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À ma famille.

L’ homme moderne, universel, c’est l’homme
pressé, il n’a pas le temps, il est prisonnier

de la nécessité, il ne comprend pas qu’une chose
puisse ne pas être utile ; il ne comprend pas non
plus que, dans le fond, c’est l’utile qui peut être
un poids inutile, accablant. Si on ne comprend
pas l’utilité de l’inutile, l’inutilité de l’utile, on ne
comprend pas l’art.

Eugène Ionesco, Notes et contre-notes, 1962.
(Gallimard, Folio Essais, p. 211).





Abstract

We provide new explicit examples of lattice sphere packings in some dimensions that are
the densest known so far, using Kummer families of elliptic curves over global function
fields. For instance, in the paper [Let22], we get lattices of rank 54, 55, 162, 163, 486 and
487, which give the densest sphere packings known to this date.

In some cases, these families of elliptic curves have unbounded Mordell–Weil rank, and
using the Néron–Tate height on the Mordell–Weil group, one can obtain lattices in high-
dimensional euclidean spaces. In one case however, the rank of the curves happens to be
bounded and non-zero in the Kummer family of (isotrivial) elliptic curves. In any case,
these results rely on the explicit determination of the L-function of these curves, via Jacobi
sums. This allows, under certain assumptions, to obtain formulas for the (analytic) rank of
those curves.

Keywords: elliptic curves over global fields, L-functions of elliptic curves, Néron–Tate height,
function fields in positive characteristic, Jacobi sums, Mordell–Weil lattices, sphere packings,
kissing number.
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Résumé

Nous présentons de nouveaux exemples explicites de réseaux donnant lieu à des empilements
de sphères qui sont les plus denses connus jusqu’ici, dans certaines dimensions, en utilisant
des familles de Kummer de courbes elliptiques sur des corps de fonctions globaux. Par
exemple, dans l’article [Let22], nous obtenons des réseaux de rang 54, 55, 162, 163, 486 et
487, qui donnent les plus empilements de sphères les plus denses connus à ce jour.

Dans certains cas, le rang de Mordell–Weil dans les familles de courbes elliptiques considérées
est non borné, et en utilisant la hauteur de Néron–Tate sur le groupe de Mordell–Weil, on
obtient des réseaux dans des espaces euclidens de grande dimension. A contrario, dans un
cas, le rang des courbes est en fait borné et non-nul dans la famille de Kummer de courbes
elliptiques (isotriviales). Dans tous les cas, ces résultats reposent sur la détermination
explicite de la fonction L de ces courbes, à l’aide de sommes de Jacobi. Cela permet, sous
certaines hypothèses, d’obtenir des expressions pour le rang (analytique) de ces courbes.

Mots-clés : courbes elliptiques sur les corps globaux, fonctions L de courbes elliptiques,
hauteur de Néron–Tate, corps de fonctions en caractéristique positive, sommes de Jacobi,
réseaux de Mordell–Weil, empilements de sphères, nombre de contact.
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Introduction

Quand une curiosité intense anime une recherche, nous
avançons comme portés par des ailes impatientes. Ne
sommes-nous alors téméraire esquif aux voiles tendues
qui avidement laboure l’inépuisable océan ?

Alexandre GROTHENDIECK, En
guise de programme, pour le cours « Introduction à
la recherche », 1978/79

The main goals of this thesis are, on the one hand, to provide new explicit examples of
lattice sphere packings in some dimensions which are the densest known so far, and on the
other hand, to compute the analytic rank of some Kummer families of elliptic curves over
global function fields. Despite the appearance, these two aims (one in discrete geometry
and the other in arithmetic geometry) are actually related, which we are going to make
clearer in the following paragraphs.

