
Interpretable Inflammation Landscape of Circulating Immune cells

Laura Jiménez-Gracia1,*, Davide Maspero1,*, Sergio Aguilar-Fernández1,*, Francesco Craighero2,*, Sara
Ruiz1, Domenica Marchese1, Ginevra Caratù1, Marc Elosua-Bayes1, Mohamed Abdalfatah1, Angela
Sanzo-Machuca3,4, Ana M. Corraliza3,4, Ramon Massoni-Badosa1, Hoang A. Tran5,6,7, Rachelly
Normand5,6,7, Jacquelyn Nestor5,6,7, Yourae Hong8, Tessa Kole9,10, Petra van der Velde9,11, Frederique
Alleblas9,11, Flaminia Pedretti12, Adrià Aterido13,14, Martin Banchero9,11, German Soriano15,16, Eva
Román16,16, Maarten van den Berge9,10, Azucena Salas3,4, Jose Manuel Carrascosa17, Antonio
Fernández Nebro18, Eugeni Domènech19, Juan Cañete20, Jesús Tornero21, Javier Pérez-Gisbert22,
Ernest Choy23, Giampiero Girolomoni24, Britta Siegmund25, Antonio Julià13,14, Violeta Serra12, Roberto
Elosua26,27,28, Sabine Tejpar8, Silvia Vidal29, Martijn C. Nawijn9,11, Sara Marsal13,14,30, Pierre
Vandergheynst2, Alexandra-Chloé Villani5,6,7, Juan C. Nieto1,†, Holger Heyn1,†

Affiliations
1 Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain.
2 Signal Processing Laboratory 2 (LTS2), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
3 Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
4 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain.
5 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, 02129, Massachusetts,
USA.
6 Broad Institute of MIT and Harvard, Cambridge, 02142, Massachusetts, USA.
7 Harvard Medical School, Boston, Massachusetts, USA.
8 Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium.
9Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, Netherlands.
10Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
11 Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen,
Netherlands.
12 Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain.
13 Rheumatology Research Group, Vall d’Hebron Research Institute, Barcelona, Spain.
14 IMIDomics, Inc.
15 Department of Gastroenterology, Biomedical Research Institut Sant Pau (IIB Sant Pau), Barcelona, Spain.
16 Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III. Madrid, Spain.
17 Dermatology Department, Hospital Universitari Germans Trias i Pujol. Badalona, Spain.
18 Rheumatology Department, Hospital Regional Universitario Carlos Haya. Málaga, Spain.
19 Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.
20 Rheumatology Department, Fundació Clínic per a la Recerca Biomèdica. Barcelona, Spain.
21 Rheumatology Department, Hospital Universitario Guadalajara. Guadalajara, Spain.
22 Gastroenterology Department, Hospital Universitario de la Princesa. Madrid, Spain.
23 Section of Rheumatology, Cardiff University, Cardiff, United Kingdom
24 Section of Dermatology and Venereology, University of Verona, 37129 Verona, Italy.
25 Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin,
Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
26 Hospital del Mar Research Institute (IMIM). Barcelona, Catalonia, Spain.
27 CIBERCV, Instituto de Salud Carlos III. Madrid, Spain.
28 Faculty of Medicine, University of Vic-Central University of Catalonia. Vic, Catalonia, Spain
29 Group of Immunology-Inflammatory Diseases, Biomedical Research Institut Sant Pau (IIB Sant Pau), Barcelona, Spain.
30 On behalf of IMID-Consortium.

* These authors contributed equally
† Joint senior authors.
To whom correspondence should be addressed.
Juan C. Nieto (juan.nieto@cnag.eu);
Holger Heyn (holger.heyn@cnag.eu)

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.568839doi: bioRxiv preprint 

mailto:juan.nieto@cnag.eu
mailto:holger.heyn@cnag.eu
https://doi.org/10.1101/2023.11.28.568839
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract
Inflammation is a biological phenomenon involved in a wide variety of physiological and pathological

processes. Although a controlled inflammatory response is beneficial for restoring homeostasis, it can

become unfavorable if dysregulated. In recent years, major progress has been made in characterizing

acute and chronic inflammation in specific diseases. However, a global, holistic understanding of

inflammation is still elusive. This is particularly intriguing, considering the crucial function of

inflammation for human health and its potential for modern medicine if fully deciphered. Here, we

leverage advances in the field of single-cell genomics to delineate the full spectrum of circulating

immune cell activation underlying inflammatory processes during infection, immune-mediated

inflammatory diseases and cancer. Our single-cell atlas of >2 million peripheral blood mononuclear cells

from 356 patients and 18 diseases allowed us to learn a foundation model of inflammation in circulating

immune cells. The atlas expanded our current knowledge of the biology of inflammation of acute (e.g.

inflammatory bowel disease, sepsis) and chronic (e.g. cirrhosis, asthma, and chronic obstructive

pulmonary disease) disease processes and laid the foundation to develop a precision medicine

framework using unsupervised as well as explainable machine learning. Beyond a disease-centered

classification, we charted altered activity of inflammatory molecules in peripheral blood cells, depicting

functional biomarkers to further understand mechanisms of inflammation. Finally, we have laid the

groundwork for developing precision medicine diagnostic tools for patients experiencing severe acute or

chronic inflammation by learning a classifier for inflammatory diseases, presenting cells in circulation as

a powerful resource for patient stratification.
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Introduction
Inflammation is a biological response or state of the immune system that serves to protect the human

body from environmental challenges, thereby preserving homeostasis and structural integrity of tissues

and organs1. Inflammatory processes are activated in response to various triggers, such as infection or

injury, and involve a multistep defensive mechanism aimed at eliminating the source of perturbation2–4.

Thus, inflammation represents an altered state within the immune system, which can manifest as either

a protective or pathological response5. The cellular and molecular mediators of inflammation play

pivotal roles in nearly every human disease, encompassing a wide array of biological processes,

including the complex interplay of cytokines, myeloid and lymphoid cells6.

The initiation of inflammatory processes is driven by cellular stimulation, triggered by the release of

proinflammatory cytokines7,8. These cytokines exert autocrine and paracrine effects, activating

endothelial cells, subsequently increasing vascular permeability. This allows immune cells to infiltrate

tissues at the site of infection, facilitated by chemokines. Chemokines are essential for recruiting

additional immune cells, playing a crucial role in phagocytosis and pathogen eradication9. In the

bloodstream, activated immune cells release cytokines and travel to various tissues. Inflammation is a

central driver in cardio-vascular10, autoimmune11,12, infectious diseases13,14 and even cancer15. The

success of therapies targeting inflammation underscores the importance of understanding the

underlying pathways16–18. Thus, categorizing patients based on their specific inflammatory cell states in

the bloodstream has significant potential for advancing disease management19.

Single-cell RNA sequencing (scRNA-seq) is becoming a conventional method for detecting altered cell

states in blood, enabling the comparison of transcriptional profiles during perturbations, including

inflammation20. Previous works revealed cellular profiles across diverse conditions, creating a shared

phenotypic space that facilitates comparisons among patients and conditions, and generating a

comprehensive view of inflammation21. Consequently, differential analysis of cell states and gene

expression programs can now guide a holistic understanding of inflammation in acute and chronic

diseases to form the basis for future precision medicine tools in diagnostics and novel treatments. In

this regard, interpretable machine learning will play a pivotal role to extract disease-driving features

from large healthy and disease single-cell references. Eventually, comprehensive models will allow the

classification of patients for precise diagnostics and the patient stratification for tailored treatments.

Our study initially defined common immune cell types in peripheral blood, before capturing

disease-specific inflammatory cell states that exhibit functional specialization within the inflammatory

landscape. Beyond a disease-centered classification, we modeled the expression profiles of

inflammatory molecules to define interpretable biomarkers driving immune cell activation, migration,

cytotoxic responses, and antigen presentation activities. Ultimately, we developed a classifier based on

the peripheral blood mononuclear cell (PBMC) reference, establishing inflammatory immune cell

features as a precision medicine diagnostic tool for patients suffering from severe acute or chronic

inflammation.
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Main

An inflammation landscape of circulating immune cells
To chart a comprehensive landscape of immune cells in circulation of healthy individuals and patients

suffering from inflammatory diseases, we analyzed the transcriptomic profiles of over 2 million (1.7

million after filtering) PBMCs, representing 356 patients and 18 diseases. Diseases broadly classified

into five distinct groups: 1) Immune-mediated inflammatory diseases (IMIDs), 2) acute and 3) chronic

inflammation, 4) infection and 5) cancers, which were profiled along with healthy donor samples (Fig.
1a). We completed our dataset (79% of total data) with additional studies to generate a comprehensive

resource of immune cell states across inflammatory diseases and beyond (Fig. 1a; Supplementary
Table 1). Our cohort included various scRNA-seq chemistries (10x Genomics 3’ and 5’ mRNA) and

experimental designs (CellPlex and genotype multiplexing), as well as individuals of both sexes and

across age groups, to comprehensively capture technical and biological variability (see Methods). To
learn a generative model of circulating immune cells of inflammatory diseases, we applied probabilistic

modeling of the single-cell data using scVI22 and scGen23, considering clinical characteristics (disease,

sex and age, Extended Data Fig. 1a,b). scGen generates a lower-dimensional cell embedding space,

before reconstructing gene expression data. Batch effects are removed based on gene-specific

parameters, learned during the integration. Its generative probabilistic models proved superior

performances in integrating complex datasets compared to other approaches, particularly if cell

annotations are available (Extended Data Fig. 1c-e)23. Applied here, the resulting gene expression

profiles and the cell embedding space were batch effect corrected, while preserving biological

heterogeneity (i.e. previously annotated cell types and states; Supplementary Table 2). From the joint

embedding space, we initially assigned cells to eight major cell types (Level 1; Fig. 1b; Extended Data
Fig. 1f): (1) Lymphocytes B, (2) Lymphocytes T, (3) NK cells, (4) Monocytes, (5) Dendritic Cells (DC),

