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This article provides a comprehensive review of the most recent advances in the
planning, execution, and analysis of inflow and wakemeasurements from nacelle-
mounted wind Doppler lidars. Lidars installed on top of wind turbines provide a
holistic view of the inflow and wake characteristics required to characterize and
optimize wind turbine performance, carry out model validation and calibration,
and aid in real-time control. The need to balance the enhanced capabilities and
limitations of lidars compared to traditional anemometers inspired a broad variety
of approaches for scan design and wind reconstruction, which we discuss in this
review. We give particular emphasis to identifying common guidelines and gaps in
the available literature with the aim of providing an exhaustive picture of the state-
of-the-art techniques for reconstructing wind plant flow using nacelle-mounted
lidars.
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1 Introduction

Global electricity production from wind energy increased by 17% in 2021 compared to
the previous year, which represents the largest growth in power production compared to all
forms of power generation in 2021 (IEA, 2021). However, in order tomeet the ambitious goal
of Net Zero Emissions by 2050 (Forster et al., 2020), power generation from wind energy
should grow annually on an average by 18% (Pryor et al., 2020). For the United States, some
wind energy-focused studies (Marvel et al., 2013; Pryor et al., 2020) have shown that bringing
the wind energy production from the current 9%–20% of the overall energy portfolio by
2030 is within the theoretical and current technological limits. In this regard, Veers et al.
(2019) identified grand challenges in our ability to accurately characterize wind plant
aerodynamics and the wind resource. The complex interaction between the synoptic and
mesoscale processes driving the atmospheric boundary layer, coupled with perturbations
introduced by local orography (or the ocean) produces spatio-temporal variations in the
wind resource that are not fully predictable. Furthermore, the turbines themselves
significantly modify the surrounding wind velocity field. The kinetic energy extracted by
wind turbines creates wakes, which are also known to impact the local microclimate
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Barthelmie et al. (2010); El-Asha et al. (2017); Abkar and Porté-Agel
(2015); Zhan et al. (2019); Bodini et al. (2021); Wu and Archer
(2021).

Better characterization of the wind field would lead to a
reduction of the levelized cost of energy through several
mechanisms. First, by reducing the error in the predicted annual
energy production (AEP) in the pre-construction phase, which is
still affected by an average ~ 2% bias and a ~ 10% uncertainty (Lee
and Fields, 2021). Second, real-time measurements of the incoming
and wake flow could assist advanced control techniques, such as
yaw-based wake steering (Dahlberg and Medici, 2003; Boersma
et al., 2017; Simley et al., 2021b; Meyers et al., 2022), tilt-based
wake steering (Bossuyt et al., 2021), and turbine derating (Johnson
and Fritsch, 2012). Third, a short-term prediction of the incoming
flow could provide important guidance to a controller aiming at
alleviating the loads on the turbine (Schlipf et al., 2012; Scholbrock
et al., 2013).

Variability in the wind resource due to large turbulent eddies,
thermal stratification, wind shear, ocean/wave dynamics, terrain,
and wakes occur on spatial scales that are hardly detectable
through traditional in situ measurements that collect high-
frequency data at single points in space. This limitation
spurred the interest in remote sensing technology, and in
particular Doppler wind lidars, as an alternative and more
effective way to characterize the atmospheric velocity field for
wind energy applications (Liu et al., 2019). Modern commercial
lidars enable measurement of high-resolution winds over large
areas of interest, and are compact enough to be installed in
locations that are otherwise difficult to access, such as sites with
complex terrain, offshore platforms, and the nacelles of utility-
scale wind turbines.

Several scanning technologies and strategies have been
adopted to probe the atmospheric boundary layer for wind
energy applications. Profiling lidars have been deployed for
freestream resource assessment (Gottschall et al., 2012; Optis
et al., 2021; Sharma et al., 2021), wake characterization (Heisel
et al., 2018) and plant induction quantification (Jacquet et al.,
2022; Letizia et al., 2022). Scanning lidars, i.e., those that feature
the ability to direct the laser beam in arbitrary directions (among
other abilties), offer additional flexibility and permit a more
targeted characterization of the wind plant flow. These lidars
have been extensively used, both on the ground and mounted on
turbine nacelles, to characterize wakes in the horizontal (e.g.,
Trujillo et al., 2011; Kumer et al., 2015; Bodini et al., 2017; Zhan
et al., 2019) and vertical plane (Iungo et al., 2013), as well as in a
volumetric fashion (e.g., Iungo and Porté-Agel, 2014; Doubrawa
et al., 2019; Letizia et al., 2021b).

Nacelle-mounted lidars (NMLs) provide unique capabilities for
real-time characterization of the inflow and wakes of utility-scale
wind turbines. The logistical complexity of deploying a lidar on a
wind turbine nacelle is compensated by a better characterization of
the wind resource at heights relevant to wind energy and by the
effortless steering of the lidar onto the wind (and wake) direction for
yaw-controlled turbines.

This article presents the state-of-the-art regarding the use of
NMLs for wind energy research. The studies reviewed in this article
utilize real or virtual NMLs spanning a broad range of applications,
including.

• real-time measurements from forward-looking lidars injected
into wind turbine or wind farm controllers enhanced with
feed-forward control paths, aimed at adjusting the turbine or
farm operation to adapt to incoming wind perturbations

• lidar measurements over long periods of time leveraged to
assess wind turbine performance as an alternative to
meteorological towers

• high-resolution lidar data assimilated into numerical
simulations to assess dynamic performance and loads

• lidars probing the upstream region of wind turbines utilized to
characterize the inflow for wake-focused studies

• rear-looking lidars used to characterize the statistics of the
turbulent wake velocity field for model calibration and
validation

• high-frequency lidar measurements producing time series of
instantaneous wake characteristics used to investigate wake
dynamics

• lidar simulators (i.e., virtual lidars) developed to 1) assess the
error in measurements due to either scanning geometry or
lidar acquisition during various atmospheric conditions and 2)
optimize scanning strategies.

In spite of the significant potential of NMLs, multiple experts
(Clifton et al., 2018; Simley et al., 2018) have identified several
barriers that still hinder the assimilation of such technology into
wind energy industrial standards. First and foremost, a consolidated
scan design strategy and data processing technique have not yet
emerged, partially due to the uniqueness of the individual
experiments and the relative novelty of the lidar technology. The
purpose of this review is to provide a detailed account of applications
of NMLs and guidance to researchers using lidars and lidar data.

This paper is structured as follows: Section 2 presents a general
overview of the lidar technology for nacelle applications; Section 3
discusses the most relevant studies utilizing forward-looking lidars
for inflow characterization; Section 4 delves into the numerous field
and virtual lidar experiments targeting the wake region; the most
important aspects emerged from the present literature review are
summarized at Section 5; finally, conclusive remarks are provided in
Section 6.

2 Overview of lidar technology for
nacelle applications

The concept of NML refers to any configuration that includes a
Doppler lidar capable of measuring the wind velocity field installed
on a turbine nacelle. The deployment close to the hub of the turbine
is particularly advantageous since it provides the best alignment of
the lidar probe with the flow experienced by the rotor and also a
privileged position to scan the wake region. Before discussing the
specific uses of NLM, it is beneficial to review the main principles of
lidar technology. This work, in particular, focuses on applications
utilizing coherent (or heterodyne) Doppler lidars to measure wind
speed. The measurement principle leverages the Doppler shift
(Doppler, 1842) occurring between the light emitted from the
instrument and the backscatter from aerosols (e.g., dust, pollen,
droplets, etc.) in the atmosphere. The shift in frequency of the light is
linearly proportional to the line-of-sight (LOS) or radial velocity,
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uLOS (i.e., the projection of the instantaneous velocity vector onto the
laser beam), as follows:

uLOS � c

2
fout − fin

fin
, (1)

where fout and fin are the emitted and received frequencies,
respectively, and c is the speed of light. The two in the
denominator signifies that the Doppler shift applies twice: once
for the emitted light that hits the aerosol and once for the returned
light arriving back at the instrument.

Coherent lidars can be classified into two categories, based on
the way their signal is generated and analyzed.

• Continuous wave (CW) lidars process the backscatter detected
from the whole span of the beam resulting from a continuous
emission of light. For these lidars, the intensity of the
backscattered signal is a function of the distance from the
source r, and the center of volume of the backscatter intensity
is referred to as focal distance, d.

• Pulsed lidars emit the light in the form of laser pulses and
sample the backscattered light with a high frequency (on the
order of 108 Hz). The return signal is divided into temporal
windows that carry information on the air speed of different
regions along the line-of-sight, a technique called range gating.

Pulsed lidars are therefore able to retrieve the radial velocity
independently at each gate. However, they require a larger sampling
time compared to CW lidars because the signal needs to travel back
and forth from the lidar to the furthest gate before a new pulse is
emitted to avoid contamination of the backscattered signal.

The LOS velocity retrieved by the lidar at each point is the result
of the spectral analysis of the return signal backscattered by the
aerosol particles and illuminated with different intensities by the
laser pulse. A widely accepted simplification considers the LOS
velocity to be equivalent to the mean of the backscattered signal
along the laser beam weighted by a function that depends on the
distance along the beam and the type of lidar. This process, referred
to as probe averaging, is generally formalized as:

uLOS d, t( ) � ∫
∞

0
b̂ · u r, t( )ϕ r, t( )dr (2)

where uLOS(d, t) is the retrieval, u is the 3-D velocity vector at
location r along the laser beam and time t, b̂ is the beam direction,
and ϕ(r, t) is the weighting function mimicking the acquisition
process. Examples of weighting functions, ϕ(r, t), are reported in
Figure 1 (details in Simley et al. (2014a)).

Coherent lidars calculate the Doppler shift through a Fast-
Fourier Transform of the recorded signal. They normally acquire
data over a certain time window to build an average spectrum that
guarantees a statistically significant prominence of the energy peak
due to wind speed above the noise floor (a process called
accumulation (Rye and Hardesty, 1993)). Temporal resolution is
further reduced by the processing time and scanning head rotation,
which may reduce the actual acquisition time to 25% of the total
operation period.

From a technological standpoint, there are several factors that
have contributed to the recent success of lidars for wind energy and
atmospheric research, such as reduced costs and size, enhanced
capabilities, and easier and safer operation compared to the initial
prototypes. Improved electronic signal analysis techniques resulted
in a considerably shorter processing time (i.e., more visibility at
closer ranges, a higher sampling rate) and more accurate estimation
of the Doppler shift (i.e., increased data availability and resolution)
(Emeis et al., 2007). Furthermore, the development of fiber optics
permitted drastic miniaturization of internal components (Fujii and
Fukuchi, 2005). Finally, modern solid-state light sources emit lasers
with frequencies within the range of eye-safe wavelengths, easing the
safety requirements for deployment (Reitebuch, 2012).

Nevertheless, the acquisition process outlined above presents
three major limitations that preclude the exact reconstruction of the
instantaneous turbulent flow field. First, the combination of probe
averaging and accumulation acts as a low-pass filter that dampens
the smaller energy-containing turbulent scales. This effect leads to,
for instance, a problematic estimation of second-order moments
(Sathe et al., 2011). Second, the intrinsic reliance of the measurement
on line-of-sight visibility and aerosol concentration leads to
inconsistent data availability (Davoust et al., 2014) and
contamination due to bandwidth noise (Penã et al., 2017).
Fortunately, most of the outliers can be flagged based on their
carrier-to-noise-ratio (CNR). The last limitation of lidars is their
inability to measure the 3-D velocity but rather its projection onto
the along-beam direction gives rise to the so-called “cyclops

FIGURE 1
Example lidar weighting functions: (A) continuous wave lidar, as a function of the focal distance and range, with the location of the maximum value
and the ranges where the weighting function crosses half of the peak value (relevant for the definition of the full-width half-maximum) marked as red
lines; (B) pulsed lidar, as a function of the range gate length, Δp, and for a pulse with a full-width half-maximum of Δr = 30 m. For more details, refer to
Simley et al. (2014a).
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dilemma,” the indeterminacy caused by the lack of information on
the cross-beam velocity components. Such an impasse is generally
overcome in one of these three ways: either the flow field measured
by multiple lidar beams emitted by a single lidar is assumed to be
homogeneous (e.g., Sathe et al., 2015), or multiple lidars are
deployed to perform multi-Doppler retrievals at the same point
in space (e.g., Newsom et al., 2013), or a known wind direction and a
negligible vertical velocity are assumed (see Zhan et al. (2019); Eq.
2). The last approach is hereinafter called wind speed de-projection
(WSD). It is noteworthy that the breakdown of these assumptions
on the flow field generates a geometrical error (i.e., the
contamination of transverse velocity components onto the line-
of-sight) on the mean velocity field (Simley et al., 2014a), and its
second-order statistics (Fu et al., 2021).

In the past few years, several Doppler lidars have been adapted to
allow installation on turbine nacelles, with several levels of
customization, also including commercial NML models. The
most common type of systems can be summarized as follows.

• Scanning lidars probe customized patterns and represent the
most versatile technology to scan both inflow and wake;
however, high costs and complex programming generally
relegate this type of lidar to advanced research applications;
the flexibility of scanning lidars allows the user to schedule
several scanning patterns, the most common being the Plan
Position Indicator (PPI, Figure 2A), the Range Height
Indicator (RHI, Figure 2B), the volumetric scan
(Figure 2C), and staring scans for special turbulent
measurements (Figure 2D).

