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Abstract

Deep learning has revolutionized the field of computer vision, a success largely attributable

to the growing size of models, datasets, and computational power. Simultaneously, a criti-

cal pain point arises as several computer vision applications are deployed on low-power

embedded devices, necessitating real-time processing capabilities. This challenge intensi-

fies for semantic segmentation, a dense prediction task demanding substantial memory

and computational resources. This thesis explores techniques to streamline real-time

segmentation networks, enhance their efficiency, and deal with potential ambiguity.

First, we introduce a latency-aware segmentation metric, a measure that combines the

mean Intersection over Union with the network processing time, providing a practical

metric for applied settings. Emphasis is placed on the concept of "anticipation" in real-

time networks - these systems should be capable of predicting future input segmentation.

Consequently, we then design an anticipatory convolutional network incorporating an

inventive convolution layer. This novel layer reduces computation by reusing features

from previous video frame computations, exploiting their temporal coherence. Next, we

present a method to accelerate transformer-based segmentation networks called ‘patch-

pausing’. This technique halts the processing of image patches deemed to be already

correctly segmented by assessing the network’s confidence in its prediction. Remarkably,

our experimental results indicate that more than half of the patches can be paused early in

the process, with a minimal impact on segmentation accuracy. This study concludes with

the introduction of a discrete diffusion model for segmentation. This model allows for the

sampling of multiple potential segmentations for a given input while accurately following

the training data distribution. Combining this diffusion model within an autoregressive

scheme, we successfully showcase its capacity to generate long-term future predictions of

segmentation.

The implementation and evaluation of these approaches contribute to the ongoing efforts

to improve real-time segmentation networks and facilitate more efficient deployment of

computer vision applications on low-power devices.

Keywords: semantic segmentation, real-time segmentation, future segmentation, efficient

transformers, patch pausing, ambiguous segmentation, discrete diffusion.
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Résumé

L’apprentissage profond a révolutionné le domaine de la vision par ordinateur, un succès

largement attribuable à la taille croissante des modèles, des ensembles de données et de

la puissance de calcul. Cependant, de nombreuses applications de vision par ordinateur

sont déployées sur des appareils embarqués de faible puissance et nécessitent des capa-

cités de traitement en temps réel. Cela est particulièrement le cas pour la segmentation

sémantique, une tâche de prédiction dense exigeant une importante capacité de calcul

et de mémoire. Dans cette thèse, nous approfondissons divers aspects des réseaux de

segmentation en temps réel et formulons des approches visant à accroître leur efficacité et

à traiter l’ambiguïté inhérente de certains contextes.

Tout d’abord, nous introduisons une métrique de segmentation qui tient compte de la

latence et fournit une métrique utile pour les situations pratiques. Nous soulignons le rôle

clé de ’l’anticipation’ dans les réseaux temps réel, c’est à dire la capacité de ces systèmes

à prédire la segmentation des entrées futures. En conséquence, nous proposons un ré-

seau convolutif à anticipation qui tire parti d’une couche convolutive innovante. Celle-ci

exploite la cohérence temporelle des séquences vidéo et réutilise des opérations faites

précédemment afin de réduire la charge de calcul. Par la suite, nous nous intéressons

aux réseaux de segmentation de type Transformer et proposons une méthode pour les

accélérer en utlisant une ‘mise en pause des patchs’. Notre réseau interrompt le traitement

des patchs dès lors qu’il juge qu’ils ont déjà été correctement segmentés, en se basant sur

une mesure de confiance quant à ses prédictions. Nos résultats expérimentaux révèlent

que plus de la moitié des patchs peuvent être mis en pause tôt dans le processus, avec

un impact pratiquement négligeable sur la précision. Cette étude se conclut par l’intro-

duction d’un modèle de diffusion discrète pour la segmentation. Ce modèle permet de

générer plusieurs segmentations potentielles pour une entrée donnée tout en suivant la

distribution des données d’apprentissage. En combinant ce modèle de diffusion avec un

schème autoregressif, nous mettons en évidence sa capacité à générer des prédictions de

segmentation à long terme.

La mise en œuvre et l’évaluation de ces approches contribuent aux efforts en cours pour

améliorer les réseaux de segmentation en temps réel et favorisent un déploiement plus

efficient des applications de vision par ordinateur sur des dispositifs à faible puissance.
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Zusammenfassung

Deep Learning hat das Feld Computer Vision revolutioniert, ein Erfolg, der hauptsächlich

auf die zunehmende Größe von Modellen, die Erweiterung von Datensätzen und gestei-

gerte Rechenleistung zurückzuführen ist. Allerdings werden zahlreiche Anwendungen

der Computer Vision auf energieeffizienten eingebetteten Systemen eingesetzt und er-

fordern Echtzeitverarbeitungsfähigkeiten, welche die Größe moderner Modelle oft nicht

bietet. Dies trifft insbesondere auf die semantische Segmentierung zu, eine dichte Klassifi-

zierunsaufgabe, die speicher- und rechenintensiv ist.. In dieser Arbeit untersuchen wir

verschiedene Aspekte von Echtzeit-Segmentierungsnetzen und stellen Methoden vor, um

sie effizienter zu gestalten und ‘Ambiguität’ zu bewältigen.

Zunächst führen wir eine Latenz-bewusste mIoU-Metrik ein, die die Netzwerklatenz be-

rücksichtigt und eine praktische Metrik für Fachleute bietet. Wir erklären, warum Echt-

zeitsysteme vorausschauend sein sollten, um die Segmentierung zukünftiger Eingaben

vorhersagen zu können. Infolgedessen schlagen wir ein vorausschauendes Convolutional

Network vor, das eine innovative Convolution-Schicht nutzt. Diese Schicht nutzt die zeitli-

che Kohärenz von Videoframes, um die Gesamtberechnung zu reduzieren, indem sie zuvor

berechnete Features wiederverwendet. Darüber hinaus schlagen wir eine Methode vor, um

Transformer-basierte Segmentierungsnetze zu beschleunigen, indem wir Patch-Pausen

einlegen. Unser Netzwerk stoppt die Verarbeitung von Patches, von denen angenommen

wird, dass sie bereits korrekt segmentiert sind, indem es ein Maß zur Bewertung des Ver-

trauens des Netzwerks in seine Vorhersage verwendet. Unsere experimentellen Ergebnisse

zeigen, dass mehr als die Hälfte der Patches frühzeitig pausiert werden können, mit fast

vernachlässigbaren Auswirkungen auf die Genauigkeit. Zum Schluss stellen wir ein Modell

für diskrete Diffusion für die Segmentierung vor. Dieses Modell ermöglicht die Generie-

rung mehrerer potenzieller Segmentierungen für eine gegebene Eingabe basierend auf der

Verteilung der Trainingsdaten. Darüber hinaus integrieren wir das Diffusionsmodell in ein

autoregressives Schema, welches zukünftige Vorhersagen erzeugen kann, und demonstie-

ren die Effektivität dieses Schemas.

Die Umsetzung und Auswertung dieser Ansätze tragen zu den laufenden Bemühungen

bei, die Echtzeit-Segmentierungsnetzwerke zu verbessern und einen effizienteren Einsatz

von Computer Vision-Anwendungen auf energiesparenden Geräten zu fördern.
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Introduction

The sharp increase in data availability and computational power in the past decades

has ushered in a new age for machine learning and artificial intelligence. In the rapidly

changing machine learning landscape, the field of Computer Vision has greatly bene-

fited from this evolution. Among the diverse branches of this thriving field, segmenta-

tion has emerged as a particular area of interest. This thesis delves into the intricacies

of semantic segmentation, specifically focusing on tackling the computation chal-

lenges that arise when aiming for real-time implementation.

Semantic Segmentation

Semantic segmentation is the intricate process of assigning a class label to every

pixel within an image, effectively partitioning it into distinct, semantically meaningful

components. This is a key task in computer vision as it aims to grasp the fine-grained

details of image content at the pixel level. The output of a semantic segmentation

system is a dense prediction, i.e. , a pixel-wise classification of the image, referred to

as a segmentation map.

As image segmentation is a broad area, semantic segmentation needs to be distin-

guished from other tasks, which have related but different objectives:

• Object Detection: Delineate bounding boxes around objects within the image.

• Instance Segmentation: Identify individual object instances by assigning each

pixel to a specific instance. It does not differentiate between different classes.

• Semantic Segmentation: Categorize pixels into various semantic classes with-

out concern for individual instances within the image.

• Panoptic Segmentation: The combination of semantic and instance segmenta-

tion, where each pixel is assigned a class label and an instance label.

1



Introduction

Segmentation benefits numerous fields and has a wide array of applications. In au-

tonomous driving, semantic segmentation enables vehicles to accurately discern the

nature and positions of nearby elements, such as pedestrians, vehicles, and traffic

signs. This information, fused with additional sensor inputs, enables the autonomous

system to respond appropriately and navigate complex environments. In medical

imaging, semantic segmentation is used to identify and delineate anatomical struc-

tures in images such as MRI and CT scans, which is crucial for diagnosis and treatment

planning. In particular, real-time segmentation can play a crucial role in the con-

text of interventional surgery, where the ability to segment and analyze anatomical

structures or anomalies in real-time can aid in guiding medical procedures, reducing

risks, and improving patient outcomes. Similarly, in remote sensing and GIS, image

segmentation aids in the process of object-based image analysis. It can help segment

different geographical features from satellite imagery like vegetation, water bodies,

built-up areas, and other land features. Beyond these domains, semantic segmenta-

tion has also been applied to robotics, allowing robots to navigate and interact with

their surroundings, to agriculture, video surveillance, and more. Some examples of

semantic segmentation applied to different domains are displayed in Figure 1.

(a) Urban Street Scene (b) Medical Imaging (c) Satellite-based Imagery

Figure 1: Examples of semantic segmentation in different domains. Different colors
represent different semantic categories.

The usual metric for evaluating the segmentation performance for a given class is the

Intersection over Union, often written IoU, which is a measure of the overlap between

the predicted segmentation map and the ground truth. Precisely, the IoU of class i is

the ratio of the intersection area between the prediction and the ground truth of class

i to the union area of the two:

IoUi = TPi

TPi +FPi +FNi
,

2



Introduction

where True Positive (TP) are the pixels correctly classified as belonging to class i , False

Positives (FP) are the pixels wrongly classified as class i (they belong to a different

class), and False Negatives (FN) are the pixels of class i that were missed by the

classifier (they were classified as a different class).

The IoU ranges from 0 to 1, with 1 being a perfect match between the prediction and

the ground truth, and 0 when they have no intersection. When computing the IoU over

a dataset rather than for an individual image, we aggregate the intersection and union

areas from all images contained within the dataset. Specifically, for the numerator,

we calculate the cumulative intersection area - that is, the shared area between our

predicted segmentation and the actual ground truth, summed across all images. For

the denominator, we compute the cumulative union area, which is the combined area

of both our predicted segmentation and the respective ground truth, aggregated over

all images. When the dataset comprises multiple classes, the overall segmentation

performance is evaluated using the Mean Intersection over Union, referred to as mIoU.

This calculates the IoU for each class separately and then averages these class scores.

Therefore, the mIoU of a set of two predictions is in general not equal to the average

of the mIoU of each prediction.

Real-time Semantic Segmentation

Any real-time system has a specific latency requirement, which sets the maximum

amount of time allowed to process a single input. Designing such a system therefore

requires a careful balance between the accuracy of the system, its latency, and its

memory footprint. Given the real-time nature of numerous applications involving

segmentation, it is becoming increasingly important to focus on the development of

more efficient networks, and even more so since semantic segmentation, as a dense

prediction task, is notably computationally intensive.

Over the course of this doctoral study, the body of work addressing this issue grew

rapidly. Initially, the pursuit of faster segmentation networks primarily involved

replacing sluggish encoder backbones with faster counterparts initially designed for

classification tasks, such as MobileNet (Howard et al., 2017). Progressively, custom

multi-scale designs were developed and aimed at reducing latency by performing the

bulk of the processing at lower resolutions. With the introduction of Transformers

into the field, various techniques emerged, including multiple patch-dropping and

merging methods. To provide a more comprehensive overview, we can categorize

existing efforts to enhance network efficiency into three distinct and orthogonal

categories:

3
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• Modifying the Network Architecture:

– Improving design: This consists in designing the overall network with

speed in mind, and in general relies on the development of efficient individ-

ual components, such as substituting the conventional convolution layer

with depthwise separable convolutions. The MobileNet family (Howard

et al., 2017, 2019; Sandler et al., 2018) and SqueezeNet (Iandola et al., 2016)

are examples of such classification networks designed for speed. For se-

mantic segmentation, multiple custom models were developed, including

Enet (Paszke et al., 2016), ICNet (Zhao et al., 2017), Bisenet (Yu et al., 2020)

and SwiftNet (Orsic et al., 2019) for convolutional ones, along with Seg-

Former (Xie et al., 2021) and RTFormer (Wang et al., 2022) for Transformer

based ones. Chapters 1 and 2 of this work are in this category.

– Post-processing the model: This consists in using quantization and prun-

ing (He et al., 2021) techniques to reduce the number of parameters and

accelerate the processing, and is generally done after training.

• Modifying the Training Process: By using Knowledge Distillation (Hinton et al.,

2015), one aims to retain as much predictive power as possible in a much

smaller and more efficient model. This process involves training a smaller, more

efficient ‘student’ model under the guidance of a larger, pretrained ‘teacher’

network. Works from Xie et al. (2018) and Liu et al. (2019b) successfully applied

this technique to segmentation networks.

• Modifying the Data: This consists in modifying the amount of data that goes

through the network. These methods have gained more traction post the trans-

former revolution as they leverage the particular architecture of transformers.

For classification, various methods proposed to drop (Yin et al., 2022; Rao et al.,

2021) or merge (Xu et al., 2022; Liang et al., 2022b; Kong et al., 2022; Bolya et al.,

2022) patches not relevant for the task. Our method, PAUMER, presented in

Chapter 3, belongs to this category. It is tailored for segmentation by proposing

to pause the processing of some patches.

However, it is important to highlight that what most real-time systems generally re-

quire is the segmentation of consecutive video frames, which is a key distinction

because consecutive frames are highly correlated. This observation holds significant

importance for our research, as it hints that the processing time of segmentation

networks could potentially be reduced by repurposing previous activations and seg-

mentation maps.

As we elaborate on in Chapter 1, real-time video segmentation and future segmenta-
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tion are logically related by the need for many real-time systems to anticipate upcom-

ing states. We therefore review below the various approaches to future segmentation.

Future Segmentation

Future semantic segmentation is the task of predicting semantic labels in forthcoming

video frames. It is a challenging task as we need to solve two problems simultaneously:

predicting the semantic segmentation map and anticipating the motion of objects.

Multiple solutions have emerged to tackle this problem, some of which are based

on optical flow, directly or indirectly, while others are based on direct forecasting (at

the pixel level) or feature forecasting (at the feature level). Here, we provide a brief

overview of the most prominent approaches.

Optical Flow: Optical flow techniques aim to reconstruct dense 2D motion between

consecutive image frames. They often rely on deep convolutional models (Dosovitskiy

et al., 2015; Sun et al., 2018) to estimate motion, due to their capability to guess motion

where the correspondence is absent or ambiguous. However, since the optical flow is

estimated between a past frame and a future frame not yet observed, it is bound to be

inaccurate, especially with articulated objects like humans.

Temporal Alignment: Temporal alignment techniques focus on warping features or

labels from a segmented key-frame to the current frame, which aids in speeding up

semantic segmentation in video (Zhu et al., 2017). These methods are also used to

enlarge training datasets by warping ground truth labels to neighboring unlabeled

frames, and they aim to enforce temporal consistency with past frames (Gadde et al.,

2017; Saemann et al., 2019).

Semantic to Semantic (S2S) Forecasting: Luc et al. (2017) were the first to introduce

direct semantic forecasting, also known as S2S, in future semantic segmentation.

Their model directly predicts future semantic segmentation based on past segmenta-

tions. Rochan et al. (2018) improved it using a convolutional LSTM, which was later

enhanced with multiscales and attention by Chen and Han (2019).

Flow-Based (M2M) Forecasting: Extensive training data is required in the S2S ap-

proach to grasp motion patterns, but its efficiency can be optimized by incorporating

geometric features indicative of 2-D motion (Jin et al., 2017b). A method that enhances

this concept is Flow-Based Forecasting, also referred to as M2M, which combines

optical flow with direct semantic forecasting. Specifically, M2M warps the last dense

prediction based on forecasted optical flow. A prime example of this approach is

presented in (Terwilliger et al., 2019), where a convolutional LSTM is used to process
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optical flows from three observed frames, generating a prediction for future optical

flow.

Feature to Feature (F2F) Forecasting: Feature-level forecasting, also known as F2F

forecasting, maps past features to their future counterparts. The pioneering method

was developed by Luc et al. (2018) who harnessed the power of the Mask R-CNN

model integrated with a feature pyramid network — each level of the pyramid was

independently forecasted employing dilated convolutions. Progressing from this ap-

proach, further research (Sun et al., 2019; Hu et al., 2021) incorporated a convolutional

LSTM module at every pyramid level, and inter-level connections to share context.

However, forecasting at fine resolution is computationally expensive (Couprie et al.,

2018), alternative research suggests performing single-level feature forecasting at

the coarsest level (Šarić et al., 2019; Chiu et al., 2020). The model F2MF (Saric et al.,

2020) expands this concept by integrating a feature-to-motion head and a correlation

module to capture spatio-temporal feature relations. Lin et al. (2021) also extend

single-level feature forecasting through the incorporation of an autoencoder. The

encoder computes a condensed representation of the multilevel feature pyramid,

predicts the future representation in the latent space using bidirectional ConvLSTM,

and subsequently decodes this forecasted representation to derive the future feature

pyramid.

Before delving into the details of our work, we finally provide an overview of the

history and current state of semantic segmentation in the context of deep learning.

This historical background will prove beneficial in understanding the evolution of

techniques that have been developed to meet the specific challenges posed by real-

time processing requirements.

Deep Learning for Segmentation

Deep learning for segmentation began with the seminal Fully Convolutional Network

(FCN) from Long et al. (2015) that proposed to substitute final fully connected layers

with convolutions in the convolutional networks initially built for classification in

order to obtain segmentation maps. However, this technique significantly reduces the

image resolution in order to retrieve semantic information. Therefore, multiple tech-

niques were introduced to address the challenges of capturing contextual information

while preserving spatial resolution. One common way is to use a decoder network with

skip-connections, as first proposed Ronneberger et al. (2015) and Badrinarayanan

et al. (2017) with the U-Net (fig. 2) and SegNet architecture respectively. The more

recent SwiftNet (Orsic et al., 2019) follows these principles and uses a pretrained

ResNet backbone, which makes it both fast and accurate. This model has proven to be
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a strong baseline and has been employed as such in several chapters of this work. In

addition to the use of a decoder, the latest models of the Deeplab family (Chen et al.,

2014, 2017a,b, 2018) also propose to incorporate dilated convolutions to alleviate the

need for downsampling the image.

Figure 2: The seminal U-Net architecture (Ronneberger et al., 2015), is composed of
an encoder, a decoder, and skip connections. Orange blocks represent convolutional
layers, red blocks represent max-pooling layers, and blue blocks represent upsampling
layers. Arrowed lines represent skip connections. (Source: Towards Data Science).

The Transformer architecture has been very successfully applied in recent years to

the field of computer vision, notably with the apparition of the Vision Transformer

(ViT) (Dosovitskiy et al., 2021). Transformers have quickly ventured into the field of

segmentation and demonstrated state-of-the-art results. Pioneering networks include

SETR (Zheng et al., 2021), Swin Transformer (Liu et al., 2021), Segmenter (Strudel et al.,

2021), and SegFormer (Xie et al., 2021).

However, they show some disadvantages both for training and inference. First, they

are in general slower than their convolutional counterparts, in part due to the compu-

tationally expensive self-attention operation. Additionally, they often demonstrate a

slightly lower segmentation precision on high-frequency objects, a consequence of

partitioning images into patches and classifying entire patches as a single category.

