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Abstract
We present an algorithm for constructing efficient surrogate frequency-domain
models of (nonlinear) parametric dynamical systems in a non-intrusive way. To
capture the dependence of the underlying system on frequency and parameters,
our proposed approach combines rational approximation and smooth interpo-
lation. In the approximation effort, locally adaptive sparse grids are applied to
effectively explore the parameter domain even if the number of parameters is
modest or high. Adaptivity is also employed to build rational approximations
that efficiently capture the frequency dependence of the problem. These two fea-
tures enable our method to build surrogate models that achieve a user-prescribed
approximation accuracy, without wasting resources in “oversampling” the fre-
quency and parameter domains. Thanks to its non-intrusiveness, our proposed
method, as opposed to projection-based techniques for model order reduction,
can be applied regardless of the complexity of the underlying physical model.
Notably, our algorithm for adaptive sampling can be used even when prior
knowledge of the problem structure is not available. To showcase the effective-
ness of our approach, we apply it in the study of an aerodynamic bearing. Our
method allows us to build surrogate models that adequately identify the bear-
ing’s behavior with respect to both design and operational parameters, while still
achieving significant speedups.
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1 INTRODUCTION

Frequency-domain models of (nonlinear) dynamical systems are often used by engineers in domains such as control sys-
tems, fluid mechanics, acoustics, optics, electronics and communications. A good understanding of nonlinear effects can
be crucial for stability analysis, performance evaluation, and mitigation of undesirable phenomena. Specifically, with the
objective of resolving complex behaviors in physical or data-driven models, high-fidelity parametric models are developed.
The parameters are embedded within the model as “tuning knobs” of the interesting inputs to the system.

Simultaneously, engineers are often not only unwilling to accept the exploding computational cost that accompanies
an up-scaling in modeling complexity, but some applications also necessitate significant reductions in computing time and
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memory. This is particularly relevant in the so-called multi-query setting, where calculations have to be repeated for many
different values of frequency and parameters, for example, in the context of design optimization or of real-time monitoring
and control. Model order reduction (MOR) addresses this by replacing the high-fidelity model with a cheap-to-evaluate
surrogate one, which (hopefully) has a small approximation error. Evaluation efficiency is not the only concern when
considering modeling alternatives: surrogate costs can come in the form of variable (so-called “online”) costs on a
per-evaluation basis and overhead (so-called “offline”) costs for building the surrogate model. Examples of the latter
include (re)-training and/or development effort associated with modifications in the reference model, which could be the
case for techniques exploiting specific knowledge about the inner workings of the reference model.

We wish for the reader not to lose sight of the general applicability of our algorithm to frequency-dependent, nonlinear,
and parametric dynamical systems, whose abstract mathematical formulation is outlined in Section 2. Yet, we are also
practitioners and see value in showcasing our approach on a tractable engineering application. For this, we narrow-in
on herringbone grooved journal bearings (HGJBs), a type of non-contact bearings where the pressure distribution in a
thin film of gas separates a rotating shaft from a static bearing part. A reference HGJB model is summarized in Section 4.
Several numerical experiments with the HGJB are then performed in Section 5. We remind the reader that the details
about the reference model are merely given to establish a context about the functioning and performance of the algorithm.
They are not needed for its application. In this sense, our proposed algorithm can be thought of as plug-and-play in an
approximation setting for black-box functions.

1.1 Model reduction background and contributions

By now, a vast body of works in MOR is available, and many different approaches have been developed for building sur-
rogate models. In the specific case of nonlinear systems, some additional difficulties arise, especially when employing the
most popular class of MOR techniques, namely, projection-based approaches such as proper orthogonal decomposition
(POD) or reduced basis (RB) methods (see, e.g., Reference 1 for an overview): due to the presence of nonlinear terms,
it is difficult to produce a surrogate model that is both efficient and accurate. Strategies to address this issue have been
studied under the umbrella term “hyperreduction”, with the most known approach being the discrete empirical inter-
polation method (DEIM).2 There are also two notable weaknesses of DEIM: (i) it is very problem-dependent and often
requires considerable “user supervision” (limiting the extent to which it can be applied in an automated way), and (ii) it is
intrusive (i.e., it requires knowledge of the nonlinearities and access to the high-dimensional system “state”, such as, e.g.,
the pressure or displacement field that solves the nonlinear equation, cf. Section 2). This second item is a serious issue
in many practical settings, specifically for severe nonlinearities and whenever one cannot easily access the high-fidelity
state, for example, due to closed-source code. Even “less” intrusive methods like “non-intrusive RB”3 or physics-informed
neural networks4,5 are affected by this problem. Note that further difficulties arise for intrusive parametric MOR methods
since dedicated techniques contingent on the nature of parameter dependencies are needed to adapt the bases for given
parameter values, see, for example, References 6–9.

In this work, we address this issue by developing a non-intrusive MOR approach for building surrogate models of
quantities of interest (QoIs) arising in frequency-domain analyses of nonlinear dynamics. Our method builds the surro-
gate model from samples of the QoIs only, without requiring any access to –nor knowledge of– the underlying nonlinear
model. This allows us to treat the high-fidelity model as a “black box”.

We build a surrogate model by interpolation. More precisely, a rational interpolation framework is employed with
respect to frequency, whereas smooth interpolation (e.g., by piecewise polynomials or radial basis functions) is applied to
approximate the dependence on parameters. The frequency dependence is modeled via the (less regular) class of rational
functions as a way to address any potential lack of smoothness of the QoIs with respect to frequency. In this context,
rational functions have been often used as a general-purpose approximation class,10–14 often yielding (quasi-)optimal
approximation quality, regardless of whether such “non-smooth effects” are actually present or not. This being said, we
refrain from using rational interpolation to model the joint dependence of the QoIs on frequency and parameters (as done
in, e.g., References 15,16), because of the intrinsic instabilities and computational difficulties associated to multivariate
rational approximation, which are ultimately due to the “curse of dimension”.

Lastly, we consider one additional (and, in our view, crucial) issue in MOR: the selection of the sample points.
Given the task of building a surrogate model, one inevitably faces the questions of how many and where (in
frequency-and-parameter space) to take the expensive high-fidelity samples that the surrogate will be eventually based
on. Answering these questions well is crucial to guarantee accuracy and efficiency of the surrogate model, but also to
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limit the cost of the so-called “offline phase”, that is, the assembly of the surrogate. Sampling is a particularly tricky issue
in non-intrusive methods: the usual residual-based greedy strategies1 cannot be employed, due to the absence of an error
estimator. In practice, this hinders an efficient identification of points where the approximation error is large. In our
method, we employ a fully non-intrusive approach for adaptive sampling, based on a predictor-corrector strategy: a mod-
estly sized test set is used to assess the quality of the current surrogate, and also to determine where to add new sample
points in case of insufficient accuracy.

In terms of novelty, MOR approaches similar to ours were already considered in References 17,18 for generic paramet-
ric problems. In those works, a “fully smooth” approximation framework was used, relying on, for example, piecewise
polynomials or radial bases for building an interpolatory surrogate model with respect to both frequency and parameters.
In this paper, we modify the method to account for the frequency component in the high-fidelity model, effectively spe-
cializing the approximation strategy from References 17,18 to frequency-domain modeling. From a practical viewpoint,
this requires combining the rational-in-frequency and smooth-in-parameters approximations. The rationale behind our
proposed hybrid method is threefold: (i) rational functions are better suited to address any potential lack of smoothness
in the QoIs; (ii) rational functions can often achieve spectral approximation accuracy, much higher than more “local”
function classes like piecewise polynomials; (iii) univariate rational approximation can be endowed with very efficient
adaptive sampling strategies,19,20 in contrast to the more costly approaches for high-dimensional adaptivity, for example,
based on locally adaptive sparse grids.21,18,22 Some numerical tests on the last two above-mentioned items are carried out
in Section 5.1.

Hybrid rational/smooth approximation methods were also developed in References 23 and 24. However, several
aspects distinguish our present work from those:

• In Reference 23, the focus is set on tracking how singularities with respect to frequency (the resonating frequencies
of the target system) evolve as functions of the parameter. In the present setting, such resonant behavior is generally
absent (and, if present, is not too relevant for the sake of approximation accuracy), see Section 5, thus making the
method from Reference 23 misplaced. See Remarks 2 and 4 for further discussion on this.

• In Reference 24, it is assumed that the underlying dynamics are those of a quadratic dynamical system. This allows
the authors to develop intrusive error estimators to drive a non-localized adaptive sampling. This is in contrast to our
localized adaptivity, driven by a fully non-intrusive error indicator, which can be applied to dynamics with arbitrary
nonlinearities.

