

λj,K

 ||v̂ − R̂h(v̂)||p
Lp(K̂) ≤ Ĉhp

K̂

 d∏
j=1

λj,K

 ||∇̂v̂||p
Lp(∆K̂)

= Ĉ

 d∏
j=1

λj,K

 ∑
T ∈∆K̂

||∇̂v̂||pLp(T ).

Using (1.4) we obtain
||v −Rh(v)||pLp(K) ≤ Ĉ(ωp,K(v))p.

Proceeding in a similar way, we have for i = 1, . . . , d + 1

||v −Rh(v)||pLp(∂Ki) ≤ Ĉ|∂Ki|||v̂ − R̂h(v̂)||p
Lp(∂K̂i)

≤ Ĉ|∂Ki|
∑

T ∈∆K̂

||∇̂v̂||pLp(T ).

Using again (1.4), we conclude the proof.

Remark 1.2. When p = 2 we have as in [33, 34]

(ω2,K(v))2 =
d∑

i=1
λ2

i,K(rT
i,KGK(v)ri,K)),

9



Chapitre 1. Mathematical setting

with
(GK(v))i,j =

∫
∆K

∂v

∂xi

∂v

∂xj
, i, j = 1, . . . , d.

When p > d, since v ∈ W 1,p(Ω), then v ∈ C0(Ω̄) thus the Lagrangian interpolant could
be used. However this will not always be the case in this work, thus only Clément’s
interpolant is considered in this work. Anisotropic Lagrange interpolation error estimates
can be found, for instance, in [28].

Remark 1.3. Proposition 1.1 can be extended to cases of vector valued functions. Let
v : Ω → Rs be a vector valued function with s = 2, 3, then we adopt the following
definition

(ωp,K(v))p =
s∑

i=1
(ωp,K(vi))p,

where vi are the components of v for i = 1, . . . , s.
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2 Anisotropic adaptive finite ele-
ments for an elliptic problem
with strongly varying diffusion
coefficient
The goal of this section is to develop an error estimator for the elliptic problem
−div(µ∇u) = f , where µ > 0 is smooth but varying strongly. We will prove, theo-
retically and numerically, an equivalence between the error estimator and the numerical
error u− uh up to higher order terms. Additionally adaptive algorithms, which will be
reused along the whole thesis, are presented.

2.1 Problem statement and numerical method

Given f : Ω → R and µ : Ω → R, we search for u : Ω → R that is the solution of the
elliptic equation 

−div(µ∇u) = f in Ω,

u = 0 on ∂Ω.

(2.1)

We suppose f ∈ L2(Ω) and µ ∈ L∞(Ω) such that there exist µmin, µmax such that

0 < µmin ≤ µ(x) ≤ µmax, a.e. x ∈ Ω.

Problem (2.1) can be written in weak form as : find u ∈ H1
0 (Ω) such that∫

Ω
µ∇u · ∇v =

∫
Ω

fv, ∀ v ∈ H1
0 (Ω). (2.2)

Under the above assumptions it can be shown, by an application of Lax-Milgram’s lemma,
that problem (2.2) is well-posed [37]. To approximate the solution of (2.2), we are looking

11



Chapitre 2. Anisotropic adaptive finite elements for an elliptic problem with
strongly varying diffusion coefficient

for uh ∈ Vh ⊂ H1
0 (Ω) such that∫

Ω
µ∇uh · ∇vh =

∫
Ω

fvh ∀vh ∈ Vh. (2.3)

As before by an application of Lax-Milgram’s lemma, we can prove well-posedness of
(2.3). A priori error estimates of this numerical method in the anisotropic settings can
be found in [28].

2.2 Anisotropic error estimator

We will introduce an error estimator ∑K∈Th
η2

K . Under some additional conditions we
will prove that the derived error estimator is equivalent to the numerical error u−uh in a
H1 semi-norm, that is to say there exists two constants Ĉ1, Ĉ2 > 0 that are independent
of the data Ω, µ, f , the mesh size and aspect ratio such that

Ĉ1
∑

K∈Th

η2
K ≤

∫
Ω

µ|∇(u− uh)|2 ≤ Ĉ2
∑

K∈Th

η2
K (2.4)

up to higher order terms.
For all K ∈ Th, we define the L2 projection of f onto the set of piecewise constant

functions by
ΠKf = 1

|K|

∫
K

f. (2.5)

For a vector valued function f = (f1, f2), we denote ΠKf =: (ΠKf1, ΠKf2), and for any
boundary element ∂Ki of K with i = 1, . . . , d + 1, we define

Π∂Ki
f = 1

|∂Ki|

∫
∂Ki

f.

We then define the local error estimator η2
K by

η2
K =

∥ΠK (f +∇ · (µ∇uh)) ∥L2(K)

+ 1
2

d+1∑
i=1


|∂Ki|
d∏

j=1
λj,K


1/2

∥[Π∂Ki
µ∇uh · n]∥L2(∂Ki)

ω2,K(u− uh).

(2.6)

Here n stands for the unit outer normal to K and ω2,K(·) is given by (1.3). For any
boundary element ∂Ki of K with i = 1, . . . , d + 1, we denote [·] the jump across ∂Ki

([·] = 0 if ∂Ki ⊂ ∂Ω).
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2.2 Anisotropic error estimator

Remark 2.1. Observe that error estimator (2.6) is not standard since it involves the
exact solution in the term ω2,K(u− uh), and thus is not fully computable. However, in
practice post-processing techniques can be applied in order to approximate the quantity
GK(u−uh), contained in ω2,K(u−uh), for instance Zienkiewicz−Zhu (ZZ) post-processing
[2, 75, 76]. More precisely, we will replace

∂(u− uh)
∂xi

by ΠZZ
h

∂uh

∂xi
− ∂uh

∂xi
, i = 1, . . . , d,

where, for any vh ∈ Vh, for any vertex P of the mesh

ΠZZ
h

∂vh

∂xi
(P ) =

∑
K∈Th
P ∈K

|K|
∂vh|K
∂xi∑

K∈Th
P ∈K

|K|

is an approximate L2(Ω) projection of ∂vh/∂xi onto Vh. It is well known [19, 76] that
for elliptic equations and structured meshes superconvergence of the ZZ recovery occurs,
implying that the post-processing is asymptotically exact, that is to say

lim
h→0

∥ΠZZ
h ∇uh −∇uh∥L2(Ω)
∥∇u−∇uh∥L2(Ω)

= 1.

On general meshes, it was first proven that ∥ΠZZ
h ∇uh −∇uh∥L2(Ω) and the true error

∥∇u − ∇uh∥L2(Ω) are equivalent, see for instance [44]. Finally, the superconvergence
of the ZZ gradient recovery was finally shown for unstructured anisotropic meshes [18].
In practice the efficiency of the ZZ post-processing was demonstrated for instance in
[60, 59, 62, 52, 63, 16, 53].

2.2.1 Equivalence between the numerical error and the error estimator

We state now the main result of the section.

Theorem 2.1. Assume that f ∈ L2(Ω) and µ ∈W 1,∞(Ω). Let u ∈ H1
0 (Ω) be the weak

solution of (2.1) and uh ∈ Vh be the solution of (2.3). Moreover, assume that there
exists Ĉ > 0 depending only on the reference element K̂ such that, for all K ∈ Th for
j = 1, . . . , d− 1

λ2
j,K(rT

j,KGK(u− uh)rj,K) ≤ Ĉλ2
d,K(rT

d,KGK(u− uh)rd,K) (2.7)

and assume λi,K vary smoothly around K for i = 1, . . . , d. Then there exists a constant
Ĉ1 > 0 depending only on the reference element K̂ such that∫

Ω
µ|∇(u− uh)|2 ≤ Ĉ1

∑
K∈Th

(η2
K + ε2

K

µmin
),

13



Chapitre 2. Anisotropic adaptive finite elements for an elliptic problem with
strongly varying diffusion coefficient

where

ε2
K = λ2

d,K

(
||f −ΠKf ||2L2(K) + ||(∇µ−ΠK∇µ) · ∇uh||2L2(K)

+ 1
λd,K

d+1∑
i=1
||[(µ−Π∂Ki

µ)∇uh · n]||2L2(∂Ki)

)
.

(2.8)

Moreover, there exists a constant Ĉ2 > 0 depending only on the reference element K̂ such
that

∑
K∈Th

η2
K ≤ Ĉ2

∑
K∈Th

((
1 +
||µ−ΠKµ||L∞(PK)

µmin

)∫
PK

µ|∇(u− uu)|2 + ε2
K

µmin

)
,

where we denoted PK = ∆K ∪ (
d+1⋃
i=1

∆Ki) with Ki the ith element sharing a facet ∂Ki

with K (see Figure 2.1).

K1
K

K2

K3

∂K1

∂K2

∂K3

Figure 2.1 : Triangle K and corresponding triangles Ki sharing the edges ∂Ki with K.

Remark 2.2. Assumption (2.7), which is equivalent to the matching assumption discussed
in [43] and was already used in [62], is satisfied whenever the errors in the directions
ri,K are equidistributed, which is precisely the goal of the adaptive algorithms discussed
in section 2.4.

Proof. (Theorem 1 : upper bound) Let e = u− uh, using (2.1) and (2.3) we have, for any
vh ∈ Vh ∫

Ω
µ|∇e|2 =

∫
Ω

f(e− vh)−
∫

Ω
µ∇uh · ∇(e− vh).

By integration by parts over the elements K, we obtain
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2.2 Anisotropic error estimator

∫
Ω

µ|∇e|2 =
∑

K∈Th

∫
K

(f + div(µ∇uh)) (e− vh) + 1
2

∫
∂K

[µ∇uh · n](e− vh)

=
∑

K∈Th

∫
K

(ΠKf + ΠK∇µ · ∇uh) (e− vh) + 1
2

d+1∑
i=1

∫
∂Ki

[Π∂Ki
µ∇uh · n](e− vh)

+
∑

K∈Th

∫
K

(f −ΠKf)(e− vh) +
∑

K∈Th

∫
K

(∇µ−ΠK∇µ) · ∇uh(e− vh)

+ 1
2
∑

K∈Th

d+1∑
i=1

∫
∂Ki

[(µ−Π∂Ki
µ)∇uh · n](e− vh).

Using Cauchy-Schwarz inequality, choosing vh = Rhe and by using interpolation error
estimates (1.2) we obtain∫

Ω
µ|∇e|2 ≤ Ĉ

( ∑
K∈Th

η2
K +

∑
K∈Th

(
||f −ΠKf ||L2(K) + ||(∇µ−ΠK∇µ) · ∇uh||L2(K)

+ 1
2
√

λd,K

d+1∑
i=1
||[(µ−Π∂Ki

µ)∇uh · n]||L2(∂Ki)
)
ω2,K(e)

)
.

Using assumption (2.7) and the fact that r1,K , . . . , rd,K form a basis of Rd, we have

ω2
2,K(e) ≤ Ĉλ2

d,K

d∑
j=1

(rT
j,KGK(e)rj,K) = Ĉλ2

d,K ||∇e||2L2(∆K).

Thus we have∫
Ω

µ|∇e|2 ≤ Ĉ

( ∑
K∈Th

η2
K +

∑
K∈Th

(
λd,K ||f −ΠKf ||L2(K)

+ λd,K ||(∇µ−ΠK∇µ) · ∇uh||L2(K)

+
λ

1/2
d,K

2

d+1∑
i=1
||[(µ−Π∂Ki

µ)∇uh · n]||L2(∂Ki)
)
||∇e||L2(∆K)

)

Using discrete Cauchy-Schwarz and Young’s inequality we obtain the result.

In order to prove the lower bound, we use the standard bubble functions [9, 73],
adapted to the anisotropic case in [62], and modified here to account for the variations
of µ.

Proposition 2.1. Let e = u − uh, there exists a function φ ∈ H1
0 (Ω) and a constant

Ĉ > 0 (that depends only on the reference element K̂) such that for any K ∈ Th for
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i = 1, . . . , d + 1

∫
∂Ki

[Π∂Ki
µ∇uh · n]φ = 1

2∥[Π∂Ki
µ∇uh · n]∥L2(∂Ki)

( |∂Ki|∏d
j=1 λj,K

)1/2

ω2,K(e)

+
(
|∂Ki|∏d

j=1 λj,Ki

)1/2

ω2,Ki(e)

 (2.9)

∫
K

(ΠK(f +∇ · (µ∇uh))φ = ∥ΠK(f +∇ · (µ∇uh))∥L2(K)ω2,K(e), (2.10)

 d∑
j=1

λ2
j,K ||∇φ · rj,K ||2L2(K)

1/2

≤ Ĉ

(
ω2,K(e) +

d+1∑
i=1

ω2,Ki(e)
)

(2.11)

and ∫
K

µ|∇φ|2 ≤ Ĉ
(
ΠKµ + ∥µ−ΠKµ∥L∞(K)

)(ω2
2,K(e)
λ2

d,K

+
d+1∑
i=1

ω2
2,Ki(e)
λ2

d,Ki

)
. (2.12)

We denoted for i = 1, . . . , d + 1, Ki the ith element sharing facet ∂Ki with K (see Figure
2.1).

Proof. We claim that

φ =
∑

K∈Th

CKΨK + 1
2
∑

K∈Th

d+1∑
i=1

C∂Ki
Ψ∂Ki

where CK , C∂Ki
are constants that need to be computed, and ΨK , Ψ∂Ki

are the usual
bubble functions over K and a facet element ∂Ki. Note that we set C∂Ki

= 0 if ∂Ki ⊂ ∂Ω.
First we compute C∂Ki

for i = 1, . . . , d + 1. We require that the constants associated to
the same facet shared by two elements are equal. Using the fact that ΨK , Ψ∂Kj

are zero
over ∂Ki for all j ̸= i, the fact that [Π∂Ki

µ∇uh · n] is constant over ∂Ki and (2.9), we
have

C∂Ki
= ±1

2




|∂Ki|2
d∏

j=1
λj,K


1/2

ω2,K(e) +


|∂Ki|2
d∏

j=1
λj,Ki


1/2

ω2,Ki(e)


1∫

∂Ki

Ψ∂Ki

,

where the sign is chosen accordingly to the sign of [Π∂Ki
µ∇uh ·n]. Moreover using (2.10),

the constants C∂Ki
computed and |K| = Ĉ

d∏
j=1

λj,K , we obtain
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2.2 Anisotropic error estimator

CK = ± 1∫
K

ΨK

Ĉ

 d∏
j=1

λj,K

1/2

ω2,K(e)

∓
d+1∑
i=1

1
2




|∂Ki|2
d∏

j=1
λj,K


1/2

ω2,K(e) +


|∂Ki|2
d∏

j=1
λj,Ki


1/2

ω2,Ki(e)


∫

K
Ψ∂Ki∫

∂Ki

Ψ∂Ki

,

where the signs are chosen again accordingly to the signs of [Π∂Ki
µ∇uh · n] and ΠK(f +

∇ · (µ∇uh)). Thus φ satisfies equations (2.9) and (2.10). Before proving the remaining
inequalities we prove the following bounds on the constants. We have

C2
∂Ki
≤ Ĉ


ω2

2,K(e)
d∏

j=1
λj,K

+
ω2

2,Ki(e)
d∏

j=1
λj,Ki

 , (2.13)

where we used ∫
∂Ki

Ψ∂Ki
= Ĉ|∂Ki|, i = 1, . . . , d + 1. (2.14)

In a similar way, using

∫
K

ΨK = Ĉ
d∏

j=1
λj,K , (2.15)

∫
K

Ψ∂Ki
= Ĉ

d∏
j=1

λj,K , i = 1, . . . , d + 1, (2.16)

we have

C2
K ≤ Ĉ


ω2

2,K(e)
d∏

j=1
λj,K

+
d+1∑
i=1

ω2
2,Ki(e)

d∏
j=1

λj,Ki

 . (2.17)

To prove (2.12), we note that∫
K

µ|∇φ|2 =
∫

K
ΠKµ|∇φ|2 +

∫
K

(µ−ΠKµ)|∇φ|2

17
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and then, using (2.17) and (2.13), we have

∫
K
|∇φ|2 ≤ Ĉ


ω2

2,K(e)
d∏

j=1
λj,K

+
d+1∑
i=1

ω2
2,Ki(e)

d∏
j=1

λj,Ki


∫

K
|∇ΨK |2 +

d+1∑
j=1

∫
K
|∇Ψ∂Kj

|2
 .

We also recall (1.5)

||∇ΨK ||2L2(K) ≤ Ĉ
d∑

i=1


d∏

j=1
λj,K

λ2
i,K

 ||∇̂Ψ̂K̂ · pi,K ||2L2(K̂),

which holds also for ∇Ψ∂Ki
with i = 1, . . . , d + 1 and together with the fact that

λ1,K ≥ · · · ≥ λd,K > 0 gives

∫
K
|∇φ|2 ≤ Ĉ


ω2

2,K(e)
d∏

j=1
λj,K

+
d+1∑
i=1

ω2
2,Ki(e)

d∏
j=1

λj,Ki




d−1∏
j=1

λj,K

λd,K

 .

Using the hypothesis that λi,K vary smoothly around K we conclude. In order to prove
(2.11) we proceed similarly. First note that for i = 1, . . . , d

∫
K
|∇φ · ri,K |2 ≤ Ĉ


ω2

2,K(e)
d∏

j=1
λj,K

+
d+1∑
l=1

ω2
2,Kl(e)

d∏
j=1

λj,Kl


(∫

K
|∇ΨK · ri,K |2 (2.18)

+
d+1∑
j=1

∫
K
|∇Ψ∂Kj

· ri,K |2
 . (2.19)

We recall (1.4) proved in Section 1

||∇̂Ψ̂K̂ ||
2
L2(K̂) =

d∑
i=1


λ2

i,K

d∏
j=1

λj,K

 ||∇ΨK · ri,K ||2L2(K).

The same holds for ∇Ψ∂Ki
with i = 1, . . . , d + 1, thus we obtain

18



2.2 Anisotropic error estimator

d∑
i=1

λ2
i,K ||∇φ · ri,K ||2L2(K) ≤ Ĉ

(
ω2

2,K(e) +
d+1∑
l=1

ω2
2,Kl(e)

)(
||∇̂Ψ̂K̂ ||

2
L2(K̂)

+
d+1∑
i=1
||∇̂Ψ̂∂K̂i

||2
L2(∂K̂i)

)
,

which gives (2.11).

We also need the following result.

Proposition 2.2. For any K ∈ Th and any v ∈ H1(Ω), there exists a constant Ĉ

depending only on the reference element such that for all i = 1, . . . , d + 1 we have

∥v −ΠKv∥L2(K) ≤ Ĉ

 d∑
j=1

λ2
j,K ||∇v · rj,K ||2L2(K)

1/2

,

∥v −Π∂Ki
v∥L2(∂Ki) ≤

Ĉ√
λd,K

 d∑
j=1

λ2
j,K ||∇v · rj,K ||2L2(K)

1/2

.

Proof. Let v̂ ∈ H1(K̂) the function corresponding to v, defined on the reference element.
We have

||v −ΠKv||2L2(K) =
d∏

j=1
λj,K

∫
K̂

(v̂ −ΠK̂ v̂)2

≤ Ĉ
d∏

j=1
λj,K

∫
K̂
|∇̂v̂|2,

where we used Poincaré-Wirtinger inequality. Using again (1.4) we obtain the first relation.
For the second, first notice that

||v −Π∂Ki
v||2L2(∂Ki) ≤ ||v −ΠKv||2L2(∂Ki).

Then we have, using change of variable and trace inequality

||v −Π∂Ki
v||2L2(∂Ki) ≤ Ĉ

d−1∏
j=1

λj,K ||v̂ −ΠK̂ v̂||2
L2(∂K̂i)

≤ Ĉ
d−1∏
j=1

λj,K

(
||v̂ −ΠK̂ v̂||2

L2(K̂) + ||∇̂v̂||2
L2(K̂)

)
,

which using again Poincaré-Wirtinger and (1.4) give the desired result.

We are now in condition to prove the lower bound of Theorem 2.1.
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Proof. (Theorem 2.1 : lower bound) Using the definition of η2
K and the identities (2.10)

and (2.9), one can write

∑
K∈Th

η2
K =

∑
K∈Th

(∫
K

(ΠK (f +∇ · (µ∇uh))) φ + 1
2

d+1∑
i=1

∫
∂Ki

[Π∂Ki
µ∇uh · n]φ

)
,

where φ ∈ H1
0 (Ω) is the function given by Proposition 2.1. Therefore, adding and

subtracting the correct quantities in the right hand side and using the properties of the
L2 projections ΠK and Π∂Ki

we have

∑
K∈Th

η2
K =

∑
K∈Th

∫
K

(f +∇ · (µ∇uh))φ + 1
2
∑

K∈Th

d+1∑
i=1

∫
∂Ki

[µ∇uh · n]φ

+
∑

K∈Th

∫
K

(ΠKf − f)(φ−ΠKφ) +
∑

K∈Th

∫
K

(ΠK∇µ−∇µ) · ∇uh(φ−ΠKφ)

+ 1
2
∑

K∈Th

d+1∑
i=1

∫
∂Ki

[(Π∂Ki
µ− µ)∇uh · n](φ−Π∂Ki

φ).

Integration by parts over elements K ∈ Th, the fact that u solves (2.2) and Cauchy-
Schwarz inequality give∑

K∈Th

η2
K ≤

∑
K∈Th

∥µ1/2∇e∥L2(K)∥µ1/2∇φ∥L2(K)

+
∑

K∈Th

(
∥(ΠKf − f)∥L2(K) + ∥(ΠK∇µ−∇µ) · ∇uh∥L2(K)

)
∥φ−ΠKφ∥L2(K)

+ 1
2
∑

K∈Th

d+1∑
i=1
∥[(Π∂Ki

µ− µ)∇uh · n]∥L2(∂Ki)∥φ−Π∂Ki
φ∥L2(∂Ki).

Now, proceeding as in proposition 2.2 we have∑
K∈Th

η2
K ≤

∑
K∈Th

∥µ1/2∇e∥L2(K)∥µ1/2∇φ∥L2(K)

+ Ĉ
∑

K∈Th

(
∥(ΠKf − f)∥L2(K) + ∥(ΠK∇µ−∇µ) · ∇uh∥L2(K)

)( d∑
i=1

λ2
i,K ||∇φ · ri,K ||2L2(K)

)1/2

+ Ĉ

2
∑

K∈Th

d+1∑
i=1
∥[(Π∂Ki

µ− µ)∇uh · n]∥L2(∂Ki)
1√
λd,K

 d∑
j=1

λ2
j,K ||∇φ · rj,K ||2L2(K)

1/2

.

