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Abstract: Ultrafast ultrasound imaging, characterized by high frame rates, generates low-quality
images. Convolutional neural networks (CNNs) have demonstrated great potential to enhance image
quality without compromising the frame rate. However, CNNs have been mostly trained on simulated
or phantom images, leading to suboptimal performance on in vivo images. In this study, we present
a method to enhance the quality of single plane wave (PW) acquisitions using a CNN trained on
in vivo images. Our contribution is twofold. Firstly, we introduce a training loss function that
accounts for the high dynamic range of the radio frequency data and uses the Kullback–Leibler
divergence to preserve the probability distributions of the echogenicity values. Secondly, we
conduct an extensive performance analysis on a large new in vivo dataset of 20,000 images,
comparing the predicted images to the target images resulting from the coherent compounding of
87 PWs. Applying a volunteer-based dataset split, the peak signal-to-noise ratio and structural
similarity index measure increase, respectively, from 16.466 ± 0.801 dB and 0.105 ± 0.060, calculated
between the single PW and target images, to 20.292 ± 0.307 dB and 0.272 ± 0.040, between predicted
and target images. Our results demonstrate significant improvements in image quality, effectively
reducing artifacts.

Keywords: deep learning; image reconstruction; quality enhancement; ultrafast ultrasound imaging

1. Introduction

Ultrasound (US) imaging is widely used in medical imaging due to its real-time
ability to produce high-quality images of soft tissues. In particular, a technique achieving
frame rates of multiple kilohertz called ultrafast US has revolutionized US imaging.
The high frame rates achieved by ultrafast US can be exploited to study fast changes
in the human body and have enabled new imaging modalities such as shear-wave
elastography, which analyzes the tissues’ viscoelasticity, or ultrafast Doppler imaging
for flow imaging [1].

Traditional US uses focused beams to scan the imaging plane line by line, whereas
ultrafast US transmits a single unfocused wavefront such as a diverging wave (DW) or a
plane wave (PW) [1]. While focused beams concentrate energy in narrow beams, unfocused
wavefronts disperse energy across the entire field of view. Consequently, imaging with
unfocused beams yields lower-amplitude backscattered echoes and a lower signal-to-noise
ratio (SNR), resulting in lower contrast. Contrast is also degraded by artifacts caused by
grating lobes (GLs) and side lobes (SLs). Furthermore, ultrafast acquisitions suffer from
lower lateral resolution due to broader main lobes of the point spread function, compared
to line by line acquisitions.

A technique to improve the image quality of ultrafast US images is coherent plane
wave compounding (CPWC). This strategy coherently compounds multiple images ob-
tained from unfocused wavefronts steered at different angles. Therefore, this technique
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suffers from a trade-off between image quality, which is enhanced by increasing the
number of compounded acquisitions, and frame rate, which is reduced [2]. Furthermore,
coherent compounding assumes that, during acquisition, the region of interest is sta-
tionary. Consequently, images acquired on fast-moving areas might suffer from severe
motion artifacts.

Several deep-learning-based techniques have been proposed to enhance the image
quality of ultrafast acquisitions [3–13]. These approaches are intended to reduce the artifacts
caused by GLs and SLs while preserving the speckle patterns, as they comprise positional
information of the underlying physical phenomena. While [3–8] focus on enhancing
the image quality of single PW acquisitions, others intend to improve the quality of the
compounding of few PWs [9–11] or DWs [12,13].

Most of these studies use convolutional neural networks (CNNs) that learn the map-
ping between an input image, acquired with one or a few unfocused acquisitions, and a tar-
get image resulting from the compounding of several unfocused acquisitions [3,4,8,9,11–13].
Perdios et al. [3,4] trained a U-Net-based network [14], using radio frequency (RF) images
acquired with single PWs as input and RF images resulting from synthetic aperture (SA)
acquisitions as the target. In a related work by Lu et al. [8], the authors proposed a CNN
inspired by U-Net [14] and GoogLeNet [15]. Their objective was to enhance the beamform-
ing of single unfocused acquisitions by training a CNN with RF images corresponding to
unsteered single PW acquisitions as input and in-phase and quadrature (IQ) data resulting
from compounding with three and five PWs as target. Gasse et al. [9] improved the contrast
ratio and lateral resolution of RF images resulting from the compounding of three PWs
using a CNN with four hidden layers, where the images resulting from the compounding
of 31 PWs served as target images. Jansen et al. [11] presented a deep-learning-based re-
construction method in the Radon domain using a U-Net [14]. Their approach successfully
enhanced the image quality of images acquired with three PWs, using the compounding of
51 PWs as target images. Finally, Lu et al. [12,13] trained a CNN with five hidden layers
using beamformed images acquired with three DWs tilted at different angles as input
images and the images formed by compounding 31 DWs as target images. In [12], RF
images were used, while in [13], IQ images were considered.

Using focused acquisitions as target images has also been proposed [5,10]. Zhou et al. [5]
employed a generative adversarial network (GAN) with RF images acquired with one PW as
input. Khan et al. [10] implemented a CycleGAN to enhance the B-mode image quality resulting
from different numbers of compounded acquisitions: 3, 7, 11, and 31 PWs. Alternatively, recent
studies have explored the use of self-supervised learning with a 12-layer network to enhance
the quality of single unfocused acquisitions without the need of target images [6,7].

The proposed methods have been trained using different types of data, including sim-
ulated data [3,4,6–8], a combination of in vivo and in vitro (phantom) images [7,9,10,12,13],
or exclusively in vitro acquisitions [11]. However, some models are evaluated on acqui-
sitions taken on the same phantoms used for training, hindering the assessment of their
generalization capabilities [9–13]. Furthermore, existing models are typically tested on a
limited amount of in vivo data, predominantly with acquisitions from the carotid/thyroid
region [3,4,7,8,10], or even without considering in vivo acquisitions [6,11].

Acquiring large human in vivo datasets to develop deep learning methods for ultrafast
image improvement is a time-consuming and ethically regulated process. Consequently,
there are only a few datasets that contain exclusively in vivo data, such as the one in [5].
Their method was trained, tested, and evaluated using only 360 pairs of RF data acquired
on different body parts of 30 healthy volunteers, randomly selecting 36 images for the
testing set.

The absence of comprehensive testing across different body regions and large datasets
underscores a significant gap in current research. To assess the generalizability of methods,
it is crucial to train and test them while excluding similar regions or images from the same
volunteer in both training and testing phases. Furthermore, achieving model robustness
requires training on large and diverse in vivo datasets to minimize the domain gap between



J. Imaging 2023, 9, 256 3 of 20

training datasets and in vivo testing data. This work aims to address these limitations and
provide a more robust and generalized solution for enhancing the quality of in vivo single
unfocused acquisitions.

The authors in [4] proposed a CNN-based US image reconstruction method that not
only reduces artifacts and restores the speckle patterns of single ultrafast acquisitions
but also can be used for displacement estimation [16]. Although this approach showed
potential for recovering high-quality images from single unfocused acquisitions using
simulated data, the quality improvement dropped significantly when applied to in vivo
data due to the domain shift between in vivo and simulated data [4]. Furthermore, their
assessment of the method on in vivo acquisitions was limited, lacking quantitative results
and only involving a small number of in vivo acquisitions.

