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A B S T R A C T

Effective Prognostics and Health Management (PHM) relies on accurate prediction of the Remaining Useful
Life (RUL). Data-driven RUL prediction techniques rely heavily on the representativeness of the available time-
to-failure trajectories. Therefore, these methods may not perform well when applied to data from new units
of a fleet that follow different operating conditions than those they were trained on. This is also known as
domain shifts. Domain adaptation (DA) methods aim to address the domain shift problem by extracting domain
invariant features. However, DA methods do not distinguish between the different phases of operation, such
as steady states or transient phases. This can result in misalignment due to under- or over-representation
of different operation phases. This paper proposes two novel DA approaches for RUL prediction based on
an adversarial domain adaptation framework that considers the different phases of the operation profiles
separately. The proposed methodologies align the marginal distributions of each phase of the operation profile
in the source domain with its counterpart in the target domain. The effectiveness of the proposed methods is
evaluated using the New Commercial Modular Aero-Propulsion System (N-CMAPSS) dataset, where sub-fleets
of turbofan engines operating in one of the three different flight classes (short, medium, and long) are treated
as separate domains. The experimental results show that the proposed methods improve the accuracy of RUL
predictions compared to current state-of-the-art DA methods.
1. Introduction

Remaining Useful Life (RUL) prediction, also referred to as prognos-
tics, is a key element of Prognostics and Health Management (PHM).
Prognostics aim to estimate how long a system can maintain its spec-
ified functionality before reaching its end of life [1]. Accurate RUL
predictions enable scheduling maintenance from the perspective of
operational and resource availability, avoid costly downtime, and pre-
vent critical failures. In recent years, technological advancements and
decreasing sensor costs have led to an increase in the amount of
data collected from industrial assets [2]. This increased data availabil-
ity allows taking advantage of advanced data-driven approaches such
as Deep Neural Networks (DNNs), which have recently shown great
potential in PHM applications such as fault detection and diagnosis [3].

Traditional supervised machine learning methods assume that, on
the one hand, a representative labeled dataset is available and, on
the other hand, that the training and test datasets stem from similar
distributions. Unfortunately, in real-world scenarios, both assumptions
do not hold for many applications [4,5]. While these challenges are
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also present in fault detection and diagnostics, they are particularly
pronounced in prognostics. On the one hand, collecting a sufficiently
representative dataset of run-time failure trajectories is often impossi-
ble due to the potentially catastrophic consequences of such an event in
reality. On the other hand, deep learning models still face the challenge
of domain shift due to the wide variety of operating conditions and
limited training samples. These two challenges considerably impact
the generalization ability of a model trained on a specific dataset and
applied to a different but related dataset.

Unsupervised Domain Adaptation (UDA) has been shown to be
effective in addressing the domain gap problem by adapting a model
that has been trained on one domain (the source) to a different, unla-
beled domain (the target). Previous research on domain adaptation has
largely focused on classification tasks [6], and therefore, UDA has been
extensively applied to fault diagnostics tasks [7,8]. Recently, several
research studies have also proposed applying UDA to prognostics tasks.
These approaches typically involve aligning the feature distributions
between the source and target domains through adversarial training [9]
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or reducing the disparity between feature distributions [10,11]. Al-
though adversarial training has been widely used in prognostics, it has
not taken into account the distinct phases of cyclical operation profiles,
such as those found in flights, for example, take-off, cruise and landing
phases. A distinct marginal distribution defines each phase of the op-
eration profile, and adversarial adaptation methods may fail to capture
such multi-modal structures in condition monitoring data. Therefore,
the alignment of the source and target domains using DANN [12]
assumes that the marginal distributions of each phase of the operation
profile are also aligned. However, it may lead to misalignment of the
phase of the operation profile due to under- or over-representation
since the different operation phases may have different durations in
the different operation profiles, for example.

To improve the ability to adapt between different domains, we pro-
pose utilizing the common sequence of operation profile phases which
each system undergoes. We take advantage of the prior knowledge
of the operating cycles since the phases always occur in the same
order, share specific characteristics, and their existence and sequence
are invariant across all domains. For instance, in the aviation domain,
a flight can be divided into several phases, that a flight follows, such
as take-off, cruise, and descent. The flight phases differ in terms of,
e.g., altitude, duration, speed, etc., and have distinct marginal dis-
tributions. Within the same flight class, e.g., the cruise phase will
have similar characteristics. However, between different flight classes,
the characteristics of the flight phases will be more different. Each
phase has a different impact on engine stress and degradation and
consequently also on the RUL. By incorporating the operation profile
into domain adaptation, we aim to improve the target RUL prediction
in the case of a domain shift.

In this paper, we consider the scenario where time-to-failure tra-
jectories for complex systems such as aircraft jet engines and power
plants are available within one fleet but not for units from a different
fleet. To address this challenge, we define domains as sub-fleets of these
systems that are operated under similar conditions. Our focus is on
the domain adaptation problem, where we aim to transfer knowledge
from a labeled source domain to an unlabeled target domain. The
units within the same fleet may have a heterogeneous composition of
operating conditions during their respective missions. These operating
conditions can include differences in operating speed, machine load,
working temperature, and environmental noise. These differences can
lead to diverse distributions of marginal characteristics, making it diffi-
cult to adapt models to new domains. Previous research has shown that
when the feature distribution is multimodal, adapting only the feature
representation can be challenging for adversarial networks [13,14].

To tackle this issue, we propose to replace the single-domain dis-
criminator from DANN [15] method with a discriminator for each
phase of the operation profile. This approach is inspired by the success
of multi-task learning [16], and auxiliary tasks [17] in facilitating
adaptation between domains. The proposed methodologies align the
marginal distributions of each phase of the operation profile in the
source domain with its counterpart in the target domain. This work
investigates in depth the learning of invariant features by adversarial
learning for the alignment of sub-fleets (units operated in a similar
way), taking into account their operation profiles. Two methods are
proposed to deal with the above scenarios: (1) each part of the oper-
ational profiles can be assigned to a specific regime, or (2) the parts
of the operational profile are smoothly assigned to all regimes with a
defined probability, which is particularly useful for transition phases.

We evaluate the performance of the proposed algorithm on the
NASA New Commercial Modular Aero-Propulsion System Simulation
(N-CMAPSS) turbofan degradation dataset [18]. The dataset contains
three flight classes: short (S), medium (M), and long (L), with a total of
15 units, with five units in each flight class. The proposed domain adap-
tation methods were evaluated on three adaptation tasks of increasing
difficulty. The models were applied between sub-fleets, each consisting
2

of five units, flying in a specific flight class. The adaptation scenarios
consist of transferring from medium to long flights (𝑀 → 𝐿), from
short to medium flights (𝑆 → 𝑀), and finally from short to long flights
(𝑆 → 𝐿). The adaptation scenarios always involve the adaptation from
a flight class where run-to-failure trajectories are available to a flight
class without any labels. The results of the three tasks demonstrate
that the proposed algorithm, which takes into account the operation
profile, can improve over the traditional DANN [15] and outperform
other comparative benchmark methods.

2. Related work

2.1. Unsupervised domain adaptation

Unsupervised domain adaptation (UDA) [19] aims to improve the
performance of a model on a target domain in the presence of a
domain shift between the labeled source domain and unlabeled target
domain. Several UDA methods have been proposed to align the feature
distributions between the two domains during training using either
discrepancy losses or adversarial training.

Prior works mainly relied on distribution alignment. While Deep
Adaptation Networks (DAN) [20] minimize the Maximum Mean Dis-
crepancy (MMD) over domain-specific layers, Joint Adaptation net-
works [21] align the joint distributions of domain-specific layers across
different domains based on a Joint Maximum Mean Discrepancy
(JMMD). In contrast, adversarial-based methods strive to obtain
domain-invariant representations through adversarial training. For in-
stance, Domain-Adversarial Training of Neural Networks (DANN) [15]
aims to create a domain-invariant representation by using a domain
discriminator. To achieve this, the model is trained with a reversal
gradient layer to make the feature space indistinguishable for different
domains. Maximum Classification Discrepancy (MCD) [22] is another
adversarial-based method that aims to reduce domain divergence and
align the distribution of a target domain by considering task-specific
decision boundaries through the use of task-specific classifiers in an
adversarial training approach. Other approaches focused on the dis-
tribution of features for both domains across the batch normalization
layers. Such approaches include Adaptive Batch Normalization (Ad-
aBN) [23] and Automatic Domain Alignment Layers (AutoDial) [24],
which aligns the distributions via modified batch normalization layers.

Most DA approaches have been developed for classification tasks,
and domain adaptation for regression has received little attention.
While classification approaches aim at generating decision boundaries
to separate data into different classes, regression methods, on the other
hand, aim at predicting continuous numerical outputs with a defined
ordinal relationship. Early works on domain adaptation for regression
problems introduced a weighting scheme that assigns a weight accord-
ing to the similarity between the training and test samples [25,26].
Recent works in the deep representation learning regime proposed dif-
ferent strategies to close the domain gap. For example, Representation
Subspace Distance (RSD) [27] explores the Riemannian geometry of the
Grassmann manifold to reduce the domain gap using the orthogonal
bases representation of the subspace as opposed to instance representa-
tions. More recently, taking inspiration from the closed-form solution of
least-square problems, DARE-GRAM [28] proposed a strategy centered
on aligning the inverse Gram matrices of source and target features,
with the aim of mitigating this issue.

Many of the mentioned methods for classification can be natu-
rally extended to regression problems. Nevertheless, when dealing with
complicated regression problems, there are still no straightforward so-
lutions to the fundamental problem of unsupervised domain adaptation
for regression.

2.2. Domain adaptation applied to PHM

In recent years, domain adaptation has been increasingly applied

to PHM applications [29], particularly in the area of fault diagnostics
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classification. Three main domain gaps exist in the PHM context:
between varying operating conditions [30,31], between different units
of a fleet [32], and between simulations and real data [33–36].

Most research in this area has focused on the transfer between
discrete operating conditions. Classic domain adaptation methods, such
as distribution alignment [37,38] and adversarial alignment [39,40],
have been widely used in this context and have been found to be
beneficial [8]. Proposed approaches include discrepancy-based domain
adaptation, using various criteria such as Maximum Classification Dis-
crepancy (MCD) [40] and Maximum Mean Discrepancy (MMD) [41–
43]. Deep domain adversarial frameworks such as DANN [44–46] have
been developed and applied for fault diagnosis of machines under vary-
ing working conditions. Some works have sought to improve upon ad-
versarial alignment through the use of conditional discriminators [47,
48].

Remaining useful life predictions have received increasing atten-
tion. [49] proposes a novel RUL prediction approach that combines
knowledge of the sensor relationship and deep learning models. Re-
cently, [50] proposed an adaptive framework that can select the correct
trained model according to failure modes. DSCN-DTAM was proposed
in [51] and employs multiple regularization strategies and a double
transferable attention mechanism to improve feature transferability in
the presence of shift. Furthermore, transfer learning has also been
recently increasingly applied to RUL prediction to increase the transfer-
ability of the learned feature, [51–53]. For example, a transfer learning
algorithm based on Bidirectional Long Short-Term Memory (BLSTM)
recurrent neural networks was proposed in [52] for RUL estimation.
The algorithm fine-tunes a model trained on a large amount of data
from a source task with a small amount of data from a target task,
usually a different but related task. The results showed that transfer
learning is effective, except when transferring from a dataset of mul-
tiple operating conditions to a dataset of a single operating condition,
leading to negative transfer learning. In addition to cases where labels
are available for the target, also unsupervised domain adaptation ap-
proaches have been applied for RUL prediction. Different adversarial
methods have been proposed to align the source and target domains
and improve the performance of RUL prediction [9]. For example, [9]
used adversarial training to extract domain-invariant features from a
Long Short-Term Memory (LSTM) model. Recent work [54] introduced
a novel Wasserstein distance-based weighted domain adversarial neural
network (WD-WDANN) for RUL prediction under different operating
conditions by measuring the similarity of source samples to the target
domain to determine the sample quality. Multiple-kernel maximum
mean discrepancies (MK-MMD) were proposed and shown to be more
robust than single-kernel methods [11,55] and help to minimize the
distribution discrepancy between different failure behaviors in the
feature space.

Previous approaches proposed for RUL prediction in the context of
PHM have mainly focused on applying domain adaptation on the entire
operating cycle without considering the distinct phases of the operation
profile for each domain. Such an approach aligning source and target
domains using domain invariant feature learning implicitly assumes
that the marginal distributions of different operating conditions are also
aligned. We propose replacing the single-domain discriminator with
multiple-domain discriminators for each operating condition. In this
way, we ensure that the different marginal distributions are aligned
with their counterparts in the other domain.

3. Methodology

3.1. Terminology

Before delving into the details of the proposed algorithm, it is
3

important to define some key terms that will be used throughout the c
text. In this study, we make use of the terms operation profile and
operation condition.

An operation condition: refers to the specific state or set of conditions
under which a system is operating and can be thought of as different
domains.

An operation profile: is a detailed and specific way of describing
how industrial assets are operated and are controlled under different
conditions while sharing similar characteristics in the sequences in
which the operating conditions occur. An operation profile is typically
composed of distinct and discrete phases, which are characterized
by definite control and condition parameter ranges defining the states
of the system that are retained for specific periods of time and are
characterized by a unique marginal distribution of its characteristics.

Together, the operation profile (with different phases) and op-
eration conditions provide a comprehensive understanding of how
industrial assets function and perform over time.

Fig. 1. The Figs. 1(a) and 1(b) show two flights that were operated differently and
have different profiles. Fig. 1(c) illustrates the presence of similar phases in both flights,
which were used for the alignment process.

3.2. General problem definition

In this paper, we study the unsupervised domain adaptation prob-
lem in the context of regression. During training, we are given access
to a set of 𝑛𝑠 labeled samples from a source domain 𝐷𝑠 = {(𝑥𝑖𝑠, 𝑦

𝑖
𝑠)}

𝑛𝑠
𝑖=1

and 𝑛𝑡 unlabeled samples from a target domain 𝐷𝑡 = {(𝑥𝑖𝑡)}
𝑛𝑡
𝑖=1.

Each observation 𝑥𝑖 ∈  ⊂ R𝐾×𝑇 is a multivariate time sequence
f 𝐾 raw measurements of length 𝑇 , where 𝑇 is the length of the
bservation window. Finally, given a sample 𝑖 from the set of all
rajectories in the source domain, 𝑦𝑖 ∈  ⊂ R denotes the Remaining
seful Lifetime (RUL) value of the observed sequence 𝑥𝑖. Labels of

target data are not available during training. The goal of the task is
to train a model using labeled set 𝐷𝑠 and unlabeled set 𝐷𝑡 multivariate
ime-series data of aircraft engines operated under different operating
onditions.
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3.3. Operation profile

Industrial assets may operate under different operating conditions
but share similar phases of the operation profile. For example, in
aviation, a flight is usually composed of different phases, such as take-
off, cruise, and descent, requiring different thrust levels to propel the
aircraft forward (Fig. 1), thus applying different types and levels of
stress on the jet engine.

More generally, the operation profile can be determined by dis-
cretizing a particular measured or control parameter based on domain
knowledge or using an unsupervised clustering algorithm on the control
parameters or multivariate observations. The final objective is to obtain
a set of 𝑛𝑝 discrete and common phases of the operation profile for each
of the two domains.

This research assumes that a finite number of discrete operation
profile labels can either be provided based on domain knowledge or
identified using the measured or control parameters. We argue that
taking into account the different phases of the operation profile can
improve the alignment process.

The following section presents how these operation profile labels
can be exploited to extend upon the existing DANN methods to support
the alignment process.

3.4. Domain-adversarial neural networks

As the operating conditions of the source and target sub-fleets differ,
a model trained on the source data would be able to easily distinguish
the feature vectors of the target domain from the source domain due
to the domain shift, leading to poor performance when applied to
the target domain. Adversarial distribution alignment methods aim to
address this problem by ensuring that the feature extractor is unbiased
with respect to the characteristics of the source and target domains.

DANN [12] is a broadly applied domain adaptation method that
aligns the distributions of source and target features by adding a
domain discriminator and introducing adversarial training.

Fig. 2. Standard architecture of DANN approaches. The gradient Reversal Layer (GLR)
ensures that the feature distributions over the two domains are indistinguishable for
the domain classifier.

As illustrated in Fig. 2, the DANN model is composed of a feature
extractor 𝑓𝑒, a regressor 𝑓𝑟, and a domain classifier 𝑓𝑑 parameterized
y 𝜃𝑒, 𝜃𝑟, 𝜃𝑑 respectively.

The feature extractor 𝑓𝑒 takes the input data 𝑥 and learns a feature
epresentation denoted by 𝑓𝑒(𝑥).

The regressor predicts the RUL label for each input sample �̂� =
𝑓𝑟(𝑓𝑒(𝑥)). The RMSE loss is used for minimizing the error between the
true and the predicted RUL on the source data (for the RUL prediction
task):

𝑦,𝑠(𝜃𝑒, 𝜃𝑟) =
√

(�̂�𝑠 − 𝑦𝑠)2 (1)

The second part of the model includes a domain discriminator,
which is responsible for aligning the two domains. The domain clas-
sifier predicts the domain label for each input sample 𝑑 = 𝑓 (𝑓 (𝑥)),
4

𝑑 𝑒
where 𝑑 ∈ {0, 1} is a domain label assigned to each training example to
indicate its origin. The domain classifier uses the binary cross entropy
loss function shown in Eq. (2).

𝑑 (𝜃𝑒, 𝜃𝑑 ) = −
(

𝑑 log(𝑑) + (1 − 𝑑) log(1 − 𝑑)
)

(2)

While the domain discriminator weights 𝜃𝑑 are trained to minimize
the binary cross-entropy loss, the feature extractor weights 𝜃𝑒 are
updated to maximize the binary cross-entropy loss. The feature extrac-
tor learns to extract domain-invariant features, rendering the domain
discriminators incapable of predicting the true domain label. These
two contradicting objectives are trained in an adversarial procedure
utilizing a gradient reversal layer (GRL). GRL is an operation that acts
as an identity function during the forward pass and reverses the sign of
the gradient during the backward pass. The GRL allows us to implement
this optimization problem in practice easily [12].

Finally, the regular stochastic gradient solvers (SGD) can be ad-
justed to optimize the model as suggested by Eqs. (3) and (4).

(�̂�𝑒, �̂�𝑟) = arg min
𝜃𝑒 ,𝜃𝑟

(𝜃𝑒, 𝜃𝑟, �̂�𝑑 ) (3)

�̂�𝑑 = arg max
𝜃𝑑

(�̂�𝑒, �̂�𝑟, 𝜃𝑑 ) (4)

3.5. Operation profile-specific alignment

In this research, we propose the Operation Profile-Specific (OPS)
alignment framework, which aims to align the marginal distributions of
the specific phases of the operation profile between different domains.
These phases are often overlooked by other domain-invariant feature-
learning techniques. Our approach extends the alignment component
of DANN to consider each operating phase individually when align-
ing the source and target domains. In previous research, it has been
demonstrated that when the feature distribution is multimodal, adapt-
ing only the feature representation can be challenging for adversarial
networks [13,14]. Therefore, to improve DANN’s performance in these
scenarios, we chose to use the DANN method, as it has a strong track
record in domain adaptation tasks and has previously been successful
in regression tasks for PHM [9]. We propose two different approaches
for operation profile-specific alignment:

• Hard assignment : OPS-DANN (hard)
• Soft assignment: OPS-DANN (soft)

For hard assignment, each sample is strictly assigned to its corre-
sponding phase within the operational profile. In contrast, soft assign-
ment involves assigning samples to multiple discriminators, which can
be advantageous when operation phases are uncertain. This approach
proves particularly useful during transitional periods between phases,
where samples could be associated with more than one operation phase.

3.5.1. OPS-DANN (hard)
Our first proposed extension to implement OPS alignment involves

using dedicated domain discriminators for each operation profile. A
hard assignment is made for each sample to its respective phase of the
operation profile. The goal of OPS alignment is to separately align the
distinct marginal distributions of each regime of the operation profile
across the two domains.

