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Abstract

Distributed learning is the key for enabling training of modern large-scale machine learning mod-
els, through parallelising the learning process. Collaborative learning is essential for learning from
privacy-sensitive data that is distributed across various agents, each having distinct data distributions.
Both tasks are distributed in nature, which brings them under a common umbrella.

In this thesis, we examine algorithms for distributed and collaborative learning through the per-
spective of optimization theory. Specifically, we delve into the theoretical convergence properties of
prevalent algorithms (e.g., DECENTRALIZED-SGD, LOCAL-SGD, ASYNCHRONOUS-SGD, CLIPPED-
SGD, among others), and we address ways to enhance their efficiency.

A significant portion of this thesis centers on decentralized optimization methods for both dis-
tributed and collaborative learning applications. These are optimization techniques where agents
interact directly with one another, bypassing the need for a central coordinator.

First, we address the challenge of communication efficiency in decentralized learning, introducing
CHOCO-SGD—a first decentralized optimization algorithm which allows arbitrary high communica-
tion compression and at the same time comes with provable convergence guarantees.

Subsequently, we analyze the convergence properties of a large class of distributed and decen-
tralized algorithms including DECENTRALIZED-SGD—the predominant algorithm for decentralized
optimization—under a unified framework. Our approach imposes milder assumptions on functions
and communication topologies than existing works. Our theory recovers and improves the previ-
ously best-known convergence for all of the algorithms covered in the framework. Our theory reveals
that the performance of DECENTRALIZED-SGD-based algorithms deteriorates when agents have dif-
fering data—a scenario commonly encountered in practical collaborative learning applications. We
therefore study and improve convergence rates of GRADIENT TRACKING—the algorithm whose con-
vergence behavior is known to be unaffected by the data heterogeniety.

Additionally, we explore asynchronous optimization techniques as an alternative approach to en-
hance communication efficiency. In this thesis, we explore a more straightforward centralized com-
munication scheme. We improve existing theoretical convergence bounds of the ASYNCHRONOUS-
SGD algorithm. In particular, one of our main contributions is to show that ASYNCHRONOUS-SGD
in distributed learning scenarios is always faster than the synchronous MINIBATCH-SGD.

Lastly, we turn our attention to privacy aspects, which are especially important for collaborative
learning algorithms, as the local agents’ data are typically privacy sensitive. We study the convergence
behavior of the CLIPPED-SGD algorithm—an integral part of any differentially private learning algo-
rithm. We also study the convergence properties of MF-DP-FTRL algorithms which inject correlated
noise over the iterations to achieve privacy and we propose a new correlated noise schedule based on
our enhanced theory.

Keywords Stochastic optimization, decentralized learning, distributed learning, machine learning,
compressed communications, asynchronous communications, gradient clipping.
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Résumé

L’apprentissage distribué est essentiel pour permettre lentrainement de modèles modernes d’apprentissage
automatique à grande échelle, grâce à la parallélisation du processus d’apprentissage. L’apprentissage
collaboratif est essentiel pour l’apprentissage à partir de données sensibles et confidentielles qui sont
réparties entre différents agents, chacun ayant des distributions de données distinctes. Les deux tâches
sont distribuées par nature, et partagent donc des similitudes fondamentales.

Dans cette thèse, nous examinons les algorithmes pour l’apprentissage distribué et collaboratif
du point de vue de la théorie de l’optimisation. Plus précisément, nous étudions les propriétés de
convergence théorique des algorithmes actuels (par exemple, DECENTRALIZED-SGD, LOCAL-SGD,
ASYNCHRONOUS-SGD, CLIPPED-SGD, parmi d’autres), et nous examinons les moyens d’améliorer
leur efficacité.

Une partie importante de cette thèse est centrée sur les méthodes d’optimisation décentralisée
pour les applications d’apprentissage distribué et collaboratif. Il s’agit de techniques d’optimisation
dans lesquelles les agents interagissent directement les uns avec les autres, sans avoir besoin d’un
coordinateur central.

Tout d’abord, nous abordons le défi de l’efficacité de la communication dans l’apprentissage
décentralisé, en introduisant CHOCO-SGD—le premier algorithme d’optimisation décentralise qui
permet une compression arbitraire de la communication tout en ayant des garanties de convergence.

Par la suite, nous analysons les propriétés de convergence d’une grande classe d’algorithmes distri-
bués et décentralisés, y compris DECENTRALIZED-SGD—l’algorithme prédominant pour l’optimisation
décentralisée—dans un cadre unifié. Notre approche impose des hypothèses plus légères sur les fonc-
tions et les topologies de communication que les travaux existants. Notre théorie récupère et améliore
la convergence la mieux connue auparavant pour tous les algorithmes couverts par le cadre. Notre
théorie révèle que la performance des algorithmes basés sur DECENTRALIZED-SGD se détériore
lorsque les agents ont des données différentes—un scénario couramment rencontré dans les appli-
cations pratiques d’apprentissage collaboratif. Nous étudions donc et améliorons les taux de conver-
gence de GRADIENT TRACKING—l’algorithme dont le comportement de convergence est connu pour
ne pas être affecté par l’hétérogénéité des données.

En outre, nous explorons les techniques d’optimisation asynchrones comme une approche alterna-
tive pour améliorer l’efficacité de la communication. Dans cette thèse, nous explorons un schéma de
communication centralisé plus simple. Nous améliorons les limites de convergence théoriques exis-
tantes de l’algorithme ASYNCHRONOUS-SGD. En particulier, l’une de nos principales contributions
est de montrer que ASYNCHRONOUS-SGD dans les scénarios d’apprentissage distribué est toujours
plus rapide que MINIBATCH-SGD synchrone.

Enfin, nous portons notre attention sur les aspects de confidentialité, qui sont particulièrement
importants pour les algorithmes d’apprentissage collaboratif, car les données des agents locaux sont
généralement sensibles. Nous étudions le comportement de convergence de l’algorithme CLIPPED-
SGD—une partie intégrante de tout algorithme d’apprentissage différentiellement privé. Nous étu-
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dions également les propriétés de convergence des algorithmes MF-DP-FTRL qui injectent du bruit
corrélé sur les itérations pour atteindre la confidentialité et nous proposons un nouveau programme
de bruit corrélé basé sur notre théorie améliorée.

Mots-clés Optimisation stochastique, apprentissage décentralisé, apprentissage distribué, apprentis-
sage automatique, communications compressées, communications asynchrones, écrêtage de gradient.
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Chapter 1

Introduction

Recent progress in machine leaning has been remarkable. From large language models that can
decently well solve almost any task formulated in a human language, to photograph-quality image
generations based on text description, to improved healthcare and drug discovery and to almost every
other domain of our lives. All of these advancements are thanks to increased capacities of machine
learning models, as well as the ability to efficiently train them using vast amounts of data. This
progress requires many different components to come together, including, but not limited to, the
right architectures, powerful compute resources (such as e.g. GPUs), as well as salable and efficient
training methods. In this thesis we will focus on the latter—the training methods. While the latest
progress is coming mainly from the engineering efforts, we will take a step back and will aim at
understanding theoretical properties of existing popular algorithms. We will analyse such algorithms
from the optimization point of view, and we will design provably more efficient training schemes.

As our focus is on the efficiency of training methods, it is crucial to first understand the real-
world training scenarios and their constraints. This thesis emphasizes two distinct yet interconnected
training scenarios: (i) distributed training in a data center, and (ii) collaborative learning with various
agents, each possessing their own data. In both of these scenarios we will aim to train a single machine
learning model distributively across multiple participants. The primary distinction, relevant to this
work, is whether the training data is shared across all participants in a data center (for example if
GPUs have access to shared memory with the complete dataset) or whether the data is unique for each
participant in a collaborative learning scenario, as it is generated directly by each participant. While
distributed training in a data center is undeniably more efficient, it is not always feasible or desirable
to consolidate all the data in one location, primarily due to privacy concerns. This makes collaborative
learning the only viable option for training with such data. Real-world applications include training
on medical data, which is often privacy-sensitive and sometimes even legally protected, as well as
training models on mobile phones, where users frequently input highly sensitive information.

Both scenarios present various challenges. Some are common to both, while others are specific
to one scenario. In this thesis, we broadly address three critical issues in distributed and collaborative
learning: (i) communication costs, which both scenarios share, (ii) data heterogeneity, mainly arising
in the collaborative learning setting, and (iii) the privacy sensitivity of the training data. While the
last point is crucial for both scenarios, it is especially significant in collaborative learning since the
training data is typically highly sensitive. If the training data were not privacy-sensitive, one could
gather this data in a data center and conduct more efficient data center training.

Below, we explain in more detail the topics considered in this thesis.
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Chapter 1. Introduction

1.0.1 Decentralized Algorithms

In both distributed and collaborative training scenarios communication cost is one of the main bot-
tlenecks, especially when scaling training to the large number of nodes. A significant portion of this
thesis is devoted to exploring the techniques that speedup the training time.

One such technique involves the use of decentralized communications. Unlike the traditional
centralized communication scheme where a central server is pivotal, decentralized communications
operate in a peer-to-peer manner across an underlying communication graph. If this communication
graph is sparse—there is a potential for more efficient communications compared to the dense central-
ized communication scheme. However, the sparsity means that workers cannot perfectly synchronize
their updates, which could compromise the convergence properties of training algorithms. This thesis
delves deeply into the potential of decentralized optimization algorithms, with Chapters 4, 5, and 6
devoted to various facets of these algorithms.

Communication Compression. In Chapter 4, we explore techniques to further accelerate communi-
cation time in decentralized optimization through communication compression. While decentralized
communications (with a sparse communication graph) already take a step in this direction, it is not
enough to make the communication time to be negligible, especially for large model sizes. Trans-
mitting uncompressed model parameters, even to a single neighboring node, can be time-consuming.
Compressing the messages can significantly enhance communication speed. Although several solu-
tions have been proposed for centralized communication schemes [Alistarh et al., 2017, Stich et al.,
2018a], the decentralized context lacked an algorithm that could provably converge with high commu-
nication compression. As we will demonstrate in Chapter 4, all existing algorithms fail to converge
under a moderately high compression ratio (compression to 4 bits).

In Chapter 4 we introduce CHOCO-SGD the first algorithm for decentralized optimization with
communication compression that offers provable guarantees for arbitrarily high communication com-
pression ratio. Our theoretical framework encompasses both i.i.d. and non-i.i.d. data distributions
across nodes. We first focus on algorithm development and its evaluation for convex functions. We
then tackle the more intricate scenario of decentralized deep learning training. Our theory for CHOCO-
SGD is expanded to non-convex smooth functions, and we demonstrate its efficacy in realistic train-
ing settings such as training across nodes connected by a social network and training in an actual
data center. In the latter scenario, we highlight the advantages of CHOCO-SGD against the real-time
training speed of the large-scale task of ImageNet training.

Unified Theory of Decentralized and Distributed Algorithms. While decentralization can undoubt-
edly help improve the runtime of the algorithms through faster communications, the lack of per-
fect synchronization might adversely affect the convergence properties. Therefore, understanding
the convergence behavior of these algorithms is crucial for selecting the right algorithm, setting its
parameters, and other considerations. While some prior works already took a step to understand
convergence behavior of decentralized algorithms, in Chapter 5 we theoretically analyze many pop-
ular decentralized and distributed algorithms in one unified algorithmic framework. Our framework
allows for almost arbitrarily changing communication topologies with time, as well as for many alter-
nating schemes for communication topologies, allowing us to cover a large range of algorithms such
as MINIBATCH-SGD [Dekel et al., 2012], LOCAL-SGD [Coppola, 2015], DECENTRALIZED-SGD
[Lian et al., 2017], LOCAL DECENTRALIZED-SGD and MATCHA [Wang et al., 2019]. In our the-
oretical analysis, we use weaker assumptions on the stochastic noise and the function heterogeneity
than in all the prior analyses of the special cases. Notably, our convergence rates either match or
improve upon the previously best-known rates for all the algorithms covered in our framework. In
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particular, we improve the previously known best convergence rates for the Local SGD algorithm for
the strongly convex and convex functions, and match the previously best-known rate for non-convex
functions, but under weaker assumptions on the stochastic noise and function heterogeneity.

Data Heterogeneity. All of the algorithms covered by our unified framework introduced in Chap-
ter 5, including DECENTRALIZED-SGD, converge slower if the data is heterogeneous on different
workers. In Chapter 5 we show that for the strongly convex functions this speed degradation due to
the data heterogeneity is inevitable. Many algorithms in decentralized learning are unaffected by data
heterogeneity, such as EXTRA [Shi et al., 2015], decentralized primal-dual gradient [Alghunaim and
Sayed, 2019], D2 [Tang et al., 2018b], and GRADIENT TRACKING [Lorenzo and Scutari, 2016], only
the latter two of which have been shown to converge for non-convex functions.

In Chapter 6, we improve the existing analysis of GRADIENT TRACKING and show that it offers
the same convergence guarantee as D2, strictly improving the convergence of DECENTRALIZED-
SGD by removing dependence on data heterogeneity.

1.0.2 Asynchronous Communications

In Chapter 7, we focus on an alternative method to enhance communication efficiency: the use of
asynchronous communications. We begin with the simpler setting of centralized communications
where nodes communicate through a central server. In the traditional synchronized communication
scheme, the central server waits for all the workers to complete their updates before aggregating them.
This requires every worker to wait for the slowest one in each iteration before proceeding to the next.
This approach can substantially delay the execution time of the algorithm, particularly when there are
occasional straggler workers.

Asynchronous communications aim to address this problem. Workers send their model updates to
the central server as soon as they complete them. The server then updates the model with the current
worker’s update without waiting for the others and returns the updated model to the worker. This en-
ables the worker to begin calculating the subsequent update. Similar to decentralization, asynchrony
helps to reduce the algorithm’s execution time, permitting more gradients to be computed in the same
timeframe. However, the absence of a synchronized global model might affect the convergence prop-
erties negatively.

In Chapter 7 we improve existing convergence rates of ASYNCHRONOUS-SGD. Firstly, we im-
prove the convergence rates of ASYNCHRONOUS-SGD without any change in the algorithm nor in
the stepsize. While the prior rates depended on the maximum delay τmax we improve it to the much
smaller √τmaxτavg, where τavg is the average delay of gradients during the whole course of train-
ing. Notably, τavg is often much less than τmax, especially when occasional stragglers are present.
Furthermore, we introduce a delay-adaptive stepsize schedule where the convergence rate solely de-
pends on the average delay τavg. A primary contribution of this chapter is our demonstration that
ASYNCHRONOUS-SGD, when paired with such a delay-adaptive stepsize schedule, is always faster
than synchronous minibatch-SGD.

1.0.3 Privacy

In the subsequent part of the thesis, we shift our focus from communication efficiency to privacy
issues in collaborative learning. The demand for collaborative learning primarily emerges when the
training data is sensitive to privacy. Differential privacy (DP) offers a formal definition of privacy,
allowing to theoretically reason about privacy guarantees. DP-SGD is a widely-used algorithm that
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Chapter 1. Introduction

upholds differential privacy during the training of machine learning models. In each iteration, DP-
SGD clips the computed gradients to restrict how much each data point can influence the output and
introduces privacy noise to these clipped gradients to mask the information.

Gradient Clipping. In Chapter 9, we examine the extent to which gradient clipping impairs the con-
vergence rate. We present a more refined convergence rate for the CLIPPED-SGD algorithm, high-
lighting the impact of the clipping threshold on the convergence dynamics. We precisely quantify the
bias introduced by clipping, offering both upper and lower bounds on the neighborhood size within
which CLIPPED-SGD can converge.

Correlated Privacy Noise. In the following Chapter 10, our attention turns to algorithms tailored for
the collaborative learning context. Kairouz et al. [2021a] demonstrated that the MF-DP-FTRL suite
of algorithms can surpass standard DP-SGD, particularly in collaborative learning situations where
amplification techniques are inapplicable. This class of algorithms adds linearly correlated privacy
noise over the iterations. For a given privacy level, many correlated noise schedules could lead to this
privacy, but their effects on the final model’s performance can vary. In Chapter 10, our goal was to to
understand from the optimization point of view which correlated noise schedule leads to the fastest
convergence behavior, under the fixed privacy constraint. We derived convergence guarantees for such
correlated noise schedules establishing their tightness in some notable special cases. Building on this
theory, we introduced new noise schedules that achieve enhanced theoretical convergence properties
and assessed their practical performance.

1.1 Outline of the thesis

This thesis is divided into two parts: (i) decentralized and distributed optimization, and (ii) privacy
aspects. The first part is based on the following papers:

• Thesis Chapter 4 is based on the two papers [Koloskova et al., 2019, 2020a].

Decentralized stochastic optimization and gossip algorithms with compressed communication
Anastasia Koloskova⋆, Sebastian U. Stich⋆ and Martin Jaggi.
In the proceedings of International Conference on Machine Learning (ICML) 2019

Decentralized deep learning with arbitrary communication compression
Anastasia Koloskova⋆, Tao Lin⋆, Sebastian U. Stich and Martin Jaggi.
In the proceedings of International Conference on Learning Representations (ICLR) 2020

• Thesis Chapter 5 is based on the paper [Koloskova et al., 2020b].

A unified theory of decentralized sgd with changing topology and local updates
Anastasia Koloskova⋆, Nicolas Loizou, Sadra Boreiri, Martin Jaggi and Sebastian U. Stich⋆.
In the proceedings of International Conference on Machine Learning (ICML) 2020

• Thesis Chapter 6 is based on the paper [Koloskova et al., 2021].

An improved analysis of gradient tracking for decentralized machine learning
Anastasia Koloskova, Tao Lin and Sebastian U. Stich
In the proceedings of Advances in Neural Information Processing Systems (NeurIPS) 2021

• Thesis Chapter 7 is based on the paper [Koloskova et al., 2022].
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1.2. Contributions beyond this thesis

Sharper convergence guarantees for asynchronous sgd for distributed and federated learning
Anastasia Koloskova, Sebastian U. Stich and Martin Jaggi
In the proceedings of Advances in Neural Information Processing Systems (NeurIPS) 2022

The second part of this thesis, dedicated to algorithms ensuring privacy, is based on the following two
papers:

• Thesis Chapter 9 is based on the paper [Koloskova et al., 2023].

Revisiting Gradient Clipping: Stochastic bias and tight convergence guarantees
Anastasia Koloskova⋆, Hadrien Hendrikx⋆ and Sebastian U. Stich
In the proceedings of International Conference on Machine Learning (ICML) 2023

• Thesis Chapter 10 is based on the paper [Koloskova et al., 2023].

Convergence of gradient descent with linearly correlated noise and applications to differen-
tially private learning
Anastasia Koloskova, Ryan McKenna, Zachary Charles, Keith Rush and Brendan McMahan
In the proceedings of Advances in Neural Information Processing Systems (NeurIPS) 2023

1.2 Contributions beyond this thesis

In addition to the research detailed in this thesis, the author contributed to several other projects.
First, we worked on improving theory for the greedy coordinate descent algorithm. This work is

not included in the current thesis as it is not connected to the main topic of distributed and collabora-
tive learning algorithms.

• Efficient greedy coordinate descent for composite problems
Sai Praneeth Karimireddy⋆, Anastasia Koloskova⋆, Sebastian Stich and Martin Jaggi
In the proceedings of International Conference on Artificial Intelligence and Statistics (AIS-
TATS) 2019

All the other projects feature various aspects of decentralized communications. We worked on
understanding generalization properties of decentralized algorithms; practical ways to mitigate the
data heterogeneity issue in decentralized learning; min-max decentralized optimization; on designing
data-adaptive communication topologies; on allowing flexible client’s participation pattern in decen-
tralized learning and other aspects. The list of papers that author participated in but not included in
this thesis is presented below:

• Consensus control for decentralized deep learning
Lingjing Kong, Tao Lin, Anastasia Koloskova, Martin Jaggi and Sebastian Stich
In the proceedings of International Conference on Machine Learning (ICML) 2019

• A linearly convergent algorithm for decentralized optimization: Sending less bits for free!
Dmitry Kovalev, Anastasia Koloskova, Martin Jaggi, Peter Richtarik and Sebastian Stich
In the proceedings of International Conference on Artificial Intelligence and Statistics (AIS-
TATS) 2021

• RelaySum for decentralized deep learning on heterogeneous data
Thijs Vogels⋆, Lie He⋆, Anastasiia Koloskova, Sai Praneeth Karimireddy, Tao Lin, Sebastian
Stich and Martin Jaggi
In the proceedings of Advances in Neural Information Processing Systems (NeurIPS) 2021
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• Decentralized local stochastic extra-gradient for variational inequalities
Aleksandr Beznosikov, Pavel Dvurechenskii, Anastasiia Koloskova, Valentin Samokhin, Sebas-
tian U Stich and Alexander Gasnikov
In the proceedings of Advances in Neural Information Processing Systems (NeurIPS) 2022

• Data-heterogeneity-aware mixing for decentralized learning
Yatin Dandi, Anastasia Koloskova, Martin Jaggi and Sebastian Stich
OPT workshop at NeurIPS 2022

• Decentralized stochastic optimization with client sampling
Ziwei Liu, Anastasia Koloskova, Martin Jaggi and Tao Lin
OPT workshop at NeurIPS 2022

• Decentralized gradient tracking with local steps
Yue Liu, Tao Lin, Anastasia Koloskova, Sebastian U Stich
To appear in Optimization Methods and Software.
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Chapter 2

Setup and Assumptions

In this chapter we formally explain the setup that we consider throughout this thesis. In Part I we
focus on optimization problems distributed across n nodes of the form

min
x∈Rd

[
f(x) := 1

n

n∑
i=1

[
fi(x) = Eξ∼Di

Fi(x, ξ)
]]

, (2.1)

where x ∈ Rd are the model parameters that we want to learn1, fi : Rd → R denotes the local
objective function available to node i, i ∈ [n] := {1, . . . n}. Each fi is a stochastic function fi(x) =
Eξ∼Di

Fi(x, ξ) with access only to stochastic gradients ∇Fi(x, ξ). This setting covers empirical risk
minimization problems, where Di becomes a uniform distribution over the local training dataset. It
also covers deterministic optimization when Fi(x, ξ) = fi(x), ∀ξ.

In Part II we focus on privacy mechanisms and consider setting of training on n = 1 node in order
to understand privacy aspects in an easier setting. We therefore focusing on minimization problem of
the form

min
x∈Rd

[
f(x) := Eξ∼D F (x, ξ)

]
, (2.2)

Our analysis in Part II is applicable to the distributed setting (2.1).

2.1 Assumptions on the optimization objectives

We now explain the common assumptions used throughout the thesis, in particular on the objective
functions fi. In some chapters we use slight variations of the assumptions presented here, or might
impose additional assumptions, which will be explained directly when needed.

In this thesis we cover the two cases coming from the two different applications of distributed
training:

• training in a datacenter when the local functions are equal to each other, and thus fi ≡ f .
This means that all the nodes has access to a shared memory with the full dataset. Usually, in
the datacenter setting several GPUs are physically located on the same cluster and are used in
parallel to speedup the training time.

1. Our setting covers neural networks with x being the flattened set of all the learnable parameters in the neural network.
In this case, Fi are the functions that combine both the model architecture connecting all the parameters in x, and the loss
function.
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• federated/collaborative learning when fi are different, and each agent has its own local data
distribution Di.

We note that the federated learning setup is more general: it covers the datacenter training setup by
simply setting fi ≡ fj . However, it is also more challenging because the function heterogeneity
(caused by data heterogeneity between the agents) frequently makes it harder for the algorithms to
converge.

2.1.1 Smoothness

Throughout all the chapters in this thesis, except for Chapter 9, we assume that the local objective
functions fi are L-smooth:

Assumption 1 (L-smoothness) Each function fi : Rd → R for i ∈ [n] is L-smooth, that is

‖∇fi(y)−∇fi(x)‖ ≤ L ‖y − x‖ , ∀x, y ∈ Rd, i ∈ [n], (2.3)

This is a common assumption in all of the optimization literature [Nesterov, 2004, Lian et al., 2017,
Wang and Joshi, 2018]. In Chapter 9 we consider a more general (L0, L1)-smoothness assumption
on f (fi ≡ fj ≡ f as we consider the single-node setting (2.2)).

Assumption 2 ((L0, L1)-smoothness) A differentiable function f : Rd → R is said to be (L0, L1)-
smooth if it verifies for all x, y ∈ Rd with ‖x − y‖ ≤ 1

L1
:

‖∇f(x)−∇f(y)‖ ≤ (L0 + ‖∇f(x)‖L1) ‖x − y‖ . (2.4)

This assumption was recently introduced in [Zhang et al., 2019] as a relaxation of smoothness As-
sumption 1 (setting L1 = 0 brings back to the Assumption 1). It is based on the practical observa-
tions of how the smoothness constant evolves during the training of modern neural networks. This
assumption allowed [Zhang et al., 2019] to theoretically explain why gradient clipping can accelerate
training of neural networks. We discuss this assumption more in-depth in Chapter 9 where it is used.

2.1.2 Convexity

For some of the results we assume only smoothness Assumption 1 or 2. In this case functions fi could
possibly be non-convex, covering the important scenario of neural networks training.

In most of the chapters additionally to the non-convex smooth functions we establish convergence
guarantees for convex and strongly convex functions:

Assumption 3 (µ-convexity) Each function fi : Rd → R, i ∈ [n] is µ-(strongly) convex for constant
µ ≥ 0. That is, for all x, y ∈ Rd:

fi(x)− fi(y) +
µ

2
‖x − y‖22 ≤ 〈∇fi(x), x − y〉 , ∀x, y ∈ Rd, i ∈ [n], (2.5)

Considering strongly convex functions allows us for the easier reasoning of tightness of our con-
vergence rates. In particular, in Chapter 5 we establish the lower bound for one of the terms in
convergence rate for strongly convex functions.
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2.1.3 Stochastic noise

Throughout this thesis we assume that the variance of stochastic gradients is bounded

Assumption 4 (Stochastic variance) There exist constants σi ≥ 0 for all i ∈ [n] such that

Eξ∼Di
‖∇Fi(x, ξ)−∇fi(x)‖ ≤ σ2

i , ∀x ∈ Rd, i ∈ [n] . (2.6)

In Chapters 6 and 7 we simplify this assumption by further assuming that σi = σj ∀i, j. This is
mainly done for simplicity of presentation.

In Chapter 5 we further relax this assumption by assuming (2.6) only at the optimum x⋆ =
arg minx∈Rd f(x) for the (strongly)-convex functions, and assuming that the variance σi can grow
with the norm of the gradients ∇fi(x) for the non-convex functions. We refer to Chapter 5 for the
more in-depth discussion.

2.1.4 Objective function heterogeneity

Traditional works in the analysis of stochastic gradient methods [Recht et al., 2011, Hazan and Kale,
2014, Rakhlin et al., 2012a], and also our Chapter 4 use the common assumption of (uniformly)
bounded gradients, formalized as follows.

Assumption 5 (Bounded gradients) There exists a constant G ≥ 0 such that

Eξi ‖∇Fi(x, ξi)‖2 ≤ G2 , ∀x ∈ Rd, i ∈ [n],

where Eξi [·] denotes the expectation over ξi ∼ Di.
While this assumption allows to establish convergence rates, it is strong and limiting. It signifi-

cantly limits the class of admissible functions. Even a simple quadratic function f(x) = ‖x‖2 does
not satisfy Assumption 5 if the domain is unbounded. This assumption also does not allow for math-
ematical quantification of function heterogeneity, that is if different workers i might have different
objective functions fi.

For allowing a degree of heterogeneity between different workers, such as caused by different
training data or simply different objectives on each worker, we adopt the following common assump-
tion [Lian et al., 2017, e.g.], also used in our Chapter 7:

Assumption 6 (Bounded function heterogeneity) There exists n constants ζi ≥ 0, i ∈ [n] such that

‖∇fi(x)−∇f(x)‖22 ≤ ζ2i , ∀x ∈ Rd, i ∈ [n] , (2.7)

we also define ζ2 = 1
n

∑n
i=1 ζ

2
i .

It can be shown that ζ2 ≤ G2, making this assumption weaker than Assumption 5. The assumption
also has an advantage of providing a measure of heterogeneity: ζ2 = 0 when functions are homoge-
neous (i.e. fi ≡ fj), and positive otherwise.

In Chapter 5 we propose to further relax this heterogeneity Assumption 6—similarly as relaxing
the stochastic noise Assumption 4. In particular, for (strongly)-convex functions we only define

ζ2i := ‖∇fi(x⋆)‖22 , ζ̄2 := 1
n

∑n
i=1 ζ

2
i . (2.8)

with x⋆ = arg min f(x), while for the non-convex functions we allow ζ to grow with the norm of the
gradient, assuming that

1

n

n∑
i=1

‖∇fi(x)‖22 ≤ ζ̂2 + P ‖∇f(x)‖22 , ∀x ∈ Rd , (2.9)
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for some positive constants ζ̂ and P . Both ζ̄ and ζ̂ are realistically much smaller than the ζ and we
refer to the more in-depth discussion to Chapter 5.

In Chapter 6 we do not use any assumption related to the function heterogeneity as the algorithm’s
convergence rate is unaffected by that quantity.

2.2 Assumptions on communication topology

This thesis features two communication paradigms: centralized and decentralized communications,
with the large focus on the less explored decentralized communication scheme.

2.2.1 Decentralized communications

In decentralized communications there is no central server and all nodes communicate directly in
a peer-to-peer fashion. Formally, we model the communication topology as an undirected graph
G = (V,E), with the nodes V = {1, . . . , n} representing the workers, and the edges of this graph
representing available communication links with (i, j) ∈ E if and only if nodes i and j are allowed to
directly communicate.

In Chapters 4 and 6 we consider fixed communication topologies G, and in Chapter 5 we allow
for time-varying communication topologies.

For every edge of the graph G we associate a weight wij . We also define wij = 0 iff (i, j) /∈ E
is not an edge of the graph G. We define W = {wij}nij=1 as the mixing matrix of the communication
topology.

Definition 7 (Gossip matrix) We assume that W ∈ [0, 1]n×n is a symmetric (W = W⊤) doubly
stochastic (W1 = 1,1⊤W = 1⊤) matrix with eigenvalues 1 = |λ1(W )| > |λ2(W )| ≥ · · · ≥
|λn(W )| and spectral gap

ρ := 1− |λ2(W )| ∈ (0, 1] . (2.10)

2.2.2 Centralized communications

In the centralized communication scheme, all the agents are either connected to the central server, or
could perform the exact average over all the nodes in some other way, e.g. with all-reduce.

Decentralized communication scheme is more general. Indeed, taking the communication topol-
ogy being a star graph, or a fully-connected graph that performs the exact average, we would recover
centralized communications. Formally, this corresponds to taking W = 11⊤

n .
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Theory of Decentralized and Distributed
Learning Algorithms
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Chapter 3

Preface

In this part of the thesis we focus on efficiency of optimization methods for distributed problems over
the n nodes of the form

min
x∈Rd

[
f(x) := 1

n

n∑
i=1

[
fi(x) = Eξ∼Di

Fi(x, ξ)
]]

, (2.1)

with x ∈ Rd being the model parameters that we want to learn. Our main focus lies in designing
training methods that are communication efficient, and have good convergence properties. Most of
the chapters in this part focus on decentralized communications. First, in Chapter 4 we explore the
question of how to add communication compression for decentralized optimization. In the subsequent
Chapters 5 and 6 we provide an improved analysis of various distributed and decentralized learning
algorithms. In the final Chapter 7 of this part we explore another way to make communications
efficient—the use of asynchronous updates. In this last chapter we consider an easier setting of
centralized communications.
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Chapter 4

Decentralized Stochastic Optimization and
Gossip Algorithms with Compressed
Communication

4.1 Preface

This chapter is based on the two papers [Koloskova et al., 2019] and [Koloskova et al., 2020a].
Koloskova et al. [2019] introduces the CHOCO-SGD algorithm and analyses its theoretical conver-
gence properties for strongly convex functions, while Koloskova et al. [2020a] extends the analysis
for smooth non-convex functions and performs extensive deep learning training experiments.

Summary We consider decentralized stochastic optimization with the objective function (e.g. data
samples for machine learning task) being distributed over n machines that can only communicate to
their neighbors on a fixed communication graph. To reduce the communication bottleneck, the nodes
compress (e.g. quantize or sparsify) their model updates. We cover both unbiased and biased com-
pression operators with quality denoted by δ ≤ 1 (δ = 1 meaning no compression).
We (i) present a novel gossip algorithm, CHOCO-GOSSIP, for the average consensus problem that
converges in time O(1/(ρ2δ) log(1/ε)) for accuracy ε > 0. This is (up to our knowledge) the first
gossip algorithm that supports arbitrary compressed messages for δ > 0 and still exhibits linear con-
vergence.
We (ii) propose a novel gossip-based stochastic gradient descent algorithm, CHOCO-SGD, that con-
verges at rate O

(
1/(nT ) + 1/(Tρ2δ)2

)
for strongly convex objectives, where T denotes the number

of iterations and ρ the Eigengap of the connectivity matrix. Despite compression quality and network
connectivity affecting the higher order terms, the first term in the rate, O(1/(nT )), is the same as for
the centralized baseline with exact communication.
We further (iii) consider a more challenging decentralized deep learning case and show that CHOCO-
SGD achieves linear speedup in the number of workers for arbitrary high compression ratios on
general non-convex smooth functions, and non-IID training data.
We finally (iv) show in experiments that both of our algorithms (CHOCO-GOSSIP and CHOCO-SGD)
do outperform the respective state-of-the-art baselines and CHOCO-SGD can reduce communication
by at least two orders of magnitudes for the convex training of logistic regression. We further demon-
strate the practical performance of the algorithm in the deep learning setting in two key scenarios:
the training of deep learning models (a) over decentralized user devices, connected by a peer-to-peer
network and (b) in a datacenter.
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Code Code implementing all experiments is available under https://github.com/epfml/
ChocoSGD.

Co-authors in [Koloskova et al., 2019] Sebastian U. Stich and Martin Jaggi.

Contributions in [Koloskova et al., 2019]
A. Koloskova: methodology (40%), formal analysis (80%), experiments, writing (20%).
S. U. Stich: methodology (40%), formal analysis (20%), writing (80%).
M. Jaggi: methodology (20%), writing – review and editing, project administration, supervision.

Co-authors in [Koloskova et al., 2020a] Tao Lin, Sebastian U. Stich and Martin Jaggi.

Contributions in [Koloskova et al., 2020a]
A. Koloskova: methodology (60%), formal analysis, writing (80%).
T. Lin: methodology (20%), software, experiments, writing (20%).
S. U. Stich: methodology (10%), writing – review and editing.
M. Jaggi: methodology (10%), writing – review and editing, project administration, supervision.

4.2 Introduction

Decentralized machine learning methods are becoming core aspects of many important applications,
both in view of scalability to larger datasets and systems, but also from the perspective of data locality,
ownership and privacy. In this work we address the general data-parallel setting where the data is
distributed across different compute devices, and consider decentralized optimization methods that
do not rely on a central coordinator (e.g. parameter server) but instead only require on-device compu-
tation and local communication with neighboring devices. This covers for instance the classic setting
of training machine learning models in large data-centers, but also emerging applications were the
computations are executed directly on the consumer devices, which keep their part of the data private
at all times.1 Formally, as explained also in the common setup Chapter 2, we consider optimization
problems distributed across n devices or nodes of the form

f⋆ := min
x∈Rd

[
f(x) := 1

n

n∑
i=1

fi(x)
]
, (2.1)

where fi : Rd → R for i ∈ [n] := {1, . . . , n} are the objectives defined by the local data available on
each node. We also allow each local objective fi to have stochastic optimization (or sum) structure,
covering the important case of empirical risk minimization in distributed machine learning and deep
learning applications.

DecentralizedCommunication. We model the network topology as a graph G = ([n], E) with edges
{i, j} ∈ E if and only if nodes i and j are connected by a communication link, meaning that these
nodes can directly exchange messages (for instance computed model updates). The decentralized
setting is motivated by centralized topologies (corresponding to a star graph) often not being possible,
and otherwise often posing a significant bottleneck on the central node in terms of communication
latency, bandwidth and fault tolerance. Decentralized topologies avoid these bottlenecks and thereby
offer hugely improved potential in scalability. For example, while the master node in the centralized

1. Note the optimization process itself (as for instance the computed result) might leak information about the data of
other nodes. We do not focus on quantifying notions of privacy in this chapter, dedicating the Part II of this thesis to the
privacy questions.

16

https://github.com/epfml/ChocoSGD
https://github.com/epfml/ChocoSGD


4.2. Introduction

setting receives (and sends) in each round messages from all workers, Θ(n) in total2, in decentralized
topologies the maximal degree of the network is often constant (e.g. ring or torus) or a slowly growing
function in n (e.g. scale-free networks).

Decentralized Optimization. For the case of deterministic (full-gradient) optimization, recent semi-
nal theoretical advances show that the network topology only affects higher-order terms of the conver-
gence rate of decentralized optimization algorithms on convex problems [Scaman et al., 2017, 2018].
We prove the first analogue result for the important case of decentralized stochastic gradient descent
(SGD), proving convergence at rate O(1/(nT )) (ignoring for now higher order terms) on strongly
convex functions where T denotes the number of iterations.

This result is significant since stochastic methods are highly preferred for their efficiency over
deterministic gradient methods in machine learning applications. Our algorithm, CHOCO-SGD, is
as efficient in terms of iterations as centralized mini-batch SGD (and consequently also achieves a
speedup of factor n compared to the serial setting on a single node) but avoids the communication
bottleneck that centralized algorithms suffer from.

Communication Compression. In distributed training, model updates (or gradient vectors) have to
be exchanged between the worker nodes. To reduce the amount of data that has to be sent, gradient
compression has become a popular strategy. For instance by quantization [Alistarh et al., 2017, Wen
et al., 2017, Lin et al., 2018] or sparsification [Wangni et al., 2018, Stich et al., 2018a].

These ideas have recently been introduced also to the decentralized setting by Tang et al. [2018a].
However, their analysis only covers unbiased compression operators with very (unreasonably) high
accuracy constraints. Here we propose CHOCO-SGD—the first decentralized optimization method
that supports arbitrary low accuracy and even biased compression operators, such as in [Alistarh et al.,
2018b, Lin et al., 2018, Stich et al., 2018a].

Decentralized Deep Learning. For the evaluation of our algorithm in the deep learning setting we
in particular focus on the generalization performance (on the test-set) on standard machine learn-
ing benchmarks, hereby departing from previous work such as e.g. [Tang et al., 2018a, Wang et al.,
2019, Tang et al., 2019, Reisizadeh et al., 2019] that mostly considered training performance (on the
train-set). We study two different scenarios: firstly, (i) training on a challenging peer-to-peer setting,
where the training data is distributed over the training devices (and not allowed to move), similar to
the federated learning setting [McMahan et al., 2017, Kairouz et al., 2019]. We are again able to
show speed-ups for CHOCO-SGD over the decentralized baseline [Lian et al., 2017] with much less
communication overhead. Secondly, (ii) training in a datacenter setting, where decentralized com-
munication patterns allow better scalability than centralized approaches. For this setting we show
that communication efficient CHOCO-SGD can improve time-to-accuracy on large tasks, such as e.g.
ImageNet training. However, when investigating the scaling of decentralized algorithms to larger
number of nodes we observe that (all) decentralized schemes encounter difficulties and often do not
reach the same (test and train) performance as centralized schemes. As these findings point out some
deficiencies of current decentralized training schemes (and are not particular to our scheme) we think
that reporting these results is a helpful contribution to the community to spur further research on
decentralized training schemes that scale to large number of peers.

Contributions. Our contributions can be summarized as follows:

• We show that the proposed CHOCO-SGD for the strongly convex functions converges at rate
O(1/(nT )+1/(Tρ2δ)2), where T denotes the number of iterations, n the number of workers, ρ

2. For better connected topologies sometimes more efficient all-reduce and broadcast implementations are available.
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the eigengap of the gossip (connectivity) matrix and δ ≤ 1 the compression quality factor (δ =
1 meaning no compression). We show that the decentralized method achieves the same speedup
as centralized mini-batch SGD when the number n of workers grows. The network topology
and the compression only mildly affect the convergence rate. This is verified experimentally on
the ring topology and by reducing the communication by a factor of 100 (δ = 1

100 ).

• For the non-convex smooth functions, we are the first to show that CHOCO-SGD converges at
rate O

(
1/
√
nT + 1/(ρ2δT )2/3

)
. The main term, O

(
1/
√
nT
)
, matches with the centralized baselines

with exact communication and shows a linear speedup in the number of workers n. Both ρ and
δ only affect the asymptotically smaller second term.

• We present the first linearly-converging gossip algorithm with communication compression,
for the distributed average consensus problem. Our algorithm, CHOCO-GOSSIP, provably con-
verges at linear rate O(1/(ρ2δ) log(1/ε)) for accuracy ε > 0, and allows arbitrary communica-
tion compression operators (including biased and unbiased ones). In contrast, previous works
either exhibited sublinear convergence, or required very high-precision quantization δ ≈ 1, or
could only show convergence towards a neighborhood of the optimal solution.

• CHOCO-SGD significantly outperforms state-of-the-art methods for decentralized optimiza-
tion with gradient compression, such as ECD-SGD and DCD-SGD introduced in [Tang et al.,
2018a], in all our experiments.

• On the practical deep learning side, we present a version of CHOCO-SGD with momentum and
analyze its practical performance on two relevant scenarios:

◦ for on-device training over a realistic peer-to-peer social network, where lowering the band-
width requirements of joint training is especially impactful

◦ in a datacenter setting for computational scalability of training deep learning models for
resource efficiency and improved time-to-accuracy

• Lastly, we systematically investigate performance of the decentralized schemes when scaling
to larger number of nodes and we point out some (shared) difficulties encountered by current
decentralized learning approaches.

4.3 Related Work

Stochastic gradient descent (SGD) [Robbins and Monro, 1951b, Bottou, 2010] and variants thereof
are the standard algorithms for machine learning problems of the form (2.1), though it is an inherit
serial algorithm that does not take the distributed setting into account. Mini-batch SGD [Dekel et al.,
2012] is the natural parallelization of SGD for (2.1) in the centralized setting, i.e. when a master node
collects the updates from all worker nodes, and serves a baseline here.

Communication Constraint Distributed Optimization For the training in communication restricted
settings a variety of methods have been proposed. For instance, decentralized schemes [Lian et al.,
2017, Nedić et al., 2018], gradient compression [Seide et al., 2014, Strom, 2015, Alistarh et al., 2017,
Wen et al., 2017, Lin et al., 2018, Wangni et al., 2018, Bernstein et al., 2018, Lin et al., 2018, Alistarh
et al., 2018b, Stich et al., 2018a, Karimireddy et al., 2019], asynchronous methods [Recht et al.,
2011, Assran et al., 2018], coordinate updates [Nesterov, 2012, Richtárik and Takáč, 2016, Stich
et al., 2017a,b, He et al., 2018], or performing multiple local SGD steps before averaging [Zhang
et al., 2016a, McMahan et al., 2017, Stich, 2018, Lin et al., 2020]. This especially covers learning
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over decentralized data, as extensively studied in the federated learning literature for the centralized
algorithms [McMahan et al., 2016, Kairouz et al., 2019]. In this chapter we advocate for combining
decentralized SGD schemes with gradient compression.

DecentralizedOptimization. The study of decentralized optimization algorithms can be tracked back
at least to the 1980s [Tsitsiklis, 1984]. Decentralized algorithms are sometimes referred to as gossip
algorithms [Kempe et al., 2003, Xiao and Boyd, 2004, Boyd et al., 2006] as the information is not
broadcasted by a central entity, but spreads—similar to gossip—along the edges specified by the
communication graph. The most popular algorithms are based on (sub)gradient descent [Nedić and
Ozdaglar, 2009, Johansson et al., 2010], alternating direction method of multipliers (ADMM) [Wei
and Ozdaglar, 2012, Iutzeler et al., 2013] or dual averaging [Duchi et al., 2012a, Nedić et al., 2015].
He et al. [2018] address the more specific problem class of generalized linear models.
For the deterministic (non-stochastic) convex version of (2.1) a recent line of work developed op-
timal algorithms based on acceleration [Jakovetić et al., 2014, Scaman et al., 2017, 2018, Uribe
et al., 2018]. Reisizadeh et al. [2018], Doan et al. [2018] applied quantization. Reisizadeh et al.
[2018] could achieve only sublinear rate for smooth and strongly convex objectives, while Doan et al.
[2018] considered non-smooth objectives and provided sublinear rates, matching optimal rates up to
logarithmic factor [Scaman et al., 2018]. Rates for the stochastic setting are derived in [Shamir and
Srebro, 2014, Rabbat, 2015], under the assumption that the distributions on all nodes are equal. This
is a strong restriction which prohibits most distributed machine learning applications. Our algorithm
CHOCO-SGD avoids any such assumption. Also, Rabbat [2015] requires multiple communication
rounds per stochastic gradient computation and so is not suited for sparse communication, as the
required number of communication rounds would increase proportionally to the sparsity. Lan et al.
[2018] applied gradient sliding techniques allowing to skip some of the communication rounds.
Lian et al. [2017], Tang et al. [2018b,a], Assran et al. [2018] consider the non-convex setting with
Tang et al. [2018a] also applying gradient quantization techniques to reduce the communication cost.
However, their algorithms require very high precision quantization, a constraint we can overcome
here.Simultaneous work of Tang et al. [2019] introduced DeepSqueeze, an alternative method which
also converges with arbitrary compression ratio. In our experiments, under the same amount of tuning,
CHOCO-SGD achieves higher test accuracy.

Gradient Compression. Instead of transmitting a full dimensional (gradient) vector g ∈ Rd, meth-
ods with gradient compression transmit a compressed vector Q(g) instead, where Q : Rd → Rd

is a (random) operator chosen such that Q(g) can be more efficiently represented, for instance by
using limited bit representation (quantization) or enforcing sparsity. A class of very common quan-
tization operators is based on random dithering [Goodall, 1951, Roberts, 1962] that is in addition
also unbiased, Eξ Q(x) = x, ∀x ∈ Rd, see [Alistarh et al., 2017, Wen et al., 2017, Zhang et al.,
2017]. Proximal updates and variance reduction also have been studied in combination with quan-
tized updates [Mishchenko et al., 2019, Horváth et al., 2019]. Much sparser vectors can be obtained
by random sparsification techniques that randomly mask the input vectors and only preserve a con-
stant number of coordinates [Wangni et al., 2018, Konecny and Richtárik, 2018, Stich et al., 2018a].
Techniques that do not directly quantize gradients, but instead maintain additional states are known
to perform better in theory and practice [Seide et al., 2014, Lin et al., 2018, Stich et al., 2018a, Karim-
ireddy et al., 2019, Stich and Karimireddy, 2020], an approach that we pick up here. Our analysis also
covers deterministic and biased compression operators, such as in [Alistarh et al., 2018b, Stich et al.,
2018a]. We will not further distinguish between sparsification and quantization approaches, and refer
to both of them as compression operators in the following.
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Distributed Average Consensus. In the decentralized setting, the average consensus problem con-
sists in finding the average vector of n local vectors (see (4.1) below for a formal definition). The
problem is an important sub-routine of many decentralized algorithms. It is well known that gossip-
type algorithms converge linearly for average consensus [Kempe et al., 2003, Xiao and Boyd, 2004,
Olfati-Saber and Murray, 2004, Boyd et al., 2006]. However, for consensus algorithms with com-
pressed communication it has been remarked that the standard gossip algorithm does not converge
to the correct solution [Xiao et al., 2005]. The proposed schemes in [Carli et al., 2007, Nedić et al.,
2008, Aysal et al., 2008, Carli et al., 2010b, Yuan et al., 2012] do only converge to a neighborhood
(whose size depends on the compression accuracy) of the solution.
In order to converge, adaptive schemes (with varying compression accuracy) have been proposed [Carli
et al., 2010a, Fang and Li, 2010, Li et al., 2011, Thanou et al., 2013]. However, these approaches fall
back to full (uncompressed) communication to reach high accuracy. In contrast, our method con-
verges linearly to the true solution, even for arbitrary compressed communication, without requiring
adaptive accuracy. We are not aware of a method in the literature with similar guarantees.

4.4 Average Consensus with Communication Compression

In this section we present CHOCO-GOSSIP, a novel gossip algorithm for distributed average consen-
sus with compressed communication. As mentioned, the average consensus problem is an important
special case of type (2.1), and formalized as

x :=
1

n

n∑
i=1

xi , (4.1)

for vectors xi ∈ Rd distributed on n nodes (consider fi(x) = 1
2 ‖x − xi‖2 in (2.1)). Our proposed

algorithm will later serve as a crucial primitive in our optimization algorithm for the general optimiza-
tion problem (2.1), but is of independent interest for any average consensus problem with communi-
cation constraints.

In Sections 4.4.1–4.4.3 below we first review existing schemes that we later consider as baselines
for the numerical comparison. The novel algorithm follows in Section 4.4.4.

4.4.1 Gossip algorithms

The classic decentralized algorithms for the average consensus problem are gossip type algorithms
(see e.g. [Xiao and Boyd, 2004]) that generate sequences

{
x(t)
i

}
t≥0

on every node i ∈ [n] by iterations
of the form

x(t+1)
i := x(t)

i + γ
n∑

j=1

wij∆
(t)
ij . (4.2)

Here γ ∈ (0, 1] denotes a stepsize parameter, wij ∈ [0, 1] averaging weights and ∆
(t)
ij ∈ Rd denotes

a vector that is sent from node j to node i in iteration t. Note that no communication is required if
wij = 0. If we assume symmetry, wij = wji, the weights naturally define the communication graph
G = ([n], E) with edges {i, j} ∈ E if wij > 0 and self-loops {i} ∈ E for i ∈ [n]. The convergence
rate of scheme (4.2) crucially depends on the connectivity matrix W ∈ Rn×n of the network defined
as (W )ij = wij , also called the interaction or gossip matrix.
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graph/topology ρ−1 node degree
ring O(n2) 2
2d-torus O(n) 4
fully connected O(1) n− 1

Table 4.1: Spectral gap ρ for some important network topologies on n nodes (see e.g. [Aldous and
Fill, 2002, p. 169]) for uniformly averaging W , i.e. wij =

1
deg(i) =

1
deg(j) for {i, j} ∈ E.

Definition 8 (Gossip matrix) We assume that W ∈ [0, 1]n×n is a symmetric (W = W⊤) doubly
stochastic (W1 = 1,1⊤W = 1⊤) matrix with eigenvalues 1 = |λ1(W )| > |λ2(W )| ≥ · · · ≥
|λn(W )| and spectral gap

ρ := 1− |λ2(W )| ∈ (0, 1] . (4.3)

It will also be convenient to define

β := ‖I −W‖2 ∈ [0, 2] . (4.4)

Table 4.1 gives a few values of the spectral gap for commonly used network topologies (with uniform
averaging between the nodes). It is well known that simple matrices W with ρ > 0 do exist for every
connected graph.

4.4.2 Gossip with Exact Communication

For a fixed gossip matrix W , the classical algorithm analyzed in [Xiao and Boyd, 2004] corresponds
to the choice

γ := 1, ∆
(t)
ij := x(t)

j − x(t)
i , (E-G)

in (4.2), with (E-G) standing for exact gossip. This scheme can also conveniently be written in matrix
notation as

X(t+1) := X(t) + γX(t)(W − I) , (4.5)

for iterates X(t) := [x(t)
1 , . . . , x(t)

n ] ∈ Rd×n.

Theorem 1 Let γ ∈ (0, 1] and ρ be the spectral gap of W . Then the iterates of (E-G) converge
linearly to the average x = 1

n

∑n
i=1 x(0)

i with the rate

n∑
i=1

∥∥∥x(t)
i − x

∥∥∥2 ≤ (1− γρ)2t
n∑

i=1

∥∥∥x(0)
i − x

∥∥∥2 .

For γ = 1 this corresponds to the classic result in e.g. [Xiao and Boyd, 2004], here we slightly
extend the analysis for arbitrary stepsizes. The short proof shows the elegance of the matrix notation
(that we will later also adapt for the proofs that will follow).
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Proof for γ = 1. Let X := [x, . . . , x] ∈ Rd×n. Then for γ = 1 the theorem follows from the
observation ∥∥∥X(t+1) −X

∥∥∥2
F

(4.5)
=
∥∥∥(X(t) −X)W

∥∥∥2
F

=
∥∥∥(X(t) −X)(W − 1

n11⊤)
∥∥∥2
F

≤
∥∥∥W − 1

n11⊤
∥∥∥2
2

∥∥∥X(t) −X
∥∥∥2
F

= (1− ρ)2
∥∥∥X(t) −X

∥∥∥2
F
.

Here on the second line we used the crucial identity X(t)( 1n11⊤) = X , i.e. the algorithm preserves
the average over all iterations. This can be seen from (4.5):

X(t+1)( 1n11⊤) = X(t)W ( 1n11⊤) = X(t)( 1n11⊤) = X ,

by Definition 8. The proof for arbitrary γ follows the same lines and is given in the appendix.

4.4.3 Gossip with Quantized Communication

In every round of scheme (E-G) a full dimensional vector g ∈ Rd is exchanged between two neigh-
boring nodes for every link on the communication graph (node j sends g = x(t)

j to all its neighbors i,
{i, j} ∈ E). A natural way to reduce the communication is to compress g before sending it, denoted
as Q(g), for a (potentially random) compression Q : Rd → Rd. Informally, we can think of Q as
either a sparsification operator (that enforces sparsity of Q(g)) or a quantization operator that reduces
the number of bits required to represent Q(g). For instance random rounding to less precise floating
point numbers or to integers.

Aysal et al. [2008] propose the quantized gossip (Q1-G),

γ := 1, ∆
(t)
ij := Q(x(t)

j )− x(t)
i , (Q1-G)

in scheme (4.2), i.e. to apply the compression operator directly on the message that is send out from
node j to node i. However, this algorithm does not preserve the average of the iterates over the
iterations, 1

n

∑n
i=1 x(0)

i 6= 1
n

∑n
i=1 x(t)

i for t ≥ 1, and as a consequence does not converge to the
optimal solution x of (4.1) (though in practice often to a close neighborhood).

An alternative proposal by Carli et al. [2007] alleviates this drawback. The scheme

γ := 1, ∆
(t)
ij := Q(x(t)

j )−Q(x(t)
i ) , (Q2-G)

preserves the average of the iterates over the iterations. However, the scheme also fails to converge
for arbitrary precision. If x 6= 0, the noise introduced by the compression,

∥∥Q(x(t)
j )
∥∥, does not vanish

for t → ∞. As a consequence, the iterates oscillate around x when compression error becomes larger
than the suboptimality

∥∥x(t)
i − x

∥∥.
Both these schemes have been theoretically studied in [Carli et al., 2010b] under assumption

of unbiasendness, i.e. assuming EQ Q(x) = x for all x ∈ Rd (and we will later also adopt this
theoretically understood setting in our experiments).
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Algorithm 1 CHOCO-GOSSIP

input: Initial values x(0)
i ∈ Rd on each node i ∈ [n], stepsize γ, communication graph G = ([n], E)

and mixing matrix W , initialize x̂(0)
i := 0 ∀i

1: for t in 0 . . . T − 1 do in parallel for all workers i ∈ [n]

2: q(t)
i := Q(x(t)

i − x̂(t)
i )

3: for neighbors j : {i, j} ∈ E (including {i} ∈ E) do
4: Send q(t)

i and receive q(t)
j

5: x̂(t+1)
j := x̂(t)

j + q(t)
j

6: end for
7: x(t+1)

i := x(t)
i + γ

∑
j:{i,j}∈E

wij

(
x̂(t+1)
j − x̂(t+1)

i

)
8: end for

4.4.4 Proposed Method for Compressed Communication

We propose the novel compressed gossip scheme CHOCO-GOSSIP that supports a much larger class
of compression operators, beyond unbiased quantization as for the schemes above. The algorithm can
be summarized as

x̂(t+1)
j := x̂(t)

j +Q(x(t)
j − x̂(t)

j ) ,

∆
(t)
ij := x̂(t+1)

j − x̂(t+1)
i ,

(CHOCO-G)

for a stepsize γ < 1 depending on the specific compression operator Q (this will be detailed below).
Here x̂(t)

i ∈ Rd denote additional variables that are stored3 by all neighbors j of node i, {i, j} ∈ E,
as well as on node i itself.

We will show in Theorem 2 below that this scheme (i) preserves the averages of the iterates x(t)
i ,

i ∈ [n] over the iterations t ≥ 0. Moreover, (ii) the noise introduced by the compression operator
vanishes as t → 0. Precisely, we will show that (x(t)

i , x̂(t)
i ) → (x, x) for t → ∞ for every i ∈ [n].

Consequently, the argument for Q in (CHOCO-G) goes to zero, and the noise introduced by Q can be
controlled.

The proposed scheme is summarized in Algorithm 1. Every worker i ∈ [n] stores and updates its
own local variable xi as well as the variables x̂j for all neighbors (including itself) j : {i, j} ∈ E.

Algorithm 1 seems to require each machine to store deg(i) + 2 vectors. This is not necessary
and the algorithm could be re-written in a way that every node stores only three vectors: xi, x̂i

and si =
∑

j:{i,j}∈E wij x̂j . For simplicity, we omit this technical modification here and refer to
Appendix A.5 for the exact form of the memory-efficient algorithm.

4.4.5 Compression Operator

We analyze Algorithm 1 under the following general quality notion for the compression operator Q.

Assumption 9 (Compression operator) We assume that the compression operator Q : Rd → Rd

satisfies

EQ ‖Q(x)− x‖2 ≤ (1− δ) ‖x‖2 , ∀x ∈ Rd , (4.6)

3. A closer look reveals that actually only 2 additional vectors have to be stored per node (refer to Appendix A.5).
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for a parameter δ > 0. Here EQ denotes the expectation over the internal randomness of operator Q.
Example operators that satisfy (4.6) include

• sparsification: Randomly selecting k out of d coordinates (randk), or the k coordinates with
highest magnitude values (topk) give δ = k

d [Stich et al., 2018a, Lemma A.1].

• randomized gossip: Setting Q(x) = x with probability p ∈ (0, 1] and Q(x) = 0 otherwise,
gives δ = p.

• rescaled unbiased estimators: suppose EQ Q(x) = x, ∀x ∈ Rd and EQ ‖Q(x)‖2 ≤ τ ‖x‖2,
then Q′(x) := 1

τQ(x) satisfies (4.6) with δ = 1
τ .

• random quantization: For precision (levels) s ∈ N+, and τ = (1 + min{d/s2,
√
d/s}) the

quantization operator

qsgds(x) =
sign(x) · ‖x‖

sτ
·
⌊
s
|x|
‖x‖ + ξ

⌋
,

for random variable ξ ∼u.a.r. [0, 1]d satisfies (4.6) with δ = 1
τ [Alistarh et al., 2017, Lemma

3.1].

4.4.6 Convergence Analysis for Choco-Gossip

Theorem 2 CHOCO-GOSSIP (Algorithm 1) converges linearly for average consensus:

et ≤
(
1− ρ2δ

82

)t

e0 ,

when using the stepsize γ := ρ2δ
16ρ+ρ2+4β2+2ρβ2−8ρδ

, where δ is the compression factor as in Assump-

tion 9, and et = EQ
∑n

i=1

(∥∥x(t)
i − x

∥∥2 + ∥∥x(t)
i − x̂(t+1)

i

∥∥2) .
For the proof we refer to the appendix, where we used matrix notation to simplify derivations.

For the exact communication case δ = 1 we recover the rate from Theorem 1 for stepsize γ < 1
up to constant factors (which seems to be a small artifact of our proof technique). The theorem
shows convergence for arbitrary δ > 0, showing the superiority of scheme (CHOCO-G) over (Q1-G)
and (Q2-G).

4.5 Decentralized Stochastic Optimization

In this section we leverage our proposed average consensus Algorithm 1 to achieve consensus among
the compute nodes in a decentralized optimization setting with communication restrictions.

In the decentralized optimization setting (2.1), not only does every node have a different local
objective fi, but we also allow each fi to have stochastic optimization (or sum) structure, that is

fi(x) := Eξi∼Di
Fi(x, ξi) , (4.7)

for a loss function Fi : Rd × Ω → R and distributions D1, . . . ,Dn which can be different on every
node. Our framework therefore covers both stochastic optimization (e.g. when all Di are identical)
and empirical risk minimization (as in machine learning and deep learning applications) when the
Di’s are discrete with disjoint support.
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4.5.1 Proposed Scheme for Decentralized Optimization

Our proposed method CHOCO-SGD—Communication-Compressed Decentralized SGD—is stated
in Algorithm 2.

Algorithm 2 CHOCO-SGD

input: Initial values x(0)
i ∈ Rd on each node i ∈ [n], consensus stepsize γ, SGD stepsizes {ηt}t≥0,

communication graph G = ([n], E) and mixing matrix W , initialize x̂(0)
i := 0 ∀i

1: for t in 0 . . . T − 1 do in parallel for all workers i ∈ [n]

2: Sample ξ
(t)
i , compute gradient g(t)i := ∇Fi(x(t)

i , ξ
(t)
i )

3: x(t+ 1
2
)

i := x(t)
i − ηtg(t)i

4: q(t)
i := Q(x(t+ 1

2
)

i − x̂(t)
i )

5: for neighbors j : {i, j} ∈ E (including {i} ∈ E) do
6: Send q(t)

i and receive q(t)
j

7: x̂(t+1)
j := q(t)

j + x̂(t)
j

8: end for

9: x(t+1)
i := x(t+ 1

2
)

i + γ
∑

j:{i,j}∈E

wij

(
x̂(t+1)
j − x̂(t+1)

i

)
10: end for

The algorithm consists of four parts. The stochastic gradient step in line 3, application of the
compression operator in step 4, and the (CHOCO-G) local communication in lines 5–8 followed by
the final iterate update in line 9.

Remark 1 As a special case without any communication compression, and for consensus stepsize
γ = 1 as in exact gossip (E-G), CHOCO-SGD (Algorithm 2) recovers the following standard variant
of decentralized SGD with gossip (similar e.g. to [Sirb and Ye, 2016, Lian et al., 2017]), stated for
illustration in Algorithm 3.

Algorithm 3 PLAIN DECENTRALIZED SGD
1: for t in 0 . . . T − 1 do in parallel for all workers i ∈ [n]

2: Sample ξ
(t)
i , compute gradient g(t)i := ∇Fi(x(t)

i , ξ
(t)
i )

3: x(t+ 1
2
)

i := x(t)
i − ηtg(t)i

4: Send x(t+ 1
2
)

i to neighbors

5: x(t+1)
i :=

∑n
i=1wijx

(t+ 1
2
)

j

6: end for

4.5.2 Assumptions

We use the following standard assumptions on functions fi that we restate here from Chapter 2 for
convenience

Assumption 1 (L-smoothness) Each function fi : Rd → R for i ∈ [n] is L-smooth, that is

‖∇fi(y)−∇fi(x)‖ ≤ L ‖y − x‖ , ∀x, y ∈ Rd, i ∈ [n], (2.3)
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Assumption 4 (Stochastic variance) There exist constants σi ≥ 0 for all i ∈ [n] such that

Eξ∼Di
‖∇Fi(x, ξ)−∇fi(x)‖ ≤ σ2

i , ∀x ∈ Rd, i ∈ [n] . (2.6)

It will be also convenient to denote

σ2 :=
1

n

n∑
i=1

σ2
i .

Assumption 5 (Bounded gradients) There exists a constant G ≥ 0 such that

Eξi ‖∇Fi(x, ξi)‖2 ≤ G2 , ∀x ∈ Rd, i ∈ [n],

where Eξi [·] denotes the expectation over ξi ∼ Di.

These assumptions could be relaxed to only hold for x ∈
{

x(t)
i

}T
t=1

, the set of iterates of Algo-
rithm 2.

4.5.3 Convergence of Choco-SGD on Smooth Strongly Convex Problems

We additionally assume strong convexity with µ > 0.

Assumption 3 (µ-convexity) Each function fi : Rd → R, i ∈ [n] is µ-(strongly) convex for constant
µ ≥ 0. That is, for all x, y ∈ Rd:

fi(x)− fi(y) +
µ

2
‖x − y‖22 ≤ 〈∇fi(x), x − y〉 , ∀x, y ∈ Rd, i ∈ [n], (2.5)

Theorem 3 Under Assumptions 1, 4, 5, 9 and 3 with µ > 0, Algorithm 2 with SGD stepsizes
ηt :=

4
µ(a+t) for parameter a ≥ max

{
410
ρ2δ

, 16κ
}

for condition number κ = L
µ and consensus stepsize

γ := γ(ρ, δ) chosen as in Theorem 2, converges with the rate

EΥ(T )=O
(

σ2

µnT

)
+O

(
κG2

µδ2ρ4T 2

)
+O

(
G2

µδ3ρ6T 3

)
,

where Υ(T ) := f(x(T )
avg) − f⋆ for an averaged iterate x(T )

avg = 1
ST

∑T−1
t=0 wtx(t) with weights wt =

(a + t)2, and ST =
∑T−1

t=0 wt. As reminder, ρ denotes the eigengap of W , and δ the compression
ratio.

For the proof we refer to the appendix. When T and σ are sufficiently large, the second two terms
become negligible compared to O

(
σ2

µnT

)
—and we recover the convergence rate of of mini-batch SGD

in the centralized setting and with exact communication. This is because topology (parameter ρ) and
compression (parameter δ) only affect the higher-order terms in the rate. We also see that we obtain
in this setting a n× speed up compared to the serial implementation of SGD on only one worker.

4.5.4 Convergence of Choco-SGD on Smooth Non-Convex Problems

We extend the analysis of CHOCO-SGD Algorithm 2 to non-convex problems.
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1

2

3

4

5

6

1 2 3

4 5 6

7 8 9

Figure 4.1: Ring topology (left) and Torus topology (right).

Theorem4 Under Assumptions 1, 4, 5 and 9 there exists a constant stepsize η and the consensus step-
size γ := ρ2δ

16ρ+ρ2+4β2+2ρβ2−8ρδ
, such that the averaged iterates x(t) := 1

n

∑n
i=1 x(t)

i of Algorithm 2
satisfy:

1

T + 1

T∑
t=0

∥∥∥∇f
(
x(t)
)∥∥∥2

2
= O

((
LF0σ

2

n(T + 1)

)1/2

+

(
GLF0

c(T + 1)

)2/3

+
LF0

T + 1

)

where c := ρ2δ
82 denotes the convergence rate of the underlying consensus averaging scheme derived

in Theorem 2 in the previous chapter, F0 := f(x(0))− f⋆.
This result shows that CHOCO-SGD converges as O

(
1/
√
nT + 1/(ρ2δT )2/3

)
. The first term shows

a linear speed-up compared to SGD on a single node, while compression and graph topology affect
only the higher order second term. In the special case when exact averaging without compression
is used (δ = 1), then c = ρ and the rate improves to O

(
1/
√
nT + 1/(ρT )2/3

)
, recovering the rate

in [Wang and Joshi, 2018]. This upper bound improves slightly over [Lian et al., 2017] that shows
O
(
1/
√
nT + n/(nρT )2/3

)
.4 For the proofs and convergence of the individual iterates xi we refer to

Appendix B.1.

4.6 Shared Experimental Setup

We now turn to the experimental evaluation of our proposed algorithms CHOCO-GOSSIP and CHOCO-
SGD. We first focus on the convex loss functions fi in Section 4.7, and in the subsequent Section 4.8
we tackle a more challenging deep learning scenario.

Compression Schemes. We implement two unbiased compression schemes: (i) gsgdb quantization
that randomly rounds the weights to b-bit representations [Alistarh et al., 2017], and (ii) randoma

sparsification, which preserves a randomly chosen a fraction of the weights and sets the other ones to
zero [Wangni et al., 2018]. Further two biased compression schemes: (iii) topa, which selects the a
fraction of weights with the largest magnitude and sets the other ones to zero [Alistarh et al., 2018b,
Stich et al., 2018a], and (iv) sign compression, which compresses each weight to its sign scaled by the
norm of the full vector [Bernstein et al., 2018, Karimireddy et al., 2019]. We refer to Appendix B.3
for exact definitions of the schemes.

DCD and ECD have been analyzed only for unbiased quantization schemes, thus the combination
with the two biased schemes is not supported by theory. In converse, CHOCO-SGD and DeepSqueeze

4. Theorem 1 of Lian et al. [2017] and stepsize tuned with Lemma 69.
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Figure 4.2: Average consensus on the ring topology with n = 25 nodes, d = 2000
coordinates and (qsgd256) compression
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Figure 4.3: Average consensus on the ring topology with n = 25 nodes, d = 2000
coordinates and (rand1%) and (top1%) compression

has been studied only for biased schemes according to Assumption 9. However, both unbiased com-
pression schemes can be scaled down in order to meet the specification (cf. discussion below Assump-
tion 9) and we adopt this for the experiments.

4.7 Convex Experiments

In this section we first compare CHOCO-GOSSIP to the gossip baselines from Section 4.7.2 and then
compare the CHOCO-SGD on the convex logistic regression loss function to state of the art decentral-
ized stochastic optimization schemes (that also support compressed communication) in Section 4.7.3.

4.7.1 Experimental Setup

For our experiments in this section we always report the number of iterations of the respective scheme,
as well as the number of transmitted bits. These quantities are independent of systems architectures
and network bandwidth.

Datasets. In this section we rely on the epsilon [Sonnenburg et al., 2008] and rcv1 [Lewis et al.,
2004] datasets (cf. Table 4.2).

4.7.2 Average Consensus

We compare the performance of the gossip schemes (E-G) (exact communication), (Q1-G), (Q2-G)
(both with unbiased compression), and our scheme (CHOCO-G) in Figure 4.2 for the (qsgd256) com-
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dataset m d density
epsilon 400000 2000 100%
rcv1 20242 47236 0.15%

Table 4.2: Size (m, d) and density of the datasets.

experiment γ

CHOCO, (qsgd256) 1
CHOCO, (rand1%) 0.011
CHOCO, (top1%) 0.046

Table 4.3: Tuned stepsizes γ for averaging in Figs.
4.2– 4.3.

epsilon rcv1

algorithm a b γ a b γ

PLAIN 0.1 d - 1 1 -
CHOCO, (qsgd16) 0.1 d 0.34 1 1 0.078
CHOCO, (rand1%) 0.1 d 0.01 1 1 0.016
CHOCO, (top1%) 0.1 d 0.04 1 1 0.04
DCD, (rand1%) 10−15 d - 10−10 d -
DCD, (qsgd16) 0.01 d - 10−10 d -
ECD, (rand1%) 10−10 d - 10−10 d -
ECD, (qsgd16) 10−12 d - 10−10 d -

Table 4.4: Parameters for the SGD learning rate ηt = ma
t+b and consensus learning γ used in the

experiments in Figs. 4.5–4.6. Parameters where tuned separately for each algorithm. Tuning details
can be found in Appendix A.6. The ECD and DCD stepsizes are small because the algorithms were
observed to diverge for larger choices.

pression scheme and in Figure 4.3 for the random (rand1%) compression scheme. In addition, we also
depict the performance of CHOCO-GOSSIP with biased (top1%) compression. We use ring topology
with uniformly averaging mixing matrix W as in Figure 4.1, left. The stepsizes γ that were used for
CHOCO-GOSSIP are listed in the Table 4.3. We consider here the consensus problem (4.1) with data
x(0)
i ∈ Rd on the i-machine was chosen to be the i-th vector in the epsilon dataset. We depict the

errors 1
n

∑n
i=1

∥∥x(t)
i − x

∥∥2.
The proposed scheme (CHOCO-G) with 8 bit quantization (qsgd256) converges with the same

rate as (E-G) that uses exact communications (Fig. 4.2, left), while it requires much less data to be
transmitted (Fig. 4.2, right). The schemes (Q1-G) and (Q2-G) can do not converge and reach only
accuracies of 10−4 –10−5. The scheme (Q1-G) even starts to diverge, because the quantization error
becomes larger than the optimization error.

