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ABSTRACT

An important initial step in fault detection for complex indus-
trial systems is gaining an understanding of their health con-
dition. Subsequently, continuous monitoring of this health
condition becomes crucial to observe its evolution, track
changes over time, and isolate faults. As faults are typically
rare occurrences, it is essential to perform this monitoring
in an unsupervised manner. Various approaches have been
proposed not only to detect faults in an unsupervised manner
but also to distinguish between different potential fault types.
In this study, we perform a comprehensive comparison be-
tween two residual-based approaches: autoencoders, and the
input-output models that establish a mapping between oper-
ating conditions and sensor readings. We explore the sensor-
wise residuals and aggregated residuals for the entire sys-
tem in both methods. The performance evaluation focuses on
three tasks: health indicator construction, fault detection, and
health indicator interpretation. To perform the comparison,
we utilize the Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) dynamical model, specifically a sub-
set of the turbofan engine dataset containing three different
fault types. All models are trained exclusively on healthy
data. Fault detection is achieved by applying a threshold that
is determined based on the healthy condition. The detection
results reveal that both models are capable of detecting faults
with an average delay of around 20 cycles and maintain a
low false positive rate. While the fault detection performance
is similar for both models, the input-output model provides
better interpretability regarding potential fault types and the
possible faulty components.

Chi-Ching Hsu et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Determining the health state of complex industrial systems,
such as turbofan engines, under different operating conditions
has become feasible due to the abundance of condition mon-
itoring data collected by diverse sensors. A health state is
usually described by a health indicator or a condition indica-
tor, which is a value that reflects system health conditions and
health status in a predictable way as a system degrades (Lei
et al., 2018). In complex systems, inferring these indicators
and monitoring their evolution over time provide a more com-
prehensive understanding of the system’s health and enable
effective condition monitoring.

Typically, a distinction is made between condition indica-
tors and health indicators. A condition indicator refers to a
specific feature within system data that exhibits predictable
changes as the system undergoes degradation or operates in
different operational modes (Fink et al., 2020). It encom-
passes any feature that proves valuable in differentiating nor-
mal operation from faulty or any deviation from normal op-
eration. Health indicators, in contrast, integrate multiple con-
dition indicators into a single value, providing the end user
with a comprehensive health status of the component.

Different approaches have been proposed to extract and learn
the condition and health indicators of a system. These
approaches can be categorised into three main categories:
feature-based, one-class classification-based (OCC-based),
and residual-based methods. Feature-based methods primar-
ily focus on condition indicators. These methods identify rel-
evant features that exhibit predictable changes as the system
deteriorates, and they detect early-stage faults by directly ap-
plying the threshold method to the feature values. For in-
stance, the relative root mean square (RMS) value of the ac-
celeration signals from bearings serves as an indicator of wear
evolution (Pan, Meng, Chen, Gao, & Shi, 2020). While this
approach is straightforward, it requires expert knowledge and
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can be sensitive to varying operating conditions (Saufi, Ah-
mad, Leong, & Lim, 2019).

While the feature-based methods for extracting condition in-
dicators focus on expert-based determination of one or sev-
eral features that capture the condition evolution of differ-
ent components, OCC-based methods focus on learning a
global indicator that represents the health state of the sys-
tems (Michau, Hu, Palmé, & Fink, 2020). OCC-based meth-
ods are particularly suitable for setups of missing faulty sam-
ples during training. They are trained on data from one class
(usually healthy data). While OCC outputs can provide bi-
nary health information (healthy or unhealthy), measuring the
distance to the healthy data can effectively infer the evolu-
tion of the degradation. This distance can be interpreted as a
health indicator, which can also be derived for subsystems by
considering a subset of condition monitoring signals related
to the specific subsystem. It can then be utilized to monitor
the evolution of health conditions, detect anomalies, or dis-
tinguish between different severity levels of faults (Michau,
Palmé, & Fink, 2017).