This can be achieved by replacing the single domain discriminator
task that discriminates between the source and the target domain
with as many individual discriminators as there are discrete operating
phases. Each individual domain discriminator still aims to differentiate
between the source and the target domain. However, it only does
so for samples belonging to one operating phase. This ensures that
the marginal distribution of each operating phase is aligned with its
counterpart in the other domain. The proposed framework is visualized
in Fig. 3.
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Fig. 3. Proposed OPS-DANN (hard) approach. The source and target samples of each operation profile are aligned with a dedicated domain discriminator.
The domain discriminators are separated for each 𝑛𝑝 operating
phases. Each domain discriminator is parameterized with its own set
of weights 𝜃𝑑𝑗 with 𝑗 ∈ {1,… , 𝑛𝑝} and aims to predict the domain
label 𝑑𝑗,𝑖 = 𝑓𝑑𝑗 (𝑓𝑒(𝑥)) for a sample that is assigned to the 𝑖th domain
discriminator. The operating phase label 𝑧𝑖 assigns each sample to one
of the 𝑛𝑝 discriminators. The binary cross entropy loss function shown
in Eq. (5) is utilized to determine the loss of each domain discriminator,
where 𝑧𝑖 is a binary variable indicating whether a sample belongs to
operating phase 𝑖 or zero otherwise. The new domain discriminator loss
is presented in Eq. (5):

𝑑,𝑖(𝜃𝑒, 𝜃𝑑 ) = −𝑧𝑖
(

𝑑 log(𝑑) + (1 − 𝑑) log(1 − 𝑑)
)

(5)

3.5.2. OPS-DANN (soft)
A soft assignment of samples to multiple discriminators can be

useful when the operation phase labels are not certain. This can happen,
for example, when a system is transitioning between two phases, and
samples can be considered to belong to both operation phases. Instead
of using a hard assignment of each sample to a single phase of the
operation profile, we propose using a probabilistic assignment (soft
assignment). To achieve this, we add an additional classifier after
the feature extractor to classify the operation phase. This classifier is
trained in a supervised manner using the available operating phase
labels and outputs a probability distribution over the 𝑛𝑝 phases. The soft
assignment allows samples to be assigned to multiple domain discrim-
inators when the operating phase classifier is uncertain. The predicted
probabilities are then used to weigh each sample’s contribution to each
of the 𝑛𝑝 domain discriminators. This model is depicted in Fig. 4.

For OPS-DANN (soft), the previously introduced equations change
slightly due to the additional operating phase classifier parameterized
by 𝜃𝑧. For each source and target sample, it predicts a probability of a
sample belonging to each of the 𝑛𝑝 operating phases �̂� = 𝑓𝑧(𝑓𝑒(𝑥)). The
prediction �̂� can be written as a 𝑛𝑝-dimensional vector �̂� = [�̂�1,… , �̂�𝑛𝑝 ].
The cross-entropy loss function compares the model’s predictions to the
true operating phase labels.

𝑖
𝑧(𝜃𝑓 , 𝜃𝑧) = −𝑧𝑖 log(�̂�𝑖) (6)

The final loss for the OPS-DANN (soft) can be written as :

𝑑,𝑖(𝜃𝑒, 𝜃𝑑 ) = −�̂�𝑖
(

𝑑 log(𝑑) + (1 − 𝑑) log(1 − 𝑑)
)

(7)

4. Case study

4.1. N-CMAPSS dataset

We evaluate our proposed methods for Domain adaptation on
the new Commercial Modular Aero-Propulsion System Simulation (N-
5

CMAPSS) dataset, which contains run-to-failure trajectories of large
turbofan engines [18]. We compare the performance to previously
proposed DA approaches. The dataset was created using NASA’s high-
fidelity simulation model [56], which allows the simulation of flight
data over a wide range of flight conditions. Concretely, the flight data
covers take-off, cruise, and descend flight conditions corresponding to
different commercial flight routes. Each engine unit is assigned to one
of the three flight classes based on the duration of the individual flights.
Short flights are defined as flights that last between one and three
hours, medium flights are between three and five hours long, and long
flights last longer than five hours.

The degradation behavior of each engine unit is modeled as the
combination of three contributors: an initial degradation, a normal
degradation, and an abnormal degradation due to a fault. In the first
phase, the engine degrades due to the normal degradation until the
onset of a fault, whereby different fault types can occur. Normal degra-
dation is modeled linearly. Once a fault is initiated, the engine enters
an abnormal degradation phase until it ultimately reaches its end-of-
life (EOL). During the abnormal degradation phase, the engine health
decays exponentially. Fig. 5 shows sample degradation trajectories of
six engine units.

The degradation trajectories are given as a multivariate time series
of the sensor readings, containing measurements from 14 sensors from
the turbofan engine, as well as scenario descriptors containing 4 param-
eters characterizing the operating condition of the flight, also referred
to as scenario descriptors. The signals and the scenario descriptors are
sampled at a frequency of 1 Hz. The different sensors include various
temperature and pressure measurements, fan speeds, and fuel flow. The
scenario descriptors include the altitude, speed, throttle-resolved angle,
and total temperature at the fan inlet.

Each turbofan engine consists of five main components: the fan,
the low and high-pressure compressor, and the low-and high-pressure
turbine. During the simulated lifetime of each unit, one or a combi-
nation of several sub-components fails, leading to the onset of one
of seven possible fault types. Fault severity increases over time. The
N-CMAPSS dataset introduced several improvements compared to the
popular original CMAPSS dataset [57], frequently used by researchers
working on RUL-prediction tasks [9,58–60]. The N-CMAPSS differs
with respect to two main aspects. First, it considers actual flight condi-
tions recorded on board of a commercial aircraft. Secondly, it extends
the modeling of degradation by linking the degradation process to its
operational history. The RUL prediction aims to indicate how many
flights (i.e., cycles) of a particular engine (unit) are left before its EOL.

The N-CMAPSS dataset [18] contains eight datasets, each with
different fault types and flight classes. In this study, we consider
the different flight classes as distinct domains and focus on dataset
three (DS03) of the N-CMAPSS dataset, which is characterized by a
single fault type (HPT-efficiency failure combined with LPT flow and

efficiency failure) and equally distributed flight classes. We define the
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Fig. 4. Proposed OPS-DANN (soft) approach. An additional operation profile classifier is added to allow for the assignment of each sample to multiple domain discriminators
depending on its probability of belonging to the respective operating regime.
Fig. 5. Example of degradation trajectories of engine units over time for engines from
different domains. Vertical lines denote the fault initialization of each engine unit.

Table 1
Number of units and samples of the three considered domains.

Domain Short Medium Long
flights (S) (M) (L)

Number of units 5 5 5
Number of samples 104k 202k 362k

sub-fleets operated under different flight classes as a domain. The
subset used for this paper contains an equal number of five units per
flight class. Despite the identical number of units, the total number of
samples of the three domains varies considerably due to the different
lengths of the flights, as shown in Table 1.

In aviation, engines are subject to high stress during take-off. There-
fore, in this dataset, short-haul flights have more take-offs and landings
compared to long-haul flights, resulting in a different type of degra-
dation. In addition, the sensor measurements of long-haul flights are
significantly different from those of short-haul flights, as they reach
higher altitudes and faster speeds, as can be seen in Fig. 6.