• Fixed-beam lidars emit multiple beams (e.g., Figures 2E,F) at
fixed orientations to reconstruct basic wind flow information,
such as mean wind speed, vertical wind shear, and wind
direction. These lidars have been typically used to
recalibrate the yaw controller to minimize power losses due

to misalignment, and as for power performance validation and
feedforward control. Such instruments represent the most
common type of commercially available NML.

• Conical lidars scan circular paths at fixed focal distances
upstream of a rotor to reconstruct mean wind speed, shear,
and wind direction (Figure 2G). These lidars can be pulsed or
CW, the latter being typically retrofitted vertical profilers that
are re-adapted for turbine control applications.

• Spinner lidars, originally developed at the Technical
University of Denmark (Mikkelsen et al., 2013), are
continuous-wave profiling lidars that can be installed on
the turbine spinner (Figure 2H). Rapid rotation of the
internal optics (superposed to that of the mounting itself if
spinner-mounted) allows the spinner lidar to scan with
extremely high spatial resolution and a sampling frequency
of 500 Hz when operating at a fixed focal distance (Machefaux
et al., 2015). Such lidars can also be installed through the back
wall of the turbine nacelle for fast wake measurements (Herges
et al., 2017).

Before moving into the details of prominent studies using NML
data, it is worth discussing the general trends and evolution of
scientific research on this topic. Figure 3 shows the temporal
distribution of the journal articles discussed in this review,
classified according to different criteria. Figure 3A highlights a
prevalence of studies focusing on the inflow, especially before
2015, boosted by a proliferation of publications regarding wind
turbine control (Figure 3B), a topic that received significant
attention from the industrial community at that time, likely as a
consequence of increased research funding and the creation of new
lidar companies. The success of seminal field lidar campaigns (e.g.,
Bingöl, 2009; Krishnamurthy et al., 2013; Mikkelsen et al., 2013;
Iungo and Porté-Agel, 2014; Machefaux et al., 2015) appears to be a
key factor that raised the interest of the scientific community in this

FIGURE 2
Schematic of different nacelle-mounted lidar scans: (A) PPI; (B) RHI; (C) volumetric; (D) stare scans; (E) fixed 2-beam; (F) fixed 4-beam; (G) conical,
(H) spinner. Illustration by Besiki Kazaishvili (NREL).
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type of instrument after 2014, leading to a renewed interest in lidars
and a more diverse panorama of research applications (Figure 3B).
As expected, the larger availability of lidars in the past few years
somewhat limited the adoption of numerical techniques (Figure 3C),
given the clear preponderance of experimental studies compared to
numerical methods, which were more popular before 2015. It is
noteworthy that numerical studies on this topic routinely include so-
called virtual lidars, namely, a numerical twin of a lidar that samples
the velocity fields generated through simulations mimicking the
acquisition process of a real instrument. Regardless of the accuracy
of the simulated flow, discrepancies between virtual and real lidar
measurements depend mainly on the fidelity of the numerical lidar
model. In general, projection onto the LOS direction and probe
averaging are the minimum requirements and the most commonly
implemented features for a realistic virtual lidar, whereas real-world
effects such as sight blockage, pointing error, and noise
contamination are rarely simulated.

3 Inflow measurements

Lidars installed on wind turbine nacelles have been increasingly
used in the past 2 decades to detect the wind velocity field impinging
on the rotor. In fact, NMLs have been recently included for the first
time in the International Electrotechnical Committee Standards IEC
(2022), which substantiates the increasing acceptance of this remote
sensing technology in the wind energy industry (Clifton et al., 2018).
It is noteworthy that the former document does not include
guidelines on the raw data quality control, the wind
reconstruction algorithm, nor the effects of complex terrain on
measurement quality, because these topics are still the subject of
ongoing research. From a pragmatic standpoint, NMLs represent an
appealing alternative tomet mast measurements for inflow sampling
due to the larger field of view (Mikkelsen et al., 2013), and relatively
low costs and maintenance (Slinger et al., 2013). Additionally, as the
lidar yaws with the wind turbine, the measurements are guaranteed
to always measure upstream of the rotor, whereas a met mast
remains fixed and can be affected by the wind turbine wake for

certain wind directions, thus reducing data availability, and
decreasing the correlation with turbine response for large
spanwise separation (Wagner et al., 2014). In this regard, Table 1
reports the main advantages of lidars relative to met masts in terms
of their technical specifications and capabilities.

The reviewed literature reveals a vast breadth of approaches and
techniques applied to NMLs for inflow measurements that can be
broadly classified into four categories, based on the intended use of
the nacelle lidar measurements: 1) characterization of the turbulent
inflow to assist feed-forward control (Section 3.1), 2) general
reconstruction of the dynamic turbulent field (Section 3.2), 3)
performance and load assessment (Section 3.3), and 4) estimation
of inflow turbulent statistics to study wake morphology and
dynamics (Section 3.4). The following sections cover each
subtopic separately, with particular emphasis on the technology
employed, scanning strategies, and retrieval techniques.
Furthermore, Table 2, which is included at the end of this
section, summarizes the lidar scanning strategies and wind
reconstruction techniques reviewed in this section.

3.1 Lidar-assisted control

The development of NMLs inspired widespread studies of
advanced control techniques for wind turbines that leverage the
predictive knowledge of the incoming flow in the rotor-swept area to
reduce the levelized cost of wind energy. In fact, state-of-the-art
controllers use a feedback architecture, in which the disturbances
caused by the turbulent wind velocity field are minimized through
appropriate counteractions of the control system after they have
impacted the rotor (Pao and Johnson, 2011). Therefore, one of the
most promising types of lidar-assisted control (LAC) is feedforward
control. With this type of control, preview measurements of the
approaching flow are used to mitigate the impact of turbulent
structures on the turbine operation without having to wait for
the feedback controller to react to deviations of the turbine
system from the reference state. The logic of modern variable
speed-pitch regulated wind turbines is generally based on the

FIGURE 3
Temporal distribution of the NML studies included in the present review, classified based on (A) lidar orientation (forward vs. backward), (B)
application, and (C) methodology used to collect the data.
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classification of the operative regime of the turbine into three so-
called power curve regions based on the inflow wind speed at the
rotor, U∞ (Foti et al., 2018).

• Region 1 (0 ≤ U∞ < Ucut-in): the turbine is not producing
active power and the blades are pitched to minimize the
aerodynamic loads;

• Region 2 (Ucut-in ≤ U∞ < Urated): the power production is
maximized by tracking the optimal cp point through the
regulation of the generator torque;

• Region 3 (Urated ≤ U∞ < Ucut-off): the active power output is
set to its rated value and the blades are actively pitched to
maintain the rotation speed as close as possible to its set point.

Systematic research on this concept can be traced back to Harris
et al. (2006), a seminal study that paved the way for many
subsequent works on lidar-based feedforward control. Their
study thoroughly analyzed the most relevant technical aspects of
NMLs and selected three hypothetical lidar models that were
simulated in TurbSim (Jonkman, 2006) while the turbine
reaction was studied in FAST (Jonkman and Buhl, 2005). The
possible benefits of LAC spanned the whole power curve,
including enhanced efficiency in region 2, smoother transition
between region 2 and 3 and startup/shutdown operations,
improved speed regulation in region 3, and load reduction.
However, only the latter two aspects were tested. A 10%
reduction in Damage Equivalent Load (DEL) (IEC, 2005) for the
flapwise blade root bending moment could be achieved thanks to the

introduction of the lidar, with less clear advantages reported for
speed regulation. Most importantly, those results were promising
enough to spur the interest of the research community in this
technology.

Since then, researchers have been focusing on the optimization
of lidar scanning strategy and controller architecture, error
quantification, performance analysis, and understanding the
physics of the evolving turbulent wind field.

The last element, in particular, plays a crucial role in the context
of LAC. Wind turbines operate in the lower part of the atmospheric
boundary layer and are therefore exposed to a highly turbulent flow
whose spatio-temporal characteristics are generally dictated by local
climatology, mesoscale circulation, local orography (or ocean
surface), and thermal stratification. These factors make the flow
characterization remarkably challenging from both an experimental
and theoretical standpoints (Veers et al., 2019). The intrinsic
limitations of lidar technology outlined in Section 2, such as its
spatial averaging and limited temporal resolution, confine the range
of turbulent scales that can be observed. Moreover, in LAC
applications, because of the near-range blind region of the lidar,
the high geometrical error induced by scans with large coning angles
(Simley et al., 2011), and the inevitable processing and actuation
time, the flow is always sampled tens to hundreds of meters
upstream of the rotor. This further complicates the estimation of
the velocity sensed by the rotor due to the wind evolution, viz. the
modification of the velocity field occurring as the turbulent
structures are advected from the focal point of the lidar to the
turbine. Indeed, the greatest body of research on the turbulence

TABLE 1 Comparison of met masts, pulsed, and CW lidars for inflow measurements. For the entries related to capabilities (last 7 rows): ✓: provided directly or
derived via traditional methods; •: derived via special methods; ✕: unavailable.

Met mast Nacelle lidar (CW) Nacelle lidar (pulsed)

Sampling frequency >10 Hz ~10 Hz (single LOS) ~ 1 Hz (single LOS)

Turbine inflow
measurement sector

280°–300° IEC (2017) 360° 360°

Sampling location Vertical array Custom surface at single range at
any given time

Fixed beams or volume
(scanning lidars)

Typical probing volume ~ 10−2 m ~ 10-300 m ~ 10-50 m

Sources of data loss/
corruption

Cup anemometers: Ice, dust, salt, over-speeding, inertia. Sonic anemometers:
wakes from supports, temperature variations, precipitation

LOS blockage, low CNR, bearing
offset

LOS blockage, low CNR,
bearing offset

Cost High From moderate to high From moderate to high

Maintenance effort High Moderate Moderate

Logistical challenges Permitting, construction Installation, alignment Installation, alignment

Hub-height wind speed ✓ ✓ ✓

Vertical shear ✓ ✓ ✓

Horizontal shear ✕ • •

Streamwise velocity
gradient

✕ ✕ ✓

Hub-height wind
direction

✓ ✓ ✓

Veer ✓ ✓ ✓

Hub-height TI ✓ • •
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TABLE 2 Summary of the reviewed scanning strategies and wind reconstruction techniques applied to nacelle-mounted lidars for inflow sampling. A zero-azimuth,
θ = 0, corresponds to the direction of the rotor axis pointing upstream. Refer to the nomenclature at the beginning of the manuscript for the explanation of
symbols and acronyms.

Reference Lidar type Scanning pattern Quantity of interest Retrieval technique

Hardesty and Weber (1987) CW Circular Spectra Spectral

Harris et al. (2006) CW (Virtual) Circular (θmax = 20°, 36 points, 1 distance) U∞(t), ∂u∂z (t) WSD, statistical

Angelou et al. (2010) CW Stare Spectra Spectral

Schlipf et al. (2010b) Pulsed Stare, PPI and volumetric γ(f) Spectral

Schlipf et al. (2010a) Pulsed (virtual) Circular (12 points, 5 distances) U∞(t), ∂u∂y (t), ∂u∂z (t) LSF

Dunne et al. (2011) CW (on each
blade)

Stares (75% blade span, x = −65 m) U∞(t) N/A

Laks et al. (2011) Virtual Stares (75% span) U∞(t) TFH, interpolation

Bossanyi (2013), Bossanyi et al.
(2014)

CW and pulsed
(virtual)

Several, covering 10 points in ~ 1 s U∞(t), ∂u∂y (t), ∂u∂z (t), θw(t) LSF

Simley et al. (2011); Simley et al.
(2012); Simley et al. (2014a)

CW and pulsed
(virtual)

Circular U∞(t), u (θ, t) WSD, TFH

Schlipf et al. (2012) Pulsed Circular (6 points, 5 distances) U∞(t) WSD, LPF

Schlipf et al. (2013c) Pulsed (virtual) Circular (θmax = 18°, 12 points, 5 distances) U∞(t) WSD, TFH, LPF

Laks et al. (2013) CW (virtual) Circular (60 points) U∞(t) WSD, interpolation

Schlipf et al. (2013a) Pulsed (virtual) 3-beams (x = −1.3D, θmax = 13°) U∞(t) WSD, LPF

Schlipf et al. (2013b) Pulsed (virtual) 3-beams (3 distances) U∞(t) WSD, LPF

Wang et al. (2013) Pulsed (Virtual) Stares (3-beam, θmax = 12°, x = −1.75D) U∞(t) Statistical

Kragh et al. (2013) CW (Spinner,
virtual + real)

Rosettes (θmax = 15° and θmax = 30°) θw(t) WSD + Homogeneous flow

Mikkelsen et al. (2013) CW (Spinner) Rosettes (θmax = 15°, x = −1.24D and θmax = 30°,
x = −0.57D)

U∞(t), ∂u∂z (t), θw(t) WSD + Homogeneous flow

Slinger et al. (2013) CW Circular (θmax = 30°, 50 points, 5 distances) U∞(t), θw(t), ∂u∂z (t) LSF

Scholbrock et al. (2013) Pulsed Stares (3-beam) U∞(t) WSD, LPF

Wagner et al. (2014) Pulsed Stares (2-beam, θmax = 15°) �U∞ WSD

Raach et al. (2014) CW (virtual) Circular (θmax = 45°,5 distances) U∞(t), ∂u∂y (t), ∂u∂z (t) TFH, optimization

Bottasso et al. (2014) CW (virtual) Circular (12 points, 5 distances) U∞(t) WSD

Simley et al. (2014b) CW (virtual) Stares (3-beam, θ ~ 45°, x ~ − 0.7D) U∞(t), ∂u∂y (t), ∂u∂z (t) WSD

Towers and Jones (2014) Pulsed (virtual) Stares (2-beams, θmax = 15° and 30° u (x, y, t) TFH, Kalman filter

Fleming et al. (2014) Pulsed Stares (2-beam, θmax = 15°) U∞(t), θw(t) WSD

Machefaux et al. (2015) CW Circular (θmax = 30.4°, x = 0.5D, 49 points) u (y, z, t) WSD

Schlipf et al. (2015) Pulsed (virtual +
real)

Circular (θmax = 21.8°, x = −0.625D, 6 points) U∞(t) WSD, LPF

Simley and Pao (2015) CW (virtual) Circular U∞(t) WSD

Haizmann et al. (2015) CW Circular (θmax = 15°, x = −1.4D) U∞(t) WSD, LPF

Kumar et al. (2015) Pulsed Stares, (5-beam, θmax = 15°, 3 distances) U∞(t) WSD

Scholbrock et al. (2015) CW Circular (θmax = 15°, x = −1.3D) θw(t) Homogeneous flow

Dunne and Pao (2016) CW (virtual) Circular (θmax = 30°, x = −0.63D) U∞(t) GTO

Bos et al. (2016) Pulsed Circular, (θmax = 15°, x = −1.4D) �u(x, y, z, t) GTO

(Continued on following page)
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characteristics for LAC applications is somehow related to the
problem of wind evolution.