While quadratic forms have been studied for several centuries, some aspects of their geometry
is still not well-understood. The typical question is to determine how the minimal non-zero
value of a real positive-definite quadratic form on Zn behaves with respect to its discriminant.
More precisely, a notable open problem is to determine the value of the Hermite constant
γn in a given dimension n ⩾ 1, defined as

γn := sup
{ min(q(Zn ∖ {0}))

disc(q)1/n

∣∣∣∣ q : Rn → R positive-definite quadratic form
}
,

where disc(q) denotes the discriminant of q. This supremum is finite, as shown by Charles
Hermite [Her50, p. 263] himself around 1847, and is in fact a maximum. However,
determining the exact value of γn is notoriously difficult, and has been solved only if
1 ⩽ n ⩽ 8 or n = 24, the latter case having been settled a few years ago by H. Cohn and A.
Kumar [CK04, CK09] using the help of a computer.

There is an equivalent formulation of the problem in terms of lattice sphere packings.
Namely, given a (full-rank) lattice L ⊂ Rn, we can consider a collection of non-overlapping
open euclidean balls of fixed radius, centered all the lattice points. The maximal possible
radius for the balls is λ1(L)

2 , where λ1(L) is the L2-norm of a shortest non-zero vector in
L. In other words, we get a packing of balls (sometimes simply called sphere packing)
P = {B + x : x ∈ L} where B = Bn(0, λ1(L)/2) ⊂ Rn is the open euclidean ball of radius
λ1(L)/2 centered at 0 and B + x denotes the translate by x ∈ Rn. Let us denote by

D(L) :=
vol
(
Bn(0, λ1(L)/2)

)
vol(Rn/L) ∈ ]0, 1]

the proportion (or so-called packing density) of the euclidean space covered by the balls
(that is, the ratio of the volume of the balls inside a fundamental parallelepiped P ⊂ Rn for

1
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Rn/L by the volume of P ). Then we have

Dℓ(n) := sup{D(L) : L ⊂ Rn lattice } = vol(Bn) · 2−n · γn/2
n ,

where vol(Bn) denotes the Lebesgue measure of any open L2-ball of radius 1 in Rn. Thereby,
we see that determining the maximal lattice packing density Dℓ(n) is equivalent to finding
the value of the Hermite constant γn. We point out that this question is more specific and
quite different from the maximal density of an arbitrary packing of balls of equal radius (i.e.,
not necessarily coming from a lattice), where the exact answer is only known in dimensions
1, 2, 3, 8 and 24, the latter two cases being solved quite recently in [Via17, CKM+17]. This
question was already asked in 1900 by David Hilbert as his 18th problem.

Apart from the specific dimensions {1, ..., 8} ∪ {24} where the value Dℓ(n) and γn have
been determined exactly, very little is known on these constants. For instance, the best
known lower and upper bounds are exponentially far apart, when the dimension n goes to
infinity. Namely, Minkowski and Hlawka proved that Dℓ(n) ⩾ 2 · 2−n for all n ⩾ 1, which
was subsequently improved by a linear factor by K. Ball in [Bal92] and further improved in
some dimensions in [Van11, Ven13]. On the other hand, Kabatiansky–Levenshtein’s upper
bound [KL78, Corollary 2] behaves asymptotically as Dℓ(n) ⩽ 2−0.59905576·n(1+o(1)).

Most importantly, Minkowski–Hlawka lower bound does not give insights on which lattices
have a "large" sphere packing density, since this bound relies on an averaging argument (the
underlying probabilistic result being Siegel’s mean value theorem). It is actually difficult to
produce explicitly lattices that achieve this lower bound, as soon as the dimension becomes
large enough. As mentioned in [ACH+20, §3.1], « no explicit construction in dimension
2048 or greater has been shown to achieve the Minkowski–Hlawka bound ». Another source
confirms this lack of understanding, as [CS98, p. 16] shows: « We still do not know how to
construct packings that are as good as [Minkowski–Hlawka bound] ».

