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Abstract— Motion forecasting is crucial in enabling au-
tonomous vehicles to anticipate the future trajectories of
surrounding agents. To do so, it requires solving mapping,
detection, tracking, and then forecasting problems, in a multi-
step pipeline. In this complex system, advances in conventional
forecasting methods have been made using curated data, i.e.,
with the assumption of perfect maps, detection, and tracking.
This paradigm, however, ignores any errors from upstream
modules. Meanwhile, an emerging end-to-end paradigm, that
tightly integrates the perception and forecasting architectures
into joint training, promises to solve this issue. So far, how-
ever, the evaluation protocols between the two methods were
incompatible and their comparison was not possible. In fact,
and perhaps surprisingly, conventional forecasting methods are
usually not trained nor tested in real-world pipelines (e.g., with
upstream detection, tracking, and mapping modules). In this
work, we aim to bring forecasting models closer to real-world
deployment. First, we propose a unified evaluation pipeline for
forecasting methods with real-world perception inputs, allowing
us to compare the performance of conventional and end-to-end
methods for the first time. Second, our in-depth study uncovers
a substantial performance gap when transitioning from curated
to perception-based data. In particular, we show that this gap
(1) stems not only from differences in precision but also from
the nature of imperfect inputs provided by perception modules,
and that (2) is not trivially reduced by simply finetuning on
perception outputs. Based on extensive experiments, we provide
recommendations for critical areas that require improvement
and guidance towards more robust motion forecasting in the
real world. We will release an evaluation library to benchmark
models under standardized and practical conditions.

I. INTRODUCTION

Motion forecasting plays an important role for autonomous
vehicles (i.e., ego vehicles), enabling them to anticipate
future trajectories of agents in their surroundings (i.e., ve-
hicles of interest) and, accordingly, to plan safely [1], [2],
[3]. This complex task is usually shared between upstream
modules for mapping, detecting, and tracking agents, and
the forecasting module proper. In this system, most con-
ventional forecasting works [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15] set themselves in a setting with
perfectly solved upstream tasks, and are trained primarily
using inputs from curated offline annotations, including clean
agent past trajectories and detailed road information [16].
A forecast with such curated inputs is shown in Figure 1a.
However, when deployed in real-world settings, motion fore-
casting modules rely on data provided by upstream detection,
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(a) (b) (c)
Fig. 1: Issues of deploying forecasting models to the real
world. We show in a nuScenes example [16] the forecasts (in
orange) inferred by a motion forecasting model [6] compared
to ground-truth annotations (in green), the ego car location
(in red) and the static vehicles (in gray) on predicted or
curated maps. (a) Satisfying forecasting performance in a
curated setting; (b) When past trajectories are inferred from
tracking models [23], [21], an agent is not detected and
the forecasting model yields poor predictions; (c) When the
map is inferred online [24], the forecasting model does not
anticipate the future turn of one agent.

tracking and mapping modules [17], [18], [19], [20], [21],
often resulting in lower-quality predictions compared to
the curated datasets used in research publications [22]. As
an example, when the inputs (the past trajectories or the
map) are degraded (in Figure 1b or Figure 1c respectively),
the predictions become worse compared to Figure 1a, e.g.,
failing to anticipate well the turn (b and c in the figure)
and to simply forecast an agent that is not detected (b in
the figure). As an alternative to this conventional pipeline
of a perception model followed by a forecasting model,
end-to-end methods [25], [26] have recently received some
attention. They advocate for joint perception-forecast training
and inference with a more tightly integrated architecture,
typically only using perception outputs as an intermediary
representation or a multi-task training objective. Yet, both
paradigms have not been compared. In fact, conventional
forecasting models are not usually designed nor evaluated
jointly with upstream perception models, and it is not known
how they perform when integrated into the deployed pipeline.

