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1École Polytechnique Fédérale de Lausanne
2Ecole Polytechnique Fédérale de Lausanne

December 27, 2023

Abstract

Representing single or multi-layered mixed-phase clouds (MPCs) accurately in global climate models (GCMs) is critical for

capturing climate sensitivity and Arctic amplification. Ice multiplication, or secondary ice production (SIP), can increase the

ice crystal number concentration (ICNC) in MPCs by several orders of magnitude, affecting cloud properties and processes.

Here, we propose a machine-learning approach, called Random Forest SIP (RaFSIP), to parameterize the effect of SIP on

stratiform MPCs. The RaFSIP scheme uses few input variables available in models and considers rime splintering, ice-ice

collisional break-up, and droplet-shattering, operating at temperatures between 0 and -25 @C. The training dataset for RaFSIP

was derived from two-year pan-Arctic simulations with the Weather Research and Forecasting (WRF) model with explicit

representations of SIP processes. The RaFSIP scheme was evaluated offline against WRF simulation outputs, then integrated

within WRF. The parameterization exhibits stable performance over a simulation year, and reproduced predictions of ICNC

with explicit microphysics to within a factor of 3. The coupled WRF-RaFSIP scheme can replicate regions of enhanced SIP

and accurately map ICNCs and liquid water content, particularly at temperatures above -10 @C. Uncertainties related to the

RaFSIP representation of MPCs marginally affected surface cloud radiative forcing in the Arctic, with radiative biases of lower

than 3 Wm-2 compared to simulations with explicit SIP microphysics. Training from a few high-resolution model grid points

did not limit the predictive skill of RaFSIP, with the approach opening up new avenues for model simplification and process

description in GCMs by physics-guided machine learning algorithms.
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Key Points: 13 

• A random-forest parameterization for secondary ice production is developed using 14 
outputs from a high-resolution regional climate simulation. 15 

• The scheme produces tendencies of ice multiplication comparable to the high resolution 16 
model with explicit microphysics. 17 

• The scheme can be adjusted to coarse resolutions typical of climate models without loss 18 
of computational efficiency and numerical stability. 19 
  20 
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Abstract 21 

Representing single or multi-layered mixed-phase clouds (MPCs) accurately in global climate 22 
models (GCMs) is critical for capturing climate sensitivity and Arctic amplification. Ice 23 
multiplication, or secondary ice production (SIP), can increase the ice crystal number 24 
concentration (ICNC) in MPCs by several orders of magnitude, affecting cloud properties and 25 
processes. Here, we propose a machine-learning approach, called Random Forest SIP (RaFSIP), 26 
to parameterize the effect of SIP on stratiform MPCs. The RaFSIP scheme uses few input 27 
variables available in models and considers rime splintering, ice-ice collisional break-up, and 28 
droplet-shattering, operating at temperatures between 0 and -25 ˚C. The training dataset for 29 
RaFSIP was derived from two-year pan-Arctic simulations with the Weather Research and 30 
Forecasting (WRF) model with explicit representations of SIP processes. The RaFSIP scheme 31 
was evaluated offline against WRF simulation outputs, then integrated within WRF. The 32 
parameterization exhibits stable performance over a simulation year, and reproduced predictions 33 
of ICNC with explicit microphysics to within a factor of 3. The coupled WRF-RaFSIP scheme 34 
can replicate regions of enhanced SIP and accurately map ICNCs and liquid water content, 35 
particularly at temperatures above -10 ˚C. Uncertainties related to the RaFSIP representation of 36 
MPCs marginally affected surface cloud radiative forcing in the Arctic, with radiative biases of 37 
lower than 3 Wm-2 compared to simulations with explicit SIP microphysics. Training from a few 38 
high-resolution model grid points did not limit the predictive skill of RaFSIP, with the approach 39 
opening up new avenues for model simplification and process description in GCMs by physics-40 
guided machine learning algorithms. 41 

 42 

Plain Language Summary 43 

Being able to correctly simulate the amount of ice and liquid in clouds is essential for accurate 44 
predictions of the cloud radiative forcing in the climatologically-sensitive polar regions. A 45 
number of collisional processes between ice and liquid particles in clouds, known as secondary 46 
ice production, can significantly enhance the ice crystal number concentrations contained in 47 
them. This enhancement is often accompanied by a decrease in the number and mass of liquid 48 
cloud droplets, resulting in less opaque clouds to incoming solar radiation, which, in turn, can 49 
cause a cloud-induced warming at the surface. Currently most global climate models are missing 50 
the description of the most important secondary ice production processes, which can lead to a 51 
biased radiative impact of clouds at the surface. To address this, we propose using a machine 52 
learning algorithm trained on high-resolution model outputs to include the effect of ice 53 
multiplication in large-scale climate models. The machine learning framework effectively 54 
captures the physical processes underlying secondary ice production in stratiform clouds using 55 
only a few inputs readily available in model frameworks. This approach has the potential to 56 
improve model outputs and bring them closer to the observed cloud phase partitioning. 57 

 58 

1 Introduction 59 

In the big data and machine learning era, general circulation models (GCMs) remain an 60 
indispensable tool for predicting how the Earth system will respond to rising greenhouse gas 61 
concentrations (Balaji et al., 2022; Irrgang et al., 2021). GCMs typically represent atmospheric 62 
processes with a horizontal grid spacing of about 50-100 km. However, at this coarse resolution, 63 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

3 
 

small-scale processes, such as those associated with clouds, cannot often be explicitly resolved. 64 
These complex subgrid scale processes interact with the resolved model scales only through 65 
parameterizations tuned in a way to improve the agreement with theory or observations (Hourdin 66 
et al., 2017). Parameterization schemes are a necessary but non-trivial part of climate modeling, 67 
introducing uncertainties in future climate projections. These uncertainties frequently result in 68 
persistent model biases, especially over climatically sensitive regions of the world, such as the 69 
Arctic (Sledd & L’Ecuyer, 2021; Tan & Storelvmo, 2019) and the Southern Ocean 70 
(Schuddeboom & McDonald, 2021; Vergara-Temprado et al., 2018). 71 

Machine learning (ML)-based parameterizations are a promising and computationally 72 
efficient approach increasingly used in climate science to replace, supplement or speed up 73 
conventional parameterizations (e.g., Brenowitz & Bretherton, 2019; Gentine et al., 2018; 74 
Grundner et al., 2022; Han et al., 2020; Mooers et al., 2021). ML parameterizations are 75 
sometimes developed based on high-resolution three-dimensional (3D) simulations, in which 76 
subgrid processes are either explicitly resolved (Brenowitz & Bretherton, 2018; Yuval et al., 77 
2021; Yuval & O’Gorman, 2020) or parameterized using conventional schemes (Grundner et al., 78 
2022; O’Gorman & Dwyer, 2018). In this approach, high-resolution data is often coarse-grained 79 
to match the lower spatial resolution of the GCM grid (e.g., Brenowitz & Bretherton, 2019). 80 
Advances in both computational tools and data assimilation methods have now allowed for 81 
global observations to be integrated into ML training datasets (Schneider et al., 2017), yet 82 
limitations concerning the limited spatiotemporal coverage of observational data still need to be 83 
addressed (Irrgang et al., 2021). 84 

Neural networks (NNs) and random forests (RFs) are two ML methods that have been 85 
used for developing parameterizations for GCMs. RF – an ensemble learning algorithm 86 
consisting of multiple decision trees – ensures the preservation of physical properties by taking 87 
the average predictions of subsets of the training samples (Breiman, 2001). This conservative 88 
behavior leads to more stable simulations when coupled with GCMs compared to NNs (Han et 89 
al., 2020; O’Gorman & Dwyer, 2018), which can deviate from the training data pool. Notably, 90 
RF parameterizations have demonstrated successful emulation of conventional convective 91 
schemes in GCMs (O’Gorman & Dwyer, 2018). Yuval and O’Gorman (2020) applied RF 92 
parameterization using coarse-grained, high-resolution outputs from an idealized simulation, 93 
achieving effective replication of climate patterns across different grid spacings. In contrast, NN 94 
parameterizations, although requiring less memory in GCMs, can introduce numerical 95 
instabilities and result in model runaway or climate drift (Rasp et al., 2018; Brenowitz & 96 
Bretherton, 2018, 2019). To ensure stable long-term simulations, post-prediction adjustments and 97 
accurate processing of the training dataset are necessary (Rasp, 2020; Yuval et al., 2021). While 98 
offline comparisons favored NN parameterizations, both RF and NN algorithms satisfied 99 
physical constraints (energy conservation and non-negative surface precipitation) and 100 
demonstrated comparable performance when coupled with the dynamical core of a coarse-101 
resolution aqua-planet GCM (Yuval et al., 2021). Additionally, RFs and NNs showed similar 102 
performance in predicting the probability density function of surface solar irradiance under 3D 103 
cumulus clouds (Gristey et al., 2020). 104 