With sparsified communication (rand1%), i.e. transmitting only 1% of all the coordinates, the
scheme (Q1-G) quickly zeros out all the coordinates, and (Q2-G) diverges because quantization error
is too large already from the first step (Fig. 4.3). CHOCO-GOSSIP proves to be more robust and
converges. The observed rate matches with the theoretical findings, as we expect the scheme with
factor 100× compression to be 100× slower than (E-G) without compression. In terms of total data
transmitted, both schemes converge at the same speed (Fig. 4.3, right). We also see that (rand1%)
sparsification can give additional gains and comes out as the most data-efficient method in these
experiments.

4.7.3 Decentralized SGD

We asses the performance of CHOCO-SGD on logistic regression, defined as 1
m

∑m
j=1 log(1 +

exp(−bja⊤j x)) + 1
2m ‖x‖2, where aj ∈ Rd and bj ∈ {−1, 1} are the data samples and m denotes
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Figure 4.4: Performance of Algorithm 3 on ring, torus and fully connected topologies for n ∈
{9, 25, 64} nodes. Here we consider the sorted setting, whilst the performance for randomly shuf-
fled data is depicted in the Appendix A.7.

Figure 4.5: Comparison of Algorithm 3 (plain), ECD-SGD, DCD-SGD and
CHOCO-SGD with (rand1%) sparsification (in addition (top1%) for CHOCO-
SGD), for epsilon (top) and rcv1 (bottom) in terms of iterations (left) and com-
munication cost (right), n = 9.

the number of samples in the dataset. We distribute the m data samples evenly among the n workers
and consider two settings: (i) randomly shuffled, where datapoints are randomly assigned to workers,
and the more difficult (ii) sorted setting, where each worker only gets data samples just from one
class (with the possible exception of one worker that gets two labels assigned). Moreover, we try to
make the setting as difficult as possible, meaning that e.g. on the ring topology the machines with the
same label form two connected clusters. We repeat each experiment three times and depict the mean
curve and the area corresponding to one standard deviation. We plot suboptimality, i.e. f(x(t))− f⋆

(obtained by LogisticSGD optimizer from scikit-learn [Pedregosa et al., 2011]) versus number of
iterations and the number of transmitted bits between workers, which is proportional to the actual
running time if communication is a bottleneck.
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Figure 4.6: Comparison of Algorithm 3 (plain), ECD-SGD, DCD-SGD and
CHOCO-SGD with (qsgd16) quantization, for epsilon (top) and rcv1 (bottom)
in terms of iterations (left) and communication cost (right), on n = 9 nodes on a
ring topology.

Algorithms. As baselines we consider Alg. 3 with exact communication (denoted as ‘plain’) and the
communication efficient state-of-the-art optimization schemes DCD-SGD and ECD-SGD recently
proposed in [Tang et al., 2018a] (for unbiased quantization operators) and compare them to CHOCO-
SGD. We use decaying stepsize ηt =

ma
t+b where the parameters a, b are individually tuned for each

algorithm and compression scheme, with values given in Table 4.4.

Impact of Topology. In Figure 4.4 we depict the performance of the baseline Algorithm 3 with exact
communication on different topologies (ring, torus and fully-connected; Fig. 4.1) with uniformly
averaging mixing matrix W . Note that Algorithm 3 for fully-connected graph corresponds to mini-
batch SGD. Increasing the number of workers from n = 9 to n = 25 and n = 64 shows the mild effect
of the network topology on the convergence. We observe that the sorted setting is more difficult than
the randomly shuffled setting (see Fig. A.1 in the Appendix A.7), where the convergence behavior
remains almost unaffected. In the following we focus on the hardest case, i.e. the ring topology.

Comparison to Baselines. In Figures 4.5 and 4.6 depict the performance of these algorithms on
the ring topology with n = 9 nodes for sorted data of the epsilon and rcv1 datasets. CHOCO-SGD
performs almost as good as the exact Algorithm 3 in all situations, but using 100× less communication
with (rand1%) sparsification (Fig. 4.5, right) and approximately 15× less communication for (qsgd4)
quantization. The (top1%) variant performs slightly better than (rand1%) sparsification.

CHOCO-SGD consistently outperforms DCD-SGD in all settings. We also observed that DCD-
SGD starts to perform better for larger number of levels s in the (qsgds) in the quantification operator
(increasing communication cost). This is consistent with the reporting in [Tang et al., 2018a] that
assumed high precision quantization. As a surprise to us, ECD-SGD, which was proposed in [Tang
et al., 2018a] as the preferred alternative over DCD-SGD for less precise quantization operators,
always performs worse than DCD-SGD, and often diverges.
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Algorithm 4 CHOCO-SGD with Momentum
input: The same as for Algorithm 2, additionally: weight decay factor λ, momentum factor β,

local momentum memory v(0)
i := 0, ∀i ∈ [n]

Lines 1–8 in Algorithm 2 are left unmodified
Line 9 in Algorithm 2 is replaced with the following two lines

9: v(t+1)
i := (g(t)i + λx(t)

i ) + βv(t)
i ◁ local momentum with weight decay

10: x(t+ 1
2 )

i := x(t)
i − ηv(t+1)

i ◁ stochastic gradient update

Figures for randomly shuffled data and be found in the Appendix A.7. In that case CHOCO-SGD
performs exactly as well as the exact Algorithm 3 in all situations.

4.8 Deep Learning Experiments

We now turn to the second part of experiments on decentralized deep learning objectives. We further
leverage momentum in all implemented algorithms. The newly developed momentum version of
CHOCO-SGD is given as Algorithm 4.

4.8.1 Comparison to Baselines for Various Compression Schemes

In this section we experimentally compare CHOCO-SGD to the relevant baselines for a selection of
commonly used compression operators.

Setup. In order to match the setting in [Tang et al., 2018a] for our first set of experiments, we
use a ring topology with n = 8 nodes and train the ResNet20 architecture [He et al., 2016] on
the Cifar10 dataset (50K/10K training/test samples) [Krizhevsky, 2012]. We randomly split the
training data between workers and shuffle it after every epoch, following standard procedure as e.g.
in [Goyal et al., 2017]. We implement DCD and ECD with momentum [Tang et al., 2018a], Deep-
Squeeze with momentum [Tang et al., 2019], CHOCO-SGD with momentum (Algorithm 4) and stan-
dard (all-reduce) mini-batch SGD with momentum and without compression [Dekel et al., 2012]. The
momentum factor is set to 0.9 without dampening. For all algorithms we fine-tune the initial learning
rate and gradually warm it up from a relative small value (0.1) [Goyal et al., 2017] for the first 5
epochs. The learning rate is decayed by 10 twice, at 150 and 225 epochs, and stop training at 300
epochs. For CHOCO-SGD and DeepSqueeze the consensus learning rate γ is also tuned. The detailed
hyper-parameter tuning procedure refers to Appendix B.6. Every compression scheme is applied to
every layer of ResNet20 separately. We evaluate the top-1 test accuracy on every node separately
over the whole dataset and report the average performance over all nodes.

Results. The results are summarized in Tab. 4.5. For unbiased compression schemes, ECD and
DCD only achieve good performance when the compression ratio is small, and sometimes even di-
verge when the compression ratio is high. This is consistent5 with the theoretical and experimental
results in [Tang et al., 2018a]. We further observe that the performance of DCD with the biased topa

sparsification is much better than with the unbiased randoma counterpart, though this operator is not
yet supported by theory.

5. Tang et al. [2018a] only consider absolute bounds on the quantization error. Such bounds might be restrictive (i.e.
allowing only for low compression) when the input vectors are unbounded. This might be the reason for the instabilities
observed here and also in [Tang et al., 2018a, Fig. 4], [Koloskova et al., 2019, Figs. 5–6].
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Table 4.5: Top-1 test accuracy for decentralized DCD, ECD, DeepSqueeze and CHOCO-SGD with differ-
ent compression schemes. Reported top-1 test accuracies are averaged over three runs with fine-tuned hyper-
parameters (learning rate, weight decay, consensus stepsize). The fine-tuned all-reduce baseline reaches accu-
racy 92.64, with 1.04 MB gradient transmission per iteration. (⋆ indicates that 2 out of 3 runs diverged).

Algorithm Error-
feedback

Quantization (QSGD) Sparsification (random-%)

16 bits 8 bits 4 bits 2 bits 50% 10% 1%

transmitted data/iteration 0.52 MB 0.26 MB 0.13 MB 0.065 MB 1.04 MB 0.21 MB 0.031 MB
DCD-PSGD 7 92.51± 0.05 92.36± 0.28 23.56± 2.97 diverges 92.05± 0.25 diverges diverges
ECD-PSGD 7 92.02± 0.14 59.11± 1.57 diverges diverges diverges diverges diverges
DeepSqueeze 3 92.27± 0.21 91.83± 0.35 91.47± 0.21 90.96± 0.19 91.46± 0.09 90.96± 0.16 88.55± 0.11
CHOCO-SGD 3 92.34± 0.19 92.30± 0.08 91.92± 0.27 91.41± 0.11 92.54± 0.26 91.87± 0.21 91.32± 0.17

Algorithm Error-
feedback

Sparsification (top-%) Sign+Norm

50% 10% 1% -

transmitted data/iteration 1.04 MB 0.21 MB 0.031 MB 0.032 MB
DCD-PSGD 7 92.40± 0.11 91.97± 0.14 89.79± 0.40 92.40± 0.14
ECD-PSGD 7 17.03 ⋆ 16.78 ⋆ 18.03 ⋆ diverges
DeepSqueeze 3 91.55± 0.28 91.31± 0.25 90.47± 0.17 91.38± 0.19
CHOCO-SGD 3 92.54± 0.26 92.29± 0.05 91.73± 0.11 92.46± 0.10

CHOCO-SGD can generalize reasonably well in all scenarios (at most 1.65% accuracy drop) for
fixed training budget. The sign compression achieves state-of-the-art accuracy and requires approxi-
mately 32× less bits per weight than the full precision baseline.

4.8.2 Use case I: On-Device Peer-to-Peer Learning

We now shift our focus to challenging real-world scenarios which are intrinsically decentralized, i.e.
each part of the training data remains local to each device, and thus centralized methods either fail or
are inefficient to implement. Typical scenarios comprise e.g. sensor networks, or mobile devices or
hospitals which jointly train a machine learning model. Common to these applications is that i) each
device has only access to locally stored or acquired data, ii) communication bandwidth is limited
(either physically, or artificially for e.g. metered connections), iii) the global network topology is
typically unknown to a single device, and iv) the number of connected devices is typically large.
Additionally, this fully decentralized setting is also strongly motivated by privacy aspects, enabling
to keep the training data private on each device at all times.

Modeling. To simulate this scenario, we permanently split the training data between the nodes, i.e.
the data is never shuffled between workers during training, and every node has distinct part of the
dataset. To the best of our knowledge, no prior works studied this scenario for decentralized deep
learning. For the centralized approach, gathering methods such as all-reduce are not efficiently im-
plementable in this setting, hence we compare to the centralized baseline where all nodes route their
updates to a central coordinator for aggregation. For the comparison we consider CHOCO-SGD with
sign compression (this combination achieved the compromise between accuracy and compression
level in Tab. 4.5)), decentralized SGD without compression [Lian et al., 2017], and centralized SGD
without compression.

Scaling to Large Number of Nodes. To study the scaling properties of CHOCO-SGD, we train on
4, 16, 36 and 64 number of nodes. We compare decentralized algorithms on two different topologies:
ring as the worst possible topology, and on the torus with much larger spectral gap. The corresponding
parameters are listed in Table 4.6.
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Figure 4.7: Scaling of CHOCO-SGD with sign compression to large number of devices on Cifar10
dataset. Left: best testing accuracy of the algorithms reached after 300 epochs. Right: best testing
accuracy reached after communicating 1000 MB.

Table 4.6: Summary of communication topologies.
Topology spectral gap ρ

max. node degree n = 4 n = 16 n = 36 n = 64

ring 2 0.67 0.05 0.01 0.003
torus 4 0.67 0.4 0.2 0.12
fully-connected d 1 1 1 1

We train ResNet8 [He et al., 2016] (78K
parameters), on Cifar10 dataset (50K/10K
training/test samples) [Krizhevsky, 2012]. For
simplicity, we keep the learning rate constant
and separately tune it for all methods. We
further tune the consensus learning rate for
CHOCO-SGD.

The results are summarized in Fig. 4.7 (and Fig. B.1, Tabs. B.4–B.5 in Appendix B.7). First we
compare the testing accuracy reached after 300 epochs (Fig. 4.7, left). CentralizedSGD has a good
performance for all the considered number of nodes. CHOCO-SGD slows down due to the influence
of the graph topology (Decentralized curve), which is consistent with the spectral gaps order (see
Tab. 4.6), and also influenced by the communication compression (CHOCO curve), which slows down
training uniformly for both topologies. We observed that the train performance is similar to the test on
Fig. 4.7, therefore the performance degradation is explained by the slower convergence (Theorem 4)
and is not a generalization issue. Increasing the number of epochs improves the performance of the
decentralized schemes. However, even using 10 times more epochs, we were not able to perfectly
close the gap between centralized and decentralized algorithms for both train and test performance.

In the real decentralized scenario, the interest is not to minimize the epochs number, but the
amount of communication to reduce the cost of the user’s mobile data. We therefore fix the num-
ber of transmitted bits to 1000 MB and compare the best testing accuracy reached (Fig. 4.7, right).
CHOCO-SGD performs the best while having slight degradation due to increasing number of nodes.
It is beneficial to use torus topology when the number of nodes is large because it has good mixing
properties, for small networks there is not much difference between these two topologies—the benefit
of a large spectral gap is canceled by the increased communication due larger node degree for torus
topology. Both Decentralized and Centralized SGD requires significantly larger number of bits to
reach reasonable accuracy.

Experiments on a Real Social Network Graph. We simulate training models on user devices (e.g.
mobile phones), connected by a real social network. We chosen Davis Southern women social net-
work [Davis et al., 1941] with 32 nodes. We train ResNet20 (0.27 million parameters) model on
the Cifar10 dataset (50K/10K training/test samples) [Krizhevsky, 2012] for image classification
and a three-layer LSTM architecture [Hochreiter and Schmidhuber, 1997] (28.95 million parameters)
for a language modeling task on WikiText-2 (600 training and 60 validation articles with a total of
2′088′628 and 217′646 tokens respectively) [Merity et al., 2016]. The depicted curves of the training
loss are the averaged local loss over all workers (local model with fixed local data); the test perfor-
mance uses the mean of the evaluations for local models on whole test dataset. For more detailed

34



4.8. Deep Learning Experiments

experimental setup we refer to Appendix B.6.
The results are summarized in Figs. 4.8–4.9 and in Tab. 4.7. For the image classification task,

when comparing the training accuracy reached after the same number of epochs, we observe that the
decentralized algorithm performs best, follows by the centralized and lastly the quantized decentral-
ized. However, the test accuracy is highest for the centralized scheme. When comparing the test
accuracy reached for the same transmitted data6, CHOCO-SGD significantly outperforms the exact
decentralized scheme, with the centralized performing worst. We note a slight accuracy drop, i.e.
after the same number of epochs (but much less transmitted data), CHOCO-SGD does not reach the
same level of test accuracy than the baselines.

For the language modeling task, both decentralized schemes suffer a drop in the training loss
when the evaluation reaching the epoch budget; while our CHOCO-SGD outperforms the centralized
SGD in test perplexity. When considering perplexity for a fixed data volume (middle and right sub-
figure of Fig. 4.9), CHOCO-SGD performs best, followed by the exact decentralized and centralized
algorithms.
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Figure 4.8: Image classification: ResNet-20 on CIFAR-10 on social network topology.
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Figure 4.9: Language modeling: LSTM on WikiText-2 on social network topology.

Table 4.7: Summary of performance when training with the same epoch budget (as centralized SGD).
Algorithm ResNet-20 (Fig. 4.8) LSTM (Fig. 4.9)

max. connections/node data/gradient top-1 test acc. data/gradient test perplexity

Centralized SGD 32 1.04 MB 93.00 110.43 MB 89.39
Exact Decentralized SGD 14 1.04 MB 92.12 110.43 MB 91.38
CHOCO-SGD (Sign + Norm) 14 0.032 MB 91.80 3.45 MB 86.58

On Figure 4.10 we additionally depict the test accuracy of the averaged model x(t) = 1
n

∑n
i=1 x(t)

i

(left) and averaged distance of the local models from the averaged model (right), for CHOCO-SGD
on image classification task. Towards the end of the optimization the local models reach consensus
(Figure 4.10, right), and their individual test performances are the same as performance of averaged
model. Interestingly, before decreasing the stepsize at the epoch 225, the local models are in general

6. The figure reports the transmitted data on the busiest node, i.e on the max-degree node (degree 14) node for decentral-
ized schemes, and degree 32 for the centralized one.
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Figure 4.10: Parameter deviations for Resnet20 trained on Cifar10 (using CHOCO-SGD) on social network
topology (32 workers). (Left) performance of the averaged model compared to the average of performances of
local models. (Right) parameters divergence: averaged L2 consensus distance between local models xi and the
averaged model x = 1

n

∑n
i=1 xi, i.e., 1

n

∑n
i=1 ‖xi − x̄‖22.

diverging from the averaged model, while decreasing only when the stepsize decreases. A similar
behavior was also reported in [Assran et al., 2018].

4.9 Use case II: Efficient Large-Scale Training in a Datacenter

Decentralized optimization methods offer a way to address scaling issues even for well connected
devices, such as e.g. in datacenter with fast InfiniBand (100Gbps) or Ethernet (10Gbps) connections.
Lian et al. [2017] describe scenarios when decentralized schemes can outperform centralized ones,
and recently, Assran et al. [2018] presented impressive speedups for training on 256 GPUs, for the
setting when all nodes can access all training data. The main differences of their algorithm to CHOCO-
SGD are the asynchronous gossip updates, time-varying communication topology and most impor-
tantly exact communication, making their setup not directly comparable to ours. We note that these
properties of asynchronous communication and changing topology for faster mixing are orthogonal
to our contribution, and offer promise to be combined.

Setup. We train ImageNet-1k (1.28M/50K training/validation) [Deng et al., 2009] with
Resnet-50 [He et al., 2016]. We perform our experiments on 8 machines (n1-standard-32 from
Google Cloud with Intel Ivy Bridge CPU platform), where each of machines has 4 Tesla P100 GPUs
and each machine interconnected via 10Gbps Ethernet. Within one machine communication is fast
and we rely on the local data parallelism to aggregate the gradients for the later gradients communica-
tion (over the machines). Between different machines we consider centralized (fully connected topol-
ogy) and decentralized (ring topology) communication, with and without compressed communication
(sign compression). Several methods categorized by communication schemes are evaluated: (i) cen-
tralized SGD (full-precision communication), (ii) error-feedback centralized SGD with compressed
communications [Karimireddy et al., 2019] through sign compression, (iii) decentralized SGD [Lian
et al., 2017] with parallelized forward pass and gradients communication (full-precision communica-
tion), and (iv) CHOCO-SGD with sign compressed communications. The mini-batch size on each
GPU is 128, and we follow the general SGD training scheme in [Goyal et al., 2017] and directly
use all their hyperparameters for all evaluated methods. Due to the limitation of the computational
resource, we did not heavily tune the consensus stepsize for CHOCO-SGD7.

Results. We depict the training loss and top-1 test accuracy in terms of epochs and time in Fig. 4.11.
CHOCO-SGD benefits from its decentralized and parallel structure and takes less time than all-reduce

7. We estimate the consensus stepsize by running CHOCO-SGD with different values for the first 3 epochs.
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Figure 4.11: Large-scale training: Resnet-50 on ImageNet-1k in the datacenter setting. The
topology has 8 nodes (each accesses 4 GPUs). We use sign as the compression scheme, for CHOCO-
SGD and Centralized SGD. For centralized SGD baseline without compression, we use all-reduce to
aggregate the gradients; we use all-gather for centralized SGD with sign gradients quantization. The
benefits of CHOCO-SGD can be further pronounced when scaling to more nodes.

to perform the same number of epochs, while having only a slight 1.5% accuracy loss8. In terms of
time per epoch, our speedup does not match that of [Assran et al., 2018], as the used hardware and
the communication pattern9 are very different. Their scheme is orthogonal to our approach and could
be integrated for better training efficiency. Nevertheless, we still demonstrate a time-wise 20% gain
over the common all-reduce baseline, on our used commodity hardware cluster.

4.10 Conclusion

The experiments verify our theoretical findings: CHOCO-GOSSIP is the first linearly convergent gos-
sip algorithm with quantized communication and CHOCO-SGD consistently outperforms the base-
lines for decentralized optimization, reaching almost the same performance as the exact algorithm
without communication restrictions while significantly reducing communication cost.

8. Centralized SGD with full precision gradients achieved test accuracy of 76.37%, v.s. 76.03% for centralized SGD
(with sign compression), v.s. 74.92% for plain decentralized SGD, and vs. 75.15% for CHOCO-SGD (with sign compres-
sion).

9. We consider undirected communication, contrary to the directed 1-peer communication (every node sends and receives
one message at every iteration) in Assran et al. [2018].
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Chapter 5

Unified Theory of Decentralized SGD with
Changing Topologies and Local Updates

5.1 Preface

In this chapter, based on [Koloskova et al., 2020b], we focus on a broad set of decentralized algorithms.
This includes algorithms designed for communication efficiency, such as decentralized SGD with
local update steps. We also delve into decentralized SGD with sparse time-varying communication
topologies, which allows for even sparser communications than discussed in the previous chapter.

Summary Decentralized stochastic optimization methods have gained a lot of attention recently,
mainly because of their cheap per iteration cost, data locality, and their communication-efficiency. In
this chapter we introduce a unified convergence analysis that covers a large variety of decentralized
SGD methods which so far have required different intuitions, have different applications, and which
have been developed separately in various communities.
Our algorithmic framework covers local SGD updates and synchronous and pairwise gossip updates
on adaptive network topology. We derive universal convergence rates for smooth (convex and non-
convex) problems and the rates interpolate between the heterogeneous (non-identically distributed
data) and iid-data settings, recovering linear convergence rates in many special cases, for instance
for over-parametrized models. Our proofs rely on weak assumptions (typically improving over prior
work in several aspects) and recover (and improve) the best known complexity results for a host of
important scenarios, such as for instance coorperative SGD and federated averaging (local SGD).

Co-authors Nicolas Loizou, Sadra Boreiri, Martin Jaggi and Sebastian U. Stich.

Contributions
A. Koloskova: methodology (40%), formal analysis, software (50%), writing (20%).
N. Loizou: methodology (10%), writing – review and editing.
S. Boreiri: software (50%), writing – review and editing.
M. Jaggi: methodology (10%), writing – review and editing.
S. U. Stich: methodology (40%), writing (80%), project administration, supervision.
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5.2 Introduction

Training machine learning models in a non-centralized fashion can offer many advantages over tra-
ditional centralized approaches in core aspects such as data ownership, privacy, fault tolerance and
scalability. In efforts to depart from the traditional parameter server paradigm [Dean et al., 2012],
federated learning [Konečnỳ et al., 2016, McMahan et al., 2016, 2017, Kairouz et al., 2019] has
emerged, but also fully decentralized approaches (such as in the previous Chapter 4) have been sug-
gested recently—though yet still at a smaller scale than federated learning [Lian et al., 2017, Assran
et al., 2018]. However, the community has identified a host of challenges that come along with decen-
tralized training: notably, high communication cost [Tang et al., 2018a, Wang et al., 2019], Chapter 4
[Koloskova et al., 2019, 2020a], a need for time-varying topologies [Nedić and Olshevsky, 2014, As-
sran et al., 2018] and data-heterogeneity [Li et al., 2018, Karimireddy et al., 2020, Li et al., 2020b,c].
It is imperative to have a good theoretical understanding of decentralized stochastic gradient descent
(SGD) to predict the training performance of SGD in these scenarios and to assist the design of opti-
mal decentralized training schemes for machine learning tasks.

In contrast to the centralized setting, where the convergence of SGD is well understood [Bach and
Moulines, 2011, Rakhlin et al., 2012b, Dekel et al., 2012], the analyses of SGD in non-centralized
settings are often application specific and have been historically developed separately in different
communities, besides some recent efforts towards a unified theory. Notably, Wang and Joshi [2018]
propose a framework for decentralized optimization with non-heterogeneous data and Li et al. [2019]
study decentralized SGD for non-convex heterogeneous settings. We here propose a significantly
extended framework that covers these previously proposed ones as special cases.

We provide tight convergence rates for a large family of decentralized SGD variants. Proving con-
vergence rates in a unified framework is much more powerful than studying individual special cases
on their own: We are not only able to recover many existing analyses and results, we can also often
show improved rates under more general setting. Remarkably, for instance for local SGD [Zinke-
vich et al., 2010, Stich, 2018, Patel and Dieuleveut, 2019] we show improved rates for the convex
and strongly-convex case and recover the best known rates for the non-convex case under weaker
assumptions than assumed in prior work (highlighted in Table 5.1).

5.2.1 Contributions

• We present a unified framework for gossip based decentralized SGD methods that captures local
updates and time-varying, randomly sampled, mixing distributions. Our framework covers a
rich class of methods that previously needed individual convergence analyses.

• Our theoretical results rely on weak assumptions that measure the strength of the noise and the
dissimilarity of the functions between workers and a novel assumption on the expected mixing
rate of the gossip algorithm. This provides us with great flexibility on how to select the topology
of the network and the mixing weights.

• We demonstrate the effectiveness and tightness of our results by exemplary showing that our
framework gives the best convergence rates for local SGD for both, heterogeneous and iid. data
settings, improving over all previous analyses on convex functions.

• We provide a lower bound that confirms that our convergence rates are tight on strongly convex
functions.
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• We empirically verify the tightness of our theoretical results on strongly convex functions and
explain the impact of noise and data diversity on the convergence.

5.3 Related Work

The study of decentralized optimization algorithms can be tracked back at least to [Tsitsiklis, 1984].
For the problem of computing aggregates (finding consensus) among clients, various gossip-based
protocols have been proposed. For instance the push-sum algorithm [Kempe et al., 2003], based on
the intuition of mixing in Markov chains and allowing for asymmetric communication, or the symmet-
ric randomized gossip protocol for averaging over arbirary graphs [Xiao and Boyd, 2004, Boyd et al.,
2006] that we follow closely in this work. For general optimization problems, the most common
algorithms are either combinations of standard gradient based methods with gossip-type averaging
step [Nedić and Ozdaglar, 2009, Johansson et al., 2010], or specifically designed methods relying on
problem structure, such as alternating direction method of multipliers (ADMM) [Wei and Ozdaglar,
2012, Iutzeler et al., 2013], dual averaging [Duchi et al., 2012a, Nedić et al., 2015, Rabbat, 2015],
primal-dual methods [Alghunaim and Sayed, 2019], or block-coordinate methods for generalized lin-
ear models [He et al., 2018]. There is a rich literature in the control community that discusses various
special cases—motivated by particular applications—such as for instance asynchronity [Boyd et al.,
2006] or time-varying graphs [Nedić and Olshevsky, 2014, Nedić and Olshevsky, 2016], see also
[Nedić et al., 2018] for an overview.

For the deterministic (non-stochastic) descentralized optimization a recent line of work developed
optimal algorithms based on acceleration [Jakovetić et al., 2014, Scaman et al., 2017, 2018, Uribe
et al., 2018, Fallah et al., 2019]. In the machine learning context, decentralized implementations
of stochastic gradient descent have gained a lot of attention recently [Lian et al., 2017, Tang et al.,
2018b, Assran et al., 2018] also in the previous Chapter 4 [Koloskova et al., 2019, 2020a], especially
for the particular (but not fully decentralized) case of a star-shaped network topology, the federated
learning setting [Konečnỳ et al., 2016, McMahan et al., 2016, 2017, Kairouz et al., 2019]. Rates
for the stochastic optimization are derived in [Shamir and Srebro, 2014, Rabbat, 2015], under the
assumption that the distributions on all nodes are equal. However, this is a very strong assumption for
practical problems.

It has been noted quite early that decentralized gradient based methods in heterogenous data set-
ting suffer from a ‘client-drift’, i.e. the diversity in the functions on each node leads to a drift on each
client towards the minima of fi—potentially far away from the global minima of f . This phenomena
has been discussed (and sometimes been adressed by modifing the SGD updates) for example in [Shi
et al., 2015, Lee et al., 2015, Nedić et al., 2016] and been rediscovered frequently in the context of
stochastic optimization [Zhao et al., 2018, Karimireddy et al., 2020]. It is important to note that in
analyses based on the bounded gradient assumption—which was traditionally assumend for analyzing
SGD [Lacoste-Julien et al., 2012, Rakhlin et al., 2012b]—the diversity in the data distribution on each
worker sometimes can be hidden in this generous upper bound and the analyses cannot distinguish
between iid. and non-iid. data cases, such as e.g. in the previous Chapter 4 [Koloskova et al., 2019,
2020a] and [Nadiradze et al., 2019, Li et al., 2020c]. In this work, we use much weaker assumptions
and we show how the convergence rate depends on the similarity between the functions (by providing
matching lower and upper bounds). Our results show that in overparametrized settings no drift effects
occur and linear convergence can be achieved similar as to the centralized setting [Schmidt and Roux,
2013, Needell et al., 2016, Ma et al., 2018].

For reducing communication cost, various techniques have been proposed. In this work we do
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not consider gradient compression techniques [Alistarh et al., 2017, Stich et al., 2018a, Tang et al.,
2018a, 2019, Stich and Karimireddy, 2020]—but such orthogonal techniques could be added on top
of our scheme—and instead only focus on local updates steps which are often efficient in practice but
challenging to handle in the theoretical analysis [McMahan et al., 2017, Stich, 2018, Yu et al., 2019b,
Lin et al., 2020].

5.4 Setup

As in the previous chapter, we study the distributed stochastic optimization problem

f⋆ := min
x∈Rd

[
f(x) := 1

n

n∑
i=1

fi(x)
]

(2.1)

where the components fi : Rd → R are distributed among n nodes and are given in stochastic form:

fi(x) := Eξi∼Di
Fi(x, ξi),

where Di denotes the distribution of ξi over parameter space Ωi on node i. Standard empirical risk
minimization is an important special case of this problem, when each Di presents a finite number
mi of elements {ξ1i , . . . , ξ

mi
i }. Then fi can be rewritten as fi(x) = 1

mi

∑mi
j=1 Fi(x, ξji ). In the

special case of mi = 1, for each i ∈ [n], we further recover the deterministic distributed optimization
problem.

It is important to note that we do not make any assumptions on the distributions Di. This means
that we especially cover hard heterogeneous machine learning problems where data is only available
locally to each worker i ∈ [n] := {1, . . . , n} and the local minima x⋆

i := arg minx∈Rd fi(x), can be
far away from the global minimizer of (2.1). This covers a host of practically relevant problems over
decentralized training data, as in federated learning (motivated by privacy), or large datasets stored
across datacenters or devices (motivated by scalability). We will discuss several important examples
in Section 5.4.2 below.

5.4.1 Assumptions on the objective function f

For all our theoretical results we assume that f or every one of its stochastic realizations F is smooth.
We restate the assumption again here for convenience:

Assumption 1a (L-smoothness) Each function Fi(x, ξ) : Rd × Ωi → R, i ∈ [n] is differentiable for
each ξ ∈ supp(Di) and there exists a constant L ≥ 0 such that for each x, y ∈ Rd, ξ ∈ supp(Di):

‖∇Fi(y, ξ)−∇Fi(x, ξ)‖ ≤ L ‖x − y‖ . (5.1)

Sometimes it will be enough to just assume smoothness of fi instead.

Assumption 1b (L-smoothness) Each function fi(x) : Rd → R, i ∈ [n] is differentiable and there
exists a constant L ≥ 0 such that for each x, y ∈ Rd:

‖∇fi(y)−∇fi(x)‖ ≤ L ‖x − y‖ . (5.2)

Remark 2 Clearly, Assumption 1b is more general than Assumption 1a. Moreover, for convex
F (y, ξ) Assumption 1a implies Assumption 1b [Nesterov, 2004].
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Assumption 1b is quite common in the literature [e.g. Lian et al., 2017, Wang and Joshi, 2018]
but sometimes also the stronger Assumption 1a is assumed [Nguyen et al., 2018b]. We here use this
version in the convex case only, to allow for a more general assumption on the noise instead (see
Section 5.4.2 below).

For some of the derived results we need in addition convexity. Specifically, µ-convexity for a
parameter µ ≥ 0.

Assumption 3 (µ-convexity) Each function fi : Rd → R, i ∈ [n] is µ-(strongly) convex for constant
µ ≥ 0. That is, for all x, y ∈ Rd:

fi(x)− fi(y) +
µ

2
‖x − y‖22 ≤ 〈∇fi(x), x − y〉 , ∀x, y ∈ Rd, i ∈ [n], (2.5)

5.4.2 Assumptions on the noise

We now formulate our conditions on the noise. For the convergence analysis of SGD on smooth
convex functions it is typically enough to assume a bound on the noise at the optimum only [Needell
et al., 2016, Bottou et al., 2018, Gower et al., 2019, Stich, 2019a]. Similarly, to express the diversity
of the functions fi in the convex case it is sufficient to measure it only at the optimal point x⋆ (such a
point always exists for strongly convex functions).

Assumption 9a (Bounded noise at the optimum) Let x⋆ = arg min f(x) and define

ζ2i := ‖∇fi(x⋆)‖22 , ζ̄2 := 1
n

∑n
i=1 ζ

2
i . (5.3)

Further, define

σ2
i := Eξi ‖∇Fi(x⋆, ξi)−∇fi(x⋆)‖2

2 , (5.4)

and similarly as above, σ̄2 := 1
n

∑n
i=1 σ

2
i . We assume that σ̄2 and ζ̄2 are bounded.

Here, σ̄2 measures the noise level, and ζ̄2 the diversity of the functions fi. If all functions are
identical, fi = fj , for all i, j, then ζ̄2 = 0. Many prior work in the context of stochastic decentralized
optimization often assumed bounded diversity and bounded noise everywhere [such as e.g. Lian et al.,
2017, Tang et al., 2018b], whereas we here only need to assume this bound locally at x⋆.

For the non-convex case—where a unique x⋆ does not necessarily exist—we generalize Assump-
tion 9a to:

Assumption 9b (Bounded noise) We assume that there exists constants P , ζ̂ such that ∀x ∈ Rd,

1
n

∑n
i=1 ‖∇fi(x)‖22 ≤ ζ̂2 + P ‖∇f(x)‖22 , (5.5)

and constants M , σ̂ such that ∀x1, . . . xn ∈ Rd

Ψ ≤ σ̂2 + M
n

∑n
i=1 ‖∇fi(xi)‖22 , (5.6)

where Ψ := 1
n

∑n
i=1 Eξi ‖∇Fi(xi, ξi)−∇fi(xi)‖2

2.
We see that Assumption 9a is weaker than Assumption 9b as it only needs ho hold for xi = x⋆.

Further, it is important to note that we do not assume a uniform bound on the variance [as many prior
work, such as Li et al., 2019, Tang et al., 2018b, Lian et al., 2017, Assran et al., 2018] but instead
allow the bound on the noise and the diversity to grow with the gradient norm (similar assumptions
are common in the convex setting [Bottou et al., 2018]).
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Discussion. We now show that the Assumption 9b is weaker than assuming a uniform upper bound
on the noise. The uniform variance bound is given as

E ‖∇Fi(x, ξi)−∇fi(x)‖22 ≤ σ2
unif , ∀x ∈ Rd ,

similarly for the similarity of functions between nodes

1
n

∑n
i=1 ‖∇fi(x)−∇f(x)‖22 ≤ ζ̄2unif , ∀x ∈ Rd .

By recalling the equality 1
n

∑n
i=1 ‖ai − ā‖22 = 1

n

∑n
i=1 ‖ai‖22 − ‖ā‖22 for ai ∈ Rd, ā = 1

n

∑n
i=1 ai, it

is easy to check that these two bounds imply Assumption 9b with P = 1, M = 0, σ̂2 = σ2
unif and

ζ̂2 = ζ̄2unif. Thus, our assumptions are weaker and ζ̂2 and σ̂2 can be much smaller than ζ̄2unif, σ
2
unif in

general.
A second common assumption is to assume that the (stochastic) gradients are uniformly bounded

that we used in the previous Chapter 4 (based on [Koloskova et al., 2019, 2020a]) [or e.g. Li et al.,
2020c], that is

E ‖∇Fi(x, ξi)‖22 ≤ G2 ,

for a constant G. Under the bounded gradient assumption, Assumption 9b is clearly satisfied, as all
terms on the left hand side of (5.5) and (5.6) can be upper bounded by 2G2.

5.4.3 Notation

We use the notation x(t)
i to denote the iterates on node i at time step t. We further define the average

x̄(t) := 1
n

∑n
i=1 x(t)

i . (5.7)

We use both vector and matrix notation whenever it is more convenient, and define

X(t) :=
[
x(t)
1 , . . . , x(t)

n

]
∈ Rd×n (5.8)

and likewise define X̄(t) :=
[
x̄(t), . . . , x̄(t)

]
≡ X(t) 1

n11⊤.

5.5 Decentralized (Gossip) SGD

We now present the generalized decentralized SGD framework. Similar to existing works [Lian et al.,
2017, Wang and Joshi, 2018, Li et al., 2019] our proposed method allows only decentralized commu-
nications. That is, the exchange of information (through gossip averaging) can only occur between
connected nodes (neighbors). The algorithm (outlined in Algorithm 5) consists of two phases: (i)
stochastic gradient updates, performed locally on each worker (lines 4–5), followed by a (ii) consen-
sus operation, where nodes average their values with their neighbors (line 6).

The gossip averaging protocol can be compactly written in matrix notation, with N (t)
i := {j : w(t)

ij >
0} denoting the neighbors of node i at iteration t:

X(t+1) = X(t)W (t) ⇔ x(t+1)
i =

∑
j∈N (t)

i

w
(t)
ij x(t)

j ,

where the mixing matrix W (t) ∈ [0, 1]n×n encodes the network structure at time t and the averaging
weights (nodes i and j are connected if w(t)

ij > 0).
Our scheme shows great flexibility as the mixing matrices can change over iterations and more-

over can be selected from (changing) distributions.
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Definition 10 (Mixing matrix) A symmetric (W = W⊤) doubly stochastic (W1 = 1, 1⊤W = 1⊤)
matrix W ∈ [0, 1]n×n.

5.5.1 Algorithm

Algorithm 5 DECENTRALIZED SGD

input: for each node i ∈ [n] initialize x(0)
i ∈ Rd, stepsizes {ηt}T−1

t=0 , number of iterations T ,
mixing matrix distributions W(t) for t ∈ [0, T ]

1: for t in 0 . . . T do
2: Sample W (t) ∼ W(t)

3: In parallel (task for worker i, i ∈ [n])
4: Sample ξ

(t)
i , compute g(t)i := ∇Fi(x(t)

i , ξ
(t)
i )

5: x(t+ 1
2
)

i = x(t)
i − ηtg(t)i ▷ stochastic gradient updates

6: x(t+1)
i :=

∑
j∈N t

i
w

(t)
ij x(t+ 1

2
)

j ▷ gossip averaging
7: end for

In each iteration in Algorithm 5 a new mixing matrix W (t) is sampled from a possibly time-
varying distribution W(t), t ∈ {0, . . . , T} (we will show below that also degenerate mixing matrices,
for instance W (t) = In which implies no communication in round t, are possible choices). We will
discuss several important instances below, but first we now state our assumption on the quality of the
mixing matrices. This assumption is novel in the literature to the best of our knowledge and a natural
generalization of earlier versions.

5.5.2 New assumption on mixing matrices

We recall (see [Boyd et al., 2006] and our discussion in Section 4.4) that for randomized gossip
averaging with a randomly sampled mixing matrix W ∼ W it holds

EW

∥∥XW − X̄
∥∥2
F
≤ (1− p)

∥∥X − X̄
∥∥2
F
, (5.9)

for a value p ≥ 0 (related to the spectrum of EW⊤W ), that is, the averaging step brings the values
in the columns of X ∈ Rd×n closer to their row-wise average X̄ := X · 1

n11⊤ in expectation.
In our analysis it will be enough to assume that a property similar to (5.9) holds for the composi-

tion of mixing matrixes, and does not necessarily hold for every single step.

Assumption 11 (Expected Consensus Rate) We assume that there exists two constants p ∈ (0, 1] and
integer τ ≥ 1 such that for all matrices X ∈ Rd×n and all integers ℓ ∈ {0, . . . , T/τ},

EW

∥∥XWℓ,τ − X̄
∥∥2
F

≤ (1− p)
∥∥X − X̄

∥∥2
F
, (5.10)

where Wℓ,τ = W ((ℓ+1)τ−1) · · ·W (ℓτ) and X̄ := X 11⊤
n and E is taken over the distributions W (t) ∼

W(t) and indices t ∈ {ℓτ, . . . , (ℓ+ 1)τ − 1}.
It is crucial to observe that this assumption does not require every realization W to satisfy a de-

crease property as for the standard analysis, it is enough if it holds over the concatenation of τ mixing
steps. This assumption differs from the connectivity assumptions sometimes used in the control com-
munity. For example Nedić and Olshevsky [2014] require strong connectivity of the graph after every
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τ steps, whereas we here do not require this (for example, even sampling one single random edge
leads to a positive decrease in expectation, whereas to ensure connectivity one would need to perform
Ω(n) pairwise communications). This means that our bounds are typically much tighter that bounds
derived on the strong connectivity assumption. However, as we require W to be symmetric, our set-
ting is less general than the one considered in [Nedić et al., 2017, Xi and Khan, 2017, Saadatniaki
et al., 2018, Assran and Rabbat, 2018, Scutari and Sun, 2019, Assran et al., 2018].

Commonly used weights are for instance the Metropolis-Hastings weights wij = wji =
min

{
1

deg(i)+1 ,
1

deg(j)+1

}
for (i, j) ∈ E, see also [Xiao and Boyd, 2004, Boyd et al., 2006] for further

guidelines. With these weights, the values of p for commonly used graphs are p = 1 for the complete
graph, p = Θ

(
1
n

)
for 2-d torus on n nodes, and p = Θ

(
1
n2

)
for a cycle on n nodes. Intuitively,

p−1/2 correlates with the diameter of the graph and is related to the mixing time of Markov chains.
A commonly studied randomized scheme is the pairwise random gossip algorithm [Boyd et al., 2006,
Loizou and Richtárik, 2019], where one edge at a time is sampled from an underlying graph G =
([n], E), i.e. the a random mixing matrix Zi,j := In − 1

2(ei − ej)(ei − ej)⊤, for all edges in the
graph (i, j) ∈ E, where ei ∈ Rn is the ith coordinate vector. In this case p = ρ(G)/|E|, where
ρ(G) denotes the algebraic connectivity of the network [Fiedler, 1973, Boyd et al., 2006, Loizou
and Richtárik, 2016]. For example, with the complete graph as base graph, pairwise gossip attains
p = Θ

(
1
n2

)
, i.e. enjoys equally fast mixing as averaging over a (fixed) cycle (which requires n

pairwise communications per round).

5.6 Examples Covered in the Framework

Our framework is very general and covers many special cases previously introduced in the literature.

5.6.1 Fixed Sampling Distribution (τ = 1,W(t) ≡ W )

The simplest instances of Algorithm 5 arise when the mixing matrix W is kept constant over the
iterations. By choosing the fully connected matrix W = 1

n11⊤ we recover • centralized mini-batch
SGD [Dekel et al., 2012] and by choosing an arbitrary connected W , we recover • decentralized
SGD [Lian et al., 2017].

To reduce communication overheads, it has been proposed to choose sparse (not necessarily con-
nected) subgraphs of the network topology. For instance in • MATCHA [Wang et al., 2019] it is
proposed to sample edges from a matching decomposition of the underlying network topology, there-
fore allowing for pairwise communications between nodes. Whilst no explicit values of p were given
for this approach, for the simpler instance of • pairwise randomized gossip [Boyd et al., 2006, Ram
et al., 2010, Lee and Nedić, 2015, Loizou and Richtárik, 2019] we have p = Θ

(
1
n

)
, thus by sam-

pling a linear number of (independent) edges—not necessarily a matching—we approximately have
p = Θ̃

(
1
)

for this • repeated pairwise randomized gossip variant. This approach can be generalized
to • randomized subgraph gossip, where a subgraph of the base topology is selected for averaging.
A special case of this is • clique gossip [Liu et al., 2019], or an alternative variant is to • sample
from a fixed set of communication topologies (known to all decentralized) workers.

One noteably instance of this type is • loopless local decentralized SGD where the mixing matrix
is (a fixed) W with probability 1

τ , and In with probability 1− 1
τ , for a parameter τ ≥ 1. This algorithm

mimicks the behavior of the local SGD (see subsection below), commonly analyzed for W = 1
n11⊤

only, but the loopless variant is much easier to analyze (with p decreased by a factor of τ , but no need
to consider local steps explicitly in the analysis.).
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5.6.2 Periodic Sampling (τ > 1,W(t) ≡ W (t+τ))

Our analysis covers the empirical (finite-sample) versions of the aforementioned algorithms, for in-
stance • alternating decentralized SGD that sweeps through τ fixed mixing matrices. A special
algorithm of this type is • local SGD [Coppola, 2015, Zhou and Cong, 2018, Stich, 2018] where
averaging on the complete graph is performed every τ iterations and only local steps are performed
otherwise (mixing matrix In for τ − 1 steps).

Our analysis covers also natural extensions such as • decentralized local SGD where mixing is
performed with an arbitrary matrix W , and • random decentralized local SGD where the mixing
matrix is sampled from a distribution. More generally, our framework also allows to combine local
steps with all of the examples described in the previous section.

5.6.3 Non-Periodic Sampling

It is not necessary to have a periodic structure, it is sufficient that the composition of every τ con-
secutive mixing matrixes satisfies Assumption 11. For instance as in • distriributed SGD over
time-varying graphs [Nedić and Olshevsky, 2014].

5.6.4 Other Frameworks

In contrast to many prior works, we here allow the topology and the averaging weights to change be-
tween iterations. Our framework covers • Cooperative SGD [Wang and Joshi, 2018] which considers
only the IID data case (fi = fj) with local updates and a fixed mixing matrix W , and the recently
proposed • periodic decentralized SGD [Li et al., 2019] that allows for multiple local update and
multiple mixing steps (for fixed W ) in a periodic manner. None of these work considered sampling
of the mixing matrix and do only provide rates for non-convex functions.

5.7 Convergence Result

In this section we present the convergence results for decentralized SGD variants that fit the template
of Algorithm 5.

5.7.1 Complexity Estimates (Upper Bounds)

Theorem 5 For schemes as in Algorithm 5 with mixing matrices such as in Assumption 11 and any
target accuracy ε > 0 there exists a (constant) stepsize (potentially depending on ε) such that the
accuracy can be reached after at most the following number of iterations T :
Non-Convex: Under Assumption 1b and 9b, it holds 1

T+1

∑T
t=0 E

∥∥∇f(x̄(t))
∥∥2
2
≤ ε after

O

(
σ̂2

nε2
+

ζ̂τ
√
M + 1 + σ̂

√
pτ

pε3/2
+

τ
√
(P + 1)(M + 1)

pε

)
· LF0

iterations. If we in addition assume convexity,
Convex: Under Assumption 1a, 9a and 3 for µ ≥ 0, the error 1

(T+1)

∑T
t=0(E f(x̄(t))− f⋆) ≤ ε after

O

(
σ̄2

nε2
+

√
L(ζ̄τ + σ̄

√
pτ)

pε3/2
+

Lτ

pε

)
·R2

0
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Table 5.1: Comparison of convergence rates for Local SGD in non-iid settings, most recent results.
We improve over the convex results, and recover the non-convex rate of Li et al. [2019].

Reference convergence to ε-accuracy

strongly convex convex non-convex

Li et al. [2020c] O
(

σ̄2

nµ2ε
+ τ2ζ̄2

µ2ε

)
a - -

Khaled et al. [2020] - O
(
σ̄2+ζ̄2

nε2
+

√
Lτ(ζ̄+σ̄)

ε3/2
+ Lτ

ε

)
-

Li et al. [2019] - - O
(
Lσ̄2

nε2
+ L(τ ζ̄+

√
τσ̄)

ε3/2
+ Lτ

ε

)
this work Õ

(
σ̄2

nµε +
√
L(τ ζ̄+

√
τσ̄)

µ
√
ε

+ κτ
)

O
(

σ̄2

nε2
+

√
L(τ ζ̄+

√
τσ̄)

ε3/2
+ Lτ

ε

)
O
(
Lσ̂2

nε2
+ L(τ ζ̂+

√
τσ̂)

ε3/2
+ Lτ

ε

)
a. The paper relies on slightly different assumptions (bounded gradients and different measure of dissimilarity). For

better comparison of the rates we write here ζ̄2 instead (which is strictly smaller than their parameter).

iterations, and if µ > 0,
Strongly-Convex: then

∑T
t=0

wt
WT

(E f(x̄(t))− f⋆) + µE ‖x̄(T+1) − x⋆‖2 ≤ ε for1

Õ

(
σ̄2

µnε
+

√
L(ζ̄τ + σ̄

√
pτ)

µp
√
ε

+
Lτ

µp
log 1

ε

)

iterations, for positive weights wt and F0 := f(x0)−f⋆ and R0 = ‖x0 − x⋆‖ denote the initial errors.

5.7.2 Lower Bound

We now show that the terms depending on ζ̄ are necessary for the strongly convex setting and cannot
be removed by an improved analysis.

Theorem 6 For n > 1 there exists strongly convex and smooth functions fi : Rd → R, i ∈ [n] with
L = µ = 1 and without stochastic noise (σ̄2 = 0), such that Algorithm 5 for every constant mixing
matrix W (t) ≡ W with p < 1 (see Assumption 11) for τ = 1, requires

T = Ω̃

(
ζ̄(1− p)√

εp

)
iterations to converge to accuracy ε.

5.7.3 Discussion

Exemplary, we focus in our discussion on the strongly convex case only. For strongly convex func-
tions we prove that the expected function value suboptimality decreases as

Õ
(

σ̄2

nµT
+

L(τ2ζ̄2 + τpσ̄2)

µ2p2T 2
+

LτR2
0

p
exp

[
−µTp

τL

])
where T denotes the iteration counter. We now argue that this rate is optimal up to acceleration.

1. Õ/Ω̃-notation hides constants and polylogarithmic factors.
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5.8. Special Cases: Highlights

Stochastic Terms. If σ̄2 > 0 the convergence rate is asymptotically dominated by the first term,
which cannot be further improved for stochastic methods [Nemirovsky and Yudin, 1983]. We ob-
serve that the dominating first term indicates a linear speedup in the number of workers n, and no
dependence on the number of local steps τ , the mixing parameter p or the dissimilarity parameter ζ̄2.
This means that decentralized SGD methods are ideal for the optimization in the high-noise regime
even when network connectivity is low and number of local steps is large (see also [Chaturapruek
et al., 2015] and recent work [Pu et al., 2019]). In our rates the variance σ̄2 parameter also appears
in the second term, but affects the convergence only mildly (for T = Ω(τn/p) this second term gets
dominated by the first one).

Optimization Terms. Even when σ̄2 = 0, the convergence of decentralized SGD only sublinear
when ζ̄2 > 0:2

Õ
(

Lτ2ζ̄2

µ2p2T 2
+

LτR2
0

p
exp

[
−µTp

τL

])
.

The dependence on the dissimilarity ζ̄2 cannot be removed in general as we show in Theorem 6.
These results show that decentralized SGD methods without additional modifications [see also Shi
et al., 2015, Karimireddy et al., 2019] cannot converge linearly.

We can further observe see that the rates only depend on the ratio p/τ , but not on p or τ individ-
ually. This also means that the rates for local variants of decentralized SGD are the same as for their
loopless variants (when the mixing is performed with probability 1

τ only). The error term depending
on R2

0 vanishes exponentially fast, as expected for SGD methods [Bach and Moulines, 2011]. The
linear dependence on L

µp (the therm in the exponent) is expected here, as we use non-accelerated first
order schemes and standard gossip. This term could potentially be improved to

(
L
µp

)1/2 with accel-
eration techniques, such as in [Scaman et al., 2017]. The linear dependence on τ cannot further be
improved in general. This follows from the lower bound for the communication complexity of dis-
tributed convex optimization [Arjevani and Shamir, 2015], as the number of communication rounds
is at most T

τ (no communication happens during the local steps). However, when ζ̄2 = 0 (as for
instance the case for identical functions fi on each worker), this lower bound becomes vacuous and
improvement of the dependence on τ might be possible (which we cannot not exploit here).

Linear Convergence for Overparametrized Settings. In overparametrized problems, there exists al-
ways x⋆ s.t. ‖∇fi(x⋆)‖2 = 0, that is σ̄2 = 0 and ζ̄2 = 0. We prove here that decentralized SGD
converges linearly in this case, similarly to mini-batch SGD [Bach and Moulines, 2011, Schmidt and
Roux, 2013, Needell et al., 2016, Ma et al., 2018, Gower et al., 2019, Loizou et al., 2020].

5.8 Special Cases: Highlights

Our rates apply to all the examples discussed in Section 5.6 and of course we could design even more
variants and combinations of these schemes. This gives great flexibility in designing new schemes
and algorithms for future applications. We leave the exploration of the trade-offs in these approaches
for future work, and highlight here only a few special cases that could be of particular interest.

2. Except for the special case when p = 1 (fully connected graph, such as for mini-batch SGD). In this case the rate does
not depend on ζ̄2. We detail this (known result) in the appendix.
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Figure 5.1: Convergence of 1
n

∑n
i=1

∥∥x(t)
i − x⋆

∥∥2
2

to target accuracy ε = 10−5 for different problem
difficulty (σ̄2 increasing to the bottom, ζ̄2 increasing to the right), and different topologies on n = 25
nodes, d = 50. Stepsizes were tuned for each experiment individually to reach target accuracy in as
few iterations as possible.

5.8.1 Best Rates for Local SGD

Local SGD is a simplified version of the federated averaging algorithm [McMahan et al., 2016, 2017]
and has recently attracted the attention of the theoretical community in the seek of the best con-
vergence rates [Stich, 2018, Wang and Joshi, 2018, Yu et al., 2019b, Basu et al., 2019, Patel and
Dieuleveut, 2019, Stich and Karimireddy, 2020, Li et al., 2019, Khaled et al., 2020]. Our work ex-
tends this chain and improves previous best results for convex settings and recovers the results of Li
et al. [2019] in the non-convex case as we highlight in Table 5.1. We point out that all these rates are
still dominated by large-batch SGD and do not match the lower bounds established in [Woodworth
et al., 2018] for the iid. case ζ̄2 = 0. See also recent parallel work in [Woodworth et al., 2020]. Whilst
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Figure 5.2: Problem setup. Parameters σ̄2 and ζ̄2 change the noise level and the difficulty of the
problem. (Here we depict 1
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on the ring with n = 25 nodes, d = 10, using fixed
stepsize η = 10−2 for illustration.
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5.9. Experiments

these previous analysis were often specifically tailored and only applicable to the mixing structure in
local SGD, our analysis is much more general and tighter at the same time.

In their recently updated parallel version, Karimireddy et al. [2020] improve upon these rates by
removing σ from the second term. However, they do analyze a different version of local SGD (with
different stepsizes for inner and outer loops) than we consider here. This change does not fit in our
framework and it is not clear if similar trick is possible the decentralized setting.

5.8.2 Comparison to Recent Frameworks

We mentioned major differences to other frameworks in Section 5.6.4 above already. Our results for
the non-convex case recover the best results from [Wang and Joshi, 2018] for the iid. case3 (ζ̂2 = 0)
and the non-iid. case from [Li et al., 2019] for their specific settings. We point out that our results
also cover the convex setting and deterministic setting.

5.8.3 Best Rates for Decentralized SGD

We improve best known rates of Decentralized SGD derived in the previous Chapter 4 ([Koloskova
et al., 2019]) and [Olshevsky et al., 2019] for strongly convex objectives and recover the best rates in
the non-convex case [Lian et al., 2017].

5.9 Experiments

Complementing prior work that established the effectiveness of decentralized training methods [Lian
et al., 2017, Assran et al., 2018] we here focus on verifying whether the numerical performance of de-
centralized stochastic optimization algorithms coincides with the rates predicted by theory, focusing
on the strongly convex case for now.

We consider a distributed least squares objective with fi(x) := 1
2 ‖Aix − bi‖22, for fixed Hessian

A2
i = i2

n · Id and sample each bi ∼ N (0, ζ̄2/i2Id) for a parameter ζ̄2, which controls the similarity of
the functions (and coincides with the parameter in Assumption 9a). We control the stochastic noise
σ̄2 by adding Gaussian noise to every stochastic gradient. We depict the effect of these parameters in
Figure 5.2.

Setup. We consider three common network topologies, ring, 2-d torus and fully-connected graph
(see Fig. 4.1 from the previous Chapter) and use the Metropolis-Hasting mixing matrix W , i.e. wij =
wji =

1
deg(i)+1 = 1

deg(j)+1 for {i, j} ∈ E. For all algorithms we tune the stepsize to reach a desired
target accuracy ε with the fewest number of iterations.

Discussion of Results. In Figure 5.1 we depict the results. We observe that in the high noise regime
(bottom row) the graph topology and the functions similarity ζ̄2 do not impact the number of iterations
needed to reach the target accuracy (the σ̄2

T term is dominating in this regime. We also see linear rates
when σ̄2 = ζ̄2 = 0 as predicted. When increasing ζ̄2 (in the case of σ̄2 = 0) we see that on the ring
and torus topology the linear rate changes to a sublinear rate: even thought the curves look like straight
lines, they stop converging when reaching the target accuracy (the stepsize must be further decreased
to achieve higher accuracy). By comparing two top right plots, we see that for fixed topology the
number of iterations increases approximately by a factor of

√
10 when increasing ζ̄2 by a factor of 10,

3. These results can be recovered by optimizing the stepsize in [Wang and Joshi, 2018, Theorem 1] directly, instead of
resorting to the worse rate stated in [Wang and Joshi, 2018, Corollary 1].
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as one would expect from the term ζ̄2

p2T 2 in the convergence rate (see also Figure C.1 in the appendix).
The difference in number of iterations on the torus vs. ring scales approximately linear in the ratio of
their mixing parameters p, (that is, Θ(n) as mentioned in Section 5.5.2).

5.10 Extensions

We presented a unifying framework for the analysis of decentralized SGD methods and provide the
best known convergence guarantees. Our results show that when the noise is high, decentralized SGD
methods can achieve linear speedup in the number of workers n and the convergence rate does only
weakly depend on the graph topology, the number of local steps or the data heterogeneity. This shows
that such methods are perfectly suited to solve stochastic optimization problems in a decentralized
way. However, our results also reveal that when the noise is small (for e.g. when using large mini-
batches), the effect of those parameters become more pronounced and especially function diversity
can hamper the convergence of decentralized SGD methods.

Our framework can be further extended by considering gradient compression techniques intro-
duced in the previous Chapter 4 (that is based on [Koloskova et al., 2019, 2020a]) or overlapping
communication steps [Assran et al., 2018, Wang et al., 2020a] to additionally speedup the distributed
training.
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Chapter 6

An Improved Analysis of Gradient Tracking
for Decentralized Machine Learning

6.1 Preface

This chapter is based on [Koloskova et al., 2021]. It continues the line of work on understanding
theoretical optimization properties of decentralized algorithms, focusing this time on the GRADIENT

TRACKING algorithm that is unaffected by the functions heterogeneity. This algorithm is not covered
by the unified framework proposed in the previous Chapter 6 and requires a specific analysis.

Summary We consider decentralized machine learning over a network where the training data is
distributed across n agents, each of which can compute stochastic model updates on their local data.
The agent’s common goal is to find a model that minimizes the average of all local loss functions.
While gradient tracking (GT) algorithms can overcome a key challenge, namely accounting for differ-
ences between workers’ local data distributions, the known convergence rates for GT algorithms are
not optimal with respect to their dependence on the mixing parameter p (related to the spectral gap of
the connectivity matrix).
We provide a tighter analysis of the GT method in the stochastic strongly convex, convex and non-
convex settings. We improve the dependency on p from O(p−2) to O(p−1c−1) in the noiseless case
and from O(p−3/2) to O(p−1/2c−1) in the general stochastic case, where c ≥ p is related to the neg-
ative eigenvalues of the connectivity matrix (and is a constant in most practical applications). This
improvement was possible due to a new proof technique which could be of independent interest.

Co-authors Tao Lin and Sebastian U. Stich.

6.2 Introduction

Methods that train machine learning models on decentralized data offer many advantages over tra-
ditional centralized approaches in core aspects such as data ownership, privacy, fault tolerance and
scalability [Kairouz et al., 2019, Nedi, 2020]. Many current efforts in this direction come under the
banner of federated learning [Konečnỳ et al., 2016, McMahan et al., 2016, 2017, Kairouz et al., 2019],
where a central entity orchestrates the training and collects aggregate updates from the participating
devices. Fully decentralized methods, that do not rely on a central coordinator and that communicate
only with neighbors in an arbitrary communication topology, are still in their infancy [Lian et al.,
2017, Kong et al., 2021].
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The work of Lian et al. [2017] on decentralized stochastic gradient descent (D-SGD) has spurred
the research on decentralized training methods for machine learning models. This lead to improved
theoretical analyses as in Chapter 5 [Koloskova et al., 2020b] and to improved practical schemes,
such as support for time-varying topologies [Nedić and Olshevsky, 2014, Assran et al., 2018] and
in Chapter 5 [Koloskova et al., 2020b] and methods with communication compression [Tang et al.,
2018a, Wang et al., 2019, Tang et al., 2019], Chapter 4 [Koloskova et al., 2019]. One of the most
challenging aspect when training over decentralized data is data-heterogeneity, i.e. training data that
is in a non-IID fashion distributed over the devices (for instance in data-center training) or generated
in non-IID fashion on client devices [Li et al., 2018, Karimireddy et al., 2020, Li et al., 2020b,c]. For
example, we showed in Chapter 5 that the D-SGD method is affected by the heterogenity.w

In contrast, certain methods can mitigate the impact of heterogeneous data in decentralized opti-
mization. For instance the gradient tracking (GT) methods developed by Lorenzo and Scutari [2016]
and Nedi et al. [2016], or the later D2 method by Tang et al. [2018b] which is designed for communi-
cation typologies that remain fixed and do not change over time.

It is well known that GT methods do not depend on the heterogeneity of the data and that they
converge linearly on distributed strongly convex problem instances without stochastic noise [Lorenzo
and Scutari, 2016, Nedi et al., 2016]. However, when we apply these methods in the context of
machine learning, we need to understand how they are affected by stochastic noise and how they
behave on non-convex tasks.

In this chapter, we develop a new, and improved, analysis of the gradient tracking algorithm
with a novel proof technique. Along with the parallel contribution [Yuan and Alghunaim, 2021] that
developed a tighter analysis of the D2 algorithm, we now have a more accurate understanding of in
which setting GT works well and in which ones it does not, and our results allow for a more detailed
comparison between the D-SGD, GT and D2 methods (see Section 6.6 below).

Our analysis improves over all existing results that analyze the GT algorithm. Specifically, we
prove a weaker dependence on the connectivity of the network (spectral gap) which is commonly
incorporated into the convergence rates via the standard parameter p. For example, in the strongly
convex setting with stochastic noise we prove that GT converges at the rate Õ

(
σ2

nε+
1
c ·
(

σ√
pε+

1
p log 1

ε

))
where σ2 is an upper bound on the variance of the stochastic noise, and c ≥ p a new parameter (often
a constant). By comparing this result with the previously best known upper bound, Õ

(
σ2

nε + 1
p ·(

σ√
pε +

1
p log 1

ε

))
, by Pu and Nedić [2020], we see that our upper bound improves the last two terms

by a factor of c/p ≥ 1 and that the first term matches with known lower bounds [Nemirovsky and
Yudin, 1983]. The D2 algorithm [Tang et al., 2018b] only converges under the assumption that c is
a constant1 and the recent upper bound from [Yuan and Alghunaim, 2021] coincides with our worst
case complexity for GT on all topologies where D2 can be applied. We provide additional comparison
of GT convergence rates in the Tables 6.1 and 6.2.

Contributions. Our main contributions can be summarized as:

• We prove better complexity estimates for the GT algorithm than known before with a new proof
technique (which might be of independent interest).

• In the non-asymptotic regime (of importance in practice), the convergence rate depends on the
network topology. By defining new graph parameters, we can give a tighter description of
this dependency, explaining why the worst case behavior is rarely observed in practice (see
Section 6.6.1). We verify this dependence in numerical experiments.

1. In D2 the smallest eigenvalue of the mixing matrix W must bounded from below: mini λi(W ) ≥ − 1
3

.
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Table 6.1: Important advances for Gradient Tracking in the strongly convex case. Our analysis im-
proves upon all prior rates for both with and without the stochastic noise in terms of the graph param-
eter p.

Reference rate of convergence to ε-accuracy considered stochastic noise

Nedi et al. [2016] O
(

L3

µ3p2
log 1

ε

)
7

Alghunaim et al. [2021] O
(
L

µ
log 1

ε +
1

p2
log 1

ε

)
7

Qu and Li [2017] O
(

L2

µ2p2
log 1

ε

)
7

Pu and Nedić [2020] Õ

(
σ2

µnε
+

√
Lσ

µ
√
pp

√
ε
+

C1√
ε

)
a ✓

this work Õ

(
σ2

µnε
+

√
Lσ

µ
√
pc
√
ε
+

L

µpc
log 1

ε

)
✓

a. C1 is a constant that is independent of ε, but can depend on other parameters, such as σ, µ, L, p

• We show that in the presence of stochastic noise, the leading term in the convergence rate of
GT is optimal—we are the first to derive this in the non-convex setting—and matching the
unimprovable rate of all-reduce mini-batch SGD.

6.3 Related Work

Decentralized Optimization. Decentralized optimization methods have been studied for decades
in the optimization and control community [Tsitsiklis, 1984, Nedić and Ozdaglar, 2009, Wei and
Ozdaglar, 2012, Duchi et al., 2012a]. Many decentralized optimization methods [Nedić and Ozdaglar,
2009, Johansson et al., 2010] are based on gossip averaging [Kempe et al., 2003, Xiao and Boyd, 2004,
Boyd et al., 2006]. Such methods usually also work well on non-convex problems and can be used
used for training deep neural networks [Assran et al., 2018, Lian et al., 2017, Tang et al., 2018b].
There exists other methods, such as based on alternating direction method of multipliers (ADMM)
[Wei and Ozdaglar, 2012, Iutzeler et al., 2013], dual averaging [Duchi et al., 2012a, Nedić et al.,
2015, Rabbat, 2015], primal-dual methods [Alghunaim and Sayed, 2019, Kovalev et al., 2021], block-
coordinate methods for generalized linear models [He et al., 2018] or using new gradient propagation
mechanisms [Vogels et al., 2021].

DecentralizedOptimizationwithHeterogeneousObjectiveFunctions. There exists several algorithms
that are agnostic to data-heterogeneity. Notably, EXTRA [Shi et al., 2015] and decentralized primal-
dual gradient methods [Alghunaim and Sayed, 2019] do not depend on the data heterogeneity and
achieve linear convergence in the strongly convex noiseless setting. However, these algorithms are
not designed to be used for non-convex tasks.

D2 [Tang et al., 2018b, Yuan and Alghunaim, 2021] (also known as exact diffusion [Yuan et al.,
2019a,b]) and Gradient Tracking (GT) [Lorenzo and Scutari, 2016] (also known as NEXT [Lorenzo
and Scutari, 2016] or DIGing [Nedi et al., 2016]) are both algorithms that are agnostic to the data
heterogeneity level, can tolerate the stochastic noise, and that can be applied to non-convex objectives
such as the training of deep neural networks in machine learning. A limitation of the D2 algorithm
is that it is not clear how it can be applied to time-varying topologies, and that it can only be used
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Table 6.2: Important advances for Gradient Tracking in the non-convex case. Our result improves
upon all existing rates in terms of the graph parameter p.

Reference rate of convergence to ε-accuracy considered stochastic noise

Lorenzo and Scutari [2016] asymptotic convergence guarantees 7

Zhang and You [2020] O
(
Lnσ2

ε2
+

Ln

p3ε

)
✓

Lu et al. [2019] O
(
C1 + C2σ

ε2

)
a ✓

this work Õ
(
Lσ2

nε2
+
(

1√
pc +

1
p
√
n

) Lσ

ε3/2
+

L

pcε

)
✓

a. C1 and C2 are constants that are independent of ε, but can depend on other parameters, such as σ, n, L, p.

on constant mixing topologies with negative eigenvalue bounded from below by −1
3 . Other authors

proposed algorithms that perform well on heterogeneous DL tasks [Lin et al., 2021, Yuan et al., 2021],
but theoretical proofs that these algorithms are independent of the degree of heterogeneity are still
pending.

Gradient Tracking. There is a vast literature on the Gradient Tracking method itself. A tracking
mechanism was used by Zhu and Martínez [2010] as a way to track the average of a distributed
continuous process. Lorenzo and Scutari [2016] applied this technique to track the gradients, and
analyzed its asymptotic behavior in the non-convex setting with a time-varying topologies. Nedi et al.
[2016] analyze GT (named as DIGing) in the strongly convex noiseless case with a time-varying
network. Qu and Li [2017] extend the GT analysis to the non-convex, weakly-convex and strongly
convex case without stochastic noise. Nedi et al. [2017] allow the different stepsizes on different
workers. Yuan et al. [2020] analyze asymptotic behavior of GT for dynamic optimization. Pu and
Nedić [2020] studied the GT method on stochastic problems and strongly convex objectives. Further,
Xin et al. [2019] analyze asymptotic behavior of GT with stochastic noise. For non-convex stochastic
functions GT was analyzed by Zhang and You [2020] and Lu et al. [2019]. Li et al. [2020a] combine
GT with variance reduction to achieve linear convergence in the stochastic case. Tziotis et al. [2020]
obtain second order guarantees for GT.