(6) Hematopoietic Stem Cells (HSC), (7) Plasmacytoid Dendritic Cells (pDC), (8) Platelets, and Red

Blood Cells (RBC). Following a recursive, top-down clustering approach (see Methods), we obtained a
total of 69 subclusters (Level 2), comprehensively resembling immune cell states of the innate and

adaptive compartments (Extended Data Fig. 2). Noteworthy, integrating a large number of patients and
cells allowed a fine-grained description beyond previously annotated cell states (immune cell types with

distinct activation-related transcriptomes; Supplementary Table 2).

Diving deeper into genes, programs and signatures to characterize inflammatory diseases, our

subsequent analysis followed three complementary strategies to identify disease-driving mechanisms

(gene signature activity), to define biomarkers for inflammatory responses (feature extraction) and to

classify patients based on their disease-specific signatures (projection). Therefore, we looked at gene

expression profiles holistically, but also delineated the inflammatory process by focusing on molecules

that trigger immune cell activation, cellular migration and extravasation, antigen presentation and

cytotoxic responses (Supplementary Table 3)24–30. These strategies jointly allowed us to enlarge our

understanding of inflammatory processes and their contribution to inflammatory diseases, but also form

the basis for precision medicine tools by establishing cells in circulation as potent biomarkers for

disease diagnostics.
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Figure 1. Inflammation Landscape of Circulating Immune Cells. (a) Schematic overview describing
the number of cells, samples, conditions (diseases and disease groups) and patients with the
associated metadata related to the origin (in-house, public data), scRNA-seq chemistry (10x Genomics
assay and version) and patient (age and gender). * indicates public data. (b) Uniform manifold
approximation and projection (UMAP) embedding for the scGen-corrected latent space considering the
full dataset across patients and diseases (1,771,325 cells) colored by the major cell types and states
(left, Level 1) and diseases (right).

Inflammation-related signatures across diseases and cell types
To identify inflammation-related signatures across cell types and diseases, we first ran a Multivariate

Linear Model (MLM) analysis using DecoupleR31 to assess the activation profiles of 12

inflammation-relevant gene set signatures (444 genes, Supplementary Table 3). The MLM was

applied on the scGen-corrected dataset, providing an inflammation signature activity score for each cell,

before averaging by disease and cell type (see Methods). Finally, we computed the relative difference

between diseased and healthy samples to highlight disease-specific alterations.
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Across all disease groups, we observe a general trend of increased activity in immune-relevant

signatures as compared to healthy donors (>50% increased average signature scores; Fig. 2a). From
all IMIDs, SLE showed a uniquely strong upregulation of the IFN response signature paired with a

downregulation of chemokines receptors. Additionally, both SLE and MS showed a decreased

anti-inflammatory cytokines receptor signature, whereas we observed an increase in all other IMIDs. All

IMIDs, but MS, exhibited an upregulation of the Type I IFN signal, opposite to all other disease

categories. As previously shown32, we captured the upregulation of the TNF ligand signature for sepsis

(together with an increase in antigen presentation molecules), with a decrease in the other inflammatory

signals (chemokines and cytokines). In contrast, all chronic inflammatory diseases upregulated the

activity of proinflammatory cytokine receptors, but showed decreased Type I IFN signaling. The Type I

IFN signature was also decreased in viral infections, while we found an increased activity in all

remaining inflammation-related pathways. Finally, within solid tumors, CRC and HNSCC presented a

strong upregulation of TNF receptors.

Considering distinct cell types as unique contributors to the inflammatory immune landscape, we

delineated signatures at cell type level (i.e. Level 1 and Level 2). In line with the aforementioned

alterations, an elevated IFN response signature identified SLE patients as the strongest effector of IFN

stimulation. Intriguingly, IFN response has been previously described to contribute to SLE through the

activation of distinct immune cell types33. Here, we described a more systemic response with IFN

response genes being activated in most major cell lineages (Level 1; Extended Data Fig. 3a and 3b).
At immune subpopulation level (Level 2), the increased IFN response signature for SLE identified

IGHG+ plasma cells, but also CD4, CD8 effector memory, inflammatory monocytes and dendritic cells

(DC2B) as major contributors to the inflammatory process (Fig. 2b and Extended Data Fig. 3b).
Previous studies described the pathogenic effect of IFN in SLE through the overstimulation of abnormal

germinal centers and the differentiation to pathogenic-associated plasmablasts and antigen presenting

cells. Here, we showed a higher activity specifically in antibody secreting plasma cells (IGHG+), which

have been related with the production of auto-antibodies in SLE34. The activation and organization of

germinal centers depends on the stimulation of B cells by follicular helper CD4 T cells35. Interestingly,

CD4 effector memory T cells in SLE presented an increased IFN response activity, but also expressed

markers of T follicular helper cells, strongly suggesting their role in triggering abnormal T-B interaction

and altered activation of B cells in germinal centers (Fig. 2c). Activation and differentiation to T follicular

helper cells further relies on antigen presenting cells, in line with the elevated IFN response detected in

DC2B cells. We validated the results through the identification of gene expression factors across cell

types using a data-driven approach (Spectra36), confirming IFN genes with correlating gene expression

levels that differentiated IMIDs and specifically SLE from other diseases (Extended Data Fig. 3c).

Compared to most other diseases, the Type I IFN signature was upregulated in IMIDs (except MS), with

particularly high activities in SLE and CD (Fig 2a). An excess of Type I IFN has been associated with

the severity of systemic autoimmune diseases and auto-antibodies production37 and with multiple

effects on the adaptive immunity in CD38. At cell type and subpopulation level (Level 1 and Level 2), we

observed an enrichment in almost all cell lineages (Extended Data Fig. 3d), with dendritic cell subtypes
(pDC, DC2A and DC5) and non-classical monocytes showing the highest Type I IFN activity and
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highlighting the role of the innate immunity in the systemic inflammation of CD (Fig. 2d). In line with

previous observations39, also Memory Switch and Memory ITGAX B cells showed an enriched Type I

IFN signature (Fig. 2d). Particularly, ITGAX+ B cells are a rare B cell subtype with pathogenic activities

in many autoimmune diseases, but are not well characterized in CD40. Previous work further pointed to

the critical role of DCs for breaking peripheral tolerance to create a cytotoxic environment through the

activation and recruitment of CD4 T-helper, NK and CD8 T in inflammatory bowel disease (IBD) and

RA38. Exploring the landscape of inflammatory signatures in these populations, we observed an

upregulation of chemokines, pro-inflammatory cytokines and TNF ligands in CD56dim NK activated,

CD4 and CD8 effector memory, CD8 activated and CD8 IFN responder T cells (Fig. 2e). Such
increased expression of major inflammatory signatures in the peripheral blood of CD patients, further

strengthens the role of DC activation via Type I IFN to induce the lymphoid compartment and amplifying

systemic inflammation in CD41,42.

Functional biomarker selection through interpretable modeling
Biomarker discovery using linear models (such as the above applied MLM) or standard differential

expression analysis suffers from the limitation that genes are considered independently. Thus, we

considered the possibility of categorizing cells to their respective disease origin through an interpretable

machine learning pipeline, to guide the selection of functional disease biomarkers (451 genes,

Supplementary Table 3). Therefore, we next applied a supervised classification approach, together

with a post-hoc interpretability method, to allow the inference of the gene-wise importance, stratified by

disease. We based our strategy on Gradient Boosted Decision Trees (GBDTs), a state-of-the-art

machine learning technique proven to be effective in complex tasks with noisy data and non-linear

feature dependencies43. GBDTs iteratively build an ensemble of decision trees, by trading the

complexity of the model (i.e. the number of trees) with the accuracy of the predictions. Here, we used

the CatBoost library given its superior generalization performance43 that required the definition of a set

of hyperparameters, such as the maximum tree depth. To tune the hyperparameters, we employed the

TPE (Tree-structured Parzen Estimator) sampling algorithm44 implemented in the Optuna library45 (see

Methods). As GBDTs require post-hoc interpretability tools in order to infer explanations, we computed

SHAP (SHapley Additive exPlanation) values46, shown to provide attributions that are locally consistent

and that can be aggregated into global explanations. SHAP values explained the output of the classifier,

in our case the predicted disease, as a sum of contributions of each feature, that is, the gene profiles.