The third direction encompasses residual-based methods,
which extract health indicators based on the residuals. The
residuals are the differences between the measured values
and the predicted outputs, serving as indicators of any devi-
ation from the healthy training dataset (Arias Chao, Kulka-
rni, Goebel, & Fink, 2019). These methods can be cate-
gorised into two main types: autoencoders and input-output
models. Autoencoders are trained to reconstruct their own
inputs, whereas input-output models establish mappings be-
tween operating conditions and sensor readings. For exam-
ple, in the case of a turbofan engine, operating conditions
are used as inputs to the full authority digital electronic con-
trol (FADEC) to derive monitored signals as health indica-
tors (Rausch, Goebel, Eklund, & Brunell, 2007). Both, input-
output models and autoencoders are typically trained solely
on healthy data and, as a result, learn the healthy data distri-
bution. Consequently, when presented with anomalous sam-
ples stemming from a different data distribution, they gener-
ate significant residuals.

In residual-based methods, there are various approaches to
calculating residuals, particularly for aggregating the residu-
als of multivariate condition monitoring signals. One of the
most commonly used methods for aggregating residuals is to
compute their sum, offering a comprehensive representation
of the overall global health condition (Guo, Yu, Duan, Gao, &
Zhang, 2022). Another approach to utilizing the residuals is
to bypass their aggregation and instead use them individually.
By analyzing the residuals individually, it becomes possible
to identify the specific signals most affected by each fault
type (Reddy, Sarkar, Venugopalan, & Giering, 2016; Michau
et al., 2020). This approach enables fault segmentation and

fault diagnostics, as different faults tend to impact distinct
sets of signals.

However, since residual-based models are trained solely on
healthy data and residuals are calculated based on the distance
to the training data distribution, they are unable to differenti-
ate between a fault and a new operating condition. In other
words, high residuals may not necessarily indicate deteriorat-
ing health conditions of a system but rather the presence of
a novel operating condition. This presents a significant chal-
lenge in accurately inferring the health state or conducting
further downstream tasks, such as fault detection and fault
segmentation.

While several residual-based approaches have been applied
to different case studies (Arias Chao et al., 2019; Lövberg,
2021; Darrah, Lövberg, Frank, Biswas, & Quinones-Gruiero,
2022), to the best of our knowledge, their performances have
not been compared. In this study, we compare two residual-
based methods: autoencoders and input-output models. We
use a simulated turbofan dataset with three different fault en-
gine components exhibiting degradation behavior. We eval-
uate their performance by first constructing the health condi-
tion using two types of residuals as health indicators. Sub-
sequently, we perform fault detection and interpret the con-
structed health indicators.

2. METHOD

We present in this section the overall proposed testing frame-
work as summarised in Figure 1. First, in Section 2.1 we
present two strategies for calculating residuals, enabling us
to identify instances when the data distribution deviates from
the healthy distribution. Second, we describe how the resid-
uals can be used to construct health indicators in Section 2.2.
We show in Section 2.3 how we infer the fault initiation from
the constructed health indicators.

2.1. Residual Calculating Models

Autoencoder Model (AE Model)

One commonly used residual-based models is the autoen-
coder. It aims to encode inputs into latent space with the
encoder Eθe(•) while preserving important information, and
then decode it back to its original form using the decoder
Dθd(•). Here, θe and θd represent the model parameters
of the encoder and decoder, respectively. In our case, we
consider a multivariate dataset containing several sensors
zt ∈ RNz , where t is the time index and Nz is the number
of sensors. To learn the distribution of the healthy samples,
the autoencoder is trained exclusively on samples captured
during the early stages of the system’s lifecycle, denoted as
t ∈ {1, ..., TH}. In this period, we assume that the system is
in a healthy state. We denote by rae the residual of the AE
model, which represents the difference between the output
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Figure 1. Overall architecture of the testing framework. The framework includes residual calculating models, health indi-
cator construction, and fault detection algorithm. We assess the performances of each health indicators based on detection
performances, data visualization and the interpretive capability associated with the machine’s condition.

and input signal. Mathematically, it can be written as:

rAE
t = zt −Dθd(Eθe(zt)). (1)

By training the autoencoder, we aim to find the parameters
θe and θd that minimise the residuals in terms of mean square
error. With ||• ||F the Frobenius norm, the optimisation prob-
lem of the autoencoder model can be written as:

argmin
θe,θd

1

TH

TH∑
t=1

|| rAE
t ||F . (2)

Operating-conditions-based Model (OC Model)