Parameterizations of cloud microphysical processes and aerosol-cloud interactions are 105 
perhaps one of the most challenging aspects of climate simulations (e.g., Liu et al., 2023; Hugh 106 
Morrison et al., 2020). They are also computationally expensive because they require a large 107 
amount of information to be carried around in simulations (e.g., cloud microphysical and aerosol 108 
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quantities and their interactions) and the parameterizations themselves also may require 109 
considerable computational effort. Few studies to date try to simplify cloud microphysical 110 
processes using ML-based approaches, focusing on warm cloud microphysical processes. For 111 
instance, Seifert & Rasp (2020) employed a Monte Carlo superdroplet simulation to train neural 112 
network (NN) models for parameterizing autoconversion, accretion, and self-collection rates in 113 
two-moment schemes. Chiu et al. (2021) developed NN-based parameterizations for 114 
autoconversion and accretion rates, incorporating in-situ observations of droplet size 115 
distributions and employing the stochastic collection equation with bin microphysics to 116 
separately account for cloud and drizzle water contents. Although these ML approaches were 117 
evaluated offline, Gettelman et al. (2021) successfully replaced the computationally expensive 118 
bin microphysical scheme used in a GCM with ML emulators to predict autoconversion and 119 
accretion tendencies, achieving comparable accuracy with reduced computational costs. 120 
However, there remains a research gap regarding ML parameterizations specifically tailored to 121 
represent cold cloud microphysics. 122 

This study focuses on developing an RF-based approach for parameterizing secondary ice 123 
production (SIP) in stratiform mixed-phase clouds (MPCs) which are prevalent in polar regions 124 
(de Boer et al., 2009; Shupe et al., 2006), sustained by a complex interplay of microphysics, 125 
dynamics, radiatively-driven turbulence, as well as surface heat and moisture fluxes (Morrison et 126 
al., 2012). Misrepresentation of the mid- and high-latitude MPCs in GCMs has been shown to 127 
increase the spread of predicted cloud feedbacks in the recent Climate Model Intercomparison 128 
Project (phase 6 – CMIP6; Murray et al., 2021; Zelinka et al., 2020). Furthermore, the ice and 129 
liquid phase partitioning in GCMs can significantly impact Arctic amplification, highlighting the 130 
necessity of revisiting the microphysical parameterizations associated with Arctic MPCs (Tan & 131 
Storelvmo, 2019). 132 

Ice multiplication, also known as SIP, can be an important source of ice particles in 133 
MPCs, as it can rapidly increase the pre-existing ice crystal number concentrations (ICNCs) 134 
through a number of collisional processes  (Field et al., 2017; Korolev & Leisner, 2020). The 135 
most frequently acknowledged SIP mechanism is the Hallett-Mossop (HM; Choularton et al., 136 
1980; Hallett & Mossop, 1974), ice-ice collisional break-up (BR; Takahashi et al., 1995; 137 
Vardiman, 1978) and droplet-shattering (DS; Choularton et al., 1980; James et al., 2021; 138 
Kleinheins et al., 2021). Observations of MPCs in the Arctic region have shown high 139 
concentration of ICNCs that greatly surpass ice nucleating particle (INP) concentrations (Wex et 140 
al., 2019), particularly at temperatures above -25 ˚C (Luke et al., 2021; Pasquier et al., 2022; 141 
Rangno & Hobbs, 2001; Schwarzenboeck et al., 2009). This suggests that SIP must be a 142 
prevalent process in the moderately cold polar conditions. 143 

Along with observations, modeling studies across scales have also emphasized the 144 
significance of incorporating SIP parameterizations in regional and global climate model 145 
simulations for an accurate representation of the phase partitioning and radiative properties of 146 
Arctic MPCs (e.g., Fridlind & Ackerman, 2019; Sotiropoulou et al. 2020; 2021; Zhao et al. 2021; 147 
Zhao and Liu 2021; 2022). Recent physically-based SIP parameterizations tested in GCMs were 148 
developed by pooling experimental observations and further considering the physics of collisions 149 
or applying correction factors to account for the simplified laboratory setups (Phillips et al., 150 
2017; 2018). These advanced SIP formulations require that the host model explicitly describes a 151 
number of ice (cloud ice, snow and graupel) and liquid species (cloud droplets and raindrops) as 152 
well as interactions among them (i.e., aggregation, collection and riming). Zhao et al. (2021) and 153 
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Zhao & Liu (2022) developed a hybrid-bin framework for improved representation of SIP, but 154 
this approach can be computationally expensive (Sotiropoulou et al., 2022). 155 

Here we propose a new approach towards parameterizing SIP in stratiform MPCs, which 156 
we call the RaFSIP (Random Forest SIP) parameterization. RaFSIP is derived from 157 
comprehensive model output from mesoscale model simulations that account for all three SIP 158 
processes: HM, BR and DS. Following this, the effect of SIP is expressed either directly by 159 
predicting the corresponding SIP rates or through the use of the ice-enhancement factor (IEF), 160 
which is a multiplication factor applied to primary ice crystals. To account for the effects of SIP 161 
for a wide range of stratiform conditions, the RaFSIP parameterization is trained using key 162 
thermodynamic and microphysical variables to facilitate its implementation in most models with 163 
double-moment representations of ice hydrometeors. 164 

 165 

2 Data and Methods 166 

The reference simulation used to develop the RF framework is derived from the 167 
mesoscale Weather Research and Forecasting (WRF) model. The WRF outputs from the target 168 
simulation were used to train two different versions of the RaFSIP parameterization: the first 169 
version of the parameterization predicts the effect of SIP through the use of a multiplication 170 
factor applied to the primary ice production rates (hereafter denoted as RaFSIPv1), while the 171 
second version is trained to predict directly the production rates of secondarily formed ice 172 
particles (hereafter referred to as RaFSIPv2). The workflow followed to develop each 173 
parameterization is summarized in Figure 1. 174 

2.1 WRF regional climate simulations 175 

The target simulation was generated using WRF version 4.0.1, including augmented 176 
cloud microphysics that considers the effects of BR and DS mechanisms introduced by 177 
Sotiropoulou, Vignon, et al. (2021) and Georgakaki et al. (2022), in addition to the default HM 178 
parameterization. A regional climate configuration was employed (Abdelwares et al., 2018), 179 
where a 50-km resolution parent domain covering the Arctic region contains a single-way nested 180 
domain of 10-km resolution. Figure 1 shows the map of the two domains centered over Ny-181 
Ålesund using a polar-stereographic projection, that is suitable for high-latitude WRF domains. 182 
The outermost domain consists of 148×148 grid points, while the innermost one contains 183 
301×301 grids. In the hybrid terrain-following mass coordinate system adopted by WRF, we 184 
used 40 vertical levels up to a model top of 50 hPa (i.e., ∼20 km), with the standard grid spacing 185 
generated automatically by WRF. 186 

The initial and lateral boundary conditions are taken from the fifth generation of the 187 
European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalyses 188 
dataset (ERA5; Hersbach et al., 2020), with a 31-km horizontal grid spacing. The lateral forcing 189 
at the edge of the parent domain was updated every 6 h. To ensure realistic synoptic dynamics in 190 
the model and allow for a comparison between in situ observations and simulations, the outer 191 
domain of WRF has been nudged toward ERA5 reanalysis for zonal and meridional wind speed, 192 
with a relaxation time scale of 6 h. Static fields come from default WRF pre-processing system 193 
datasets with a resolution of 30’’ for both the topography and land use fields. The WRF physics 194 
options include the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) 195 
radiation scheme to parameterize both the shortwave and longwave spectra, the local Mellor-196 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

6 
 

Yamada-Nakanishi-Niino Level 2.5 (MYNN; Nakanishi & Niino, 2006) scheme with its 197 
associated surface layer scheme for the planetary boundary layer (PBL) processes representation, 198 
the Noah land surface model (Noah LSM; Chen & Dudhia, 2001) for surface options, and the 199 
Kain–Fritsch cumulus parameterization, which was activated in both domains. 200 

Cloud microphysics is treated using the scheme of Morrison et al. (2005) (hereafter 201 
M05), which represents raindrops, cloud ice, snow and graupel particles with a double-moment 202 
approach. However, a single-moment approach is used for cloud droplets, which requires 203 
predefining a constant number concentration. For this study, we assumed that an average cloud 204 
droplet number concentration of 100 cm-3 is suitable for Arctic clouds (e.g., McCoy et al., 2020; 205 
Young et al., 2016). Regarding ice formation processes, M05 includes parameterizations for 206 
homogeneous freezing at temperatures below -40 ˚C, as well as heterogeneous ice nucleation 207 
initiated below -4 ˚C. The latter accounts for immersion freezing of cloud droplets and raindrops 208 
(Bigg, 1953), contact freezing (Meyers et al., 1992) and condensation/deposition freezing 209 
nucleation (Cooper, 1986), all of which are dependent only on temperature. 210 