We denote again Ki for i = 1, . . . , d + 1 the element sharing facet ∂Ki with K (see Figure
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2.2 Anisotropic error estimator

2.1). Finally, using the two bounds (2.11) and (2.12) and Young’s inequality, we obtain

∑
K∈Th

η2
K ≤ Ĉ

∫
Ω

µ|∇e|2

+
∑

K∈Th

[(
ΠKµ + ∥µ−ΠKµ∥L∞(K)

)(ω2
2,K(e)
λ2

d,K

+
d+1∑
i=1

ω2
2,Ki(e)
λ2

d,Ki

)]

+
∑

K∈Th

(∥(∇µ−ΠK∇µ) · ∇uh∥L2(K)

+ 1
2
√

λd,K

d+1∑
i=1
∥[(µ−Π∂Ki

µ)∇uh · n∥]∥L2(∂Ki)

+ ∥ΠKf − f∥L2(K)

)(
ω2,K(e) +

d+1∑
i=1

ω2,Ki(e)
).

(2.20)

Using assumption (2.7) and the fact that r1,K , . . . , rd,K form a basis of Rd, we have

ω2
2,K(e) ≤ Ĉλ2

d,K

d∑
j=1

(rT
j,KGK(e)rj,K) = Ĉλ2

d,K ||∇e||2L2(∆K).

In order to conclude the proof we note that

(
ΠKµ + ∥µ−ΠKµ∥L∞(K)

)(ω2
2,K(e)
λ2

d,K

+
d+1∑
i=1

ω2
2,Ki(e)
λ2

d,Ki

)
≤ Ĉ

(
ΠKµ + ∥µ−ΠKµ∥L∞(K)

)
||∇e||2L2(PK)

≤ Ĉ

(
||µ1/2∇e||2L2(PK) +

||µ−ΠKµ||L∞(PK)
µmin

||µ1/2∇e||2L2(PK)

)
,

where we denoted PK = ∆K ∪ (
d+1⋃
i=1

∆Ki). The final result is obtained using assumption 1
of Section 1, Young’s inequality, the fact that λi,K vary smoothly around K and inserting
the above estimate in (2.20).

In order to justify equivalence between the error estimator and the numerical error
up to higher order terms, we need the following proposition.
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Proposition 2.3. Assume f ∈ H1(Ω) and µ ∈W 2,∞(Ω). Then we have

||f −ΠKf ||2L2(K) ≤ Ĉ
d∑

i=1
λ2

i,K ||∇f · ri,K ||2L2(K),

||(∇µ−ΠK∇µ) · ∇uh||2L2(K) ≤ Ĉ

 d∑
i,j=1

λi,Kλj,K

λd,K
||rT

i,KH(µ)rj,K ||L∞(∂K)

2

||∇uh||2L2(∂K),

d+1∑
i=1
||[(µ−Π∂Ki

µ)∇uh · n]||2L2(∂Ki) ≤ Ĉ

(
d∑

i=1
λ2

i,K ||∇µ · ri,K ||2L∞(∂K)

)
||[∇uh · n]||2L2(∂K),

||µ−ΠKµ||L∞(K) ≤ Ĉ
d∑

i=1
λi,K ||∇µ · ri,K ||L∞(K),

where H(·) denotes the Hessian matrix.

Remark 2.3. In the isotropic framework Proposition 2.3 yields a contribution∑
K∈Th

ε2
K = O(h3),

which is negligible compared to

||(µ)1/2∇(u− uh)||2L2(Ω) = O(h2).

In the anisotropic setting, for instance if f and µ depend only on x2 and r1,K = (1, 0),
then ∑

K∈Th

ε2
K = O

((
max
K∈Th

λ2,K

)3
)

.

Thus in both case, Theorem 2.1 indeed yields (2.4) up to higher order terms.

Proof. (Proposition 2.3) The change of variable (1.1) and Poincaré-Wirtinger inequality
give

||f −Πkf ||2L2(K) ≤ Ĉ
d∏

j=1
λj,K

∫
K̂
|∇̂f̂ |2.

Using (1.4) we obtain the first inequality. We prove now the second inequality. Using
again change of variable (1.1) and Poincaré-Wirtinger, we have

||∇µ−ΠK∇µ||L∞(K) ≤ Ĉ lim
p→∞

(∏d
j=1 λj,K

λp
d,K

||∇̂µ̂−ΠK̂∇̂µ̂||p
Lp(K̂)

)1/p

≤ 1
λd,K

Ĉ||Ĥ(µ̂)||L∞(K̂).
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Applying (1.6), we obtain

||∇µ−ΠK∇µ||L∞(K) ≤
Ĉ

λd,K
lim

p→∞
||Ĥ(µ̂)||Lp(K̂)

≤ Ĉ

λd,K
lim

p→∞
d1/2−1/p

d∑
i,j=1

λi,Kλj,K(
d∏

l=1
λl,K

)1/p
||rT

i,KH(v)rj,K ||Lp(K),

which concludes the proof. Notice that we explicit the dependence of p of the constant
arising from (1.6). For the last inequality, we proceed in the same way : we use change of
variable (1.1), Poincaré-Wirtinger and (1.4). We focus on the third inequality. First of
all, for i = 1, . . . , d + 1 we have

||µ−Π∂Ki
µ||L∞(∂Ki) = lim

p→∞

(
Ĉ|∂Ki|

∫
∂K̂i

(µ̂−Π∂K̂i
µ̂)p
)1/p

.

We can use Poincaré-Wirtinger again. Thus we have

||µ−Π∂Ki
µ||L∞(∂Ki) ≤ Ĉ||∇̂µ̂||L∞(∂K̂i)

and we conclude as before.

2.3 Numerical experiments with non-adapted meshes

The goal of this section is to numerically verify the equivalence between the error estimator
presented in Section 2.2 and the true error. We use non-adapted meshes with different
mesh size and aspect ratio. We introduce the following notations : the error in H1

semi-norm
eH1 = ||∇(u− uh)||L2(Ω),

the error in the weighted H1 semi-norm

eµ,H1 = ||µ1/2∇(u− uh)||L2(Ω),

the anisotropic estimator

ηA =

 ∑
K∈Th

η2
K

1/2

,

the anisotropic effectivity index

eiA = ηA

eµ,H1
,
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and the ZZ effectivity index

eiZZ =
||∇uh −ΠZZ

h ∇uh||L2(Ω)
eH1

.

We aim to verify that these quantities satisfy the following properties :

• eiA is independent of the solution u,

• eiA is independent of the variations of µ and of the ratio µmax
µmin

,

• eiA is independent of the mesh size and aspect ratio,

• eiZZ is close to one (see the discussion in Remark 2.1).

For all x ∈ R, ϵ > 0, let

Hϵ(x) =


0 x ≤ −ϵ,

x+ϵ
2ϵ + 1

2π sin(πx
ϵ ) −ϵ ≤ x ≤ ϵ,

1 ϵ ≤ x,

be a smoothing of the classical Heavyside function. We consider problem (2.1) in the
unit square Ω = (0, 1)2 and choose f so that u is given by

u(x) = µ2 sin(πx1) sin(πx2)Hϵ(x1 − 0.5) + µ1 sin(πx1) sin(πx2)Hϵ(0.5− x1) (2.21)

and µ is given by

µ(x) = µ2Hϵ(x1 − 0.5) + µ1(1−Hϵ(x1 − 0.5)), (2.22)

with µ1, µ2 > 0. Thus µ is constant except in a thin boundary layer of width ϵ where a
strong gradient can be observed. The results are reported in Table 2.1, where h1 and
h2 denote the mesh size in direction x1 and x2 respectively, see Figures 2.2 and 2.3. We
observe that the error estimator is equivalent to the true error uniformly in the mesh
size and the ratio µmax

µmin
. Moreover the values of eiZZ show that the Zienkiewicz-Zhu error

estimator is asymptotically exact.
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2.3 Numerical experiments with non-adapted meshes

Table 2.1 : True errors, estimated error and effectivity indices for various non-adapted
meshes and various choices of µ1, µ2 and ϵ, when u and µ are given by (2.21) and (2.22).

µ1 = 1 µ2 = 2 ϵ = 0.1

h1-h2 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.05-0.5 8.58 3.25 2.64 1.98 2.54 0.78
0.025-0.25 6.34 2.95 2.37 1.49 1.64 0.91
0.0125-0.125 3.78 1.38 2.74 0.99 1.05 0.95
0.00625-0.0625 2.01 0.73 2.76 0.53 0.55 0.97
0.003125-0.03125 1.02 0.36 2.81 0.27 0.28 0.98
0.0015625-0.015625 0.52 0.19 2.81 0.14 0.14 0.98
0.00078125-0.0078125 0.26 0.095 2.78 0.07 0.07 0.98

µ1 = 1 µ2 = 2 ϵ = 0.01

h1-h2 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.05-0.5 91.07 36.24 2.51 20.67 29.83 0.69
0.025-0.25 63.39 23.47 2.70 14.44 19.72 0.73
0.0125-0.125 14.20 6.62 2.15 3.50 5.36 0.65
0.00625-0.0625 6.74 2.20 3.07 2.03 1.77 1.15
0.003125-0.03125 3.27 0.99 3.29 0.87 0.81 1.07
0.0015625-0.015625 1.67 0.51 3.28 0.42 0.42 1.02
0.00078125-0.0078125 0.85 0.26 3.30 0.21 0.21 1.00

µ1 = 1 µ2 = 100 ϵ = 0.1

h1-h2 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.05-0.5 3584.94 1077.18 3.33 123.56 135.07 0.91
0.025-0.25 2395.20 764.94 3.13 85.30 89.35 0.95
0.0125-0.125 1365.70 469.50 2.91 50.27 52.43 0.95
0.00625-0.0625 715.23 246.22 2.90 26.23 26.89 0.98
0.003125-0.03125 359.39 120.49 2.98 12.94 13.13 0.99
0.0015625-0.015625 182.26 61.13 2.98 6.54 6.63 0.99
0.00078125-0.0078125 92.05 31.22 2.95 3.32 3.37 0.99

µ1 = 1 µ2 = 100 ϵ = 0.01

h1-h2 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.005-0.05 3258.10 1183.14 2.75 162.95 183.48 0.89
0.0025-0.025 1517.05 450.98 3.36 66.70 65.89 1.01
0.00125-0.0125 777.60 231.73 3.36 32.19 32.01 1.01
0.000625-0.00625 375.00 110.71 3.39 15.60 15.61 1.00
0.0006-0.006 360.27 106.08 3.40 14.87 14.90 1.00
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Figure 2.2 : Example of non-adapted mesh with h1 = 0.05 and h2 = 0.5.

Figure 2.3 : Example of non-adapted mesh with h1 = 0.025 and h2 = 0.25.

Consider again problem (2.1) in the unit square Ω = (0, 1)2, with exact solution

u(x) = µ2 sin(πx1)Hϵ(x1 − 0.5) + µ1 sin(πx1)Hϵ(0.5− x1). (2.23)

and µ defined by (2.22). Note that the exact solution is not zero on the boundary
anymore, thus in principle an extra-term should be added in the error estimator. However,
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2.3 Numerical experiments with non-adapted meshes

numerical results indicate that this is not needed. In Table 2.2 numerical results for
different values of µ1, µ2, ϵ and mesh sizes h1, h2 are reported. We observe again, that the
error estimator is equivalent to the true error uniformly in the mesh size, the ratio µmax

µmin
and additionally the mesh aspect ratio. The values of eiZZ show that the Zienkiewicz-Zhu
error estimator is asymptotically exact.
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Table 2.2 : True error, estimated error and effectivity indices for various non-adapted
meshes and various choices of µ1, µ2 and ϵ, when u and µ are given by (2.23) and (2.22).

µ1 = 1 µ2 = 2 ϵ = 0.1

h1-h2 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.05-0.5 1.94 0.67 2.89 0.61 0.53 1.14
0.025-0.25 1.11 0.38 2.92 0.32 0.30 1.08
0.0125-0.125 0.55 0.19 2.89 0.15 0.15 1.02
0.00625-0.0625 0.27 0.096 2.82 0.078 0.077 1.00
0.003125-0.03125 0.13 0.046 2.85 0.037 0.037 1.00

0.005-0.5 0.23 0.068 3.33 0.054 0.054 1.00
0.0025-0.25 0.12 0.037 3.20 0.029 0.029 1.00
0.00125-0.125 0.057 0.019 3.02 0.015 0.015 1.00

µ1 = 1 µ2 = 2 ϵ = 0.01

h1-h2 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.05-0.5 124.64 51.10 2.44 31.14 42.07 0.74
0.025-0.25 71.61 27.78 2.58 16.72 23.21 0.72
0.0125-0.125 17.34 8.73 1.99 4.82 7.13 0.68
0.00625-0.0625 7.46 2.83 2.64 2.64 2.32 1.14
0.003125-0.03125 3.68 1.33 2.78 1.18 1.10 1.08

0.005-0.5 5.67 1.88 3.02 1.75 1.52 1.15
0.0025-0.25 2.97 1.01 2.95 0.88 0.82 1.06
0.000125-0.125 1.59 0.55 2.92 0.46 0.45 1.03
0.0000625-0.0625 0.80 0.28 2.90 0.23 0.22 1.01

µ1 = 1 µ2 = 100 ϵ = 0.1

h1-h2 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.05-0.5 1092.93 377.55 2.89 60.08 55.35 1.09
0.025-0.25 643.59 219.28 2.93 31.33 29.50 1.06
0.0125-0.125 311.35 107.36 2.90 15.05 14.88 1.01
0.00625-0.0625 151.81 53.81 2.82 7.59 7.58 1.00
0.003125-0.03125 74.55 26.22 2.84 3.57 3.57 1.00

0.005-0.5 131.94 38.15 3.46 5.31 5.30 1.00
0.0025-0.25 67.29 20.87 3.23 2.87 2.86 1.00
0.00125-0.125 32.51 10.63 3.06 1.48 1.49 1.00
0.000625-0.0625 15.44 5.15 3.00 0.72 0.72 0.99

µ1 = 1 µ2 = 100 ϵ = 0.01

h1-h2 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.0005-0.5 338.15 109.53 3.09 15.38 15.52 0.99
0.00025-0.25 188.41 60.35 3.12 8.51 8.51 1.00
0.000125-0.125 95.46 31.43 3.04 4.52 4.53 1.00
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We aim now to numerically verify predictions of Remark 2.3. Consider numerical
experiment of Table 2.1 with µ1 = 1, µ2 = 2, ϵ = 0.1, h = h1 = 1

Nx
and h2 = 2h1.

In Figure 2.4 we can observe a plot of convergence of (ηA)2 and e2
µ,H1 . We observe, as

predicted, (ηA)2 = O(h2) and e2
µ,H1 = O(h2). Moreover, in Figure 2.5, we report the

convergence of all remaining terms. As theoretically predicted, we have∑
K∈Th

λ2
2,K ||f −ΠKf ||2L2(K) = O(h4),

∑
K∈Th

λ2
2,K ||∇µ−ΠK∇µ||2L2(K) = O(h4),

∑
K∈Th

λ2,K

3∑
i=1
||[(µ−Πliµ)∇uh · n]||2L2(li) = O(h5),

∑
K∈Th

||(µ)1/2∇(u− uh)||2L2(K)||µ−ΠKµ||L∞(K) = O(h3),

which are higher order terms with respect to (ηA)2.

Figure 2.4 : Convergence of weighted H1 semi-norm error and error indicator on fixed
meshes, when u and µ are given by (2.21) and (2.22), with µ1 = 1, µ2 = 2 and ϵ = 0.1.
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Figure 2.5 : Convergence of higher order terms on fixed meshes, when u and µ are
given by (2.21) and (2.22), with µ1 = 1, µ2 = 2 and ϵ = 0.1.

For a given accuracy, the goal is now to construct adapted meshes to solve problem
(2.1) at a reduced computational cost. We thus present an adaptive algorithm based on
an a posteriori error estimator.

2.4 Adaptive algorithms

For ∞ > p ≥ 2 and s = 1, . . . , d, let u ∈ (W 1,p
0 (Ω))s be solution of a generic PDE. Let

uh be the corresponding continuous piecewise linear finite element solution, ||u − uh||
represents the error and ∑K∈Th

η2
K is the corresponding error estimator. For instance,

when considering problem (2.1) s = 1, p = 2, ||u− uh|| := ||µ1/2∇(u− uh)||L2(Ω) and η2
K

30



2.4 Adaptive algorithms

is given by (2.6).

2.4.1 Anisotropic adaptive algorithm

An anisotropic adaptive algorithm in dimension d = 2, 3 to solve elliptics PDEs is
presented. Presentation and applications of the algorithm can be found in [28, 60, 62, 29,
57]. We define

η2
K =

(
d∑

i=1
η4

i,K

)1/2

,

with
η4

i,K = ρ2
Kω2

2,K,i(u− uh), (2.24)

ω2
2,K,i(u− uh) = λ2

i,KrT
i,KGK(u− uh)ri,K (2.25)

and the residual quantity ρK depends on the considered PDE. For instance, when
considering (2.1)

ρK =

||ΠK (f +∇ · (µ∇uh)) ||L2(K) + 1
2

d+1∑
i=1

(
|∂Ki|∏d
j=1 λj,K

)1/2

∥[Π∂Ki
µ∇uh ·n]∥L2(∂Ki)


The quantity η4

i,K represents the error in direction ri,K i = 1, . . . , d. Moreover GK(u−uh)
still involves the exact solution. In practice post-processing techniques can be applied. We
refer to Remark 2.1 for details and we suppose the error indicator as fully computable.

The goal of the adaptive algorithm is to build sequence of meshes, possibly having
large aspect ratio, such that the relative estimated error is close to a given tolerance
TOL, i.e.

0.75TOL ≤


∑

K∈Th

η2
K

||uh||m


1/m

≤ 1.25TOL, (2.26)

where m is a positive integer (usually m = 2). When constructing a mesh satisfying
(2.26), the following two main goals have to be kept in mind :

• Align the stretching directions ri,K to the ith eigenvector of GK(u−uh). In Lemma
4.1 of [33] this choice is justified.

• Equidistribute the error in the stretching directions of each element. Numerical
experiments performed in [59] suggest this approach. Notice also that in Theorem
2.1 this is equivalent to satisfy hypothesis (2.7) with an equality, which is necessary
in order to prove equivalence between the estimated error and the true error. The
same occurs in Theorem 4.3.

A sufficient condition for (2.26) to hold is to require that for each K ∈ Th
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L
NK
≤ η2

K ≤
R

NK
, (2.27)

where we define NK the number of elements K ∈ Th,

L = 0.75mTOLm||uh||m (2.28)

and
R = 1.25mTOLm||uh||m. (2.29)

Condition (2.27) means that the estimated error is equidistribute over each K. In order
to insure (2.27), we require for each K ∈ Th and for i = 1, · · · , d

L2

dN2
K

≤ η4
i,K ≤

R2

dN2
K

, (2.30)

which correspond to equidistributing the error in each stretching direction. Often, mesh
generators require information at the vertices rather than at the elements. Thus we define
the error indicator for each vertex P as

η2
P =

∑
K∈Th
P ∈K

η2
K

so that ∑
P ∈Th

η2
P = (d + 1)

∑
K∈Th

η2
K ,

and (2.26) can be replaced by

0.75TOL ≤


∑

P ∈Th

η2
P

(d + 1)||uh||m

1/m

≤ 1.25TOL.

We then equidistribute η2
P on each vertex P by adjusting the mesh with the objective to

satisfy
(d + 1)L

Nv
≤ η2

P ≤
(d + 1)R

Nv
,

where Nv is the number of vertices of Th. As before, we want to equidistribute the error
in the directions of stretching. Observing that

η2
P =

∑
K∈Th
P ∈K

(
d∑

i=1
η4

i,K)1/2 = σ−1
P

∑
K∈Th
P ∈K

d∑
i=1

η2
i,K ,
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with

σP =

∑
K∈Th
P ∈K

d∑
i=1

η2
i,K

∑
K∈Th
P ∈K

( d∑
i=1

η4
i,K

)1/2
, (2.31)

we require to have for i = 1, . . . , d

(d + 1)σPL
dNv

≤
∑

K∈Th
P ∈K

η2
i,K ≤

(d + 1)σPR
dNv

. (2.32)

Notice that we have 1 ≤ σP ≤
√

d.

We are now in position to discuss the update process of the mesh. For each vertex we
define the local gradient error matrix

GP =
∑

K∈Th
P ∈K

GK(u− uh)

and the average stretching values

λi,P =

∑
K∈Th
P ∈K

λi,K∑
K∈Th
P ∈K

1 , i = 1, . . . , d.

For a given tolerance TOL and mesh Th we solve the problem and for each i = 1, . . . , d

we do as follows. If
(d + 1)σPL

dNv
≥

∑
K∈Th
P ∈K

η2
i,K ,

then we set the mesh size in direction xi to hi,P = 1.5λi,P . If instead

∑
K∈Th
P ∈K

η2
i,K ≥

(d + 1)σPR
2Nv

,

then we set hi,P = λi,P

1.5 . In order to build a new mesh, the mesh generator requires for
each point P ∈ Th a symmetric positive defined matrix MP . We set MP = QT DQ, where
the columns of Q are given by the eigenvectors of GP and D is a d× d diagonal matrix,
having entries (D)ii = 1

h2
i,P

for i = 1, . . . , d.
The algorithm work as follows : Given a tolerance TOL, a starting coarse mesh T 1

h and
an integer Nit > 0, the problem is solved, the error indicator is computed and a metric is
built as previously discussed. Using a mesh generator (BL2D [46] if d = 2 and MeshGems
[39] if d = 3) and the computed metric, a new mesh T 2

h is constructed. Starting from
T 2

h , the process is repeated Nit − 1 times. The anisotropic adaptive algorithm can be
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observed in algorithm 1.