Given the three domains, there are six possible domain adaptation
tasks, of which only the three presumably most difficult tasks are
considered in this research. The three tasks comprise the transfer from a
sub-fleet of short-range flights to the sub-fleets of mid-range and long-
range flights, as well as from mid-range to long-range flights. These
three tasks are particularly difficult because the marginal distribution
of the characteristics of shorter flights does not cover those of longer
flights, as visualized using the four scenario descriptors in Fig. 6. The
6

Fig. 6. The kernel density estimate (KDE) shows the probability distribution of the
four scenario descriptors for each domain separately. In three out of four cases, it can
be seen that the long-haul flights span the widest range of feature values, while the
short-haul flights cover a noticeably smaller part.

corresponding considered adaptation tasks are abbreviated as 𝑆 → 𝑀
for short to medium flight length adaptation tasks by 𝑆 → 𝐿 and
𝑀 → 𝐿 for the other two tasks, respectively.

In general, it seems intuitive to subdivide a flight into take-off,
cruise, and landing operating conditions. However, in this work, we
found a better suitable division of the operation profile: in ascending,
steady, and descending operating conditions. This division allows a
more fine-grained separation and is more closely related to how the air-
plane is operated. For example, the operating conditions of an airplane
that changes its flight altitude during a flight would only be assigned to
the cruise condition with the more intuitive partitioning approach. In
contrast, the partitioning proposed in this research allows separating
the two steady flight sequences from the descending one in between
(see Fig. 7).

Ascending, steady, and descending flight conditions can be identi-
fied using the first-order derivative of the altitude measurement. To
that end, the change in altitude between neighboring sampling points
was considered and grouped into the three operating conditions using
a threshold value. The threshold was experimentally set to 𝑇 = 0.5 f t

s .
The Operation Phase label z can be defined based on the following
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Fig. 7. Direct comparison of two possible separations of the operating conditions. Ascent and take-off are colored in turquoise, respectively; cruise and steady flight in dark black;
and descent and landing in green. The short periods of steady flying are differentiated from the rest using the change in altitude.
Fig. 8. Kernel density estimate for marginal distributions of each operation profile for
the three domains. Three exemplary sensor values were selected: Physical Core speed,
Total Temperature at the LPT outlet, and total pressure at the HPC outlet.

inequalities:

z =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ascending if 𝑥𝑖+1𝑎𝑙𝑡 −𝑥
𝑖
𝑎𝑙𝑡

𝛥𝑡 ≥ 𝑇

Descending 𝑥𝑖+1𝑎𝑙𝑡 −𝑥
𝑖
𝑎𝑙𝑡

𝛥𝑡 ≤ −𝑇

Steady otherwise

(8)

A median filter with a length of 51 was applied to smoothen the
predictions.

The key idea behind the proposed OPS alignment is to consider
each operation phase separately during the alignment to ensure that
its marginal distribution is matched with its counterpart in the other
domain. Fig. 8 shows the marginal distributions of three exemplary
sensors for the short, medium, and long flight domains. Most of the
other sensor values follow similar patterns.
7

4.2. Preprocessing

Before a fault initiates, the normal degradation process is slow, and
it can be assumed that the RUL is very large. Thus, for this work, we
only start predicting the RUL after the onset of the fault. This results
in a two-step process in which fault detection is performed first, and
the RUL prediction is only initiated after the fault has been detected.
In this paper, we are only focusing on the second step and assume that
the fault onset detection is given. Therefore, the RUL prediction task
aims to predict the remaining cycles after a fault has been initiated
and detected.

Sensor measurements and scenario descriptors are taken as inputs
to ensure a realistic usage scenario, resulting in 18 sensor values. Other
quantities, such as virtual sensors and model health parameters, which
require internal parameters of a simulator, are not considered in this
research.

The dataset was downsampled by a factor of ten using a Chebyshev
filter with order eight, which applies an anti-aliasing filter before
the down-sampling process. This ensured the same 0.1 Hz sampling
frequency that was used in [59].

Each signal measurement was scaled to a range [−1, 1] using min–
max normalization. The scaler was fitted on the source domain data
for each adaptation task and subsequently applied to the target domain
data.

The RUL was normalized for each engine unit to decrease from one
to zero between the point in time when the fault occurs and the
end of life. To that end, all samples belonging to one engine unit were
divided by the maximum number of cycles of the respective unit.

4.3. Model architecture

In this research, we compare the proposed methodology to other
commonly used DA approaches. All of the DA methods use the same
basic architecture to ensure a fair comparison. In particular, we used
a one-dimensional-convolutional neural network (1DCNN) with the
architecture inspired by that proposed in [59]. The feature extractor
consists of three 1D-convolutional layers (L = 3). The first two layers
have ten channels each, while the third layer condenses the feature
representation into a single channel. Filters of size ten are used along
with a stride of one, and zero-padding is added to ensure that inputs
keep the same length when passing through the network. The network
uses 𝑅𝑒𝐿𝑈 as the activation function. The feature extractor has a total
of 3k trainable model parameters.
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The RUL-regressor contains two fully connected layers (L = 2). The
irst one takes the flattened output from the feature extractor and passes
t through a fully-connected layer with 50 neurons. Then, after another
𝑒𝐿𝑈 activation function, the last layer predicts a single output value,

he RUL, which is subsequently normalized to a range between 0 and 1
sing a 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 activation function. In total, there are approximately
k parameters in the RUL-regressor.

The domain discriminator has a similar architecture as the RUL
egressor but contains an additional layer. A first fully-connected layer
ith 50 neurons is followed by a second one with 30 neurons. The

ast layer is also fully-connected and ends with a single output neuron.
gain, a 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 activation function is applied to the final output, and
𝑒𝐿𝑈 activation functions are used in between fully connected layers.
he number of layers and neurons is loosely inspired by an earlier
ork, which also used a DANN architecture on a similar dataset [9].
he resulting domain discriminator has roughly 4k parameters.
OPS-DANN (hard): This model utilizes three domain discrimina-

ors, as there are three different phases for the operation profile in
he dataset used in this work. The architecture of each discriminator
s identical to the one described above, leading to a total number of
8k parameters.
OPS-DANN (soft): Similarly to the OCS-DANN (hard) version, this

odel utilizes three distinct domain discriminators. Additionally, it
ses an operating phase classifier, which is added after the feature
xtractor. This classifier uses the same architecture as the domain dis-
riminator, except for the last activation function. A 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 activation

function is used in the model instead of a 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 activation function,
and this is because there are multiple classes that the model needs to
predict and not just two classes since 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 activation is designed
o handle multi-class classification. OPS-DANN (soft) has the largest
umber of trainable model parameters, with a total of 22k.
Multi-Class OPS-DANN: We propose to explore the impact of the

omain alignment of the operation phases in an ablation analysis. Com-
ared to the architecture introduced above, this model only requires
hanges in the architecture of the domain discriminator of DANN. The
omain discriminator predicts the domain of each sample and its oper-
ting phases. As there are three operating conditions, the discriminator
equires six output neurons, one for each domain and operating phase
air. Consequently, the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 function must be exchanged by the
𝑜𝑓𝑡𝑚𝑎𝑥 activation to handle the multi-class output. This model has

lightly more parameters than the original DANN, with roughly 10k
arameters.