2 FREQUENCY-DOMAIN PROBLEM FRAMEWORK

We start in the time domain and consider a time-evolving physical system, possibly subject to some input. Such a system
may be modeled as a parametric time-invariant nonlinear ordinary differential equation system (ODES)

dx
dt
(t;p) = 𝝓(x(t;p);p), (1)

endowed with suitable initial conditions. The state x ∈ Rn is a collection of n degrees of freedom, which characterize
the instantaneous configuration (e.g., positions, velocities, temperatures, pressures, voltages, etc.) of the system. The
right-hand side 𝝓 drives the evolution of the state in response to both internal effects and external forces, including the
system’s dependencies on a set of input parameters p having a practical significance to the application. Typical examples of
parameters are system design (e.g., geometry and material properties) and operational variables (e.g., external forces and
boundary conditions). We note that one may be interested in more general systems, for example, including higher-order
time derivatives. Still, one can often cast such problems as first-order ODES like Equation (1), for example, by augmen-
tation. While, for convenience, we proceed assuming a first-order structure, it is of no consequence to the applicability of
our algorithm.

Simulating the time-evolution of the state x, for example, by discretizing Equation (1) with time-stepping schemes,
can be demanding, due to (i) the large size n of the state, (ii) the fine time-resolution needed to follow the (nonlinear)
behavior of 𝝓, and (iii) the potentially long simulation time to reach a steady state or periodic limit, if damping is low.
These issues can, at least in part, be counteracted by moving to the frequency domain. To this aim, direct transformation
of𝝓 to the frequency domain can be done by, for example, Fourier or Laplace transforms. Notable for their frequent usage
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in solving engineering problems are a subset of perturbation-based methods that introduce small oscillatory excitations in
𝝓. These perturbation techniques often leverage assumptions about the form of x, for example, (quasi-) periodicity, to aid
the simplification. Overall, obtaining the frequency-domain form from the time-domain one can be a challenging task for
general nonlinear systems. However, this has been the subject of extensive research. For instance, we refer to References
25–27 and 28,29,12 for reviews and examples of transform- and perturbation-based methods, respectively. Finally, we note
that, sometimes, the problem is cast in the frequency domain not just out of convenience, but because frequency-domain
quantities are the ultimate objective of the analysis.

In a first-order perturbation method, one assumes that the state is a small harmonic perturbation of a stationary state
x0, namely,

x(t;p) ≈ x0(p) + Re
(
x1(𝜔;p)ei𝜔t)

. (2)

The amplitude x1 of the perturbation term is complex to account for possible phase shifts. Note that, while x1 depends on
the perturbation frequency 𝜔 ∈ R, x0 does not. Further harmonic perturbation terms with different frequencies may be
added in the expansion of x, giving rise to higher-order perturbation methods.

This expansion is then plugged into Equation (1). Under the assumption of a small perturbation x1, a first-order Taylor
expansion of 𝝓 is then performed, resulting in a problem of the form

{
𝝓(x0(p);p) = 0,
𝝍(x1(𝜔;p), 𝜔; x0(p),p) = 0.

(3)

The first equation characterizes stationary equilibrium states, whereas the second equation is frequency-dependent and
identifies the perturbation amplitude in function of the equilibrium x0. Additional terms in higher-order perturbation
methods would be identifiable through further equations, related to higher-order terms in a Taylor expansion of 𝝓.

In most applications, the target of the system’s analysis is not the state x, but rather a set of quantities of interest (QoIs),
functions of x whose choice is driven by the specific application. For instance, the QoIs may characterize the (averaged)
boundary values of the system state (such as position and pressure values for a fluid-structure interaction30) at an interface
or interconnection point with other systems. Other examples of QoIs are point evaluations of the state, to be compared
with real-time sensor measurements in the context of, for example, feedback control or system-health monitoring.31

Generally, QoIs depend on the whole x, that is, in the context of Equation (2), on both equilibrium state x0 and pertur-
bation x1. For this reason, QoIs are, in general, functions of both perturbation frequency 𝜔 and parameters p, and their
computation requires solving both equations in Equation (3). We denote generic QoIs by

𝜉 ∶ R
1+np ∋ (𝜔,p) → 𝜉(𝜔,p) ∈ C

n
𝜉

. (4)

Multiple QoIs are allowed, by letting 𝜉(𝜔,p) be vector-valued (n
𝜉
> 1).

This being said, for our later discussion, it is important to remark that, in some cases, QoIs may depend on the equilib-
rium state x0 and parameters p only. For instance, in some applications, for example, predator-prey or oscillator models,
the equilibrium x0 is a QoI in itself. In a similar way, it is sometimes of interest to compute time-averaged quantities (over
infinite time intervals), for which the oscillating component of Equation (2) disappears. See Section 4 for further examples.
The corresponding QoIs are functions of p, but not of 𝜔. Moreover, we note that evaluating these QoIs requires solving
only the first equation in Equation (3), and not the second one. We will denote such frequency-independent QoIs by

𝜁 ∶ R
np ∋ p → 𝜁(p) ∈ C

n
𝜁

. (5)

Again, 𝜁(p) is allowed to be vector-valued (n
𝜁
> 1).

Remark 1. Above and in the rest of this work, we assume that we are able to compute QoIs at arbitrary
values of 𝜔 and p, by (i) expensively solving the frequency-domain problem in Equation (3) and then (ii)
post-processing the computed x. In some situations, instead of solving a problem in the frequency domain,
it is possible to obtain frequency-domain information by discrete Fourier transform of data gathered in
the time domain (see, e.g., Reference 32). For instance, this might be relevant in applications where a
frequency-domain model is out of reach, for example, because it is too complex to obtain or to simulate.
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3 APPROXIMATION SETUP

Consider the abstract setup introduced in the previous section. We are interested in finding an approximation for the two
following functions: the generic QoIs 𝜉 ∶ R

1+np → C
n
𝜉 and the frequency-independent QoIs 𝜁 ∶ R

np → C
n
𝜁 , see Equations

(4) and (5). (To keep our presentation as general as possible, we even allow n
𝜉

or n
𝜁

to be 0, in case only one type of QoIs
is relevant.) We wish the respective approximations of 𝜉 and 𝜁 , which we denote by ̃𝜉 and ̃𝜁 respectively, to be accurate
for frequencies 𝜔 ∈ Ω ⊂ R and for parameters p ∈  ⊂ R

np , with Ω and  being the (application-dependent) frequency
and parameter ranges, respectively.

Due to its additional dependence on 𝜔, the approximation of 𝜉 requires special care. This behooves us to use a
non-standard framework, taking inspiration from the “marginalized” approximation strategy described in Reference 23.
The main idea is to treat 𝜔 and p separately. First, one selects T distinct collocation parameter points p1, … ,pT ∈  . At
each collocation parameter pj, a local surrogate for 𝜉 is built: by fixing p = pj, we are left with the rather easier task of
approximating a function of 𝜔 only. This step is carried out by minimal rational interpolation (MRI), see Section 3.1. We
denote the corresponding approximation by ̃𝜉j ∶ Ω→ C

n
𝜉 , which should satisfy ̃𝜉j(𝜔) ≈ 𝜉(𝜔,pj) for all 𝜔 ∈ Ω.

Then, the global surrogate is constructed by combining the local surrogates, ultimately resulting in an approximation
of the form

̃
𝜉(𝜔,p) =

T∑

j=1

̃
𝜉j(𝜔)𝜑j(p). (6)

In the expression above, for all j,𝜑j ∶  → R is a weight function, responsible for combining the different local surrogates.
Note that, in order to recover the local surrogates at all collocation points, that is, to have

̃
𝜉(𝜔,pj) = ̃𝜉j(𝜔) ≈ 𝜉(𝜔,pj) for all 𝜔 ∈ Ω and all j, (7)

the weight functions should satisfy a Lagrange property: 𝜑j(pj) = 1 and 𝜑j(pk) = 0 if j ≠ k. For instance, multivariate
piecewise-linear “hat” functions and Lagrange polynomials are candidate families of weight functions.

Remark 2. As already mentioned, our approach differs from the one in Reference 23 because our focus is on 𝜉,
not on its poles and residues. More explicitly, we see from Equation (6) that the global surrogate ̃𝜉 is obtained
by superposition of the local surrogates ̃𝜉j. Instead, Reference 23 suggests building ̃𝜉 through a superposition
of poles and residues of ̃𝜉j, namely,

̃
𝜉j(𝜔) =

∑

i

r̃i
j

𝜔 − ̃
𝜆

i
j

⇝ ̃
𝜉(𝜔,p) =

∑

i

∑T
j=1r̃i

j𝜑j(p)

𝜔 −
∑T

j=1
̃
𝜆

i
j𝜑j(p)

.

In Reference 23, this idea is justified by the approximation target having poles in the frequency rangeΩ, thus
making an accurate identification of such poles a priority.

In our setting, we assume the approximation target 𝜉 to be sufficiently smooth over Ω (more details on
this assumption can be found in Remark 4). Accordingly, the poles ̃𝜆i

j lose importance and meaning. In effect,
tracking the evolution of the poles with respect to p would result in spurious and numerically unstable effects,
whereas Equation (6) is accurate and stable.

Constructing an approximation for 𝜁 is usually easier, since 𝜔 is absent. In this work, for simplicity, we employ a
structure that is rather similar to that of ̃𝜉 in Equation (6), namely,

̃
𝜁 (p) =

T∑

j=1
𝜁(pj)𝜑j(p). (8)

Note that, while ̃𝜉 is obtained as a p-superposition of approximations ̃𝜉j, ̃𝜁 is built as a p-superposition of exact values
𝜁(pj). Also, we remark that, since the weight functions 𝜑j are assumed to satisfy a Lagrange property, we recover exact
interpolation: ̃𝜁 (pj) = 𝜁(pj) for all j. We note that a rather similar MOR approach for building ̃𝜁 is the one described in
Reference 18, where radial basis functions are used as weight functions for interpolation.
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In general, it makes sense to choose the number T of collocation points differently for ̃𝜉 and for ̃𝜁 , for example, if 𝜉
depends on p in a more (or less) “complicated” way than 𝜁 does. This might even correspond to completely disjoint sets
of collocation points pj for 𝜉 and 𝜁 , and to different weight functions 𝜑j. In presenting our approach, we mostly ignore
this possibility to avoid an overly heavy notation. At the same time, we wish to mention here that our ultimate algorithm
of choice, see Sections 3.2 and 3.3, usually employs different values of T for 𝜉 and 𝜁 .

Remark 3. Before proceeding, we wish to discuss the cost of evaluating the surrogates ̃𝜉 and ̃𝜁 at new values
of (𝜔 and) p. In the case of ̃𝜉, we see from Equation (6) that we only need to evaluate T weight functions 𝜑j,
which is very inexpensive, and T local surrogates ̃𝜉j, which, as we will show, are also very cheap to evaluate.
In particular, their evaluation cost is independent of the cost of solving the high-fidelity problem.

On the other hand, the evaluation of ̃𝜁 requires evaluating the T weight functions, but also obtaining
the T values of 𝜁 at the collocation points. This second group of operations can be significantly sped up by
employing an offline-online decomposition. More explicitly, since the T values {𝜁(pj)}T

j=1 are independent of
the new parameter p at which ̃

𝜁 is to be evaluated, we can (expensively) compute them once and then store
them. Afterwards, when ̃𝜁 is to be evaluated, it suffices to cheaply access the values 𝜁(pj) from memory.

3.1 Minimal rational interpolation

Here we consider the problem of building a local surrogate ̃𝜉j ∶ Ω→ C
n
𝜉 at some collocation point pj: the target is ̃𝜉j(𝜔) ≈

𝜉(𝜔,pj) for all 𝜔 ∈ Ω. For this, we employ the MRI method introduced in Reference 14, which we summarize here in its
barycentric formulation.

Assume that Sj support frequencies𝜔j,1, … , 𝜔j,Sj ∈ Ω are fixed. Note the presence of the index j, a reminder that differ-
ent collocation points may have different support frequencies. In fact, we will soon outline how such support frequencies
can be adaptively selected, in a process that may yield different results at each collocation point pj.

Once the costly samples {𝜉(𝜔j,i,pj)}
Sj

i=1 have been computed, we define the local surrogate as

̃
𝜉j(𝜔) =

Sj∑

i=1
𝜉(𝜔j,i,pj)

qj,i

𝜔 − 𝜔j,i

/ Sj∑

k=1

qj,k

𝜔 − 𝜔j,k
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜙j,i(𝜔)

. (9)

The rational weight functions 𝜙j,i are defined in barycentric form, with qj,1, … , qj,Sj ∈ C being coefficients that will be
defined in the next paragraph. Note that this choice of weight functions satisfies the Lagrange property for any (nonzero)
qj,i, so that, in particular, we always have exact reconstruction of the samples: ̃𝜉j(𝜔j,i) = 𝜉(𝜔j,i,pj) for all i.

The barycentric coefficients qj,i are computed by solving the minimization problem

min
qj,1,… ,qj,Sj

‖‖‖‖‖‖

Sj∑

i=1
qj,i𝜉(𝜔j,i,pj)

‖‖‖‖‖‖

subject to
Sj∑

i=1

||qj,i||
2 = 1,

(10)

where || ⋅ || denotes the Euclidean norm. We refer to Reference 33 for more details on why the barycentric coefficients
are chosen as the solution of this problem and on how to easily compute them via singular value decomposition. Alter-
native approaches for finding the weights qj,i could be based, for example, on the Loewner framework34 or the adaptive
Antoulas–Anderson algorithm.13

The number Sj and the locations of the support frequencies 𝜔j,i are crucial for the approximation properties and
efficiency of the MRI surrogate: too few samples yield an inaccurate approximation, whereas too many make the training
of the local surrogate overly expensive, and can even result in numerical instabilities.20,35 A practical and effective way of
choosing the support frequencies is the greedy MRI (gMRI) method, introduced in Reference 19.

In gMRI, the set of support frequencies is incrementally built, starting from the two endpoints of the intervalΩ. Each
new support frequency 𝜔j,Sj+1 is selected based on the current surrogate ̃𝜉j, specifically, based on the denominator of
the weight functions 𝜙j,i, see Equation (9). The termination condition is based on a user-defined tolerance tol

𝜔
, which

determines the desired accuracy in frequency of the local surrogate.
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HUWILER et al. 7 of 24

Remark 4. We have already mentioned, notably in Remark 2, that we assume the approximation target 𝜉
to be sufficiently smooth with respect to frequency. Sometimes the smoothness of 𝜉 follows from physical
considerations involving the underlying dynamics, for example, in terms of stability or passivity. Namely, if
the poles of 𝜉 (the resonating frequencies of the system) are constrained away from the frequency range Ω, 𝜉
will necessarily be well-behaved there. However, in more general settings, it may be a priori unknown whether
𝜉 is smooth or not.

Our setting allows us to perform a heuristic “on-the-fly smoothness check”: once the rational approxi-
mation ̃

𝜉j has been found, for example, by gMRI, it is possible to find its poles by standard linear algebra
techniques.13 Then, we may empirically classify the function as “smooth” if all the surrogate poles are suf-
ficiently far away from Ω. Unfortunately, at this stage, it is the authors’ opinion that the above heuristic
classification is heavily problem-dependent, and that a case-by-case tuning of a “pole-distance threshold”
for the “smoothness check” must be carried out under careful user supervision. A more thorough, system-
atic investigation of this idea, including also the development of countermeasures to be used if a lack of
smoothness is detected, is out of the scope of the present work, but is envisioned as future research.

3.2 Adaptive parameter sampling strategy

In this section, we restrict our attention to the approximation of 𝜉. More details on our strategy for building ̃𝜁 follow in
Section 3.3. Also, for simplicity, from here onward we assume that the parameter range ⊂ R

np is a hypercube. This is the
most common situation in practice, since a certain range is usually prescribed independently for each of the np parameter
components p = (p1, … , pnp).

Building a good and efficient approximation ̃𝜉 requires a careful choice of the T collocation points pj. To this aim, we
take inspiration from the sampling approach described in References 18,23, adaptively selecting the collocation points by
exploring  via a locally adaptive sparse grid (LASG) structure.

LASGs are able to explore hypercubes even in high dimension at a relatively quick pace. Some comparable methods
are locally refined tensor grids and quasi-random (e.g., Halton points or Latin hypercube) sampling. See, for example,
References 36,37. However, tensor grids suffer greatly from the so-called “curse of dimension” and, as a consequence, are
much more inefficient than LASG even for modest np (e.g., > 2). On the other hand, quasi-random sampling is very com-
petitive even in the high-dimensional case, but does not allow for localized adaptive refinements. We refer to References
21,18,22,23 for more details on LASGs.

In our sampling strategy, we rely on a non-intrusive predictor-corrector approach to “grow” the set of collocation
points using a tree-like structure. Given a certain training set (i.e., the set of collocation points pj where ̃𝜉j is available), a dis-
joint test set is defined. For instance, the test set can be defined in a procedural way, as the “discrete LASG-neighborhood”
of the training set. See sect. 3.4 of Reference 23 for more details.

A prediction step is carried out at each test point p
⋆

: the current surrogate model (which is based on training points
only) is evaluated at p = p

⋆

. The discrepancy between surrogate and high-fidelity model at p
⋆

is then quantified through
the prediction error (see Equation 11 below). If the prediction error is larger than a user-defined tolerance tol

𝜉
, the test

point p
⋆

is flagged for correction. This means that p
⋆

is added to the training points, thus deflating the prediction error
at p

⋆

by the interpolation property in Equation (7). The test set is then automatically refined around p
⋆

for the next
iteration. An example of the overall procedure is shown in Figure 1 for np = 2. We can indeed observe local refinements
of the LASG near points that are flagged for correction. The algorithm terminates when the prediction error is smaller
than the tolerance tol

𝜉
at all test points.

Remark 5. Within a prediction-correction iteration, each test parameter p
⋆

is explored independently. This
means that the above strategy is amenable to a parallel implementation.

Above, by “prediction error” at some parameter point p = p
⋆

, we mean the following quantity:

e
⋆,𝜉
=

√√√√√√
1
S

S∑

i=1

‖‖‖
̃
𝜉(𝜔test

i ,p
⋆

) − 𝜉(𝜔test
i ,p

⋆

)‖‖‖
2

‖‖‖𝜉(𝜔
test
i ,p

⋆

)‖‖‖
2 . (11)

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7487 by B
ibliothèque D

e L
'E

pfl - D
ocum

entation É
lectronique, W

iley O
nline L

ibrary on [16/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 24 HUWILER et al.

F I G U R E 1 Example of evolution of the LASG in the adaptive algorithm for two parameters p = (p1, p2). The components p1 and p2 are
on the x- and y-axes, respectively. The black squares are the current training set (the collocation points). The red circles are the test set (the
points where the prediction error is computed). Points flagged for correction at each step are circled in blue.

Essentially, we look at the relative error between approximated and exact QoIs, taking the average (in the
root-mean-square sense) over a set of user-defined “test frequencies” 𝜔test

1 , … , 𝜔

test
S ∈ Ω.

Computing the prediction error by Equation (11) might be rather expensive if S is modest or large, since S high-fidelity
samples of 𝜉 must be computed. To alleviate this issue, we replace the exact QoI at (𝜔test

i ,p
⋆

) with a proxy, namely, an ad
hoc approximation ̃𝜉

⋆
(𝜔test

i ) computed by gMRI at p
⋆

. If ̃𝜉
⋆

is a sufficiently good approximation of 𝜉(⋅,p
⋆

) (notably, if it is
closer to 𝜉(⋅,p

⋆

) than ̃𝜉(⋅,p
⋆

) is), the resulting approximated prediction error

e
⋆,𝜉
=

√√√√√√
1
S

S∑

i=1

‖‖‖
̃
𝜉(𝜔test

i ,p
⋆

) − ̃𝜉
⋆
(𝜔test

i )‖‖‖
2

‖‖‖
̃
𝜉
⋆
(𝜔test

i )‖‖‖
2 (12)

can be expected to be close to the (expensive) exact one in Equation (11).
It is useful to note that, if a test point p

⋆

is flagged for correction, then the gMRI surrogate ̃𝜉
⋆

that we propose to use
in Equation (12) has to be computed anyway, since it becomes one of the local surrogates in the expansion of the new ̃

𝜉,
see Equation (6). With this observation, one can avoid repeated computations in the training phase.

Remark 6. Since ̃𝜉 is built based on the local surrogates ̃𝜉j ≈ 𝜉(⋅,pj), it is crucial that such local surrogates
be accurate enough. Otherwise, the prediction error might stagnate at an excessive value, resulting in a
non-terminating p-sampling loop. Importantly, if the local surrogates are computed by gMRI, we must set the
tolerance tol

𝜔
to a sufficiently smaller value than tol

𝜉
.

3.3 Post-enrichment technique for frequency-independent QoIs

As already mentioned in Section 3, the approximation of 𝜁 is fundamentally simpler than that of 𝜉. Indeed, no frequency
modeling is necessary, and the approximation ̃𝜁 consists of a linear combination of values of 𝜁 at some collocation points,
see Equation (8). Still, computing the values 𝜁(pj) for j = 1, … ,T is a rather expensive task. We can speed it up thanks to
the following observation: if 𝜉(𝜔,pj) has been computed at some 𝜔, this means that the high-fidelity problem in Equation

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7487 by B
ibliothèque D

e L
'E

pfl - D
ocum

entation É
lectronique, W

iley O
nline L

ibrary on [16/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



HUWILER et al. 9 of 24

(3) has been solved at the corresponding frequency and parameters. In particular, the steady state x0(pj) has already been
computed. As such, since evaluating 𝜁 only requires post-processing of x0, the computation of 𝜁(pj) is very cheap, usually
much less expensive than solving the high-fidelity problem from scratch.

Since our target is to obtain an approximation of both 𝜉 and 𝜁 , this allows us to employ the following strategy:

1. Build an approximation ̃𝜉, for example, using the adaptive strategy from Section 3.2. This requires evaluating 𝜉 at all the
adaptively selected collocation points pj for j = 1, … ,T, at the corresponding support frequencies 𝜔j,1, … , 𝜔j,Sj ∈ Ω.

2. At every collocation point pj, compute also 𝜁(pj). As mentioned above, depending on the implementation, this step
might be very cheap, if 𝜁(pj) can be obtained by post-processing of the already available steady state x0(pj).

3. Check if the resulting ̃𝜁 , that is, the surrogate obtained by combining the samples of 𝜁 at the collocation points of ̃𝜉
(according to Equation 8), is accurate enough.

4. If ̃𝜁 is not accurate enough, add more collocation points. (Note that such additional points affect only ̃𝜁 , and not ̃𝜉!)

The addition of new collocation points for ̃𝜁 can be carried out by using the LASG approach from Section 3.2. How-
ever, in this case, since 𝜔 is absent, the prediction error, see Equation (11), can be more easily computed as the relative
approximation error

e
⋆,𝜁
= ‖‖‖

̃
𝜁 (p

⋆

) − 𝜁(p
⋆

)‖‖‖

/
‖‖𝜁(p⋆)‖‖. (13)

Note that this error measure greatly penalizes inaccuracies at locations where 𝜁 is small, since the denominator above
approaches zero there. In some applications, one might consider applying a “regularized” relative error, for example,

e
⋆,𝜁,𝛿

= ‖‖‖
̃
𝜁 (p

⋆

) − 𝜁(p
⋆

)‖‖‖

/
max

{‖‖𝜁(p⋆)‖‖, 𝛿
}
,

for some (small) regularizing parameter 𝛿 > 0. Similar considerations are relevant also for the error estimators used for
̃
𝜉, namely, Equations (11) and (12).

Note that a complementary strategy exists, where the surrogate ̃𝜁 is built first, and then ̃𝜉 is obtained by adding more
collocation points. However, in our numerical testing, approximating ̃𝜁 usually required more collocation points than ̃𝜉.
This explains why we present the first-̃𝜉-then-̃𝜁 method only. Of course, depending on the application, the complementary
approach may be preferable.

We summarize the overall procedure in Figure 2. In the diagram, we can see that, as described in Section 3.2, the
training set grows from the center of into a LASG, by progressively adding any test point p

⋆

with an excessive prediction
error. Once the training phase of ̃𝜉 ends, the final training set train,𝜉 is selected as the initial training set train,𝜁 for ̃𝜁 ,
which is then subject to adaptive refinements.

We note that, while training both ̃
𝜉 and ̃

𝜁 , test points p
⋆

with sufficiently small prediction errors might remain in
the test set for several iterations of the predictor-corrector scheme. In such cases, the testing phase in Figure 2 requires
building the local surrogate ̃𝜉

⋆
(or evaluating ̃𝜁(p

⋆

)) over and over in the prediction-correction phase. These expensive
operations can be avoided by storing any such ̃𝜉

⋆
(and ̃𝜁(p

⋆

)). The memory requirements for this are extremely low, thus
resulting in a net time save with basically no extra costs.

In Figure 2, we also employ the following trick to improve the accuracy of the surrogates. For both ̃𝜉 and ̃𝜁 , let us put
ourselves at the end of the outer adaptivity loop, that is, when the LASG reaches convergence. The prediction error, as
encoded by Equations (12) and (13), has just been computed at all test points. This means that both the “test surrogates”
̃
𝜉
⋆
≈ 𝜉(⋅,p

⋆

) and the “test evaluations” 𝜁(p
⋆

) are available. Such quantities can be included in the global surrogates ̃𝜉 and
̃
𝜁 by simply appending the test sets test to the training sets train. This improves the accuracy of the two approximations
with virtually no computational effort, since the added “expensive” values are already available in memory from the
prediction-correction phase.

Before proceeding further, we also note that we provide an open-source MATLAB® version of the algorithm at
https://github.com/pradovera/rational_lasg_matlab.

4 FREQUENCY-DOMAIN BEARING MODEL

At this point, we are ready to explore the example of our approximation applied to the modeling of an aerodynamic
bearing, specifically a herringbone grooved journal bearing (HGJB). Our focus in this and the next section is to establish a
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10 of 24 HUWILER et al.

F I G U R E 2 Adaptive parametric approximation of 𝜉, and of 𝜁 by post-enrichment.

reference model in the framework of Section 2, referring readers to Reference 38 for a broader overview of the modeling
of grooved bearings.

A schematic representation of an HGJB is shown in Figure 3 (top left). It consists of a segment of a larger rotor, rotat-
ing with angular speed 𝜔rot inside a bushing. A tight clearance between the parts (typically, on the order of microns) is
occupied by the lubricating gas. The HGJB’s distinguishing feature is the V-shaped groove (and ridge) pattern. This acts
as a viscous pump, self-pressurizing the gas film through its own rotation, by forcing fluid toward the axial center from
both ends, where ambient conditions exist. As with other aerodynamic bearings, the relative motion of two bearing parts
(bushing and rotor) in HGJBs generates a pressure distribution in a thin gas film between their surfaces, thus acting
as a cushion to resist contact between the bearing parts. Such bearings are characterized by a low-friction and oil-free
operation, enabling small-scale high-speed turbo-machinery that is well suited for distributed energy conversion tech-
nology, for example, fuel cells or waste-heat recovery, needed for a sustainable energy transition. We refer to Reference 38
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HUWILER et al. 11 of 24

F I G U R E 3 Definition of HGJB design and modeling parameters and a contextual view of a typical rotor system including two HGJB
bearings.

for details on original works across various HGJB applications. Notably, compared to other aerodynamic bearings,
HGJBs have the advantage of higher stiffness and load capacity. In applications, for example, in the transportation sec-
tor, gas-bearing-supported rotors also see significant external loading, including shock and vibration. Predicting bearing
behavior over a range of design and operational parameters is challenging, especially in the contexts of (near-)real-time
stability or response prediction during machine operation.

For our purposes, the design and operation of the HGJB can be completely described in nondimensional terms. The
translating rotor has a trajectory inside the bearing, whose position, depicted in the section view, is given in bushing-fixed
Cartesian (x, y)-coordinates with the origin at bearing’s center (Figure 3). With the characteristic length in this frame is
taken as the concentric ridge clearance hr,nom, the magnitude of the rotor position vector cannot exceed unity, which would
correspond to the (undesired) contact between the rotor and the bushing. We describe any bearing fluid film location
using bushing-fixed cylindrical (𝜃, z)-coordinates, with z aligned with the rotor’s rotation vector. The grooves are designed
with a symmetric V-shape in the 𝜃 − z plane, parametrized by the angle of the groove p

𝛽
, the width ratio of the groove p

𝛼
,

groove-ridge clearance ratio pH , and the length of the bearing pL, as depicted. It is worth mentioning that an eccentric rotor
has 𝜃-dependent local film thicknesses hr(𝜃) and hg(𝜃). Finally, the compressibility number pΛ describes the combined
effects of rotor speed and the fluid properties at a given operating point, and is of utmost importance for both design and
operational purposes. In Figure 3, we refer to a few characteristic dimensional quantities, for which we use the superscript
“⋆”, to ground our nondimensional description to a physical bearing.

4.1 Time-domain model

At present, modeling of generic aerodynamic bearings requires solving a suitable adaptation of the Reynolds equation,
the classical governing equation describing the pressure distribution within the fluid film. More specifically, in the case of
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12 of 24 HUWILER et al.

HGJBs, the groove-ridge interfaces in the 𝜃-direction lead to discontinuities in the local film thickness h(𝜃) (see Figure 3).
This makes it necessary to employ a very fine spatial (and temporal) meshing in numerical implementations, resulting in
high simulation costs.

As an alternative, we employ the narrow groove theory (NGT), pioneered in the 1950s by Whipple.39,40 The NGT
allows a convenient modification of the Reynolds equation for bearings with periodic grooving features in the 𝜃-direction.
Two assumptions lead to the NGT result:41 (i) locally incompressible fluid, giving a triangular pressure profile across a
groove-ridge pair, and (ii) an infinite number of grooves, which transforms the saw-toothed pressure profile into a smooth
one. The NGT equation describes the smooth pressure distribution with a second-order nonlinear partial differential
equation given by

2pΛ𝜕t(a5P) = 𝜕
𝜃
(P(a1𝜕𝜃P + a2𝜕zP)) + 𝜕z(P(a2𝜕𝜃P + a3𝜕zP))

+ as
(
sin(p

𝛽
)𝜕
𝜃
(a4P) − cos(p

𝛽
)𝜕z(a4P)

)
− pΛ𝜕𝜃(a5P),

(14)

where P is the pressure field, while the coefficients ad(𝜃) with d = 1, … , 5 and as are defined in Appendix A, along with
the nondimensionalization scheme used. Refer to Figure 3 for definitions of parameters p. As boundary conditions, we
impose ambient pressure at the two axial edges of the bearing.

After spatial discretization of the fluid film and numerical approximation (typically, by finite-difference or-element
methods) of the spatial partial derivatives, we can transform Equation (14) into the form of the first-order ODE system in
Equation (1). We refer to Reference 42 for more details on the discretization. In our simulations below, we discretize the
fluid film on a 65 × 65 rectangular grid in the (𝜃, z)-plane using a centered-differences scheme.

In the interest of studying the rotordynamics, the time-domain ODE system can be augmented with the equations of
motion for the relevant inertial components. Specifically, in a fluid-structure-interaction fashion, our rotor is subject to
the pressure of the fluid film, so that the total force is obtained by integration of P, to be added to any external forces (e.g.,
due to gravity).

4.2 Frequency-domain model

To obtain a frequency-domain version of the bearing model, we follow References 43,42. Consider again Figure 3 with
the rotor in an arbitrary equilibrium position (x0, y0) due to a static loading (e.g., inertial forces, gravity, etc.). The rotor
is then perturbed to yield simple harmonic motion (with frequency 𝜔) around the equilibrium position. Independent
perturbations in the x and y directions are allowed, with magnitudesΔx andΔy respectively, which are complex to account
for phase shifts. Specifically, the local film thickness takes the time-harmonic form

hr(𝜃, t) ≈ 1 −
(

x0 + Re
(
Δxei𝜔t)) cos(𝜃) −

(
y0 + Re

(
Δyei𝜔t)) sin(𝜃). (15)

As a consequence of this expansion, it is assumed that the total pressure solution takes the form

P(𝜃, z, t) ≈ P0(𝜃, z) + Re
((
ΔxP1,x(𝜃, z) + ΔyP1,y(𝜃, z)

)
ei𝜔t)

. (16)

Note the presence of two independent perturbation terms P1,x and P1,y, whose sum (weighted by Δx and Δy) gives the
total first-order pressure perturbation. As the notation suggests, they correspond to perturbations of hr in the x and y
directions, respectively.

After injecting Equations (15) and (16) into (14) and keeping only terms up to order (Δx + Δy), we can split the
resulting equation into three separate equations by collecting and balancing coefficients of Δx and Δy (see Reference 42
for the detailed equations):

• A nonlinear steady-state equation, with no analytical solution, is given by zeroth-order terms. Its solution is the equi-
librium point P0 in Equation (16), whose discrete version is indicated by x0 in Equation (3). To find it, we use the
Newton method after spatial discretization, and this accounts for a significant portion of the computation time.

• Two 𝜔-dependent linear equations contain first-order perturbation terms, corresponding to Δx and Δy, respectively.
Their solutions are the 𝜔-dependent first-order perturbation fields P1,x and P1,y. These equations are linear and thus,
after spatial discretization, can be solved more directly by an off-the-shelf linear system solver. Still, it is required to
inject the equilibrium x0, which must therefore be precomputed.
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HUWILER et al. 13 of 24

Note that varying the parameters p will generally affect all the above-mentioned equations. As such, for each param-
eter value of interest, it is necessary to assemble and solve the nonlinear equation, and then assemble and solve the linear
equations at each excitation frequency 𝜔 of interest.

Remark 7. The frequency-domain formulation of the bearing described above is not merely a matter of model-
ing convenience. The typical axisymmetric bearing geometry and (quasi-)periodic nature of system excitations
(e.g., rotor unbalance, external vibrations, self-excited whirl) contribute to strongly frequency-dependent
responses. This observation is supported by experimental studies for the HGJB, for example, in
References 44,45.

Until now, we have not yet specified how to quantify the “bearing behavior” that we wish to model with respect to the
parameters p. We do this through specific QoIs, which are used to assess the bearing’s static and dynamic performance.
These QoIs are extracted from the fluid film pressure solution via a post-processing step. For assessing the bearing’s
dynamic performance near its static equilibrium, we model the rotor as a 2D nonlinear harmonic oscillator with complex
direct and cross-coupled impedances computed by integration (practically, by numerical quadrature) of the perturbed
pressure field as

Z =

[
Zxx Zxy

Zyx Zyy

]

= −
∫

pL

−pL
∫

2𝜋

0

[
P1,x cos 𝜃 P1,x sin 𝜃
P1,y cos 𝜃 P1,y sin 𝜃

]

d𝜃dz. (17)

Decomposing entries of Z into real and imaginary parts (Z = K + i𝜔C) leads us directly to eight real coefficients, inter-
preted as the dynamic stiffness and damping of the bearing. The evolution of the impedance matrix with respect
to frequency 𝜔 and design/operating parameters p can be directly used to obtain critical information needed in
harmonic-response calculations and in stability analyses. When considered in the context of more complex rotordy-
namic systems, for example, with multiple bearings and/or system degrees-of-freedom, these bearing dynamic coefficients
can also be integrated into the respective impedance matrices of the larger rotordynamic system for more sophisticated
performance analyses.

Moreover, when the system is at the static equilibrium at (x0, y0), the force transmitted to the rotor due to the static
pressure distribution exactly offsets the external static load applied. Having solved the equilibrium equation for the
static pressure, we can obtain the entries of the static force vector by integration (in practice, quadrature) of the rise in
the static pressure as

f =

[
fx

fy

]

= −
∫

pL

−pL
∫

2𝜋

0
(P0 − 1)

[
cos 𝜃
sin 𝜃

]

d𝜃dz. (18)

The load that the bearing can support at equilibrium provides practitioners with useful information on the bearing’s static
performance. Specifically, a large magnitude of the static force f means high bearing load capacity, which is generally
desirable to keep the rotor operating safely.

A high-level process summary for obtaining the QoIs from the reference model is included in Figure 4.

Remark 8. Above, to obtain a frequency-domain formulation, we have perturbed the NGT equations around a
generic equilibrium rotor position. In the literature, it is common to find perturbation methods that act around
the bearing’s concentric position only. Such models, which we refer as “concentric NGT” (cNGT) models,
trade accuracy to gain computational efficiency. Specifically, cNGT models predict the bearing stiffness and
damping properties (cf. Equation 17) as functions of perturbation frequency 𝜔 and parameters p without
consideration of static eccentricity effects. Such a concentric analysis generally yields a pessimistic stability
and load capacity estimation. The timings of an efficient implementation of cNGT based on the theory of
Reference 46 are compared with our surrogate in Section 5.

5 NUMERICAL RESULTS

In many applications (e.g., in optimal design or real-time control), one needs efficient and accurate prediction tools
for bearing behavior in response to a variety of sources of excitation. However, the nonlinear frequency-domain model
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14 of 24 HUWILER et al.

F I G U R E 4 Eccentric NGT HGJB reference model numerical procedure.

described in the previous section is often too expensive to be directly applied in such multi-query settings. We propose
to replace the high-fidelity and high-cost model with a surrogate one, obtained with our proposed adaptive strategy from
Section 3. In the following sections, some experiments are carried out in this direction, for several choices of param-
eters p. Our numerical tests were carried out in MATLAB® R2022b on a desktop computer with a 6-core 3.50 GHz
Intel® processor.

In all cases, the QoIs are the impedance parameters and the static forces, see Equations (17) and (18). More precisely,
we seek approximations for the frequency-and-parameter-dependent

𝜉 ∶= [Zxx,Zxy,Zyx,Zyy]⊤ ∶ R
1+np → C

4

and for the parameter-dependent

𝜁 ∶= f = [fx, fy]⊤ ∶ R
np → R

2
.

While we test several input variable sets, perturbation frequency and eccentricity are common inputs in all our simula-
tions, because they are the very essence of the eccentric perturbation frequency-domain model we wish to approximate,
see Section 4. In our formulation, 𝜔 represents the nondimensional ratio between the (dimensional) excitation frequency
and the rotor speed (see Appendix A). Considering the consequential nature of an unbalanced rotor, it is of practical rele-
vance to ensure that the𝜔 domain of interest includes the rotor frequency, that is, in nondimensional terms, when𝜔 = 1.
Concerning eccentricity, for convenience we consider equilibrium eccentricities only in the right direction; that is, x0 ≥ 0
and y0 = 0 in Equation (15). This can be done without loss of generality due to the bearing’s symmetry.

5.1 (1 + 1)D numerical results

For our first numerical experiment, we consider a frequency𝜔 ∈ Ω = [10−5
, 1.701] and a single parameter p ∶= x0 ∈  =

[0, 0.95], the eccentricity in the x direction. The remaining parameters of the bearing model are set to their nominal values,
which are reported in Table 1. Since Ω contains several orders of magnitude, we space the S = 1001 test frequencies
𝜔

test
1 , … , 𝜔

test
S logarithmically overΩ. We set tolZ = tolf = 10−3 and tol

𝜔
= tolZ∕3, and we prescribe piecewise-linear “hat

basis functions” for p-interpolation (𝜑j in Equations 6 and 8).
Our algorithm samples the parameter spaceΩ ×  adaptively. The resulting sample points are shown in Figure 5 (left).

With respect to frequency, we can observe that, except for the left endpoint 𝜔 = 10−5 (which is always sampled by gMRI),
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HUWILER et al. 15 of 24

T A B L E 1 Nominal values and ranges of bearing parameters in numerical simulations.

Parameter Nominal value

Range

Min Max

𝜔 — 10−5 1.701

x0 0 0 0.95

pΛ 25 1 40

p
𝛼

0.65 0.3 0.7

p
𝛽

19◦ −50◦ −10◦

pL 1.0 0.7 2.0

pH 3.2 1.0 4.0

Note: See Section 4 for a more detailed description of the parameters and of their significance in the HGJB model.

F I G U R E 5 On the left: (𝜔, x0) sample points. On the right: x0 sample points as the Z predictor-corrector loop advances. The LASG tree
structure is superimposed as dotted lines.

all the sampled frequencies are clustered at large frequencies, in the interval [0.1, 1.701]. Also, we note that the number
and locations of the sampled frequencies depend on the value of x0.

In Figure 5 (right), we can see the p-sample points that are added at each greedy iteration. For the first five iterations,
we can observe uniform refinements, whereas, at the final iteration, localized refinements are performed around small
values of x0. This means that the approximation of Z is particularly difficult there, a fact that was unknown a priori.

To validate our approximation, we evaluate ̃Z on a uniform grid of 100 × 50 (𝜔, x0)-points. There, we also expensively
compute the exact Z. The approximated ̃Z is shown in Figure 6, where we focus on two stiffness entries (Kxx = Re(Zxx) and
Kxy = Re(Zxy)) and on two damping entries (Cxx = Im(Zxx)∕𝜔 and Cxy = Im(Zxy)∕𝜔). We show the absolute error |̃Z − Z|,
which is quite small in all cases, namely, below 10−3.

As a final test to investigate the behavior of the employed LASGs, we look at the prediction error indicators e
⋆

in
Equations (11) and (13) over the parameter space  . In Figure 7 (left), we evaluate e

⋆
on a grid of new test points,

which do not fall within the set of support parameters. We see that the error values are uniformly below the pre-
scribed tolerance. Moreover, the gap between tolerance and actual error is rather small: for most values of x0, the error
is only around an order of magnitude smaller than the tolerance. This is actually a very beneficial property. Indeed,
if the gap between tolerance and prediction error were larger, it would be an indication that our algorithm takes
too many samples in the training phase, resulting in less efficient training, and also in more costly evaluation of the
surrogate model.

Additionally, we recall that our algorithm is “aware” of such indicators only for values of x0 in the training and test set.
Moreover, the impedance prediction error is available only in “surrogate” form, see Equations (11) and (12). Nonetheless,
the prescribed tolerance seems nicely attained over the whole parameter range.
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16 of 24 HUWILER et al.

F I G U R E 6 Predicted values and errors for some stiffness and damping entries.

