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Frequency Modulated Continuous Wave (FMCW) radar is a low power, compact mechanism which can be used
for non-destructive health monitoring and inspection of surface and subsurface materials. It enables the detection of
defects that are internal to the analyzed structural element and not visible from the surface. The key benefits of this
technology are that it offers a non-contact monitoring tool at reduced costs, risk and duration of inspection. Although
a recent study proposed the use of FMCW radar sensing for composite material characterization, it has not yet been
applied to the context of health monitoring. In this work, we propose to study the feasibility of FMCW radar to detect
anomalies in monolithic surfaces. We propose to consider the analytic representation of the difference between the
emitted signal and the incident wave to limit the interferences between the echo delay and gain difference between
both signals. From a methodological perspective, we propose a complex-valued-AutoEncoder (AE) with a new
activation function. We compare the proposed methodology to other state of the art methods.
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1. Industrial context

Inspection during the manufacturing process is

essential to ensure that composite materials are

fabricated consistently. As a result, there is a need

for sensing technologies that can detect anomalies

in this high-quality material. Although there are

various methods of inspection currently available

or being developed for structural health monitor-

ing in composites, embedding sensors during the

curing process can potentially affect the curing

process. Current research trends suggest a prefer-

ence for non-contact sensing, such as Frequency

Modulated Continuous Wave (FMCW) radar Tang

et al. (2021). The aim of this study is to enhance

the quality assurance of the manufacturing process

by utilizing FMCW radar as a non-destructive

tool. Thus, we propose a new anomaly detection

methodology based on complex-valued residual

AE applied to the analytic FMCW signal.

2. Method

We consider the experiment conducted in Tang

et al. (2021). The raw data obtained from the

microwave sensor consists of 1501 feature points

acquired in 0.3 seconds in the time domain. This

occur across a frequency sweep from 24-25-5

GHz. The signal output from the FMCW sensor

is the Intermediate Frequency (IF), which is the

difference between the emitted signal and the tar-

get interaction with the incident wave. We propose

the analytical representation of the IF. The goal
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is to decompose the effect of the delay and gain

between the emitted and incident wave into their

phase and amplitude components, respectively,

within the analytic representation. The analytic

representation is computed as xH = x+ iI[x],
where I[•] is the Hilbert transform.

To perform anomaly detection based on the IF

signals, we use an AE that is trained to reconstruct

the healthy input only Chao et al. (2021). In the

applciation phase, a decision on a newly measured

sample is made based on the norm of its residual,

which is the difference between the input and the

output of the AE. An anomalous sample contains

specific features that make it different from the

healthy distribution, so it will not be reconstructed

correctly by the AE and will have a high residual

norm. The proposed AE contains an encoding

network with two dense layers with 64 nodes, plus

one of 32 nodes, while the decoder consists of

two dense layers with 64 nodes. ReLU activation

functions (R(x) = max(0, x)) are used after each

layer, except the last one.

Regarding the analytic representation of com-

plex values, denoted by xH, a complex-valued

AE is used. Considering the polar represen-

tation of a complex number z = |z|eiφz ,

where φz is the phase value, the two most

common extensions of the ReLU layer for

complex number are Bassey et al. (2021)

CR1(z) = R(|z|cos(φz)) + iR(|z|sin(φz))

and CR2(z) = R(|z| − b)eiφz , where b is a learn-

able parameter. In this work, we propose a new

activation function called Exponential Amplitude

Decay (EAD) and denoted by:

EAD(z) = (1− e−b|z|2)eiφz (1)

In addition to being differentiable, the activation

function utilizes the assumed Rayleigh distribu-

tion of amplitude values in order to restrict the

range of amplitude values to the unit circle.

3. Results

The 530 healthy samples are divided into three

sets: training, validation and test, with a ratio of

[0.6, 0.2, 0.2]. Only the test data set contains the

362 abnormal samples. For more details on the

experiment conducted please refer to Tang et al.

(2021). In order to establish the threshold that

distinguishes between healthy and abnormal sam-

ples, based on the residual magnitude, we select

the uppermost value, such that 95% of the samples

in the validation dataset are considered healthy.

In Table. 1, complex-valued AE with CR1,

CR2 and the proposed EAD activation function,

as well as the real-valued AE using the IF sig-

nal, are compared. Additionally, we consider other

unsupervised anomaly detection methods like K-

Nearest Neighbors using (KNN), isolation For-

est (iForest), DeepSVDD, Local Outlier Factor

(LOF). The scores used for comparison are the

average F1 score, accuracy and Area Under the

Curves (AUC) over a 5-fold cross validation ex-

periment, where our proposed approach outper-

formed the other methods.

Table 1. Anomaly detection performances of differ-

ent methods. (Acc.= Accuracy score).

Method F1 Acc. AUC

cAE EAD 0.94 0.91 0.978
cAE CR1 0.93 0.90 0.973
cAE CR2 0.88 0.88 0.96

AE 0.91 0.89 0.970
KNN 0.90 0.85 0.972
LOF 0.90 0.86 0.970

iForest 0.70 0.64 0.90
SVDD 0.76 0.82 0.90

DeepSVDD 0.72 0.66 0.81
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