On the other hand, in dimensions n at most 1000, there are explicit lattices that reach this
lower bound, or even have a packing density much larger than 2 · 2−n. For instance, Zn has
better packing density than Minkowski–Hlawka bound up to dimension 10. The known
families of lattices which are "asymptotically good", i.e., with packing density of the form
2−an+o(n) for some 0 < a ⩽ 1 (as in [Tsf91]), are in general not very dense in low dimensions
and are not helpful to improve on the known lower bounds on packing density. The plot on
page 13 shows what are the best packings known so far up to dimension ⩽ 2048.

In this thesis, one of the goals will be to give new examples of lattice sphere packings (e.g.,
in dimensions 54, 55, 162, 163, 486, 487) for which the density is the best known so far, and
in particular, exceeds Minkowski–Hlawka lower bound. This is notable in view of the fact
that « we know very little about [the] range » of dimensions 80 to 4096, as pointed out by
N. Sloane in his 1998 ICM report [Slo98]. Thus, even small improvements on Minkowski’s
bound are welcome.

Roughly speaking, our lattices will be constructed using the Néron–Tate height ĥ on elliptic
curves E over global function fields like K = Fq(t). It is defined as ĥ(P ) := lim

n→+∞
n−2h(nP )

where h(Q) is the degree of the x-coordinate of a rational point Q ∈ E(K), seen as a rational
map x(Q) : P1 → P1 (we fix here a Weierstrass equation to get an embedding E ↪→ P2). If
we consider the free abelian group of finite rank L := E(K)/E(K)tors, then ĥ is a positive-
definite quadratic form on L ⊗Z R so it gives a structure of lattice on L, the so-called

2
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Mordell–Weil lattice of E over K. This point of view initially originated from independent
works of N. Elkies [Elk94, Elk97, Elk01] and T. Shioda [Shi91, Shi90] in the 1990s, where
lattice packings were obtained in some dimensions like 80, 104, 128, 256, 512; these packings
are still having the best known density in these dimensions, as of now.

In [Oes90, §3], J. Oesterlé explains how this interest for Mordell–Weil lattices began: in 1989,
M. Tsfasman asked in [Tsf91, §9, question 10] how to estimate the sphere packing density
of these lattices (and more generally he studied lattice packings coming from algebraic
geometry or number theory). More recently, the book [SS19] by Shioda and Schütt got
published, providing us with a great reference on Mordell–Weil lattices1.

It is convenient to define a certain sublattice E(K)0 of E(K), called the narrow Mordell–
Weil lattice, consisting of all the points P ∈ E(K) such that, for every place v of K, the
reduction Pv is a non-singular point of the reduction Ev of E modulo v.

We now summarize here the strategy used by Elkies in [Elk94] and the methods used
by Shioda in [Shi91], to compute a lower bound on the the packing densities of their
Mordell–Weil lattices E(K)0. This requires three steps:

1 Determine the rank of E(K)0. In [Elk94], the computation of the rank relies on the fact
that E is a quadratic twist of a constant curve. Then one can use proposition 2.5.2 and
remark 2.4.1 stated later in this work. In [Shi91], the method to compute the rank uses
the fact that the so-called Lefschetz number of the elliptic surface E attached to E is
zero, as showed in [Shi86, corollary 4].

2 Get an upper bound on the covolume of E(K)0. In [Elk94], the L-function is computed
explicitly using proposition 2.5.3. Then the special value L∗(E/K) allows to determine
the regulator Reg(E/K) = disc(E(K)) via the Birch–Swinnerton-Dyer formula (1.3.13).
In [Shi91, proposition 4.3, corollary 4.7], the strategy involves crystalline cohomology,
which also allows to get information on the Tate–Shafarevich group of E over K.

3 Finally, get a lower bound on the minimal non-zero norm λ1(E(K)0) in E(K)0. In
[Elk94], an ad-hoc computation, using the fact that the characteristic is 2, shows that
the Néron–Tate height ĥ equals the naive height, allowing to deduce directly a lower
bound on the minimal non-zero height. In [Shi91], Shioda uses his result which we will
state later as theorem 1.3.24.

Generally, we will work with the center packing density of a given lattice L ