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Abstract

We present an algorithm for constructing efficient surrogate frequency-domain mod-
els of (nonlinear) parametric dynamical systems in a non-intrusive way. To capture
the dependence of the underlying system on frequency and parameters, our proposed
approach combines rational approximation and smooth interpolation. In the approx-
imation effort, locally adapted sparse grids are applied to effectively explore the pa-
rameter domain even if the number of parameters is modest or high. Adaptivity is
also employed to build rational approximations that efficiently capture the frequency
dependence of the problem. These two features enable our method to build surrogate
models that achieve a user-prescribed approximation accuracy, without wasting too
many resources in “oversampling” the frequency and parameter domains.

Thanks to its non-intrusiveness, our proposed method, as opposed to projection-
based techniques for model order reduction, can be applied regardless of the complexity
of the underlying physical model. Notably, our algorithm for adaptive sampling can
be used even when prior knowledge of the problem structure is not available.

To showcase the effectiveness of our approach, we apply it in the study of an aero-
dynamic bearing. Our method allows us to build surrogate models that adequately
identify the bearing’s behavior with respect to both design and operational parame-
ters, while still achieving significant speedups.

Keywords: model order reduction, gas bearing, frequency domain, nonlinear dynamics,
high-dimensional approximation.

1 Introduction
Frequency-domain models of (nonlinear) dynamical systems are often used by engineers in

domains such as control systems, fluid mechanics, acoustics, optics, electronics and commu-
nications. A good understanding of nonlinear effects can be crucial for stability analysis,
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performance evaluation, and mitigation of undesirable phenomena. Specifically, with the ob-
jective of resolving complex behaviors in physical or data-driven models, high-fidelity para-
metric models are developed. The parameters are embedded within the model as “tuning
knobs” of the interesting inputs to the system.

Simultaneously, engineers are often not only unwilling to accept the exploding computa-
tional cost that accompanies an up-scaling in modeling complexity, but some applications
also necessitate significant reductions in computing time and memory. This is particularly
relevant in the so-called multi-query setting, where calculations have to be repeated for many
different values of frequency and parameters, e.g., in the context of design optimization or of
real-time monitoring and control. Model order reduction (MOR) addresses this by replacing
the high-fidelity model with a cheap-to-evaluate surrogate one, which (hopefully) has a small
approximation error. Evaluation efficiency is not the only concern when considering model-
ing alternatives: surrogate costs can come in the form of variable (so-called “online”) costs
on a per-evaluation basis and overhead (so-called “offfine”) costs for building the surrogate
model. Examples of the latter include (re)-training and/or development effort associated
with modifications in the reference model, which could be the case for techniques exploiting
specific knowledge about the inner workings of the reference model.

We wish for the reader not to lose sight of the general applicability of our algorithm to
frequency-dependent, nonlinear, and parametric dynamical systems, whose abstract mathe-
matical formulation is outlined in Yet, we are also practitioners and see value in
showcasing our approach on a tractable engineering application. For this, we narrow-in on
herringbone grooved journal bearings (HGJBs), a type of non-contact bearings where the
pressure distribution in a thin film of gas separates a rotating shaft from a static bearing
part. A reference HGJB model is summarized in section [Section 4] Several numerical ex-
periments with the HGJB are then performed in We remind the reader that the
details about the reference model are merely given to establish a context about the function-
ing and performance of the algorithm. They are not needed for its application. In this sense,
our proposed algorithm can be thought of as plug-and-play in an approximation setting for
black-box functions.

1.1 Model reduction background and contributions

By now, a vast body of works in MOR is available, and many different approaches have
been developed for building surrogate models. In the specific case of nonlinear systems,
some additional difficulties arise, especially when employing the most popular class of MOR
techniques, namely, projection-based approaches such as proper orthogonal decomposition
(POD) or reduced basis (RB) methods (see, e.g., [13] for an overview): due to the presence of
nonlinear terms, it is difficult to produce a surrogate model that is both efficient and accurate.
Strategies to address this issue have been studied under the umbrella term “hyperreduction”,
with the most known approach being the discrete empirical interpolation method (DEIM)
[6]. There are also two notable weaknesses of DEIM: (i) it is very problem-dependent and
often requires considerable “user supervision” (limiting the extent to which it can be applied
in an automated way), and (ii) it is intrusive ( i.e., it requires knowledge of the nonlinearities
and access to the high-dimensional system “state”, e.g., the pressure or displacement field
that solves the nonlinear equation, cf. [Section 2)). This second item is a serious issue in
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many practical settings, specifically for severe nonlinearities and whenever one cannot easily
access the high-fidelity state, e.g., due to closed-source code. Even “less” intrusive methods
like “non-intrusive RB” [II] or physics-informed neural networks [14, 27] are affected by
this problem. Note that further difficulties arise for intrusive parametric MOR methods
since dedicated techniques contingent on the nature of parameter dependencies are needed
to adapt the bases for given parameter values, see, e.g., [8] [36].

In this work, we address this issue by developing a non-intrusive MOR approach for
building surrogate models of quantities of interest (Qols) arising in frequency-domain analy-
ses of nonlinear dynamics. Our method builds the surrogate model from samples of the Qols
only, without requiring any access to —nor knowledge of— the underlying nonlinear model.
This allows us to treat the high-fidelity model as a “black box”.

We build a surrogate model by interpolation. More precisely, a rational interpolation
framework is employed with respect to frequency, whereas smooth interpolation (e.g., by
piecewise polynomials or radial basis functions) is applied to approximate the dependence
on parameters. The frequency dependence is modeled via the (less regular) class of rational
functions as a way to address any potential lack of smoothness of the Qols with respect
to frequency. In this context, rational functions have been often used as a general-purpose
approximation class [12, 19] 24, 29| 33], often yielding (quasi-)optimal approximation quality,
regardless of whether such “non-smooth effects” are actually present or not. This being said,
we refrain from using rational interpolation to model the joint dependence of the Qols on
frequency and parameters, because of the intrinsic instabilities and computational difficulties
associated to multivariate rational approximation, which are ultimately due to the curse of
dimension.

Lastly, we consider one additional (and, in our view, crucial) issue in MOR: the selection
of the sample points. Given the task of building a surrogate model, one inevitably faces the
questions of how many and where (in frequency-and-parameter space) to take the expen-
sive high-fidelity samples that the surrogate will be eventually based on. Answering these
questions well is crucial to guarantee accuracy and efficiency of the surrogate model, but
also to limit the cost of the so-called “offline phase”, i.e., the assembly of the surrogate.
Sampling is a particularly tricky issue in non-intrusive methods: the usual residual-based
greedy strategies [I3] cannot be employed, due to the absence of an error estimator. In
practice, this hinders an efficient identification of points where the approximation error is
large. In our method, we employ a fully non-intrusive approach for adaptive sampling, based
on a predictor-corrector strategy: a modestly sized test set is used to assess the quality of
the current surrogate, and also to determine where to add new sample points in case of
insufficient accuracy.

In terms of novelty, an MOR approach similar to ours was already considered in [2] for
generic parametric problems. In that work, a “fully smooth” approximation framework was
used, relying on, e.g., piecewise polynomials or radial bases for building an interpolatory
surrogate model with respect to both frequency and parameters. In this paper, we modify
the method to account for the frequency component in the high-fidelity model, effectively
specializing the approximation strategy from [2] to frequency-domain modeling. From a prac-
tical viewpoint, this requires combining the rational-in-frequency and smooth-in-parameters
approximations. The rationale behind our proposed hybrid method is threefold: (i) rational
function are better suited to address any potential lack of smoothness in the Qols; (ii) ra-
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tional functions can often achieve spectral approximation accuracy, much higher than more
“local” function classes like piecewise polynomials; (iii) univariate rational approximation
can be endowed with very efficient adaptive sampling strategies |25, 26], in contrast to the
more costly approaches for high-dimensional adaptivity, e.g., based on locally adapted sparse
grids [2]. Some numerical tests on the last two above-mentioned items are carried out in
Section 5.11

A hybrid rational /smooth approximation method was also proposed in [21], where, how-
ever, the focus was on tracking how singularities with respect to frequency (the resonating
frequencies of the target system) evolve as functions of the parameter. In the present setting,
such resonant behavior is generally absent (and, if present, is not too relevant for the sake
of approximation accuracy), cf. , thus making the method from [21] misplaced. See
for further discussion on this.

2 Frequency-domain problem framework

We start in the time domain and consider a time-evolving physical system, possibly subject
to some input. Such a system may be modeled as a parametric time-invariant nonlinear
ordinary differential equation system (ODES)

() = $(x(1:p): ). )
endowed with suitable initial conditions. The state x € R™ is a collection of n degrees
of freedom, which characterize the instantaneous configuration (e.g., positions, velocities,
temperatures, pressures, voltages, etc.) of the system. The right-hand side ¢ drives the
evolution of the state in response to both internal effects and external forces, including the
system’s dependencies on a set of input parameters p having a practical significance to the
application. Typical examples of parameters are system design (e.g., geometry and material
properties) and operational variables (e.g., external forces and boundary conditions). We
note that one may be interested in more general systems, e.g., including higher-order time
derivatives. Still, one can often cast such problems as first-order ODES like , e.g., by
augmentation. While, for convenience, we proceed assuming a first-order structure, it is of
no consequence to the applicability of our algorithm.

Simulating the time-evolution of the state x, e.g., by discretizing with time-
stepping schemes, can be demanding, due to (i) the large size n of the state, (ii) the fine
time-resolution needed to follow the (nonlinear) behavior of ¢, and (iii) the potentially long
simulation time to reach a steady state or periodic limit, if damping is low. These issues
can, at least in part, be counteracted by moving to the frequency domain. To this aim,
direct transformation of ¢ to the frequency domain can be done by, e.g., Fourier or Laplace
transforms (see, e.g., [22]). Notable for their frequent usage in solving engineering problems
are a subset of perturbation-based methods that introduce small oscillatory excitations in
¢ [20]. These perturbation techniques often leverage assumptions about the form of x, e.g.,
(quasi-) periodicity, to aid the simplification. Finally, we note that, sometimes, the problem
is cast in the frequency domain not just out of convenience, but because frequency-domain
quantities are the ultimate objective of the analysis.
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In a first-order perturbation method, one assumes that the state is a small harmonic
perturbation of a stationary state xg, namely,

x(t; p) = xo(p) + Re (x1(w; p)e™?) . (2)

The amplitude x; of the perturbation term is complex to account for possible phase shifts.
Note that, while x; depends on the perturbation frequency w € R, xy does not. Further
harmonic perturbation terms with different frequencies may be added in the expansion of x,
giving rise to higher-order perturbation methods.

This expansion is then plugged into[Eq. (1) Under the assumption of a small perturbation
X1, a first-order Taylor expansion of ¢ is then performed, resulting in a problem of the form

{¢<XO<p>; p) =0,
P (x1(w; p), w; Xo(p), p) = 0.

(3)

The first equation characterizes stationary equilibrium states, whereas the second equation is
frequency-dependent and identifies the perturbation amplitude in function of the equilibrium
Xo. Additional terms in higher-order perturbation methods would be identifiable through
further equations, related to higher-order terms in a Taylor expansion of ¢.

In most applications, the target of the system’s analysis is not the state x, but rather
a set of quantities of interest (Qols), functions of x whose choice is driven by the specific
application. For instance, the Qols may characterize the (averaged) boundary values of the
system state (such as position and pressure values for a fluid-structure interaction [3]) at
an interface or interconnection point with other systems. Other examples of Qols are point
evaluations of the state, to be compared with real-time sensor measurements in the context
of, e.g., feedback control or system-health monitoring [I].

Generally, Qols depend on the whole x, i.e., in the context of , on both equilib-
rium state xg and perturbation x;. For this reason, Qols are, in general, functions of both
perturbation frequency w and parameters p, and their computation requires solving both

equations in [Eq. (3)l We denote generic Qols by
£:R7™™ S (w,p) = E(w,p) € C™. (4)

Multiple Qols are allowed, by letting &(w, p) be vector-valued (ng > 1).

This being said, for our later discussion, it is important to remark that, in some cases,
Qols may depend on the equilibrium state xg and parameters p only. For instance, in some
applications, e.g., predator-prey or oscillator models, the equilibrium xg is a Qol in itself. In
a similar way, it is sometimes of interest to compute time-averaged quantities (over infinite
time intervals), for which the oscillating component of disappears. See for
further examples. The corresponding Qols are functions of p, but not of w. Moreover, we
note that evaluating these Qols requires solving only the first equation in and not
the second one. We will denote such frequency-independent Qols by

¢:R™ > p— ((p) € C. (5)
Again, ((p) is allowed to be vector-valued (n; > 1).
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Remark 1 Above and in the rest of this work, we assume that we are able to compute Qols
at arbitrary values of w and p, by (i) expensively solving the frequency-domain problem in
and then (ii) post-processing the computed x. In some situations, instead of solving
a problem in the frequency domain, it is possible to obtain frequency-domain information by
(discrete) Fourier transform of time-domain snapshots. For instance, this might be relevant
in applications where a frequency-domain model is out of reach, e.q., because it is too complex
to obtain or to simulate.

3 Approximation setup

Consider the abstract setup introduced in the previous section. We are interested in finding
an approximation for the two following functions: the generic Qols & : Rt — C" and the
frequency-independent Qols  : R™ — C™< cf. and . (To keep our presentation as
general as possible, we even allow ng or n¢ to be 0, in case only one type of Qols is relevant.)
We wish the respective approximations of £ and ¢, which we denote by E and E respectively,
to be accurate for frequencies w € 2 C R and for parameters p € P C R™, with 2 and P
being the (application-dependent) frequency and parameter ranges, respectively.

Due to its additional dependence on w, the approximation of ¢ requires special care. This
behooves us to use a non-standard framework, taking inspiration from the “marginalized”
approximation strategy described in [2I]. The main idea is to treat w and p separately.
First, one selects T distinct collocation parameter points pq,...,pr € P. At each collocation
parameter p;, a local surrogate for £ is built: by fixing p = p;, we are left with the rather
easier task of approximating a function of w only. This step is carried out by minimal
rational interpolation (MRI), cf. We denote the corresponding approximation
by g] : 2 — C"¢, which should satisfy ¢;(w) =~ £(w, p;) for all w € Q.

Then, the global surrogate is constructed by combining the local surrogates, ultimately
resulting in an approximation of the form

wp) = Y &w)ei(p). ()

In the expression above, for all 7, ¢; : P — R is a weight function, responsible for combining
the different local surrogates. Note that, in order to recover the local surrogates at all
collocation points, i.e., to have

E(w,pj) = gj(w) ~ &(w, pj) for all w € Q and all j, (7)
the weight functions should satisfy a Lagrange property: ¢;(p;) = 1 and ¢;(px) = 0 if

j # k. For instance, multivariate piecewise-linear “hat” functions and Lagrange polynomials
are candidate families of weight functions.

Remark 2 As already mentioned, our approach differs from the one in [21)] because our
focus is on &, not on its poles and residues. More explicitly, we see from |Eq. (6)| that the
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global surrogate 5 is obtained by superposition of the local surrogates Ej Instead, [21)] suggests
building & through a superposition of poles and residues of §;, namely,

RIS S S PRI i > L ST
5](“1)_22: _~; ( 7p) zi:w_zle xé’@j(p)'

In [21], this idea is justified by the approximation target having poles in the frequency range
Q, thus making an accurate identification of such poles a priority.

In our setting, we assume the approximation target £ to be sufficiently smooth over §2.
Accordingly, the poles 5\; lose importance and meaning. In effect, tracking the evolution of
the poles with respect to p would result in spurious and numerically unstable effects, whereas

\Eq. (6)| is accurate and stable.

Constructing an approximation for ¢ is usually easier, since w is absent. In this work, for
simplicity, we employ a structure that is rather similar to that of £ in , namely,

T

C(p) =>_¢(p)ei(p). (8)

J=1

Note that, while 5 is obtained as a p-superposition of approximations Ej, QN" is built as a
p-superposition of ezact values ((p;). Also, we remark that, since the weight functions ¢;

are assumed to satisfy a Lagrange property, we recover exact interpolation: ((p;) = ((p;)
for all j. We note that a rather similar MOR approach for building Z is the one described
in [2], where radial basis functions are used as weight functions for interpolation.

In general, it makes sense to choose the number 7' of collocation points differently for 5
and for (, e.g., if £ depends on p in a more (or less) “complicated” way than ¢ does. This
might even correspond to completely disjoint sets of collocation points p; for £ and ¢, and to
different weight functions ¢;. In presenting our approach, we mostly ignore this possibility
to avoid an overly heavy notation. At the same time, we wish to mention here that our
ultimate algorithm of choice, see and [3.3] usually employs different values of T'
for £ and (.

Remark 3 Before proceeding, we wish to discuss the cost of evaluating the surrogates E and
¢ at new values of (w and) p. In the case of &, we see from that we only need to
evaluate T" weight functions ;, which is very inexpensive, and T local surrogates fNj, which,
as we will show, are also very cheap to evaluate. In particular, their evaluation cost is
independent of the cost of solving the high-fidelity problem.

On the other hand, the evaluation of ¢ requires evaluating the T weight functions, but
also obtaining the T wvalues of ¢ at the collocation points. This second group of operations
can be significantly sped up by employing an offline-online decomposition. More explicitly,
since the T' values {{(p;)}]—, are independent of the new parameter p at which ¢ is to be
evaluated, we can (expensively) compute them once and then store them. Afterwards, when

Z is to be evaluated, it suffices to cheaply access the values ((p;) from memory.
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3.1 Minimal rational interpolation

Here we consider the problem of building a local surrogate EJ : 2 — C™ at some collocation
point p;: the target is gj(w) ~ &(w, pj) for all w € Q. For this, we employ the MRI method
introduced in [24], which we summarize here in its barycentric formulation.

Assume that S; support frequencies wj 1, ..., w; s, € (2 are fixed. Note the presence of the
index 7, a reminder that different collocation points may have different support frequencies.
In fact, we will soon outline how such support frequencies can be adaptively selected, in a
process that may yield different results at each collocation point p;.

Once the costly samples {£(w,, pj)}fil have been computed, we define the local surrogate

as
Sj S;
= 4j,i 45,k
&w)=>» &wji,pj) ——— — 9
R S ey Dz ©
j,i(w)
The rational weight functions ¢;; are defined in barycentric form, with g;1,...,q;s, € C

being coefficients that will be defined in the next paragraph. Note that this choice of weight
functions satisfies the Lagrange property for any (nonzero) g;,, so that, in particular, we

always have exact reconstruction of the samples: &;(w;;) = &(w;;, p;) for all 7.
The barycentric coefficients ¢;; are computed by solving the minimization problem

. S;
min szil Qj,ig(wj,iv pj)

Qj,lz-'ij,Sj

subject to Zil ’qj,i‘Q =1

‘ (10)

where ||-|| denotes the Euclidean norm. We refer to [4] for more details on why the barycentric
coefficients are chosen as the solution of this problem and on how to easily compute them via
singular value decomposition. Alternative approaches for finding the weights ¢;, could be
based, e.g., on the Loewner framework or the adaptive Antoulas-Anderson algorithm [19].

The number S; and the locations of the support frequencies w;; are crucial for the approx-
imation properties and efficiency of the MRI surrogate: too few samples yield an inaccurate
approximation, whereas too many make the training of the local surrogate overly expensive,
and can even result in numerical instabilities [26]. A practical and effective way of choosing
the support frequencies is the greedy MRI (gMRI) method, introduced in [25].

In gMRI, the set of support frequencies is incrementally built, starting from the two
endpoints of the interval (2. Each new support frequency w;s. ;1 is selected based on the

current surrogate E’j, specifically, based on the denominator of the weight functions ¢, ;,
cf. [Eq. (9)} The termination condition is based on a user-defined tolerance tol,, which
determines the desired accuracy in frequency of the local surrogate.

3.2 Adaptive parameter sampling strategy

In this section, we restrict our attention to the approximation of {. More details on our
strategy for building { follow in [Section 3.3, Also, for simplicity, from here onward we
assume that the parameter range P C R™ is a hypercube. This is the most common
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situation in practice, since a certain range is usually prescribed independently for each of
the n, parameter components p = (p1,...,pn,)-

Building a good and efficient approximation & requires a careful choice of the T" collocation
points p;. To this aim, we take inspiration from the sampling approach described in [2} 21],
adaptively selecting the collocation points by exploring P via a locally adapted sparse grid
(LASG) structure.

LASGs are able to explore hypercubes even in high dimension at a relatively quick pace.
Some comparable methods are locally refined tensor grids and quasi-random (e.g., Halton
points or Latin hypercube) sampling. See, e.g., [30]. However, tensor grids suffer greatly
from the so-called “curse of dimension” and, as a consequence, are much more inefficient
than LASG even for modest n, (e.g., > 2). On the other hand, quasi-random sampling is
very competitive even in the high-dimensional case, but does not allow for localized adaptive
refinements. We refer to [2, [I7, 21] for more details on LASGs.

In our sampling strategy, we rely on a non-intrusive predictor-corrector approach to
“grow” the set of collocation points using a tree-like structure. Given a certain training set
(i.e., the set of collocation points p; where ; is available), a disjoint test set is defined. For in-
stance, the test set can be defined in a procedural way, as the “discrete LASG-neighborhood”
of the training set. See [2I], Section 3.4] for more details.

A prediction step is carried out at each test point p,: the current surrogate model (which
is based on training points only) is evaluated at p = p,. The discrepancy between surrogate
and high-fidelity model at p, is then quantified through the prediction error (see
below). If the prediction error is larger than a user-defined tolerance tole, the test point p,
is flagged for correction. This means that p, is added to the training points, thus deflating
the prediction error at p, by the interpolation property in . The test set is then
automatically refined around p, for the next iteration. An example of the overall procedure
is shown in for n, = 2. We can indeed observe local refinements of the LASG near
points that are flagged for correction. The algorithm terminates when the prediction error
is smaller than the tolerance tol; at all test points.

Remark 4 Within a prediction-correction iteration, each test parameter p, is explored in-
dependently. This means that the above strategy is amenable to a parallel implementation.

Above, by “prediction error” at some parameter point p = p4, we mean the following
quantity:

2
Hg test,p*) 5( pestvp*)

Cre = g Z || € (wtest

Essentially, we look at the relative error between approximated and exact Qols, taking
the average (in the root-mean-square sense) over a set of user-defined “test frequencies”
test test
Wit wdtt e .
Computing the prediction error by might be rather expensive if S is modest
or large, since S high-fidelity samples of { must be computed. To alleviate this issue, we

replace the exact Qol at (w** p,) with a proxy, namely, an ad hoc approximation 5*( fest)

(11)

»p*)H
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Figure 1: Example of evolution of the LASG in the adaptive algorithm for 2 parameters
p = (p1,p2). The components p; and p, are on the x- and y-axes, respectively. The black
squares are the current training set (the collocation points). The red circles are the test set
(the points where the prediction error is computed). Points flagged for correction at each
step are circled in blue.

computed by gMRI at p,. If 5 is a sufficiently good approximation of £(-, p,) (notably, if it
is closer to &(-, px) than £(-, p,) is), the resulting approximated prediction error

Hé‘ tcst) p*) é‘*( tcst) ‘2
2 (12)
f*( test) ‘

Ge= |5 Z

=1

can be expected to be close to the (expensive) exact one in [Eq. (11)}
It is useful to note that, if a test point p, is flagged for correction, then the gMRI
surrogate 5* that we propose to use in |[Eq. (12)|has to be computed anyway, since it becomes

one of the local surrogates in the expansion of the new f , cf. |[E With this observation,
one can avoid repeated computations in the training phase.

Remark 5 Since E 1s built based on the local surrogates g”; ~ (-, pj), it is crucial that such
local surrogates be accurate enough. Otherwise, the prediction error might stagnate at an
excessive value, resulting in a non-terminating p-sampling loop. Importantly, if the local
surrogates are computed by gMRI, we must set the tolerance tol, to a sufficiently smaller
value than tolg.

3.3 Post-enrichment technique for frequency-independent Qols

As already mentioned in the approximation of ¢ is fundamentally simpler than
that of £. Indeed, no frequency modeling is necessary, and the approximation ( consists of a
linear combination of values of ¢ at some collocation points, cf. |E . Still, computing the
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values ((p,) for j = 1,...,T is a rather expensive task. We can speed it up thanks to the
following observation: if £(w, p;) has been computed at some w, this means that the high-
fidelity problem in has been solved at the corresponding frequency and parameters.
In particular, the steady state xo(p;) has already been computed. As such, since evaluating
¢ only requires post-processing of x, the computation of {(p;) is very cheap, usually much
less expensive than solving the high-fidelity problem from scratch.

Since our target is to obtain an approximation of both £ and (, this allows us to employ
the following strategy:

1. Build an approximation {, e.g., using the adaptive strategy from [Section 3.2, This
requires evaluating & at all the adaptively selected collocation points p; for j = 1,...,T,

at the corresponding support frequencies wj1,...,w;s, € (2.

2. At every collocation point p;, compute also ((p;). As mentioned above, depending
on the implementation, this step might be very cheap, if ((p;) can be obtained by
post-processing of the already available steady state xo(p;).

3. Check if the resulting z , i.e., the surrogate obtained by combining the samples of ¢ at
the collocation points of £ (according to , is accurate enough.

4. If Z is not accurate enough, add more collocation points. (Note that such additional
points affect only ¢, and not ¢!)

The addition of new collocation points for E can be carried out by using the LASG
approach from [Section 3.2, However, in this case, since w is absent, the prediction error,
cf. |[Eq. (11)| can be more easily computed as the relative approximation error

eec = |[Cp) = C2)

JAISCNIE (13)

Note that this error measure greatly penalizes inaccuracies at locations where ( is small,
since the denominator above approaches zero there. In some applications, one might consider
applying a “regularized” relative error, e.g.,

/ max {[|¢(p.)] , 3} ,

rco = o) = ¢(p2)

for some (small) regularizing parameter 6 > 0. Similar considerations are relevant also for

the error estimators used for &, namely, [Eqs. (11)| and |[(12)]

_ Note that a complementary strategy exists, where the surrogate E is built first, and then
¢ is obtained by adding more collocation points. However, in our numerical testing, approx-
imating ¢ usually required more collocation points than £. This explains why we present
the first-£-then-¢ method only. Of course, depending on the application, the complementary
approach may be preferable.

We summarize the overall procedure in [Fig. 21 In the diagram, we can see that, as
described in [Section 3.2 the training set grows from the center of P into a LASG, by
progressively adding any test point p, with an excessive prediction error. Once the training
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Figure 2: Adaptive parametric approximation of £, and of ¢ by post-enrichment.
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phase of 5 ends, the final training set Piain ¢ is selected as the initial training set Piain,¢ for
C which is then subject to adaptive refinements.

We note that, while training both 5 and C test points p, with sufficiently small prediction
errors might remain in the test set for several iterations of the predictor-corrector scheme. In
such cases, the testing phase in requires building the local surrogate E* (or evaluating
Z (ps)) over and over in the prediction-correction phase. These expensive operations can be
avoided by storing any such E* (and E (p«+)). The memory requirements for this are extremely
low, thus resulting in a net time save with basically no extra costs.

In [Fig. 2| we also employ the following trick to improve the accuracy of the surrogates.
For both £ and (, let us put ourselves at the end of the outer adaptivity loop, i.e., when the
LASG reaches convergence. The prediction error, as encoded by [Egs. (12)[and |(13)| has just
been computed at all test points. This means that both the “test surrogates” &, = £(-, px)
and the “test evaluations” ((p,) are available. Such quantities can be included in the global

surrogates f and C by simply appending the test sets Piey to the training sets Piain. This
improves the accuracy of the two approximations with virtually no computational effort,
since the added “expensive” values are already available in memory from the prediction-
correction phase.

Before proceeding further, we also note that we provide an open-source MATLAB®
version of the algorithm at https://github.com/pradovera/rational_lasg_matlab .

4 Frequency-domain bearing model

At this point, we are ready to explore the example of our approximation applied to the mod-
eling of an aerodynamic bearing, specifically a herringbone grooved journal bearing (HGJB).
Our focus in this and the next section is to establish a reference model in the framework of
[Section 2] referring readers to [9] for a broader overview of the modeling of grooved bearings.

A schematic representation of an HGJB is shown in (top left). It consists of a seg-
ment of a larger rotor, rotating with angular speed w,.; inside a bushing. A tight clearance
between the parts (typically, on the order of microns) is occupied by the lubricating gas. The
HGJB’s distinguishing feature is the V-shaped groove (and ridge) pattern. This acts as a
viscous pump, self-pressurizing the gas film through its own rotation, by forcing fluid toward
the axial center from both ends, where ambient conditions exist. As with other aerodynamic
bearings, the relative motion of two bearing parts (bushing and rotor) in HGJBs generates
a pressure distribution in a thin gas film between their surfaces, thus acting as a cushion to
resist contact between the bearing parts. Such bearings are characterized by a low-friction
and oil-free operation, enabling small-scale high-speed turbo-machinery that is well suited
for distributed energy conversion technology, e.g., fuel cells [32] or waste-heat recovery [28],
needed for a sustainable energy transition. Notably, compared to other aerodynamic bear-
ings, HGJBs have the advantage of higher stiffness and load capacity. In applications, e.g.,
in the transportation sector, gas-bearing-supported rotors also see significant external load-
ing, including shock and vibration. Predicting bearing behavior over a range of design and
operational parameters is challenging, especially in the contexts of (near-)real-time stability
or response prediction during machine operation.
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definitions:
Do = lg _ hg,nom ) l 2

& gty PH = 7. o ) ridge groove .Y . Pp A
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PL = 3R PA= 5 \ B o \
ambient conditions:

., (dynamic viscosity) 0
P, (pressure)

—PL

boundary conditions: 0 <t i
—— ambient — periodic 27 0

Figure 3: Definition of HGJB design and modeling parameters and a contextual view of a
typical rotor system including two HGJB bearings.

For our purposes, the design and operation of the HGJB can be completely described
in nondimensional terms. The translating rotor has a trajectory inside the bearing, whose
position, depicted in the section view, is given in bushing-fixed Cartesian (x,y)-coordinates
with the origin at bearing’s center (Fig. 3). With the characteristic length in this frame is
taken as the concentric ridge clearance hy, ,0m, the magnitude of the rotor position vector
cannot exceed unity, which would correspond to the (undesired) contact between the rotor
and the bushing. We describe any bearing fluid film location using bushing-fixed cylindrical
(0, z)-coordinates, with z aligned with the rotor’s rotation vector. The grooves are designed
with a symmetric V-shape in the § — z plane, parametrized by the angle of the groove pg,
the width ratio of the groove p,, groove-ridge clearance ratio py, and the length of the
bearing p;, as depicted. It is worth mentioning that an eccentric rotor has #-dependent
local film thicknesses h,(6) and h,(f). Finally, the compressibility number p, describes the
combined effects of rotor speed and the fluid properties at a given operating point, and is
of utmost importance for both design and operational purposes. In we refer to a few
characteristic dimensional quantities, for which we use the superscript “x”, to ground our
nondimensional description to a physical bearing.
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4.1 Time-domain model

At present, modeling of generic aerodynamic bearings requires solving a suitable adaptation
of the Reynolds equation, the classical governing equation describing the pressure distribu-
tion within the fluid film. More specifically, in the case of HGJBs, the groove-ridge interfaces
in the f-direction lead to discontinuities in the local film thickness k() (see [Fig. 3). This
makes it necessary to employ a very fine spatial (and temporal) meshing in numerical im-
plementations, resulting in high simulation costs.

As an alternative, we employ the narrow groove theory (NGT), pioneered in the 1950s
by Whipple [34], [35]. The NGT allows a convenient modification of the Reynolds equation
for bearings with periodic grooving features in the 6-direction. Two assumptions lead to the
NGT result [7]: (i) locally incompressible fluid, giving a triangular pressure profile across a
groove-ridge pair, and (ii) an infinite number of grooves, which transforms the saw-toothed
pressure profile into a smooth one. The NGT equation describes the smooth pressure distri-
bution with a second-order nonlinear partial differential equation given by

2p00; (a5P) = 9 (P (a10sP + a20.P)) + 0. (P (a204 P 4 a30,P))

+ a (sin(pp)0p (a4 P) — cos(pg)0, (asP)) — pa0y (asP) ,
where P is the pressure field, while the coefficients a4(0) with d = 1,...,5 and ay are defined
in [Appendix A] along with the nondimensionalization scheme used. Refer to for
definitions of parameters p. As boundary conditions, we impose ambient pressure at the two
axial edges of the bearing.

After spatial discretization of the fluid film and numerical approximation (typically, by
finite-difference or -element methods) of the spatial partial derivatives, we can transform
into the form of the first-order ODE system in [Eq. (1)} We refer to [I5] for more
details on the discretization. In our simulations below, we discretize the fluid film on a
65 x 65 rectangular grid in the (6, z)-plane using a centered-differences scheme.

In the interest of studying the rotordynamics, the time-domain ODE system can be
augmented with the equations of motion for the relevant inertial components. Specifically,
in a fluid-structure-interaction fashion, our rotor is subject to the pressure of the fluid film,
so that the total force is obtained by integration of P, to be added to any external forces
(e.g., due to gravity).

(14)

4.2 Frequency-domain model

To obtain a frequency-domain version of the bearing model, we follow [16], [10]. Consider again
with the rotor in an arbitrary equilibrium position (g, yo) due to a static loading (e.g.,
inertial forces, gravity, etc.). The rotor is then perturbed to yield simple harmonic motion
(with frequency w) around the equilibrium position. Independent perturbations in the x
and y directions are allowed, with magnitudes A, and A, respectively, which are complex to
account for phase shifts. Specifically, the local film thickness takes the time-harmonic form

he(0,t) = 1 — (20 + Re (Aze™")) cos(f) — (yo + Re (A,e™")) sin(8). (15)

As a consequence of this expansion, it is assumed that the total pressure solution takes the
form

P(0,z,t) = Py(0,2) + Re (AsPro(0,2) + Ay Pry(0, 2)) ") . (16)
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Note the presence of two independent perturbation terms P; , and P, ,,, whose sum (weighted
by A, and A,) gives the total first-order pressure perturbation. As the notation suggests,
they correspond to perturbations of A, in the x and y directions, respectively.

After injecting [Egs. (15)| and [(16)| into [Eq. (14)| and keeping only terms up to order
O(A; + A,), we can split the resulting equation into three separate equations by collecting
and balancing coefficients of A, and A, (see [10] for the detailed equations):

e A nonlinear steady-state equation, with no analytical solution, is given by 0'-order
terms. Its solution is the equilibrium point P, in |Eq. (16), whose discrete version
is indicated by xq in . To find it, we use the Newton method after spatial
discretization, and this accounts for a significant portion of the computation time.

e Two w-dependent linear equations contain first-order perturbation terms, correspond-
ing to A, and A, respectively. Their solutions are the w-dependent first-order per-
turbation fields P, , and P;,. These equations are linear and thus, after spatial dis-
cretization, can be solved more directly by an off-the-shelf linear system solver. Still,
it is required to inject the equilibrium xg, which must therefore be precomputed.

Note that varying the parameters p will generally affect all the above-mentioned equa-
tions. As such, for each parameter value of interest, it is necessary to assemble and solve
the nonlinear equation, and then assemble and solve the linear equations at each excitation
frequency w of interest.

Remark 6 The frequency-domain formulation of the bearing described above is not merely
a matter of modeling convenience. The typical axisymmetric bearing geometry and (quasi-
Jperiodic nature of system excitations (e.g., rotor unbalance, external vibrations, self-excited
whirl) contribute to strongly frequency-dependent responses. This observation is supported
by experimental studies for the HGJB, e.g., in [18, [J].

Until now, we have not yet specified how to quantify the “bearing behavior” that we
wish to model with respect to the parameters p. We do this through specific Qols, which
are used to assess the bearing’s static and dynamic performance. These Qols are extracted
from the fluid film pressure solution via a post-processing step. For assessing the bearing’s
dynamic performance near its static equilibrium, we model the rotor as a 2D nonlinear har-
monic oscillator with complex direct and cross-coupled impedances computed by integration
(practically, by numerical quadrature) of the perturbed pressure field as

DL 2m :
2= == [ [y i) e (17)
yx Yy —pr. JO Ly Ly
Decomposing entries of 7 into real and imaginary parts (Z = K + iwC) leads us directly
to eight real coefficients, interpreted as the dynamic stiffness and damping of the bearing.
The evolution of the impedance matrix with respect to frequency w and design/operating
parameters p can be directly used to obtain critical information needed in harmonic-response

calculations and in stability analyses. When considered in the context of more complex
rotordynamic systems, e.g., with multiple bearings and/or system degrees-of-freedom, these
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bearing dynamic coefficients can also be integrated into the respective impedance matrices
of the larger rotordynamic system for more sophisticated performance analyses.

Moreover, when the system is at the static equilibrium at (zg,yo), the force transmitted
to the rotor due to the static pressure distribution exactly offsets the external static load
applied. Having solved the equilibrium equation for the static pressure, we can obtain the
entries of the static force vector by integration (in practice, quadrature) of the rise in the

static pressure as
] pr. [2m cos f
f= |:fy =— o (P —1) sin dfdz. (18)

The load that the bearing can support at equilibrium provides practitioners with useful
information on the bearing’s static performance. Specifically, a large magnitude of the static
force f means high bearing load capacity, which is generally desirable to keep the rotor
operating safely.

A high-level process summary for obtaining the Qols from the reference model is included

in [Fig. 1)

‘ Input: bearing geometry and operating conditions ‘

( ‘ 7
initialize (constant)
pressure Py
! ) ‘ Input: perturbation frequencies {w;} ‘
L Newton iteration } o %
on P, o s ~
0 S for each w; do:
=)
@ : e
@ construct linear &
convergence = systems at w = wj =
No test pass? @ ! =
L solve for P ;(w;) } 8.
. o]
L Yes ] and Py y(w;) =
! 2
. - numerical integration of | &
numerical integration @
P17x(w7;) and Pl,y(wi)
of P[) § ')
! !
Output: static forces Output: impedances
fz and fy Ly, Lay, Lys, and Zy,

Figure 4: Eccentric NGT HGJB reference model numerical procedure.

Remark 7 Above, to obtain a frequency-domain formulation, we have perturbed the NGT
equations around a generic equilibrium rotor position. In the literature, it is common to find
perturbation methods that act around the bearing’s concentric position only. Such models,
which we refer as “concentric NGT” (¢NGT) models, trade accuracy to gain computational
efficiency. Specifically, cNGT models predict the bearing stiffness and damping properties

(cf-|Eq. (17)) as functions of perturbation frequency w and parameters p without consider-
ation of static eccentricity effects. Such a concentric analysis generally yields a pessimistic
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stability and load capacity estimation. An efficient implementation of cNGT for an HGJB
was provided in [31)], and the rudimentary timings of this model are compared with our sur-

rogate in |[Section J|.

5 Numerical results

In many applications (e.g., in optimal design or real-time control), one needs efficient and
accurate prediction tools for bearing behavior in response to a variety of sources of excitation.
However, the nonlinear frequency-domain model described in the previous section is often
too expensive to be directly applied in such multi-query settings. We propose to replace the
high-fidelity and high-cost model with a surrogate one, obtained with our proposed adaptive
strategy from [Section 3] In the following sections, some experiments are carried out in
this direction, for several choices of parameters p. Our numerical tests were carried out in
MATLAB® R2022b on a desktop computer with a 6-core 3.50 GHz Intel® processor.

In all cases, the Qols are the impedance parameters and the static forces, cf.
and More precisely, we seek approximations for the frequency-and-parameter-dependent

&= Zuw, Loy, Lys, Zyy}T SR _y 4
and for the parameter-dependent
C =1f= [fxa fy]T R — RQ,

While we test several input variable sets, perturbation frequency and eccentricity are
common inputs in all our simulations, because they are the very essence of the eccentric per-
turbation frequency-domain model we wish to approximate, cf.[Section 4 In our formulation,
w represents the nondimensional ratio between the (dimensional) excitation frequency and
the rotor speed (see . Considering the consequential nature of an unbalanced
rotor, it is of practical relevance to ensure that the w domain of interest includes the rotor
frequency, i.e., in nondimensional terms, w = 1. Concerning eccentricity, for convenience
we consider equilibrium eccentricities only in the right direction, i.e., o > 0 and yy = 0 in
Eq. (15)} This can be done without loss of generality due to the bearing’s symmetry.

5.1 (141)D numerical results

For our first numerical experiment, we consider a frequency w € Q = [1075,1.701] and a
single parameter p := xg € P = [0,0.95], the eccentricity in the x direction. The remaining
parameters of the bearing model are set to their nominal values, which are reported in
Since {2 contains several orders of magnitude, we space the S = 1001 test frequencies

wiest L wist Jogarithmically over Q2. We set tolz = tolg = 1073 and tol,, = tolz/3, and we

prescribe piecewise-linear “hat basis functions” for p-interpolation (¢, in and .

Our algorithm samples the parameter space 2 x P adaptively. The resulting sample
points are shown in (left). With respect to frequency, we can observe that, except for
the left endpoint w = 107° (which is always sampled by gMRI), all the sampled frequencies
are clustered at large frequencies, in the interval [0.1,1.701]. Also, we note that the number
and locations of the sampled frequencies depend on the value of xg.
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Table 1: Nominal values and ranges of bearing parameters in numerical simulations. See
for a more detailed description of the parameters and of their significance in the
HGJB model.

parameter nominal range
value min | max
w — 107 | 1.701
Zo 0 0 0.95
DA 25 1 40
Dar 0.65 0.3 0.7
D3 19° —50° | —10°
DL 1.0 0.7 2.0
PH 3.2 1.0 4.0

In (right), we can see the p-sample points that are added at each greedy iteration.
For the first 5 iterations, we can observe uniform refinements, whereas, at the final itera-
tion, localized refinements are performed around small values of xy. This means that the
approximation of Z is particularly difficult there, a fact that was unknown a priori.

,H\ -
\ T T T o T e e ] \f\\\

08¢ 3 | ..E |
0.6§ E L LT
S . .
04% - . ot |
0.2% ° | . L. : n
O \ Lol \' [ | é | | ' T,E
105 10! 10° 0123456
w iteration

Figure 5: On the left: (w,zg) sample points. On the right: z, sample points as the Z
predictor-corrector loop advances. The LASG tree structure is superimposed as dotted lines.

To validate our approximation, we evaluate Z on a uniform grid of 100 x 50 (w, x¢)-points.
There, we also expensively compute the exact Z. The approximated 7 is shown in ,
where we focus on two stiffness entries (K,, = Re(Z,,) and K,, = Re(Z,,)) and on two
damping entries (C,, = Im(Z;;)/w and C,y = Im(Z,,)/w). We show the absolute error
|Z — Z|, which is quite small in all cases, namely, below 1073.

As a final test to investigate the behavior of the employed LASGs, we look at the predic-
tion error indicators e, in[Eqgs. (11)]and [(13)] over the parameter space P. In (left), we
evaluate e, on a grid of new test points, which do not fall within the set of support param-
eters. We see that the error values are uniformly below the prescribed tolerance. Moreover,
the gap between tolerance and actual error is rather small: for most values of x(, the error
is only around an order of magnitude smaller than the tolerance. This is actually a very
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Figure 6: Predicted values and errors for some stiffness and damping entries.

20



Huwiler, Pradovera, Schiffmann Adaptive MOR of nonlinear dynamics in freq. domain

beneficial property. Indeed, if the gap between tolerance and prediction error were larger,
it would be an indication that our algorithm takes too many samples in the training phase,
resulting in less efficient training, and also in more costly evaluation of the surrogate model.

T T T T K T T T T T T T T
RRIRRRRRL X XXX XXX XXX XXX XXX XXX XXX XX XXX XOX X X O X O X X X X X X X X X X XX X X XXX XX XX

1072 |

(hat functions) ]‘./A\ (polynomials)

1073 |

(cubic splines)

0 02 04 06 08 0 02 04 06 08 0 02 04 06 08

Zo Zo Zo

Figure 7: Validation errors for impedance and static forces. From left to right, the approxi-
mations Z and f are obtained with piecewise-linear, polynomial, and spline p-interpolation.
The tolerances are toly = tolg = 1073, as denoted by the horizontal dotted line. On top of
both plots, the locations of zy sample points are shown as crosses, with dots denoting points
reserved for f.

Additionally, we recall that our algorithm is “aware” of such indicators only for values of
Zo in the training and test set. Moreover, the impedance prediction error is available only in
“surrogate” form, cf. [Eqgs. (11) and [(12)l Nonetheless, the prescribed tolerance seems nicely
attained over the whole parameter range.

5.1.1 Comparing more (and less) global approximation strategies

We now want to discuss some of the consequences of our choice of interpolation strategy over
the parameter zo. We recall that, in order to obtain our results above, we have employed
piecewise-linear hat functions. Such basis is local, in the sense that each local value, i.e., Z; for
7 and f (p;) for ff, affects the approximation only around the collocation point p;. This leads
to some advantages: it can be used to approximate general non-smooth (but continuous)
functions and it is cheap to evaluate. However, it also has one main disadvantage: we are
building an approximation that is locally only linear with respect to xy, which may not be
too accurate.

Under smoothness assumptions, global bases can be employed to gain accuracy. To show
this empirically, we repeat our experiments by replacing hat functions with global Lagrange
polynomials. The training phase of our algorithm ends much earlier: only 17 samples of xg
are needed to build the approximation, compared to the 37 needed with the previous setup.
Despite the lower number of sample points, the approximation error (quantified by e,z and
exr) is fairly similar to the previous case for most values of xg, as can be seen in
(middle).

However, we can clearly notice some Runge oscillations near both endpoints of P, where
the tolerance seems not to be attained. These numerical instabilities are intrinsically related
to polynomial interpolation over scattered points. Specifically, (locally refined subsets of)
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uniformly spaced points may have extremely large Lebesgue constants [23]. As such, we could
expect our algorithm, endowed with global polynomial p-interpolation, to fail whenever the
collocation points are unfavorably placed. Indeed, in such case, the numerical instabilities
might cause the tolerance to never be attained, by introducing oscillations near the endpoints
of the parameter domain.

With splines [23], one can sometimes achieve higher accuracy than with local bases (like
hat functions) and better stability than with global bases (like polynomials). To test this,
we repeat our simulation, using cubic splines to interpolate over p. The corresponding
algorithm reaches convergence after exploring 17 p-points, which is about half as many as
with hat functions. The corresponding accuracy (again, quantified by e, z and e, ¢) is shown
in (right). It is uniformly below the tolerance, without showing any unstable behavior.
This being said, splines cannot be easily generalized to higher dimensions (n, > 2) if the
sampling set is unstructured. Due to adaptivity, this makes splines unavailable in our method
as soon as more than one parameter is present. In effect, this means that piecewise-linear
hat functions remain the natural choice for a robust interpolation framework over general

LASGs.

5.1.2 Validation of a gMRI+LASG approximation

As a final test involving the (141)D model, we compare our method to the state-of-the-art
non-intrusive adaptive algorithm from [2]. There, LASGs are used to adaptively sample over
all parameters, i.e., in our framework, over frequency and parameters alike. Effectively, this
means that the rational approximation routine via gMRI is skipped, at the cost of increasing
the number of parameters by 1. In comparing the two approaches, we refer to our method
as “hybrid”, since it combines rational and hat functions, whereas we dub the reference
state-of-the-art method “joint”.

To make the comparison more fair, in the joint method, we treat frequency on a linear
scale, as opposed to the logarithmic one used for the hybrid approach. (Using a logarithmic
scale would exacerbate the sampling issues that we are about to describe.) Moreover, since
the joint approach does not require a “frequency tolerance”, we use the larger “tol” value as
tolerance for both frequency and eccentricity.
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Figure 8: (w, o) points sampled by the “joint” method.
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The joint greedy method requires 8 iterations to converge, as opposed to the 6 needed
by our hybrid approach. In turn, this corresponds to a set of 622 collocation (w,z)-points
(at 61 distinct eccentricity values), many more than the 287 (w,z)-points (at 37 distinct
eccentricity values) used by the hybrid approach. We show the collocation points of the joint
method in , which should be visually compared to (left), containing the samples
of the hybrid approach. We can conclude that the joint method is less effective in achieving
the target tolerance, when compared to our hybrid approach. In our view, there are two
main reasons for this:

e When used to approximate the frequency dependence of the Qols, hat functions, due
to their locality and lower degree, converge more slowly than rational functions. From
this point of view, our proposed hybrid method improves the joint one by increasing
the approximation efficiency in one of the parameters, namely, frequency. Notably, in
contrast to our observations concerning polynomials in[Section 5.1.1] the chosen higher-

order approximation strategy in frequency is numerically stable, due to the beneficial

properties of the barycentric expansion, cf. [Eq. (9)|

e The greedy MRI method performs adaptive sampling more effectively than LASGs.
In particular, both gMRI and LASGs use a predictor-corrector approach, evaluating
the current approximation error over a set of test parameter points. However, the size
of the test set used in gMRI is smaller, consisting of a single point at each iteration.
This enables a quicker adaptivity routine, which is more parsimonious in terms of total
number of samples taken. (Of course, the main limitation of gMRI is its being limited
to the approximation of univariate functions.)

5.2 (142)D numerical results

We consider a slightly more complex setup with operational relevance. The compressibility
number p, is added as a parameter, on top of frequency w and static eccentricity zy: p :=
(x0,pa). The effect of a static loading on the bearing is captured by z,, while py envelopes
the combined effects of the specific fluid conditions and rotor speed at a given operating
point. See for the ranges of w, zy, and py, as well as for the nominal values of the
remaining bearing parameters.

In this section, we specifically wish to investigate the effect of the tolerances (toly, tols,
and tol,) on the behavior of the algorithm, as well as on the quality of the resulting surrogate
model. For simplicity, we fix the relationships tol; = toly =: tol and tol, = tol/3, so that
we only have one free tolerance value to vary. Each value of tol requires an independent
training, and yields a different surrogate model. We train 6 surrogates, corresponding to
tolerance levels between 1072 and 2.7 - 1072. For reference, in we display the sets
of training p-points that are explored for some values of tol. We can observe anisotropic
refinements near small values of py and mid-to-large values of xg.

We assess the accuracy of our approximations by evaluating the surrogates and the exact
model on a 30 x 30 uniform grid of (z¢, pa)-points. The frequency-independence of f affords
us the convenience of plotting the results. In [Fig. 10| we visualize the exact f,, the y-
component of f, and the evolution of the corresponding surrogate absolute error for selected
values of tol. We can observe that the error peaks, in absolute terms, are driven down across
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Figure 9: Adaptively chosen training p-points for three values of tol, which are reported on
top of the plots. The white dots are added by the f predictor-corrector loop.

0T8T =03

¢-0T-€ =103

Figure 10: On the left: f, computed with the high-fidelity training model. On the right:
absolute errors ‘}; — fy‘ for surrogates obtained at different tol levels. The same z-scale and

color scale are used for all plots on the right-hand side.

the grid as tol is decreased: adding collocation points improves the surrogate approximation
in these critical areas of the domain.

Further, we look at the trade-offs between training cost, online evaluation cost, and
desired accuracy of a surrogate model for our current application. In [Fig. 11} we show two
different kinds of scaling with respect to tol.
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Figure 11: Timing results for different values of tol. The left and right plots refer to the
offline and online phases, respectively. Left plot: the black dots represent the sizes of the
training sets, for Z and f (full and empty dots, resp.), with the scale on the left axis. The
wall-clock time for the training phase is shown as a full blue line, with the scale on the right
axis. A trend line is also included, showing the average slope of the training cost. Right
plot: online speedup for the (14-2)D and (1+6)D surrogates.

Offline cost. In (left), we show how the number of explored training p-points
increases as tol decreases. In the same plot, we also show that the training time is approx-
imately proportional to the size of the training set. This confirms the fact that computing
high-fidelity samples is the bottleneck of the training phase. A trend line is also shown, in-
vestigating how the training cost scales with respect to the target accuracy tol. The observed
rate (~ tol "%®%) is particularly interesting if compared to the theoretical approximation rate
by hat functions in 1D, namely, ~ tol *°, and in 2D over a tensor grid (as opposed to a
sparse grid), namely, ~ tol™'. This comparison reminds us of the fact that sparse grids can
often recover approximation rates similar to those in just 1 dimension, being only weakly
affected by the “curse of dimension”.

Online cost. In (right), we display the average “online speedup” of the surrogate
model. To assess the online speedup, each of the trained surrogates and the high fidelity
training model are evaluated at 300 sample points chosen by a Latin hypercube sampling in
p-space. Then the “speedup” is defined as the factor (averaged over the 300 sample points)
by which evaluating the surrogates 7 and f is less expensive than computing these values
with the high-fidelity training model. Since Z also depends on w, for fairness to the high-
fidelity models, we compute the impedance speedup by comparing evaluations of Z and 7 at
100 different values of w, for each fixed p.

We observe that the speedup decreases as we go to smaller values of tol: the surrogate
model becomes more complex there, since more collocation points are required. Still, even
in the worst case, the speedup is always on the order of 103.

As a final note on the online costs, we also compare our surrogate models with the
simplified cNGT bearing model referred to in which neglects eccentricity depen-
dence. Despite its simplicity (one of the parameters is completely ignored), the cNGT model
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evaluation is more than 55 times slower than all our surrogates.

5.3 (146)D numerical results

In this section, we present results of our most complex surrogate, a complete parametric
model of the classical HGJB. Both design and operational parameters are allowed to vary:
P = (%0,PA;Pa,Dp:Pr,Pr). The parameter ranges for each of the (1+6)-parameters are
given in . We train three surrogates, differing in the tolerance level tol € {21073, 3
1073,9-1073}.

For the purpose of validating the surrogates against the high-fidelity model, we sample
the approximation errors over a set of 300 points generated by Latin hypercube sampling.
At each of the sample points, the metrics €, ¢ and e, (see are calculated, in order
to quantify the errors between surrogate and high-fidelity values of Z and f. shows
the corresponding empirical probability density functions. We observe that, as tol decreases,
the error distributions are shifted accordingly.

tol = 0.003 tol = 0.009
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Figure 12: Histograms of testing errors, measured at 300 new values of p. Impedance and
static forces errors are shown in the top and bottom rows, respectively. Two different values
of tol are considered in the two columns. The dashed vertical lines are placed at tol. The
proportion of samples that do not satisfy the tolerance is indicated in the top right of each
plot.

For Z, only 13% and 5% of the errors in our random sample on the training domain
exceed the respective tol values. Even when the tolerance is not attained, the errors remain
approximately within a (2 - tol)-level. This behavior is to be expected, since our way of
enforcing the tolerance cannot prevent larger-than-desired errors to arise far from the test
set used in the predictor-corrector step. On the other hand, f behaves better, with all error
samples falling below tol.
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Table 2: Summary of computational costs for training (14+6)D surrogates.

value of tol
2-103[3-10%]9-1073
building > #training p-points | 69745 | 50043 19584
training time [h] 248 184 68
post-refinement | #training p-points | 29900 22690 9407
for training time [h] 102 80 31

Further, the tol level qualitatively falls within or just above the upper tail of the distribu-
tions. The close proximity of each distribution to its “tol” value speaks to the effectiveness
of greedy sampling. Indeed, in the interest of achieving both a quick training phase and a
favorable speedup factor, we want the algorithm to use as few training points as necessary.
Error distributions much lower than their training tol level would have suggested that fewer
collocation points could have been used to get the desired model accuracy.

In (right), we also show the online speedup factors for the (14-6)D surrogates. As
in the previous example, the speedups are computed based on the 300 p-points used in post-
processing. We see that, despite four additional parameters, our algorithm still maintains
a speedup on the order of 102. Even in the worst case, there is still a significant speedup
(>5x) compared to the simplified cNGT model, which neglects the effect of static eccentricity
(. [Remark 7).

As a final point, we revisit training costs. The training times and the required number
of training points are reported in [Table 2 As in the (14-2)D case, our surrogates maintain
a proportionality between training time and the number of training points required. The
training set size is observed to scale as ~ tol . This is a further justification for the use
of sparse grids as a means to combat the “curse of dimension” in our application. Compared
to theoretical 6D tensor grid scaling (~ tol™®) our observed rate again is more similar to
theoretical 1D scaling (~ tol%?).

6 Conclusions

In this work, we have proposed a strategy for building surrogate models of Qols arising
from generic parametric frequency-domain problems, as exemplified by the costly nonlinear
systems resulting from the study of gas-lubricated bearing dynamics under harmonic pertur-
bation. Non-intrusiveness is paramount in our approach: we do not make any assumptions
on the structure of the target high-fidelity problem, so that our method can be applied even
if the underlying model is accessible only via “samples” obtained through closed-source code.
Via locally adapted sparse grids, we can deal even with a modest number of parameters.
Numerical results show, by example, that with our method one can build accurate sur-
rogate models, with significant speedups compared to their reference high-fidelity model.
The obtained surrogates have the potential to enable (near-)real-time behavior characteri-
zations of (nonlinear) dynamical systems where they would otherwise be unfeasible, due to
the high cost of the underlying model. We look to engineers and practitioners in fields like
real-time control and design optimization to leverage potential gains in model efficiency into
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advances in performance, efficiency, and reliability of real-world applications. Notably, tasks
such as anomaly detection and stability analysis (even with feedback from measurements),
or optimization of a rich physical model become attainable “online”.

The price to pay for a reliable and cheap surrogate model is a lengthy training phase,
which however can be performed only once and “offline”; i.e., before the surrogate is deployed.
The training phase can be especially costly when the number of parameters is large, due to
the necessity to (non-intrusively) explore high-dimensional parameter domains with sparse
grids. In our numerical tests, adaptivity allowed us to tackle problems depending on up to
7 parameters, which would have otherwise been intractable, e.g., with tensorized sampling
grids. Still, in modest-to-high-dimensional settings, adaptivity can only partially reduce the
unavoidable training burden.

It is in this context that we envision the most interesting further research directions,
specifically in the study of more effective (adaptive) sampling strategies in high-dimension.
Also, since we are sampling with the objective of interpolating, there is also the question
of the interpolation basis: in our experiments, we have employed piecewise-linear hat func-
tions, because they are intrinsically hierarchical and naturally suited for approximation over
LASGs. Still, their weakness is the lack of accuracy. Alternatives like polynomials, splines,
or radial basis functions are often unstable or unwieldy when it comes to high-dimensional
unstructured interpolation. On the other hand, approximation methods rooted in “machine
learning”, like Gaussian process regression or neural networks may be more promising. We
feel that, in this direction, there is much room for research, both in theory and in numerical
practice.

A Reference model details

The nondimensional formulation of the NGT equation given by and the frequency-
domain formulation in can be derived using the scalings

P=P [P}, w=w'wy,, t="twy, (19)
h. = h:/hx and hg:h;/h*

r,nom) r,nom)

where quantities with a “x” as superscript are dimensional, while quantities without super-
script are not. We refer to for context.
For brevity, we introduced coefficients in [Eq. (14)| which can be expanded as

by + by sin® D3 by sin pg cos pa by + by cos? Dg
G =——", Gg=——"F—", 3= ————
bs bs bs
hd — h3 20
a4 = gb 7“’ a5:pahg+<1_pa)hra and ( )
3
as = —pPaPa (1 — pa) (par — 1) sinpg,
using the quantities
2
b = hffhi, by = (hg - hf) Pa(1=pa), bz=(1-pa) hg + pah?. (21)
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We note that ay, ..., a5 are space-dependent coefficients and thus they have a perturbation
form obtained by injection of [Eq. (15)|in the development of the frequency-domain model in
Section 4.2
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