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Abstract: For the prediction of landslide-generated waves, previous studies have developed nu-
merous empirical equations to express the maximums of wave characteristics as functions of slide
parameters upon impact. In this study, we built the temporal relationship between the wave character-
istics and slide features. We gave specific insights into impulse waves generated by snow avalanches
and mimicked them using a buoyant material called Carbopol whose density is close to that of water.
Using the particle image velocimetry (PIV) technique, the slide’s temporal velocity field and thickness,
as well as the temporal free water surface fluctuation, were determined experimentally. Using a
statistical method denoted as panel data analysis, we quantified the temporal wave amplitude from
the time series data of the thickness and depth-averaged velocity of the sliding mass at the shoreline.
Then, the slide’s temporal thickness and velocity at the shoreline were estimated from the parameters
of the stationary slide at the initial position, based on the viscoplastic theory. Combining the panel
data analysis and the viscoplastic theory, the temporal wave amplitudes were estimated from the
initial slide parameters. In the end, we validated the proposed theoretical–statistical combined
predictive method with the support of experimental data.

Keywords: landslide-generated waves; PIV; temporal prediction; time series data; cohesive landslide;
viscoplastic fluid

1. Introduction

When gravity-driven flows, such as avalanches, debris flows, and glacier calving,
threaten surrounding bodies of water, such as oceans, lakes, and rivers, they can generate
large impulse waves that have devastating effects. A recent event took place at Lake Askja,
Iceland, in 2014, where a landslide of approximately 20 × 106 m3 generated a large wave,
reaching a height of 50 m, which inundated the shoreline by up to 80 m [1]. Another
recent example was a rapid rock avalanche that occurred in 2017 in Greenland, where
approximately 50 Mm3 of landslide impacted the Karrat Fjord and created a wave that
propagated 32 km to the village of Nuugaatsiaq [2]. In Switzerland, a cohesive avalanche
had significant impact on a lake near Göschenen in 1999 [3]. The resulting snow–water
mixture flowed out of the lake as a thick, viscous fluid, overtopped a 6-meter protection
wall, and damaged the village structures.

The problem of impulse waves generated by subaerial landslides has attracted con-
siderable attention in recent decades. Many of the physical insights into this phenomenon
have come from laboratory-scale-down experiments [4–10], and to a lesser extent from
theoretical models [11,12], numerical simulations [13–17], and field data surveys [18–21].
Laboratory experiments make it possible to quantify the maximum values of wave charac-
teristics, such as the wave amplitude, wave height, and wave period from parameters of the
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incoming landslide using empirical equations. The most commonly used slide parameters
in these empirical equations include the slide’s frontal velocity thickness across the shore-
line and the slide mass, which were simplified from the momentum flux of the incoming
landslide [22–24]. Using the slide’s frontal velocity and thickness as explanatory variables
in empirical equations is effective, as many mass flows have their maximum velocity and
thickness at the front, but it is not always the optimal solution. Natural landslides often
have varying thicknesses and velocities from their front to tail, depending on the slide
material properties, slope topography, etc. This shows the necessity of considering the time
series data of slide parameters in wave prediction.

Furthermore, the transfer of momentum between the sliding mass and the body of
water persists from the moment the slide’s frontal part touches the shoreline until the slide
stops moving. The associated waves affect the surrounding area of water and structures
throughout the whole impacting process rather than merely at the moment when the wave
size reaches its maximum. Therefore, it is necessary to have a reliable prediction of the
temporal wave characteristics instead of focusing solely on the maximum wave parameters.
The time evolution of the wave characteristics has been widely explored in previous studies.
The difficulty was to determine the time variation of the slide features experimentally.
Several attempts have been conducted by recent research studies to determine the time
series data of the slide parameters experimentally. Bullard et al. examined the temporal
velocity of granular slides passing through shorelines [25]. Bougoin et al. determined the
temporal evolution of gas-fluidized granular flows entering bodies of water [26]. However,
no study has yet quantified the temporal relationship between the wave characteristics and
slide features.

The objective of this study was to determine the temporal relationship between the
wave characteristics and slide parameters. We provide specific insights into impulse waves
generated by avalanches. The main characteristic of an avalanche, compared to other
natural landslides, is its low density. We, thus, conducted experiments using a buoyant
material called Carbopol, whose density is close to that of water. The choice of the material
was detailed in our previous studies [27–29]. Using the particle image velocimetry (PIV)
technique, the internal dynamics of the sliding mass as it passed through the shoreline
were experimentally measured and, hence, the time series data of the slide’s velocity and
thickness were determined.

Compared with previous empirical equations, which predicted the maximums of
wave parameters, the challenge of this study was to model several variables at varying time
points. In statistical and econometric research studies, three types of data were mostly used:
cross-section data, time series data, and panel data [30,31]. Cross-section data are obtained
by collecting observations related to many variables at given times. The experimental
dataset, which was modeled by previous empirical equations, corresponds to this case.
Only slide parameters upon impact and maximums of wave parameters were used in
these empirical equations. Time series data consist of observations measured at many
time points for one variable. For the temporal prediction in the present study, the dataset
involves many variables at varying time points. In this case, panel data that combine cross-
section data and time series data can be used. The panel data analysis has some benefits,
such as increasing the number of observations and freedom degrees, and obtaining more
efficient and consistent prediction results with more data information, which offer extended
modeling possibilities compared to cross-sectional data or time-series data [32–34].

In this study, we first employed the panel data analysis to build the temporal relation-
ship between the wave parameters and slide parameters upon impact. We then estimated
the time series data of slide parameters upon impact from the features of the stationary slide
material at the initial position based on the viscoplastic theory (i.e., lubrication model and
kinematic wave model) [35,36]. Combining the panel data analysis with the viscoplastic
theory, the temporal wave characteristics were predicted from the initial slide parameters.
Compared with previous empirical equations, which predicted the maximum wave charac-
teristics from slide parameters upon impact, the proposed statistical–theoretical combined
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model not only estimated the temporal parameters of the sliding mass upon impact but
also predicted the temporal wave characteristics from these temporal slide parameters,
which helps one to understand how the slide features affect wave generation.

2. Theoretical Basis
2.1. Physical Model

Figure 1 illustrates the physical model of a landslide moving down along a slope and
entering a body of water. The whole process can be divided into three stages: (i) the slide
is at rest in the container box and starts to move; (ii) it moves along the slope and then
reaches the shoreline; (iii) it enters the body of water and generates a wave. We consider a
slope with an inclination of θ entering a horizontal flume filled with water. The still water
depth is denoted by h0. The landslide, with a volume of VI and density of ρs, is released at
a distance `s from the shoreline. The sliding mass enters the body of water with a thickness
of s0(t) and velocity of u0(t). The characteristics of the wave generated by the sliding mass
are represented by the wave amplitude a(t) and wave height h(t).

Figure 1. Sketch of the impacting process of landslide-generated waves.

2.2. Empirical Equations

Previous studies have developed a number of empirical equations to express the
maximum values of wave characteristics, such as the wave amplitude, height, period,
and length, as functions of parameters of the sliding mass upon impact [9,12,37–42].
The typical functional form of the empirical equations can be written as follows:

Ye = δ ∏
n=1

Xβn
n (1)

Ye (e = 1, 2, . . . ) are the scaled wave parameters (e.g., the scaled maximum wave amplitude,
scaled maximum wave height, etc.), Xn (n = 1, 2, . . . ) indicate the explanatory variables
(i.e., scaled slide parameters), I represents the total number of explanatory variables, βn
and δ denote the coefficients of the explanatory variables.

The most commonly used slide parameters in these empirical equations are the slide
velocity u0, the slide thickness s0, and the effective slide mass mE, which were simplified
from the momentum flux of the slide material passing through the shoreline. We define the
mass of the immersed slide material as m, and the effective slide mass mE is the mass of the
immersed slide material m at the moment when the wave height reaches its maximum [27].
s0 and u0 are the thickness and velocity of the sliding mass when its front touches the
shoreline. These parameters are scaled as the slide Froude number Fr = u0/

√
gh0, the

scaled slide thickness S = s0/h0, the scaled effective mass M = m/ρsBh2
0, with B as the

slope width, ρs as the slide density, and h0 as the still water depth. Then, a commonly used
simple empirical equation appears [24]:

Ye = δFra MbSc (2)

where δ, a, b, and c are the coefficients of explanatory variables and are estimated by
regressing the equation using experimental data.
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2.3. Slide Parameters Selected for the Temporal Prediction

As presented in Section 2.2, the slide’s thickness, velocity, and mass were routinely
selected as representative slide parameters in empirical equations. According to the mass
conservation, the change rate of the submerged slide mass dm

dt can be expressed by the
thickness and velocity of the sliding mass passing the shoreline:

dm
dt

= ρsbs0(t)u0(t) (3)

where the slide density ρs and the width of the flume b are constants. It means that the
temporal mass of the submerged slide material m(t) depends on the thickness and velocity
of the sliding mass passing through the shoreline (i.e., s0(t) and u0(t)). Therefore, we
eliminated the mass term for the temporal prediction.

3. Model Development
3.1. Panel Data Analysis

We built the temporal relationship between the wave parameters and slide parameters
using panel data analysis, which enables multivariate regression analysis for a set of
variables over a particular time span. As shown in Figure 2, our experimental data can be
conceptualized as a three-dimensional dataset that contains a time series and a data panel
N-P. N denotes the number of experiments and P denotes the slide parameters and wave
parameters recorded in each experiment. The objective of this study was to quantify the
time series data of wave parameters from slide parameters.

Figure 2. The three-dimensional structure of a data panel model.

The random coefficient model proposed by Swamy (1970) was used to develop the
temporal prediction [43]. The basic form of a panel data model is:

yi = Xiβi + ri (4)

There are T observations on each of the N individual units. The dimension of yi
is (T × 1), the dimension of Xi is (T × Λ), the dimension of βi is (Λ × 1), and the di-
mension of ri is (T × 1). We observe the variables yi and Xi for i = 1, 2, . . . , N. The ma-
trix Xi (i = 1, 2, . . . , N) has a of rank of Λ, containing observations on Λ non-stochastic
regressors, denoted as xitλ (t = 1, 2, . . . , T; λ = 1, 2, . . . , Λ). Both βi and ri are unobserved
random vectors.
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For the random coefficient model, let βi = β̄ + γi(i = 1, 2, . . . , N), where γi is a Λ× 1
vector of the random elements. Swamy (1970) assumed that for i, j = 1, 2, . . . , N:

E(γi) = 0,

E(γiγj) =

{
∆, i = j,
0, i 6= j,

E(βi) = β̄,

E(rir
′
j) =

{
σ2

i IT i = j,
0, i 6= j.

(5)

In addition, βi and rj are independent, βi and β j for i 6= j are independent. Equation (4)
can be written as follows:

y = Xβ̄ + Dγ + r (6)

where y = (y
′
1, y

′
2, · · · , y

′
N)
′
, X = (X

′
1, X

′
2, · · · , X

′
N)
′
, γ = (γ

′
1, γ

′
2, · · · , γ

′
N)
′
, r = (r

′
1, r

′
2, · · · , r

′
N)
′ ,

and D denotes a block-diagonal matrix. Under the assumptions of Equation (5), the NT× 1
disturbance vector Dγ + r has the covariance matrix:

V =


X1∆X′1 + σ2

1 I 0
X2∆X′2 + σ2

2 I
. . .

0 XN∆X′N + σ2
N I

 (7)

where the 0’s are T× T null matrices. The matrix V is symmetric with dimensions NT×NT,
and ψi = Xi∆X′i + σ2

i I. The optimal linear unbiased estimator of β can be obtained from
the generalized least squares method:

β̂GLS =

(
N

∑
i=1

X
′
i ψ
−1
i Xi

)−1( N

∑
i=1

X
′
i ψ
−1
i yi

)
=

N

∑
i=1

Wi β̂i,

Wi =

{
N

∑
i=1

[
∆ + σ2

i (X
′
i Xi)

−1
]−1
}−1[

∆ + σ2
i (X

′
i Xi)

−1
]−1

,

β̂i =
(

X
′
i Xi

)−1
X
′
i yi.

(8)

The variance–covariance matrix of the estimator β̂GLS is as follows:

Var
(

β̂GLS
)
=

(
N

∑
i=1

X
′
i ψ
−1
i Xi

)−1

=

{
N

∑
i=1

[
∆ + σ2

i (X
′
i Xi)

−1
]−1
}−1

. (9)

β̂GLS is an effective estimation of β, which follows an asymptotic normal distribution.
Note that different wave types are often associated with different free water surface-

moving tendencies; for instance, the wave amplitude of a bore wave increases and decreases
much more quickly than that of a solitary wave during the moving landslide entering the
body of water. These differences may result in uncertainties when modeling the three-
dimensional panel data. In statistical and econometric studies, researchers commonly
classify the dataset into several groups based on the properties of the data samples to avoid
uncertainties. Here, we used a Gaussian mixture model to classify the experimental dataset
based on the slide parameters upon impact before building the random coefficient model.
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For multivariate continuous data, the parameterized component density is multivari-
ate Gaussian density. For the one-dimensional dataset, the probability distribution of a
random variable x follows a mixture of two Gaussian distributions:

P(x|µ1, µ2, σ) =
2

∑
k=1

pk
1√

2πσ2
exp

(
− (x− µk)

2

2σ2

)
(10)

where k = 1 and k = 2 represent two Gaussian distributions, the kth prior probability is
{p1 = 1/2, p2 = 1/2}. Moreover, {µk} and σ are the mean value and standard deviation
of the two Gaussian distributions, respectively. We use θ = {{µk}, σ} to represent these
two parameters. The dataset {xn}N

n=1 contains N tests, which is an independent sample
from the distribution.

Here, we consider that the {µk} is unknown but σ is known; we can obtain {µk} from
the data series {xn}N

n=1. We then derive the iterative algorithm of {µk} to maximize the
likelihood estimation:

P
(
{xn}N

n=1|{µk}, σ
)
= ∏

n
P(xn|{µk}, σ). (11)

Then, the natural logarithm of the likelihood L can be expressed as follows:

∂

∂µk
L = ∑

n
pk|n

xn − µk
σ2 , (12)

where pk|n = P(kn = k|xn, θ) is the Gaussian density. Ignoring the items in ∂

∂µk
P(kn = k|xn, θ),

the second derivative versus {µk} can be approximated as follows:

∂2

∂µ2
k

L = −∑
n

pk|n
1
σ2 . (13)

The initial µ1, µ2 are iterated to µ′1, µ′2 using the approximate Newton–Raphson steps.

µ′k =
∑n pk|nxn

∑n pk|n
(14)

The Gaussian mixture density of a multi-dimensional dataset (i.e., multiple Gaussian
distribution) can be written as follows:

pk|n =

πk
1

∏I
i=1
√

2πσk
exp

(
−∑I

i (µk − xn)
2/2(σk)

2
)

∑′k π′k
1

∏I
i=1
√

2πσ′k
exp

(
−∑I

i
(
µ′k − xn

)2/2
(
σ′k
)2
) , (15)

where k is the serial number of the Gaussian distribution, n is the serial number of the data
sequence, I is the total number of data dimensions, πk is the weighting, µk is the mean
value of the Gaussian distribution, σk is the variance of the Gaussian distribution, and xn
represents the data. The formulas of the standard derivation σk and the weighting πk can
be written as follows:

σk =
∑n pk|n(xn − µk)

2

∑n pk|n
, πk =

∑n pk|n
∑k ∑n pk|n

(16)
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3.2. Theoretical Solutions of the Temporal Slide Thickness and Velocity

We provide insight into the cohesive landslide-generated waves and assume the
incoming landslide as a viscoplastic fluid. The rheological behavior of the viscoplastic fluid
is described by the Herschel–Bulkley equation [44,45]:

τ = τc + µγ̇n (17)

where τ denotes the shear stress, τc is the yield stress, γ̇ is the shear rate, µ is the consistency,
and n is a power law index that reflects shear thinning (or shear thickening for the materials
n > 1). Independently of the constitutive equation, the shear stress distribution throughout
the depth is as follows:

τ(y) = ρsg(s− y) sin θ (18)

where s denotes the flow depth, ρs is the density of the slide material, and g is the gravita-
tional acceleration. The no-slip condition is assumed for the streamwise velocity component
u at the bottom (i.e., u(y = 0) = 0).

As shown in Figure 3, the slide moving along the slope can be considered as a dam
break problem. The objective is to determine the thickness s(x = ls, t) (i.e., s0(t)) and
depth-averaged velocity ū(x = ls, t) (i.e., u0(t)), where ls represents the distance from the
origin to the shoreline and t denotes the time. The initial flow depth s(x) is given by:

s(x) = sg + (x− l0) tan θ (19)

with sg = VI/l0 + 1
2 l0 tan θ, where sg is the initial flow depth at the lock gate, VI is the

volume per width of the slide material in the container box, and l0 denotes the length of
the material in the reservoir.

0

gategate

,

,

(a) (b)

Figure 3. Sketch of the sliding mass (a) at rest and (b) moving along the slope.

The slide thickness s0(t) and depth-averaged velocity u0(t) crossing the shoreline
are given by the lubrication model and kinematic wave model. Ancey et al. (2012) have
detailed the models and validated them via experiments conducted with Carbopol [36].
For a slightly non-uniform viscoplastic flow, the depth-averaged velocity can be given by:

ū =
nK

(n + 1)(2n + 1)

(
tan θ − ∂s

∂x

)1/n s(n + 1) + nsc

s
Y1+1/n

0 (20)

with the parameter K = (ρsg cos θ/µ)1/n, the updated yield surface position is given by

Y0 = s − sc

(
1− cos θ ∂s

∂x

)−1
, and the critical depth is sc = τc/(ρsg sin θ). Equation (20)

requires an equation that specifies the gradient of the free surface ∂xs(x, t). We used the
kinematic wave model to evaluate s(x, t). The kinematic wave approximation assumes that
the fluid is locally uniform. The integration of the constitutive Equation (17) provides the
cross-stream velocity profile:

u(y) =
nA

n + 1

{ (
Y1+1/n

0 − (Y0 − y)1−1/n
)

y ≤ Y0

Y1+1/n
0 y ≥ Y0

(21)
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with

Y0 = s− sc, A =

(
ρsg sin θ

µ

)1/n
, sc = τc/(ρsg sin θ) (22)

where sc denotes the critical flow depth, i.e., no steady uniform flow is possible for s < sc.
Y0 denotes the position of the yield surface, where y < Y0 corresponds to the sheared
region and y > Y0 corresponds to the unyielding region. Further integration leads to the
depth-averaged velocity:

ū =
nA

(n + 1)(2n + 1)
s(n + 1) + nsc

s
Y1+1/n

0 (23)

The bulk mass balance equation ∂s
∂t +

∂sū
x = 0 provides the governing equation for s:

∂s
∂t

+ f ′(s)
∂s
∂x

= 0 (24)

with f ′(s) = As(s− sc)
1/n (25)

This hyperbolic nonlinear advection equation can be solved easily using the char-
acteristics method. Equation (24) can be put into a characteristic form ds

dt̂ = 0 along the
characteristic curve dx̂

dt̂ = f ′(s). These initial characteristic curves are straight lines whose
slopes are dictated by the initial depth:

x = f ′(s(x0))t + x0 (26)

with s0(x0), the initial value of s at x0 is given in Equation (19). As h = h0 along the
characteristic curve, using Equation (19) to eliminate x0, an implicit equation for s can
be obtained:

x = As(s− sc)
1/nt + (s− sg) cot θ + l0 (27)

4. Experiments
4.1. Facilities

Experiments were conducted in a narrow flume, which included two parts. The first
part was a 1.5 m long and 0.12 m wide chute, which could be tilted at angles θ ranging
from 30◦ to 50◦. The bottom of the chute was lined with sandpaper, whereas the side
walls were made of PVC. The second part was a 2.5 m long, 0.4 m deep, and 0.12 m wide
transparent glass flume. The slide material was initially contained in a box located at the
chute entrance and closed by a locked gate. In our experiments, the initial water depth was
fixed to 0.2 m, the slope length `s ranged from 0.85 m to 1.05 m, and the initial slide mass
mI ranged from 2.0 to 6.0 kg. We conducted 92 experiments in total. Once the lock gate
was released, the material accelerated energetically under gravity and reached velocities as
high as 2.5 m/s. The thickness of the slide material passing through the shoreline ranged
between 0.02 and 0.05 m.

As the slide material, we used a viscoplastic gel called Carbopol Ultrez 10. One benefit
of Carbopol is that it is transparent and can be easily seeded with tracing particles without
changing its rheological properties. This enables the measurement of its internal velocity
using the particle image velocimetry (PIV) technique. The rheological behavior of Carbopol
can be described by the Herschel–Bulkley equation (see Equation (17)). In this study, we
used Carbopol with a concentration of 2.0%, with a yield stress of τc = 58 Pa, a consistency
of µ = 18.9 Pa·sn, and n = 0.330. The density of Carbopol is close to 1000 kg/m3. For
details on the material, refer to our earlier publications [27–29].