The objective of this work is to improve the performance of this approach on in vivo
data, by reducing noise and artifacts from single in vivo PW acquisitions to achieve an image
quality comparable to that of CPWC with 87 PWs. To accomplish this, we have improved
the previous method [4] by slightly modifying the CNN architecture, proposing a new
training loss function, and training and assessing it with a large and new in vivo dataset.

This work introduces two significant contributions that aim to improve the ultrafast
US image quality of RF images:

1. A novel loss function that effectively handles the high dynamic range of the RF images
while preserving the probability distribution function of the echogenicity values.

2. A large and diverse in vivo dataset comprising 20,000 images. This dataset has been
used for training the CNNs and will be made available for public access along with
this paper.

The remaining sections of the paper are structured as follows. In Section 2, we provide
a detailed overview of the materials and methods employed in this study. This section
is organized into five subsections, covering dataset acquisition and preprocessing, the
architecture and training of the CNN, the dataset splitting strategies, the training losses,
and the performance evaluation and metrics. Moving on to Section 3, we present the
results, which are divided into two distinct subsections: one that compares two different
training loss functions, and another that delves into the network’s ability to generalize
across various body regions. Section 4 is divided in five subsections that include an in-
depth discussion of the results, a comparison with state-of-the-art methods, an analysis of
the computational efficiency of our method, and limitations and future work. Finally, in
Section 5, we summarize the main conclusions drawn from this study.

2. Material and Methods
2.1. Dataset Acquisition and Preprocessing

A large dataset of 20,000 in vivo images acquired on different body parts was collected
from nine healthy volunteers (five males and four females), with ages ranging from 22 to
33 years, as outlined in Table 1. Between two consecutive acquisitions, a brief pause of
a few seconds was allowed, during which the probe was repositioned to a new location.
The acquisitions were performed with the approval of the Cantonal Commission on Ethics
in Human Research (2022-01696, CER-VD, Vaud, Switzerland). An in vitro image was
also acquired on the CIRS model 054GS phantom (CIRS, Norfolk, VA, USA) to assess the
performance of our method and derive normalization matrices. The acquisitions were
collected using the GE 9L-D linear array transducer (GE Healthcare, Chicago, IL, USA),
a linear array transducer with 192 elements and a center frequency of 5.3 MHz, and the
Vantage 256 system (Verasonics, Kirkland, WA, USA).
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Table 1. Number of images and mean and standard deviation of the echogenicity values of the dataset.

Number of Images Echogenicity (dB)
1 PW 87 PWs

Dataset 20,000 4.65 ± 9.93 −3.83 ± 12.28
Abdomen 6599 5.43 ± 9.38 −3.08 ± 11.45
Carotids 3294 2.99 ± 10.25 −5.77 ± 13.35
Breast 3291 4.28 ± 10.50 −4.64 ± 12.96
Lower limbs 2616 6.34 ± 9.57 −0.87 ± 11.40
Upper limbs 2110 3.99 ± 10.78 −3.93 ± 13.03
Back 2090 3.93 ± 9.08 −5.43 ± 11.27

PW: plane wave.

Each acquisition consisted of 87 PWs steered at different angles acquired at a pulse
repetition frequency of 9 kHz. An alternating steering angle sequence [17] with a steering
angle spacing of 0.38◦ was employed, resulting in the steering angles of the PWs being
evenly spaced between −16.34◦ and 16.34◦. The steering angle spacing and the number
of steered acquisitions were determined such that the focusing quality was comparable to
that of the optimal multi-focus, as described in [2,4], considering an F-number of 1.75. Time
gain compensation was applied assuming a tissue attenuation of 0.5 dB/(cm·MHz).

The ultrasound probe was moved before each measurement to ensure that each acquisi-
tion was distinct from the previous one. The maximum frame rate between two acquisitions
was restricted to 47.5 Hz, maintaining an intensity spatial peak temporal average (ISPTA)
below the Food Drug Administration (FDA) recommended threshold of 94 mW/cm2 [18].
The peak-to-peak voltage was set to 40 V to ensure a mechanical index below 0.7, as recom-
mended by the British Medical Ultrasound Society (BMUS) [19]. The imaging configuration
and parameters used are specified in Table 2.

Table 2. Imaging configuration and acquisitions’ parameters.

Parameter Value

Linear array transducer GE 9L-D
Center frequency 5.3 MHz
Bandwidth (at −6 dB) 75%
Aperture 43.93 mm
Element number 192
Pitch 230 µm
Element width 1 207 µm
Element height 6 mm
Elevation focus 28 mm
Transmit frequency 5.208 MHz
Excitation cycles 1
Sampling frequency 20.833 MHz
Number of compounded acquisitions 87
Steering angle spacing 0.38◦

Pulse repetition frequency 9 kHz
Peak-to-peak voltage 40 V

1 Estimated value.

Ultrafast US imaging can be formulated as an inverse problem [20]. Let us consider the
measurements y ∈ RN , the measurement noise ε ∈ RN , the measurement model operator
H : RM → RN , and the vectorized image that we want to estimate θ ∈ RM. Then, the
inverse problem can be formulated as finding θ such that y = Hθ+ ε.
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Our reconstruction pipeline relies on the estimation of a solution to this inverse
problem. This estimation was obtained following the method described in [4] with a
backprojection-based delay-and-sum operator that was implemented using PyUS [21], a
GPU-accelerated Python package for US imaging. A λ/8× λ/8 grid with a width spanning
the probe aperture and a depth from 1 mm to 55 mm was considered, resulting in images
of 1483 × 1189 pixels.

From each acquisition, we estimated two beamformed RF images. The first corre-
sponds to the single unfocused acquisition obtained from the PW measurement steered at
0◦, and it is referred to as the input image. The second results from coherently compound-
ing the 87 PWs acquisitions steered at different angles and is referred to as the target or
CPWC image.

Using 1000 speckle image pairs acquired on the CIRS model 054G phantom, we
computed two normalization matrices: one for the input and the other for the target images.
These matrices are designed to compensate for the variations in echogenicity introduced
by beamforming, ensuring that B-mode images of the in vitro phantom with uniform
echogenicity appear consistently uniform with 0 dB echogenicity. We first beamformed the
speckle images. Afterward, we detected the envelope and log-compressed the resulting
images to generate the B-mode images. These B-mode speckle images were averaged,
giving rise to a matrix of 1483 × 1189 values. By converting the B-mode average matrices
to linear scale, we obtained the normalization matrices. These normalization matrices were
applied to normalize all the RF images by dividing the RF images by them. The vectorized
normalized RF image corresponding to the single unfocused acquisition is denoted as
x1PW ∈ RM, while the one corresponding to the target image is denoted as x ∈ RM.