6.4 Setup

As in all of the prior chapters, we consider optimization problems where the objective function is
distributed across n nodes,

min
x∈Rd

[
f(x) := 1

n

n∑
i=1

[
fi(x) = Eξ∼Di

Fi(x, ξ)
]]

, (2.1)

where fi : Rd → R denotes the local function available to the node i, i ∈ [n] := {1, . . . n}. Each
fi is a stochastic function fi(x) = Eξ∼Di

Fi(x, ξ) with access only to stochastic gradients ∇Fi(x, ξ).
This setting covers empirical risk minimization problems with Di being a uniform distribution over
the local training dataset. It also covers deterministic optimization when Fi(x, ξ) = fi(x), ∀ξ.

We consider optimization over a decentralized network, i.e. when there is an underlying commu-
nication graph G = (V,E), |V | = n, each of the nodes (e.g. a connected device) can communicate
only along the edges E. In decentralized optimization it is convenient to parameterize communication
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by a mixing matrix W ∈ Rn×n, where wij = 0 if and only if nodes i and j are not communicating,
(i, j) /∈ E.

Definition 12 (Mixing Matrix) A matrix with non-negative entries W ∈ [0, 1]n×n that is symmetric
(W =W⊤) and doubly stochastic (W1=1, 1⊤W =1⊤), where 1 denotes the all-one vector in Rn.

6.4.1 Notation

We use the notation x(t)
i ∈ Rd, y(t)

i ∈ Rd to denote the iterates and the tracking sequence, respectively,
on node i at time step t. For vectors zi ∈ Rd (zi could for instance be x(t)

i or y(t)
i ) defined for i ∈ [n]

we denote by z̄ = 1
n

∑n
i=1 zi.

We use both vector and matrix notation whenever it is more convenient. For vectors zi ∈ Rd

defined for i ∈ [n] we denote by a capital letter the matrix with columns zi, formally

Z := [z1, . . . , zn] ∈ Rd×n , Z̄ := [z̄, . . . , z̄] ≡ Z 1
n11⊤ , ∆Z := Z − Z̄ . (6.1)

We extend this definition to gradients of (2.1), with ∇F (X(t), ξ(t)),∇f(X(t)) ∈ Rd×n:

∇F (X(t), ξ(t)) :=
[
∇F1(x(t)

1 , ξ
(t)
1 ), . . . ,∇Fn(x(t)

n , ξ(t)n )
]
,

∇f(X(t)) :=
[
∇f(x(t)

1 ), . . . ,∇f(x(t)
n )
]
.

6.4.2 Algorithm

The Gradient Tracking algorithm (or NEXT, DIGing) can be written as(
X(t+1)

γY (t+1)

)⊤
=

(
X(t)

γY (t)

)⊤(
W 0
−W W

)
+ γ

(
0

∇F (X(t+1), ξ(t+1))−∇F (X(t), ξ(t))

)⊤
(GT)

in matrix notation. Here and X(t) ∈ Rd×n denotes the iterates, Y (t) ∈ Rd×n, with Y (0) = ∇F (X(t), ξ(t))
the sequence of tracking variables, and γ > 0 denotes the stepsize. This update is summarized in Al-
gorithm 6.

Algorithm 6 GRADIENT TRACKING

input: Initial values x(0)
i ∈ Rd on each node i ∈ [n], communication graph G = ([n], E) and mixing

matrix W , stepsize γ, initialize y(0)
i = ∇Fi(x(0)

i , ξ
(0)
i ), g(0)i = y(0)

i in parallel for i ∈ [n].

1: in parallel on all workers i ∈ [n], for t = 0, . . . , T − 1 do
2: each node i sends

(
x(t)
i , y(t)

i

)
to is neighbors

3: x(t+1)
i =

∑
j:{i,j}∈E wij

(
x(t)
j − γy(t)

j

)
▷ update model parameters

4: Sample ξ
(t+1)
i , compute gradient g(t+1)

i = ∇Fi

(
x(t+1)
i , ξ

(t+1)
i

)
5: y(t+1)

i =
∑

j:{i,j}∈E wijy(t)
j +

(
g(t+1)
i − g(t)i

)
▷ update tracking variable

6: end parallel for

Each node i stores and updates two variables, the model parameter x(t)
i and the tracking variable

y(t)
i . The model parameters are updated on line 3 with a decentralized SGD update but using y(t)

i
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graph/topology 1/p c

ring O(n2) 8/9
2d-torus O(n) ≥ 4/5
fully connected O(1) 1

Table 6.3: Parameters p and c for some common network topologies on n nodes for uniformly aver-
aging W , i.e. wij =

1
deg(i) =

1
deg(j) for {i, j} ∈ E, see e.g. [Nedi et al., 2018].

instead of a gradient. Variable y(t)
i tracks the average of all local gradients on line 5. Intuitively,

the algorithm is agnostic to the functions heterogeneity because y(t)
i is ‘close’ to the full gradient

of f(x) (suppose we would replace line 5 with exact averaging in every timestep, then y(t+1)
i =

1
n

∑n
i=1 g(t+1)

i . For further discussion of the tracking mechanism refer to [Lorenzo and Scutari, 2016,
Nedi et al., 2016, Pu and Nedić, 2020].

6.4.3 Assumptions

We first state an assumption on the mixing matrix.

Assumption 13 (Mixing Matrix) Let λi(W ), i ∈ [n], denote the eigenvalues of the mixing matrix
W with 1 = λ1(W ) > λ2(W ) ≥ · · · ≥ λn(W ) > −1. With this, we can define the spectral gap
δ = 1− max{|λ2(W )|, |λn(W )|}, and the mixing parameters

p = 1− max{|λ2(W )|, |λn(W )|}2 , c = 1− min{λn(W ), 0}2 . (6.2)

We assume that p > 0 (and consequently c > 0).
The assumption p > 0 ensures that the network topology is connected, and that the consensus

distance decreases linearly after each averaging step, i.e.
∥∥XW − X̄

∥∥2
F
≤ (1−p)

∥∥X − X̄
∥∥2
F
,∀X ∈

Rd×n. The parameter p is closely related to the spectral gap δ as it holds p = 2δ − δ2. From this we
can conclude that δ ≤ p ≤ 2δ and, asymptotically for δ → 0, p → 2δ. Assuming a lower bound on p
(or equivalently δ) is a standard assumption in the literature.

The parameter c is related to the most negative eigenvalue. From the definition (6.2) it follows
that the auxiliary mixing parameter c ≥ p for all mixing matrices W . The parameters p and c are only
equal when |λn(W )| ≥ |λ2(W )| and λn(W ) ≤ 0. Moreover, if the diagonal entries wii (self-weights)
of the mixing matrix are all strictly positive, then c has to be strictly positive.

Remark 3 (Lower bound on c.) Let W be a mixing matrix with diagonal entries (self-weights)
wii ≥ ρ > 0, for a parameter ρ. Then λn(W ) ≥ 2ρ− 1 and c ≥ min{2ρ, 1}.

This follows from Gershgorin’s circle theorem [Gerschgorin, 1931] that guarantees λn(W ) ≥
2ρ− 1, and hence c ≥ 1− min{2ρ− 1, 0}2 ≥ min{2ρ, 1}.

For many choices of W considered in practice, most notably when the graph G has constant node-
degree and the weights wij are chosen by the popular Metropolis-Hastings rule, i.e. wij = wji =
min

{
1

deg(i)+1 ,
1

deg(j)+1

}
for (i, j) ∈ E, wii = 1 −

∑n
j=1wij ≥ 1

maxj∈[n] deg(j) , see also [Xiao and
Boyd, 2004, Boyd et al., 2006]. In this case, the parameter c can be bounded by a constant depending
on the maximal degree. Moreover, for any given W , considering 1

2(W+In) instead (i.e. increasing the
self-weights), ensures that c = 1. However, in contrast to e.g. the analysis in [Yuan and Alghunaim,
2021] we do not need to pose an explicit bound on c as an assumption. In practice, for many graphs,
the parameter c is bounded by a constant (see Table 6.3).
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We further use the following standard assumptions:

Assumption 14 (L-smoothness) Each function fi : Rd → R, i ∈ [n] is differentiable and there exists
a constant L ≥ 0 such that for each x, y ∈ Rd:

‖∇fi(y)−∇fi(x)‖ ≤ L ‖x − y‖ . (6.3)

Sometimes we will in addition assume that the functions are (strongly) convex.

Assumption 15 (µ-strong convexity) Each function fi : Rd → R, i ∈ [n] is µ-strongly convex for
constant µ ≥ 0, i.e. for all x, y ∈ Rd:

fi(x)− fi(y) + µ
2 ‖x − y‖22 ≤ 〈∇fi(x), x − y〉 . (6.4)

Assumption 16 (Bounded noise) We assume that there exists constant σ s.t. ∀x1, . . . xn ∈ Rd

1
n

∑n
i=1 Eξi ‖∇Fi(xi, ξi)−∇fi(xi)‖2

2 ≤ σ2 . (6.5)

We discuss possible relaxations of these assumptions in Section 6.5.1 below.

6.5 Convergence results

We now present our novel convergence results for GT in Section 6.5.1 and Section 6.5.2 below. We
provide a proof sketch to explain the key difficulties and technical novelty compared to prior results
later in the next Section 6.7.

6.5.1 Main theorem—GT convergence in the general case

Theorem 7 Let x(t)
i , i ∈ [n], T > 2

p log
(
50
p (1 + log 1

p)
)

denote the iterates of the GT Algorithm 6
with a mixing matrix as in Definition 12. If Assumptions 13, 14 and 16 hold, then there exists a
stepsize γ such that the optimization error is bounded as follows:
Non-convex: Let F0 = f(x̄(0))− f⋆ for f⋆ ≤ minx∈Rd f(x). Then it holds

1
T+1

∑T
t=0

∥∥∇f(x̄(t))
∥∥2
2
≤ ε , after Õ

(
σ2

nε
+

(
1

√
pc

+
1

p
√
n

)
σ

ε3/2
+

1 + LR̃2
0F

−1
0

pcε

)
·LF0 iterations.

Strongly-convex: Under the additional Assumption 15 with µ > 0 and weights wt ≥ 0, WT =∑T
t=0wt, specified in the proof, it holds for R2

T+1 =
∥∥x̄(T+1) − x⋆

∥∥2:

∑T
t=0

wt
WT

[
E f(x̄(t))− f⋆

]
+ µ

2RT+1 ≤ ε , after Õ

(
σ2

µnε
+

√
Lσ

µ
√
pc
√
ε
+

L

µpc
log 1

ε

)
iterations.

General convex: Under the additional Assumption 15 with µ ≥ 0, it holds for R2
0 =

∥∥x̄(0) − x⋆
∥∥2:

1
T+1

∑T
t=0

[
E f(x̄(t))− f⋆

]
≤ ε , after Õ

(
σ2

nε2
+

√
Lσ

√
pcε3/2

+
L(1 + R̃2

0R
−2
0 )

pcε

)
·R2

0 iterations,

where R̃2
0 = 1

n

∑n
i=1 ‖x(0)

i − x̄(0)‖2 + 1
nL2

∑n
i=1 ‖y(0)

i − ȳ(0)‖2.
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From these results we see that the leading term in the convergence rate (assuming σ > 0) is not
affected by the graph parameters. Moreover, in this term we see a linear speedup in n, the number of
workers. The leading terms of all three results match with the convergence estimates for all-reduce
mini-batch SGD [Dekel et al., 2012, Stich, 2019a] and is optimal [Nemirovsky and Yudin, 1983]. This
means, that after a sufficiently long transient time, GT achieves a linear speedup in n. This transient
time depends on the graph parameters p and c, but not on the data-dissimilarity. We will discuss the
dependency of the convergence rate on the graph parameters c, p more carefully below in Sections 6.6
and 6.8, and compare the convergence rate to the convergence rates of D-SGD and D2.

Possible Relaxations of the Assumptions. Before moving on to the proofs, we mention briefly a few
possible relaxations of the assumptions that are possible with only slight adaptions of the proof frame-
work. These extensions can be addressed with known techniques and are omitted for conciseness. We
give here the necessary references for completeness.

• Bounded Gradient Assumption I. The uniform bound on the stochastic noise in Assump-
tion 16 could be relaxed by allowing the noise to grow with the gradient norm as was done in
the previous Chapter 5 [Koloskova et al., 2020b, Assumption 3b].

• Bounded Gradient Assumption II. In the convex setting it has been observed that σ2 can be re-
placed with σ2

⋆ := 1
n

∑n
i=1 Eξi ‖∇Fi(x⋆, ξi)−∇fi(x⋆)‖2

2, the noise at the optimum. However,
this requires smoothness of each Fi(x, ξ), ξ ∈ Di, which is stronger than our Assumption 14.
For the technique see e.g. [Nguyen et al., 2018b].

• Different mixing for X and Y . In Algorithm 6, both the x and y iterates are averaged on the
same communication topology (the same mixing matrix). This can be relaxed by allowing for
two separate matrices. This follows from inspecting our proof below.

• Local Steps. It is possible to extend Algorithm 6 and our analysis in Theorem 7 to allow
for local computation steps. Mixing matrix would alternate between identity matrix I (no
communication, local steps) and W (communication steps).
However, it is non trivial to extend our analysis to the general time-varying graphs, as the
product of two arbitrary mixing matrices W1W2 might be non symmetric.

6.5.2 Faster convergence on consensus functions

We now state an additional result, which improves Theorem 7 on the consensus problem, defined as

min
[
f(x) = 1

n

n∑
i=1

[
fi(x) := 1

2 ‖x − µi‖2
]]

, (6.6)

for vectors µi ∈ Rd, i ∈ [n] and optimal solution x⋆ = 1
n

∑n
i=1µi. Note that this is a special case

of the general problem (2.1) without stochastic noise (σ = 0). For this function, we can improve the
complexity estimate that would follow from Theorem 7 by proving a convergence rate that does not
depend on c.

Theorem 8 Let f be as in (6.6) let Assumption 13 hold. Then there exists a stepsize γ ≤ p such that
it holds 1

n

∑n
i=1

∥∥x(T )
i −x⋆

∥∥2 ≤ ε, for the iterates GT 6 and any ε > 0, after at most T = Õ
(
p log 1

ε

)
iterations.
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6.6 Discussion

We now provide a discussion of these results.

6.6.1 Parameter c

The convergence rate in Theorem 7 depends on the parameter c, that in the worst case could be as
small as p. In this case our theoretical result does not improve over existing results for the strongly
convex case. However, for many graphs in practice parameter c is bounded by a constant (see Ta-
ble 6.3 and discussion below Assumption 13).

While we show in Theorem 8 that it is possible to remove the dependency on c entirely from the
convergence rate in special cases, it is still an open question if the parameter c in Theorem 7 is tight
in general.

6.6.2 Comparison to prior GT literature

Tables 6.1 and 6.2 compare our theoretical convergence rates in strongly convex and non convex
settings. Our result tightens all existing prior work.

6.6.3 Comparison to other methods.

We now compare our complexity estimate of GT to D-SGD and D2 in the strongly convex case.
Analogous observations hold for the other cases too.

Comparison to D-SGD. A popular algorithm for decentralized optimization is D-SGD [Lian et al.,
2017] that converges as (Chapter 5 [Koloskova et al., 2020b]):

Õ

(
σ2

µnε
+

√
L
(
ζ +

√
pσ
)

µp
√
ε

+
L

µp
log 1

ε

)
. (D-SGD)

While GT is agnostic to data-heterogenity, here the convergence estimate depends on the data-heterogenity,
measured by a constant ζ2 that satisfies:

1
n

∑n
i=1 ‖∇fi(x⋆)−∇f(x⋆)‖22 ≤ ζ2 . (6.7)

Comparing with Theorem 7, GT completely removes dependence on data heterogeneity level ζ. More-
over, even in the homogeneous case when ζ = 0, GT enjoys the same rate as D-SGD for many
practical graphs when c is bounded by a constant.

Comparison to D2. Similarly to GT, D2 also removes the dependence on functions heterogeneity.
The convergence rate of D2 holds under assumption that λmin (W ) > −1

3 and it is equal to [Yuan and
Alghunaim, 2021]:

O

(
σ2

µnε
+

√
Lσ

µ
√
p
√
ε
+

L

µp
log 1

ε

)
. (D2)

Under the assumption λmin (W ) > −1
3 the parameter c is a constant, and the GT rate estimated in

Theorem 7 matches (D2).
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6.7 Proof sketch of the main theorem

Here we give a proof sketch for Theorem 7, for the special case of strongly convex objectives. We give
all proof details in the appendix and highlight the main technical difficulties and novel techniques.

KeyLemma. It is very common—and useful—to write the iterates in the form X(t) = X̄(t)+(X(t)−
X̄(t)), where X̄(t) denotes the matrix with the average over the nodes. We can then separately analyze
X̄(t) and the consensus difference ∆X(t) := (X(t) − X̄(t)) (and ∆Y (t) := (Y (t) − Ȳ (t))). Define
W̃ = W − 11⊤

n . From the update equation (GT) we see that(
∆X(t+1)

γ∆Y (t+1)

)⊤
=

(
∆X(t)

γ∆Y (t)

)⊤
︸ ︷︷ ︸

=:Ψt

(
W̃ 0

−W̃ W̃

)
︸ ︷︷ ︸

=:J

+γ

(
0(

∇F (Xt+1, ξt+1)−∇F (Xt, ξt)
)
(I − 11⊤

n )

)⊤
︸ ︷︷ ︸

=:Et

,

in short, by using the notation Ψt, J , and Et as introduced above,

Ψt+1 = ΨtJ + γEt . (6.8)

We could immediately adapt the proof technique from Chapter 5 [Koloskova et al., 2020b] if it would
hold that the spectral radius of J is smaller than one. However, this is not the case, and in general
‖J‖ > 1.

Note that for any integer i ≥ 0:

J i =

(
W̃ i 0

−iW̃ i W̃ i

)
‖J i‖2 = ‖W̃ i‖2 + i2‖W̃ i‖2 ≤ (1− p)i + i2(1− p)i , (6.9)

by Assumption 13. With this observation we can now formulate a key lemma:

Lemma 4 (Contraction) For any integer τ ≥ 2
p log

(
50
p (1 + log 1

p)
)

it holds that ‖Jτ‖2 ≤ 1
2 .

While the constants in this lemma are chosen to ease the presentation, most important for us is
that after τ = Θ̃

(
1
p

)
communication rounds, old parameter values (from τ steps ago) get discounted

and averaged by a constant factor. We can alternatively write the statement of Lemma 4 as∥∥ZJτ − Z̄
∥∥2
F
≤ 1

2

∥∥Z − Z̄
∥∥2
F
, ∀Z ∈ R2d×n .

This resembles Assumption 11 from the previous Chapter 5 [Koloskova et al., 2020b, Assumption
4] and the proof now follows the same pattern. A few crucial differences remain, as the result in
Chapter 5 [Koloskova et al., 2020b] depends on a data-dissimilarity parameter which we can avoid by
carefully estimating the tracking errors. For completeness, we sketch the outline and give all details
in the appendix.

AverageSequence. First, we consider the average sequences X̄(t) and Ȳ (t). As all columns of these
matrices are equal, we can equivalently consider a single column only: x̄(t) and ȳ(t).

Lemma 5 (Average) It holds that

ȳ(t) =
1

n

n∑
i=1

∇Fi

(
x(t)
i , ξ

(t)
i

)
, x̄(t+1) = x̄(t) − γ

1

n

n∑
i=1

∇Fi

(
x(t)
i , ξ

(t)
i

)
. (6.10)

This follows directly from the update (GT) and the fact that X̄ = X̄W for doubly stochastic
mixing matrices. The update of x̄(t) in (6.10) is almost identical to one step of mini-batch SGD (on a
complete graph). The average sequence behaves almost as a SGD sequence:
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6.7. Proof sketch of the main theorem

Lemma 6 (Descent lemma, Chapter 5 [Koloskova et al., 2020b, Lemma 8]) Under the Assumptions
of Theorem 7 for the convex functions, the averages x̄(t) := 1

n

∑n
i=1 x(t)

i of the iterates of Algorithm
6 with the stepsize γ ≤ 1

12L satisfy

E
∥∥x̄(t+1) − x⋆

∥∥2 ≤ (1− γµ

2

)
E
∥∥x̄(t) − x⋆

∥∥2 + γ2σ2

n
− γet +

3γL

n

n∑
i=1

E
∥∥x̄(t) − x(t)

i

∥∥2,
(6.11)

where et = E f(x̄(t))− f⋆, for f⋆ = minx∈Rd f(x).

Consensus Distance. The main difficulty comes from estimating the consensus distance ‖Ψt‖2, in
the notation introduced in (6.8). Note that

‖Ψt‖2 =
1

n

n∑
i=1

∥∥x(t)
i − x̄(t)

∥∥2
2
+

γ2

n

n∑
i=1

∥∥y(t)
i − ȳ(t)

∥∥2
2
.

By unrolling (6.8) for τ ≤ k ≤ 2τ , τ = 2
p log

(
50
p (1 + log 1

p)
)
+ 1 steps,

Ψt+k = ΨtJ
k + γ

k−1∑
j=1

Et+j−1J
k−j . (6.12)

By taking the Frobenius norm, and carefully estimating the norm of the error term
∥∥∑τ−1

j=1 Et+j−1J
τ−j
∥∥2
F

,
and using Lemma 4 we can derive a recursion for the consensus distance.

Lemma 7 (Consensus distance recursion) There exists absolute constants B1, B2, B3 > 0 such that
for a stepsize γ < c

B3Lτ

E ‖Ψt+k‖2F ≤ 7

8
E ‖Ψt‖2F +

1

128τ

k−1∑
j=0

‖Ψt+j‖2F +
B1τLγ

2

c2

k−1∑
j=0

net+j +
B2τγ

2

c2
nσ2. (6.13)

This lemma allows to replace p with c in the final convergence rate. This is achieved by grouping
same gradients in the sum

∥∥∑k−1
j=1 Et+j−1J

k−j
∥∥2
F

and estimating the norm with Lemma 57.
An additional technical difficulty comes when unrolling consensus recursion (6.13). As iteration

matrix J is not contractive, i.e. ‖J‖ > 1, then ‖Ψt+j‖2F for j < τ can be larger than ‖Ψt‖2F (up to

≈ 1
p2

times as
∥∥J i
∥∥2 ≤ O

(
1
p2

)
∀i). We introduce an additional term in the recursion that is provably

non-increasing

Φt+τ :=
1

τ

τ−1∑
j=0

‖Ψt+j‖2F .

With this we unroll consensus recursion.

Lemma 8 (Unrolling recursion) For γ < c√
7B1Lτ

≤ 1
2Lτ it holds,

E ‖Ψt‖2F ≤
(
1− 1

64τ

)t

A0 +
22B1τLγ

2

c2

t−1∑
j=0

(
1− 1

64τ

)t−j

nej +
20B2τγ

2

c2
nσ2 (6.14)

where ej = E[f(x̄(j))− f(x⋆)], A0 = 16‖∆X(0)‖2F + 24γ2

p2
‖∆Y (0)‖2F .

It remains to combine (6.13) and (6.14) using technique from the previous Chapter 5 [Koloskova
et al., 2020b]. □
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Proof sketch of Theorem 8. Using the matrix notation introduced above, the iterations of GT on
problem (6.6) can be written in a simple form:(

∆X(t+1)

γ∆Y (t+1)

)⊤
=

(
∆X(t)

γ∆Y (t)

)⊤(
W̃ γ (W − I)

−W̃ (1− γ)W̃

)
︸ ︷︷ ︸

J ′

.

Similar as above, also the matrix J ′ is not a contraction operator, but in contrast to J it is diago-
nalizable: J ′ = QΛQ−1 for some Q and diagonal Λ. It follows that

∥∥(J ′)t
∥∥2 =

∥∥QΛtQ−1
∥∥2 is

decreasing as (1− p)t ‖Q‖2
∥∥Q−1

∥∥2. With this observation, the proof simplifies. □

6.8 Experiments

In this section we investigate the tightness of parameters c and p in our theoretical result.

Setup. We consider simple quadratic functions defined as fi(x) = ‖x‖2, and x(0) is randomly
initialized from a normal distribution N (0, 1). We add artificially stochastic noise to gradients as
∇Fi(x, ξ) = ∇fi(x) + ξ, where ξ ∼ N (0, σ

2

d I) so that Assumption 16 is satisfied. We elaborate the
details as well as results under other problem setups in Appendix D.3.

We verify the dependence on graph parameters p and c for the stochastic noise term. We fix the
stepsize γ to be constant, vary p and c and measure the value of f(x̄(t))− f⋆ that GT reaches after a
large number of steps. According to the theory, GT converges to the level O

(
γσ2

n + γ2σ2

pc2

)
in a linear

number of steps (to reach higher accuracy, smaller stepsizes must be used). To decouple the second
term we need to ensure that the first term is small enough. For that, we take the number of nodes n
to be large. In all experiments we ensure that the first term is at least by order of magnitude smaller
than the second by comparing the noise level with GT on a fully-connected topology.

The effect of p. First, in Figure 6.1 we verify the expected O
(
1
p

)
dependence when c is a constant.

For a fixed n = 300 number of nodes with d = 100 we vary the value of a parameter p by interpolating
the ring topology (with uniform weights) with the fully-connected graph. The loss value f(x(∞))
scales linearly in 1

p as can be observed in Figure 6.1 and the dependency on p can thus not further be
improved.
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Figure 6.1: Impact of p on convergence with the stochastic noise σ2 = 1, when c and γ are kept constant. We
see a linear scaling in 1

p that verifies the O
(
1
p

)
, dependence rather than prior predicted O

(
1
p2

)
.

Theeffect of c. In Figure 6.2 we aim to examine the dependence of the term O
(

1
pc2

)
on the parameter

c, in terms of 1/(pc2) and 1/(cp). We take the ring topology on a fixed number of n = 300 nodes and
reduce the self-weights to achieve different values of c (see appendix for details). Otherwise the setup
is as above. The current numerical results may suggest the existence of a potentially better theoretical
dependence of the term c (as discussed in Section 6.5.2); we leave the study for future work.
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Figure 6.2: Impact of c on the convergence with the stochastic noise σ2 = 1, when p and γ are kept constant.
We see a near linear scaling in O

(
1
pc

)
while the estimate O

(
1

pc2

)
appears to be too conservative on this problem.

6.9 Conclusion

We have derived improved complexity bounds for the GT method, that improve over all previous
results. We verify the tightness of the second term in the convergence rate in numerical experiments.
Our analysis identifies that the smallest eigenvalue of the mixing matrix has a strong impact on the
performance of GT, however the smallest eigenvalue can often be controlled in practice by choosing
large enough self-weights (wii) on the nodes.

Our proof technique might be of independent interest in the community and might lead to im-
proved analyses for other gossip based methods where the mixing matrix is not contracting (for e.g.
in directed graphs, or using row- or column-stochastic matrices).
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Chapter 7

Sharper Convergence Guarantees for
Asynchronous SGD for Distributed and
Federated Learning

7.1 Preface

This chapter is based on [Koloskova et al., 2022]. This chapter explores another possible direction
for the efficient communications in distributed learning—the use of asynchrony. In contrast to the
prior chapters, it focuses on a simpler centralized communication schemes. In the subsequent work
(that is not part of this thesis)1 we already extended this work to more challenging decentralized
communication scheme.

Summary We study the asynchronous stochastic gradient descent algorithm for distributed training
over n workers which have varying computation and communication frequency over time. In this
algorithm, workers compute stochastic gradients in parallel at their own pace and return those to the
server without any synchronization. Existing convergence rates for this algorithm for non-convex
smooth objectives depend on the maximum gradient delay τmax and show that an ε-stationary point is
reached after O

(
σ2ε−2 + τmaxε−1

)
iterations, where σ denotes the variance of stochastic gradients.

In this work we obtain (i) a tighter convergence rate of O
(
σ2ε−2 +

√
τmaxτavgε−1

)
without any

change in the algorithm, where τavg is the average delay, which can be significantly smaller than τmax.
We also provide (ii) a simple delay-adaptive learning rate scheme, under which asynchronous SGD
achieves a convergence rate of O

(
σ2ε−2 + τavgε

−1
)
, and does not require any extra hyperparameter

tuning nor extra communications. Our result allows to show for the first time that asynchronous
SGD is always faster than mini-batch SGD. In addition, (iii) we consider the case of heterogeneous
functions motivated by federated learning applications and improve the convergence rate by proving
a weaker dependence on the maximum delay compared to prior works. In particular, we show that
the heterogeneity term in convergence rate is only affected by the average delay within each worker.

7.2 Introduction

The stochastic gradient descent (SGD) algorithm [Robbins and Monro, 1951b, Bottou et al., 2018]
and its variants (momentum SGD, Adam, etc.) form the foundation of modern machine learning and

1. This subsequent work is currently under review at AISTATS and will appear on arxiv in the following month.
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frequently achieve state of the art results. With recent growth in the size of models and available train-
ing data, parallel and distributed versions of SGD are becoming increasingly important [Zinkevich
et al., 2010, Dekel et al., 2012, Dean et al., 2012]. Without those, modern state-of-the art language
models [Shoeybi et al., 2019], generative models [Ramesh et al., 2021, 2022], and many others [Wang
et al., 2020b] would not be possible. In the distributed setting, also known as data-parallel training,
optimization is distributed over many compute devices working in parallel (e.g. cores, or GPUs on
a cluster) in order to speed up training. Every worker computes gradients on a subset of the training
data, and the resulting gradients are aggregated (averaged) on a server.

The same type of SGD variants also form the core algorithms for federated learning applica-
tions [McMahan et al., 2016, Kairouz et al., 2019] where the training process is naturally distributed
over many user devices, or clients, that keep their local data private, and only transfer (e.g. encrypted
or differentially private) gradients to the server.

A rich literature exists on the convergence theory of above mentioned parallel SGD methods, see
e.g. [Dekel et al., 2012, Bottou et al., 2018] and references therein. Plain parallel SGD still faces many
challenges in practice, motivating research on various approaches to improve efficiency of distributed
learning and mini-batch SGD. This includes for example communication compression techniques
[Alistarh et al., 2017, 2018b, Stich and Karimireddy, 2020, Vogels et al., 2019], decentralized com-
munication [Lian et al., 2017, Assran et al., 2018, Nedi, 2020, Koloskova et al., 2020b] or performing
several local SGD steps on workers before communicating with the server [Mangasarian and Solodov,
1994, McDonald et al., 2010, McMahan et al., 2016, Stich, 2018].

These approaches use synchronous communication, where workers in each round are required to
wait for the slowest one, before being able to start the next round of computations. In the presence of
such straggler nodes or nodes that have different computation speeds, other workers face significant
idle times. Asynchronous variants of SGD are aimed to solve such inefficiencies and use available
workers more effectively. In asynchronous SGD, each worker starts the next computation imme-
diately after finishing computing its own gradient, without waiting for any other workers. This is
especially important in the presence of straggler nodes. Asynchronous algorithms were studied both
in distributed and federated learning settings [Recht et al., 2011, Mania et al., 2017b, Leblond et al.,
2018, Stich et al., 2021, Nguyen et al., 2022a]. In this chapter we focus on such challenging asyn-
chronous variants of SGD and provide an improved theoretical analysis of convergence compared to
prior works.

Most existing work has studied the convergence behavior of asynchronous SGD for the setting of
homogeneous distributed training data, where worker’s objectives are i.i.d.. This assumption however
is only realistic e.g. in shared-memory implementations where all processes can access the same
data [Recht et al., 2011]. Under this assumption, it can be proven that asynchronous SGD finds an ε-
approximate stationary point (squared gradient norm bounded by ε) in O

(
σ2

ε2
+ τmax

ε

)
iterations [Stich

and Karimireddy, 2020], for smooth non-convex objective functions. This complexity bound depends
on the maximum delay of the gradients τmax and the gradient variance σ > 0. Unfortunately, the
maximal delay is a very pessimistic metric, not well reflecting the true behavior in practice. For
instance, if a worker struggles just once, the maximum delay is large, while we would still expect
reasonable overall convergence.

Two recent works [Cohen et al., 2021, Aviv et al., 2021] tackle this issue by proposing two new
delay-adaptive algorithms that achieve a convergence rate that depends only on the average delay of
the applied gradients, with Aviv et al. [2021] considering only the convex optimization and Cohen
et al. [2021] providing a rate of O

(
σ2

ε2
+

τavg
ε

)
for smooth non-convex functions. The average delay

can be much smaller than the maximal delay, and thus these methods are robust to rare stragglers.
However, Cohen et al. [2021] requires twice more communications at every step, and an extra hy-
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perparameter to tune. Aviv et al. [2021] analyze only convex functions and assume a bound on the
variance of the delays, which can frequently degrade with the maximum delay τmax. Moreover, both
works require the assumption that gradients are uniformly bounded.

In the realistic case of heterogeneous objective functions, that is in particular relevant in federated
learning applications [Kairouz et al., 2019], all the existent convergence rates of asynchronous SGD
depend on the maximum delay [Nguyen et al., 2022a].

Contributions

• For standard asynchronous SGD with constant stepsize, and with non-convex L-smooth homo-
geneous objective functions, we prove the tighter convergence rate of O

(
σ2

ε2
+

√
τavgτmax

ε

)
to

ε-small error. Under the additional assumption of bounded gradients, we obtain a convergence
rate of O

(
σ2

ε2
+

τavgG

ε3/2
+

τavg
ε

)
where G is the bound on the norm of gradients. The previously

best known rate was O
(
σ2

ε2
+ τmax

ε

)
.

• With homogeneous objective functions, we provide a delay-adaptive stepsize scheme that does
not require tuning of any extra hyperparameters, and converges at the rate of O

(
σ2

ε2
+

τavg
ε

)
for

non-convex L-smooth functions.

• This result allows us to show that asynchronous SGD is always better than mini-batch SGD
regardless of the delays pattern (under assumption that the server can perform operations with
zero time).

• We also consider distributed optimization with heterogeneous objectives where the delays can

depend on the workers and give the convergence rate of O
(
σ2

ε2
+ ζ2

ε2
+

√
τavg

1
n

∑n
i=1 ζ

2
i τ

i
avg

ε
3
2

+
√
τavgτmax

ε

)
, where ζi’s measure functions heterogeneity and τ̄i is the average delay of worker

i. This rate improves over the best previously-known results that had worse dependence on the
maximum delay τmax.

7.3 Related Work

Asynchronous SGD. The research field of asynchronous optimization can be traced back at least
to 1989 [Bertsekas and Tsitsiklis, 1989]. Recent works are heavily focused on its SGD variants,
such as Hogwild! SGD [Niu et al., 2011] which deals with coordinate-wise asynchronity. Nguyen
et al. [2018a] provided a tighter convergence analysis by removing the bounded gradient assumption.
Our work does not focus on such a coordinate-wise asynchrony as it relies on sparsity assumption
that is not realistic in modern machine learning applications. Mania et al. [2017b] introduces the
perturbed iterate framework which enabled theoretical advances with tighter convergence rates [Stich
and Karimireddy, 2020, Stich et al., 2021]. Leblond et al. [2018] focus on asynchronous variance-
reduced methods.

Many works [Agarwal and Duchi, 2011b, Chaturapruek et al., 2015, Feyzmahdavian et al., 2016,
Arjevani et al., 2020, Sra et al., 2016, Lian et al., 2015, Stich and Karimireddy, 2020, Dutta et al.,
2018a] focused on asynchronous SGD variants where workers communicate with the server without
any synchronization, but these communications are considered to be atomic. All of these works pro-
vide convergence guarantees that depend on the maximum delay τmax with [Arjevani et al., 2020,
Stich and Karimireddy, 2020] providing the first tight convergence rates under assumption that the
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delays are always constant for quadratic and general (convex, strongly convex and non-convex) func-
tions correspondingly. Stich et al. [2021] showed a connection of large batches and delays, although
still depending only on the maximum delay. Even et al. [2021] consider a continuized view of the
time (rather than classical per-iteration time) for asynchronous algorithms on a decentralized network.
[Alistarh et al., 2018a] improve the convergence rates of asynchronous SGD to depend on

√
τmaxn,

however assuming bounded gradients. Under bounded gradients our convergence rates completely
remove dependence on the maximum delay τmax.

Delay-adaptive methods. The works [Zheng et al., 2017, Zhang et al., 2016b, Sra et al., 2016, Wu
et al., 2022, McMahan and Streeter, 2014, Dutta et al., 2018a] considered delay-adaptive schemes
to mitigate adversarial effect of stragglers, however with convergence rates that still depend on the
maximum delay τmax. Only Cohen et al. [2021] in the non-convex, and Aviv et al. [2021] in the
convex case were able to obtain convergence rates depending on the average delay τavg. Concurrent to
our work, Mishchenko et al. [2022] provide a delay-adaptive stepsize scheme and derive convergence
guarantees similar to ours. Similar to us, they considered asynchronous SGD with constant stepsizes,
but under different assumptions: assuming only Lipschitz-continuity of functions instead of Lipschitz-
smoothness. They did not discuss the connection of the number of workers to the average delay.
For the heterogeneous case they chose a different approach than ours and provide a delay-adaptive
learning rate that converges only to an approximate solution, but allows workers to be arbitrarily long
delayed (including the case when some of the workers are never responding).

Asynchronous federated learning. In typical federated learning (FL) applications [McMahan et al.,
2016], clients or workers frequently have very different computing powers/speed. This makes espe-
cially appealing for practitioners to use asynchronous algorithms for FL [Stich, 2018, Nguyen et al.,
2022a, Zakerinia et al., 2022, Avdiukhin and Kasiviswanathan, 2021, Yang et al., 2021, Gu et al.,
2021, Aytekin et al., 2016, Glasgow and Wootters, 2020, Yan et al., 2020] with many of these works
focusing on correcting for unequal participation ratio of different clients [Yan et al., 2020, Glasgow
and Wootters, 2020, Gu et al., 2021, Aytekin et al., 2016, Yang et al., 2021] by implementing variance
reduction techniques on the server. Nguyen et al. [2022a] introduce the FedBuff algorithm that is very
close to the algorithm that we consider in this work and show its practical superiority over classical
synchronous FL algorithms.

7.4 Setup

We consider optimization problems where the components of the objective function (i.e. the data for
machine learning problems) is distributed across n workers (or clients),

min
x∈Rd

[
f(x) := 1

n

n∑
i=1

[
fi(x) :=Eξ∼Di

Fi(x, ξ)
]]

. (2.1)

Here fi : Rd → R denotes the local objective function that is accessible to the worker i, i ∈ [n] :=
{1, . . . n}. Each fi is a stochastic function fi(x) = Eξ∼Di

Fi(x, ξ) and clients can only access stochas-
tic gradients ∇Fi(x, ξ). This setting covers deterministic optimization if Fi(x, ξ) = fi(x), ∀ξ. It also
covers empirical risk minimization problems by setting Di being a uniform distribution over a lo-
cal dataset {ξ1i . . . ξ

mi
i } of size mi. In this case the local functions fi can be written as finite sums:

fi(x) = 1
mi

∑mi
j=1 Fi(x, ξji ).
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Assumptions. For our convergence analysis we rely on following standard assumptions on the func-
tions fi and Fi. We restate these assumptions from Chapter 2 as we use slightly different variations:

Assumption 17 (Bounded variance) We assume that there exists a constant σ ≥ 0 such that

Eξ∼Di
‖∇Fi(x, ξ)−∇fi(x)‖ ≤ σ2 , ∀i ∈ [n], ∀x ∈ Rd . (7.1)

Assumption 18 (Bounded function heterogeneity) We assume that there exists n constants ζi ≥ 0,
i ∈ [n] such that

‖∇fi(x)−∇f(x)‖22 ≤ ζ2i , ∀x ∈ Rd , and define ζ2 := 1
n

∑n
i=1 ζ

2
i . (7.2)

Assumption 19 (L-smoothness) Each function fi : Rd → R, i ∈ [n] is differentiable and there exists
a constant L ≥ 0 such that

‖∇fi(y)−∇fi(x)‖ ≤ L ‖x − y‖ . ∀x, y ∈ Rd . (7.3)

For only some of our results we will assume a uniform bound on the gradient norm:

Assumption 20 (Bounded gradient) Each function fi : Rd → R, i ∈ [n] is differentiable and there
exists a constant G ≥ 0 such that

‖∇fi(x)‖22 ≤ G2 , ∀x ∈ Rd . (7.4)

7.5 Homogeneous Distributed Setting

We start with an important special case of problem (2.1) where the objective functions are identical
for all workers, i.e. fi(x) ≡ fj(x) for all i, j ∈ [n], such as in the case of homogeneously (i.i.d.)
distributed training data. Consequently, this implies that Assumption 18 holds with ζi = 0, i ∈ [n].
Many classical works have focused on asynchronous algorithms under this homogeneous setting (e.g.
[Arjevani et al., 2020, Stich and Karimireddy, 2020, Agarwal and Duchi, 2011b, Feyzmahdavian et al.,
2016, Sra et al., 2016, Lian et al., 2015, Stich et al., 2021], see the related work for more references).
This setting commonly appears in the datacenter setup for distributed training [Dean et al., 2012],
where all nodes (or GPUs) have access to the full dataset or data distribution. Moreover, this special
case allows us to present our main ideas in a simplified way, without complicating the presentation
due to data heterogeneity. We will later see that most of the results in this section can also be obtained
as a corollary of the more general heterogeneous functions case (Section 7.6) by setting ζi = 0 i ∈ [n].

7.5.1 Algorithm

We consider standard asynchronous SGD (also known as delayed SGD, or SGD with stale updates)
as presented in Algorithm 7, see e.g. [Arjevani et al., 2020, Stich and Karimireddy, 2020, Agarwal
and Duchi, 2011b, Feyzmahdavian et al., 2016, Sra et al., 2016, Lian et al., 2015, Stich et al., 2021].
First, the server initializes training by selecting an initial active worker set C0 and assigning x(0) to
these workers. Throughout the algorithm, the active workers compute gradients at their own speed,
based on their local data. On line 4, once some worker (which we denote as jt) finishes computing
its gradient, it sends the result to the server. On line 5 the server incorporates the received—possibly
delayed—gradient, using a stepsize ηt that can depend on the gradient delay τt. The gradient delay τt
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Algorithm 7 ASYNCHRONOUS SGD

input: Initial value x(0) ∈ Rd

1: server selects a set of active workers C0⊆ [n] and sends them x(0)

2: for t = 0, . . . , T − 1 do
3: active workers Ct are computing stochastic gradients in parallel at the assigned points
4: once a worker jt finishes compute, it sends ∇F (x(t−τt), ξt−τt) to the server
5: server updates x(t+1) = x(t) − ηt∇F (x(t−τt), ξt−τt)
6: server selects subset At⊆ [n] of inactive workers, i.e. (Ct\{jt})∩At=∅, and sends them x(t+1)

7: update active worker set Ct+1 = Ct\{jt} ∪ At

8: end for

is defined as the difference between the iteration at which worker jt started to compute the gradient
and the iteration t at which it got applied. We index the stochastic noise of the gradients ξt by iteration
t to highlight that previous iterates x(t′) for t′ ≤ t do not depend on this stochastic noise. However,
the client selects the data sample ξt at iteration t− τt when the computation starts. After that, on lines
6–7 the server selects the new active workers out of the ones that are currently inactive (including
worker jt) and assigns them the latest iterate x(t+1).

In contrast to previous works, we explicitly define the set of workers that are busy with compu-
tations at every step t as Ct (the active workers set). Note that this does not pose any restrictions. A
main advantage of allowing the sets Ct to be different at every step t lies in the possibility to also cover
mini-batch SGD as a special case, which we discuss in Example 9. Our theoretical results depend on
the size of these sets Ct, a.k.a. the concurrency.

Definition 21 (Concurrency) The concurrency τ (t)C at step t is defined as the size of the active worker
set Ct, i.e. τ (t)C = |Ct|. We also define the maximum and average concurrency as

τC = max
t

{τ (t)C } , τ̄C = 1
T+1

∑T
t=0 τ

(t)
C .

Note that in many practical scenarios, we have a constant concurrency of n over time, meaning
that all n workers are active at every step, and thus τC = τ̄C = n.

We discuss two important practical examples that fit into our Algorithm 7:

Example 9 (Mini-batch SGD) Mini-batch SGD with batch size n can be seen as a special case of
Algorithm 7, as follows: The server (i) in line 1 selects all n workers, C0 = [n]; (ii) in line 6 does
not select new workers while the gradients from the same batch have not been fully applied yet, i.e.
At = ∅ if t mod n 6= 0; (iii) in line 6 selects At = [n] if t mod n = 0 to start a new batch.

Example 10 (Asynchronous SGD with maximum concurrency) In practical implementations one
should always aim to utilize all resources available and thus (i) in line 1 select all available workers
C0 = [n]; (ii) in line 6 select to re-assign the worker that finished its computations At = {jt} so that
workers are always kept busy with jobs.

7.5.2 Theoretical analysis: Constant stepsizes

We first formally define the average and maximum delays.

Definition 22 (Average and maximum delays) Let {τt}T−1
t=0 be the delays of the applied gradients in

Algorithm 7. We define {τCTi }i∈CT \{jT } as the delays of gradients which are in flight at time T , that
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is they have remained unapplied at the last step. Each τCTi is equal to the difference between the last
iteration T and the iteration at which worker i started to compute its last gradient. We then define the
average and the maximum delays as

τavg =
1

T + |CT | − 1

( T−1∑
t=0

τt +
∑

i∈CT \{jT }

τCTi

)
, τmax = max

{
max

t=1,...T−1
τt, max

i∈CT \{jT }
τCTi

}
. (7.5)

We further provide a key observation on the connection between the average delay and the average
concurrency. This observation, is one of the essential elements for achieving an improved analysis.

Remark 11 (Key Observation) In Algorithm 7 the average concurrency τ̄C is connected to the aver-
age delay τavg as

τavg =
T + 1

T + |CT | − 1
τ̄C

T>|CT |
= Θ(τ̄C) . (7.6)

We explain this observation on a simple example. Assume that the concurrency is constant at
every step (τC = τ̄C), and that all workers except one are responding very rarely. Then on steps 4–5
of Algorithm 7 only this one responding worker would mostly participate. This means that for this
one worker the delay τt would be frequently equal to zero, and the overall average delay will be small.

Next, we provide our theoretical results. We first focus on the Asynchronous SGD Algorithm 7
under constant stepsizes, i.e. ηt ≡ η. This setting was studied in many works such as [Agarwal
and Duchi, 2011b, Feyzmahdavian et al., 2016, Arjevani et al., 2020, Lian et al., 2015, Stich and
Karimireddy, 2020].

Theorem 9 (Constant stepsizes) Under Assumptions 17, 19, there exists a constant stepsize ηt ≡ η

such that for Algorithm 7 it holds that 1
T+1

∑T
t=0

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O
(
σ2

ε2
+

√
τCτmax
ε

)
iterations. (7.7)

If we additionally assume bounded gradient Assumption 20, then 1∑T
t=0 |At|

∑T
t=0 |At|

∥∥∇f(x(t))
∥∥2
2
≤

ε after

O
(
σ2

ε2
+

τCG

ε3/2
+

τC
ε

)
iterations. (7.8)

Under constant concurrency, we can directly connect τC to the average delay τavg due to Re-
mark 11. We highlight again that in practice, to get the best utilization of the available resources,
practical implementations choose the maximum concurrency possible, which is equal to n.

Corollary 10 If in Algorithm 7 the concurrency is constant at every step (thus τC = τ̄C), then under
the same conditions as in Theorem 9 the convergence rate of Algorithm 7 is

O
(
σ2

ε2
+

√
τavgτmax

ε

)
and O

(
σ2

ε2
+

τavgG

ε3/2
+

τavg
ε

)
(7.9)

for the case without and with bounded gradients (Assumption 20) respectively.
The previously best known convergence rate for Asynchronous SGD (Algorithm 7) under constant

stepsizes was given in [Stich and Karimireddy, 2020] and is equal to O
(
σ2

ε2
+ τmax

ε

)
. In our theorem

we improved the delay dependence from τmax to √
τavgτmax in the last term without any change in the

algorithm, only by taking into account concurrency that is usually fixed in practical implementations
anyways. No other work previously made an assumption on the number of computing workers in their
theoretical analysis. √

τavgτmax could be much smaller than τmax in the presence of rare straggler
devices. With an additional assumption of bounded gradients, the dependence on the maximum delay
can be completely removed.
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7.5.3 Theoretical analysis: Delay-adaptive stepsizes

In many cases, the bounded gradient Assumption 20 is unrealistic [Nguyen et al., 2018a], meaning
that the gradient bound G is often large and thus the rate (7.8) is loose. In this section we show that by
weighting the stepsize down for the gradients that have a large delay, once can remove the dependence
on the maximum delay τmax without assuming bounded gradients (Assump. 20).

Theorem 11 (Delay-adaptive stepsizes) There exist a parameter η ≤ 1
4L such that if we set the

stepsizes in Algorithm 7 dependent on the delays as

ηt =

{
η τt ≤ 2τC ,

< min{η, 1
4Lτt

} τt > 2τC ,
(7.10)

then for Algorithm 7, under Assumptions 17, 19 it holds that 1∑T
t=0 ηt

∑T
t=0 ηt

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O
(
σ2

ε2
+

τC
ε

)
iterations. (7.11)

In our theorem, the stepsize ηt in the case of large delays τt > 2τC can be an arbitrary value
between 0 and min{η, 1

4Lτt
}. Setting the stepsize ηt ≡ 0 is equivalent to dropping these gradients.

Proof sketch of Theorem 11. We give the intuitive proof sketch for the case when we drop gradients
with τt > 2τC and we deal with the general case in the Appendix. We know that τavg ≈ τ̄C ≤ τC
from Remark 11. It also holds that the number of gradients that have delay larger than the two times
the average delay 2τavg is smaller than half of all the gradients (≤ T

2 ) because delays are bounded
below by zero (τt ≥ 0 ∀t). Thus, dropping the gradients with the delay τt > 2τC , or equivalently
setting their stepsize ηt ≡ 0, will degrade the convergence rate at most by half, while the maximum
delay among the applied ones now is equal to 2τC . Thus we can apply the result from [Stich and
Karimireddy, 2020] with τmax = 2τC .

Corollary 12 If in Algorithm 7 the concurrency is constant at every step (thus τC = τ̄C), then under
the same conditions as in Theorem 11 the convergence rate of Algorithm 7 is

O
(
σ2

ε2
+

τavg
ε

)
. (7.12)

7.5.4 Discussion

Comparison to synchronous optimization. Mini-batch SGD with batch size n has the same degree
of parallelism as Algorithm 7 with constant concurrency n, i.e. it has n workers computing gradients
in parallel. Mini-batch SGD needs O

(
σ2

nε2
+ 1

ε

)
[Ghadimi and Lan, 2013] batches of gradients to

reach an ε-stationary point, and thus needs O
(
σ2

ε2
+ n

ε

)
gradients, as the batch-size is equal to n. On

the contrary, asynchronous SGD Algorithm 7 with stepsizes chosen as in (7.10) achieves exactly the
same rate (7.12) since τavg = τC = n, while its expected per-iteration time is faster than that of
mini-batch SGD, as no workers have to wait for others. Thus, our result shows that asynchronous
SGD is always faster than mini-batch SGD regardless of the delay pattern. A small note that in our
reasoning we implicitly assumed that the sever can perform its operations in negligible time.
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Tuning the stepsize. It is worth noting that our stepsize rule (7.10) does not introduce any additional
hyperparameters to tune compared to the constant stepsize case or to synchronous SGD. τC is usually
known and can be easily controlled by the server, especially in the practical constant concurrency
case. Thus, to implement such a stepsize rule (7.10) one needs to tune only stepsize η, and in case of
τt > 2τC set stepsize ηt ≤ η

τt
.

Average v.s. maximum delay. In a homogeneous environment when every worker computes gradi-
ents with same speed during the whole training, the average and maximum delays would be almost
equal. However, occasional straggler devices will usually be present. In this case the maximum delay
is much larger than the average delay.

Consider a simple example with n = 2 workers, where the first worker computes gradients very
fast, while the second worker returns its gradient only at the end of the training at the last iteration
T . In this case the average delay τavg = 2 is a small constant, while the maximum delay τmax = T .
In this case the rate depending only on the maximum delay τmax would guarantee convergence only
up to a constant accuracy ε = O(1). While both rates with √

τmaxτavg and with τavg guarantee
convergence up to an arbitrary small accuracy.

Comparison to othermethods. Cohen et al. [2021] recently proposed the PickySGD algorithm that
achieves a convergence rate of O

(
σ2

ε2
+

τavg
ε

)
(same as (7.12)). Their algorithm discards gradients

based on the distance between the current point and the delayed one
∥∥x(t) − x(t−τt)

∥∥. The disadvan-
tage of their method is that it requires sending points x(t−τt) along with the gradients thus incurring
twice more communications at every step. Their method also requires tuning an extra hyperparameter.
In this work we achieve the same convergence rate with a much simpler method that does not require
any additional communications nor additional tuning compared to synchronous SGD.

[Aviv et al., 2021] also recently proposed the delay-adaptive algorithm with convergence rate
depending on the average delay τavg for the convex and strongly convex cases. Although, our conver-
gence rates are for the non-convex case and are not directly comparable to theirs, we highlight some
key differences in their analysis. First, their convergence rate depends not only on τavg but also on
the variance στ of the delays, which can degrade with the maximum delay. Second, they require the
bounded gradient Assumption 20. In Theorem 9 we show that under Assumption 20 no modifications
to the algorithm are needed to completely remove the dependence on the maximum delay τmax (7.8).

Tightness. As we explained in Example 9, mini-batch SGD is covered by Algorithm 7. We know
that mini-batch SGD convergence is lower bounded by Θ

(
σ2

nε2
+ 1

ε

)
[Arjevani et al., 2019] in terms

of batches processed and thus by Θ
(
σ2

ε2
+ n

ε

)
in terms of the gradients computed. Our convergence

rate given in Theorem 9 coincides with this lower bound as in this case concurrency τC = n, τavg =
τ̄C = n

2 .

7.6 Heterogeneous Distributed Setting

In this section we consider more general problems of the form (2.1) where the functions fi are dif-
ferent on different workers. This setting is motivated for example by federated learning [McMahan
et al., 2016, Kairouz et al., 2019], where every worker (client) possesses its own private data, possibly
coming from a different data distribution, and thus has its own different local objective function fi.

The setting here is therefore more general than the one considered in previous Section 7.5, and
we will see that some of the results (with the constant stepsizes) in the homogeneous case follow as a
special case of the more general results we present in this section.
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7.6.1 Algorithm

We consider asynchronous SGD as given in Algorithm 8. Close variants of this algorithm were studied
in several prior works [Nguyen et al., 2022a, Stich, 2018]. In order to simplify the presentation, we
consider that concurrency is constant over time (and thus τC = τ̄C in Definition 21). In order to allow
for client subsampling often implemented in practical federated learning applications, we allow the
concurrency τC to be smaller than overall number of workers n. The same concurrency model was
recently considered in the practical FedBuff algorithm [Nguyen et al., 2022a].

Algorithm 8 ASYNCHRONOUS SGD with concurrency τC

input: Initial value x(0) ∈ Rd, n clients, concurrency τC

1: server selects uniformly at random a set of active clients C0 of size τC and sends them x(0)

2: for t = 0, . . . , T − 1 do
3: active clients Ct are computing stochastic gradients in parallel at the assigned points
4: once some client jt finishes compute, it sends ∇Fjt(x(t−τt), ξt−τt) to the server
5: server updates x(t+1) = x(t) − ηt∇Fjt(x(t−τt), ξt−τt)
6: sever selects a new client kt ∼ Uniform[1, n] and sends it x(t+1)

7: update the active worker multiset Ct+1 = Ct\{jt} ∪ {kt}
8: end for

The algorithm is very similar to the homogeneous Algorithm 7 with two key differences: at line 6,
the server selects clients out of all clients, and does so uniformly at random, regardless of the current
active worker set Ct. This means that the same client can get sampled several times, even if it didn’t
finish its previous job(s) yet (thus Ct is a multiset). In this case, the assigned jobs would just pile up
on this client.

7.6.2 Theoretical analysis

We first note that our key observation on the delays (Remark 11) holds for Algorithm 8 as well.
Moreover, as we have a constant concurrency τC at every step, τavg = Θ(τC).

Definition 23 Denote a (possibly empty) set {τCT ,i
k }k to be the set of delays from gradients of the

client i that are left unapplied at the last iteration of the Algorithm 8.
We define the average delay of a client i as

τ iavg =
1

Ti

 ∑
t : jt=i

τt +
∑
k

τCT ,i
k


where Ti is the number of times that client i was sampled during lines 1 and 6 of Algorithm 8.

Assumption 24 The average delay τ iavg is independent from the number of times Ti that client i was
sampled.

Theorem 13 (constant stepsizes) Under Assumptions 17, 18, 19, 24 there exists a constant stepsize
ηt ≡ η such that for Algorithm 8 it holds that 1

T+1

∑T
t=0

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O

σ2

ε2
+

ζ2

ε2
+

√
τavg

1
n

∑n
i=1 ζ

2
i τ

i
avg

ε
3
2

+

√
τavgτmax

ε

 iterations, (7.13)
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Under Assumptions 17, 18, 19 and additional bounded gradient Assumption 20, it holds that
1

T+1

∑T
t=0

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O
(
σ2

ε2
+

ζ2

ε2
+

τavgG

ε
3
2

+
τavg
ε

)
iterations. (7.14)

We note that the leading 1
ε2

term is affected by heterogeneity ζ2 because at every step we apply
gradient from only one client. This term is usually present in the federated learning algorithms with
client subsampling see e.g. [Karimireddy et al., 2020].

7.6.3 Discussion

Comparison to other works. The recent FedBuff algorithm [Nguyen et al., 2022a] is similar to our
Algorithm 8. Their algorithm allows clients to perform several local steps and the server to wait for
more than 1 client to finish compute (aka buffering), which we did not include for simplicity as these
aspects are orthogonal to the effect of delays.

Disregarding these two orthogonal changes, the FedBuff algorithm is almost equivalent to our
Algorithm 8 with a key difference: they assume that the client jt that finishes computation at every
step comes from the uniform distribution over all the clients. This is unrealistic to assume in practice
because the server cannot control which clients finish computations at every step. In Algorithm 8 we
have the more realistic assumption only on the sampling process of the new clients (on line 6) that
can be controlled by the server. This reflects practical client sampling in federated learning.

The convergence rate of FedBuff [Nguyen et al., 2022a] under the bounded gradient assumption
is O
(
σ2

ε2
+ ζ2

ε2
+ (ζ2+1)τmaxG2

ε

)
. In contrast, in Theorem 13 we completely remove the dependence on

the maximum delay τmax under bounded gradients (as in Equation (7.14)).

Delays. We note that for Theorem 13 we did not impose any assumption on the delays. Thus, our
result allows clients and the delays on these clients to be dependent, meaning that some of the clients
could be systematically slower than others. Interestingly, the middle heterogeneity term (the term
with ζi) is not affected by the maximum delay at all, but is affected by the average delay within each
individual client. If all the heterogeneity parameters are equal, i.e. ζi = ζj , ∀i, j, then the middle
term will be affected only by the overall average delay τavg.

Gradient clipping. Practical implementations of FL algorithms usually apply clipping to the gradi-
ents in order to guarantee differential privacy [Kairouz et al., 2019]. This automatically bounds the
norm of all applied gradients, making the the constant G2 in Assumption 20 small. Although we do
not provide formal convergence guarantees of asynchronous SGD with gradient clipping, we envision
that its convergence rate would depend only on the average delay, similar to the bounded gradient case
(7.8), thus making the algorithm robust to stragglers.

Delay-adaptive stepsizes. For homogeneous functions we have shown that delay-adaptive stepsizes
result in a convergence rate dependent only on the average delay τavg without assuming bounded
gradients (as in Equation (7.10)). However in the heterogeneous case this is not so straightforward.
Delay-adaptive learning rate schemes will introduce a bias towards the clients that compute quickly,
and Algorithm 8 would converge to the wrong objective.

It is interesting to note that current popular schemes implemented in practice for FL over-selects
the clients at every iteration [Bonawitz et al., 2019]. The server waits only for some percentage (e.g.
80%) of sampled clients and discards the rest. Such a scheme also introduces a bias towards fast
workers. A delay-adaptive learning rate scheme is expected to introduce less bias as the gradients are
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still applied but with the smaller weight. We leave this question for future practical investigations, as
it is not the focus of our current work.

Independent delays. If the delays and the clients are independent (e.g. coming from the same
distribution for all of the clients), then the convergence rate of Algorithm 8 will simplify to O

(
σ2

ε2
+

ζτavg

ε
3
2

+
√
τavgτmax

ε

)
(without needing bounded gradient assumption). In this case it is also possible

to use delay-adaptive stepsizes (similar to Theorem 11) to completely remove the dependence on the
maximum delays τmax without assuming bounded gradients.

Extensions. We can extend the Algorithm 8 and our theoretical analysis to allow clients to perform
several local steps, before sending back the change in x. We can also extend Algorithm 8 to allow the
server to wait for the first K clients to finish computations rather than just one, similar to [Nguyen
et al., 2022a]. These extensions are straightforward and we excluded them here for simplicity of
presentation.

Finally, we can also extend Algorithm 8 to sample new clients as soon as some previous client
finished compute, without waiting for the server update on the line 5.

7.7 Experiments

In this section we aim to empirically evaluate the effectiveness of our proposed delay-adaptive step-
sizes (7.10) in the homogeneous case. We use w1a dataset from LIBSVM data library, and evaluate
performance on logistic regression function defined as f(x) = 1

m

∑m
j=1 log(1 + exp(−bja⊤j x)) +

1
2m ‖x‖2, where aj ∈ Rd and bj ∈ {−1, 1} are data samples. w1a dataset has m = 2477 examples
and dimension d = 300. We use fixed concurrency with n = 10 workers.

We compare the following three stepsize strategies:

• constant stepsizes ηt ≡ η

• delay-adaptive stepsizes with dropping large-delayed gradients

ηt =

{
η τt ≤ 2n,

0 τt > 2n,

• delay-adaptive stepsizes with weighting down large-delayed gradients

ηt =

{
η τt ≤ 2n,

η τC
τt

τt > 2n,

Note that the two last stepsize schemes satisfy the conditions in (7.10). For each of the strategies we
tune only one parameter η separately from the logarithmic grid and ensure that the found stepsize is
not on the edge of this grid.

Figure 7.1 presents the results for two different delay patterns. We can see that both of the delay-
adaptive stepsizes have comparable performance and are more robust to the large delays than the
constant stepsize.
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Figure 7.1: Comparison of three different stepsize strategies in asynchronous SGD. (left) delay pat-
tern, (middle) convergence curve with batch size 500, (right) convergence curves with batch size 1000.
Both delay-adaptive stepsize schemes are more robust to occasional large delays.

7.8 Conclusion

In this chapter we study the asynchronous SGD algorithm both in homogeneous and heterogeneous
settings. By leveraging the notion of concurrency—the number of workers that compute gradients in
parallel—we show a much faster convergence rate for asynchronous SGD, improving the dependence
on the maximum delay τmax over prior works, for both homogeneous and heterogeneous objectives.
Our proof technique also allows to design a simple delay-adaptive stepsize rule (7.10) that attains a
convergence rate depending only on the average delay τavg that neither requires any additional tuning,
nor additional communication. Our techniques allows us to demonstrate that asynchronous SGD is
faster than mini-batch SGD for any delay pattern.
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Chapter 8

Preface

In this second part of the thesis we shift our focus from distributed and decentralized optimization
algorithms to the related question of protecting privacy of the training data.

In Part I we considered the distributed optimization problems of the form (2.1) with possibly dif-
ferent data on different nodes. This heterogeneous data scenario is driven by collaborative learning
applications, where participants possess their unique, privacy-sensitive training data. Consequently,
transferring this training data outside of the devices that hold it is either undesirable or outright impos-
sible. All algorithms considered in Part I satisfy such data-locality constraint and do not require any
communication of the raw training datapoints. However, these algorithms from Part I may transmit
raw models or model updates, potentially revealing details about the training data.

In this part we turn our attention to mechanisms that have formal privacy guarantees for both
the models and their updates. Since such mechanisms are not exclusive to distributed contexts, we
streamline the discussion by focusing on optimization problems within a single-node setting

min
x∈Rd

[
f(x) := Eξ∼D F (x, ξ)

]
. (2.2)

We emphasize that these privacy mechanisms are orthogonal to the content in Part I, and they can
potentially be combined with the algorithms discussed there1. Similar to Part I, we focus on analyz-
ing the optimization properties of algorithms and propose new algorithms with enhanced theoretical
convergence properties

1. However such combination might not always be straightforward
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Chapter 9

Revisiting Gradient Clipping: Stochastic
Bias and Tight Convergence Guarantees

9.1 Preface

This chapter is based on [Koloskova et al., 2023].

Summary Gradient clipping is a popular modification to standard (stochastic) gradient descent, at
every iteration limiting the gradient norm to a certain value c > 0. It is widely used for example for
stabilizing the training of deep learning models [Goodfellow et al., 2016], or for enforcing differen-
tial privacy [Abadi et al., 2016a]. Despite popularity and simplicity of the clipping mechanism, its
convergence guarantees often require specific values of c and strong noise assumptions.

In this chapter, we give convergence guarantees that show precise dependence on arbitrary clip-
ping thresholds c and show that our guarantees are tight with both deterministic and stochastic gra-
dients. In particular, we show that (i) for deterministic gradient descent, the clipping threshold only
affects the higher-order terms of convergence, (ii) in the stochastic setting convergence to the true
optimum cannot be guaranteed under the standard noise assumption, even under arbitrary small step-
sizes. We give matching upper and lower bounds for convergence of the gradient norm when running
clipped SGD, and illustrate these results with experiments.

Co-authors Hadrien Hendrikx and Sebastian U. Stich.

Contributions
A. Koloskova: methodology (60%), formal analysis (30%), software, writing (50%).
H. Hendrikx: methodology (30%), formal analysis (70%), writing (50%).
S. U. Stich: methodology (10%), writing – review and editing, administration, supervision.

9.2 Introduction

This chapter focuses on solving general minimization problem of the form

min
x∈Rd

[
f(x) := Eξ∼D F (x, ξ)

]
. (2.2)

where f is a possibly non-convex, and possibly stochastic function. This setting covers many appli-
cations, e.g. it covers optimizing deterministic functions if fξ ≡ f ∀ξ. It also covers minimizing
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the empirical loss in machine learning applications, where D represents the uniform distribution over
training datapoints, and fξ(x) is the loss of model x on the datapoint ξ.

We focus on gradient descent methods with gradient clipping for solving (2.2). Given a clipping
radius c > 0, step-size η > 0, and starting from a point x0 ∈ Rd the gradient clipping algorithm
performs the following iterations:

xt+1 = xt − ηgt , with gt = clipc(∇fξ(xt)) , (9.1)

where gt is a clipped stochastic gradient, and the clipping operator is defined as

clipc(u) = min
(
1,

c

‖u‖

)
u , for u ∈ Rd. (9.2)

Gradient clipping is widely used to stabilize the training of neural networks, by preventing large
occasional gradient values from harming it [Goodfellow et al., 2016]. This is particularly useful for
mitigating outliers in the training data, and training recurrent models [Pascanu et al., 2012, 2013], in
which the noise can induce very large gradients.

Gradient clipping is also an essential part of privacy-preserving machine learning. The widely-
used Gaussian Mechanism [Dwork and Roth, 2014] adds noise to the individual gradients to add
uncertainty about their true value. Yet, it requires the gradients to have bounded norms for the privacy
guarantees to hold. In practice, bounded gradients are enforced through clipping [Abadi et al., 2016a].

Gradient clipping has already been widely studied, as we detail in the next section. However,
many works choose a specific value for the clipping threshold c in order to guarantee convergence.
This suggests that c should be carefully tuned in practice, which is highly undesirable, in particular
since the clipping threshold might be dictated by other (e.g., privacy) concerns. Besides, most works
impose strong assumptions on the stochastic gradient noise, through either large batches (and thus
small stochastic noise), angle conditions, or uniform boundedness of the norm, that might not hold in
practice.

In this work, we precisely characterize how the clipping threshold c affects the convergence prop-
erties of clipped-SGD for any clipping threshold c.

We consider deterministic and stochastic functions separately, as clipping affects these two set-
tings in different ways.

In the deterministic case, clipping only changes the magnitude of the applied gradients, but not
their direction. This means that clipped gradient descent can reach the critical points of f , however
slower. Intuitively, as the algorithm converges, the gradients become small in magnitude and are not
clipped eventually. This means that clipping affects only the speed during the first phase when the
gradients are large in magnitude. The main challenge is to tightly characterize this overhead.

In the stochastic case, the story is different: the individual stochastic gradients can be large even
though the expected gradient is small. Even at the critical points of f , where the expected (full)
gradient is zero, there is some probability that individual stochastic gradients are clipped. Moreover,
as we do not assume any symmetry of the stochastic gradients, the expected clipped gradient might
be non-zero even at critical points of f , forcing the algorithm to drift from these critical points. The
direct consequence of this is that clipped SGD does not converge to the critical points of f in general
[Chen et al., 2020], but only to some neighborhood. In this chapter we study the bias introduced
by clipping and show that it depends on the noise variance σ2 and the clipping parameter c, that we
precisely define in Section 9.2.1. As we will further detail in Section 9.2.2, existing works circumvent
this difficulty either by using large clipping thresholds or large mini-batches, or by making strong
assumptions on the noise such as uniform boundness, restricted angles between stochastic gradients,
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Table 9.1: Comparison of key assumptions and illustration of complexity estimates in the non-convex
deterministic case (variance σ = 0).

reference smoothness variance bound clipping threshold further assumptions rate (non-convex, σ = 0)

Zhang et al. [2019] 2nd-order (L0, L1) uniform bd. c = Θ(min{L0,
L0
L1

}) O
(

1√
ηTc

)
η ≤ min

{
1

10L0
, 1
10cL1

}
Zhang et al. [2020a] (L0, L1) uniform bd. c = Θ(max{ε, L0

L1
}) O

(
1√
ηT

)
η ≤ 1

10L0

Chen et al. [2020] L expectation arbitrary pos. skewness O
(

1√
ηT

+ 1
ηTc +

√
ηLc2

)
Qian et al. [2021] (L0, L1) expectation arbitrary pos. alignment O

(
1√
ηT

+ 1
ηTc +

√
ηL0c2 +

√
ηL1c3

)
η ≤ 1

4cL1

ours (L0, L1) expectation arbitrary O
(

1√
ηT

+ 1
ηTc

)
η ≤ 1

9(L0+cL1)

etc., and usually requiring specific values for c. Instead, we tightly analyze the convergence of clipped
SGD and characterize precisely the bias introduced by clipping without any additional assumptions.