The simplest approach to deal with wind evolution is that of
assuming the Taylor-frozen hypothesis (TFH) (Taylor, 1938),
namely, that turbulent structures are advected unchanged
from the measuring plane to the rotor. More sophisticated
approaches take into consideration the temporal evolution of
smaller turbulent eddies. From a statistical standpoint, the
degree of wind evolution is typically characterized in terms
of longitudinal coherence, which quantifies the degree of
correlation between wind speeds at two points as a
function of the frequency and longitudinal separation, and is
defined as:

γ2x1 ,x2 f( ) � |Sx1 ,x2 f( )|2
Sx1 f( ) Sx2 f( ), (3)

where Sx1 and Sx2 are the power spectra density of the
streamwise velocity at x1 and x2, and Sx1 ,x2 is their cross-spectral
density.

The following sections describe the research effort regarding
LAC, with particular emphasis on flow physics and experimental
techniques. Additional details on the controller algorithms, which
are beyond the scope of the present work, can be found in more
specific publications (Scholbrock et al., 2016; Simley et al., 2018).
Existing literature is classified into two categories: LAC for load
reduction (and rotor speed stabilization) in region 3 (Section 3.1.1)
and LAC for performance enhancement (3.1.2).

3.1.1 LAC for load reduction
This review revealed that there is widespread consensus about

the fact that load reduction in above-rated operation and rotor/
generator speed stabilization is the most promising application for
LAC (Scholbrock et al., 2016; Simley et al., 2018). It comes as no
surprise that the vast majority of the published studies on LAC tackle
this topic. In spite of the agreement on a conceptual level on the
effectiveness of LAC in region 3, the claimed benefits of LAC span a
wide range of values. Figure 4 reports the relative reduction of the
most commonly used objective functions for turbine control, which

TABLE 2 (Continued) Summary of the reviewed scanning strategies and wind reconstruction techniques applied to nacelle-mounted lidars for inflow sampling. A
zero-azimuth, θ = 0, corresponds to the direction of the rotor axis pointing upstream. Refer to the nomenclature at the beginning of the manuscript for the
explanation of symbols and acronyms.

Reference Lidar type Scanning pattern Quantity of interest Retrieval technique

Schlipf and Raach (2016) Pulsed (Virtual) Circular, (θmax = 20°, 5 distances) U∞(t) Spectral

Borraccino et al. (2017) CW and pulsed Circular (θmax = 15°, 5 distances (CW), 5-beams
(pulsed))

�U∞ , ∂�u∂z WSD, LSF

Penã et al. (2017) CW and pulsed Circular (θmax = 15°, 5 distances (CW), 5-beams
(pulsed))

ui′uj′ Spectral

Dimitrov and Natarajan (2017) CW and pulsed Several, covering many points in ~ 1 s u (y, z, t) GTO

Simley et al. (2018) CW and pulsed
(virtual)

Circular (θmax = 26.6°, x = −0.6D) U∞(t) WSD, LPF

Carbajo Fuertes et al. (2018)
Brugger et al. (2019)

Pulsed PPI + RHI + x- and y-stares θw, �u(z), u′2 , v′2 WSD, statistical, LSF,
interpolation

Dimitrov (2019); Conti et al. (2020) CW and pulsed Circular (θmax = 15°, 5 distances (CW), 5-beams
(pulsed))

�U∞ , �θw, ∂�u∂z, u′u′ WSD, LSF, spectral

Held and Mann (2019a) Pulsed Stares (2-beam, θmax = 30°) U∞(t), TI, spectra Statistical

Held and Mann (2019b) Pulsed Stares, (2-beam, θmax = 30°,x = −0.6D, 4-beam, θmax =
18°,x = −1.13D)

U∞(t) WSD, spectral

Shin et al. (2019), Shin and
Ko (2019)

Pulsed Stares (θmax = 15°,βmax = 5°) �U∞ WSD

Brugger et al. (2020) Pulsed Stares (4-beam, θmax = 15°,βmax = 12.5°) U∞(t), θw(t) WSD, statistical,
homogeneous flow,
interpolation

Pettas et al. (2020) CW and pulsed
(virtual)

Hexagonal (7-points at x = −2.5D) u(x, y, t) GTO

Schlipf et al. (2020) Pulsed (virtual) Stares, (4-beam θmax = 15°,βmax = 12.5°) TI GTO

Conti et al. (2021b) CW and pulsed
(virtual)

Rosette, θmax = 35°, x = −0.7D u (y, z, t), TI Spectral and GF

Chen et al. (2021) Pulsed Stare γ(f) Statistical, machine learning

Fu et al. (2021) 2 Pulsed +
Spinner

Stare (2-beam, θmax = 30°,x = −0.7D), stare (4-beam,
θmax = 18°,x = −1.2D), rosette (θmax = 30°,x = −1.2D)

U∞(t) WSD, spectral

Brugger et al. (2022) Pulsed Lateral stares v′2, integral timescale Statistical, interpolation
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range from a remarkable 30%–60% to more modest decrements.
This is associated with the vast variety of experimental and/or
numerical setups, controller schemes used, as well as case-specific
inflow conditions and turbulence modeling.

In terms of methodology, it is observed that earlier studies
generally relied on synthetic measurements, and leverage the
TFH to model wind evolution. For instance, in the pioneering
work by Laks et al. (2011) synthetic frozen turbulence (Taylor,
1938) generated by TurbSim was sampled from several simulations
at different turbulent levels to reproduce rotating and non-rotating
upstream measurements with a highly idealized nacelle lidar. They
reported significantly reduced loads compared to the baseline in
region 3 when injecting the rotating lidar preview into the IPC
algorithm, but unsatisfactory results when more realistic stationary
measurements are injected into the controller, especially for highly
turbulent flow. Dunne et al. (2012) followed up with a study testing
two lidar configurations for pitch control: one using three
independent staring CW lidars installed on the blades (Dunne
et al., 2011) and the other with a single pulsed lidar scanning in
a conical fashion (Schlipf et al., 2010a). Although it was confirmed
that the first approach results in a better estimation of the blade-
equivalent velocities, the second is more realistic and even more
accurate at measuring the rotor-equivalent wind speed.

The early work of Simley et al. (2011) dissected the sources of
inaccuracy in the measurements of the hub-height wind speed
introduced by a CW lidar scanning in a circle. They found that
the geometrical error dominates the close ranges, whereas probe
averaging becomes dominant for large focal distances (frozen

turbulence was assumed in the studies). These two factors led to
the important conclusion that an optimal preview distance can be
identified by minimizing the root mean square (RMS) error of the
hub-height wind speed as a function of the inflow conditions and the
target scanning radius. Such findings were expanded in Simley et al.
(2014a) with the introduction of measurement noise, a pulsed lidar,
coherent turbulent structures, and the estimation of blade-
equivalent wind speed. Another study that stands alone in this
context is that of Wortmann et al. (2016). Those authors envisioned
an ideal lidar-assisted IPC capable of compensating the vertical and
horizontal shear, which are typically neglected. Although their
results indicate a ~ 5% improvement in the DEL of the flapwise
blade root compared to a feedback IPC algorithm, their model does
not take into account the measurement error and wind evolution.

The absence of wind evolution in the previous studies leads to
the counter-intuitive result that the measurement error decreases
monotonically with the preview distance for a pulsed lidar. This
inconsistency spurred the interest in the investigation of the effect of
wind evolution on LAC performances and design. Schlipf et al.
(2010b) challenged the validity of the TFH in a field experiment and
found that frozen turbulence can be assumed up to a wavenumber
k = 0.125 rad m−1 (wavelength ≈ 50 m). The authors however also
warned about the importance of low-pass filtering the measured
signal to avoid unnecessary action from the controller at frequencies
where the correlation between the lidar measurements and wind
speeds at the turbine is low. Subsequent studies showed that
improved coherence between measured and rotor-effective wind
speed is needed to achieve an acceptable controller performance and

FIGURE 4
Maximum reduction of objective functions when using lidar-assisted controls: root mean square (RMS) of generator speed error (A); damage
equivalent load (DEL) of tower base fore-aft moment (B); and blade root flapwise bending moment (C) reported in the cited references.
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proper scan design. Simley et al. (2012) developed a semi-analytical
model to estimate the coherence of CW and pulsed lidars using the
spectral properties derived from both stochastic wind fields
generated using TurbSim enhanced with a wind evolution model
and large-eddy simulation (LES) of a stable ABL. The study’s results
highlight that the loss of coherence between themeasuring point and
the turbine is the main source of error for long-range measurements,
while contamination from cross-stream velocity components
dominates for short preview distances with relatively large
opening angles.

The identification of the optimal scan geometry in this complex
scenario is sensitive to the metric used to quantify the degree of
coherence. Dunne and Pao (2013) confirmed the importance of
maximizing coherence between measured and actual rotor wind
speed. They adopted a highly idealized numerical setup in FAST to
prove that increasing coherence bandwidth (i.e., the wavenumber at
which coherence drops below a desired threshold) is beneficial (with
diminishing returns) for the performance of a speed regulation and
pitch actuation in region 3. The work was further expanded in
Dunne and Pao (2016) with an improved optimal controller
algorithm, which led to a reduction in the generator speed RMS
error up to 50% compared to the baseline feedback controller. The
independent work of Bossanyi (2013) builds upon the previous
study and provides actionable guidelines by combining a realistic
lidar model, similar to Simley et al. (2012), with a control-oriented
approach like Dunne and Pao (2013). The authors mimicked several
scanning modes into a time-evolving velocity field, and highlighted
that the intrinsic spatio-temporal filtering performed by the lidar
acquisition process can provide the desired damping of small-scale
turbulent features. Such features exhibit a lower correlation with the
turbine response and would cause detrimental control over-
actuation. This filtering also assuaged the effect of wind evolution
on the results. The same study also showed a significant reduction in
fatigue and extreme loads attainable through lidar-assisted collective
pitch control (CPC), but negligible gains for optimal cp tracking in
region 2. In a following study, Laks et al. (2013) tested the findings of
Bossanyi (2013) but for an individual pitch control (IPC) logic and
confirmed the beneficial effect of the lidar probe averaging in
removing uncorrelated high-frequency disturbances. Further
insight into the effect of lidar processing on coherence is lent by
the experimental study by Held and Mann (2019b), who calculated
the coherence of the rotor-equivalent wind speed from two fixed-
beam NMLs and found excellent agreement with the proposed
spectral model. The authors reported a higher coherence for the
lidar with more beams.

Amore proactive approach to deal with wind evolution is that of
intentionally low-pass filtering the uncorrelated small-scale
turbulence via a lidar-to-turbine transfer function. Schlipf et al.
(2012) used this method in a field test on the 600-kW two-bladed
Controls Advanced Research Turbine (CART2) (Bossanyi et al.,
2010) at the National Renewable Energy Laboratory’s Flatirons
Campus (see Figure 5). The authors tested a feed-forward
collective blade pitch controller to dampen fluctuations in the
rotational speed of the rotor in region 3 caused by turbulence.
The lidar used in their study was a retrofitted profiling WindCube
scanning a circular trajectory scan with 6 points at 5 focal distances.
The results showed a 30% reduction of the standard deviation of the
rotational speed and a 10% decrease in tower loads during periods

with a high correlation between lidar and turbine, whereas a
performance decay could be observed during poorly correlated
measurements. Spectral analysis revealed that mainly loads
associated with low-frequency modes are lowered, in accordance
with most of the previous studies. Scholbrock et al. (2013) carried
out a similar experiment by deploying a 3-beam pulsed lidar on top
of the 3-bladed Controls Advanced Research Turbine (CART3)
turbine able to reconstruct the 3-D inflow velocity, assuming
homogeneous flow. The lidar-assisted collective pitch controller
in region 3, based on the work of Schlipf et al. (2013a), achieved
a 14% reduction of rotor speed fluctuations compared to the
standard feedback control logic, but less evident load reduction.

Also on this topic, Schlipf et al. (2013a) conducted a more in-
depth investigation on the optimal degree of filtering of the lidar
signal and provided an analytical expression for the transfer
function from the measured wind speed to the rotor effective
wind speed, which can be also approximated by a low-pass filter.
The approach was validated against preliminary experimental data
and used to carry out a design exercise for a 3-beam lidar. Haizmann
et al. (2015) implemented a CPC strategy based on the
measurements of a CW ZephIR lidar scanning in a circle focused
1.3D in front of the CART3 with a scan geometry that was optimized
using the method by Schlipf et al. (2013a). They demonstrated a
good correlation between the predicted wind speed and the rotor-
effective wind speed and the theoretical and real lidar-to-turbine
transfer function. A significant reduction in rotor speed fluctuations
was also observed, but only for a short observational period. Kumar
et al. (2015) tested feedforward CPC on the CART3 using an Avent
five-beam pulsed lidar measuring at four range gates from 50 m to
80 m upstream of the lidar (1.2D–1.9D). The authors observed
reductions in rotor speed variations, tower fatigue loads, and
blade pitch actuation effort with feedforward control. They also
reported that the coherence between the lidar-based and rotor-
effective wind speed can be increased by averaging several range
gates, thanks to a more effective coverage of the rotor-swept area.
Thus, they highlighted a possible advantage of pulsed technology
over the CW counterpart. Both Haizmann et al. (2015) and Kumar
et al. (2015) found that loads could be reduced further (while still
reducing rotor speed variations relative to the baseline feedback
controller) by decreasing the feedback controller gains and relying
more on feedforward control to regulate rotor speed.

The previously mentioned successful examples of low-pass
filtering of the wind speed gave further momentum to frequency-
domain approaches for scan optimization and controller design. In a
comprehensive study, Schlipf et al. (2015) simulated atmospheric
surface layer turbulence through a Kaimal spectral model and
measured coherence by installing a staring retrofitted Windcube
on the nacelle. The information was used to design the low-pass
filter that alleviated the effects of high-frequency uncorrelated
turbulence that was measured by the lidar and to optimize a
circular scanning pattern that maximized the coherence
bandwidth. An exhaustive scan design exercise encompassing
time-based and frequency-domain techniques reviewed heretofore
is also included in the last part of the review study by Simley et al.
(2018), where the performance of pulsed and CW lidars with
different scan configurations was tested through a frequency-
domain approach. A novelty of their method is the closed-form
calculation, not only of the coherence bandwidth, but also of the
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rotor-averaged wind speed error and the generator speed
fluctuations. The conically scanning CW lidar, which thanks to
its ability to quickly scan the whole rotor area produced the smallest
error (in agreement with Bossanyi et al. (2014)), was further studied
in the time domain to optimize the filter and the synchronization
between measured wind speed signal and actuator action.

A characteristic of the foregoing studies is the use of coherence
models applicable only to a specific range of wind conditions. Simley
and Pao (2015) overcome this limitation by analyzing a variety of
LES wind fields representing different atmospheric conditions to
develop a longitudinal coherence model for wind evolution,
including the dependence on mean wind speed, turbulence
kinetic energy, and turbulence length scale. The authors observed
that coherence decreases for a given longitudinal separation as the
turbulence level increases, and the maximum coherence at low
frequencies decreases as the turbulence length scale becomes
smaller (typical of more stable conditions). Davoust and von
Terzi (2016) evaluated the wind evolution model proposed by
Simley and Pao (2015) using measurements from a nacelle-
mounted five-beam pulsed lidar, confirming the general
dependence of the longitudinal coherence on turbulence intensity
and turbulence length scale, albeit with weaker overall trends. More
recently, Chen et al. (2021) addressed the issue of wind evolution by
means of machine learning. To this aim, they trained a regression
Gaussian process to predict the coherence obtained through
statistical analysis of stare scans from two field campaigns. Up to
12 predictors of streamwise coherence were tested (e.g., mean wind
speed, stability, 2-nd, 3-rd and 4-th order moments of wind speed,
etc.). Almost all predictors increased the accuracy of the model,
which confirms the complexity of the wind evolution in real-world
scenarios.

Whereas the spectral properties of the wind field have received
large attention, there have been sporadic studies of other aspects of
the inflow physics in the context of LAC. For instance, the
implementation of a feedforward control scheme requires a
careful estimation of the temporal properties of the flow, namely,
the advection time between the sampling plane and the turbine. In
this regard, Dunne et al. (2014) analyzed data from a field test on the
CART2 and were able to achieve a 13% larger coherence bandwidth
by improving the estimation of the advection time of the wind
between the upstream measurement location and the rotor. Their
approach requires the estimation of a variable time delay, which is
challenging to perform online. In contrast, Held and Mann (2019b)

showed a negligible bias when estimating the advection time by
simply using the preview distance divided by the 10-min averaged
wind speed, although their experimental data exhibited a significant
scattering. An aspect largely neglected in many studies is the
influence of the rotor thrust on the incoming velocity field,
which is the focus of Simley et al. (2014b). The authors used LES
and a virtual lidar to address the issue of the flow distortion caused
by measurements performed in the induction zone. They reported
that the optimal radius in case of induction is slightly reduced due to
streamline expansion, although the effect is negligible compared to
the impacts of line-of-sight measurements, limited measurement
points within the rotor disk area, and wind evolution.

Overall, the present survey of the literature reveals a quite
complex panorama of LAC applied to region 3 operation, with a
variety of results and approaches. Interestingly, the analysis of the
properties of the turbulent field and its impact on LAC have received
remarkable attention. In particular, the effect of wind evolution has
been thoroughly characterized both numerically and
experimentally. However, regardless of the general consensus
achieved on the physical mechanisms driving LAC, a common
scanning strategy and controller architecture have not emerged
yet, which represents a barrier to the application of LAC at an
industrial scale (Clifton et al., 2018; Simley et al., 2018).

3.1.2 LAC for performance optimization
In spite of the preponderance of LAC application for region 3,

several studies explored lidar preview for cp enhancements in region
2 and are the object of this section. As pointed out by Schlipf et al.
(2011), two avenues can be taken in this field: 1) direct rotor speed
control using the preview wind speed from the lidar to keep the tip-
speed-ratio as close as possible to its optimal value, or 2) lidar-
assisted yaw control where wind direction over the entire rotor is
previewed to ensure rotor alignment. Schlipf et al. (2013b) estimated
the benefit of direct speed control in region 2 by injecting in a FAST
simulation real time series of rotor-effective wind speed and lidar
measurement carried out on the CART3 turbine. In spite of a 40%
reduction in the standard deviation of tip-speed ratio, power gains
were negligible and fatigue load on the shaft doubled. Wang et al.
(2013) looked deeper into this topic and simulated three different
control strategies for cp enhancement: 1) the disturbance tracking
control (aimed at maintaining constant tip-speed ratio), 2) optimal
rotor control (which is a modified version of the traditional control
scheme based on torque gain), and 3) a preview control tracking a

FIGURE 5
Different NMLs installed on the CART turbine: (A) retrofitted WindCube (Schlipf et al., 2012); (B) 2-beam Avent WindIris (Fleming et al., 2014); (C)
BlueScout Technologies OCS (Scholbrock et al., 2013); (D) ZephIR (Haizmann et al., 2015; Scholbrock et al., 2015).

Frontiers in Mechanical Engineering frontiersin.org11

Letizia et al. 10.3389/fmech.2023.1261017

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1261017


lidar-based cp. Even in highly idealized conditions, the maximum
increase in energy production is 0.5% which comes at the cost of a
detrimental increase in DEL of up to 60% on the low-speed shaft.

Lidar-assisted yaw control has also been explored in several
studies. Kragh et al. (2013) assessed the feasibility of an enhanced
yaw control based on spinner lidar measurements using virtual
sampling of synthetic frozen turbulence. They showed large coning
angles are beneficial for estimating wind direction in highly
turbulent inflows, a consideration that must be integrated with
that of Simley et al. (2011, 2014a) who concluded that increasing
the scan amplitude results in a worse estimate of the wind speed due
to geometrical error. The implementation of the yaw reconstruction
by Kragh et al. (2013) on a limited set of experimental data showed
promising results. The authors also warned against the
contamination of the results from horizontal wind shear or
sloped inflow, which make the estimation of yaw quite complex
due to the cyclops dilemma. Slinger et al. (2013) used the yaw
information previewed by a nacelle-mounted CW ZephIR lidar to
correct the misalignment of a 2-MW turbine and reported an AEP
increase of 5%. Effects of atmospheric stability and of the induction
zone were also observed. Similarly, Fleming et al. (2014) measured
through a 2-beam WindIris lidar a 7–9° yaw error during turbine
operation and used this finding to recalibrate the yaw controller of
the CART2. A subsequent comparison of turbine data with and
without lidar-based yaw correction showedmixed results in terms of
power curve, although a 2.4% increase in AEP provided by the
enhanced controller was estimated by the authors. Scholbrock et al.
(2015) followed a different approach, by feeding the lidar wind
direction directly into the control loop of the CART3 turbine. The
additional technical challenges of this method compared to a
simpler yaw calibration were compensated by improved power
capture from correcting the 20° yaw error caused by electrical
noise. More recently, Simley et al. (2021a) in their study on wake
steering (see Section 4.2) reported a significant and wind speed-
dependent bias between the yaw misalignment estimated from a 4-
beam pulsed lidar and the nacelle vane. They attributed such
discrepancy to a poor calibration of the wind vane and suggested
that using NML for the detection of yaw misalignment can indeed
improve not only single turbine performance but enhance the
effectiveness of advanced wind farm control based on wake steering.

Some simulation studies even investigated the performance of
LAC for holistic wind turbine control to enhance both power
capture in region 2 and mitigate loads in region 3. In this
context, Bossanyi et al. (2014) conducted a comprehensive virtual
lidar experiment to evaluate the performance of different scanning
strategies in pre-sensing wind speed, direction, and wind shear. They
confirmed that large coning angles increase the accuracy of wind
direction retrieval at the cost of higher errors in wind speed and
shear. Several limitations of LAC were also pointed out, such as the
negligible gains in cp in region 2, and the poor additional benefits of
using a lidar within a conventional IPC loop. They also proposed a
scan sampling ~ 10 points covering the rotor area with a ~ 1 Hz
sampling frequency as the best trade-off between spatial and
temporal resolution for LAC application, which represents an
actionable and fairly general guideline for scan design. Similar
findings are reported by Bottasso et al. (2014), who simulated
realistic lidar operations in a synthetic turbulent field, with and
without wind evolution. Significant extreme and fatigue load

reductions occurred using lidar-assisted CPC in region 3, but
there was only a limited power enhancement and stabilization in
region 2. They also substantiated the conclusion by Bossanyi (2013)
that wind evolution is not crucial for the sole prediction of LAC
benefits. Further, the study by Schlipf et al. (2013c) focuses on the
simulation of a lidar-assisted nonlinear model predictive controller
that is designed to maximize energy while mitigating structural loads
across all operating regions using both generator torque and pitch
control, and with preview wind speed measurements provided by a
circularly-scanning pulsed lidar. Similarly, the authors found a
significant reduction in extreme and fatigue loads accompanied
by a 0.3% increase in energy at the expense of larger variability in
power production. Finally, Aho et al. (2013) simulated the lidar
configuration proposed by Simley et al. (2014a) for improving the
region 2 to region 3 transition (also called region 2.5), and reported a
significant decrement of the tower base fore-aft DEL but less clear
reductions in other loads.

The surveyed literature appears to agree that LAC has uncertain
advantages in region 2, where it may be useful more for yaw tracking
rather than to optimize the rotor speed. The studies also exhibit a
wide variety of approaches, which points to the fact that the optimal
measurement strategy is dependent on the application and the
specific quantities of interest required to inform the controller.

3.2 General reconstruction of the dynamic
turbulent field

As already highlighted in the previous sections, lidars provide
just partial information about the incoming turbulent flow, mainly
due to the cyclops dilemma, probe averaging, and finite sampling
speed. In order to get a more complete picture of the flow structures
impacting turbine operation, it is necessary to apply flow
reconstruction techniques, which span from the simple de-
projection of the LOS velocity to more sophisticated data
assimilation methods. In this section, we include studies that
primarily deal with the reconstruction of the dynamic turbulent
inflow through NMLs, focusing more on the wind field retrieval
technique and flow physics and less on the engineering application
of the lidar preview.

Early studies mentioning NML fall within this category. One of
the first accounts of a lidar study of a turbine turbulent inflow is
reported by Hardesty and Weber (1987). They anticipated the NML
technology by operating a ground-based CW lidar coupled with a
rotating mirror placed at different heights to mimic the sampling of
the turbulent wind field experienced by a rotating turbine blade.
They were able to find a good correspondence between theory and
experimental data, which confirmed the spectral distortion caused
by the rotation. However, the study that is widely considered the first
actual application of NML is the one by Harris et al. (2007), in which
a CW staring lidar was installed on top of a utility-scale turbine, with
the main aim of testing the feasibility of such a setup to measure
turbulent gusts. Their analysis is also relevant because it revealed
that the lidar was able to sense the onset of thermally-driven daytime
turbulence and quantified the LOS blockage due to the blade
passage. Angelou et al. (2010) used a similar setup to conduct a
more in-depth analysis of the effect of lidar retrieval on turbulence.
Their study, although severely impaired by technical difficulties,
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provided evidence of the accuracy of the lidar in retrieving the wind
speed through a comparison with sonic anemometer data, but also
damping of the high-frequency fluctuations due to probe averaging.
Mikkelsen et al. (2013) reported the first use of the Spinner lidar for
inflow measurement during one nighttime stable observational
period and one daytime unstable observational period. The
authors observed a remarkable agreement of the horizontal wind
speed of the lidar retrieval with the nearby met tower, but more
uncertain results on the inflow angle, and were largely attributed to
the geometrical error.