Some hierarchical variants of ViT such as Swin (Liu et al., 2021) and PVT (Wang et al.,

2021) have been designed to mitigate this issue and introduce vision-specific induc-

tive biases. Furthermore, they can be less flexible to iterate with. Indeed, their reliance

on pretraining with large classification datasets, such as ImageNet, is typically crucial

for achieving strong segmentation performance (as exemplified by Segmenter). This

pretraining process is generally very computationally demanding, and contrary to

convolutional networks, making even slight modifications to the transformer archi-

tecture can compromise the usability of the pretrained weights. These limitations
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restricted research on architectural improvements and sparked particular interest in

accelerating segmentation transformers.

Nowadays, state-of-the-art (SOTA) networks in semantic segmentation are for a large

part adapted from best-performing networks on ImageNet classification, using them

as backbones inside well-performing segmentation architectures such as UperNet

(Xiao et al., 2018) or Mask2Former (Cheng et al., 2022). An increasing number of

these SOTA classification networks are multi-modal language and vision models, such

as CoCa (Yu et al., 2022) or PaLI (Chen et al., 2022c). Such multi-modal networks

have also been applied to the segmentation task, with the recent introduction of

SEEM (Kirillov et al., 2023) and SAM (Zou et al., 2023), two models leveraging a joint

visual-semantic space and that can segment any object in an image, showing strong

zero-shot segmentation capabilities.

Thesis outline and contributions

The subsequent four chapters in this dissertation are derived from four conference

proceedings papers. The first three (Courdier and Fleuret, 2020, 2022; Courdier et al.,

2022) are broadly focusing on enhancing the efficiency of segmentation networks,

both in terms of computational power and latency. The last one (Courdier et al., 2023)

proposes a way to model the inherent uncertainty of certain segmentation contexts.

Each chapter stands alone and is designed to be readable in any order.

In Chapter 1, which is based on Courdier and Fleuret (2020), we focus on real-time

segmentation networks and show that existing metrics fall short in conveying the

actual accuracy obtained in practice for a real-time system. We propose an alternative

metric that takes latency into account, named LAmIoU, along with a corresponding

shift in the objective of real-time segmentation tasks. Consequently, we introduce the

concept of anticipatory networks. These are networks specifically designed to factor

in their latency during operation and are optimized based on the objective set by our

proposed metric. Finally, we adapt and train some common networks for this new

objective and confirm its practical relevance.

In the context of future segmentation and building upon the necessity for the design

of anticipatory networks outlined in Chapter 1, we propose in Chapter 2 a temporal

masking scheme for convolutional networks based on Courdier and Fleuret (2022).

This novel design is specifically crafted for real-time video processing. We introduce

a temporally masked convolution that leverages previously computed features to

perform fewer operations while having access to past information. We show that

substituting all conventional convolutions with their temporally masked counterparts
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within widely used segmentation architectures enhances the predictions of future

segmentations but also results in a speed boost of approximately 20%.

In Chapter 3, which is based on Courdier et al. (2022), following the advent of trans-

former networks in Computer Vision, we saw a significant opportunity for speed

improvement. As we elaborate on in this chapter, different regions of an image ex-

hibit varying levels of segmentation complexity, and we leverage this diversity to

dynamically allocate computational resources to the areas that require it the most.

Transformer networks are particularly well-suited for such dynamic allocation be-

cause they operate on unordered image patches, which we can decide to process

more or less. We propose to use the patch’s intermediate entropy as an allocation

criterion and show that patches that are processed further are indeed on boundaries

or contain higher-frequency elements. While results vary with the dataset complexity,

our experiments on Cityscapes revealed that we can get a 2X speed improvement with

a minimal reduction of less than 1% in absolute mIoU.

Finally, in Chapter 4, which is based on Courdier et al. (2023), we tackle another aspect

of future segmentation networks, namely the inherent ambiguity of the prediction.

We delve into the application of generative models as a solution to model uncertainty

in non-deterministic scenarios. More specifically, we explore the utilization of dis-

crete diffusion models within the segmentation task, focusing on situations where

segmentation outcomes are not completely determined by the input data. We apply

our approach to the field of medical imaging and demonstrate that our segmenta-

tion diffusion models effectively allow the sampling of different output maps. For

the future segmentation task, we also introduce an autoregressive scheme that en-

ables longer-term forecasting - a strategy we validate using a custom car intersection

simulator we developed.
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1 Real-Time Segmentation Networks
should be Latency Aware

This chapter is based on

Courdier, E. and Fleuret, F. (2020). Real-time segmentation networks

should be latency aware. In Proceedings of the Asian Conference on Com-

puter Vision

1.1 Introduction

Recent image segmentation networks achieve near-human level performance due

to their expressive power, and more focus is put on designing architectures that are

faster and can run on smaller hardware with less memory and computing power. In

particular, enabling real-time segmentation is critical for applications in robotics,

autonomous driving, or medical imaging during surgery.

The primary way currently used to assess performance is a task whose objective is

to predict the input frame’s segmentation, which is compared to the input frame’s

ground truth using a given metric (e.g. mIoU). In what follows, we will use ‘accuracy’

to refer to such a metric. For networks aiming at low latency, researchers also estimate

efficiency with the Frames Per Second (FPS) metric, or its inverse the Seconds Per

Frame metric, also called latency.

When aiming for real-time, one has to strike a balance between speed and accu-

racy. This becomes clear when analyzing real-time segmentation benchmarks, where

networks are ranked according to both accuracy metrics and latency. Often, accuracy-

latency charts also allow to quickly estimate a new network’s overall performances.

However, we claim there still is critical information missing to the practitioner: What

is the actual accuracy of the system when deployed and used in practice? In other
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terms, we want to help answer the question of how the system’s latency will affect the

relevance of its predictions.

In this first chapter, we have set as our objective to devise a relevant metric for real-

time networks. To this end, we propose an intuitive extension to the usual video

segmentation task by introducing a change in the objective. We change the goal from

predicting input frame segmentation to predicting a specific future frame segmen-

tation. Going beyond introducing a useful metric, our ‘latency-aware’ task aims at

encouraging researchers to focus on a more relevant goal for real-time contexts, i.e.

designing anticipatory networks.

The change we propose in the objective definition is straightforwardly applicable

to a wide range of problem domains (e.g. object tracking, object detection, object

segmentation, pose estimation). This thesis being centered around scene semantic

segmentation, we will focus on this task and perform our experiments on it.

This chapter is organized as follows:

• In Section 1.2, we review available methods for semantic segmentation at the

time of this research, both for images and videos, and in particular those tackling

real-time contexts.

• In Section 1.3, we motivate and define our proposed objective for semantic

segmentation, along with the associated metric.

• In Section 1.4, we detail the dataset, models, and experimental setup that we

employed for our study.

• Finally, in Section 1.5, we report the results of our experiments. Specifically,

we delve into the influence of latency and the training configurations on the

performance metric we have introduced.

1.2 Related Work

1.2.1 Image Semantic Segmentation

Most popular approaches for tackling Semantic Segmentation use a variant of power-

ful deep classification networks that are made fully convolutional, with all final fully

connected layers replaced by convolutions. That seminal idea is at the core of the

FCN paper (Long et al., 2015).

The main issue with this technique is that it significantly reduces the image reso-
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lution in order to retrieve semantic information. Subsequent models for semantic

segmentation are built as a “fully convolutional network” and attempt to cope with

the dimension reductions while increasing the Receptive Field.

One commonly used technique is to use a decoder network plugged after the FCN

to upsample the segmentation map using transposed convolution, as first did Ron-

neberger et al. (2015) and Badrinarayanan et al. (2017) with SegNet and U-Net. This

setup allows to merge spatially rich shallow layers into semantically rich deeper layers.

DeepLab v2 (Chen et al., 2017a) later proposed to use dilated convolutions (Yu et al.,

2017) to avoid downsampling. This allows to process images with a large field of view

without having to reduce them, but it comes with a larger computational complexity.

Finally, Zhao et al. (2016) proposed to use a “Spatial Pyramidal Pooling” (SPP) module

(He et al., 2015b) for segmentation. SPP pools the image simultaneously at differ-

ent resolutions over a grid, therefore enlarging the Receptive Field. This allows to

incorporate a larger context and take into account higher-level semantics.

Many works followed with techniques to produce high-quality segmentation (Tang

et al., 2018; Takikawa et al., 2019; Zhu et al., 2019b; Valada et al., 2019), including better

ways to extract features (Peng et al., 2017; Zhang et al., 2018b; He et al., 2019; Wu et al.,

2019) and to take into account context (Ding et al., 2018; Yuan et al., 2019). Some

recent works also proposed attention-based methods (Li et al., 2019b; Fu et al., 2019;

Huang et al., 2019; Tao et al., 2020; Zhang et al., 2020a; Choi et al., 2020) and neural

architecture search for image segmentation (Liu et al., 2019a; Zhang et al., 2020b;

Nekrasov et al., 2020).

On a different application domain, similarly to the change we propose, backbones

with enlarged front-end have been used with success for object detection (Zhu et al.,

2019a) where the authors are training their network without ImageNet pretraining.

1.2.2 Real-time Semantic Segmentation

Reducing the computational cost and the memory cost of deep segmentation systems

is critical for many applications that need to run real-time on slow hardware. A central

concept in the development of fast networks revolves around the early downsampling

of images. This allows the bulk of the processing to occur at a reduced resolution, thus

circumventing the need for extensive full-resolution computation. This idea is key to

the design of the precursors ENet (Paszke et al., 2016) and ICNet (Zhao et al., 2017).

The latter, in particular, performs multi-scale processing with a special fuse block to

merge information from different scales.
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One way of optimizing neural network architecture for speed is to replace regular

convolutions with a more efficient alternative. One such method is to use factorized

convolutional blocks, e.g. factorizing kernels k ×k into 1×k and k ×1 kernels as does

ERFNet (Romera et al., 2017). It can also be achieved using group convolutions, and

methods such as ShuffleNet (Zhang et al., 2018a) propose different ways to create

connections between groups. Another way is to employ Depthwise Separable Convo-

lutions (DSC), which are the combination of depthwise and pointwise convolutions.

These DSC are used to lower the number of parameters and make the inference faster,

at the cost of accuracy. They are used broadly in MobileNets (Howard et al., 2017;

Sandler et al., 2018).

BiSeNet and BisenetV2 (Yu et al., 2018a, 2020) proposed a way to separate the lo-

calization problem from the semantic extraction problem, and then merge the two

information appropriately.

Other works such as the FasterSeg network (Chen et al., 2019) also use Neural Archi-

tecture Search to successfully discover fast neural architectures for semantic segmen-

tation.

Within the realm of fast segmentation networks, Swiftnet, introduced by Orsic et al.

(2019), stands out for its architectural approach. It leverages a lightweight ImageNet-

pretrained Resnet as its backbone and augments it with a straightforward decoder

that utilizes lateral connections, much like the U-Net architecture. For the research

presented in this chapter, we opt for SwiftNet as one of our base networks due to its

simple design and processing speed.

1.2.3 Video Scene Segmentation Networks

Another part of the literature focuses on designing video segmentation systems. More

specifically, these works try to leverage the temporal correlation of consecutive frames

in a video to improve the next-frame prediction and reduce computation and latency.

However, most works in this domain are more focused on improving segmentation

accuracy than reducing the latency.

The Clockwork net in (Shelhamer et al., 2016) is a model that leverages temporal

correlation by running different parts of the network at each time step conditionally

to how much the video has changed from the previous frame. This technique has the

disadvantage of not providing a fixed frame-rate.

Another direction to address the problem is to try propagating previous features to

consecutive frames to avoid recomputing very similar features for following frames,
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as is done in (Zhu et al., 2017), even though their design is not meant for real-time.

The work (Li et al., 2018) built on these two previous ideas. Their network decides

at each frame whether to propagate previous features or to recompute the entire

segmentation map. They improved the clockwork design to reduce the maximum

latency but did not reach real-time.

Other works use predictive learning, that is predicting future frames or flow motion

using past frames and segmentations to help current segmentation (Luc et al., 2017;

Jin et al., 2017a,b).

Video temporal coherence is also used along with representation warping to produce

better future segmentation maps. Warping is either applied at the feature level (Saric

et al., 2020; Gadde et al., 2017) or directly at the segmentation map level (Terwilliger

et al., 2019), and possibly combined with existing features to produce the output.

However, these works are not focused on time efficiency.

A Bayesian approach for multi-modal future prediction of scene segmentation was

also proposed in (Bhattacharyya et al., 2018) that allows to take into account model

and observation uncertainty.

Temporally Distributed Network (Hu et al., 2020) was introduced for fast video seg-

mentation. It uses a teacher-student design where fast student networks have to

predict - in turn - part of the feature map of the teacher network.

1.3 A new task for real-time networks

1.3.1 Motivation for latency awareness

Real-time network performance is usually assessed through accuracy-latency charts

that help in understanding a network’s trade-offs. These charts provide instant accu-

racy of networks, i.e. the accuracy between the network’s prediction and the input’s

ground truth. In practice, however, networks may need a few seconds before they

make a prediction. During that time, the scene has changed and the network predic-

tion does not match that change. It is then particularly useful to compare the network

prediction with this new scene’s segmentation. Unfortunately, accuracy-latency charts

fall short in providing this critical information as they cannot demonstrate the actual

accuracy compensated for the time-delay that one would meet in practical scenarios.

Moreover, it does not provide either a total order relation or a ranking to compare

various real-time networks, as can be seen on benchmark websites such as paper-
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swithcode.com1. As a result, we believe that it is relevant to introduce a new objective

for the segmentation task that takes into account network latency. This allows to get

meaningful accuracy information and practical benchmarking of networks.

1.3.2 Defining a new objective for real-time networks

We propose to change the objective of the segmentation task: currently, the objective

of the task is to predict the input frame segmentation. Instead, we propose as an

objective to predict the segmentation of the “future” frame at the time the network

finishes its computation.

Formally, let us consider a video sequence and let It and St denote respectively the

frame at time t and its ground truth segmentation. Let F denote the operation of a

network (say semantic segmentation) that takes lF milliseconds to process the current

input It . The common objective is to improve the metric:

acc(F (It ),St ) (1.1)

while our task proposes to optimize for:

acc
(
F (It−lF ),St

)
(1.2)

Instead of predicting the segmentation of the input frame, our task expects systems to

predict the segmentation of a future frame, thus acknowledging the network latency.

This objective is particularly relevant for real-time applications in which we are usually

more interested in what is currently happening than in what was a few seconds before.

Comparing the received information at time t , F (It−lF ), with the ideal information

for that instant, St , emphasizes the importance of predictive accuracy in dynamic

environments.

As said earlier, this change of objective is applicable to a whole range of different tasks

such as object segmentation, object detection, object tracking, pose detection, etc.

We focus on the scene segmentation task for this work.

1https://paperswithcode.com/task/video-object-segmentation
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Figure 1.1: Left: How mIoU is computed now; the output of the network is compared
to the ground truth segmentation of the image in input of the network. Right: Our
proposed way to measure mIoU; the output of the network is compared to the ground
truth segmentation of the future image when the network finishes processing.

1.3.3 Corresponding Latency-Aware Metric

For scene semantic segmentation, the metric commonly used is the mean Intersection

over Union (mIoU). Our new task naturally defines a metric that depends on the

latency of the network.

We term it “Latency-Aware mIoU" (LAmIoU), which is defined as per Equation (1.2).

Considering this metric is interesting as it carries an additional practical meaning

compared to the classical instant mIoU: the accuracy (LAmIoU) that this metric

outputs is the accuracy that one will see in practice when running this network in a

real-time setting on the given hardware device.

1.3.4 Use with video datasets

In practice, a video sequence is collected with a specific sampling frequency (there is

some time delay d between two sampled frames), and thus the dataset does not have

a frame for every time t . For our task, we therefore use the frame sampled just after

the model has output a prediction as shown in Figure 1.2.

More precisely, let’s assume that t = 0 when the frame of index 0 enters the network

and consider a video sequence with a delay d between two frames (fps = 1/d). Then,

the index of the segmentation map that the metric would use as ground truth is:

kF = ⌈lF /d⌉ (1.3)
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In what follows, when we refer to t +kF ×d , we will simplify notation and write t +kF .

l f

Start
processing

End
processing

t t +k f

Target frame
used for the

task

Model

Figure 1.2: Target frame used for our proposed objective

Note that the performance on this task is hardware-dependent. Indeed, as network

latency depends on the device, the frame used for metric computation depends on it

as well. Knowing the value of this metric for a network on multiple hardware allows

one to pick the right network and hardware depending on precision needs.

1.4 Dataset, Models and Experimental setup

1.4.1 Dataset

Dense pixel-level manual annotation of videos for scene segmentation is not feasible

due to the time and economic costs involved. Cityscapes dataset (Cordts et al., 2016)

was estimated to take about 90 minutes per-frame for annotation and verification, and

thus only provides sparse annotations of one frame per video sequence. We choose

this dataset to conduct our experiments as it contains video sequences and its use is

widespread as a segmentation benchmark.

This dataset contains 2,975 training, 500 validation, and 1,525 testing video sequences.

Each sequence contains 30 frames, and the 20th frame is annotated with fine pixel-

level class labels for 19 object categories. A sequence is 1.8s long, therefore the frame

rate is approximately 16.6 fps and there are about 60ms between each frame. As

Cityscapes contains only the ground truth segmentation for one image per sequence,

we process as follows:

1. We time the latency lF of the network
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2. We determine how many frames of offset kF this time corresponds to: kF =
⌈lF /0.06⌉ (0.06 = 60ms)

3. We use as input of the network the frame of index 20−kF , as we only have the

20th frame’s ground truth segmentation

Note that the Cityscapes framerate is about half of the one usually encountered in

videos. This may be slightly detrimental as the higher the framerate is, the more

precise the latency-aware metric will be.

1.4.2 Networks

For our experiments, we choose two image segmentation networks: SwiftNet (Orsic

et al., 2019) and DeepLab-V3+ (Chen et al., 2018) with 2 different encoders : ResNet-

101 and MobileNet v2 (Sandler et al., 2018).

SwiftNet

SwiftNet is a state-of-the-art network in real-time segmentation. For our experiments,

we build this network as detailed in the original paper and describe it below. It is a

network with an encoder-decoder structure:

• The encoder backbone is a classical ResNet-18 whose fully connected layers

have been removed to make it fully convolutional.

• A Spatial Pyramidal Pooling Module with 4 different pooling layers of grid size

(1,2,4,8) is plugged in output of the encoder to increase its receptive field.

• Finally, a decoder with 3 upsampling modules recovers the original image reso-

lution. An upsampling module upsamples the previous layer’s output and then

merges it with a skip connection coming from the encoder.

We will refer to it as SwiftNet-R18. It has approximately 12M parameters. On Cityscapes

validation set, it reaches 75% mIoU and runs at about 40 fps on a GTX 1080 Ti. On this

hardware, SwiftNet has a latency of 26 ms. This means we have to use kF = ⌈26/60⌉ = 1

frame offset to compute the latency-aware mIoU.
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Figure 1.3: SwiftNet architecture

DeepLab v3+

DeepLab v3+ is a state-of-the-art network for image segmentation. It has an encoder-

decoder architecture very similar to that of SwiftNet:

• We use two different encoder backbones :

– A dilated ResNet-101 network stripped of its fully connected layers. We use

an output stride of 16, so the last two residual blocks make use of dilated

convolutions to enlarge the receptive field.

– A MobileNet-V2 network as described in (Sandler et al., 2018). It uses depth-

wise separable convolutions within “inverted” residual blocks separated

by linear bottlenecks.

• An Atrous Spatial Pyramidal Pooling module is plugged after this encoder. It

convolves the encoder output with 4 atrous convolutions using different dilation

rates: (1, 6, 12, 18).

• Finally, a small decoder upsamples the ASPP output and concatenates it with

low-level features from the encoder. The decoder blends them with a convolu-

tion and upsamples the output to the original input image size.
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When using a ResNet-101 as backbone, the whole network has approximately 60M

parameters and reaches 77% mIoU on Cityscapes validation set and runs at 5 fps. We

will refer to it as DeepLab-R101. On our hardware, it has a latency of 195 ms, which

means we have to use kF = ⌈195/60⌉ = 4 frame offsets to compute the latency-aware

mIoU.