In this work, our objective is to bring forecasting models
closer to real-world deployment. Accordingly, we first design
a unified evaluation protocol for forecasting by integrating
the upstream perception modules into the conventional fore-
casting evaluation. Second, this benchmark enables us to
assess and compare end-to-end methods with conventional
pipelines, which was previously not feasible. Third, we also
uncover a substantial drop in performance when transitioning
from the curated setting to a real-world scenario. While it
may seem intuitive that a gap exists, the issue has mostly
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Fig. 2: Study overview. We study the challenges of deploying motion forecasting models into the real world when only
predicted perception inputs are available. We compare (section III): (1) (top) ‘conventional methods’ [6], [27] (i.e., methods
trained on curated input data) where (middle) we directly replace the curated inputs with real-world data, and (2) (bottom)
‘end-to-end methods’ [25], [26] that are trained and used with perception modules. In the real-world setting, evaluation is
challenging as the past tracks are estimated with arbitrary identities, making it difficult to establish a direct correspondence
to GT identities. Therefore, we propose a matching process (purple) to assign predictions to GT and thus evaluate forecasting
performances (section III). Moreover, we study in depth the impact changing from curated data (green) to real-world (orange)
mapping (section IV), or detection and tracking (section V) errors to motion forecasting.

been overlooked in driving contexts, hence, it has never
been properly measured and thoroughly characterized. We
then conduct a complete study to identify a wide range of
obstacles that cause this gap, and we demonstrate as not
easily solved. In particular, our study covers the impacts of
using state-of-the-art perception modules for detection and
tracking [23], [21], [18], [20], [19], [25], [26], and online
rasterized or vectorized mapping [24], [28], [29], on the
performance of different motion forecasting models [6], [27].

As summarized in Figure 2: (1) This work provides
an evaluation protocol to benchmark forecasting models
with real-world inputs (section III); (2) This benchmark
allows us to compare, for the first time, the end-to-end
and conventional models under standardized and practical
conditions (section III and section IV); (3) Being a missing
brick in current literature, our extensive experiments on the
impact of various perception errors (detection, tracking, and
mapping) on forecasting shed light on the critical areas that
need improvement (section IV and section V); (4) Based on
the findings, we provide recommendations towards robust
motion forecasting in the real world (section VI).

II. RELATED WORK

Conventional motion forecasting methods [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15] focus on
better leveraging and modeling the interactions between their
diverse inputs. For example, AgentFormer [6] formulates
the forecasting problem as the modeling of all surrounding
agents conditioned on their past trajectories and contextual
road elements. LaPred [27] predicts per-agent future trajec-
tories leveraging the closest vectorized lane information and
past trajectories of neighboring agents. The lane and agent
information is combined to enforce the use of vectorized map
information and the behavior of neighbor agents, building
a strong baseline even with a simple yet efficient MLP-
based trajectory decoder. We assess the performance of the

conventional methods by substituting the curated data by
real-world inputs and highlight the open challenges.

Object tracking and online mapping. Motion forecasting
takes as inputs agents’ past trajectories and map informa-
tion. In the real-world setting, they are inferred respectively
by motion trackers and online mappers. Motion tracking
jointly performs object detection and association with dif-
ferent modalities. For example, MUTR3D [18] utilizes a
transformer architecture with 3D track queries to model
spatial and appearance coherence across multiple cameras
and frames. CenterPoint [20] leverages LiDAR information
to first detect the centers of objects and then regress other
attributes (size, orientation, etc.). Similarly, VoxelNext [19]
directly detects and tracks objects in point-cloud based on
sparse voxel features. For mapping, curated maps are in
general costly and hard to maintain. As an alternative, some
works have proposed to estimate them online, first from a
single front camera [30], [31]. Then, the development of
bird’s-eye view (BEV) representations led to the use of sur-
round RGB cameras [32], [29], [28], [24] optionally coupled
with LiDAR point-clouds acquisitions [33], [34], [29], [35].
Our work studies the impact of predicted trajectories and
online mapping compared to the curated settings most motion
forecasting models rely on.