.4. Comparison methods

To fairly evaluate the performance of our proposed methods, we
irst establish a baseline using a feature extractor with a regressor that
s trained only on the source data. We then compare the results of our
peration Profile-specific Domain Adaptation Network (OPS-DANN)
nd its variants to established domain adaptation techniques such as
daBN, MK-MMD, and DANN. These methods have been previously
pplied to similar tasks in the field of prognostics and health manage-
ent and have been shown to have strong performance, as reported

n previous research studies such as [8]. MK-MMD: This DA method
s a domain-invariant feature learning technique. However, instead of
sing adversarial training, it aims to minimize a divergence measure
etween the two domains. To that end, the feature representation 𝑓 ,

found by a feature extractor, is used to compute the MMD measure
as shown in Eq. (9). Multiplications of the feature transformation 𝜙(⋅)
an be readily computed by taking advantage of the kernel trick as
emonstrated in Eq. (10). For the multiple kernel version of MMD, 𝐾
aussian kernels with different bandwidth parameters 𝛾 are combined

o enhance model performance by adding them together, as shown
n Eq. (11).

𝑀𝐷(𝐹𝑆 , 𝐹𝑇 ) =
‖

‖

‖

1
𝑛

𝑛𝑆
∑

𝜙(𝑓 𝑖
𝑆 ) −

1
𝑛

𝑛𝑇
∑

𝜙(𝑓 𝑗
𝑇 )
‖

‖

‖

2
(9)
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‖ 𝑆 𝑖=1 𝑇 𝑗=1 ‖
t

𝑘(𝑓 𝑖
𝑆 , 𝑓

𝑗
𝑇 ) = ⟨𝜙(𝑓 𝑖

𝑆 ), 𝜙(𝑓
𝑗
𝑇 )⟩ (10)

𝑘(𝑓 𝑖
𝑆 , 𝑓

𝑗
𝑇 ) =

𝐾
∑

𝑘=1
𝑘𝑘(𝑓 𝑖

𝑆 , 𝑓
𝑗
𝑇 ) (11)

For this work, five kernels were selected, similar to previous appli-
cations as reported in [10]. The bandwidths parameter was set to 0.01,
0.1, 1, 10, and 100.

AdaBN: Unlike the other baseline methods introduced above, Ad-
aBN [61] is not a domain-invariant feature learning technique. Instead,
it aims to replace the normalization statistics of batch-norm layers
computed on the source domain with those of the target domain. No-
tably, the target domain data is only used to update the normalization
statistics, while all the other model parameters are trained using source
data only. A necessary condition to utilize AdaBN is an architecture
with batch-norm layers; consequently, the feature extractor’s standard
architecture had to be adapted. A 1D-batch-norm layer was placed
following each of the three convolutional layers.

In summary, except for AdaBN, which uses additional batch-norm
layers, all other baseline methods use the same architecture for the
feature extractor and the RUL regressor to ensure a fair comparison.

4.5. Training procedure

Before training, all models were initialized using Xavier normal
initialization [62]. All the data from each domain are considered during
training for each adaptation task, and no test-training split is used.

In this research, several consecutive measurement points are com-
bined into one input sample as input to the model using sequences of
length 50 from the multivariate time series with a step size of one.

Model updates were performed using batch gradient descent with
batches of size 256. One batch of source and target domain data was
processed for each training step.

All DA methods were trained for the same number of epochs for
each of the adaptation tasks to ensure a fair comparison. For the 𝑆 → 𝐿
and 𝑀 → 𝐿 adaptation tasks, the models were trained for 15 epochs.
However, in the 𝑆 → 𝑀 adaptation task, the models were trained for
25 epochs due to the lower number of model updates per epoch.

The baseline was trained for 40 epochs in case the source domain
was short flights 𝑆, and for 20 epochs in case the source domain was
medium flights 𝑀 .

All DA methods based on DANN additionally required the definition
of the reverse gradient factor 𝜌. For this work, the same update rule
for 𝜌 is used as the one proposed in the original DANN [15], which
gradually updates 𝜌 from 0 to 1 according to Eq. (12).

𝜌 = 2
1 + 𝑒−10 𝑙𝑝

− 1 (12)

The learning rate is reduced after each epoch to ensure a smooth
onvergence using a learning rate schedule, likewise adopted from
he original DANN paper [15]. The proposed schedule is shown in
quation:

=
𝛼0

(1 + 10 𝑙𝑝)0.75
(13)

here 𝑙𝑝 once again describes the linear training progress. Unlike the
radient reversal factor, which only applies to DANN-based models, the
earning rate schedule is used for all models. The initial learning rate
0 is found using a hyperparameter search.

The hyperparameters and training specifications mentioned above
ere primarily selected based on prior work and applied to all mod-
ls without further refinement. Other hyperparameters were explicitly
uned for each domain adaptation method, such as the learning rate,
omentum, and the trade-off between multiple loss objectives. Table 2

ummarizes the performed grid searches for each method and indicates
he optimal hyperparameters found for each method. It is important to
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Table 2
Range of the hyperparameter search for all considered DA-methods. The optimal hyperparameters found on the 𝑆 → 𝐿 adaptation task are
emphasized.
Model name Learning rate Momentum Tradeoff alignment loss Others

Baseline {0.01, 0.05, 0.25} {0.5, 0.9} – –
AdaBN {0.01, 0.05, 0.25} {0.5, 0.9} – –
MK-MMD {0.01, 0.05, 0.25} {0.5, 0.9} {0.003, 0.01, 0.03} {2, 5,10}1
DANN {0.01, 0.05, 0.25} {0.5, 0.9} {0.1, 0.3, 1} –
OPS-DANN Hard {0.05} {0.5} {0.03, 0.1, 0.3, 1, 3} –
OPS-DANN Soft {0.05} {0.5} {0.1, 1, 3} {0.03,0.1, 0.3}2
Multi-class OPS-DANN {0.05} {0.5} {0.1, 0.3, 1} –
emphasize that for all methods, the grid search was only performed
on the 𝑆 → 𝐿 adaptation task. The resulting optimal hyperparameters
were then used for the other two adaptation tasks. The 𝑆 → 𝐿 task was
selected to perform the grid search because it has the largest domain
gap and is considered as the most challenging task. For AdaBN, the
learning rate and momentum found on the 𝑆 → 𝐿 adaptation task
were likely too big for the 𝑀 → 𝐿 adaptation task and did not lead to
convergence. Only in this case, the second best set of hyperparameters
found on the 𝑆 → 𝐿 was used for the 𝑀 → 𝐿 task, which is also
indicated in Table 2.

4.6. Evaluation metrics

In this work, all experiments were evaluated using the two common
evaluation metrics used for RUL prediction [57]: the root mean square
error (RMSE) and the NASA scoring function.

The RMSE is defined as follows:

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛𝑇

𝑛𝑇
∑

𝑖=1
(�̂�𝑖 − 𝑦𝑖)2 (14)

NASA’s scoring metric is not symmetric and penalizes over-
estimation more than under-estimation and is defined as follows:

𝑠 =
𝑛𝑇
∑

𝑖=1
exp (𝛼 |

|

�̂�𝑖 − 𝑦𝑖|
|

)

𝛼 =

{

1∕10 if �̂� − 𝑦 ≥ 0

1∕13 otherwise

(15)

4.7. Representation transferability

The Proxy A-distance (PAD) proposed in [63] is a suitable metric to
measure the divergence for domain adaptation tasks. Thus, we can use
it to evaluate the transferability of representations Using the PAD, the
divergence between two domains is computed by evaluating how well a
classifier can separate the source from the target domain. If separation
is easy, the two domains are likely dissimilar, and their discrepancy
is large. On the other hand, if samples can hardly be discriminated
between the two domains, they will likely have a small discrepancy.
Using the classification error 𝜖, the PAD 𝑑 can be found according
to Eq. (16).

𝑑 = 2 (1 − 2𝜖) (16)

In general, all DA methods that contain a domain-invariant feature
learning part aim somewhat to minimize the divergence between the
source and the target domain. For example, DANN uses the PAD as a
discrepancy measure and aims to minimize it during training in the
alignment component [15].

5. Results

5.1. Experimental results

In this section, we compare the prediction accuracy of the con-
sidered models in terms of the RMSE and the NASA score. The re-
sults are shown in Table 3. Additionally, the upper bound RMSE for
9

Fig. 9. A-distance for each method and task respectively.

the medium-haul and long-haul flight domains are 3.16 and 2.17,
respectively.

In addition, to evaluating the performance, we also evaluate the
PAD (qualitatively measuring the divergence between the domains),
calculated from the learned feature embeddings. As described in Sec-
tion 4.7, the PAD is used to evaluate the ability of the applied DA
methods to extract domain-invariant features. In Fig. 9, the A-distance
varies from one task to another, showing a larger domain gap for the
task 𝑆 → 𝐿, a smaller one for the task 𝑆 → 𝑀 and almost no domain
gap for the task 𝑀 → 𝐿

5.1.1. 𝑆 → 𝐿 task

Performance evaluation: The adaptation task from the short to the
long flight domain is the most challenging because it has the largest
domain gap. The baseline model trained solely on source data for this
task (without any adaptation) exhibits an RMSE value that is 240%
larger than the one of the models trained on the target domain. As seen
in Table 3, the MK-MMD and DANN methods improved the baseline
methods in terms of RMSE by 35 and 40%, respectively. The improve-
ments by DA methods are also visible in the NASA score. AdaBN is
a simple method without any additional parameters. It improves the
model performance with respect to RMSE only slightly. However, it
leads to a higher NASA score compared to the baseline due to the
over-estimations of the RUL predictions. For the 𝑆 → 𝐿 task, all three
proposed OPS-DANN variants improve substantially upon the baseline
by at least 45% in terms of RMSE and by 20% in terms of S-score.

It is similarly important to compare the performance of a novel
DA method to other state-of-the-art methods. Even though DANN has
the lowest RMSE out of the three considered baseline methods, the
proposed OPS-DANN methods outperform DANN by at least 9% in
RMSE and 2% in S-score. Thus, all models benefit from unlabeled target
domain data, as expected in this setup. However, comparisons with the
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Table 3
The results for the three considered domain adaptation tasks.

Name S → L S → M M → L

RMSE
Mean ± Std

s-score
Mean ± Std

RMSE
Mean ± Std

s-score
Mean ± Std

RMSE
Mean ± Std

s-score
Mean ± Std

Baseline 7.34 ± 2.12 1.74 ± 0.24 4.59 ± 0.51 1.38 ± 0.07 2.63 ± 0.19 1.24 ± 0.03
AdaBN 7.13 ± 0.72 1.82 ± 0.18 5.03 ± 0.66 1.49 ± 0.09 3.23 ± 0.26 1.26 ± 0.02
MK-MMD 4.76 ± 0.57 1.47 ± 0.04 4.40 ± 0.42 1.36 ± 0.04 2.64 ± 0.20 1.22 ± 0.04
DANN 4.38 ± 0.56 1.43 ± 0.11 4.07 ± 0.23 1.35 ± 0.04 2.75 ± 0.35 𝟏.𝟐𝟎 ± 𝟎.𝟎𝟏

OPS-DANN Hard 𝟑.𝟗𝟎 ± 𝟎.𝟓𝟔 𝟏.𝟑𝟗 ± 𝟎.𝟏𝟎 𝟑.𝟕𝟏 ± 𝟎.𝟐𝟎 𝟏.𝟑𝟏 ± 𝟎.𝟎𝟒 2.66 ± 0.23 𝟏.𝟐𝟎 ± 𝟎.𝟎𝟎
OPS-DANN Soft 4.00 ± 0.33 1.40 ± 0.11 3.86 ± 0.18 1.33 ± 0.03 2.72 ± 0.20 1.21 ± 0.02
Multi-Class
OPS-DANN 3.97 ± 0.65 1.40 ± 0.11 3.93 ± 0.46 1.33 ± 0.03 𝟐.𝟓𝟖 ± 𝟎.𝟐𝟎 𝟏.𝟐𝟎 ± 𝟎.𝟎𝟏
Fig. 10. Prediction error of the different models as a function of the relative lifetime.
upper bound RMSE of 2.17 show that by using labeled short-haul flight
data for adaptation, there is still a considerable performance gap to
models trained with the labeled long-haul flight data.

Evaluation of the alignment: Fig. 9, shows that all three proposed
OPS-DANN methods can extract features that contain less discrimina-
tive information about the two domains than the baseline on the 𝑆 →
𝑀 DA task. The two methods using individual domain discriminators
(OPS-DANN soft and hard) reach the lowest PAD values for this task,
indicating that the usage of a dedicated domain discriminator per
operating phase can support the extraction of features that are more
domain-invariant compared to domain adaptation techniques aligning
the entire marginal distributions of the two domains.

5.1.2. 𝑆 → 𝑀 Task

Performance evaluation: Compared to the 𝑆 → 𝐿 task, the 𝑆 → 𝑀
task has a smaller domain gap. The baseline model trained without any
adaptation solely based on source data for this task results in an RMSE
that is 45% larger than the one from the model trained on the target
domain. Due to the smaller domain gap in the 𝑆 → 𝑀 task compared to
the 𝑆 → 𝐿 task, the source domain is more similar to the target domain
10
and, therefore, it allows learning models with a similar performance
level as models trained on the target data. As seen in Table 3, the MK-
MMD and DANN methods are able to improve the baseline methods
slightly in terms of RMSE by 4 and 11%, respectively. However, in
terms of the s-score, the results decreased slightly from 1.38 to 1.36 and
1.35, respectively. AdaBN approach performed worse than the baseline
in this case. Also, in this task, DANN is the best-performing comparison
model. Nevertheless, all three proposed OPS-DANN methods outper-
form the original DANN. While for the Multi-Class OPS-DANN, the
improvement is 3% compared to the DANN performance, the OPS-
DANN (soft) and OPS-DANN (hard) reduce the RMSE by 5% and 9%,
respectively, and the s-score by 1% and 3%

Evaluation of the alignment: On the 𝑆 → 𝑀 task, all methods reach
considerably lower PAD values, even the lower bound, without any
adaptation. This makes it more challenging to differentiate between
these two domains. However, it is worth noting that all the proposed
methods in the Operation Profile-specific Domain Adaptation Network
(OPS-DANN) have considerably lower PAD values compared to the
baseline. However, only the OPS-DANN (soft) method can extract more
domain-invariant features than DANN, while the other two proposed
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methods have slightly higher PAD values. Even though OPS-DANN
(hard) has a higher PAD than both DANN and OPS-DANN (soft), it
reaches a lower RMSE demonstrating that the sole ability to extract
domain-invariant features does not guarantee a superior performance
on the regression task.