Such contributions correspond to the change in the expected model prediction when conditioning on the

considered feature.
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Figure 2. Inflammation profiles across cell types and diseases. (a) Scatterplot displaying relative
difference (log-10 scaled) across diseases (colors) versus healthy controls, categorized by disease
groups (symbols) for 12 immune-related signature pathways. Positive signature activity score (large
icons) and significant changes (>50% relative increase, dashed lines) are indicated. (b) Scatterplot
showing the mean IFN response signature score across selected cell types (level 2) and colored by
disease (as in a). (c) Heatmap presenting the scGen-corrected mean expression of follicular peripheral
T cells (Tph) genes across diseases (data scaled by gene). (d) Violinplot displaying the Type I IFN
signature score distribution across selected cell types (level 2) comparing CD patients and healthy
donors. (e) Dotplot with the mean chemokine, pro-inflammatory cytokine and TNF ligand signature
scores (y-axis) at cell types (level 2; x-axis) in CD patients and healthy donors. The dot size reflects the
percentage of cells in a cluster (from where the gene signature was computed) and the color represents
the average score levels.

Combining the two approaches, we were able to rank genes based on their importance stratified by cell

type and disease. We executed the analysis considering each cell type (Level 1) independently,

resulting in gene rankings based on importance to classify diseases. Such strategy mitigated the impact

of cell-specific expression profiles and allowed the interrogation of differential gene importance to

distinguish diseases in distinct cell types. We applied the pipeline on the corrected gene expression

profiles after scGen integration, but also tested uncorrected log-normalized data as an input. Overall,

we achieved high accuracy to assign each cell to the correct disease label (balanced accuracy score =

0.78, computed on a test set of 20% cells; Fig. 3a), when starting from scGEN-corrected data. Instead,

log-normalized counts resulted in decreased balanced accuracy scores proving the improvement

provided after batch correction (0.63; Fig. 3b). Noteworthy, HIV and sepsis obtained lower accuracy

scores (0.33 and 0.5, respectively), likely due to the low cell numbers (~0.5% of total cells) and notable

differences across cell types (Extended Data Fig. 4).

Leveraging the interpretable machine learning pipeline and the well-annotated gene sets for biomarker

discovery resulted in a rich resource of prioritized biomarker genes and their related cell types. Ordering

genes by their importance within immune cell types, CYBA stood out as a strong candidate marker

gene for IMIDs affecting barrier tissues, particularly Crohn's disease (CD), Ulcerative colitis (UC),

Psoriasis (PS) and Psoriatic Arthritis (PSA) (Fig. 3c). Interestingly, elevated levels of CYBA were

important for intestinal inflammatory diseases (CD, UC), whereas reduced levels were related to

diseases manifesting in the skin (PS, PSA, Fig. 3d). CYBA encodes the primary component of the

microbicidal oxidase system of phagocytes. In line, the importance of the gene was seen only in

myeloid cells, particularly Monocytes and DCs (Fig. 3d). Mutations in CYBA cause an autosomal

recessive chronic granulomatous disease and patients show an impaired phagocyte activation and fail

to generate superoxide. Consequently, patients show recurrent bacterial and fungal infections in barrier

tissues, including the skin47. Thus, we hypothesize that reduction of CYBA in skin-related IMIDs leads to

an impaired immune barrier function and frequent recurrent infections causing localized, symptomatic

flares of PS and PSA.

In CD and UC, both subtypes of IBD, upregulation of CYBA may result in the accumulation of Reactive

Oxidative Species (ROS), a hallmark of both diseases. ROS produced by mucosa‐resident cells or by

newly recruited innate immune cells are essential for antimicrobial mucosal immune responses and

defense against pathogenic attack48. We confirmed the overexpression of CYBA in myeloid cells of UC

patients and healthy donors in an independent PBMC validation cohort49 (p<0.01; Fig. 3e) and within
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intestinal tissues of CD, UC and healthy control donors (scRNA-seq, n=18; Fig. 3f,g)50. In the tissue

biopsies, especially monocyte-derived (M0) and tissue-resident (M2) phagocytic macrophage

populations showed significant upregulation of CYBA gene expression levels compared to healthy

controls (p<0.01).

Fig. 3. Biomarker discovery using interpretable machine learning. (a,b) Diffusion matrices
displaying the patient stratification accuracy to assign each cell to the correct disease label using the
scGen-corrected (a) or uncorrected log-scaled data (b) as an input. (c) Gene list ranked by importance
(mean absolute SHAP value) to classify diseases stratified by cell type (DC and Monocytes; level 1). (d)
each row includes 10000 randomly sampled SHAP values, displaying the importance of CYBA gene
expression as biomarker for PS, PSA, CD and UC across cell types (red: expression gain; blue:
expression loss). (e) CYBA expression levels in an independent single-cell PBMC validation cohort49 of
UC and healthy donors. (f) Single-cell analysis from CD, UC and healthy patient biopsies; uniform
manifold approximation and projection (UMAP) of myeloid cells coloured by cell type (top) and CYBA
expression levels (bottom), using a blue color scale, across disease conditions. (g) CYBA expression
levels in CD, UC and healthy patient biopsies stratified by myeloid subpopulations. Asterisks (*)
indicates statistical significant changes using the Wilcoxon signed-rank test.
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Ranking genes by their importance across diseases, IFITM1 stood out as a biomarker for COPD

(Extended Data Fig. 5a). In contrast to CYBA, the importance of IFITM1 was mainly observed in

lymphoid cells (CD4 T, CD8 T and ILC cells; Extended Data Fig. 5b). In line, IFITM1 expression in

these cells was higher in the blood of COPD patients compared to healthy controls (Extended Data
Fig. 5c). IFITM1 has an immune-modulatory effect controlling proliferation, adhesion and migration of

CD4 T, CD8 T and ILC51. ILC and CD8 T cell accumulation is associated with decline of lung function

and severity in COPD patients, and CD4 T cells mediate autoimmune response in COPD facilitating

B-cell production of IgG autoantibodies in those patients52. We hypothesize the higher expression of

IFITM1 in lymphoid cells to be a mechanism of the accumulation of lymphoid cells induced by chronic

inflammation53.

Classification by patient projection into the embedding space
The ability to accurately classify different cell types according to their respective diseases prompted us

to classify patients based on their disease of origin, creating the basis for a universal classifier as a

precision medicine tool for inflammatory disease prediction. Single-cell information layed a foundation

for better understanding the diversity and traits within the populations, but classifying new patients

remains a challenge due to data sparsity and noise. By considering each patient as an ensemble of

expression profiles across all cells, we learned a generative model during cell integration as a basis to

project new patients into the same embedding space.

Projecting expression data into a lower dimensional space is a common strategy to reduce noise54.

Here, we propose a novel computational framework to exploit the cell embedding for classification of

patients into conditions (e.g. inflammatory diseases), thus, turning the single-cell reference into a

diagnostic tool (Fig. 4a). Therefore, we first generated a cell type pseudobulk profile per patient by

averaging the embedded features of the corresponding cells (annotation Level 1; see Methods). Next,
we trained an independent linear classifier to assign correct disease labels, considering one cell type at

a time. We handled uncertainty at cell type level via majority-voting system to determine most frequent

conditions (see Methods). To assess the accuracy of our framework, we implemented a 5-fold cross

validation strategy by splitting the full patient set into five balanced folds. The full pipeline was executed

5 times, considering each one fold as a test set and the remaining four as training sets. To further stress

the ability of the approach to classify new patients, we removed cell annotations in the test set, before

transferring the annotation labels from the training set after learning the embedding space55,56.

Strikingly, our classification strategy resulted in a balanced accuracy score (BAS), averaged across five

independent runs, greater than 0.90±0.05 (minimum 0.82; Fig. 4b) and with very low False Negative

rates (13/18 diseases classified with an accuracy >0.9). Intriguingly, even overall low cell label transfer

accuracies (Level 1: 0.78±0.01 and Level 2: 0.5±0.01) allowed to correctly classify patients with highly

balanced precision scores, further validating pseudobulk modeling as an effective strategy to reduce the

noise during the single-cell data projection. Such high accuracy, strongly suggests gene expression

profiles of inflammatory diseases to be separated in the embedded space and, more importantly,

immune cells in circulation to be capable of serving as source for patient classification.
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Training a classifier for each cell type separately allowed us to assess their relevance in distinguishing

inflammatory diseases, particularly for diseases with a lower overall accuracy (Fig. 4b,c). While certain

IMIDs (SLE, PS, PSA, and RA) were particularly well classified by lymphoid cell types (T, B and ILCs)

with decent BAS scores also in myeloid cell types, HIV could only be classified by lymphoid cells (i.e.,

T-CD4, T-CD8, and B, 0.9±0.28), while myeloid cell types (i.e. Mono, DC, and pDC) did not allow

correct disease assignment (0.31±0.4). Overall, pDC and DCs showed the lowest average accuracy

(0.67±0.24 and 0.77±0.33), likely due to the fact that 22 out of 353 patients did not contribute

pseudobulk profiles for these rare cell types, highlighting the strength of an integrated atlas and

foundation model of inflammatory diseases to holistically model predictive features across cell types

and diseases.