Motion forecasting in end-to-end driving pipelines. Re-
cent works propose to learn forecasting models directly from
raw data [36], [37], [32], [38], [39], [40], [11], [25], [26].
To address the issue of error propagation in the downstream
forecasting module, MTP [11] and FutureDet [41] replace
the one-to-one assignment in tracking with a one-to-many
one, as motion forecasting performances can be deteriorated
by identity switches and detection errors [11]. AffiniPred
[39] and Zhang et al. [40] perform implicit data association
by using detections and their affinity matrices as inputs
instead of working on past trajectories. These studies have



a special focus on the tracking error while [42] and [43]
tackle a subset of imperfections with an adversarial scene
or object generation. Differently, we focus on understanding
the impacts of real-world inputs from various state-of-the-
art perception methods on the different motion forecasting
paradigms.

Yet, joint perception-to-forecasting models (ViP3D [25],
UniAD [26]) have not been directly compared to the es-
tablished pure motion forecasting models, primarily due to
differences in their approaches and evaluation criteria. An
adapted evaluation protocol is needed with metrics consider-
ing the upstream errors [44], [45], [41], [46]. Our work is the
first to pull both approaches into a single evaluation frame-
work and study the impacts of various perception errors,
making a step towards real-world forecasting deployment.

III. A UNIFIED EVALUATION BENCHMARK

In our study, we analyze conventional forecasting models
when they are confronted, instead of the curated data, to
outputs of various state-of-the-art perception modules for
detection and tracking [23], [21], [18], [20], [19], [25], [26],
and to online rasterized or vectorized mapping [24], [28],
[29] on nuScenes dataset [16]. As illustrated in Figure 2, we
replace the curated annotations with real-world predictions
as inputs to conventional motion forecasting models [6], [27]
and examine the forecasting and perception performance. By
doing so, we can incorporate the same predicted inputs as
end-to-end approaches [25], [26]. However, the comparison
is confronted with challenges that we first detail and then
address here. As a direct application, we are able to compare,
for the first time, recent methods that fall into the end-to-end
forecasting paradigm to conventional methods.

A. The need for matching

Standard forecasting datasets, such as the used nuScenes
dataset [16], provide past information about the ground-truth
agents, including their number, identities, and trajectories.
Conventional forecasting models rely on these identities to
train their models and compute their scores. However, in
the real world, detected agents are not inherently linked to
ground-truth agents because GT identities are not provided
during inference, and arbitrary identities are assigned during
tracking. To address this, a one-to-one matching is needed
to assign predictions to ground-truth agents. Similar to
the multi-object tracking problem [47], we use Hungarian
matching with a matching threshold of 2 meters between
object center distances at the current time step t = 0.

B. The need for suitable metrics

For similar reasons, standard forecasting metrics —
minADEk, the minimum over k predictions of Average Dis-
tance Error (the average of point-wise L2 distances between
the prediction and ground-truth forecasts), minFDEk, the
minimum over k predictions of Final Distance Error (the
L2 distance at the final future time step), and MRk@x,
MissRate, the ratio of forecasts having minFDEk > x =
4 meters — are built on the assumption that the models

TABLE I: Comparison of end-to-end and conventional
forecasting methods given the same detection and tracking
(‘Det&Track’) inputs; k, the number of possible forecasts.

Det&Track Input Forecast Method mAPf↑ minADE↓ minFDE↓ MR↓

Ground truth AgentFormer (k = 5) 0.388 1.851 3.875 0.315
LaPred (k = 5) 0.588 1.547 3.176 0.208

ViP3D (CVPR’23)
[25]

AgentFormer (k = 5) 0.056 2.416 4.404 0.353
LaPred (k = 5) 0.092 2.612 4.520 0.282
ViP3D (k = 5) 0.021 4.018 7.040 0.505
LaPred (k = 6) 0.113 2.365 3.900 0.224
ViP3D (k = 6) 0.034 3.540 5.943 0.432