The flume was equipped with a PIV system, which consisted of a laser, four lenses,
and two high-speed cameras. As illustrated in Figure 4a, the two cameras were placed in
front of the shoreline with their optical axes perpendicular to the side wall, and the laser
illumination system was installed on the opposite side of the slope. The laser generated
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a green laser beam with a wavelength of 527 nm, a maximum output of 150 W, and a
pulse duration of 100 ns. As shown in Figure 4b, the laser beam first passed a circular
lens (I) with a focal length of d =90 mm; it then passed through a laser line generator
lens (II) with a divergence angle of 30◦ and it became a laser sheet; afterwards, the laser
sheet passed through a rectangular lens (III) with a focal length of d = 200 mm in the
vertical direction; finally, it passed by an oblong lens (IV) with a focal length of d = 1.5 m
in the horizontal direction. We used a color camera with a frequency of 400 fps (frames
per second) and a resolution of 600 × 800 pixels to record the motion of Carbopol (see
Figure 4c) and a black-and-white camera with the same frequency and with a resolution of
1280 × 1024 pixels to record the motion of the body of water (see Figure 4d). Carbopol
was seeded by fluorescent seeding particles with a diameter of 20 µm; the particles were
produced by mixtures of polyamide seeding particles and Rhodamine B dye. See [46] for
details about the fluorescent seeding particles. Water was seeded by polyamide-seeding
particles with a diameter of 50 µm. The particle-seeded flow was illuminated in a target
area with a light sheet, and the velocity vectors were derived from the sub-sections of the
target area by measuring the displacement of seeding particles between two image frames.

laser
cameras

I

II

III
IVV

I: laser
II: circular lens
III:  laser line generator lens
IV:   rectangular lens
V:    oblong lens

(a) (b)

(c) (d)

Figure 4. (a) Sketch of the facilities, (b) settings of the laser and lenses where I denotes a circular lens,
II is a laser line generator lens, III is a rectangular lens, IV is an oblong lens, (c) is the raw image of
the Carbopol observed by PIV, (d) is the raw image of water observed by PIV.

4.2. Image Processing

The objective of the image processing is to obtain (1) the position of the free water
surface when the leading wave reaches its maximum height, (2) the velocity and thickness
of the sliding mass passing through the shoreline. To that end, we first located the interfaces
among water, air, and the slide of each image. We then deduced the time variations of the
wave characteristics by including the wave height and amplitude from the position of the
free water surface, and determined the slide thickness from the slide-air interface.

The velocity field of the sliding mass was determined using a toolbox in Matlab
named MatPIV. We used 32 × 32-pixel interrogation windows with 50% overlap between
adjacent windows. To remove the spurious velocity vectors, a range validation filter was
used, and all of the velocity vectors larger than 3 m/s were discarded. Using a moving
average validation filter, the velocity vectors that deviate 15% from the average value
of the surrounding 3 × 3 vectors fields were substituted by interpolation. The velocity
vectors were converted into the velocities by calibrating the physical size of a pixel in an
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image. The depth-averaged velocity of the sliding mass passing through the shoreline was
estimated by the average of the velocity vectors at the shoreline.

5. Results
5.1. Empirical Equations for Predicting the Maximums of Wave Characteristics

We selected the maximum wave amplitude am and maximum wave height hm as rep-
resentative wave parameters, and fitted the scaled maximum wave amplitude Am = am/h0
and the scaled maximum wave height Hm = hm/h0 with the slide Froude number Fr,
scaled effective mass M, and scaled slide thickness S. In our experiments, 0.05 < Fr < 2.78,
0.03 < M < 0.33, and 0.12 < S < 0.25. The regression results of Equation (2) are as follows:

Am = 1.538Fr1.012M0.319S0.750 (28)

Hm = 1.102Fr1.748M0.123S0.617 (29)

where the coefficient of determination is R2 = 0.9214 for Am and 0.9062 for Hm. Usually,
a predictive model can be validated if R2 > 0.8. As R2 > 0.9 for both Am and Hm, we believe
that the prediction accuracies of the empirical equations were fairly good. The accuracy of
the empirical equation of Am was higher than that of Hm, which was commonly observed
in most previous studies. Figure 5a,b compares Am and Hm measured from experiments
with those estimated by empirical Equations (28) and (29).

0 0.2 0.4 0.6
predicted Am

0

0.2

0.4

0.6

m
ea

su
re

d
A

m

(a)

0 0.2 0.4 0.6
predicted Hm

0

0.2

0.4

0.6

m
ea

su
re

d
H

m

(b)

Figure 5. Comparing (a) Am and (b) Hm obtained from experimental measurements with the results
predicted from empirical equations.

5.2. Time Series Data of the Slide Parameters Upon Impact

Using the theoretical expressions presented in Section 3.2, we calculate the numerical
solutions of the time series data of the thickness and depth-averaged velocity of the sliding
mass when it moves along the chute. Figures 6 and 7 display the numerical solutions of
s(x, t) and ū(x, t) for the following specific case: θ = π/6, sg = 0.4 m, l0=0.3 m, ls = 0.85 m,
n = 0.33, τc = 58 Pa, µ = 18.9 Pa·sn, g = 9.8 m/s2. The starting time counted for
Equation (27) is given by x f (t) = ls.