In addition to the autoencoders, we also evaluate an input-
output method that maps the operating conditions to the sen-
sor readings (Lövberg, 2021; Darrah et al., 2022). We refer
to this model as the operating-conditions-based model (OC
Model). The OC model is based on operating condition de-
scriptors that characterize the state of a system. For instance,
in an industrial bearing, these descriptors include rotating
speed and static loading. For a turbofan engine, the consid-
ered state descriptors include altitude, flight Mach number,
throttle-resolver angle, and the total temperature at the engine
fan inlet. The multivariate time series zt can be subdivided
into operating condition descriptors wt ∈ RNw and sensor

readings xt ∈ RNx . Here, Nw and Nx represent the num-
ber of operating condition descriptors and sensor readings,
respectively, and Nz = Nw + Nx. The OC model, denoted
as Mθm(•), aims to establish a mapping between the operat-
ing conditions and sensor readings by learning the functional
relationship between the two. The OC Model is expected to
be more robust to variations in operating conditions compared
to the autoencoders where the operating condition descriptors
are part of the reconstructed signals. We define the residual
of the OC Model as the difference between the estimated and
real sensor readings such as:

rOC
t = xt −Mθm(wt), (3)

The OC model is trained by finding the parameters θm
that minimise the residuals. The corresponding optimisation
problem can be written as follows:

argmin
θm

1

TH

TH∑
t=1

|| rOC
t ||F . (4)

(5)

2.2. Health Indicators

In this work, we consider the residuals defined in Equation 1
and Equation 3 as a basis for computing the health indica-
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tors. We assume that the training dataset is representative of
all the operating conditions. Consequently, changes in op-
erating conditions will not be detected as anomalies and an
increase in the magnitude of the residuals will be associated
with faulty system conditions.

We first consider two aggregated health indicators, denoted as
hA-AE and hA-OC, which represent the norm of the residuals
for the AE and OC models, respectively. These indicators
combine the residual information from each sensor and can
be written at any time t as follows:

hA-AE
t =|| rAE

t ||F , (6)

hA-OC
t =|| rOC

t ||F . (7)

We also propose two sensor-wise multivariate health indica-
tors, denoted as hS-AE and hS-OC. These indicators corre-
spond to the absolute residuals of the AE and OC models, re-
spectively. By considering sensor-wise information, we aim
to have indicators that are easier to interpret and more precise
for the fault detection task. Using the absolute value operator
| • |, the health indicators hS-AE and hS-OC can be written at
any time t and for sensor i as follows:

hS-AE
it =| rAE

it |, (8)

hS-OC
it =| rOC

it | . (9)

2.3. Fault Detection

We propose to use a fault detection algorithm based on a
threshold determined by the reconstruction performance of
the models on the healthy validation dataset. Considering any
of the previously presented health indicators h, we define the
mean µi and standard deviation σi characterising the healthy
condition for sensor i as follows:

µi =
1

TH

TH∑
t=1

hit, (10)

σ2
i =

1

TH

TH∑
t=1

(hit − µi)
2. (11)

Note that for an aggregated health indicator, there is only one
set of statistics µ and σ, that needs to be computed. Thus, we
can define the threshold τi for sensor i as:

τi = µi + 3σi. (12)

We also divide the time index into C cycles. A cycle is de-
noted as nc, and it corresponds to a series of time indices
t ∈ {T0, T0 + 1, ..., Tc−1 − 1} that is a segment of the time
samples. A cycle can correspond to a full rotation of a bearing
or the flight duration of a turbofan engine. The average health
indicator during cycle nc for sensor i is denoted as h̄i(nc) and

is calculated as follows:

h̄i(nc) =
1

Tc+1 − Tc

Tc+1∑
t=Tc

hit (13)

To avoid false alarms, we introduce the waiting cycle number
Nwait. The fault is detected and the alarm is raised only when,
for at least one sensor i, the corresponding averaged health
indicator h̄i(nc) is larger than the threshold τi for Nwait con-
secutive cycles. For convenience, we denote n0 as the cycle
where the fault is detected and the alarm is raised.

3. CASE STUDY

Figure 2. C-MAPSS model schematic representation with
sensor position within the engine, adapted from (Arias Chao
et al., 2021)

The dataset we used to evaluate the effectiveness of our
proposed approach is the N-CMAPSS (Arias Chao et al.,
2021). This dataset was synthetically generated from the
Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) dynamical model. The N-CMAPSS dataset
incorporates real flight operating conditions recorded from
commercial jets as inputs to the simulation model. It consists
of 14 sensor readings x, which are shown in Figure 2 with six
main components: fan, low pressure compressor (LPC), high
pressure compressor (HPC), low pressure turbine (LPT), high
pressure turbine (HPT), and burner (Frederick, DeCastro, &
Litt, 2007; Arias Chao et al., 2021). Faults are artificially in-
troduced in simulation during the flights. In addition to the
sensor readings, the dataset also provides four operating con-
dition descriptors w which describes the state of the flight.
Figure 3 presents an instance of a unit for one flight cycle, il-
lustrating these four descriptors. While certain research stud-
ies incorporate two additional auxiliary descriptors, namely
flight class and positional variable (Lövberg, 2021; Darrah et
al., 2022), we have chosen to exclusively utilize the original
four operating condition descriptors. The descriptions of the
sensor reading x and the operating condition descriptors w
are presented in Table 1.

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

The entire dataset is partitioned into multiple sub-datasets,
each comprising run-to-failure trajectories of several units af-
fected by distinct fault types. In this work, we focus on sub-
datasets DS04, DS05, and DS07. These sub-datasets are cho-
sen because their units are impacted by fault types that affect
only a single component, rendering them well-suited for eval-
uating fault segmentation performance. Other subsets con-
tain units affected by fault types that involve multiple compo-
nents. Specifically, the fault component for DS04 is the fan,
for DS05, it is the HPC and for DS07, it is the LPT. Each
sub-dataset contains 10 turbofan engines with the same fault
types.

# Symbol Description Units
sensor readings x

1 T24 Total temperature at LPC outlet ◦R
2 T30 Total temperature at HPC outlet ◦R
3 T48 Total temperature at HPT outlet ◦R
4 T50 Total temperature at LPT outlet ◦R
5 P15 Total pressure in bypass-duct psia
6 P2 Total pressure at fan inlet psia
7 P21 Total pressure at fan outlet psia
8 P24 Total pressure at LPC outlet psia
9 Ps30 Static pressure at HPC outlet psia
10 P40 Total pressure at burner outlet psia
11 P50 Total pressure at LPT outlet psia
12 Nf Physical fan speed rpm
13 Nc Physical core speed rpm
14 Wf Fuel flow pps

operating condition descriptors w
15 alt altitude ft
16 XM Mach number -
17 TRA throttle-resolver angle %
18 T2 total temperature at the fan inlet ◦R

Table 1. Sensor readings x and operating condition descrip-
tors w in the N-CMAPSS dataset with its description and cor-
responding units

3.1. Pre-processing

All sensors undergo a downsampling process by a factor of
10 to reduce data size and computational costs. Each sensor
reading and each descriptor are standardised to have a zero
mean and unit standard deviation. This standardisation pro-
cess is carried out on the training set and the resulting pa-
rameters are then applied to the test and validation sets. The
training, validation, and test setup is explained in Section 3.3.
For this study, we solely consider the cruising phase of the
flight as it exhibits a more stable behavior in comparison to
the take-off or landing phases. The cruising phase is defined
when the normalised flight altitude exceeds 0.85. Normalised
flight altitude is calculated by dividing all altitude values by
the highest altitude within this cycle. The fault detection wait-
ing cycle Nwait is fixed at 3 cycles.

Figure 3. Example of operating condition descriptors w for
the first cycle of unit 1 in DS04 including altitude , flight
Mach number, throttle-resolver angle, and total temperature
at the fan inlet, downsampled by a factor of 10

3.2. Applied Neural Network Architectures

For the OC model, we use two 128-neuron layers. For the
AE model, we consider three hidden layers with 128-8-128
neurons each. All activation functions used in the models are
rectified linear units (ReLU), except for the final layer of both
models, which employ a linear activation function.

3.3. Training Setup

The training was performed for 70 epochs with a batch size
of 64, an early stopping waiting epoch of 10, and using
Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9 and
β2 = 0.999, learning rate of 0.001. We arbitrarily selected
the first 16 cycles of each unit to be the healthy data for train-
ing. The models are trained using healthy data from all 30
units from DS04, DS05, and DS07. The remaining cycles
are then assigned to the test set for evaluation. Within the
training set, we randomly select 15% as a validation set for
deciding an early-stopping training epoch. For each setting,
we train the models 5 times with the validation set randomly
split. And the results are presented as the average over the 5
realisations.

3.4. Evaluation Metrics

To assess the fault detection results of a single engine or unit
u, we consider the detection delay du that can be computed as
the difference between the ground truth occurring fault cycle
ntrue and the cycle that raises the alarm n0. It is written as:
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du = ntrue − n0 (14)

In case the detection delay is negative (du < 0), it corre-
sponds to a false positive alarm. An effective detection algo-
rithm should avoid generating false positive alarms, as they
lead to the unnecessary consumption of resources. As a sec-
ond metric to evaluate the fault detection algorithm, we pro-
pose the false positive rate (FPR). FPR corresponds to the
number of units with negative detection relative to all units.

Additionally, the silhouette score (Rousseeuw, 1987) is ap-
plied to evaluate the clustering results for fault segmentation.
The score measures the similarity of a sample to its own clus-
ter and other clusters. It is calculated for a sample k using
the mean intra-cluster distance dintra,k and the mean nearest-
cluster distance dnearest,k and defined as follows:

sk =
dnearest,k − dintra,k

max(dintra,k,dnearest,k)
. (15)

The silhouette score is 1 if the clusters are well separated, 0 if
they are overlapped, and -1 if at least one cluster is similar to
the others. We take the mean of the scores over all samples.

4. RESULTS

4.1. Health Indicators

Figure 4. Health indicators calculated from aggregated resid-
uals hA obtained from the OC and AE models: hA-OC and
hA-AE for DS07 unit 7 (top). Health indicators, aggregated
and sensor-wise residuals: hA-OC and hS-OC obtained from
the OC model for the same unit (bottom). The vertical black
line indicates the fault initiation at cycle 24.

The aggregated health indicators hA obtained from both
models hA-OC and hA-AE for DS07 unit 7 are shown at the

top of Figure 4. This unit is randomly selected for visualiza-
tion purposes. The fault occurs at cycle 24 and is detected
when the fault detection algorithm is applied to hA-OC at cy-
cle 40 and hA-AE at cycle 52. Both health indicators remain
constant for approximately 10 to 15 cycles even after the fault
occurs. This could be because the fault initially starts with
mild severity, but as time progresses, it deteriorates and the
health indicator increases at a faster rate. The bottom of Fig-
ure 4 displays both OC model health indicators hA-OC and
hS-OC. The sensor-wise residuals hS-OC exhibit different
degradation rates for different sensors. Furthermore, some
trajectories show exponential behavior, increasing faster than
the aggregated hA-OC health indicator. This indicates that
specific sensors exhibit the fault behavior before others.

4.2. Fault Detection Performance

We evaluate the fault detection performance using the pro-
posed fault detection algorithm on the proposed health in-
dicators. The detection delay du of each unit, the average
detection delay of each model, and FPR are provided in Ta-
ble 2. On average, the aggregated health indicators hA raise
an alarm 24.2 cycles and 33.4 cycles after fault initiation for
the OC and AE models, respectively. In this case, the FPR
is null, indicating that these indicators are robust against false
alarms. However, no faults are detected for unit 3 of the DS04
dataset. The sensor-wise health indicators hS raise alarms at
earlier cycles, with an average detection at 15.5 cycles for
the OC model and 17.3 cycles for the AE model. The de-
tection occurs earlier than in the aggregated health indicators,
primarily due to specific sensors that exhibit faulty behavior
first. However, the sensor-wise health indicators are more
sensitive to false alarms, as the FPR is not null.

4.3. Sensor-wise Health Indicator Visualization

We visualize the normalised sensor-wise health indicator of
each unit in low-dimensional space using the first two prin-
cipal components (PC1 and PC2) from Principal Component
Analysis (PCA) in Figure 6. The visualization is performed
at 10 cycles after the fault is detected (n0 +10). The value of
10 cycles is chosen to strike a balance, avoiding reaching the
end-of-life while ensuring that the fault behavior is exhibited
by multiple sensors, rather than just one. The colors in the vi-
sualization are assigned based on the ground-truth fault type,
which is not available in reality. In the left figure representing
the OC model, units with different fault types form distinct
clusters. However, in the case of the AE model, the faults are
mixed, and the clusters do not align with specific fault types.
As an alternative to the sensor-wise health indicator, we also
propose considering the visualization of the output from the
embedding latent space layer of the AE model, referred to
as AE-Embedding. However, in this case, units with similar
fault types do not form coherent clusters.
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OC AE
Unit # DS04 DS05 DS07 DS04 DS05 DS07

hS

1 14.6 9.4 11.8 27.4 4.8 9.8
2 19.2 14.4 23.8 20.6 16.8 23.2
3 42.0 7.6 16.8 39.4 11.6 17.2
4 19.4 3.6 11.2 24.8 7.8 7.6
5 27.2 6.6 16.2 39.0 12.0 11.8
6 21.8 8.4 15.4 23.2 13.6 13.2
7 30.4 12.6 17.2 33.0 21.2 19.6
8 24.2 3.6 13.0 31.0 0.6 11.2
9 18.0 12.2 23.0 20.6 15.2 18.4

10 20.2 -0.4 1.0 27.2 -4.2 0.0
avg 15.5 17.3
FPR 3.3% 3.3%

hA

1 16.2 19.6 17.2 48.2 17.8 20.0
2 26.8 24.6 32.4 34.0 33.0 41.6
3 - 12.0 25.2 67.2 20.6 30.4
4 27.0 18.6 16.4 33.2 28.6 20.2
5 48.4 21.8 21.4 59.6 31.8 25.6
6 38.6 11.2 21.8 39.4 26.4 30.0
7 43.2 22.4 20.6 45.4 34.0 32.8
8 42.6 14.0 15.4 48.6 21.0 24.6
9 35.4 20.8 30.6 31.6 28.6 45.4

10 35.4 7.6 13.2 43.8 16.0 23.6
avg 24.2 33.4
FPR 0%* 0%

Table 2. Overview of the fault detection delays du using OC
and AE models, average over five realisations. ”-” means no
fault is detected. In total, there are 30 different units, 10 units
from each sub-dataset. *: FPR is 0% but the fault is not de-
tected in one unit

The silhouette scores with different numbers of cycles af-
ter the fault is detected are plotted in Figure 5 when using
both sensor-wise health indicators hS−OC and hS−AE as in-
puts. Using the OC model, the silhouette score is consistently
higher than when using the AE model for all cycles, indicat-
ing better clustering results. This superiority is also evident
in Figure 6, where different fault types form distinct clus-
ters. The score exhibits a decreasing trend with an increase
in cycles, suggesting that over time, the fault evolves into a
higher severity state, leading to the degradation impacting all
measurements. Consequently, the clusters begin to overlap,
making differentiation more challenging.

4.4. Sensor-wise Health Indicator Interpretation

The sensor-wise health indicators hS are displayed in Fig-
ure 7 at 10 cycles after fault detection. The residuals are nor-
malised for each unit. In the case of the OC model, a larger
number of sensors have high residuals when a fan fault oc-
curs, compared to HPC or LPT faults. Since the fan is the
first component in the engine system, most downstream com-
ponents are affected when a fault arises in this particular com-
ponent.

Figure 5. Silhouette scores of hS−OC and hS−AE calculated
from 0 to 34 cycles after fault detection. The higher silhouette
scores suggest more distinct clusters.

In DS05 with an HPC fault, high residuals are observed in the
temperature measurements S2-T30 (temperature at the HPC
outlet), S3-T48 (temperature at the HPT outlet), and S4-T50
(temperature at the LPT outlet). Conversely, in DS07 with
an LPT fault, high residuals are concentrated only in S3-T48
and S4-T50. It is worth noting that sensor S3-T48, which
measures total temperature at the HPT outlet, also serves as
the inlet to the LPT. Together with S4-T50, these two sen-
sors effectively measure the input and output temperature of
the faulty component, which is the LPT. To differentiate be-
tween the HPC fault in DS05 and the LPT fault in DS07, the
key sensor is S2-T30 which measures the total temperature at
the HPC outlet, which is the fault component of DS05. The
sensor S2-T30 exhibits a high residual only in the case of the
HPC fault in DS05 but not in the LPT fault in DS07.

For the AE model, interpretation becomes more challenging
as multiple sensors have high residuals simultaneously, and
there is a higher degree of variation between engines. This
highlights the advantage of the OC model, as it provides more
refined residuals that are easier to relate to the physical sys-
tem. The OC model offers a clearer and more straightforward
understanding of the deviations from normal behavior.