UniAD (CVPR’23)
[26]

AgentFormer (k = 5) 0.069 2.530 4.613 0.384
LaPred (k = 5) 0.123 2.684 4.678 0.278
UniAD (k = 5) 0.094 2.071 3.810 0.283
LaPred (k = 6) 0.143 2.499 4.212 0.237
UniAD (k = 6) 0.117 1.842 3.258 0.228

have matching identities from past and future tracks. These
metrics solely consider the forecasting quality of matched
prediction-GT pairs, without penalizing missed or falsely
predicted agents. As this does not provide the full picture
of real-world forecasting performance, we propose to use
the Mean Forecasting Average Precision (mAPf ) [41] as
our main metric. Inspired by detection AP, mAPf penalizes
trajectories that have correct first-frame detections but inac-
curate forecasts (minFDEk > 4m), but also trajectories with
incorrect first-frame detections (center distance > 2m). The
APs are averaged over the classes ‘car’, ‘truck’, and ‘bus’.
Unlike [25], [26], to reflect the forecasting quality, we only
evaluate ground-truth (GT) agents having full moving future
trajectories as in nuScenes Prediction challenge.

C. Conventional vs. End-to-End forecasting

Recent end-to-end methods [25], [26], though providing
a promising direction, are poorly evaluated (e.g., including
static objects), which hinders the understanding of their
underlying issues. Since both paradigms have never been
fairly compared, we make the first step to compare them
with the same perception inputs from end-to-end pipelines.

We consider AgentFormer [6], using rasterized maps, and
LaPred [27], using vectorized maps, as strong representatives
of conventional methods. For the end-to-end paradigm, we
choose two state-of-the-art methods, namely, ViP3D [25], an
end-to-end motion forecasting model, and UniAD [26], an
end-to-end forecasting and planning model. The choice is
made considering the availability of code and their distinct
structures. Please refer to the related works for more details.

As shown in Table I, the first observation is that recent
state-of-the-art end-to-end models do not exhibit superior
performance in forecasting, compared to conventional meth-
ods that have been trained only with imperfect inputs.
Precisely, with the detection and tracking inputs from ViP3D,
AgentFormer outperforms ViP3D significantly (more than
2 times higher mAPf ) without being jointly trained with
such perception inputs. Since AgentFormer combines agent
past history and inter-agent interactions in an attention
module, without explicitly separating different trajectories,
this joint interaction may help to resist the detection and
tracking errors. Similarly, with no finetuning, LaPred leads
the performance in mAPf with a simpler trajectory predic-



TABLE II: Performance of conventional and end-to-
end methods with various types of input maps. Map is
a ground-truth curated map, an empty map or an online
(rasterized or vectorized) map. In the two latter cases, the
model is evaluated on the new map type either directly
(‘transfer’) or after finetuning (‘finetune’).

Method Map Setting mAPf↑ minADE↓ minFDE↓ MR↓

AgentFormer [6]

ground truth default 0.388 1.851 3.875 0.315
empty map transfer 0.057 2.747 6.165 0.668
empty map finetune 0.289 1.966 4.221 0.398
LaRa [28] transfer 0.028 3.246 7.358 0.750

(map: Raster) LaRa [28] finetune 0.341 1.916 4.085 0.350
SimpleBeV [24] transfer 0.034 3.128 7.067 0.727
SimpleBeV [24] finetune 0.361 1.856 3.935 0.333

LaPred [27]

ground truth default 0.760 1.237 2.344 0.118
empty map transfer 0.239 2.385 5.152 0.481
empty map finetune 0.460 1.654 3.419 0.291

(map: Vector) MapTR [29] transfer 0.302 2.269 4.863 0.433
MapTR [29] finetune 0.499 1.670 3.472 0.273

ViP3D [25]
ground truth default 0.034 3.540 5.943 0.432
empty map transfer 0.033 3.540 5.943 0.432

(map: Vector) empty map finetune 0.040 3.277 5.589 0.404

UniAD [26]
online map [26] default 0.117 1.842 3.258 0.228
empty map transfer 0.112 1.908 3.441 0.247

(map: Raster) empty map finetune 0.118 1.844 3.250 0.228

tor, compared to UniAD with its end-point attention-based
refinement and physically-based kinematic model. Lastly,
we observe that end-to-end pipelines (UniAD and ViP3D),
despite operating in a much more realistic setting, are still
very far from forecasting methods trained and inferring on
curated data (i.e., AgentFormer and LaPred with ground-truth
inputs). The observations imply that it might not be trivial to
train the end-to-end model jointly with perception modules
without tackling their errors in downstream forecasting.

IV. IMPACTS OF THE MAP QUALITY

We now study in more detail how conventional forecasting
methods use their inputs and if we can replace them with
real-world perceptions. We start in this section with the
map, and intervene on the map input of AgentFormer [6],
LaPred [27], ViP3D [25] and UniAD [26]. Originally, Agent-
Former uses rasterized curated maps; LaPred and ViP3D
both leverage vectorized curated maps, while UniAD uses
online mapping inferred from camera data.

A. Removing map information entirely

Our first goal is to assess the dependence of forecasting
performances to map information. To do so, we replace the
maps at the input of the forecasting modules with empty
ones. In practice, we consider two distinct scenarios: 1)
a direct ‘transfer’ without finetuning on empty maps, and
2) a ‘finetune’ one where each model uses empty maps
throughout both finetuning and inference stages.

From Table II, our experiments reveal that the presence
or absence of maps has minimal impact on the performance
of the end-to-end ViP3D and UniAD models. For ViP3D,
training the model with curated maps and replacing the map
with an empty map during inference shows negligible change
in results (transfer setting). Moreover, finetuning ViP3D
without map information leads to slightly improved perfor-
mance on the validation set (finetune setting), indicating that

the map is not utilized at all in ViP3D. For UniAD, the model
exhibits a slight performance drop when using an empty map
during inference, but finetuning without map information
yields similar results to using the online map, suggesting that
it is not well utilized in UniAD either. On the other hand,
for AgentFormer and LaPred, finetuning without maps does
not close the performance gap compared to having maps,
indicating their better utilization of contextual information.
Although the poor usage of maps has already been pointed
out by previous work [48] on some conventional methods [5],
[49], we show for the first time that the issue persists in both
recent end-to-end models [26] and [25]. In the following,
we study the impact of different aspects of the map in
more detail. As we have determined that ViP3D and UniAD
do not effectively utilize the map, our following analysis
concentrates on AgentFormer and LaPred.

B. From curated to online mapping

We now assess the performance gap when going from cu-
rated maps to using the output of an online mapping method.
We consider three different mapping methods: SimpleBeV
[24] and LaRa [28] for rasterized BEV map prediction and
MapTR [29], an online mapping method predicting vector-
ized map elements. LaRa obtains 0.361 mIoU and 0.458
for SimpleBeV. MapTR exhibits state-of-the-art performance
with 62.8 mapping mAP [29].

In Table II, we observe that for direct transfer, SimpleBeV
and LaRa maps perform worse than empty maps, indicating
a significant domain gap as the forecasting model is unable
to use online predictions directly. Finetuning improves per-
formance for both empty and online maps, but the latter,
although better, is still extremely low compared to curated
maps. Thus, online maps are so far insufficient to replace
curated maps. One issue could be their limited range around
the ego car, much smaller than curated maps. Addition-
ally, we find that high-level map elements such as ‘lane’,
‘drivable area’ (0.388→ 0.296 mAPf for AgentFormer, and
0.760→ 0.611 for LaPred) are more impactful than detailed
map information (‘road’ and ‘lane dividers’) that could be
better leveraged (0.388→ 0.337 mAPf for AgentFormer and
0.760→ 0.668 for LaPred).