Figure 4. Schematic representation of the patient classifier framework. (a) First, the scGen
foundation model is trained considering annotated datasets from all diseases. A common lower
dimensional space is learned and exploited to transfer labels (Nearest Neighbor Descent via
NNDescent) on the new patient samples after projecting the cell expression profiles into the same
embedding. Second, technical confounding effects are removed using scGen to obtain a corrected cell
embedding. Third, pseudobulk profiles are generated by averaging cell embedded features (n=200)
grouped by cell types and patients. Fourth, one linear Support Vector Machine (SVM) classifier for each
cell type is trained to assign the correct disease label to each patient. Finally, pseudobulks are
generated for new patient samples and diseases are predicted using the linear classifiers. To aggregate
the prediction into a unique disease label, a majority-voting approach was implemented. (b) Boxplot of
balanced accuracy distribution across five independent runs, stratified by cell types. The ‘Majority’ label
refers to the final label assignment. The full framework was executed five times removing 20% of
patients from the known set and used to define the unknown set. (c) Heatmap showing the average
accuracy stratified by cell types and diseases after the 5-cross validation step.
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Discussion
Mapping the plasticity of the immune cells in circulation is now possible by using sequencing

technologies that allow an unbiased immuno-phenotyping of single cells57,58. Importantly, such

transcriptome-wide methods do not require previous knowledge, but leverage the random sampling of

cells, and transcripts within cells, to derive comprehensive cellular landscapes. Recent technologies

enable the sampling of thousands of cells per sample and hundred-thousands per patient cohort,

pushing the resolution towards fine-grained cellular maps and increasing the power to identify

disease-specific states and programs59. To date, single-cell sequencing has been applied to a multitude

of inflammatory diseases to determine alterations in cell type composition and to pinpoint

disease-driving mechanisms as potential therapeutic targets20. However, a complete map of immune

cell states across diseases, holistically charting immune plasticity in inflammatory diseases, has been

elusive. We reasoned that integrating single-cell transcriptome maps of cells in circulation across a

variety of diseases and millions of cells would allow us to extract the full spectrum of features

representing inflammatory processes and to generate a foundation model of inflammation in circulating

immune cells.

Our strategy split the analysis into three phases, starting with the supervised extraction of

inflammation-related patterns (gene signature activity), followed by the discovery of interpretable

biomarkers (features) and finally patient classification (projection). Especially the latter presents an

intriguing avenue towards personalized medicine strategies to manage and monitor inflammatory

diseases and to move beyond current clinical practice using single biomarker strategies (e.g. CD4 T

lymphocyte count in HIV)60. Here, the size of the datasets and the depth of cellular resolution, combined

with an advanced machine learning framework, allowed the separation of diseases in the latent space

and eventually the correct classification of unseen patient samples across disease categories and

entities. Hence, we provide strong evidence for the potential of using immune cells in circulation as

liquid biopsy for diagnostics, when combined with machine learning models that holistically learned the

full spectrum of immune cell variability across patients and diseases61. Such models represent the

cornerstone to build classifiers for inflammatory diseases as precision diagnostics tools for the clinic62.

We note though that the here presented evidence provides the basis for establishing blood-based

patient classification and stratification, but thorough follow-up work is required to determine the positive

predictive value in even larger validation efforts.

However, the concept of using immune cells as a sensor for diseases is highly intriguing and opens the

door for the development of future universal diagnostic tools63. For some of the tested diseases, such

as sepsis, current biomarker strategies may already provide sufficient sensitivity considering the

pathology and clinical manifestation of the disease (i.e. lymphopenia as a hallmark of sepsis)32.

Nevertheless, for diseases such as in rheumatology and IBD, many patients are undiagnosed or

diagnosed as False Positive, and more accurate universal tools are needed64,65. The here established

classification framework was capable of classifying most diseases correctly using a majority-voting

strategy across all cell types. However, for certain disease types, such as HIV or MS, a tailored, cell

type-centric approach may lead to improved accuracy. Both diseases showed increased classification
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scores using lymphoid cell types alone. In line, both represent T cell pathologies with MS being a

T-cell–mediated autoimmune disease sustained by autoreactive T cells against myelin components and

HIV infecting mainly CD4 T cells66,67.

While the machine learning strategy developed for patient stratification was not interpretable, our

complementary approach using GBDT, together with SHAP, and a curated list of immune cell molecules

with defined function, provided explainable results and a rich resource for biomarker discovery43,46.

Here, CYBA, the light, alpha subunit of microbicidal oxidases in phagocytes showed the strongest

importance across all cell types mainly through high SHAP score in monocytes and DCs. Barrier site

IMIDs scored highest, with intriguing opposite directions in intestinal (high; CD and UC) and skin (low;

PS ad PSA) diseases. We went on to validate CYBA overexpression in a PBMC validation cohort49 and

IBD patient biopsies using scRNA-seq50. The increased expression in monocytes as well as

tissue-resident macrophages in IBD patients, suggests a role in the disease pathology, potentially

through its oxidase function to produce superperoxide and ROS68. Importantly, UC mouse models

treated with superoxide dismutase showed significantly attenuated UC disease burden in a

dose-dependent manner and reduced lipid peroxidation in colonic tissue. Simultaneously, leukocyte

rolling and adhesion in colonic venules of colitis rats were significantly reduced, contributing to strongly

reduced inflammatory phenotypes69.

Bringing reference atlases and data resources into the clinics is challenging without providing clear

examples and strategies for their implementation. We generated a comprehensive landscape of

inflammation in circulating immune cells from acute and chronic inflammatory diseases. Using

advanced machine learning pipelines, we developed interpretable models for biomarker identification

that can be further validated as a stand-alone or combinatory diagnostic test. On the other hand, we

classified diseases based on generative models that learned the full inflammatory feature space across

cell types and disease, laying the foundation for a universal diagnostic tool for inflammatory diseases.
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Methods

Atlas of Circulating Immune Cells

The Inflammation Landscape of Circulating Immune Cells (ILCIC) atlas has been conceived as a

comprehensive resource to expand the current knowledge of physiological and pathological

inflammation. With this aim, we have included data representing both acute and chronic inflammatory

processes, as well as healthy donors. Further details about the included datasets are available

(Supplementary Table 1).

Most of the single-cell RNA-sequencing (79%) has been generated in-house or shared by our

collaborators from several research institutions. Samples were collected with written informed consent

obtained from all participants and comply with the ethical guidelines for human samples. Specifically,

we generated data from patients suffering Rheumatoid Arthritis (RA), Psoriatic Arthritis (PSA), Crohn's

Disease (CD), Ulcerative Colitis (UC), Psoriasis (PS), Systemic Lupus Erythematosus (SLE) and

healthy controls in collaboration with the Vall d’Hebron Research Institute within the DoCTIS consortia

[https://doctis.eu/] (ILCIC_D00). Additionally, we processed and obtained data from healthy controls in

collaboration with the Institut Hospital del Mar d'Investigacions Mèdiques (ILCIC_D01); Asthma,
Chronic Obstructive Pulmonary Disease (COPD) and healthy control samples in collaboration with the

University Medical Center Groningen (ILCIC_D02); Breast Cancer (BRCA) samples in collaboration

with the Vall d’Hebron Institute of Oncology (ILCIC_D03); cirrhosis samples in collaboration with the

Biomedical Research Institut Sant Pau (ILCIC_D06); and finally, samples of patients suffering

Colorectal Cancer (CRC) in collaboration with the Katholieke Universiteit Leuven (ILCIC_D12).

Moreover, we also included public available datasets to complete our cohort. Therefore, raw count

matrices and clinical metadata were obtained from the NCBI Gene Expression Omnibus (GEO)

[https://www.ncbi.nlm.nih.gov/geo/], the BioStudies Array Express

[https://www.ebi.ac.uk/biostudies/arrayexpress] and Broad Institute DUOS

[https://duos.broadinstitute.org/] resources. Specifically, we downloaded data for patients suffering

sepsis32 [SCP548] (ILCIC_D04), Head and Neck Squamous Cell Carcinoma (HNSCC)73 [GSE139324]

(ILCIC_D05), Hepatitis B Virus (HBV)70 [GSE182159] (ILCIC_D07), Multiple Sclerosis (MS)74

[GSE138266] (ILCIC_D08), clear cell Renal Cell Carcinoma (ccRCC)75 [GSE121636, GSE121637]

(ILCIC_D09), NasoPharyngeal Cancer (NPC)76 [GSE162025] (ILCIC_D10), and Human

Immunodeficiency Virus (HIV)71 [GSE198339] (ILCIC_D11).