Algorithm 1 (TOL, T 1
h , Nit)

for j = 1, . . . , Nit do
Solve problem on T j

h

Compute error estimator
for l = 1, . . . , Nv do

for i = 1, . . . , d do
if

∑
K∈Th
Pl∈K

η2
i,K ≤

(d + 1)σPl
L

dNv
then

hi,Pl
← 1.5λi,Pl

else if
∑

K∈Th
Pl∈K

η2
i,K ≥

(d + 1)σPl
R

dNv
then

hi,Pl
← λi,Pl

/1.5
End

End
Compute eigenvectors of GPl

Compute Riemannian metric MPl

End
Update the mesh with a mesh generator : T j+1

h

End
T final

h ← T j+1
h

Output : Final mesh T final
h and corresponding solution ufinal

h

2.4.2 Numerical experiments with adapted meshes

We aim to verify the efficiency of algorithm 1. Consider problem (2.1) in the unit square
Ω = (0, 1)2, with exact solution (2.23) and µ defined by (2.22). For µ1 = 1, µ2 = 2 and
ϵ = 0.1 we choose a starting mesh T 1

h of size h1 = 0.1 and h2 = 0.1 in direction x1 and x2
respectively. We run algorithm 1 with Nit = 40 for different tolerances TOL. We report
the obtained results in Table 2.3. In addition to quantities introduced in Section 2.3, we
reported also the number of vertices Nv, the maximum aspect ratio armax = max

K∈Th

λ1,K

λ2,K

and the average aspect ratio arav. We repeat the experiment for µ1 = 1, µ2 = 100 and
ϵ = 0.05. We choose the same starting mesh T 1

h and we set Nit = 80. Results can be
observed in Table 2.4. The obtained results suggest that the effectivity index eiA does
not depend on the aspect ratio, the solution u, the variation of µ and the ratio µmax

µmin
. The

effectivity index eiZZ is close to one showing the desired properties of the post-processing
discussed in Remark 2.1.
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Table 2.3 : True error, effectivity indices and aspect ratio for different values of the
tolerance TOL, when u and µ are given by (2.23) and (2.22), with µ1 = 1, µ2 = 2 and
ϵ = 0.1. Results are obtained running algorithm 1(TOL,T 1

h ,Nit = 40).

µ1 = 1 µ2 = 2 ϵ = 0.1

TOL Nv eiA eµ,H1 eiZZ armax arav

0.1 126 3.15 0.14 1.02 317 62
0.05 252 3.09 0.075 1.01 492 108
0.025 481 3.32 0.037 1.01 1015 225
0.0125 1018 3.36 0.0189 1.00 2687 397
0.00625 2252 3.36 0.0093 1.00 3414 704

Table 2.4 : True error, effectivity indices and aspect ratio for different values of the
tolerance TOL, when u and µ are given by (2.23) and (2.22), with µ1 = 1, µ2 = 100 and
ϵ = 0.05. Results are obtained running algorithm 1(TOL,T 1

h ,Nit = 80).

µ1 = 1 µ2 = 100 ϵ = 0.05

TOL Nv eiA eµ,H1 eiZZ armax arav

0.1 123 3.63 78.07 1.02 642 142
0.05 232 3.20 38.74 1.01 1337 305
0.025 464 3.25 20.72 0.99 2326 513
0.0125 882 3.36 10.20 0.99 6651 1131
0.00625 1801 3.34 5.08 1.00 11339 2242

Algorithm 1 give satisfying results, however in order to reduce the computational
time, we present now a continuation algorithm for TOL [57].

2.4.3 Continuation anisotropic adaptive algorithm

The idea is to start with a coarse tolerance 2N TOLgoal and finish with a fine one TOLgoal,
N being an integer reduced by 1 every Nit iterations. The continuation anisotropic
adaptive algorithm is presented in algorithm 2.

Algorithm 2 (TOLgoal, N, T 1
h , Nit)

T final
h ← T 1

h

for n=N,. . .,0 do
TOL = 2nTOLgoal

T final
h ← Algorithm 1(TOL,T final

h , Nit)
End
Output : Final mesh T final

h and corresponding solution ufinal
h

Note that in algorithm 2 at each reduction of TOL the last obtained mesh is used as
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starting mesh for algorithm 1.
We present now results obtained using this algorithm. After proving numerical

efficiency of algorithm 2 we present numerical results showing the advantages of such a
continuation algorithm with respect to algorithm 1. Note that except when differently
stated algorithm 2 will be our first choice.

2.4.4 Numerical experiments with adapted meshes using algorithm 2

We aim to verify the efficiency of the adaptive algorithm 2 and to confirm theoretical
predictions of Section 2.2 on adapted meshes.

Consider again problem (2.1) in the unit square Ω = (0, 1)2, with exact solution (2.23)
and µ defined by (2.22). We consider µ1 = 1, µ2 = 2 and ϵ = 0.01. Since the solution
is one dimensional, the adapted meshes should have a large aspect ratio. In Table 2.5
results are reported when running the continuation adaptive algorithm (algorithm 2)
with N = 5, TOLgoal = 0.003125 and Nit = 40. An initial mesh of size h1 = 0.1 and
h2 = 0.1 in direction x1 and x2 respectively is considered. In addition to quantities
previously introduced, we reported also the total CPU time CPUtot and the CPU time
spent in the adaptation of the mesh CPUadapt (seconds, Intel Core 2.80 GHz). Note that,
when running algorithm 2, we always report for n = N, . . . , 0 the results obtained at
the last iteration of algorithm 1 for the corresponding TOL = 2nTOLgoal. Numerical
results show the sharpness of our anisotropic error indicator, although the mesh aspect
ratio is very large. The anisotropic effectivity index eiA is independent from the aspect
ratio and the ZZ effectivity index eiZZ is close to one as desired. Moreover, most of the
CPU time is spent for building adapted meshes rather than solving the linear systems.
To explain this fact, the number of Conjugate Gradient iterations needed to solve the
linear system together with the number of vertices are reported for all iterations of the
adaptive algorithm in Figure 2.6. Each time the tolerance is halved, first the number of
vertices increases and then decreases to a value which is twice the one obtained with the
previous tolerance. This is due to the fact that vertices are first added in an isotropic
manner and then removed. Moreover, apart from the 40 first mesh iterations, the number
of Conjugate Gradient iterations does not increase with the number of vertices, due to
the fact that, with mesh iterations, the initial guess of the Conjugate Gradient method
is closer and closer to the solution of the linear system. In Figure 2.7, the mesh and
solution obtained when TOL = 0.025 are shown.
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Table 2.5 : True error, effectivity indices and aspect ratio obtained when running
algorithm 2(TOLgoal = 0.003125,N = 5,T 1

h ,Nit = 40), when u and µ are given by (2.23)
and (2.22), with µ1 = 1, µ2 = 2, ϵ = 0.01 and T 1

h is a starting mesh of size h1 = h2 = 0.1.

µ1 = 1 µ2 = 2 ϵ = 0.01

TOL Nv eiA eH1 eiZZ armax arav CPUtot CPUadapt

0.1 169 3.20 0.33 0.95 2989 621 11 8
0.05 323 3.43 0.15 0.99 5436 1243 17 13
0.025 632 3.22 0.075 1.00 15165 2500 25 20
0.0125 1216 3.36 0.038 1.00 27192 5572 36 29
0.00625 2364 3.37 0.019 1.00 84044 11866 54 44
0.003125 4876 3.37 0.009 1.00 131158 22515 88 73
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Figure 2.6 : Results obtained running algorithm 2(TOLgoal = 0.003125,N = 5,T 1
h ,Nit =

40) with starting mesh T 1
h of size h1 = h2 = 0.1. In blue : number of Conjugate Gradient

iterations needed to reach a tolerance 10−8 for each iteration of the adaptive algorithm. In
red : number of vertices of each adapted mesh at each iteration of the adaptive algorithm.
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Figure 2.7 : Solution on adapted mesh when TOL = 0.025, when u and µ are given
by (2.23) and (2.22), with µ1 = 1, µ2 = 2 and ϵ = 0.01. The Result is obtained running
algorithm 2(TOLgoal = 0.003125,N = 5,T 1

h ,Nit = 40) with T 1
h a starting mesh of size

h1 = h2 = 0.1.

The next experiment has the goal to demonstrate the efficiency of algorithm 2 with
respect to algorithm 1. Consider f such that the exact solution is given by (2.23) and
µ by (2.22) with ϵ = 0.1, µ1 = 1 and µ2 = 2. We choose a starting mesh T 1

h of size
h1 = h2 = 0.1. We run algorithm 1 with TOL = 0.0078125 and Nit = 280, and algorithm
2 with TOLgoal = 0.0078125, N = 6 and Nit = 40. We recall that in practice algorithm 2
consists in applying algorithm 1 on a coarse tolerance and, starting from the obtained
mesh, reduce by two the tolerance and repeat the process until the desired goal tolerance
is reached. In Figure 2.8 we present the obtained results. Both algorithms give similar
final meshes, the number of vertices is considerably close and the solutions obtained have
comparable accuracy. However algorithm 1 requires an higher number of vertices along
first iterations. For this problem we reported the total number of Conjugate Gradient
iterations. The first approach increases considerably the CPU time. This is due to the
higher refinement of the mesh at initial iterations. Algorithm 2 is clearly the fastest and
best option. From now on we will consider only algorithm 2 for our numerical experiments.
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Figure 2.8 : Comparison of algorithm 1(TOL = 0.0078125,T 1
h ,Nit = 280) and algorithm

2(TOLgoal = 0.0078125,N = 6,T 1
h ,Nit = 40). Top left : error eµ,H1 at each iteration of

the corresponding algorithm. Top right : Number of vertices at each iteration of the
corresponding algorithm. Bottom left : CPU time at each iteration of the corresponding
algorithm. Bottom right : Conjugate Gradient iterations at each iteration of the adaptive
algorithm.

In order to check the efficiency of using algorithm 2, we compare the results obtained
with algorithm 2 to those obtained when using uniformly refined meshes (isotropic). We set
ϵ = 0.01, µ1 = 1 and µ2 = 100. We run algorithm 2 with N = 7, TOLgoal = 0.00390625,
Nit = 20 and starting mesh T 1

h of size h1 = 0.2 and h2 = 0.2. In Figure 2.9 we observe
the error eµ,H1 and the corresponding number of vertices of the meshes. In Figure 2.10 we
report the error eµ,H1 and the corresponding total CPU time needed to obtain a solution
with such an accuracy. In presence of boundary layers or regions where the solution u
has strong variations, the use of an adaptive method is thus, clearly necessary to reach a
small accuracy. Indeed the number of vertices needed to reach a given precision of the
error is considerably reduce when using algorithm 2. Moreover having a solution with a
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small error requires a smaller computational time when using the adaptive algorithm.

Figure 2.9 : Error eµ,H1 and corresponding number of vertices, when solving (2.1)
for f such that u, µ are given respectively by (2.23),(2.22) with µ1 = 1, µ2 = 100
and ϵ = 0.01. Red : uniformly meshes. Blue : results obtained running algorithm
2(TOLgoal = 0.00390625,N = 7,T 1

h ,Nit = 20).
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Figure 2.10 : Error eµ,H1 and corresponding number of vertices, when solving (2.1)
for f such that u, µ are given respectively by (2.23),(2.22) with µ1 = 1, µ2 = 100
and ϵ = 0.01. Blue : uniformly meshes. Red : results obtained running algorithm
2(TOLgoal = 0.00390625,N = 7,T 1

h ,Nit = 20).

At this point we numerically verify predictions of the higher order terms presented in
Remark 2.3. Consider again Ω = (0, 1)2, f given such that u is given by (2.21) and µ by
(2.22) with ϵ = 0.1, µ = 1 and µ = 2. We set TOLgoal = 0.0625 and we run algorithm 2 for
N = 4, Nit = 40 and a starting mesh of size h1 = h2 = 0.1. In Figure 2.11 we can observe
the convergence of (ηA)2 and e2

µ,H1 . We observe, as predicted, (ηA)2 = O(TOL2) and
e2

µ,H1 = O(TOL2). Moreover, in Figure 2.12, we report the convergence of all remaining
terms. As theoretically discussed and observed with non-adapted meshes, we have∑

K∈Th

λ2
2,K ||f −ΠKf ||2L2(K) = O(TOL4),

∑
K∈Th

λ2
2,K ||∇µ−ΠK∇µ||2L2(K) = O(TOL4),

∑
K∈Th

λ2,K

3∑
i=1
||[(µ−Πliµ)∇uh · n]||2L2(li) = O(TOL5),

∑
K∈Th

||(µ)1/2∇(u− uh)||2L2(K)||µ−ΠKµ||L∞(K) = O(TOL3),

which are negligible with respect to (ηA)2.
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Figure 2.11 : Error estimator and true error, when u is given by (2.21) and µ by (2.22)
with µ1 = 1, µ2 = 2 and ϵ = 0.1. Results obtained running algorithm 2(TOLgoal =
0.0625,N = 4,T 1

h ,Nit = 40).
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Figure 2.12 : Different higher order terms discussed in Remark 2.3, when u is given
by (2.21) and µ by (2.22) with µ1 = 1, µ2 = 2 and ϵ = 0.1. Results obtained running
algorithm 2(TOLgoal = 0.0625,N = 4,T 1

h ,Nit = 40).

We now present a 3D numerical experiment. Let Ω = (0, 1) × (0, 1) × (0, 0.1), we
choose f such that µ is given by

µ(x) = µ2Hϵ(x3 − 0.05) + µ1(1−Hϵ(x3 − 0.05)), (2.33)

and u by

u(x) = µ2 sin(πx1)Hϵ(x3 − 0.05) + µ1 sin(πx1)Hϵ(0.05− x3). (2.34)

In Table 2.6 the results are reported when running the algorithm 2 with TOLgoal =
0.03125, N = 4, Nit = 40 and T 1

h an initial 10 × 10 × 2 uniform mesh. Several values
of µ1, µ2 and ϵ are tested. In Figures 2.13 and 2.14, the adapted mesh and solution are
shown when TOL = 0.25, µ1 = 1, µ = 2 and ϵ = 0.01.
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Table 2.6 : True error, effectivity indices and aspect ratio for different values of tolerance
TOL, when u and µ are given by (2.34) and (2.33), with various values for and µ1, µ2
and ϵ running algorithm 2(TOLgoal = 0.03125,N = 4,T 1

h ,Nit = 40).

µ1 = 1 µ2 = 2 ϵ = 0.1

TOL Nv eiA eH1 eiZZ armax arav

0.5 93 2.82 0.39 0.88 121 28
0.25 397 3.22 0.18 1.00 476 63
0.125 1525 3.28 0.09 1.00 589 99
0.0625 7511 3.27 0.05 0.99 1028 124
0.03125 39512 3.29 0.02 0.99 1769 166

µ1 = 1 µ2 = 2 ϵ = 0.01

TOL Nv eiA eH1 eiZZ armax arav
0.5 644 3.61 0.97 1.03 1220 173
0.25 2426 3.65 0.46 0.99 2533 257
0.125 13317 3.67 0.23 0.99 2552 277
0.0625 32479 3.56 0.12 0.98 12101 979
0.03125 214170 3.52 0.07 0.98 33075 1227

µ1 = 1 µ2 = 100 ϵ = 0.1

TOL Nv eiA eH1 eiZZ armax arav

0.5 107 3.42 32.62 0.99 234 45
0.25 366 3.45 15.67 1.03 377 72
0.125 1570 3.36 8.22 1.01 645 102
0.0625 7250 3.45 3.95 1.00 2024 132
0.03125 39129 3.44 1.96 0.99 1961 184

Figure 2.13 : Solution on adapted mesh when TOL = 0.25, u and µ are given by (2.34)
and (2.33), with µ1 = 1, µ2 = 2 and ϵ = 0.01.
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Figure 2.14 : Cut at x = 0.5 and y = 0.5 of the adapted mesh obtained when
TOL = 0.25, when u and µ are given by (2.34) and (2.33), with µ1 = 1, µ2 = 2 and
ϵ = 0.01.

In our experiments we observe an anisotropic effectivity index eiA constant. Thus
we can obtain an "exact" error indicator by dividing ηK by eiA. We divide now ηK

by 3.45. the effectivity index should be close to one. We run again algorithm 2 for
TOLgoal = 0.015625, N = 4 and Nit = 40 when µ1 = 1, µ2 = 100 and ϵ = 0.01. The
results are reported in Table 2.7. As expected, the effectivity index is now close to one.
Again, a non negligible fraction of the CPU time is needed to adapt the mesh.

Table 2.7 : True error, effectivity indices and aspect ratio for different values of tolerance
TOL, when u and µ are given by (2.34) and (2.33), with µ1 = 1, µ2 = 100 and ϵ = 0.01.
Results obtained running algorithm 2(TOLgoal = 0.01562,N = 4,T 1

h ,Nit = 40).

TOL Nv eiA eH1 eiZZ armax arav CPUtot CPUadapt

0.25 191 1.06 195.85 1.01 864 143 23 19
0.125 452 1.09 85.17 1.04 4542 310 46 39
0.0625 1283 1.03 47.37 1.01 6684 694 94 78
0.03125 6426 1.01 26.36 0.99 15832 1098 292 237
0.015625 33745 1.10 13.60 0.99 117521 1588 2298 1402

2.4.5 An anisotropic adaptive algorithm based on the number of vertices

We propose another adaptive algorithm, which can be of interest for industrial applications.
The goal of the algorithm is to obtain a mesh such that the number of vertices is close
to a number M and the vertices are distributed according to the error estimator. Let
M be the goal number of vertices, α > 0 a positive constant and let N be the number
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of vertices of the actual mesh. All other notations are as in the rest of Section 2.4. The
objective will be to construct a mesh such that

1
1 + α

M ≤ N ≤ 1
1− α

M (2.35)

is satisfied. If, for all vertices Pi ∈ Th, i = 1, . . . , N we have

(1− α) 1
M

N∑
j=1

η2
Pj
≤ η2

Pi
≤ (1 + α) 1

M

N∑
j=1

η2
Pj

, (2.36)

then relation (2.35) is satisfied. Thus we will require that for all i = 1, . . . , N and
j = 1, . . . , d the following is satisfied

σPi

d
(1− α) 1

M

N∑
l=1

η2
Pl
≤

∑
K∈Th,Pi∈K

η2
j,K ≤

σPi

d
(1 + α) 1

M

N∑
l=1

η2
Pl

. (2.37)

The adaptation procedure is the same as explained in section 2.4.1 replacing (2.32) by
(2.37). We consider thus the new algorithm 3.

Algorithm 3 (Mgoal, N, Nit, α, T 1
h )

T final
h ← T 1

h

for n=N,. . .,0 do
M = 2−nMgoal

T final
h ← Algorithm 1(TOL,T final

h ,Nit) replacing (2.32) by (2.37)
End
Output : Final mesh T final

h and corresponding solution ufinal
h

Consider problem (2.1) with Ω = (0, 1)2, f such that u is given by (2.23) with ϵ = 0.01
and µ by (2.22) with µ1 = 1 and µ2 = 2. We set α = 10/M , Mgoal = 3200, N = 6,
Nit = 40 and we run the Algorithm 3 , starting by a mesh of size h1 = h2 = 0.1. Obtained
results are reported in Table 2.8.

Table 2.8 : True error, effectivity indices and aspect ratio for different values of tolerance
TOL, when u and µ are given by (2.34) and (2.33), with µ1 = 1, µ2 = 100 and ϵ = 0.01.
Results obtained running algorithm 3(Mgoal = 3200,N = 6,Nit = 40,α = 10/M ,T 1

h ).

M Nv eiA eH1 eiZZ armax arav

100 102 1.24 27.33 0.53 8 3
200 213 3.11 0.21 0.99 3358 736
400 408 3.06 0.11 1.00 8721 1629
800 802 3.24 0.053 1.00 16119 3336
1600 1563 3.33 0.028 1.00 43189 6553
3200 3067 3.30 0.014 1.00 85052 12178
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2.4 Adaptive algorithms

As we can observe the algorithm performs as expected, a mesh with the desired
number of vertices is built. The considered problem is essential one dimensional, thus to
reduce the error, vertices should be added only on the direction x1. When multiplying by
two the number of vertices the error eH1 is divided by two.
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3 Anisotropic adaptive finite ele-
ments for steady Stokes problem

In this section we present an error indicator for the Steady Stokes equation. Numerical
experiments showing the sharpness of the error indicator are presented. Applications of
the adaptive algorithms introduced in Sections 2.4.3 and 2.4.5 are discussed.

3.1 Problem statement and numerical method

Given f : Ω→ Rd and a constant µ > 0, we are looking for u : Ω→ Rd, p : Ω→ R such
that 

−div(µ∇u) +∇p = f in Ω,

div(u) = 0 in Ω,

u = 0 on ∂Ω,

(3.1)

Suppose f ∈
(
L2(Ω)

)d, the weak formulation of problem (3.1) reads : find (u, p) ∈ V ×Q =
(H1

0 (Ω))d × L2
0(Ω) such that {

a(u, v) + b(v, p) = F (v),
b(u, q) = 0,

(3.2)

for all (v, q) ∈ V ×Q, where we have defined

a(u, v) =
∫

Ω
µ∇u : ∇v, b(v, q) = −

∫
Ω

q div(v) and F (v) =
∫

Ω
f · v.

A robust piecewise continuous finite element procedure to solve the problem has been
presented for instance in [42, 35] for the isotropic case. Following what has been presented
in [54] for the anisotropic case, we discretize the problem using a stabilized method. The
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Chapitre 3. Anisotropic adaptive finite elements for steady Stokes problem

discrete problem reads : find (uh, ph) ∈ Vh ×Qh such that a(uh, vh) + b(vh, ph) = F (vh),
b(uh, qh)−∑K∈Th

∫
K

sK (−µ∆uh +∇ph − f) · (−µ∆vh +∇qh) = 0,
(3.3)

for all (vh, qh) ∈ Vh×Qh, where Vh×Qh ⊂ V ×Q is the approximation space for velocity
and pressure involving continuous affine functions over Th. For α > 0, we set the stability
coefficient sK = α

λ2
d,K

µ , see Theorem 4.1 in [54] for a convergence study.

3.2 Anisotropic error estimator

We present an error indicator for the previous Stokes problem. In order to state the
theorem we need to introduce as in [17, 61] the following dual problem. Given p solution
of (3.1) and ph solution of (3.3), we are looking for (w, r) ∈ V ×Q weak solution of{

−div(µ∇w) +∇r = 0 in Ω,

div(w) = p− ph in Ω.
(3.4)

A slight modification of the following theorem is presented in [54]

Theorem 3.1. Let (u, p), (uh, ph) and (w, r) be weak solutions of (3.2), (3.3) and (3.4)
respectively. There exists a constant C depending only on Ω and a constant Ĉ depending
only on the reference element K̂ such that

||∇(u− uh)||2L2(Ω) + C

µ2 ||p− ph||2L2(Ω ≤ Ĉ
∑

K∈Th

√
d

 d∑
i,j=1

ρi
Kω2

2,K,j(ui − (uh)i)

1/2

+ Ĉ
∑

K∈Th

√
d

Cµ

 d∑
i,j=1

ρi
Kω2

2,K,j(wi)

1/2

+ C
∑

K∈Th

||div uh||2L2(K),

where

ρi
K = ||

( 1
µ

(f −∇ph)) + ∆uh

)
i

||L2(K) + 1
2

d+1∑
l=1


|∂Kl|
d∏

j=1
λj,K


1/2

|| ([∇uhn])i ||L2(∂Kl).