Our experiments show that conventional methods (1) out-
perform recent end-to-end pipelines with a simple plug-and-
play of real-world inputs, and (2), use better the map infor-
mation. However, we highlighted a significant performance
drop when conventional methods are applied to realistic
inputs instead of curated data.

V. IMPACTS OF DETECTION AND TRACKING

We now study the past trajectories inputs of conven-
tional forecasting models [6], [27], by replacing GT past
trajectories with outputs of real-world tracking models (sub-
section V-A) or by artificially intervening on them (sub-
section V-B). This allows us to study the importance of
precise agents’ positioning and identification. To quantify
the perception input quality, we count the number of false
positives (FP), i.e., predicted objects not associated with



TABLE III: Influence of the perception input type on tracking and forecasting metrics. Forecasting methods are
AgentFormer and LaPred. 1The past is interpolated when it is incomplete hence the non perfect MOTA and FP values.

Tracking metrics Forecasting metrics for AgentFormer Forecasting metrics for LaPred

Perception input MOTA↑ MOTP↓ FP↓ FN↓ IDS↓ mAPf↑ minADE↓ minFDE↓ MR↓ mAPf↑ minADE↓ minFDE↓ MR↓

GT position and identity 0.9851 0.000 1551 0 0 0.343 1.885 3.979 0.359 0.757 1.213 2.316 0.115
GT position + Tracking model [20] 0.967 0.001 180 0 165 0.317 1.934 4.020 0.363 0.730 1.353 2.513 0.125

C
am

er
a-

ba
se

d
MUTR3D R50 [18] (CVPRW’22) 0.170 0.607 1828 6696 27 0.042 3.993 7.151 0.463 0.152 2.237 3.554 0.178
MUTR3D R101 [18] (CVPRW’22) 0.213 0.550 1373 6727 11 0.055 3.480 6.286 0.449 0.198 1.892 3.043 0.150
ViP3D Det&Track [25] (CVPR’23) 0.145 0.636 1855 6947 3 0.056 2.416 4.404 0.353 0.142 2.044 3.173 0.155
UniAD Det&Track [26] (CVPR’23) 0.195 0.471 1199 7076 20 0.069 2.530 4.613 0.384 0.180 2.142 3.424 0.169

L
iD

A
R

-
ba

se
d

MegVii [23]+AB3DMOT [21] (IROS’20) 0.226 0.320 1657 6232 79 0.089 2.356 4.412 0.382 0.227 2.143 3.561 0.168
CenterPoint [20] (CVPR’21) 0.348 0.244 1622 5090 5 0.112 2.102 4.354 0.413 0.285 1.596 2.815 0.151
VoxelNext [19] (CVPR’23) 0.328 0.263 1639 5283 2 0.096 2.134 4.409 0.426 0.317 1.669 2.914 0.166

any GT object, of false negatives (FN), i.e., GT objects
not associated with any prediction, and of identity switches
(IDS) between agents. For ease of interpretation, FP, FN and
IDS are combined into Multiple Object Tracking Accuracy
(MOTA) [47]. We also compute Multiple Object Tracking
Precision (MOTP), quantifying the average positional accu-
racy over matched objects. Details can be found in [47].