To evaluate the diversity of our datasets, the probability distributions of the B-mode
values of the normalized images, x1PW and x, were analyzed. The mean and standard
deviation of these distributions for both imaging modalities are presented in Table 1. We
observe that our images span a high dynamic range, which significantly varies across
different imaged body areas. Furthermore, the single unfocused images tend to have
higher echogenicity and a narrower range compared to the target images, leading to re-
duced contrast. The lower echogenicity in the target images compared to input images
is primarily due to two factors. First, motion can occur between PW acquisitions, reduc-
ing coherence between acquired signals. Second, the effects of multiple scattering are
supposed to be incoherent between different insonifications and therefore are reduced by
coherent compounding.

2.2. CNN Architecture and Training

Our CNN architecture is based on the U-Net architecture described in [4]. It has
previously demonstrated success in enhancing ultrafast ultrasound images by effectively
mitigating artifacts from GLs and SLs when trained on simulated data. The network
architecture, illustrated in Figure 1, consists of multiple multichannel convolutional layers
and scaled exponential linear unit (SELUs) organized into downsampling and upsampling
paths. The main modification from the architecture presented in [4] is the replacement
of the rectified linear unit activation functions with the SELU activation functions [22].
Notably, with this activation function, we observed that our network converged faster in
our specific setup, showing improved training efficiency.

The initial layer of the network (pink arrow) expands the input image’s channels to 16.
It is followed by the downsampling path, which concatenates a series of residual convolu-
tional blocks (red arrows) and downsampling layers (blue arrows), which simultaneously
increase the number of channel and reduce the spatial dimensions. The upsampling path
consists of a sequence of skip connections (violet arrows), residual convolutional blocks
(red arrows), and upsampling layers (green arrows). In the end, the number of channels in
the output is reduced to match those of the initial input image (pink arrow), and the output
is summed with the input image (gray arrow).
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Figure 1. Convolutional neural network (CNN) architecture and the residual convolutional blocks
considered. Arrows represent network layers and operations, while rectangles represent tensors with
the number of channels specified below them.

The network aims to learn the mapping f : RM → RM between x1PW and x in order to
estimate higher-quality images, x̂, from the PWs steered at 0◦: x̂ = f (x1PW). Thus, the CNN
was trained using as input images the estimated normalized RF images corresponding to the
PWs steered at 0◦, x1PW, and as target images the estimated normalized RF images resulting
from the 87 PWs compounded acquisitions, x. The choice of training the CNN with RF
images is driven by the need for better-quality ultrafast ultrasound images, essential for
achieving more accurate speckle tracking.

The training pipeline was implemented using PyTorch (v1.12), and the trainings were
executed on an Nvidia Tesla V100 GPU (Nvidia Corporation, Santa Clara, CA, USA). The
network was trained for 20 epochs using 16 channels and an Adam optimizer [23] with
a learning rate of 0.0003 and a weight decay of 0.005. The training batch size was set
to 16 and a random shuffle was applied on every epoch. All these parameters’ values
were optimized using Optuna [24], a software that implements a Bayesian optimization
algorithm for hyperparameter tuning.

2.3. Dataset Splitting Strategies

Two different dataset splitting strategies were considered. Firstly, to prevent the
inclusion of similar images from the same volunteer in both the training and validation or
test sets, we performed a volunteer-based split.

Secondly, to assess the network’s generalizability across different body regions
and the dataset diversity, we adopted a splitting strategy that we name region-based
splitting. With this approach, all images in the dataset that do not belong to a specific
body region were randomly divided between the training set (90%) and the validation
set (10%). The testing set exclusively contains the image pairs acquired from the
specific body region.

With these two strategies, we define three different splits:

• Volunteer-based split (VS): The dataset is split using the volunteer-based strategy.
Out of the 9 volunteers, 6 have been used for training, 1 for validation, and 2 for
testing.

• Carotid split (CS): The dataset is split using the region-based strategy, with the test
set including all image pairs acquired on the carotids from all the volunteers. The
testing set of the CS will be referred to as the carotid test set.

• Back split (BS): The dataset is split using the region-based strategy, with the test set
including all image pairs acquired on the back from all the volunteers. The testing set
of the BS will be referred to as the back test set.
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From the VS test set, we derive two additional test subsets: one consisting of images
acquired on the carotids of the two test volunteers and the other comprising images acquired
on the backs of the two test volunteers. We refer to these two test subsets as the VS carotid
test subset and the VS back test subset. It is important to note that all images included in these
two sets are also part of the carotid test set and the back test set, respectively.

The resulting number of images of the three different splits are detailed in Table 3.

Table 3. Dataset splits and number of images.

Training Set Validation Set Testing Set

Volunteer-based split (VS) 16,077 1826 2097
Carotid acquisitions 1836 594 600
Back acquisitions 1548 0 542

Carotid split (CS) 15,035 1671 3294
Back split (BS) 16,119 1791 2090

2.4. Training Losses

Due to the high dynamic range of our RF images, traditional losses such as mean
absolute error and mean squared error are not suitable. To address this issue, the authors
in [4] introduced a log-compressed loss named mean signed logarithmic absolute error
(MSLAE) that showed a great potential to train networks with RF simulated images of high
dynamic range. This loss can be expressed as follows:

LMSLAE(x, x̂) =
1
n
||gα(x)− gα(x̂)||1, (1)

with

gα(xm) = sign(xm) logα

(
α

max(α, |xm|)

)
(2)

where xm denotes the pixel m of the vectorized image x and α ∈ (0, 1).
When using this loss with our in vivo dataset, the network tends to widen the

echogenicities distribution and shift them to lower echogenicities.
A well-known measure to quantify the similarity between two probability distributions

is the Kullback–Leibler (KL) divergence. It is a non-symmetric measure of the difference
between two distributions. Let us consider two probability distributions p(z) : RM → RK

and q(ẑ) : RM → RK, with M and K denoting the number of samples and bins, respectively.
Then, the KL divergence of q(ẑ) from p(z) is defined as

DKL(p(z)||q(ẑ)) =
K

∑
k=0

p(z)k ln
p(z)k
q(ẑ)k

, (3)

where p(z)k and q(ẑ)k are the probability estimates of the k-th bin. To improve the perfor-
mance of the image enhancement method, we introduce a new loss named KLD-MSLAE
that aims to reduce diffraction artifacts while preserving the echogenicity distribution
probabilities by combining MSLAE with the KL divergence. It is defined as follows:

LKLD−MSLAE(x, x̂) = LMSLAE(x, x̂)

+βDKL(p(z)||q(ẑ)),
(4)

where β ∈ R is a weighting factor, and p(z) and q(ẑ) denote the estimated probability
distributions of z = 20 log10(max(α, |x|)) and ẑ = 20 log10(max(α, |x̂|)), respectively.