More specifically, our contributions are the following:

• In the deterministic setting, we analyze the convergence behavior of clipped gradient descent
for non-convex, convex and strongly convex functions. Our analysis shows that in all the cases
after some transient regime, clipping does not affect the convergence rate. This initial phase
does not affect the leading term of convergence in the convex and non-convex cases. However,
in the strongly convex case, this unavoidable initial phase does not ensure linear forgetting of
the initial conditions, resulting in a substantial slowdown.

• For stochastic gradients, we show that clipped SGD under the ‘heavy-tailed’ assumption con-
verges to a neighbourhood of size min{σ, σ2/c}, measured in terms of the gradient norm.

• We show that this neighborhood size is tight: clipped SGD reduces the gradient norm up to
min{σ, σ2/c} indeed, provided the step-size is small enough.

• We frame our results using the (L0, L1)-smoothness assumption [Zhang et al., 2019], a standard
relaxation of smoothness that is well suited to analyzing clipped algorithms.

Through these results, we aim at painting a thorough and accurate landscape of the convergence
guarantees of clipping under the same assumptions as standard SGD, and for any clipping threshold
c. Our goal is that these improved bounds will allow to tighten guarantees for all downstream appli-
cations, e.g. privacy, that use clipped-SGD convergence results as black box. Indeed, the clipping
threshold is often viewed as an external parameter of the problem in these cases, whereas our flexible
guarantees allow to optimize the bounds for c and trade-off convergence speed (or precision) and
application-specific requirements.

9.2.1 Main assumptions

Before discussing related work we will first state the assumptions we use in our work.

Assumption on smoothness. The widely used smoothness assumption in the optimization literature
(e.g. Nesterov et al., 2018) is the following:

Assumption 25 (Smoothness) Function f satisfies

‖∇f(x)−∇f(y)‖ ≤ L ‖x − y‖ , ∀x, y ∈ Rd .

Despite its widespread use, this assumption can be restrictive, as the constant L must capture the
worst-case smoothness. Zhang et al. [2019] experimentally discovered that for various deep learning
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tasks, the local smoothness constant L decreases during training, and is proportional to the gradient
norm. They reported that the local curvature (smoothness) in the final stages of training could be 1000
times smaller than the curvature at the initialization point (for LSTM training on the PTB dataset).
(L0, L1)-smoothness [Zhang et al., 2019, 2020a] has been proposed as a natural relaxation of the
classical smoothness assumption.

Assumption 2 ((L0, L1)-smoothness) A differentiable function f : Rd → R is said to be (L0, L1)-
smooth if it verifies for all x, y ∈ Rd with ‖x − y‖ ≤ 1

L1
:

‖∇f(x)−∇f(y)‖ ≤ (L0 + ‖∇f(x)‖L1) ‖x − y‖ . (2.4)

We use this as the main assumption in our work. This assumption recovers the standard smooth-
ness Assumption 25 by taking L1 = 0. However, taking L1 > 0 allows to obtain smooth-like
properties for functions that would otherwise not be smooth, such as x 7→ ‖x‖3. Moreover, it is
possible that L-smooth functions are (L0, L1)-smooth with both of the constants L0, L1 significantly
smaller than L, such as for the exponential function x 7→ ex.

Note that the imposed bound ‖x − y‖ ≤ 1
L1

in (2.4) is essential, as otherwise the global growth
of the gradients would be similarly restricted as for standard smooth functions (thereby excluding
functions such as the mentioned x 7→ ‖x‖3).

In their work on clipping algorithms, Zhang et al. [2019] used a slightly stronger smoothness con-
dition that required second-order differentiability. For twice-differentiable functions f , they defined
(L0, L1)-smoothness as ∥∥∇2f(x)

∥∥ ≤ L0 + L1 ‖∇f(x)‖ , ∀x ∈ Rd. (9.3)

Later, Zhang et al. [2020a] noticed that the weaker Assumption 1 is sufficient for the study of clipping
algorithms. We adopt their notion in our work.

Assumption on stochastic variance. Many works in clipping literature [Zhang et al., 2019, 2020a,
Yang et al., 2022] assume the following

Assumption 26 (Uniform boundness) We say that the stochastic noise of fξ is uniformly bounded
by σ2 if for all x ∈ Rd,

Pr
[
‖∇fξ(x)−∇f(x)‖2 ≤ σ2

]
= 1. (9.4)

While this assumption allows to simplify the analysis of clipping algorithms, this is a very strong
assumption.

By making Assumption 26 and using a sufficiently large clipping radius (c > σ), we can guarantee
that stochastic gradients are not clipped at the critical points of f where ∇f(x) = 0. This ensures that
the algorithm can converge to the exact critical points, simplifying the theoretical analysis in [Zhang
et al., 2019, 2020a, Yang et al., 2022].

The uniform boundness Assumption 26 is a strong assumption and may not always be reflective
of the real-world scenarios. For instance, if gradients are perturbed by Gaussian noise, the assumption
of uniform boundness does not hold. Additionally, in machine learning applications where ∇fξ(x)
represents gradients of a model x at different datapoints ξ from a dataset ξ ∈ D, a uniform bound on
σ may be large if the dataset D has even only one outlier point.

In this work, we use the weaker and the more standard variance definition instead [Lan, 2012,
Dekel et al., 2012], sometimes called heavy tailed noise [Gorbunov et al., 2020a].
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Assumption 27 (Bounded variance) We say that the variance of fξ is bounded by σ2 if for all x ∈ Rd

E
[
‖∇fξ(x)−∇f(x)‖2

]
≤ σ2. (9.5)

Note that uniform boundedness implies bounded variance (with the same constant), but not the
other way round.

9.2.2 Related work

The literature on gradient clipping is already extensive and still very active. We present the most
relevant contributions for our work below and display a selection in Table 9.1.

Clipping stabilizes learning. Gradient clipping was originally proposed in [Mikolov, 2012] in order
to tackle the gradient explosion problem in training of recurrent neural networks. Zhang et al. [2019]
proposed to theoretically explain the question why clipped SGD improves the stability of (stochastic)
first-order methods, by imposing a relaxed second-order (L0, L1)-smoothness assumption (see Equa-
tion (9.3)), and showing the convergence advantages of clipped SGD over unclipped SGD. However
they rely on the strong Assumption 26 for the stochastic variance and chose the clipping threshold to a
specific large enough value. The favorable convergence guarantees were then refined by Zhang et al.
[2020a], while still relying on Assumption 26 on the stochastic noise and choosing specific value for
the clipping threshold. Mai and Johansson [2021] show that this is also the case in the non-smooth
setting.

Noise assumptions. Gradient clipping is often analyzed under uniform boundness Assumption 26
on the stochastic noise of the gradients in combination with choosing a large enough clipping thresh-
old c > σ [Zhang et al., 2019, 2020a, Yang et al., 2022]. Choosing large enough values of c simplifies
the theoretical analysis. However, in some applications the choice of the clipping threshold c might
be dictated by other constraints, such as privacy constraints. Especially because in many practical
applications the stochastic noise is heavy-tailed [Zhang et al., 2020b] it would entail large values of
σ, and thus c.

To avoid the uniformly bounded noise assumption, some works impose other strong assumptions
on the distribution of stochastic gradients. For instance, Qian et al. [2021] restrict the angle between
stochastic gradients and the true gradient, and Chen et al. [2020] impose a symmetry assumption on
the distribution of the stochastic gradients. Gorbunov et al. [2020a] analyze clipping under bounded
variance (see Assumption 27), however, they impose a strong assumption of the size of the mini-
batches used to scale linearly with T , thus making the effective stochastic variance to be diminishing
with the number of iterations T as O

(
σ2

T

)
.

In this chapter we take a different route from all these works, and analyse clipped SGD under the
much weaker bounded variance assumption. Yet, instead of converging to the exact critical points of
f , we quantify how large the drift due to clipping is, and thus obtain guarantees for any values of the
batch size and c.

Noiseless case. Since the bulk of the assumptions concern the stochastic noise, our setting is the
same as the papers mentioned above in the deterministic setting. However, in this case, we give
sharper guarantees, essentially proving that clipping does not affect the leading convergence terms
(see Table 9.1).

Clipped federated averaging. Zhang et al. [2022a] study clipping for the FedAvg [McMahan et al.,
2017] algorithm, by clipping the model differences sent to the server. However, bounded gradients are
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needed, and the convergence rate does not recover the rate of FedAvg when the clipping threshold c →
∞. Moreover, clipped FedAvg is biased even when using deterministic gradients. Liu et al. [2022]
also study a clipped-FedAvg-like algorithm, and get rid of bias issues through assuming symmetric
noise distributions around their means.

Differentially private SGD. Differential privacy has become the gold standard for protecting privacy,
thus raising interest from the stochastic optimization community [Chaudhuri et al., 2011, Song et al.,
2013, Duchi et al., 2014]. However, to ensure differential privacy, boundedness of the stochastic
gradients [Wang et al., 2017, Bassily et al., 2019, Das et al., 2022] (or a related condition, such as
Lipschitzness of the objective function) has to hold. This is rarely true in practice, but instead enforced
via clipping, such as in the DP-SGD algorithm [Abadi et al., 2016a]. Indeed, Lipschitzness requires
the gradients to be bounded, whereas smoothness only requires boundedness of the Hessian. Although
smoothness implies Lipschitzness on a bounded domain, this bound is usually very conservative and
leads to poor guarantees.

Bagdasaryan et al. [2019] experimentally measure the effect of DP-SGD (clipping and additional
noise) on model accuracy. They observe that the gradients do not converge to zero norm, so that
the assumptions under which exact convergence is shown are often not verified indeed. Besides,
underrepresented classes have higher gradient norm (so DP-SGD affects fairness).

Connection to adaptivemethods. It is worth noting that clipped SGD is related to adaptive methods,
such as the Adam algorithm [Kingma and Ba, 2015], or normalized SGD [Hazan et al., 2015, Levy,
2016], that also perform a scaling of the gradient. However, these two algorithms are not equivalent
to clipped SGD and the convergence results for the Adam algorithm [Reddi et al., 2018, Zhang et al.,
2020b, 2022b] and normalized SGD [Zhao et al., 2021] cannot be directly translated to the clipped
SGD.

9.3 Deterministic Setting

In this section we consider gradient clipping algorithm (9.1) with full (deterministic) gradients, i.e.
with

∇fξ(x) ≡ ∇f(x) , ∀ξ ∈ D, ∀x ∈ Rd. (9.6)

In this setting, the clipping operator (9.2) only changes the magnitude of the applied gradients, without
changing its direction (as opposed to taking the expectation of clipped stochastic gradients). Thus,
we can expect convergence to the exact minima, resp. critical points, of the function f . It still remains
unclear how much does such a change in the magnitude of the gradients affect the convergence speed
of the algorithm.

In our theoretical results we show that the drastic slow down happens only if the function f is
strongly convex, in which case the initial conditions (distance to optimum) are not forgotten linearly
anymore once clipping is applied. However, the leading term in the error ε is unaffected. If the
function f is either convex or non-convex, the clipping threshold c does not affect the leading term of
convergence, and affects only the higher-order terms.
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9.3.1 Non-convex functions

Theorem 14 (non-convex) If f satisfies Assumption 1, then clipped gradient descent (9.1) with
deterministic gradients (9.6) and with stepsize η ≤ [9(L0 + cL1)]

−1 guarantees an error:

1

T

T∑
t=1

‖∇f(xt)‖ ≤ O

(√
F0

ηT
+

F0

ηTc

)
, (9.7)

where T is the number of iterations, F0 = f(x0)− f⋆.
This theorem is a consequence of Theorem 19 for σ = 0.

Comparison to the unclipped gradient descent. The convergence rate of gradient descent (without
clipping) assuming the standard L-smoothness Assumption 25 is equal to [Ghadimi and Lan, 2013]:

1

T

T∑
t=1

‖∇f(xt)‖2 ≤ O
(
F0

ηT

)
, (9.8)

where the stepsize must be smaller than η ≤ 1
L . In the future discussion we will assume that L0 +

cL1 ≤ L, as we can always choose L1 to be zero. In many cases, both L0 and L1 are significantly
smaller than L (as discussed in Section 9.2.1). Thus, compared to the unclipped gradient descent,
clipped gradient descent (9.1):

(i) allows for larger stepsizes η (up to the constant 9 in the stepsize constraint). This result is due
to the refined (L0, L1) smoothness assumption and such an improvement in the stepsize has
the same spirit as the discovery made by Zhang et al. [2019] for the (L0, L1) second-order
smoothness assumption (9.3), although their bound on the stepsize is different.

(ii) has an additional term F0
ηTc that depends on the clipping radius c. This term is of the order 1

T ,
while the leading (the slowest decreasing, asymptotically dominating) term is of order 1√

T
.

If c is small, this term will slow down the algorithm significantly. However, when c is chosen
larger than the final target accuracy ε, clipping affects the convergence speed only by a constant
factor. Intuitively, this is because the number of steps when clipping happens is only a constant
fraction of the total required number of iterations to converge.1 As we frequently know the final
target accuracy, our result shows that the clipping threshold could be set to avoid the adversarial
effect of clipping. However, in practice the clipping threshold might be dictated by other needs.

(iii) has the different convergence measure 1
T

∑T
t=1 ‖∇f(xt)‖ instead of 1

T

∑T
t=1 ‖∇f(xt)‖2 that

is more commonly used (e.g. in (9.8) for unclipped gradient descent).

Comparison to the prior work. We summarized differences to the prior works in Table 9.1. Zhang
et al. [2019] and Zhang et al. [2020a] analyzed deterministic gradient clipping however setting the
clipping threshold c to some specific, large enough values. Qian et al. [2021] and Chen et al. [2020]
analyse clipped SGD under arbitrary choice of the clipping threshold c. In particular, assuming de-
terministic gradients (σ = 0), Qian et al. [2021] obtain the convergence rate of O

(√
F0
ηT + F0

ηTc +

c
√
ηL0 + c3/2

√
ηL1

)
, η < 1/4cL1, as the two last terms c

√
ηL0 + c3/2

√
ηL1 do not decrease to zero

1. Formally: because the final accuracy ε =
√

F0/ηT + F0/ηTc ≥
√

F0/ηT , and thus if clipping threshold is larger than
that, c ≥

√
F0/ηT , then the convergence speed

√
F0/ηT + F0/ηTc ≤ 2

√
F0/ηT is affected only by a constant.
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under the constant stepsizes η. That is strictly worse than ours in Theorem 14. Chen et al. [2020]
prove the rate O

(√
F0
ηT + F0

ηTc + c
√
ηL
)

without any constraint on the stepsize, however they have to

take small stepsizes η = 1/
√
T as the term c

√
ηL is not decreasing in T . Notably, this terms prevents

the error from converging to 0 under constant step-sizes, which can be obtained in the deterministic
setting, as we showed above.

9.3.2 Convex functions

We now prove an equivalent theorem when f is convex, i.e. assuming additionally:

Assumption 28 (Convexity) Function f satisfies

f(x)− f(y) ≤ 〈∇f(x), x − y〉 , ∀x, y ∈ Rd .

We also assume that infimum of f is achieved in Rd.

Theorem 15 (convex) If f is L-smooth2 (Assumption 25), (L0, L1) smooth (Assumption 1) and
convex (Assumption 28), then clipped gradient descent (9.1) with deterministic gradients (9.6) and
with stepsize η ≤ (L0 + cL1)

−1 guarantees an error:

f(xT )− f⋆ ≤ O
(
R2

0

ηT
+

R4
0L

η2T 2c2

)
, (9.9)

where R2
0 = ‖x0 − x⋆‖2, f⋆ = f(x⋆), and x⋆ = arg minx f(x).

In comparison, under the same assumptions as in Theorem 15, unclipped gradient descent con-
verges at the rate

f(xT )− f⋆ ≤ O
(
R2

0

ηT

)
under the condition that the stepsize is smaller than η ≤ L−1 [Nesterov et al., 2018]. Similarly to the
non-convex case, the convergence rate of the clipped gradient descent is slowed down by the higher-
order term R4

0L/η2T 2c2. Yet, again, it is enough to set the clipping threshold c bigger than the final
target accuracy ε (multiplied by

√
L this time) to avoid the slowdown effect of this term, since for

high accuracies more time is actually spent using unclipped gradients.
Also, similarly to the non-convex case, clipped GD allows for the larger stepsizes η that would

result in the faster convergence.

9.3.3 Strongly convex functions

In this section we consider strongly-convex functions f .

Assumption 29 (strong-convexity) There exists a constant µ > 0 such that function f satisfies for
all x, y ∈ Rd,

f(x)− f(y) + µ

2
‖x − y‖22 ≤ 〈∇f(x), x − y〉 .

2. We can relax this assumption. Equation (9.9) also holds with L replaced by LT , defined as LT := maxt≤T {L0 +
L1 ‖∇f(xt)‖}.
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Similarly to the convex and non-convex cases, clipping does not affect the leading term of con-
vergence (as ε → 0) as we show in the following theorem. This is due to the fact that for any fixed
c > 0, gradients are eventually never clipped.

Theorem16 (Strongly convex case) If f is µ-strongly convex (Assumption 29), L-smooth3 (Assump-
tion 25) and (L0, L1) smooth (Assumption 1), then clipped gradient descent (9.1) with deterministic
gradients (9.6) and with stepsize η ≤ (L0 + cL1)

−1 needs at most

T = O

(
1

µη
log
(
R2

0

ε

)
+

R0

cη
min

(√
L

µ
,
LR0

c

))
(9.10)

iterations to reach accuracy R2
T ≤ ε, where R2

t = ‖xt − x⋆‖2 and x⋆ = arg minx f(x).
Compared to the unclipped case, there is an extra term in the strongly convex case, which does

not decrease with ε and corresponds to the overhead of clipping. This means that during the initial
phase of convergence, when the gradients are clipped, the convergence speed is sublinear, and one
would have to set c = O (1/log( 1

ε
)) in order for the clipping do not affect the convergence speed, that

is much larger than in the non-convex and convex cases.
Intuitively, since the clipped gradient norm is fixed, the iterates can actually move only up to ηc

each step towards the optimum. If the initial distance to the optimum R0 happened to be large, in the
best case scenario, one would need at least R0

ηc steps to reach the optimum. The dependency on c for
the first term in the min is tight.4

Note that after a constant (independent of ε) number of iterations, the algorithm converges linearly,
at a rate that depends on (L0 + cL1) only, that can be significantly smaller than the dependency on L
in the GD convergence rate.

9.4 Stochastic Functions

In the deterministic setting gradient clipping achieves convergence to the exact minimizer or a station-
ary point, respectively, and clipping only affects initial convergence speed. Yet, this does not hold in
the stochastic setting where clipping introduces unavoidable bias. The main reason behind this is that
the expectation of the clipped stochastic gradients is different (in both norm and direction) from the
clipped true gradient.

While it was known before that the clipped SGD does not converge under the bounded variance
Assumption 27 [Chen et al., 2020], in this section we will precisely characterize lower bounds on the
error that clipped SGD can achieve, and then we provide upper bounds that match our lower bounds.

9.4.1 Unavoidable bias introduced by clipping

If the gradient clipping algorithm converges, it has to be towards its fixed points, i.e. to points x⋆ such
that E [clipc(∇fξ(x⋆))] = 0. This is achieved in the limit of small step-sizes (to counter stochastic
noise).

We now formally show a lower bound that states that fixed points of clipped SGD are not neces-
sary optimal or critical points of the objective function f . In fact, there exist stochastic gradient noise
distributions under which critical points of clipped SGD are σ far away from critical points of f .

3. We can relax this assumption by defining instead L := maxt≤T {L0 + L1 ‖∇f(xt)‖}.
4. Formally, consider the function x 7→ 1

2
x2 and initial iterate x0 = 1. Suppose we aim to reach a target accuracy ε < 1

4

with clipping threshold c < 1
2

. We see that unless |x| < c, the gradient f ′(x) = x will get clipped to value c, and hence
after 1

2c
iterations, cannot reach a point with norm smaller than 1

2
and squared norm less than 1

4
respectively.
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Theorem17 (Small clipping radius) We fix a class of functions that have variance at most σ2 (Def 27)
and smoothness parameters L0 = 1, L1 = 0 (Assumption 1). Then, for any clipping threshold c ≤ 2σ,
we can find a function f within this fixed class such that the fixed points of clipped-SGD exist (i.e.
points x⋆ which verify E [clipc(∇fξ(x⋆))] = 0), and that for all such fixed-points x⋆ of clipped-SGD
it holds that ‖∇f(x⋆)‖ ≥ σ/12.

Proof sketch. We define the stochastic function

fξ(x) =
1

2

{
(x+ a)2 w. p. p

x2 w. p. (1− p)

where a > 0 and p < 1/2. The expected function is thus f(x) = 1
2 [p(x+ a)2 + (1− p)x2].

The result is then obtained by choosing a = 4σ and p = (2−
√
3)/4 < 1/4 is such that p(1−p) =

1/16. The statement follows by using the standard algebra, as detailed in Appendix F.3.5.

The previous impossibility result holds when the clipping radius is small (c < 2σ). We further
show that by taking a larger clipping radius c, we can reduce the neighborhood size to which clipped-
SGD converges from σ to σ2/c, but cannot completely eliminate it.

Theorem18 (Large clipping radius) We fix a class of functions that have variance at most σ2 (Def 27)
and smoothness parameters L0 = 1, L1 = 0 (Assumption 1). Then, for any clipping threshold c ≤ 2σ,
we can find a function f within this fixed class such that the fixed points x⋆ of clipped-SGD exist
(E [clipc(∇fξ(x⋆))] = 0) and ‖∇f(x⋆)‖ ≥ σ2/6c.

Proof sketch. We use the same function as Theorem 17, this time with a = 2c and p(1 − p) =
σ2/a2.

Our lower bounds in Theorems 17 and 18 mean that with only assuming Def. 27 and Assump-
tion 1, there cannot exist problem-dependent values for c that would give exact convergence for any
function. We note that the fact that clipping might introduce a bias when the noise is only bounded
in expectation is not new [Chen et al., 2020]. The interesting thing about Theorems 17 and 18 is that
they are matched by the upper bound in Theorem 19, meaning that we precisely capture the strength
of the bias introduced in this case.

Uniformly bounded noise. Note that this lower bound crucially relies on the noise being bounded
by σ in expectation (Assumption 27). Indeed, the results hinge on the fact that stochastic gradients
are clipped with probability p, thus introducing a bias. If we keep this Bernoulli noise constant (and
therefore will ensure uniformly bounded noise Assumption 26) and increase c, then this bias would
completely disappear for c ≈ a, because then the clipping radius would be larger than the uniform
bound on variance.

9.4.2 Convergence results

We now introduce the central result of this chapter: the convergence of clipped SGD that match the
lower bounds above.

Theorem 19 If f is (L0, L1)-smooth (but not necessarily convex) and we run clipped SGD for T
steps with step-size η ≤ 1/[9(L0 + cL1)], then mint∈[0,T ] E ‖∇f(xt)‖ is upper bounded by

O

(
min

{
σ,

σ2

c

}
+
√
η(L0 + cL1)σ +

√
F0

ηT
+

F0

ηTc

)
,
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Figure 9.1: Deterministic clipped gradient descent on the w1a dataset. We investigate the dependence
of the convergence rate on the clipping parameter c. In Figures (a) and (b) we see that as soon as the
clipping threshold is smaller or equal to the target gradient norm ε, the convergence speed is affected
only by a constant. In Figure (c), we see that as the clipping threshold c decreases, the best tuned
stepsize (tuned to reach ε = 10−2 fastest) decreases. These observations in accordance to the theory
in Theorem 15.

where F0 = f(x0)− f⋆.
The convergence rate contains four terms: the first term does not decrease with neither the stepsize

η nor the number of iterations T and it is due to unavoidable bias, as explained in the previous section.
Due to Theorems 17, 18 this term is tight and cannot be improved. The second term is the stochastic
noise term that decreases with the stepsize, and the last two terms are the optimization terms that
describe how clipping affects convergence when the stochastic noise is zero (σ = 0), matching the
convergence in Theorem 14. Note that we precisely quantify the bias of clipped SGD under the
general bounded variance assumption.

Comparison to the unclipped SGD. Under the standard smoothness Assumption 25, unclipped SGD
requires the stepsize to be smaller than η ≤ L−1 and it converges at the rate [Bottou et al., 2018]

ET ≤ O

(√
ηLσ +

√
F0

ηT

)
.

where5 ET :=
(

1
T

∑T
t=0 ‖∇f(xt)‖2

) 1
2 . In comparison to the unclipped SGD, clipped SGD (9.1),

• Has an unavoidable bias term min
{
σ, σ

2

c

}
that we discussed in detail in the previous Sec-

tion 9.4.1.

• Has a smaller stochastic noise term, assuming that6 L0 + cL1 ≤ L .

• Similarly to the deterministic case (Thm. 14), has an additional higher-order term F0/ηTc.

We want to highlight that the bias term min
{
σ, σ

2

c

}
in our convergence rate is tight. This implies

in particular that under general expected bounded noise Assumption 27, clipped SGD cannot converge
to the exact critical points of f , but the convergence neighborhood size decreases with increasing c.

5. Note that ET ≥ mint∈[0,T ] E ‖∇f(xt)‖.
6. We can always choose L0 = L and L1 = 0 to satisfy this equation. Frequently, both L0 and L1 are much smaller

than L (see discussion in Section 9.2.1)
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Similarly to Zhang et al. [2019], clipped SGD improves over unclipped SGD the dependence on
the smoothness parameter from L to L0. In contrast to Zhang et al. [2019] in our work we do not
assume specific values of c, and use a weaker expected bounded noise Assumption 27.

The complete proof of Theorem 16 can be found in Appendix F.3. We now give an intuitive proof
sketch of Theorem 19.

Proof sketch (Theorem 19). The proof is split into two different cases, depending on how big c is
compared to σ.

Case c ≤ 4σ. In this case, according to the lower bound in Theorem 17, we can only show
convergence of the gradient norm up to Θ(σ). To achieve this, we only need to consider the case when
the gradients have ‖∇f(xt)‖ ≥ 6σ, since otherwise the convergence to Θ(σ) is already achieved. We
can show that in the case of large gradients (i.e. ‖∇f(xt)‖ ≥ 6σ), the standard convergence results
hold under uniformly bounded noise, because the gradient norm is large enough to compensate the
(fixed) variance.

Case c ≥ 4σ. In this case, we analyze clipped SGD as some form of biased gradient descent.
Note that under Uniform Boundedness (Assumption 26), the bias eventually vanishes for such large
clipping thresholds. We precisely quantify the remaining bias term Bt instead. After some manipula-
tions, we obtain descent terms such as Equation (F.17) from Appendix F.3, and a bias term that writes
as

Bt = ‖E [clipc(∇fξ(xt))]− clipc(∇f(xt))‖2 . (9.11)

Using that the clipping operation is a projection on a convex set (on a ball of a radius c), then we
can bound this term directly as Bt ≤ σ2. In particular, we can cancel it with descent terms when
‖∇f(xt)‖ is large enough.

When ‖∇f(x)‖ ≤ c/2, then we can be more precise. In particular we can show that the probabil-
ity that the stochastic gradient is clipped is smaller than σ2/c2. Using this, we can refine the estimate
of the bias as

Bt ≤ 8
σ4

c2
+ 32

σ4

c4
‖∇f(x)‖2 . (9.12)

The σ4/c2 is the bias term that we find in the convergence rate, and the ‖∇f(x)‖2 term can be
canceled with descent terms (that are also proportional to this) provided σ4/c4 is small enough.

Comparison to the prior works. All of the prior works used stronger assumptions allowing for sim-
plifications in their analysis, and allowing to mitigate the bias introduced by the clipping.

For example, [Zhang et al., 2019], [Zhang et al., 2020a], [Yang et al., 2022] considered large clip-
ping thresholds (c ≥ σ) and a stronger assumption of uniform boundness (Assumption 26), ensuring
that the bias vanishes as we approach the optimum. The other prior work of [Gorbunov et al., 2020a]
used a specific clipping threshold c and a specific large enough batch size allowing also to consider
only one of the cases (c ≥ 4σ). They require the batch sizes to scale linearly with the number of it-
erations T , thus mitigating stochasticity in their gradients. [Qian et al., 2021] and [Chen et al., 2020]
impose some symmetry assumptions on the distribution of the stochastic gradients, which allows
them to mitigate the bias introduced by the clipping operator. In the limit case of entirely symmetric
distribution, the clipping operator does not change the direction of expected gradient at any point,
thus allowing for the similar convergence analysis as with deterministic gradients.
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(b) Logistic regression on w1a dataset (batch sitze = 1).

Figure 9.2: Stochastic gradient descent on a quadratic function with χ2 stochastic noise (left), and
w1a dataset (right). Without clipping, decreasing the stepsize allows to achieve the smaller gradient
norm. However, decreasing the stepsize with clipping does not allow to achieve better performance.
This is because of the unavoidable bias term in Theorem 19.

9.4.3 Extension to differentially private SGD

In differentially private SGD [Abadi et al., 2016a] every individual stochastic gradient in the batch is
getting clipped individually before averaging the gradients over the batch, i.e. the algorithm is

xt+1 = xt − η

(
1

B

∑
i∈Bt

clipc(∇fξi(xt)) + zt

)
, (9.13)

where zt ∼ N
(
0,

σ2
DP
d I
)

is the additional noise due to differential privacy.
As detailed in Appendix F.3.4 we can extend our analysis to this algorithm in a straightforward

way and show that T iterations of (9.13) allow to obtain gradient norm smaller than:

O
(
Lη

c
σ2

DP +
√
LησDP + min

(
σ2,

σ4

c2

)
+ ηL

σ2

B
+

F0

ηT
+

F 2
0

η2T 2c2

)
.

where B is the mini-batch size, and L = L0 + maxt ‖∇f(xt)‖L1, corresponding to the smoothness
constant according to the standard L-smoothness assumption.

Similarly to the clipped-SGD algorithm considered previously, DP-SGD also suffers from a bias
term min

(
σ2, σ4/c2

)
. Lower bounds in Theorems 17, 18 apply to DP-SGD, so this bias is also tight

and unavoidable.
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In comparison to the clipped SGD (9.1), DP-SGD has additional terms related to the injected
privacy noise σDP, and the stochastic noise (fourth term) is reduced by a factor B due to mini-batching.

In order to have the formal privacy guarantees, one has to set the variance of additional DP

noise appropriately, Abadi et al. [2016a] prove that for σDP ≥ Ω

(
cd

√
T log 1

δ

ε

)
DP-SGD is (ε, δ)-

differentially private.
Related to prior work on DP-SGD that incorporate clipping in the convergence analysis [Chen

et al., 2020, Yang et al., 2022], our convergence rates are proven only assuming bounded variance in
expectation (Def. 27) and without extra assumptions on the noise. They showcase the effect of the
clipping threshold on the convergence of DP-SGD.

9.5 Experiments

In this section, we investigate the performance of gradient clipping on logistic regression on the
w1a dataset [Platt, 1998], and on the artificial quadratic function f(x) = Eξ∼χ2(1)

[
f(x, ξ) :=

L
2 ‖x‖2 + 〈x, ξ〉

]
, where x ∈ R100, we choose L = 0.1, and χ2(1) is a (coordinate-wise) chi-squared

distribution with 1 degree of freedom. The goal is to highlight our theoretical results.

Deterministic setting. In the deterministic setting, one of our insights was that clipping does not
degrade performance too much as long as the clipping threshold is bigger than the final target accuracy.
We test this in Figures 9.1(a), 9.1(b) for logistic regression on w1a dataset, by plotting the clipped-
GD with different values of c, for different target accuracies. We see that to reach accuracy 10−3,
all values of c (except from c = 10−4) perform relatively well. However, choosing c = 10−3 is
not advisable if we only want to reach an error ε = 10−2, as can be seen in Figure 9.1(b) (note the
different scaling of the x-axis in both plots).

In Figure 9.1(c), we investigate the dependence between the clipping threshold c and the step-size.
We tune the stepsize separately for each clipping parameter c over a logarithmic grid between 10−1

and 104, ensuring that the optimal value is not at the edge of the grid. The best stepsize is selected
as the one that reaches the target gradient norm ε = 10−2 the fastest. In Figure 9.1(c) we see that
choosing smaller clipping radius allows for larger step-sizes, which speeds-up convergence overall.

In particular, we have verified that in the deterministic setting, clipping does not harm learning
as long as the threshold is not too small compared to the target accuracy. Besides, clipping stabilizes
learning, thus allowing for larger step-sizes, and thus faster convergence.

Stochastic setting. We investigate clipped-SGD on both quadratic function with χ2(1) stochastic
noise, and logistic regression on w1a dataset. The results are plotted in Figure 9.2. They also verify
the theory, since larger learning rates are always better when using clipping (compared to unclipped).
It is also interesting to note that the curves are determined by the product cη, which is how large
the step is when clipping happens. However, we see that in this case, with such small values of c,
clipped-SGD does not quite reach the performance of vanilla SGD.

9.6 Conclusion

In this chapter, we have rigorously analyzed gradient clipping, both in the deterministic setting and
under standard noise assumptions. While previous works focus on exact convergence under strong
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assumptions (in particular, often for a fixed clipping threshold), we tightly characterized (with both
upper and lower bounds) the bias introduced by clipped-SGD for any clipping threshold.

Our work paves the way for better understanding clipping when used with other algorithms, such
as accelerated or momentum methods or FedAvg. In particular, it can lead to an improved analysis of
privacy guarantees in applications that rely on clipped SGD as an underlying black box, on the one
hand for existing, but also future applications.
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Chapter 10

Gradient Descent with Linearly Correlated
Noise: Theory and Applications to
Differential Privacy

10.1 Preface

This chapter is based on [Koloskova et al., 2023]. In this chapter we study from optimization point
of view a class of differential privacy (DP) algorithms that add the correlated noise at every iteration.
While in practice for ensuring formal DP guarantees we need to apply clipping to the gradients (that
was introduced in the previous Chapter 9), in our convergence analysis in this chapter we do not con-
sider gradient clipping for simplicity. Instead, for the effect of clipping on optimization performance
we refer to the previous Chapter 9.

Summary We study gradient descent under linearly correlated noise. Our work is motivated by
recent practical methods for optimization with differential privacy (DP), such as DP-FTRL, which
achieve strong performance in settings where privacy amplification techniques are infeasible (such as
in federated learning). These methods inject privacy noise through a matrix factorization mechanism,
making the noise linearly correlated over iterations. We propose a simplified setting that distills key
facets of these methods and isolates the impact of linearly correlated noise. We analyze the behav-
ior of gradient descent in this setting, for both convex and non-convex functions. Our analysis is
demonstrably tighter than prior work and recovers multiple important special cases exactly (includ-
ing anticorrelated perturbed gradient descent). We use our results to develop new, effective matrix
factorizations for differentially private optimization, and highlight the benefits of these factorizations
theoretically and empirically.

Co-authors Ryan McKenna, Zachary Charles, Keith Rush and Brendan McMahan.

10.2 Introduction

Differential privacy (DP) is a critical framework for designing algorithms with provable statistical
privacy guarantees. DP stochastic gradient descent (DP-SGD, Abadi et al. [2016b]) is particularly im-
portant for enabling private empirical risk minimization (ERM) of machine learning models. Many
works have analyzed the convergence behavior of DP ERM methods, including DP-SGD [Bassily
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Input: T x T workload matrix A, 
factorization objective obj

Offline, one-time 
matrix factorization

Data- and loss-dependent empirical risk 
minimization

Input: model X, gradients G, 
IID Gaussian noise Z

A B C=

B C( ),minimize obj
X

BG Z+

T first-order optimization steps
with additive, linearly correlated noise

A

Figure 10.1: Two-stage MF-DP-FTRL workflow proposed by Denisov et al. [2022]. The user selects
a workload matrix A representing a desired first-order optimization method. Offline, the user finds
a factorization BC = A, using an objective that balances ERM performance (as a function of B)
and privacy (as a function of C). The user applies A to a downstream ERM task, but with linearly
correlated additive noise governed by B.

et al., 2019, Feldman et al., 2022, Wang et al., 2017, Das et al., 2022]. However, obtaining good pri-
vacy/utility trade-offs with DP-SGD can require excessively large batch sizes or privacy amplification
techniques such as subsampling [Bassily et al., 2014, 2019, Zhu and Wang, 2019] and shuffling [Er-
lingsson et al., 2019, Feldman et al., 2022]. In some applications, including cross-device federated
learning, limited and device-controlled client availability can make sampling or shuffling infeasi-
ble [Kairouz et al., 2021b]. Even outside of such applications, many implementations of DP-SGD do
not properly use the Poisson subsampling scheme analyzed by Abadi et al. [2016b] for amplification,
and instead use a single fixed permutation of the dataset [Choquette-Choo et al., 2022].

Kairouz et al. [2021a] propose an alternative method, DP-FTRL, which can attain good pri-
vacy/utility trade-offs without amplification. Their key insight is that for SGD-style algorithms, the
variance on prefix sums g0 + · · · + gt, t ∈ {1, . . . , T} of gradients gj is more important than the
variance on individual gradients. By adding carefully tailored noise that is linearly correlated over
iterations to the gradients, one can reduce the error on the prefix sums, at the cost of increased error
on the individual gradients, for a fixed privacy budget. The DP-FTRL mechanism is competitive
with or better than DP-SGD, even without relying on privacy amplification, and enabled McMahan
and Thakurta [2022] to train the first differentially private machine learning model on user data in a
production setting.

Denisov et al. [2022], Choquette-Choo et al. [2022] develop a refinement of DP-FTRL, MF-
DP-FTRL, by formulating and solving an offline matrix factorization problem to find the “optimal”
correlated noise structure under DP constraints. That is, for a fixed privacy level, they aim to find
correlated noise structures that lead to improved optimization. A simplified diagram of their workflow
is given in Figure 10.1. However, (as we detail in Section 10.3) their offline factorization objective
is based on an online convergence bound that is loose. This raises questions about whether there are
factorization objectives that better capture convergence behavior of gradient descent algorithms with
correlated noise.

In this chapter we study this class of mechanisms more closely and provide a detailed analysis of
linearly correlated noise from an optimization point of view. Our main contributions are as follows:

• We propose a novel stochastic optimization problem that extracts key facets of methods like
(MF-)DP-FTRL, and which isolates the effects of linearly correlated noise on optimization.
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10.2. Introduction

• We derive convergence rates for gradient descent in such settings that showcase the effect of
linearly correlated noise and recover tight convergence rates in notable special cases. We use a
novel proof technique that may be of independent interest.

• We use this theory to design a new objective for the offline matrix factorization workflow in
Figure 10.1. We show that solving this objective leads to MF-DP-FTRL mechanisms with im-
proved convergence properties. We validate the mechanism empirically on a variety of datasets
and tasks, matching or outperforming prior methods.

10.2.1 Related Work

Matrix mechanisms for differential privacy. Our work is closely related to differentially private op-
timization using matrix mechanisms [Li et al., 2015]. Historically, such mechanisms were applied
to linear statistical queries [Li et al., 2010, McKenna et al., 2018, Edmonds et al., 2020, Henzinger
and Upadhyay, 2022]. Denisov et al. [2022] and Choquette-Choo et al. [2022] extended these mech-
anisms to the adaptive streaming setting, allowing their application to optimization with DP. Denisov
et al. [2022] show that this framework (MF-DP-FTRL) subsumes and improves the DP-FTRL al-
gorithm [Kairouz et al., 2021a]. Both DP-FTRL and MF-DP-FTRL improve privacy guarantees
relative to DP-SGD [Abadi et al., 2016b] without amplification, and can be combined with tech-
niques such as momentum for improved utility [Tran and Cutkosky, 2022]. The aforementioned work
focuses on methods for computing factorizations, privacy properties, and empirics. Our work studies
the analytic relationship between the correlated noise induced by the MF-DP-FTRL framework and
the downstream effect on optimization performance.

SGD with correlated noise. Stochastic noise in optimization arises in a variety of ways, including
mini-batching [Dekel et al., 2012] and explicit noise injection [Duchi et al., 2012b, Zhou et al., 2019,
Jin et al., 2021]. While most analyses of SGD assume this noise is independent across iterates, some
work considers correlated noise. For example, shuffle SGD involves correlated noise due to sampling
without replacement [Mishchenko et al., 2020, Yun et al., 2022]. Lucchi et al. [2022] use correlated
Brownian motion to improve SGD’s ability to explore the loss landscape. Recently, Orvieto et al.
[2022a,b] investigated anti-correlated noise as a way to impose regularization and improve general-
ization. We consider a linearly correlated noise model, and analyze its impact on SGD’s convergence
to critical points.

SGD with biased noise. Many algorithms can be viewed as SGD with structured but potentially
biased noise, including SGD with (biased) compression [Stich et al., 2018b, Gorbunov et al., 2020b],
delayed SGD [Mania et al., 2017a, Dutta et al., 2018b], local SGD [Stich, 2019b], federated learning
methods [Karimireddy et al., 2020, Yuan and Ma, 2020, Mitra et al., 2021, Nguyen et al., 2022b],
decentralized optimization methods [Yu et al., 2019a, Koloskova et al., 2020c], and many others.
Convergence analyses for such methods often use techniques like perturbed iterate analysis [Mania
et al., 2017a]. Correlated gradient noise also biases the gradient updates. However, as we show in
Section 10.5, directly applying such techniques to linearly correlated noise does not lead to tight
convergence guarantees.
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Chapter 10. Gradient Descent with Linearly Correlated Noise

10.3 Background

In this work, we focus on an empirical risk minimization (ERM) problem of the form1

min
x∈Rd

[
f(x) = 1

n

n∑
i=1

F (x, ξi)
]
, (2.2)

where F (x, ξi) is the loss of a model x on a data point ξi, and n is the training set size. We would like
to solve (2.2) while guaranteeing some form of privacy for the training set. We focus on differential
privacy (DP, [Dwork et al., 2006]), a widely-used standard for anonymous data release. DP guarantees
statistical difficulty in distinguishing whether or not a particular unit’s data served as an input to a
given algorithm, based on the algorithm’s output. This protected unit may represent a single training
example or a semantically higher-level unit like the entirety of a user’s data.

While there are many methods for solving (2.2), we will follow Denisov et al. [2022], Choquette-
Choo et al. [2022] and restrict to first-order algorithms A that linearly combine (stochastic) gradients.
Each algorithm A ∈ A is parameterized by a learning rate γ > 0, a number of steps T > 0, and
scalars {atj}1≤j≤t≤T . Given a starting point x0, A produces iterates xt ∈ Rd given by

xt+1 = x0 − γAt(g1, . . . , gt) At(g1, . . . , gt) =
∑t

j=1 atjgj

where gt is a (mini-batch) gradient of f computed at xt. This class encompasses a variety of first-
order algorithms, including SGD [Robbins and Monro, 1951a], SGD with momentum [Polyak, 1964,
Nesterov, 1983], and delayed SGD [Agarwal and Duchi, 2011a]. This class also captures algorithms
that use learning rate scheduling, so long as the schedule is independent of the gradient values. We
re-write the output of A in matrix notation by defining:

X = [x1, . . . , xT ]
⊤ ∈ RT×d, X0 = [x0, . . . , x0]

⊤ ∈ RT×d

G = [g1, . . . , gT ]⊤ ∈ RT×d, A = [aij ]1≤i,j≤T ∈ RT×T

Here A is the workload matrix representing A. At iteration t, A can only use the current and previous
gradients, so atj = 0 for j > t (ie. A is lower-triangular). In this notation, the iterates of A satisfy

X = X0 − γAG. (10.1)

Example 12 (SGD) Define the prefix-sum matrix S ∈ RT×T as the all-ones lower-triangular matrix.
If A = S, then (10.1) is simply SGD with learning rate γ. As discussed by Denisov et al. [2022,
Section 4], we also recover SGD with momentum using an appropriate transformation S′ of S.

10.3.1 Matrix Factorization and Privacy Mechanisms

In order to make the output of (10.1) differentially private, we typically need to clip the gradients and
add noise. Let G denote the matrix whose rows (gradients) have been clipped to some ℓ2 threshold
α. Let Z ∈ RT×d be a matrix with entries drawn independently from N (0, ζ2/d). The well-known
DP-SGD algorithm [Abadi et al., 2016b] adds this noise to each clipped gradient, so that

X = X0 − γA(G + Z). (10.2)

1. We use here a slightly different notation for the stochastic noise from the originally introduces formulation (2.2) in
Chapter 2 for simplicity of presentation.
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10.3. Background

For consistency, we consider (10.1) to be the special case of (10.2) where Z = 0 and α = ∞. The
variance ζ2 depends on the clipping threshold α and desired (ε, δ) privacy we aim to achieve [Abadi
et al., 2016b].

To derive algorithms with improved DP guarantees, Denisov et al. [2022] add the noise Z to a
factorized version of A. For a factorization A = BC with B,C ∈ RT×T , we add noise to the iterates
via:

X = X0 − γB
(
CG + sens(C)Z

)
≡ X0 − γ

(
AG + sens(C)BZ

)
. (10.3)

Here, sens(C) is a number representing the sensitivity of the mapping G 7→ CG to “adjacent” input
changes. See Appendix and [Choquette-Choo et al., 2022] on details of how to compute the sensi-
tivity function. If the variance of entries of Z is fixed to some value ζ2/d, then for all the possible
factorizations A = BC in (10.3) have exactly same privacy guarantees, depending only on ζ. It will
also be convenient to define σ = sens(C)ζ as the ’effective’ variance of Z after re-scaling by the
sensitivity. Note that for a fixed σ, the privacy guarantees of (10.3) might be different depending on
the sensitivity.

The factorization B = A,C = I recovers DP-SGD (10.2), but factorizations with better privacy-
utility trade-offs may exist. The formulation of Equation (10.3) transfers the linear optimization
algorithm (10.1) into the setting of the matrix mechanism [Li et al., 2015], a well-studied family of
mechanisms in differential privacy.

Finding good factorizations. Intuitively, a factorization A = BC is good if sens(C) is small and the
added noise BZ does not significantly degrade the convergence of (10.3). In order to quantify the
effect of this added correlated noise on optimization, Denisov et al. [2022] derive an online regret
bound for (10.3) in the convex case against an adaptive adversary. Translating this via online-to-batch
convergence to the stochastic setting, the iterates xt satisfy

1

T + 1

T∑
t=0

E [f(xt)− f⋆] ≤ O

(
‖x0 − x⋆‖2

γT
+ γL̃2 + γζL̃

sens(C) ‖B‖F√
T

)
(10.4)

where L̃ is the Lipshitz constant of f . Denisov et al. [2022] therefore use sens(C) ‖B‖F as a proxy
for the impact of the factorized noise scheme on convergence. To find factorizations with good con-
vergence properties, Denisov et al. [2022], Choquette-Choo et al. [2022] minimize sens(C) ‖B‖F
subject to the constraint A = BC, which is equivalent to the following objective:

Problem 20 (Minimal-Norm Matrix Factorization) Given a lower triangular matrix A ∈ RT×T ,
define OPTF (A) = (B,C), where B,C ∈ RT×T solve the following optimization problem.

min
B,C

‖B‖2F such that BC = A, sens(C) = 1. (10.5)

Equation (10.5) is well-studied in the privacy literature and can be solved with a variety of numeri-
cal optimization algorithms [Yuan et al., 2016, McKenna et al., 2021, Denisov et al., 2022, Choquette-
Choo et al., 2022]. We also note that Denisov et al. [2022] show that without loss of generality, we
can assume B and C are lower triangular.

Finding improved factorizations. We argue that (10.4) is pessimistic in stochastic settings. For SGD
(when B = A), the last term in (10.4) is O(γ sens(C)ζL̃

√
T ), which diverges with T for a constant

stepsize. However, SGD with constant stepsize actually achieves a faster rate of O(γ sens(C)ζL̃)
(see [Shalev-Shwartz et al., 2009]). Moreover, as we show in Appendix G.1, there are matrices B1,B2
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such that sens(C1)‖B1‖F = sens(C2)‖B2‖F , but Equation (10.3) diverges with B1 and converges
with B2.

This begs the question of whether there are objectives that better capture the impact of the noise
injected in (10.3) on convergence. To answer this, we derive a tighter bound than that in (10.4),
and use the dependence of this bound on B to design better factorizations for differentially private
optimization.

10.4 Problem Formulation

To study the effect of the noise BZ on optimization, we analyze a slightly simplified objective that
omits parts of (10.3) not directly related to linear noise correlation. We do this as follows:

(I) We assume that each gt is the true gradient at the point xt, i.e. gt = ∇f(xt).

(II) We omit gradient clipping from our analysis. Alternatively, we can view this as setting the
clipping threshold α = ∞ so that G = G in (10.3).

(III) We restrict the class A to SGD-type algorithms where A = S, as in Example 12.

We impose (I) for simplicity of presentation. Our results can be extended to stochastic gradients in
a direct fashion. Restriction (II) is also for simplicity. First, clipping is not directly applied to the
noise BZ. Second, for bounded domains or Lipschitz f , our analysis still holds with clipping. Last,
practical DP methods often use adaptive clipping [Thakkar et al., 2021] instead of fixed clipping. We
are not aware of convergence analyses for such schemes. We impose (III) in order to limit the class of
algorithms A to a well-understood subclass. The convergence properties of (10.1) for general matrices
A are not well-understood even when there is no noise (Z = 0). As we discuss in Section 10.5, even
with these simplifications, the effect of BZ is not well-understood.

Due to (III), we study factorizations BC of the matrix A = S, as in Example 12. Then, (10.3)
becomes

X = X0 − γ (SG + sens(C)BZ) . (10.6)

In vector notation, for b0 = 0 and B = [b1, . . . bT ]
⊤,

xt+1 = xt − γ
[
∇f(xt) + (bt+1 − bt)

⊤Z
]
, (10.7)

where for simplicity of presentation, we re-scaled the noise Z by the sensitivity, σ2 = sens2(C)ζ2.
We now discuss several noteworthy special cases of (10.7).

Example 13 (PGD) If B = S (see Example 12) we recover SGD with uncorrelated additive noise,
also known as perturbed gradient descent (PGD), where

xt+1 = xt − γ [∇f(xt) + zt+1] . (10.8)

The convergence rate of SGD (and therefore PGD) is well-understood in the optimization litera-
ture (e.g. see Bubeck [2015, Section 6]).

Example 14 (Anti-PGD) By setting B = I, we get an algorithm that at every iteration adds an
independent noise vector zt+1 and subtracts the previously added noise zt:

xt+1 = xt − γ [∇f(xt) + zt+1 − zt] , z0 = 0 (10.9)

106



10.5. Deriving Tighter Convergence Rates

Intuitively, this removes some of the noise added in the prior round. This is (up to a learning
rate factor) the anticorrelated perturbed gradient descent (Anti-PGD) method proposed by Orvieto
et al. [2022a], who study its generalization properties. Anti-PGD is also equivalent to SGD with
randomized-smoothing [Duchi et al., 2012b]. The equivalence follows from defining x̃t = xt + γzt
and rewriting (10.9) as

x̃t+1 = x̃t − γ∇f(x̃t − γzt).

While randomized smoothing algorithm is popular for non-smooth optimization, Vardhan and Stich
[2022] analyze its convergence properties in the smooth non-convex setting.

Example 15 (Tree Aggregation DP-FTRL) For k ≥ 1 and t = 2k−1, define Hk ∈ R(2k−1)×t

recursively as follows:

H1 =
(
1
)
, Hk+1 =

Hk 0
0 Hk

1 1


where 1 above represents an all-ones row of appropriate width. For T = 2k−1, if C = Hk and B =
SC†

k where C†
k denotes a carefully chosen right pseudo-inverse of C, then we recover the same noise

matrix B as in the DP-FTRL algorithm with either the online or full Honaker estimator (depending
on the choice of C†) as in [Kairouz et al., 2021a, Denisov et al., 2022]. Note that B,C are not
square. This can be remedied by appropriately projecting onto RT . See Choquette-Choo et al. [2022,
Appendix D.3] for details.

10.5 Deriving Tighter Convergence Rates

We would like convergence rates for (10.6) that apply to any factorization and yield tight convergence
rates for notable special cases. We pay special attention to PGD (Example 13) and Anti-PGD (Exam-
ple 14), as they represent extremes in the space of factorizations (S = SI and S = IS, respectively).
As we will show, it is possible to use existing theoretical tools to derive tight convergence rates for
both, but not simultaneously.

Below, we discuss ways to derive tight rates for PGD and Anti-PGD, and how these rates involve
incompatible analyses. We then develop a novel analytic framework involving restart iterates that
allows us to analyze both methods simultaneously, as well as (10.6) for general factorizations. We
start by formally stating our assumptions. For simplicity of presentation, we re-scale the noise Z by
the sensitivity of C, i.e. σ2 = sens2(C)ζ2; we will suppress the C dependence of σ.

Assumption 30 (Noise) The rows z1, . . . , zT of the noise matrix Z are independent random vectors
such that ∀t, E[zt] = 0 and E ‖zt‖2 ≤ σ2.

We do not assume L̃-Lipshitzness in our results, but we do assume L-smoothness. This is a
relatively standard assumption in optimization literature [Bubeck, 2015].

Assumption 31 (L-smoothness) The function f : Rd → R is differentiable, and there exists L > 0
such that for all x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L ‖x − y‖.

For some of the results we will assume convexity.

Assumption 32 (Convexity) The function f : Rd → R is convex, i.e. ∀x, y ∈ Rd, f(x) − f(y) ≤
〈∇f(x), x − y〉. When assuming convexity, we also assume the infimum of f is achieved in Rd.
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10.5.1 Convergence Rates for PGD and Anti-PGD

In this section we discuss the (distinct) convergence analyses of PGD and Anti-PGD, and the subopti-
mal results derived by trying to apply the proof technique for one to the other. We focus on the convex
setting for brevity, though these analyses can be directly extended to the non-convex setting.

PGD. The convergence of PGD (Example 13) is well-understood since it is a special case of SGD.
One can show the following.

Proposition 21 (Adapted from Dekel et al. [2012, Theorem 1]) Under Assumptions 30, 31 and 32, if
B = S and γ < 1/2L, then the output of (10.6) satisfies

T∑
t=0

E [f(xt)− f⋆]

T + 1
≤ O

(
‖x0 − x⋆‖2

γT
+ γσ2

)
. (10.10)

The proof follows from combining the update (10.8), standard facts about convex functions, and
the fact that γ < 1/2L, to get the inequality

Et ‖xt+1 − x⋆‖2 ≤ ‖xt − x⋆‖2 − γ (f(xt)− f⋆) + γ2σ2.

It is left to average over iterations 0 ≤ t ≤ T .

Anti-PGD. For Anti-PGD (Example 14), one can show the following.

Proposition 22 Under Assumptions 30, 31 and 32, if B = I and γ < 1/2L, then the output of (10.6)
satisfies

T∑
t=0

E [f(xt)− f⋆]

T + 1
≤ O

(
‖x0 − x⋆‖2

γT
+ Lγ2σ2

)
(10.11)

Since Lγ < 1/2, the RHS of (10.11) is strictly smaller than the RHS of (10.10). While this result
may be known, we were unable to find a reference, so we provide a complete proof in Appendix G.4.
The proof utilizes perturbed iterate analysis [Mania et al., 2017a]. We define a virtual sequence
{x̃t}Tt=0 as follows:

x̃t+1 = x̃t − γ∇f(xt), x̃0 = x0 (10.12)

The x̃t are the iterates of (10.6) when Z = 0. We can then prove the following descent inequality:

‖x̃t+1 − x⋆‖2 ≤ ‖x̃t − x⋆‖2 − γ

2
(f(xt)− f⋆) + 2Lγ ‖x̃t − xt‖2 .

Because of the anti-correlation in (10.9), the virtual iterates x̃t are close to the real iterates xt, as
xt − x̃t = γzt. Averaging over t, we recover (10.11). See Appendix G.4 for details.

Tightness. The noise terms (those terms involving σ2) in (10.10), (10.11) are both tight. We show
this in Appendix G.5 on the objective f(x) = (L/2) ‖x‖2.

Difficulties in a unified analysis. The proof techniques for PGD and Anti-PGD above are notably
different, and as we explain in Appendix G.6, do not lead to favorable results when trying to use one
of the two strategies to analyze both.
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10.5.2 Main Results and Analytic Techniques

To unify the proof techniques above, we use a modified virtual sequence with restart iterations. For
a parameter τ = Θ̃(1/Lγ) (throughout, Õ and Θ̃ hide poly-logarithmic factors), we define

x̃t+1 = x̃t − γ∇f(xt)

x̃t+1 = xt+1

if t+ 1 6= 0 mod τ

if t+ 1 = 0 mod τ.
(10.13)

Similar to the virtual sequence in (10.12), x̃t incorporates only deterministic gradients ∇f(xt). How-
ever, every τ iterations we reset x̃t to the real iterate xt. This allows us to control the divergence
between the virtual sequence and the real sequence (enabling a tight analysis of PGD), while still
capturing the convergence benefits of anti-correlated noise (enabling a tight analysis of Anti-PGD).

The parameter τ is independent of B, and depends only on the geometry of f and the stepsize γ.
Using this machinery, we can prove convergence rates of (10.6) for any factorization S = BC. These
rates involve ℓ2 distances between the rows bt of the matrix B (where b0 = 0 for convenience).

Theorem 23 (non-convex) Suppose Assumptions 30 and 31 hold, γ ≤ 1/4L, and τ = 1/γL. Then
(10.6) produces iterates whose average error (T + 1)−1

∑T
t=0 E ‖∇f(xt)‖2 is upper bounded by

O

(
(f(x0)− f⋆)

γT
+

σ2

Tτ
×

[
1
τ

∑T
t=1

∥∥∥bt − b⌊ t
τ
⌋τ

∥∥∥2 +∑ 1≤t≤T
t=0 mod τ

‖bt − bt−τ‖2
])

.

Theorem 24 (convex) Under Assumptions 30, 31, and 32, if γ ≤ 1/4L and τ = Θ̃(1/γL), then (10.6)
produces iterates with average error (T + 1)−1

∑T
t=0 E [f(xt)− f⋆] upper bounded by

Õ

(
‖x0 − x⋆‖2

γT
+

σ2

TLτ
×

[
1
τ

∑T
t=1

∥∥∥bt − b⌊ t
τ
⌋τ

∥∥∥2 +∑ 1≤t≤T
t=0 mod τ

‖bt − bt−τ‖2 +
∥∥∥b⌊T

τ
⌋τ

∥∥∥2 ]).
We give complete proofs in Appendix G.3. These convergence rates consist of two terms: The

first term states how fast the function would converge in the absence of the noise. The second term, the
noise term, is the focus of our chapter, as it shows how the correlated noise BZ affects convergence.

These rates involve only differences of rows of B that are at most τ iterations apart. Intuitively, τ
is a coarse indicator of whether an iterate xt is still sensitive to the noise injected at an iteration t′ < t.
If t > t′ + τ , then changes in the noise added at step t are effectively uncorrelated to iteration t′. As
we detail in Appendix, applying Theorem 24 to the special cases in Examples 13, 14 recovers their
tight convergence rates in (10.10), (10.11) correspondingly.

10.6 Finding Better Factorizations

We now draw on our results in Section 10.5 to develop better mechanisms for the MF-DP-FTRL
framework. We modify the objective underlying the offline matrix factorization problem during the
first stage of the MF-DP-FTRL workflow (Figure 10.1). Specifically, observe that the noise term in
Theorems 23 and 24 can be rewritten in matrix notation (up to multiplicative constants) as

‖�τB‖2F =
∑T

t=1

∥∥λ⊤
t B
∥∥2 =∑ 1≤t≤T

t=0 mod τ
‖bt − bt−τ‖2 +

∑
1≤t≤T

t̸=0 mod τ

∥∥∥ 1√
τ

(
bt − b⌊ t

τ
⌋τ

)∥∥∥2 (10.14)

where �τ =
[
λ⊤
1 , . . . ,λ

⊤
T

]⊤ ∈ RT×T , and we set the rows λt appropriately to select corresponding
row differences of B with either coefficient 1 or 1/

√
τ depending on the index t. We give a precise

definition of �τ and an explicit example when T = 12, τ = 3 in Appendix G.2.
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Figure 10.2: Comparison of the average and last gradient norms for DP-MF and DP-MF+ on a random
non-strongly convex quadratic function with L = 10.

Recall that [Denisov et al., 2022] minimize the Frobenius norm objective (10.5) based on their
derived convergence bounds in (10.4). Since our derived convergence bounds are strictly tighter, we
propose using Equation (10.14) as the new objective function in (10.5). Intuitively, since ‖�τB‖2F is a
better proxy for learning performance than ‖B‖2F , minimizing this quantity in the offline factorization
problem should lead to ERM methods with better privacy-utility trade-offs.

We can solve our new offline matrix factorization problem in a straightforward manner. We can
show that for A = S, we can solve this modified problem by first computing the solution B̃, C̃ using
OPTF (�τA). The solution to our modified objective is then C = C̃, B = AC−1. This implies we
can use existing open-source solvers designed for (10.5) [Yuan et al., 2016, McKenna et al., 2021,
Denisov et al., 2022].

10.7 Experiments

In this section, we evaluate the ERM performance of MF-DP-FTRL under different offline factoriza-
tion objectives. We focus on the Frobenius norm objective (10.5), which we refer to as DP-MF, and
our modified objective (10.14), which we refer to as DP-MF+. Note that DP-MF is the DP method
analyzed by Denisov et al. [2022], Choquette-Choo et al. [2022]. We first validate our theoretical
results above. We compare the convergence of DP-MF and DP-MF+ on a random quadratic function
that satisfies the assumptions of Theorem 24. Notably, we ensure the quadratic is not strongly convex.
We treat τ in (10.14) as a hyperparameter and tune it over a fixed grid. For complete details, please
refer to Appendix G.8. We present the results in Figure 10.2.

In Figure 10.2(a) we plot 1
T

∑T
t=0 ‖∇f(xt)‖2, as this quantity is proportional to the LHS of

Theorem 24. For all learning rates, DP-MF+ either matches or outperforms DP-MF. Moreover, the
advantage of DP-MF+ increases as the learning rate increases. This corresponds to our theory in
Theorem 24. Indeed, the larger the stepsize γ, the smaller the optimal τ (as τ = Θ(1/γL)), and the
more often restarts are used in the analysis of Theorem 24.

Figure 10.2(b) further depicts the last-iterate behaviours of DP-MF and DP-MF+, which is often
more practically relevant. Interestingly, the last iterate behaviour is improved even in the cases where
the average behaviour does not improve. Finally, in Figure 10.2(c) we pick γ = 10−2, τ = 50 as
the parameters for which both the average and the last-iterate behaviours are improved and plot the
convergence curve over iterations. DP-MF+ has regular oscillating behaviour, allowing it to achieve
a good final-iterate performance. The period of these oscillations is exactly equal to τ .
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Figure 10.3: Test set accuracy of various mechanisms on the MNIST and CIFAR-10 datasets.

10.7.1 Practical DP Training

We now compare DP-MF, DP-MF+, and DP-SGD with privacy amplification [Abadi et al., 2016b] on
the MNIST, CIFAR-10, and Stack Overflow datasets. We omit from comparison DP-FTRL Kairouz
et al. [2021a] and DP-Fourier Choquette-Choo et al. [2022] as these methods are strictly dominated by
DP-MF. Unlike our theoretical analysis, we include clipping to derive formal (ε, δ) privacy guarantees.
To facilitate a fair comparison, we set δ = 10−6 in all the settings, and compare against varying ε.
We give complete experimental details in Appendix G.8

MNIST, Logistic Regression. We train for T = 2048 iterations and either 1 or 16 epochs depending
on the batch size, corresponding to a batch size of 29 and 469 respectively.2 We fix the clipping
threshold at 1.0 and the learning rate at 0.5. We vary τ in (10.14) over {2, 8, 32, 128, 512, 2048}. The
results are in Figures 10.3(a) and 10.3(b). DP-MF+ improves monotonically with τ , performing best
when τ = 2048 = T . For such τ , DP-MF+ consistently out-performs DP-MF across all settings.
Recall from (10.14) that this corresponds to the offline objective ‖�TB‖2F where λii = 1/

√
T for all

i < T and λTT = 1. This objective strongly penalizes errors on the final iterate, which is the model
used to compute test accuracy.

We also see that DP-MF+ expands the number of settings in which we can beat DP-SGD. DP-MF
only outperforms DP-SGD for sufficiently large ε (ε ≥ 0.31 for 1 epoch and ε ≥ 31 for 16 epochs).
By contrast, DP-MF+ outperforms DP-SGD in every setting except when ε = 0.01 and 1 epoch.
None of the mechanisms reached the accuracy levels obtained by the non-private baseline, even at
ε = 100. We suspect this is due to the fact that we are using a fixed but aggressive clipping threshold
of 1.0 across all experiments, which helps in the moderate privacy regime but hurts in very low
privacy regime. Even though DP-MF+ does not use privacy amplification, it outperforms DP-SGD,
which uses privacy amplification. This is due to the efficient noise anti-correlations in DP-MF+. If
amplification were not possible, performance of DP-SGD would degrade even further.

CIFAR-10, CNN. We follow the experimental setup from [Choquette-Choo et al., 2022]. Specifically,
we train all mechanisms for 20 epochs and T = 2000 iterations, which corresponds to a batch size
of 500.3 We tune the learning rate over a fixed grid. We fix τ = T = 2000 in DP-MF+ as we found
that worked best in the MNIST experiments. The results are given in Figure 10.3(c). We see that
DP-MF+(τ = 2000) offers a consistent improvement over DP-MF across all choices of ε considered.
Both DP-MF and DP-MF+ beat DP-SGD for ε > 4. This observation is consistent with prior work

2. In practice, one often trains small-scale models for many epochs, perhaps even using full-batch gradients, to improve
the privacy/utility trade-off (at the cost of increased computation). We are interested in the relative performance for a fixed
computation budget, so we train for a small number of epochs.

3. While Choquette-Choo et al. [2022] use momentum and learning rate decay, we omit the use of such techniques as
they are orthogonal to our theoretical results.
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Chapter 10. Gradient Descent with Linearly Correlated Noise

on DP-FTRL and DP-MF, where DP-SGD performs relatively better at smaller values of ε while
DP-MF performs better at larger values of ε.

Stack Overflow, LSTM. In Appendix G.8.3, we compare DP-MF and DP-MF+ on a federated learn-
ing task with user-level differential privacy. We do not compare DP-SGD on this task, as amplifi-
cation techniques such as shuffling and subsampling are not possible in practical federated learning
settings Kairouz et al. [2021a]. In this task, we train an LSTM network to do next-word prediction
on the Stack Overflow dataset. To be consistent with the prior work Denisov et al. [2022] and to
test if our proposed factorizations are compatible with the other types of workloads A from Equa-
tion (10.1), we use momentum and learning rate decay. We present the details and results in full
in Appendix G.8.3. Our results show that the two methods perform comparably, verifying competi-
tiveness of our method. Note that this task uses federated averaging McMahan et al. [2017] instead
of gradient descent. Developing offline factorization objectives specifically for federated learning
remains an open problem.

10.8 Conclusion and Open Questions

In this work, we developed analytic techniques to study the convergence of gradient descent under
linearly correlated noise that is motivated from a class of DP algorithms achieving the same privacy
level. We derived tighter bounds than currently exist in the literature, and we use our novel theoretical
understanding to design privacy mechanisms with improved convergence. Perhaps more importantly,
our work highlights the wealth of stochastic optimization questions arising from recent advances in
differentially private model training. As such, we distill and formalize various optimization problems
arising from recent work on matrix mechanisms for DP.

Our work raises a host of questions and open problems, including extending our analysis to in-
clude things such as clipping, shuffling, and momentum. Another key extension is to derive last-iterate
convergence rates rather than average-iterate convergence rates, as in some settings it is only the final
“released” model that needs formal privacy guarantees. Given the improved generalization properties
of Anti-PGD [Orvieto et al., 2022a], one could also investigate how to design more general linearly
correlated noise mechanisms which improve both privacy and generalization.
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Chapter 11

Conclusion

This thesis featured the algorithms aimed for distributed and collaborative learning applications. We
first explored directions that help to improve communication efficiency of existing algorithms. We
focused on decentralization, communication compression, and asynchrony. We also delve into mit-
igating an adversarial effect of data heterogeneity that is present in collaborative learning scenario.
Lastly, we studied the efficiency of optimization algorithms that protect privacy of input data. Our fo-
cus lies in applications to the collaborative learning when the input data are privacy sensitive, however
the methods are general and could also be applied more broadly in the distributed learning scenario.

In this thesis we proposed a host of the new algorithms such as CHOCO-SGD for decentralized
optimization with communication compression; new practical delay-adaptive stepsize schedules for
ASYNCHRONOUS-SGD; new correlated noise schedules for MF-DP-FTRL. All these proposed algo-
rithms are designed based on the enhanced theoretical convergence properties, and feature enhanced
practical behavior.

Besides that, this thesis contributes to the improved theoretical convergence analysis of many ex-
isting practical algorithms, such as LOCAL-SGD, DECENTRALIZED-SGD, GRADIENT TRACKING,
ASYNCHRONOUS-SGD, CLIPPED-SGD, DP-FTRL and a numerous of other algorithms covered by
our unified framework in Chapter 5, frequently using weaker assumption than in the prior works. To
achieve that, this thesis introduces a host of the novel proof techniques that could be of independent
interest.

11.1 Limitations

Our theoretical findings are limited by the modeling assumptions that we impose (Chapter 2).

11.2 Discussion and future work

Although this thesis has enhanced our theoretical understanding and proposed more efficient practical
algorithms, many open questions remain.

Assumptions. One interesting open question not touched in this work—is the practical evaluations
of the assumptions used throughout this thesis. Our assumptions (summarized in Chapter 2) are
standard in optimization literature, many of which originated long before the rise of neural networks.
Evaluating and correcting these assumptions to be suited for modern deep learning applications could
help to design the algorithms better suited for modern applications.
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Problem-Specific Structures. Methods discussed in this thesis are general and can be applied to
any learning task formulated by (2.1). Another intriguing direction is to incorporate problem-specific
structures to design more efficient methods tailored for specific applications. One example of such a
structure is the low-rank nature of the gradients during training.

Large Scale of LLMs. In our experiments the largest task that we evaluated was training on the
Imagenet. The other exciting direction is to handle even the larger scale, such as e.g. modern large
language models for both: speeding up its training time, as well as for finetuning it in the collaborative
learning scenario.

Collaborative Learning with Personalization. Throughout this thesis, we have considered collabo-
rative learning scenarios where the common task is to learn one global model, denoted as x, based
on data combined from all participants. However, depending on local data distributions, the global
model may not be optimal for every participant. If local data distributions significantly differ from
one another, nodes might choose not to collaborate. It is intriguing to learn personalized models xi

for each node i and determine with which other nodes collaboration would be beneficial.

Improving Differential Privacy Algorithms. In experiments in Chapter 10 we observed an interesting
behavior of the noise reduction for the last iteration. Understanding and explaining this behavior
theoretically could help to design more efficient schemes that reduce the privacy noise at the last
iterate of the training algorithm.

Another interesting questions is how to design efficient learning algorithms with differential pri-
vacy for decentralized learning. In decentralized learning individual non-aggregated models are trans-
mitted in between the nodes, making it harder for algorithms to protect the privacy of such individual
messages.
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Appendix A

Appendix for ChocoSGD convex

A.1 Basic Identities and Inequalities

A.1.1 Smooth and Strongly Convex Functions

Definition 33 A differentiable function f : Rd → R is L-smooth for parameter L ≥ 0 if

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖y − x‖2 , ∀x, y ∈ Rd . (A.1)

Definition 34 A differentiable function f : Rd → R is µ-strongly convex for parameter µ ≥ 0 if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖2 , ∀x, y ∈ Rd . (A.2)

Remark 16 If f is L-smooth with minimizer x⋆ s.t ∇f(x⋆) = 0, then

‖∇f(x)‖2 = ‖∇f(x)−∇f(x⋆)‖2 ≤ 2L (f(x)− f(x⋆)) . (A.3)

A.1.2 Vector and Matrix Inequalities

Remark 17 For A ∈ Rd×n, B ∈ Rn×n

‖AB‖F ≤ ‖A‖F ‖B‖2 . (A.4)

Remark 18 For arbitrary set of n vectors {ai}ni=1, ai ∈ Rd∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n

n∑
i=1

‖ai‖2 . (A.5)

Remark 19 For given two vectors a,b ∈ Rd

2 〈a,b〉 ≤ γ ‖a‖2 + γ−1 ‖b‖2 , ∀γ > 0 . (A.6)

Remark 20 For given two vectors a,b ∈ Rd

‖a + b‖2 ≤ (1 + α) ‖a‖2 + (1 + α−1) ‖b‖2 , ∀α > 0 . (A.7)

This inequality also holds for the sum of two matrices A,B ∈ Rn×d in Frobenius norm.
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A.1.3 Implications of the bounded gradient and bounded variance assumption

Remark 21 If Fi : Rd × Ω → R, i = 1, . . . , n are convex functions with Eξ ‖∇Fi(x, ξ)‖2 ≤ G2,
∂F (X, ξ) = [∇F1(x, ξ1), . . . ,∇Fn(x, ξn)]

Eξ1,...,ξn ‖∂F (X, ξ)‖2F ≤ nG2 , ∀X .

Remark22 (Mini-batch variance) If for functions fi, Fi defined in (4.7) Eξ ‖∇Fi(x, ξ)−∇fi(x)‖2 ≤
σ2
i , i ∈ [n], then

E
ξ
(t)
1 ,...,ξ

(t)
n

∥∥∥∥∥∥ 1n
n∑

j=1

(
∇fj(x(t)

j )−∇Fj(x(t)
j , ξ

(t)
j )
)∥∥∥∥∥∥

2

≤ σ2

n
,

where σ2 =
∑n

i=1 σ
2
i

n .

Proof. This follows from

E

∥∥∥∥∥∥ 1n
n∑

j=1

Yj

∥∥∥∥∥∥
2

=
1

n2

 n∑
j=1

E ‖Yj‖2 +
∑
i ̸=j

E 〈Yi, Yj〉

 =
1

n2

n∑
j=1

E ‖Yj‖2 ≤
1

n2

n∑
j=1

σ2
j =

σ2

n

for Yj = fj(x(t)
j ) − ∇Fj(x(t)

j , ξ
(t)
j ). Expectation of scalar product is equal to zero because ξi is

independent of ξj since i 6= j.

A.2 Consensus in Matrix notation

In the proofs in the next section we will use the matrix notation, as already introduced in the main
text. We define

X(t) :=
[
x(t)
1 , . . . , x(t)

n

]
∈ Rd×n, Q(t) :=

[
q(t)
1 , . . . , q(t)

n

]
∈ Rd×n, X̂(t) :=

[
x̂(t)
1 , . . . , x̂(t)

n

]
∈ Rd×n

(A.8)

Then using matrix notation we can rewrite Algorithm 1 as

Algorithm 1 CHOCO-GOSSIP IN MATRIX NOTATION

input: X(0), γ, W .

1: Initialize: X̂(0) = 0
2: for t in 0 . . . T − 1 do
3: Q(t) = Q(X(t) − X̂(t))
4: X̂(t+1) = X̂(t) +Q(t)

5: X(t+1) = X(t) + γX̂(t+1) (W − I)
6: end for

Remark 23 Note that since every worker i for each neighbor j : {i, j} ∈ E stores x̂j , the proper
notation for x̂ would be to use x̂ij instead. We simplified it using the property that if x̂(0)

ij = x̂(0)
kj ,

∀i, k : {i, j} ∈ E and {k, j} ∈ E, then they are equal at all timesteps x̂(t)
ij = x̂(t)

kj , ∀t ≥ 0.
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Remark 24 The results of Theorem 3 and 25 also hold for arbitrary initialized X̂(0) with the con-
straint that ∀j all the neighbors of the node j initialized with the same x̂i, i.e. using extended notation
x̂(0)
ij = x̂(0)

kj , ∀i, k : {i, j} ∈ E and {k, j} ∈ E.

A.2.1 Useful Facts

Remark 25 Let X(t) =
[
x(t)
1 , . . . , x(t)

n

]
∈ Rd×n and X

(t)
=
[
x(t), . . . , x(t)

]
∈ Rd×n, for x(t) =

1
n

∑n
i=1 x(t)

i , then because W is doubly stochastic

X
(t)

= X(t) 1

n
11⊤, X

(t)
W = X

(t)
. (A.9)

Remark 26 The average X
(t)

=
[
x(t), . . . , x(t)

]
∈ Rd×n during iterates of the Algorithm 1 is

preserved, i.e.

X
(t)

= X
(0)

, ∀t, (A.10)

where X
(t)

=
[
x(t) . . . , x(t)

]
∈ Rd×n.

Proof.

X
(t+1)

= X
(t)

+ γX̂(t) (W − I)
11⊤
n

= X
(t)
,

because W 11⊤
n = 11⊤

n since W is doubly stochastic.

Lemma27 For W satisfying Definition 8, i.e. W is symmetric doubly stochastic matrix with second
largest eigenvalue 1− ρ = |λ2(W )| < 1∥∥∥∥W k − 1

n
11⊤

∥∥∥∥
2

≤ (1− ρ)k . (A.11)

Proof. Let UΛU⊤ be SVD-decomposition of W , then W k = UΛkU⊤ Because of the stochastic
property of W its first eigenvector is u1 = 1√

n
1.

U


1 0 . . . 0
0 0 . . . 0
. . .
0 0 . . . 0

U⊤ = u1u
⊤
1 =

1

n
11⊤

Hence,

∥∥∥∥W k − 1

n
11⊤

∥∥∥∥
2

=

∥∥∥∥∥∥∥∥UΛkU⊤ − U


1 0 . . . 0
0 0 . . . 0
. . .
0 0 . . . 0

U⊤

∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥Λ
k −


1 0 . . . 0
0 0 . . . 0
. . .
0 0 . . . 0


∥∥∥∥∥∥∥∥
2

= (1− ρ)k.
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A.3 Proof of Theorem 2—Convergence of Choco-Gossip

Lemma 28 Let X(t), X̂(t) ∈ Rd×n, X = [x, . . . , x] for average x = 1
nX

(t)1 ∈ Rd and let X(t+1) =

X(t) + γX̂(t)(W − I) ∈ Rd×n be defined as in Algorithm 1 with stepsize γ ≥ 0 and mixing matrix
W ∈ Rn×n as in Definition 8. Then ∀α1 > 0∥∥∥X(t+1) −X

∥∥∥2
F
≤ (1− ργ)2(1 + α1)

∥∥∥X(t) −X
∥∥∥2
F
+ γ2(1 + α−1

1 )β2
∥∥∥X̂(t+1) −X(t)

∥∥∥2
F
,

Here α1 > 0 is a parameter whose value will be chosen later, ρ = 1 − |λ2(W )| and β = maxi{1 −
λi(W )} as defined above.

Proof. By the definition of X(t+1) and the observation X(W −I) = 0 from Remark 25, we can write∥∥∥X(t+1) −X
∥∥∥2
F
=
∥∥∥X(t) −X + γX̂(t+1)(W − I)

∥∥∥2
F

=
∥∥∥X(t) −X + γ

(
X(t) −X

)
(W − I) + γ

(
X̂(t+1) −X(t)

)
(W − I)

∥∥∥2
F

=
∥∥∥(X(t) −X

)
((1− γ)I + γW ) + γ

(
X̂(t+1) −X(t)

)
(W − I)

∥∥∥2
F

(D.3)
≤ (1 + α1)

∥∥∥(X(t) −X
)
((1− γ)I + γW )

∥∥∥2
F

+ (1 + α−1
1 )

∥∥∥γ (X̂(t+1) −X(t)
)
(W − I)

∥∥∥2
F

(D.4)
≤ (1 + α1)

∥∥∥(X(t) −X
)
((1− γ)I + γW )

∥∥∥2
F

+ (1 + α−1
1 )γ2 ‖W − I‖22 ·

∥∥∥X̂(t+1) −X(t)
∥∥∥2
F
.

Let’s estimate the first term∥∥∥(X(t) −X
)
((1− γ)I + γW )

∥∥∥
F
≤ (1− γ)

∥∥∥X(t) −X
∥∥∥
F
+ γ

∥∥∥(X(t) −X
)
W
∥∥∥
F

(B.2)
= (1− γ)

∥∥∥X(t) −X
∥∥∥
F
+ γ

∥∥∥(X(t) −X
)(

W − 11⊤/n
)∥∥∥

F

(A.11), (D.4)
≤ (1− γρ)

∥∥∥X(t) −X
∥∥∥
F

where we used (X(t) − X)11⊤/n = 0, by definition of X , in the second line. Putting this together
gives us the statement of the lemma.

Lemma 29 Let X(t), X̂(t) ∈ Rd×n, X = [x, . . . , x] for average x = 1
nX

(t)1 ∈ Rd and let X(t+1) ∈
Rd×n and X̂(t+2) ∈ Rd×n be defined as in Algorithm 1 with stepsize γ ≥ 0, mixing matrix W ∈
Rn×n as in Definition 8 and quantization as in Assumption 9. Then

EQ

∥∥∥X(t+1) − X̂(t+2)
∥∥∥2
F

≤ (1− δ)(1 + γβ)2(1 + α2)
∥∥∥X(t) − X̂(t+1)

∥∥∥2
F

+ (1− δ)γ2β2(1 + α−1
2 )

∥∥∥X(t) −X
∥∥∥2
F
, ∀α2 > 0 .

Here α2 > 0 is a parameter whose value will be chosen later, β = maxi{1 − λi(W )} as defined
above and compression ratio δ > 0.
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Proof. By the definition of X(t+1) and X̂(t+2) we can write

EQ

∥∥∥X(t+1) − X̂(t+2)
∥∥∥2
F

= EQ

∥∥∥X(t+1) − X̂(t+1) −Q(X(t+1) − X̂(t+1))
∥∥∥2
F

(4.6)
≤ (1− δ)

∥∥∥X(t+1) − X̂(t+1)
∥∥∥2
F

= (1− δ)
∥∥∥X(t) + γX̂(t+1)(W − I)− X̂(t+1)

∥∥∥2
F

(B.2)
= (1− δ)

∥∥∥(X(t) − X̂(t+1)
)
((1 + γ)I − γW ) + γ(W − I)

(
X(t) −X

)∥∥∥2
F

(D.3)
≤ (1− δ)(1 + α2)

∥∥∥(X(t) − X̂(t+1)
)
((1 + γ)I − γW )

∥∥∥2
F

+ (1− δ)(1 + α−1
2 )

∥∥∥γ(W − I)
(
X(t) −X

)∥∥∥2
F

(D.4)
≤ (1− δ)(1 + γβ)2(1 + α2)

∥∥∥X(t) − X̂(t+1)
∥∥∥2
F
+ (1− δ)γ2β2(1 + α−1

2 )
∥∥∥X(t) −X

∥∥∥2
F
,

where we used ‖I + γ(I −W )‖2 = 1 + γ ‖I −W‖2 = 1 + γβ because eigenvalues of γ(I − W )
are positive.

Proof of Theorem 2. As observed in Remark 25 the averages of the iterates is preserved, i.e. X ≡
X(t) 1

n11⊤ for all t ≥ 0. By applying the Lemmas 28 and 29 from above we obtain

EQ et+1 ≤ η1(γ)
∥∥∥X(t) −X

∥∥∥2
F
+ ξ1(γ)

∥∥∥X̂(t+1) −X(t)
∥∥∥2
F
≤ max{η1(γ), ξ1(γ)} · et ,

where

η1(γ) := (1− ργ)2(1 + α1) + (1− δ)γ2β2(1 + α−1
2 ) ,

ξ1(γ) := γ2β2(1 + α−1
1 ) + (1− δ)(1 + γβ)2(1 + α2) .

Now, we need to choose the parameters α1, α2 and stepsize γ such as to minimize the factor
max{η1(γ), ξ1(γ)}. Whilst the optimal parameter settings can for instance be obtained using special-
ized optimization software, we here proceed by showing that for the (suboptimal) choice

α1 :=
γρ

2
,

α2 :=
δ

2

γ⋆ :=
ρδ

16ρ+ ρ2 + 4β2 + 2ρβ2 − 8ρδ

(A.12)

it holds

max{η1(γ⋆), ξ1(γ⋆)} ≤ 1− ρ2δ

2(16ρ+ ρ2 + 4β2 + 2ρβ2 − 8ρδ)
. (A.13)

The claim of the theorem then follows by observing

1− ρ2δ

2(16ρ+ ρ2 + 4β2 + 2ρβ2 − 8ρδ)
≤ 1− ρ2δ

82
, (A.14)
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using the crude estimates 0 ≤ ρ ≤ 1, β ≤ 2, δ ≥ 0.
We now proceed to show that (A.13) holds. Observe that for α1, α2 as in (A.12),

η1(γ) ≤ (1− γρ) (1− γρ)
(
1 +

γρ

2

)
+ γ2β2(1− δ)

(
1 +

2

δ

)
≤
(
1− γρ

2

)2
+

2

δ
γ2β2 =: η2(γ) ,

where we used the inequality (1 − x)(1 + x
2 ) ≤ (1 − x

2 ) and (1 − δ)(1 + 2/δ) ≤ 2
δ for δ > 0. The

quadratic function η2(γ) is minimized for γ′ = 2ρδ
8β2+ρ2δ

with value η2(γ
′) = 8β2

8β2+ρ2δ
< 1. Thus by

Jensen’s inequality

η2(λγ
′) ≤ (1− λ)η2(0) + λη2(γ

′) = 1− λ
ρ2δ

8β2 + ρ2δ
(A.15)

for 0 ≤ λ ≤ 1, and especially for the choice λ′ = 8β2+ρ2δ
2(16ρ+ρ2+4β2+2ρβ2−8ρδ)

we have

η1(γ
⋆) ≤ η2(λ

′γ′)
(A.15)
≤ 1− ρ2δ

2(16ρ+ ρ2 + 4β2 + 2ρβ2 − 8ρδ)
, (A.16)

as γ⋆ = λ′γ′. Now we proceed to estimate ξ1(γ
⋆). Observe

ξ1(γ) ≤ γ2β2

(
1 +

2

γρ

)
+ (1 + γβ)2(1− δ)

(
1 +

δ

2

)
≤ γ2β2

(
1 +

2

γρ

)
+ (1 + γβ)2

(
1− δ

2

)
,

(A.17)

again from (1− x)(1 + x
2 ) ≤ (1− x

2 ) for x > 0. As β ≤ 2 we can estimate (1 + γβ)2 ≤ 1 + 8γ for
any 0 ≤ γ ≤ 1. Furthermore γ2 ≤ γ for 0 ≤ γ ≤ 1. Thus

ξ1(γ
⋆) ≤ β2

(
γ⋆ +

2γ⋆

ρ

)
+

(
1− δ

2

)
(1 + 8γ⋆) = 1− ρ2δ

2(16ρ+ ρ2 + 4β2 + 2ρβ2 − 8ρδ)
,

(A.18)

as a quick calculation shows.

A.4 Proof of Theorem 3—Convergence of Choco-SGD

Recall, that
{

x(t)
i }Tt=0 denote the iterates of Algorithm 2 on worker i ∈ [n]. We define

x(t) :=
1

n

n∑
i=1

x(t)
i , (A.19)

the average over all workers. Note that this quantity is not available to the workers at any given time,
but it will be conveniently to use for the proofs. In this section we use both vector and matrix notation
whenever it is more convenient, and define

X(t) :=
[
x(t)
1 , . . . , x(t)

n

]
∈ Rd×n, X

(t)
:=
[
x(t), . . . , x(t)

]
∈ Rd×n,

∂F (X(t), ξ(t)) :=
[
∇F1(x(t)

1 , ξ
(t)
1 ), . . . ,∇Fn(x(t)

n , ξ(t)n )
]
∈ Rd×n.

(A.20)
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A.4. Proof of Theorem 3—Convergence of Choco-SGD

Instead of proving Theorem 3 directly, we prove a slightly more general statement in this sec-
tion. Algorithm 2 relies on the (compressed) consensus Algorithm 1. However, we can also show
convergence of Algorithm 2 for more general averaging schemes. In Algorithm 7 below, the function
h : Rd×n × Rd×n → Rd×n × Rd×n denotes a blackbox averaging scheme. Note that h could be
random.

Algorithm 4 DECENTRALIZED SGD WITH ARBITRARY AVERAGING SCHEME

input: X(0), stepsizes {ηt}T−1
t=0 , averaging function h : Rd×n × Rd×n → Rd×n × Rd×n

1: In parallel (task for worker i, i ∈ [n])
2: for t in 0 . . . T − 1 do
3: X(t+ 1

2
) = X(t) − ηt∂Fi(X

(t), ξ(t)) ▷ stochastic gradient updates
4: (X(t+1), Y (t+1)) = h(X(t+ 1

2
), Y (t)) ▷ blackbox averaging/gossip

5: end for

In this work we in particular focus on two choices of h, the averaging operator h(X(t), Y (t)) 7→
(X(t+1), Y (t+1)):

• Setting X(t+1) = X(t)W and Y (t+1) = X(t+1) corresponds to standard (exact) averaging with
mixing matrix W , as in algorithm (E-G).

• Setting X(t+1) = X(t) + γY (t) (W − I) and Y (t+1) = Y (t) + Q(X(t+1) − Y (t)) for Y (t) =
X̂(t+1), we get the compressed consensus algorithm (CHOCO-G), leading to Algorithm 2, as
introduced in the main text.

Assumption 35 For an averaging scheme h : Rd×n × Rd×n → Rd×n × Rd×n let (X+, Y +) :=
h(X,Y ) for X,Y ∈ Rd×n. Assume that h preserves the average of the first iterate over all iterations:

X+ 11⊤
n

= X
11⊤
n

, ∀X,Y ∈ Rd×n ,

and that it converges with linear rate for a parameter 0 < p ≤ 1

Eh Ψ(X+, Y +) ≤ (1− p)Ψ(X,Y ) , ∀X,Y ∈ Rd×n ,

and Laypunov function Ψ(X,Y ) := ‖X−X‖2F +‖X−Y ‖2F with X := 1
nX11⊤, where Eh denotes

the expectation over internal randomness of averaging scheme h.
This assumption holds for exact averaging as in (E-G) with parameter p = γρ (as shown in

Theorem 1). For the proposed compressed consensus algorithm (CHOCO-G) the assumption holds for
parameter p = δρ2

82 (as show in Theorem 2). Here δ denotes the compression ratio and ρ the eigengap
of mixing matrx W . We can now state the more general Theorem (that generalizes Theorem 3):

Theorem 25 Under Assumption 36 for p > 0, Algorithm 7 with stepsize ηt =
4

µ(a+t) , for parameter

a ≥ max
{

5
p , 16κ

}
, κ = L

µ converges at the rate

f(x(T )
avg)− f⋆ ≤ µa3

8ST

∥∥∥x(0) − x⋆
∥∥∥2 + 4T (T + 2a)

µST

σ2

n
+

64T

µ2ST
(2L+ µ)

40

p2
G2,

where x(T )
avg = 1

ST

∑T−1
t=0 wtx(t) for weights wt = (a+ t)2, and ST =

∑T−1
t=0 wt ≥ 1

3T
3.

Proof of Theorem 3. The proof follows from Theorem 25 using the consensus averaging algorithm 1
(giving p = ρ2δ

82 by Theorem 2) and the inequality Eµ ‖x0 − x⋆‖ ≤ 2G derived in [Rakhlin et al.,
2012b, Lemma 2] to upper bound the first term.
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A.4.1 Proof of Theorem 25

The proof below uses techniques from both Stich et al. [2018a] and Stich [2018].

Lemma 30 The averages x(t) of the iterates of the Algorithm 7 satisfy the following

E
ξ
(t)
1 ,...,ξ

(t)
n

‖x(t+1) − x⋆‖2 ≤
(
1− ηtµ

2

)∥∥∥x(t) − x⋆
∥∥∥2 + η2t σ

2

n

− 2ηt (1− 2Lηt)
(
f(x(t))− f⋆

)
+ ηt

2ηtL
2 + L+ µ

n

n∑
i=1

∥∥∥x(t) − x(t)
i

∥∥∥2 ,
where σ2 = 1

n

∑n
i=1 σ

2
i .

Proof. Because the blackbox averaging function h preserves the average (Assumption 36), we have

∥∥∥x(t+1) − x⋆
∥∥∥2 =

∥∥∥∥∥∥x(t) − ηt
n

n∑
j=1

∇Fj(x(t)
j , ξ

(t)
j )− x⋆

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥x(t) − x⋆ − ηt
n

n∑
i=1

∇fi(x(t)
i ) +

ηt
n

n∑
i=1

∇fi(x(t)
i )− ηt

n

n∑
j=1

∇Fj(x(t)
j , ξ

(t)
j )

∥∥∥∥∥∥
2

=

∥∥∥∥∥x(t) − x⋆ − ηt
n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

+ η2t

∥∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(t)
i )− 1

n

n∑
j=1

∇Fj(x(t)
j , ξ

(t)
j )

∥∥∥∥∥∥
2

+
2ηt
n

〈
x(t) − x⋆ − ηt

n

n∑
i=1

∇fi(x(t)
i ),

n∑
i=1

∇fi(x(t)
i )−

n∑
j=1

∇Fj(x(t)
j , ξ

(t)
j )

〉
.

The last term is zero in expectation, as E
ξ
(t)
i

∇Fi(x(t)
i , ξ

(t)
i ) = ∇fi(x(t)

i ). The second term is less

than η2t σ
2

n (Remark 34). The first term can be written as:

∥∥∥∥∥x(t) − x⋆ − ηt
n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

=
∥∥∥x(t) − x⋆

∥∥∥2 + η2t

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

︸ ︷︷ ︸
=:T1

− 2ηt

〈
x(t) − x⋆,

1

n

n∑
i=1

∇fi(x(t)
i )

〉
︸ ︷︷ ︸

=:T2

.

122
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We can estimate

T1 =

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(x(t)
i )−∇fi(x(t)) +∇fi(x(t))−∇fi(x⋆))

∥∥∥∥∥
2

(E.3)
≤ 2

n

n∑
i=1

∥∥∥∇fi(x(t)
i )−∇fi(x(t))

∥∥∥2 + 2

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(t))− 1

n

n∑
i=1

∇fi(x⋆)

∥∥∥∥∥
2

(A.1),(A.3)
≤ 2L2

n

n∑
i=1

∥∥∥x(t)
i − x(t)

∥∥∥2 + 4L

n

n∑
i=1

(
fi(x(t))− fi(x⋆)

)
=

2L2

n

n∑
i=1

∥∥∥x(t)
i − x(t)

∥∥∥2 + 4L
(
f(x(t))− f⋆

)
.

And for the remaining T2 term:

− 1

ηt
T2 = − 2

n

n∑
i=1

[〈
x(t) − x(t)

i ,∇fi(x(t)
i )
〉
+
〈

x(t)
i − x⋆,∇fi(x(t)

i )
〉]

(A.1),(A.2)
≤ − 2

n

n∑
i=1

[
fi(x(t))− fi(x(t)

i )− L

2

∥∥∥x(t) − x(t)
i

∥∥∥2 + fi(x(t)
i )− fi(x⋆) +

µ

2

∥∥∥x(t)
i − x⋆

∥∥∥2]
(E.3)
≤ −2

(
f(x(t))− f(x⋆)

)
+

L+ µ

n

n∑
i=1

∥∥∥x(t) − x(t)
i

∥∥∥2 − µ

2

∥∥∥x(t) − x⋆
∥∥∥2 .

Putting everything together we are getting statement of the lemma.

Lemma 31 The iterates {X(t)}t≥0 of Algorithm 7 with stepsizes ηt = b
t+a , for parameters a ≥ 5

p ,
b > 0 satisfy

∥∥∥X(t+1) −X
(t+1)

∥∥∥2
F
≤ 40η2t

1

p2
nG2 .

Here 0 < p ≤ 1 denotes the a convergence rate of the blackbox averaging algorithm as in Assump-
tion 36.

Proof. Using linear convergence of the blackbox averaging algorithm as given in Assumption 36 we
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can write for Ξ := E
∥∥∥X(t+1) −X

(t+1)
∥∥∥2
F
+ E

∥∥X(t+1) − Y (t+1)
∥∥2
F

,

Ξ ≤ (1− p)E
∥∥∥X(t+ 1

2
) −X(t+ 1

2
)
∥∥∥2
F
+ (1− p)E

∥∥∥Y (t) −X(t+ 1
2
)
∥∥∥2
F

= (1− p)E
∥∥∥∥X(t) −X(t) + ηt∂F (X(t), ξ(t))

(
11⊤
n

− I

)∥∥∥∥2
F

+ (1− p)E
∥∥∥Y (t) −X(t) + ηt∂F (X(t), ξ(t))

∥∥∥2
F

(D.3)
≤ (1− p)(1 + α−1

3 )E
(∥∥∥X(t) −X(t)

∥∥∥2
F
+
∥∥∥Y (t) −X(t)

∥∥∥2
F

)
+ (1− p)(1 + α3)η

2
t E

(∥∥∥∥∂F (X(t), ξ(t))

(
11⊤
n

− I

)∥∥∥∥2
F

+
∥∥∥∂F (X(t), ξ(t))

∥∥∥2
F

)

≤ (1− p)

(
(1 + α−1

3 )E
(∥∥∥X(t) −X(t)

∥∥∥2
F
+
∥∥∥Y (t) −X(t)

∥∥∥2
F

)
+ 2n(1 + α3)η

2
tG

2

)
α3=

2
p

≤
(
1− p

2

)
E
(∥∥∥X(t) −X(t)

∥∥∥2
F
+
∥∥∥Y (t) −X(t)

∥∥∥2
F

)
+

4n

p
η2tG

2 .

The statement now follows from Lemma 32 and the inequality

E
∥∥∥X(t+1) −X

(t+1)
∥∥∥2
F
≤ Ξ := E

∥∥∥X(t+1) − Y (t+1)
∥∥∥2
F
+ E

∥∥∥X(t+1) −X
(t+1)

∥∥∥2
F
.

Lemma 32 Let {rt}t≥0 denote a sequence of positive real values satisfying r0 = 0 and

rt+1 ≤
(
1− p

2

)
rt +

2

p
η2tA , ∀t ≥ 0 ,

for a parameter p > 0, stepsize ηt =
b

t+a , for parameters a ≥ 5
p and with arbitrary b > 0. Then rt is

bounded as

rt ≤ 20η2t
1

p2
A , ∀t ≥ 0 .

Proof. We will proceed the proof by induction. For t = 0 the statement is true by assumption on
r0 = 0. Suppose that for timestep t the statement is also true, then for timestep t+ 1

rt+1 ≤
(
1− p

2

)
rt +

2

p
η2tA ≤

(
1− p

2

)
20η2t

1

p2
A+

2

p
η2tA = Aη2t

1

p2
(−8p+ 20) .

Now we show η2t (−8p+ 20) ≤ 20η2t+1 which proves the claim. By assumption p ≥ 5
a , hence

η2t (−8p+ 20) ≤ 20η2t

(
1− 2

a

)
≤ 20η2t+1 ,

where the second inequality follows from

(a+ t+ 1)2
(
1− 2

a

)
= (a+ t)2 + 2(a+ t) + 1−

(
2
(a+ t)2

a
+ 4

(a+ t)

a
+

2

a

)
≤ (a+ t)2 + 2(a+ t) + 1− (2(a+ t) + 4) ≤ (a+ t)2 .
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Lemma 33 (Stich [2018]) Let {at}t≥0, at ≥ 0, {et}t≥0, et ≥ 0 be sequences satisfying

at+1 ≤ (1− µηt)at − ηtetA+ η2tB + η3tC ,

for stepsizes ηt = 4
µ(a+t) and constants A > 0, B, C ≥ 0, µ > 0, a > 1. Then

A

ST

T−1∑
t=0

wtet ≤
µa3

4ST
a0 +

2T (T + 2a)

µST
B +

16T

µ2ST
C ,

for wt = (a+ t)2 and ST :=
∑T−1

t=0 wt =
T
6 (2T

2 + 6aT − 3T + 6a2 − 6a+ 1) ≥ 1
3T

3.

Proof of Theorem 25. Substituting the result of Lemma 31 into the bound provided in Lemma 30
(here we use a ≥ 5

p ) we get that

E ‖x(t+1) − x⋆‖2 ≤
(
1− ηtµ

2

)
E
∥∥∥x(t) − x⋆

∥∥∥2 − 2ηt (1− 2Lηt) et + η2t
σ2

n
(2ηtL

2 + L+ µ)40η3t
1

p2
G2,

For ηt ≤ 1
4L (this holds, as a ≤ 16κ) it holds 2Lηt − 1 ≤ −1

2 and (2ηtL
2 + L + µ) < (2L + µ),

hence

E ‖x(t+1) − x⋆‖2 ≤
(
1− ηtµ

2

)
E
∥∥∥x(t) − x⋆

∥∥∥2 + η2t σ
2

n
− ηtet + (2L+ µ)40η3t

1

p2
G2 .

From Lemma 33 we get

1

ST

T−1∑
t=0

wtet ≤
µa3

8ST

∥∥∥x(0) − x⋆
∥∥∥2 + 4T (T + 2a)

µST

σ2

n
+

64T

µ2ST
(2L+ µ)40

1

p2
G2,

for weights wt = (a + t)2 and ST :=
∑T−1

t=0 wt =
T
6 (2T

2 + 6aT − 3T + 6a2 − 6a + 1) ≥ 1
3T

3,
where p is convergence rate of the averaging scheme. The theorem statement follows from convexity
of f .

A.5 Efficient Implementation of the Algorithms

In this section we present memory-efficient implementations of CHOCO-GOSSIP and CHOCO-SGD
algorithms, which require each node to store only three vectors: x, x̂i and si =

∑n
i=1wij x̂j .
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Algorithm 5 Memory-efficient CHOCO-GOSSIP

input: Initial values x(0)
i ∈ Rd on each node i ∈ [n], stepsize γ, communication graph G = ([n], E)

and mixing matrix W , initialize x̂(0)
i := 0 , s(0)i = 0, ∀i

1: for t in 0 . . . T − 1 do in parallel for all workers i ∈ [n]

2: q(t)
i := Q(x(t+1)

i − x̂(t)
i )

3: for neighbors j : {i, j} ∈ E (including {i} ∈ E) do
4: Send q(t)

i and receive q(t)
j

5: end for
6: x̂(t+1)

i = x̂(t)
i + q(t)

i

7: s(t+1)
i := s(t)i +

∑n
i=1wijq(t)

j

8: x(t+1)
i := x(t)

i + γ
(

s(t+1)
i − x̂(t+1)

i

)
9: end for

Algorithm 6 Memory-efficient CHOCO-SGD

input: Initial values x(0)
i ∈ Rd on each node i ∈ [n], consensus stepsize γ, communication graph

G = ([n], E) and mixing matrix W , initialize x̂(0)
i := 0 ∀i

1: for t in 0 . . . T − 1 do in parallel for all workers i ∈ [n]

2: Sample ξ
(t)
i , compute gradient g(t)i := ∇Fi(x(t)

i , ξ
(t)
i )

3: x(t+ 1
2
)

i := x(t)
i − ηtg(t)i

4: q(t)
i := Q(x(t+ 1

2
)

i − x̂(t)
i )

5: for neighbors j : {i, j} ∈ E (including {i} ∈ E) do
6: Send q(t)

i and receive q(t)
j

7: end for
8: x̂(t+1)

i := q(t)
i + x̂(t)

i

9: s(t+1)
i := s(t)i +

∑n
i=1wijq(t)

j

10: x(t+1)
i := x(t+ 1

2
)

i + γ
(

s(t+1)
i − x̂(t+1)

i

)
11: end for

A.6 Parameters Search Details of SGD Experiments

For each optimization problem, we first tuned γ on a separate average consensus problem with the
same configuration (topology, number of nodes, quantization, dimension). Parameters a, b where
later tuned separately for each algorithm by running the algorithm for 10 epochs. To find a and b we
performed grid search independently for each algorithm and each quantization function. For values of
a we used logarithmic grid of powers of 10. We searched values of b in the set {1, 0.1d, d, 10d, 100d}.

A.7 Additional Experiments
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Epsilon RCV1
experiment a τ γ a τ γ

PLAIN 0.1 d - 1 1 -
CHOCO, (qsgd16) 0.1 d 0.34 1 1 0.078
CHOCO, (rand1%) 0.1 d 0.01 1 0.1d 0.016
CHOCO, (top1%) 0.1 d 0.04 1 1 0.04
DCD, (rand1%) 10−15 d - 10−15 d -
DCD, (qsgd16) 0.01 d - 10−15 d -
ECD, (rand1%) 10−6 d - 10−4 10d -
ECD, (qsgd16) 10−6 d - 10−15 d -

Table A.1: Values for initial learning rate and consensus learning rate used in SGD experiments Fig.
4.5, 4.6. Parameter γ found separately by tuning average consensus with the same configuration
(topology, number of nodes, quantization, dimension). Parameters a, τ found by tuning. ECD, DCD
stepsizes are small because it diverge for larger choices.

Figure A.1: Performance of Algorithm 3 on ring, torus and fully connected topologies for n ∈
{9, 25, 64} nodes. Randomly shuffled data between workers
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Figure A.2: Comparison of Algorithm 3 (plain), ECD-SGD, DCD-SGD and
CHOCO-SGD with (rand1%) sparsification (in addition (top1%) for CHOCO-
SGD), for epsilon (top) and rcv1 (bottom) in terms of iterations (left) and com-
munication cost (right). Randomly shuffled data between workers.

Figure A.3: Comparison of Algorithm 3 (plain), ECD-SGD, DCD-SGD and
CHOCO-SGD with (qsgd16) quantization, for epsilon (top) and rcv1 (bottom)
in terms of iterations (left) and communication cost (right). Randomly shuffled
data between workers.
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Appendix B

Appendix for ChocoSGD non-convex

B.1 Convergence of Choco-SGD

In this section we present the proof of Theorem 4. For this, we will first derive a slightly more
general statement: in Theorem 26 we analyze CHOCO-SGD for arbitrary stepsizes η, and then derive
Theorem 4 as a special case.

The structure of the proof follows closely the convex case Appendix A, Koloskova et al. [2019].
That is, we first show that Algorithm 2 is a special case of a more general class of algorithms (given in
Algorithm 7): Observe that Algorithm 2 consists of two main components: 2© the stochastic gradient
update, performed locally on each node, and 1© the (quantized) averaging among the nodes. We can
show convergence of all algorithms of this type—i.e. stochastic gradient updates 2© followed by an
arbitrary averaging step 1©—as long as the averaging scheme exhibits linear convergence. For the
specific averaging used in CHOCO-SGD, linear convergence has been shown in [Koloskova et al.,
2019] and we will use their estimate of the convergence rate of the averaging scheme.

B.1.1 A General Framework for Decentralized SGD with Arbitrary Averaging

For convenience, we use the following matrix notation in this subsection.

X(t) :=
[
x(t)
1 , . . . , x(t)

n

]
∈ Rd×n, X

(t)
:=
[
x(t), . . . , x(t)

]
∈ Rd×n,

∂F (X(t), ξ(t)) :=
[
∇F1(x(t)

1 , ξ
(t)
1 ), . . . ,∇Fn(x(t)

n , ξ(t)n )
]
∈ Rd×n.

Decentralized SGD with arbitrary averaging is given in Algorithm 7.

Algorithm 7 DECENTRALIZED SGD WITH ARBITRARY AVERAGING SCHEME

input: X(0) =
[
x(0), . . . , x(0)

]
, stepsize η, averaging function h : Rd×n × Rd×n → Rd×n × Rd×n,

initialize Y (0) = 0
1: for t in 0 . . . T − 1 do {in parallel for all workers i ∈ [n]}
2: X(t+ 1

2 ) = X(t) − η∂Fi(X
(t), ξ(t)) ◁ stochastic gradient updates

3: (X(t+1), Y (t+1)) = h(X(t+ 1
2 ), Y (t)) ◁ blackbox averaging/gossip

4: end for

2© {
1© {
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Assumption 36 For an averaging scheme h : Rd×n × Rd×n → Rd×n × Rd×n let (X+, Y +) :=
h(X,Y ) for X,Y ∈ Rd×n. Assume that h preserves the average of iterates:

X+ 11⊤
n

= X
11⊤
n

, ∀X,Y ∈ Rd×n , (B.1)

and that it converges with linear rate for a parameter 0 < c ≤ 1

Eh Ψ(X+, Y +) ≤ (1− c)Ψ(X,Y ) , ∀X,Y ∈ Rd×n , (B.2)

and Laypunov function Ψ(X,Y ) := ‖X−X‖2F +‖X−Y ‖2F with X := 1
nX11⊤, where Eh denotes

the expectation over internal randomness of averaging scheme h.

Example: Exact Averaging. Setting X+ = XW and Y + = X+ gives an exact consensus averaging
algorithm with mixing matrix W [Xiao and Boyd, 2004]. It converges at the rate c = ρ, where ρ is
an eigengap of mixing matrix W , defined in Assumption 8. Substituting it into the Algorithm 7 we
recover D-PSGD algorithm, analyzed in Lian et al. [2017].

Example: Choco-SGD. To recover CHOCO-SGD, we need to choose CHOCO-GOSSIP [Koloskova
et al., 2019] as consensus averaging scheme, which is defined as X+ = X + γY (W − I) and
Y + = Y + Q(X+ − Y ) (in the main text we write X̂ instead of Y ). This scheme converges with
c = ρ2δ

82 . The results from the main part can be recovered by substituting this c = ρ2δ
82 in the more

general results below. It is important to note that for Algorithm 2 given in the main text, the order of
the communication part 1© and the gradient computation part 2© is exchanged. We did this to better
illustrate that both these parts are independent and that they can be executed in parallel. The effect of
this change can be captured by changing the initial values but does not affect the convergence rate.

B.1.2 Proofs

Remark 34 (Mini-batch variance) If for functions fi, Fi defined in (2.1) Assumption 4 holds, i.e.
Eξ ‖∇Fi(x, ξ)−∇fi(x)‖2 ≤ σ2

i , i ∈ [n], then

E
ξ
(t)
1 ,...,ξ

(t)
n

∥∥∥∥∥ 1n
n∑

i=1

(
∇fi(x(t)

i )−∇Fi(x(t)
i , ξ

(t)
i )
)∥∥∥∥∥

2

≤ σ2

n
, (B.3)

where σ2 =
∑n

i=1 σ
2
i

n .

Proof. This follows from

E

∥∥∥∥∥ 1n
n∑

i=1

Yi

∥∥∥∥∥
2

=
1

n2

 n∑
i=1

E ‖Yi‖2 +
∑
i ̸=j

E 〈Yi, Yj〉

 =
1

n2

n∑
i=1

E ‖Yi‖2 ≤
1

n2

n∑
i=1

σ2
i =

σ2

n

for Yi = fi(x(t)
i ) − ∇Fi(x(t)

i , ξ
(t)
i ). Expectation of scalar product is equal to zero because ξi is

independent of ξj since i 6= j.

Lemma 35 Under Assumptions 1, 4, 5 and 9 the iterates of the Algorithm 7 with constant stepsize η
satisfy

n∑
i=1

∥∥∥x(t) − x(t)
i

∥∥∥2
2
≤ η2

12nG2

c2
.
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Proof of Lemma 35. We start by following the proof of Lemma 21 from Koloskova et al. [2019].

Define rt = E
∥∥∥X(t) −X

(t)
∥∥∥2 + E

∥∥X(t) − Y (t)
∥∥2,

rt+1

(B.2)
≤ (1− c)E

∥∥∥X(t+ 1
2
) −X(t+ 1

2
)
∥∥∥2
F
+ (1− c)E

∥∥∥Y (t) −X(t+ 1
2
)
∥∥∥2
F

= (1− c)E
∥∥∥∥X(t) −X(t) − η∂F (X(t), ξ(t))

(
11⊤
n

− I

)∥∥∥∥2
F

+ (1− c)E
∥∥∥Y (t) −X(t) + η∂F (X(t), ξ(t))

∥∥∥2
F

(D.3)
≤ (1− c)(1 + α−1)E

(∥∥∥X(t) −X(t)
∥∥∥2
F
+
∥∥∥Y (t) −X(t)

∥∥∥2
F

)
+ (1− c)(1 + α)η2 E

(∥∥∥∥∂F (X(t), ξ(t))

(
11⊤
n

− I

)∥∥∥∥2
F

+
∥∥∥∂F (X(t), ξ(t))

∥∥∥2
F

)

≤ (1− c)

(
(1 + α−1)E

(∥∥∥X(t) −X(t)
∥∥∥2
F
+
∥∥∥Y (t) −X(t)

∥∥∥2
F

)
+ 2n(1 + α)η2G2

)
α= 2

c

≤
(
1− c

2

)
E
(∥∥∥X(t) −X(t)

∥∥∥2
F
+
∥∥∥Y (t) −X(t)

∥∥∥2
F

)
+

6n

c
η2G2 .

Define A = 3nG2, we got a recursion

rt+1 ≤
(
1− c

2

)
rt +

2

c
η2A,

Verifying that rt ≤ η2 4A
c2

satisfy recursion completes the proof as E
∥∥∥X(t) −X

(t)
∥∥∥2 ≤ rt.

Indeed, r0 = 0 ≤ η2 4A
c2

as X(0) = X
(0) and Y (0) = 0

rt+1 ≤
(
1− c

2

)
rt + η2

2A

c
≤
(
1− c

2

)
η2

4A

c2
+ η2

2A

c
= η2

4A

c2
.

Theorem 26 Under Assumptions 1, 4, 5 and 9 with constant stepsize η < 1
4L , the averaged iterates

x(t) = 1
n

∑n
i=1 x(t)

i of Algorithm 7 satisfy:

1

T + 1

T∑
t=0

∥∥∥∇f(x(t))
∥∥∥2
2
≤ 4

η(T + 1)

(
f(x(0))− f⋆

)
+ η

2σ2L

n
+ η2

36G2L2

c2

where c denotes convergence rate of underlying averaging scheme.

Proof of Theorem 26. By L-smoothness

Et+1 f(x(t+1)) = Et+1 f

(
x(t) − η

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

)

≤ f(x(t))−Et+1

〈
∇f(x(t)),

η

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

〉
︸ ︷︷ ︸

=:T1

+ Et+1
L

2
η2

∥∥∥∥∥ 1n
n∑

i=1

∇Fi(x(t)
i , ξ

(t)
i )

∥∥∥∥∥
2

2︸ ︷︷ ︸
=:T2
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To estimate the second term, we add and subtract ∇f(x(t))

T1 = −η
∥∥∥∇f(x(t))

∥∥∥2 + η

〈
∇f(x(t)),∇f(x(t))− 1

n

n∑
i=1

∇fi(x(t)
i )

〉
(D.2),γ=1

≤ −η

2

∥∥∥∇f(x(t))
∥∥∥2 + η

2n

n∑
i=1

∥∥∥∇f(x(t))−∇fi(x(t)
i )
∥∥∥2

For the last term, we add and subtract ∇f(x(t)) and the sum of ∇fi(x(t)
i )

T2 = Et+1

∥∥∥∥∥ 1n
n∑

i=1

(
∇Fi(x(t)

i , ξ
(t)
i )−∇fi(x(t)

i )
)∥∥∥∥∥

2

2

+

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(t)
i )±∇f(x(t))

∥∥∥∥∥
2

2

(C.17),(D.3),(E.3)
≤ σ2

n
+

2

n

n∑
i=1

∥∥∥∇f(x(t))−∇fi(x(t)
i )
∥∥∥2
2
+ 2

∥∥∥∇f(x(t))
∥∥∥2

Combining this together and using L-smoothness to estimate
∥∥∥∇f(x(t))−∇fi(x(t)

i )
∥∥∥2
2
,

Et+1 f(x(t+1)) ≤ f(x(t))− η

(
1

2
− Lη

)∥∥∥∇f(x(t))
∥∥∥2
2

+

(
1

2
ηL2 + η2L3

)
1

n

n∑
i=1

∥∥∥x(t) − x(t)
i

∥∥∥2
2
+

Lη2σ2

2n
.

Using Lemma 35 to bound the third term and using that η ≤ 1
4L in the second and in the third terms

Et+1 f(x(t+1)) ≤ f(x(t))− η

4

∥∥∥∇f(x(t))
∥∥∥2
2
+ η3

9L2G2

c2
+ η2

Lσ2

2n
,

Rearranging terms and averaging over t

1

T + 1

T∑
t=0

∥∥∥∇f(x(t))
∥∥∥2
2

(D.3)
≤ 4

η

1

T + 1

T∑
t=0

(
E f(x(t))− E f(x(t+1))

)
+ η2

36G2L2

c2
+ η

2Lσ2

n

≤ 4

η(T + 1)

(
f(x(0))− f⋆

)
+ η

2σ2L

n
+ η2

36G2L2

c2

B.1.3 Corollaries

To obtain final convergence rate we carefully tune the stepsize. For this we consider first an auxiliary
lemma.

Lemma 36 For any parameters r0 ≥ 0, b ≥ 0, e ≥ 0, d ≥ 0 there exists constant stepsize η ≤ 1
d

such that

ΨT :=
r0

η(T + 1)
+ bη + eη2 ≤ 2

(
br0

T + 1

) 1
2

+ 2e1/3
(

r0
T + 1

) 2
3

+
dr0

T + 1

Proof. Choosing η = min
{(

r0
b(T+1)

) 1
2
,
(

r0
e(T+1)

) 1
3
, 1d

}
≤ 1

d we have three cases
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• η = 1
d and is smaller than both

(
r0

b(T+1)

) 1
2 and

(
r0

e(T+1)

) 1
3 , then

ΨT ≤ dr0
T + 1

+
b

d
+

e

d2
≤
(

br0
T + 1

) 1
2

+
dr0

T + 1
+ e1/3

(
r0

T + 1

) 2
3

• η =
(

r0
b(T+1)

) 1
2
<
(

r0
e(T+1)

) 1
3 , then

ΨT ≤ 2

(
r0b

T + 1

) 1
2

+ e

(
r0

b(T + 1)

)
≤ 2

(
r0b

T + 1

) 1
2

+ e
1
3

(
r0

(T + 1)

) 2
3

,

• The last case, η =
(

r0
e(T+1)

) 1
3
<
(

r0
b(T+1)

) 1
2

ΨT ≤ 2e
1
3

(
r0

(T + 1)

) 2
3

+ b

(
r0

e(T + 1)

) 1
3

≤ 2e
1
3

(
r0

(T + 1)

) 2
3

+

(
br0

T + 1

) 1
2

Corollary 27 (Generalized Theorem 4) Under Assumptions 1, 4, 5 and 9 with constant stepsize η

tuned as in Lemma 69, the averaged iterates x(t) = 1
n

∑n
i=1 x(t)

i of Algorithm 7 satisfy:

1

T + 1

T∑
t=0

∥∥∥∇f(x(t))
∥∥∥2
2
≤ 4

√
2Lσ2

n(T + 1)
+ 17

(
GLF0

c(T + 1)

) 2
3

+
16LF0

T + 1

where c denotes convergence rate of underlying averaging scheme, F0 = f(x(0))− f⋆.

Proof. The result follows from Theorem 26 and Lemma 69 with r0 = 4
(
f(x(0))− f⋆

)
, b = 2σ2L

n ,
e = 36G2L2

c2
and d = 4L.

The first term shows a linear speed up compared to SGD on one node, whereas the underlying
averaging scheme affects only the second-order term. Substituting the convergence rate for exact
averaging with W (c = ρ) gives the rate O(1/

√
nT + 1/(Tρ)

2
3 ).

CHOCO-SGD with the underlying CHOCO-GOSSIP averaging scheme converges at the rate O(1/
√
nT+

1/(Tρ2δ)
2
3 ). The dependence on ρ (eigengap of the mixing matrix W ) is worse than in the exact case.

This might either just be an artifact of our proof technique or a consequence of supporting arbitrary
high compression.

The corollary gives guarantees for the averaged vector of parameters x, however in a decentralized
setting it is very expensive and sometimes impossible to average all the parameters distributed across
several machines, especially when the number of machines and the model size is large. We can get
similar guarantees on the individual iterates xi as e.g. in [Assran et al., 2018]. We summarize these
briefly below.

Corollary 28 (Convergence of local weights) Under the same setting as in Corollary 27,

1

T + 1

T∑
t=0

1

n

n∑
i=1

∥∥∥∇f
(
x(t)
i

)∥∥∥2
2
≤ 8

√
2Lσ2

n(T + 1)
+ 37

(
GLF0

c(T + 1)

) 2
3

+
32LF0

T + 1
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Proof of Corollary 28.

1

T + 1

T∑
t=0

1

n

n∑
i=1

∥∥∥∇f(x(t)
i )
∥∥∥2
2
≤ 1

T + 1

T∑
t=0

1

n

n∑
i=1

(
2
∥∥∥∇f(x(t)

i )−∇f(x(t))
∥∥∥2
2
+ 2

∥∥∥∇f(x(t))
∥∥∥2
2

)

≤ 1

T + 1

T∑
t=0

1

n

n∑
i=1

(
2L2

∥∥∥x(t)
i − x(t)

∥∥∥2
2
+ 2

∥∥∥∇f(x(t))
∥∥∥2
2

)
where we used L-smoothness of f . Using Theorem 26 and tuning the stepsize as in Lemma 69 we
get the statement of the corollary.

Choosing the stepsize differently, we can also get the following convergence rate for T = Ω(nL2):

Corollary 29 Under Assumptions 1, 4, 5 and 9 with constant stepsize η =
√

n
T+1 for T ≥ 16nL2,

the averaged iterates x(t) = 1
n

∑n
i=1 x(t)

i of Algorithm 7 satisfy:

1

T + 1

T∑
t=0

∥∥∥∇f(x(t))
∥∥∥2
2
≤

4
(
f(x(0))− f⋆

)
+ 2σ2L√

n(T + 1)
+

36G2nL2

(T + 1)c2

where c denotes convergence rate of underlying averaging scheme.

B.2 Useful Inequalities

Lemma 37 For arbitrary set of n vectors {ai}ni=1, ai ∈ Rd∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n
n∑

i=1

‖ai‖2 . (B.4)

Lemma 38 For given two vectors a,b ∈ Rd

2 〈a,b〉 ≤ γ ‖a‖2 + γ−1 ‖b‖2 , ∀γ > 0 . (B.5)

Lemma 39 For given two vectors a,b ∈ Rd

‖a + b‖2 ≤ (1 + α) ‖a‖2 + (1 + α−1) ‖b‖2 , ∀α > 0 . (B.6)

This inequality also holds for the sum of two matrices A,B ∈ Rn×d in Frobenius norm.

B.3 Compression Schemes

We implement the compression schemes detailed below.

• gsgdb [Alistarh et al., 2017]. The unbiased gsgdb : Rd → Rd compression operator (for b > 1)
is given as

gsgdb(x) := ‖x‖2 · sig(x) · 2−(b−1) ·

⌊
2(b−1) |x|
‖x‖2

+ u
⌋
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where u ∼u.a.r. [0, 1]
d is a random dithering vector and sig(x) assigns the element-wise sign:

(sig(x))i = 1 if (x)i ≥ 0 and (sig(x))i = −1 if (x)i < 0. As the value in the right bracket will
be rounded to an integer in {0, . . . , 2(b−1) − 1}, each coordinate can be encoded with at most
(b− 1) + 1 bits (1 for the sign). For more efficent encoding schemes cf. Alistarh et al. [2017].

A biased version is given as

gsgdb(x) :=
‖x‖2
τ

· sig(x) · 2−(b−1) ·

⌊
2(b−1) |x|
‖x‖2

+ u
⌋

for τ = 1 + min
{

d
22(b−1) ,

√
d

2(b−1)

}
and is a δ = 1

τ compression operator [Koloskova et al.,
2019].

• randoma [Wangni et al., 2018]. Let u ∈ {0, 1}d be a masking vector, sampled uniformly at
random from the set {u ∈ {0, 1}d : ‖u‖1 = badc}. Then the unbiased randoma : Rd → Rd

operator is defined as

randoma(x) :=
d

badc
· x � u .

The biased version is given as

randoma(x) := x � u ,

and is a δ = a compression operator [Stich et al., 2018a].

Only 32badc bits are required to send randoma(x) to another node—all the values of non-zero
entries (we assume that entries are represented as float32 numbers). Receiver can recover
positions of these entries if it knows the random seed of uniform sampling operator used to
select these entries. This random seed could be communicated once on preprocessing stage
(before starting the algorithm).

• topa [Alistarh et al., 2018b, Stich et al., 2018a]. The biased topa : Rd → Rd operator is defined
as

topa(x) := x � u(x) ,

where u(x) ∈ {0, 1}d, ‖u‖1 = badc is a masking vector with (u)i = 1 for indices i ∈
π−1({1, . . . , badc}) where the permutation π is such that

∣∣(x)π(1)∣∣ ≥
∣∣(x)π(2)∣∣ ≥ · · · ≥∣∣(x)π(d)∣∣. The topa operator is a δ = a compression operator [Stich et al., 2018a].

In the case of topa compression 2 · 32badc bits are required because along with the values we
need to send positions of these values.

• sign [Bernstein et al., 2018, Karimireddy et al., 2019]. The biased (scaled) sign : Rd → R
compression operator is defined as

sign(x) := ‖x‖1
d

· sgn(x) .

The sign operator is a δ =
∥x∥21
d∥x∥22

compression operator [Karimireddy et al., 2019].

In total for the sign compression we need to send only d + 32 bits—one bit for every entry in
x and 32 bits for ‖x‖1.
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Algorithm 8 CHOCO-SGD [Koloskova et al., 2019] as Error Feedback

input: Initial values x(0)
i ∈ Rd on each node i ∈ [n], consensus stepsize γ, SGD stepsize η,

comm. graph G = ([n], E) and mixing matrix W , initialize x̂(0)
i = x(−1)

i := 0, ∀i ∈ [n]

1: for t in 0 . . . T − 1 do {in parallel for all workers i ∈ [n]}

2: x(t)
i := x(t− 1

2 )
i + γ

∑
j:{i,j}∈E wij

(
x̂(t)
j − x̂(t)

i

)
◁ modified gossip averaging

3: v(t)
i = x(t)

i − x(t−1)
i + m(t)

i

4: q(t)
i := Q(v(t)

i ) ◁ compression
5: m(t+1)

i = v(t)
i − q(t)

i ◁ memory update
6: for neighbors j : {i, j} ∈ E (including {i} ∈ E) do
7: Send q(t)

i and receive q(t)
j ◁ communication

8: x̂(t+1)
j := q(t)

j + x̂(t)
j ◁ local update

9: end for
10: Sample ξ

(t)
i , compute gradient g(t)i := ∇Fi(x(t)

i , ξ
(t)
i )

11: x(t+ 1
2 )

i := x(t)
i − ηg(t)i ◁ stochastic gradient update

12: end for

B.4 Choco-SGD with Momentum

Algorithm 4 demonstrates how to combine CHOCO-SGD with weight decay and momentum. Nes-
terov momentum can be analogously adapted for our decentralized setting.

B.5 Error Feedback Interpretation of Choco-SGD

To better understand how does CHOCO-SGD work, we can interpret it as an error feedback algo-
rithm [Stich et al., 2018a, Karimireddy et al., 2019, Stich and Karimireddy, 2020]. We can equiva-
lently rewrite CHOCO-SGD (Algorithm 2) as Algorithm 8. The common feature of error feedback
algorithms is that quantization errors are saved into the internal memory, which is added to the com-
pressed value at the next iteration. In CHOCO-SGD the value we want to transmit is the difference
x(t)
i − x(t−1)

i , which represents the evolution of local variable xi at step t. Before compressing this
value on line 4, the internal memory is added on line 3 to correct for the errors. Then, on line 5
internal memory is updated. Note that m(t)

i = x(t−1)
i − x̂(t)

i in the old notation.

B.6 Detailed Experimental Setup and Tuned Hyperparameters

We precise the procedure of model training as well as the hyper-parameter tuning in this section.

Social Network Setup. For the comparison we consider CHOCO-SGD with sign compression (this
combination achieved the compromise between accuracy and compression level in Table 4.5)), de-
centralized SGD without compression, and centralized SGD without compression. We train two
models, firstly ResNet20 [He et al., 2016] (0.27 million parameters) for image classification on the
Cifar10 dataset (50K/10K training/test samples) [Krizhevsky, 2012] and secondly, a three-layer
LSTM architecture [Hochreiter and Schmidhuber, 1997] (28.95 million parameters) for a language
modeling task on WikiText-2 (600 training and 60 validation articles with a total of 2′088′628 and
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217′646 tokens respectively) [Merity et al., 2016]. For the language modeling task, we borrowed and
adapted the general experimental setup of Merity et al. [2017], where we use a three-layer LSTM
with hidden dimension of size 650. The loss is averaged over all examples and timesteps. The BPTT
length is set to 30. We fine-tune the value of gradient clipping (0.4), and the dropout (0.4) is only
applied on the output of LSTM.

We train both of ResNet20 and LSTM for 300 epochs, unless mentioned specifically. The per
node mini-batch size is 32 for both datasets. The momentum (with factor 0.9) is only applied on the
ResNet20 training.

Social Network and a Datacenter details. For all algorithms, we gradually warmup [Goyal et al.,
2017] the learning rate from a relative small value (0.1) to the fine-tuned initial learning rate for the
first 5 training epochs. During the training procedure, the tuned initial learning rate is decayed by the
factor of 10 when accessing 50% and 75% of the total training epochs. The learning rate is tuned by
finding the optimal initial learning rate (after the scaling).

The optimal η̂ is searched in a pre-defined grid and we ensure that the best performance was
contained in the middle of the grids. For example, if the best performance was ever at one of the
extremes of the grid, we would try new grid points. Same searching logic applies to the consensus
stepsize.

Table B.1 demonstrates the fine-tuned hpyerparameters of CHOCO-SGD for training ResNet-
20 on Cifar10, while Table B.3 reports our fine-tuned hpyerparameters of our baselines. Table B.2
demonstrates the fine-tuned hpyerparameters of CHOCO-SGD for training ResNet-20/LSTM on a
social network topology.

We estimate the runtime information (depicted in Figure 4.11) of different methods from three
trials of the evaluation on Google Cloud (Kubernetes Engine). More precisely, we create the cluster
on Google Cloud for three times and each time we estimate the time per mini-batch of different
methods (through the first two training epochs).

Table B.1: Tuned hyper-parameters of CHOCO-SGD for training ResNet-20 on Cifar10, corresponding
to the ring topology with 8 nodes in Table 4.5. We randomly split the training data between nodes and shuffle
it after every epoch. The per node mini-batch size is 128 and the degree of each node is 3.

Compression schemes Learning rate Consensus stepsize

QSGD (16-bit) 1.60 0.2
QSGD (8-bit) 0.96 0.2
QSGD (4-bit) 1.60 0.075
QSGD (2-bit) 0.96 0.025

Sparsification (random-50%) 2.40 0.45
Sparsification (random-10%) 1.20 0.075
Sparsification (random-1%) 0.48 0.00625

Sparsification (top-50%) 1.60 0.45
Sparsification (top-10%) 1.60 0.15
Sparsification (top-1%) 1.20 0.0375

Sign+Norm 1.60 0.45
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Table B.2: Tuned hyper-parameters of CHOCO-SGD, corresponding to the social network topology with 32
nodes in Table 4.7. We randomly split the training data between the nodes and keep this partition fixed during
the entire training (no shuffling). The per node mini-batch size is 32 and the maximum degree of the node is
14.

Configuration Learning rate Consensus stepsize

ResNet-20, Cifar10, Sign+Norm 1.0 0.5
LSTM, WikiText-2, Sign+Norm 25 0.6

Table B.3: Tuned hyper-parameters of DCD, ECD, and DeepSqueeze for training ResNet-20 on Cifar10,
corresponding to the ring topology with 8 nodes in Table 4.5. We randomly split the training data between
nodes and shuffle it after every epoch. The per node mini-batch size is 128 and the degree of each node is 3.
We only report the hpyerparameters corresponding to results that can reach to reasonable performance in our
experiments.

Compression schemes Learning rate Consensus stepsize

DCD, QSGD (16-bit) 2.40 -
DCD, QSGD (8-bit) 1.20 -
DCD, Sparsification (random-50%) 0.80 -
DCD, Sparsification (top-50%) 1.20 -
DCD, Sparsification (top-10%) 1.60 -
DCD, Sparsification (top-1%) 2.40 -
ECD, QSGD (16-bit) 0.96 -
ECD, QSGD (8-bit) 1.20 -

DeepSqueeze, QSGD (4-bit) 0.60 0.01
DeepSqueeze, QSGD (2-bit) 0.80 0.005
DeepSqueeze, Sparsification (top-50%) 0.80 0.05
DeepSqueeze, Sparsification (top-10%) 0.60 0.01
DeepSqueeze, Sparsification (top-1%) 0.40 0.005
DeepSqueeze, Sparsification (random-1%) 0.80 0.0005
DeepSqueeze, Sign+Norm 0.48 0.01
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B.7. Additional Plots

B.7 Additional Plots

To complement our results for scaling to a large number of nodes, we here additionally depict the
learning curves (e.g. test accuracy) for the training on 64 nodes. We also mark the levels used for
Fig. 4.7.
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Figure B.1: Scaling of CHOCO-SGD with sign compression to large number of devices on Cifar10
dataset. Convergence curves for 64 nodes. Vertical lines corresponds to the epoch/bits budget used in
Fig. 4.7.

Table B.4: The exact epoch for the same bits budget in Fig. 4.7.

n = 4 n = 16 n = 36 n = 64

Centralized 5 6 6 6
Decentralized (Ring) 7 17 32 54
Decentralized (Torus) 6 10 18 29

CHOCO (Ring) 105 408 904 1588
CHOCO (Torus) 55 206 454 796

Table B.5: The exact transmitted bits (in MB) for the same epoch budget in Fig. 4.7.

n = 4 n = 16 n = 36 n = 64

Centralized 139683 140041 144299 142899
Decentralized (Ring) 69841 17505 8016 4554
Decentralized (Torus) 139683 35010 16033 9109

CHOCO (Ring) 2208 564 253 144
CHOCO (Torus) 4417 1129 506 288

We additionally visualize the learning curves for the social network topology in Fig. B.2 and
Fig. B.3.

We additionally provide the learning curves of training top-1, top-5 accuracy and test top-5 accu-
racy for the datacenter experiment in Fig. B.4.

139



Appendix B. Appendix for ChocoSGD non-convex

0 100 200 300
Epoch

40

60

80

100

Tr
ai

ni
ng

 to
p-

1 
ac

cu
ra

cy

Centralized SGD
Decentralized SGD
CHOCO (Sign+Norm)

(a) Training top-1 accuracy.
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(b) Training top-1 accuracy.

0 100 200 300
Epoch

40

60

80

100

Te
st

 to
p-

1 
ac

cu
ra

cy

Centralized SGD
Decentralized SGD
CHOCO (Sign+Norm)

(c) Test top-1 accuracy.

Figure B.2: Training ResNet-20 on CIFAR-10 with decentralized algorithm on a real world social net-
work topology. The topology has 32 nodes and we assume each node can only access a disjoint subset of the
whole dataset. The local mini-batch size is 32.
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(a) Test loss.
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(b) Test perplexity.

Figure B.3: Training LSTM on WikiText2 with decentralized algorithm on a real world social network
topology. The topology has 32 nodes and we assume each node can only access a disjoint subset of the whole
dataset. The local mini-batch size is 32.
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(a) Training top-1 accuracy.
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(b) Training top-5 accuracy.
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Figure B.4: Large-scale training: ResNet-50 on ImageNet in the datacenter.
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Appendix C

Appendix for Unified Theory of
Decentralized SGD

The appendix is organized as follows: In Section C.1, we rewrite Algorithm 5 equivalently in matrix
notation as Algorithm 9 and give a sketch of the proof using this new notation. In Section C.2
we state a few auxiliary technical lemmas, before giving all details for the proof of the theorem in
Sections C.3 and C.4. We conclude the appendix in Section C.6 by presenting additional numerical
results that confirm the tightness of our theoretical analysis in the strongly convex case.

C.1 Proof of Theorem 5

C.1.1 Decentralized SGD in Matrix Notation

We can rewrite Algorithm 5 using the following matrix notation, extending the definition used in the
main text:

X(t) :=
[
x(t)
1 , . . . , x(t)

n

]
∈ Rd×n,

X̄(t) :=
[
x̄(t), . . . , x̄(t)

]
∈ Rd×n,

∂F (X(t), ξ(t)) :=
[
∇F1(x(t)

1 , ξ
(t)
1 ), . . . ,∇Fn(x(t)

n , ξ(t)n )
]
∈ Rd×n.

(C.1)

Algorithm 9 DECENTRALIZED SGD (MATRIX NOTATION)

input: X(0), stepsizes {ηt}T−1
t=0 , number of iterations T , mixing matrix distributions W(t) for t ∈ [0, T ]

1: for t in 0 . . . T do
2: Sample W (t) ∼ W(t)

3: X(t+ 1
2
) = X(t) − ηt∂Fi(X

(t), ξ
(t)
i ) ▷ stochastic gradient updates

4: X(t+1) = X(t+ 1
2
)W (t) ▷ gossip averaging

5: end for
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C.1.2 Proof Sketch—Combining Consensus Progress (Gossip) and Optimization Progress
(SGD)

In this section we sketch of the proof for Theorem 5. As a first step in the proof, we will derive an
upper bound on the expected progress, measured as distance to the optimum, rt = E

∥∥x̄(t) − x⋆
∥∥2

for the convex cases, and function suboptimality rt = E f(x̄(t)) − f⋆ in the non-convex case. These
bounds will have the following form:

rt+1 ≤ (1− aηt)rt − bηtet + cη2t + ηtBΞt , (C.2)

with Ξt =
1
n Et

∑n
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2 and

• for both convex cases rt = E
∥∥x̄(t) − x⋆

∥∥2, et = f(x̄(t)) − f(x⋆), a = µ
2 , b = 1, c = σ̄2

n ,
B = 3L (Lemma 44);

• for the non-convex case rt = E f(x̄(t)) − f⋆, et =
∥∥∇f(x̄(t))

∥∥2
2
, a = 0, b = 1

4 , c = Lσ̂2

n ,
B = L2 (Lemma 70).

We will then bound the consensus distance Ξt as detailed in Section C.3; Lemmas 45 and 71 by a
recursion of the form

Ξt ≤
(
1− p

2

)
Ξmτ +

p

64τ

t−1∑
j=mτ

Ξj +D
t−1∑

j=mτ

η2j ej +A
t−1∑

j=mτ

η2j , (C.3)

where m = bt/τc − 1; for convex cases A = 8σ̄2 + 18τ
p ζ̄2 , D = 72L τ

p (Lemma 45) and for

non-convex case A = 2σ̂2 + 2
(
6τ
p +M

)
ζ̂2, D = 2P

(
6τ
p +M

)
(Lemma 71).

Note that (C.3) holds only for t ≥ (m+1)τ . To be able to simplify (C.3) we additionally consider
mτ ≤ t < (m+ 1)τ and prove (Lemmas 46, 49) that with the same parameters as above, it holds

Ξt ≤
(
1 +

p

2

)
Ξmτ +

p

64τ

t−1∑
j=mτ

Ξj +D
t−1∑

j=mτ

η2j ej +A
t−1∑

j=mτ

η2j , (C.4)

Next, we simplify this recursive equation (C.3) using Lemma 50 and some positive weights
{wt}t≥0 (see Lemma 50 for the definition of the weights wt) to

B ·
T∑
t=0

wtΞt ≤ b

2
·

T∑
t=0

wtet + 64AB
τ

p
·

T∑
t=0

wtη
2
t , (C.5)

where again Ξt =
1
n Et

∑n
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2.
Then we combine (C.2) and (C.5). Firstly rearranging (C.2), multiplying by wt and dividing by

ηt, we get

bwtet ≤
(1− aηt)

ηt
wtrt −

wt

ηt
rt+1 + cwtηt +BwtΞt ,
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Now summing up and dividing by WT =
∑T

t=0wt,

1

WT

T∑
t=0

bwtet ≤
1

WT

T∑
t=0

(
(1− aηt)wt

ηt
rt −

wt

ηt
rt+1

)
+

c

WT

T∑
t=0

wtηt +
1

WT
B

T∑
t=0

wtΞt

(C.5)
≤ 1

WT

T∑
t=0

(
(1− aηt)wt

ηt
rt −

wt

ηt
rt+1

)
+

c

WT

T∑
t=0

wtηt +
1

2WT

T∑
t=0

wtet

+
64BA

WT

τ

p

T∑
t=0

wtη
2
t ,

Therefore,

1

2WT

T∑
t=0

bwtet ≤
1

WT

T∑
t=0

(
(1− aηt)wt

ηt
rt −

wt

ηt
rt+1

)
+

c

WT

T∑
t=0

wtηt +
64BA

WT

τ

p

T∑
t=0

wtη
2
t

(C.6)

Finally, to solve this main recursion (C.6) and obtain the final convergence rates of Theorem 5,
we will use the following Lemmas, which will be presented in Section C.4:

• Lemma 67 for strongly convex case when a > 0.

• Lemmas 68 and 69 for both weakly convex and non-convex cases as their common feature is
that a = 0.

C.1.3 How the Proof of Theorem 5 Follows

In this section we summarize how the proof of Theorem 5 follows from the results that we establish
in Sections C.3 and C.4 below. Note that for convex cases we require both fi and Fi to be convex as
in Lemma 45.

Proof of Theorem 5, strongly convex case. The proof follows by applying the result of Lemma 67 to
the equation (C.6) (obtained with Lemmas 44, 45, 50) with rt = E

∥∥x̄(t) − x⋆
∥∥2, et = f(x̄(t))−f(x⋆),

a = µ
2 , b = 1, c = σ̄2

n , d = 96
√
3τL
p , A = σ̄2 + 18τ

p ζ̄2, B = 3L, D = 72L τ
p . It is only left to show

that chosen weights wt stepsizes ηt in Lemma 67 satisfy conditions of Lemmas 44, 45, 50. It is
shown in Proposition 37 that {ηt} is 8τ

p -slow decreasing and {wt} is 16τ
p -slow increasing (condition

in Lemma 50). Moreover the stepsize ηt := η < 1
d is smaller than conditions on ηt in Lemmas 44,

45, 50.

Proof of Theorem 5, weakly convex case. The proof follows by applying the result of Lemma 68 to
the equation (C.6) (obtained with Lemmas 44, 45, 50) with rt = E

∥∥x̄(t) − x⋆
∥∥2, et = f(x̄(t))−f(x⋆),

a = 0, b = 1, c = σ̄2

n , d = 96
√
6τL
p , A = 8σ̄2 + 18τ

p ζ̄2, B = 3L, D = 72L τ
p . It is shown in

Proposition 37 that {ηt} and {wt} chosen in Lemma 68 satisfy condition in Lemma 50: {ηt} is 8τ
p -

slow decreasing and {wt} is 16τ
p -slow increasing. Moreover the stepsize ηt := η < 1

d is smaller than
conditions on ηt in Lemmas 44, 45, 50.

Proof of Theorem 5, non-convex case. applying the result of Lemma 68 to the equation (C.6) (ob-
tained with Lemmas 70, 71, 50) with rt = E f(x̄(t))− f⋆, et =

∥∥∇f(x̄(t))
∥∥2
2
, a = 0, b = 1

4 , c = Lσ̂2

n ,
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d = 64L

√
2max{P, 1}

(
6τ
p +M

)
τ
p , A = 2σ̂2 + 2

(
6τ
p +M

)
ζ̂2, B = L2, D = 2P

(
6τ
p +M

)
.

Weights wt stepsizes ηt chosen in Lemma 68 satisfy conditions of Lemmas 70, 71, 50, as shown in
Proposition 37.

C.1.4 Improved rate when τ = 1 (recovering mini-batch SGD convergence results)

In the special case when τ = 1 the proof can be simplified and the rate can be improved: there will
be an additional (1−p) factor appearing in the middle term, e.g in strongly convex case the improved
rate reads as

Õ
(

σ̄2

nµT
+

L(ζ̄2 + pσ̄2)(1− p)

µ2p2T 2
+

LR2
0

p
exp

[
−µTp

L

])
.

The main difference to the general result stated in Theorem 5 (for τ ≥ 1) is that the second term is
multiplied with (1−p), allowing to recover the rate of mini-batch SGD in the case of fully-connected
graph when p = 1. This improvement also holds for the weakly-convex and non-convex case.

In order to do so, one has to observe that the consensus distance Lemmas 45 and 71 can be
improved when τ = 1. In the first lines of both these proofs we multiply with (1 − p) not only the
first term

∥∥X(t) − X̄(t)
∥∥2
2

but also the second term with the gradient as during the 1-step averaging

both x(t) and ηt∂Fi(X
(t), ξ

(t)
i ) are averaged with mixing matrix W (t) (line 4 of Algorithm 9). We

omit the full derivations for this special case, as they can easily be obtained by following the current
proofs.

C.2 Technical Preliminaries

C.2.1 Implications of the assumptions

Proposition 30 One step of gossip averaging with the mixing matrix W (def. 10) preserves the
average of the iterates, i.e.

XW
11⊤
n

= X
11⊤
n

.

Proposition 31 (Implications of the smoothness Assumption 1a) If for functions Fi(x, ξ) Assump-
tion 1a holds, then it also holds that

Fi(x, ξ) ≤ Fi(y, ξ) + 〈∇Fi(y, ξ), x − y〉+ L

2
‖x − y‖22 , ∀x, y ∈ Rd, ξ ∈ Ωi (C.7)

If functions fi(x) = Eξ Fi(x, ξ), then

fi(x) ≤ fi(y) + 〈∇fi(y), x − y〉+ L

2
‖x − y‖22 , ∀x, y ∈ Rd (C.8)

Moreover, if in addition Fi are convex functions, then

‖∇fi(x)−∇fi(y)‖2 ≤ L ‖x − y‖2 , ∀x, y ∈ Rd, (C.9)

‖∇g(x)−∇g(y)‖22 ≤ 2L (g(x)− g(y)− 〈x − y,∇g(y)〉) , ∀x, y ∈ Rd, (C.10)

where g(x) is either Fi or fi.

Proposition 32 (Implications of the smoothness Assumption 1b) From Assumption 1b it follows that

fi(x) ≤ fi(y) + 〈∇fi(y), x − y〉+ L

2
‖x − y‖22 , ∀x, y ∈ Rd . (C.11)
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C.2.2 Useful Inequalities

Lemma 40 For arbitrary set of n vectors {ai}ni=1, ai ∈ Rd

∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n
n∑

i=1

‖ai‖2 . (C.12)

Lemma 41 For given two vectors a,b ∈ Rd

2 〈a,b〉 ≤ γ ‖a‖2 + γ−1 ‖b‖2 , ∀γ > 0 . (C.13)

Lemma 42 For given two vectors a,b ∈ Rd

‖a + b‖2 ≤ (1 + α) ‖a‖2 + (1 + α−1) ‖b‖2 , ∀α > 0 . (C.14)

This inequality also holds for the sum of two matrices A,B ∈ Rn×d in Frobenius norm.

Remark 43 For A ∈ Rd×n, B ∈ Rn×n

‖AB‖F ≤ ‖A‖F ‖B‖2 . (C.15)

C.2.3 τ -slow Sequences

Definition 37 (τ -slow sequences Stich and Karimireddy [2020]) The sequence {at}t≥0 of positive
values is τ -slow decreasing for parameter τ > 0 if

at+1 ≤ at, ∀t ≥ 0 and, at+1

(
1 +

1

2τ

)
≥ at, ∀t ≥ 0 .

The sequence {at}t≥0 is τ -slow increasing if {a−1
t }t≥0 is τ -slow decreasing.

Proposition 33 (Examples)

1. The sequence {η2t }t≥0 with ηt =
a

b+t , b ≥
32
p is 4

p -slow decreasing.

2. The sequence of constant stepsizes {η2t }t≥0 with ηt = η is τ -slow decreasing for any τ .

3. The sequence {wt}t≥0 with wt = (1− p
64τc)

−t, c ≥ 1 is 16τ
p -slow increasing.

4. The sequence {wt}t≥0 with wt = (b+ t)2, b ≥ 128
p is 16

p -slow increasing.

5. The sequence of constant weights {wt}t≥0 with wt = 1 is τ -slow increasing for any τ .

C.3 Descent Lemmas and Consensus Recursions

In this section, according to our proof sketch we derive descent (C.2) and consensus recursions (C.5)
for both convex and also non-convex cases.
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C.3.1 Convex Cases

We require both fi and Fi to be convex. We do not need Assumption ?? to hold for all x, y ∈ Rd and
we could weaken it to hold only for x = x⋆ and for all y ∈ Rd.

Proposition 34 (Mini-batch variance) Let functions Fi(x, ξ) , i ∈ [n] be L-smooth (Assumption 1a)
with bounded noise at the optimum (Assumption 9a). Then for any xi ∈ Rd, i ∈ [n] and x̄ :=
1
n

∑n
i=1 xi it holds

Eξ1,...,ξn

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(xi)−∇Fi(xi, ξi))

∥∥∥∥∥
2

≤ 3L2

n2

n∑
i=1

‖xi − x̄‖2 + 6L

n
(f(x̄)− f(x⋆)) +

3σ̄2

n
.

Proof.

Eξ1,...,ξn

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(xi)−∇Fi(xi, ξi))

∥∥∥∥∥
2

≤ 1

n2

n∑
i=1

Eξi ‖∇Fi(xi, ξi)−∇fi(xi)‖2

≤ 3

n2

n∑
i=1

Eξi

(
‖∇Fi(xi, ξi)−∇Fi(x̄, ξi)−∇fi(xi) +∇fi(x̄)‖2

+
∥∥∥∇Fi(x̄, ξi)−∇Fi(x⋆, ξi)−∇fi(x̄(t)) +∇fi(x⋆)

∥∥∥2 + ‖∇Fi(x⋆, ξi)−∇fi(x⋆)‖2
)

≤ 3

n2

n∑
i=1

Eξi

( ∥∥∥∇Fi(x(t)
i , ξ

(t)
i )−∇Fi(x̄, ξi)

∥∥∥2 + ‖∇Fi(x̄, ξi)−∇Fi(x⋆, ξi)‖2

+ ‖∇Fi(x⋆, ξi)−∇fi(x⋆)‖2
)

≤ 3

n2

n∑
i=1

(
L2
∥∥∥x(t)

i − x̄
∥∥∥2 + 2L

(
fi(x̄(t))− fi(x⋆)

)
+ σ2

i

)
,

where we used that E ‖Y − a‖2 = E ‖Y ‖2 − ‖a‖2 ≤ E ‖Y ‖2 if a = EY .

Lemma 44 (Descent lemma for convex cases) Under Assumptions 1a, ??, 9a and 11, the averages
x̄(t) := 1

n

∑n
i=1 x(t)

i of the iterates of Algorithm 5 with the stepsize ηt ≤ 1
12L satisfy

E
ξ
(t)
1 ,...,ξ

(t)
n

‖x̄(t+1) − x⋆‖2 ≤
(
1− ηtµ

2

)∥∥∥x̄(t) − x⋆
∥∥∥2 + η2t σ̄

2

n
− ηt

(
f(x̄(t))− f⋆

)
+ ηt

3L

n

n∑
i=1

∥∥∥x̄(t) − x(t)
i

∥∥∥2 , (C.16)

where σ̄2 = 1
n

∑n
i=1 σ

2
i .
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Proof. Because all mixing matrixes preserve the average (Proposition 30), we have∥∥∥x̄(t+1) − x⋆
∥∥∥2 = ∥∥∥∥∥x̄(t) − ηt

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )− x⋆

∥∥∥∥∥
2

=

∥∥∥∥∥x̄(t) − x⋆ − ηt
n

n∑
i=1

∇fi(x(t)
i ) +

ηt
n

n∑
i=1

∇fi(x(t)
i )− ηt

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

∥∥∥∥∥
2

=

∥∥∥∥∥x̄(t) − x⋆ − ηt
n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

+ η2t

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(t)
i )− 1

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

∥∥∥∥∥
2

+
2ηt
n

〈
x̄(t) − x⋆ − ηt

n

n∑
i=1

∇fi(x(t)
i ),

n∑
i=1

∇fi(x(t)
i )−

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

〉
.

The last term is zero in expectation, as E
ξ
(t)
i

∇Fi(x(t)
i , ξ

(t)
i ) = ∇fi(x(t)

i ). The second term is esti-
mated using Proposition 34.

The first term can be written as:∥∥∥∥∥x̄(t) − x⋆ − ηt
n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

=
∥∥∥x̄(t) − x⋆

∥∥∥2 + η2t

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

︸ ︷︷ ︸
=:T1

− 2ηt

〈
x̄(t) − x⋆,

1

n

n∑
i=1

∇fi(x(t)
i )

〉
︸ ︷︷ ︸

=:T2

.

We can estimate

T1 =

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(x(t)
i )−∇fi(x̄(t)) +∇fi(x̄(t))−∇fi(x⋆))

∥∥∥∥∥
2

(E.3)
≤ 2

n

n∑
i=1

∥∥∥∇fi(x(t)
i )−∇fi(x̄(t))

∥∥∥2 + 2

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x̄(t))− 1

n

n∑
i=1

∇fi(x⋆)

∥∥∥∥∥
2

(C.9),(C.10)
≤ 2L2

n

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2 + 4L

n

n∑
i=1

(
fi(x̄(t))− fi(x⋆)

)
=

2L2

n

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2 + 4L
(
f(x̄(t))− f⋆

)
.

And for the remaining T2 term:

− 1

ηt
T2 = − 2

n

n∑
i=1

[〈
x̄(t) − x(t)

i ,∇fi(x(t)
i )
〉
+
〈

x(t)
i − x⋆,∇fi(x(t)

i )
〉]

(C.8),(2.5)
≤ − 2

n

n∑
i=1

[
fi(x̄(t))− fi(x(t)

i )− L

2

∥∥∥x̄(t) − x(t)
i

∥∥∥2 + fi(x(t)
i )− fi(x⋆) +

µ

2

∥∥∥x(t)
i − x⋆

∥∥∥2]
(E.3)
≤ −2

(
f(x̄(t))− f(x⋆)

)
+

L+ µ

n

n∑
i=1

∥∥∥x̄(t) − x(t)
i

∥∥∥2 − µ

2

∥∥∥x̄(t) − x⋆
∥∥∥2 ,
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Where at the last step (E.3) was applied to
∥∥x̄(t) − x⋆

∥∥2 ≤ 2
∥∥∥x̄(t) − x(t)

i

∥∥∥2 +2
∥∥∥x(t)

i − x⋆
∥∥∥2. Putting

everything together and using that ηt ≤ 1
12L we are getting statement of the lemma.

Lemma 45 (Recursion for consensus distance) Under Assumptions 1a, ??, 9a and 11, if in addition
functions Fi are convex and if stepsizes ηt ≤ p

96
√
6τL

, then

Ξt ≤
(
1− p

2

)
Ξmτ +

p

64τ

t−1∑
j=mτ

Ξj + 72
τ

p
L

t−1∑
j=mτ

η2j

(
f(x̄(j))− f(x⋆)

)
+

(
8σ̄2 +

18τ

p
ζ̄2
) t−1∑

j=mτ

η2j ,

where Ξt =
1
n E
∑n

i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2 is a consensus distance, m = bt/τc − 1.

Proof. Using matrix notation (C.1), for t ≥ τ

nΞt = E
∥∥∥X(t) − X̄(t)

∥∥∥2
F
= E

∥∥∥X(t) − X̄(mτ) −
(
X̄(t) − X̄(mτ)

)∥∥∥2
F
≤ E

∥∥∥X(t) − X̄(mτ)
∥∥∥2
F
,

where we used that
∥∥A− Ā

∥∥2
F

=
∑n

i=1 ‖ai − ā‖22 ≤
∑n

i=1 ‖ai‖22 = ‖A‖2F . Unrolling X(t) up to
X(mτ) using lines 3–4 of the Algorithm 9,

nΞt ≤ E

∥∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ) −
t−1∑

j=mτ

ηj∂F (X(j), ξ(j))

j∏
i=t−1

W (i)

∥∥∥∥∥∥
2

F

= E

∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ) −
t−1∑

j=mτ

ηj∂f(X
(j))

j∏
i=t−1

W (i)

−
t−2∑

j=mτ

ηj

(
∂F (X(j), ξ(j))− ∂f(X(j))

) j∏
i=t−1

W (i)

∥∥∥∥∥
2

F

+ E

∥∥∥∥∥ηt−1

(
∂F (X(t−1), ξ(t−1))− ∂f(X(t−1))

) j∏
i=t−1

W (i)

∥∥∥∥∥
2

F

where we used that E ∂F (X(t−1), ξ(t−1)) = ∂f(X(t−1)) and that ξ(t−1) is independent of the rest. To
separate the rest of the stochastic terms similar way (terms with ∂F (X(j), ξ(j)) − ∂f(X(j))), since
X(t−1) depends on ξ(t−2), we first need to separate the term with ∂f(X(t−1)). Let β1 = 1

C−1 for
some constant C which we will define later,

nΞt

(D.3),(D.4)
≤ (1 + β1)︸ ︷︷ ︸

= C
C−1

E

∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ)

−

 t−2∑
j=mτ

ηj∂f(X
(j))−

t−2∑
j=mτ

ηj

(
∂F (X(j), ξ(j))− ∂f(X(j))

) j∏
i=t−1

W (i)

∥∥∥∥∥
2

F

+ (1 + β−1
1 )︸ ︷︷ ︸

=C

E
∥∥∥ηt−1∂f(X

(t−1))
∥∥∥2
F
+ η2t−1 E

∥∥∥∂F (X(t−1), ξ(t−1))− ∂f(X(t−1))
∥∥∥2
F
,
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Now, similarly, we split terms that depend on X(t−2) with β2 =
1

C−2 . Note that (1+β1)(1+β−1
2 ) = C

and (1 + β1)(1 + β2) =
C

C−2 :

nΞt ≤
C

C − 2
E

∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ)

−

(
t−2∑

j=mτ

ηj∂f(X
(j))−

t−2∑
j=mτ

ηj

(
∂F (X(j), ξ(j))− ∂f(X(j))

)) j∏
i=t−1

W (i)

∥∥∥∥∥
2

F

+ C

t−1∑
j=t−2

E
∥∥∥ηj∂f(X(j))

∥∥∥2
F
+

t−1∑
j=t−2

C

C + j − (t− 1)
η2j E

∥∥∥∂F (X(j), ξ(j))− ∂f(X(j))
∥∥∥2
F
,

Splitting the same way the rest of the terms and using that C
C+j−(t−1) ≤ 2 for C ≥ 2τ ,

nΞt ≤
C

C − 2τ
E

∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ)

∥∥∥∥∥
2

F

+ C

t−1∑
j=mτ

E η2j

∥∥∥∂f(X(j))
∥∥∥2
F

+
t−1∑

j=mτ

2η2j E
∥∥∥∂F (X(j), ξ(j))− ∂f(X(j))

∥∥∥2
F
,

Taking C = 2τ(1 + 2
p) and using (5.10) to bound the first term we get that

nΞt ≤
(
1− p

2

)
E
∥∥∥X(mτ) − X̄(mτ)

∥∥∥2
F
+

6τ

p

t−1∑
j=mτ

η2j E
∥∥∥∂f(X(j))

∥∥∥2
F︸ ︷︷ ︸

:=T1

+
t−1∑

j=mτ

2η2j E
∥∥∥∂F (X(j), ξ(j))− ∂f(X(j))

∥∥∥2
F︸ ︷︷ ︸

:=T2

,

Estimating separately the last two terms, and using the notation ±a = a− a = 0 ∀a,

T1 = E
∥∥∥∂f(X(j))± ∂f(X̄(j))± ∂f(X⋆)

∥∥∥2
F

(E.3)
≤ 3E

∥∥∥∂f(X(j))− ∂f(X̄(j))
∥∥∥2
F

+ 3E
∥∥∥∂f(X̄(j))− ∂f(X⋆)

∥∥∥2
F
+ 3 ‖∂f(X⋆)‖2F

(5.1),(C.10),(5.3)
≤ 3

(
L2 E

∥∥∥X(j) − X̄(j)
∥∥∥2
F
+ 2LnE

(
f(x̄(j))− f(x⋆)

)
+ nζ̄2

)

T2 = E
∥∥∥∂F (X(j), ξ(j))± ∂F (X̄(j), ξ(j))± ∂F (X⋆, ξ(j))− ∂f(X(j))± ∂f(X̄(j))± ∂f(X⋆)

∥∥∥2
F

(E.3),(5.1),(C.10)
≤ 4E

(
4L2

∥∥∥X(j) − X̄(j)
∥∥∥2
F
+ 4LnE

(
f(x̄(j))− f(x⋆)

)
+
∥∥∥∂F (X⋆, ξ(j))− ∂f(X⋆)

∥∥∥2
F

)
,

where the last term is bounded by nσ̄2 by definition (5.4). Putting back estimates for T1 and T2 and
using that ηt ≤ p

96
√
6τL

we arrive to the statement of the lemma.
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This recursion in Lemma 45 holds only when t ≥ (m + 1)τ . For these steps we are guaranteed
to get (1− p) decrease by Assumption 11. To simplify this recursion we would need similar relation
also for smaller t that is mτ ≤ t < (m+ 1)τ , that we derive in Lemma 46.

Lemma 46 (Second recursion for consensus distance) Under Assumptions 1a, ??, 9a and 11, if in
addition functions Fi are convex and if stepsizes ηt ≤ p

96
√
6τL

, then

Ξt ≤
(
1 +

p

2

)
Ξmτ +

p

64τ

t−1∑
j=mτ

Ξj + 72
τ

p
L

t−1∑
j=mτ

η2j

(
f(x̄(j))− f(x⋆)

)
+

(
8σ̄2 +

18τ

p
ζ̄2
) t−1∑

j=mτ

η2j ,

where Ξt =
1
n Et

∑n
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2 is a consensus distance, and t is such that mτ ≤ t < (m+1)τ .

Proof. The proof follows exactly the same lines as in Lemma 45, with the change that we don’t use
(5.10) to decrease the consensus distance by (1 − p), but instead we use the Definition 10 that each
W (i) is doubly stochastic

E

∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ)

∥∥∥∥∥
2

F

≤ E
∥∥∥X(mτ) − X̄(mτ)

∥∥∥2
F
.

C.3.2 Non-convex Case

Here we derive descent recursive equation (C.2) and recursion for consensus distance (C.3) for the
non-convex case.

Proposition 35 (Mini-batch variance) Let functions Fi(x, ξ) , i ∈ [n] be L-smooth (Assumption 1a)
with bounded noise as in Assumption 9b. Then for any xi ∈ Rd, i ∈ [n] and x̄ := 1

n

∑n
i=1 xi it holds

Eξ1,...,ξn

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(xi)−∇Fi(xi, ξi))

∥∥∥∥∥
2

≤ σ̂2

n
+

M

n2

n∑
i=1

‖∇f(xi)‖2 (C.17)

Lemma 47 (Descent lemma for non-convex case) Under Assumptions 1b, 9b and 11, the averages
x̄(t) := 1

n

∑n
i=1 x(t)

i of the iterates of Algorithm 5 with the constant stepsize η < 1
4L(M+1) satisfy

Et+1 f(x̄(t+1)) ≤ f(x̄(t))− η

4

∥∥∥∇f(x̄(t))
∥∥∥2
2
+

ηL2

n

n∑
i=1

∥∥∥x̄(t) − x(t)
i

∥∥∥2
2
+

L

n
η2σ̂2. (C.18)

Proof. Because all mixing matrixes preserve the average (Proposition 30) and function f is L-smooth,
we have

Et+1 f(x̄(t+1)) = Et+1 f

(
x̄(t) − η

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

)

≤ f(x̄(t))− Et+1

〈
∇f(x̄(t)),

η

n

n∑
i=1

∇Fi(x(t)
i , ξ

(t)
i )

〉
︸ ︷︷ ︸

:=T1

+Et+1
L

2
η2

∥∥∥∥∥∥ 1n
n∑

j=1

∇Fi(x(t)
i , ξ

(t)
i )

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
:=T2
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To estimate the second term, we add and subtract ∇f(x̄(t))

T1 = −η
∥∥∥∇f(x̄(t))

∥∥∥2 + η

n

n∑
i=1

〈
∇f(x̄(t)),∇fi(x̄(t))−∇fi(x(t)

i )
〉

(D.2),γ=1;(E.3)
≤ −η

2

∥∥∥∇f(x̄(t))
∥∥∥2 + η

2n

n∑
i=1

∥∥∥∇fi(x̄(t))−∇fi(x(t)
i )
∥∥∥2

For the last term, using the notation ± a = a− a = 0 ∀a,

T2 = Et+1

∥∥∥∥∥∥ 1n
n∑

j=1

(
∇Fi(x(t)

i , ξ
(t)
i )−∇fi(x(t)

i )
)∥∥∥∥∥∥

2

2

+

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

2

(C.17)
≤ σ̂2

n
+

M

n2

n∑
i=1

∥∥∥∇f(x(t)
i )±∇f(x̄(t))

∥∥∥2 + ∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(t)
i )±∇f(x̄(t))

∥∥∥∥∥
2

2

(D.3)
≤ σ̂2

n
+

2M

n2

n∑
i=1

∥∥∥∇f(x(t)
i )−∇f(x̄(t))

∥∥∥2 + (2M/n + 2)
∥∥∥∇f(x̄(t))

∥∥∥2
2

+
2

n

n∑
i=1

∥∥∥∇fi(x(t)
i )−∇fi(x̄(t))

∥∥∥2
2

Combining this together and using L-smoothness to estimate
∥∥∥∇fi(x̄(t))−∇fi(x(t)

i )
∥∥∥2
2

and∥∥∥∇f(x̄(t))−∇f(x(t)
i )
∥∥∥2
2
, we get

Et+1 f(x̄(t+1)) ≤ f(x̄(t))− η

(
1

2
− Lη(M + 1)

)∥∥∥∇f(x̄(t))
∥∥∥2
2

+

(
ηL2

2n
+

L3η2(M + 1)

n

) n∑
i=1

∥∥∥x̄(t) − x(t)
i

∥∥∥2
2
+

L

n
η2σ̂2.

Applying η < 1
4L(M+1) we get statement of the lemma.

Lemma 48 (Recursion for consensus distance) Under Assumptions 1b, 9b and 11, if the stepsize
ηt ≤ p

8L
√

2τ(6τ+pM)
, then

Ξt ≤
(
1− p

2

)
Ξmτ +

p

16τ

t−1∑
j=mτ

Ξj + 2P

(
6τ

p
+M

) t−1∑
j=mτ

η2j

∥∥∥∇f(x̄(j))
∥∥∥2
2

+

(
2σ̂2 + 2

(
6τ

p
+M

)
ζ̂2
) t−1∑

j=mτ

η2j

where Ξt =
1
n Et

∑n
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2 is a consensus distance, m = bt/τc − 1.

Proof. We start exactly the same way as in the convex proof in Lemma 45. Defining

Ξt = 1
n Et

∑n
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2, m = bt/τc − 1 and using matrix notation (A.20), for t ≥ τ (and
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therefore m ≥ 0)

nΞt = E
∥∥∥X(t) − X̄(t)

∥∥∥2
F
= E

∥∥∥X(t) − X̄(mτ) −
(
X̄(t) − X̄(mτ)

)∥∥∥2
F
≤ E

∥∥∥X(t) − X̄(mτ)
∥∥∥2
F
,

where we used that
∥∥A− Ā

∥∥2
F

=
∑n

i=1 ‖ai − ā‖ ≤
∑n

i=1 ‖ai‖2F = ‖A‖2F . Unrolling X(t) up to
X(mτ) using lines 3-4 of the Algorithm 9 and splitting stochastic terms similar way as for the convex
cases in Lemma 45,

nΞt ≤ E

∥∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ) −
t−1∑

j=mτ

ηj∂F (X(j), ξ(j))

j∏
i=t−1

W (i)

∥∥∥∥∥∥
2

F

≤
(
1− p

2

)
E
∥∥∥X(mτ) − X̄(mτ)

∥∥∥2
F
+

6τ

p

t−1∑
j=mτ

η2j E
∥∥∥∂f(X(j))

∥∥∥2
F

+
t−1∑

j=mτ

2η2j E
∥∥∥∂F (X(j), ξ(j))− ∂f(X(j))

∥∥∥2
F

(5.6)
≤
(
1− p

2

)
E
∥∥∥X(mτ) − X̄(mτ)

∥∥∥2
F
+

(
6τ

p
+M

) t−1∑
j=mτ

η2j

∥∥∥∂f(X(j))
∥∥∥2
F︸ ︷︷ ︸

:=T

+

t−1∑
j=mτ

2η2jnσ̂
2

Estimating T ,

T
(D.3)
≤ 2

∥∥∥∂f(X(j))− ∂f(X̄(j))
∥∥∥2
F
+ 2

∥∥∥∂f(X̄(j))
∥∥∥2
F

(5.2),(5.5)
≤ 2L2

∥∥∥X(j) − X̄(j)
∥∥∥2
F
+ 2nζ̂2 + 2Pn

∥∥∥∇f(x̄(j))
∥∥∥2
2

Putting back estimate for T and using that ηt ≤ p

8L
√

2τ(6τ+pM)
we arrive to the statement of this

lemma.

Similarly to the convex cases, we additionally need a recursion for values t that are in between
mτ ≤ t < (m+ 1)τ

Lemma 49 (Second recursion for consensus distance) Under Assumptions 1b, 9b and 11, if the
stepsize ηt ≤ p

8L
√

2τ(6τ+pM)
, and t such that mτ ≤ t < (m+ 1)τ then

Ξt ≤
(
1 +

p

2

)
Ξmτ +

p

64τ

t−1∑
j=mτ

Ξj + 2P

(
6τ

p
+M

) t−1∑
j=mτ

η2j

∥∥∥∇f(x̄(j))
∥∥∥2
2

+

(
σ̂2 + 2

(
6τ

p
+M

)
ζ̂2
) t−1∑

j=mτ

η2j

where Ξt =
1
n Et

∑n
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2 is a consensus distance.
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C.3. Descent Lemmas and Consensus Recursions

Proof. As in the convex case, we need to change the proof of Lemma 71 just slightly, by applying
Def. 10 instead of (5.10) as follows

E

∥∥∥∥∥X(mτ)
mτ∏

i=t−1

W (i) − X̄(mτ)

∥∥∥∥∥
2

F

≤ E
∥∥∥X(mτ) − X̄(mτ)

∥∥∥2
F

C.3.3 Simplifying Consensus Recursion

In Lemmas 45, 71 we obtained the consensus recursive equation (C.3) for both convex and non-convex
cases. In this section we simplify it to be able to easily combine it later with (C.2).

Lemma50 If non-negative sequences {Ξt}t≥0, {et}t≥0 and {ηt}t≥0 satisfy (C.3) and (C.4) for some
constants 0 < p ≤ 1, τ ≥ 1, A,D ≥ 0, moreover if the stepsizes {η2t }t≥0 is 8τ

p -slow decreasing
sequence (Definition 38), and if {wt}t≥0 is 16τ

p -slow increasing non-negative sequence of weights,
then it holds that

B

T∑
t=0

wtΞt ≤
b

2

T∑
t=0

wtet + 64BA
τ

p

T∑
t=0

wtη
2
t ,

for some constant B > 0 with the constraint that stepsizes ηt ≤ 1
16

√
pb

DBτ .

Proof. Recursively substituting every Ξj for j ≥ (m+ 1)τ in the second term of (C.3) we get

Ξt ≤
(
1− p

2

)
Ξmτ

(
1 +

p

64τ

)τ
+
(
1 +

p

64τ

)τ p

64τ

(m+1)τ−1∑
j=mτ

Ξj

+D

t−1∑
j=(m+1)τ

(
1 +

p

64τ

)t−1−j
η2j ej +D

(m+1)τ−1∑
j=mτ

(
1 +

p

64τ

)t−(m+1)τ
η2j ej

+A

t−1∑
j=(m+1)τ

(
1 +

p

64τ

)t−1−j
η2j +A

(m+1)τ−1∑
j=mτ

(
1 +

p

64τ

)t−(m+1)τ
η2j

We substitute the rest of Ξj for mτ ≤ j < (m+1)τ with (C.4). Lets start with substituting Ξ(m+1)τ−1

Ξt ≤
(
1 +

p

64τ

)τ (1− p

2

)
Ξmτ +

p

64τ

(
1 +

p

2

)
Ξmτ +

(
1 +

p

64τ

) p

64τ

(m+1)τ−2∑
j=mτ

Ξj

+

+D
t−1∑

j=(m+1)τ−1

(
1 +

p

64τ

)t−1−j
η2j ej +D

(m+1)τ−2∑
j=mτ

(
1 +

p

64τ

)t−(m+1)τ+1
η2j ej

+A
t−1∑

j=(m+1)τ−1

(
1 +

p

64τ

)t−1−j
η2j +A

(m+1)τ−2∑
j=mτ

(
1 +

p

64τ

)t−(m+1)τ+1
η2j
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Since 0 < p ≤ 1, it holds that p
64τ

(
1 + p

2

)
≤
(
1− p

2

) p
16τ and therefore

Ξt ≤
(
1 +

p

64τ

)τ (1− p

2

)
Ξmτ

(
1 +

p

16τ

)
+
(
1 +

p

64τ

) p

64τ

(m+1)τ−2∑
j=mτ

Ξj

+

+D

t−1∑
j=(m+1)τ−1

(
1 +

p

64τ

)t−1−j
η2j ej +D

(m+1)τ−2∑
j=mτ

(
1 +

p

64τ

)t−(m+1)τ+1
η2j ej

+A

t−1∑
j=(m+1)τ−1

(
1 +

p

64τ

)t−1−j
η2j +A

(m+1)τ−2∑
j=mτ

(
1 +

p

64τ

)t−(m+1)τ+1
η2j

Applying the same way (C.4) to the rest of Ξj and using that p
64τ ≤ p

16τ we get that

Ξt ≤
(
1− p

2

)
Ξmτ

(
1 +

p

16τ

)2τ
+D

t−1∑
j=mτ

(
1 +

p

16τ

)t−1−j
η2j ej +A

t−1∑
j=mτ

(
1 +

p

16τ

)t−1−j
η2j

Using that
(
1 + p

16τ

)2τ ≤ exp
(p
8

)
≤ 1 + p

4 for p ≤ 1 and also that (1 + p
16τ )

t−1−j ≤(
1 + p

16τ

)2τ ≤ 1 + p
4 ≤ 2

Ξt ≤
(
1− p

4

)
Ξmτ + 2D

t−1∑
j=mτ

η2j ej + 2A

t−1∑
j=mτ

η2j ,

Unrolling Ξmτ recursively up to 0 we get,

Ξt ≤ 2D
t−1∑
j=0

(
1− p

4

)⌊(t−j)/τ⌋
η2j ej + 2A

t−1∑
j=0

(
1− p

4

)⌊(t−j)/τ⌋
η2j ,

For the first term estimating
(
1− p

4

)1/τ ≤ exp(− p
4τ ) ≤ 1 − p

8τ and that
(
1− p

8τ

)τ⌊(t−j)/τ⌋ ≤(
1− p

8τ

)t−j (
1− p

8τ

)−τ . For the last term,
(
1− p

8τ

)−τ ≤
(

1
1− p

8τ

)τ
≤ (1 + p

4τ )
τ because p

8τ ≤ 1
2

and finally
(
1 + p

4τ

)τ ≤ exp(p4) < 2,

Ξt ≤ 4D

t−1∑
j=0

(
1− p

8τ

)t−j
η2j ej + 4A

t−1∑
j=0

(
1− p

8τ

)t−j
η2j ,

Now using that η2t is 8τ
p -slow decreasing, i.e. η2j ≤ η2t

(
1 + p

16τ

)t−j and using that (1− p
8τ )(1+

p
16τ ) ≤

(1− p
16τ )

Ξt ≤ 4Dη2t

t−1∑
j=0

(
1− p

16τ

)t−j
ej + 4Aη2t

t−1∑
j=0

(
1− p

16τ

)t−j

≤ 4Dη2t

t−1∑
j=0

(
1− p

16τ

)t−j
ej + 64A

τ

p
η2t
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Now averaging Ξt with weights wt and using that wt is 16τ
p -slow increasing sequence, i.e. wt ≤

wj

(
1 + p

32τ

)t−j , and also using that ηt ≤ 1
16

√
pb

DBτ

B
T∑
t=0

wtΞt ≤ 4DB
T∑
t=0

η2t

t−1∑
j=0

wj

(
1− p

32τ

)t−j
ej + 64AB

τ

p

T∑
t=0

wtη
2
t

≤ pb

64τ

T∑
t=0

t−1∑
j=0

wj

(
1− p

32τ

)t−j
ej︸ ︷︷ ︸

:=T1

+64AB
τ

p

T∑
t=0

wtη
2
t

And finally,

T1 =
pb

64τ

T∑
j=0

wjej

T∑
t=j+1

(
1− p

32τ

)t−j
≤ pb

64τ

T∑
j=0

wjej

∞∑
t=0

(
1− p

32τ

)t−j
≤ b

2

T∑
t=0

wtet.

C.4 Solving the Main Recursion (C.6)

C.4.1 a > 0 (strongly convex case)

Lemma 51 If non-negative sequences {rt}t≥0, {et}t≥0 satisfy (C.6) for some constants a, b, p > 0,
c, A,B, τ ≥ 0, then there exists a constant stepsize ηt = η < 1

d such that for weights wt =

(1− aη)−(t+1) and WT :=
∑T

t=0wt it holds:

1

2WT

T∑
t=0

betwt + arT+1 ≤ Õ
(
r0d exp

[
−a(T + 1)

d

]
+

c

aT
+

BA

a2T 2

τ

p

)
,

where Õ hides polylogarithmic factors.

Proof. Starting from (C.6) and using that ηt = η and that wt(1−aη)
η = wt−1

η we obtain a telescoping
sum,

1

2WT

T∑
t=0

bwtet ≤
1

WT η
((1− aη)w0r0 − wT rT+1) + cη + 64BA

τ

p
η2 ,

And hence,

1

2WT

T∑
t=0

bwtet +
wT rT+1

WT η
≤ r0

WT η
+ cη + 64BA

τ

p
η2 ,

Using that WT ≤ wT
aη and WT ≥ wT = (1− aγ)−(T+1) we can simplify

1

2WT

T∑
t=0

bwtet + arT+1 ≤ (1− aη)T+1 r0
η

+ cη + 64BA
τ

p
η2

≤ r0
η

exp [−aη(T + 1)] + cη + 64BA
τ

p
η2 ,

Now lemma follows by tuning η the same way as in Stich [2019a].
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• If 1
d ≥ ln(max{2,a2r0T 2/c})

aT then we choose η = ln(max{2,a2r0T 2/c})
aT and get that

Õ
(
ar0T exp

[
− ln(max{2, a2r0T 2/c})

])
+ Õ

( c

aT

)
+ Õ

(
BA

a2T 2

τ

p

)
= Õ

( c

aT

)
+ Õ

(
BA

a2T 2

τ

p

)
,

• Otherwise 1
d ≤ ln(max{2,a2r0T 2/c})

aT we pick η = 1
d and get that

Õ
(
r0d exp

[
−a(T + 1)

d

]
+

c

d
+

BA

d2
τ

p

)
≤ Õ

(
r0d exp

[
−a(T + 1)

d

]
+

c

aT
+

BA

a2T 2

τ

p

)
.

C.4.2 a = 0 (weakly convex and non-convex cases)

Now we assume that in Assumption 3 µ = 0, which means that a = 0 in (C.6).

Lemma52 If non-negative sequences {rt}t≥0, {et}t≥0 satisfy (C.6) with a = 0, b > 0, c, A,B ≥ 0,
then there exists a constant stepsize ηt = η < 1

d such that for weights {wt = 1}t≥0 it holds that:

1

(T + 1)

T∑
t=0

et ≤ O

(
2

(
cr0

T + 1

) 1
2

+ 2

(
BAτ

p

)1/3( r0
T + 1

) 2
3

+
dr0

T + 1

)
.

Proof. With a = 0, constant stepsizes ηt = η and weights {wt = 1}t≥0 (C.6) is equivalent to

1

2(T + 1)

T∑
t=0

et ≤
1

(T + 1)η

T∑
t=0

(rt − rt+1) + cη + 64
BAτ

p
η2 ≤ r0

(T + 1)η
+ cη + 64

BAτ

p
η2.

To conclude the proof we tune the stepsize using Lemma 69.

Lemma 53 (Tuning the stepsize) For any parameters r0 ≥ 0, b ≥ 0, e ≥ 0, d ≥ 0 there exists
constant stepsize η ≤ 1

d such that

ΨT :=
r0

η(T + 1)
+ bη + eη2 ≤ 2

(
br0

T + 1

) 1
2

+ 2e1/3
(

r0
T + 1

) 2
3

+
dr0

T + 1

Proof. Choosing η = min
{(

r0
b(T+1)

) 1
2
,
(

r0
e(T+1)

) 1
3
, 1d

}
≤ 1

d we have three cases

• η = 1
d and is smaller than both

(
r0

b(T+1)

) 1
2 and

(
r0

e(T+1)

) 1
3 , then

ΨT ≤ dr0
T + 1

+
b

d
+

e

d2
≤
(

br0
T + 1

) 1
2

+
dr0

T + 1
+ e1/3

(
r0

T + 1

) 2
3

• η =
(

r0
b(T+1)

) 1
2
<
(

r0
e(T+1)

) 1
3 , then

ΨT ≤ 2

(
r0b

T + 1

) 1
2

+ e

(
r0

b(T + 1)

)
≤ 2

(
r0b

T + 1

) 1
2

+ e
1
3

(
r0

(T + 1)

) 2
3

,
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C.5. Lower Bound

• The last case, η =
(

r0
e(T+1)

) 1
3
<
(

r0
b(T+1)

) 1
2

ΨT ≤ 2e
1
3

(
r0

(T + 1)

) 2
3

+ b

(
r0

e(T + 1)

) 1
3

≤ 2e
1
3

(
r0

(T + 1)

) 2
3

+

(
br0

T + 1

) 1
2

.

C.5 Lower Bound

Proof of Theorem 6. We consider minimization problem of the form (2.1) with fi(x) =
1
2(x − yi)

2,
x, yi ∈ R which has the solution x⋆ = 1

n

∑n
i=1 yi, L = µ = 1. We denote x = (x1, . . . , xn)

⊤ and
∇f(x) = (∇f1(x1), . . . ,∇fn(xn))

⊤.
We assume that the starting point x(0) is an eigenvector of W , corresponding to the second largest

eigenvalue, i.e. Wx(0) = λ2x(0) and we set yi such that y = 1 + x(0). With this choice of y,
ζ̄2 =

∥∥x(0)
∥∥2
2
. It will be also useful to note that the average x̄(0) = 0 since it is orthogonal to 1, the

eigenvector of W corresponding to the largest eigenvalue. We use the notation z̄ := 1
n11⊤z.

We start the proof by decomposing the error 1
n

∥∥x(t) − ȳ
∥∥2
2

on consensus and optimization terms

1

n

∥∥∥x(t) − ȳ
∥∥∥2
2
=

1

n

∥∥∥x(t) − x̄(t) + x̄(t) − ȳ
∥∥∥2
2
=

1

n

∥∥∥x(t) − x̄(t)
∥∥∥2
2
+

1

n

∥∥∥x̄(t) − ȳ
∥∥∥2
2
.

Using that for our chosen functions ∇f(x) = x − y, we can estimate the optimization term as∥∥∥x̄(t) − ȳ
∥∥∥2
2
=
∥∥∥(1− η)x̄(t−1) + ηȳ − ȳ

∥∥∥2
2
= (1− η)2

∥∥∥x̄(t−1) − ȳ
∥∥∥2
2
= (1− η)2t

∥∥∥x̄(0) − ȳ
∥∥∥2
2

= (1− η)2tn.

For the consensus term,

∥∥∥x(t) − x̄(t)
∥∥∥2
2
=

∥∥∥∥(W − 11⊤
n

)(
x(t+ 1

2
) − x̄(t+ 1

2
)
)∥∥∥∥2

2

=

∥∥∥∥(W − 11⊤
n

)(
(1− η)

(
x(t) − x̄(t)

)
+ η(y − ȳ)

)∥∥∥∥2
2

=

∥∥∥∥∥
(
W − 11⊤

n

)t

(1− η)tx(0) + η
t−1∑
τ=0

(1− η)τ
(
W − 11⊤

n

)τ+1

(y − ȳ)
∥∥∥∥∥
2

2

=

∥∥∥∥∥λt
2(1− η)tx(0) + η

t−1∑
τ=0

(1− η)τλτ+1
2 x(0)

∥∥∥∥∥
2

2

=

(
λt
2(1− η)t + η

t−1∑
τ=0

(1− η)τλτ+1
2

)2 ∥∥∥x(0)
∥∥∥2
2

≥

λ2t
2 (1− η)2t + η2

(
t−1∑
τ=0

(1− η)τλτ+1
2

)2
nζ̄2

In order to guarantee error less than ε, it is necessary to have simultaneously both optimization
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and consensus terms less than ε, therefore it is required that

(1− η)2t ≤ ε (C.19)

(1− η)2tλ2t
2 ≤ ε

ζ̄2
(C.20)

η

(
t−1∑
τ=0

(1− η)τλτ
2

)
= η

1− (1− η)tλt
2

1− (1− η)λ2
≤
√

ε

ζ̄2λ2
2

(C.21)

Equations (C.20), (C.21) imply

η ≤
√

ε

ζ̄2λ2
2

1− (1− η)λ2

1−
√

ε/ζ̄2
≤
√

ε

ζ̄2λ2
2

1− λ2 + η

1−
√

ε/ζ̄2

Note that λ2 =
√
1− p, where p is from Assumption 11. Using that

√
1− p ≥ 1− p for p ∈ [0, 1],

η ≤
√

ε

ζ̄2(1− p)

1−
√
1− p+ η

1−
√

ε/ζ̄2
≤
√

ε

ζ̄2(1− p)

p+ η

1−
√

ε/ζ̄2

And therefore using that
√
1− p ≤ 1 and for ε ≤ ζ̄2(1−p)

16 ,

η ≤
√

ε/[ζ̄2(1−p)]p

1− (
√
1−p+1√
1−p

)
√

ε/ζ̄2
≤

√
ε/[ζ̄2(1−p)]p

1− 2
√

ε/[ζ̄2(1−p)]
≤ 2
√

ε/[ζ̄2(1−p)]p

With this upper bound on η, the inequality (C.19) gives a lower bound on t:

t ≥
log 1

ε

−2 log(1− η)
≥

log 1
ε

2η
≥

ζ̄
√
1− p log 1

ε

4
√
εp

, (C.22)

here we used that log(1− η) ≥ −η for η ≤ 4
5 .

C.6 Additional Experiments to Verify theO
(

1
T 2

)
Term

In Theorem 5 we proved an upper bound and in Theorem 6 we proved a lower bound, that indicates
that in the noiseless (σ̄2 = 0) strongly convex case the convergence is not linear when ζ̄2 > 0. In
this section we verify numerically that this rate indeed reflects tightly the convergence behavior of
decentralized SGD.

We consider the same setting as in Section 5.9 before, with σ̄2 = 0, ζ̄2 = 10, n = 25, and d = 10.
For both ring and 2-d torus (grid), we vary the target accuracy (ε) and tune the stepsize to find

the smallest number of iterations required (Tε) to achieve this target accuracy. In Figure C.1 we
depict the results, where x-axis is 1√

ε
and y-axis is Tε. Based on the Theorem 5 for strongly convex

case, ideally each of them should be a line, as we observe in the plots. Moreover, the ratio of the
slopes of these lines is 30.2/2.3 = 13.13 which matches the ratio of the spectral gap of these graphs
(pgrid/pring = 0.276/0.021 = 13.142), as it is shown in Theorems 5 and 6.
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(

1
T 2

)
Term
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Figure C.1: Verifying the O
( ζ̄2

p2T 2

)
convergence for the strongly convex noiseless (σ̂2 = 0) case.

Number of iterations to converge to target accuracy ε on ring (left) and 2-d torus (right).
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Appendix D

Appendix for Gradient Tracking

D.1 Proof of Theorem 8 — Consensus Functions

We consider functions fi(x) = 1
2 ‖x − µi‖2, where x,µi ∈ Rd. Then ∇fi(x) = x − µi. In matrix

notation, the GT algorithm in this special case is equivalent to

(
X(t+1)

γY (t+1)

)⊤
=

(
X(t)

γY (t)

)⊤(
W −W
0 W

)
+ γ

(
0

X(t+1) −X(t)

)⊤

=

(
X(t)

γY (t)

)⊤(
W −W

γ(W − I) (1− γ)W

)
.

The optimal point x⋆ = µ̄ = 1
n

∑n
i=1µi. Denote X⋆ = [x⋆, . . . , x⋆] ∈ Rd×n. We decompose the

error as ∥∥∥X(t) −X⋆
∥∥∥2
F
=
∥∥∥X(t) − X̄(t)

∥∥∥2
F︸ ︷︷ ︸

consensus error

+
∥∥∥X̄(t) −X⋆

∥∥∥2︸ ︷︷ ︸
optimization error

.

For the optimization part, notice that Ȳ (t) = X̄(t) −X⋆. That is because

Ȳ (0) = ∇f(X(0))
1

n
11⊤ = X̄(0) −X⋆, Ȳ (t+1) = Ȳ (t) + X̄(t+1) − X̄(t) .

Therefore, the optimization error is equal to∥∥X̄t −X⋆
∥∥2
F
=
∥∥∥X̄(t−1) − γȲ (t−1) −X⋆

∥∥∥2
F
=
∥∥∥(1− γ)

(
X̄(t−1) −X⋆

)∥∥∥2
F

= (1− γ)2t
∥∥∥X̄(0) −X⋆

∥∥∥2
F
.

For the consensus part, denoting, W̃ = W − 11⊤
n , ∆X(t) = X(t) − X̄(t), ∆Y (t) = Y (t) − Ȳ (t),(

∆X(t)

γ∆Y (t)

)⊤
=

(
∆X(0)

γ∆Y (0)

)⊤(
W̃ −W̃

γ(W − I) (1− γ)W̃

)t

︸ ︷︷ ︸
J ′

.
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Taking the norm,∥∥∥∆X(t)
∥∥∥2
F
+ γ2

∥∥∥∆Y (t)
∥∥∥2
F
≤
∥∥J ′t∥∥2

2

(∥∥∥∆X(0)
∥∥∥2
F
+ γ2

∥∥∥∆Y (0)
∥∥∥2
F

)
.

Lets analyze spectral properties of matrix J ′t. Let the eigenvalue decomposition of W be W =
UΛU⊤, the eigenvalue decomposition of W̃ is W̃ = U Λ̃U⊤ for diagonal Λ̃.

We can decompose

J ′ =

(
U 0
0 U

)(
Λ̃ −Λ̃

γ (Λ− I) (1− γ)Λ̃

)
︸ ︷︷ ︸

=:M

(
U⊤ 0
0 U⊤

)
.

And,

∥∥J ′t∥∥2
2
=

∥∥∥∥∥
(
U 0
0 U

)(
Λ̃ −Λ̃

γ (Λ− I) (1− γ)Λ̃

)t(
U⊤ 0
0 U⊤

)∥∥∥∥∥
2

2

=

∥∥∥∥∥
(

Λ̃ −Λ̃

γ (Λ− I) (1− γ)Λ̃

)t
∥∥∥∥∥
2

2

,

where the last equality is due to unitary property of U .

Lemma 54 To diagonalize a block-diagonal matrix(
A B
C D

)
,

where A = diag(a0, . . . an) ∈ Rn×n, B = diag(b0, . . . , bn), C = diag(c0, . . . , cn),
D = diag(d0, . . . , dn). Assume that each of the 2× 2 matrices(

ai bi
ci di

)
are diagonalizable with(

ai bi
ci di

)
=

(
q
(1)
i q

(2)
i

q
(3)
i q

(4)
i

)
·

(
d
(1)
i 0

0 d
(2)
i

)
·

(
q
(−1)
i q

(−2)
i

q
(−3)
i q

(−4)
i

)
Then the original matrix is diagonalizable and its diagonalization is equal to(

A B
C D

)
=

(
Q1 Q2

Q3 Q4

)
·
(
D1 0
0 D2

)
·
(
Q−1 Q−2

Q−3 Q−4

)
,

where each Ql = diag
(
q
(l)
1 , . . . , q

(l)
n

)
, Dl = diag

(
d
(l)
1 , . . . d

(l)
n

)
.

We need to show that the following 2× 2 matrices are diagonalizable.

Mi :=

(
λi −λi

γ (λi − 1) (1− γ)λi

)
,

where the λi are eigenvalues of the matrix W̃ . The eigenvalues of Mi are

λ(Mi) =

{
λi −

γλi

2
− 1

2

√
γλi

√
4 + (γ − 4)λi, λi −

γλi

2
+

1

2

√
γλi

√
4 + (γ − 4)λi

}
,
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which are distinct for γ > 0, therefore the matrix is diagonalizble (over C).
If λi is positive, then by choosing γ ≤ 1− λi,

|λ(Mi)| ≤
1

3
λi +

2

3
.

If λi is negative, then, then by choosing γ ≤ 1− |λi|,

|λ(Mi)| ≤
1

3
|λi|+

2

3
.

We do not give the full formal prove of these two bounds. First we note that |(Mi)| is monotone in γ,
i.e. the absolute value increases in γ. Therefore it is enough to check that it holds |λ(Mi)| ≤ 1

3 |λi|+ 2
3

for γ = 1− |λi|. We visualize these upper bounds with Mathematica Inc. [2021] in Figure D.1.

Out[ ]=

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Eigenvalues

Upper bound

Figure D.1: The upper bound 1
3 |λi|+ 2

3 (yellow) vs. the true |λ(Mi)| for the choice γ = 1− |λi|.

This concludes the proof.

D.2 Proof of Theorem 7 — General Case

We first re-state theorem 7 in terms of number of iterations T

Theorem 36 For GT algorithm 6 with a mixing matrix as in Definition 12, under Assumptions 13,
14, 16, after T iterations, if T > 2

p log
(
50
p (1 + log 1

p)
)

, there exists a constant stepsize γt = γ such
that the error is bounded as
Non-convex:

1

T + 1

T∑
t=0

∥∥∥∇f(x̄(t))
∥∥∥2
2
≤ Õ

(√
LF0σ2

nT
+

[(
1

√
pc

+
1

p
√
n

)
σLF0

T

]2/3
+

L(F0 + LR̃2
0)

pcT

)
,

Strongly-convex: Under additional Assumption 15 with µ > 0, it holds

T∑
t=0

wt

WT

[
E f(x̄(t))− f⋆

]
+

µ

2
RT+1 ≤ Õ

(
σ2

µnT
+

Lσ2

µ2pc2T 2
+

L(R2
0 +

L
µ R̃

2
0)

pc
exp

[
−µpcT

L

])
,

Weakly-convex: Under Assumptions 15 with µ ≥ 0, it holds

1

T + 1

T∑
t=0

[
E f(x̄(t))− f⋆

]
≤ Õ

√R2
0σ

2

nT
+

(
σ
√
LR2

0√
pcT

)2/3

+
L(R2

0 + R̃2
0)

pcT

 ,
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where F0 = f(x̄(0)) − f⋆, Rt =
∥∥x(t) − x⋆

∥∥, t ∈ {0, T + 1}, R̃2
0 = 1

n

∑n
i=1

∥∥∥x(0)
i − x̄(0)

∥∥∥2 +

1
n

∑n
i=1

∥∥∥y(0)
i − ȳ(0)

∥∥∥2.

D.2.1 Useful Inequalities

Proof of Lemma 4. By monotonicity, it suffices to check the inequality for i = τ . By using (1−p)i ≤
e−ip and plugging τ into (6.9) it follows:∥∥J i

∥∥2 ≤ e−τp(1 + τ2) ≤ p2

502(1 + log 1
p)

2

(
1 +

(2(log(50) + log(1p(1 + log 1
p)))

2

p2

)
≤ 1

502
+

1

10
+

1

4

with log(1p(1+ log 1
p) ≤ log 1

p + log log 1
p ≤ 2 log 1

p , then (log(4)+2 log 1
p)

2 ≤ 2 log 4+8 log 1
p , and

(4 log 50 + 16 log 1
p))

2 ≤ (128 + 512 log 1
p).

Lemma 55 Let λ ∈ (−1, 1) with |λ| = 1− α, for 0 < α < 1. Then
∣∣iλi
∣∣ ≤ 1

α for all i ≥ 0.

Proof.
∣∣iλi
∣∣ ≤ i(1− α)i ≤

i∑
j=1

(1− α)j ≤ 1− α

α
.

Lemma 56 (fact) Let W be a symmetric matrix with eigenvalues λ1(W ) ≥ . . . λn(W ). Then
‖W‖2 = maxi λ

2
i (W ).

Lemma 57 It holds
∥∥∥(i+ 1)W̃ i+1 − iW̃ i

∥∥∥2 ≤ 4
α2 ≤ 16

c2
for all i ≥ 0, where α = 1− |λn(W )| and

c as defined in (6.2).

Proof. The eigenvalues of (i + 1)W̃ i+1 − iW̃ i have the form (i + 1)λi+1 − iλi, for λ ∈ Λ :=
{λ1(W̃ ), . . . , λn(W̃ )}, the eigenvalues of W̃ . By Lemma 56, it holds∥∥∥(i+ 1)W̃ i+1 − iW̃ i

∥∥∥2 = max
λ∈Λ

((i+ 1)λi+1 − iλi)2 .

If the maximum is attained for a positive λ > 0, we conclude

((i+ 1)λi+1 − iλi)2 = (λi+1 − iλi(1− λ))2

≤ 2(λi+1)2 + 2(1− λ)2(iλi)2

≤ 2(λi+1)2 + 2
(1− λ)2

(1− λ)2

≤ 4

with Lemma 55 for the first estimate and using λ ≤ 1 on the last line. If the maximum is attained for
a negative λ < 0 with λ = −1 + β, for β > 0, then

((i+ 1)λi+1 − iλi)2 ≤ 2((i+ 1)λi+1)2 + 2(iλi)2

≤ 2

β2
+

2

β2
≤ 4

α2

with Lemma 55 and α ≤ β.
Note that c = 1− (1− α)2 = 2α− α2 ≥ α, since α(1− α) ≥ 0 and that c ≤ 2α.
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Lemma 58 It holds
∥∥∥iW̃ i

∥∥∥2 ≤ 1
α2 ≤ 4

p2
.

Proof.
∥∥∥iW̃ i

∥∥∥2 = (i ∥∥∥W̃ i
∥∥∥)2, and the proof follows with Lemma 55 and 56 from above.

Lemma 59 It holds
∥∥Ψ0J t

∥∥2
F
≤ 2

∥∥∆X(0)
∥∥2
F
+ 3γ2

p2

∥∥∆Y (0)
∥∥2
F

for all t ≥ 0, where p is defined in
(6.2).

Proof. Starting from (6.9) and using Lemma 55 with δ = 1− λ2

∥∥Ψ0J i
∥∥2
F
=

∥∥∥∥∥
(
∆X(0)W̃ i − iγ∆Y (0)W̃ i

γ∆Y (0)W̃ i

)⊤∥∥∥∥∥
2

F

≤ 2
∥∥∥∆X(0)

∥∥∥2
F
+

3γ2

p2

∥∥∥∆Y (0)
∥∥∥2
F
.

Lemma 60 For arbitrary set of n vectors {ai}ni=1, ai ∈ Rd

∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n

n∑
i=1

‖ai‖2 . (D.1)

Lemma 61 For given two vectors a,b ∈ Rd

2 〈a,b〉 ≤ γ ‖a‖2 + γ−1 ‖b‖2 , ∀γ > 0 . (D.2)

Lemma 62 For given two vectors a,b ∈ Rd

‖a + b‖2 ≤ (1 + α) ‖a‖2 + (1 + α−1) ‖b‖2 , ∀α > 0 . (D.3)

This inequality also holds for the sum of two matrices A,B ∈ Rn×d in Frobenius norm.

Lemma 63 For A ∈ Rd×n, B ∈ Rn×n

‖AB‖F ≤ ‖A‖F ‖B‖2 . (D.4)

D.2.2 Convex Cases

Proof of Lemma 45 We first state auxiliary lemma about consensus recursion.

Lemma 64 There exists absolute constants C1 = 440, C2 = 380 such that iterates of Algorithm 6
satisfy,

E ‖Ψt+k‖2F ≤ 3

4
E ‖Ψt‖2F + γ2

C1τ

c2

k−1∑
j=0

E
∥∥∇f(Xt+j)−∇f(X⋆)

∥∥2
F
+ γ2

C2τ

c2
nσ2 . (D.5)

where τ ≤ k ≤ 2τ , τ = 2
p log

(
50
p (1 + log 1

p)
)
+1, p and c are defined in (6.2), Ψt =

(
∆X(t), γ∆Y (t)

)
and is defined in (6.8).
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Proof. We start from the recursion (6.12) given in the main text

Ψt+k = ΨtJ
k + γ

k∑
j=1

Et+j−1J
k−j .

Taking the norm,

‖Ψt+k‖2F
(D.3),α= 1

4
,(D.4)

≤
(
1 +

1

4

)∥∥∥Jk
∥∥∥2
2
‖Ψt‖2F + 5γ2

∥∥∥∥∥∥
k∑

j=1

Et+j−1J
k−j

∥∥∥∥∥∥
2

F

Using the key Lemma 4, the first term can be estimated as(
1 +

1

4

)∥∥∥Jk
∥∥∥2
2
‖Ψt‖2F ≤ 3

4
‖Ψt‖2F .

Lets estimate separately the second term. Denoting G(t) = ∇F (X(t), ξ(t)),∥∥∥∥∥∥
k∑

j=1

Et+j−1J
k−j

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥
(
−
∑k

j=1

(
G(t+j) −G(t+j−1)

)
(k − j)W̃ k−j(I − 11⊤

n )∑k
j=1

(
G(t+j) −G(t+j−1)

)
W̃ k−j(I − 11⊤

n )

)∥∥∥∥∥
2

F

(D.4)
≤

∥∥∥∥∥∥
k∑

j=1

(
G(t+j) −G(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F︸ ︷︷ ︸
=:T1

+

∥∥∥∥∥∥
k∑

j=1

(
G(t+j) −G(t+j−1)

)
W̃ k−j

∥∥∥∥∥∥
2

F︸ ︷︷ ︸
=:T2

,

where we used the definition of the Frobenius norm and
∥∥∥I − 11⊤

n

∥∥∥ ≤ 1. We now give upper bounds
for T1 and T2.

The second term T2. We firstly separate the stochastic noise by adding and subtracting the full
gradient,

T2

(D.3)
≤ 3

∥∥∥∥∥∥
k∑

j=1

(
∇f(X(t+j))−∇f(X(t+j−1))

)
W̃ k−j

∥∥∥∥∥∥
2

F

+ 3

∥∥∥∥∥∥
k∑

j=1

(
G(t+j) −∇f(X(t+j))

)
W̃ k−j

∥∥∥∥∥∥
2

F

+ 3

∥∥∥∥∥∥
k∑

j=1

(
G(t+j−1) −∇f(X(t+j−1))

)
W̃ k−j

∥∥∥∥∥∥
2

F

.

Note that

E

∥∥∥∥∥∥
k∑

j=1

(
G(t+j) −∇f(X(t+j))

)
W̃ k−j

∥∥∥∥∥∥
2

F

=
k∑

j=1

E
∥∥∥(G(t+j) −∇f(X(t+j))

)
W̃ k−j

∥∥∥2
F

‖W̃‖≤1

≤
k∑

j=1

E
∥∥∥G(t+j) −∇f(X(t+j))

∥∥∥2
F
,
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where we used the martingale property Ej

[
G(j) −∇f(X(j)) | X(j)

]
= 0 for all j ≤ t. It follows

E[T2]
(6.5)
≤ 3E

∥∥∥∥∥∥
k∑

j=1

(
∇f(X(t+j))−∇f(X(t+j−1))

)
W̃ k−j

∥∥∥∥∥∥
2

F

+ 6knσ2 .

We expand further by adding and subtracting ∇f(X⋆) to the first norm, and bounding stochastic noise
by (6.5) in the other terms

E[T2]
(D.3),(6.5)

≤ 6E

∥∥∥∥∥∥
k∑

j=1

(∇f(X(t+j))−∇f(X⋆))W̃ k−j

∥∥∥∥∥∥
2

F

+ 6E

∥∥∥∥∥∥
k∑

j=1

(∇f(X(t+j−1))−∇f(X⋆))W̃ k−j

∥∥∥∥∥∥
2

F

+ 6knσ2

(E.3),(D.4)
≤ 12k

k∑
j=0

E
∥∥∥∇f(X(t+j))−∇f(X⋆)

∥∥∥2
F
+ 6knσ2 .

The first term T1. First, we separate the stochastic noise similarly as above. Defining Z(t) =
G(t) −∇f(X(t)),

T1

(D.3)
≤ 2

∥∥∥∥∥∥
k∑

j=1

[
∇f(X(t+j))−∇f(X(t+j−1))

]
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥∥
k∑

j=1

(
Z(t+j) − Z(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

.

Next, we add and subtract ∇f(X⋆) in the first term k − 1 times and temporarily denote D(j) =
∇f(X(j))−∇f(X⋆)

T1 ≤ 2

∥∥∥∥∥∥
k∑

j=1

(
D(t+j) −D(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥∥
k∑

j=1

(
Z(t+j) − Z(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

.
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Next, we re-group the sums by the gradient index.

T1 ≤ 2

∥∥∥∥∥∥D(t+k−1)W̃ − (k − 1)D(t)W̃ k−1 +
k−2∑
j=1

D(t+j)
[
(k − j)W̃ k−j − (k − j − 1)W̃ k−j−1

]∥∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥∥Z(t+k−1)W̃ − (k − 1)Z(t)W̃ k−1 +

k−2∑
j=1

Z(t+j)
[
(k − j)W̃ k−j − (k − j − 1)W̃ k−j−1

]∥∥∥∥∥∥
2

F

(E.3),(D.4)
≤ 2k

[∥∥∥D(t+k−1)
∥∥∥2
F
+
∥∥∥D(t)(k − 1)W̃ k−1

∥∥∥2
F

+

k−2∑
j=1

∥∥∥D(t+j)
[
(k − j)W̃ k−j − (k − j − 1)W̃ k−j−1

]∥∥∥2
F

]

+ 2

[∥∥∥Z(t+k−1)
∥∥∥2
F
+
∥∥∥Z(t)(k − 1)W̃ k−1

∥∥∥2
F

+

k−2∑
j=1

∥∥∥Z(t+j)
[
(k − j)W̃ k−j − (k − j − 1)W̃ k−j−1

]∥∥∥2
F

]

where for splitting Z we used martingale property Ej

[
G(j) −∇f(X(j)) | X(j)

]
= 0 for all j ≤ t.

Next, we use Lemma 57 to estimate the norm
∥∥∥(k − j)W̃ k−j − (k − j − 1)W̃ k−j−1

∥∥∥2
2
≤ 16

c2
; and

using (6.9) we estimate
∥∥∥(k − 1)W̃ k−1

∥∥∥2
2
≤
∥∥Jk−1

∥∥2 ≤ 1
2 due to our choice of k ≥ τ and a key

Lemma 4

T1

(D.4)
≤ 32k

c2

k−1∑
j=0

∥∥∥D(t+j)
∥∥∥2
F
+

32

c2

k−1∑
j=0

∥∥∥Z(t+j)
∥∥∥2
F

Taking expectation over the stochastic noise,

E[T1]
(6.5)
≤ 32k

c2

k−1∑
j=0

∥∥∥D(t+j)
∥∥∥2
F
+

32knσ2

c2

Summing up T1 and T2 and estimating k ≤ 2τ we conclude the proof

E ‖Ψt+k‖2F ≤ 3

4
E ‖Ψt‖2F + γ2

440τ

c2

k∑
j=0

E
∥∥∥∇f(X(t+j))−∇f(X⋆)

∥∥∥2
F
+ γ2

380τ

c2
nσ2 .

We will proof Lemma 45 with B1 = 28C1, B2 = 4C2, B3 =
√
515 · 2C1, where C1 = 220 and

C2 = 190 are constants from Lemma 64.

Proof of Lemma 45. Observe, for any t,∥∥∥∇f(X(t))−∇f(X⋆)
∥∥∥2
F

(D.3)
≤ 2

∥∥∥∇f(X(t))−∇f(X̄(t))
∥∥∥2
F
+ 2

∥∥∥∇f(X̄(t))−∇f(X⋆)
∥∥∥2
F

(6.3)
≤ 2L2

∥∥∥X(t) − X̄(t)
∥∥∥2
F︸ ︷︷ ︸

≤∥Ψt∥2F

+2
∥∥∥∇f(X̄(t))−∇f(X⋆)

∥∥∥2
F
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With Lemma 64

E ‖Ψt+k‖2F
(D.5)
≤ 3

4
E ‖Ψt‖2F + γ2

τC1

c2

k∑
j=0

E
∥∥∥∇f(X(t+j))−∇f(X⋆)

∥∥∥2
F
+ γ2

τC2

c2
nσ2

≤ 3

4
E ‖Ψt‖2F + γ2

2C1τL
2

c2

k∑
j=0

E ‖Ψt+j‖2F

+ γ2
2C1τ

c2

k∑
j=0

E
∥∥∥∇f(X̄(t+j))−∇f(X⋆)

∥∥∥2
F
+ γ2

τC2

c2
nσ2

γ< c√
512·2C1Lτ

≤ 3

4
E ‖Ψt‖2F +

1

512τ

k∑
j=0

‖Ψt+j‖2F

+ γ2
2C1τ

c2

k∑
j=0

E
∥∥∥∇f(X̄(t+j))−∇f(X⋆)

∥∥∥2
F
+ γ2

τC2

c2
nσ2

Next, we estimate the third term by smoothness for j < k∥∥∥∇f(X̄(t+j))−∇f(X⋆)
∥∥∥2
F
≤ 2Ln

(
f(x̄(t+j))− f(x⋆)

)
.

And for j = k, the index is t+ k and it should appear only in LHS. Thus we estimate∥∥∥∇f(X̄(t+k))−∇f(X⋆)
∥∥∥2
F

(D.3)
≤ 2

∥∥∥∇f(X̄(t+k))−∇f(X̄(t+k−1))
∥∥∥2
F

+ 2
∥∥∥∇f(X̄(t+k−1))−∇f(X⋆)

∥∥∥2
F

(6.3)
≤ 2L2

∥∥∥X̄(t+k) − X̄(t+k−1)
∥∥∥2
F
+ 4Ln

(
f(x̄(t+k−1))− f(x⋆)

)
Next we use (6.10), that is equivalent to X̄(t+k) = X̄(t+k−1)−γ∇F (X(t+k−1), ξ(t+k−1))11⊤

n . Taking
expectation

E
∥∥∥X̄(t+k) − X̄(t+k−1)

∥∥∥2
F

(6.10),(6.5)
≤ γ2

∥∥∥∇f(X(t+k−1))11⊤
n

∥∥∥2
F
+ γ2σ2

≤ 2γ2
∥∥∥∇f(X(t+k−1))11⊤

n −∇f̄(X̄(t+k−1))
∥∥∥2
F
+ 2γ2

∥∥∥∇f̄(X̄(t+k−1))−∇f̄(X⋆)
∥∥∥2
F

+ γ2σ2

(D.3),(6.3)
≤ 2γ2L2

∥∥∥X(t+k−1) − X̄(t+k−1)
∥∥∥2
F
+ 4γ2Ln

(
f(x̄(t+k−1))− f(x⋆)

)
+ γ2σ2

where on the second line we used ∇f(X̄)11⊤
n = ∇f̄(X̄), and ∇f̄(X⋆) = 0. As γ ≤ c√

512·2C1Lτ∥∥∥∇f(X̄(t+k))−∇f(X⋆)
∥∥∥2
F
≤ L2 ‖Ψt+k−1‖2F + 5Ln

(
f(x̄(t+k−1))− f(x⋆)

)
Coming back to recursion for ‖Ψt+k‖2F and using that 2C1L2τ

c2
γ2 ≤ 1

512τ by our choice of γ,

E ‖Ψt+k‖2F ≤ 3

4
E ‖Ψt‖2F +

1

256τ

k∑
j=0

‖Ψt+j‖2F + γ2
C1τ

c2
14Ln

k−1∑
j=0

E
(
f(x̄(t+j))− f(x⋆)

)
+ γ2

2C2τ

c2
nσ2
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It is only left to get rid of ‖Ψt+k‖2F from RHS. For that we move the term with ‖Ψt+k‖2F to LHS and
divide the whole equation by (1− 1

256τ ). We use that
(
1− 1

256τ

)−1 ≤ 1 + 1
128τ ≤ 1 + 1

256 < 2, and
that

(
1− 1

4

)
(1 + 1

128τ ) ≤
(
1− 1

4

)
(1 + 1

128) ≤ (1− 1
8). We thus arrive to the Lemma’s statement

E ‖Ψt+k‖2F ≤ 7

8
‖Ψt‖2F +

1

128τ

k−1∑
j=0

E ‖Ψt+j‖2F + γ2
28C1τ

c2
Ln

k−1∑
j=0

E
(
f(x̄(t+j))− f(x⋆)

)
+ γ2

4C2τ

c2
nσ2

Proof of Lemma 8.