We denote as usual [·] the jump across an internal boundary element ∂Ki with i =
1, . . . , d + 1 ([·] = 0 on ∂Ω), n the outer unit normal to K, ∇uhn is a matrix vector
multiplication and ω2,K,j(·) is defined in (2.25) for j = 1, . . . , d.
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3.2 Anisotropic error estimator

Proof. (proof Theorem 3.1) First, as in [61] using (3.2) and (3.3) we obtain for any
(vh, qh) ∈ Vh ×Qh

µ||∇(u− uh)||2L2(Ω) =
∫

Ω
f · (u− uh − vh)−

∫
Ω

µ∇uh : ∇(u− uh − vh)

+
∫

Ω
ph∇ · (u− uh − vh)−

∫
Ω

(p− ph − qh)∇ · uh

−
∑

K∈Th

sK

∫
K

(−µ∆uh +∇ph − f) · (−µ∆vh +∇qh).

Setting vh = Rh(u− uh) and qh = 0, integrating by parts and applying Cauchy-Schwarz
we have

||∇(u− uh)||2L2(Ω) ≤
∑

K∈Th

d∑
i=1
||( 1

µ
(f −∇ph) + ∆uh)i||L2(K)||(u− uh −Rh(u− uh))i||L2(K)

+ 1
2
∑

K∈Th

d∑
i=1
||([∇uhn])i||L2(∂K)||(u− uh −Rh(u− uh))i||L2(∂K)

+
∑

K∈Th

||∇ · uh||L2(K)||
1
µ

(p− ph)||L2(K).

Using Proposition 1.1 and Young’s inequality we have, for a constant Ĉ > 0 and a
constant γ > 0 to be chosen,

||∇(u− uh)||2L2(Ω) ≤ Ĉ
∑

K∈Th

d∑
i=1

ρi
Kω2,K(ui − (uh)i) + γ

2
∑

K∈Th

||∇ · uh||2L2(K)

+ 1
2µ2γ

∑
K∈Th

||p− ph||2L2(K).

(3.5)

Using (3.4) and again (3.2) and (3.3), we can write

||p− ph||2L2(Ω) = −
∫

Ω
f · (w− vh) + µ

∫
Ω
∇uh : ∇(w− vh)

−
∫

Ω
ph∇ · (w− vh) + µ

∫
Ω
∇(u− uh) : ∇w

−
∑

K∈Th

sK

∫
K

(−µ∆uh +∇ph − f) · (−µ∆vh +∇qh)

for any (vh, qh) ∈ Vh ×Qh. Proceeding as before, we obtain

||p− ph||2L2(Ω) ≤ Ĉ
∑

K∈Th

d∑
i=1

ρi
Kω2,K(wi) +

∫
Ω

µ∇(u− uh) : ∇w.
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Chapitre 3. Anisotropic adaptive finite elements for steady Stokes problem

As explained in [61], as a consequence of inf-sup condition, one have

||∇w||L2(Ω) + 1
µ
||r||L2(Ω) ≤ C||p− ph||L2(Ω).

Thus, using again Cauchy-Schwarz and Young’s inequality, we obtain

||p− ph||2L2(Ω) ≤ 2Ĉµ
∑

K∈Th

d∑
i=1

ρi
Kω2,K(wi) + Cµ2||∇(u− uh)||2L2(Ω). (3.6)

All together, using definition (2.25), the fact that

d∑
i=1

√
ai ≤

√
d

(
d∑

i=1
ai

)1/2

for any ai ≥ 0 and summing up (3.5) and 1
2C2µ2 times (3.6) we conclude.

Remark 3.1. Observe that the presented estimator involves the exact solution u and
w. The term ω2,K(ui − (uh)i) can be efficiently approximated by ZZ post-processing as
explained in Remark 2.1. While in [61] a method to approximate ω2,K(wi) is presented.

In what follows, we are mainly interested in controlling the H1 semi-norm of the
velocity thus, extrapolating from the previous theorem, we introduce the error indicator∑

K∈Th
η2

K to control µ||∇(u− uh)||L2(Ω), where we defined

η2
K =

 d∑
j=1

η4
j,K

1/2

(3.7)

and

η4
j,K =

d∑
i=1

(ρi
K)2ω2

2,K,j(ui − (ui)h) (3.8)

We numerically verify the sharpness of the error indicator, which is heuristic since
the pressure term is not taken into account. In the next Section we present numerical
results on non-adapted meshes for µ = 1.

3.3 Numerical experiments with non-adapted meshes

Similarly to what presented in 2.3, we introduce the following quantities : the H1

semi-norm error
eH1 = ||∇(u− uh)||L2(Ω),

the L2 pressure error
ep = ||p− ph||L2(Ω),
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3.3 Numerical experiments with non-adapted meshes

the anisotropic estimator

ηA =

 ∑
K∈Th

η2
K

1/2

,

the anisotropic effectivity index

eiA = ηA

eH1

and the ZZ effectivity index

eiZZ =
||∇uh −ΠZZ

h ∇uh||L2(Ω)
||∇(u− uh)||L2(Ω)

.

Where we noted for any v ∈ V with vi the ith component

||∇v||2L2(Ω) =
d∑

i=1
||∇vi||2L2(Ω)

and ΠZZ
h ∇v has components ΠZZ

h ∇vi. We aim to verify that these quantities satisfy the
following properties :

• eiA is independent of the solution u.

• eiA is independent of the mesh size and aspect ratio,

• eiZZ is close to one (see discussion Remark 2.1).

Consider problem (3.1), let Ω = (0, 1)3, µ = 1 and choose f so that, for ϵ > 0, u and
p are given by

u(x) = [tanh(x2 − 0.5
ϵ

), 0, 0], p(x) = x1 + x2 + x3 −
3
2 . (3.9)

We denote h1, h2 and h3 the mesh sizes in directions x1, x2 and x3 respectively. In Table
3.1 results for different mesh sizes are reported. The true errors eH1 , ep and the error
indicator ηA, are converging as expected. Moreover the effectivity index eiZZ is near to
one as desired, showing the well behaviour of the post-processing. The effectivity index
eiA seems to be constant, independent of the solution and of the aspect ratio.
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Table 3.1 : Estimated error, True error, and effectivity indices for various non-adapted
meshes and various choices of ϵ, when µ = 1 and u and p are given by (3.9).

ϵ = 0.1

h1-h2-h3 ηA eH1 eiA ep eiZZ

0.1-0.1-0.1 2.734 0.926 2.95 0.40 1.14
0.05-0.05-0.05 1.424 0.448 3.18 0.19 1.12
0.025-0.025-0.025 0.691 0.219 3.16 0.063 1.03
0.0125-0.0125-0.0125 0.342 0.108 3.16 0.039 1.01

0.2-0.02-0.2 0.541 0.158 3.42 0.296 1.02
0.1-0.01-0.1 0.275 0.074 3.73 0.068 1.01
0.05-0.005-0.05 0.137 0.035 3.87 0.022 1.00

ϵ = 0.05

h1-h2-h3 ηA eH1 eiA ep eiZZ

0.05-0.05-0.05 3.98 1.308 3.04 0.407 1.17
0.025-0.025-0.025 2.046 0.631 3.24 0.187 1.13
0.0125-0.0125 0.983 0.308 3.19 0.061 1.04

0.2-0.02-0.2 1.562 0.450 3.47 0.611 1.11
0.1-0.01-0.1 0.776 0.209 3.71 0.208 1.03
0.05-0.005-0.05 0.386 0.100 3.86 0.059 1.00

3.4 Numerical experiments with adapted meshes

For a given accuracy, the goal is now to build adapted meshes to solve problem (3.1) at a
reduced computational cost. We aim thus to apply algorithm 2 presented in Section 2.4.3.
We consider (3.7) as indicator of the adaptive strategy in order to control H1 semi-norm.
Notice that when considering algorithm 2, the definition (2.24) introduced in Section
2.4.1 has to be modified as in (3.8).

Consider problem (3.1) with Ω = (0, 1)3, where f is such that exact solutions are
again given by (3.9). We choose a starting mesh of size h1 = h2 = h3 = 0.1 and we run
algorithm 2 with TOLgoal = 0.015625, N = 6 and Nit = 20. In Table 3.2 results are
reported for each tolerance and for different values of ϵ. Similar results as for non-adapted
meshes are obtained. The true error eH1 converge as expected. The effectivity index eiZZ

stays close to 1, as desired, and the effectivity index eiA is constant, independent of the
aspect ratio and independent of the solution. The pressure error ep tends to decrease,
but with some oscillations.
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3.4 Numerical experiments with adapted meshes

Table 3.2 : Number of vertices, effectivity indices, true error and aspect ratio for different
values of tolerance TOL, when u and p are given by (3.9) with µ = 1. Results obtained
running algorithm 2(TOLgoal = 0.015625,N = 6,T 1

h ,Nit = 20).

ϵ = 0.1

TOL Vertices eiA eH1 ep eiZZ armax arav

0.5 85 3.17 0.563 2.925 1.04 82 20
0.25 115 3.36 0.280 0.57 0.98 137 36
0.125 213 3.27 0.14 0.929 0.98 779 77
0.0625 355 3.38 0.0691 0.564 0.98 902 171
0.03125 738 3.35 0.0345 0.42 0.98 2198 307
0.015625 1519 3.39 0.017 0.402 0.98 7361 654

ϵ = 0.01

TOL Vertices eiA eH1 ep eiZZ armax arav
0.5 309 3.52 1.68 1.14 1.02 472 84
0.25 234 3.47 0.84 0.57 0.99 1460 259
0.125 334 3.43 0.435 0.377 0.97 3959 618
0.0625 518 3.40 0.214 0.260 0.98 12362 1258
0.03125 1246 3.38 0.110 0.53 0.98 37400 2386
0.015625 9830 3.55 0.053 0.056 0.98 34920 1988

Here the considered pressure was linear and without strong variations. Thus, we run
another experiment. The pressure is chosen nonlinear and with a different direction with
respect of the velocity. The following numerical experiment is considered. Let Ω = (0, 1)3

and consider f such that, for ϵ > 0, the exact solution is given by

u(x) =
[
tanh(x2 − 0.5

ϵ
), 0, 0

]
, p(x) = tanh(x3 − 0.5

ϵ
). (3.10)

We run again algorithm 2 with the same parameters as the previous test. Results are
reported in Table 3.3. For the velocity component, results are similar to the previous
numerical experiment. Even-thought, we have no control of the error ep, it is still
diminishing.
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Table 3.3 : Number of vertices, effectivity indices, true error and aspect ratio for different
values of tolerance TOL, when u and p are given by (3.10) with µ = 1. Results obtained
running algorithm 2(TOLgoal = 0.015625,N = 6,T 1

h ,Nit = 20).

ϵ = 0.1

TOL Vertices eiA eH1 ep eiZZ armax arav

0.5 68 3.25 0.636 2.187 0.99 72 18
0.25 136 3.26 0.274 1.774 0.97 140 37
0.125 248 3.28 0.141 1.091 0.97 457 72
0.0625 549 3.27 0.073 0.709 0.96 918 128
0.03125 1231 3.46 0.0377 0.694 0.96 3286 270
0.015625 3444 3.51 0.0175 0.344 0.97 19316 404

In Figure 3.1 a cut of the mesh obtained at the last iteration of algorithm 2 when
TOL = 0.03125 running experiment presented in Table 3.2, can be observed. On the
right a cut of the obtained mesh at the last iteration when TOL = 0.03125 for the last
experiment is shown. Even-though, the adaptation is run with respect to the same velocity,
the obtained meshes are different. On the right, an additional refinement around a layer
in the z direction can be observed. The pressure plays thus, a role in the adaptation
process, even when only an indicator for the velocity is considered.

Figure 3.1 : Cut of mesh at x = 0.5. Left : adapted mesh at TOL=0.03125 when u, p
are given by (3.9). Right : adapted mesh at TOL=0.03125 when u, p are given by (3.10).

In Chapter 5, an application to aluminium electrolysis is presented. Aluminium
electrolysis involves some multi-scale features (from meters to millimeters). In particular
a domain composed by long thin channels will be considered. We thus test our algorithm
on a simplified flat domain. Consider problem (3.1) and Ω = (0, 1)2 × (0, 0.02). Let f be
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such that

u(x) =
[
4(y − 1)y(x− 1)2x2(y − 0.5),−4(x− 0.5)xy2(y − 1)2(x− 1), 0

]
,

p(x) = x1 + x2 + x2 −
3
2 .

(3.11)

Starting with a mesh T 1
h of size h1 = 0.1, h2 = 0.1 and h3 = 0.01, we set TOLgoal = 0.125,

N = 4 and Nit = 20 and we run algorithm 2. Results are reported in Table 3.4. Even
with thin domains, the algorithm manages to build adapted meshes with large aspect
ratio having the velocity error under control. The true error eH1 converges as expected,
the effectivity index eiA is constant and does not depend on the aspect ratio, while eiZZ

is closed to one, as desired.

Table 3.4 : Number of vertices, effectivity indices, true error and aspect ratio for different
values of tolerance TOL, when solving (3.1) with u and p given by (3.11). Results obtained
running algorithm 2(TOLgoal = 0.125,N = 4,T 1

h ,Nit = 20).

TOL Vertices eiA eH1 ep eiZZ armax arav

1.0 139 3.03 0.0186 0.0034 1.03 63 12
0.5 560 3.21 0.0092 0.0093 1.03 144 21
0.25 1999 3.19 0.00475 0.0110 1.00 290 39
0.125 8661 3.15 0.00241 0.00219 0.99 1198 72

For a future application to aluminium electrolysis, we test algorithm 3. We set
Mgoal = 1600, N = 5, Nit = 20 and α = 0.1. We report obtained results in Table 3.5.
The number of vertices of the obtained meshes are close to the desired one. The error
eH1 goes to zero together with the error ep.

Table 3.5 : Number of vertices, effectivity indices, true error and aspect ratio for different
values of M goal of vertices, when solving (3.1) with µ = 1, u and p are given by (3.11).
Results obtained running algorithm 3(Mgoal = 1600,N = 5,Nit = 20,α = 0.1,T 1

h ).

M Vertices eiA eH1 ep eiZZ armax arav

100 118 2.96 0.017 0.20 0.90 101 30
200 186 3.03 0.013 0.22 0.92 153 29
400 369 2.87 0.0083 0.11 0.91 136 26
800 653 2.83 0.0056 0.043 0.91 121 22
1600 1348 2.79 0.0036 0.029 0.91 111 20

In Figure 3.2 a cut at x = 0.5 of the obtained mesh with corresponding solution,
when M = 1600 is reported.
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Figure 3.2 : Cut of mesh at x = 0.5. Adapted mesh at M = 1600 when u, p are given
by (3.11).

Finally the next numerical experiment has the goal to demonstrate, the efficiency of
the continuation algorithm 2 over algorithm 1 for Stokes problem as already demonstrated
in Section 2.4.4 for an elliptic problem. Consider problem (3.1) and let Ω = (0, 1) ×
(0, 1)× (0, 0.1) and f be such that

u(x, y, z) =
[
x3(1− x)3y2(1− y)2(1− 2y),−x2(1− x)2y3(1− y)3(1− 2x), 0

]T
,

p(x, y, z) = xy − 0.25.
(3.12)

For algorithm 1 we set TOL = 0.125, Nit = 80 and T 1
h an initial mesh of size h1 = h2 = 0.1

and h3 = 0.05. When testing algorithm 2 we choose TOLgoal = 0.125, Nit = 20, N = 4
and the same starting mesh T 1

h . In Figure 3.3 the obtained results can be observed.
As for the elliptic problem, the benefits of the continuation algorithm on the preset

tolerance parameter are clear. The CPU time required is reduced.
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Figure 3.3 : Comparison of algorithm 1(TOL = 0.125,T 1
h ,Nit = 80) and algorithm

2(TOLgoal = 0.125,N = 4,T 1
h ,Nit = 20), when solving problem (3.1) when u and p are

given by (3.12). Top left : error at each iteration. Top right : Number of vertices at each
iteration. Bottom left : CPU time at each iteration. Bottom right : GMRES iterations at
each iteration of the adaptive algorithm.

59





4 Anisotropic adaptive finite ele-
ments for a p-Laplacian problem

We are interested in the p-Laplace problem −∇ · ((µ + |∇u|p−2)∇u) = f in Ω ⊂ Rd,
where µ ≥ 0 and p ≥ 2. This problem can be seen as a simplification of Navier-Stokes
equation with the so-called Smagorinsky turbulence model [64], which will be considered
in the context of aluminium electrolysis in Chapter 5. A posteriori error estimates for the
p-Laplacian problem were proposed in [21, 11, 48, 20, 13, 26] for isotropic finite elements.
The goal of this chapter is to derive a posteriori error estimates for large aspect ratio finite
elements. In particular a theoretical and numerical study of the equivalence between the
error estimator and different numerical errors u− uh is presented, the involved constants
being independent of the aspect ratio. Finally, an application of adaptive algorithm 2 is
discussed.

4.1 Problem statement and numerical method

Given f : Ω→ R we search for u : Ω→ R such that
−∇ · ((µ + |∇u|p−2)∇u) = f in Ω,

u = 0 on ∂Ω,

(4.1)

where µ ≥ 0 is a constant and p ≥ 2. We assume throughout this chapter that f ∈ L2(Ω).
The weak formulation of problem (4.1) consists in finding u ∈W 1,p

0 (Ω) such that∫
Ω

(µ + |∇u|p−2)∇u · ∇v =
∫

Ω
fv, ∀ v ∈W 1,p

0 (Ω). (4.2)

When µ = 0 existence and uniqueness of a solution u ∈ W 1,p
0 (Ω) has been proved in

[47, 36]. The case µ > 0 can be proved in a similar way. To approximate the solution of
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(4.2), we are looking for uh ∈ Vh such that∫
Ω

(µ + |∇uh|p−2)∇uh · ∇vh =
∫

Ω
fvh, ∀ vh ∈ Vh. (4.3)

Existence and uniqueness of uh ∈ Vh can be again proved similarly as in [47, 36]. To solve
this nonlinear problem, the Newton’s method is advocated. We define the functional
F : W 1,p

0 (Ω)→ R by

(W 1,p
0 (Ω))′ < F (u), v >

W 1,p
0 (Ω)=

∫
Ω

(µ + |∇u|p−2)∇u · ∇v − fv,

where (W 1,p
0 (Ω))′ < ·, · >

W 1,p
0 (Ω) is the duality product, noted simply < ·, · > in next

proposition.

Proposition 4.1. The Gâteau derivative of F in u in direction w for any v ∈ V is given
by

< DF (u)w, v >= (p− 2)
∫

Ω

|∇u|p−3∇u · ∇w

|∇u|
∇u · ∇v +

∫
Ω

(µ + |∇u|p−2)∇w · ∇v.

Proof. By definition we have

< DF (u)w, v > = lim
ϵ→0

< F (u + ϵw), v > − < F (u), v >

ϵ

= lim
ϵ→0

∫
Ω

|∇u + ϵ∇w|p−2 − |∇u|p−2

ϵ
∇u · ∇v

+ lim
ϵ→0

∫
Ω

(µ + |∇u + ϵ∇w|p−2∇w · ∇v).

By computing

lim
ϵ→0

∫
Ω

|∇u + ϵ∇w|p−2 − |∇u|p−2

ϵ
= (p− 2)

∫
Ω

|∇u|p−3∇u · ∇w

|∇u|

we conclude the proof.

The Newton’s method works as follows, if un
h ∈ Vh is known, we need to find wh ∈ Vh

such that
< DF (un

h)wh, vh >=< F (un
h), vh >

for all vh ∈ Vh, we set un+1
h = un

h − wh and we go on until convergence is reached.

4.2 An anisotropic error estimator

Let u ∈ W 1,p
0 (Ω) be the weak solution of (4.2) and uh ∈ Vh the solution of the finite

elements approximation (4.3). We can derive a family of estimators for the error in the
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norm :
µ||∇(u− uh)||2L2(Ω) + ||∇(u− uh)||pLp(Ω)

and also in the quasi-norm :∫
Ω
|∇(u− uh)|2(µ + (|∇(u− uh)|+ |∇u|)p−2).

We first focus on the quasi-norm. Note that by quasi-norm we mean that all properties
of a norm are satisfied except homogeneity.

Proposition 4.2. Let µ ≥ 0, for w ∈W 1,p
0 (Ω) and v ∈W 1,p

0 (Ω) let

||v||p(w) =
∫

Ω
|∇v|2(µ + (|∇w|+ |∇v|)p−2).

Then || · ||(w) is a quasi-norm on W 1,p
0 (Ω).

The proof is as in [11]. We now state and prove a slight modification of Lemma 2.1.

in [50], where we set α1 = α2 = 0, δ = 0 and µ has been added.

Lemma 4.1. Let µ ≥ 0, p ≥ 2, d = 2, 3 and k ∈ C1(0,∞) ∩ C[0,∞[ be defined by
k(t) = µ + tp−2. Then there exists two constants C, M > 0 such that for all µ ≥ 0 for all
x, y ∈ Rd we have

|k(|x|)x− k(|y|)y| ≤ C|x− y|(µ + (|x|+ |y|)p−2) (4.4)

and

(k(|x|)x− k(|y|)y) · (x− y) ≥M |x− y|2(µ + (|x|+ |y|)p−2). (4.5)

Proof. We start by proving (4.4). First, observe that for all s, t > 0

|k(t)t− k(s)s| ≤ C|t− s|(µ + (t + s)p−2). (4.6)

Indeed, assume for instance 0 ≤ s ≤ t, by mean value theorem there exists s ≤ x ≤ t

such that

k(t)t− k(s)s = (t− s)((p− 2)xp−3x + (µ + xp−2))
≤ (t− s)(p− 1)(µ + xp−2)

and (4.6) follows directly. Proceeding as in Lemma 2.1. in [50] we can obtain (4.4). To
prove (4.5), we observe that there exists M > 0 for all t ≥ s ≥ 0 such that

k(t)t− k(s)s ≥M(t− s)(µ + (t + s)p−2).
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Indeed, we have

(t− s)(µ + (t + s)p−2) = (t− s)µ + t exp ((p− 2) ln(t + s))− s exp ((p− 2) ln(t + s))
≤ (t− s)µ + 2p−2 (t exp ((p− 2) ln(t))− s exp ((p− 2) ln(s)))

≤ 2p−2
(
t(µ + tp−2)− s(µ + sp−2)

)
.

Again following the idea of Lemma 2.1 in [50], we prove (4.5).

We now recall lemma 5.2 of [48], when θ = 1.

Lemma 4.2. For all σ1, σ2, σ3 ≥ 0 we have

(σ3 + σ1)p−2σ1σ2 ≤ (σ3 + σ1)p−2σ2
1 + (σ3 + σ2)p−2σ2

2.