The probability distributions p(z) and q(ẑ) have to be estimated so that the estimates
are differentiable. We consider that our probability distributions span over the range
[−γdB, γdB], and we set the number of bins to K. Each bin k has a width of δ = 2γdB/K and
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is centered at ck = −γdB +(k+ 0.5)δ, with k = 0, . . . , K. Then, we can define ∆m,k = zm− ck.
The probability distribution on the k-th bin, p(z)k, can be approximated by

p(z)k =
∑M

m=1(sη(∆m,k +
δ
2 )− sη(∆m,k − δ

2 ))

∑K
k=1 ∑M

m=1(sη(∆m,k +
δ
2 )− sη(∆m,k − δ

2 ))
, (5)

with sη(x) = 1/(1 + e−ηx) denoting the logistic function with a growth rate of η.
The probability distribution estimation depends on the choice of three parameters:

η, K, and γdB. A larger number of bins K and a steeper logistic function enhance the
accuracy of the estimation. Our parameter choices were made as follows. Firstly, as we
increase η, the logistic function will approach a Heaviside step function, becoming less
differentiable. We opted for a logistic growth η of 0.5, as increasing it further resulted in
training instabilities. Secondly, to speed up the computation of the KL divergence term,
we employed a matrix-based implementation for our probability distribution estimations.
Unfortunately, due to memory constraints, we had to limit the number of bins K to 40.
Thirdly, to mitigate the widening and shifting echogenicity effects observed during training
with the MSLAE loss, we needed to consider a wide range of echogenicity values, which
we controlled with the parameter γdB. After training with various values, we found that
γdB = 60 dB provided the best results.

In both components of the loss, the parameter α plays a key role. For any RF value x
satisfying |x| < α, the gα(x) of the MSLAE term is equal to zero while the KL divergence
term ignores it. Therefore, the α value prevents the network to learn from absolute RF
values lower than α or, equivalently, from echogenicities lower than αdB = 20 log10(α).
Furthermore, it sets a threshold that allows the use of logarithmic operations in the losses
without facing the vertical asymptote of the logarithmic function in 0. Different α values
were used to train the network. By visually assessing the resulting images, we observed
that the best results are obtained with αdB = −60 dB. Note that this low value of αdB does
not restrict the network’s ability to learn from low echogenicities present in the dataset.
It is important to emphasize that γdB and αdB have been optimized specifically for the
echogenicity distribution of our dataset. The selection of αdB ensures that the network
learns from the lower echogenicity values of the input distribution, while γdB is chosen to
calculate the KL divergence term of the loss, taking into account the entirety of echogenicity
ranges present in both the input and target distributions. Therefore, these two values
should be modified accordingly when considering other data distributions.

Finally, another parameter demanding tuning is the weight parameter, denoted as
β. When β assumes a low value, the echogenicity distributions tend to become broader
and shifted, similar to when training exclusively with the MSLAE loss. Conversely, a
high β value leads to improved echogenicity in the results but can limit the network’s
ability to remove artifacts effectively, potentially introducing a blurry effect in the resulting
images. We conducted several trainings with varying β values and, after quantitative and
qualitative assessment, we ultimately set β = 0.5 as it achieved a favorable balance between
artifact removal and desirable echogenicity distributions. When working with other data
distributions, it is necessary to adjust the parameter β because it controls the distribution
shift performed by the network when trained with MSLAE, and this shift varies depending
on the input distribution.

2.5. Performance Evaluation and Metrics

To evaluate the performance of our method, we compare the outputs of the CNN to
the corresponding target test images acquired with 87 PWs, which we regard as ground
truth. Three metrics are considered: the structural similarity index measure (SSIM) [25],
the peak signal-to-noise ratio (PSNR) [25], and the KL divergence (Equation (3)). These
metrics are computed between the B-mode images within the range of [−40 dB, 40 dB],
even though the trainings were performed on RF beamformed images. Furthermore, we
calculate the means and standard deviations of the resulting echogenicity values.
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The contrast (C) is assessed in selected areas of two test images. The contrast between
two image areas is calculated on the envelope-detected images following [4]. Specifically,
the contrast between two designated areas, denoted as A and B, is computed in decibels as
C = 20 · log10 (sA/sB). Here, sA and sB represent the mean values of the envelope-detected
images in regions A and B, respectively.

For the assessment of speckle patterns, the SNR is calculated in selected areas of the
same two test images. The SNR is computed as the ratio of the mean value to the standard
deviation: SNR = sA/σsA , where sA and σsA denote the mean and standard deviation of
the amplitude of the envelope-detected image in the region A, respectively. For an ideal
Rayleigh distribution, the expected SNR is 1.91 [4].To further evaluate speckle patterns and
their resolution, the axial and lateral full width at half maximum (FWHM) of the axial and
lateral dimensions of the 2D autocovariance function (ACF) [4] is computed within the
same areas containing the speckle patterns.

Our reconstruction method is also evaluated on an in vitro image taken on the CIRS
model 054GS phantom. This image contains three inclusions with different contrasts:
one anechoic inclusion and two low-echogenic inclusions with a C of −6 dB and −3 dB,
respectively. All three inclusions are located at a depth of 40 mm and have a diameter of
8 mm. As with the two in vivo images, we compute the contrasts of these inclusions. We
also evaluate the speckle patterns by computing the SNR and the FWHM of the 2D ACF.
This assessment is performed within selected areas exclusively containing speckle patterns.

3. Results
3.1. Comparison of KLD-MSLAE and MSLAE Losses

To assess the improvement achieved with the KLD-MSLAE loss compared to the
MSLAE loss, we trained our CNN using both loss functions, applying the VS. Figure 2
shows the input, target, and output images of two acquisitions. The first row shows a
carotid artery of one of the volunteers of the test set, while the second row shows an
acquisition taken on the back of the other test volunteer.

The improvement in terms of the reduction of artifacts is noticeable using both
losses. Particularly, this improvement can be clearly observed in the area outlined in
yellow in the carotid images, where a large artifact is highly visible in the input image
(Figure 2a), and the area delimited in red in the back image (Figure 2e). When zooming
in on both areas, we can observe that the artifacts have been reduced and that some
speckle patterns hidden or modified by the artifacts have been restored. To evaluate the
restoration of speckle patterns, the SNR and the axial and lateral FWHM of the 2D ACF
were computed in the areas delimited by yellow and red dotted lines. The resulting
values are specified in Table 4.

Table 4. Evaluation metrics computed on the highlighted areas of two in vivo acquisitions, with
each color representing a distinct region in Figure 2.

C (dB) SNR FWHMACFA
(µm)

FWHMACFL
(µm) C (dB) SNR FWHMACFA

(µm)
FWHMACFL

(µm)

Target −21.90 1.261 254.15 542.29 −15.83 0.838 302.12 580.19
Input −15.28 1.451 446.78 1120.27 −11.95 1.134 260.01 222.95
KLD−MSLAE −20.16 1.436 242.43 474.97 −16.49 0.789 296.63 764.88
MSLAE −23.74 1.377 248.29 524.63 −18.88 0.654 337.65 1248.30

A: axial; ACF: autocovariance function; C: contrast; FWHM: full width at half maximum; KLD: Kullback–Leibler
divergence; L: lateral; MSLAE: mean signed logarithmic absolute error; SNR: signal-to-noise ratio.