Figure 8a,b display the time variation of s0(t) and ū0(t) for the same selected cases
as Figures 6 and 7. Both s0(t) and ū0(t) are determined experimentally and theoretically.
The theoretical data are estimated with the lubrication model and kinematic wave model,
and the experimental data are obtained from the PIV measurements (see Section 4). It can
be seen from the figures that the theoretical data fit quite well with the experimental data.
This confirms that the lubrication model and kinematic wave model can well represent the
rheology of viscoplastic fluid.
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Figure 6. Numerical solution of the depth-averaged velocity ū(x, t).

Figure 7. Numerical solution of the slide thickness s(x, t).

Figure 8. Time evolution of (a) s0(t) and (b) ū0(t) of the selected test.

5.3. Prediction of the Temporal Wave Characteristics

With the known s0(t) and ū0(t), we then quantify the temporal wave characteristics
based on the panel data analysis. We first classify the experimental dataset into several
groups using the Gaussian mixture model, and then use the random coefficient panel
data model to model the time series relation between slide parameters and wave param-
eters. We selected four representative experiments as examples, and display the general
tendencies of their surface evolution. Table 1 shows the initial parameters of the four
selected experiments.
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Table 1. Initial parameters of the selected tests, which serve as examples.

Test c [%] `s [m] θ [-] mI [kg] h0 [m]

T1 2.0 1.05 π/4 3.0 0.2
T2 2.0 0.95 π/4 3.5 0.2
T3 2.0 0.85 π/4 4.0 0.2
T4 2.0 0.85 π/4 4.5 0.2

As shown in Figure 9, the varying tendencies of the four selected experiments are
significantly different. The amplitude a(t) of T1 decreases after t = 1.5 s without any rally.
For the evolution curve of a(t) of tests T2, T3, and T4, fluctuations can be observed during
the decreasing period. For example, the a(t) of T2 starts to decrease at 0.15 s; it has a
turning point of approximately 0.30 s. The discrepancies among experiments with different
wave sizes increase the uncertainty of the temporal prediction. This uncertainty shows the
necessity of clustering the dataset on the basis of the wave features and slide properties
before conducting the temporal prediction.

Figure 9. Time variation of (a) the wave amplitude a(t) and (b) the wave height h(t).

As shown in Section 5.1, the scaled maximum wave amplitude Am and scaled maxi-
mum wave height Hm can be well estimated by the slide Froude number Fr, scaled slide
thickness S, and scaled effective slide mass M using empirical equations, with the coeffi-
cient of determination R2 larger than 0.9. We selected these three dimensionless groups
as the criteria to evaluate the properties of experiments, and classified the experimental
dataset using the Gaussian mixture model based on these three indicators. Figure 10 shows
the classification results. Using the Gaussian mixture model, the 92 experiments conducted
in the present study were classified into 5 classes: 14 experiments in class 1, 9 experiments
in class 2, 30 experiments in class 3, 30 experiments in class 4, and 9 experiments in class 5.

To verify whether the classification results well reflect the wave characteristics, we
display the two-dimensional distribution of each class for the whole dataset. Figure 11a
shows the impulse product parameter P versus the ratio of the scaled maximum wave
amplitude to the scaled maximum wave height Am/Hm. The impulse product parameter
P was defined as P = FrS1/2M1/4 cos(6/7θ)1/2 [47], and it was considered as a universal
dimensionless group to quantify the wave characteristics. Therefore, P can generally reflect
the size of the leading wave. In addition to Am/Hm, Figure 11b,c display the ratio of Am
and Hm to the scaled wavelength Lm; that is, Am/Lm and Hm/Lm, respectively. Lm = `/h0,
where ` represents the wavelength. Am/Hm, Am/Lm, and Hm/Lm reflect the non-linearity
of the wave. It can be seen that the classification results based on S, M, and Fr reflect the
sizes and non-linearity of the waves.
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Figure 10. Classification results based on the evaluation criteria Fr, M, and S.

Figure 11. Two-dimensional distributions of experiments in each class: (a) P and Am/Hm, (b) Am/Lm

and Hm/Lm, (c) Am/Lm and Am/Hm.