5.1.3. 𝑀 → 𝐿 Task

Performance evaluation: The third considered task uses medium-haul
flights as the source domain and aims to adapt a model to perform well
on long-haul flights. Compared to the two previous tasks, the discrep-
ancy between these two domains is much smaller. This observation is
also confirmed by the performance of the baseline method that has a
value RMSE that is only 21% larger than the one of a model trained on
the target domain. All domain adaptation methods performed slightly
worse than the baseline model. Using the MK-MMD and DANN methods
appears to result in under-estimated predictions, thus achieving a lower
s-score than the baseline. Out of the three proposed OPS-DANN models,
only one of them (Multi-Class OPS-DANN) has a slightly lower RMSE
value compared to the baseline (2.58 compared to 2.63). The other two
approaches are at a similar performance level as the baseline model,
however, achieving a lower s-score (1.20 compared to 1.24). The
observed slight differences between the models are likely insignificant
and are potentially caused by the randomness of the training procedure.
Overall, none of the comparison methods DA methods could improve
this task’s target-free baseline significantly. None of the methods are
able to reach the upper bound RMSE value of 2.17, which is achieved
when the model is trained on the labeled target dataset.

Visualizations: We provide additional visualizations, in Fig. 10, by
showing the test RUL evolution over time for the three adaptation
approaches (𝑆 → 𝐿, 𝑆 → 𝑀 , 𝑀 → 𝐿) using DANN and the proposed
three methods. The figures confirm our initial expectations. As the units
approach the end of their lifetime, the predictions tend to converge
with the ground truth RUL value.

Evaluation of the alignment: Comparing the PAD values of all applied
methods in Fig. 9, it becomes apparent that none of the methods are
able to reduce substantially the domain distinctiveness compared to the
models trained without adaptation.

6. Discussion

The findings of this study demonstrate that, on two out of the three
tasks, the proposed three variants of the operation phase alignment
methods perform similarly well and are able to achieve better results
compared to both the DANN model as well as the other domain adap-
tation methods. This demonstrates the effectiveness of the proposed
methods in adapting to different domains, particularly in addressing the
unique challenges posed by multimodal feature distributions and the
variability of operating conditions and system configurations. Further-
more, it should be noted that DANN is already an effective method for
domain adaptation. However, the proposed operation phase alignment
methods are able to improve upon the performance of DANN and other
traditional domain adaptation methods in the context of PHM.

In addition to evaluating the performance of the proposed methods
for RUL prediction, we also investigate the impact of each method
on the embeddings generated by the alignment process. To enable
2D visualizations, we applied a principal component analysis (PCA)
and present the first two principal components in Figs. 11 and 12.
This visualization provides insights into how the different phases of
the operation profile are represented in the embeddings and how the
proposed methods affect this representation.

As shown in Fig. 11 DANN and our proposed approaches are able
to effectively align the source and target embeddings, as demonstrated
by the overlapping of the source and target data points in the figures.
However, it is worth noting that there is a distinct difference between
11
Fig. 11. Visualizing the impact of the operation profile alignment on Domain align-
ment: A Comparison of DANN, OPS-DANN (soft), OPS-DANN (soft), and Multi-Class
OPS-DANN models using PCA on the embedding space.

Fig. 12. Visualizing the impact of the operation profile alignment on the Phase
alignment: A Comparison of DANN, OPS-DANN (soft), OPS-DANN (soft), and Multi-Class
OPS-DANN models using PCA on the embedding space.

the methods with respect to how distinguishable the operation phases
are in the embedding space.

In Figs. 11 and 12, the OPS-DANN soft and hard approaches have
phases that can be distinguished but that are more pronounced for the
soft approach. On the contrary, the Multi-Class OPS-DANN approach
has only one cluster that is similar to the one obtained with the DANN
approach which is not able to distinguish between the operating phases.
However, the difference between DANN and Multi-Class OPS-DANN
is that they have different shapes in the embedding space. Moreover,
DANN aims to learn domain invariant features, and Multi-Class OPS-
DANN aims to learn domain and operating-condition invariant features.
This difference in the ability to distinguish between the operation
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phases highlights the unique characteristics of each proposed approach
and their ability to align the operating characteristics and phases of the
different domains.

It should be noted that the Multi-Class OPS-DANN uses the op-
eration phase labels in a distinctly different way than the other two
proposed methods. Instead of aligning the marginal distributions of all
three operation phases separately, it aims to extract features invariant
to both the domain and the operation phase of the input data simulta-
neously. Fig. 12 shows that Multi-Class OCS-DANN successfully learns
such a feature representation that is invariant to the operation phases.

Contrary to the Multi-Class OPS-DANN, the OCS-DANN (soft) mod-
els contain an additional classifier that aims to learn how to distinguish
between different operating phases while simultaneously learning to
extract features that are domain invariant. Fig. 12 illustrates this be-
havior: each operating phase forms a separate cluster while the source
and target domains overlap to a large extent. This behavior is similar
to the OCS-DANN (hard).

This observation highlights the effectiveness of the proposed ap-
proach in aligning the operating characteristics and conditions of the
different domains, leading to improved performance for RUL prediction

7. Conclusion

In this paper, we propose a novel approach that utilizes domain
adaptation techniques to align the operating phases to improve the
accuracy of RUL predictions.

The main novelty of our proposed approach is the integration of
the information on the different phases of the operation profile into
the alignment process. The proposed approaches align the marginal
distributions of each phase of the operation profile in the labeled source
domain with its counterpart in the unlabeled target domain. Two novel
domain adaptation approaches are proposed based on an adversarial
domain adaptation by considering the different phases of the operation
profile separately.

The proposed methods have shown to be effective in improving the
performance of deep learning models for RUL prediction by effectively
transferring the models between sub-fleets that are operated under
different conditions. The results of this study demonstrate the potential
of these methods to improve the accuracy and reliability of prognostics
and health management in real-world applications. Furthermore, the
proposed methods have a better performance compared to state-of-
the-art domain adaptation methods such as DANN, MK-MMD, and
AdaBN.

There are three interesting potential future research directions re-
sulting from this research. First, the proposed methods can be extended
to enable them to tackle challenges arising from imbalanced operating
conditions, which is a very common case in practical applications.
Second, it would be interesting to investigate whether learning a soft
assignment before performing adaptation may be beneficial by training
an operating phase classifier separately from the DA model. Thirdly,
while this research focused on regression, the proposed methodology
can be easily extended to classification tasks such as for example for
fault diagnostics problems. We leave the aforementioned open research
directions for future work.
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