In the standard M05 code there is only one SIP mechanism described – the HM process – 211 
which is activated after cloud droplets or raindrops rime onto snow or graupel particles within a 212 
specific temperature range between -8 and -3 ˚C (Cotton et al., 1986). The activation of this 213 
process depends on preset thresholds concerning the minimum mass mixing ratios of the 214 
involved ice and liquid species that are found to limit its efficiency and were removed (Atlas et 215 
al., 2020; Karalis et al., 2022; Young et al., 2019). 216 

A detailed description of the BR implementation in M05 is provided in Sotiropoulou, 217 
Vignon, et al. (2021). The default M05 code was updated to include all possible collisional 218 
interactions among the three ice hydrometeor species (see their Appendix B). The number of 219 
fragments produced is parameterized as a function of the ice particle size, habit, degree of riming 220 
as well as the collisional kinetic energy, following Phillips et al. (2017). Two types of collisions 221 
were considered: those involving only high-density precipitating ice particles (such as graupel), 222 
and those involving collisions of rimed snow or cloud ice particles with any ice species. The 223 
rimed fraction and ice habit were used only in the formulation describing the latter type of 224 
collisions, but they were not explicitly resolved in the M05 scheme. BR was enabled only when 225 
there was a nonzero rimed mass of either raindrop or cloud droplet onto the ice particle that 226 
would undergo fragmentation. A rimed fraction of 0.4 was prescribed, based on previous studies 227 
that showed better agreement with observations in polar clouds (Sotiropoulou et al., 2020; 228 
Sotiropoulou, Vignon, et al., 2021). Regarding the ice habit, we assumed planar ice particles, as 229 
they capture a wider range of conditions in terms of temperature and particle shapes compared to 230 
dendritic ice crystals. Sotiropoulou, Ickes, et al. (2021) suggested that the absence of a thorough 231 
handling of ice habit and rimed fraction in most bulk microphysics schemes does not seem to 232 
significantly impact the depiction of BR in polar conditions. All secondary ice fragments 233 
produced by the BR mechanism are added to the cloud ice category. 234 

Georgakaki et al. (2022) described the implementation of the DS mechanism in the M05 235 
scheme of WRF. We considered two collision modes that can cause the freezing and subsequent 236 
shattering of large raindrops, as described by Phillips et al. (2018). The first mode, or 'mode 1', 237 
occurs when a supercooled raindrop collides with a less massive cloud ice particle or when an 238 
INP initiates freezing in immersion mode. Freezing probability is set to unity and zero for 239 
temperatures below -6°C and above -3°C, respectively, with intermediate values in between. The 240 
shattering probability depends on raindrop size, being 0 for sizes smaller than 50 μm, 1 for sizes 241 
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the outputs of the high-resolution WRF simulation. To minimize variance, each decision tree is 270 
trained on a random subset of the training data and a random subset of the inputs – also called as 271 
features – of that data. The RFR prediction is calculated by averaging over the individual 272 
decision trees, which reduces the risk of overfitting and improves generalization performance 273 
compared to a single decision tree. RFR can capture non-linear relationships between input 274 
features and output variables and is proficient at interpolation. However, it cannot extrapolate 275 
due to its predictions being averages over subsamples of the training dataset. This helps ensure 276 
that a RF-based parameterization will be robust when coupled with a model in an online setting, 277 
such as in our case. 278 
 279 

2.2.1 Description of the two parameterization approaches 280 

Depending on the prevailing temperature and the presence of rime onto ice particles, we 281 
expect different SIP processes to be activated. This is the reason why the two versions of the 282 
RaFSIP parameterization consist of a number of RFR models, each one of them being 283 
responsible for predicting the effect of SIP as dictated by the thermodynamic and microphysical 284 
state describing every model timestep. The RFR models consisting the RaFSIPv1 285 
parameterization, are trained to predict the so-called IEF, which is the ratio between the 286 
production rate of secondary ice particles from each SIP process (HMrate, BRrate and DSrate), and 287 
primary ice particles via heterogeneous freezing of cloud droplets (PIPrate). Hence, RaFSIPv1 288 
provides 3 predictions: IEFHM, IEFBR, and IEFDS, the contribution of which can be added to yield 289 
the total IEF: IEF = 𝑆𝐼𝑃 𝑃𝐼𝑃⁄ . The notation of IEF is frequently employed in the 290 
literature as an indication of the prevalence of SIP, in both observational (e.g., Korolev et al., 291 
2022; Wieder et al., 2022) and modeling studies (e.g., Waman et al., 2022; Zhao et al., 2023). 292 

In RaFSIPv2, the RFR models predict directly the three SIP rates – HMrate, BRrate and 293 
DSrate (in kg-1 s-1), derived from the high-resolution WRF results. The three rates are combined to 294 
determine the total SIPrate. As the HM and DS processes move mass from the liquid to the ice 295 
species when active (albeit from the rimed liquid particles in the former case), both versions of 296 
the RaFSIP parameterization are trained to predict Qctr and Qrtr (in kg kg-1 s-1) corresponding to 297 
the mass transferred from the cloud droplets and raindrops to the cloud ice category, 298 
respectively. Therefore, the two versions of the RaFSIP parameterization can provide up to five 299 
different predictions, given certain SIP conditions are met. 300 

Here, we consider two main temperature regimes: -8 ≤ T< -3 °C (HM zone) and -25 ≤ T< 301 
-8 °C, which is essential as the HM mechanism can only be effective within the former one. By 302 
combining these temperature ranges with the presence or absence of mass production rate of 303 
raindrops collected by ice particles (RIMR in kg kg-1 s-1), we obtain 4 different RFR models that 304 
are used in both versions of the RaFSIP parameterization (Table 1 and 2). Two models can be 305 
activated in the HM zone, namely “forestALL” and “forestBRHM”, that are replaced by the 306 
“forestBRDS” and “forestBR” at lower temperatures (the suffix of the model name denotes the 307 
SIP processes in action). The final selection of which forest to use in the corresponding 308 
temperature range is based on the presence of a nonzero RIMR at the current timestep, which is 309 
the criterion used to identify the cases where DS might be taking place. The two forests that take 310 
into account the effect of DS are the forestALL and forestBRDS models.  311 

Both RaFSIP parameterizations incorporate SIP through BR and DS at temperatures as 312 
low as -25°C, which is supported by recent observational findings (Korolev et al., 2022; Pasquier 313 
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et al., 2022; Wieder et al., 2022). Approaching warmer subzero temperatures (T > -4 °C), 314 
RaFSIPv1 does not predict ice enhancement, since heterogeneous freezing of cloud droplets (i.e., 315 
the denominator in the IEF expression) does not occur in the M05 scheme (Section 2.1). In 316 
contrast, RaFSIPv2 can still account for the effect of SIP as it is not directly linked to the PIPrate. 317 
An additional RFR model called “forestBRwarm” is therefore used in RaFSIPv2 (Table 2), to 318 
calculate the BRrate at temperatures between -3 ≤ T ≤ 0 °C. At these warm subzero temperatures, 319 
DS is also proposed to contribute to SIP through recirculation (Korolev et al., 2020), but only in 320 
tropical or midlatitude frontal systems (Lauber et al., 2021) owing to strong convective turbulent 321 
updrafts that are rare in polar stratiform clouds. Therefore, RaFSIPv2 considers that only the BR 322 
mechanism initiated by collisions of seeding rimed ice particles can be efficient at temperatures 323 
above -3 °C. 324 
 325 

2.2.2 Features and training dataset 326 

Both versions of the RaFSIP parameterization share the same input features. The ambient 327 
temperature (T in K), total ice water content (IWC in kg kg-1), liquid water content (LWC in kg 328 
kg-1), relative humidity with respect to ice (RHi) and mass production rate of cloud droplets 329 
rimed onto ice particles (RIMC in kg kg-1 s-1) are among the features that have been used in all 330 
RFR models of the two versions of the parameterization. Since DS requires the presence of large 331 
raindrops, RIMR is also used as input to the models accounting for its effect (i.e., forestALL and 332 
forestBRDS). With these 6 inputs we seek to effectively capture all range of cloud states that can 333 
initiate and drive ice multiplication. The training dataset was constrained to scenarios with 334 
substantial liquid water content (LWC>10-5 gm-3), accompanied by nonzero riming tendencies, 335 
to ensure the effectiveness of SIP. The 6 inputs are chosen in a way to simplify the detailed SIP 336 
formulations (e.g., Phillips et al., 2017; 2018), yet are expected to generate complex mappings 337 
for training the RFR models. Here we use the instantaneous predictions of the model for all 338 
individual vertical grid cells as inputs for all RFRs, rather than their vertical profiles (e.g., 339 
O’Gorman & Dwyer, 2018; Yuval & O’Gorman, 2020). 340 