When using a MobileNet backbone, the model has about 5.5M parameters. It reaches

72% mIoU on Cityscapes and runs at 13 fps. We will refer to it as DeepLab-MN. It has

a latency of 76 ms, so we have to use kF = ⌈76/60⌉ = 2 frame offsets.

1.4.3 Adapting SwiftNet for our task

As we will discuss further, it is useful to input previous frames along with the current

frame when training to predict a future segmentation map (that corresponds to the

latency-aware objective). When we added more input channels to the first layer of

the network, we noticed it was beneficial to increase the initial layers’ capacity by

enlarging the number of channels. We construct a variant of SwiftNet that takes

multiple frames in input, and in which we expand the number of kernels in the initial

convolution layers to deal with the increased input size. Specifically, in the case of two

input frames, we replace the first layer:

conv(3,64,7×7, s = 2)

with the following block of four layers:

conv(6,130,7×7, s = 2)

BN(130)

ReLU

conv(130,64,3×3, s = 1)

Note that we cannot introduce changes affecting multiple encoder layers as this would

prevent us from reusing pretrained weights for the ResNet encoder, which represents

SwiftNet’s main strength. We have experimented with non-pretrained ResNet and

observed a 6% mIoU drop on average.

The newly created convolutions were initialized using He’s initialization (He et al.,

2015a) rule. We will refer to our extended SwiftNet version as SwiftNet-R18-X.
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1.4.4 Training

All experiments are performed with the PyTorch framework. We use ImageNet-1k pre-

trained weights for all encoders in our networks. Both the classical training objectives

and latency-aware objectives that is detailed further are used to train the model.

Data augmentation

We use image crops of 768×768. We do standard image augmentation with random

horizontal flip, random scaling from 0.75 to 1.5, and random Gaussian blur.

SwiftNet

For SwiftNet, we use a batch size of 12 and train using the Adam optimizer with default

parameters. We use a learning rate of 5e−4 and a weight decay of 1e−4. We also set a

smaller learning rate of 1e−4 for the part that is ImageNet-pretrained. The network is

trained for 200 epochs and uses a cosine annealing schedule with ηmi n = 1e−6.

DeepLab v3+

For DeepLab, we use a batch size of 10 and train using the SGD optimizer with momen-

tum of 0.9. We use a learning rate of 5e−2 and a weight decay of 5e−4. We similarly set

a smaller learning rate of 5e−3 for the part that is ImageNet-pretrained. The network

is trained for 200 epochs and uses a poly schedule with a power of 3.

1.5 Experiments and Results

We perform experiments to evaluate the effect of network latency on the LAmIoU and

to understand the changes in the training to suit the proposed objective.

1.5.1 Effect of latency on the LAmIoU

The experiments described in this subsection are performed with DeepLab-R101 and

SwiftNet-R18. These two networks are modified to take 2 frames X t−1, X t as input.
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Decay of the LAmIoU with the frame offset

In Figure 1.4, we plot the LAmIoU vs frame offsets. The two networks considered here

are both trained and evaluated on the future segmentation map (with offset).

We notice that the LAmIoU drops quickly, and the decrease is consistent between

networks: an offset of 2 frames is enough to lose 10% mIoU for both networks on

Cityscapes. In practice, we can expect this order of magnitude of mIoU drop, depend-

ing on the hardware.

Figure 1.4: LAmIoU decay with different offsets in the objective on Cityscapes valida-
tion set

Decay of the LAmIoU with the hardware

Each network has a different latency per hardware. Therefore, the frame offset used

for training and computing the metric is also different per hardware.

We perform timing experiments on Tesla V100, GTX 1080 Ti, and Tesla K80 GPUs for

our two networks. We estimate latencies on this hardware and then train the networks

with the corresponding frame offsets. In Figure 1.5, we report the LAmIoU with respect

to the inverse hardware speed (inverse of FLOPs).

This plot exhibits an interesting and foreseeable fact: the slower deeplab network,

whose “instant” mIoU is higher, performs worse than the faster SwiftNet network

on slow hardware when measuring the LAmIoU. This graph illustrates the need for

a latency-aware metric in real-time contexts, which allows for a simple and fairer
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comparison of networks.
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Figure 1.5: LAmIoU decay with hardware speed on Cityscapes’ validation set

1.5.2 Optimizing network training for our latency-aware objective

In this subsection, we investigate how changing the inputs and training target affects

the LAmIoU. Precisely, we train using three different configurations and comment on

the noticeable differences in the network output. These experiments are performed

on a GTX 1080 Ti GPU for each of the four networks described in Section 1.4.2.

First configuration

First, we evaluate the four networks when trained with the usual objective (input It

and target St ) but evaluated with LAmIoU. The results are reported in the second line

of Table 1.1. Compared to their instant mIoU, we notice a significant drop between

10% and 30 %.

Second configuration

We train the networks for the proposed objective of predicting the future segmentation

ground truth used by the LAmIoU (input It and target St+k ). The value of k is different

for each network since each has a different latency. Therefore, they are trained and
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evaluated with a differently offset ground truth.

The results are reported in the third line of Table 1.1. We can see a slight but consistent

increase in the LAmIoU metric for all networks. In Figure 1.6, we show some qualitative

results of SwiftNet-R18 overlaying images It and It+1. We notice that the segmentation

mask is slightly blurry, as one would expect. However, we note that the blur is often

surprisingly anisotropic, i.e. the segmentation blur is not surrounding the object, but

favors a specific direction.

We conjecture that the network is able to predict some objects’ movements based

on their orientation. For instance, a person facing left in image It is likely to have

moved left in the next image It+1. Similarly, a car facing the camera is more likely to be

coming toward the camera and thus is probably going to look bigger in the following

frame. However, the network has no way to infer the relative speed of the different

instances in the image which makes its prediction relatively inaccurate.

(a) It and F (It ) (b) It+1 and F (It ) (c) It+1 and St+1 (G.T.)

Figure 1.6: Output segmentation of SwiftNet-R18 trained to predict St+1 from It . We
observe anisotropic blur as the network is able to infer some objects’ movement
directions from their orientation.

Third configuration

Finally, in order to allow the networks to infer speeds and directions, we train them

using both It−1 and It as inputs. The training objective remains to predict the future
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segmentation ground truth St+k . Results reported in the fourth line of Table 1.1 show a

consistent improvement of the LAmIoU metric. These numbers confirm the relevance

of using previous frames for our latency-aware objective. We reported in Figure 1.7

examples of the output segmentation of SwiftNet-R18 overlaid on image It and It+1

where it is clear that using an additional input is useful to produce sharper and more

accurate segmentation maps.

For practical applications, we have seen that it is relevant to consider a future ground

truth as objective. When doing so, we need to change our training objective, and the

result of this last configuration shows that it becomes necessary to use previous frames

to get better predictions. While this result may not be surprising, the great majority of

real-time scene segmentation works only use the current input when designing and

training their networks. This last result emphasizes the fact that networks constructed

for real-time contexts should use previous frames to better predict a future target.

(a) It and F (It ) (b) It+1 and F (It ) (c) It+1 and St+1 (G.T.)

Figure 1.7: Output segmentation of SwiftNet-R18 trained to predict St+1 from (It−1, It ).
We observe a more precise segmentation as the network has a way of inferring relative
speeds and directions.

1.5.3 Input translations experiment for increased Receptive Field

When processing simultaneously images from different time steps It−1 and It , the

network needs to have a large receptive field to be able to map objects from one frame

to the other. To do so without the need for big kernels, we try to offset this load on the
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Table 1.1: Results for the 3 training configurations for the 4 networks. The first line
gives the instant mIoU and the next three lines report the value of the LAmIoU metric
for different training configurations. The last three lines give information about
latency, frame offset used for the network as explained in Section 1.4.1, and fps of
these networks when using a GTX 1080 Ti. Note that the k temporal offset depends on
the network, hardware, and the dataset frame rate: this offset is greater and leads to
poorer performance for slow processing.

Input Target (train) Target (test) DeepLab-R101 DeepLab-MN SwiftNet-R18 SwiftNet-R18-X

It St St 0.77 0.72 0.75 0.74

L
A

m
Io

U


It St St+k 0.50 0.56 0.64 0.63
It St+k St+k 0.53 0.57 0.65 0.64
It−1, It St+k St+k 0.60 0.58 0.67 0.69

Frame offset (k) 4 2 1 1
Latency (ms) 195 76 26 38

FPS 5 13 38 26

input. The idea is to trade part of the computational cost usually associated with the

use of big convolutional kernels for the memory cost of having more inputs.

Practically, we concatenate to the current input of the network various translations

of the previous image It−1. When introducing translations, we want to compensate

for the use of big kernels by allowing the model to simultaneously attend differ-

ent parts of the image that a normal convolution kernel would not process simulta-

neously. Particularly, we change the inputs {It−1, It } of the previous experiment to

{T1(It−1), · · · ,TN (It−1), It−1, It } corresponding to N different fixed translations Ti . The

translation offsets were chosen to span a regular grid around the origin.

While initial experiments seemed promising, we further discovered that the main

reason for improved LAmIoU was the additional convolutional layer with a higher

number of kernels that we added at the head of the model to handle the translations

where we had replaced the first convolution layer

conv(3,64,7×7, s = 2)

with the following block:

conv(6+3×N ,8×N ,7×7, s = 2)

BN(8×N )

ReLU

conv(8×N ,64,3×3, s = 1).
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with N the number of translations. Noticing that using additional inputs requires

increasing capacity in the early convolutional layers eventually led to the design

of SwiftNet-R18-X presented in Section 1.4.3 in which we increased the number of

kernels in the first two layers.
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1.6 Conclusion

In this chapter, we have proposed a different approach to the segmentation task, shift-

ing the conventional objective to incorporate real-time considerations into network

predictions. Our novel LAmIoU metric precisely quantifies the achievable mIoU value

on a given hardware when accounting for network latency. This metric also enables us

to derive a latency-aware per-device ranking, offering a solution to the initial question

of identifying the optimal network for real-time applications. It is important to note

that this latency-aware metric becomes more pertinent as the dataset’s frame rate

increases, while lower frame rates may result in a less clear differentiation among

networks.

Our focus here was specifically on video scene segmentation, but the same change of

objective is relevant and applicable to a wide range of other real-time tasks. We believe

that introducing a new latency-aware segmentation objective may encourage research

in anticipatory networks. In line with this, we proposed additions to networks and

training to perform better under this new metric, and we will continue this exploration

of anticipatory designs in the next chapter.
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2 Convolutions with partial channel
update for future video segmentation

This chapter is based on

Courdier, E. and Fleuret, F. (2022). Borrowing from yourself: Faster future

video segmentation with partial channel update. In 2022 26th Interna-

tional Conference on Pattern Recognition (ICPR), pages 1–8. IEEE

2.1 Introduction

In the pursuit of improving real-time segmentation with a keen eye on minimizing

and accounting for latency, we have emphasized in the previous chapter the need for

more designs of anticipatory networks. Building on this insight, this chapter keeps the

focus on predicting future frames’ segmentation and proposes to that end a change in

the usual convolution operation.

As we have previously argued, properly leveraging the inherent sequential nature of

videos may allow substantial time gain by reusing previous computation while also

bringing relevant insight from past frames, as did both Shelhamer et al. (2016); Li et al.

(2018) by running parts of their network conditionally to the amount of change there

is from the previous frame. The changes in convolution layers we introduce in this

chapter are in line with this idea and aim at accelerating the segmentation process

while at the same time permitting information from previous frames to be available.

Specifically, we introduce channel-wise masked convolutions. These convolutions

process a full input as standard convolutions but compute only a subset of their

output channels at a given time step, following a pre-defined masking schedule. Some

previous works proposed to reduce computation by dropping part of the image (Verelst

and Tuytelaars, 2020) depending on what changed (Habibian et al., 2021), we propose
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instead to drop part of the convolution kernel.

While there is a clear gain in FLOPs due to the reduced number of computation opera-

tions, the same cannot be said for latency. This is primarily due to the fact that our

proposed masked convolution entails the execution of two tensor indexing operations,

which can be highly time-consuming on GPU hardware, potentially negating any time

saved through the convolutions themselves. Therefore, care has to be taken during

the design of the channel mask to ensure that the overall model attains lower latency.

Our proposed convolution design is specifically relevant for future prediction tasks

dealing with a stream of correlated inputs, such as video streams. It indeed allows

every convolutional layer to have access to part of the previous timestep’s output to

make its prediction.

We apply this idea to existing segmentation networks to save FLOPs and wall-clock

time. Particularly, it limits the performance drop for future prediction compared to

original networks which have just been “slimmed” to run faster but cannot leverage

the sequential nature of videos. We also apply channel-wise masked convolutions to

slimmed networks to take advantage of both techniques.

This chapter is organized as follows:

• Section 2.2 presents relevant related literature.

• Section 2.3 introduces our time-dependent channel-wise masking scheme for

convolutional layers and details their design constraints.

• In Section 2.4, we describe the application of our technique to three segmenta-

tion networks and detail the adaptations made to the training and evaluation

procedure.

• Section 2.5 presents a series of experiments conducted using these layers to

explore their advantages and limitations. The full code is made available via a

public repository1.

2.2 Related Works

Semantic segmentation, just like the rest of the computer vision literature, was shaken

to the core by the success of deep learning. The seminal work (Long et al., 2015)

introduced fully convolutional networks for segmentation, and several important

methods followed, proposing to use decoder networks (Ronneberger et al., 2015;

1https://github.com/theevann/fast-cwm-segmentation
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2.2 Related Works

Badrinarayanan et al., 2017), spatial pyramidal pooling (He et al., 2015b; Zhao et al.,

2016), dilated convolutions (Yu et al., 2017; Chen et al., 2017a), and current best

performing models are now mainly transformer based networks (Xie et al., 2021; Yuan

et al., 2021; Yan et al., 2022; Wu et al., 2021; Strudel et al., 2021).

One of the main limitations with current deep segmentation methods is the long

inference time, and numerous works have addressed this (Li et al., 2019a; Zhao et al.,

2017; Paszke et al., 2016; Orsic et al., 2019; Yu et al., 2018a, 2020; Hu et al., 2020; Li

et al., 2020; Gao, 2021; Hong et al., 2021; Fan et al., 2021; Chao et al., 2019; Nirkin et al.,

2021). These improvements allow carefully designed networks to run real-time, but

any real-time network should be built as a future prediction network (Courdier and

Fleuret, 2020).

On the future segmentation forecasting task, different approaches exist. Direct seman-

tic forecasting introduced by (Luc et al., 2017) directly predicts the future segmentation

map from past ones (Vora et al., 2018; Bhattacharyya et al., 2018; Rochan et al., 2018;

Chen and Han, 2019). Flow-based forecasting (Patraucean et al., 2015; Zhu et al.,

2017; Gadde et al., 2017; Nilsson and Sminchisescu, 2018; Terwilliger et al., 2019) uses

optical flow computed from past frames to warp past segmentation into future ones.

Feature level forecasting predicts future intermediate features from past ones (Saric

et al., 2020; Luc et al., 2018; Chiu et al., 2020). Our technique belongs to the direct

semantic forecasting category, as it directly predicts future segmentation maps.

One could note that our training with masked convolution kernels resembles that of

slimmable networks (Yu et al., 2018b; Yu and Huang, 2019) which perform a different

sort of channel-wise masking with varying contiguous masks, although these masks

are not designed nor appropriate for future video segmentation.

Our idea also echoes the fast TDNet (Hu et al., 2020) method. When TDNet uses a

different small subnetwork at each time step and combines features extracted from

several past inputs, our CWM models use different small convolution masks at each

time step and replace part of the past features with new ones.
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2.3 Method

This section motivates our main idea and describes our proposed convolutional layer

and its masking scheme.

2.3.1 Idea

Our goal is to speed up video segmentation networks. As we specifically deal with

videos, consecutive frames are alike and lead to similar computed features. We pro-

pose leveraging this temporal correlation by only updating a subset of the output

channels of convolutions at each time step and re-using the features of the previous

frame for the rest of the channels that are not computed.

We introduce a “channel-wise masked” convolution (Section 2.3.2) that works like a

normal one but uses a binary mask to select which output channels to compute. This

convolution has lower FLOPs by design, but we find that we have to put constraints

on the masks (Section 2.3.3) to also have lower latency. Additionally, we choose to use

a predefined finite set of masks and define a generator that will create these masks

(Section 2.3.4).

Our proposed channel-wise masked (CWM) convolutions can be used in place of the

normal ones in any convolutional model to make it faster. We will denote a model

using CWM convolutions a CWM-model.

2.3.2 Masked convolutional layers

A channel-wise masked (CWM) convolution is a convolutional layer that uses a binary

mask at each forward pass to select which output channels are computed. In practice,

this boils down to indexing the kernel tensor with the mask before performing the

computation. The result of this convolution is then combined with the previous time

step’s result by simply replacing the older features with fresh ones depending on the

mask, as can be seen below on Figure 2.1.

This design implies that we have to save the output of every convolution for the next

time step. At the very first time step though, there is no previous output to use, so we

perform a full convolution without masking. We noticed this is effective in properly

initializing the saved outputs.
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Figure 2.1: Operations performed in a channel-wise masked convolution. The active
channels in the mask are greyed. The crossed circle is a masked select. The blank
circle represents the interlacing of the current and previous output following the mask
indexing information represented by the dashed line.

2.3.3 Constraints on binary masks

Depending on the time step, our masked convolutions perform different computa-

tions. All input channels are still used, but each time step sees a different group of

convolution’s output channels computed, specified through the use of binary masks.

However, the improper design of these masks can lead to a significant latency increase,

and we therefore have to put constraints on their structure and generation.

Pre-defined While these masks could be chosen online, our initial experiments

showed that doing so comes with a significant increase in processing time without

accuracy gain. Therefore, for the rest of the chapter, we only use a chosen number of

pre-defined masks picked ahead of time. The masks are used sequentially, and once

all masks are exhausted we restart from the first mask.

Same number of channels When two masks have a different number of active chan-

nels, CWM convolutions using those masks also have different latencies. Since our

main goal is to reduce maximum latency, we need each time step to have a similar

computation time, so we have to activate the same number of channels in every mask.
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Figure 2.2: Masks provided for the 4 first time steps in a bi-step generator (BG) for a
convolution with C output channels. Active channels are greyed. There are only two
distinct masks used every other step. The central part which is always active has ρ×C
channels. The generator is denoted ρ-BG.

Contiguous Dealing with latency is deceptively complex, especially when working

with GPU hardware. In particular, indexing non-contiguous tensors on GPUs can be

quite slow, and in our case, two indexing operations are required first to extract the

convolution kernel and then to copy the result into the previous output. While this

aspect may seem to be a detail, we empirically observed that it matters significantly.

In fact, using non-contiguous masks in some initial experiments increased the latency

up to 15% of its initial value. Therefore, to realize the wall clock benefits of using fewer

convolutional kernels (via masking), we enforce the masks to be contiguous.

2.3.4 Mask generation

The mask generation process has to respect the constraints mentioned above and

create a set of masks that are contiguous and have the same number of active channels.

We delegate the generation process to a “generator” object that creates the set of masks

and, given a time step, returns the corresponding mask.

In the rest of the chapter, we will use a specific generator called bi-step generator
(BG) that creates only two different masks for two different time steps. The first mask

has a proportion of channels activated from the start, while the second mask has the

same proportion of channels activated from the end. This proportion is at least equal

to 50%, and can be higher, which creates an overlap that corresponds to channels that

are always activated. Using contiguous masks in this manner makes it possible for

some channels to be activated at every step while others will be activated at every

other step.

36



2.4 Experimental Setup and Models

We will denote this type of mask generator using the notation ρ-BG, where ρ ∈ [0,1]

is a ratio that corresponds to the proportion of always active channels, as shown in

Figure 2.2. Therefore, a 1-BG will make two full-ones masks (all channels always

active), and a 0-BG will make two half-full masks (no commonly active channel).

This bi-step generator design is interesting for two reasons. First, it keeps features “up

to date” as any output channel is recomputed at least every other step. Second, the

kernel weights used every other step can learn to distinguish recent from old input

channels. Other generators with more steps and masks can be used, but respecting

the constraints greatly reduces the set of usable masks. We compared the performance

between a bi-step generator and a random contiguous mask generator in Section 2.5.

2.4 Experimental Setup and Models

2.4.1 Dataset

The Cityscapes dataset (Cordts et al., 2016) is one of the few dense pixel-level scene

semantic segmentation datasets. We picked it as it provides a high number of video

sequences and not only isolated frames. Each sequence contains 30 frames, and the

20th frame is annotated with fine pixel-level class labels for 19 object categories. In

total, it contains 2975 training, 500 validation, and 1525 testing video sequences.

During training, we use image crops of 700×700. We perform standard image aug-

mentations with random horizontal flip, random scaling from 0.75 to 1.5, and random

Gaussian blur. We apply the same augmentation to all images in a sequence.

Our focus is on future segmentation prediction, i.e., networks are trained to predict a

segmentation at T +1 from an image at time T . As we use Cityscapes, we take the 19th

frame of the sequence as input, and the network is trained to predict the 20th frame

segmentation (for which we have ground truth).

2.4.2 Networks

For our experiments, we apply our channel-wise masked (CWM) convolution to three

different networks. We replace every convolution layer with its CWM counterpart,

except for the very first and very last convolution, as well as convolutions used for skip

connection (when the block’s input and output have different sizes). We use:

• SwiftNet (Orsic et al., 2019), a performant light-weight network for real-time
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segmentation, with a ResNet-18 (He et al., 2016) backbone. We train it using

the Adam optimizer with default parameters. We use an initial learning rate of

4e −5 and a weight decay of 1e −5, along with a cosine annealing lr-schedule

with ηmi n = 1e −6.

• SFNet (Li et al., 2020), the state-of-the-art for real-time segmentation network

on Cityscapes, with a ResNet-18 backbone. We train it using the SGD optimizer

with a momentum of 0.9, an initial learning rate of 5e −3, and a weight decay of

5e −4. We use a poly lr schedule with a power of 0.9.

• DeepLab V3+ (Chen et al., 2018), an accurate deep segmentation network, with

a ResNet-18 backbone. We train it using the SGD optimizer with a momentum

of 0.9, an initial learning rate of 5e −2, and a weight decay of 5e −4. We use a

poly lr schedule with a power of 3.

All hyperparameters mentioned above are taken from respective papers, and we train

all networks for 500 epochs with batch size 6. However, we lower original learning

rates since we initialize models with pretrained weights from original networks trained

to predict the segmentation of the current input.

Unless otherwise specified, we use a ρ-BG (defined in Section 2.3.4) as mask generator

in our experiments. Specifically, we conduct most of our experiments using two

generators: 0-BG and 0.25-BG.

2.4.3 Slimming networks

Replacing convolutions with their CWM version reduces FLOPs and latency, but hurts

accuracy. To assess the advantage of using CWM convolutions, we use as baseline

the original network, which has been slimmed in the way presented in (Howard et al.,

2017).

This technique consists in thinning a network uniformly at each layer by choosing a

width multiplier α ∈ (0,1] and multiplying the number of input and output channels

in every convolution by α. Original networks are slimmed ahead of time and then

trained normally. Such slimming reduces the FLOPs, the latency, and the number

of parameters, and hence allows comparing slimmed-network - our baseline - and

CWM-network performance at the same computational cost.

In addition, we note that slimming is a simple complementary approach to our

method to trade off computation for performance. Therefore, our main experiments

combine the two techniques, using the four width-multipliers α ∈ {0.5,0.65,0.8,1}.
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2.4.4 Evaluation details

As specified in Section 2.3.2, our CWM models perform normal (full) convolutions at

the first time step. Therefore, we expect the model’s behavior in the first few steps to

be slightly different from its steady-state’s behavior, i.e. after the model has processed

multiple images.

To have a correct estimation of the model’s steady-state performance, we introduce

Asymptotic Behavior Testing (ABT), which consists in feeding the model with inputs

from T −k up to T −1, with k high enough for the network to run in steady-state. In

our case, we use the highest possible value k = 19 permitted by this dataset. Note that

ABT is equivalent to a normal evaluation for original models, which do not use the

sequential nature of the inputs.

Moreover, our CWM models have a different behavior every other step. Thus, to have a

fair estimation of its expected asymptotic performance, we average the mIoU obtained

with ABT using k = 19 and k = 18 in all experiments.

The performance metric used in all our experiments is the mean Intersection over

Union (mIoU), computed on Cityscapes’ validation set. All timing measurements are

done on a GTX1080 GPU.

2.4.5 Training details

Length of the input sequence Similar to the evaluation process, we also train our

model using a sequence of images starting at offset j . This entails feeding the model

with inputs from time step T − j to T −1 and utilizing the final prediction for opti-

mization. For our main experiment (Section 2.5.1), we empirically set this offset to

j = 9. Unless otherwise specified, we use j = 7 for our additional experiments, striking

a balance between training time and testing performance.

Two-sequences training Since our models have a different behavior every other step,

we propose training our models with two input sequences starting at consecutive

offsets. Concretely, for each image sequence, we first process and perform an optimiza-

tion step with the subsequence
{
T − j . . . T −1

}
, and then again with the subsequence{

T − j +1 . . . T −1
}
.
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Figure 2.3: mIoU for three different models with and without CWM convolutions.
Baseline is the original model, 0-BG and 0.25-BG are our CWM versions of the model
using bi-step generators defined in Section 2.3.4. Each line corresponds to a model
for which the speed/accuracy trade-off is modulated with the width multipliers α ∈
{0.5,0.65,0.8,1} to slim the network (Section 2.4.3). Our un-slimmed models using
0.25-BG, corresponding to the rightmost red points, all have a better mIoU and a lower
latency than the original models.

2.5 Results

In this section, we first evaluate the performance of CWM models compared to original

models for future segmentation prediction. Then, we study the relevance and influ-

ence of various design choices and hyperparameters. In all experiments, we compute

the mIoU with asymptotic behavior testing (presented in Section 2.4.4) on Cityscapes’

validation set. We mostly included here plots of wall-clock times, additional plots of

FLOPs are in Appendix.

2.5.1 Future segmentation prediction

In Figure 2.3, we compare baseline models to our CWM versions of those with gen-

erators ρ-BG for ρ ∈ {0,0.25}. Each connected line corresponds to a model for which

the trade-off between computation and accuracy is controlled by changing the width

multipliers α ∈ {0.5,0.65,0.8,1} (Section 2.4.3).

For every line, the rightmost points correspond to the un-slimmed version of the

model. On all figures, un-slimmed 0.25-BG models not only use, as expected, less
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time and FLOPs but also have a higher mIoU than base models. This is likely because

the layers of our CWM-models have access to part of previous feature maps. Having

access to both previous and current features allows to more accurately estimate speeds

and predict the future position of a moving object.

As we slim more and more with a lower α, the number of active channels per time

step gets too small to make proper predictions. This is especially true for SwiftNet

and SFNet which are already both very optimized networks. With these models, we

see that using the CWM convolutions is better than using the original ones when

networks are slightly slimmed. In particular, using un-slimmed CWM models with

0.25-BG decreases wall-clock by 15% and FLOPs by 35% for the same mIoU. When

slimming these networks more, we then get quite comparable performances as using

CWM convolutions.

For DeepLab, using CWM convolutions leads to much more competitive results. In

particular, we see that a slimmed model using a 0.25-BG can reach a similar mIoU

as the base model with a decrease of 45% wall-clock and 60% FLOPs. Moreover, the

un-slimmed 0.25-BG model (rightmost red dot) has about 2% higher mIoU than the

base model while being 15% faster.

Generally, we can see that using CWM-convolutions is a better way to accelerate a

model than a simple slimming. These results demonstrate a real potential for CWM

convolutions to speed up future prediction networks.

2.5.2 Controlling the speed/accuracy trade-off

When using bi-step generators ρ-BG, the higher the value of ρ, the greater the number

of channels processed at each time step and the longer the processing time. In

Figure 2.4, we plot the mIoU of CWM-SwiftNet with different generators ρ-BG, for

ρ ∈ {0.1,0.2,0.3,0.4,0.5}. We use a fixed training offset j = 9.

This plot highlights that the parameter ρ allows controlling the trade-off between

speed and accuracy, which is a desired and practical feature of our CWM models.

2.5.3 Evaluation Offset

For evaluating our model performance, we use Asymptotic Behavior Testing (ABT),

as explained in Section 2.4.4. We remind that ABT consists in feeding the model

with inputs from T −k to T −1 before evaluating. We additionally average the mIoU

obtained with two consecutive k.
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Figure 2.4: mIoU of CWM-SwiftNet trained with different bi-step generators. Each dot
represents a CWM-SwiftNet model using a ρ-BG for ρ ∈ {0.1,0.2,0.3,0.4,0.5}. While
Figure 2.3 picks two values for ρ and varies the width-multiplier α, here we set α= 1
and varyρ. We see thatρ allows to modulate the trade-off between speed and accuracy.

Figure 2.5 plots our CWM-SwiftNet’s mIoU depending on the number of frames k it

has processed, for all k ∈ [3 . . 19], and confirms the relevance of ABT and the averaging.

Indeed, for low k values, the model is not in steady-state, and as k increases, the

model performance stabilizes, which is a strong argument for ABT. In addition, the

oscillation observed for higher k is coherent with the use of bi-step generators that

create two masks used every other step and validates the need for averaging the mIoU

computed with two consecutive k.

2.5.4 Training Offset

In CWM models, the output prediction depends on the current input frame and previ-

ous computations, which is why we have introduced ABT, an evaluation procedure

that evaluates the model’s steady-state performance. Therefore, it seems relevant to

train the network when it operates in steady-state. To do so, we feed the model with j

inputs from T − j to T −1, as explained in Section 2.4.5.

In this experiment, we plot the mIoU reached by models as a function of the number

of frames j used in training. The models used are 2 CWM-SwiftNet models with

different mask generators 0-BG and 0.25-BG. The results in Figure 2.6 suggest that
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Figure 2.5: mIoU of CWM-SwiftNet as a function of the number of frames k the
network has seen. Horizontal dashed lines are values taken as the final mIoU of each
network. The vertical dashed line marks the number of frames that networks have
been trained with. We see that steady-state is reached after about 9 frames for 0.25-BG
and 12 frames for 0-BG. The oscillation for higher k is due to the two alternating masks
of bi-step generators.

good steady-state performances start around j = 7 and are best around j = 9, which is

why we used this last value in our main experiments. However, we refrain from using

a higher j , which increases training time and does not bring higher mIoU.

2.5.5 Bi-sequence training

All experiments so far have used the “two-sequences training” presented in Sec-

tion 2.4.5. Table 2.1 reports other multi-sequence training setups with SwiftNet. In

particular, it shows the single sequence training where a sequence is only used once

with starting offset T − j , with j = 7 in this experiment. We also trained using 3 and 4

sequences.

The results are shown in Table 2.1, and it appears that two-sequence training is better

than single-sequence training (+2.5%). Moreover, using additional offset sequences

does not seem to improve the final mIoU, which motivates our choice of two-sequence

training for our other experiments.
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Figure 2.6: mIoU of a CWM-SwiftNet as a function of the length j of the sequence it
has been trained with. The mIoU appears to plateau from j = 7, and j = 9 gives the
highest values.

Starting offset of sequences mIoU (%)

T – 7 62.8
T – 7, T – 6 65.3
T – 7, T – 6, T – 5 64.1
T – 7, T – 6, T – 5, T – 4 64.3

Table 2.1: mIoU of a CWM-SwiftNet 0.25-BG with different multi-sequence setup. The
first column represents starting offset of sequences. For instance, “T −7,T −6” is the
usual two-sequences training, where one input sequence is used twice to optimize
the model. It is used first as the subsequence [T −7 . . . T −1], then as the subsequence
[T −6 . . . T −1]. We see that two-sequence is better than single-sequence and that
using more sequences does not help.
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2.5.6 Ablation on CWM convolutions position

When altering a network to use our CWM convolutions, we specified in Section 2.4.2

that we do not replace the very first convolution in the stem and those used in skip

connections.

In Table 2.2, we study the performance in configurations where we use CWM convolu-

tions instead of normal ones in the stem layer or in skip connections. The model is a

CWM-SwiftNet using a 0.25-BG. This table confirms that we should use normal con-

volutions in the stem and skip connections as it brings a substantial mIoU increase.

Stem Skip mIoU (%)

CWM CWM 63.3
CWM Standard 64

Standard CWM 65
Standard Standard 65.3

Table 2.2: Ablation experiment on CWM convolutions in the stem and skip connec-
tions of SwiftNet. CWM indicates a CWM convolution, Standard indicates normal
convolution. This confirms that we should use normal convolutions in the stem and
skip connections.

2.5.7 Bi-step vs Random generator

To evaluate the relevance of bi-step generators, that create two masks alternated every

other step, we propose to compare their performance with those of random mask

generators which randomly select a contiguous subset of channels at each step.

We trained both generators so that they have the same amount of activated channels

per time step. For a bi-step generator 0-BG, there are 50% of channels activated per

step, for 0.25-BG it is 62%, and for 0.5-BG it is 75%.

Results are shown in Table 2.3 below. These numbers suggest that the fixed update

schedule of bi-step generator is better than a random update rule, but that the differ-

ence reduces as the percentage of active channels increases.

2.5.8 Performance on T+1, T+2, T+3

In this additional experiment, we study the mIoU decay for SwiftNet models when

they are trained for a later objective, namely for T +2 or T +3 instead of T +1. The

models used are the SwiftNet baseline and 2 CWM-SwiftNet models with different
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Channels activated each step Bi-step Generator Random Generator

50 % 62 % 50.8 %
62 % 65.3 % 61.7 %
75 % 67.5 % 66.2 %

Table 2.3: Comparison between bi-step and random generator for the same amount
of activated channels at each step.

mask generators 0-BG and 0.25-BG. We report results on Figure 2.7, on which we can

see that the slope of the decay appears higher for non-CWM models, which do not

have access to past information.
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Figure 2.7: Models mIoU depending on the prediction objectives. The mIoU worsens
as we try to predict further into the future, but the slope of the decay is higher for the
baseline than for CWM-models.
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2.6 Conclusion

In this chapter, we delved into the design of anticipatory networks by exploring a

possible improvement of convolution layers that makes them more suitable for future

frame segmentation. Leveraging the temporal coherence of successive frames, our

simple layer design both trims computational requirements and enables access to

previously calculated features, which speeds up and improves future segmentation

prediction.

Our proposed CWM layer is not restricted to segmentation networks and can be ap-

plied to any task involving prediction from a correlated input sequence. Moreover, the

ρ parameter of our ρ-BG generators allows for the modulation of the speed/accuracy

trade-off. Experimentally, our proposed CWM-models achieve the same mIoU while

performing fewer FLOPs, and taking less wall clock time than the original models in

most cases. Better yet, un-slimmed CWM-models even achieve higher mIoU than the

originals.

This chapter proposed an approach to mitigate network latency through the reduction

of the number of parameters effectively used at each run. Moving forward, the upcom-

ing chapter presents another strategy for achieving faster processing, shifting focus

from minimizing parameter utilization toward reducing the volume of data processed

by the model.
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3 PAUMER: Patch Pausing Transformer
for Semantic Segmentation

This chapter is based on

Courdier, E., Sivaprasad, P. T., and Fleuret, F. (2022). Paumer: Patch pausing

transformer for semantic segmentation. In 33th British Machine Vision

Conference 2022, London, UK, 21 - 24 November 2022

3.1 Introduction

In the previous chapter, we looked at a way to make the model faster by skipping

some parts of the convolutions in the network, effectively reducing the number of

parameters employed. In this chapter, we delve into an alternative approach to ac-

celerate networks that involves reducing the amount of overall data processed. More

specifically, we propose to progressively reduce the amount of data processed by

the segmentation network as we go deeper into the network. The latency-reduction

method proposed in this chapter is specifically tailored to the Vision Transformers

(Dosovitskiy et al., 2021; Steiner et al., 2021) class of networks. Vision Transformers

(ViT) have recently demonstrated very strong performance on large-scale image classi-

fication tasks. These networks break the images into a collection of patches (or tokens,

interchangeably) and progressively refine their representation by processing them

through a series of residual self-attention layers (Vaswani et al., 2017). Although origi-

nally developed for image classification, recent methods have adapted transformer

architectures to various computer vision tasks (Khan et al., 2021; Wang et al., 2021;

Chu et al., 2021), and specifically to semantic segmentation (Zheng et al., 2021; Strudel

et al., 2021; Xie et al., 2021).
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While these large transformer architectures have led the progress on the accuracy

front, there have been several efforts to make them more efficient to be able to process

more data, and faster (Tay et al., 2020). One way to achieve this is to reduce the

number of processed patches. Some works use multiscale approaches (Wang et al.,

2021; Xie et al., 2021) that gradually reduce the number of patches as the processing

progresses. Another option has been to drop the patches that are not informative to

the classification task (Yin et al., 2022; Pan et al., 2021; Marin et al., 2022; Rao et al.,

2021; Liang et al., 2022a). For example, it is possible to classify an image as that of a

dog with only the patches that belong to the dog, while refraining from processing the

rest of the patches.

In this chapter, we are interested in patch-dropping in the context of semantic seg-

mentation. Differing from the case of image classification, it is not possible to drop

patches in semantic segmentation, as we have to predict the labels for all the pixels.

Instead, we redefine the problem in the context of semantic segmentation to patch

pausing: pausing a patch at a certain layer signifies that its representation is not

going to be updated by any subsequent encoder layer, it does not contribute to the

feature computation of other patches, and it is fed directly to the decoder. Consider

segmenting natural road scenes from Cityscapes (Cordts et al., 2016) in Figure 3.1, it is

apparent that some parts of the scene are relatively simpler to segment (say, the sky,

and the road). So, we allocate lesser computation power to these patches by pausing

their feature computation and feeding them as-is to the decoder to produce the final

segmentation map. Our argument is supported by the findings in Raghu et al. (2021);

they find that the representations of tokens are primarily modified in the first half of

the network, and rely on the residual connections to only marginally refine them in

the later stages. This opens up an opportunity to reuse the representations, instead of

recomputing them, thus improving the efficiency of segmentation transformers.

Our criterion for token pausing is the time-tested posterior entropy of the segmen-

tation labels. We find that entropy is strongly indicative of lower error. Our method,

called Patch pAUsing segmentation transforMER (PAUMER), adds a simple linear aux-

iliary decoder to predict labels and compute entropy, and processes only the patches

whose class prediction is of high entropy, i.e. the network is not confident about pre-

dicting the labels of these patches, and processes them more. Based on the Segmenter

(Strudel et al., 2021) architecture, we show the performance of our method on the

standard benchmark suite of ADE20K (Zhou et al., 2017) and Cityscapes (Cordts et al.,

2016). Our method pushes the Pareto front of the speed-accuracy trade-offs, and we

find that we can operate at a 50% higher throughput with a drop in mean Intersection

over Union (mIoU) of 4.6% and 0.65% on ADE20K and Cityscapes respectively, and for

doubling the throughput, the drop is about 10.7% and 4.5% respectively.
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(a) Input Image
(b.1) Patches paused

after Layer 3
(c.1) Patches paused

up to Layer 5
(d) Output Seg-

mentation

(b.2) Entropy
Computed

(c.2) Entropy
Computed

(c.3) Patches pro-
cessed further

Figure 3.1: Illustration of our proposed method. Our method progressively stops
processing patches after they reach a low enough prediction entropy. First column
(a) shows the input image. Second column (b.1) shows the patches that are stopped
from being processed after the third transformer layer in green. Third column shows
additional patches that are paused after the fifth layer in pink. In the bottom row,
(b.2) and (c.2), we show the entropy computed from the auxiliary decoders that is
used to decide which patches to pause (Section 3.2.1). It is apparent that the network
automatically pauses easy parts of the image while allocating more computation to
the parts that correspond to boundaries, and to smaller and rarer classes, as shown in
(c.3) in red. Figure best viewed on a reader with zooming capability. Full details are
presented in Section 3.2.

This chapter is organized as follows:

• In Section 3.2, we describe our newly proposed method, PAUMER. We first

describe the motivation behind our method, then provide a justification for

our patch-pausing criterion, and finally describe the training procedure and its

advantages.

• In Section 3.3, we review related existing litterature. In particular, methods that

perform token sparsification, early exit, and dynamic computation time are

discussed.

• Section 3.4 presents the experimental results we achieved with PAUMER on the

Cityscapes and ADE20K datasets. Further, we provide context into how PAUMER

stands compared to other established rapid segmentation methods.

• In Section 3.5, we discuss the results obtained in the previous section and

the variations observed between different datasets. We also acknowledge the

limitations of our work, shedding light on several design choices and their

implications.
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3.2 Patch pausing transformer for Semantic Segmenta-

tion
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Figure 3.2: Schematic of our proposed method. We modify Segmenter (Strudel et al.,
2021) to enable the pausing of patches and feeding them directly to the decoder. Our
proposed PAUMER encoder adds a simple auxiliary decoder (a 1×1 convolution), and
uses the predicted posterior entropy H[Ŷ |X ] of each component of X to reorder the
feature representation X . A portion (τ) of this feature representation would be paused
and fed to the decoder directly. The rest of the features (of size N ′ < N ) are processed
further.

Patch pausing for semantic segmentation is tied to the notion that computation

should be non-uniformly distributed across the image, with some parts of the input

needing more computation than others to obtain an accurate segmentation. This

notion is difficult to realize in the case of convolutional networks as convolution im-

plementations in popular deep learning frameworks handle only inputs with uniform

coordinate grid, and thus need software optimizations (Lavin and Gray, 2016), or

require architectural simplifications like the use of 1×1 convolutions in the network

(Verelst and Tuytelaars, 2020). On the other hand, ViTs are ideally suited for this

purpose, as each transformer layer consumes a matrix of patch representations with-

out any regard to its input’s spatial location. Removal of patches from computation

does not require any additional modifications to the transformer networks for them

to apply heterogeneously distributed computation across an image. This restricts

the pausing pattern to operate at a patch level, and these paused patches can be

non-uniformly distributed over the image coordinate grid. Our primary experiments

are based on the architecture Segmenter from Strudel et al. (2021), which uses a ViT

backbone to extract patch representations, and predicts a segmentation map using a

transformer-based mask decoder. We describe this in detail in Section 3.C.
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3.2.1 Using Entropy as a criterion for patch-pausing

How do we determine which tokens to pause, i.e. which ones do not need more

processing? Consider the unrealistic case when we have access to the ground truth

labels. We could decode after each layer l ∈ {1 . . .L}, and stop the processing of tokens

for which the prediction is accurate enough.

In the absence of ground truth to determine which tokens can be paused, we propose

to use the entropy of label predictions as a proxy for the correctness of the network’s

predictions. We posit that our models, when confident about their prediction, are

likely to be correct. To sanity-check the aptness of entropy as a pausing criterion, we

plot in Figure 3.3 the entropy of predictions computed after every second layer in

a Segmenter. Specifically, we use a Segmenter with ViT-Ti backbone pretrained on

Cityscapes, freeze its weights, and only train the one-layer linear auxiliary predictor

added after each layer. Each vertical plot is a histogram, and we see that in the

initial layers, there is a higher overlap of correct and incorrect predictions’ entropies.

When a token has been processed enough to predict the correct label, the entropy

of the prediction is generally low. Thus, pausing patches based on entropy results in

representations that have been refined enough to result in correct predictions.
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Figure 3.3: Violin plot of entropy of predictions at intermediate layers. In this figure,
we plot the entropy distribution of the auxiliary predictions for 10% of images in the
Cityscapes validation set. The x-axis marks after which layer the prediction was done.
For each layer, the entropy distribution is shown for tokens correctly (in blue) and
incorrectly (in orange) classified. We see that the entropies of the predictions for
tokens correctly classified accumulate in the low values in the later layers (blue spike
on the bottom-right)

3.2.2 Training PAUMER - One training for many pause configurations

We base our network on Segmenter’s architecture (Strudel et al., 2021) detailed in

Section 3.C. A pause configuration (or configuration) refers to the proportion of

patches paused at each layer of the network. An obvious method is to train and
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test the same patch pausing configuration that satisfies our run-time requirements.

Any changes to the run-time requirements require retraining the network. For this

reason, we propose a more general strategy that enables multiple patch-pausing

configurations at inference with just one trained model. For each transformer layer l ,

we define a range of patch pausing proportions (τlo
l ,τhi

l ). For each batch of training

samples, we sample uniformly one layer l ∈ {3, . . . ,L} and a patch pausing proportion

τl ∼ U [τlo
l ,τhi

l ], where U refers to a uniform distribution over the parameters. To

facilitate the patch pausing, we employ a single auxiliary decoder D A, parametrized

by a 1×1 convolution, after the operations of any layer l (see Figure 3.2).

We choose to limit the number of locations where we pause patches, as each decoding

incurs an additional cost of passing the representation through a linear layer (see

Section 3.D for additional analysis).

The outputs of the main branch of the network and the auxiliary branch are trained

using the traditional cross-entropy loss.

Lmain = CE(y , ŷ) (3.1)

L l
aux = CE(y , ŷ l ) (3.2)

where y is the ground truth, ŷ refers to the logits predicted by the main decoder (mask

transformer), and ŷ l is the auxiliary decoder’s output at the l th layer. The total loss

used to train is a combination of losses in Equations (3.1) and (3.2).

Ltotal =Lmain +λL i
aux (3.3)

where λ is a scalar used to scale the contribution of additional losses.

At layer l , entropy is computed for each component of Xl as

Hl :=H[Ŷl |Xl ] =H[σ(D A(Xl ))], (3.4)

whereσ is the softmax function applied to each pixel independently. With this entropy,

we pause the computation of a proportion τl of tokens with the lowest entropy and

store them as X ′
l , and continue with the computation using the rest of the tokens Xl

(see Figure 3.1). Note that there are other ways to use Hl to pause tokens, for example

by using a threshold on entropy. However, doing so results in pausing and removing

different amounts of tokens in each image of a batch, which would add a substantial

overhead as padding is not processed efficiently on a GPU. Additionally, pausing a

fixed amount of tokens allows for a deterministic computation time.

In order to re-assemble in the original order the patches that have been fully pro-
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cessed and the ones that have been paused, we use a patch assembler module (see

Section 3.A for PyTorch-like code). It takes XL and X ′
l , and reassembles them into the

original shape of X0. In order to do so, the pausing mechanism stores the indices of

the patches that have been chosen to be paused, in addition to the current feature

representation. The assembler copies the paused representation into the same indices

stored previously. This re-assembled output is finally fed into the decoder (mask

segmenter head) to compute the segmentation map.

Inference Our training procedure of randomized pause configurations grants us the

advantageous ability to choose at run-time a pausing configuration that is tailored

to the run-time requirements, i.e. mIoU and number of images processed per sec-

ond. This configuration can have multiple pause locations, each with different pause

proportions. We show some results for some configurations listed in Table 3.1. The

patch assembler accordingly assembles multiple paused patches {X ′
l }, and the final

representation XL . The specific configurations are chosen to display the adaptability

of the trained network to various inference time requirements and do not hold any

specific importance. Pause configurations can be added easily, as it does not influence

the training, but only requires testing over the validation set.

3.3 Related Work

We now discuss some important prior work related to our method, before showing

the experimental evidence.

3.3.1 Segmentation using Transformers

Transformers that were originally proposed for language processing tasks (Vaswani

et al., 2017) have been incorporated into vision (Dosovitskiy et al., 2021; Touvron

et al., 2021) and several improvements have been proposed (Khan et al., 2021). SETR

(Zheng et al., 2021) adapted the standard vision transformer (ViT) to segmentation

by using a multiscale decoder on all the image patches. Segmenter (Strudel et al.,

2021) improved the decoder design by using a learnable per-class token that acts as a

weighting mechanism over the tokens’ representations. Segformer (Xie et al., 2021)

redesigned the architecture with a multiscale backbone that does not use positional

encoding and an MLP-based decoder. Several improvements to the transformer

backbone have been shown to have an impact on the downstream segmentation

performance (Wang et al., 2021; Xu et al., 2021; Chu et al., 2021; Liu et al., 2021). These

improvements to the transformer backbones have indeed improved the efficiency,

measured by frames processed per second, number of floating point operations per
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second (FLOPs), or images processed per second.

3.3.2 Token sparsification methods

Several components of the whole transformer architecture have been improved, by

approximations, and simplifications to the attention mechanism. Interested readers

can refer to Tay et al. (2020). Orthogonal to the architectural improvements, recent

work has focused on the reduction of the data processed, and our proposed method is

a form of input-dependent reduction. Graves (2016) proposed Adaptive Computation

Time (ACT), where the amount of processing for each input to an RNN is decided

by the network by determining a halting distribution. It was adapted to residual

networks by Figurnov et al. (2017), which dynamically decides to apply a differential

number of residual units to different parts of the input. This has been adapted to

transformers too (Yin et al., 2022), where the tokens are progressively halted as they

are determined to have been processed enough according to a similar criterion as

ACT. DynConv (Verelst and Tuytelaars, 2020) uses an auxiliary network to predict pixel

masks which indicate pixels of the image that are not processed by a residual block.

DynamicViT (Rao et al., 2021) extends this formulation to transformers where they,

similarly, use an auxiliary network to predict which patches are dropped from being

refined further. The auxiliary branches are trained using the Gumbel-softmax trick

(Jang et al., 2016) in both these methods. We consider the simplicity of the steps the

strength of our proposed method. Unlike DynamicViT (Rao et al., 2021), we do not

need techniques like Gumbel-softmax that are harder to optimize, and additional

tailored losses. Additionally, both A-ViT and DynamicViT drop a fixed amount of

patches for a given image, and do not provide the flexibility to vary the number of

patches dropped, as our method does.

3.3.3 Early-exit methods

Dynamic neural networks (Han et al., 2021) adapt the architectures or parameters in an

input-adaptive fashion. Specifically, early-exit methods find that deep neural networks

can overthink where a network can correctly predict before all layers process the

input, and it can even result in wrong predictions due to over-processing (Kaya et al.,

2019). Several methods to determine when to exit the network have been proposed.

Branchynet (Teerapittayanon et al., 2016) and Shallow-Deep nets (Kaya et al., 2019)

uses auxiliary classifiers to predict the output class for vision convolutional networks

and stop processing a sample if the entropy of a branch’s predictions is lower than a

predefined threshold. This idea was further exploited in NLP literature. Zhou et al.

(2020) extends this by using a patience parameter that tracks the number of auxiliary
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classifiers that predict the same class. DeeBERT (Xin et al., 2020) proposes a two-stage

training, where the auxiliary decoders are trained after the main network is trained

and frozen. Li et al. (2017) propose a layer cascade for convolutional segmentation

networks, that processes easy to hard parts progressively through the network. Their

method needs modifications of the network architecture, whereas we show that our

proposed method can be added with very little effort. Our method is an early exit

strategy, specifically for the case of segmentation transformers. While similar methods

have been examined in the literature, to the best of our knowledge, we are the first to

perform patch-pausing in the context of semantic segmentation. Also, the randomized

training presented in Section 3.2.2 has not been used in this context, though similar

ideas to reduce network width were studied in slimmable networks (Yu et al., 2018b).

3.4 Experiments

3.4.1 Datasets and Evaluation

We show the performance of our method using networks trained on Cityscapes (Cordts

et al., 2016) and ADE20K (Zhou et al., 2017). Cityscapes (CS) consists of 2,975 images

in the training set, in which each pixel belongs to one of 19 classes, and 500 images

in the validation set which are used to benchmark the performance of our method.

ADE20K is substantially larger, with a training set of 25,574 with 150 classes, and

2,000 images to validate the performance. The results for Cityscapes and ADE20K are

presented below.

Our primary performance measure is based on the speed-accuracy trade-off, mea-

sured by mean Intersection over Union (mIoU) metric and throughput in images per

second. To determine the number of images processed per second (IMPS), following

Strudel et al. (2021), we use images of size 512×512 with a batch size that optimally

occupies a V100 GPU.

Methods compared To assess the performance of our proposed method, we use the

following baselines for comparison:

a. Baseline set by Segmenter, without any patch pausing.

b. Random Pausing (RP): We train the network to handle pausing a proportion τ

of randomly chosen patches, instead of the lowest entropy ones.

We examined an additional simple baseline of random pausing (without training),

and found the results not competitive enough to warrant reporting here. Also, some
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methods in Section 3.3 are capable of dropping different patches per image. These

methods can result in a decrease in FLOPs (floating point operations), but this re-

duction cannot be realized in wall clock improvements as modern GPUs parallelize

computation over batch elements.

Pa
u

se
La

ye
r Pause configurations

3 0.2 0.4 0.6 0.2 0.3 0.4 0.2 0.3 0.4
5 0.2 0.4 0.6 0.8 0.2 0.3 0.4 0.2 0.3 0.4
7 0.2 0.3 0.4

Table 3.1: Table of configurations. Each column represents a pause configuration,
e.g. the first column represents the configuration pausing 20% of tokens after layer 3,
using the notation introduced in Section 3.2.2. Each configuration here corresponds
to a marker in Figures 3.4a, 3.4b and 3.K.1.

Training hyperparameters and Inference Configurations: For our main experiments,

we use Segmenter with ViT-Ti and ViT-S backbones (details in Section 3.B). During

training, we follow the procedure in Section 3.2.2 for every network and dataset,

and in particular we pause a random amount of tokens τl ∼U [0.2,0.8] at a random

layer l ∈ {3,4,5,6,7,8,9}. We initialize the model for our training with pretrained

segmenter weights, as we find this results in better performance, and train the model

for 80,000 steps for Cityscapes and 160,000 steps for ADE20K. The auxiliary loss-

weight λ is set to 0.1. The rest of the hyperparameters as kept the same as in Strudel

et al. (2021). We implement our method using MMSegmentation (Contributors, 2020)

and use their pretrained models whenever available. At inference, we test the networks

with the pause configurations in Table 3.1. This list of pause configurations is not

exhaustive and does not hold any specific importance, but it has been chosen to show

the efficiency of our method in trading off mIoU for higher IMPS.

Choosing pause configurations: Determining the appropriateness of a pausing con-

figuration incurs little additional cost, as it only requires inference with a validation

set for each configuration of interest (see Figures 3.4a and 3.4b). On a new dataset

for which we train the network with the proposed training procedure, we foresee two

scenarios:

1. If the objective is to attain a specific throughput, we can easily find config-

urations that match the requirement with a sweep over them (Figures 3.H.1

and 3.H.2) by only timing them, and then evaluating the mIoU of the ones that

meet the time requirement.

2. If the objective is to find a good throughput-mIoU trade-off: First, we sweep
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through configurations that pause at only one layer (Figure 3.H.1) and we pick

the first layer and proportion. We fix this layer and ratio, then sweep through

pausing configurations at a second layer (Figure 3.H.2). We repeat this procedure

until adding more layers is no longer beneficial.

3.4.2 Results

Performance analysis In Figure 3.4a, we plot the mIoU versus the number of im-

ages per second achieved by baselines and our entropy patch pausing for different

configurations, for Cityscapes. Each point is the average value of three training runs.

The left-most point corresponds to the original Segmenter model, in solid line our

proposed pausing strategy, and in dashed line random pausing with training. For both

ViT-Ti and ViT-S backbones, a 50% increase of IMPS can be achieved with an mIoU

drop of about 0.7% and 0.6% respectively. Further, for doubling the IMPS, we see that

the mIoU drops about 3.2% and 5.9% respectively. For the trained random pausing

using ViT-Ti, a strong baseline, the equivalent drops in mIoU are about 2.9% and 8.8%

to increase the IMPS by 50% and 100%, respectively.

We show results for ViT-Ti and ViT-S for ADE20K in Figure 3.4b. For ViT-Ti backbone,

we see that for a 50% increase in IMPS, mIoU drops by about 2.8%, and a 100%

increase in IMPS with a mIoU drop of about 10.7%, compared to random pausing

performance of 5.4% and 13.5%. The drop in mIoU is in contrast with the results of

Cityscapes, where we could achieve a similar increase in throughput with a much

lesser drop in performance. We chalk this difference up to dataset characteristics;

ADE20K has almost an order of magnitude more classes, and the images are smaller

with cluttered scenes and numerous small objects, which may require more processing

to be correctly classified.

Generating these performance plots i.e. mIoU vs IMPS is inexpensive, as no retraining

is involved and only needs inference on a validation set with reasonably chosen pause

configurations.

Comparison to other architectures

In Figure 3.5, we compare our method to a broad array of architectures for which

pretrained models are available in MMSegmentation (Contributors, 2020). Here we

plot only the best performances obtained for each throughput across pause con-

figurations. We estimate this by computing the skyline queries. We include both

convolution-based architectures and transformer-based ones. In the transformer

family, available networks have focussed on improving the performance, and thus are
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Figure 3.4: Results on Cityscapes and ADE20K for our proposed method PAUMER. Each
marker is a configuration from Table 3.1. We train a single model capable of handling
various pause configurations that can be chosen based on run-time requirements.
It is apparent that ADE20K suffers from a higher drop in performance when patch
pausing is employed. However, PAUMER consistently outperforms the random training
baseline.

slower, but more accurate than the PAUMER family of models. CNN-based ones (say

ICNet for Cityscapes) that have been designed to be more efficient are competitive

or better in speed than our models. However, we have the unique ability to tune the

mIoU-throughput scores of our model without having to retrain them.

3.5 Discussion

The improvement in images processed per second is obtained by reducing the number

of patches processed. This might not necessarily hold true in the case of networks

with convolutional layers interspersed, such as SegFormer (Xie et al., 2021) that uses

convolution instead of positional encoding, as convolution on unstructured sparse

inputs is not highly optimized in CUDA implementations. Thus, our method is not

readily applicable to all transformer models.
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Figure 3.5: Performance comparison for ADE20K and Cityscapes. We compare to
pretrained models available in MMSegmentation (Contributors, 2020) for each of
these datasets. Architectures devised for speed or accuracy outperform us on those
criteria, but PAUMER has the unique advantage that we can trade off one for the
other using a tunable hyperparameter. Here, we show the Pareto front of PAUMERẆe
use different colors for different architectures and different shapes for architectural
families.

In addition to architecture dependence, patch pausing’s performance may be de-

pendent on the dataset itself. We attributed the difference between Cityscapes and

ADE20K to inherent dataset complexities by examining the performance of the auxil-

iary classifier; for ViT-Ti, it reaches around 60% accuracy for ADE20K and 90% accuracy

for Cityscapes. Examining the possible relationship between patch pausing perfor-

mance and the dataset difficulty (Ethayarajh et al., 2022) might shed some light on

this issue.

Additionally, patch pausing assumes that a paused token is not important to the

feature computation of other tokens, as it will not contribute further to the attention

computation to refine the representation of other patches. Performance (mIoU)

indicates that it might have little bearing, but this assumption needs to be investigated

further.

While our method adaptively selects which patches to pause based on the input, it

always chooses a fixed proportion of them. This design is specifically implemented to

leverage batch-level parallelism on GPUs. Choosing the number of patches depending

on the input batch has not been dealt with in this research.

To study the stability of our training procedure, we study the variability between

training runs by training both Segmenter and our proposed PAUMER with ViT-Ti

backbone on the Cityscapes dataset over three random seeds. Segmenter’s mIoU has a

standard deviation of 0.37, whereas for PAUMER it depends on the amount of pausing.

When pausing 40% at layer 3, the variance is 0.35, whereas when pausing 40% at layers
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3,5 and 7, it raises to 0.75. It is apparent that pausing more tokens results in a higher

variance of performance. We hypothesize this is attributable to instabilities in patch

selection early on in the training process, and thus some training runs happen to

perform better. This, however, needs additional validation.