F I G U R E 7 Validation errors for impedance and static forces. From left to right, the approximations ̃Z and̃f are obtained with
piecewise-linear, polynomial, and spline p-interpolation. The tolerances are tolZ = tolf = 10−3, as denoted by the horizontal dotted line. On
top of both plots, the locations of x0 sample points are shown as crosses, with dots denoting points reserved for̃f.
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HUWILER et al. 17 of 24

5.1.1 Comparing more (and less) global approximation strategies

We now want to discuss some of the consequences of our choice of interpolation strategy over the parameter x0. We recall
that, in order to obtain our results above, we have employed piecewise-linear hat functions. Such basis is local, in the
sense that each local value, that is, ̃Zj for ̃Z and f(pj) for ̃f, affects the approximation only around the collocation point
pj. This leads to some advantages: it can be used to approximate general non-smooth (but continuous) functions and it
is cheap to evaluate. However, it also has one main disadvantage: we are building an approximation that is locally only
linear with respect to x0, which may not be too accurate.

Under smoothness assumptions, global bases can be employed to gain accuracy. To show this empirically, we repeat
our experiments by replacing hat functions with global Lagrange polynomials. The training phase of our algorithm ends
much earlier: only 17 samples of x0 are needed to build the approximation, compared to the 37 needed with the previous
setup. Despite the lower number of sample points, the approximation error (quantified by e

⋆,Z and e
⋆,f) is fairly similar

to the previous case for most values of x0, as can be seen in Figure 7 (middle).
However, we can clearly notice some Runge oscillations near both endpoints of  , where the tolerance seems not

to be attained. These numerical instabilities are intrinsically related to polynomial interpolation over scattered points.
Specifically, (locally refined subsets of) uniformly spaced points may have extremely large Lebesgue constants.47 As such,
we could expect our algorithm, endowed with global polynomial p-interpolation, to fail whenever the collocation points
are unfavorably placed. Indeed, in such case, the numerical instabilities might cause the tolerance to never be attained,
by introducing oscillations near the endpoints of the parameter domain.

With splines,47 one can sometimes achieve higher accuracy than with local bases (like hat functions) and better sta-
bility than with global bases (like polynomials). To test this, we repeat our simulation, using cubic splines to interpolate
over p. The corresponding algorithm reaches convergence after exploring 17 p-points, which is about half as many as
with hat functions. The corresponding accuracy (again, quantified by e

⋆,Z and e
⋆,f) is shown in Figure 7 (right). It is uni-

formly below the tolerance, without showing any unstable behavior. This being said, splines cannot be easily generalized
to higher dimensions (np ≥ 2) if the sampling set is unstructured. Due to adaptivity, this makes splines unavailable in our
method as soon as more than one parameter is present. In effect, this means that piecewise-linear hat functions remain
the natural choice for a robust interpolation framework over general LASGs.

5.1.2 Validation of a gMRI + LASG approximation

As a final test involving the (1 + 1)D model, we compare our method to the state-of-the-art non-intrusive adaptive
algorithm from Reference 18. There, LASGs are used to adaptively sample over all parameters, that is, in our framework,
over frequency and parameters alike. Effectively, this means that the rational approximation routine via gMRI is skipped,
at the cost of increasing the number of parameters by 1. In comparing the two approaches, we refer to our method as
“hybrid”, since it combines rational and hat functions, whereas we dub the reference state-of-the-art method “joint”.

To make the comparison more fair, in the joint method, we treat frequency on a linear scale, as opposed to the loga-
rithmic one used for the hybrid approach. (Using a logarithmic scale would exacerbate the sampling issues that we are
about to describe.) Moreover, since the joint approach does not require a “frequency tolerance”, we use the larger “tol”
value as tolerance for both frequency and eccentricity.

The joint greedy method requires eight iterations to converge, as opposed to the six needed by our hybrid approach. In
turn, this corresponds to a set of 622 collocation (𝜔, x0)-points (at 61 distinct eccentricity values), many more than the 287
(𝜔, x0)-points (at 37 distinct eccentricity values) used by the hybrid approach. We show the collocation points of the joint
method in Figure 8, which should be visually compared to Figure 5 (left), containing the samples of the hybrid approach.
We can conclude that the joint method is less effective in achieving the target tolerance, when compared to our hybrid
approach. In our view, there are two main reasons for this:

• When used to approximate the frequency dependence of the QoIs, hat functions, due to their locality and lower degree,
converge more slowly than rational functions. From this point of view, our proposed hybrid method improves the joint
one by increasing the approximation efficiency in one of the parameters, namely, frequency. Notably, in contrast to our
observations concerning polynomials in Section 5.1.1, the chosen higher-order approximation strategy in frequency is
numerically stable, due to the beneficial properties of the barycentric expansion, see Equation (9).
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18 of 24 HUWILER et al.

F I G U R E 8 (𝜔, x0) points sampled by the “joint” method.

F I G U R E 9 Adaptively chosen training p-points for three values of tol, which are reported on top of the plots. The white dots are added
by the f predictor-corrector loop.

• The greedy MRI method performs adaptive sampling more effectively than LASGs. In particular, both gMRI and LASGs
use a predictor-corrector approach, evaluating the current approximation error over a set of test parameter points.
However, the size of the test set used in gMRI is smaller, consisting of a single point at each iteration. This enables
a quicker adaptivity routine, which is more parsimonious in terms of total number of samples taken. (Of course, the
main limitation of gMRI is its being limited to the approximation of univariate functions.)

5.2 (1 + 2)D numerical results

We consider a slightly more complex setup with operational relevance. The compressibility number pΛ is added as a
parameter, on top of frequency 𝜔 and static eccentricity x0: p ∶= (x0, pΛ). The effect of a static loading on the bear-
ing is captured by x0, while pΛ envelopes the combined effects of the specific fluid conditions and rotor speed at a
given operating point. See Table 1 for the ranges of 𝜔, x0, and pΛ, as well as for the nominal values of the remaining
bearing parameters.

In this section, we specifically wish to investigate the effect of the tolerances (tolZ, tolf, and tol
𝜔

) on the behavior of the
algorithm, as well as on the quality of the resulting surrogate model. For simplicity, we fix the relationships tolZ = tolf =∶
tol and tol

𝜔
= tol∕3, so that we only have one free tolerance value to vary. Each value of tol requires an independent

training, and yields a different surrogate model. We train six surrogates, corresponding to tolerance levels between 10−3

and 2.7 ⋅ 10−2. For reference, in Figure 9 we display the sets of training p-points that are explored for some values of tol.
We can observe anisotropic refinements near small values of pΛ and mid-to-large values of x0.
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HUWILER et al. 19 of 24

F I G U R E 10 On the left: fy computed with the high-fidelity training model. On the right: absolute errors |||
̃fy − fy

||| for surrogates
obtained at different tol levels. The same z-scale and color scale are used for all plots on the right-hand side.

F I G U R E 11 Timing results for different values of tol. The left and right plots refer to the offline and online phases, respectively. Left
plot: the black dots represent the sizes of the training sets, for ̃Z and̃f (full and empty dots, resp.), with the scale on the left axis. The
wall-clock time for the training phase is shown as a full blue line, with the scale on the right axis. A trend line is also included, showing the
average slope of the training cost. Right plot: online speedup for the (1 + 2)D and (1 + 6)D surrogates.

We assess the accuracy of our approximations by evaluating the surrogates and the exact model on a 30 × 30 uniform
grid of (x0, pΛ)-points. The frequency-independence of f affords us the convenience of plotting the results. In Figure 10, we
visualize the exact fy, the y-component of f, and the evolution of the corresponding surrogate absolute error for selected
values of tol. We can observe that the error peaks, in absolute terms, are driven down across the grid as tol is decreased:
adding collocation points improves the surrogate approximation in these critical areas of the domain.

Further, we look at the trade-offs between training cost, online evaluation cost, and desired accuracy of a surrogate
model for our current application. In Figure 11, we show two different kinds of scaling with respect to tol.

5.2.1 Offline cost

In Figure 11 (left), we show how the number of explored training p-points increases as tol decreases. In the same plot,
we also show that the training time is approximately proportional to the size of the training set. This confirms the fact
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20 of 24 HUWILER et al.

that computing high-fidelity samples is the bottleneck of the training phase. A trend line is also shown, investigating how
the training cost scales with respect to the target accuracy tol. The observed rate (∼ tol−0.583) is particularly interesting
if compared to the theoretical approximation rate by hat functions in 1D, namely, ∼ tol−0.5, and in 2D over a tensor grid
(as opposed to a sparse grid), namely, ∼ tol−1. This comparison reminds us of the fact that sparse grids can often recover
approximation rates similar to those in just one dimension, being only weakly affected by the “curse of dimension”.