We generated the training dataset for all RFR models using the 3-hourly high-resolution 341 
WRF results (Section 2.1), extracted from 2×2 grid cell regions (16 grid cells in total) indicated 342 
by purple triangles in Figure 1. Half of these grid cells represented continental conditions, while 343 
the other half were over the sea. The absence of a latitudinal preference in SIP rates between the 344 
Northern and Southern hemispheres (Zhao & Liu, 2021) suggests that a limited number of grid 345 
points from the 2-year high-resolution simulation of WRF is adequate for capturing the 346 
thermodynamic and microphysical conditions associated with SIP events in stratiform 347 
conditions. Note that horizontal and vertical coarse-graining is frequently applied when 348 
developing ML parameterizations for GCMs based on high-resolution simulations (e.g., 349 
Brenowitz & Bretherton, 2019; Grundner et al., 2022; Yuval & O’Gorman, 2020). Indeed, the 350 
impact of SIP can vary depending on the scale considered, with higher-resolution simulations 351 
exhibiting greater SIP tendencies due to their ability to capture localized and enhanced SIP 352 
events. Our goal is to investigate whether a SIP parameterization derived from a 10-km 353 
resolution grid (innermost WRF domain) is effective at the coarser resolution of 50-km in the 354 
parent domain of WRF, which is closer to the resolutions seen in GCMs. Given that the input 355 
tendencies predicted by the coarser-resolution grids will be lower than the higher-resolution 356 
ones, we expect that the resulting SIP tendencies will also be smoothed out. An important aspect 357 
to consider also here is that the RFR models tend to underestimate extreme values and 358 
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overestimate low values (Zhang & Lu, 2012). This behavior arises from the fact that RFR 359 
predictions are derived as averages of the predictions made by all decision trees within the 360 
ensemble. 361 

To prepare for training, each feature and output variable is normalized using the natural 362 
logarithm, which is important given the range of several orders of magnitude they span (Figure 363 
2). During the training process, we excluded IEF values below 10-1 and SIP rates below 10-5 kg-364 
1s-1 (Figure 2). This was made because such values would not result in significant SIP, and we 365 
aimed to reduce the range of predictions. The training dataset comprises 20 months of high-366 
resolution WRF results, representing approximately 85% of the data. The remaining 15% of the 367 
data, consisting of 4 months (January, April, July, and October 2017), were used for testing the 368 
offline performance of the RaFSIP parameterization (Section 3). The RandomForestRegressor 369 
class from the scikit-learn package version 1.2.0 (Pedregosa et al., 2011) was used to train each 370 
RFR model. All RFR models consisting the two RaFSIP parameterizations were stored as ASCII 371 
files. 372 
 373 

2.2.3 Choice of hyperparameters 374 

To improve the performance of the RFR models, different hyperparameters governing the 375 
learning process can be tuned. The Mean Squared Error (MSE) resulting from the RFR 376 
predictions was evaluated using 10-fold cross validation on the training dataset. We selected the 377 
number of trees in each forest, the minimum samples per leaf node, and the number of training 378 
samples as the three most important hyperparameters to tune. Figure S1 shows the validation 379 
curves for the forestALL model (used in RaFSIPv2), which illustrate how the performance of the 380 
model varies with different hyperparameter values. The final decision on hyperparameters 381 
involves a trade-off between model complexity and runtime, with the latter being crucial for 382 
optimizing online performance when coupled with the WRF model. We chose 10 trees in each 383 
RFR, a minimum of 4 samples per leaf node, and 25,000 training samples for all RFR models, as 384 
these produced comparable validation curves. Note that, for online applications of the RFR 385 
models, it is common practice to use 10 decision trees to ensure computational efficiency 386 
(O’Gorman & Dwyer, 2018; Yuval & O’Gorman, 2020). The offline performance of the RaFSIP 387 
parameterizations will be discussed in Section 3, followed by the online performance in Section 388 
4. 389 
 390 

2.3 Implementation of RaFSIP parameterization in WRF 391 

To implement the RaFSIP parameterization in WRF, a Fortran 90 module is developed to 392 
read and store the parameters for building the RFR models. The ASCII files are only read during 393 
the first model timestep and all forest parameters are passed as public variables into the 394 
microphysics code. Within the M05 microphysics routine, the RaFSIP parameterization replaces 395 
the three detailed inline SIP parameterizations (Section 2.1), taking the fields of T, RHi, LWC, 396 
IWC as well as RIMC and RIMR as inputs to make predictions. Calculations for LWC and IWC, 397 
consider contributions from all liquid (cloud droplet and raindrops) and ice (cloud ice, snow and 398 
graupel) species. RIMC and RIMR encompass all possible ways in which cloud droplets or 399 
raindrops are collected by frozen particles in the M05 scheme: (i) droplet/raindrop-cloud ice, (ii) 400 
droplet/raindrop-snow, and (iii) droplet/raindrop-graupel. At each model timestep and grid cell, 401 
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if certain requirements are met (discussed in Section 2.2.1), a different RFR model may be 402 
activated to represent the effect of single or combined SIP processes. 403 

At the end of each model timestep, the RaFSIP parameterization calculates the total 404 
SIPrate (in kg-1 s-1) either directly or through the use of the IEF, depending on the chosen version. 405 
In RaFSIPv1, the SIPrate is obtained by multiplying the number tendency of heterogeneously 406 
frozen cloud droplets (in kg-1 s-1) by the total IEF. However, this approach has a significant 407 
caveat: SIP cannot be accounted for unless a nonzero PIPrate is predicted by the model. 408 
Therefore, RaFSIPv1 can only be used at temperatures colder than -4 °C, where PIP is initiated 409 
in the model. To ensure that the final SIPrate does not exceed a certain threshold, an upper limit 410 
of 100 particles kg-1 s-1 was applied, corresponding to the highest simulated value in the training 411 
dataset. Although our results were not sensitive to the choice of this upper limit, it may be an 412 
important consideration for the implementation of RaFSIPv1 in other microphysical schemes 413 
employed by different models. The SIPrate predicted by RaFSIPv1 is then added to the cloud ice 414 
number concentration conservation equation. The RaFSIPv2 parameterization follows a similar 415 
approach to RaFSIPv1, but does not link SIPrate to the instantaneous PIPrate. This direct 416 
prediction is enabled by the RFR models, allowing for RaFSIPv2 to be applicable over a wider 417 
temperature range from 0 °C to -25 °C, without requiring a nonzero PIPrate. 418 

When HM and/or DS mechanisms are active, the transported masses Qctr and Qrtr are 419 
subtracted from their respective cloud categories and added to the conservation equation for 420 
cloud ice mass mixing ratio. It is important to note that the transferred liquid masses involved in 421 
SIP were initially part of the rimed masses constituting the RIMC and RIMR quantities. Without 422 
SIP, these masses would have been transported to the mass conservation equation of the 423 
corresponding rimed ice particles. To avoid double-counting the transferred masses of liquid 424 
water, Qctr and Qrtr should also be removed from the riming tendencies of the involved ice 425 
species. To account for this, we subtract the transferred masses from the term with the biggest 426 
contribution; given that the terms participating in RIMC and RIMR can vary by several orders of 427 
magnitude, this approach ensures that the simulations will not be subject to significant bias. 428 

To evaluate the online performance of the new RaFSIP parameterizations when coupled 429 
with the WRF model, we conducted a one-year simulation using the same set-up depicted in 430 
Figure 1 (Section 2.1). This simulation covers the period between September 2019 and August 431 
2020, which is more than 1.5 years after the training period, with one additional week of spin-up 432 
starting from August 25, 2019. The testing simulation was conducted three times. First, we 433 
carried out the ”CONTROL” simulation, which does not take into account any SIP process. 434 
Then, we performed the “ALLSIP” simulation, which includes all the detailed inline 435 
parameterizations of SIP outlined in Section 2.1. Finally, the “RaFSIP” simulation refers to the 436 
one where the RaFSIP parameterizations replaced the detailed SIP descriptions. By comparing 437 
the results of the ALLSIP simulation with those of the RaFSIP simulation in Section 4, we seek 438 
to examine the robustness of the new SIP parameterizations in terms of computational efficiency 439 
and result quality. 440 
 441 