ILCIC barcodes. The ILCIC barcode was inspired by the TCGA project

[https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/]. Each ILCIC barcode univocally

identifies a cell, and it is composed by 5 alphanumeric identifiers representing project, data source,

patient ID, library, and 10X Genomics cell barcode, respectively [e.g.,

ILCIC-D00-P006-L046-AAACCCAAGGTGAGAA].
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Sample collection

Human blood samples were collected in EDTA tubes (BD Biosciences). Peripheral blood mononuclear

cells (PBMCs) from the ILCIC-D00, ILCIC-D02, ILCIC-D06 and ILCIC-D12 datasets were isolated using
Ficoll density gradient centrifugation (LymphoprepTM, Stem Cell Technologies; Ficoll-Plus, GE

Healthcare Biosciences AB). PBMCs belonging to the ILCIC-D01 and ILCIC-D03 datasets were

isolated using Vacutainer® CPT tube (BD Biosciences). Subsequently, all aliquots were centrifuged

following the manufacturer’s protocol. After centrifugation, PBMCs were washed and resuspended in

freezing media. Aliquots were gradually frozen using a commercial freezing box (Mr. Frosty, Nalgene,

Thermo Fisher Scientific) at -80 °C for 24 h before being transferred to liquid nitrogen for long-term

storage.

Cell thawing and preprocessing

Cryopreserved PBMCs were thawed in a water bath at 37ºC and transferred to a 15 ml Falcon tube

containing 10 ml of pre-warmed RPMI media supplemented with 10% FBS (Thermo Fisher Scientific).

Samples were centrifuged at 350 x g for 8 min at RT, supernatant was removed and pellets

resuspended with 1 ml of cold 1X PBS (Thermo Fisher Scientific) supplemented with 0.05% BSA (PN

130-091-376, Miltenyi Biotec). Samples were incubated during 10 min at RT with 0.1 mg/ml of DNAse I

(PN LS002007, Worthington-Biochem) in order to eliminate ambient DNA and favor the resuspension of

the pellet. Cells were filtered with a 40 µm strainer (PN 43-10040-70, Cell Strainer) to remove eventual

clumps and washed by adding 10 ml of cold PBS+0.05% BSA. Samples were centrifuged at 350 x g for

8 min at 4ºC and resuspended in an adequate volume of PBS+0.05% BSA in order to reach the desired

concentration. Cells concentration and viability were verified with a TC20™ Automated Cell Counter

(Bio Rad) upon staining of the cells with Trypan Blue.

Sample multiplexing by genotyping

PBMCs samples were evenly mixed in pools of 8 donors per library following a multiplexing approach

based on donor’s genotype, as done by Kang et al.77 for a more cost and time-efficient strategy.

Importantly, in the case of ILCIC-D00 libraries were designed to pool samples together from the same

disease with different response to treatment (not relevant in this study) whereas in the case of the

ILCIC-D02 Asthma cohort, 6 samples belonging to patients were pooled with 2 samples derived from

non-smoking healthy control individuals. With this approach, we aimed to avoid technical artifacts that

could mask subtle biological differences.

3’ Cell Plex

PBMCs samples belonging to the ILCIC-D01, ILCIC-D02 COPD, ILCIC-D06 cohort were multiplexed

with 10X Genomics Cell Plex kit following the Cell Multiplexing Oligo Labeling for Single Cell RNA

Sequencing Protocol (10x Genomics). Briefly, 0.2-1 million cells were centrifuged at 350x g at RT with a

swinging-bucket rotor, resuspended in 100 µl of Cell Multiplexing Oligo (3' CellPlex Kit Set A

PN-1000261, 10x Genomics) and incubated at RT for 5 mins. Cells were washed 3 times with cold 1X
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PBS (Thermo Fisher Scientific) supplemented with 1% BSA (MACS Miltenyi), all centrifugations being

performed at 350x g at 4C. Cells were finally resuspended in an appropriate volume of 1X PBS-1%

BSA in order to obtain a final cell concentration of approximately 1600 cells/ul and counted using a

TC20™ Automated Cell Counter (Bio-Rad Laboratories, S.A). An equal number of cells of each sample

was pooled and filtered with a 40 µm strainer to remove eventual clumps, final cell concentration and

viability of the pools were verified before loading onto the Chromium for cell partitioning.

Cell encapsulation and single cell RNA-sequencing library preparation

Multiplexed samples were loaded for a Target Cell Recovery between 20000 and 60000 cells

(corresponding to 5000-7500 cells per sample within each plex). More specifically, samples belonging

to ILCIC-D00 and ILCIC-D01 cohorts were encapsulated using standard throughput Chromium Next

GEM Single Cell 3’ Reagent Kit v3.1, while multiplexes samples belonging to ILCIC-D02 Asthma and
COPD, and ILCIC-D06 were encapsulated using the high throughput Chromium Next GEM Single Cell

3' HT Reagent Kit v3.1 in combination with the Chromium X instrument. On the other hand, samples of

the ILCIC-D03 and ILCIC-D12 cohort were loaded in a standard assay with a target recovery of 6-8000

cells per sample using the Chromium Next GEM Single Cell 5' Reagent Kit v2 (10X Genomics,

PN-1000263).

Libraries were prepared following manufacturer’s instructions of protocols CG000315 or CG000390, for

the standard assay without and with sample multiplexing, and protocols CG000416 and CG000419 for

the high throughput assay without and with sample multiplexing. Protocol CG000331 was instead

followed for the ILCIC-D03 and ILCIC-D12 cohort. Between 20-200 ng of cDNA were used for

preparing libraries and final library size distribution and concentration were determined using a

Bioanalyzer High Sensitivity chip (Agilent Technologies). Sequencing was carried out on a

NovaSeq6000 system (Illumina) and NextSeq500 using the following sequencing conditions: 28 bp

(Read 1) + 10 bp (i7 index) + 10 bp (i5 index) + 90 bp (Read 2), to obtain approximately 40.000 read

pairs per cell for the Gene Expression (GEX) library and 2000-4000 read pairs per cell for the CellPlex

library.

Data processing

To profile the cellular transcriptome, we processed the sequencing reads with the 10X Genomics Inc.

software package CellRanger (v.6.1.1 for mostly all in-house generated datasets and v6.0.2 for CRC

samples) [https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome]

and mapped them against the human GRCh38 reference genome (GENCODE v32/Ensembl 98).

Genotype processing

Patient genotypes (VCF format) were simplified by removing Single Nucleotide Variants (SNVs) that

were unannotated (chr 0), located in the sexual Y (chr 24), pseudo-autosomal XY (chr 25), or

mitochondrial chromosomes (chr 26). As genotypes were obtained using the human hg19 reference

genome, we converted their coordinates to the same reference genome used to mapped the

sequencing reads (GRCh38), via the UCSC LiftOver tool [https://genome.ucsc.edu/cgi-bin/hgLiftOver].

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.568839doi: bioRxiv preprint 

https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://doi.org/10.1101/2023.11.28.568839
http://creativecommons.org/licenses/by-nc-nd/4.0/


LiftOver requires an input file in BED format. Thus, we used a python script

[https://github.com/single-cell-genetics/cellsnp-lite/blob/master/scripts/liftOver/liftOver_vcf.py] to convert

our VCF file accordingly.

Library demultiplexing

Multiplexed libraries from ILCIC-D00 and ILCIC-D02 Asthma cohorts were demultiplexed with

cellsnp-lite (v 1.2.2) in Mode 1a78, which allows us to genotype single-cell GEX libraries by piling-up the

expressed alleles based on a list of given SNPs. To do so, we used a list of 7.4 million common SNPs in

the human population (MAF > 5%) published by the 1000 Genome Project consortium, and compiled by

the authors [https://sourceforge.net/projects/cellsnp/files/SNPlist/]. Then, we performed the donor

deconvolution with vireo (v 0.5.6)79, which assigns the deconvoluted samples to its donor identity using

known genotypes, while detecting doublets and unassigned cells. Finally, we discarded detected

doublets and unassigned cells before moving on to the downstream processing steps. For CellPlex

libraries, such as ILCIC-D01, ILCIC-D02 COPD and ILCIC-D06, we followed a joint deconvolution

strategy combining CMO-hashing and genotype-based deconvolution; we generated pools of cells

belonging to different samples based on the individual SNPs, and traced back to its donor of origin

based on the CMO-hashing. When no genotype is available, the use of this dual approach minimizes

the discarded cells.

Data analysis

All analyses presented in this manuscript were carried out using mainly Python. In particular, we

structured our data in Anndata objects80 compatible with Scanpy suite81, which allowed us to apply

single-cell data processing and visualization best practices. Details about the downstream analyses and

the corresponding computational tools involved are detailed in the following method sections. Moreover,

all findings presented in this manuscript are fully reproducible by running the code and notebooks

uploaded in the project’s Github repository. The package versions used in the analysis are reported at

the end of each notebook.