3.6 Conclusion

Both this chapter and the previous one propose a practical method for efficiency

gains, not only theoretical ones. The efficiency-driven modifications are motivated by

how operations are scheduled and memory adjacency requirements. This is why it is

beneficial to skip the computation of some feature maps in a convolutional network

and some spatial locations in a vision transformer. In this chapter, we shifted focus

from convolutional to transformer networks, and within this context proposed a

token-reduction technique for faster inference. Our method, PAUMER, is a first step

in the direction of post-hoc design for efficient inference in semantic segmentation

transformers.

PAUMER increases the inference speed by applying dissimilar amounts of computation

to different patches of an image, judiciously pausing the processing of patches with an

estimated low complexity. We have seen that the entropy of an auxiliary intermediate

predictor can be a reliable proxy for the patch complexity and thus serves as a useful

criterion for patch pausing. In addition, our method offers the flexibility to pick

different pause configurations without having to retrain the network, which allows

the model to run at the desired throughput. On Cityscapes, we have shown that our

method can double the inference speed with little loss of mIoU.

With this chapter, we conclude the part of this research focusing on reducing network

latency, whether in the context of swift convolutional networks (Chapter 2) or precise

transformer networks (Chapter 3). The next and final chapter will look at another

critical aspect of anticipatory networks: the predictions’ ambiguity.
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Appendix - Chapter 3

3.A Pseudocode for Patch Pauser and Assembler

In Algorithm 1, we present pseudo-code for both patch pausing mechanism and patch

assembler. The code isn’t meant to be functional but only for illustrative purposes.

Comments describe the functionality.

3.B Backbone details

In this paper, we use two transformer backbones: ViT-Ti(ny) and ViT-S(mall). We do

not experiment with ViT-B, ViT-L architectures, due to our computational resource

constraints. In Table 3.B.1, we describe the main architecture details of the ViT back-

bones.

Model Name Layers Embedding dim Heads Params

ViT-Ti 12 192 3 5.9M
ViT-S 12 384 6 22.5M

Table 3.B.1: ViT architectural details used

3.C Brief introduction to Segmenter

Segmenter (Strudel et al., 2021) network ingests an input image I ∈ RW ×H×3 and

assigns one of the K output classes to each input pixel. From I , the model first extracts

non-overlapping patches of size P , creating a total of N = W H
P 2 patches (also called

tokens). Each of those patches are then transformed using a linear embedding layer

E :R3P 2 →RD , giving a feature representation X0 ∈RN×D , as shown in Figure 3.2.

This feature representation is refined by processing through L transformer encoder

layers Tl (l ∈ [L]), where each transformer encoder layer consists of a multi-head

self-attention (MHSA) block followed by a two layers perceptron (FFN). The overall

operation can be represented as:

XL := TL ◦TL−1 ◦ · · · ◦T1 ◦E(I ) ∈RN×D

Each Ti is residual in nature, i.e. Ti (x) = x + A(x) where A encompasses the self-

attention and the multi layer perceptron.
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Algorithm 1 Patch Pauser and Assembler Pseudocode

def patch_pauser(tokens, pause_ratio, keep_indices, paused_tokens):

# tokens (Xl ) refers to current set of tokens being processed.
# Note that this might not be the total number of tokens, as one
# or more patch pausing stages could have happened.

# pause ratio is τ, pausing proportion

# keep_indices, paused_tokens are temporary arrays to store
# details for assembling (see below).

_, total_tokens, _ = tokens.shape
to_process_count = N - int(pause_ratio * N)

# Compute aux entropy of tokens
aux_prediction = auxiliary_classifier(tokens)
probs = aux_prediction.softmax(dim=-1)
entropy = compute_entropy(probs)

## Instead of sorting, we use topk. This is faster on GPU.
topk_inds = entropy.topk(to_process_count)
kept_tokens = tokens[:, topk_inds]

keep_indices.append(topk_inds)
paused_tokens.append(tokens) ## This is X ′

l

return kept_tokens ## This is Xl+1

def patch_assembler(X_L, paused_tokens, keep_indices):
# X_L (XL) refers to the final feature representation at the end of the
# encoder. One or more stages of pausing have occurred before this.
# X_L is of the shape BxN'xD.

# paused_tokens: the feature representations of the tokens prior to
# removing the paused ones.

# keep_indices: The indices of the argsort of the auxiliary decoders'
# entropy.
for indices, tokens in zip(keep_indices[::-1], paused_tokens[::-1]):

tokens[:, indices] = X_L
X_L = tokens

return X_L
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After L layers of such processing, the refined features XL are fed into a decoder MD .

The paper investigated two kinds of decoders: (a) a linear decoder that takes in the

features in XL ∈ RN×D and produces logits ∈ RN×K using a 1×1 convolution, (b) a

mask transformer which learns K class embeddings that are jointly processed with XL

through several transformer encoder layers (à la Ti ), and produces a logits ∈RN×K as

a dot product between the features and the learned class embeddings. The output of

either decoder is reshaped to R
W
P × H

P ×K , and then bilinearly upsampled to produce a

logit map of size W ×H×K . A softmax layer is used to obtain a categorical distribution

over the labels for every pixel. All the layers, E , Ti , MD are trained using the standard

cross entropy loss.

3.D Patch pausing’s limitations
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Figure 3.D.1: Evolution of the throughput with the number of layers using patch
pausing.

In the main paper, we investigated pausing up to three times in the network. It is

indeed tempting to pause at more layers, but this entails two additional costs: first to

compute the entropy and rank the patches, and then the patch assembly as detailed

in Section 3.A. These costs are (ideally) off-set by the reduction in number of patches

processed.

To illustrate this further, let us take the case of our experiment with ViT-T backbone

(with 12 layers). In this experiment, we are interested in how the pausing patterns

affect the throughput computed in images processed per second. To simplify the

analysis, we assume that we pause a fixed proportion τ= 0.4.
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In Figure 3.D.1, we show the distribution of throughput (in images/sec) vs the number

of layers we pause tokens at. We use a box-plot where horizontal lines indicates

quartiles. For each value k on the x-axis, there are
(12

k

)
pause configurations.

Consider the case of pausing once. In this case, not all configurations of pausing

are useful; pausing too late may in fact be slower than the baseline of not pausing

at all, as it incurs an additional cost of auxiliary decoding and patch re-assembling

that may offset the time gain of not processing some patches. This trend is visible on

Figure 3.D.1 and holds even as the number of layers to pause at increases.

We now focus on two cases of pausing: pausing after layers 3, (3, 5), (3, 5, 7) and 4, (4,

7), (4, 7, 10). This two configurations are plotted as lines on Figure 3.D.1. We see clearly

that pausing more has benefits in number of images processed, but that this benefit

can quickly plateau if we pause at later layers of the network. Additionally, this analysis

does not consider the mIoU at all. Indeed, while pausing early-on and at many layers

is tempting, the drop in mIoU becomes too high for those pause configurations to be

useful (see Figures 3.4a and 3.4b). Thus the primary limitation is posed by the drop in

mIoU rather than throughput.

3.E Influence of the training pause ratio τl −τh

In Figure 3.E.1, we plot the mIoU of different pause configurations as a function of

the throughput for different values of the range of the pause ratio τl −τh introduced

in Section 3.2.2. We see that the results for various train pause ranges is relatively

stable for low amounts of inference pausing ratios. Segmenter’s standard deviation

(over 3 runs) is 0.35%, and we see that the absolute difference in the performance

at a given IMPS is about 0.5%. This, however, changes when the amount of pausing

increases (each colored curve’s right corners), when the performance difference is

higher (≈ 1%). More aggressive pausing at training seems beneficial (0−0.9 performs

the best). However, as a middle ground to the multiple configurations investigated,

we use 0.2−0.8 for all our experiments.

3.F Trading off mIoU for higher throughput

We present results for trading off mIoU for throughput. Specifically, we take all our

runs (mIoU vs IMPS) data, and fit a linear spline, and use the resultant function

to predict the mIoU for 8 intermediate IMPS within the range for which we have

experimental results for ViT-Ti in Figure 3.4a. This is to illustrate that we can choose

a pause configuration that fits our run-time requirements (IMPS), and that it works
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Figure 3.E.1: mIoU vs throughput for different values of the range of the pause ratio
τl −τh introduced in Section 3.2.2.

with the performance specified here.

Backbone

ViT-S
210 im/s

Images / second 252 276 300 325 349 373 397 421

mIoU of PAUMER 77.04 76.96 76.89 76.41 76.17 74.89 73.60 71.11
Diff to Segmenter -0.03 -0.12 -0.19 -0.66 -0.90 -2.18 -3.47 -5.96

mIoU of RP 76.68 76.08 75.77 74.79 73.32 70.75 67.60 62.64
Diff to Segmenter -0.39 -0.99 -1.30 -2.28 -3.75 -6.32 -9.47 -14.44

ViT-Ti
424 im/s

Images / second 508 557 605 654 702 751 799 847

mIoU of PAUMER 73.42 73.35 73.23 72.91 72.76 72.37 70.99 70.58
Diff to Segmenter -0.42 -0.50 -0.61 -0.94 -1.09 -1.48 -2.86 -3.27

mIoU of RP 72.59 71.96 71.35 70.64 69.56 68.66 65.07 64.98
Diff to Segmenter -1.26 -1.89 -2.50 -3.20 -4.28 -5.19 -8.78 -8.87

Table 3.F.1: Trading off mIoU for speed. In Section 3.4.2, we showed the performance
of mIoU for 50%, and 100% increase in IMPS. Here we show numbers for a finer grid
of IMPS, up to doubling of IMPS.

3.G Influence of the auxiliary loss weight λ

In Figure 3.G.1, we plot the mIoU of different pause configurations as a function

of the throughput for different values of the auxiliary loss weight λ introduced in

Section 3.2.2. We can see that increasing λ pushes the network to be more robust

to token-pausing but leads to lower performance when pausing fewer tokens. Thus,

λ can be tuned depending on the use-case to favor either pausing lesser or a larger

number of tokens.
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Figure 3.G.1: mIoU vs throughput for different values of the auxiliary loss weight
λ introduced in Section 3.2.2. Lower values of λ lead to better performance when
pausing few tokens but worse performance when pausing more, and conversely for
higher values of λ. Our chosen value of λ= 0.1 is a trade-off that can also be modified
depending on the use-case.

3.H Interplay of Pause location and Pausing proportion

τ

We showed the results for some configurations in Table 3.1. In this section, we study

the interplay between pause location and pause proportion τ. In Figure 3.H.1, we show

a sweep over pause configrations. For each layer, we choose 20 pause proportions

in (0,1). It is apparent that dropping at a later layer results in lesser drop in mIoU

but also does not result in a large gain in IMPS. Thus depending on the desired run-

time, one can choose a pause location and pause proportion that gives the required

performance.
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Figure 3.H.1: Pausing once at various layers for various pause proportions for ViT-Ti
on Cityscapes. We see that the highest gains in IMPS are achieved by dropping in
earlier layers.

To examine this further, we plot the performance of pausing twice in Figure 3.H.2.

Similarly to the case of pausing once, here we sweep over 10 thresholds for each

location, thereby generating 100 configurations for a given tuple of layers. For those

100 configurations, we plot the pareto front of performance in Figure 3.H.2. We focus

on the first pausing layer also, as it has a larger influence on the IMPS gain. We can

see that pausing at earlier layers leads to a higher increase in IMPS, that pausing small

proportions at these layers leads to slightly higher drop in mIoU than pausing a higher

amount in later layers.
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Figure 3.H.2: Pareto front of pausing at two layers for ViT-Ti on Cityscapes.
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Figure 3.I.1: Comparison when segmenting with and without early exit at test time on
CityScapes and ADE20K.

3.I Using Early Exit at test time

In Figure 3.I.1, we study the use of early exit on a trained PAUMER. Early exit (see works

in Section 3.3) refers to stopping processing of an input once it is deemed to have

been processed enough. In our method, we pause tokens, i.e. we stop processing a

token by the encoder, and feed it to the decoder to predict the segmentation label.

Here, we compare it with directly using the predictions of the auxiliary decoder itself,

without stopped tokens being processed by the main decoder. PAUMER can be run

with or without early-exit depending on the task, and using early exit on a trained

Segmenter is straightforward as it does not need any retraining due to the use of

auxiliary decoders. For the same pausing configurations as in Figure 3.4a, a network

with early exit runs at a higher throughput with less FLOPs by design, but it may run

with a lower mIoU. On Figure 3.I.1, we see that for Cityscapes, it is beneficial to use

PAUMER with early exit. This finding might not hold in general, as a complex mask

decoder maybe needed for different datasets.
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Figure 3.J.1: We compare PAUMER on Segmenter, on SETR, and using an early exit
variant of PAUMER on Segmenter. Early exit fares better than PAUMER on Cityscapes.
This may be attributable to the dataset, as Cityscapes might not need more complex
mask decoder for accuracy.

3.J Comparing SETR, Segmenter, EarlyExit using Seg-

menter

In Section 3.I we showed the results of early exit. Here we examine the best perfor-

mances obtained for each throughput across pause configurations. We estimate this

by computing the skyline queries. We see that early exit performs consistently better

on Cityscapes.

Additionally, we implement our patch pausing strategy, PAUMER, on the network

architecture SETR (Zheng et al., 2021). SETR’s performance drops off more rapidly

than Segmenter based patch pausing. Note that we adapt SETR’s PUP decoder to use

it with a ViT-Tiny backbone. In particular, we reduce the number of channels of the

decoder to 192, the number of convolutions in the decoder from 4 to 2 and the upscale

factor from 2 to 4.

3.K Importance of task specific pretraining

In Figure 3.K.1, we study importance of initialization. We compare ViT-Ti pretrained

on Cityscapes (task specific), and pretrained on ImageNet (generic) and study their

impact on performance. When using a generic pretrained model, our training with

PAUMER is increased to 160K iterations instead of 80K. It is apparent that using a task

specific pretrained model brings a relatively consistent benefit in this context.
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Figure 3.K.1: Importance of initialization for PAUMER. Task specific initialization ben-
efits performances. We train ViT-Ti PAUMER: solid lines are from ImageNet pretrained
backbones, dashed lines are from Cityscapes pretrained Segmenters. Each marker is a
configuration from Table 3.1.

3.L Entropy as a measure of patch-pausing

In Section 3.2.1, we argued that entropy is a reasonable indicator of completion of

processing. For that, we used the illustration in Figure 3.3 to show the increase in

separation of entropy histograms for pixels predicted correctly and incorrectly. We

expand that in Figure 3.L.1, to analysing that to each class individually. The larger

separation in entropy in the first few layers of network in prevalent in large classes

like road, building, vegetation, car. As seen in Figure 3.1 too these larger classes are

paused to gain IMPS. Smaller, rarer classes like train, motorcycle, rider are tougher to

learn and are unlikely to be paused (as evidenced by their higher entropy).
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Figure 3.L.1: Entropy per layer for each class of Cityscapes. Continues Figure 3.3.
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4 Handling ambiguous contexts: An ap-
plication of Discrete Diffusion model
to Segmentation

This chapter is based on

Courdier, E., Katharopoulos, A., and Fleuret, F. (2023). Segmenting the

unknown: Discrete diffusion models for non-deterministic segmentation.

Submitted to the International Conference on Learning Representations

(ICLR).

4.1 Introduction

In this last chapter, we propose to investigate another aspect of anticipatory net-

works, specifically the inherent non-deterministic nature of future predictions. While

the short-term future can be deemed as nearly deterministic, the long-term future

prediction task holds a substantial degree of ambiguity. In autonomous driving appli-

cations, for example, we need to model the decision-making processes of drivers and

pedestrians to predict their positions in the future.

As we delved further into computer vision models capable of handling ambiguity and

uncertainty, we observed that other real-world applications also require such systems.

For example, in medical imaging physicians oftentimes do not agree on a single

diagnosis, hence we desire models capable of providing multiple plausible predictions.

However, the majority of models are still trained in a deterministic manner, meaning

they provide only one prediction for each input. As a result, they can provide only

one possible output for a given input, regardless of inherent uncertainty. Moreover,

these models often exhibit high confidence in their predictions even when they are

incorrect.

In this chapter, we investigate the use of discrete diffusion models (Austin et al., 2021)
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for handling ambiguous predictions in semantic segmentation. In particular, we tackle

two non-deterministic tasks: future prediction and medical image segmentation.

Existing works in medical image segmentation (Kohl et al., 2019) utilize generative

models such as VAEs to model the uncertainty of the prediction. On the other hand,

although future segmentation is also inherently ambiguous, existing works (Lin et al.,

2021) approach it as a deterministic task. Conversely, we treat both problems in

a unified way, namely as a conditional generative task. Specifically, for the case

of medical image segmentation, we generate a segmentation mask given the input

image, whereas for future segmentation we generate the next segmentation mask

given the previous ones. Since diffusion models have demonstrated great capabilities

in efficiently generating highly detailed and high-resolution samples (Rombach et al.,

2022), we opt to use them as our generative model. In particular, we utilize the discrete

diffusion framework of Austin et al. (2021), which dovetails perfectly with the discrete

nature of the predicted segmentation masks.

The overall organization of the contributions of this chapter are the following: After re-

viewing relevant literature in Section 4.2, we present our method in Section 4.3, where

we propose to model uncertainty of predictions using discrete diffusion models in

semantic segmentation. Moreover, for the case of future forecasting, we introduce an

autoregressive diffusion framework, that utilizes segmentation generations as inputs

to predict further into the future. Then, in Section 4.4, we evaluate our model on a

Lung Cancer Medical Imaging Dataset (LIDC) (Armato III et al., 2011) and on two fu-

ture prediction tasks. The first is a car intersection simulator where we want to predict

the path of the cars in the intersections, and the second is the future segmentation

task in the Cityscapes dataset (Cordts et al., 2016). From our experimental evaluation,

we show that our model consistently outperforms an equivalent deterministic model

in all tasks. Moreover, for the two real-world tasks, we demonstrate that our generative

framework outperforms existing VAE-based methods on LIDC while performing on

par with the state-of-the-art on Cityscapes’ future prediction.

This chapter is organized as follows:

• In Section 4.2, we review the related work on non-deterministic segmentation,

diffusion models, and future segmentation.

• In Section 4.3, we present our method for handling ambiguous segmentation

using discrete diffusion models. We review diffusion models and introduce the

discrete diffusion framework. Then, we present the specific changes we made

to adapt it to the segmentation task. Finally, we present a toy experiment to

illustrate the need for modeling uncertainty in segmentation.

• In Section 4.4, we evaluate our method on three different tasks: medical image
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segmentation, trajectory prediction on a car intersection simulator, and future

segmentation on the Cityscapes dataset.

4.2 Related Work

Non-deterministic segmentation As precursors of ambiguous segmentation, Kohl

et al. (2018) proposed the Probabilistic U-Net and later its hierarchical version (Kohl

et al., 2019). It sparked further works from Baumgartner et al. (2019); Bhat et al. (2022),

among others. These works are all centered on the use of variants of a conditional

variational auto-encoder to model the ambiguity. In contrast, we propose to use

diffusion models, similar to the recent work by Rahman et al. (2023). We differ in that

we use discrete diffusion, and extend the study to future segmentation prediction.

Diffusion and Discrete Diffusion Our approach towards handling ambiguity is to

use generative models and be able to sample possible outcomes. In this chapter,

we investigate Diffusion Probabilistic Models (DPM), which are generative models

first formalized by Sohl-Dickstein et al. (2015) and later successfully applied to high-

quality image synthesis by Ho et al. (2020). We more specifically base ourselves on

Discrete Denoising Diffusion Probabilistic Models (D3PMs) introduced by Austin et al.

(2021). We found D3PMs to offer substantial flexibility regarding the modeling of the

corruption process, and to be particularly well suited to the discrete nature of the

segmentation task.

Diffusion in Segmentation Since diffusion gained strong popularity, numerous works

have tried applying DPMs to segmentation. Most of them used it in the context of

medical image segmentation (Wu et al., 2022, 2023; Wolleb et al., 2022b,a; Pinaya et al.,

2022), but contrary to us none of these aimed to solve the inherent ambiguity. Only

the previously mentioned Rahman et al. (2023) is leveraging diffusion for handling

the ambiguity of medical images.