3 Offline performance of RaFSIP parameterizations and feature importance 442 

To evaluate the performance of both RaFSIP parameterizations, each RFR model was 443 
tested on the 4-month dataset that was not used during training (Section 2.2.2). The performance 444 
was assessed using two metrics summarized in Tables 1 and 2: Root-Mean-Square Error 445 
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Although RaFSIPv1 and RaFSIPv2 use the same predictors, the former is limited to cases 474 
where PIPrate is nonzero, resulting in noticeable differences among the two approaches. To 475 
evaluate the relevance of each input feature in the predictions made by the RFR models, we 476 
employed the permutation importance metric (Figure S6 to S10) from the 477 
RandomForestRegressor class of scikit-learn. This metric estimates feature importance by 478 
randomly permuting its values and measuring the consequent decrease in model performance. 479 
This approach can capture the effect of both linear and nonlinear relationships between features 480 
and target variables, and can also help identify any potential overfitting issues in the RFR 481 
models. Note that here we used the negative RMSE as the scoring parameter and normalized the 482 
resulting variable importance by dividing by the maximum value among features. 483 

The most significant features in the predictions made by all RFR models are the riming 484 
tendencies and the IWC. Specifically, inside the HM zone, RIMC has the highest permutation 485 
importance score for the forestALL (Figure S6) and forestBRHM (Figure S7) models employed 486 
in both RaFSIP versions. The two mass tendencies, RIMC and RIMR, are explicitly used as 487 
inputs in the detailed parameterized expression of HM in the default M05 scheme (Section 2.1). 488 
Outside the HM zone, where BR can lead to larger IEF or SIPrate compared to DS, IWC becomes 489 
the more important feature for the predictions of the RFR models, particularly for forestBR 490 
(Figure S9) and forestBRwarm (Figure S10), with the amount of (rimed) cloud droplets 491 
becoming the second most important feature. The increase in IWC, associated with  ice 492 
sedimenting from higher-level clouds, is frequently found to drive the BR process (Georgakaki et 493 
al., 2022; Järvinen et al., 2022; Pasquier et al., 2022; Ramelli et al., 2021; Sotiropoulou, Vignon, 494 
et al., 2021). 495 
 496 
 497 

Table 1. 
Root-Mean-Square Error (RMSE) of the output variables predicted by the 
RaFSIPv1 parameterization, along with the corresponding coefficient of 
determination (R2) values in parentheses. 
 
RaFSIPv1 

model 
Conditions Predictions 

Temperature RIMR IEFBR IEFHM IEFDS Qctr Qrtr 

forestALL -8≤T<-3˚C >0 0.32 
(0.97)

0.36 
(0.94) 

0.46 
(0.86)

0.17 
(0.99) 

0.26 
(0.93) 

forestBRHM -8≤T<-3˚C =0 0.37 
(0.98)

0.12 
(0.98) – 0.09 

(0.99) – 

forestBRDS -25≤T<-8˚C >0 0.31 
(0.97) – 0.38 

(0.87) – 0.39 
(0.83) 

forestBR -25≤T<-8˚C =0 0.44 
(0.97) – – – – 

 498 

Using the different RFR models depending on the prevailing thermodynamic and 499 
microphysical conditions allowed us to evaluate the performance of the RaFSIP 500 
parameterizations under various scenarios. The distribution of all RFR predictions against true 501 
values, as shown in Figure 2 and Figures S2 to S5, indicates that predictions with a higher 502 
relative frequency of occurrence are closer to the 1:1 line for both RaFSIP approaches. The 503 
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statistical metrics presented in Tables 1 and 2 can differ significantly depending on the prevailing 504 
conditions and the SIP processes involved. The RMSE for RaFSIPv1 predictions varied from 505 ∼10-45%, while for RaFSIPv2, it ranged between ∼15-40%. The transferred masses due to SIP, 506 
Qctr and Qrtr, are generally well-predicted in most of the RFR models with an RMSE of less than 507 
30%, despite spanning more than 10 orders of magnitude. 508 

In cases where multiple SIP processes are present, the prediction error tends to be higher 509 
for DS, as shown in Figures 2c and 2h and reflected in the higher RMSE values in Tables 1 and 510 
2. To improve the offline accuracy of the forestALL and forestBRDS models for predicting this 511 
SIP mechanism, we tested the inclusion of the size of raindrops undergoing DS as a potentially 512 
important predictor. The resulting RMSE metrics showed a ∼5% decrease in the forestBRDS 513 
model, while the forestALL model remained unaffected (not shown). However, since the total 514 
effect of SIP is cumulative and DS is the least significant mechanism compared to the other two, 515 
any errors associated with its uncertain representation are not likely to significantly impact the 516 
online performance of the RaFSIP parameterizations. Therefore, we argue that adding more 517 
predictors may not be worth the increased model complexity. 518 
 519 

Table 2. 
Root-Mean-Square Error (RMSE) of the output variables predicted by the RaFSIPv2 
parameterization, along with the corresponding coefficient of determination (R2) 
values in parentheses. 
 

RaFSIPv2 
model 

Conditions Predictions 
Temperature RIMR IEFBR IEFHM IEFDS Qctr Qrtr 

forestALL -8≤T<-3˚C >0 0.23 
(0.96)

0.22 
(0.93) 

0.36 
(0.87)

0.16 
(0.99) 

0.21 
(0.94) 

forestBRHM -8≤T<-3˚C =0 0.34 
(0.96)

0.36 
(0.90) – 0.18 

(0.99) – 

forestBRDS -25≤T<-8˚C >0 0.17 
(0.97) – 0.27 

(0.89) – 0.27 
(0.89) 

forestBR -25≤T<-8˚C =0 0.28 
(0.96) – – – – 

forestBRwarm 0≤T≤-3˚C =0 0.38 
(0.96) – – – – 

 520 

When only BR is active, either in the colder (i.e., forestBR) or warmer (i.e., 521 
forestBRwarm) temperature regime, the RMSE scores range between ∼30-45% (Tables 1 and 2). 522 
This could indicate and important input feature related to BR may be missing or that the 523 
relationship between the input features and the target variable (IEFBR or BRrate) is inherently 524 
difficult to model accurately due to the level of non-linearity. In the physically-based 525 
parameterization by Phillips et al. (2017), the SIP fragments generated after BR depend on 526 
collisional kinetic energy, which is an uncertain parameter as it is a function of the difference in 527 
terminal velocities of colliding ice particles. The latter follows a fall-speed-diameter relationship, 528 
the parameters of which are highly uncertain and can directly impact both the precipitation rates 529 
and the SIP efficiency (Karalis et al., 2022). Therefore, we chose not to include collisional 530 
kinetic energy in our set of predictors, as it would increase model complexity without necessarily 531 
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improving accuracy. The predictors we chose strike a good balance between model complexity 532 
and accuracy, allowing us to describe SIP occurrence as a function of simplified inputs that most 533 
GCMs can predict. 534 
 535 

4 Coupling the RaFSIP parameterization with WRF 536 

In this section, we aim to assess the performance of the parameterization when coupled 537 
back with the dynamical core of the WRF model, making fast and precise predictions at runtime. 538 
To facilitate the discussion, in the rest of the paper we will focus on the results of the RaFSIPv2 539 
parameterization, while the corresponding RaFSIPv1 results will be available in the Supporting 540 
Information. RaFSIPv2 can predict SIP rates directly, making it less coupled with the WRF 541 
model on which it was trained. In contrast, the approach followed in RaFSIPv1 tends to be more 542 
dependent on the PIP rates predicted by each model, implying that its good online performance 543 
in WRF may not be guaranteed in other models using different PIP schemes. 544 

When introducing the RaFSIP parameterization into the M05 scheme of WRF, two main 545 
concerns had to be addressed in order to ensure the robustness of the approach: model stability 546 
and computational efficiency. The stability of the model was tested during the one-year test 547 
simulation starting from September 2019 until August 2020 (Section 2.1). The coupled WRF 548 
model with the RaFSIP parameterization ran stably across a wide range of conditions. Regarding 549 
computational efficiency, the new parameterization performed comparably to the inline SIP 550 
parameterizations without increasing computational demands. This implies that the RaFSIP 551 
scheme can be easily incorporated into existing models without significant impact on runtime, 552 
being a result of carefully selecting the number  of trees in the RFR models. In the following 553 
discussion all results will be divided into four groups according to season. 554 

4.1. Horizontal distribution of ice crystal number concentrations 555 

Latitude-longitude snapshots of the median ICNCs obtained from the instantaneous 3-556 
hourly outputs of the CONTROL, ALLSIP, and RaFSIP experiments (Section 2.3), along with 557 
the resulting R2 between the predictions of the latter two, provide a way to assess the quality of 558 
the WRF predictions when coupled with the RaFSIPv2 parameterization (Figure 3). Note that the 559 
modeled ICNCs include the contribution of all three ice species (cloud ice, snow and graupel). 560 
To calculate the median ICNCs presented in Figure 3 we considered only the in-cloud conditions 561 
represented by ICNCs > 10-5 L-1 and temperatures between -25 and 0 °C, which is the range 562 
where RaFSIPv2 can be active. For calculating the median values and R2 scores, we went 563 
through each latitude and longitude reshaping the remaining two dimensions (time and height). 564 
To facilitate the identification of patches where RaFSIPv2 performs favorably in terms of R2, we 565 
further coarse-grained the information from the coarse-resolution grid mesh by dividing the 566 
original grid into non-overlapping 3×3 sub-grids, and computing the average value of each sub-567 
grid. Thus the R2 map in Figure 3 is projected onto a 49×49 mesh. 568 