More recent research on this topic follows two main paths: on
one hand, first- and second-order turbulent statistics (typically 10-
min) have been reconstructed from LOS measurements; on the
other hand, lidar observations have been assimilated into dynamic
wind field models to generate data-driven instantaneous fields. The
former approaches are deeply interconnected because the generated
turbulence needs to satisfy the statistical properties of the turbulent
flow under investigation.

The reconstruction of wind statistics requires adequate
correction to overcome the limitation of the lidar acquisition and
possible distortion on the freestream due to the turbine
aerodynamics. In this regard, Borraccino et al. (2017) conducted
a study based on the data from the previously mentioned Nørrekær
Enge site, which targeted the estimation of the 10-min average
vertical wind profile that partially borrowed the optimization
approach by Raach et al. (2014). Their results agree remarkably
well with met tower data, including at heights where no LOS
measurements were available and in the region close to the rotor
after a correction for the rotor induction. The reconstruction of
second-order moments (e.g., the turbulence intensity) from the
same data is the object of the investigation by Penã et al. (2017),
who used both the CW and the 5-beam pulsed lidar to estimate the
Reynolds stresses following two approaches. The first one leverages
Mann’s turbulence model fitted to the experimental data coupled
with a low-pass filter that mimics the lidar acquisition. The second
one relies on the raw Doppler spectrum to retrieve the unfiltered
LOS variance that is subsequently decomposed to calculate the
individual Reynolds stresses. Both methods achieved a reasonable
agreement with cup anemometer data for the streamwise
component, although the first method suffers from noise
contamination at high frequencies. The authors also warned of
the detrimental effect of the narrow coning angle on the accuracy
of the other components of the Reynolds stress tensor. This warning
was not found in previous literature sources, which confirms the
multi-faceted nature of the scan design problem. Held and Mann
(2019a) also used the broadening of the Doppler spectrum
associated with turbulence to detect the presence of wakes in the
inflow of a wind turbine with an upstream-facing two-beamDoppler
lidar and to overcome the assumption of uniform flow used in
previous studies on yaw misalignment (e.g., Fleming et al., 2014;
Scholbrock et al., 2015). By comparing the turbulence intensity
between two lidar beams to each other and to free stream values,
they could detect the presence of a wake faultlessly in a test run at the
Risø DTU Høvsøre Test Centre. Furthermore, they observed a bias
in the yaw misalignment, which was detected with the two-beam
lidar in the presence of an impinging wake, and then provided a
correction method. A more straightforward method to estimate the
rotor-averaged TI was also proposed by Schlipf et al. (2020) based on

a baseline Kaimal spectrum, which exhibited good accuracy but only
in a limited numerical environment. More recently, the
experimental study by Fu et al. (2021) explored several strategies
to retrieve not only the mean and standard deviation of the
streamwise velocity but all the terms of the Reynolds stress
tensor. In that campaign, fixed-beam lidars and a spinner lidar
(all CW) were installed on top of an 850-kW turbine. Among the
techniques used, a reconstruction of the turbulence intensity based
on the analysis of the Doppler spectrum dispersion from the spinner
lidar turned out to be the most accurate way to estimate the
Reynolds stresses when compared to sonic data. This is in
contrast to the TI retrieved from the fixed-beam LOS velocity,
which exhibited a severe underestimation.

In parallel, significant endeavors were devoted to the real-time
reconstruction of the turbulent field by assimilating lidar
measurement into wind models of increasing complexity. Raach
et al. (2014) proposed a dynamic model to estimate mean wind
speed and wind speed gradients from a nacelle CW lidar scanning at
5 focal distances with a half-opening angle θmax = 45°. The incoming
flow was modeled through a frozen turbulent box subject to pitching
and tilting, while the resulting wind field was the result of real-time
optimization. One of the main advantages of such a method is the
concurrent estimation of horizontal shear and yaw misalignment,
which is inherently challenging due to the similar line-of-sight
projection of these two flow perturbations and the cyclops
dilemma (Kragh et al., 2013). Towers and Jones (2014) developed
a dynamic flow algorithm to reconstruct the 2-D turbulent field
approaching a wind turbine which was probed by a nacelle lidar
emitting two horizontal beams angled 15° and 30°. The narrower
scan allowed faster convergence of the computation. The algorithm
used a Kalman filter together with a low-order flow model based on
the Navier-Stokes equations, which predicted the new field based on
the last state and the difference with the current observations. The
flow model based on the TFH proved robust in a wide range of wind
directions, stabilities, and noise levels.

The same outcome of creating lidar-driven turbulent wind fields
can be achieved by generating Gaussian-constrained turbulence
using the lidar measurements as a set of dynamic constraints.
The method leverages assumptions on the statistical descriptors
of the underlying turbulent field (i.e., power spectral density,
Gaussianity) and aims to find a set of realizations that are
compatible with the observations. An advantage of this method is
the analytical evaluation of the variance of the residuals, namely, a
spatial field representing the statistical uncertainty of the retrieval.
Bos et al. (2016) proposed a technique based on constrained
Gaussian turbulence based on Mann’s turbulence model (Mann,
1994) to assimilate the data of a 5-beam NML installed on a 5-MW
turbine. This method aimed to reconstruct wind gusts, achieving
good agreement with the rotor equivalent wind speed based on the
shaft torque. Also, Schlipf and Raach (2016) used a simplified
approach in which the phases of turbulent modes satisfying the
Kaimal spectrum are optimized to fit an idealized wind gust.
Dimitrov and Natarajan (2017) utilized the variance of the
residuals to carry out a scan design optimization. Their purely
numerical study showed that scans having a large number of
points sampled in around 5 s leads to the lowest uncertainty.
Their scan design guidelines are compatible with what is
reported in LAC studies (e.g., (Bossanyi et al., 2014; Simley et al.,
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2018)), despite being the result of a completely different scan
optimization technique. Pettas et al. (2020) presented a tool
named ViConDar specifically conceived to assimilate NML
measurements into generic Gaussian turbulence generators. To
showcase the capabilities of this tool, they optimized a scan
pattern aimed at measuring wind speed and vertical shear under
different inflow conditions. The authors showed that, conversely to
Dimitrov and Natarajan (2017), increasing the number of sampling
points does not necessarily lead to better results if the coverage rotor
area is not significantly improved.

To conclude, we would like to highlight that while this paper is
limited to NML applications, data assimilation of line-of-sight
velocity observations represents a vast topic that exceeds the
scope of the present manuscript. Therefore, we suggest the
interested reader refer to more general studies (e.g., Newsom and
Banta, 2004; Xia et al., 2008; Krishnamurthy et al., 2013; Bauweraerts
and Meyers, 2020).

3.3 Performance and load assessment

NMLs represent an appealing alternative to traditional in situ
anemometers to characterize the operation of utility-scale wind
turbines in terms of power and loads, for the reasons outlined at
the beginning of Section 3. In particular, because energy production
represents the most relevant performance indicator for the wind
energy stakeholder, the number of power performance testing
campaigns has been increasing globally, with the majority of
these campaigns today performed in North America and Europe.
Current estimates (Vaisala, 2023) indicate that about 500 power
performance testing campaigns will be conducted per year across the
globe in this decade, with about 1/5 taking place offshore. With the
growing lidar acceptance within the industrial community and the
release of the IEC 61400-50-3 (IEC, 2022), the number of campaigns
using NMLs will continuously grow as well. Figure 6 shows the
expected trend in the yearly number of power performance tests
executed using NMLs for onshore and offshore sites, which
highlights the significant expansion of this remote sensing
technology.

The development of commercial NMLs in this sector comes after
at least a decade of scientific studies that assessed the feasibility and
accuracy of this methodology. The pioneering work of Mikkelsen
et al. (2013), which paved the way for the utilization of spinner
lidars, includes one of the first reported power performance tests
using lidars. They used the incoming wind speed derived from the
lidar to reconstruct the low-speed part of the power curve of a 2.3-
MW turbine that exhibited less scatter than the met tower
measurement, seemingly due to a more representative
measurement of the rotor-equivalent wind speed achievable with
the spinner lidar. This advantage of lidars, along withmany others, is
reiterated by Slinger et al. (2013) who installed a CW ZephIR lidar
on the hub of a 2-MW turbine to scan horizontally at several
upstream focal points. Their main findings were that the lidar
significantly improved the yaw estimation and that the wind
turbine power curve, which was reconstructed using the
horizontal wind speed from the lidar, matched satisfactorily the
nominal one, after a proper correction for the rotor induction. The
large data availability from this study also allowed the detection of
the influence of atmospheric stability on power capture.
Subsequently, Wagner et al. (2014) used a 2-beam pulsed lidar to
compute the power curve of a multi-megawatt wind turbine and
compared it to the analogous function derived from met mast data
They found a difference of 2.3% in the resulting AEP with the one
obtained from met mast measurements. Although a univocal
explanation was not provided for such discrepancy, they
observed less scattering in the lidar-derived power curve and
associated that with the dynamic alignment of the lidar probe
volume with the wind direction. Wagner et al. (2016) extended
the previous analysis by conducting a thorough uncertainty
quantification and concluded that, although lidar has higher
instrumental uncertainty than the met tower, it compensates by
allowing more data availability and thus higher statistical
significance. Overall, the lidar-based AEP showed only 1.1%
higher uncertainty than the reference one derived from cup
anemometer. Shin et al. (2019) confirmed the former result after
comparing the power curves obtained from a 2-beam WindIris and
from a cup anemometer, with and without rotor-equivalent wind
speed correction based on a ground-based lidar. Using the same

FIGURE 6
Past estimates and future predictions of the total number of power performance tests carried out using NMLs worldwide. Source: Vaisala (2023).
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setup, Shin and Ko (2019) extended the calculation of the power
curve to turbines located more than 4 rotor diameters from the
reference met mast through a lidar-based nacelle transfer function
approach (IEC, 2013). Namely, the bias in the nacelle anemometer
due to local flow distortion was corrected on a statistical basis using
the hub-height wind speed from the NML. The resulting power
curve calculated from the corrected nacelle anemometer had a ~ 5%
higher AEP compared to the one based on the reference power
curve.

The characterization of wind turbine loads is also important to
estimate the lifetime and maintenance costs of wind plants. On this
front, NMLs can provide important insight into the incoming
turbulent field. Because the fluctuating component of the wind
field plays a major role in the build-up of fatigue and extreme
loads, contrary to power performance tests that focus on mean wind
speed, lidar-based load analysis requires high-frequency
reconstruction of the turbulent inflow and/or second-order
statistics. The previously cited numerical study by Dimitrov and
Natarajan (2017) already proved the effectiveness of the proposed
lidar-constrained turbulence optimization in the reduction of the
uncertainty of those components of loads connected to the
streamwise velocity fluctuations. Later on, Dimitrov (2019)
assessed the capability of lidars to estimate fatigue loads on a
2.3-MW turbine at the Nørrekær Enge site. They used a 5-beam
pulsed and a CW lidar, scanning in a conical fashion, stacked on the
nacelle roof of the turbine, which was instrumented with load
sensors. The wind reconstruction algorithm allowed them to
retrieve mean wind speed, shear, corrected turbulence intensity
(see Penã et al., 2017), and the spectra to be injected into an
aeroelastic simulator alongside sonic anemometer data. Their
model takes into account turbulent damping due to the lidar
acquisition and induction zone, and showed an equal or lower
error of lidar-based load estimation relative to loads calculated using
met tower observations. Conti et al. (2020) extended the former
analysis to cases where incoming wakes affect the flow field. The
wake was detected based on the wake-generated turbulence
measured by the lidar, and load simulation results were classified
based on fully, partially, and non-waked conditions. The accuracy of
the load estimation was observed to drop during waked conditions.
Interestingly, power, although mainly driven by the mean wind
speed, was also poorly estimated under waked conditions (up to 7%
bias). This calls into question the ability of the scanning strategy that
was to properly characterize an inherently 3-D and inhomogeneous
flow. The problem of load estimation in waked flow was further
examined by Conti et al. (2021b) who leveraged virtual lidar
measurements in the dynamic wake meandering (DWM) (Larsen
et al., 2008) framework to reconstruct the turbulent field used as an
input for load calculations. The wake velocity field was reconstructed
using both constrained Gaussian turbulence (Dimitrov and
Natarajan, 2017) and a method that superposes a Gaussian
velocity deficit to a random turbulent field to reproduce the
meandering of an upstream wake. Out of the several scanning
strategies implemented, those sampling the rotor area using a
large number of points provided the most accurate results, thus
confirming the guidelines of LAC studies (Bossanyi et al., 2014;
Simley et al., 2018). The accuracy was negatively affected by probe
averaging, but not by sampling time, as long as it remained below the
typical wake meandering period (Larsen et al., 2008). This

consideration seems to indicate pulsed lidar as the most suitable
technology to scan intra-plant flow for measurement distances
where CW lidar probe volumes become significantly large.