As in [49], we set
a(u, v) =

∫
Ω

(µ + |∇u|p−2)∇u · ∇v.

Following [48] and [11] we can prove next proposition.

Proposition 4.3. Let C and M be the constants of Lemma 4.1. Let u ∈W 1,p
0 (Ω), then

for all v, w ∈W 1,p
0 (Ω) we have

a(u, u− v)− a(v, u− v) ≥ M

2 ||u− v||p(u) (4.7)

and
|a(u, w)− a(v, w)| ≤ C

(
||u− v||p(u) + ||w||p(u)

)
. (4.8)

Proof. First we prove equation (4.7), using relation (4.5) of Lemma 4.1. We have

a(u, u− v)− a(v, u− v) =
∫

Ω
((µ + |∇u|p−2)∇u− (µ + |∇v|p−2)∇v)∇(u− v)

≥M

∫
Ω
|∇(u− v)|2(µ + (|∇u|+ |∇v|)p−2),

Using the fact that for all x, y ∈ Rd we have

2(|x|+ |y|) ≥ |x|+ |x− y|,

we obtain

a(u, u− v)− a(v, u− v) ≥ M

2

∫
Ω
|∇(u− v)|2(µ + (|∇u|+ |∇(u− v)|)p−2)

= M

2 ||u− v||p(u).
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4.2 An anisotropic error estimator

We now prove (4.8). We have

|a(u, w)− a(v, w)| ≤
∫

Ω
|((µ + |∇u|p−2)∇u− (µ + |∇v|p−2)∇v)||∇w|

We apply (4.4) of Lemma 4.1 and the fact that for all x, y ∈ Rd we have

|x|+ |y|
2 ≤ |x|+ |x− y|

to obtain

|a(u, w)− a(v, w)| ≤ C

∫
Ω
|∇(u− v)|(µ + (|∇u|+ |∇(u− v)|)p−2)|∇w|.

Using Lemma 4.2 we obtain

|a(u, w)− a(v, w)| ≤ C

(∫
Ω

(|∇(u− v)|2(µ + (|∇u|+ |∇(u− v)|)p−2))

+
∫

Ω
((µ + (|∇u|+ |∇w|)p−2)|∇w|2)

)
,

which concludes the proof.

The next result follows directly taking w = u− v in (4.7)-(4.8)

Proposition 4.4. Let u ∈ W 1,p
0 (Ω) and v ∈ W 1,p

0 (Ω). Then there exist two constants
M, C > 0 independent of µ, u, v such that

1
2C

(a(u, u− v)− a(v, u− v)) ≤ ||u− v||p(u) ≤
2

M
(a(u, u− v)− a(v, u− v)). (4.9)

We can also prove the following proposition.

Proposition 4.5. There exists α > 0 such that for all µ ≥ 0 and u, v ∈ W 1,p
0 (Ω) we

have

α(µ||∇(u− v)||2L2(Ω) + ||∇(u− v)||pLp(Ω)) ≤ a(u, u− v)− a(v, u− v). (4.10)

Proof. It suffices to prove that there exists α such that for all x, y ∈ Rd we have(
(µ + |x|p−2)x− (µ + |y|p−2)y

)
· (x− y) ≥ α(µ|x− y|2 + |x− y|p). (4.11)

Indeed, we have(
(µ + |x|p−2)x− (µ + |y|p−2)y

)
· (x− y) ≥ µ|x− y|2 + (|x|p−2x− |y|p−2y) · (x− y)

so that (4.11) follows using Lemma 5.1 in [36].

We can now state the main result of the section.
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Theorem 4.3. Let u ∈W 1,p
0 (Ω) be solution of (4.2) and uh ∈ Vh solution of (4.3). Let

p ≥ 2. Then there exists Ĉ1 > 0 independent of µ, u, the mesh size and the aspect ratio
such that

µ||∇(u− uh)||2L2(Ω) + ||∇(u− uh)||pLp(Ω) + ||u− uh||p(u) ≤ Ĉ1

( ∑
K∈Th

η2,K + ϵ1

)
(4.12)

Moreover if there exists a constant Ĉ, dependent only on the reference triangle K̂, such
that for all K ∈ Th for i = 1, . . . , d− 1

λ2
i,K(rT

i,KGK(u− uh)ri,K) ≤ Ĉλ2
d,K(rT

d,KGK(u− uh)rd,K) (4.13)

and assuming λi,K vary smoothly around K for i = 1, . . . , d, then there exists a constant
Ĉ2 > 0 independent of µ, u, the mesh size and the aspect ratio such that

∑
K∈Th

η2,K ≤ Ĉ2

||u− uh||p(u) +
4∑

j=1
ϵj

 . (4.14)

Here

η2,K =
(
||∇ ·

(
(µ + |∇uh|p−2)∇uh

)
+ ΠKf ||L2(K)

+ 1
2

d+1∑
i=1


|∂Ki|
d∏

j=1
λj,K


1/2

||[(µ + |∇uh|p−2)∇uh · n]||L2(∂Ki)

)
ω2,K(u− uh),

(4.15)

ϵ1 =
∑

K∈Th

||f −ΠKf ||L2(K)ω2,K(u− uh),

ϵ2 =
∑

K∈Th

λd,K ||f −ΠKf ||2L2(K),

ϵ3 =
∑

K∈Th

∑
K′∈PK

∫
K′
|
(
µ + |∇uh|p−2

)
|K
−
(
µ + |∇uh|p−2

)
|K′
| |∇(u− uh)|2

and
ϵ4 =

∑
K∈Th

λd,K ||∇(u− uh)||2L2(∆K)

Here ω2,K(·) is defined in (1.3), n stands for the unit outer normal to element K, [·]
denotes the jump across boundary element ∂Ki of K for i = 1, . . . , d + 1 ( [·] = 0 if
∂K ⊂ ∂Ω) and for all K ∈ Th, we define ΠKf as in (2.5). Moreover we denoted

PK = ∆K ∪ (
d+1⋃
i=1

∆Ki)
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with Ki the ith element sharing a facet ∂Ki with K (see Figure 2.1).

Remark 4.1. Let 2 ≤ p′ ≤ p and q′ the Hölder conjugate of p′. Then the upper bound
(4.12) can be generalized by

Ĉ1

 ∑
K∈Th

ηp′,K +
∑

K∈Th

||f −ΠKf ||Lq′ (K)ωp′,K(u− uh)

 ,

where

ηp′,K =
(
||∇ ·

(
(µ + |∇uh|p−2)∇uh

)
+ ΠKf ||Lq′ (K)

+ 1
2

d+1∑
i=1


|∂Ki|
d∏

j=1
λj,K


1/p′

||[(µ + |∇uh|p−2)∇uh · n]||Lq′ (∂Ki)

)
ωp′,K(u− uh).

Remark 4.2. Assume f ∈ H1(Ω) then we have

||f −ΠKf ||2L2(K) ≤ Ĉ
d∑

i=1
λ2

i,K ||∇f · ri,K ||2L2(K).

In the isotropic case this yields ϵ1, ϵ2, ϵ4 = O(h3), that are higher order terms compared to
||u−uh||p(u) which should be according to [11], O(h2). In the anisotropic context if, for ins-

tance f depends only on x2, d = 2 and r1,K = (1, 0), then ϵ1, ϵ2, ϵ4 = O

((
max
K∈Th

λ2,K

)3
)

.

Numerical experiments performed in Sections 4.3 and 4.4 confirm previous predictions
and show that ϵ3 is also of higher order with respect to ||u− uh||p(u), see Figures 4.1,4.2,
4.3 and 4.4. Thus when max

K∈Th

λd,K → 0, then ||u− uh||p(u) and
∑

K∈Th
η2,K are equivalent

up to higher order terms.

Remark 4.3. Observe that local error estimator (4.15) is not standard since the exact
solution is present in the term ω2,K(u − uh). In practice Zienkiewicz-Zhu (ZZ) post-
processing can be applied as explained in Remark 2.1.

Proof. (Upper bound (4.12) of Theorem 4.3) For all v ∈W 1,p
0 (Ω) and vh ∈ Vh we have
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using (4.2) and (4.3) :

a(u, v)− a(uh, v) =
∫

Ω
f(v − vh)−

∫
Ω

(µ + |∇uh|p−2)∇uh · ∇(v − vh)

=
∑

K∈Th

(∫
K

(f +∇ · (µ + |∇uh|p−2)∇uh)(v − vh)

+ 1
2

∫
∂K

[(µ + |∇uh|p−2)∇uh · n](v − vh)
)

,

where we integrated by parts. We set v = u − uh and vh = Rh(u − uh), adding and
subtracting ΠKf , using Hölder inequality and proposition 1.1 we obtain

|a(u, v)− a(uh, v)|

≤
∑

K∈Th

(
||ΠKf +∇ ·

(
(µ + |∇uh|p−2)∇uh

)
||L2(K)

+||f −ΠKf ||L2(K)
)
||u− uh −Rh(u− uh)||L2(K)

+ 1
2
∑

K∈Th

||[(µ + |∇uh|p−2)∇uh · n]||L2(∂K)||u− uh −Rh(u− uh)||L2(∂K)

≤ C
∑

K∈Th

(
||ΠKf +∇ ·

(
(µ + |∇uh|p−2)∇uh

)
||L2(K)

+ 1
2

d+1∑
i=1


|∂Ki|
d∏

j=1
λj,K


1/2

||[(µ + |∇uh|p−2)∇uh · n]||L2(∂Ki)

+ ||f −ΠKf ||L2(K)

)
ω2,K(u− uh),

which, together with proposition 4.4, yields (4.12).

We now aim to prove the lower bound (4.14). The classical standard bubble functions
[9, 73], adapted to the anistropic case [62, 29] and modified to take into account the
nonlinearity, are involved. Next Proposition is an extension of proposition 2.1.

Proposition 4.6. Let e = u− uh, under the same assumptions of Theorem 4.3 there
exists a function φ ∈W 1,p

0 (Ω) and a constant Ĉ > 0 (that depends only on the reference
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triangle K̂ and on p) such that for any K ∈ Th and i = 1, . . . , d + 1

∫
∂Ki

[(µ + |∇uh|p−2)∇uh · n]φ = 1
2

 |∂Ki|1/2 d∏
j=1

λj,K

1/2 ω2,K(e)

+ |∂Ki|1/2 d∏
j=1

λj,Ki

1/2 ω2,Ki(e)

∥[(µ + |∇uh|p−2)∇uh · n]∥L2(∂Ki)

(4.16)

∫
K

(ΠKf +∇ · ((µ + |∇uh|p−2)∇uh))φ

= ∥Πkf +∇ · ((µ + |∇uh|p−2)∇uh)∥L2(K)ω2,K(e),
(4.17)

 d∑
j=1

λ2
j,K ||∇φ · rj,K ||2L2(K)

1/2

≤ Ĉ

(
ω2,K(e) +

d+1∑
i=1

ω2,Ki(e)
)

, (4.18)

∫
K
|∇φ|2 ≤ Ĉ

(
ω2

2,K(e)
λ2

d,K

+
d+1∑
i=1

ω2
2,Ki(e)
λ2

d,Ki

)
, (4.19)

∫
K
|∇φ|p ≤ Ĉ||∇e||pLp(PK). (4.20)

We denoted for i = 1, . . . , d + 1, Ki the ith element sharing facet ∂Ki with K (see Figure
2.1).

Proof. Following the proof of [62] and Proposition 2.1 we claim that

φ =
∑

K∈Th

CKΨK + 1
2
∑

K∈Th

d+1∑
i=1

C∂Ki
Ψ∂Ki

,

where CK , C∂Ki
are constants, ΨK , Ψ∂Ki

are the usual bubble function over K and its
facets ∂Ki i = 1, . . . , d + 1. We set ∂Ki = 0 if ∂Ki ⊂ ∂Ω. First we compute C∂Ki

for
i = 1, . . . , d + 1. We require that the constants associated to the same facet shared by
two elements are equal. Using the fact that ΨK , Ψ∂Ki

are zero over ∂Ki for all i ̸= j,
the fact that (ΠKf +∇ · ((µ + |∇uh|p−2)∇uh) and [(µ + |∇uh|p−2)∇uh · n] are constants
over K and ∂Ki respectively, |K| = Ĉ

∏d
j=1 λj,K and (4.17) and (4.16) we obtain, as in
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Proposition 2.1

C∂Ki
= ±1

2




|∂Ki|2
d∏

j=1
λj,K


1/2

ω2,K(e) +


|∂Ki|2
d∏

j=1
λj,Ki


1/2

ω2,Ki(e)


1∫

∂Ki

Ψ∂Ki

.

and

CK = ± 1∫
K

ΨK

Ĉ

 d∏
j=1

λj,K

1/2

ω2,K(e)

∓
d+1∑
i=1

1
2




|∂Ki|2
d∏

j=1
λj,K


1/2

ω2,K(e) +


|∂Ki|2
d∏

j=1
λj,Ki


1/2

ω2,Ki(e)


∫

K
Ψ∂Ki∫

∂Ki

Ψ∂Ki

 .

We proceed as in Proposition 2.1 to prove (4.19) and (4.18). We now prove (4.20). We
have ∫

K
|∇φ|p ≤ Ĉ

∫
K

(
|CK |p|∇ΨK |p +

d∑
i=1
|C∂Ki

|p|∇Ψ∂Ki
|p
)

.

Proceeding as in (2.13) and (2.17) we obtain the following bounds

|C∂Ki
|p ≤ Ĉ


ωp

2,K(e) d∏
j=1

λj,K

p/2 +
ωp

2,Ki(e) d∏
j=1

λj,Ki

p/2


,

|CK |p ≤ Ĉ


ωp

2,K(e) d∏
j=1

λj,K

p/2 +
d+1∑
i=1

ωp
2,Ki(e) d∏

j=1
λj,Ki

p/2


.
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Thus we obtain

∫
K
|∇φ|p ≤ Ĉ


ωp

2,K(e) d∏
j=1

λj,K

p/2 +
d+1∑
i=1

ωp
2,Ki(e) d∏

j=1
λj,Ki

p/2


∫

K
|∇ΨK |p +

d+1∑
j=1

∫
K
|∇Ψ∂Kj

|p


Using assumption (4.13) we have

ωp
2,K(e) ≤ Ĉ

(
λ2

d,K ||∇e||2L2(∆K)

)p/2
.

Using (1.5) and the fact that λ1,K ≥ · · · ≥ λd,K > 0, we obtain

||∇ΨK ||pLp(K) ≤

d∏
j=1

λj,K

λp
d,K

||∇̂Ψ̂K̂ ||
p

Lp(K̂)

and the same occurs for ∇Ψ∂Ki
. All together using the hypothesis that λi,K vary smoothly

around K for i = 1, . . . , d we have

∫
K
|∇φ|p ≤ Ĉ

 d∏
j=1

λj,K

(2−p)/2((∫
∆K
|∇e|2

)p/2
+

d+1∑
i=1

(∫
∆Ki
|∇e|2

)p/2
)

.

using Hölder’s inequality we have

∫
K
|∇φ|p ≤ Ĉ

 d∏
j=1

λj,K

(2−p)/2(
|∆K|(p−2)/2

∫
∆K
|∇e|p +

d+1∑
i=1
|∆Ki|(p−2)/2

∫
∆Ki
|∇e|p

)
,

and using assumption 1 of Chapter 1 and the fact that λi,K vary smoothly around K we
obtain (4.20).

We are now ready to prove (4.14) of Theorem 4.3.

Proof. (Lower bound (4.14) of Theorem 4.3) Using definition of η2,K and identities
(4.17)-(4.16), one can write

∑
K∈Th

η2,K =
∑

K∈Th

∫
K

(
ΠKf +∇ ·

(
(µ + |∇uh|p−2)∇uh

)
φ
)

+ 1
2

∫
∂K

[(µ + |∇uh|p−2)∇uh · n]φ,

where φ is the bubble function introduced in Proposition 4.6. Using (4.2) and integration
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by parts we obtain
∑

K∈Th

η2,K =
∫

K

((
µ + |∇u|p−2

)
∇u−

(
µ + |∇uh|p−2

)
∇uh

)
∇φ

−
∑

K∈Th

∫
K

(f −ΠKf)(φ−ΠKφ)

≤ |a(u, φ)− a(uh, φ)|+
∑

K∈Th

∫
K
|f −ΠKf | |φ−ΠKφ|.

Using Proposition 4.3 and Cauchy-Schwarz inequality we obtain∑
K∈Th

η2,K ≤ Ĉ
(
||e||p(uh) + ||φ||p(uh)

)
+
∑

K∈Th

||f −ΠKf ||L2(K)||φ−ΠKφ||L2(K). (4.21)

Using Proposition 2.2 we have

||φ−ΠKφ||2L2(K) ≤ Ĉ
d∑

j=1
λ2

j,K ||∇φ · rj,K ||2L2(K),

which together with (4.18) gives

||φ−ΠKφ||L2(K) ≤ Ĉ

(
ω2,K(e) +

d+1∑
i=1

ω2,Ki(e)
)

.

Using assumption (4.13) and Young’s inequality we obtain

∑
K∈Th

||f −ΠKf ||L2(K)||φ−ΠKφ||L2(K) ≤ Ĉ

 ∑
K∈Th

||f −ΠKf ||L2(K)ω2,K(e) +
d+1∑
i=1

ω2,Ki(e)


≤ Ĉ

ϵ1 +
∑

K∈Th

λd,K ||f −ΠKf ||L2(K)

d+1∑
i=1
||∇e||L2(∆Ki)


≤ Ĉ (ϵ1 + ϵ2 + ϵ4) .

We have

||φ||p(uh) =
∑

K∈Th

∫
K

(µ + (|∇uh|+ |∇φ|)p−2)|∇φ|2

≤ Ĉ
∑

K∈Th

∫
K

(µ + |∇uh|p−2)|∇φ|2 + Ĉ

∫
K
|∇φ|p

≤ Ĉ
∑

K∈Th

∫
PK

(
µ + |∇uh|p−2

)
|K
|∇e|2 + |∇e|p,
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where we used (4.19)-(4.20). We have

∑
K∈Th

∫
PK

(
µ + |∇uh|p−2

)
|K
|∇e|2

=
∑

K∈Th

∑
K′∈PK

∫
K′

((
µ + |∇uh|p−2

)
|K
−
(
µ + |∇uh|p−2

)
|K′

)
|∇e|2

+
∑

K∈Th

∫
PK

(
µ + |∇uh|p−2

)
|∇e|2.

All together we have∑
K∈Th

η2,K ≤ Ĉ||e||p(uh) + Ĉ
∑

K∈Th

λ2
d,K ||f −ΠKf ||2L2(K)

+ Ĉ
∑

K∈Th

∑
K′∈PK

∫
K′

((
µ + |∇uh|p−2

)
|K
−
(
µ + |∇uh|p−2

)
|K′

)
|∇e|2,

therefore, applying the triangle inequality ||e||p(uh) ≤ Ĉ||e||p(u), we get the desired result.

4.3 Numerical experiments with non-adapted meshes

The goal of this section is to numerically check the sharpness of the error estimator
presented in Theorem 4.3. We are interested by the case p = 3, since it corresponds to
the so called Smagorinsky model [67, 64] discussed in Chapter 5. We will study error
estimator (4.15). The following notations are introduced : the quasi-norm error

eQN = ||u− uh||3(u),

the W 1,3
0 semi-norm error

e3 = ||∇(u− uh)||3L3(Ω),

and the weighted W 1,2
0 semi-norm error

e2 = µ||∇(u− uh)||2L2(Ω).

We also define the following anisotropic effectivity indices :

eiN =

∑
K∈Th

η2,K

e2 + e3
, (4.22)

eiQN =

∑
K∈Th

η2,K

eQN
, (4.23)
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and the ZZ effectivity index

eiZZ
L2 =

||∇uh −ΠZZ
h ∇uh||L2(Ω)

||∇(u− uh)||L2(Ω)
.

We aim to verify if these quantities satisfy the following properties :

• eiQN and eiN are independent of the solution u,

• eiQN and eiN are independent of the choice of µ,

• eiQN and eiN are independent of the mesh size and aspect ratio,

• eiZZ
L2 is close to one (see the discussion in Remark 2.1 in Chapter 2).

Let Ω = (0, 1)2 and consider problem (4.1). Results with various meshes sizes (h1-h2
being the mesh size in directions x1 and x2) and various values of µ are reported in Table
4.1 for the exact solution

u(x, y) = 4(1− e−αx − (1− e−α)x)y(1− y) (4.24)

as in [34] with α = 50. Similarly, in Tables 4.2 and 4.3 results are reported for the exact
solution

u(x, y) = tanh(x− 0.5
ϵ

) (4.25)

with ϵ = 0.1 and ϵ = 0.05 respectively. Note that u defined by (4.25) is not zero on the
boundary, thus the theory does not apply as is anymore. Nevertheless, numerical results
indicate that the error estimator is still sharp.