Few works have applied it to other domains: Amit et al. (2021) applies DPMs to

the interactive segmentation task, which is a restricted two-class problem. Chen

et al. (2022a) uses another form of discrete DPMs (Chen et al., 2022b) to perform

panoptic segmentation of full images and videos. Similarly to us, they introduce an

autoregressive scheme but do not tackle any ambiguous tasks

Future segmentation On the future segmentation forecasting task, different ap-

proaches exist. Direct semantic forecasting introduced by Luc et al. (2018) directly

predicts the future segmentation map from past ones (Bhattacharyya et al., 2018;

Rochan et al., 2018; Chen and Han, 2019). In this study, we follow this methodology
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for future prediction tasks, primarily for the sake of simplicity. In contrast, feature-

level forecasting predicts future intermediate features from past ones as done by Luc

et al. (2018); Saric et al. (2020); Chiu et al. (2020) and (Lin et al., 2021) which is the

best-performing method on this task.

4.3 Method

4.3.1 Diffusion Models

Given samples x0 ∼ q(x0) from a data distribution, diffusion models (Sohl-Dickstein

et al., 2015; Ho et al., 2020) are characterized by a forward Markov process q(x1:T |x0) -

that destroys the data x0 through the successive addition of noise creating a sequence

of increasingly corrupted latent variables x1, . . . , xT - and by the corresponding reverse

process pθ(x0:T ) which is trained to gradually remove the noise. For the case of con-

tinuous data, the forward process usually adds Gaussian noise, whereas for discrete

data any Markov transition matrix can be used as a corruption.

During training, the goal is to learn the reverse process such that at inference the

model can generate data by gradually denoising a random input. The usual diffusion

optimization process consists of minimizing a variational upper bound of the negative

log-likelihood as follows

Lvb = Eq(x0)

[
DKL

[
q (xT | x0)∥ p (xT )

]+ T∑
t=2

Eq(xt |x0)
[
DKL

[
q (xt−1 | xt , x0)∥ pθ (xt−1 | xt )

]]
−Eq(x1|x0)

[
log pθ (x0 | x1)

]]
.

(4.1)

4.3.2 Discrete Diffusion

As previously mentioned, for the case of discrete random variables, where x0, . . . , xT

are one-hot vectors, arbitrary Markov transition matrices can be employed to define

the forward process. In particular, following Austin et al. (2021), at the t-th forward

step a transition probability matrix Qt is used such that: q (xt | xt−1) = xt−1Qt . Note

that the transitions are applied independently to each input dimension (e.g. pixel).

In order to use the matrices Qt for a discrete diffusion model they need to have the

following two properties. First, we want QT =Q1Q2 . . .QT to converge to a stationary

distribution in order to be able to sample xT to start the denoising process. Second,
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we want to be able to efficiently compute Q t which enables efficient sampling of xt

from the t-step marginal q(xt |x0) = x0Q t for any t . This permits efficient training

as we can optimize Equation (4.1) one term at a time with SGD without having to

compute the full forward process for every gradient step. While Austin et al. (2021)

proposes various alternatives for Qt that satisfy these conditions, we found uniform

transition matrices to work best, i.e. matrices with uniform transition probabilities

written as Qt =
(
1−βt

)
I+βt 11T /K , where 1 is a column vector of all ones and K the

number of possible states.

To learn the reverse process, we train a model to predict x0 given xt , denoted as

p̃θ (x̃0 | xt ), where θ are the model parameters. Subsequently, to get the transition

probabilities pθ (xt−1 | xt ), we marginalise over x0 as follows:

pθ (xt−1 | xt ) =
∑
x̃0

q (xt−1 | xt , x̃0) p̃θ (x̃0 | xt ) .

where the posterior q (xt−1 | xt , x0) has a simple analytical expression that can be

derived using Bayes’ rule and the Markov property.

Finally, we utilize a prediction loss Lp = Eq(x0)Eq(xt |x0)
[− log p̃θ (x0 | xt )

]
which encour-

ages the correct prediction of x0 at each step of the reverse process. Overall, we

optimize L = Lvb +λLp as a combination of Lvb with this prediction loss Lp scaled by

a scalar λ.

4.3.3 Discrete Diffusion Models for Segmentation

In the context of semantic segmentation, every random variable x corresponds to one

pixel in the image. The number of different states K corresponds to the number of

segmented classes in the dataset, which is generally a low number below 100, so we

do not encounter scaling-related problems.

We adopt the Unet architecture classically used in diffusion, and in particular, we

adapt code from Wang (2023). The default Image Diffusion Unet architecture takes

as input an image with the current time step and returns a slightly less noisy version

of that image. For the Segmentation Diffusion Unet, we instead have a corrupted

segmentation map as input and get a denoised version of it as output, ie. a prediction

x̃0 of the clean segmentation. Since segmentation maps are discrete, we first project

them into a continuous vector space of dimension E with an embedding layer and

convert the Unet output to the probability distribution p̃θ (x̃0 | xt ) with a softmax layer.

This distribution is then used to compute pθ (xt−1 | xt ) and sample from it.
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Input Conditioning Our aim is to generate the segmentation map that corresponds

to the input frame, not just any random one. Consequently, we must condition the

generation process accordingly. To do so, we concatenate the conditioning tensor

channel-wise to the embedded noisy segmentation and use this as input to the Unet.

Among the different conditioning approaches we tried, we found the simple concate-

nation to be fast and perform consistently well across all tasks.

In this chapter, we tackle tumor segmentation and future prediction, for which we use

slightly different conditioning tensors. For the medical segmentation task, we directly

use the one-channel gray-scale lung scan as conditioning input. For the future seg-

mentation task, we instead use the concatenation of multiple previous segmentations

as conditioning. These segmentations are evenly spaced in time and are embedded in

the same space as the noisy input xt . The rationale for this choice is clarified below.

Time autoregressive Diffusion Conditioning with past segmentation masks, as de-

scribed above, allows us to forecast the segmentation of a frame occurring at a specific

time interval from the current one. To extend our predictive horizon, we propose

autoregressively predicting the next segmentation, which involves using the predicted

segmentation masks as new inputs to the model. The overall model architectures

used are presented in Figure 4.3.1. Using our Segmentation Diffusion model autore-

gressively constrains the kind of inputs our model can use because the inputs and

outputs must be of the same type, i.e. segmentation masks. As a result, we rely only on

previous segmentations as conditioning inputs for our future segmentation networks.

However, we point out that restricting the input exclusively to segmentation masks

limits the information available to the model to make its predictions. To illustrate this

with a concrete example, consider the scenario where a group of three pedestrians

may be represented as a single, undifferentiated blob on the segmentation map. This

choice can hinder the model’s ability to discern individual objects or finer details

within the scene, thereby affecting the accuracy of its predictions.

4.3.4 Motivating Example: The rectangle world

In order to further motivate the need for properly modeling uncertainty in the segmen-

tation task, we create an artificial image segmentation dataset. Each image contains

two rectangles randomly filled with one of two colors, with equal probability. How-

ever, instead of mapping each color to a single category, it is mapped randomly and

equiprobably to two categories. In each image, there are exactly four equally probable

correct predictions since we use two rectangles per image, as shown in Figure 4.3.2a.

We additionally add noise to the input image by flipping each pixel to a random color

with 40% probability.
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(a) Overall architecture of Discrete Diffusion Models used for segmentation.
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(b) Input preprocessing block used for the
medical segmentation task. Conditioning
inputs are one-channel images representing
lung scans.
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(c) Input preprocessing block used for the
future prediction task. Conditioning inputs
are segmentation maps that have to be em-
bedded.

Figure 4.3.1: Architectural parts of Discrete Diffusion model adapted for segmentation.
All architectures start with an input preprocessing block that handles (1) the embed-
ding of segmentations, (2) the concatenation of the embedded noisy segmentation (a)
with the conditioning tensor (b and c).

(a) Example data point from the rect-
angle world dataset. The noisy input
image can have one of the 4 possi-
ble ground truths but only one is pro-
vided in the dataset.
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terministic model only generates 2 classes.

Figure 4.3.2: Rectangle world experiment results. Figure 4.3.2a shows an example
from the rectangle world dataset, while Figure 4.3.2b showcases our results.

81



Chapter 4. Handling ambiguous contexts: An application of Discrete Diffusion
model to Segmentation

We train a deterministic segmentation model and our generative diffusion model on

the aforedescribed dataset for 100,000 iterations. Both models, as expected, result in

very crisp segmentations. However, as can be observed in Figure 4.3.2b the determin-

istic model completely misses half of the categories and only ever predicts two. In

contrast, the generative model captures the uncertainty of the dataset and generates

all possible classes even though the rectangles are still crisp and contain only a single

category. Further details and qualitative results of this experiment are provided in

Appendix 4.E.

4.4 Experiments

Building on the insights of the motivating example presented above, we conduct more

extensive experiments using both simulated and real-world datasets.

For each task, we train a diffusion model and perform inference using only 10 diffusion

steps, since we noticed that performing more steps was not bringing significant

quality improvements while noticeably impacting generation time. We also train a

deterministic model in addition to the diffusion model. This model has the exact

same architecture as the diffusion model, except it does not receive the ‘current’

noisy segmentation as input. This model naturally generates a single output, which

corresponds to the maximum likelihood prediction for a given input.

The use of a deterministic model is generally ill-suited for ambiguous tasks, and

even more for autoregressive future prediction. Firstly, taking the argmax of the

segmentation distribution may result in the selection of only a portion of an object’s

pixels, for example when two locations are equally likely. This kind of error may be

further amplified when using this segmentation to autoregressively predict future

ones, resulting in a sequence of progressive deterioration. Secondly, even if the

autoregressive generation process leads to a valid segmentation sequence, it only

has the capability to generate a single one. However, despite these potential issues,

we have found that generated sequences are generally of good quality, and we have

therefore also reported ‘deterministic’ results for all experiments.

4.4.1 Lung Cancer Dataset

Dataset

The first ambiguous task we aim to tackle is the segmentation of tumors from the

medical image dataset LIDC (Armato III et al., 2011). This dataset contains volumetric
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lung CT scans, and we have adopted a pre-processing methodology identical to the

one described in Kohl et al. (2018) so we can make meaningful comparisons to their

results.

In particular, this pre-processing involves the transformation of the original 3D scans

into 2D image crops. These are then re-sampled to 180x180 pixels and centered

around the scan abnormality location. We omit the inclusion of small abnormalities

measuring less than 3mm in this process, as they are often considered clinically

insignificant. This results in 8843 images for training, 1993 for validation, and 1980 for

testing.

Four expert radiologists have individually annotated each scan for the presence of

abnormalities. For a given scan image, the tumor annotations can vary significantly

among the radiologists, as we can see on Figure 4.4.1. By design, the training of

conventional deterministic models cannot capture this variability. Segmentation

diffusion models fit perfectly into this context and allow sampling from the learned

distribution.

Figure 4.4.1: Two training examples from the LIDC dataset. The leftmost column is
the lung scans, while the four next columns are the lesion masks as segmented by four
different radiologists. These examples illustrate the substantial variability inherent in
the dataset.

Results

As mentioned previously, we train both a diffusion model and a deterministic model

on this task. During training, we sample at random one of the four available ground

truths to perform the optimization step. To evaluate the performance of these models,
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we employ the Hungarian-matching-based metric proposed by Kohl et al. (2019). This

consists in sampling multiple segmentation masks from the model and using linear

assignment to match each mask with the ground truth it has the highest IoU with.

In this case, we sample 16 segmentations. Note that we assign the same number of

segmentations to each ground truth annotation. For more details regarding the metric

computation, see Appendix 4.B.2.

Hungarian Matched IoU (%) Full Test Set Subset B
H. P. Unet (Kohl et al., 2019) 53 47

Deterministic Model 43.8 47.5
Diffusion Model 54 54.9

Table 4.4.1: Hungarian Matched IoU (%) for the Hierarchical Probabilistic Unet, a de-
terministic model, and our proposed diffusion model, all computed using 16 samples.
The diffusion model is on-par on the full test set, and noticeably better when looking
at subset B. Subset B comprises only the scans where all 4 radiologists found a lesion.

We report the results in Table 4.4.1 for the 2 models, alongside the results of the

Hierarchical Probabilistic Unet (HPU) as reported in Kohl et al. (2019). We also show

example generations in Figure 4.4.2. Our results are on the full test set as well as on

subset B, a subset comprising all scans where all four experts agree that there is some

lesion. Examining the results on subset B is interesting as they are more related to the

model’s proficiency in capturing shape variations. Indeed, an incorrect prediction,

even if small, of a lesion where none exists results in a zero IoU score. This edge case

has a strong influence on the overall HMIoU score. When looking at subset B, the

presence of a lesion is generally clear, so most model generations should contain a

non-empty segmentation and the metric is mostly influenced by the model’s ability to

accurately outline lesion shapes and variations.

With a 1% improvement, the diffusion model is marginally better than the original

HPU paper on the full test set. However, on subset B, the diffusion model performs

substantially better than HPU, which indicates our model’s superior ability to capture

shape variations. Interestingly, on subset B the simple deterministic Unet model

already performs as well as the HPU. This suggests that the HPU does not generate

enough variations that properly cover the predictions of the physicians.

4.4.2 Car Intersection Simulator

In order to clearly showcase the ability of these diffusion models to handle complex

distributions with multiple modes, we design a dataset where each frame has a distinct
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Figure 4.4.2: Qualitative results for two different lung scans on which we sampled the
diffusion model 12 times. The top row has the input and the four ground truths. The
three bottom rows show samples. More examples can be found in Section 4.B.3.

and limited set of potential future scenarios. Precisely, this dataset is constructed such

that the uncertainty between two successive frames can be represented as a Markov

process. Because this transition is Markovian, we train the models only using one

previous segmentation as conditioning input. Note that we perform autoregressive

segmentation prediction, but that we evaluate the overall performance of the model

using a trajectory prediction metric, which allows to better quantify how often we are

able to sample the correct scenario.

To establish a strong baseline, we train a Transformer encoder model alongside de-

terministic and diffusion models. Since the segmentation space is too large to be

handled by the transformer model directly (a sequence length of 65k), we use a VQVAE

(Van Den Oord et al., 2017) to encode the segmentations into a latent space where the

transformer generates its predictions. For more details about the architecture, please

refer to Appendix 4.C.2.

Simulator and Dataset

The dataset is created using a custom bird’s-eye-view car driving simulator that gen-

erates both an image and the corresponding segmentation map. In this simulator,

the road layouts feature a single intersection, which can be either a roundabout or a

three/four-way crossing. Each simulation features a random number of cars between

2 and 5. Each car belongs to one of four classes and moves along the roads with

the same constant speed, kept identical across simulations. Additionally, its direc-

tion is clearly identifiable from the segmentation mask. Therefore, given the current

segmentation, all potential routes a car can take are unambiguously predetermined.
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The intersection type determines the number of potential future routes a car may

have, with a maximum of four different possibilities. For this reason, we use a single

previous timestep as conditioning for all networks.

The final dataset consists of 4,992,000 training and 1,000 validation examples gener-

ated by running the simulator for 20 steps and capturing the segmentation map of

each frame. Thus, a training example consists of 20 successive segmentation maps of

dimension 256x256.

Results and Discussion

As this is a future prediction task, we use the autoregressive scheme during inference

to predict the segmentation of the next 20 frames. From the sampled sequence, we

map out the overall trajectory of each car using a simple tracking algorithm and

compute the Final Distance Error (FDE) between the last predicted position and the

ground truth. For evaluation, we repeat this sampling scheme 10 times to get 10

distinct trajectories per car, from which we only select the trajectory exhibiting the

lowest FDE. In Table 4.4.2, we report the mean lowest FDE across 10 samples. We also

compute the miss rate, defined as the fraction of trajectories whose FDE exceeds two,

which implies the trajectory diverges significantly from the actual route. Please refer

to Appendix 4.C.4 for the description of our trajectory extraction procedure and to

Appendix 4.C.3 for more details regarding the impact of the number of samples on the

miss rate. The inference time per sample, recorded in milliseconds, is measured on

an Nvidia V100 GPU.

FDE Miss Rate TIME (ms/spl)
Deterministic Model (36M) 68 52.1 % 70
Transformer Encoder (50M) 11.9 19.2 % 3270

Diffusion Model (36M) 11.4 16.1 % 580

Table 4.4.2: Results for trajectory predictions on the car simulator dataset, using the
trajectory with the lowest FDE among 10 samples. Both generative models solve the
task, and the diffusion model performs best. The modest performance obtained by
the deterministic model confirms the inherent ambiguity of the dataset. The high
sampling time of the transformer encoder suggests that these models scale poorly to
higher dimensionality. Lower is better in all columns.

Table 4.4.2 shows that the diffusion model is performing best, and the miss rate more

specifically indicates that this model is most often predicting the correct trajectory

compared to the transformer baseline. Additionally, contrary to the transformer model
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which samples each pixel sequentially and has to work in a learned latent space, the

diffusion model works in the image space and has an adjustable number of steps. As

specified earlier, we only use ten steps in all experiments, which makes generation

with diffusion about five times faster than with the transformer.

Interestingly, the deterministic model has a 52 % miss rate, which indicates that the

one trajectory predicted by this model is correct about half the time. While confirming

a degree of ambiguity in the dataset, this miss rate shows that the deterministic model

is still able to complete the task at least half of the time, and not degenerate the

predicted segmentation as the autoregressive process goes on.

Ground Truth

Sampled
Sequences

(a) Qualitative results for a four-way intersection.

Ground Truth

Sampled
Sequences

(b) Qualitative results for a four-way roundabout.

Figure 4.4.3: Qualitative results for sampling the diffusion model on the car intersec-
tion simulator. The top row is the ground truth, the two bottom rows are sampled
sequences. We show only the fifteen first frames due to space constraints. The leftmost
frame is the one used as the first input to the model.

4.4.3 Cityscapes

Finally, we aim to tackle the task of segmenting first-person view road scenes. The

goal of this task is to predict the segmentation results of unobserved future frames.

Short-term future can generally be treated as a deterministic task, relying on the

current state of the scene and motion models to estimate what will happen in the next

few frames. In contrast, the mid-term future is often a complex prediction problem.

As we look further into the future, the task becomes more uncertain and the scene may

diverge into different distinct scenarios depending on the behavior of other road users.

For instance, a vehicle ahead may change lanes or a pedestrian may start crossing the

road.
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When we consider the potential combinations of all feasible behaviors for each agent

present in the scene, it can yield dozens of distinct future outcomes. The ability to

generate multiple samples of possible future segmentations allows to cover many of

the different scenarios, and to address critical questions such as: ‘Is there a scenario in

which the child crosses the road ?’. From this perspective, we believe it is reasonable to

compare segmentation results obtained from existing methodologies with the best

sample we can generate through our diffusion-based approach.

Dataset

We conducted our experiments with the Cityscapes Dataset (Cordts et al., 2016),

which was collected specifically for video-based segmentation research. It comprises

a total of 5,000 sequences, with 2.975 sequences designated for model training, 500

for validation, and 1525 for testing. A sequence is made of 30 image frames, among

which the 20th frame is manually annotated for semantic segmentation.

Following Lin et al. (2021), we perform short-term (t +3) and mid-term (t +9) predic-

tion, and additionally report next-frame prediction (t +1). To perform the short-term

prediction, we try two configurations: we use the subsampled sequence {St−6,St−3,St }

as input and do one autoregressive (AR) step similarly to Lin et al. (2021); we also show

results using {St−2,St−1,St } with 3 AR steps. To perform the mid-term prediction, we

input the sequence {St−6,St−3,St } and do 3 AR steps.

In order to extract the segmentation masks used as conditioning inputs, we run a

pretrained segmentation network on previous timesteps. Specifically, we run the

transformer-based Segmenter-B model from Strudel et al. (2021), pretrained on Ima-

geNet, and fine-tuned on Cityscapes.

Results and Discussion

In Table 4.4.3, we employ a simple visual code to depict different prediction configura-

tions. Each circle symbolizes one frame, and we arrange them linearly to represent

the consecutive frames. The blue circles denote frames used as input, and the red

ones are the predicted frames. When performing multiple autoregressive steps, we

use one line for each step and stack them vertically.