Power performance tests that leverage NMLs are on the verge of
becoming an industrial standard. This is primarily because of the
accuracy of NMLs in reconstructing mean wind speed and the larger
data availability compared to met towers, stemming from the ability
to measure the wind inflow for all wind directions. A lidar system
can also be conveniently relocated on different turbines, with a
substantial reduction in time and cost compared to more rigid in situ
sensors. On the other hand, load estimation from lidar, although
promising, is still relegated to more advanced research studies, due
to the complicated process of retrieving high order statistics from the
lidar.

3.4 Inflow measurements for wake-focused
studies

Studies addressing turbine wakes, which will be extensively
described in Section 4, are inherently intertwined with an
adequate characterization of the turbulent inflow to the turbine,
which ultimately affects the wake morphology. Wake studies
encompassing an inflow measurement through an NML are
scarce. This is because most of the attention is generally focused
on the wake area due to the logistical and financial hurdles that the
installation of multiple lidars on one nacelle entails. Because of their
unique approaches, wake studies that include NML inflow
measurements are treated separately in this subsection.

For instance, in the complex experimental setup described by
Machefaux et al. (2015) for the characterization of double-wake
flow, a CW lidar was installed on the downwind turbine as a
redundant measurement of the incoming wake from the
upstream rotor. The authors also addressed the issue of data loss
caused by the line-of-sight blockage due to the blade roots. Carbajo
Fuertes et al. (2018) and Brugger et al. (2019) used a pair of NMLs to
scan the inflow and wake of a wind turbine. The forward-looking
lidar performed a sequence of scans including 5 min of PPI scans to
detect wind direction, 5 min of RHI scans to characterize vertical
shear, and 10-min stares in the streamwise and spanwise direction,
respectively, to quantify turbulence intensity (TI). The data were
used to normalize and categorize wake observations for model
validation. A different configuration is reported by Brugger et al.
(2020) who leveraged a 4-beam WindIris in conjunction with a
ground-basedWindCube profiler to characterize the wind speed and
direction for an experimental assessment of the performance of
wake steering. Unlike the cited studies that focused on wake
statistics, Brugger et al. (2022) investigated wake dynamics using
the setup reported in Carbajo Fuertes et al. (2018). They executed
fixed stare scans in the lateral direction to detect turbulence intensity
and integral time scales relevant for wake meandering analysis. This
straightforward scanning strategy has the advantage of providing
turbulent quantities of interest from direct statistical analysis of
radial velocity data.

In spite of the sporadic use of NML for inflow detection in past
wake studies, such application is expected to become more popular
in the future due to greater use of lidars in wind energy research and
the increasing complexity of wake studies, which often require a

Frontiers in Mechanical Engineering frontiersin.org15

Letizia et al. 10.3389/fmech.2023.1261017

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1261017


detailed and local inflow description not attainable through
traditional sensors.

4 Wake measurements

Wind turbine wakes increase the cost of energy for wind plants
because they negatively affect downstream turbines by reducing
power production and increasing mechanical loads (El-Asha et al.,
2017). Wind researchers can mitigate wake effects by incorporating
wake models into the wind plant planning, but also during operation
through smart control strategies, such as wake steering and
induction control. Both approaches require detailed knowledge of
the wake structure and the wake physics. Wake measurements using
NMLs have made significant contributions across those areas.

First, we will discuss a series of pioneering experiments that
developed techniques and methods for nacelle-based wake scanning
that were used by many of the studies to follow. After that, we will
review the full range of current applications for wake measurements
with NML. Specifically, we will discuss in Section 4.1 the
development of wake data analysis techniques, in Sec. 4.2 studies
on wake steering, in Section 4.3 wake model validation and
calibration, in Section 4.4 investigations of the wake structure in
general, and in Section 4.5 error analysis based on virtual lidars.
Finally, an overview of the reviewed wake scanning literature is
presented in Table 3.

4.1 Development of methods

This introductory section summarizes the pioneering efforts
using NML for wake detection, which are relevant not only from a
historical perspective but most and foremost because they
introduced methods for data analysis that have been used and
adapted by most of the following studies.

The first field experiment with wake-scanning NMLs was
performed at the Risø DTU Høvsøre Test Centre in Denmark
from 2004 to 2006 by Bingöl et al. (2010) and Trujillo et al.
(2011). They mounted a continuous-wave Doppler lidar on the
nacelle of a test wind turbine (38-m rotor diameter) and performed
different scan patterns throughout the campaign, including both
horizontal cross-sections and vertical cross-sections of the wake.

The first publication on the data set by Bingöl et al. (2010)
focused on validating the passive advection hypothesis used in the
DWM model (Larsen et al., 2008). The model validation was
accomplished by visually comparing the instantaneous wake
position observed in the velocity fields that were measured by the

lidar, with the wake center positions predicted by the DWMmodel.
The authors could confirm the passive advection hypothesis in large
part, but also observed that better agreement between model and
observations was achieved with a downstream transport velocity
that was slower than the freestream value.

The second publication on the data set by Trujillo et al. (2011)
developed a quantitative method for wake tracking by fitting a Gaussian
function to the velocity deficit. This allowed them to compare the mean
velocity deficit and the turbulence intensity in the meandering frame of
reference (MFOR) and nacelle frame of reference (NFOR). The
approach is illustrated in Figure 7 and is used to remove the effect
of wake meandering from the measurements. A wake-tracking method
based on the calculation of the center-of-mass of the velocity deficit was
also tested, but spikes in the velocity measurement of the lidar led to
biased results. Further, the authors found that the mean velocity deficit
had a larger amplitude and smaller width in theMFOR compared to the
NFOR and they showed the turbulence that was added by wake
meandering. They also observed that the velocity deficit of the wake
was slanted (or tilted) in the vertical cross-section instead of having a
circular shape.

The methods developed for this field experiment have been used or
adapted by many studies that followed, especially the main scanning
patterns, the comparison between MFOR and NFOR, and the wake
center detection for wake tracking, which have remained in use up to
the present day. After this experiment at a 95-kW test wind turbine, the
first wake measurements with an NML at a utility-scale wind turbine
were conducted only several years later byAitken and Lundquist (2014).
This paper and other subsequent literature will be discussed in the
following sections organized by application.

4.2 Wake steering

Wake steering is a wind turbine control technique to enhance
the total power production of a wind plant by introducing an
intentional yaw misalignment or tilt to an upstream wind
turbine. The goal is to deflect the wake away from the
downstream wind turbines (Dahlberg and Medici, 2003; Boersma
et al., 2017). Wake measurements of NMLs are used for studying the
impact of wake steering on the velocity field, and as an input to
hypothetical feedback control loops for active yaw control.

Several authors have experimentally observed a direct
proportionality between wake deflection and yaw misalignment
as a function of the downstream distances using NMLs. In
addition to this shared finding, each study further investigated
different aspects related to wake steering. Specifically, Bromm
et al. (2018) presented an insightful analysis of the effect that a

TABLE 3 Wake growth rates (k*) as a function of the streamwise turbulence intensity (TI) for the Bastankhah and Porté-Agel (2014) model determined from field
experiments with NMLs.

Reference Wake growth rate Scan pattern Comments

Trabucchi et al. (2017) k* = 0.28TI + 0.0047 PPI at hub height Below rated wind speeds

Trabucchi et al. (2017) k* = 0.19TI + 0.0024 PPI at hub height Above rated wind speeds

Carbajo Fuertes et al. (2018) k* = 0.35TI PPI at hub height Below rated wind speeds

Brugger et al. (2019) k* = 0.30TI Volumetric Below rated wind speeds
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downward tilting of the lidar measurement plane, due to the
deflection of the tower subject to axial thrust, can have on the
detected wake position. Tracking the wake based on the minimum
power of a hypothetical downstream turbine, the authors showed
that the wake deflection increases with the yaw misalignment. An
uncertainty study accompanying their findings revealed that a
downward tilting of the lidar scanning plane leads to an artificial
bias in the observed wake deflection at large downstream distances.
Using volumetric measurements, Annoni et al. (2018) showed a
wake deformation proportional to the yaw misalignment. They also
compared the mean velocity deficit for aligned and yawed operating
conditions to three analytical wakemodels. They found good agreement
between the measured velocity deficits and a Gaussian wake model
(Bastankhah and Porté-Agel, 2016), which accounts for the impact of
TI. Brugger et al. (2020) validated the outcome of three analytical
models against their findings for the wake deflection and showed that
wake steering can have detrimental effects on the combined power of a
pair of wake steering wind turbines if the wind direction input of the
wake steering turbine is biased.

Besides validating the effectiveness of wake steering, the
potential of NMLs to enhance wake steering during live
operation has also been studied. Raach et al. (2017) presented a
method to use wake tracking with an NML as input for a closed-loop
wake steering controller. They detected the wake position based on
the minimum power of a hypothetical downstream turbine and used
it to inform the controller to steer the wake to the desired position.
The development was based on synthetic lidar measurements in a
simulated wind field with a volumetric scan from the nacelle in the
downstream direction. In connection to closed-loop wake steering
controllers, the method to detect wakes from the measurements of a

downstream facing two-beam Doppler lidar shown by Castillo et al.
(2020) is of interest. Two-beam Doppler lidars are cheaper than
scanning lidars and are easier to deploy on a nacelle due to their
smaller size, thus reducing hurdles for industry adoption. The wake
detection method itself is based on peaks in spectral energy of the
longitudinal velocity at multiples of the rotor revolution frequency.
Similarly to Raach et al. (2017), Castillo et al. (2020) did not use real
measurements and instead tested their algorithm with simulated
lidar measurements in a wind tunnel experiment.

Recurring challenges in several of the aforementioned studies
were the detection of the wake and the physical alignment of the
lidar with the rotor axis. Both Raach et al. (2017) and Bromm et al.
(2018) used the minimum power of a hypothetical downstream
turbine to track the wake. Brugger et al. (2020) tracked the wake by
fitting a Gaussian function for comparison to a Gaussian wake
model, while Held and Mann (2019a) (discussed in Section 3.2) and
Castillo et al. (2020) identified the wake based on different
turbulence characteristics compared to the free stream. Further,
Trujillo et al. (2011) leveraged the center-of-mass analogy. Another
wake-tracking method based on image processing will be mentioned
in later sections, and further methods exist in literature that have not
yet been applied to NMLs. There is no consensus about which of the
wake tracking methods is the best, but it stands to reason that it
ultimately depends on the specific application. For example,
applications concerning power production might preferably use a
power-based wake tracking method, while a wake tracking based on
turbulence might be more appropriate for load analysis.

The second challenge was the alignment of the lidar measurements
with the rotor axis. Bromm et al. (2018) checked the alignment using
hard-target detection, GPS measurements, and cross-comparison with

FIGURE 7
A time series of lateral profiles of the velocity in the far wake of a utility-scale wind turbine. The nacelle frame of reference (A) is relative to the rotor
axis of the wind turbine and it is a fixed frame of reference in absence of yaw activity. The meandering frame of reference (B) is a coordinate system that
follows the instantaneous wake center. The wake center (blue line) was detected with a Gaussian fit to the velocity deficit. Measurement data from
Brugger et al. (2022) was used to create this figure.
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LES. Brugger et al. (2020) used time periods when the wake steering was
not active to verify that the lidar measurements were centered. The two
approaches have an important difference: the former detects the
alignment of the measurements with the rotor axis, the latter detects
the alignment of measurements with respect to the actual wind
direction. Ideally, both are known to identify possible yaw biases of
the wind turbine.

In conclusion, NMLs provided important contributions to the
validation of wake steering and show a potential to enhance wake
steering during live operation in the future. The ability of NMLs to
scan a large area of the wake quickly enables direct wake tracking,
which overcomes the limitation of single-point measurements from
traditional meteorological masts also in the context of wake analysis.

4.3 Validation and calibration of wake
models

Models and simulations of wind turbine wakes are important
tools for incorporating wake effects into wind plant planning. NML
wakemeasurements have an important role here because they can be
used to validate and calibrate of those models. Validations quantify
the error between model and measurements (most commonly the
RMS error), while calibrations are typically done by fitting the
results of the model to the measurement data by tweaking
specific free parameters.

The analytical wake model of Bastankhah and Porté-Agel (2014)
has been calibrated using NMLs in several instances. Trabucchi et al.
(2017) and Carbajo Fuertes et al. (2018) used horizontal cross-
sections of the mean velocity deficit obtained from PPI scans to
calibrate the wake growth rate, which is a constant describing the
wake recovery with downstream distance. The two studies differ in
the measurement setup, post-processing, and validation method.
Trabucchi et al. (2017) used an offshore site in the German North
Sea with inflow information from a meteorological mast, while
Carbajo Fuertes et al. (2018) conducted their measurements at an
on-land site in Iowa, US, with a second inflow scanning Doppler
lidar. Trabucchi et al. (2017) converted the model output to radial
velocities. In contrast, Carbajo Fuertes et al. (2018) converted the
radial velocity to the longitudinal velocity and interpolated them on
a regular grid. Lastly, Trabucchi et al. (2017) fitted the model to
horizontal cross-sections of the mean velocity deficit (i.e., fitting the
model to the full measurement domain at once). Thus, they
prescribed an assumed linear wake growth, while Carbajo Fuertes
et al. (2018) fitted individual Gaussian functions to separate
downstream distances, which would allow for a non-linear wake
growth. A third study by Brugger et al. (2019) used volumetric wake
scans from the same experiment as Carbajo Fuertes et al. (2018) to
calibrate the wake growth rate. Using volumetric measurements has
the benefit of avoiding an artificially enhanced wake recovery if the
plane of the PPI scan is tilted upwards or downwards. All three
studies found similar relationships between the wake growth rate
and the turbulence intensity below rated wind speeds (Table 4).
Other studies also showed a connection between wake growth rate
and ambient turbulence intensity, but did not provide a quantitative
relationship (Aitken et al., 2014; Machefaux et al., 2015). Beyond the
wake growth rate below rated wind speeds, Trabucchi et al. (2017)
investigated the wake evolution above rated wind speeds and found a

weaker dependency on the turbulence intensity compared to below
rated wind speeds. Carbajo Fuertes et al. (2018) focused on the
impact of turbulence intensity on the near wake length showing a
non-linear increase of the near wake length with decreasing
turbulence intensity. And finally, Brugger et al. (2019) found that
the wake became more tilted with increasing wind veer across the
rotor area and an analytical model can reproduce the wake tilt well.

The DWM model was also the object of a calibration and
validation effort with an NML (Reinwardt et al., 2020). The
measurement setup consisted of two NMLs installed on top of
two utility-scale wind turbines at an onshore wind plant in
northern Germany. Using a wake tracking method based on
Gaussian fitting, the mean velocity deficit was computed in
the NFOR and the MFOR. They observed that the mean
velocity deficit in the MFOR was more pronounced than in
the NFOR, and that the MFOR exhibited double-Gaussian
profiles at close distances and a slower recovery for low
ambient turbulence intensities. The calibration of the dynamic
wake meandering model was done by fitting the quasi-steady
velocity deficit to the measurements of the minimum wind speed
in the MFOR and adjusting a coupling function in the eddy
viscosity parametrization.

Moving away from analytical and engineering wake models,
NMLs have also been used for the validation of more complex
simulations of wind turbine wakes. A paper by Aitken et al. (2014)
used the same data set as Aitken and Lundquist (2014) for validation
of an actuator disk parametrization of wind turbines in the Weather
Research and Forecasting (WRF) model that included tower and
nacelle effects. Their results showed good agreement for the velocity
deficit recovery and wake growth. A field experiment was conducted
at the DTU Risø Campus test site byMachefaux et al. (2016b), which
extended the setup of Bingöl et al. (2010) with two CW Doppler
lidars on the nacelle of a second wind turbine located downstream
(one scanning the inflow and one scanning the merged wake of both
turbines). Data from this experiment were used to validate an LES
simulation. Comparisons between the measurement data and the
LES showed good agreement in terms of mean velocity deficit and
wake-added turbulence.

Finally, Doubrawa et al. (2019) presented a benchmark data set
for model validation that was obtained with a wake-scanning CW
spinner lidar at the Scaled Wind Farm Technology (SWiFT) facility
in Texas, United States. The benchmark data set consists of vertical
cross-sections of the velocity deficit under neutral, unstable, and
stable conditions that are complemented by an inflow
characterization with a meteorological mast. Wake properties like
symmetry and recovery with downstream distance are shown for the
three cases. The increasing complexity of the three benchmark cases
is intended to allow for the identification of shortcomings in model
performance. The benchmark data set has been used in several cases
in literature for comparison to LES (e.g., Doubrawa et al., 2020; Yang
et al., 2020; Hsieh et al., 2021; Kale et al., 2022), to higher-order
Gaussian wake models (Blondel and Cathelain, 2020), and for
calibration and validation of the DWM model (Conti et al., 2021a).

One challenge in the aforementioned studies is bridging the
inherent differences between measurement data and model output.
The measurements of a lidar typically consist of (filtered) radial
velocities on an often incomplete spherical grid. Models, on the
other hand, typically provide the Cartesian velocity components on
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a regular grid. A common element in the studies discussed above
is that either the lidar measurements are converted and
interpolated to match the output of the wake model, or the
wake model is extended to replicate the measurement
properties of the lidar with a virtual lidar. A widespread
technique to achieve the former scope is converting the mean
radial velocity to the mean longitudinal velocity, assuming that
the average lateral and vertical components are negligible
through the WSD approach. It is noteworthy that there is
generally a lack of agreement on the interpolation techniques
adopted (Letizia et al., 2021a) and that the interpolation can be a

significant source of error (Carbajo Fuertes et al., 2018), as
discussed more profusely in Section 4.5.

Another common challenge pertains to the assumptions
necessary to simplify the flow problem in engineering wake
models (e.g., axisymmetric wake, neutral stratification, steady
flow, see Hamilton et al. (2020)). Experimental studies aimed at
validating or calibrating a model usually include extensive data
filtering to make sure that the model assumptions are fulfilled as
closely as possible in the measured data. However, the significant
rejection rate due to the high occurrence of experimental data not
matching the idealized flow conditions required by themodel is itself

TABLE 4 Summary of the reviewed scanning strategies and wind reconstruction techniques applied to NMLs for wake measurements. A zero-azimuth corresponds
to the direction of the rotor axis pointing downstream.

Reference Lidar type Scanning pattern Quantity of interest Retrieval technique

Bingöl et al. (2010) CW PPI (Δθ = 0.3°, θmax = 30°) uLOS(x, y, t) -

Trujillo et al. (2011) CW PPI and sphere scan Wake center, Δ�u(x, y) GF, meandering removal

Aitken and Lundquist (2014) Pulsed PPI (Δθ = 3°, θmax = 84°) Δ�u(x, y) GF

Machefaux et al. (2015) Pulsed Volumetric (Δθ = 2.4°, θmax = 16.7°, Δβ = 1.2°,
βmax = 8.5°)

Δ�u(x, y, z) GF, statistical, meandering
removal

Machefaux et al. (2016b) CW Rosette and sphere (θmax = 25.8°, βmax = 8.2°) Wake center, Δ�u(x, y, z) Cluster average, GF

Machefaux et al. (2016a) Pulsed Volumetric (Δθ = 2.4°, Δβ = 1.2°, θmax = 16.7°,
βmax = 8.5°)

Δ�u(x, y, z) Interpolation, statistical

Trujillo et al. (2016) Pulsed Volumetric Lissajous (θ < 20°, β < 20°) Wake center, Δ�u(x, y, z) Double GF, statistical

Herges et al. (2017) CW Rosette (θmax = 30°, βmax = 30°) Δ�u(x, y, z) Image processing

Raach et al. (2017) Virtual Volumetric Wake center Minimum power

Trabucchi et al. (2017) Pulsed PPI (Δθ = 0.5°, θmax = 30°) Δ�u(x, y) GF, statistical

Carbajo Fuertes et al. (2018) Pulsed PPI (Δθ = 2°, θmax = 20°) Δ�u(x, y), Iu(x, y) GF, interpolation, statistical

Fuertes Carbajo and
Porté-Agel (2018)

Pulsed (virtual) Volumetric, (Δθ = Δβ = 3°, θmax = βmax = 16.7°) �u(x, y, z), Iu(x, y, z) WSD, interpolation

Bromm et al. (2018) Pulsed PPI (Δθ = 0.4°, θmax = 30°) Wake center, Δ�u(x, y, z) Minimum power, statistical

Annoni et al. (2018) Pulsed Volumetric (−) Wake center, Δ�u(x, y, z) statistical, interpolation

Brugger et al. (2019) Pulsed Volumetric (Δθ = 2°, Δβ = 3°, θmax = 15°,
βmax = 15°)

Δ�u(x, y, z) GF, statistical

Doubrawa et al. (2019) CW Volumetric (−) Wake center, Δ�u(x, y, z) Statistical, centroid,
meandering removal

Beck and Kühn (2019b) Pulsed (Virtual) PPI (Δθ = 4–5°, θmax = 40°), RHI (Δβ = 4–5°,
βmax = 20°)

�u(x, y, 0), Iu(x, y, 0) (PPI),
�u(x, 0, z), Iu(x, 0, z) (RHI)

Temporal upsampling,
interpolation

Beck and Kühn (2019a) Pulsed (Virtual) PPI + RHI (Δθ = 4°, Δβ = 0.8°, θmax =
βmax = 20°)

�u(x, y, z), Iu(x, y, z) Temporal upsampling,
interpolation

Brugger et al. (2020) Pulsed PPI and volumetric (Δθ = 1.5–3°, −20 ≤ θ ≤
40°, Δβ = 3°, βmax = 15°)

Wake center, Δ�u(x, y, z) GF, statistical

Castillo et al. (2020) 2-beam lidar
(virtual)

θmax = −13° Spectra Spectral

Reinwardt et al. (2020) Pulsed PPI (θmax = 20°) Wake center, Δ�u(x, y) Meandering removal,
interpolation, GF

Letizia et al. (2021a) Pulsed (virtual) Volumetric (Δθ = Δβ = 2.5°, θmax = βmax = 10°) �u(x, y, z), Iu(x, y, z) WSD, Barnes scheme

Brugger et al. (2022) Pulsed PPI (Δθ = 2°, θmax = 12°) Wake center, u (x, y, t) Interpolation, statistical,
center-of-mass

Letizia et al. (2023) Pulsed (virtual) Several, optimized through Pareto front �u(x, y, z), Iu(x, y, z) WSD, Barnes scheme
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an indicator of the intrinsic limitations of such studies. This
shortcoming in the description of real-world flows is given less
room in the discussion compared to more typical error metrics.

Nevertheless, NMLs are a powerful tool for model validation and
calibration. The good spatial coverage of the wake compared to a
meteorological mast, and the independence from specific wind
direction sectors compared to ground-based lidars are the main
benefits of nacelle-based lidars for this purpose.

4.4 Wake physics and structure

Beyond wake steering and model validations, NMLs have been
used to study the general wake structure and provide insights into
the wake physics. Both the near-wake and the far-wake of wind
turbines in terms of shape, position, meandering, and depth have
been investigated.

We will begin this section by discussing several aspects of wake
meandering that have been investigated with NMLs. One of them is
the shape of the velocity deficit in the MFOR, which the DWMmodel
assumes as stationary and symmetric. Herges et al. (2017) studied the
shape of the wake by applying a detectionmethod conceived for image
processing to spanwise cross-sections of the velocity captured with a
nacelle-based CW lidar. They showed that the wake became skewed
with increasing wind veer and that what appeared as a flow instability
occurred for unstable conditions, which resulted in irregular wake
edges. Brugger et al. (2022) also noted a variability of the velocity
deficit in the MFOR for some of the time periods they investigated.
Contrary to the previous two studies, Machefaux et al. (2016a) found
that the mean velocity deficit in the MFOR was invariant to the
atmospheric stability conditions. Therefore, more investigations on
this research question should be conducted.

Another aspect of wake meandering that has received attention
is the downstream transport process, which initially has been
assumed to be a passive advection with the mean wind speed
(Larsen et al., 2008). As already mentioned in Section 4.1, Bingöl
et al. (2010) observed better visual agreement between the observed
wake position and the wake position predicted by the DWM model
by adopting an effective advection velocity that is slower than the
mean wind speed. This observation was later verified quantitatively
by Machefaux et al. (2015) by determining the cross-correlation
between the wake center position at different downstream distances,
which they tracked from vertical cross-sections of the wake at
multiple downstream distances. They found that the downstream
transport velocity was approximately half of the ambient mean wind
speed. They also investigated the lateral advection velocity of wake
meandering and found it to be constant (The paper provides an
extensive investigation into several other aspects, which are beyond
the scope of this review.) Brugger et al. (2022) studied the
downstream transport velocity with a measurement setup
consisting of two NMLs providing horizontal cross-sections of
the wake and the lateral velocity component of the inflow
simultaneously. Using two different cross-correlation approaches
and a large data set covering a wider range of ambient conditions
compared to Machefaux et al. (2015), they found good agreement
between the advection velocity and the average of the ambient mean
wind speed and the velocity at the wake center. Further, they found
that the correlation between the lateral component of the velocity

and the wake center position decreased with downstream distance,
and was proportional to the integral time scale of the lateral
turbulence component normalized by the advection time. While
several expressions for the downstream transport velocity of wake
meandering are proposed in the literature, and there is no general
agreement, there is consensus from the experiments that it is slower
than the ambient mean wind speed.

The last aspect regarding wakemeandering that is discussed here
is its relationship to the ambient turbulence. Aitken and Lundquist
(2014) showed that the wake meandering strength increased with
the ambient turbulence intensity. This finding was confirmed by
Brugger et al. (2022), who also showed that the added wake
turbulence and recovery of the mean velocity deficit also scaled
with the wake meandering strength. Both studies used PPI scans of
nacelle-based lidar at an onshore, utility-scale wind turbine, but
adopted different wake tracking methods.