The RaFSIPv2 parameterization coupled with WRF can skillfully predict the median 569 
horizontal distribution of ICNCs, closely following the pattern produced by the ALLSIP 570 
simulation with the detailed SIP descriptions. Darker blue shades are produced by ALLSIP and 571 
RaFSIP indicating the higher median ICNCs compared to CONTROL. The increase in median 572 
ICNCs is observed for all four seasons, even though it is more prevalent during winter and 573 
spring, particularly in the sea region between Greenland and Canada to the west and extending to 574 
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Higher temperatures are not likely the cause of lower R2 values, as the RaFSIPv2 models were 596 
trained using a wide range of temperatures and temperature was not found to be among the most 597 
important input features for the predictions of the RFR models (Figures S6-S10). A possible 598 
explanation could be that during summer the expected shift towards warmer clouds may lead to 599 
increased riming tendencies, which can be associated with higher SIP rates in RaFSIPv2. 600 
Replacing the RaFSIPv2 parameterization with the RaFSIPv1 in WRF, results in a further 601 
decline in the predictive skill in all four seasons, as shown in Figure S11. The R2 scores decrease 602 
to below 60% in most regions with significant ice enhancement, with a further drop to below 603 
40% during the summer months. The degradation in the performance of the model is most likely 604 
because of RaFSIPv1 requiring a nonzero value of PIPrate to provide ice enhancement. 605 

Table 3 presents median statistics extracted from all three sensitivity experiments during 606 
the cold (autumn and winter) and warm (spring and summer) seasons. The latitudinal zones north 607 
of 70°N are divided into three groups, and the results are grouped into two distinct temperature 608 
ranges (-10≤T≤0˚C and -20≤T<-10˚C) where SIP effects are more prevalent. During the cold 609 
season, it is observed that the CONTROL simulation leads to higher median ICNCs in the 610 
warmer temperature regions compared to the colder one at latitudes 70-80˚N, which may seem 611 
contradictory since PIP efficiency generally increases with decreasing temperatures. This 612 
unexpected finding could potentially be explained by ice seeding from colder clouds enhancing 613 
the median ICNCs in lower-level warmer clouds at temperatures above -10˚C, or by increased 614 
efficiency of ice aggregation leading to significantly lower median ICNCs in the colder 615 
temperature range (-20≤T<-10˚C) (Barrett et al., 2019; Chellini et al., 2022). 616 

The introduction of SIP in the WRF simulations results in a substantial increase in 617 
median ICNCs, particularly in the warmer temperature bin during the cold (warm) season, where 618 
ALLSIP and RaFSIP simulations show a factor of approximately 2-3 (3-6) higher ICNCs 619 
compared to the CONTROL simulation. On the other hand, in the colder temperature bin, the 620 
ICNC enhancement in ALLSIP and RaFSIP is relatively modest, reaching only up to ∼20-25% 621 
during both examined seasons. It is worth noting that latitudes above 80°N display 622 
systematically lower ICNCs, with no significant contribution of SIP being observed at 623 
temperatures below -10°C, likely due to complete cloud glaciation.  Overall, the median statistics 624 
derived from the WRF simulation coupled with the RaFSIPv2 parameterization are in good 625 
agreement with the ALLSIP simulation results during the cold and warm seasons examined here 626 
(Table 3). 627 

To assess the agreement between our WRF results and satellite remote sensing data, we 628 
compare our median values from the 3 sensitivity experiments to the 10-year median values 629 
between 2006-2016 presented in (Papakonstantinou-Presvelou et al., 2022). Their study, which 630 
focused on low-level pure ice clouds, demonstrated that higher ICNCs are found over sea ice 631 
compared to open ocean, a finding contrary to previous expectations. To ensure comparability 632 
with Figure 1 of Papakonstantinou-Presvelou et al. (2022), we calculated the median ICNC 633 
statistics focusing on grid points over sea ice with a glaciation fraction exceeding 98% and a sea 634 
ice concentration higher than 50%. These are annotated as ICNCsi in Table 3. The glaciation 635 
fraction was determined by calculating the ratio of modeled IWC to total water content (TWC = 636 
IWC + LWC). 637 

In the glaciated clouds simulated between -10°C and 0°C, the contribution of SIP is 638 
crucial for bringing the modeled ICNCsi closer to the 10-year median observed values (Figure 1 639 
in Papakonstantinou-Presvelou et al., 2022). At these warmer subzero temperatures, both 640 
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ALLSIP and RaFSIP, enhance the median ICNCsi by a factor of up to ∼2 compared to the 641 
CONTROL simulation of WRF during both seasons (Table 3). Note that glaciated conditions 642 
prevent the effect of SIP from manifesting with higher enhancement factors. This is particularly 643 
evident at temperatures below -10°C, where the efficiency of ALLSIP and RaFSIP in producing 644 
SIP particles diminishes. At these temperatures, all three experiments underestimate the observed 645 
median ICNCsi levels (which reach up to ∼3 or 4 L-1) at all latitudes. The missing ice crystal 646 
source in this temperature range may be primarily due to the representation of PIP in the model. 647 

 648 
 649 
Table 3. 
Median ICNC for different latitudinal zones, temperature ranges, and seasons, obtained from 
three different WRF experiments. The cold season values were extracted from September 2019 
to February 2020, while the warm season values were obtained from March to August 2020. The 
values in all four columns represent the results from the CONTROL/ALLSIP/RaFSIP 
experiments. The subscript ICNCsi indicates that the median ICNC is derived for glaciated 
clouds (glaciation fraction > 0.98) from model grid points over the sea-ice (sea-ice concentration 
> 50%). 
 

Latitude 
Temperature 

range (˚C) 

Median ICNC 

cold (L-1) 

Median ICNC 

warm (L-1) 

Median ICNCsi 

cold (L-1) 

Median ICNCsi 

warm (L-1) 

70-

75°N 

[-10,0] 1.9/4.6/4.5 0.2/0.6/0.6 4.0/7.5/7.6 3.2/5.8/5.7 

[-20,-10) 1.5/1.9/1.7 1.2/1.4/1.3 1.4/1.5/1.7 2.5/2.7/2.8 

75-

80°N 

[-10,0] 1.8/4.1/4.2 0.1/0.5/0.6 4.0/6.2/6.5 2.9/5.0/4.9 

[-20,-10) 1.2/1.5/1.4 0.9/1.1/1.1 1.4/1.4/1.5 2.3/2.4/2.5 

> 80°N 
[-10,0] 0.4/1.1/1.3 0.09/0.3/0.5 2.5/3.8/4.1 2.0/4.2/4.1 

[-20,-10) 0.8/0.9/0.8 0.8/1.0/0.9 1.0/1.1/1.2 1.5/1.6/1.7 
 650 
 651 

4.2. Joint probability distributions of simulated cloud properties 652 

Figure 4 illustrates the bivariate joint probability density function (PDF) of the median 653 
ICNCs as a function of temperature and glaciation fraction. This figure aims to provide further 654 
insight into the conditions where the RaFSIP parameterization is expected to perform better. The 655 
statistics were derived using instantaneous 3-hourly results from the CONTROL, ALLSIP, and 656 
RaFSIP sensitivity experiments (Section 2.3), focusing again on the in-cloud conditions 657 
characterized by significant concentrations of ice crystals (ICNC > 10-5 L-1), as well as ice and 658 
liquid masses (IWC, LWC > 10-6 gm-3).  659 
 660 
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4.2.1 Median ice crystal number concentration 661 

Figure 4 reveals that the WRF model, coupled with the RaFSIPv2 parameterization, can 662 
accurately capture the most prominent patterns of the median 2D-binned ICNCs in all four 663 
seasons compared to the ALLSIP simulation with detailed inline microphysics. This is 664 
particularly true for temperatures ranging from -8 to -3 °C and glaciation fraction below ∼25-665 
30% or higher than ∼80%. The turquoise bands in the lower right of the 2D-binned ICNCs 666 
indicate the importance of SIP in relatively warm polar clouds. At these temperatures, 667 
supercooled liquid water prevalent in simulated MPCs enhances riming tendencies (RIMC 668 
and/or RIMR) and facilitates the action of SIP, resulting in modeled ICNCs up to an order of 669 
magnitude higher in the ALLSIP and RaFSIP simulations, compared to the CONTROL 670 
simulation. These findings align with the results of Arctic clouds presented by Sotiropoulou et al. 671 
(2020), which reported a 10-20 fold increase in ice when both HM and BR were considered, with 672 
the effectiveness of BR decreasing in moderately colder clouds (Sotiropoulou, Ickes, et al., 673 
2021). 674 