Data standardization

Considering the diversity of the datasets included in the ILCIC atlas (project, source, chemistry,

technology, Cell Ranger and genome reference version, and clinical metadata), a standardization step

was needed.

Gene name harmonization. All datasets were mapped using human GRCh38 genome reference, but

the annotation file version might differ, resulting in gene names with multiple aliases or deprecated

symbols. Therefore, we compare all gene symbols with the HUGO Gene Nomenclature Committee

(HGNC) database (latest version, July 2023) [https://www.genenames.org/], in order to convert them to

the latest official HUGO symbol, merging possible duplicates.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.568839doi: bioRxiv preprint 

https://github.com/single-cell-genetics/cellsnp-lite/blob/master/scripts/liftOver/liftOver_vcf.py
https://www.zotero.org/google-docs/?acHz0s
https://sourceforge.net/projects/cellsnp/files/SNPlist/
https://www.zotero.org/google-docs/?sJc2MQ
https://www.zotero.org/google-docs/?pB5O4s
https://www.zotero.org/google-docs/?iRWpAc
https://www.genenames.org/
https://doi.org/10.1101/2023.11.28.568839
http://creativecommons.org/licenses/by-nc-nd/4.0/


Metadata harmonization. Patient metadata was unified across datasets, using common variable

names and values for those present in multiple sources. For instance, ‘M’, ‘Male’, and ‘Hombre’ entries

were replaced with ‘male’. Additionally, we created a new variable ‘binned_age’ to group patients within

a range of 10 years, considering that for the ILCIC-D01, ILCIC-D04, and ILCIC-D11 datasets the

specific age information was not available.

Data quality control

We performed data Quality Control (QC) on the dataset count matrix by computing the main metrics

(i.e., library size, library complexity, percentage of mitochondrial and ribosomal expression). Metric

distributions were visualized grouping cells by library (10X Genomics) and by considering their

chemistry (3’ or 5’ prime, and their version). Importantly, some datasets have been already processed

by the original authors, therefore we assume that restrictive thresholds for cell/gene filtering have been

already applied. Consequently, we removed low quality observation using permissive thresholds, while

the robust cleaning process was performed during cell annotation tasks. In particular, we excluded the

low quality libraries across datasets (<500 cells or <500 median genes recovered). Next, we removed

cells with a very low number of UMIs (<400) and genes (<200), or with a high percentage of

mitochondrial expression (>25%), as it is indicative of lysed cells. Then, we removed barcodes with a

high library size (>50000 UMIs for 3’ or >25000 UMIs for 5’ chemistry) or with a high complexity (>6000

genes for 3’ or >5000 genes for 5’ chemistry), and also eliminated genes that were detected in less than

10 cells in the whole dataset. Lastly, we computed the cell cycle score using the gene list provided by

the function cc.genes.updated.2019() from the Seurat library82 (v 4.3.0.1), and defined the different cell

cycle ‘phases’ (G1, G2M, and S).

Data processing for annotation

Annotation strategy. To identify all the immune cell types and states present in the human blood, we

employed a recursive top-down approach inspired by previous work done by La Manno et al.83 and

Massoni-Badosa et al.35. Starting with more than 2M cells collected for the project, we divided the

annotation into four steps. Briefly, in step 1 we grouped all cells into the primary compartments within

our study. Subsequently, in step 2, each compartment was processed aiming to detect potential

doublets, low quality cells and cells resembling platelets or erythrocytes (cells with high expression of

hemoglobin genes). Additionally, we also placed back some clusters of cells into their main cell groups,

when wrongly clustered due to similar profiles (e.g. T cells found into the NK cell group, or vice versa).

In step 3, we identified the clusters resembling specific biological cell profiles (cell subtypes) obtaining a

final number of 69 different subpopulations. Lastly, in the fourth step, cell identities were then

hierarchically categorized in four levels of annotation, allowing for the automatic inference of broader

levels of annotation. For each group identified in the previous steps, we applied the following tasks,

namely: normalization, feature selection, integration, clustering and annotation. In the following, we will

always refer to the parameters of step 1, while the specifics of the subsequent steps, along with the

annotation labels and the marker genes used to define them, can be found Supplementary Table 4.
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Data normalization. Following standard practices, filtered cells were normalized by total counts over all
genes and multiplied by a scaling factor of 104 (scanpy.pp.normalize_total(target_sum = 104)). Then, the

normalized count matrix X was log-transformed as loge(X + 1) (scanpy.pp.log1p()).

Feature selection. Gene selection was performed by identifying the Highly Variable Genes (HVG). In

order to reduce the influence of study’s specific composition, and prevent biases in the gene selection

task, we preferred genes that are highly variable in as many studies as possible. Therefore, similarly to

Sikkema et al.56, we first considered each study independently and computed the HVGs using the

Seurat implementation84 (scanpy.pp.highly_variable_genes(min_disp=0.3, min_mean=0.01,

max_mean=4)). Then, we ranked genes based on the number of studies in which they are among the

HV. Finally, for step 1, we determined the minimum number of studies required to compose a HVGs list

of over 3000 genes. Applying this strategy, we selected a total of 3035 genes being highly variable in at

least 5 studies.

Data integration. Our dataset includes single-cell data obtained via a number of different protocols,

technologies, inflammatory status and a broad range of other clinical features (e.g., age, sex, etc).

While this is a strength point of our atlas, such high levels of heterogeneity induced by technical

confounding factors and unwanted biological variability resulted in challenging integration tasks before

clustering and annotating cell populations. Therefore, we employed scVI85, a Variational AutoEncoder

(VAE) approach that proves to be one of the most effective integration methods in complex scenarios,

particularly when the annotation information is missing86. scVI takes as input the raw count matrix to

generate an integrated, lower-dimensional, embedded space where the cell states are preserved, and

the batch effects are reduced. Moreover, scVI’s lower dimensional space can be exploited to cluster and

annotate cells based on either known or cluster specific marker genes. Regarding scVI’s

implementation, for step 1, we used 2 hidden layers for both encoder and decoder, a latent space of

size 30 and the Negative Binomial (NB) as the gene likelihood distribution (scvi.model.SCVI(adata,

n_layers=2, n_latent=30, gene_likelihood="nb")). We trained the model with early stopping on the VAE’s

ELBO loss function, using a patient of 50 epochs. For this step, scVI was trained for 413 epochs. As

described in the following paragraphs, the integrated latent embedding generated by scVI was used for

downstream analysis (clustering and visualization).

Cell clustering. In order to cluster cells into cell types with the Leiden algorithm87, we first built the

K-Nearest Neighbors (KNN) graph using scVI’s latent embeddings and k=20 as the number of

neighbors (scanpy.pp.neighbors(n_neighbors=k)). We then applied the Leiden algorithm using a

resolution of r=0.05 (scanpy.tl.leiden(resolution=r)). The k and r used in every other step for every

lineage can be found in Supplementary Table 4.

Cell annotation. Cell clusters were manually annotated by immunology experts by comparing the

expression levels of canonical gene markers. Moreover, the final step of annotation (step 4) was

performed using the clusters markers obtained performing a Differential Expression Analysis (DEA)

among clusters (see Supplementary Table 4). First, we ranked genes to characterize each cluster

(scanpy.tl.rank_genes_groups()), by considering normalized RNA counts with the Wilcoxon sum rank
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test. Then, we selected those genes with Log2 Fold Change (Log2FC) > 0.2, and with a p-value < 0.05.

Notice that p-values were corrected by applying the False Discovery Rate (FDR) approach.

External annotation validation. As an additional validation, we compared our independent

annotations with the ones available in the public datasets. To quantify the overlap of cells among

groups, we computed the pairwise Jaccard Index between each cell identifier grouped by the external

annotation and each cell identifier grouped using our internal annotations (level 2) (Supplementary
Table 2).

Feature selection post annotation

Gene selection. A gene selection step is necessary to improve the quality of downstream analysis to

characterize the inflammation landscape. In order to remove dataset specific genes and reduce the

batch effect, we first performed data normalization (as described above) and then removed all the

genes that are not expressed (raw count > 0) in at least 1 cell in each study. This step retained a total of

12446 genes. Then, we identified three sets of genes: (i) the HVGs, (ii) the Differentially Expressed

Genes (DEGs) between healthy and each inflammatory status, and (iii) a manually curated

immune-specific gene list. Importantly, cells belonging to Hemoglobin and Platelet populations were

excluded from all the downstream analyses, except for label transfer performed in the patient classifier

(as explained below).

Highly variable genes (HVGs). Similarly to the feature selection approach described in the annotation

step, we selected a total of 2330 HVGs, by using a threshold of at least 2000 genes. In practice, we first

ranked the genes based on the number of studies in which they are concurrently highly variable

(scanpy.pp.highly_variable_genes(min_disp=0.3, min_mean=0.01, max_mean=4,

batch_key=’ILCIC_library’)), and then chose a minimum number of studies of 3.