Finally, we will mention studies that addressed particular sub-
topics that are generally omitted in the aforementioned sources.
For instance, although most of the mentioned applications focus
on the far wake physics, NML measurements have also been used
to investigate the near wake, which is defined as the region
immediately downstream of the rotor (x ≲ 2 − 4D) where the
wake profile is affected by the axial induction distribution imparted
by the local aerodynamic forces of the blades (Porté-Agel et al.,
2019). It is also the region where the sub-atmospheric pressure
behind the turbine recovers to its upstream value. Due to their
simplified description of the axial induction, the parabolic
formulation (i.e., the streamwise pressure gradient is neglected),
and the typical separation distance between adjacent turbines,
engineering wake models are typically targeted at the far wake
and treat the near wake as an initial condition. Trujillo et al. (2016)
presented one of the few studies focusing on the near wake of a
wind turbine. The measurement setup included a short-range,
pulsed Doppler lidar mounted on the nacelle of an offshore wind
turbine in northern Germany that scanned spanwise cross-sections
of the wake at a downwind distance between 0.6D and 1.4D. By
fitting single and double Gaussian functions to the mean velocity
deficit, the authors tracked the wake position in the near wake.
They found a correspondence between yaw misalignment and
wake position with a delayed onset of the wake displacement by
one rotor diameter in the downstream direction. Similar to other
studies, they mentioned the difficulties in capturing the full wake at
close ranges due to limitations in the opening angle of the lidar
scans. The relatively scarce literature on the near wake is not only
due to the complexity of the flow in that region, but also due to the
difficulty of rear-facing NMLs in measuring at close ranges due to
the blind region of lidars and high geometrical error. Shin and Ko
(2022) attempted to overcome these limitations by measuring the
near wake of a 3-MW turbine using a forward-facing fixed-beam
lidar located on the nacelle of a downstream turbine. Using an a
priori estimate of the wake region based on the Jensen wake model
Jensen (1983) to define a wake region for averaging, they showed
the characteristic double-Gaussian shape of the velocity deficit in
the near wake due to the nacelle jet and a decrease of the turbulence
intensity in the wake region with increasing wind speeds. Finally,
they investigated the velocity deficit as a function of the
downstream distance, possibly detecting the signature of the
pressure recovery.
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The effect of the terrain around the turbine on the wake behavior
is also a challenging aspect of wake modeling that is generally
disregarded. In this respect, an investigation into the interaction
between topography and wind turbine wakes was conducted by
Machefaux et al. (2016a), using a similar setup and post-processing
as Machefaux et al. (2015). They employed cluster averaging
according to the wind speed and the atmospheric stability and
tracked the wake by fitting a Gaussian function. The results
showed that the downstream transport of the wake followed the
contours of the terrain under stable conditions, while for unstable
conditions it moved on the horizontal plane.

As has been shown, NMLs can provide unprecedented insights
into the wake physics. Field experiments can reveal factors
influencing the wake that were not previously considered in
modeling or through more idealized analytical approaches. Also,
field experiments provide an opportunity to study effects that are
difficult to replicate in a wind tunnel or numerical simulation.

4.5 Error analysis with virtual lidars

As seen in previous sections, wake measurements with NML are
used to derive quantitative information about the wake across a large
spatial volume. A traditional validation of NML measurements with
other in situ instrumentation, which samples only a limited volume,
is therefore generally not sufficient for a comprehensive error
analysis. Virtual lidars that simulate a Doppler lidar’s
measurement properties and scan configurations within
numerical environments (typically LES) act as an alternative
means of validation. The difference between the underlying LES
(regarded as the truth in this context) and the flow properties
reconstructed from the virtual lidar measurements within the
LES can then provide insights into the errors.

Fuertes Carbajo and Porté-Agel (2018) analyzed the errors of
volumetric scan patterns with isotropic angular resolutions between
1° and 5° and a moderate opening angle in both azimuth and
elevation (θmax = βmax = 16.7°) that resulted in completion times
for a single volumetric scan between 10 min and less than half a
minute. They used an LES of an 80-m-diameter wind turbine with a
virtual lidar located on the nacelle. By analyzing the resulting errors
for the mean and the standard deviation of the longitudinal velocity
component due to lidar acquisition, interpolation, and statistical
uncertainty, they found that the best overall error performance was
achieved with an angular resolution of 3° and that the reconstruction
of the standard deviation from the virtual lidar measurements is of
lower quality than the mean.

The two companion papers Beck and Kühn (2019a) and Beck
and Kühn (2019b) present physiscs-informed interpolation and up-
sampling methods to mitigate the trade-offs between spatial and
temporal resolution inherent to NMLwake scanning. The first paper
(Beck and Kühn, 2019b) presented a temporal up-sampling method
to fill the temporal gaps between successive RHI or PPI sweeps of an
NML. The up-sampling method is based on a local advection
scheme that can be understood as a TFH applied to small spatial
and temporal scales that are advected at a rate prescribed by the local
velocity. The second paper (Beck and Kühn, 2019a) presented a
reconstruction scheme for the complete three-dimensional,
longitudinal velocity field of the wake from a cross-shaped scan

configuration with a PPI and an RHI through the rotor axis, which
can be completed in a significantly shorter time than the volumetric
scans of Fuertes Carbajo and Porté-Agel (2018). The reconstruction
relies heavily on the framework of the DWM model of Larsen et al.
(2008) and uses linear interpolation between the two lidar planes
along a curve with a constant radius to generate a volumetric velocity
field (i.e., assuming a conditional rotational symmetry of the wake in
the MFOR). The two methods presented in Beck and Kühn (2019b)
and Beck and Kühn (2019a) were validated with a virtual lidar in an
LES and showed an overall satisfying quality. However, limitations
existed in the near wake and the underlying assumptions to fill the
gaps in the measurements are extensive.

Letizia et al. (2021a) also leveraged three nacelle-mounted
virtual lidars (an ideal one performing pointwise sampling, one
operating in step-stare mode, and another scanning continuously) to
quantify the error of the proposed interpolation and scan design
algorithm. They found that the mean wind speed could be accurately
reconstructed regardless of the lidar type, but the turbulence
intensity suffered from an increasingly severe underestimation
based on the amount of spatio-temporal filtering of the
instrument. They also showed that the optimal scanning strategy
(θmax = βmax = 10°,Δθ =Δβ = 2.5°) could be identified using a few key
parameters representative of the wake flow, which represents an
actionable solution in cases where high-fidelity simulations are not
available.

Letizia et al. (2023) built on the previous work and defined a
more general methodology for the design of multi-instrument NML
campaigns. They used idealized lidar samples collected according to
the technical specifications of a real lidar to evaluate several
combinations of scan geometries and durations. The best
scanning strategy is selected based on a triple-objective
optimization aimed to maximize spatial coverage, statistical
convergence, and sampling rate. It is noteworthy that they had to
use a complex sequence encompassing different scans to meet the
scientific goals of their experiments.

To conclude, virtual lidars have proven to be a valuable tool to
carry out error analysis for NML wake measurement, albeit their use
has been less systematic than what is observed for the inflow studies
discussed in Section 3, likely due to the greater complexity that the
simulation of a turbine wake implies compared to an undisturbed
wind field.

5 Summary

The review of NMLs for wind energy reveals a vast and diverse
panorama in terms of applications, approaches, and experimental
strategies.

Regarding the applications, there is a substantial body of
literature reporting significant advantages in load reduction and
rotor speed stabilization, achievable by means of lidar-assisted feed-
forward control. Future development of such technology at an
industrial scale will depend on the future reliability, flexibility,
and costs of lidars, the degree to which the benefits of LAC
address challenges faced by new wind turbines, and the
development of general guidelines for the calibration and
implementation of LAC systems. Less clear advantages emerge in
the context of yaw control; the main claimed benefit of improved

Frontiers in Mechanical Engineering frontiersin.org21

Letizia et al. 10.3389/fmech.2023.1261017

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1261017


power capture is dependent on the accuracy of the baseline wind
direction sensors. Several authors agree on the redundancy of a
lidar-based feed-forward loop for power enhancement in region 2 of
a wind turbine power curve, where the state-of-the-art torque
controllers have already achieved a high level of maturity, which
may make additional gains unworthy.

Still, in the context of inflow detection, power performance
testing is probably the industrial application where NML has had
the largest success. NMLs have not only replaced more costly and
rigid meteorological towers, but have also provided additional
benefits in terms of data availability and correlation with turbine
response. Existing techniques for the reconstruction of the mean
flow from NMLs exhibit an accuracy comparable to that of
traditional methods based on in situ sensors. However, lidar-
based higher-order statistics (e.g., TI, Reynolds stresses, spectra)
still suffer from damping, geometrical error, and contamination
due to the lidar acquisition process, and complex methods are
being developed to correct the retrieval to mitigate such effects.
This is also why the assessment of loads through lidars still
represents an active research area.

The use of NMLs for wake measurement is generally reported in
the context of advanced wind energy and atmospheric science
research, although some potential practical applications of NMLs
for wake tracking have been proposed. Thanks to their ability to scan
large volumes, NMLs have shed light on phenomena like wake
meandering, recovery, shape, and their connection to atmospheric
conditions. NMLs undeniably contributed to expanding the
fundamental knowledge on this topic. Further, the use of NMLs
for inflow and wake measurements for wind farm control
applications, such as wake steering, is expected to grow in the
future as the control technology becomes more widely adopted.

This review also highlighted a significant disparity in the
methodologies used for inflow and wake studies. Inflow studies
have employed a preponderance of numerical methods adopted to
simulate and optimize the lidar system (especially for LAC). In
contrast, wake measurements are mostly carried out experimentally.
The difference could be due to the relatively easier generation of
undisturbed atmospheric turbulence compared to a more complex
wake velocity field, but also to the different backgrounds of
researchers investigating inflow LAC (engineering control) and
wake physics (atmospheric science).

Certainly, both virtual and real lidar observations are essential
for the development of NMLs for wind energy, the former being best
suited to characterize the errors and develop scanning strategies,
whereas the latter gives a more realistic picture of the flow physics.
More research seems to be needed to bridge the gap between these
two approaches. For example, bringing more real-world knowledge
into inflow studies would make the LAC more appealing to the
industry, while numerical techniques could improve the uncertainty
quantification and assist scan design and data processing for wake
measurements.

Indeed, a great variety of experimental strategies and
technologies have been utilized in the literature surveyed in this
review. This complex scenario is the result of mostly three factors:
first, the different quantities of interest needed for each application;
second, the great scanning flexibility offered by lidars; and third, the
still relative infancy of this technology. While the first two elements
are desirable, the last calls for more research efforts aimed at

identifying general guidelines that can assist lidar users in the
planning and execution of their measurement campaigns.

6 Conclusion

The most relevant documented applications of nacelle-mounted
lidars to the best of the authors’ knowledge have been reviewed. In
spite of the novelty of this technology, a substantial body of scientific
and technical literature has been already produced.

The different uses of NMLs have been broadly classified into
inflow detection and wake measurements, the first being mainly
performed to study lidar-assisted control and conduct power
performance tests, while the second to investigate wake physics.
The above classification and the even more granular sub-
categorization into narrow research applications is meant to
facilitate the understanding of the vast literature on NMLs and
guide the reader interested in specific topics. Another contribution
of the present work is the survey of the numerous scanning strategies
and flow reconstruction techniques previously adopted which can
provide guidance to future NML users. Finally, the reported
advantages and current limitations of NMLs used for either
engineering applications or more fundamental research have
been summarized.

This review also revealed quite clearly the aspects that future
research would need to address to fully exploit the potential of NML
and therefore foster their use among the wind energy community.
First, the reliability of the lidar/turbine system should be enhanced,
as the already relatively scarce field applications seem to suffer from
severe data losses due to the significant technical challenges
associated with the operation of NMLs, especially for turbine
control. Second, further research is necessary to quantify the
cost-effectiveness of applications such as lidar-assisted control or
active wake-tracking techniques with acceptable and documented
uncertainty. In fact, the extremely diverse numerical and
experimental approaches used to quantify the advantages of
industrial applications of NMLs led so far to a great deal of
different outcomes, while generalized and conclusive results are
still lacking. Third, a significant effort is still needed to synthesize a
standardized scanning strategy and flow reconstruction technique
from the numerous experimental methods used to date. Instead of
using rule-of-thumb approaches or optimizing the scan design just
for niche applications, researchers should apply or alternatively
propose generalized principles to design lidar experiments,
similarly to what is reported in some papers on control cited in
section 3 and in section 4.5 for wake analysis.

To conclude, the present work, by surveying the existing
accounts of NML applications, is indeed meant to guide future
researchers willing to take on the foregoing challenges with the
ultimate goal of expanding our knowledge of wind plant flows and
making remote sensing a major driver for the development of
profitable and efficient wind plants.
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Nomenclature

β Elevation angle [°]

Δp Range gate length [m]

Δr Full-width half-maximum of laser pulse [m]

Δu Velocity deficit [m s−1]

γ Longitudinal coherence

b̂ Direction of the lidar beam

ϕ(r) Along-beam weighting function [m−1]

θ Azimuth angle [°]

c Speed of light [m s−1]

cp Coefficient of power

D Rotor diameter [m]

d Focal distance of the lidar [m]

f Frequency [Hz]

Iu Streamwise turbulence intensity [%]

r Distance from lidar source [m]

t Time [s]

u Streamwise velocity [m s−1]

U∞ Inflow streamwise velocity (or rotor-equivalent wind speed) [m s−1]

v Lateral velocity [m s−1]

w Vertical velocity [m s−1]

x Streamwise distance from hub (pointing downstream) [m]

y Lateral distance from hub [m]

z Vertical distance from hub [m]

AEP Annual Energy Production [kWh]

CNR Carrier-to-noise ratio

CPC Collective pitch control

CW Continuous wave

DEL Damage Equivalent Load

DWM Dynamic wake meandering (model)

GF Gaussian fitting

GTO Gaussian turbulence optimization

IPC Individual pitch control

LAC Lidar-assisted control

LES Large-eddy simulation

LOS Line-of-sight

LSF Least-square fit

MFOR Meandering frame of reference

NFOR Nacelle frame of reference

NML Nacelle-mounted lidar

PPI Planar Position Indicator

RHI Range Height Indicator

TFH Taylor-frozen hypothesis

TI Inflow streamwise turbulence intensity [%]

WSD Wind speed de-projection
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