At higher glaciation fractions (between ∼25-80%) within the same temperature range, we 675 
observe that the RaFSIPv2 simulation tends to overestimate the median ICNCs predicted by 676 
ALLSIP. Indeed, from the normalized histograms of 2D-binned median ICNCs superimposed in 677 
Figure 4, we can also infer that RaFSIPv2 predictions can be up to a factor of 3 higher than the 678 
ALLSIP predictions, especially in the lower ICNC ranges (e.g., Figure 4d and 4h). In these 679 
temperature conditions, only the forestALL and forestBRHM can be activated, with the latter 680 
contributing presumably more due to the expected limited presence of large raindrops, which 681 
prevents the frequent activation of the forestALL model. The permutation importance of 682 
forestBRHM (Figure S7) suggests that RIMC and IWC are the two most important features for 683 
the predictions of this model. If higher SIP rates are associated with higher IWC and, hence, 684 
glaciation fraction, this could explain the slightly overestimated RaFSIPv2 predictions. 685 

At temperatures below ∼ -15 °C, where the relative contribution of PIP starts becoming 686 
more important than SIP (Zhao et al., 2023), all three sensitivity experiments produce similar 687 
ICNC patterns (Figure 4). The vertical zones of constant median ICNCs observed in all three 688 
sensitivity simulations originate from the PIP scheme of WRF being dependent only on 689 
temperature (Section 2.1). Nevertheless, reduced ICNCs are simulated during the summer 690 
months in ALLSIP (Figure 4n) and RaFSIP (Figure 4o) simulations compared to CONTROL, for 691 
clouds formed at temperatures below -18°C and glaciation fractions higher than 40% (upper right 692 
part of Figures 4n and 4o). At such low temperatures, the competition between SIP and PIP may 693 
limit the amount of water available or the distribution of ice crystals throughout the cloud, thus 694 
limiting the ice crystals produced by SIP. 695 

Focusing on the upper right corner of Figure 4, where the temperatures are between -5 696 
and 0°C and the glaciation fraction exceeds 80%, we can observe higher ICNCs simulated by the 697 
CONTROL simulation than the two experiments that include SIP parameterizations, especially 698 
during Winter and Spring. At temperatures higher than -4°C, elevated ICNCs in the CONTROL 699 
experiment can only be explained by ice sedimentation, where precipitating ice particles fall 700 
from higher model grid cells. The implementation of SIP in the model can induce numerous ice 701 
crystals – albeit with smaller sizes – in the overlying colder clouds or colder parts of the same 702 
cloud (Georgakaki et al., 2022; Sotiropoulou et al., 2022). This shift in the ice particle size 703 
distribution leads to smaller ice crystals leading to the reduced sedimentation rate of frozen 704 
hydrometeors observed in the ALLSIP and RaFSIP simulations. This is further supported by the 705 
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RaFSIPv2 predictions (d, h, l, p). The black line represents the one-to-one line, while the grey 720 
dashed lines delimit the area where the ALLSIP values are over or under-estimated by a factor of 721 
3. Statistics are calculated for the 4 simulated seasons: fall (top panel), winter (second panel), 722 
spring (third panel) and summer (bottom panel). 723 

 724 

Despite the lower R2 scores in the horizontally averaged ICNCs (Figure S11), replacing 725 
the RaFSIPv2 parameterization with RaFSIPv1 in the model leads to comparable results when 726 
plotted in the joint temperature-glaciation fraction spectrum (Figure S13). However, the 727 
distribution around the 1:1 line is more spread out, especially in spring and summer (Figure S13j 728 
and S11p versus Figure 4j and 4p). The main difference between the two approaches is in the 729 
very warm subzero temperatures (T>-4°C), where RaFSIPv1 disregards completely the effect of 730 
SIP due to the zero PIP rates. As a result, the upper right part of the RaFSIPv1 ICNC distribution 731 
is more comparable to the one produced by the CONTROL simulation rather than the ALLSIP 732 
simulation (Figure S13). 733 
 734 

4.2.2 Median cloud liquid water content 735 

SIP often causes changes in modeled liquid cloud droplets due to increased number 736 
concentrations of their frozen counterparts (e.g., Georgakaki et al., 2022; Zhao & Liu, 2021). In 737 
addition to direct liquid-to-ice mass transitions caused through the HM and/or DS mechanisms, 738 
the elevated concentrations of secondarily formed ice particles can further deplete the 739 
surrounding liquid phase hydrometeors in MPCs after their initial growth through vapor 740 
diffusion, through the action of the Wegener–Bergeron–Findeisen (WBF) or the riming 741 
processes. It is therefore essential to investigate how SIP affects the joint PDF of LWC in the 742 
ALLSIP simulation and whether the RaFSIP simulation can reproduce the results.  743 

From the complex patterns of LWC produced (Figure 5), we can infer the non-linearity of 744 
the microphysical interactions occurring in mixed-phase and ice clouds. The competition 745 
between the two cloud phases is highlighted by the decreasing cloud LWC as the glaciation 746 
fraction increases at a given temperature. The dark blue shades confined in the lower part of 747 
Figure5, indicate a persistent supercooled liquid layer present in all three sensitivity simulations 748 
at temperatures below ∼ -4°C with a degree of glaciation below 20% in all seasons except 749 
summer, where in the CONTROL simulation it extends up to almost 40% (Figure 5m). This 750 
remark can be consistent with the typical structure of high-latitude MPCs, comprising single or 751 
multiple stratiform layers of supercooled liquid water from which ice crystals form and 752 
precipitate (e.g., Morrison et al., 2012; Shupe, 2011). Including SIP in the simulations slightly 753 
restricts the extent of this liquid layer to lower glaciation fractions in both ALLSIP and RaFSIP, 754 
most notably during the summer months. 755 

At higher temperatures (>-4°C) and glaciation fraction (>80%), the CONTROL 756 
simulation predicts higher LWC values in the region with the elevated ICNCs caused by more 757 
frequent ice seeding events (i.e., upper right part of Figure 4a). The presence of more massive 758 
precipitating ice particles, indicated by higher IWC values in this region (Figure S12a, e, I, m), 759 
sediment quickly  and constrains their ability to compete with supercooled liquid water for the 760 
available water vapor. In the same region, the ALLSIP and RaFSIP simulations predict lower 761 
contribution from both the liquid (Figure 5) and the ice hydrometeors (Figure 4 and S12). 762 
 763 
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temperatures around -8°C and glaciation fraction exceeding 60% (Figure 5a, i). However, in the 777 
ALLSIP (Figure 5b, j) and RaFSIP (Figure 5c, k) simulations, such low LWC values can be 778 
attained in clouds with a degree of glaciation as low as 40%. The regions of significant ice 779 
enhancement in the ALLSIP and RaFSIP simulations (i.e., turquoise bands in Figure 4) do not 780 
overlap with the regions of decreased LWC in Figure 5. This can be explained by the time 781 
needed for small secondary ice particles to grow first through vapor diffusion until the vapor 782 
pressure drops below saturation with respect to liquid water. As the glaciation fraction increases, 783 
they can gain mass more efficiently at the expense of the surrounding evaporating cloud droplets 784 
(WBF) or through their collection and subsequent freezing (i.e., riming). Both simulations 785 
accounting for SIP show remarkable agreement in the location of the most significant ice 786 
enhancement (Figure 4), followed by depletion of the mass of supercooled water (Figure 5). 787 

At temperatures ≲-15°C, PIP can contribute significantly to the total ice crystal 788 
production rates, leading to a further decrease in LWC through heterogeneous freezing. The 789 
combination of heterogeneous freezing, WBF, riming and SIP likely controls the complex LWC 790 
patterns observed between -20°C and -4°C. Despite the complexity of the simulated system, the 791 
RaFSIP predictions align closely with the 1:1 line in the produced normalized histograms, 792 
particularly during fall and winter (Figure 5d and 5h), indicating excellent agreement with the 793 
ALLSIP simulation. These findings suggest that the RaFSIP parameterization can accurately 794 
capture the cloud phase partitioning produced by the ALLSIP simulation, with an uncertainty of 795 
up to a factor of 3. The LWC results from the RaFSIPv1 parameterization (Figure S14) 796 
demonstrate that the use of the IEF for parameterizing the effects of SIP also has sufficient 797 
predictive skill in WRF. The main difference lies again at warmer temperatures, where the 798 
RaFSIPv1 results in slightly overestimated LWC compared to the ALLSIP predictions, 799 
especially during fall and winter. 800 
 801 