It is important to acknowledge that the target images might also be affected by artifacts,
such as the SLs present in the region highlighted in magenta (Figure 2b). These SLs are
partially attenuated but not entirely removed by the CNN, as shown in the magenta areas
of Figure 2c,d.



J. Imaging 2023, 9, 256 10 of 20

(a) Input image
1 PW

(b) Target image
87 PWs

(c) Output image
KLD-MSLAE

(d) Output image
MSLAE

(e) Input image
1 PW

(f) Target image
87 PWs

(g) Output image
KLD-MSLAE

(h) Output image
MSLAE

Figure 2. B-mode images with a dynamic range of 65 dB (−25 to 40 dB) of the carotid (top row)
and back (bottom row) of two test volunteers: (a,e) input images acquired with one PW; (b,f) target
images obtained from the coherent compounding with 87 PWs; (c,g) resulting images from the
CNN trained with the KLD-MSLAE loss; (d,h) resulting images from the CNN trained with the
MSLAE loss.

When using the MSLAE loss, the images exhibit increased contrast. Particularly, there
is an over-attenuation of the low-echogenic areas, which is evident in the deeper area of
Figure 2d. In contrast, the KLD-MSLAE loss attains a comparable contrast to the target
images. To quantify this, the contrasts between the upper and lower areas delimited in
magenta and blue dotted lines have been computed and are presented in Table 4.

To further analyze the discrepancies arising from training with the two different
losses, Figure 3 presents the probability distributions of B-mode values for the input, target,
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and CNN’s output images of the test set. It is evident that the CNN trained with the
MSLAE loss causes the echogenicity distribution to widen and shift toward lower values.
Conversely, training with the KLD-MSLAE loss enables the CNN to achieve a distribution
of echogenicity closer to that of the target images.

−60 −40 −20 0 20 40 60
Echogenicity [dB]

0.00

0.01

0.02

0.03

0.04

0.05
Pr

ob
ab

ilit
y

1 PW
87 PWs
KLD-MSLAE
MSLAE

Figure 3. Probability distributions of echogenicity values in the VS test set for input, target, and
output images of the CNN. The CNN was trained using both the KLD-MSLAE loss and the standalone
MSLAE loss.

The reconstructed B-mode images were compared to the target images using the
metrics PSNR, SSIM, and KL divergence. Table 5 presents the mean and standard deviation
of these metrics across all test set acquisitions, along with the mean and standard deviation
of the resulting echogenicity values. From these results, it is evident that the CNN, when
trained with the KLD-MSLAE loss, enhances both the PSNR and SSIM with respect to the
target images, in comparison to the CNN trained with the MSLAE loss. Furthermore, the
KL divergence between the output and target images is also highly improved. A lower KL
divergence indicates a higher similarity in echogenicity distributions and, consequently,
a closer resemblance in contrast to the target images. The resemblance in echogenicity
distributions can also be observed by analyzing the mean and standard deviation of the
resulting echogenicity values. The CNN trained with KLD-MSLAE presents a mean and
standard deviation closer to the target echogenicity values. In contrast, when trained with
MSLAE, the resulting echogenicity values have a mean shifted towards lower values and a
higher standard deviation compared to the target values.

Table 5. Evaluation metrics computed on the in vivo VS test set.

PSNR (dB) SSIM KL Divergence Echogenicity (dB)

Target - - - −4.18 ± 11.64
Input 16.466 ± 0.801 0.105 ± 0.060 0.303 ± 0.090 4.48 ± 9.44
KLD-MSLAE 20.292 ± 0.307 0.272 ± 0.040 0.015 ± 0.015 −5.41 ± 11.25
MSLAE 16.196 ± 1.008 0.179 ± 0.036 0.258 ± 0.092 −13.65 ± 13.16

KL: Kullback–Leibler; PSNR: peak signal-to-noise ratio; SSIM: structural similarity index measure.
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The network trained on in vivo data was applied to an in vitro phantom acquisition.
Figure 4 shows the input, target, and CNN output images using the two losses. The regions
where the contrasts have been calculated are marked with multiple concentric circles. The
contrasts are calculated between the inner part of the smaller circles and the background
areas between the two outer circles. The two low-echogenic inclusions with a contrast of
−3 dB and −6 dB with respect to the background are highlighted in magenta and green,
respectively, and the anechoic inclusion is indicated in blue. The speckle patterns are
assessed in three regions highlighted in yellow by computing the SNR and the FWHM of
the axial and lateral dimensions of the 2D ACF. Table 6 summarizes the resulting metrics.

1 cm

(a) Input image
1 PW

1 cm

(b) Target image
87 PWs

1 cm

(c) Output image
KLD-MSLAE

1 cm

(d) Output image
MSLAE

Figure 4. B-mode images with a dynamic range of 65 dB (−45 to 20 dB) of an in vitro acquisition
containing two low-echogenic inclusions and an anechoic inclusion: (a) input image acquired with
one PW; (b) target image obtained from the coherent compounding with 87 PWs; (c) resulting image
from the CNN trained with the KLD-MSLAE loss; (d) resulting image from the CNN trained with the
MSLAE loss.

Table 6. Evaluation metrics computed on the in vitro acquisition. The contrasts have been computed
on three inclusions, highlighted in magenta, green and blue in Figure 4. The speckle patterns have
been evaluated in three areas indicated in yellow in Figure 4.

C (dB) C (dB) C (dB) SNR FWHMACFA (µm) FWHMACFL (µm)

Target −3.00 −6.27 −28.35 1.884 ± 0.039 244.38 ± 5.00 235.93 ± 8.45
Input −3.18 −6.00 −18.33 1.911 ± 0.024 239.97 ± 4.24 239.85 ± 8.05
KLD−MSLAE −3.60 −7.38 −20.31 1.895 ± 0.009 287.23 ± 7.63 365.10 ± 6.68
MSLAE −4.69 −9.13 −24.04 1.658 ± 0.005 297.14 ± 6.70 405.14 ± 7.08

3.2. Network’s Generalizability Across Different Body Regions

To evaluate the network’s ability to generalize across different body regions, we trained
our CNN with the KLD-MSLAE loss function using the two region-based dataset splits
detailed in Section 2.3.

Figure 5 depicts the same carotid artery and back acquisitions as Figure 2. In this
figure, we show the resulting image of the carotid artery image when the CNN was trained
without any carotid images using the CS (Figure 5a), an image of the back when the
CNN was trained excluding back images using the BS (Figure 5c), and, for reference, both
images resulting from the CNN trained using the VS (Figure 5b,d). We can observe that
the resulting images are visually similar, with significantly reduced artifacts compared to
the input images (Figure 2a,e), regardless of whether images from the same region were
used for training or not. Specifically, in the zoomed areas highlighted in yellow and red,
the artifacts have been considerably reduced and some speckle patterns that were altered
or hidden by these artifacts have been restored.
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(a) Output image
CNN trained with the CS

(b) Output image
CNN trained with the VS

(c) Output image
CNN trained with the BS

(d) Output image
CNN trained with the VS

Figure 5. B-mode images with a dynamic range of 65 dB (−25 to 40 dB) of the carotid and back of
the two test volunteers: (a) resulting carotid image from the CNN trained with the CS; (b) resulting
carotid image from the CNN trained with the VS; (c) resulting back image from the CNN trained
with the BS; (d) resulting back image from the CNN trained with the VS.

In the regions demarcated by dotted lines within these two areas, the restoration of
speckle patterns was assessed by computing the SNR and the axial and lateral FWHM of the
2D ACF. We also measured the contrasts between the upper and lower areas highlighted in
magenta and blue dotted lines in the carotid and back images, respectively. Tables 7 and 8
present the resulting values. Note that, while the resulting images are visually very similar,
some differences can be observed on the speckle patterns and contrast metrics. Particularly,
the lateral FWHM of the 2D ACF is larger in both images when using the region-based splits
instead of the VS, being for the carotid image closer to the target value. Nevertheless, the
contrasts are closer to the target ones when training with the two region-based splits.

Table 7. Evaluation metrics computed on the highlighted areas in magenta and yellow of the carotid
acquisition when the CNN is trained with the CS and the VS.

C (dB) SNR FWHMACFA
(µm)

FWHMACFL
(µm)

Target −21.90 1.261 254.15 542.29
Input −15.28 1.451 446.78 1120.27
CNN trained with the CS −21.15 1.432 240.23 493.73
CNN trained with the VS −20.16 1.436 242.43 474.97

Table 8. Evaluation metrics computed on the highlighted areas in blue and red of the back acquisition
when the CNN is trained with the BS and the VS.

C (dB) SNR FWHMACFA
(µm)

FWHMACFL
(µm)

Target −15.83 0.838 302.12 580.19
Input −11.95 1.134 260.01 222.95
CNN trained with the BS −16.08 0.745 306.89 851.33
CNN trained with the VS −16.49 0.789 296.63 764.88
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To analyze the performance across the carotid test set and back test set, we compare
the output images from the trainings with the two region-based dataset splits to the target
images, using the metrics PSNR, SSIM, and KL divergence. The mean and standard
deviation of these metrics across the two test sets, i.e., the test sets of CS and BS, along
with the mean and standard deviation of the resulting echogenicity values, are reported in
Table 9.

For a fair comparison of the network’s performance when including and excluding
body regions in the training, we obtained these same metrics on the VS carotid test subset
and the VS back test subset. These two subsets include the images acquired on the carotids
and backs of the two volunteers assigned to test in the VS, respectively. We evaluated
the performance on the VS carotid test subset by testing two networks: the first trained
using the CS and the second with the VS. Similarly, we assessed the performance on the VS
back test subset by using again two networks, the first trained with the BS and the second
trained using the VS. Table 9 presents the resulting values.

Table 9. Evaluation metrics computed on the carotid test set, the VS carotid test subset, the back test
set, and the VS back test subset.

Number of Images
and Volunteers PSNR (dB) SSIM KL Divergence Echogenicity (dB)

Carotid test set
Target 3294 (9 volunteers) - - - −5.77 ± 13.35
Input 3294 (9 volunteers) 16.306 ± 0.902 0.144 ± 0.060 0.291 ± 0.077 2.99 ± 10.25
CNN trained with the CS 3294 (9 volunteers) 19.159 ± 0.913 0.277 ± 0.021 0.018 ± 0.014 −8.65 ± 13.98

VS carotid test subset
Target 600 (2 volunteers) - - - −4.38 ± 12.73
Input 600 (2 volunteers) 16.529 ± 0.902 0.135 ± 0.053 0.271 ± 0.073 3.99 ± 9.79
CNN trained with the CS 600 (2 volunteers) 19.441 ± 0.875 0.275 ± 0.020 0.019 ± 0.013 −7.12 ± 13.12
CNN trained with the VS 600 (2 volunteers) 20.402 ± 0.307 0.300 ± 0.023 0.018 ± 0.012 −5.94 ± 11.92

Back test set
Target 2090 (9 volunteers) - - - −5.43 ± 11.27
Input 2090 (9 volunteers) 16.096 ± 0.828 0.071 ± 0.058 0.367 ± 0.112 3.93 ± 9.08
CNN trained with the BS 2090 (9 volunteers) 19.771 ± 0.517 0.259 ± 0.032 0.016 ± 0.014 −7.15 ± 11.57

VS back test subset
Target 542 (2 volunteers) - - - −5.44 ± 10.98
Input 542 (2 volunteers) 16.091 ± 0.791 0.067 ± 0.054 0.372 ± 0.100 3.93 ± 8.92
CNN trained with the BS 542 (2 volunteers) 19.737 ± 0.508 0.254 ± 0.033 0.017 ± 0.012 −7.20 ± 11.32
CNN trained with the VS 542 (2 volunteers) 20.284 ± 0.284 0.270 ± 0.044 0.014 ± 0.010 −6.25 ± 10.52

4. Discussion
4.1. Comparison of KLD-MSLAE and MSLAE Losses

Our deep-learning-based ultrafast ultrasound image enhancement method has proven
to successfully reduce artifacts, leading to an improvement in the image quality of single
unfocused acquisitions. To compare the two losses, we consider the VS, i.e., different
volunteers are used for training, validation, and testing the network. The two in vivo
examples demonstrate the CNN’s capability to effectively mitigate artifacts on different
body parts. To quantitatively assess the performance, we compute PSNR, SSIM, and KL
divergence between the output and target B-mode images and compare them to those
between the input and target B-mode images.

By adopting the KLD-MSLAE loss, we achieve an overall enhancement in terms of
PSNR and SSIM. Specifically, the PSNR increases from 16.466 ± 0.801 dB to 20.292 ± 0.307 dB,
and the SSIM increases from 0.105 ± 0.060 to 0.272 ± 0.040. The KL divergence component of
the loss helps to attain a contrast and echogenicity distribution similar to the target images.
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This fact is evident when comparing the mean and standard deviation of the resulting
echogenicity (−5.41 ± 11.25 dB), which is closer to the target echogenicity (−4.18 ± 11.64 dB)
than the input (4.48 ± 9.44 dB). Furthermore, the distance between echogenicity distribution
can also be assessed using the KL divergence. The KL divergence between input and target
echogenicity distributions is 0.303 ± 0.090, which is highly reduced to 0.015 ± 0.015 by the
CNN trained with KLD-MSLAE.

In contrast, when training with the MSLAE loss, the achieved PSNR is decreased from
16.466 ± 0.801 to 16.196 ± 1.008 dB, whereas the SSIM is increased from 0.105 ± 0.060 to
0.179 ± 0.036, being both metrics significantly lower those obtained with the KLD-MSLAE
loss. The resulting echogenicity of −13.65 ± 13.16 dB is considerably distant from the target
of −4.18 ± 11.64 and the KL divergence is 0.258 ± 0.092, being only slightly better than the
baseline value of 0.303 ± 0.090.