A. From curated to predicted agents

We investigate how forecasting models would react in a
realistic setting where the agents’ positions and identities are
not curated but predicted by perception models. Our selection
of such models includes recent state-of-the-art methods that
can be LiDAR-based, such as MegVii [23] + AB3DMOT
[21], CenterPoint [20] and VoxelNext [19], or camera-based
such as MUTR3D [18] with either ResNet-50 (R50) or
ResNet-101 (R101) backbones, ViP3D [25], and UniAD
[26]. In Table III, we also show results obtained with the
curated GT as inputs for comparison. First, we observe that
using real-world inputs leads to a very significant forecasting
performance drop for both AgentFormer (0.343→ 0.112 in
mAPf ) and LaPred (0.757→ 0.317). Second, while LiDAR-
based methods are much better at detection and tracking than
camera-based methods, we remark that this only translates
into marginally better forecasting scores. For instance, ViP3D
Det&Track even manages to achieve better MR and com-
parable minFDE to LiDAR-based methods, while UniAD
Det&Track is not so far behind. Then, we can observe that
replacing ground-truth identities of agents with outputs of a
tracking model from [20] does not significantly degrade the
performance (e.g., 0.343→ 0.317 in mAPf for AgentFormer)
despite its worse IDS. This indicates that IDS is not as
impactful as detection errors in near agents.

B. Detection and tracking errors breakdown

A significant performance drop is observed using real-
world inputs that contain a complex combination of highly
correlated errors. To give insights on which type of errors
dominates, we break down the errors that occur in the past
trajectories into four types: FP at +/- 5 meters, FN (except
at t=0), localization error (Loc. Error at +/- 2m, correctly
detected but misplaced), and IDS at +/- 5 meters. The
choice of distance is based on real-world conditions (e.g., a
vehicle tends to switch identities with nearby vehicles). We
simulate errors with synthetic perturbations on the curated
annotations, in varying proportions, and plot the performance
of AgentFormer and LaPred in these settings in Figure 3. We

AgentFormer LaPred

Fig. 3: Impact of controlled input errors . Forecasting
performance (mAPf ) under different proportions of detection
and tracking errors (x-axis); We simulate misdetections (FN,
in blue), false detections (FP@5meters, in green), localiza-
tion errors (Loc. Error@2meters in orange) and tracking
errors (IDS@5meters, in pink) in the past trajectories.

note that for FN, we do not consider missing detections at
t=0 since it will obviously cause catastrophic miss forecasts.
Besides, we observe that localization errors are the most
impactful on forecasting metrics while IDS errors have less
impact, in complement with the observation in [11], [39].

C. Finetuning with imperfect inputs

Intuitively, one can think that the performance gap can
be easily closed by finetuning. This experiment has already
been conducted for map imperfections in Table II (‘finetune’)
where we show that the gap persists. We further conduct
finetuning experiments on the stronger model (LaPred) with
(1) data augmentation by randomly adding 30% GT past
position perturbation (i.e., simulating Loc. Error). We also
tried with 10% and 50%, yielding worse results. (2) real-
world tracking results of different modalities (LiDAR-based
VoxelNext [19], end-to-end UniAD [26] and camera-based
MUTR3D R101 [18]). We show in Table IV that finetuning
with data augmentation has very limited help in improving
forecasting performance with real-world inputs. A systematic
but slight improvement is observed by finetuning with the
actual real-world inputs (on the trainset) but the improved
performance is not comparable with GT annotations.

The reasons are: (1) The distribution of perturbation in the
trainset is different from the one in the validation set. (e.g.,
MapTR obtained 94.7 mapping mAP in the trainset vs. 62.8
in validation); (2) The forecasting models are not designed
to handle such errors; (3) Unlike weather or road domain
gap [50], [51], the map elements or the detections are often
missing and simply finetuning with real-world inputs brings
no benefits. This indicates that poor forecasting performance
due to upstream perception errors cannot be easily fixed with
basic domain adaptation methods.



TABLE IV: Impact of finetuning. LaPred [27] pretrained
on GT with data augmentation (DA) is finetuned by either
randomly shifting GT past trajectories or using results from
real-world tracking methods, for 30 epochs with a learning
rate 2x slower than the default one (i.e., 5e-5). The finetuning
is conducted on the train set and tested on the validation set.
Results are relative to training with GT.

Finetuning input Testing input mAPf ↑ minADE↓ minFDE↓ MR↓

No finetuning

GT 0.760 1.237 2.344 0.118
VoxelNext 0.317 1.669 2.914 0.166
UniAD 0.180 2.142 3.424 0.169
MUTR3D R101 0.198 1.892 3.043 0.150

70% GT + 30% DA
VoxelNext -0.007 +0.186 +0.056 +0.005
UniAD +0.007 -0.166 -0.324 -0.015
MUTR3D R101 +0.009 -0.034 -0.191 -0.004

VoxelNext VoxelNext +0.022 -0.142 -0.283 -0.023
UniAD UniAD +0.018 -0.534 -0.782 -0.020
MUTR3D R101 MUTR3D R101 +0.010 -0.135 -0.294 -0.002

D. Impact of the distance to ego vehicle

To better characterize the differences between different
detection tracking methods, we group the agents per distance
to the ego vehicle and report both tracking and forecasting
performances in Figure 4. First, we observe that LiDAR-
based trackers fare better in general. This advantage can be
explained by the fact that LiDAR sensors keep good preci-
sion regardless of range. While the superiority is especially
revealed with MOTP, the relatively similar MOTA scores
indicate that LiDAR-based methods struggle nearly as much
as camera-based trackers for detecting far-away agents. The
superiority in MOTP however reflects that once detected,
they are much better at precisely locating them. LiDAR-
based methods are better in mAPf despite similar MOTA
is also compatible with our previous observation that the
localization precision (in MOTP) is crucial for forecasting.
Besides, we also observe the forecasting performance drop
even with GT. This can be explained by the degradation of
the curated annotations for elements far from the ego. This
observation is significant because the ego vehicle position is
often ignored in motion forecasting as the prediction and
evaluation are usually done in an agent-centric view. In
light of these findings, motion forecasting evaluation should
consider agent-ego distance.

VI. CONCLUSION

This work brings conventional and end-to-end methods
into a joint evaluation protocol representative of real-world
constraints and enables the study of diverse forecasting
methods (4 of them in the experiments) when facing outputs
of trackers (7 considered), and online mapping methods (3
considered, vectorized or rasterized, using LiDAR or cam-
era). This comparison sheds light on the poor performance
of end-to-end methods and highlights the challenges that
arise when interfacing perception and forecasting models.
The main findings and corresponding recommendations are:
• (section III and section IV) The emerging ‘end-to-end

forecasting’ paradigm is so far not better than the conven-
tional one, even in a real-world setting without finetuning.
Besides, end-to-end models do not utilize map information.

Fig. 4: Impact of agent-ego distance. Tracking and fore-
casting performances w.r.t. agent-ego distance (x-axis in me-
ters) for tracking methods: (camera-based) MUTR3D-R50,
MUTR3D-R101, ViP3D, UniAD; (LiDAR-based) MegVii-
AB3DMOT, CenterPoint, VoxelNext; GT-Tracking and GT.

A better multi-task learning strategy and map integration
design is needed to advance the end-to-end paradigm.

• (section IV and section V) There is a large and system-
atic performance gap going from curated annotations to
perception predictions, which is not reduced by simple
techniques, requiring more effort than just joint training.
On the one hand, for perception tasks, precise localization
should be considered along with detection mAP or tracking
accuracy and the perception range should be enlarged
to a physically achievable range. On the other hand, for
forecasting, models should be aware of the imperfect per-
ception inputs, such as tracking outputs and online maps,
through model design and suitable training strategies.

• (section V) We show that the perception and forecasting
quality depends on the agent-ego distance. While intuitive
once formulated, this information is lost because, in the
forecasting tasks and benchmarks, the reference frame is
always the agent of interest and not the ego-car. We suggest
to embrace it in benchmarks by stratifying the evaluation
according to the distance to ego-vehicle.
Finally, we encourage the community to publicly release

codes and models to benchmark them with a broader spec-
trum of driving scenes in the future. The advantages of
end-to-end models, such as a single-loop training and easier
deployment, motivate us to further investigate and improve
this promising paradigm. Note that our study can be further
extended to the downstream task of motion planning.
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