For the diffusion model, we present the results of using 1, 10, and 100 samples. When

sampling multiple future segmentations, we calculate the mIoU based on the sampled

segmentation that best matches the ground truth, as determined by the IoU metric.

As motivated above, we argue that when the objective is to be able to account for all
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possible scenarios in order to capture the true one, it is fair to compare with the ‘best’

of multiple diffusion samples.

mIoU (%)
Short Term Mid Term

Saric et al. (2020) N/A 69.6 N/A 57.9
Sović et al. (2022) N/A 70.2 N/A 58.5
Lin et al. (2021) N/A 71.1 N/A 60.3

Deterministic Model 79.5 71.5 72.2 57.6
Diffusion Model (1 spl) 78.8 70.8 71.4 56.6

Diffusion Model (10 spl) 79.1 71.3 72.4 58.0
Diffusion Model (100 spl) 79.3 71.9 73.1 59.1

Table 4.4.3: Results for Cityscapes future segmentation tasks. In the header, each circle
represents a timestep, blue ones are used as input, and red ones are predicted. The
diffusion model with multiple samples is competitive with current state-of-the-art
networks. The deterministic model falls most of the time between 1-sample and
100-sample evaluation, confirming the ambiguity of the task. Results are in terms of
mIoU percentage, where higher is better.

While the current best baseline (Lin et al., 2021) performance is strong, we outperform

it in the short-term prediction when using multiple samples, and we come close in the

mid-term prediction. Note that this baseline model relies on predicting intermediate

image features, while we only use previous segmentation maps. We conjecture that

our lower results in the mid-term context compared to the deterministic model from

Lin et al. (2021) are relatively imputable to the information loss of using segmentation

maps as inputs. As their feature prediction strategy is orthogonal to our approach, we

believe we could benefit from it and achieve more competitive results.

Additionally, it is interesting to note that the results of the deterministic model are

almost always higher than 1-sample diffusion but lower than 100-sample diffusion.

This observation aligns with our expectations, given that the deterministic model

is specifically trained to output the most likely outcome, while the diffusion model

stochastically samples from possible outcomes. Consequently, it is reasonable to

anticipate slightly lower performance on average for the 1-sample diffusion results, as

they only represent a single stochastic sample. However, if the task indeed contains

ambiguity and the diffusion model can effectively sample from the different modes

of the distribution, we would expect improved results on average when considering

the best of 100 samples, as it is likely that at least one of them will more closely match

the ground truth. And we indeed see that as we predict further in the future and

uncertainty increases, the performance gap between the deterministic model and the
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100-sample diffusion model also widens.

Figure 4.4.4: Qualitative results for two Cityscapes mid-term future segmentation
scenarios at T +9. The left column shows what would happen if we were to simply
copy the last segmentation map, and the right column shows one sample from our
diffusion model.
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4.5 Conclusion

This chapter delved into the application of discrete diffusion models to address the

challenges posed by non-deterministic and high-uncertainty situations in different

segmentation tasks. This study holds significance for anticipatory networks, given

their operation in the realm of future segmentation, and we presented a novel ap-

proach to perform long-term prediction that leverages discrete diffusion models

within an autoregressive framework, using only previous segmentations as input. Addi-

tionally, this exploration also covered medical image segmentation and demonstrated

the effectiveness of our approach in modeling uncertain segmentation contexts.

Our experiments show that these discrete models offer a promising avenue for per-

forming segmentation in such ambiguous contexts. However, there is still much space

for improvement. Specifically, one relevant future direction for our research is to

find ways to force diversity in the sampling process, which could involve a form of

importance sampling. Currently, the only way at our disposal to cover the whole

space of the distribution is through repetitive sampling. This is particularly inefficient,

especially for the autoregressive scheme proposed for future prediction. Another

interesting direction is assessing whether the computation of the Variational Bound

Lvb can help to address safety critical questions. Indeed, computing a reliable estimate

of this bound may provide a reliable indicator regarding the probability of a given

situation happening. However, adapting this approach to make sense in the context

of segmentation maps remains an open question.
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Appendix - Chapter 4

4.A Model Architecture details

For all tasks, the network architecture is a U-Net from Wang (2023), both for the

deterministic and diffusion model, and the only difference is the input processing

block. The segmentations are embedded in a 32 dimensional space learnt during

training in all experiments. We use 5 contractions (down) and 5 expansions (up) layers,

the initial dimension is 32 and the dimension multipliers are (1,2,2,4,8,16).

4.B LIDC experiment details

4.B.1 Training details

As mentioned in Section 4.4.1, the pre-processing follows Kohl et al. (2018). In addition,

the data preparation pipeline for training consists in: randomly selecting one of the

4 ground truths, resizing image and label to 128x128 pixels using nearest-neighbor

interpolation, randomly applying horizontal flip, and normalizing the images with a

mean of 0.41 and a standard deviation of 0.21.

We train both models with batch-size 64 for 10,000 epochs, using a prediction loss

weight λ= 1e−3 for the diffusion model. We use AdamW with a learning rate of 1e−3

and weight decay of 1e−4, and a polynomial learning rate scheduler.

4.B.2 Metric

As described in Section 4.4.1, we evaluate the performance using the Hungarian-

matching based metric proposed by Kohl et al. (2019).

The idea behind this metric is to measure the alignment between the model’s predic-

tions’ distribution and the experts’ predictions’ distribution. To do so, we determine

the best matching between the sampled segmentations and the ground truth annota-

tions using linear assignment on the IoU scores.

In practice, we first sample a number of segmentation masks that is a multiple of

the number of ground truths. In the case of LIDC, there are 4 ground truths and we

sample 16 segmentations. Note that sampling more segmentations does not increase

the score but reduces its variance. Then, we compute the IoU between every pair of

samples and labels. We use these scores to perform linear assignment, assigning 4
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samples to each of the 4 ground truth labels. Finally, we average the IoU of the all

the pairs that have been assigned together. Figure 4.B.1 visually explains this process

when using 4 samples.

Figure 4.B.1: Visual explanation of HMIoU. We sample 4 segmentation masks (Pred),
compute their IoU with each of the ground truth (GT) labels, find the best linear
assignment, and average the IoU scores of the assigned pairs.

4.B.3 Qualitative results

On Figure 4.B.2, we show more qualitative results of LIDC segmentation samples.

Samples have been vertically aligned under the ground truth they were matched with

by the HMIoU computation. The examples on the left are showing failure cases where

the shapes are only partly correct and their frequency is not matching the labels’

frequency. The examples on the right shows success cases where complex shapes

variation are properly captured.
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Figure 4.B.2: Qualitative results for 6 different lung scans on which we sampled the
diffusion model 16 times. For each example, the top row has the input scan and the
four ground truths. The four bottom rows show samples. The examples on the left are
failure cases, the examples on the right are well capturing shape variations.
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4.C Car simulator experiment details

4.C.1 Training details

We train all models for 1 epoch and there are no data augmentation.

The diffusion model use batch-size 25, using a prediction loss weight λ= 1e−3. We

use AdamW with a learning rate of 1e−3 and weight decay of 1e−4, and a polynomial

learning rate scheduler.

The deterministic model uses batch-size 40. We use AdamW with a learning rate of

3e−4 and weight decay of 1e−4, and a polynomial learning rate scheduler.

The Transformer-Encoder model uses batch-size 40. We use AdamW with a learning

rate of 1e−3 and a polynomial learning rate scheduler.

4.C.2 Transformer-Encoder architecture

As generative baseline for this new task, we use a transformer encoder architecture

with 16 encoder layers, and feature dimension 512. Since the 256×256 = 65536 pixel

space is too large to process, we use a VQ-VAE to embed the input segmentations into

a latent space using 256 codes. Given the 256 latent codes from the input segmen-

tation, the transformer is sequentially generating the 256 codes of the next frame’s

segmentation.

VQVAE Architecture The VQVAE consists of an Encoder, a Decoder and a Quantizer.

The VQVAE encoder consists of:

• An embedding layer mapping the segmentation classes to a 16-channels contin-

uous space.

• A convolutionnal stem (in_channels=16, out_channels=128, kernel_size=2, stride=2)

• A sequence of 5 ConvNext blocks with 128 channels, interlaced with 3 averaging

pooling layers (kernel_size=2).

• A linear projection layer (in_channels=128, out_channels=32)

The VQVAE quantizer is an EMA Vector Quantizer with a dictionary of 512 vector codes

of dimension 32. The EMA quantizer uses exponential moving averages to update the

embedding vectors instead of using an auxiliary loss.
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The VQVAE decoder consists of:

• A linear projection layer (in_channels=32, out_channels=128)

• A sequence of 5 ConvNext blocks with 128 channels, interlaced with 3 bilinear

upsampling layers (scale_factor=2).

• An output layer mapping the output back to the 16-channels input embedding

space.

This VQVAE is trained over 100,000 samples using a batch-size of 10. We use AdamW

with a learning rate of 1e−3 and weight decay of 1e−4, and a polynomial learning rate

scheduler.

4.C.3 Impact of the number of samples on the miss rate

The Figure 4.C.1 shows the evolution of the miss rate, which measures how frequently

the correct trajectory is absent among the sampled trajectories, with respect to the

number of samples used to compute the miss rate. Each sample allows to get one new

possible trajectory per car in the scenario, extracted from the segmentation sequence

using our trajectory extraction procedure. Some of these trajectories may be very

similar to each other, but Figure 4.C.1 shows that the more we sample, the more likely

we are to generate the correct trajectory. The notable reduction in the miss rate with

each additional sample indicates that the models are indeed able to cover a substantial

portion of the trajectory space.

4.C.4 Trajectory extraction and comparison

To extract car trajectories from a sequence of segmentation maps, we implement the

following procedure:

For all frames:

• Identify all connected components and discard those that are too small,

• Determine the center of mass for these components, which will represent the

car locations.

For each pair of consecutive frames:
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Figure 4.C.1: Evolution of the miss rate with the number of samples used during
evaluation, both for the diffusion model (orange) and the Transformer-Encoder model
(blue). Performing multiple samplings clearly allows to cover more scenarios and
generate the real trajectory more frequently.

• Calculate the squared distance matrix between car locations in the first frame

and those in the subsequent frame,

• Compute the optimal pairing of car locations from the first frame with those

from the second, utilizing linear sum assignment,

• Remove from the pairing all pairs of cars that are too far from each other,

• For car locations that remained not paired, consider them as entering or exiting

the scenario.

By keeping track of all paired car locations while processing all consecutive segmenta-

tions, we can derive the complete trajectory.

In our car intersection simulator experiments, we enhance robustness by excluding

trajectories of cars that don’t begin at the start of the simulation, as all simulated cars

are present in the segmentation right from the beginning of the simulation.

To compare trajectory extracted from the ground truth sequence and a sampled

sequence, we use the fact both sequences share the same initial frame. Hence, we

simply align trajectories based on the cars’ initial positions.
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4.C.5 Qualitative results

On Figure 4.C.2b, we show more qualitative results for intersections with multiple

possible scenarios.

Ground Truth

Determinis-
tic

Sampled
Sequences

(a) Qualitative results for a four-way intersection.

Ground Truth

Determinis-
tic

Sampled
Sequences

(b) Qualitative results for a four-way roundabout.

Figure 4.C.2: Qualitative results on the car intersection simulator. From top: The first
row is the ground truth, the second row is the result from the deterministic model, the
five next rows are sampled sequences. We show only the fifteen first frames due to
space constraints. The leftmost frame is the one used as first input to the model.
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4.D Cityscapes experiment details

4.D.1 Training details

On the Cityscapes experiments, we use 3 previous segmentations all embedded in

32 dimensions, the conditioning tensor is therefore 96 dimensional. The 3 previous

segmentation have a constant time spacing between each of them. However, during

training, we have varied this time spacing for each training sample.

More specifically, during training we randomly sample a spacing τ ∈ {1,2,3} and we

use the segmentations (St−3τ,St−2τ,St−τ) as input to the models. This allows us to use

such a trained model with any small constant spacing τ in inference, and in fact all

the results reported for the deterministic and diffusion model in Tables 4.D.1 and 4.4.3

are computed using a single model.

We train the diffusion model for 1000 epochs with a batch-size 3 and a prediction loss

weight λ= 0.1. We use AdamW with a learning rate of 3e−4, weight decay of 1e−4 and

a polynomial learning rate scheduler.

We train the deterministic model for 1000 epochs with a batch-size 1. We use AdamW

with a learning rate of 1e−4, weight decay of 1e−4 and a polynomial learning rate

scheduler.

4.D.2 Moving Object Results

In Table 4.D.1, we report results for Cityscapes computed on Moving Objects only.

The patterns we observe are similar to those from Table 4.4.3, with the deterministic

model performances being always between the 1-sample and 100-samples diffusion

model results.

The diffusion model using multi-samples suffers from a much smaller performance

drop compared to all other models, including Lin et al. (2021). This highlights the

ability of the model to capture different scenarios.

4.D.3 Qualitative Results

We show more samples of our diffusion model for future segmentation on Cityscapes

in Figure 4.D.1.
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mIoU (%)
Short Term Mid Term

Saric et al. (2020) N/A 67.7 N/A 54.6
Sović et al. (2022) N/A 69.0 N/A 55.9
Lin et al. (2021) N/A 69.2 N/A 56.7

Deterministic Model 79.7 70.5 71.3 53.6
Diffusion Model (1 spl) 79.0 69.9 70.0 52.5

Diffusion Model (10 spl) 79.5 70.9 71.9 54.5
Diffusion Model (100 spl) 80.0 71.5 72.7 56.0

Table 4.D.1: Results for Cityscapes future segmentation tasks on Moving Objects. In
the header, each circle represents a time step, blue ones are used as input and red
ones are predicted. The diffusion model with multiple samples is competitive with
the current state-of-the-art network. The deterministic model most of the times falls
between 1-sample and 100-samples evaluation, confirming the ambiguity of the task.
Results are in terms of mIoU percentage, where higher is better.

4.E Motivating Example Details

The dataset consists of images of size 240×320 pixels, each containing two rectangles

filled in either green or red. Since it is an artificial dataset, we have a random seed

for training and a different random seed for evaluation. To make the problem slightly

more challenging, we randomly swap 40% of the pixels with random colors as can be

seen clearly in Figure 4.E.1.

We train both models for 100,000 iterations with a batch size of 16. The Unet has 2.8M

parameters and is the same for both the diffusion model and the deterministic one,

with the exception of the first layer that embeds the segmentation mask or the image

respectively.

In addition to the results shown in Section 4.3.4, we also measure the ability of our gen-

erative models to create all possible classes given a single input image. In Figure 4.E.2

we show the frequency with which each class was predicted for each rectangle when

generating 100 images from a single input. We observe that all classes are predicted

with probability close to 50%, same as they appear in the dataset.
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T+3

T+9

T+3

T+9

Figure 4.D.1: Qualitative results for Cityscapes short-term (T +3) and mid-term (T +9)
future segmentation scenarios. The left column shows what would happen if we
were to simply copy the last segmentation map, the next columns on the right shows
samples from our diffusion model.
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(a) Input image
(b) Conditional Generations

Figure 4.E.1: Example input images and 8 generations from the diffusion model. We
observe that all classes have been generated for the input rectangles.
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Figure 4.E.2: We show the predicted class frequency from 100 generated samples
from our diffusion model conditioned on the same input image. All categories are
generated with equal probability.
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Summary

In this doctoral study, we explored what we term ‘anticipatory’ segmentation networks.

These networks take into account their latency and do not directly predict the input

frames’ segmentation but instead the segmentation of a future frame. We have looked

at various aspects of these networks.

In Chapter 1, we have explained the need for real-time segmentation networks to be

trained with anticipation in mind. We have introduced the LA-mIoU, a segmentation

metric taking into account the network latency. This metric has a practical signifi-

cance and, although it was specifically studied within the context of segmentation,

defining a similar latency-aware metric for any other task, such as LA-accuracy or

LA-mAP, is straightforward. However, computing it can only be performed on video

datasets with a high sampling frequency. As the dataset’s sampling rate decreases, the

metric becomes unable to distinguish highly efficient networks. Finally, we have also

proposed to use past frames in a simple way and have seen the positive impact on

future predictions.

In Chapter 2, we aimed to propose a way to improve real-time anticipatory networks.

At the time of this research, Transformers had not yet reached Computer Vision, and

we focused on accelerating convolutions, the core component of convolutional net-

works. We introduced our channel-wise masked convolution, the key idea of which

centered on leveraging the temporal coherence of video frames so that we recompute

only a subset of all features for each video frame. This technique is specifically de-

signed for the future-prediction task and in that context we have seen that we could

get up to 20% speed-up with little to no drop in mIoU.

After focusing on speeding up convolutional segmentation networks, we looked at ac-

celerating transformer-based ones in Chapter 3. We leveraged the partition of images

into patches to do early-stopping of patches processing. As our task is segmentation,

we have to retain all patches for the final prediction, but we have shown that not all of
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them require the same amount of processing. We have confirmed the effectiveness

of using the entropy of intermediate predictions as a criterion to stop the processing

of already confidently predicted patches. Our method allows reaching consequent

speed-ups with little mIoU drop. Moreover, a nice feature of our training scheme is

that it lets a practitioner change the network latency by controlling the ratio of patches

paused without having to retrain the whole model. Recently, real-time transformer ar-

chitectures were introduced for segmentation, and we expect they could benefit from

our patch-pausing approach. For such real-time video settings, another interesting

future work direction could involve investigating whether comparing patches across

time steps may enhance efficiency by skipping the processing of similar ones.

Recently, given the impressive achievements of diffusion networks in image genera-

tion, we decided to explore their application in the field of semantic segmentation.

Through our experiments, we have not found diffusion models to produce more ac-

curate segmentation maps than existing models. However, we observed that these

generative models are particularly relevant for handling another aspect of anticipa-

tory networks - ambiguity. We presented these findings in Chapter 4. Indeed, we

noticed that we could harness their strong generative capabilities as a way to produce

multiple possible segmentations that closely follow the distribution of the training

data. In particular, we have adapted a discrete variant of diffusion to the segmenta-

tion domain, and we have demonstrated its clear superiority over previous models

on a ‘multi-groundtruth’ medical imaging dataset. We also tackled the generation

of future predictions, a task inherently holding uncertainty. To generate long-term

predictions, we have integrated discrete diffusion within an autoregressive framework,

demonstrating its proficiency in capturing potential future scenarios. In particular,

we developed a synthetic car intersection simulator and showed that our method was

able to generate most of the possible trajectories in this environment. As our sam-

pling method does not favor diversity, multiple samplings are required to generate all

possible outcomes, and reducing this need is a promising research direction. On the

Cityscapes dataset, the results of experiments were slightly less successful, largely due

to the lack of any additional information other than the semantic maps as conditional

input. Therefore, another interesting extension to this study could be to implement

panoptic segmentation within the same setup. This has the potential to enhance the

prediction quality by incorporating additional instance information.

Overall, this thesis work revolved around addressing the various challenges associated

with real-time semantic segmentation. It encompassed multiple aspects, including

the development of predictive networks, enhancing their computational efficiency,

and accommodating the inherent uncertainty in prediction outcomes.
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Conclusion

Final remarks

The landscape of semantic segmentation has undergone significant transformation

from the onset of this doctoral work, driven by rapid advances in hardware, software,

and computer vision research and development. This dynamic and intellectually

stimulating field is seeing marked benefits from new, high-performance hardware,

making real-time capabilities more within reach for existing networks. Simultaneously,

the emergence of large-scale models has pushed the mIoU to new heights. Given the

trend of ever-increasing model size, developing methods to improve efficiency is all

the more important. Several contributions made in this thesis address this need and

therefore shall remain particularly relevant in the future.

Separately, the newly introduced ’segment anything’ models - SAM and SEEM - present

new avenues for future exploration, especially regarding their adaptation to real-time

full-scene semantic segmentation. These models uniquely unite text and images

by leveraging pretrained language models, allowing the vision model to harness the

world knowledge captured within the language model. The growing popularity and

impressive performance of such multimodal models, especially on zero-shot tasks,

encourages me to posit that the future of computer vision, including segmentation,

leans towards a multimodal approach.
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