In Figure 8, we depict the sensors that have detected faults at
different cycle numbers using the sensor-wise health indica-
tor of the OC model hS-OC. We have not provided the same
figure for the AE model due to excessive variation in sensor
activation, which complicates interpretation. This figure is
relevant to understanding the evolution of triggered sensors.
A triggered sensor is a sensor that has a sensor-wise resid-
ual higher than the pre-defined threshold as discussed in Sec-
tion 2.3. Darker colors indicate earlier sensor-wise fault de-
tection. At 10 cycles after the first fault detection, the trigger-
ing pattern resembles that shown in Figure 7, wherein health
indicators with high values are triggered.

With this figure, it becomes possible to track the evolution
of faulty components over time. For instance, in the case of
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Figure 6. Visualization of the clustering results using the normalised sensor-wise health indicator with nc set to 10 cycles after
fault detection, color-coded by fault component.

Figure 7. Normalised sensor-wise health indicator hS values calculated 10 cycles after the fault detection. The upper figure
depicts results using the OC model hS-OC, while the lower figure represents the AE model hS-AE. In the AE model, sensor 1
to 14 represent the sensor readings x, while sensors 15 to 18 correspond to operating condition descriptors w.

Figure 8. Sensors that are triggered using hS−OC with nc = 10, 20, 30, 40 cycles after the first fault detection. Darker colors
indicate earlier sensor triggering. The darkest color signifies triggering within 10 cycles after fault detection. The lightest color,
labeled as ”No” indicates no triggering up to n0 + 40 cycles.

8
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an HPC fault, initially, sensors S2-T30, S3-T48, and S4-T50
are predominantly triggered. As the fault progresses, devia-
tions are observed in S13-Nc (physical core speed) and S14-
Wf (fuel flow), indicating that the fault begins to impact the
burner and the shaft. Towards the end-of-life, sensors S8-P24
(pressure at LPC outlet), S9-Ps30 (pressure at HPC outlet),
and S10-P40 (pressure at burner outlet) situated around the
burner and HPC demonstrate further deterioration.

This figure can also be used to differentiate between the HPC
fault and the LPT fault. While the sensor S2-T30 is triggered
in both faults, it exhibits an earlier trigger in the HPC fault
compared to the LPT fault because the sensor S2-T30 mea-
sures the total temperature at the HPC outlet. In the case of
the HPC fault, the impact on the sensor S2-T30 is direct and
immediate. However, in the LPT fault, the impact on S2-T30
reading becomes noticeable only after a longer duration, typ-
ically 20 or 30 cycles after fault detection.

5. CONCLUSION

In this study, we performed a comparative analysis of two
residual-based models, specifically the AE and OC model,
for the purpose of fault detection. We constructed two types
of health indicators from residuals: a univariate aggregated
health indicator and multivariate sensor-wise health indica-
tors. Our framework was applied to three sub-datasets from
N-CMAPSS, each presenting different fault types in different
engine components.

The results demonstrated that the sensor-wise health indicator
outperformed the aggregated health indicator in terms of fault
detection performance. Furthermore, the health indicators
obtained using the OC model exhibited superior fault sepa-
ration capabilities. It effectively highlighted the sensors trig-
gering and could be directly linked to specific fault compo-
nents. This research highlights an alternative residual model
that surpasses the commonly used AE models in both fault
detection and segmentation. It not only demonstrates supe-
rior performance but also provides more meaningful health
indicators.

As a future direction, it is essential to evaluate the proposed
approaches on other systems that exhibit different fault evo-
lution behavior. Additionally, it is important to consider sys-
tems with higher variability in terms of operating conditions
and their impact on fault evolution. By testing the approaches
across a diverse range of systems, we can ensure their effec-
tiveness and applicability in various real-world scenarios.

Furthermore, the prediction of remaining useful life could be
achieved using a two-stage approach, where the prediction
begins only after the fault is detected. Another potential av-
enue involves evaluating the evolution of fault patterns by an-
alyzing factors like the sequence of sensor triggers. Lastly,
it would be beneficial to explore different fault detection ar-

chitectures, such as recurrent neural networks and variational
autoencoders.
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