The ZZ effectivity index is close to one as desired. We observe that the derived error
estimator is accurate for both the W 1,3

0 norm and the quasi-norm when µ is large. When
µ is large the effectivity indices are around 9 which corresponds to the linear elliptic
problem [29, 62] discussed in Chapter 2. When µ is small, only the quasi-norm should be
considered. Indeed, when h is small enough, the corresponding effectivity indices remain
between 11 and 18 uniformly with respect to µ and h. We therefore can conclude that
the upper bound (4.12) seems to be sharp with p = 3.
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Table 4.1 : True errors and effectivity indices for various non-adapted meshes and
various choices of µ when solving problem (4.1) with f given such that the exact solution
is given by (4.24), with α = 50.

h1-h2 eiN eiQN eQN e3 e2 eiZZ
L2

µ = 0
0.025 0.025 8.43 2.78 81.50 26.21 0 0.59
0.0125 0.0125 20.08 6.14 15.32 3.11 0 0.82
0.00625 0.00625 85.17 9.66 3.12 3.53e-01 0 0.93
0.003125 0.003125 208.47 11.99 7.11e-01 4.07e-02 0 0.98

0.01 0.1 55.12 10.07 7.75 1.40 0 0.96
0.005 0.05 111.62 12.10 1.86 2.02e-01 0 0.98
0.0025 0.025 235.82 13.89 4.60e-01 2.70e-02 0 0.99
0.00125 0.0125 510.447 15.33 1.02e-01 3.05e-03 0 0.99

µ = 1
0.025 0.025 8.13 2.72 82.71 26.06 1.64 0.59
0.0125 0.0125 27.28 6.13 15.70 3.12 4.02e-01 0.82
0.00625 0.00625 68.39 9.57 3.21 3.54e-01 9.60e-02 0.93
0.003125 0.003125 134.81 11.84 7.34e-01 4.09e-02 2.36e-02 0.98

0.01 0.1 44.00 9.94 8.17 1.40 4.42e-01 0.97
0.005 0.05 73.06 11.83 1.98 2.01e-01 1.20e-01 0.98
0.0025 0.025 111.91 13.48 4.92e-01 2.70e-02 3.22e-02
0.00125 0.0125 148.42 14.78 1.10e-01 3.07e-03 7.91e-03 0.99

µ = 100
0.025 0.025 4.16 3.23 222.81 23.33 149.50 0.63
0.0125 0.0125 7.22 5.65 53.55 3.00 38.89 0.84
0.00625 0.00625 9.40 7.36 12.54 3.51e-01 9.47 0.94
0.003125 0.003125 10.69 8.36 3.05 4.09e-02 2.35 0.98

0.01 0.1 8.66 7.60 51.04 1.37 43.42 0.97
0.005 0.05 9.08 7.99 13.72 1.99e-01 11.87 0.98
0.0025 0.025 9.45 8.34 3.67 2.69e-02 3.21 0.99
0.00125 0.0125 9.66 8.58 8.92e-01 3.06e-03 7.90e-01 0.99
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Table 4.2 : True errors and effectivity indices for various non-adapted meshes and
various choices of µ when solving problem (4.1) with f given such that the exact solution
is given by (4.25), with ϵ = 0.1.

h1-h2 eiN eiQN eQN e3 e2 eiZZ
L2

µ = 0
0.05 0.05 85.12 11.59 1.30 1.77e-01 0 1.04
0.025 0.025 159.87 13.17 2.73e-01 2.25e-02 0 1.02
0.0125 0.0125 309.63 13.82 6.11e-02 2.73e-03 0 1.00
0.00625 0.00625 643.61 14.22 1.51e-02 3.33e-04 0 1.00
0.003125 0.003125 1280.79 14.34 3.74e-03 4.19e-05 0 1.00

0.005 0.05 772.78 15.81 8.26e-03 1.69e-04 0 0.99
0.0025 0.025 1547.62 15.57 1.92e-03 1.94e-05 0 1.00
0.00125 0.0125 3098.95 15.62 4.79e.04 2.41e-06 0 1.00

0.002 0.2 2574.62 18.56 1.25e-03 9.02e-06 0 1.00
0.001 0.1 4704.70 17.58 3.16e.04 1.18e-06 0 0.99
0.0005 0.05 8910.96 17.36 7.57e-05 1.47e-07 0 0.99

µ = 1
0.05 0.05 45.73 11.27 1.47 1.73e-01 1.88e-01 1.06
0.025 0.025 59.82 12.46 3.15e-01 2.24e-02 4.33e-02 1.02
0.0125 0.0125 71.31 12.95 7.12e-02 2.73e-03 1.02e-02 1.01
0.00625 0.00625 80.49 13.29 1.76e-02 3.33e-04 2.57e-03 1.00
0.003125 0.003125 85.29 13.39 4.39e-03 4.10e-05 6.47e-04 1.00

0.005 0.05 88.81 14.67 9.68e-02 1.69e-04 1.43e-03 1.00
0.0025 0.025 91.69 14.42 2.26e-03 1.94e-05 3.36e-04 1.00
0.00125 0.0125 95.00 14.46 5.61e-04 2.41e-06 8.30e-05 1.00

0.002 0.2 111.81 17.23 1.47e-03 9.03e-06 2.17e-04 1.00
0.001 0.1 108.85 16.32 3.70e-04 1.18e-06 5.44e-05 0.99
0.0005 0.05 107.82 16.09 8.88e-05 1.47e-07 1.31e-05 0.99

µ = 100
0.05 0.05 8.82 8.33 18.90 1.63e-01 17.70 1.08
0.025 0.025 8.66 8.19 4.56 2.22e-02 4.29 1.03
0.0125 0.0125 8.55 8.09 1.08 2.73e-03 1.02 1.01
0.00625 0.00625 8.65 8.19 2.73e-01 3.34e-04 2.58e-01 1.00
0.003125 0.003125 8.64 8.17 6.83e-02 4.21e-05 6.46e-02 1.00

0.005 0.05 8.92 8.44 1.51e-01 1.79e-04 1.42e-01 1.00
0.0025 0.025 8.69 8.22 3.55e-02 1.94e-05 3.36e-02 1.00
0.00125 0.0125 8.68 8.21 8.78e-03 2.42e-06 8.30e-03 1.00

0.001 0.1 10.07 9.52 5.74e-03 1.17e.06 5.42e-03 0.99
0.0005 0.05 9.75 9.22 1.38e-03 1.46e-07 1.31e-03 0.99
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Table 4.3 : True errors and effectivity indices for various non-adapted meshes and
various choices of µ when solving problem (4.1) with f given such that the exact solution
is given by (4.25), with ϵ = 0.05.

h1-h2 eiN eiQN eQN eL3 eL2 eiZZ
L2

µ = 0
0.025 0.025 74.61 11.67 4.93 7.70e-01 0 1.06
0.0125 0.0125 153.99 13.08 1.05 8.89e-02 0 1.00
0.00625 0.00625 324.70 13.90 2.50e-01 1.07e-02 0 1.01
0.003125 0.003125 650.11 14.17 6.12e-02 1.33e-03 0 1.00

0.005 0.05 384.54 14.91 1.38e-01 5.36e-03 0 0.89
0.0025 0.025 766.47 15.20 3.13e-02 6.22e-04 0 0.99
0.00125 0.0125 1544.29 15.53 7.71e-03 7.76e-05 0 1.00

0.002 0.2 1184.92 17.28 2.01e-02 2.93e-04 0 1.00
0.001 0.1 2189.84 17.27 5.26e-03 4.14e-05 0 1.00
0.0005 0.05 4364.82 17.12 2.21e-03 4.77e-06 0 1.00

µ = 1
0.025 0.025 53.56 11.46 5.25 7.64e-01 3.58e-01 1.08
0.0125 0.0125 83.35 12.73 1.13 8.85e-02 8.33e-02 1.02
0.00625 0.00625 115.70 13.44 2.70e-01 1.07e-02 2.07e-02 1.01
0.003125 0.003125 138.78 13.68 6.64e-02 1.33e-03 5.21e-03 1.00

0.005 0.05 121.83 14.53 1.48e-01 5.23e-03 1.24e-02 0.95
0.0025 0.025 150.69 14.62 3.40e-02 6,22e-04 2.68e-03 1.00
0.00125 0.0125 167.63 14.92 8.39e-03 7.76e-05 6.68e-04 1.00

0.002 0.2 179.26 16.61 2.18e-02 2.94e-04 1.73e-03 1.00
0.001 0.1 191.54 16.58 5.71e-03 4.14e-05 4.53e-05 1.00
0.0005 0.05 196.31 16.44 1.32e-03 4.77e-06 1.06e-05 1.00

µ = 100
0.025 0.025 9.29 8.34 38.88 7.36e-01 34.19 1.09
0.0125 0.0125 9.35 8.39 9.16 8.78e-02 8.14 1.03
0.00625 0.00625 9.47 8.50 2.31 1.07e-02 2.06 1.01
0.003125 0.003125 9.47 8.50 5.80e-01 1.34e-03 5.19e-01 1.00

0.005 0.05 9.76 8.77 1.24 5.16e-03 1.11 1.00
0.0025 0.025 9.51 8.53 2.98e-01 6.22e-04 2.67e-01 1.00
0.00125 0.0125 9.58 8.60 7.45e-02 7.77e-05 6.68e-02 1.00

0.002 0.2 10.91 9.79 1.93e-01 2.93e-04 1.73e-01 1.00
0.001 0.1 10.72 9.61 5.05e-02 4.12e-05 4.52e-02 1.00
0.0005 0.05 10.58 9.49 1.18e-02 4.75e-06 1.06e-02 0.99
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Consider the higher order terms of the upper and lower bounds ϵ1, ϵ2 and ϵ3 (see
Theorem 4.3). Consider again the first numerical experiment when µ = 0 and u is
given by (4.24) with α = 50, let h1 = 1

Nx
and h2 = 10h1. In Figure 4.1 we can observe

the order of convergence of the error estimator ∑K∈Th
η2,K = O(h2), the quasi-norm

error eQN = O(h2) and the W 1,3
0 error e3 = O(h3). Moreover in Figure 4.2 we observe

ϵ1, ϵ2, ϵ4 = O(h3) and ϵ3 = O(h5), which are higher order terms with respect to eQN as
discussed in Remark 4.2.

Figure 4.1 : Error estimator, quasi-norm error, W 1,3
0 semi-norm error with corresponding

slopes, when u is given by (4.24), µ = 0 and α = 50.

Considering again experiment of Table 4.1, we compare the error estimator η2 =∑
K∈Th

η2,K with the error estimator η3 = ∑
K∈Th

η3,K discussed in Remark 4.1. In Table
4.4 we report a comparison of the two estimators and a comparison of eiZZ

L2 with

eiZZ
L3 =

||∇uh −ΠZZ
h ∇uh||L3(Ω)

||∇(u− uh)||L3(Ω)
.

Both estimators give similar results and show similar behaviours. For practical reasons
only η2 will be considered.

In the next section we use the derived error estimator (4.15) as indicator for our
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Figure 4.2 : Higher order terms ϵ1, ϵ2, ϵ3, ϵ4 with corresponding slopes, when u is given
by (4.24), µ = 0 and α = 50.

adaptive strategy. Given an accuracy, the goal will be again to construct adapted meshes
able to solve problem (4.1) at a reduced computational cost.
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Table 4.4 : Error estimators η2, η3 and ZZ-effectivity indices for various non-adapted
meshes and various choices of µ when solving problem (4.1) with f given such that the
exact solution is given by (4.24), with α = 50.

h1-h2 η2 η3 eiZZ
L2 eiZZ

L3

µ = 0
0.025 0.025 221.00 226.93 0.59 0.47
0.0125 0.0125 99.57 94.12 0.82 0.71
0.00625 0.00625 30.12 32.74 0.93 0.86
0.003125 0.003125 8.52 9.39 0.98 0.93

0.01 0.1 78.03 81.95 0.96 0.93
0.005 0.05 22.56 24.19 0.98 0.97
0.0025 0.025 6.39 6.93 0.98 0.99
0.00125 0.0125 1.57 1.70 0.99 0.99

µ = 1
0.025 0.025 225.36 231.57 0.47 0.59
0.0125 0.0125 96.16 101.77 0.82 0.71
0.00625 0.00625 30.74 33.42 0.93 0.86
0.003125 0.003125 8.69 9.58 0.98 0.93

0.01 0.1 81.14 85.41 0.97 0.93
0.005 0.05 23.43 25.17 0.98 0.97
0.0025 0.025 6.63 7.21 0.99 0.98
0.00125 0.0125 1.63 1.77 0.99 0.99

µ = 100
0.025 0.025 719.56 753.04 0.63 0.50
0.0125 0.0125 302.41 323.81 0.84 0.73
0.00625 0.00625 92.35 101.24 0.94 0.86
0.003125 0.003125 25.52 28.30 0.98 0.93

0.01 0.1 387.99 426.65 0.97 0.94
0.005 0.05 109.57 121.53 0.98 0.97
0.0025 0.025 30.57 34.18 0.99 0.99
0.00125 0.0125 7.65 8.57 0.99 0.99

4.4 Numerical experiments with adapted meshes

We consider now algorithm 2 described in Section 2.4.3. Error indicator noted η2
K in

Section 2.4.3 is replaced by η2,K , we aim to control the quasi-norm error ||u − uh||
3/2
(u)

and set m = 2 in (2.26).
Let Ω = (0, 1)2 and consider again problem (4.1) with exact solution (4.24) with
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α = 100. We apply algorithm 2 with a starting mesh of size h1 = 0.1 and h2 = 0.1 in
directions x1 and x2 respectively. We choose TOLgoal = 0.015625, N = 6 and Nit = 40.
In Table 4.5 obtained results are reported for different values of µ. We observe that, for
any choice of µ, the value of eiQN does not increase together with the average aspect ratio
avar and the maximum aspect ratio maxar. Consider the same experiment with α = 50,

Table 4.5 : True errors, effectivity indices, number of vertices and aspect ratio for
different values of tolerance TOL and µ, when solving problem (4.1) with f such that
the exact solution is given by (4.24) with α = 100. Results obtained running algorithm
2(TOLgoal = 0.015625,N = 6,T 1

h ,Nit = 40).

TOL eiN eiQN eQN eiZZ Nv avar maxar

µ = 0
0.5 33.52 10.25 20.50 0.97 89 25 116
0.25 70.84 12.97 3.48 0.98 249 32 272
0.125 98.70 13.67 8.17e-01 0.97 838 33 239
0.0625 338.71 17.13 1.61e-01 1.01 2975 36 421
0.03125 756.82 18.82 3.63e-02 1.01 11582 37 825
0.015625 1539.65 18.33 9.43e-03 1.00 44454 39 962

µ = 1
0.5 38.02 11.01 14.23 0.99 95 26 131
0.25 61.19 13.65 3.38 0.99 254 29 305
0.125 83.56 15.21 7.28e-01 0.99 863 33 257
0.0625 112.37 16.89 1.58e-01 1.01 3182 36 607
0.03125 135.67 17.64 3.93e-02 1.00 11936 37 695
0.015625 150.25 17.90 9.84e-03 1.00 46032 41 670

µ = 100
0.5 9.94 8.37 40.89 0.93 171 18 202
0.25 10.39 8.91 10.16 0.95 502 23 225
0.125 10.65 9.18 2.42 0.95 1713 26 253
0.0625 11.85 10.15 5.23e-01 0.99 6649 26 436
0.03125 12.44 10.63 1.26e-02 1.00 25536 27 635
0.015625 13.07 11.13 3.02e-02 1.00 98424 29 1064

we run again algorithm 2 with the same parameters of before. In Figure 4.3 we observe
the order of convergence of the error estimator ∑K∈Th

η2,K = O(TOL2), the quasi-norm
error eQN = O(TOL2), the W 1,3

0 semi-norm e3 = O(TOL3) and the W 1,2
0 semi-norm

e2 = O(TOL2). In Figure 4.4 we observe the following convergences : ϵ1, ϵ2, ϵ4 = O(TOL3)
and ϵ3 = O(TOL5). Theoretical predictions of Remark 4.2 are again numerically verified.
Thus also when working with adapted meshes ϵ1, ϵ2, ϵ3 and ϵ4 are of higher order with
respect to error estimator ∑K∈Th

η2,K .
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Figure 4.3 : Error estimator, quasi-norm error, W 1,3
0 and W 1,2

0 semi-norm errors
with corresponding slope, when u is given by (4.24), µ = 100 and α = 100. Results
obtained running algorithm 2(TOLgoal = 0.015625,N = 6,T 1

h ,Nit = 40) and reported for
TOL = 0.5× 2−N .
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Figure 4.4 : Higher order terms ϵ1, ϵ2, ϵ3, ϵ4 with corresponding slopes, when u is
given by (4.24), µ = 100 and α = 100. Results obtained running algorithm 2(TOLgoal =
0.015625,N = 6,T 1

h ,Nit = 40) and reported for TOL = 0.5× 2−N .

Consider again problem (4.1) with exact solution (4.25) with ϵ = 0.05 and Ω = (0, 1)2.
In Table 4.6 we can observe the results for different values of µ obtained applying
algorithm 2. The starting mesh is again of size h1 = h2 = 0.1 in each directions, we set
TOLgoal = 0.000976562, N = 10 and Nit = 40.
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Table 4.6 : True errors, effectivity indices, number of vertices and aspect ratio for
different values of tolerance TOL and µ, when solving problem (4.1) with f given such
that the exact solution is given by (4.25) with ϵ = 0.05. Results obtained running
algorithm 2(TOLgoal = 0.000976562,N = 10,T 1

h ,Nit = 40).

TOL eiN eiQN eQN eiZZ Nv avar maxar

µ = 0
0.5 58.15 11.68 3.34 0.91 52 20 61
0.25 139.26 18.36 6.68e-01 0.97 70 47 142
0.125 225.39 17.53 1.64e-01 0.96 150 88 325
0.0625 412.32 20.95 4.00e-02 0.99 246 189 865
0.03125 558.11 20.95 9.93e-03 0.97 492 351 1365
0.015625 1282.96 22.44 2.34e-03 0.98 863 845 4025
0.0078125 2426.23 23.76 5.73e-04 0.99 1703 1661 6348
0.00390625 3384.70 22.91 1.45e-04 0.98 3434 3286 16889
0.00195312 7852.33 23.20 3.61e-05 0.99 6821 6640 38352
0.000976562 14905.10 23.23 9.12e-06 0.99 13510 13250 61063

µ = 1
0.5 51.02 12.56 2.88 0.93 80 14 46
0.25 72.59 15.53 6.46e-01 0.96 76 51 171
0.125 104.87 19.87 1.50-01 0.99 137 104 359
0.0625 95.51 19.04 4.37e-02 0.98 272 166 575
0.03125 108.03 20.36 1.11e-02 0.99 488 367 1444
0.015625 107.27 20.01 2.63e-03 0.99 967 788 3325
0.0078125 104.77 20.58 6.76e-04 0.97 1828 1644 7717
0.00390625 120.28 21.25 1.66e-04 1.00 3520 3315 15048
0.00195312 116.67 20.94 4.10e-05 0.99 7169 6587 40360
0.000976562 119.16 21.27 1.03e-05 1.00 14026 13530 66011

µ = 100
0.5 13.03 12.03 17.13 0.97 59 23 90
0.25 10.08 9.42 6.18 0.91 105 45 131
0.125 11.39 10.53 1.18 0.97 210 92 364
0.0625 13.48 12.51 2.91e-01 0.97 401 180 971
0.03125 12.51 11.61 6.89e-02 0.99 732 424 2046
0.015625 13.04 12.07 1.79e-02 1.00 1354 872 4121
0.0078125 13.14 12.15 4.50e-03 0.99 2622 1735 7951
0.00390625 13.48 12.45 1.10e-03 1.00 5080 3770 17808
0.00195312 13.54 12.48 6.82e-05 1.00 9976 15286 77916
0.000976562 13.60 12.54 7.01e-05 1.00 19640 14987 71481

Results confirm that the effectivity index eiQN does not increase along with the aspect
ratio, but slightly depend on µ, when µ is small. Moreover when µ is small eiN goes to
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infinity along with the aspect ratio. In Figure 4.5 an example of the obtained adapted
mesh is reported.

Figure 4.5 : Adapted mesh obtained when TOL = 0.25, when u is given by (4.25) and
µ = 1. Result obtained running algorithm 2(TOLgoal = 0.000976562,N = 10,T 1

h ,Nit =
40).

Finally, we aim to test again the efficiency of the continuation algorithm 2 with
respect to algorithm 1. Consider problem (4.1), Ω = (0, 1)2 and let f be such that
the exact solution is given by (4.25) with µ = 0 and ϵ = 0.1. For algorithm 1 we set
TOL = 0.0078125, Nit = 140, for algorithm 2 we set TOLgoal = 0.0078125, N = 5
and Nit = 20. Both start with a mesh of size h1 = h2 = 0.1. In Figure 4.6 we present
the obtained results. Both algorithms give similar final meshes, the number of vertices
is considerably close and the solution obtained have comparable accuracy. However
algorithm 1 requires an higher number of vertices along first iterations. For this nonlinear
problem we reported the total number of Conjugate Gradient iterations (sum for each
Newton method step). The first approach increases considerably the CPU time. This is
due to the higher refinement of the mesh at initial iterations. Algorithm 2 is clearly the
fastest and best option. Numerical experiments show, once more, clearly benefits of a
continuation algorithm on the preset tolerance parameter.
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Figure 4.6 : Comparison of algorithm 1(TOL = 0.0078125,T 1
h ,Nit = 140) and algorithm

2(TOLgoal = 0.0078125,N = 5,T 1
h ,Nit = 20), solving problem (4.1) when u is given by

(4.25) with µ = 0 and ϵ = 0.1. Top left : quasi-norm error at each iteration. Top right :
Number of vertices at each iteration. Bottom left : CPU time at each iteration. Bottom
right : sum of conjugate gradient iterations for Newton method at each iteration of the
adaptive algorithm.

For a future application to an industrial problem we aim now to present a simplified
error indicator for problem (4.1). Moreover we present also an additional adaptive strategy
that will be considered for the future industrial application.

4.5 A simplified error indicator for a p-Laplace problem

In [45] it is proven, up to higher order terms, that edge residuals dominate for the Poisson
problem and linear finite elements method on anisotropic meshes. The goal of this section
is to numerically compare now, error estimator (4.15) with a simplified error indicator,
where only edge residuals are considered :
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η̃2,K =
(

1
2

d+1∑
i=1


|∂Ki|
d∏

j=1
λj,K


1/2

||[(µ0 + |∇uh|p−2)∇uh · n]||L2(∂Ki)

)
ω2,K(u− uh). (4.26)

Let Ω = (0, 1)2 and consider problem (4.1) with exact solution (4.25) with ϵ = 0.05 and
µ = 0. We apply adaptive algorithm 2 of Section 2.4.3 with a starting mesh Th of size
h1 = 0.1 and h2 = 0.1 in directions x1 and x2 respectively. We set TOLgoal = 0.000976562,
N = 9 and Nit = 40. We define as in (4.22)-(4.23) the effectivity index of the modified
error indicator

ẽiQN =

∑
K∈Th

η̃2,K

eQN
.

In Table 4.7 results obtained for both error indicators η2,K and η̃2,K are reported. Both
error indicators give similar results, in particular the effectivity index eiQN is around 23
while ẽiQN is around 9. In Figure 4.7 two adapted meshes with their respective solution
can be observed. Error indicators η2,K and η̃2,K seem to be equivalent with different
magnitudes.

Table 4.7 : True errors, effectivity indices for different values of tolerance TOL, when
solving problem (4.1) with f such that the exact solution is given by (4.25) with ϵ = 0.05
and µ = 0. Left : Adapting with respect to the local error estimator (4.15). Right :
Adapting with respect to the local error indicator (4.26). Results obtained running
algorithm 2(TOLgoal = 0.000976562,N = 9,T 1

h ,Nit = 40) .

TOL eiQN eQN Nv avar ẽiQN
eQN Nv avar

0.03125 20.95 9.93e-03 492 350 8.24 2.47e-02 306 241
0.015625 22.45 2.34e-03 863 844 8.80 5.90e-03 587 491
0.0078125 23.76 5.73e-04 1703 1661 9.03 1.49e-03 1133 1008
0.00390625 22.91 1.46e-04 3425 3286 9.37 3.68-04 2220 2040
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Figure 4.7 : Results obtained running algorithm 2(TOLgoal = 0.000976562,N =
9,T 1

h ,Nit = 40), when u is given by (4.25) with ϵ = 0.05 and µ = 0. Left : adapted
mesh obtained when TOL = 0.25 using the local error estimator (4.15). Right : adapted
mesh obtained when TOL = 0.125 using the local error indicator (4.26).