4.3. Cloud radiative forcing at the surface 802 

The preceding discussion illustrates how SIP can significantly alter the number 803 
concentration and size distribution of ice and liquid particles in polar MPCs. Such changes in the 804 
macro- and microphysical properties of clouds are expected to impact the two most critical cloud 805 
feedbacks associated with the polar regions: the cloud optical depth and the cloud-sea-ice 806 
feedbacks (e.g., Goosse et al., 2018). For instance, changes in the albedo of MPCs resulting from 807 
an increase in the amount of small liquid droplets contained in them can lead to enhanced 808 
shortwave radiation reflected back to space and reduced warming at the surface (Murray et al., 809 
2021; Tan & Storelvmo, 2019). During the polar night, however, an increase in low-level cloud 810 
coverage has been found to increase the longwave radiation emitted to the surface that is trapped 811 
as heat due to the stable stratification conditions in the Arctic, ultimately resulting in surface 812 
warming (Ebell et al., 2020; Kay et al., 2016). In this section, we aim to evaluate the 813 
performance of the RaFSIP parameterization concerning the anomalies observed in the simulated 814 
cloud radiative forcing at the surface (CRFsurf) with respect to the ALLSIP simulation (ΔCRFsurf, 815 
Figure 6). The calculations of CRFsurf and ΔCRFsurf are elaborated in supporting information of  816 
Young et al. (2019), which also accounts for additional modifications in the shortwave fluxes to 817 
account for the highly reflective Arctic surface (Vavrus, 2006). 818 

Figure 6 illustrates the annual cycle of the cloud impact on the surface radiative energy 819 
budget, with blue (red) shades indicating cloud-induced cooling (warming). The polar clouds 820 
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During summer, when ice enhancement from SIP is the strongest (Table 3), the largest 850 
ΔCRFsurf values are largely observed over the sea-ice and ocean grid cells at latitudes higher than 851 
70°N (Figure 6h). At this time, the RaFSIPv2 predictions of the ice (Figure 4p) and liquid 852 
(Figure 5p) cloud phase partitioning can be biased by up to a factor of 3, leading to an 853 
underestimation of the liquid-dominating clouds compared to ALLSIP, and consequently, an 854 
excess of up to ∼2.5 Wm-2 of shortwave radiation at the surface. However, in the continental and 855 
ocean regions of lower latitudes, mostly negative CRFsurf biases are observed, indicating that 856 
RaFSIPv2 is lacking some ICNCs compared to ALLSIP there. A similar ΔCRFsurf pattern 857 
characterizes spring (Figure 6g), with the colors shifted towards lighter tones, indicating 858 
relatively smaller radiative errors (between -1.5 and 1.5 Wm-2). Fall exhibits a cooling effect 859 
(down to -1 Wm-2), with some localized areas of warming (∼1 Wm-2) spread around the WRF 860 
domain (Figure 6e), while winter is the season with the minimum SIP contribution and the 861 
smallest cloud radiative biases, confined mostly to the bottom part of the model domain (Figure 862 
6f). 863 

Figure S15 displays the outcome of the WRF simulations using RaFSIPv1 as a substitute 864 
for the RaFSIPv2 parameterization. The obtained ΔCRFsurf ranges from -3 to 3 Wm-2, indicating 865 
slightly higher radiative biases in all seasons compared to the results shown in Figure 6. The 866 
differences between the two SIP parameterizations are most significant in the warm season 867 
(Figure S15g and h), where all the positive biases resulting from RaFSIPv2 are replaced by 868 
negative ones. The most considerable negative bias appears in the sea area to the east of 869 
Greenland (latitudes between 70-80°N), where ∼3 Wm-2 less shortwave radiation reaches the 870 
surface during summer (Figure S15h) compared to the ALLSIP simulation, indicating the 871 
tendency of RaFSIPv1 to overestimate the amount of liquid hydrometeors in the summer MPCs. 872 
Its reduced predictive ability to capture all the enhanced SIP events present in the ALLSIP 873 
simulation stems mainly from the fact that it is limited by the presence of PIP, and hence it 874 
cannot be activated for the whole range of conditions that would favor ice multiplication. 875 
 876 

5 Summary and outlook 877 

This study introduces a new ML-based framework aimed at representing the impact of 878 
ice multiplication in stratiform MPCs within large-scale models. The new RF parameterization, 879 
referred to as RaFSIP, is developed using two different approaches to describe the effect of SIP 880 
at temperatures as low as -25°C. The first approach indirectly describes SIP through the use of an 881 
ice multiplication factor applied to the primary ice production rates, while the second approach 882 
directly predicts the SIP tendencies, providing a more explicit representation of the underlying 883 
physical processes. RaFSIP is trained on two years of 10-km horizontal resolution WRF 884 
simulations over the pan-Arctic region. We evaluate the parameterization both offline and online, 885 
and demonstrate that RaFSIP can accurately predict tendencies of unresolved physics in the 50-886 
km horizontal resolution domain, comparable to the conventional SIP schemes. RaFSIP skillfully 887 
captures how SIP affects the glaciation state and evolution of polar stratiform MPCs, predicting 888 
their ice- and liquid-phase partitioning with an uncertainty of less than a factor of 3. Importantly, 889 
RaFSIP exhibits only minor radiative biases, not exceeding ±3 Wm-2 at the climatologically-890 
sensitive Arctic surface. This implies that biases in the predicted SIPrate or IEF (depending on the 891 
version of RaFSIP used) do not translate into significant errors in simulated cloud microphysical 892 
properties and cloud radiative forcing. 893 
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The intrinsic property of RF algorithms to make conservative predictions by averaging 894 
over the predictions of the individual decision trees allowed the coupled WRF-RaFSIP scheme to 895 
run efficiently and without instabilities for a year. The key advantage of our approach is that SIP 896 
can be represented using inputs, such as temperature, ice- and liquid water content, riming 897 
tendencies, and relative humidity with respect to ice, which are commonly predicted by most 898 
models. This facilitates its integration in host models with horizontal grid spacings comparable to 899 
or larger than the 10-km resolution grid used for training RaFSIP. This is crucial, as SIP can 900 
significantly impact cloud evolution, rapidly glaciating them, altering precipitation and 901 
eventually climate. 902 

The incorporation of the RaFSIP framework in the microphysics scheme of 3 GCMs, 903 
namely ECHAM-HAM, NorESM2, and EC-Earth, participating in the CMIP assessments is one 904 
of the undergoing studies we are currently addressing (Ickes et al., 2023; Costa-Surós et al., 905 
2023). The modular nature of the new SIP parameterization allows for seamless integration with 906 
the dynamical core of each GCM model, provided that the input features are well located inside 907 
the stratiform cloud microphysics routine. Preliminary results indicate that utilizing grid-box 908 
averaged atmospheric variables predicted by GCMs as inputs to the RaFSIP scheme, leads to 909 
computationally efficient simulations without numerical instabilities or explosive SIP (not 910 
shown). This model intercomparison project will evaluate the robustness of our approach as well 911 
as any potential limitations. 912 

As the RaFSIP scheme is trained on a wide range of stratiform conditions where SIP is 913 
likely to occur, it can effectively capture the underlying mechanisms behind ice multiplication in 914 
any type of single or multi-layered clouds in the polar regions. The limitations for our work stem 915 
mostly from the fact that RaFSIP is trained based on regional simulations, and it therefore may 916 
not be applicable for the entire globe (e.g., tropical marine or deep convective clouds). To 917 
address this, the training dataset can be expanded by incorporating simulation results from 918 
various locations worldwide where SIP is recognized (Hoose, 2022). Additionally, the dataset 919 
can be augmented to include the description of other SIP processes, such as fragmentation during 920 
ice particle sublimation under ice subsaturated cloudy conditions (e.g., Deshmukh et al., 2022). 921 
Our study demonstrates that by leveraging a relatively small number of grid points from the 922 
regional climate modeling framework, the training dataset can effectively encompass a broader 923 
range of cases not covered in our initial analysis.  924 

Finally, this study highlights the significant potential of ML techniques and high-925 
resolution data for the development of computationally efficient and accurate subgrid-scale 926 
parameterizations of cloud microphysical processes, addressing the current gaps and limitations 927 
in large-scale models. By integrating physics-guided ML algorithms and utilizing feature 928 
importance metrics, we increase the transparency of the inner workings of these algorithms, even 929 
if they are initially considered uninterpretable (Beucler et al., 2021; McGovern et al., 2019). This 930 
is a promising pathway towards model simplification and improved process representation 931 
within GCMs. Moving forward, further exploration and implementation of such techniques can 932 
contribute to advancements in GCMs, ultimately leading to more robust and comprehensive 933 
climate simulations. 934 
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