The MSLAE loss shifts the echogenicity values to lower levels and spans them to a
wider range. This induces a higher contrast that results in the loss of fine details and speckle
patterns, specially in anechoic regions and greater depths. The fact that MSLAE achieves
higher contrast than KLD-MSLAE is further corroborated by analyzing the computed
contrasts within the highlighted magenta and blue regions. In both areas, the difference
between the contrasts achieved by the CNN trained with the MSLAE loss and the targets
are −1.84 and −3.05 dB, respectively. With the KLD-MSLAE loss, these differences with
the target values are reduced to 1.74 dB in the magenta area and −0.66 dB in the blue area.
Note that both losses yield contrasts closer to the target image contrasts than the single
unfocused input images.

Two specific regions, highlighted in yellow and red, that exhibit artifacts that hide or
alter the speckle patterns were analyzed. Upon visual assessment, we can observe that
the CNN recovers speckle patterns that are more similar to those in the target images
when contrasted with the original regions on the single PW images. In the area indicated
in yellow of the carotid image, the achieved SNRs when training with KLD-MSLAE and
MSLAE are 1.436 and 1.377, respectively, with the latter approaching the target value of
1.261 more closely. The lateral and axial FWHM of the 2D ACF are highly reduced by the
CNN, specially when trained with the KLD-MSLAE loss, resulting in values lower than the
intended target values. Nevertheless, within the red region of the back image, the FWHM
of the ACF in the lateral dimension significantly exceeds the target value of 580.19 µm,
being 764.88 µm and 1248.30 µm, with the CNN trained with KLD-MSLAE and MSLAE
losses, respectively. Note that the speckle patterns of this specific region of the input image
are highly altered by artifacts, leading to an increase in their resolution and rendering them
significantly distinct from the speckle patterns in the target image. Despite the increase in
the lateral FWHM of the ACF in the red area, the region restored by the CNN is much more
similar to the target one than those in the input image. The SNR measured in this region
has been improved from 1.134 in the input image to 0.789 in the output image resulting
from the CNN trained with KLD-MSLAE, being the target 0.838. It is worth mentioning
that, in both regions and in both dimensions, training with the KLD-MSLAE loss results in
lower axial and lateral FWHM of the 2D ACF compared to training with MSLAE.

While there is a clear improvement in in vivo data in terms of contrast and artifacts
removal, this improvement does not extend to the in vitro phantom image. This dispar-
ity could arise from the domain gap between the in vitro data and the training dataset,
which comprises vastly different structures and artifacts compared to those present in the
in vitro image.

When visually assessing the in vitro image, we can observe that the CNN produces
images of lower echogenicity, specially when trained with the MSLAE loss. In the two low-
echogenic inclusions with target contrasts of−3.00 dB and−6.27 dB, the contrasts measured
in the output images of the CNN trained with KLD-MSLAE are −3.60 dB and −7.38 dB,
respectively, whereas when trained with MSLAE are −4.69 dB and −9.13 dB, respectively.
Therefore, in both regions and with both losses, the contrasts (in absolute value) are
surpassed. Conversely, the resulting contrasts of the anechoic inclusion, −20.31 dB with
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KLD-MSLAE and−24.04 dB with MSLAE, are lower in absolute value than the target value
of −28.35 dB, although representing an enhancement with respect to contrast of −18.33 dB
measured in the input image. As observed in the in vivo images, the absolute values of the
contrasts in the CNN’s output images, trained with the MSLAE loss, exceed those achieved
when trained with the KLD-MSLAE loss. This fact can be attributed to the widening effect
observed in the echogenicity distribution when training with MSLAE.

To assess the preservation of speckle patterns, the SNR and the FWHM in both axial
and lateral dimensions of the ACF have been computed for three areas containing only
speckle patterns. In terms of SNR, when trained with the KLD-MSLAE loss, the CNN
slightly improves the SNR, from an SNR in the input image of 1.911 ± 0.024 to 1.895 ± 0.009
in the CNN predicted image, with a target mean SNR of 1.884 ± 0.039. By contrast, training
with MSLAE led to a significantly lower SNR of 1.658 ± 0.005 compared to the target.
Furthermore, regardless of the loss used, the FWHMs of the ACF, especially in the lateral
dimension, exceed the desired values, indicating that the resolution of the speckle patterns
in the phantom image is penalized. Notably, the KLD-MSLAE achieves lower FWHM in
both dimensions compared to MSLAE, suggesting a better speckle preservation.

4.2. Network’s Generalizability Across Different Body Regions

To assess the CNN’s ability to generalize to unknown body regions, the CNN was
trained with the CS (excluding carotid images for training) and the BS (excluding back
images for training), using the KLD-MSLAE loss. The results were compared to those with
VS (including carotid and back images for training) on the VS carotid test subset and the
VS back test subset.

Upon visual comparison of two images from these two test subsets, training with CS
or BS produces similar results to training with VS. Notably, both carotid and back images
exhibit fewer artifacts, specifically visible in the areas outlined in yellow for carotid images
and red for back images.

The speckle patterns were assessed within these two regions by calculating the SNR as
well as the axial and lateral FWHM of the 2D ACF. In the carotid image, the CNN trained
with the CS results in an SNR of 1.432 and a lateral FWHM of 493.63 µm that approximate
the target values (SNR 1.261 and lateral FWHM 542.29 µm) more accurately than when
trained with the VS (SNR 1.436 and lateral FWHM 474.97 µm). However, the axial FWHM
of the 2D ACF with the CS is 240.23 µm, being slightly lower than that obtained with the
VS (242.43 µm), with the target value of 254.15 µm. In the back image, with the BS, both
axial and lateral FWHM are larger than with the VS, with the former being closer to the
target. In both images, the contrasts measured in the areas delimited in magenta and blue
show improvement towards the target values of −21.90 dB and −15.83 dB when training
with the region-based splits, with measured contrasts of −21.15 dB in the magenta area and
−16.08 dB in the blue area. In comparison, training with the CNN using the VS resulted in
contrasts of −20.16 dB in the magenta area and −16.49 dB in the blue area.

To evaluate and compare the CNN’s performance, we calculated PSNR, SSIM, and
KL divergence on the carotid and back test sets, as well as on the VS carotid and back
test subsets. As expected, the results of the CNN trained with the CS on the carotid test
set closely align with those of the VS carotid test subset, since the latter is a subset of the
former. When analyzing the performance of the network trained with the region-based
splits compared to the network trained with the VS, we observe that the PSNR and SSIM
are lower. On the VS carotid test subset, when trained with the CS, the PSNR and SSIM
are 19.441 ± 0.875 dB and 0.275 ± 0.020, respectively. However, when trained with the VS,
these metrics increase to 20.402 ± 0.307 dB and 0.300 ± 0.023, respectively. This trend is
consistent for the BS as well, where the PSNR and SSIM on the VS back test subset, when
trained with the BS, are 19.737 ± 0.508 dB and 0.254 ± 0.033, respectively. Nonetheless,
when trained with the VS they improve to 20.284 ± 0.284 dB and 0.270 ± 0.044, respectively.
In both subsets, the KL divergence is marginally higher and the echogenicity distributions
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are slightly shifted towards lower values when training with the region-based splits instead
of the VS.