Proof. Define α = 28C1
τ
c2
Ln, β = 4C2

τ
c2
σ2n for simplicity. Then inequality (6.13) takes the form

E ‖Ψt+k‖2F ≤
(
1− 1

8

)
E ‖Ψt‖2F +

1

128τ

k−1∑
j=0

E ‖Ψt+j‖2F + αγ2
k−1∑
j=0

E et+j + βγ2 (D.6)

A new quantity. We define a new quantity that has non-increasing properties even for k < τ in
contrast to E ‖Ψt+k‖2F . For t ≥ 0 we define

Φt+τ :=
1

τ

τ−1∑
j=0

E ‖Ψt+j‖2F Et+τ := α
τ−1∑
j=0

E et+j

Non-increasing property for k < τ (but t+ k ≥ τ ).

Φt+k =
1

τ

(
τ−1∑
i=k

E ‖Ψt−τ+i‖2F +
k−1∑
i=0

E ‖Ψt+i‖2F

)

Applying (D.6) to the second sum,

Φt+k ≤ 1

τ

τ−1∑
i=k

E ‖Ψt−τ+i‖2F +
1

τ

k−1∑
i=0

[(
1− 1

8

)
E ‖Ψt−τ+i‖2F +

1

128
Φt+i + γ2Et+i + βγ2

]

Φt+k ≤ Φt +
1

128τ

k−1∑
i=0

Φt+i +
1

τ
γ2

k−1∑
i=0

Et+i +
k

τ
βγ2, (D.7)

where we used that Θt ≥ 0 ∀t and that τ ≥ k.
Contraction property for τ ≤ k ≤ 2τ . Using (D.6) and a definition of Φt+k,

Φt+k =
1

τ

k−1∑
j=k−τ

E ‖Ψt+j‖2F

≤
(
1− 1

8

)
1

τ

k−1∑
j=k−τ

E ‖Ψt+j−τ‖2F︸ ︷︷ ︸
Φt+k−τ

+
1

128τ

k−1∑
j=k−τ

Φt+j + γ2
1

τ

k−1∑
i=k−τ

Et+i + βγ2
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Combining with (D.7) we get contraction for Φt+k

Φt+k

(D.7)
≤
(
1− 1

8

)
Φt +

1

128τ

k−1∑
j=0

Φt+j + γ2
1

τ

k−1∑
i=0

Et+i + 2βγ2 (D.8)

Simplifying contraction property. First, we substitute (D.7) into the second term of (D.8)

Φt+k ≤
(
1− 1

8

)
Φt +

1

128τ

k−2∑
i=0

Φt+i +
1

128τ

[
Φt +

1

128τ

k−2∑
i=0

Φt+i + γ2
1

τ

k−2∑
i=0

Et+i + 2βγ2

]

+ γ2
1

τ

k−1∑
i=0

Et+i + 2βγ2

≤
(
1− 1

8

)(
1 +

1

64τ

)
Φt +

(
1 +

1

128τ

)[
1

128τ

k−2∑
i=0

Φt+i + γ2
1

τ

k−2∑
i=0

Et+i + 2βγ2

]

+ γ2
1

τ
Et+k−1

where we used that 1
128τ =

(
1− 1

2

)
1

64τ ≤
(
1− 1

8

)
1

64τ . Similarly applying (D.7) to the rest of Φt+i,

Φt+k ≤
(
1− 1

8

)(
1 +

1

64τ

)k

Φt + γ2
1

τ

k−1∑
i=0

(
1 +

1

128τ

)t+k−1−i

Et+i +

(
1 +

1

128τ

)k

2βγ2

We further use
(
1 + 1

64τ

)k ≤
(
1 + 1

64τ

)2τ ≤ exp( 1
32) ≤ 1+ 1

16 and
(
1− 1

8

) (
1 + 1

64τ

)k ≤
(
1− 1

16

)
;

and that
(
1 + 1

128τ

)k ≤ 1 + 1
32 ≤ 2. Therefore,

Φt+k ≤
(
1− 1

16

)
Φt + 2γ2

1

τ

k−1∑
i=0

Et+i + 4βγ2 (D.9)

Simplifying non-increasing property (D.7). Similarly as above we substitute recursively (D.7) into
the second term of (D.7), for 0 < k < τ

Φt+k ≤
(
1 +

1

128τ

)
Φt +

(
1 +

1

128τ

)[
1

128τ

k−2∑
i=0

Φt+i + γ2
1

τ

k−2∑
i=0

Et+i + βγ2

]
+ γ2

1

τ
Et+τ−1

≤
(
1 +

1

128τ

)τ

Φt + γ2
1

τ

τ−1∑
i=0

(
1 +

1

128τ

)t+τ−1−i

Et+i +

(
1 +

1

128τ

)τ

βγ2

Using now that
(
1 + 1

128τ

)τ ≤ 2 we get

Φt+k ≤ 2Φt + 2γ2
1

τ

τ−1∑
i=0

Et+i + 2βγ2 (D.10)
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Obtaining recursion for E ‖Ψt‖2F + Φt. As our final goal is to obtain inequality for E ‖Ψt‖2F , we
start modifying (D.6), for τ ≤ k ≤ 2τ

E ‖Ψt+k‖2F ≤
(
1− 1

8

)
E ‖Ψt‖2F +

1

128
(Φt+k +Φt+τ ) + αγ2

k−1∑
j=0

et+j + βγ2

(D.10)
≤

(
1− 1

8

)
E ‖Ψt‖2F +

1

128

4Φt + 4γ2
1

τ

k−1∑
j=0

Et+j

+ αγ2
k−1∑
j=0

et+j + 2βγ2

≤
(
1− 1

8

)
E ‖Ψt‖2F +

1

32
Φt +

γ2

32

1

τ

k−1∑
j=0

Et+j + αγ2
k−1∑
j=0

et+j + 2βγ2

Summing up the last inequality and (D.9) we get

E ‖Ψt+k‖2F +Φt+k ≤
(
1− 1

32

)[
E ‖Ψt‖2F +Φt

]
+ 3γ2

1

τ

k−1∑
j=0

Et+j + γ2α
k−1∑
j=0

et+j + 6βγ2

Unrolling recursion up to τ . For a given t ≥ τ , lets define m = bt/τc − 1. Then

E ‖Ψt‖2F +Φt ≤
(
1− 1

32

)[
E ‖Ψmτ‖2F +Φmτ

]
+ 3γ2

1

τ

t−1∑
j=mτ

Ej + γ2α

t−1∑
j=mτ

ej + 6βγ2

Unrolling this recursively up to τ we get,

E ‖Ψt‖2F +Φt ≤
(
1− 1

32

)m [
E ‖Ψτ‖2F +Φτ

]
+ γ2

t−1∑
j=τ

(
1− 1

32

)⌊(t−j)/τ⌋ [
3
1

τ
Ej + αej

]
(D.11)

+ 6βγ2
m−1∑
j=0

(
1− 1

32

)j

(D.12)

Initial conditions. Inequality above work for t ≥ τ . Here, we focus on t < τ . Using similar
calculations as in Lemma 45 replacing estimation of

∥∥Ψ0J t
∥∥2
F

by Lemma 59, we get that

E ‖Ψt‖2F ≤ 2
∥∥∥∆X(0)

∥∥∥2
F
+

3γ2

p2

∥∥∥∆Y (0)
∥∥∥2
F︸ ︷︷ ︸

:=Θ̃0

+
1

128τ

t−1∑
j=0

E ‖Ψj‖2F + αγ2
t−1∑
j=0

ej + βγ2 (D.13)

Recursively applying (D.13) to the second term of (D.13), similarly as above, we get

E ‖Ψt‖2F ≤ 2Θ̃0 + 2αγ2
1

τ

t−1∑
j=0

ej + 2βγ2 (D.14)

And therefore,

Φτ =
1

τ

τ−1∑
j=0

E ‖Ψj‖2F ≤ 2Θ̃0 + 2αγ2
1

τ

τ−1∑
j=0

ej + 2βγ2 (D.15)
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Final recursion. Finally we apply (D.14), (D.15) to the first term of (D.11)

E ‖Ψt‖2F +Φt ≤
(
1− 1

32

)m

4Θ̃0 + γ2
t−1∑
j=τ

(
1− 1

32

)⌊(t−j)/τ⌋ [
3
1

τ
Ej + 5αej

]

+ 10βγ2
m−1∑
j=0

(
1− 1

32

)j

• For the last term we estimate
∑m−1

j=0

(
1− 1

32

)j ≤ 2.

• For the terms with ej and Ej we estimate, similar to Koloskova et al. [2020b],

(
1− 1

32

)1/τ

≤ exp(− 1

32τ
) ≤ 1− 1

64τ
and thus(

1− 1

32

)⌊(t−j)/τ⌋
≤
(
1− 1

64τ

)τ⌊(t−j)/τ⌋
≤
(
1− 1

64τ

)t−j (
1− 1

64τ

)−τ

≤ 2

(
1− 1

64τ

)t−j

where as 1
64τ ≤ 1

2 we estimated
(
1− 1

64τ

)−τ ≤
(

1
1− 1

64τ

)τ
≤ (1 + 1

32τ )
τ ≤ exp( 1

32) < 2.

• Similarly, for Θ̃0 term we estimate(
1− 1

32

)m
=
(
1− 1

32

)⌊ t−τ
τ

⌋ ≤
(
1− 1

64τ

)t (
1− 1

64τ

)−2τ ≤ 2
(
1− 1

64τ

)t.
• For the terms with Ej we additionally estimate

2

(
1− 1

64τ

)t−j

Ej = 2

(
1− 1

64τ

)t−j j−1∑
i=j−τ

ei = 2

j−1∑
i=j−τ

(
1− 1

64τ

)t−i(
1− 1

64τ

)i−j

ei

Further, −τ < i− j < −1, and thus
(
1− 1

64τ

)i−j ≤ 2 for all such −τ < i− j < −1.

Therefore we obtain

E ‖Ψt‖2F +Φt ≤
(
1− 1

64τ

)t

8Θ̃0 + 22γ2α

t−1∑
j=0

(
1− 1

64τ

)t−j

ej + 20βγ2

This brings us to the statement of the lemma.

The rest of the proof follows closely Koloskova et al. [2020b].

τ -slow Sequences

Definition 38 (τ -slow sequences ?) The sequence {at}t≥0 of positive values is τ -slow decreasing
for parameter τ > 0 if

at+1 ≤ at, ∀t ≥ 0 and, at+1

(
1 +

1

2τ

)
≥ at, ∀t ≥ 0 .

The sequence {at}t≥0 is τ -slow increasing if {a−1
t }t≥0 is τ -slow decreasing.
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Proposition 37 (Examples)

1. The sequence {η2t }t≥0 with ηt =
a

b+t , b ≥ 32τ is 4τ -slow decreasing.

2. The sequence of constant stepsizes {η2t }t≥0 with ηt = η is τ -slow decreasing for any τ .

3. The sequence {wt}t≥0 with wt = (b+ t)2, b ≥ 84τ is 8τ -slow increasing.

4. The sequence of constant weights {wt}t≥0 with wt = 1 is τ -slow increasing for any τ .

The Main Recursion

Lemma65 (The main recursion) Let {wt}t≥0 be 64τ -slow increasing sequence, Wt =
1

T+1

∑T
t=0wt,

with γ ≤ c
582C1τL

it holds that

T∑
t=0

wt E ‖Ψt‖2F ≤
T∑
t=0

wt

(
1− 1

64τ

)t

8Θ̃0 +
n

6L

T∑
t=0

etwt + 40C2
τ

c2
σ2nγ2WT , (D.16)

where et = f(x̄(t))− f⋆, Θ̃0 = 2
∥∥∆X(0)

∥∥2
F
+ 3γ2

p2

∥∥∆Y (0)
∥∥2
F

, C1 = 440, C2 = 380.

Proof. We start by averaging (6.14) with weights wt. Define WT =
∑T

t=0wt, α = 28C1
τ
c2
Ln,

β = 4C2
τ
c2
σ2n,

T∑
t=0

wt E ‖Ψt‖2F ≤
T∑
t=0

wt

(
1− 1

64τ

)t

8Θ̃0 + 22γ2α
T∑
t=0

wt

t−1∑
j=0

(
1− 1

64τ

)t−j

ej︸ ︷︷ ︸
:=T1

+20βγ2WT

For the middle term T1 we use that wt are 64τ -slow increasing sequences, i.e. wt ≤ wj

(
1 + 1

128τ

)t−j ,
we get

T1 =

T∑
t=0

t−1∑
j=0

(
1− 1

64τ

)t−j (
1 +

1

128τ

)t−j

ejwj ≤
T∑
t=0

t−1∑
j=0

(
1− 1

128τ

)t−j

ejwj

≤
T∑

j=0

ejwj

T∑
t=j+1

(
1− 1

128τ

)t−j

≤
T∑

j=0

ejwj

∞∑
t=0

(
1− 1

128τ

)t−j

≤ 128τ
T∑
t=0

etwt

Therefore,

T∑
t=0

wtΘt ≤
T∑
t=0

wt

(
1− 1

64τ

)t

8Θ̃0 + 2816γ2ατ
T∑
t=0

etwt + 20βγ2WT

Now using that γ ≤ c
582C1τL

and that α = 20C1
τ
c2
Ln, β = 2C2

τ
c2
σ2n.

T∑
t=0

wtΘt ≤
T∑
t=0

wt

(
1− 1

64τ

)t

8Θ̃0 +
n

6L

T∑
t=0

etwt + 40C2
τ

c2
σ2nγ2WT
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Combining with the Descent Lemma 73

Lemma 66 Define D = σ2

n , a = µ
2 , A = 24L 1

nΘ̃0, Θ̃0 = 2
∥∥∆X(0)

∥∥2
F
+ 3γ2

p2

∥∥∆Y (0)
∥∥2
F

, B =

120C2L
τ
c2
σ2, C1 = 440, C2 = 380. Then with γ ≤ c

582C1τL
it holds that

1

2WT

T∑
t=0

wtet ≤
1

WT

T∑
t=0

(
(1− γa)

γ
wtrt −

wt

γ
rt+1

)
+Dγ +

A

WT

T∑
t=0

wt

(
1− 1

64τ

)t

+Bγ2

(D.17)

Proof. First, define WT =
∑T

t=0wt, rt =
∥∥x̄(t) − x⋆

∥∥2, Θt =
∑n

i=1 E
∥∥x̄(t)−x(t)

i

∥∥2. In this notation,
(6.11) writes as

rt+1 ≤
(
1− γµ

2

)
rt +

γ2σ2

n
− γet + γ

3L

n
Θt,

We rearrange (6.11) by multiplying by wt and dividing by γ

wtet ≤
(
1− γµ

2

)
γ

wtrt −
wt

γ
rt+1 +

σ2

n
wtγ +

3L

n
wtΘt,

Now summing up, dividing by WT , using that Θt ≤ E ‖Ψt‖2F , and using (D.16)

1

WT

T∑
t=0

wtet ≤
1

WT

T∑
t=0

((
1− γµ

2

)
γ

wtrt −
wt

γ
rt+1

)
+

σ2

n
γ +

1

WT

T∑
t=0

wt24L

(
1− 1

64τ

)t 1

n
Θ̃0

+
1

2

1

WT

T∑
t=0

etwt + 120C2L
τ

c2
σ2γ2

Putting the fourth term to LHS we get the statement of the lemma.

Now similar to [Koloskova et al., 2020b, Lemma 15] we obtain the rates of Theorem 7 for the
strongly convex case, and similar to [Koloskova et al., 2020b, Lemma 16] for the weakly convex case.

Strongly Convex Case

Lemma 67 If non-negative sequences {rt}t≥0, {et}t≥0 satisfy (D.17) for some constants a > 0,
D,A,B ≥ 0, then there exists a constant stepsize γ < 1

b with b ≥ 128aτ such that for weights
wt = (1− aγ)−(t+1) and WT :=

∑T
t=0wt it holds:

1

2WT

T∑
t=0

etwt + arT+1 ≤ Õ
(
(r0 + A/2a)b exp

[
−a(T + 1)

b

]
+

D

aT
+

B

a2T 2

)
,

where Õ hides polylogarithmic factors.

Proof. Starting from (D.17) and using that that wt(1−aγ)
γ = wt−1

γ we obtain a telescoping sum,

1

2WT

T∑
t=0

wtet ≤
1

WTγ
((1− aγ)w0r0 − wT rT+1) +Dγ +Bγ2 +

A

WT

T∑
t=0

wt

(
1− 1

64τ

)t

,
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And hence,

1

2WT

T∑
t=0

wtet +
wT rT+1

WTγ
≤ r0

WTγ
+Dγ +Bγ2 +

A

WT

T∑
t=0

wt

(
1− 1

64τ

)t

,

Now we estimate the last term. We use that 2γa ≤ 1
64τ and thus

(
1− 1

64τ

)t ≤ (1− aγ)2t

1

WT

T∑
t=0

(1− aγ)−(t+1)

(
1− 1

64τ

)t

≤ 1

WT

T∑
t=0

(1− aγ)t−1 ≤ 1

WT

1

2aγ

where we used that 1
1−aγ ≤ 1

2 . Thus,

1

2WT

T∑
t=0

wtet +
wT rT+1

WTγ
≤ 1

WTγ

(
r0 +

A

2a

)
+Dγ +Bγ2 ,

Using that WT ≤ wT
aγ and WT ≥ wT = (1− aγ)−(T+1) we can simplify

1

2WT

T∑
t=0

wtet + arT+1 ≤ (1− aγ)T+1 1

γ

(
r0 +

A

2a

)
+Dγ +Bγ2

≤ 1

γ

(
r0 +

A

2a

)
exp [−aγ(T + 1)] +Dγ +Bγ2 ,

Now lemma follows by tuning γ the same way as in Stich [2019a].

• If 1
b ≥ ln(max{2,a2(r0+ A

2a
)T 2/D})

aT then we choose η =
ln(max{2,a2(r0+ A

2a
)T 2/D})

aT and get that

Õ
(
a(r0 + A/2a)T exp

[
− ln(max{2, a2(r0 + A/2a)T 2/D})

])
+ Õ

(
D

aT

)
+ Õ

(
B

a2T 2

)
= Õ

(
D

aT

)
+ Õ

(
B

a2T 2

)
,

• Otherwise 1
b ≤ ln(max{2,a2(r0+ A

2a
)T 2/D})

aT we pick η = 1
b and get that

Õ
(
(r0 + A/2a)b exp

[
−a(T + 1)

b

]
+

D

b
+

B

b2

)
≤ Õ

(
(r0 + A/2a)b exp

[
−a(T + 1)

b

]
+

D

aT
+

B

a2T 2

)
.

D.2.3 Weakly Convex and Non Convex Cases

Lemma 68 If non-negative sequences {rt}t≥0, {et}t≥0 satisfy (D.17) with a = 0, D,A,B ≥ 0,
then there exists a constant stepsize γ < 1

b with b ≥ 128aτ such that for weights {wt = 1}t≥0 it
holds that:

1

(T + 1)

T∑
t=0

et ≤ O

(
2

(
cr0

T + 1

) 1
2

+ 2B1/3

(
r0

T + 1

) 2
3

+
br0 +Aτ

T + 1

)
.

176



D.2. Proof of Theorem 7 — General Case

Proof. With a = 0, constant stepsizes ηt = η and weights {wt = 1}t≥0 (D.17) is equivalent to

1

2(T + 1)

T∑
t=0

et ≤
1

(T + 1)γ

T∑
t=0

(rt − rt+1) +Dγ +Bγ2 +
A

T + 1

T∑
t=0

(
1− 1

64τ

)t

≤ r0
(T + 1)γ

+Dγ +Bγ2 +
64Aτ

T + 1
.

To conclude the proof we tune the stepsize for the first three terms using Lemma 69.

Lemma 69 (Tuning the stepsize) For any parameters r0 ≥ 0, b ≥ 0, e ≥ 0, d ≥ 0 there exists
constant stepsize η ≤ 1

b such that

ΨT :=
r0

γ(T + 1)
+Dη +Bη2 ≤ 2

(
Dr0
T + 1

) 1
2

+ 2B1/3

(
r0

T + 1

) 2
3

+
br0

T + 1

Proof. Choosing η = min
{(

r0
D(T+1)

) 1
2
,
(

r0
B(T+1)

) 1
3
, 1b

}
≤ 1

b we have three cases

• η = 1
b and is smaller than both

(
r0

D(T+1)

) 1
2 and

(
r0

B(T+1)

) 1
3 , then

ΨT ≤ br0
T + 1

+
D

b
+

B

b2
≤
(

Dr0
T + 1

) 1
2

+
br0

T + 1
+B1/3

(
r0

T + 1

) 2
3

• η =
(

r0
D(T+1)

) 1
2
<
(

r0
B(T+1)

) 1
3 , then

ΨT ≤ 2

(
r0D

T + 1

) 1
2

+B

(
r0

D(T + 1)

)
≤ 2

(
r0D

T + 1

) 1
2

+B
1
3

(
r0

(T + 1)

) 2
3

,

• The last case, η =
(

r0
B(T+1)

) 1
3
<
(

r0
D(T+1)

) 1
2

ΨT ≤ 2B
1
3

(
r0

(T + 1)

) 2
3

+D

(
r0

B(T + 1)

) 1
3

≤ 2B
1
3

(
r0

(T + 1)

) 2
3

+

(
Dr0
T + 1

) 1
2

.

D.2.4 Non-convex Case

First, we state the descent Lemma for non-convex cases. Due to Lemma 5, it holds that

Lemma 70 (Descent lemma for non-convex case, Lemma 11 from Koloskova et al. [2020b]) Under
Assumptions as in Theorem 7, the averages x̄(t) := 1

n

∑n
i=1 x(t)

i of the iterates of Algorithm 6 with
the constant stepsize γ < 1

4L(M+1) satisfy

Et+1 f(x̄(t+1)) ≤ f(x̄(t))− γ

4

∥∥∥∇f(x̄(t))
∥∥∥2
2
+

γL2

n

n∑
i=1

∥∥∥x̄(t) − x(t)
i

∥∥∥2
2
+

L

n
γ2σ2. (D.18)

Similarly as for the convex cases we prove the following recursion
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Lemma 71 (Consensus distance recursion) There are exists absolute constants C1, C2 > 0 such that

E ‖Ψt+k‖2F ≤ 3

4
‖Ψt‖2F +

1

128τ

k−1∑
j=0

E ‖Ψt+j‖2F + C1γ
2τn

k−1∑
j=0

et+j + C2γ
2
(τn
c2

+ τ2
)
σ2

(D.19)

where ej =
∥∥∇f(x̄(j))

∥∥2, τ ≤ k ≤ 2τ , τ = 2
p log

(
50
p (1 + log 1

p)
)
+ 1, p and c are defined in (6.2),

Ψt =
(
∆X(t), γ∆Y (t)

)
and is defined in (6.8).

Proof. The proof starts exactly the same as in the convex cases, Lemma 64. The difference comes
when estimating terms T1 and T2.

The second term T2. After splitting the stochastic noise,

E[T2] ≤ 3E

∥∥∥∥∥∥
k∑

j=1

(
∇f(X(t+j))−∇f(X(t+j−1))

)
W̃ τ−j

∥∥∥∥∥∥
2

F

+ 6knσ2

(E.3)
≤ 3k

k∑
j=1

E
∥∥∥∇f(X(t+j))−∇f(X(t+j−1))

∥∥∥2
F
+ 6knσ2

Estimating separately

E
∥∥∥∇f(X(t+j))−∇f(X(t+j−1))

∥∥∥2
F

(E.3)
≤ 3E

∥∥∥∇f(X(t+j))−∇f(X̄(t+j))
∥∥∥2
F

+ 3
∥∥∥∇f(X̄(t+j−1))−∇f(X(t+j−1))

∥∥∥2
F
+ 3

∥∥∥∇f(X̄(t+j))−∇f(X̄(t+j−1))
∥∥∥2
F

(6.3)
≤ 3L2 E

∥∥∥X(t+j) − X̄(t+j)
∥∥∥2
F
+ 3L2

∥∥∥X̄(t+j−1) −X(t+j−1)
∥∥∥2
F
+ 3L2

∥∥∥X̄(t+j) − X̄(t+j−1)
∥∥∥2
F

And for the last term we estimate

E
∥∥∥x̄(t+j) − x̄(t+j−1)

∥∥∥2
2
≤ γ2

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(t+j−1)
i )

∥∥∥∥∥
2

2

+ γ2
σ2

n

≤ 2γ2

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(t+j−1)
i )− 1

n

n∑
i=1

∇fi(x̄(t+j−1))

∥∥∥∥∥
2

2

+ 2γ2
∥∥∥∇f(x̄(t+j−1))

∥∥∥2 + γ2
σ2

n

≤ 2γ2L2 1

n

n∑
i=1

∥∥∥x(t+j−1)
i − x̄(t+j−1)

∥∥∥2 + 2γ2
∥∥∥∇f(x̄(t+j−1))

∥∥∥2 + γ2
σ2

n

Thus, using that γ < 1
24Lτ , k ≤ 2τ

E[T2] ≤ τ
k−1∑
j=0

nE
∥∥∥∇f(x̄(t+j))

∥∥∥2 + 21L2τ
k−1∑
j=0

E
∥∥∥X(t+j) − X̄(t+j)

∥∥∥2
F
+ 7τnσ2 .
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Term T1. Similarly, after separating the stochastic noise with Z(t) = G(t) −∇f(X(t)),

T1

(D.3)
≤ 2

∥∥∥∥∥∥
k∑

j=1

[
∇f(X(t+j))−∇f(X(t+j−1))

]
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥∥
k∑

j=1

(
Z(t+j) − Z(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

.

We add and subtract ∇f(X̄t+j),∇f(X̄t+j−1) in the first term and denote D(j) = ∇f(X(j)) −
∇f(X̄(j)).

T1 ≤ 4

∥∥∥∥∥∥
k∑

j=1

(
D(t+j) −D(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

+ 4

∥∥∥∥∥∥
k∑

j=1

[
∇f(X̄t+j)−∇f(X̄t+j−1)

]
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥∥
k∑

j=1

(
Z(t+j) − Z(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

.

Terms with D and Z we estimate exactly the same as in the convex case, thus getting

E[T1]
(6.5)
≤ 64k

c2

k−1∑
j=0

∥∥∥D(t+j)
∥∥∥2
F
+

32knσ2

c2
+ 4

∥∥∥∥∥∥
k∑

j=1

[
∇f(X̄t+j)−∇f(X̄t+j−1)

]
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F︸ ︷︷ ︸
T3

It is only left to estimate the last term. For that we use Lemma 58, and 1
p ≤ τ due to our choice of τ ,

T3

(E.3)
≤ k

k∑
j=1

∥∥∥[∇f(X̄t+j)−∇f(X̄t+j−1)
]
(k − j)W̃ k−j

∥∥∥2
F

L. 58
≤ 4kτ2

k∑
j=1

∥∥∇f(X̄t+j)−∇f(X̄t+j−1)
∥∥2
F

≤ 4kτ2γ2
k∑

j=1

[
2L2

∥∥∥X(t+j−1) − X̄(t+j−1)
∥∥∥2
F
+ 2n

∥∥∥∇f(x̄(t+j−1))
∥∥∥2 + σ2

]

Where the last inequality was obtained while estimating Term T2. Using that k ≤ 2τ , γ ≤ 1
24Lτ and

that
∥∥D(t+j)

∥∥2
F
≤ L2

∥∥X(t+j) − X̄(t+j)
∥∥2
F

by smoothness

E[T1]
(6.5)
≤ 129τ

c2
L2

k−1∑
j=0

∥∥∥X(t+j) − X̄(t+j)
∥∥∥2
F
+ τ

k−1∑
j=0

n
∥∥∥∇f(x̄(t+j))

∥∥∥2 + (64τn

c2
+ τ2

)
σ2
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Summing T1 and T2 together, and using that γ ≤ c
310τL

E ‖Ψt+k‖2F ≤ 3

4
‖Ψt‖2F +

1

128τ

k−1∑
j=0

E ‖Ψt+j‖2F + γ210τn

k−1∑
j=0

∥∥∥∇f(x̄(t+j))
∥∥∥2

+ 5γ2
(
64τn

c2
+ τ2

)
σ2

Next, we unroll this recursion with Lemma 8.
For γ < c√

7B1Lτ
≤ 1

2Lτ , and with some positive absolute constants B1, B2 > 0 it holds,

E ‖Ψt‖2F ≤
(
1− 1

64τ

)t

A0 +B1τγ
2
t−1∑
j=0

(
1− 1

64τ

)t−j

nej +B2γ
2
(τn
c2

+ τ2
)
σ2 (D.20)

where ej =
∥∥∇f(x̄(j))

∥∥2, A0 = 16‖∆X(0)‖2F + 24γ2

p2
‖∆Y (0)‖2F .

The rest of proof consists of combining (D.20) with the descent lemma for non-convex case (D.18)
in similar fashion as in Lemmas 65, 66; and further using Lemma 68 to obtain the final rate.

D.3 Experimental Setup and Additional Plots

We illustrate the dependence of the convergence rate on the parameters c and p.
In these experiments, we vary p and c (by changing the mixing matrix) and measure the value of

f(x̄(t))−f⋆ that GT reaches after a large number of steps t, when using a constant stepsize γ (chosen
small enough so that none of the runs diverges). According to our theoretical results, GT converges
to the level O

(
γσ2

n + γ2σ2

pc2

)
in a linear number of steps (to reach higher accuracy, smaller stepsizes

must be used). Thus, for n large enough, this term is dominated by O
(
γ2σ2

pc2

)
, which we aim to

measure. In all experiments we ensure that the first term is at least by order of magnitude smaller than
the second by comparing the noise level with GT on a fully-connected topology.

D.3.1 Problem Instances

We used n = 300, d = 100.
Setup A (Gaussian Noise). We consider quadratic functions defined as fi(x) = ‖x‖2, and x(0)

is randomly initialized from a normal distribution N (0, 1). We add artificially stochastic noise to
gradients as ∇Fi(x, ξ) = ∇fi(x) + ξ, where ξ ∼ N (0, σ

2

d I).
Setup B (Structured Noise). We consider quadratic functions defined as fi(x) = ‖x‖2, and x(0)

is randomly initialized from a normal distribution N (0, 1). We add artificially stochastic noise to
gradients as ∇F (X, ξ) = ∇f(X) + diag(ξ)V , where ξ ∼ N (0, σ

2

d I) is a d-dimensional Gaussian
noise vector, diag(ξ) a matrix with ξ on the diagonal, and V ∈ Rd×n is a matrix with half of the rows
equal to v ∈ Rn, and half of the rows equal to u ∈ Rn, where v,u are eigenvectors of the mixing
matrix, Wv = λn(W )v, i.e. corresponding to the smallest eigenvalue of W , and Wu = λ2(W )u, i.e.
corresponding to the second largest eigenvalue of W .

This is motivated by the observations in Lemma 57, where we noted that components in the
eigenspace corresponding to the smallest eigenvalue of W get amplified the most.
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D.3.2 Graph Topologies and Mixing Matrices

Interpolated Ring (between uniform weights and interpolate with a fully-connected topology).
We consider the ring topology Wring on n nodes, where each node i has self weight wii = 1

3 and
wi,1+(i mod n) = wi,(i−2 mod n)+1 = 1

3 for its neighbors. We interpolate this uniform weight ring
topology with a fully-connected topology, Wcomplete = 1

n11⊤, that is, Wα := αWring + (1 −
α)Wcomplete. The eigenvalues of Wring are λ(Wring) ∈

[
−1

3 , 1
]
, and λ(Wcomplete) ∈ [0, 1], and

therefore c of Wα is also a constant.

Ring with smaller self weight. We consider the ring topology Ww on n nodes, where each node
i has self weight wii = w ≤ 1

3 and wi,1+(i mod n) = wi,1+(i−2 mod n) =
1−w
2 for its neighbors. The

eigenvalues of Ww are λ(Ww) ∈ [2w − 1, 1], and therefore c can become small by choosing w (note
that the λn(Ww), while decreasing for smaller w, is not equal to 2w − 1 in general, expect when
w = 1

3 ). We measure the exact value λn(Ww) when reporting c below.

D.3.3 Additional Plots for Setup A
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Figure D.2: Impact of c and p on the convergence with the Gaussian stochastic noise σ2 = 1. The first four
subfigures illustrate the impact of p on convergence when c is kept constant; showing a linear scaling of the
loss compared to 1

p . The last subfigure varies c in the graph while keeping p as a constant, and we see a linear
scaling compared to 1

c2 .
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D.3.4 Additional Plots for Setup B
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Figure D.3: Impact of c and p on convergence with the structured stochastic noise σ2 = 1. The first four
subfigures illustrate the impact of p on convergence when c is kept constant; showing a linear scaling of the
loss compared to 1

p . The last subfigure varies c in the graph while keeping p as a constant, and we can see a
linear scaling compared to 1

c2 .

In Figures D.2 and D.3 we study the impact of c and p on the convergence. These findings support
the O

(
γ2σ2

pc2

)
scaling predicted by theory—however, cannot replace a formal proof. We leave this for

future work.

182



Appendix E

Appendix for Asynchronous SGD

E.1 Proofs

In this section we provide the proofs of all the theoretical results stated in the main paper.

E.1.1 Proof of Remark 11

First, we prove our key observation given in Remark 11.

Remark 11 (Key Observation) In Algorithm 7 the average concurrency τ̄C is connected to the aver-
age delay τavg as

τavg =
T + 1

T + |CT | − 1
τ̄C

T>|CT |
= Θ(τ̄C) . (7.6)

Proof. Define {τCti }i∈Ct as the set of delays of the gradients that are left in the active worker set
before iteration t is performed, i.e. each τCti is equal to the difference between the current iteration t

and the iteration at which worker i started to compute its current gradient for t > 0, and τC0i = 1 for
all i ∈ C0, that is the initial set of active workers. For simplicity we denote

τ active,t
sum :=

∑
i∈Ct

τCti .

We also define τ
applied,t
sum as the sum of all delays of gradients applied before iteration t is performed,

i.e.

τ applied,t
sum :=

t−1∑
j=0

τj .

At the zero-th iteration we have that

τ applied,0
sum = 0 , τ active,0

sum = τ
(0)
C , (E.1)

as no gradients were applied yet.
We claim that

τ applied,t+1
sum + τ active,t+1

sum = τ applied,t
sum + τ active,t

sum + τ
(t+1)
C . (E.2)
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Indeed, one of the gradients from Ct got applied and its delay moved from τ active,t
sum to τ

applied,t+1
sum . The

newly selected active workers in line 6 of Algorithm 7 have delay zero, as they just started their
computations in this step. And all of the current active workers in Ct+1 (of size |Ct+1| = τ

(t+1)
C ) got

an increase by 1 due to increase of the iteration count from t to t+ 1.
Using the initial conditions (E.1) and (E.2) we can conclude that

τ applied,T
sum + τ active,T

sum =
T∑
t=0

τ
(t)
C = (T + 1)τ̄C .

Note that the left hand side is exactly equal to (T + |CT | − 1)τavg from our Definition 22. Thus,

τavg =
T + 1

T + |CT | − 1
τ̄C = O (τ̄C) ,

where the last equality holds if T > |CT |.

E.1.2 Useful inequalities

Lemma 72 For an arbitrary set of n vectors {ai}ni=1, ai ∈ Rd

∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n

n∑
i=1

‖ai‖2 . (E.3)

E.1.3 Proof of Theorems 9, (7.7) and 11

We first recall both of the theorems

Theorem 9 (Constant stepsizes) Under Assumptions 17, 19, there exists a constant stepsize ηt ≡ η

such that for Algorithm 7 it holds that 1
T+1

∑T
t=0

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O
(
σ2

ε2
+

√
τCτmax
ε

)
iterations. (7.7)

If we additionally assume bounded gradient Assumption 20, then 1∑T
t=0 |At|

∑T
t=0 |At|

∥∥∇f(x(t))
∥∥2
2
≤

ε after

O
(
σ2

ε2
+

τCG

ε3/2
+

τC
ε

)
iterations. (7.8)

Theorem 11 (Delay-adaptive stepsizes) There exist a parameter η ≤ 1
4L such that if we set the

stepsizes in Algorithm 7 dependent on the delays as

ηt =

{
η τt ≤ 2τC ,

< min{η, 1
4Lτt

} τt > 2τC ,
(7.10)

then for Algorithm 7, under Assumptions 17, 19 it holds that 1∑T
t=0 ηt

∑T
t=0 ηt

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O
(
σ2

ε2
+

τC
ε

)
iterations. (7.11)
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E.1. Proofs

We first give a common lemma that will be used in the proofs for both of the theorems.

Lemma 73 (Descent Lemma) Under Assumptions 17 and 19, if in Algorithm 7 the stepsize ηt < 1
2L

then it holds that

Et+1 f(x(t+1)) ≤ f(x(t))− ηt
2

∥∥∥∇f(x(t))
∥∥∥2
2
− ηt

4

∥∥∥∇f(x(t−τt))
∥∥∥2 + Lη2t σ

2 +
ηtL

2

2

∥∥∥x(t) − x(t−τt)
∥∥∥2
2

Proof. Because the function f is L-smooth, we have

Et+1 f(x(t+1)) = Et+1 f
(

x(t) − ηt∇F (x(t−τt), ξt−τt)
)

≤ f(x(t))− ηt Et+1

〈
∇f(x(t)),∇F (x(t−τt), ξt−τt)

〉
︸ ︷︷ ︸

=:T1

+ Et+1
L

2
η2t

∥∥∥∇F (x(t−τt), ξt−τt)
∥∥∥2
2︸ ︷︷ ︸

=:T2

We first estimate the second term as

T1 = −ηt

〈
∇f(x(t)),∇f(x(t−τt))

〉
= −ηt

2

∥∥∥∇f(x(t))
∥∥∥2 − ηt

2

∥∥∥∇f(x(t−τt))
∥∥∥2

+
ηt
2

∥∥∥∇f(x(t))−∇f(x(t−τt))
∥∥∥2

For the last term, we add and subtract ∇f(x(t−τt)), and use that Et+1∇F (x(t−τt), ξt−τt) = ∇f(x(t−τt))

T2 = Et+1

∥∥∥∇F (x(t−τt), ξt−τt)−∇f(x(t−τt))
∥∥∥2
2
+
∥∥∥∇f(x(t−τt))

∥∥∥2
2

(7.1)
≤ σ2 +

∥∥∥∇f(x(t−τt))
∥∥∥2
2
.

Combining this together and using L-smoothness to estimate
∥∥∇f(x(t))−∇f(x(t−τt))

∥∥2
2
,

Et+1 f(x(t+1)) ≤ f(x(t))− ηt

∥∥∥∇f(x(t))
∥∥∥2
2
− ηt

2
(1− Lηt)

∥∥∥∇f(x(t−τt))
∥∥∥2
2
+

ηtL
2

2

∥∥∥x(t) − x(t−τt)
∥∥∥2
2

+ Lη2t σ
2 .

Applying η < 1
2L we get statement of the lemma.

Proof of Theorem 9, convergence rate (7.7)

Lemma 74 (Estimation of the residual) Under Assumptions 17 and 19, the iterates of Algorithm 7
with the constant stepsize ηt ≡ η with η ≤ 1

2L
√
τmaxτC

satisfy

1

T + 1

T∑
t=0

E
∥∥∥x(t) − x(t−τt)

∥∥∥2
2
≤ 1

4L2(T + 1)

T∑
t=0

E
∥∥∥∇f(x(t−τt))

∥∥∥2 + σ2η

2L
.
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Proof. We start with unrolling the difference and use that E∇F (x(j−τj), ξ(j−τj)) = ∇f(x(j−τj)).

E
∥∥∥x(t) − x(t−τt)

∥∥∥2
2
= E

∥∥∥∥∥∥
t−1∑

j=t−τt

η∇F (x(j−τj), ξj−τj )

∥∥∥∥∥∥
2

(7.4)
≤ E

∥∥∥∥∥∥
t−1∑

j=t−τt

η∇f(x(j−τj))

∥∥∥∥∥∥
2

+ τtη
2σ2

(E.3)
≤ τt E

t−1∑
j=t−τt

η2
∥∥∥∇f(x(j−τj))

∥∥∥2 + τtη
2σ2 .

Using that η ≤ 1
2L

√
τmaxτC

,

E
∥∥∥x(t) − x(t−τt)

∥∥∥2
2
≤ 1

4L2τC

t−1∑
j=t−τt

E
∥∥∥∇f(x(j−τj))

∥∥∥2 + τtη
2σ2 .

Summing over T ,

T∑
t=0

E
∥∥∥x(t) − x(t−τt)

∥∥∥2
2
≤ 1

4L2τC

T∑
t=0

t−1∑
j=t−τt

E
∥∥∥∇f(x(j−τj))

∥∥∥2 + T∑
t=0

τtη
2σ2

≤ 1

4L2τC

T∑
t=0

t−1∑
j=t−τt

E
∥∥∥∇f(x(j−τj))

∥∥∥2 + (T + 1)τavgη
2σ2 .

We now observe that the number of times each of the gradients
∥∥∇f(x(j−τj))

∥∥2 appears in the right

hand side is bounded by τ
(j)
C − 1 because this many gradients started to be computed before the

iteration j and will get applied at some iteration t > j. Thus,

T∑
t=0

E
∥∥∥x(t) − x(t−τt)

∥∥∥2
2
≤ 1

4L2

T∑
t=0

E
∥∥∥∇f(x(t−τt))

∥∥∥2 + (T + 1)
σ2η

L
,

where for the last σ term we estimated η ≤ 1
2L

√
τmaxτC

and used that both τavg ≤ 2τC and τavg ≤
τmax. Dividing the inequality by T + 1 we get the statement of the lemma.

Next, we give the proof of the first part of Theorem 9.

Proof of Theorem 9, convergence rate (7.7). We start by averaging with T and dividing by η the de-
scent Lemma 73.

1

T + 1

T∑
t=0

(
1

2
E
∥∥∥∇f(x(t))

∥∥∥2
2
+

1

4
E
∥∥∥∇f(x(t−τt))

∥∥∥2) ≤ 1

η(T + 1)

(
f(x(0))− f⋆

)
+ Lησ2

+
1

T + 1

L2

2

T∑
t=0

E
∥∥∥x(t) − x(t−τt)

∥∥∥2
2
.

We next apply Lemma 74 to the last term and get

1

T + 1

T∑
t=0

(
1

2
E
∥∥∥∇f(x(t))

∥∥∥2
2
+

1

4
E
∥∥∥∇f(x(t−τt))

∥∥∥2) ≤ 1

η(T + 1)

(
f(x(0))− f⋆

)
+ Lησ2

+
1

8(T + 1)

T∑
t=0

E
∥∥∥∇f(x(t−τt))

∥∥∥2 + Lησ2

2
.
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And thus,

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 2

η(T + 1)

(
f(x(0))− f⋆

)
+ 4Lησ2 .

It is only left to choose a stepsize η. Similar to previous works Stich and Karimireddy [2020], we
chose it as

η = min
{

1

2L
√
τmaxτC

;

(
r0

2Lσ2(T + 1)

) 1
2

}
≤ 1

2L
√
τmaxτC

,

where we defined r0 = f(x(0))− f⋆. With this choice of stepsize we indeed have that

• If 1
2L

√
τmaxτC

≤
(

r0
2Lσ2(T+1)

) 1
2 then η = 1

2L
√
τmaxτC

, and

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤

4Lr0
√
τmaxτC

T + 1
+

(
r0

2Lσ2(T + 1)

) 1
2

4Lσ2

= O
(

σ√
T

+

√
τmaxτC
T

)

• Otherwise if 1
2L

√
τmaxτC

>
(

r0
2Lσ2(T+1)

) 1
2

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 2

(
8Lσ2r0
(T + 1)

) 1
2

= O
(

σ√
T

)

Proof of Theorem 11

Lemma 75 (Estimation of the residual) Under Assumptions 17 and 19, the iterates of Algorithm 7
with the stepsizes ηt chosen as in (7.10), which we repeat here for readability

ηt =

{
η τt ≤ 2τC ,

< min{η, 1
4Lτt

} τt > 2τC ,

with η ≤ 1
4LτC

satisfy

T∑
t=0

ηt

∥∥∥x(t) − x(t−τt)
∥∥∥2
2
≤ 1

16L2

T∑
t=0

ηt

∥∥∥∇f(x(t−τt))
∥∥∥2 + σ2

4L

T∑
t=0

η2t .

Proof.

ηt

∥∥∥x(t) − x(t−τt)
∥∥∥2
2
= ηt

∥∥∥∥∥∥
t−1∑

j=t−τt

ηj∇F (x(j−τj), ξj−τj )

∥∥∥∥∥∥
2

(7.1)
≤ ηt

∥∥∥∥∥∥
t−1∑

j=t−τt

ηj∇f(x(j−τj))

∥∥∥∥∥∥
2

+ ηt

t−1∑
j=t−τt

η2jσ
2

(E.3)
≤ ηtτt

t−1∑
j=t−τt

η2j

∥∥∥∇f(x(j−τj))
∥∥∥2 + ηt

t−1∑
j=t−τt

η2jσ
2 .
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We use that each of the stepsizes ηt ≤ 1
4Lmax{τt,τC} . Thus,

ηt

∥∥∥x(t) − x(t−τt)
∥∥∥2
2
≤ 1

4L

t−1∑
j=t−τt

η2j

∥∥∥∇f(x(j−τj))
∥∥∥2 + 1

4LτC

t−1∑
j=t−τt

η2jσ
2 .

Summing over T , and using that each of the gradients
∥∥∇f(xj−τj )

∥∥2 would appear at most τ (j)C − 1
times (see the discussion in the proof of Lemma 74)

T∑
t=0

ηt

∥∥∥x(t) − x(t−τt)
∥∥∥2
2
≤ 1

4L

T∑
t=0

τCη
2
t

∥∥∥∇f(x(t−τt))
∥∥∥2 + σ2

4L

T∑
t=0

η2t .

Using again that ηt ≤ 1
4Lmax{τt,τC} we get the statement of the lemma.

Proof of Theorem 11. We start by summing the descent Lemma 73 over the iterations t = 0, . . . , T .

T∑
t=0

ηt

(
1

2
E
∥∥∥∇f(x(t))

∥∥∥2
2
+

1

4
E
∥∥∥∇f(x(t−τt))

∥∥∥2) ≤
(
f(x(0))− f⋆

)
+ Lσ2

T∑
t=0

η2t

+
L2

2

T∑
t=0

ηt

∥∥∥x(t) − x(t−τt)
∥∥∥2
2
.

Next, we substitute Lemma 75 into the last term,

T∑
t=0

ηt

(
1

2
E
∥∥∥∇f(x(t))

∥∥∥2
2
+

1

4
E
∥∥∥∇f(x(t−τt))

∥∥∥2) ≤
(
f(x(0))− f⋆

)
+ Lσ2

T∑
t=0

η2t

+
1

32

T∑
t=0

ηt

∥∥∥∇f(x(t−τt))
∥∥∥2 + σ2L

8

T∑
t=0

η2t .

Rearranging we thus get

T∑
t=0

ηt E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 2

(
f(x(0))− f⋆

)
+ 4Lσ2

T∑
t=0

η2t .

We note that due to our choice of stepsizes (7.10), ηt ≤ η, it also holds that
∑T

t=0 ηt ≥
∑

t:τt≤2τC
η ≥

T+1
2 η since there are at least half of the iterations with the delay smaller than two times the average.

Using this, we estimate

1∑T
t=0 ηt

T∑
t=0

ηt E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

(T + 1)η

(
f(x(0))− f⋆

)
+ 8Lσ2η2 .

It remains to tune the stepsize η, i.e. to pick is such as to minimize the right hand side of this expres-
sion. See Lemma 17 in Koloskova et al. [2020b].
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E.1.4 Proof of Theorem 9, convergence rate (7.8)

To prove the last claim of Theorem 9 we take another approach and follow the perturbed iterate
analysis Mania et al. [2017b].

We introduce a virtual sequence x̃t defined as

x̃(0) = x(0), x̃(t+1) = x̃(t) − η
∑
i∈At

∇F (x(t), ξt),

where we define A0 := C0, and τ̂ it is the delay with which the corresponding gradient will be com-
puted. That is, if we denote j = t + τ̂ ti , then it will hold that j − τj = t. This defines a virtual
sequence and we do not have access to it during the execution of Algorithm 7.

Lemma76 (Descent lemma) Under Assumptions 17 and19, if in Algorithm 7 the stepsize ηt < 1
2LτC

then it holds that

Et+1 f(x̃(t+1)) ≤ f(x̃(t))− η

4
|At|

∥∥∥∇f(x(t))
∥∥∥2
2
+

η

2
|At|L2

∥∥∥x(t) − x̃(t)
∥∥∥2 + Lη2σ2|At|

2
.

Proof. Because function f is L-smooth, we have

Et+1 f(x̃(t+1)) = Et+1 f

(
x̃(t) − η

∑
i∈At

∇F (x(t), ξ(t))

)

≤ f(x̃(t))− η|At| 〈∇f(x̃(t)),∇f(x(t))〉︸ ︷︷ ︸
=:T1

+Et+1
L

2
η2

∥∥∥∥∥∑
i∈At

∇F (x(t), ξt)

∥∥∥∥∥
2

2︸ ︷︷ ︸
=:T2

.

We estimate the second term as

T1 = −
〈
∇f(x(t)),∇f(x̃(t))

〉
= −1

2

∥∥∥∇f(x(t))
∥∥∥2 − 1

2

∥∥∥∇f(x̃(t))
∥∥∥2 + 1

2

∥∥∥∇f(x(t))−∇f(x̃(t))
∥∥∥2

≤ −1

2

∥∥∥∇f(x(t))
∥∥∥2 + 1

2

∥∥∥∇f(x(t))−∇f(x̃(t))
∥∥∥2 .

For the last term, using the notation ± a = a− a = 0 ∀a,

T2 = Et+1

∥∥∥∥∥∑
i∈At

∇F (x(t), ξt)± |At|∇f(x(t))

∥∥∥∥∥
2

2

(7.1)
≤ |At|σ2 + |At|2

∥∥∥∇f(x(t))
∥∥∥2
2
.

Combining this together, using L-smoothness to estimate
∥∥∇f(x(t))−∇f(x̃(t))

∥∥2
2

we get

Et+1 f(x̃(t+1)) ≤ f(x̃(t))−
(
η

2
|At| −

η2L|At|2

2

)∥∥∥∇f(x(t))
∥∥∥2
2
+

η

2
|At|L2

∥∥∥x(t) − x̃(t)
∥∥∥2

+
Lη2σ2|At|

2
.

Using that η ≤ 1
2LτC

≤ 1
2L|At| we get statement of the Lemma.
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Lemma 77 (Estimation of the residual) Under Assumptions 17, 19, iterated of Algorithm 7 with the
constant stepsize ηt ≡ η with η ≤ 1

2LτC
satisfy

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
≤ τ2Cη

2G2 + η2τCσ
2 .

Proof.

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
= E

∥∥∥∥∥∥
∑
j∈Ct

η∇F (x(j), ξj)

∥∥∥∥∥∥
2

2

(7.1)
≤ E

∥∥∥∥∥∥
∑
j∈Ct

η∇f(x(j))

∥∥∥∥∥∥
2

2

+ η2τ
(t)
C σ2

(E.3)
≤ τ

(t)
C

∑
j∈Ct

η2 E
∥∥∥∇f(x(j))

∥∥∥2
2
+ η2τ

(t)
C σ2

(7.4)
≤ (τ

(t)
C )2η2G2 + η2τ

(t)
C σ2 .

We are now ready to prove the second claim of Theorem 9.

Proof of Theorem 9, convergence rate (7.8). We start by summing over t = 0, . . . , T the descent
Lemma 76. We also divide it by η,

T∑
t=0

1

4
|At|

∥∥∥∇f(x(t))
∥∥∥2
2
≤ 1

η

(
f(x(0))− f⋆

)
+

Lησ2

2

T∑
t=0

|At|+
L2

2

T∑
t=0

|At|
∥∥∥x(t) − x̃(t)

∥∥∥2 .

We further use Lemma 77 for the last term
T∑
t=0

1

4
|At|

∥∥∥∇f(x(t))
∥∥∥2
2
≤ 1

η

(
f(x(0))− f⋆

)
+

Lησ2

2

T∑
t=0

|At|+
L2

2

(
τ2Cη

2G2 + η2τCσ
2
) T∑
t=0

|At| .

We further use that η ≤ 1
2LτC

for the last σ term and divide the full inequality by 1
4WT , where we

defined WT =
∑T

t=0 |At|

1

WT

T∑
t=0

|At|
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

ηWT

(
f(x(0))− f⋆

)
+ 4Lησ2 + 2L2τ2Cη

2G2 .

Note that because at every step t only one of the gradients is getting applied, T ≤
∑T

t=0 |At| ≤
T + τC ≤ 2T for T ≥ τC .

It is left to tune the stepsize using Lemma 17 in Koloskova et al. [2020b] to get the final conver-
gence rate.

E.1.5 Proof of the Theorem 13

We first re-state the theorem

Theorem 13 (constant stepsizes) Under Assumptions 17, 18, 19, 24 there exists a constant stepsize
ηt ≡ η such that for Algorithm 8 it holds that 1

T+1

∑T
t=0

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O

σ2

ε2
+

ζ2

ε2
+

√
τavg

1
n

∑n
i=1 ζ

2
i τ

i
avg

ε
3
2

+

√
τavgτmax

ε

 iterations, (7.13)
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Under Assumptions 17, 18, 19 and additional bounded gradient Assumption 20, it holds that
1

T+1

∑T
t=0

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O
(
σ2

ε2
+

ζ2

ε2
+

τavgG

ε
3
2

+
τavg
ε

)
iterations. (7.14)

We utilize again the perturbed iterate technique Mania et al. [2017b]. We introduce a virtual
sequence x̃(t) as

x̃(0) = x(0) x̃(t+1) = x̃(t) − η∇Fkt(x(t), ξt),

where kt is defined in line 6 of Algorithm 8 as the index of the sampled client at the iteration t. We
define τ̂t as the delay with which the corresponding gradient will be computed. If we denote j = t+τ̂t,
then it holds that j − τj = t.

Lemma 78 (Descent Lemma) Under Assumptions 17, 18, 19, for Algorithm 8 with the stepsize
ηt ≤ 1

4L it holds that

Et+1 f(x̃(t+1)) ≤ f(x̃(t))− η

4

∥∥∥∇f(x(t))
∥∥∥2
2
+

Lη2σ2

2
+ Lη2ζ2 +

ηL2

2

∥∥∥x(t) − x̃(t)
∥∥∥2
2
. (E.4)

Proof. Because the function f is L-smooth, we have

Et+1 f(x̃(t+1)) = Et+1 f
(

x̃(t) − η∇Fkt(x(t), ξt)
)

≤ f(x̃(t))− η 〈∇f(x̃(t)),∇f(x(t))〉︸ ︷︷ ︸
=:T1

+Et+1
L

2
η2
∥∥∥∇Fkt(x(t), ξt)

∥∥∥2
2︸ ︷︷ ︸

=:T2

,

where expectation is taken over both the stochastic noise ξ and sampled index jt. We estimate terms
T1 and T2 separately

T1 = −η

2

∥∥∥∇f(x(t))
∥∥∥2 − η

2

∥∥∥∇f(x̃(t))
∥∥∥2 + η

2

∥∥∥∇f(x(t))−∇f(x̃(t))
∥∥∥2

≤ −η

2

∥∥∥∇f(x(t))
∥∥∥2 + η

2

∥∥∥∇f(x(t))−∇f(x̃(t))
∥∥∥2 .

For the last term, using the notation ± a = a− a = 0 ∀a,

T2 = Et+1

∥∥∥∇Fkt(x(t), ξt)±∇fjt(x(t))±∇f(x(t))
∥∥∥2
2

(7.1)
≤ σ2 + 2Ekt

∥∥∥∇fkt(x(t))−∇f(x(t))
∥∥∥2
2
+ 2

∥∥∥∇f(x(t))
∥∥∥2
2

(7.2)
≤ σ2 + 2ζ2 + 2

∥∥∥∇f(x(t))
∥∥∥2
2
.

Combining this together and using L-smoothness to estimate
∥∥∇f(x(t))−∇f(x̃(t))

∥∥2
2

we get

Et+1 f(x̃(t+1)) ≤ f(x̃(t))−
(η
2
− Lη2

)∥∥∥∇f(x(t))
∥∥∥2
2
+

η

2
L2
∥∥∥x(t) − x̃(t)

∥∥∥2 + Lη2σ2

2
+ Lη2ζ2 .

Applying η ≤ 1
4L we get statement of the lemma.
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Proof of Theorem 13, convergence rate (7.13)

Lemma 79 (Estimation of the distance
∥∥x(t) − x̃(t)

∥∥2
2
) Under Assumptions 17, 18, 19, for Algo-

rithm 8 with the stepsize ηt ≤ 1
4L

√
τCτmax

it holds that

1

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
≤ ησ2

4L
+

2η2τC
T + 1

1

n

n∑
j=1

ζ2j τ̄j +
1

8L2(T + 1)

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
.

Proof.

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
= E η2

∥∥∥∥∥∑
i∈Ct

∇Fji(x(i), ξi)

∥∥∥∥∥
2

2

(7.1)
≤ η2τCσ

2 + η2 E

∥∥∥∥∥∑
i∈Ct

∇fji(x(i))

∥∥∥∥∥
2

2

(E.3)
≤ η2τCσ

2 + 2η2 E

∥∥∥∥∥∑
i∈Ct

∇fji(x(i))−∇f(x(i))

∥∥∥∥∥
2

2

+ 2η2 E

∥∥∥∥∥∑
i∈Ct

∇f(x(i))

∥∥∥∥∥
2

2

(E.3)
≤ η2τCσ

2 + 2η2τ
(t)
C E

∑
i∈Ct

ζ2ji + 2η2τC E
∑
i∈Ct

∥∥∥∇f(x(i))
∥∥∥2
2
.

Averaging over T , we get

1

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
≤ η2τCσ

2 + 2η2τC
1

T + 1

T∑
t=0

E
∑
i∈Ct

ζ2ji

+ 2η2τC
1

T + 1

T∑
t=0

E
∑
i∈Ct

∥∥∥∇f(x(i))
∥∥∥2
2
.

We note that in the second term each of ζj appears exactly τ sumj times, where τ sumj is the sum of the
all the delays that happened on the node j. In the last term, we estimate the number of appearance of
each of

∥∥∇f(x(i))
∥∥2
2

bt τmax, thus

1

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
≤ η2τCσ

2 + 2η2τC E
1

T + 1

n∑
j=1

ζ2j τ
sum
j

+ 2η2τCτmax
1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
,

we further use that number of times Tj that every node j got sampled are equal in expectation because
of uniform sampling in line 6 of Algorithm 8. Thus,

1

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
≤ η2τCσ

2 + 2η2τC
1

T + 1

1

n

n∑
j=1

ζ2j τ̄j

+ 2η2τCτmax
1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
.

Using that η ≤ 1
4L

√
τCτmax

we get the statement of the lemma.
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E.1. Proofs

Proof of Theorem 13, (7.13). First, averaging the descent Lemma 76,

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

η(T + 1)

(
f(x0)− f(xT )

)
+ 2Lησ2 + 4Lηζ2

+
2L2

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
.

Now plugging in the result of Lemma 79, we get

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

η(T + 1)

(
f(x0)− f(xT )

)
+ 2Lησ2 + 4Lηζ2 +

Lησ2

2

+
4L2η2τC
T + 1

1

n

n∑
j=1

ζ2j τ̄j +
1

4(T + 1)

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
.

Rearranging terms we thus get

1

2(T + 1)

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

η(T + 1)

(
f(x0)− f(xT )

)
+ 3Lησ2 + 4Lηζ2

+
4L2η2τC
T + 1

1

n

n∑
j=1

ζ2j τ̄j

It is only left to tune the stepsize using Lemma 17 in Koloskova et al. [2020b].

Proof of Theorem 13, convergence rate (7.14).

Lemma 80 (Estimation of the distance
∥∥x(t) − x̃(t)

∥∥2
2
) Under Assumptions 17, 18, 19, 20 for Algo-

rithm 8 with the stepsize ηt ≡ η ≤ 1
4LτC

it holds that

1

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
≤ ησ2

4L
+ η2τ2CG

2 .

Proof. We start our proof similar way as before

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
= E η2

∥∥∥∥∥∑
i∈Ct

∇Fji(x(i), ξi)

∥∥∥∥∥
2

2

(7.1)
≤ η2τCσ

2 + η2 E

∥∥∥∥∥∑
i∈Ct

∇fji(x(i))

∥∥∥∥∥
2

2

(E.3)
≤ η2τCσ

2 + η2τC
∑
i∈Ct

E
∥∥∥∇fji(x(i))

∥∥∥2
2

(7.4)
≤ η2τCσ

2 + η2τ2CG
2

≤ ησ2

4L
+ η2τ2CG

2

where on the last line we used that stepsize η ≤ 1
4LτC

.
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Proof of the Theorem 13, (7.14). We start by averaging the descent Lemma 76,

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

η(T + 1)

(
f(x0)− f(xT )

)
+ 2Lησ2 + 4Lηζ2

+
2L2

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
.

We now plug in the results of Lemma 80 and get

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

η(T + 1)

(
f(x0)− f(xT )

)
+ 3Lησ2 + 4Lηζ2 + 2L2η2τ2CG

2 .

It is only left to tune the stepsize using Lemma 17 in Koloskova et al. [2020b].

E.2 Estimating Speedup over Synchronous SGD

Assume that we have n workers with identical functions fi ≡ fj ≡ f ∀i, j(homogeneous case).
Assume that the objective function has a sum-structure f(x) = 1

m

∑m
j=1 F (x, ξj). This setting is

common in machine learning where each F (x, ξj) represent a loss function of a model x on a data-
point ξj ∈ D, |D| = m. Assume that to compute stochastic gradient ∇F (x, ξj) each worker needs a
constant time ∆j . W.l.o.g. we assume that ∆i are ordered as ∆1 ≤ ∆2 ≤ · · · ≤ ∆m.

Lemma 81 In expectation, the asynchronous Algorithm 8 needs

∆̄ =
1

m

m∑
i=1

∆i

time to compute n gradients, while mini-batch SGD with batch size n needs

∆̃ =

m∑
i=1

αi∆i

time to compute a batch of n gradients, where αi =
in−(i−1)n

mn . It is also always holds that ∆̄ ≤ ∆̃.
With this lemma we can precisely estimate how much faster the asynchronous algorithm is com-

pared to the classic synchronous mini-batch one. Note that αi are increasing with i with a rate of
O(in), thus in mini-batch SGD, the large delays get a much higher weight than the small delays,
especially when the batch size n is large.

For example, consider 1000 clients, 900 of which compute their update every 10s, while 100 of
them computes their update every 60s. Then the expected time for n gradients of the asynchronous
algorithm will be 15s, while synchronous mini-batch SGD (with n = 10) will take a significantly
longer time of 42.5s for the same number of gradients.

E.2.1 Proof of Lemma 81

In this section we prove Lemma 81.

Proof. We start by proving the first claim.
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E.3. Experiments

Time of Asynchronous Algorithm 8. Assume the concurrency is n = 1. Then, Algorithm 8 is syn-
chronous, and as we sample every client with equal probability (line 6 of Algorithm 8), the expected
time to compute one gradient is equal to 1

m

∑m
i=1∆i.

To calculate the estimated time with concurrency n > 1 we can view the Algorithm 8 as having
n independent copies of the previous process run in parallel. Thus, in the same time 1

m

∑m
i=1∆i in

expectation Algorithm 8 will compute n gradients.

Time of Mini-batch SGD. The expected time of mini-batch SGD of size n is equal to
Emax{∆i1 , . . . ,∆in} with each ij ∼ Uniform[1,m]. Denote a random variable
X = max{∆i1 , . . . ,∆in} that takes values within ∆1, . . .∆m. Since ij are independent from each
other,

Pr [X ≤ ∆k] =

n∏
j=1

Pr
[
∆ij ≤ ∆k

]
=

n∏
j=1

Pr [X ≤ ∆k] =

n∏
j=1

Pr [ij ≤ k] =

(
k

m

)n

.

Thus,

Pr [X = ∆k] =
kn − (k − 1)n

mn
.

And therefore,

EX =

m∑
k=1

Pr [X = ∆k]∆k .

E.3 Experiments

In this set of experiments we aim to illustrate the dependence on the maximum delay τmax in Theo-
rem 9, as depicted in Equation (7.7). For this, we set the stochastic noise σ to zero. In this case Theo-
rem 9, Equation (7.7) predicts that to reach an ε accuracy, Algorithm 7 needs T = O

(√
τmaxτC

ε

)
iter-

ations. In our experiments we fix τC = 2, ε = 10−14. Since τC = 2, we have two workers. We vary
the relative speed of the second worker, and thus affecting the maximum delay: if the second worker
is x times slower than the first worker, then the maximum delay τmax = x. We measure the time T to
reach the accuracy ε. Since all the other parameters are constant, it holds that T = C1

√
τmax.

We perform experiments on two different functions:

(i) quadratic function f(x) = 1
2 ‖Ax − b‖22, x,b ∈ R10, bi ∼ N (0, 1), i ∈ [1, 10], A ∈ R10×10

is a random matrix with λmax(A) = 2, λmin(A) = 1 and the rest of eigenvalues are equally
spaced in between.

(ii) logistic regression function f(x) = 1
m

∑m
j=1 log(1+ exp(−bja⊤j x)), where each bj is sampled

uniformly at random from the set {−1, 1}, and aj ∼ N (0, 1)20, x ∈ R20, m = 100.

We estimate the error as the average over the last 30 iterations ε̂T = 1
30

∑29
i=0 ‖∇f(xT−i)‖2. We

tune the stepsize η for every experiment separately over the logarithmic grid between 10−5 and 102

ensuring that the optimal stepsize value is not on the edge of the grid.
Figure E.1 shows the resulting dependence of T on τmax for the quadratic function (i), and Fig-

ure E.2 for the logistic regression function (ii). In both cases we see that T has linear dependence on√
τmax confirming our theory.
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Figure E.1: Verification of
√
τmax dependence on random quadratic function (i).

We see that T has linear dependence on
√
τmax
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Figure E.2: Verification of
√
τmax dependence on random logistic regression

function (ii). We see that T has linear dependence on
√
τmax
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Appendix F

Appendix for Gradient Clipping

F.1 Implications of (L0, L1) smoothness

Lemma 82 If Assumption 1 holds, then it also holds that

f(y)− f(x) ≤ ∇f(x)⊤(y − x) + (L0 + ‖∇f(x)‖L1)

2
‖x − y‖2 , ∀x, y ∈ Rd s.t. ‖x − y‖ ≤ 1

L1
.

(F.1)

For the proof see Zhang et al. [2020a], Appendix A.1.

Lemma 83 If Assumption 1 holds, then it also holds that

‖∇f(x)‖2 ≤ 2(L0 + L1 ‖∇f(x)‖) (f(x)− f⋆) ∀x ∈ Rd ,

where f⋆ = infx f(x).

Proof of Lemma 83. We start the proof by applying the previous Lemma 82 for
y = x − 1

L0+∥∇f(x)∥L1
∇f(x). Note that ‖x − y‖ = ∥∇f(x)∥

L0+∥∇f(x)∥L1
≤ 1

L1
and we can apply the

inequality:

f⋆ ≤ f

(
x − 1

L0 + ‖∇f(x)‖L1
∇f(x)

)
(F.1)
≤ f(x)− 1

2(L0 + ‖∇f(x)‖L1)
‖∇f(x)‖2 ,

and rearranging gives us the desired property.

F.2 Deterministic proofs

This section contains the main proofs from the paper. We skip the non-convex proof, since it will be
a direct consequence of the stochastic result.

F.2.1 Convex case (Theorem 15)

Defining αt = min{1, c
∥∇f(xt)∥} we have:

‖xt+1 − x⋆‖2 ≤ ‖xt − x⋆ − ηαt∇f(xt)‖2 = ‖xt − x⋆‖2 + η2α2
t ‖∇f(xt)‖2 − 2αtη〈∇f(xt), xt − x⋆〉

≤ ‖xt − x⋆‖2 + η2α2
t ‖∇f(xt)‖2 − 2ηαt (f(xt)− f⋆) .

We consider two cases: when clipping happens, and when clipping does not happen.
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Case 1: αt = 1, meaning that ‖∇f(xt)‖ ≤ c. Then

‖xt+1 − x⋆‖2 ≤ ‖xt − x⋆‖2 + η2 ‖∇f(xt)‖2 − 2η (f(xt)− f⋆) .

Using the implication of (L0, L1) smoothness and convexity in Lemma 83,

‖∇f(xt)‖2 ≤ 2(L0 + L1 ‖∇f(xt)‖) (f(xt)− f⋆) ≤ 2(L0 + L1c) (f(xt)− f⋆) .

Further,

‖xt+1 − x⋆‖2 ≤ ‖xt − x⋆‖2 + 2(L0 + L1c)η
2 (f(xt)− f⋆)− 2η (f(xt)− f⋆) ,

and by setting η ≤ 1
2(L0+L1c)

we obtain

‖xt+1 − x⋆‖2 ≤ ‖xt − x⋆‖2 − η (f(xt)− f⋆) .

Case 2: αt =
c

∥∇f(xt)∥ , meaning that ‖∇f(xt)‖ > c. Then,

‖xt+1 − x⋆‖2 ≤ ‖xt − x⋆‖2 + η2c2 − 2η
c

‖∇f(xt)‖
(f(xt)− f⋆) .

If it holds that η2c2 ≤ η c
∥∇f(xt)∥ (f(xt)− f⋆), then we will get

‖xt+1 − x⋆‖2 ≤ ‖xt − x⋆‖2 − η
c√
2L

√
(f(xt)− f⋆) . (F.2)

Lets now see under which stepsizes the condition η ≤ 1
c∥∇f(xt)∥ (f(xt)− f⋆) holds by upper bound-

ing the rhs. By (L0, L1) smoothness (and Lemma 83) we know that (f(xt)−f⋆) ≥ ∥∇f(xt)∥2
2(L0+L1∥∇f(xt)∥)

and thus

1

c ‖∇f(xt)‖
(f(xt)− f⋆) ≥ 1

2(L0
c

∥∇f(xt)∥ + L1c)
≥ 1

2(L0 + L1c)
,

where the last inequality is because c
∥∇f(xt)∥ ≤ 1 by our assumptions on αt in this case. This means

that using stepsize η ≤ 1
2(L0+L1c)

, it will hold that η ≤ 1
c∥∇f(xt)∥ (f(xt)− f⋆) and thus (F.2) will

hold.

Summing the two cases. We define T1 the set of iterations when clipping does not happen and T2
as set of iterations when clipping happens. Taking the average over T + 1 iterations

1

T + 1

∑
t∈T1

(f(xt)− f⋆) +
1

T + 1

∑
t∈T2

c√
2L

√
f(xt)− f⋆ ≤ ‖x0 − x⋆‖2

η(T + 1)
.

This means that both (i)

1

T + 1

∑
t∈T1

(f(xt)− f⋆) ≤ ‖x0 − x⋆‖2

η(T + 1)
,

and (ii)

1

T + 1

∑
t∈T2

√
f(xt)− f⋆ ≤ ‖x0 − x⋆‖2

√
2L

ηc(T + 1)
.
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F.2. Deterministic proofs

For the first inequality (i) using that x2 ≥ 2εx − ε2 for any ε, x > 0, and defining for simplicity
A := ∥x0−x⋆∥2

η(T+1) we get

1

T + 1

∑
t∈T1

(
2ε
√
f(xt)− f⋆ − ε2

)
≤ A ,

and thus,

1

T + 1

∑
t∈T1

√
f(xt)− f⋆ ≤ A

2ε
+

ε

2
.

Choosing ε =
√
A, we get

1

T + 1

∑
t∈T1

√
f(xt)− f⋆ ≤

√
A ≤

√
‖x0 − x⋆‖2

η(T + 1)
.

This implies that

1

T + 1

T∑
t=0

√
f(xt)− f⋆ ≤

√
R2

0

η(T + 1)
+

R2
0

√
2L

ηc(T + 1)
.

We further use that f(xt+1) ≤ f(xt) and get a last-iterate convergence rate

√
f(xT )− f⋆ ≤

√
R2

0

η(T + 1)
+

R2
0

√
2L

ηc(T + 1)
.

Squaring both of the sides, and using that (a+ b)2 ≤ 2a2 + 2b2 ∀a, b, we get

f(xT )− f⋆ ≤ 2R2
0

η(T + 1)
+

4LR4
0

η2c2(T + 1)2
.

F.2.2 Strongly convex case (Theorem 16)

Recursive argument. First, since the strongly convex function is also convex, we can apply the result
of the previous theorem here to get

f(xT )− f⋆ ≤ 2R2
0

ηT
+

4LR4
0

η2c2T 2
.

We remind that R0 = ‖x0 − x⋆‖. Using strong-convexity, we also know that

f(xT )− f⋆ ≥ µ

2
R2

t ,

Thus,

R2
t ≤ 4R2

0

µηT
+

8LR4
0

µη2c2T 2
.

Thus, to get R2
t ≤ R2

0
2 , it is enough to take t ≥ max{ 16

µη ,
6R0

√
L

ηc
√
µ } (as both terms become less that

R2
0/4).

Repeating this argument, we can see the iteration complexity can be bounded by

T = O

(
1

µη
log
(
R2

0

ε

)
+

R0

√
L

ηc
√
µ

)
.
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Small gradients. Let us start again from the convex bound (Theorem 15). Now, we will instead use
that:

‖∇f(xt)‖2 ≤ 2L (f(xt)− f⋆) ≤ 2L
R2

0

ηt

(
1 +

R2
0L

c2ηt

)
.

Now introduce t0 which is such that:

t0 =
8LR2

0

ηc2
, (F.3)

then we have that for all t ≥ t0:
‖∇f(xt)‖ ≤ c. (F.4)

In particular, we know that no clipping happens after t0, and so we obtain the standard linear conver-
gence rate, so that the final convergence time is:

T = O

(
1

ηµ
log
(
R2

0

ε

)
+

LR2
0

ηc2

)
. (F.5)

Comparing the two rates. Note that no rate is better than the other, and we can use one or the other
depending on the relationship between c and

√
LµR0.

F.3 Stochastic proofs.

We now proceed to the proof of Theorem 19. The proof will be in two parts: we will first prove
convergence up to σ2, and then refine this for large values of c.

F.3.1 Preliminaries

We now state a very simple lemma, which is direct but at the core of our decomposition, and so we
highlight it here.

Lemma 84 For any α > 0 and u ∈ Rd, the following holds:

−∇f(x)⊤u = −α

2
‖∇f(x)‖2 − 1

2α
‖u‖2 + 1

2α
‖u − α∇f(x)‖2 . (F.6)

F.3.2 First part of the proof: convergence up to σ (small c)

In this section for simplicity we assume that c < 4σ and prove that the gradient norm converges up
to a level σ. Note that this assumption on c is not restrictive since the case c > 4σ is covered by the
other part of the proof, in which we show better convergence to O(σ

2

c ).

Large gradients. Let us start by assuming that ‖∇f(xt)‖ ≥ 6σ. Note that numerical constant is
(relatively) arbitrary and could be tightened, but we choose it high to keep the proof clean and simple.

We start the analysis by using (L0, L1) smoothness property from Lemma 82. Note that for any
stepsize η < 1

L0+cL1
it holds that ‖xt+1 − xt‖ = η‖g(xt)‖ ≤ ηc ≤ 1

L1

f(xt+1)− f(xt) ≤ −η∇f(xt)
⊤g(xt) +

η2(L0 + ‖∇f(xt)‖L1)

2
‖g(xt)‖2

≤ −η∇f(xt)
⊤g(xt) +

η2(L0 + ‖∇f(xt)‖L1)

2
c2

≤ −η∇f(xt)
⊤g(xt) +

η2(L0 + cL1)

2
c ‖∇f(xt)‖ , (F.7)

where the last inequality is because we assumed that c ≤ 4σ ≤ ‖∇f(xt)‖.
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F.3. Stochastic proofs.

Uniformly bounded variance, def. 26. In this case, let us first assume that strong variance holds with
constant 3, i.e., that ‖∇fξ(xt)−∇f(xt)‖ ≤ 3σ with probability one. In this case, we can write,
where αξ = min (1, c/ ‖∇fξ(xt)‖):

−∇f(xt)
⊤g(xt) = −αξ ‖∇f(xt)‖2 − αξ∇f(xt)

⊤ (∇fξ(xt)−∇f(xt))

≤ −αξ ‖∇f(xt)‖2 + αξ ‖∇f(xt)‖ ‖∇fξ(xt)−∇f(xt)‖
≤ −αξ ‖∇f(xt)‖2 + 3αξ ‖∇f(xt)‖σ

≤ −
αξ

2
‖∇f(xt)‖2 ,

where the last line follows from the fact that σ < ‖∇f(xt)‖ /6. In particular, using the strong variance
assumption, we know that ‖∇fξ(xt)‖ ≤ 2 ‖∇f(xt)‖, so that αξ ≥ min(1, c/(2 ‖∇f(xt)‖)) ≥
c/(2 ‖∇f(xt)‖). In particular:

−∇f(xt)
⊤∇fξ(xt) ≤ − c

4
‖∇f(xt)‖ . (F.8)

Then, we can plug this into Equation (F.7), which leads to:

E [f(xt+1)]− f(xt) ≤ −ηc

4
(1− 2η(L0 + cL1)) ‖∇f(xt)‖ . (F.9)

In particular, choosing η ≤ (4[L0 + cL1])
−1, we obtain:

ηc

8
‖∇f(xt)‖ ≤ f(xt)− f(xt+1). (F.10)

Bounded variance in expectation, Def 27. In this case, we cannot write the same inequalities as
before with probability 1. However, we can still guarantee the bound with large enough probability.
We define δ = 1{‖∇fξ(x)−∇f(x)‖ > 3σ}. We will use conditional expectations to write

E
[
−αξ∇f(x)⊤∇fξ(x)

]
≤ p(δ = 0)E

[
−αξ∇f(x)⊤∇fξ(x)|δ = 0

]
︸ ︷︷ ︸

:=T1

+ p(δ = 1)E
[
−αξ∇f(x)⊤∇fξ(x)|δ = 1

]
︸ ︷︷ ︸

:=T2

.

We bound the first term T1 the same way as in previous case of uniformly bounded noise. For the
second term, by Cauchy-Schwartz inequality, and defining α = min (1, c/ ‖∇f(x)‖) we write

T2 = E
[
−αξ∇f(x)⊤∇fξ(x)|δ = 1

]
≤ ‖∇f(x)‖E [‖αξ∇fξ(x)‖ |δ = 1] ≤ α ‖∇f(x)‖2 ,

where the last inequality is because we assumed that the full gradients are large ‖∇f(x)‖ > 6σ,
but the clipping threshold is small c ≤ 4σ. Thus, the full gradients would always get clipped, and
‖α∇f(x)‖ = c ≥ ‖αξ∇fξ(x)‖. We remind that αξ = min (1, c/ ‖∇fξ(x)‖).

Now, it just remains to bound p(δ = 1). Using Markov inequality, we have that:

p(δ = 1) = p(‖∇fξ(x)−∇f(x)‖2 > 9σ2) ≤ 1/9. (F.11)

Similarly, p(δ = 0) = 1− p(δ = 1) ≥ 8/9. In the end, we obtain that:

− E
[
∇f(x)⊤g(x)

]
≤ −c

(
1

4
× 8

9
− 1

9

)
‖∇f(x)‖ = − c

9
‖∇f(x)‖ . (F.12)
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We further plug the result into (F.7), and obtain

E [f(xt+1)]− f(xt) ≤ −ηc

9

(
1− 9η

2
(L0 + cL1)

)
‖∇f(xt)‖ , (F.13)

and so with η ≤ (9[L0 + cL1])
−1, we obtain:

E [f(xt+1)]− f(xt) ≤ −ηc

18
‖∇f(xt)‖ . (F.14)

Final convergence. If for at least one iteration t it happens that the gradient norm is small ‖∇f(xt)‖ ≤
6σ, then it simply holds that

min
t∈[1,T ]

E ‖∇f(xt)‖2 ≤ O
(
σ2
)
.

Otherwise, for all t iterations the gradient norm is large ‖∇f(xt)‖ > 6σ and thus (F.14) holds for all
the iterations. Averaging over 1 ≤ t ≤ T + 1, we obtain

1

T + 1

T∑
t=0

‖∇f(xt)‖ ≤ O
(
f(x0)− f⋆

ηcT

)
, (F.15)

Combining these two cases we conclude that

min
t∈[1,T ]

E ‖∇f(xt)‖2 ≤ O
(
σ2 +

f(x0)− f⋆

ηcT

)
,

F.3.3 Second part of the proof: convergence up to σ2/c (large c).

In this second part we assume that the clipping radius is large, c ≥ 4σ. Although, the algorithm (9.1)
clips the stochastic gradients ∇fξ(xt), for the proof we will consider the two cases based on the full
gradient ∇f(xt): when the full gradient ∇f(xt) is clipped and when it is not clipped.

Similarly to previous case, we start by using (L0, L1) smoothness

f(xt+1)− f(xt) ≤ −η∇f(xt)
⊤g(xt) +

η2(L0 + ‖∇f(xt)‖L1)

2
‖g(xt)‖2 . (F.16)

First case, full gradient is clipped ‖∇f(xt)‖ > c. In this case, we use (F.6) with α = c
∥∇f(xt)∥ and

u = g(xt). Since α∇f(xt) = clipc(∇f(xt)), this leads to

−∇f(xt)
⊤g(xt) = − c

2
‖∇f(xt)‖ −

1

2α
‖g(xt)‖2 +

1

2α
‖g(xt)− clipc(∇f(xt))‖2 . (F.17)

We now use that g(xt) = clipc(∇fξ(xt)), and use that clipping is a projection on onto a convex set
(ball of radius c), and thus is Lipshitz operator with Lipshitz constant 1, we write

−∇f(xt)
⊤ E g(xt) ≤ − c

2
‖∇f(xt)‖ −

1

2α
E
[
‖g(xt)‖2

]
+

1

2α
E ‖∇fξ(xt)−∇f(xt)‖2

≤ − c

2
‖∇f(xt)‖ −

1

2α
E
[
‖g(xt)‖2

]
+

σ2

2c
‖∇f(xt)‖

= − 1

2α
E
[
‖g(xt)‖2

]
− c

2
‖∇f(xt)‖

(
1− σ2

c2

)
≤ −‖∇f(xt)‖

2c
E
[
‖g(xt)‖2

]
− c

4
‖∇f(xt)‖ ,
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where in the last line we used that σ2/c2 ≤ 1/2 and α ≤ 1. Plugging this into (F.16) we get

E [f(xt+1)]− f(xt) ≤ −η ‖∇f(xt)‖
2c

E
[
‖g(xt)‖2

]
− ηc

4
‖∇f(xt)‖

+
η2(L0 + ‖∇f(xt)‖L1)

2
E
[
‖g(xt)‖2

]
= −ηc

4
‖∇f(xt)‖ −

η ‖∇f(xt)‖
2c

E
[
‖g(xt)‖2

]
(1− ηcL1)

+
η2L0

2
E
[
‖g(xt)‖2

]
≤ −ηc

4
‖∇f(xt)‖ −

η

2
E
[
‖g(xt)‖2

]
(1− ηcL1) +

η2L0

2
E
[
‖g(xt)‖2

]
= −ηc

4
‖∇f(xt)‖ −

η

2
E
[
‖g(xt)‖2

]
(1− η[L0 + cL1]) .

In particular, choosing η ≤ (L0 + cL1)
−1, we obtain:

c

4
‖∇f(xt)‖ ≤ f(xt)− E f(xt+1)

η
. (F.18)

Note that we do not obtain variance terms, but similarly to the previous section it is because we
have assumed that the norm of the gradient is larger than σ, then the noise term can be hidden in the
gradient norm term.

Second case, c > ‖∇f(xt)‖ > c/2. The proof follows very closely the previous case with the
difference that the full gradient ∇f(xt) is not clipped. We use Equation (F.6) with α = 1. This leads
to

−∇f(xt)
⊤ E g(xt) = −1

2
‖∇f(xt)‖2 −

1

2
E ‖g(xt)‖2 +

1

2
E ‖g(xt)−∇f(xt)‖2

≤ −1

2
‖∇f(xt)‖2 −

1

2
E ‖g(xt)‖2 +

σ2

2
,

where on the last line we used that clipping is Lipshitz operator with constant 1, as it is a projection
on a convex set. We now use that −‖∇f(xt)‖ ≤ −c/2 for the first term and 1 ≤ ‖∇f(xt)‖ /c for
the last term:

−∇f(xt)
⊤ E g(xt) ≤ −1

2
E ‖g(xt)‖2 −

c

4
‖∇f(xt)‖+

σ2

2c
‖∇f(xt)‖

≤ −1

2
E ‖g(xt)‖2 −

c

4
‖∇f(xt)‖

(
1− 2

σ2

c2

)
≤ −1

2
E ‖g(xt)‖2 −

c

8
‖∇f(xt)‖ ,
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where in the last line we used that σ2/c2 ≤ 1/4. Similarly to the previous case, we plug it into (F.16)
and use that −1 ≤ −∥∇f(xt)∥

c we have that

E f(xt+1)− f(xt) ≤ −η ‖∇f(xt)‖
2c

E
[
‖g(xt)‖2

]
− cη

8
‖∇f(xt)‖

+
η2(L0 + ‖∇f(xt)‖L1)

2
E
[
‖g(xt)‖2

]
≤ −cη

8
‖∇f(xt)‖ −

η

2
E
[
‖g(xt)‖2

](‖∇f(xt)‖
c

(1− ηcL1)− ηL0

)
≤− cη

8
‖∇f(xt)‖ −

η

2
E
[
‖g(xt)‖2

](1

2
− η[L0 + cL1]

)
where on the last line we used that ‖∇f(xt)‖ > c/2. Using that η ≤ 1

2(L0 + cL1)
−1

c

8
‖∇f(xt)‖ ≤ f(xt)− E f(xt+1)

η
. (F.19)

Third case, ‖∇f(xt)‖ < c/2. In this case, we do not have convergence to the exact optimum.
We start by defining δt = 1{‖∇fξ(xt)‖ > c} is the indicator function that at time step t the

stochastic gradient is getting clipped. We will start by showing that E δt ≤ 4σ2

c2
.

E δt = Pr[δt = 1] = Pr [‖∇fξ(xt)‖ > c] ≤ Pr
[
‖∇fξ(xt)−∇f(xt)‖ >

c

2

]
≤ 4σ2

c2
,

where the last inequality is due to Markov’s inequality. The first inequality is because ‖∇fξ(xt)‖ ≤
‖∇fξ(xt)−∇f(xt)‖+ ‖∇f(xt)‖ ≤ ‖∇fξ(xt)−∇f(xt)‖+ c

2 .
Now that we have E δt ≤ 4σ2

c2
we can use it to bound the difference ‖∇f(xt)− E g(xt)‖2. In par-

ticular, since δt takes values 0 and 1, we have that E [δt] = p(δt = 1) and so E [δtX] = E [δt]E [X|δt]
for any random variable X .

‖∇f(xt)− E g(xt)‖2 =
∥∥∥∥E(1− c

‖∇fξ(xt)‖

)
∇fξ(xt)δt

∥∥∥∥2
= E [δt]

2

∥∥∥∥E [(1− c

‖∇fξ(xt)‖

)
∇fξ(xt)|δt = 1

]∥∥∥∥2 .

At this point, we use Jensen inequality on the conditional expectation (since all terms are positive and
the squared norm is a convex function) and get that:

‖∇f(xt)− E g(xt)‖2 ≤ E [δt]
2 E

[(
1− c

‖∇fξ(xt)‖

)2

‖∇fξ(xt)‖2 |δt = 1

]
≤ E [δt]

2 E
[
‖∇fξ(xt)‖2 |δt = 1

]
≤ 2E [δt]

2 E
[
‖∇fξ(xt)−∇f(xt)‖2 |δt = 1

]
+ 2E [δt]

2 E
[
‖∇f(xt)‖2 |δt = 1

]
≤ 2E [δt]E

[
‖∇fξ(xt)−∇f(xt)‖2

]
+ 2E [δt]

2 ‖∇f(xt)‖2

≤ 8σ4

c2
+

32σ4

c4
‖∇f(xt)‖2 , (F.20)
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where on the second line we used that
(
1− c

‖∇fξ(xt)‖

)2

≤ 1 when δt = 1, and on the last line that

E [δt] ≤ 4σ2/c2. We further use (F.6) with α = 1 and u = E g(xt), we get

−∇f(x)⊤ E g(xt) = −1

2
‖∇f(x)‖2 − 1

2
‖E g(xt)‖2 +

1

2
‖E g(xt)−∇f(x)‖2

≤ −1

2
‖∇f(x)‖2 − 1

2
‖E g(xt)‖2 +

4σ4

c2
+

4σ2

c2
‖∇f(xt)‖2

σ≤ c
4

≤ −1

4
‖∇f(x)‖2 − 1

2
‖E g(xt)‖2 +

4σ4

c2
.

Plugging this into (F.16), for η ≤ 1
8(L0+cL1)

, we get by dropping the ‖E g(xt)‖2 term and using
that ‖∇f(xt)‖ ≤ c that:

E f(xt+1)− f(xt) ≤ −η

4
‖∇f(x)‖2 − η

2
‖E g(xt)‖2 +

4ησ4

c2
+

η2(L0 + ‖∇f(xt)‖L1)

2
E ‖g(xt)‖2

(F.21)

≤ −η

4
‖∇f(x)‖2 + 4ησ4

c2
+

η2(L0 + cL1)

2
E ‖g(xt)−∇f(xt) +∇f(xt)‖2

≤ −η

4
‖∇f(x)‖2 + 4ησ4

c2
+ η2(L0 + cL1)E ‖g(xt)−∇f(xt)‖2 (F.22)

+ η2(L0 + cL1) ‖∇f(xt)‖2

η≤ 1
8(L0+cL1)

≤ −η

8
‖∇f(x)‖2 + 4ησ4

c2
+ η2(L0 + cL1)E ‖g(xt)−∇f(xt)‖2 .

Note that clipping is the orthogonal projection onto the ball of radius c, which we denote projc and
‖∇f(xt)‖ ≤ c, so it is not affected by the projection. In particular:

E ‖g(xt)−∇f(xt)‖2 = E ‖projc(∇fξ(xt))− projc(∇f(xt))‖2 ≤ E ‖∇fξ(xt)−∇f(xt)‖2 ≤ σ2,
(F.23)

and we thus get

E f(xt+1)− f(xt) ≤ −η

8
‖∇f(x)‖2 + 4ησ4

c2
+ η2(L0 + cL1)σ

2, (F.24)

and so:

1

8
‖∇f(xt)‖2 ≤

f(xt)− E f(xt+1)

η
+ η(L0 + cL1)σ

2 +
4σ4

c2
. (F.25)

In particular, we have:

• One variance term that fades with the step-size.

• One bias term that remains even for very small step-sizes.

Wrapping up. We now combine the three cases above. Defining T1 is the set of indices with
‖∇f(xt)‖ ≥ c

2 (we note that this covers the first and the second cases from above, but both of
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them leads to the same final inequality (F.19)), and T2 is the set of indices with ‖∇f(xt)‖ < c
2 , this

inequality (F.25) holds. Summing up over all the indices 1 ≤ t ≤ T + 1, we get

1

8(T + 1)

∑
t∈T1

cE ‖∇f(xt)‖+
∑
t∈T2

E ‖∇f(xt)‖2
 ≤ f(x0)− f⋆

η(T + 1)
+ η(L0 + cL1)σ

2 +
4σ4

c2
.

This means that both (i)

1

8(T + 1)

∑
t∈T1

cE ‖∇f(xt)‖ ≤ f(x0)− f⋆

η(T + 1)
+ η(L0 + cL1)σ

2 +
4σ4

c2
,

and (ii)

1

8(T + 1)

∑
t∈T2

E ‖∇f(xt)‖2 ≤
f(x0)− f⋆

η(T + 1)
+ η(L0 + cL1)σ

2 +
4σ4

c2
,

for the last inequality using that x2 ≥ 2εx − ε2 for any ε, x > 0, and defining for simplicity A :=

8f(x0)−f⋆

ηT + 8η(L0 + cL1)σ
2 + 32σ4

c2
we get

1

T + 1

∑
t∈T2

(
2εE ‖∇f(xt)‖ − ε2

)
≤ A ,

and thus,

1

T + 1

∑
t∈T2

E ‖∇f(xt)‖ ≤ A

2ε
+

ε

2
.

Choosing ε =
√
A, we get

1

T + 1

∑
t∈T2

E ‖∇f(xt)‖ ≤
√
A ≤

√
8
f(x0)− f⋆

η(T + 1)
+
√
8η(L0 + cL1)σ2 +

√
32σ4

c2
.

Summing up the two cases again, and using that σ
c ≤ 1

4 we get

1

T + 1

T∑
t=0

E ‖∇f(xt)‖ ≤ O

(√
f(x0)− f⋆

ηT
+

f(x0)− f⋆

ηcT
+
√
η(L0 + cL1)σ +

σ2

c

)
.

F.3.4 Differentially Private SGD

Modification to the proof to include mini-batches

Using g(xt) =
1
B

∑
ξ∈Bt

clipc(∇fξ(xt)), the proof is exactly the same as in the previous case, with
the only difference in the case where c ≥ 4σ and small gradients (third case) ‖∇f(xt)‖ < c

2 . Starting
with equation (F.21), we obtain:

E f(xt+1)− f(xt) ≤ −η

4
‖∇f(x)‖2 − η

2
‖E g(xt)‖2 +

4ησ4

c2
+

η2(L0 + ‖∇f(xt)‖L1)

2
E ‖g(xt)‖2

≤ −η

4
‖∇f(x)‖2 − η

2
‖E g(xt)‖2 +

4ησ4

c2
+

η2(L0 + cL1)

2
E ‖g(xt)− E g(xt)‖2

+
η2(L0 + cL1)

2
‖E g(xt)‖2 .
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We now estimate the term variance term E ‖g(xt)− E g(xt)‖2 more tightly in order to get the variance
reduction due to the batch size B.

E ‖g(xt)− E g(xt)‖2 = E

∥∥∥∥∥ 1B ∑
i∈Bt

clipc(∇fξi(xt))− E g(xt)

∥∥∥∥∥
2

=
1

B2

∑
i∈Bt

E ‖clipc(∇fξi(xt))− E g(xt)‖2

≤ 1

B2

∑
i∈Bt

2E ‖clipc(∇fξi(xt))−∇f(xt)‖2 +
2

B
‖∇f(xt)− E g(xt)‖2

(F.20)
≤ 2σ2

B
+

2

B

[
8σ4

c2
+

8σ2

c2
‖∇f(xt)‖2

]
≤ 2σ2

B
+

2

B

[
σ2

2
+ 2σ2

]
≤ 6

σ2

B
,

where we used that ‖∇f(xt)‖ ≤ c
2 and that σ ≤ c

4 . The rest of the proof is exactly the same as before,
by substituting now the σ2 term with σ2

B , we would arrive at the convergence rate of

1

T

T∑
t=0

E ‖∇f(xt)‖ ≤ O

(√
f(x0)− f⋆

ηT
+

f(x0)− f⋆

ηcT
+
√
η(L0 + cL1)

σ√
B

+
σ2

c

)
.

Modification to the proof to include stochastic noises

The gradients applied in DP-SGD (9.13) have the form g(xt) + zt, where zt is a Gaussian noise with
variance σDP. In order to add this additional Gaussian noise, we would need to modify the first step
of the proof, that is using (L0, L1) smoothness

E f(xt+1)− f(xt) ≤ −η∇f(xt)
⊤g(xt) +

η2(L0 + ‖∇f(xt)‖L1)

2
‖g(xt)‖2

+
η2(L0 + ‖∇f(xt)‖L1)

2
σ2

DP .

The rest of the proof remains the same, with having an additional σ2
DP term in the convergence.

We thus would arrive to the following convergence rate where for simplicity we define L = L0 +
maxt ‖∇f(xt)‖L1

O

(
Lη

c
σ2

DP +
√
LησDP + min

(
σ,

σ2

c

)
+
√

ηL
σ√
B

+

√
F0

ηT
+

F0

ηTc

)
.

F.3.5 Lower bound

We now prove the lower bound.

Proofs of Theorems 17 and 18. Let us consider the simple noise aB(p), where a > 0 and B(p) is a
Bernoulli random variable with mean p ≤ 1/2. Consider a function such that the stochastic gradients
are of the form:

∇fξ(x) = x+ aB(p) . (F.26)
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Now consider x = −pc/(1 − p). The stochastic gradient at x when the Bernoulli is 0 is not clipped,
since |x| = pc/(1 − p) ≤ c. Yet, the stochastic gradient for positive values of the Bernoulli random
variable is:

∇fa(x) = −pc/(1− p) + a ≥ a− c ≥ c. (F.27)

In particular, we have that:

E [clipc(∇fξ(x))] = (1− p)x+ pc = (1− p)× (−pc)/(1− p) + pc = 0. (F.28)

Let us now evaluate ∇f(x). We have:

∇f(x) = x+ pa = p

(
a− c

1− p

)
. (F.29)

Small c. Now fix a clipping radius c, such that c ≤ 2σ, and take a = 4σ. We choose p(1−p) = 1/16,
so that p = (2−

√
3)/4 ≤ 1/4. In this case,

∇f(x) = p

(
a− c

1− p

)
≥ p

(
4σ − 2σ × 4

3

)
≥ (2−

√
3)σ

3
≥ σ

12
. (F.30)

Large c. Now fix a clipping radius c, such that c ≥ σ and c ≤ a/2. To ensure that the noise has
variance σ2, p has to be such that:

p(1− p) = σ2/a2 ≤ 1/16 . (F.31)

Thus, we have that p ≤ 1/4 (since we chose p < 1/2). In particular, also using that c ≤ a/2:

∇f(x) =
σ2

a2(1− p)

(
a− c

1− p

)
≥ σ2

3a(1− p)
≥ σ2

3a
. (F.32)

It now remains to choose a = 2c (which satisfies all previous conditions), and we obtain:

∇f(x) ≥ σ2

6c
. (F.33)
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Appendix G

Appendix for Correlated Noise

G.1 Additional Examples

G.1.1 Why the Frobenius norm is not predictive

In this section we give an explicit example of a matrix B for which the Frobenius norm ‖B‖F does
not give a good estimation of the optimization behavior of (10.6).

Example 85 (Chess-PGD) We consider the special case of algorithm (10.6) whose noise correlation
matrix B whose lower triangle has a chess board-like structure given by

Bchess =
√
2


1 0 0 . . . 0
0 1 0 . . . 0
1 0 1 . . . 0
. . .
0 1 0 . . . 1


We refer to this algorithm (whose perturbed noise structure is given by Bchess) as Chess-PGD.

Note that sens(Cchess) ‖Bchess‖F = sens(CS) ‖S‖F . Despite this, PGD (for which B = S) converges
strictly faster than Chess-PGD in Figure G.1.

By contrast, our Theorem 24 is better able to capture the behaviour of Chess-PGD. Suppose that
τ ≤ T/4. Given a row bt of Bchess, for any t′ < t we have

t− t′

2
≤ ‖bt − bt′‖2 ≤ t.

Therefore, at least T/4 of the summands in the noise term of Theorem 24 are on the order of Θ(T ).
Plugging in this estimate into the convergence rate, we find that Chess-PGD produces iterates that
satisfy the convergence rate

1

T + 1

T∑
t=0

E [f(xt)− f∗] = Õ

(
‖x0 − x⋆‖2

γT
+ LTγ2σ2

)
. (G.1)

Indeed, as we show below (and plot in Figure G.1), Chess-PGD linearly diverges with T as
predicted.
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G.1.2 Experimental comparison of PGD with Chess-PGD

In this section we illustrate that Chess-PGD diverges while PGD converges for the same quadratic
functions as in Section 10.7. We set the stepsize constant, γ = 0.02. We plot ‖∇f(xt)‖2 at each
iteration t. We see that, as predicted by (G.1), Chess-PGD diverges with linear rate in T , while PGD
converges to a constant noise level.
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Figure G.1: Comparison of PGD and Chess-PGD under the fixed stepsize, γ = 0.02. Y axis in the
log scale on the left, and in the normal scale on the right.

G.2 Weight matrix

In this section we give the precise definition of the weight matrix Λτ (see Section 10.6). Λτ =
[λtj ]t,j=1,...,T with the element

λtj =


1√
τ

j = t, t 6= 0 mod τ

− 1√
τ

j = b t
τ cτ, t 6= 0 mod τ, t > τ

1 j = t, t = 0 mod τ

−1 j = t− τ, t = 0 mod τ, t > τ

For all the other indices, λtj = 0. In Figure G.2 we give an example of such a matrix for T = 12 and
τ = 3.

3 6 9 12

3

6

9

12

1.0

0.5

0.0

0.5

1.0

Figure G.2: Elements of Λτ for T = 12, and τ = 3.
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G.3. Proofs of Main Results

G.3 Proofs of Main Results

We analyse the algorithm with general B that has the following iterates:

xt+1 = xt − η(∇f(xt) + (bt+1 − bt)
⊤Z) t ≥ 1 (G.2)

where b0 = 0. We define vt = (bt+1 − bt)
⊤Z for t ≥ 0, so that

xt+1 = xt − γ∇f(xt)− γvt

For the analysis, we define a virtual sequence with restarts (10.13), where we do restarts every τ
iterations. Formally, we define virtual iterates {x̃t}Tt=0 as follows:

x̃t+1 = x̃t − γ∇f(xt) if t+ 1 6= 0 mod τ

x̃t+1 = xt+1 if t+ 1 = 0 mod τ (restart iterations)

This means that x̃kτ = xkτ , for any nonnegative integer k.

G.3.1 Useful facts about this sequence.

• The closest restart iteration to t is equal to b t
τ cτ .

• For t < τ we have

x̃t − xt = γb⊤
t Z

• For restart iterations t+ 1 = τ ,

x̃t+1 − xt+1 = 0

• For the next iteration just after restart t+ 1 = τ + 1

x̃τ+1 − xτ+1 = (x̃τ − γ∇f(xτ ))− (xτ − γ∇f(xτ )− γvτ ) = γvτ = γ(bτ+1 − bτ )
⊤Z

• Thus, for arbitrary t,

x̃t − xt = γ(bt − b⌊ t
τ
⌋τ )

⊤Z (G.3)

(and if t = 0 mod τ , then the term cancels and we get x̃t − xt = 0), we assume that b0 = 0.

• We can re-write the restart iterations for t+ 1 = 0 mod τ

x̃t+1 = xt+1 = xt − γ∇f(xt)− γ(bt+1 − bt)
⊤Z

= x̃t − γ∇f(xt)− γ(bt − b⌊ t
τ
⌋τ )

⊤Z − γ(bt+1 − bt)
⊤Z

= x̃t − γ∇f(xt)− γ(bt+1 − b⌊ t
τ
⌋τ )

⊤Z

Equivalently, for t+ 1 = 0 mod τ ,

x̃t+1 = x̃t − γ∇f(xt)− γ(bt+1 − bt+1−τ )
⊤Z. (G.4)
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G.3.2 Assumptions and useful inequalities

This section contains assumptions and inequalities that will be used throughout the proof. First, recall
that in Assumption 31, we assume that f is differentiable and L-smooth, so that

∀x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L ‖x − y‖ . (G.5)

In some settings, we will also assume convexity, so that

∀x, y ∈ Rd, f(x)− f(y) ≤ 〈∇f(x), x − y〉. (G.6)

We will also make use of the following facts about the geometry of vectors in Rd.

Lemma 86 For any finite set of vectors {ai}ni=1 ⊂ Rd,∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n
n∑

i=1

‖ai‖2 . (G.7)

Lemma 87 For any two vectors a,b ∈ Rd and for all α > 0,

2〈a,b〉 ≤ α ‖a‖2 + α−1 ‖b‖2 . (G.8)

G.3.3 Proof for non-convex functions

Iterations without restarts. If t is such that t 6= −1 mod τ , where k is some integer number, then
between iteration t and t + 1 no restart of virtual sequence happens and thus x̃t+1 = x̃t − γ∇f(xt).
We follow closely standard perturbed iterate analysis Mania et al. [2017a], ?. By L-smoothness of f

f(x̃t+1) ≤ f(x̃t)− γ〈∇f(x̃t),∇f(xt)〉+
Lγ2

2
‖∇f(xt)‖2

≤ f(x̃t)−
γ

2
‖∇f(x̃t)‖2 −

γ

2
‖∇f(xt)‖2 +

γL2

2
‖xt − x̃t‖2

(G.3)
≤ f(x̃t)−

γ

2
‖∇f(x̃t)‖2 −

γ

2
‖∇f(xt)‖2 +

γ3L2

2

∥∥∥(bt − b⌊ t
τ
⌋τ )

⊤Z
∥∥∥2 (G.9)

where on the second line we used that −2〈a,b〉 = −‖a‖2 − ‖b‖2 + ‖a − b‖2 for any a,b ∈ Rd.

Iterations with restarts. Restart happens between iteration t and t+1 if t = −1 mod τ . In this case,
the analysis is more involved. By L-smoothness and using update rule (G.4)

f(x̃t+1) ≤ f(x̃t)− γ〈∇f(x̃t),∇f(xt) + (bt+1 − bt+1−τ )
⊤Z〉 (G.10)

+
L

2
γ2
∥∥∥∇f(xt) + (bt+1 − bt+1−τ )

⊤Z
∥∥∥2 (G.11)

(G.7)
≤ f(x̃t)− γ〈∇f(x̃t),∇f(xt)〉︸ ︷︷ ︸

:=T1

− γ〈∇f(x̃t), (bt+1 − bt+1−τ )
⊤Z〉︸ ︷︷ ︸

:=T2

(G.12)

+ Lγ2 ‖∇f(xt)‖2 + Lγ2
∥∥∥(bt+1 − bt+1−τ )

⊤Z
∥∥∥2 (G.13)
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We estimate separately the second and the third terms

T1 = −γ

2
‖∇f(x̃t)‖2 −

γ

2
‖∇f(xt)‖2 +

γ

2
‖∇f(x̃t)−∇f(xt)‖2

(G.5)
≤ −γ

2
‖∇f(x̃t)‖2 −

γ

2
‖∇f(xt)‖2 +

γL2

2
‖x̃t − xt‖2

(G.3)
≤ −γ

2
‖∇f(x̃t)‖2 −

γ

2
‖∇f(xt)‖2 +

γ3L2

2

∥∥∥(bt − b⌊ t
τ
⌋τ )

⊤Z
∥∥∥2

The third term,

T2 = −〈∇f(x̃t), γ(bt+1 − bt+1−τ )
⊤Z〉

(G.8), α= 1
8L

≤ 1

16L
‖∇f(x̃t)‖2 + 4Lγ2

∥∥∥(bt+1 − bt+1−τ )
⊤Z
∥∥∥2

It is left to deal with the norm of the gradient 1
16L ‖∇f(x̃t)‖2. Using that τ = 1

Lγ , and thus 1
16Lτ = γ

16
we have

1

16L
‖∇f(x̃t)‖2 =

γ

16

τ−1∑
i=0

‖∇f(x̃t)‖2

(G.7),(G.5)
≤ γ

8

τ−1∑
i=0

L2 ‖x̃t − x̃t−i‖2 +
γ

8

τ−1∑
i=0

‖∇f(x̃t−i)‖2

(??)
≤ γ

8

τ−1∑
i=1

γ2L2

∥∥∥∥∥∥
t−1∑

j=t−i

∇f(xj)

∥∥∥∥∥∥
2

+
γ

8

τ−1∑
i=0

‖∇f(x̃t−i)‖2

(G.7)
≤ γ3L2

8

τ−1∑
i=1

τ
t−1∑

j=t−i

‖∇f(xj)‖2 +
γ

8

τ−1∑
i=0

‖∇f(x̃t−i)‖2

≤ γ3L2τ2

8

τ−1∑
i=1

‖∇f(xt−i)‖2 +
γ

8

τ−1∑
i=0

‖∇f(x̃t−i)‖2

τ= 1
γL

≤ γ

8

τ−1∑
i=1

‖∇f(xt−i)‖2 +
γ

8

τ−1∑
i=0

‖∇f(x̃t−i)‖2

Putting back our calculations of T1 and T2 into (G.13), and setting γ ≤ 1
4L in order to estimate that

Lγ2 ‖∇f(xt)‖2 ≤ γ
4 ‖∇f(xt)‖2

f(x̃t+1) ≤ f(x̃t)−
γ

2
‖∇f(x̃t)‖2 −

γ

4
‖∇f(xt)‖2 +

γ3L2

2

∥∥∥(bt − b⌊ t
τ
⌋τ )

⊤Z
∥∥∥2

+ 5Lγ2
∥∥∥(bt+1 − bt+1−τ )

⊤Z
∥∥∥2 + γ

8

τ−1∑
i=1

‖∇f(xt−i)‖2 +
γ

8

τ−1∑
i=0

‖∇f(x̃t−i)‖2

(G.14)

Combining iterations with and without restarts. It is left to average equations (G.9) and (G.14) over
all iterations 0 ≤ t ≤ T . We denote T1 is the set of indices without restarts, and T2 are restarts
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indices.∑
t∈T1

γ

8

(
‖∇f(x̃t)‖2 + ‖∇f(xt)‖2

)
+
∑
t∈T2

γ

8

(
‖∇f(x̃t)‖2 + ‖∇f(xt)‖2

)

≤ (f(x0)− f⋆) +
γ3L2

2

T∑
t=1

∥∥∥(bt − b⌊ t
τ
⌋τ )

⊤Z
∥∥∥2 + 5Lγ2

∑
t∈T1

∥∥∥(bt+1 − bt+1−τ )
⊤Z
∥∥∥2

Dividing by γ(T+1)
8 , we get

1

T + 1

T∑
t=0

E ‖∇f(xt)‖2 ≤
8(f(x0)− f⋆)

γ(T + 1)
+

4γ2L2

T + 1

T∑
t=1

E
∥∥∥(bt − b⌊ t

τ
⌋τ )

⊤Z
∥∥∥2

+
40Lγ

T + 1

⌊T
τ
⌋∑

k=1

E
∥∥∥(bkτ − b(k−1)τ )

⊤Z
∥∥∥2

which completes the proof.

G.3.4 Proof for convex functions

Our proof for convex functions follows the same pattern as for non-convex: we consider separately
iterations with and without restarts of the virtual sequence (10.13). However, summing up these two
cases is the most involved part of the proof in the convex case, and it is different from the non-convex
case.

We will use the following fact in our proof.

Lemma 88 If function f is convex (G.6), L-smooth (G.5), and has a finite minimizer x∗, then

‖∇f(x)‖2 ≤ 2L (f(x)− f⋆) . (G.15)

Iterations without restarts. Using (10.13), i.e. that x̃t+1 = x̃t − γ∇f(xt), for some point x⋆ that
satisfies ∇f(x⋆) = 0,

‖x̃t+1 − x⋆‖2 = ‖x̃t − x⋆‖2 − 2γ〈∇f(xt), xt − x⋆〉+ γ2 ‖∇f(xt)‖2 + 2γ〈∇f(xt), xt − x̃t〉
(G.15),(G.6)

≤ ‖x̃t − x⋆‖2 − 2γ(1− Lγ) (f(xt)− f⋆) + 2γ〈∇f(xt), xt − x̃t〉

We estimate the last term separately

2〈∇f(xt), xt − x̃t〉
(G.8),α=2L

≤ 1

2L
‖∇f(xt)‖2 + 2L ‖xt − x̃t‖2

(G.15)
≤ (f(xt)− f⋆) + 2L ‖xt − x̃t‖2

Thus,

‖x̃t+1 − x⋆‖2 ≤ ‖x̃t − x⋆‖2 − γ(1− 2Lγ)(f(xt)− f⋆) + 2Lγ ‖xt − x̃t‖2

γ< 1
4L

,(G.3)
≤ ‖x̃t − x⋆‖2 − γ

2
(f(xt)− f⋆) + 2Lγ3

∥∥∥(bt − b⌊ t
τ
⌋τ )

⊤Z
∥∥∥2 (G.16)
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For the iterations with restarts. This means that t+ 1 = kτ . Using (G.4),

‖x̃t+1 − x⋆‖2 =
∥∥∥x̃t − x⋆ − γ∇f(xt)− γ(bt+1 − bt+1−τ )

⊤Z
∥∥∥2

= ‖x̃t − x⋆‖2 − 2γ〈∇f(xt), x̃t − x⋆〉 − 2γ〈(bt+1 − bt+1−τ )
⊤Z, x̃t − x⋆〉

+ γ2
∥∥∥∇f(xt) + (bt+1 − bt+1−τ )

⊤Z
∥∥∥2

We estimate the second term same as in the case without restarts:

−2γ〈∇f(xt), x̃t − x⋆〉 = −2γ〈∇f(xt), xt − x⋆〉 − 2γ〈∇f(xt), x̃t − xt〉
≤ −γ(f(xt)− f⋆) + 2Lγ ‖xt − x̃t‖2

For the last term,

γ2
∥∥∥∇f(xt) + (bt+1 − bt+1−τ )

⊤Z
∥∥∥2 (G.7)

≤ 2γ2 ‖∇f(xt)‖2 + 2γ2
∥∥∥(bt+1 − bt+1−τ )

⊤Z
∥∥∥2

(G.15)
≤ 4Lγ2(f(xt)− f⋆) + 2γ2

∥∥∥(bt+1 − bt+1−τ )
⊤Z
∥∥∥2

Thus with γ ≤ 1
8L ,

γ

2
(f(xt)− f⋆) ≤ ‖x̃t − x⋆‖2 − ‖x̃t+1 − x⋆‖2 + 2Lγ3

∥∥∥(bt − b⌊ t
τ
⌋τ )

⊤Z
∥∥∥2

+ 2γ2
∥∥∥(bt+1 − bt+1−τ )

⊤Z
∥∥∥2 − 2γ〈(bt+1 − bt+1−τ )

⊤Z, x̃t − x⋆〉
(G.17)

Combining iterations with and without restarts. Summing up (G.16) and (G.17) for all 0 ≤ t ≤ T ,

γ

2

T∑
t=0

(f(xt)− f⋆) ≤ ‖x̃0 − x⋆‖2 − ‖x̃T+1 − x⋆‖2 + 2Lγ3
T∑
t=0

∥∥∥(bt − b⌊ t
τ
⌋τ )

⊤Z
∥∥∥2

+ 2γ2
⌊T
τ
⌋∑

k=1

E
∥∥∥(bkτ − b(k−1)τ )

⊤Z
∥∥∥2−2γ

⌊T
τ
⌋∑

k=1

〈(bkτ − b(k−1)τ )
⊤Z, x̃kτ−1 − x⋆〉︸ ︷︷ ︸

:=S1

(G.18)

We now separately estimate the last sum S1. We first divide it in pairs of two consecutive terms, and
sum each pair separately. Lets denote t = kτ − 1 for some k. Sum of two consecutive terms with
indexes t and t− τ is equal to

− 2γ〈(bt+1 − bt+1−τ )
⊤Z, x̃t − x⋆〉 − 2γ〈(bt+1−τ − bt+1−2τ )

⊤Z, x̃t−τ − x⋆〉
=− 2γ〈(bt+1 − bt+1−τ )

⊤Z, x̃t − x⋆〉 − 2γ〈(bt+1−τ − bt+1−2τ )
⊤Z, x̃t − x⋆〉

− 2γ〈(bt+1−τ − bt+1−2τ )
⊤Z, x̃t−τ − x̃t〉

=− 2γ〈(bt+1 − bt+1−2τ )
⊤Z, x̃t − x⋆〉 − 2γ〈(bt+1−τ − bt+1−2τ )

⊤Z, x̃t−τ − x̃t〉
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Using update rules (10.13), it holds that x̃t = x̃t−τ − γ
∑t−1

j=t−τ ∇f(xj)− γ(bt+1−τ − bt+1−2τ )
⊤Z,

and thus

−2γ〈(bt+1−τ − bt+1−2τ )
⊤Z, x̃t−τ − x̃t〉

= −2γ2〈(bt+1−τ − bt+1−2τ )
⊤Z,

t−1∑
j=t−τ

∇f(xj) + (bt+1−τ − bt+1−2τ )
⊤Z〉

=

t−1∑
j=t−τ

−2γ2〈(bt+1−τ − bt+1−2τ )
⊤Z,∇f(xj)〉 − 2γ2

∥∥∥(bt+1−τ − bt+1−2τ )
⊤Z
∥∥∥2

(G.8)
≤ γ2ατ

∥∥∥(bt+1−τ − bt+1−2τ )
⊤Z
∥∥∥2 + γ2α−1

t−1∑
j=t−τ

‖∇f(xt)‖2

− 2γ2
∥∥∥(bt+1−τ − bt+1−2τ )

⊤Z
∥∥∥2

α= 2
τ

≤ γ2τ

2

t−1∑
j=t−τ

‖∇f(xt)‖2

Using these calculations, our original sum S1 can be simplified as

S1 ≤ −2γ

⌊ T
2τ

⌋∑
k=1

〈(bk·2τ − b(k−1)2τ )
⊤Z, x̃k·2τ−1 − x⋆〉+ γ2τ

2

⌊T
τ
⌋τ−2∑
t=0

‖∇f(xt)‖2

We reduced the sum of bTτ c elements twice to the sum of the b T
2τ c elements. Continuing in similar

way, we will need to have log2
(
bTτ c

)
times until we reduce the original sum to just one element.

Thus,

S1 ≤ −2γ〈b⊤
⌊T
τ
⌋τZ, x̃⌊T

τ
⌋τ − x⋆〉+ γ2τ

2
log2

(⌊
T

τ

⌋) ⌊T
τ
⌋τ−2∑
t=0

‖∇f(xt)‖2

(G.8),α=2
≤ 1

3

∥∥∥x̃⌊T
τ
⌋τ − x⋆

∥∥∥2 + 3γ2
∥∥∥b⊤

⌊T
τ
⌋τZ
∥∥∥2 + γ2τ

2
log2

(⌊
T

τ

⌋) ⌊T
τ
⌋τ−2∑
t=0

‖∇f(xt)‖2

We further transform the first term using the update rule (10.13)

x̃T+1 = x̃⌊T
τ
⌋τ − γ

T∑
j=⌊T

τ
⌋τ

∇f(xj) = x̃⌊T
τ
⌋τ−1 − γ

T∑
j=⌊T

τ
⌋τ−1

∇f(xj)− γ
(

b⌊T
τ
⌋τ − b(⌊T

τ
⌋−1)τ

)⊤
Z

Thus,

1

3

∥∥∥x̃⌊T
τ
⌋τ − x⋆

∥∥∥2 ≤ ‖x̃T+1 − x⋆‖2 + γ2τ
T∑

j=⌊T
τ
⌋τ−1

‖∇f(xj)‖2 + γ2
∥∥∥∥(b⌊T

τ
⌋τ − b(⌊T

τ
⌋−1)τ

)⊤
Z
∥∥∥∥2

And thus,

S1 ≤ ‖x̃T+1 − x⋆‖2 + 3γ2
∥∥∥b⊤

⌊T
τ
⌋τZ
∥∥∥2 + γ2τ log2

(⌊
T

τ

⌋) T∑
t=0

‖∇f(xt)‖2

+ γ2
∥∥∥∥(b⌊T

τ
⌋τ − b(⌊T

τ
⌋−1)τ

)⊤
Z
∥∥∥∥2
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Choosing τ = 1
8Lγ log2(T ) ensures that γ2τ log2

(⌊
T
τ

⌋)
≤ γ

8L . Putting these calculations back into
(G.18), we get that

γ

2

T∑
t=0

(f(xt)− f⋆) ≤ ‖x̃0 − x⋆‖2 + 3Lγ3
T∑
t=0

∥∥∥(bt−1 − b⌊ t
τ
⌋τ )

⊤Z
∥∥∥2

+ 3γ2
⌊T
τ
⌋∑

k=1

E
∥∥∥(bkτ − b(k−1)τ )

⊤Z
∥∥∥2 + γ

8L

T∑
t=0

‖∇f(xt)‖2 + 3γ2
∥∥∥b⊤

⌊T
τ
⌋τZ
∥∥∥2

Using (G.15), we can further simplify

γ

4

T∑
t=0

(f(xt)− f⋆) ≤ 3γ2
(
Lγ

T∑
t=0

∥∥∥(bt − b⌊ t
τ
⌋τ )

⊤Z
∥∥∥2 + ⌊T

τ
⌋∑

k=1

E
∥∥∥(bkτ − b(k−1)τ )

⊤Z
∥∥∥2

+
∥∥∥b⊤

⌊T
τ
⌋τZ
∥∥∥2 )+ ‖x0 − x⋆‖2

G.4 Convergence of Anti-PGD Example 14

Using that x̃t+1 = x̃t − γ∇f(xt), for some point x⋆ that satisfies ∇f(x⋆) = 0,

‖x̃t+1 − x⋆‖2 = ‖x̃t − x⋆‖2 − 2γ〈∇f(xt), xt − x⋆〉+ γ2 ‖∇f(xt)‖2 + 2γ〈∇f(xt), xt − x̃t〉
(G.15),(G.6)

≤ ‖x̃t − x⋆‖2 − 2γ(1− Lγ) (f(xt)− f⋆) + 2γ〈∇f(xt), xt − x̃t〉

We estimate the last term separately

2〈∇f(xt), xt − x̃t〉
(G.8),α=2L

≤ 1

2L
‖∇f(xt)‖2 + 2L ‖xt − x̃t‖2

(G.15)
≤ (f(xt)− f⋆) + 2L ‖xt − x̃t‖2

Thus,

‖x̃t+1 − x⋆‖2 ≤ ‖x̃t − x⋆‖2 − γ(1− 2Lγ)(f(xt)− f⋆) + 2Lγ ‖xt − x̃t‖2

γ< 1
4L

,(G.3)
≤ ‖x̃t − x⋆‖2 − γ

2
(f(xt)− f⋆) + 2Lγ ‖xt − x̃t‖2

G.5 Noise Lower Bound

We consider function f(x) = L
2 ‖x‖2 that is convex and L-smooth, and we are running algorithm (10.7)

with constant stepsize γ, and we consider the two cases of B = S and B = I.

G.5.1 PGD

This corresponds to Example 13. We will prove the lower bound on the noise term under the condition
that T is large enough, i.e. T ≥ log 2

ηL .
Since ∇f(x) = Lx, the algorithm (10.7) takes a form

xt+1 = (1− γL)xt − γzt+1
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Thus, since x⋆ = 0,

E ‖xt+1‖2 = E ‖(1− γL)xt − γzt+1‖2 = (1− γL)2 ‖xt‖2 + γ2σ2

= (1− γL)2(t+1) ‖x0‖2 + γ2σ2
t∑

j=0

(1− γL)2j

due to the unbiasedness and independence of zt. We can exactly calculate the sum of this geometric
series

T−1∑
j=0

(1− γL)2j =
1− (1− γL)2T

1− (1− γL)2
=

1− (1− 2γL)2T

2γL− γ2L2
≥ 1

4γL

where at the last step we used that γ2L2 > 0 and that T ≥ log 2
γL .

And thus the function values are larger than

f(xT )− f⋆ =
L

2
‖xT ‖2 ≥

L

2
(1− γL)2(t+1) ‖x0‖2 +

1

8
γσ2

This shows that the noise term in (10.10) cannot be improved.

G.5.2 Anti-PGD

This corresponds to Example 14. Since ∇f(x) = Lx, the algorithm (10.7) for Anti-PGD noise takes
a form

xt+1 = (1− γL)xt − γzt+1 + γzt
= (1− γL)2xt−1 − (1− γL)γzt + (1− γL)γzt−1 − γzt+1 + γzt
= (1− γL)2xt−1 + (1− γL)γzt−1 − γzt+1 + γ2Lzt

= (1− γL)t+1x0 + (1− γL)tγz1 + γ2L
t−1∑
j=1

(1− γL)t−jzj+1 − γzt+1

Thus,

E ‖xT ‖2 = (1− γL)2T ‖x0‖2 + (1− γL)2(T−1)γ2 E ‖z1‖2 + γ4L2
T−2∑
j=1

(1− γL)2(T−1−j) E ‖zj+1‖2

+ γ2 E ‖zt+1‖2 ≥ (1− γL)2T ‖x0‖2 + γ2σ2

Thus the function values are larger than

f(xT )− f⋆ =
L

2
‖xT ‖2 ≥ (1− γL)2T ‖x0‖2 +

L

2
γ2σ2

This proves that the noise term in (10.11) cannot be improved.

218



G.6. Difficulties in Unifying Analysis

G.5.3 Virtual sequence for PGD

In this section we show that for the PGD algorithm, virtual sequences x̃t that are defined in (10.12)
cannot give a tight convergence result.

Since x̃t+1 = x̃t − γ∇f(xt), and ∇f(xt) = Lxt we get

x̃t+1 = (1− γL)x̃t + γL(x̃t − xt) = (1− γL)x̃t − γ2L
t∑

j=0

zj

where the last equality is since x̃t − xt = −γ
∑t

j=1 zj . Unrolling,

x̃t+1 = (1− γL)x̃t + γL(x̃t − xt) = (1− γL)t+1x̃0 − γ2L

t∑
j=1

zj
j∑

i=0

(1− γL)i

Thus the norm

E ‖x̃T ‖2 = (1− γL)2T ‖x0‖2 + γ4L2
T−1∑
j=1

[
j∑

i=0

(1− γL)i

]2
σ2

We can calculate exactly the inner sum as

j∑
i=0

(1− γL)i =
1− (1− γL)j

γL

and thus

E ‖x̃T ‖2 = (1− γL)2T ‖x0‖2 + γ2
T−1∑
j=1

[
1− (1− γL)j

]2
σ2 ≥ γ2

T−1∑
j=T

2

[
1− 2(1− γL)j

]
σ2

It is left to note that for T sufficiently large, T ≥ 2 log 4
γL , it holds that (1 − γL)T/2 ≤ 1

4 and thus[
1− 2(1− γL)j

]
≥ 1

2 . Using this, we arrive

E ‖x̃T ‖2 ≥ γ2σ2T

4

and this the function value f(x̃T ) ≥ Lγ2σ2 T
8 .

G.6 Difficulties in Unifying Analysis

In this section we explain the difficulties in unifying theoretical analysis using existing proof tech-
niques described in the main text. In particular analysis through the real iterates xt can give good
convergence guarantees only for PGD, but not Anti-PGD, and vise versa, analysis through the virtual
iterates x̃t can give a good convergence guarantee for Anti-PGD but not for PGD.

Directly analyzing Anti-PGD using the actual iterates xt of (10.6), we only get a convergence rate
of

T∑
t=0

E [f(xt)− f⋆]

T + 1
≤ O

(
‖x0 − x⋆‖2

γT
+ γσ2

)
.

219



Appendix G. Appendix for Correlated Noise

Note that this is strictly worse than the Anti-PGD rate in (10.11). While we do not see any fundamen-
tal limit to analysing Anti-PGD directly through its iterates xt, we do not know of how to do so in a
way that recovers the rate in (10.11).

On the other hand, applying the perturbed iterate analysis (via the virtual sequence x̃t produced
by (10.6) when Z = 0) to PGD, we only get a convergence rate of

T∑
t=0

E [f(xt)− f⋆]

T + 1
≤ O

(
‖x0 − x⋆‖2

γT
+ LTγ2σ2

)
.

This rate is strictly worse than the rate derived through a virtual sequence in (10.10) when γ > 1/LT .
As we detail in Appendix G.5, this bound is actually a tight upper bound for the convergence of the
virtual sequence f(x̃t). However, the real sequence xt converges faster than this according to (10.10).
In short, while one can use the virtual sequence x̃t to effectively analyze anti-correlated noise, such
techniques do not directly yield a tight analysis of PGD.

G.7 Applying Thm 24 to special cases

PGD. In this case, B = S (Example 12), so if i− j ≤ τ then ‖bi − bj‖2 ≤ τ . The noise term in the
convergence rate of Theorem 24 is therefore upper bounded by

σ2

TLτ

[
1

τ

T∑
t=1

τ +
∑

1≤t≤T
t=0 mod τ

τ + T

]
= Õ

(
σ2

Lτ

)
= Õ

(
γσ2

)

This matches the tight convergence rate in Proposition 21.

Anti-PGD. Since B = I, for any rows bi, bj , ‖bi − bj‖2 ≤ 2. Thus, the noise term in the conver-
gence rate of Theorem 24 is upper bounded by

σ2

TLτ

[
1

τ

T∑
t=1

2 +
∑

1≤t≤T
t=0 mod τ

2 + 1

]
= Õ

(
σ2

Lτ2

)
= Õ

(
Lγ2σ2

)

where we used τ = Õ(1/Lγ). This recovers the tight convergence rate in Proposition 22.

G.8 Experiments

In this section we provide the complete experimental details for the experiments in Section 10.7, as
well as additional experiments on StackoverFlow dataset.

G.8.1 Experiments with quadratic functions

We study random quadratic function f(x) = 1
2 ‖Ax − b‖2 to be able to precisely control the smooth-

ness constant L that appears in our theoretical analysis. In particular, we set the spectrum of A ∈
R100×100 to have the values to be linearly distributed between λmin = 0 and λmax =

√
L, and we

randomly shift the axis by unitary transformation. We also randomly sample the shift b ∈ N (0, I),
x ∈ R100.
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Dataset MNIST CIFAR-10 StackOverflow

Train Records 60,000 50,000 135,818,730
Test Records 10,000 10,000 16,586,035

Dimensionality 784 3,072 200,000
Classes 10 10 10,000
Model Logistic CNN LSTM

Privacy Unit Example Example User
Parameters 7,056 550,570 4,050,748

Learning Setting Centralized Centralized Federated

Table G.1: Summary of datasets and associated problems considered in this empirical evaluation.

We note that such quadratic function f is L-smooth and convex. We fix the number of iterations
T to 5000, and the variance of the noise σ is equal to 20.

In these experiments we aim to compare DP-MF, and our proposed DP-MF+ methods under vary-
ing hyperparameter settings. We fix the smoothness L = 10, and we vary the learning rate γ over the
logarithmic grid between 10−4 and 1, and we further select the region of learning rates around the op-
timal γ. We also tune parameter τ in DP-MF+ over the grid {1, 2, 10, 50, 100, 200, 500, 1000, 5000}.

G.8.2 Practical DP Training experiments

Datasets and tasks. Table G.1 summarizes the datasets and problems used in our empirical evalu-
ation. For the MNIST dataset, light preprocessing is done so the 28 × 28 input images are flattened
to size 784 vectors and normalized so entries lie in the range [0, 1]. For the CIFAR-10 and Stack-
Overflow datasets, the experimental setup including data preprocessing follows exactly from Denisov
et al. [2022] and Choquette-Choo et al. [2022].

Metrics. For each dataset, mechanism, and privacy parameter, we run the mechanism for multiple
trials and report the test set accuracy of the final iterate. We compute the mean and standard error of
the reported test set accuracies.

MNIST Logistic Regression - Image Classification. For MNIST, all mechanisms train for T = 2048
iterations and either 1 or 16 epochs, corresponding to batch sizes of 29 and 469 respectively.1 We vary
ε over {0.01, 0.1, . . . , 100} and fix δ = 10−6. We fix the clipping threshold at 1.0 and the learning
rate at 0.5. We run each experiment for 5 trials, and plot the mean test set accuracy along with error
bars indicating the standard error of the estimate.

CIFAR-10CNN- ImageClassification. For CIFAR-10, we follow the experimental setup from [Choquette-
Choo et al., 2022]. Specifically, we train all mechanisms for 20 epochs and T = 2000 iterations,
which corresponds to a batch size of 500.2 We consider ε = 1, 2, 4, 8, 16, 32 and set δ = 10−6.
We tune the learning rate non-privately for each method and ε by running a single trial with a fixed
random seed and choosing the one which achieved the lowest training error. For each value of ε, we
use the tuned learning rate and run 12 new trials with different random seeds, and record the test set
accuracy at the end of training.

1. In practice, one often trains small-scale models for many epochs, perhaps even using full-batch gradients, to improve
the privacy/utility trade-off (at the cost of increased computation). We are interested in the relative performance for a fixed
computation budget, so we train for a small number of epochs.

2. While Choquette-Choo et al. [2022] use momentum and learning rate decay, we omit the use of such techniques as
they are orthogonal to our theoretical results.

221



Appendix G. Appendix for Correlated Noise

Noise Multiplier DP-MF DP-MF+(τ = 2048)

0.341 24.63± 0.06 24.58± 0.12
0.682 23.76± 0.14 23.73± 0.16
1.364 22.54± 0.11 22.44± 0.08
2.728 11.51± 12.71 10.42± 13.05
5.456 0.03± 0.02 0.05± 0.06

Table G.2: Comparison of test set accuracies on the Stackoverflow next word prediction task between
DP-MF and DP-MF+.

G.8.3 Additional experiments on StackoverFlow dataset

Stackoverflow LSTM - Next Word Prediction We follow the experimental setup of Denisov et al.
[2022]. We train each mechanism for 1 epoch and 2048 iterations, which corresponds to about 167
clients per round, each holding an average of ≈ 400 records. We vary the hyper-parameters accord-
ing to prior work and run 2 trials for each hyper-parameter setting. We report results for the best
hyper-parameters setting of each mechanism. We use federated averaging instead of gradient descent.
Additionally, to be consistent with the prior work and to test if our proposed factorizations are com-
patible with the other types of workloads, we use momentum and learning rate decay. Although the
C matrix was optimized for the Prefix workload, A = S, it is applied to a variant A = S′ that incor-
porates momentum and learning rate decay by setting B = S′C−1. More details of how DP-MF and
DP-MF+ apply to this setting are available in Denisov et al. [2022].

The results are shown in Table G.2 for varying the noise multiplier, which corresponds to values
of ε are equal to {17.65, 7.6, 3.44, 1.61, 0.76}. We see no significant difference between DP-MF and
DP-MF+, as the small differences in performance are within the statistical bounds one would expect
if they had identical means. At larger noise multipliers, both DP-MF and DP-MF+ exhibit learning
instabilities.

222



Bibliography

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, page 308318, New
York, NY, USA, 2016a. Association for Computing Machinery. ISBN 9781450341394. doi:
10.1145/2976749.2978318. URL https://doi.org/10.1145/2976749.2978318.

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, Oct 2016b. doi: 10.1145/2976749.2978318.
URL http://dx.doi.org/10.1145/2976749.2978318.

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 24. Curran Associates,
Inc., 2011a. URL https://proceedings.neurips.cc/paper/2011/file/
f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf.

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In Ad-
vances in Neural Information Processing Systems 24, pages 873–881. Curran Associates,
Inc., 2011b. URL http://papers.nips.cc/paper/4247-distributed-delayed-
stochastic-optimization.pdf.

David Aldous and James Allen Fill. Reversible markov chains and random walks on graphs, 2002.
Unfinished monograph, recompiled 2014, available at http://www.stat.berkeley.edu/
$\sim$aldous/RWG/book.html.

Sulaiman Alghunaim, Ernest Ryu, Kun Yuan, and Ali Sayed. Decentralized proximal gradient algo-
rithms with linear convergence rates. IEEE Transactions on Automatic Control, 66(6), 2021.

Sulaiman A. Alghunaim and Ali H. Sayed. Linear convergence of primal-dual gradient methods
and their performance in distributed optimization. arXiv preprint arXiv:1904.01196, 2019. URL
https://arxiv.org/abs/1904.01196.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, NIPS -
Advances in Neural Information Processing Systems 30, pages 1709–1720. Curran Associates,
Inc., 2017. URL http://papers.nips.cc/paper/6768-qsgd-communication-
efficient-sgd-via-gradient-quantization-and-encoding.pdf.

223

https://doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1145/2976749.2978318
https://proceedings.neurips.cc/paper/2011/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf
http://papers.nips.cc/paper/4247-distributed-delayed-stochastic-optimization.pdf
http://papers.nips.cc/paper/4247-distributed-delayed-stochastic-optimization.pdf
http://www.stat.berkeley.edu/$\sim $aldous/RWG/book.html
http://www.stat.berkeley.edu/$\sim $aldous/RWG/book.html
https://arxiv.org/abs/1904.01196
http://papers.nips.cc/paper/6768-qsgd-communication-efficient-sgd-via-gradient-quantization-and-encoding.pdf
http://papers.nips.cc/paper/6768-qsgd-communication-efficient-sgd-via-gradient-quantization-and-encoding.pdf


Bibliography

Dan Alistarh, Christopher De Sa, and Nikola Konstantinov. The convergence of stochastic gradi-
ent descent in asynchronous shared memory. In Proceedings of the 2018 ACM Symposium on
Principles of Distributed Computing, PODC ’18, page 169178, New York, NY, USA, 2018a. Asso-
ciation for Computing Machinery. ISBN 9781450357951. doi: 10.1145/3212734.3212763. URL
https://doi.org/10.1145/3212734.3212763.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and
Cedric Renggli. The convergence of sparsified gradient methods. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 5977–5987. Curran Associates, Inc., 2018b.
URL http://papers.nips.cc/paper/7837-the-convergence-of-sparsified-
gradient-methods.pdf.

Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning
and optimization. In NIPS - Advances in Neural Information Processing Systems 28, pages
1756–1764. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/
5731-communication-complexity-of-distributed-convex-learning-and-
optimization.pdf.

Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake E. Wood-
worth. Lower bounds for non-convex stochastic optimization. ArXiv, abs/1912.02365, 2019.

Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic gradient
descent with delayed updates. In Aryeh Kontorovich and Gergely Neu, editors, Proceedings of
the 31st International Conference on Algorithmic Learning Theory, volume 117 of Proceedings
of Machine Learning Research, pages 111–132. PMLR, 08 Feb–11 Feb 2020. URL https://
proceedings.mlr.press/v117/arjevani20a.html.

Mahmoud Assran and Michael Rabbat. Asynchronous subgradient-push. arXiv preprint
arXiv:1803.08950, 2018.

Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Michael Rabbat. Stochastic Gradient Push
for Distributed Deep Learning. arXiv, November 2018.

Dmitrii Avdiukhin and Shiva Kasiviswanathan. Federated learning under arbitrary communica-
tion patterns. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 425–435. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
avdiukhin21a.html.

Rotem Zamir Aviv, Ido Hakimi, Assaf Schuster, and Kfir Yehuda Levy. Learning under delayed feed-
back: Implicitly adapting to gradient delays. In Proceedings of the 38th International Conference
on Machine Learning. PMLR, 2021.

T. C. Aysal, M. J. Coates, and M. G. Rabbat. Distributed average consensus with dithered quantization.
IEEE Transactions on Signal Processing, 56(10):4905–4918, Oct 2008. ISSN 1053-587X. doi:
10.1109/TSP.2008.927071.

Arda Aytekin, Hamid Reza Feyzmahdavian, and Mikael Johansson. Analysis and implementa-
tion of an asynchronous optimization algorithm for the parameter server, 2016. URL https:
//arxiv.org/abs/1610.05507.

224

https://doi.org/10.1145/3212734.3212763
http://papers.nips.cc/paper/7837-the-convergence-of-sparsified-gradient-methods.pdf
http://papers.nips.cc/paper/7837-the-convergence-of-sparsified-gradient-methods.pdf
http://papers.nips.cc/paper/5731-communication-complexity-of-distributed-convex-learning-and-optimization.pdf
http://papers.nips.cc/paper/5731-communication-complexity-of-distributed-convex-learning-and-optimization.pdf
http://papers.nips.cc/paper/5731-communication-complexity-of-distributed-convex-learning-and-optimization.pdf
https://proceedings.mlr.press/v117/arjevani20a.html
https://proceedings.mlr.press/v117/arjevani20a.html
https://proceedings.mlr.press/v139/avdiukhin21a.html
https://proceedings.mlr.press/v139/avdiukhin21a.html
https://arxiv.org/abs/1610.05507
https://arxiv.org/abs/1610.05507


Bibliography

Francis R. Bach and Eric Moulines. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. In Advances in Neural Information Processing Systems 24, pages 451–
459. Curran Associates, Inc., 2011. URL http://papers.nips.cc/paper/4316-non-
asymptotic-analysis-of-stochastic-approximation-algorithms-for-
machine-learning.pdf.

Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. Differential privacy has disparate im-
pact on model accuracy. Proceedings of the 33rd International Conference on Neural Information
Processing Systems, 2019.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In 2014 IEEE 55th annual symposium on foundations of com-
puter science, pages 464–473. IEEE, 2014.

Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Guha Thakurta. Private stochastic con-
vex optimization with optimal rates. Advances in neural information processing systems, 32, 2019.

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-SGD: Distributed SGD
with quantization, sparsification, and local computations. arXiv preprint arXiv:1906.02367, 2019.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signSGD: Compressed optimisation for non-convex problems. In Jennifer Dy and Andreas Krause,
editors, ICML - Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research, pages 560–569, Stockholmsmässan, Stock-
holm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/
bernstein18a.html.

D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, 1989.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMa-
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