Differentially Expressed Genes (DEGs) between healthy and each disease. As suggested by

standard practice, the suggested approach to extracted DEGs is to compute them after grouping

single-cell gene expression profiles into pseudobulks. Therefore, we first combined the expression

profiles to produce pseudobulks for every patient and cell-type (annotation level 1), removing groups

with no more than 20 cells, using the Python implementation of decoupleR31

(decoupler.get_pseudobulk(min_cells=20,sample_col='ILCIC_patient',groups_col='annotation_depth02',

layer='counts', mode='sum')). Then, we applied the edgeR’s88 quasi-likelihood functions to search for

DEGs between healthy patients and each other's inflammatory conditions, by considering one cell-type

at a time. Since not all the cell-types were detected in each patient, we didn’t perform the pairwise

comparison if one disease had less than 3 pseudobulks. More in detail, for each pairwise comparison

we first removed genes with a low expression value (filterByExpr(y, group = disease)). Second, we

normalized by library size the aggregated raw counts (calcNormFactors(y, logratioTrim = 0.3)). Third,

we corrected for the main confounding factor, that is, the sequencing chemistry (i.e., 5‘, 3’ v.2, and 3’

v.3), and also for patient gender, considering an additive model. We defined the design of our

comparison using the following patsy-style [https://patsy.readthedocs.io/en/latest/formulas.html]

formula: ‘~0 + C(disease) + C(mainChemistry) + C(sex)’. Fourth, we estimated a Negative Binomial
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(NB) dispersion for each gene using (estimateDisp()) which we feed into a gene-wise NB Generalized

Linear Model (glmQLFit(robust=TRUE)) to test for differentially expressed genes with a quasi-likelihood

F-test (glmQLFTest()). Lastly, results obtained from each comparison, were merged together and the

F-test p-values were corrected using the Benjamini-Hochberg False Discovery Rate procedure

implemented in R (p.adjust(method = 'BH')). Given the corrected p-values and the log2-fold change

(log2FC) we selected 2296 DEGs with p-value < 0.01 and absolute log2FC > 2.

Manually curated immune-specific genes. To be able to track the full spectrum of an inflammatory

process, including immune activation and progression, we ensure that the genes present in our human

immune-specific genes curated list (491 genes, only 451 present in our dataset; Supplementary Table
3)24–30, defined by an immunologist expert and based on the literature, were also included. Such genes

are grouped in 14 inflammation related functions, as reported in the above Table.

Aggregation of gene sets.We generate the relevant gene set by doing the union of HVGs, DEGs, and

the manually curated list. The final number of unique genes is 3986.

Datasets integration and gene expression correction via scGen

Atlas-level analysis requires a careful preprocessing of the gene expression profiles to deal with the

heterogeneity of the studies, the batch effect and the missing or noisy observations89. scGEN23 is one of

the existing methods that is able to tackle these challenges, and was also proven to be effective on

atlas-level benchmarks against other methods that provide corrected expression matrices86.

scGen integration. scGen is defined by two main components: a Variational AutoEncoder (VAE) and a

latent space arithmetic method. The VAE estimates a posterior distribution of latent variables through

the encoder, from which we can reconstruct the expression matrices via the decoder

(scGen_model.batch_removal()). Similarly to commonly employed VAEs, scGen approximates the

posterior through a variational distribution, modeled by the encoder and defined as a multivariate

Gaussian. When the scGen’s VAE has been fitted, latent space arithmetic is employed to correct for the

batch effect induced by the technology (ILCIC-technology). Within each cell type, scGen first selects the

mean of the most populated batch, and then corrects each batch with mean by addingμ
𝑚𝑎𝑥

μ
0

to each cell’s embedding. Importantly, the cell type has to be inferred when not known,δ =  μ
𝑚𝑎𝑥

− μ
0
 

as done in the patient classifier described in the next section. The final corrected count matrix will

correspond to the generated count matrix from the arithmetic-corrected embeddings. Following scGen’s

tutorials, we will refer as corrected embeddings to the ones obtained given the corrected expression

matrix as input. We trained scGen with 200 as latent dimension and early stopping with a patient of 10

epochs (scgen.SCGEN(n_latent=200, early_stopping=True).train(early_stopping=True,

early_stopping_patience=10)). Lastly, the batch effect taken into consideration was the technology

“ILCIC-technology” and the employed annotation level was the level 2.

Comparison of gene expression profiles

Compositional cell-type analysis. To estimate the changes in the proportions of cell populations

across diseases, we applied the scCODA Python package90, a Bayesian modeling tool that takes into
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account the compositional nature of the data to reduce the risk of false discoveries. scCODA allows us

to infer changes between conditions while considering other covariates, corresponding to the disease

status in our setting. scCODA searches for changes between a reference cell type, assumed to be

constant among different conditions, and the other cell types. In order to run our analysis in an

unsupervised way, we let scCODA automatically define such a reference. scCODA takes as input the

count of cells belonging to each cell type in each patient and returns the list of cell types proportion

changes and the corresponding corrected p-values (through the False Discovery Rate procedure;

FDR). A patsy-style formula was used to build the covariate matrix, specified with ‘healthy’ as baseline

(C(disease, Treatment('healthy'))), since we are interested in detecting changes between a normal and

diseased status. Finally, the model was fitted by running

sccoda.util.comp_ana.CompositionalAnalysis(formula, reference_cell_type = “automatic”) and we

consider as relevant only the changes with a corrected p-value lower than 0.05 and a log2-FoldChange

higher than 0.2.

Inflammation-related signature scores. To compare immune-relevant activation profiles across

diseases and cell types, we applied an enrichment signature scoring procedure considering

inflammation-related functions from the manually curated immune-specific genes previously introduced.

In particular, we applied the Multivariate Linear Model (MLM) approach using the Python

implementation of DecoupleR31, which has been proven to return more reliable results compared to

other scoring methods. Starting from the scGen correct gene expression matrix, we reduced the impact

of highly expressed genes, standardizing their expression values by removing the mean and scaling

them to unit variance. Moreover, we considered only inflammation functions that included at least 5

genes, resulting in 12 signatures. The last filtering step involves excluding cells belonging to HBcells,

Platelets and HSC cell types (level 1), as they contain very few cells and are not present across all

diseases. We fitted decoupleR’s MLM (decoupler.run_mlm()) by considering the pre-processed input as

response variables and the signature gene sets with unitary weights as covariates. The output of the

model is a t-student statistic for each cell and each inflammation function, which is used as a proxy of

its activation score. Thus, positive values are associated with more active functions in a given cell,

compared to the other cell functions, while negative values refer to functions less active. Finally, we

compared the activation score changes between ‘healthy’ cells and each disease in three resolution

levels: i) ungrouped cells, ii) cells grouped by annotation level 1, or iii) annotation level 2. In the latter

resolution level, we consider only groups with at least 20 cells. More in detail, we first computed the

average activation score in each given cell group. Then, we considered the ‘healthy’ score as reference

values ( ) and computed the Mean Relative Percentage change between with diseased ones ( ) asℎ 𝑑
𝑖

following: . ((𝑑
𝑖
 −  ℎ) / |ℎ|) * 100

Gene factor inference. In order to validate our curated list of immune-related genes, we employed

Spectra36, a tool able to identify a minimal set of genes related to specific functions in the data (i.e.,

factors). Given our dataset, we expect Spectra to select gene modules that are related to inflammatory

functions. More in detail, we started our analysis with the raw count expression values of our selection

of ~4k genes and the curated list of immune-related functions with the corresponding gene sets. We

further filtered the input count matrix by removing 103 genes related to T and B cell receptors which are
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strongly differentially expressed among subclones. Therefore, we reduced the impact of such

heterogeneity in our analysis. Moreover, we kept only immuno-related functions that included at least 5

genes, following Spectra’s tutorial. Additionally, due to the high resource requirements of Spectra, we

computed the pseudobulks of each cell type in each patient in order to reduce the sample size. In

particular, we applied the decoupleR Python library

(dc.get_pseudobulk(spectra_adata,sample_col='ILCIC_patient',groups_col='annotation_depth04_21Se

p23', layer='counts',min_cells=20, min_counts=0)), and obtained the pseudobulks on level 2

annotations. Next, we normalized obtained profiles by applying the same procedure explained before

(see Data normalization section). Then, the Spectra model was fitted with default hyperparameters

except for lambda, which was set to 0.05 to reduce the importance of the curated gene sets, given more

flexibility to Spectra’s inference (Spectra.est_spectra(lam=0.05)). Among the factors returned by

Spectra, we focused on the ones related to our IFN_response function provided as input. In particular,

we chose the IFN-related factors identified in each cell type, by selecting the ones which obtained an

overlap coefficient higher than 0.4 between the genes in the original IFN_response set and the top 50

genes ranked by their score in each factor. Moreover, Spectra’s output also includes a matrix with an

activity score for each factor in each sample (i.e., pseudobulk). Starting from such a matrix, we first

averaged the activity scores by grouping the samples by disease. Then, we scaled each factor by

dividing each score by the max value among the diseases. Finally, we run a Principal Component

Analysis implemented in the Scanpy library (scanpy.pp.pca()).