5.2.2 Online cost

In Figure 11 (right), we display the average “online speedup” of the surrogate model. To assess the online speedup, each
of the trained surrogates and the high fidelity training model are evaluated at 300 sample points chosen by a Latin hyper-
cube sampling in p-space. Then the “speedup” is defined as the factor (averaged over the 300 sample points) by which
evaluating the surrogates ̃Z and ̃f is less expensive than computing these values with the high-fidelity training model.
Since Z also depends on 𝜔, for fairness to the high-fidelity models, we compute the impedance speedup by comparing
evaluations of ̃Z and Z at 100 different values of 𝜔, for each fixed p.

We observe that the speedup decreases as we go to smaller values of tol: the surrogate model becomes more
complex there, since more collocation points are required. Still, even in the worst case, the speedup is always on
the order of 103.

As a final note on the online costs, we also compare our surrogate models with the simplified cNGT bearing
model referred to in Remark 8, which neglects eccentricity dependence. Despite its simplicity (one of the parameters is
completely ignored), the cNGT model evaluation is more than 55 times slower than all our surrogates.

5.3 5.4 (1 + 6)D numerical results

In this section, we present results of our most complex surrogate, a complete parametric model of the classical HGJB.
Both design and operational parameters are allowed to vary: p ∶= (x0, pΛ, p𝛼, p𝛽 , pL, pH). The parameter ranges for each
of the (1 + 6)-parameters are given in Table 1. We train three surrogates, differing in the tolerance level tol ∈ {2 ⋅ 10−3

, 3 ⋅
10−3

, 9 ⋅ 10−3}.
For the purpose of validating the surrogates against the high-fidelity model, we sample the approximation errors over

a set of 300 points generated by Latin hypercube sampling. At each of the sample points, the metrics e
⋆,𝜉

and e
𝜁

(see
Section 3.2) are calculated, in order to quantify the errors between surrogate and high-fidelity values of Z and f. Figure 12
shows the corresponding empirical probability density functions. We observe that, as tol decreases, the error distributions
are shifted accordingly.

F I G U R E 12 Histograms of testing errors, measured at 300 new values of p. Impedance and static forces errors are shown in the top
and bottom rows, respectively. Two different values of tol are considered in the two columns. The dashed vertical lines are placed at tol. The
proportion of samples that do not satisfy the tolerance is indicated in the top right of each plot.
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HUWILER et al. 21 of 24

T A B L E 2 Summary of computational costs for training (1 + 6)D surrogates.

Value of tol

2 ⋅ 10−3 3 ⋅ 10−3 9 ⋅ 10−3

Building ̃Z #training p-points 69,745 50,043 19,584

Training time [h] 248 184 68

Post-refinement for̃f #training p-points 29,900 22,690 9407

Training time [h] 102 80 31

For Z, only 13% and 5% of the errors in our random sample on the training domain exceed the respective tol values.
Even when the tolerance is not attained, the errors remain approximately within a (2 ⋅ tol)-level. This behavior is to be
expected, since our way of enforcing the tolerance cannot prevent larger-than-desired errors to arise far from the test set
used in the predictor-corrector step. On the other hand, f behaves better, with all error samples falling below tol.

Further, the tol level qualitatively falls within or just above the upper tail of the distributions. The close proximity of
each distribution to its “tol” value speaks to the effectiveness of greedy sampling. Indeed, in the interest of achieving both
a quick training phase and a favorable speedup factor, we want the algorithm to use as few training points as necessary.
Error distributions much lower than their training tol level would have suggested that fewer collocation points could have
been used to get the desired model accuracy.

In Figure 11 (right), we also show the online speedup factors for the (1 + 6)D surrogates. As in the previous example,
the speedups are computed based on the 300 p-points used in post-processing. We see that, despite four additional param-
eters, our algorithm still maintains a speedup on the order of 102. Even in the worst case, there is still a significant speedup
(> 5×) compared to the simplified cNGT model, which neglects the effect of static eccentricity (cf. Remark 8).

As a final point, we revisit training costs. The training times and the required number of training points are reported
in Table 2. As in the (1 + 2)D case, our surrogates maintain a proportionality between training time and the number of
training points required. The training set size is observed to scale as ∼ tol−0.839. This is a further justification for the use
of sparse grids as a means to combat the “curse of dimension” in our application. Compared to theoretical 6D tensor grid
scaling (∼ tol−3) our observed rate again is more similar to theoretical 1D scaling (∼ tol−0.5).

6 CONCLUSIONS

In this work, we have proposed a strategy for building surrogate models of QoIs arising from generic parametric
frequency-domain problems, as exemplified by the costly nonlinear systems resulting from the study of gas-lubricated
bearing dynamics under harmonic perturbation. Non-intrusiveness is paramount in our approach: we do not make any
assumptions on the structure of the target high-fidelity problem, so that our method can be applied even if the underlying
model is accessible only via “samples” obtained through closed-source code.

Central to our approach and its originality is the combination of rational approximation and smooth interpolation
to account for the influences of frequency and other parameters on the underlying dynamical system. Rational approx-
imations are built in a greedy manner to efficiently capture the frequency-dependent aspects of the problem. Via locally
adaptive sparse grids, we can deal even with a modest number of additional parameters.

Numerical results show, by example, that with our method one can build accurate surrogate models, with signif-
icant speedups compared to their reference high-fidelity model. The obtained surrogates have the potential to enable
(near-)real-time behavior characterizations of (nonlinear) dynamical systems where they would otherwise be unfeasible,
due to the high cost of the underlying model. We look to engineers and practitioners in fields like real-time control and
design optimization to leverage potential gains in model efficiency into advances in performance, efficiency, and reliabil-
ity of real-world applications. Notably, tasks such as anomaly detection and stability analysis (even with feedback from
measurements), or optimization of a rich physical model become attainable “online”.

The price to pay for a reliable and cheap surrogate model is a lengthy training phase, which however can be performed
only once and “offline”, that is, before the surrogate is deployed. The training phase can be especially costly when the
number of parameters is large, due to the necessity to (non-intrusively) explore high-dimensional parameter domains with
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22 of 24 HUWILER et al.

sparse grids. In our numerical tests, adaptivity allowed us to tackle problems depending on up to seven parameters, which
would have otherwise been intractable, for example, with tensorized sampling grids. Still, in modest-to-high-dimensional
settings, adaptivity can only partially reduce the unavoidable training burden.

It is in this context that we envision the most interesting further research directions, specifically in the study of more
effective (adaptive) sampling strategies in high-dimension. Also, since we are sampling with the objective of interpolating,
there is also the question of the interpolation basis: in our experiments, we have employed piecewise-linear hat functions,
because they are intrinsically hierarchical and naturally suited for approximation over LASGs. Still, their weakness is the
lack of accuracy. Alternatives like polynomials, splines, or radial basis functions are often unstable or unwieldy when it
comes to high-dimensional unstructured interpolation. On the other hand, approximation methods rooted in “machine
learning”, like Gaussian process regression or neural networks may be more promising. We feel that, in this direction,
there is much room for research, both in theory and in numerical practice.
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APPENDIX A. REFERENCE MODEL DETAILS

The nondimensional formulation of the NGT equation given by Equation (14) and the frequency-domain formulation in
Section 4.2 can be derived using the scalings

P = P⋆∕P⋆a , 𝜔 = 𝜔⋆∕𝜔⋆rot, t = t⋆𝜔⋆rot,

hr = h⋆r ∕h⋆r,nom, and hg = h⋆g ∕h⋆r,nom,
(A1)

where quantities with a “⋆” as superscript are dimensional, while quantities without superscript are not. We refer to
Figure 3 for context.

For brevity, we introduced coefficients in Equation (14), which can be expanded as

a1 =
b1 + b2sin2p

𝛽

b3
, a2 =

b2 sin p
𝛽

cos p
𝛽

b3
, a3 =

b1 + b2cos2p
𝛽

b3
,

a4 =
h3

g − h3
r

b3
, a5 = p

𝛼
hg + (1 − p

𝛼
)hr, and

as = −pΛp
𝛼
(1 − p

𝛼
)(pH − 1) sin p

𝛽

(A2)

using the quantities

b1 = h3
r h3

g , b2 =
(

h3
g − h3

r
)2p

𝛼
(1 − p

𝛼
), and b3 = (1 − p

𝛼
)h3

g + p
𝛼
h3

r . (A3)

We note that a1, … , a5 are space-dependent coefficients and thus they have a perturbation form obtained by injection of
Equation (15) in the development of the frequency-domain model in Section 4.2.
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