As the dataset has been classified, we now build the time series relation between
the wave characteristics and slide parameters using the random coefficient model. See
Section 3.1 for the mathematical details of the random coefficient model. We selected the
wave amplitude a(t) to represent the temporal wave characteristics. The objective is to
estimate A(T) from S(T) and Fr(T), where A(t) = a(t)/h0 is the scaled wave amplitude,
S(t) = s0(t)/h0 is the scaled slide thickness, Fr(t) = u0(t)/

√
gh0 is the Froude number,

and T = t
√

g/h0 is the scaled time. Moreover, 82 of the 92 experiments were selected
randomly to train the model, and the other 10 experiments were used to validate the model.
Figure 12 shows A(T) of the 10 validation tests.

Figure 12. A(T) of the 10 validation tests, where N = 1, 2, . . . , 10 denotes the test number. The black
dots denote the experimental data and the red dots denote predicted data.
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Further, as shown in Sections 3.2 and 5.2, s0(t) and u0(t) can be estimated from the
initial settings of the experiments using the kinematic wave model and lubrication model.
We quantified the scaled temporal wave amplitude A(T) using the theoretical approxima-
tions of S(T) and Fr. Table 2 shows the prediction accuracy of A(T) of the 10 validation
tests, with S(T) and Fr(T) given by experimental data and theoretical approximations,
respectively. The prediction accuracy was evaluated by the coefficient of determination
(R2) and mean square error (MSE) of the time series data sequence:

R2 = 1−
ε

∑
i=1

((
yp,i − yo,i

)2(
yp,i − ȳo

)2

)
(30)

MSE =

√
∑ε

i=1
(
yp,i − yo,i

)2

ε
(31)

where ε is the sequence number of the experimental data, yp,i and yo,i are predicted and
measured data, respectively, and ȳo is the average of the observed data. R2

EXP and MSEEXP
estimate the accuracies of the predictions with Fr and S given by the experimental data.
R2

THE and MSETHE estimate the accuracies of the predictions with Fr and S given by
theoretical approximations. Since the R2 values of most validation tests for A(T) were
larger than 0.8, we believe that the proposed models perform well for quantifying the time
series relations between the slide features and the wave characteristics.

Table 2. R2 and MSE of A with the explanatory variables given by experimental results and theoreti-
cal approximations.

Nbr R2
EXP MSEEXP R2

T HE MSET HE

1 0.927 0.327 0.889 0.402
2 0.934 0.273 0.924 0.292
3 0.939 0.196 0.894 0.205
4 0.928 0.464 0.914 0.506
5 0.929 0.135 0.929 0.136
6 0.931 1.490 0.905 1.549
8 0.873 1.048 0.891 1.177
9 0.937 0.643 0.930 0.680
10 0.923 0.543 0.916 0.566

Figure 13 shows the R2
THE and R2

EXP values for the whole dataset. Using the ex-
perimental S(T) and Fr(T) to predict the temporal wave characteristics leads to better
prediction accuracy than using theoretical approximations. The average R2

EXP and R2
THE

values of A(T) for the whole dataset were 0.9283 and 0.9045, respectively.

0.8 0.85 0.9 0.95 1
R2

EXP

0.8

0.85
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0.95

1

R
2 T
H

E

training data
test data

Figure 13. Comparison of R2
THE and R2

EXP of A(T) for the whole dataset.
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6. Conclusions

Previous studies have developed empirical equations to quantify the maximums of
wave parameters, such as the maximum wave amplitude and maximum wave height
from the slide parameters upon impact. No previous studies have quantified the temporal
relationship between these parameters. The objective of this study was to establish the
temporal relationship between the wave characteristics and slide features. In this study, we
provided specific insight into impulse waves generated by snow avalanches. Considering
the low density of snow avalanches, we selected a buoyant material called Carbopol as the
slide material and conducted physical model experiments.

We selected the slide’s thickness and velocity at the shoreline as representative slide
parameters. The time series data of these two slide parameters, as well as the wave
fluctuations, were measured experimentally using the PIV technique. We quantified how
the temporal wave amplitude depends on the time series data of the slide’s thickness
and depth-averaged velocity as they pass through the shoreline, based on panel data
analysis. The slide’s thickness and depth-averaged velocity were theoretically expressed
using the lubrication model and kinematic wave model, derived from the initial parameters
of the slide’s material in the container box. By combining the panel data analysis with the
viscoplastic theory, we then quantified the time variation of the wave amplitude from the
initial slide parameters. The proposed statistical–theoretical combined model demonstrated
good agreement with the experimental data.
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