The degradation of these metrics with CS and BS suggests that considering similar (i.e.,
from the same body region) images both in the training and testing sets enhances the final
performance. However, when evaluated against the target images, the CNN trained with
the CS or the BS substantially improves all metrics compared to the ones obtained with the
input images. This demonstrates that the diversity of our dataset enables the network to
effectively generalize to unfamiliar body regions.

4.3. Comparison with State-of-the-Art Methods

Evaluating the performance of different methods aiming to enhance the image quality
of ultrafast US images is challenging due to the lack of consistency in the datasets and
metrics used across the different studies.

Several studies aim at improving the image quality of single PW acquisitions [3–8].
Nevertheless, not all of these studies provide quantitative results on in vivo images. For
instance, Perdios et al. [3,4] primarily relied on simulated data and conducted limited
testing on in vivo images, without reporting any specific metrics and resorting to visual
comparisons as their in vivo assessment method. On the other hand, Zhang et al. [6,7],
who used self-supervised learning, mainly measured contrast-to-noise ratios to evaluate
the quality of their method on in vivo images.

Zhou et al. [5] trained a GAN with an in vivo dataset of 360 image pairs, each
containing focused acquisitions as target images. They assessed their results with the PSNR
and SSIM. The mean PSNR improved by 17% (from 16.74 ± 1.84 dB to 19.52 ± 1.33 dB) and
the SSIM improved by 77% (from 0.22 ± 0.05 to 0.39 ± 0.08), when comparing the metrics
between predicted images and designated targets with respect to the values derived from
the input images and the same targets.

Another study that reported the PSNR is the one by Lu et al. [8]. In this study, a CNN
was trained using as input the RF images corresponding to single unfocused acquisitions
and as target the IQ data resulting from compounding with three and five PWs. Their
approach demonstrated a 17% improvement in mean PSNR with the three PWs target
images (from 15.8 ± 1.40 dB to 18.46 ± 2.29 dB) and an 11% improvement with the five PWs
target images (from 14.6 ± 1.40 dB to 16.21 ± 1.67 dB).

Remarkably, our proposed method, particularly when employing the VS, yielded higher
PSNR and SSIM improvements, increasing the PSNR mean by 23% (from 16.466 ± 0.801 dB to
20.292 ± 0.307 dB) and the SSIM mean by 159% (from 0.105 ± 0.060 to 0.272 ± 0.040).

4.4. Computational Efficiency

The inference time of our CNN on our NVIDIA Tesla V100 GPU is, on average, less
than 0.025 s. This fast inference speed is particularly valuable. Furthermore, it is worth
noting that our CNN model is relatively compact in terms of its size, with a total of
4,712,609 trainable parameters.

4.5. Limitations and Future Work

Despite the promising results, our approach has two main limitations that need to
be addressed. These limitations arise from training the CNN exclusively using in vivo
data. Firstly, SLs and GLs artifacts, although highly reduced compared to the single PW
case, still appear in the CPWC target images. More importantly, the PW compounding
assumes that the region of interest remains stationary. Nevertheless, motion can occur
between PWs acquisitions, reducing coherence between acquired signals and introducing
motion artifacts in the target images. Both phenomena limit the quality of the target
images, restricting the overall quality improvement that the CNN can achieve. Therefore,
whereas our network successfully reduces artifacts, complete removal remains challenging.
Secondly, part of our dataset consists of data acquired from body parts with a shallow
depth, where deep regions contain only noise. In addition, our echogenicity values follow
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a Gaussian-shaped distribution, containing only a few samples for very low or very high
echogenicities. Consequently, the network encounters challenges in learning from the
extreme echogenicity values.

In contrast, these limitations were not present when using simulated data, as shown
in [4]. Firstly, some of their target images were obtained after oversampling the transducer
aperture, resulting in images with reduced GLs and higher-quality target images compared
to ours. Secondly, their dataset was simulated with phantoms containing random ellip-
soidal inclusions of uniformly distributed mean echogenicity in the range of −50 dB and
+30 dB with respect to the background, resulting in a wider range of echogenicities with a
more uniform distribution. Therefore, all echogenicities were better represented in their
simulated dataset.

To tackle these constraints, future studies could explore using transfer learning from
simulated to in vivo data. This could help the network to generalize from simulated to
in vivo data, leading to enhanced image quality and a reduction of the number of in vivo
acquisitions required to train the network.

5. Conclusions

Ultrafast ultrasound achieves high frame rates, but at the expense of image quality.
Training a CNN on a large dataset of simulated images has been previously proposed to
enhance image quality. However, the domain shift between in vivo and simulated images
hindered CNN performances in practice.

To overcome this challenge, we developed a deep-learning-based method for enhanc-
ing RF images acquired with single unfocused acquisitions. This method was trained
and tested on a large in vivo dataset using multiple dataset splits. To further enhance the
performance of the method, we introduced a novel loss function named KLD-MSLAE. This
loss outperforms MSLAE and accounts both for the high dynamic range of RF images and
the echogenicity’s distribution.

Our approach yielded a substantial enhancement in image contrast and highly reduced
artifacts in single unfocused in vivo acquisitions acquired in different body parts. The
CNN resulted in higher PSNR and SSIM between the output and target images. Further
enhancement in image quality was achieved through the adoption of the KLD-MSLAE
loss, resulting in a contrast and echogenicity distribution similar to the target images.
Nevertheless, the image quality enhancement was not observed when applied to the
in vitro image.

We examined the CNN ability to adapt to unknown body regions, emphasizing the
benefits of including similar images to the training and testing sets. The large and diverse
dataset facilitated the network generalization, even when the training set did not include
images acquired on the tested body region. The artifacts removal and image enhancement
was observed with all dataset splits, suggesting that the dataset’s size and diversity are
substantial enough to provide robust and reliable results.

Although our method faces limitations related to the limited quality of target images
and the distribution of values within the dataset, it has demonstrated significant potential
for reducing artifacts of ultrafast ultrasound images, which could potentially lead to more
accurate analysis of tissue and flow dynamics. This work contributes to the ongoing
efforts to enhance the quality of ultrafast ultrasound in vivo images. The potential impact
extends to improving elastography or minimizing the number of acquisitions in portable
ultrasound imaging.
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The following abbreviations are used in this manuscript:

ACF Autocovariance function
BMUS British Medical Ultrasound Society
BS Back split
C Contrast
CNN Convolutional neural network
CPWC Coherent plane wave compounding
CS Carotid split
GAN Generative adversarial network
DW Diverging wave
FDA Food Drug Administration
FWHM Full width at half maximum
GLs Grating lobes
IQ Phase and quadrature
ISPTA Intensity spatial peak temporal average
KL Kullback–Leibler
KLD Kullback–Leibler divergence
MSLAE Mean signed logarithmic absolute error
PW Plane wave
PSNR Peak signal-to-noise ratio
RF Radio frequency
SELU Scaled exponential linear unit
SLs Side lobes
SNR Signal-to-noise ratio
SSIM Structural similarity index
US Ultrasound
VS Volunteer-based split
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