4.6 A numerical zoom approach

An interest for industrial application, is to refine a specific area of the mesh domain. We
present a slightly modification of algorithm 3 having the goal of refining specific areas
of the domain. Let Ω be the domain of definition of a PDE. Let Ω1, Ω2 ⊂ Ω such that
Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅. We aim to build a sequences of meshes, possibly having
large aspect ratio, such that the total number of vertices is close to a given number M .
Additionally we would like one of the two domains to have more vertices than the other.

We recall some definitions introduced in section 2.4.1. Consider an error estimator∑
K∈Th

η2
K and a numerical error ||u−uh||. Definitions of η4

i,K , L, R and σP can be found
in (2.24), (2.27) and (2.31). Moreover, for each vertex P ∈ Th, we defined the local error
indicator

η2
P =

∑
K∈Th
P ∈K

η2
K .

Given a goal number of vertices M and α ∈ (0, 1), the objective of the adaptive algorithm
is to construct a sequences of meshes such that

1
1 + α

M ≤ N ≤ 1
1− α

M, (4.27)

where N is the number of vertices of the mesh. Let N1 and N2 be the number of vertices
of the mesh in domain Ω1 and Ω2 respectively. Let w ∈ (0, 1), if we have

(1− w)M
1 + α

≤ N1 ≤
(1− w)M

1− α
(4.28)
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and
wM

1 + α
≤ N2 ≤

wM

1− α
, (4.29)

then (4.27) is satisfied. Consequently the mesh will have approximately N1 vertices in
domain Ω1 and N2 in Ω2. Let P1, . . . , PN1 ∈ Th ∩ Ω1 and PN1+1, . . . , PN ∈ Th ∩ Ω2, in
order to satisfy (4.28)-(4.29), and consequently (4.27), we require for all i = 1, . . . , N1,
k = N1 + 1, . . . , N and j = 1, . . . , d that

σPi(1− α)
(1− w)(d + 1)

1
M

N1∑
l=1

η2
Pl
≤

∑
K∈Th,Pi∈K

η2
j,K ≤

σPi(1 + α)
(1− w)(d + 1)

1
M

N1∑
l=1

η2
Pl

, (4.30)

σPk
(1− α)

w(d + 1)
1

M

N∑
l=N1+1

η2
Pl
≤

∑
K∈Th,Pk∈K

η2
j,K ≤

σPk
(1 + α)

w(d + 1)
1

M

N∑
l=N1+1

η2
Pl

. (4.31)

The algorithm then follows exactly the same strategy as discussed in Section 2.4.1.
Consider problem (4.1) with Ω = (0, 5)× (0, 1) and p = 3. Suppose f such that the

exact solution is

u(x) = exp(−400((x1−0.5)2 +(x2−0.5)2))+exp(−400((x1−1.5)2 +(x2−0.5)2)) (4.32)

and µ = 0. We consider the algorithm introduced here above, where η2
K is defined by η2,K

as in (4.15) and the numerical error is defined by the quasi-norm defined in Proposition
4.2 ||u − uh||(u). We choose a starting mesh T 1

h of size h1 = 0.1, h2 = 0.1 in direction
x1 and x2 respectively. We set Ω1 = (0, 1) × (0, 1) and Ω2 = (1, 5) × (0, 1), We run
40 iterations of the adaptive algorithm starting from M = 200, the number of desired
vertices is then doubled and the process is repeat until M = 3200 is reached. In Table
4.8 we report for different choices of w, the quasi-norm error eQN , the number of vertices
in domain Ω1 and Ω2, noted N1 and N2 respectively. Moreover we report the quasi-norm
error committed in each domain. We noted for i = 1, 2

eΩi =
∫

Ωi

|∇(u− uh)|2(µ + |∇u|+ |∇(u− uh)|)

and numerically eΩ1 includes all triangles crossing the boundary between Ω1 and Ω2,
while eΩ2 includes only triangles in domain Ω2.
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Table 4.8 : Quasi-norm error, local errors, number of vertices of domain Ω1 and Ω2 for
different values of M and w, when solving problem (4.1) with f given such that the exact
solution is given by (4.32) with µ = 0.

M eQN N1 N2 eΩ1 eΩ2

w = 0.5
200 17.91 96 100 10.09 7.61
400 8.23 193 205 4.38 3.85
800 1.44 401 390 0.89 0.56
1600 0.60 808 769 0.20 0.40
3200 0.19 1538 1552 0.093 0.0952

w = 0.25
200 44.40 137 58 4.62 39.78
400 18.01 303 112 1.01 16.99
800 2.93 576 219 0.45 2.49
1600 0.74 1231 398 0.19 0.55
3200 0.40 2393 788 0.07 0.32

w = 0.1
200 794.93 179 30 2.77 792.16
400 45.09 349 53 1.11 43.98
800 21.42 713 87 0.70 20.72
1600 5.83 1371 168 0.12 5.71
3200 2.35 2904 325 0.076 2.27

In Figure 4.8 we observe the obtained mesh when M = 800 and w = 0.1. As we can
observe domain Ω1 is more refined than Ω2 as desired.

Figure 4.8 : Obtained mesh, when M = 800 and w = 0.1, running algorithm described
in Section 4.6 with α = 10/M , when solving problem (4.1) with f such that u is given
by (4.32) and µ = 0.
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5 Application to aluminium electro-
lysis

We aim now to study an industrial application of adaptive finite elements with large
aspect ratio. We focus on numerical simulation of aluminium electrolysis.

5.1 The Hall-Héroult electrolysis process

The goal of this section is to give a brief introduction of the aluminium electrolysis
process.

The Hall-Héroult process has the goal to produce aluminium (Al) from alumina
(Al2O3). The production occurs in huge cells, see Figure 5.1 for an example. In Figure
5.2 a schematic representation of a single cell is shown, it is made of anodes (blue), liquid
(electrolyte, red and aluminium, green) and cathodes (purple). Entering the anodes, an
electrical current crosses the cell and thus the fluid domain. Electrolyte is liquid due to
the high temperature (950 C◦) induced by the electrical current. Alumina is injected into
the electrolyte bath and, if the temperature is high enough, dissolves into aluminium’s
ion and oxygen’s ion

Al2O3 → 2Al3+ + 3O2−.

Because anodes are composed by carbon, the following reduction occurs

6O2− + 3C → 3CO2 + 12e−

and finally, aluminium is produced

2Al3+ + 6e− → 2Al.

Again, because of high temperature, aluminium is liquid and it separates from electrolyte
due to different densities. We have indeed an interface between the two fluids (see Figure
5.2).

Electrical current give rise to an induction magnetic field, which interacts with the
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Figure 5.1 : View of different aluminium cells. CopyRight : Rio Tinto Aluminium

current density producing a Lorentz force. As explained in [67], the complex geometry
of the cells together with a variable current in the fluids, contribute to variations of
the force in the whole domain. As a consequence, liquid aluminium and electrolyte are
moving, and turbulence occurs.

Three principal possible instabilities need to be considered [67, 66]. First, instabilities
due to strong movements of the interface between electrolyte and liquid aluminium.
Second, strong or weak concentration of alumina in the bath domain. Last, loss of
thermal equilibrium. When the interface moves too much, the risk of shortcut increases.
If the concentration of alumina is too elevated, sediments of alumina on the cathode form
and the electrical current perturbation increases. On the contrary, if the concentration of
alumina decreases considerably, the electrolysis process could stop and several sources of
pollution would occur. Finally, if thermal equilibrium disappears, corrosion is a high risk.
To avoid all these situations a strong knowledge of the fluids dynamics is essential. Since
experimental measure are difficult due to high temperatures, numerical simulations are
unavoidable.

Numerical experiments are conducted using Alucell software [70], which implements
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algorithms pertaining to the numerical modelling of aluminium electrolysis. Alucell
is owned by EPFL and Rio Tinto Aluminium and maintained by YcoorSystems SA
(Sierre, Switzerland) and EPFL. The collaboration between Rio Tinto Aluminium, EPFL
and YcoorSystems SA has resulted in many PhD thesis. For instance, in [70] Magneto-
hydrodynamics equations have been considered ; models of turbulence for the fluid-flow
problem have been studied in [67]. In [31, 68] thermal effects are presented, in [41, 40]
the aluminium transport and dissolution is studied and in [69] a mixture model to take
into account diluted gas in the liquid flow is discussed.

Figure 5.2 : Schematic representation of Aluminium Electrolysis’ cell

5.2 The fluid-flow problem without gas

This section is dedicated to a brief introduction to the fluid-flow problem related to
aluminium electrolysis. For a complete presentation we refer to [67]. Gas is not taken
into account in this model.

Let D ⊂ R3 be a bounded domain representing an aluminium electrolysis cell, see
Figure 5.3. Consider Ω ⊂ D as the fluid domain composed by the electrolyte bath Ωel

and the liquid aluminium domain Ωal, see Figure 5.2. Let Γ = Ωal ∩ Ωel be the interface
between the two fluids. Let ρal, µal, ρel, µel be constants representing the density and the
viscosity of the liquid aluminium domain and the electrolyte bath respectively. We define

ρ(x) =
{

ρal if x ∈ Ωal

ρel if x ∈ Ωel

The following Navier-Stokes equations are considered. We are looking for velocity u :
Ω→ R3, pressure p : Ω→ R such that
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−∇ · (τ(u, p)) + ρ(u · ∇)u = ρg + j ∧B in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.

(5.1)

Here we note g the gravity and j and B the electrical current and the magnetic field
obtained by solving equations described in [70]. From now on we consider f = ρg + j ∧B
known. Problem (5.1) is completed with the following conditions on the interface between
electrolyte and aluminium{

[(τn) · ti] = 0 on Γ i = 1, 2,

u · n = 0 on Γ.
(5.2)

We noted (t1, t2, n) a local orthonormal frame on Γ and [·] the jump over Γ. We define
the tensor

τij(u, p) = −pδij + 2µϵij(u) i, j = 1, 2, 3,

where
ϵi,j(u) = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
i, j = 1, 2, 3.

The Smagorisnky turbulence model [64], as described in [67], is considered. We set

µ = µ(ϵ(u)) := µL + CT |ϵ(u)|, (5.3)

where CT > 0 is a constant and µL = µel in Ωel and µL = µal in Ωal.
An equilibrium solution of problem (5.1)-(5.2) has to additionally satisfy,

[(τn) · n] = 0 on Γ, (5.4)

that is to say that the jump of normal forces on the interface Γ is zero. In order to find
such an equilibrium solution, a stationary algorithm based on [25], and described for
turbulent Smagorinsky model in [67], is considered. Given Γ, we solve (5.1)-(5.2), then
update Γ with (5.4). In order to solve (5.1)-(5.2) the classical mini element [30] is used.

Our primary goal is to reduce the computational cost, of solving (5.1)-(5.2) for a
given accuracy. The approach consists in using adaptive finite elements with large aspect
ratio. In Figure 5.3 a representation of an industrial aluminium cell mesh is shown. In
particular, in Figure 5.4 the fluid domain mesh is reported. The domain is approximately
long 14 meters, large 3 meters and high 0.38 meters. The top domain is composed by
long thin channels and thus the use of large aspect ratio elements could be beneficial for
such a geometry.
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Figure 5.3 : Side view of a mesh of the numerical aluminium electrolysis cell.

Figure 5.4 : View of a mesh of the fluid domain.

5.3 Error indicators and adaptive strategy for the fluid-flow
problem

We aim to construct an adapted mesh of the fluid domain in order to reduce the
computational time to solve (5.1)-(5.2). We have two possibilities to build an adapted
mesh. First we can build adapted meshes solving (5.1)-(5.2). A second possibility is to
consider a simplified Stokes problem.

Consider the same definitions and notations introduced above, we introduce Stokes
version of problem (5.1)-(5.2). Given an interface Γ, we are looking for u : Ω→ R3 and
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p : Ω→ R such that 
−2∇ · (µϵ(u)) +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(5.5)

with {
[(ϵ(u)n) · ti] = 0 on Γ,

u · n = 0 on Γ (5.6)

and where µ(|ϵ(u)|) is given by (5.3). The adaptive algorithms previously introduced in
Section 2.4 are considered. The adaptive criteria is based on an heuristic error indicator.
A motivation of such a choice is discussed in the following Section.

5.3.1 P-Laplace inspired error indicator

Recall that in problems (5.1)-(5.2) and (5.5)-(5.6) the following turbulent viscosity is
considered

µ = µL + CT |ϵ(u)|,

where CT > 0 is a constant, µL = µal in Ωal and µL = µel in Ωel with µal and µel

two constants. Problem (5.5)-(5.6) can be seen as an extension of the p-Laplace model
described in Section 4

−∇ · (µ∇u) = f,

where the following viscosity was considered

µ = µ0 + |∇u|p−2

for µ0 ≥ 0 and p ≥ 2. When choosing p = 3, viscosity of the nonlinear p-Laplace problem
corresponds to the one of both problems (5.1)-(5.2) and (5.5)-(5.6). Our approach consists
thus in using error indicator (4.26) as indicator for an adaptive strategy, when solving
(5.5)-(5.6) or (5.1)-(5.2). We recall error indicator (4.26)

η̃2,K =


1
2

d+1∑
i=1


|∂Ki|
d∏

j=1
λj,K


1/2

||[(µ0 + |∇uh|p−2)∇uh · n]||L2(∂Ki)

ω2,K(u− uh), (5.7)

where ω2,K(·) is defined by (1.3), n is the outer normal of boundary element ∂Ki,
i = 1, . . . , d + 1 and [·] is the jump over ∂Ki ([·] = 0 if ∂Ki ⊂ Ω). In Section 4.5
we presented a comparison between error indicator involving only the edge residuals
(4.26) and the full estimator (4.15) for the p-laplace problem. As error indicator for the
industrial problem we consider only the edge residual part of the error indicator which

96



5.3 Error indicators and adaptive strategy for the fluid-flow problem

will read

∑
K∈Th


3∑

l,m=1

1
4

4∑
i=1


|∂Ki|
3∏

j=1
λj,K

 ||([µϵ(uh)n])l||2L2(∂Ki)ω
2
2,K,m(ul − (uh)l)


1/2

. (5.8)

We focus again on the industrial problem. We present now results using this adaptive
criteria when solving first turbulent Stokes problem and successively turbulent Navier-
Stokes problem.

5.3.2 Adaptive results solving turbulent Stokes problem

The adaptation process works as follow. Consider Γ given and flat, f is previously
computed on a fixed industrial mesh, named fine reference mesh. We choose a starting
triangulation T 1

h of the fluid domain Ω, the forces are interpolated and problem (5.5)-
(5.6) is solved on the new fluid mesh. Note that the starting mesh is chosen particularly
coarse (9552 vertices) with the goal to speed up adaptation. We then run an adaptation
algorithm, We choose a tolerance, run 20 iterations and then we repeat the process
reducing the tolerance. Note that the interface is fixed along the process. The idea is then
to use the obtained meshes to update the interface and find a stationary solution (see
Section 5.3.4), i.e. a solution satisfying also (5.4). The obtained results will be compared
with reference industrial meshes of Table 5.1.

Table 5.1 : Reference meshes

Fine reference mesh 326099 Vertices
Coarse reference meshes 177631 Vertices

In Table 5.2 we report the obtained number of vertices for the chosen tolerance, when
building adapted meshes.

Table 5.2 : Adaptation with respect to error indicator (5.8) of the fluid domain, when
solving problem (5.5)-(5.6) with Smagorinsky turbulent model.

TOL Number of Vertices
0.5 24083
0.375 94078
0.25 604149

In Figure 5.5, we report a cut at x = −6 of the fine reference mesh and the obtained
adapted mesh with TOL= 0.5. In Figure 5.6 we report a cut at x = −6 of adapted meshes
with TOL= 0.375 and TOL= 0.25. In Figure 5.7 a zoom can be observed. Additionally,
in Figure 5.8 the meshes of the interface for the fine reference mesh and the obtained
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adapted meshes are reported.

Figure 5.5 : Fine reference mesh (Top) and adapted mesh TOL= 0.5 (Bottom) obtained
using error indicator (5.8), when solving Stokes problem (5.5)-(5.6).
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Figure 5.6 : Adapted meshes TOL= 0.375 (Top) and TOL= 0.25 (Bottom) obtained
using error indicator (5.8), when solving Stokes problem (5.5)-(5.6).
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Figure 5.7 : Zoom of fine reference mesh (Top left), adapted mesh with TOL= 0.5
(Top right), adapted mesh with TOL= 0.375 (Bottom left) and adapted mesh with
TOL= 0.25 (Bottom right) obtained using error indicator (5.8), when solving Stokes
problem (5.5)-(5.6).
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Figure 5.8 : From Top to Bottom : interface of fine reference mesh, adapted mesh with
TOL= 0.5, adapted mesh with TOL= 0.375 and adapted mesh with TOL= 0.25 obtained
using error indicator (5.8), when solving Stokes problem (5.5)-(5.6).
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5.3.3 Adaptive results solving turbulent Navier-Stokes problem

The second approach consists in building adapted meshes, using again error indicator
(5.8), when solving problem (5.1)-(5.2) for a given flat interface. As before the force f is
previously computed on the fine reference mesh. The same starting mesh T 1

h of the fluid
domain is considered. The forces are interpolated and problem (5.1)-(5.2) is solved. Error
indicator (5.8) is then use to run algorithm 2 of Section 2.4.1. In Table 5.3 we report
the number of vertices for the corresponding tolerance for each obtained adapted mesh.
In Figures 5.9 and 5.10 a cut at x = −6 of the fine reference mesh and the obtained

Table 5.3 : Adaptation with respect to error indicator (5.8) of the fluid domain, when
solving problem (5.1)-(5.2) with Smagorinsky turbulent model. Vertices of obtained
meshes.

TOL Number of Vertices
0.5 24613
0.375 98326
0.25 602684

adapted meshes is reported. In Figure 5.11 the corresponding zoom can be observed. The
mesh of the interface of the fine reference mesh and the obtained adapted meshes can
be observed in Figure 5.12. As before, the obtained meshes will be used to update the
interface and find a stationary solution (see Section 5.3.4).
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Figure 5.9 : Fine reference mesh (Top) and adapted mesh TOL= 0.5 (Bottom) obtained
using error indicator (5.8), when solving Navier-Stokes problem (5.1)-(5.2).
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Figure 5.10 : Adapted meshes TOL= 0.375 (Top) and TOL= 0.25 (Bottom) obtained
using error indicator (5.8), when solving Navier-Stokes problem (5.1)-(5.2).
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Figure 5.11 : Zoom of fine reference mesh (Top left), adapted mesh with TOL= 0.5 (Top
right), adapted mesh with TOL= 0.375 (Bottom left) and adapted mesh with TOL= 0.25
(Bottom right) obtained using error indicator (5.8), when solving Navier-Stokes problem
(5.1)-(5.2).
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Figure 5.12 : From Top to bottom : interface of fine reference mesh, adapted mesh
with TOL= 0.5, adapted mesh with TOL= 0.375 and adapted mesh with TOL= 0.25
obtained using error indicator (5.8), when solving Navier-Stokes problem (5.1)-(5.2).
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5.3.4 Interface update

We recall that in [67] an update interface algorithm is presented. Problem (5.1)-(5.2)
is iteratively solved and at each step the bath-metal interface Γ is updated to satisfy
(5.4). The goal of this section is to present results obtained running the interface update
algorithm with adapted meshes previously computed. In particular, we start by comparing
results obtained with adapted meshes built with strategy of Section 5.3.2 together with
results obtained with the industrial reference meshes of Table 5.1. Similarly we compare
results obtained with adapted meshes built with strategy presented in Section 5.3.3
together with the reference industrial meshes. Finally we discuss which strategy should
be considered.

Interface update for adapted meshes built with strategy 5.3.2

We run 10 iterations of update interface algorithm when solving (5.1)-(5.2). The starting
interface is flat. We consider the three adapted meshes of Table 5.2 and the two reference
industrial meshes of Table 5.1. In Figure 5.13 we observe the convergence of L2 discrepancy
of the velocity along with the iterations of the update interface algorithm. In Figure
5.14 we report the L2 relative height discrepancy of the interface along with interface
iterations.

Figure 5.13 : L2 relative discrepancy of velocity along with interface iterations for
adapted meshes of Table 5.2 and references meshes of Table 5.1.
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Figure 5.14 : L2 relative discrepancy of interface height along with interface iterations
for adapted meshes of Table 5.2 and references meshes of Table 5.1.
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In Figure 5.15 we can observe velocity fields obtained with the fine reference mesh
and the adapted meshes.

Figure 5.15 : Velocity fields obtained at iteration 10, when updating interface solving
(5.1)-(5.2). From Top to bottom : fine reference mesh, adapted mesh TOL= 0.5, adapted
mesh with TOL= 0.375 and adapted mesh with TOL= 0.25.
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In Figure 5.16 we present plot over lines of the velocity magnitude for different regions
of the fluid domain and different meshes. As we can observe even with the adapted
mesh obtained with tolerance TOL = 0.5, similar results to the fine reference mesh are
obtained.
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Figure 5.16 : Results obtained at iteration 10 of update interface algorithm. Plot over
lines of velocity magnitude in different zones. Results obtained with reference meshes of
Table 5.1 and 3 adapted meshes of Table 5.2.
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In Figure 5.17 we show a cut at x = −6 of the fine reference mesh of Table 5.1 and the
three adapted meshes of Table 5.2. We observe in particular the new interfaces. Finally
in Figure 5.18 the obtained interface height of the fine reference mesh and the adapted
meshes is reported. In conclusion the convergence of the update interface algorithm seems
to work similarly for the adapted meshes and the reference one. In particular the use of
adapted meshes does not perturb the algorithm and gives velocity with similar accuracy
of the fine reference mesh. Similar interface deformation is obtained for the adapted and
reference meshes. The CPU time required to run 10 iterations of the update interface
algorithm with the adapted mesh obtained with TOL=0.5 is 46.56 minutes, while the
time required by the fine reference mesh is about 5.21 hours. A considerable CPU time
is saved, when using the adapted mesh.

Table 5.4 : CPU time to perform 10 iterations of the interface algorithm on (5.1)-(5.2).
Fine reference mesh and adapted meshes obtained with strategy 5.3.2

Mesh CPU time
Fine reference mesh 5.21 hours
Adapted mesh TOL=0.5 0.776 hours
Adapted mesh TOL=0.375 2.88 hours

Figure 5.17 : Interface deformation at iteration 10. Zoom of fine reference mesh (Top
left), adapted mesh with TOL= 0.5 (Top right), adapted mesh with TOL= 0.375 (Bottom
left) and adapted mesh with TOL= 0.25 (Bottom right). Adapted meshes of Table 5.2.
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Figure 5.18 : Interface height H. From Top to Bottom : interface of fine reference
mesh, adapted mesh TOL= 0.5, adapted mesh with TOL= 0.375 and adapted mesh with
TOL= 0.25. Adapted meshes of Table 5.2.
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Interface update for adapted meshes built with strategy 5.3.3

We run again 10 iterations of the update interface algorithm when solving (5.1)-(5.2).
We consider the three adapted meshes of Table 5.3 and two reference industrial meshes
(Table 5.1). In Figure 5.19, we observe the L2 relative discrepancy of the velocity along
with the iterations of the update algorithm, while in Figure 5.20 we observe the L2

relative discrepancy of the interface height along with interface iterations. Globally, there
is no relevant difference with the previous strategy.

Figure 5.19 : L2 relative discrepancy of velocity along with interface iterations for
adapted meshes of Table 5.3 and references meshes of Table 5.1.
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Figure 5.20 : L2 relative discrepancy of interface height along with interface iterations
for adapted meshes of Table 5.3 and references meshes of Table 5.1.
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In Figure 5.21 we can observe velocity fields obtained with the fine reference mesh
and the adapted meshes.

Figure 5.21 : Velocity fields obtained at iteration 10, when updating interface solving
(5.1)-(5.2). From Top to Bottom : fine reference mesh, adapted mesh TOL= 0.5, adapted
mesh with TOL= 0.375 and adapted mesh with TOL= 0.25.
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In Figure 5.22 we show plot over lines of the velocity magnitude for different regions
of the fluid domain and different meshes. Again we observe that with the adapted mesh
obtained with tolerance TOL = 0.5, similar results as the one obtained with the fine
reference mesh are obtained.
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Figure 5.22 : Results obtained at iteration 10 of update interface algorithm. Plot over
lines of velocity magnitude in different zones. Results obtained with reference meshes of
Table 5.1 and 3 adapted meshes of Table 5.3.
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In Figure 5.23 a cut at x = −6 of the fine reference mesh of Table 5.1 and the three
adapted meshes of Table 5.3 can be observed. The new interface can be seen. Finally
in Figure 5.24 the interface height obtained of the fine reference mesh and the adapted
meshes is reported. The use of adapted meshes give similar results as the fine reference
mesh, but reducing the CPU time of the update interface algorithm as can be observed
in Table 5.5. To conclude both strategies give similar results and similar computational
times, both reducing the computational time with respect to the fine reference mesh.

Table 5.5 : CPU time to perform 10 iterations of the interface algorithm on (5.1)-(5.2).
Fine reference mesh and adapted meshes obtained with strategy 5.3.3

Mesh CPU time
Fine reference mesh 5.21 hours
Adapted mesh TOL=0.5 0.799hours
Adapted mesh TOL=0.375 2.92 hours

Figure 5.23 : Interface deformation at iteration 10. Zoom of fine reference mesh (Top
left), adapted mesh with TOL= 0.5 (Top right), adapted mesh with TOL= 0.375 (Bottom
left) and adapted mesh with TOL= 0.25 (Bottom right). Adapted meshes of Table 5.3.
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Figure 5.24 : Interface height H. From Top to Bottom : interface of fine reference
mesh, adapted mesh TOL= 0.5, adapted mesh with TOL= 0.375 and adapted mesh with
TOL= 0.25. Adapted mesh of Table 5.3.
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5.4 The gas model

In [69] a model to take into account diluted gas in numerical magneto-hydrodynamics
simulations is presented. The goal is to evaluate how the liquid flow is modified by the
density composed of a mixture of gas and liquid. The objective of our work is to apply an
adaptation strategy to reduce the computational cost of such a computation. We briefly
introduce equations considered. For an extensive analysis and description we refer to [69].

5.4 The gas model

The goal of this section is to give an insight in the fluid-flow problem coupled with a
mixed model to take into account diluted gas. Suppose D, Ω, Ωel, Ωal and Γ are given
and defined as in Section 5.2. Moreover we have Γout ⊂ ∂Ωel the outflow boundary of
electrolyte domain.

We are looking for u : Ω→ R3, p : Ω→ R, ug : Ωel → R3 and αg : Ωel → R such that

∇ · (ρu⊗ u)−∇ · (τ(u, p)) = ρg + j ∧B in Ω (5.9)
∇ · (ρu) = 0 in Ω (5.10)

∇ · (αgρgug ⊗ ug) + Dαg
ρ

ρl
ug −∇ · (τg(ug, p)) = Fg in Ωel (5.11)

∂αg

∂t
+∇ · (αgug −K∇αg) = α̇source in Ωel (5.12)

with the following buondary conditions

u = 0 on ∂Ω, (5.13)
u · n = 0 on Γ, (5.14)

[(τn) · ti] = 0 on Γ, i = 1, 2 (5.15)
ug · n = 0 on ∂Ωel\Γout, (5.16)

(τgn) · ti = 0 on ∂Ωel, i = 1, 2 (5.17)
(τgn) · n = αgp0 on Γout, (5.18)

K∇αg · n = 0 on ∂Ωel. (5.19)

Here we denoted
Fg = −p∇αg + αgρgg + Dαg

ρ

ρl
u

and

ρ(x) =
{

ρal if x ∈ Ωal,
αgρg + (1− αg)ρel if x ∈ Ωel.

The following constants are known ρal, ρel, µal, ρg and µg, so as D the drag force (see
Section 1.6 of [69]). As for section 5.2, j is the density of current and B the magnetic
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field, which we suppose as known. Moreover we define the tensors

τij(u, p) = −pδij −
2
3µ∇ · (u)δij + 2µϵij(u) i, j = 1, 2, 3,

(τg)ij(ug, p) = −pαgδij −
2
3µg∇ · (ug)δij + 2µgϵij(ug) i, j = 1, 2, 3,

where ϵ is the symmetric tensor. The diffusion coefficient K is given by

K = KL + KT |ϵ(ug)|

with KL and KT known constants. As for previous section Smagorinsky turbulent model
is considered

µ(x) = µL + CT |ϵ(u)|

with µL = µal if x ∈ Ωal and µL = µel if x ∈ Ωel. Finally p0 is a given constant and
α̇source is the volumetric internal source term.

In [69] an iterative algorithm to find solution of (5.9)-(5.12) with (5.13)-(5.19) is
presented. The goal of the algorithm is to find the liquid velocity u, the pressure p,
the gas velocity ug and the volumetric fraction of gas αg satisfying (5.9)-(5.12) with
(5.13)-(5.19) and also to modify the interface Γ in order to have [(τn) · n] = 0.

We present an adaptation strategy to build adapted meshes when solving (5.9)-(5.12)
with (5.13)-(5.19).

5.4.1 P-Laplace error indicator solving the Gas problem

The approach consists in solving (5.9)-(5.12) with (5.13)-(5.19) for a given flat interface.
The force f = ρg + j ∧B is previously computed on the fine reference mesh (Table 5.1)
and interpolated when solving the problem on adapted meshes. Starting from a mesh
T 1

h three iterations of problem (5.9)-(5.19) are computed. Using the obtained mixture
liquid velocity u and error indicator (5.8) the mesh is adapted with algorithm 1. Note
that there is a clear dependence between solutions u, ug and αg, thus to observe the
influence of gas on u we choose to run three iterations before adapting the mesh. The
obtained mesh is then used to repeat the process 10 times. The Tolerance is reduced and
everything repeated until reaching the desired goal tolerance. Note that we are applying
the continuation reduction on the parameter TOL on the spirit of algorithm 2. In Table
5.6, for each tolerance, we report the obtained number of vertices at the last iteration.

Table 5.6 : Adaptation with respect to error indicator (5.8) of the fluid domain, when
solving problem (5.9)-(5.19) with Smagorinsky turbulent model.

TOL Number of Vertices
0.5 67500
0.4125 110044
0.375 229699
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5.4 The gas model

In Figure 5.25 we report a cut at x = −6 of the fine reference mesh and the obtained
mesh with TOL= 0.5. Similarly in Figure 5.26 we report a cut at x = −6 of the obtained
adapted meshes with TOL= 0.4125 and TOL= 0.375. In Figure 5.27 a zoom is reported.

Figure 5.25 : Fine reference mesh (Top) and adapted mesh TOL= 0.5 (Bottom) obtained
using error indicator (5.8), when solving problem (5.9)-(5.19).
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Figure 5.26 : Adapted meshes TOL= 0.4125 (Top) and TOL= 0.375 (Bottom) obtained
using error indicator (5.8), when solving problem (5.9)-(5.19).
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5.4 The gas model

Figure 5.27 : Zoom of fine reference mesh (Top left), adapted mesh with TOL= 0.5
(Top right), adapted mesh with TOL= 0.4125 (Bottom left) and adapted mesh with
TOL= 0.375 (Bottom right) obtained using error indicator (5.8), when solving problem
(5.9)-(5.19).

For the given flat interface and the given adapted meshes we solve 10 iterations of
problem (5.9)-(5.19). In Figure 5.28 (Top) we observe convergence of the L2 discrepancy
of the velocity u, while in Figure 5.28 (Bottom) we observe the convergence of the L2

discrepancy of the gas velocity ug. In Figure 5.29 we observe convergence of L2 discrepancy
of αg. No relevant difference between the adapted meshes and the fine reference mesh
can be observed. In Figure 5.30 plots over lines of the velocity u magnitude for different
regions of the fluid domain and different meshes are reported. In Figures 5.31 and 5.32 a
plot of gas velocity ug magnitude and αg respectively over a line at x = −6 z = 0.3 can
be observed for the different meshes. The solution computed on the refined meshes seem
to converge. Except from plot on P5, no relevant difference can be observed between
adapted meshes solutions and the fine reference one. Nevertheless the CPU time required
is considerably reduce when using for example the adapted mesh obtained with TOL=0.5
(see Table 5.7).

Table 5.7 : 10 iterations solving problem (5.9)-(5.19) for a given interface.

Mesh CPU time
Fine reference mesh 4.89 hours
Adapted mesh TOL=0.5 1.94 hours
Adapted mesh TOL=0.4125 3.17 hours
Adapted mesh TOL=0.375 6.87 hours
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Figure 5.28 : Top : L2 relative discrepancy of velocity u, when iteratively solve problem
(5.9)-(5.19) with flat interface for adapted meshes of Table 5.6 and fine reference mesh.
Bottom : L2 relative discrepancy of gas velocity ug, when iteratively solve problem
(5.9)-(5.19) with flat interface for adapted meshes of Table 5.6 and fine reference mesh.
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Figure 5.29 : L2 relative discrepancy of αg, when iteratively solve problem (5.9)-(5.19)
with flat interface for adapted meshes of Table 5.6 and fine reference mesh.
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Figure 5.30 : Results obtained at iteration 10 solving (5.9)-(5.19) for a given flat
interface Γ. Plot over lines of velocity u magnitude in different zones.
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Figure 5.31 : Results obtained at iteration 10 solving (5.9)-(5.19) for a given flat
interface Γ. Plot over a line at x = −6 and z = 0.3 (P1 in Figure 5.30) of gas velocity ug

magnitude.
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Figure 5.32 : Results obtained at iteration 10 solving (5.9)-(5.19) for a given flat
interface Γ. Plot over a line at x = −6 and z = 0.3 (P1 in Figure 5.30) of αg.

The obtained adapted mesh TOL= 0.5 is now used to solve problem (5.9)-(5.19)
updating the interface with the goal to have [(τn) · n] = 0 and thus a stationary solution
[69].

5.4.2 Interface update

We perform 10 iterations of the interface algorithm on (5.9)-(5.19). The starting interface
is flat. We present results obtained with the fine reference mesh and the adapted mesh
obtained with TOL= 0.5 (see Table 5.6). In Figure 5.33, we observe the L2 relative
discrepancy of the velocity u along with the iterations of the update algorithm, while in
Figure 5.34 (Top) we can see the L2 relative discrepancy of the gas velocity ug along with
the interface iterations. In Figure 5.34 (Bottom) we observe the L2 relative discrepancy
of αg and in Figure 5.35 the L2 relative discrepancy of interface height. In Figure 5.36
we report plots over lines of the velocity u magnitude for different regions of the fluid
domain. In Figures 5.37 and 5.38 a plot over a line at x = −6 and z = 0.3 of the gas
velocity ug magnitude and αg respectively can be observed. In Figure 5.39 we report
the obtained interface with the corresponding height. Using adapted mesh of TOL= 0.5
we obtain similar results as the one obtained with the fine reference mesh, reducing the
computational time (see Table 5.8).

130



5.4 The gas model

Table 5.8 : CPU time to perform 10 iterations of the interface algorithm on (5.9)-(5.19).

Mesh CPU time
Fine reference mesh 4.96 hours
Adapted mesh TOL=0.5 2.06 hours

Figure 5.33 : L2 relative discrepancy of velocity u along with interface iterations for
adapted mesh with TOL= 0.5 and the fine reference mesh.
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Figure 5.34 : Top : L2 relative discrepancy of the gas velocity ug along with the interface
iterations for adapted mesh with TOL= 0.5 and the fine reference mesh. Bottom : L2

relative discrepancy of αg along with interface iterations for adapted mesh with TOL= 0.5
and the fine reference mesh.
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Figure 5.35 : L2 relative discrepancy of interface height along with interface iterations
for adapted mesh with TOL= 0.5 and the fine reference mesh.
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Figure 5.36 : Results obtained at iteration 10 of update interface algorithm. Plot over
lines of velocity magnitude u in different zones.
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Figure 5.37 : Results obtained at iteration 10 of update interface algorithm. Plot over
a line at x = −6 and z = 0.3 (P1 in Figure 5.36) of gas velocity ug magnitude.

Figure 5.38 : Results obtained at iteration 10 of update interface algorithm. Plot over
a line at x = −6 and z = 0.3 (P1 in Figure 5.36) of αg.
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Figure 5.39 : Interface height obtained at iteration 10 of the update interface algorithm.
Interface of fine reference mesh (Top) and interface of the adapted mesh with TOL= 0.5
(Bottom).

5.5 Aluminium cell with slots

5.5.1 Aluminium cell with slots

In Chapter 5.4 a model taking into account gas produced by aluminium electrolysis is
introduced. The fluid domain geometry considered in our previous computations is a
simplification of a real fluid domain of a cell. Additionally to small channels of Figure 5.4
each of the twenty squares which represents an anode’s block should be divided in two
smaller anodes. An additional channel between the two small anodes should be considered.
Moreover in order to let the gas produced easily escape, in each small anode two slots
are considered. We refer to Figure 5.40 for an example. We aim to use adaptive finite
element with large aspect ratio in order to add these geometrical components and build
meshes with a reasonable number of vertices. Domain of Figure 5.41 is now considered,
each anode’s block is divided in two smaller anodes and slots are considered only in four
small anodes.
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Figure 5.40 : Zoom of new fluid domain.
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Figure 5.41 : Realistic fluid domain with slots on four anodes.

Our approach consists now in building adapted meshes for the new fluid domain,
when solving problem (5.9)-(5.19) and using strategy described in Section 5.4.1.

An interest for industrial application, is to refine a specific area of the mesh domain,
for instance the slots of an anode. This could be done manually. We propose a different
approach using the adaptive strategy presented in Section 4.6.

5.5.2 The gas model with slots

We consider now the new geometry introduced in Section 5.5.1. The gas model discussed
in Section 5.4 is considered. Using the same adaptive strategy of Section 5.4.1. Being
the goal to build adapted mesh taking into account slots, we use technique discussed in
Section 4.6 to build adapted mesh refined in the slots region. Keeping the same notations,
we define Ω the fluid domain, Ω1 = (−1.5, 1.5)× (0.1, 2.1)× (0.235, 0.38) and Ω2 = Ω\Ω1.
We set M = 150000 and different values of w. Given a flat interface we solve three
iterations of problem (5.9)-(5.19) and adapt the mesh. The process is repeated 10 times.
In Table 5.9 the obtained results are reported.

Table 5.9 : Adaptation with respect to error indicator (5.8) of the fluid domain with
slots when considering fluid velocity, when solving problem (5.9)-(5.19) with Smagorinsky
turbulent model

w Number of vertices Ω1 Number of vertices Ω2
0.995 949 171395
0.91 7341 166740
0.82 13926 160192
0.64 26045 146650

In Figure 5.43 a zoom of a cut at y = 1 of the obtained meshes can be observed.
While in Figure 5.42 a cut at y = 1 of the considered fine reference mesh is reported.
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Figure 5.42 : Zoom of fine reference mesh.
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Figure 5.43 : Zoom of obtained adapted meshes from Top to Bottom with w = 0.995,
w = 0.91, w = 0.82 and w = 0.64 obtained using error indicator (5.8), when solving
(5.9)-(5.19).
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We solve then 10 iterations for a given fixed interface of problem (5.9)-(5.19) on the
reference mesh and the obtained adapted meshes. In Figures 5.44 and 5.45 the L2 relative
discrepancy of the velocity u, of the gas velocity ug and αg along with the iterations are
reported. In Figures 5.46, 5.47 and 5.48 we report a plot over a line of the velocity u
magnitude, the gas velocity ug magnitude and αg at y = 1 z = 0.3 respectively along one
slot for the different adapted meshes and for the fine reference mesh. A convergence of
the solutions and similar results for the adapted and reference meshes can be observed.
Additionally in Figure 5.49 we report a view from below of the electrolyte bath and the
corresponding value of αg. From Top to Bottom we observe results obtained using the
fine reference mesh with slots, the adapted mesh with slots of Table 5.9 with w = 0.64,
the fine reference mesh without slots and the adapted mesh without slots of Table 5.6
with TOL=0.375. When considering slots a clear reduction of αg can be noted. Results
presented show that slots allow the gas mixture to leave the domain more easily. The use
of adaptive finite elements allows accurate computations with a reasonable number of
vertices. With our approach it is now affordable to add more slots in the geometry and
to study numerical results on a more realistic domain.

Figure 5.44 : L2 relative discrepancy of velocity u along with iterations for adapted
meshes obtained with different w and the fine reference mesh.
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Figure 5.45 : Top : L2 relative discrepancy of the gas velocity ug along with the
iterations for adapted meshes obtained with different w and the fine reference mesh.
Bottom : L2 relative discrepancy of αg along with iterations for adapted meshes obtained
with different w and the fine reference mesh.
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Figure 5.46 : Velocity magnitude u, plot over a line at y = 1 and z = 0.3 for different
adapted meshes.
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Figure 5.47 : Gas velocity magnitude ug, plot over a line at y = 1 and z = 0.3 for
different adapted meshes.
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Figure 5.48 : αg, plot over a line at y = 1 and z = 0.3 for different adapted meshes.
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Figure 5.49 : View from below of the electrolyte bath and the corresponding αg. From
Top to Bottom : fine reference mesh with slots, adapted mesh with slots of Table 5.9 with
w = 0.64, fine reference mesh without slots and adapted mesh without slots of Table 5.6
with TOL=0.375.
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Conclusion and perspectives

The goal of this thesis was to apply adaptive finite elements with large aspect ra-
tio for the numerical simulation of aluminium electrolysis. We derived a strategy to build
adapted meshes with goal to reduce the computational time for a given accuracy. The
adaptive criteria is based on a posteriori error estimates derived for simplified problems.

In Chapter 1 the anisotropic framework is introduced. We proved interpolation
estimates error for a general Lp norm and for Ω ⊂ Rd, that are used along the whole
work.

In Chapter 2 an error estimator for the approximation of elliptic problems with
smooth strongly varying diffusion coefficient is presented. An equivalence with the true
error, up to higher order terms, is shown. Moreover, various adaptive algorithms have
been presented and their efficiency and accuracy numerically verified.

In Chapter 3 we discussed an error indicator for the Steady Stokes problem. In
this part sharpness of the error indicator is numerically demonstrated. Additionally,
applications via adaptive algorithms are presented.

Chapter 4 is devoted to the nonlinear p-Laplace problem −∇((µ+ |∇u|p−2)∇u) = f .
We studied error estimates for the W 1,p

0 (Ω) norm and then a quasi-norm. When µ is large
the estimator is sharp for both norms, while when µ is small only the quasi-norm should
be considered. For the quasi-norm a lower bound is shown. An equivalence between the
error estimator and the quasi-norm error, up to higher order terms, is demonstrated.
Numerical results confirm these theoretical predictions. Adaptive algorithms are then
applied with the new error estimator and their efficiency is numerically verified.

In Chapter 5 the simulation of aluminium electrolysis is presented. Based on results
obtained in previous model problems a strategy to build adapted meshes is presented. In
Section 5.3 we presented numerical results obtained for the fluid-flow problem. Given a
horizontal bath-metal interface, adapted meshes are produced to compute the velocity
with accuracy. These adapted meshes are then used to solve the interface problem.
Adapted meshes allow a reduction of the computational time up to 85% for a reference
mesh with similar accuracy. In section 5.4 a model to take into account diluted gas in
the fluid-flow problem is introduced. Given a flat interface, we use again our adaptive
strategy to build adapted meshes for this problem. The adapted meshes are then used
to solve an interface problem between the two fluids. As before, the accuracy obtained
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using adapted meshes is comparable to the one obtained with a reference industrial
mesh, while reducing the computational time. Finally in Section 5.5 a more complex
geometry is presented, new features, namely slots, are introduced. An algorithm to refine
the mesh in a small region containing the slots is proposed. Numerical results show that
indeed, slots allow the gas mixture to leave the domain more easily. It should be noted
that the introduction of adaptive finite elements with large aspect ratio allows to check
convergence of the simulations.

Several interesting perspectives could be considered. First, as explained in [67, 69],
different boundary conditions are sometimes used for the velocity of the fluid-flow problem.
In particular the homogeneous Dirichlet boundary condition

u = 0 on ∂Ω,

of problem (5.1) or (5.13) can be relaxed with a friction parameter αf obtaining

u · n = 0 on ∂Ω,

(τn) · ti = αf (u · ti) i = 1, 2 on ∂Ω,

where (t1, t2, n) is a local orthonormal frame on ∂Ω. Thus a numerical study to intro-
duce adaptive finite elements with large aspect ratio, when considering such boundary
conditions should be conducted. Second we presented an adaptive strategy for the gas
problem (5.9)-(5.19). The adaptive criteria was based on an error indicator on velocity u.
A different indicator defined by combinations of the velocity u, the gas velocity ug and
the gas volumetric ratio αg, should also be investigated. Finally, adaptive finite elements
with large aspect ratio should be introduced in the Magneto-hydrodynamics-thermal
problem [68, 31].
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