Immune gene importance evaluation

In this section, we will introduce our pipeline to obtain a gene importance metric by interpreting

cell-type-specific multi-class classifiers for disease prediction. In particular, classifiers are based on

Gradient Boosted Decision Trees (GBDTs) implemented in the CatBoost library91, which has been

shown to provide the best performance among existing GBDTs43. Lastly, interpretability was performed

using SHapley Additive exPlanation (SHAP) values46, a powerful approach taking into account also the

interactions between the genes to assign the importance score.

CatBoost Fitting. The first step of the pipeline consists in extracting the corrected expression from

scGen as described in the previous section. Then we standardized the expression by removing the

mean and scaling to unit variance (sklearn.preprocessing.StandardScaler()); this step was necessary in

order to have equal features scale for L2 regularization employed by CatBoost GBDTs. Due to the large

size of our datasets, we did not consider a full cross-validation but a simpler train-validation-test

splitting, where the test set accounts for 20% of the data and the validation set for 10% of the training

set. The validation set was used for CatBoost

(CatBoostClassifier(eval_metric='TotalF1:average=Macro',max_iterations=2000,bootstrap_type="Bayes

ian")) early stopping (with a patient of 50 iterations), while performance was evaluated on the test set.

Hyperparameters were tuned through the Optuna library45, which employs a Tree-structured Parzen

Estimator (TPE) sampling algorithm44 to navigate the hyperparameters space. We considered the

following hyperparameters: l2_leaf_reg={2, 3, …12}, depth={4, 5, …10}, random_strength={0, 1, …,

10}, colsample_bylevel={0.01, 0.1}, baggin_temperature={0, …, 10}. We allowed Optuna to test 100
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different configurations, while employing pruning techniques

(optuna.pruners.MedianPruner(n_warmup_steps=100, n_startup_trials=5)) to prune unpromising runs

and reduce computational time. In order to evaluate the performance of a configuration, we employed

F1-score with macro averaging. The above fitting procedure was applied independently on each cell

type belonging to level 1 (without HSC, pDC, Platelet, and HBcell).

SHAP interpretability. While Machine Learning approaches such as decision trees or Naive Bayes are

inherently interpretable, GBDTs require post-hoc interpretability tools in order to infer explanations. In

particular, explanations can be global, if they convey the behavior of the model on the whole data

distribution, or local, if it regards a single input sample. Post-hoc interpretability tools for GBDTs include

techniques that are either global or local, such as permutation-based feature importance92,93. Recently,

a new approach based on game-theory, namely SHapley Additive exPlanation (SHAP) values46, has

been shown to provide explanations that are locally consistent and can also be globally aggregated.

SHAP values explain the output of the classifier, in our case the predicted disease, as a sum of

contributions of each feature, that is, genes. Such contributions correspond to the change in the

expected model prediction when conditioning on the considered feature. Consequently, the importance

of a gene is related with the expected impact that a change in its expression has on the confidence of

the classifier towards predicting a specific disease. In other words, a gene gets a low importance value

if changing its expression leads to a small prediction change (and vice versa). Crucially, the order in

which genes are considered is meaningful due to the interactions between them, and the optimal SHAP

value for each gene is the average effect given all possible orderings. Computing the optimal SHAP

values requires evaluating an exponential number of gene orderings. However, for tree-based methods,

SHAP values can be computed in polynomial time93. Therefore, we computed the SHAP values through

the implementation provided by the CatBoost library

(CatBoostClassifier.get_feature_importance(type="ShapValues")). At the end of the pipeline and given

a specific cell type ct, we end up with a SHAP value for every gene in every cell, and for each disease:

a matrix of real values , where c, g, and d identify the cell, gene, and disease,𝑠ℎ𝑎𝑝𝑐𝑡(𝑐, 𝑔, 𝑑)

respectively. The average contribution of a gene g for a disease d can be computed as

, where C is the set of cells. While the global importance of a𝐷𝑠ℎ𝑎𝑝𝑐𝑡(𝑔,  𝑑) = 𝑚𝑒𝑎𝑛
𝑐 ∈𝐶

|𝑠ℎ𝑎𝑝𝑐𝑡(𝑐, 𝑔, 𝑑)|

gene g is , where D is the set of diseases. By repeating a similar𝐺𝐶𝑠ℎ𝑎𝑝𝑐𝑡(𝑔) =  𝑠𝑢𝑚
𝑑 ∈𝐷

𝐷𝑠ℎ𝑎𝑝𝑐𝑡(𝑔, 𝑑)

analysis across classifiers (and cell types), we can get the global importance of a gene in a specific

disease d. More in detail, we can compute the importance of gene g in a cell-type ct as

such that C is the set of cells, and the global importance𝐶𝑠ℎ𝑎𝑝𝑑(𝑔,  𝑐𝑡) = 𝑚𝑒𝑎𝑛
 𝑐∈𝐶

|𝑠ℎ𝑎𝑝𝑐𝑡(𝑐, 𝑔, 𝑑)|

across cell types as , where CT is the set of all cell types. Note𝐺𝐷𝑠ℎ𝑎𝑝𝑑(𝑔) =  𝑠𝑢𝑚
𝑐𝑡 ∈𝐶𝑇

𝐶𝑠ℎ𝑎𝑝(𝑔, 𝑐𝑡)

that while and are a standard interpretation of a classifier with SHAP,𝐷𝑠ℎ𝑎𝑝𝑐𝑡(𝑔,  𝑑) 𝐺𝐶𝑠ℎ𝑎𝑝𝑐𝑡(𝑔)

and integrate the importance scores across classifiers.𝐶𝑠ℎ𝑎𝑝𝑑(𝑔,  𝑐𝑡) 𝐺𝐷𝑠ℎ𝑎𝑝𝑑(𝑔)
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Patient classifier

In this section, we define our pipeline to predict a patient's disease status from their single-cell gene

expression profiles. This pipeline is expected to work with an annotated training dataset with known cell

type (i.e. our atlas, and a test dataset without annotations, new patient data). We validated our pipeline

by simulating a reference atlas and an unseen dataset by splitting our data into a train (80% patient)

and test (20% patients) split. Then, we removed the available annotations from the latter. The described

steps are then applied 5 times through cross-validation.

Extracting scGen embeddings. Starting from the training dataset, we first train scGen to obtain a

latent embedding as described in the previous section. This way, we reduce the dimensionality of each

cell to scGen’s latent size (200). Importantly, a label transfer step, described in the next paragraph, is

required to apply scGen’s latent space arithmetic on the test set, since the cell type annotation is

required to correct the embedding.

Label transfer. In order to apply scGen batch correction on the test set, we need to also infer the cell

types of those cells. This step was performed through label transfer by nearest neighbors, following a

similar approach employed in Human Lung Cell Atlas56 and introduced in55. The idea is to employ

(approximate) nearest neighbors through the PyNNDescent94 (pynndescent.NNDescent().prepare()),

and infer the most probable cell type in the 10 nearest neighbors (pynndescent.NNDescent().query())

from the already annotated cells in the training set. To account for the shape of the distribution of the

neighbors, a Gaussian kernel was applied instead of using the Euclidean distance. The most probable

nearest neighbor cell type is then assigned to annotate new cells. Since both training and test set

belong to our annotated dataset, we evaluated the label transfer goodness by computing the balanced

accuracy score, comparing the predicted annotation in each test set with the previous assigned ones.

Embedding correction. Having the annotations for both the training and test sets, we can now correct

both of them by applying scGen’s latent space arithmetic. In particular, we first extracted ẟs from the

training set batch correction (see scGen integration section) and add them to the test cell embedding,

in order to have cells in a common, corrected latent space.

Pseudobulk generation. To account for the still large and variable-sized feature spaces, we applied

pseudobulk through decoupleR31 among patients and grouping by cell type (annotation level 1),

excluding HSC, Platelet, and HBcell. This step assigns to each patient a pseudobulk to each defined

cell type, given that at least one cell for the cell type was detected. Then, a Linear Support Vector

Classifier95 (sklearn.svm.LinearSVC(max_iter=10000, dual=True)) in a one-vs-rest multi-class strategy,

such that each learned decision boundary separates each class from all the others. Moreover, to deal

with the case of having a missing cell type in a given patient, we proposed to apply the LinearSVC

classifier independently to each cell type, and then aggregate the prediction with a majority voting

approach. Thus, the aggregated prediction corresponds to the most frequent prediction among each

cell type’s classifier. In case the most frequent disease is not unique, the patient is labeled as

‘undetermined’. Lastly, we excluded ccRCC disease from the analysis, due to the low number of

patients included.
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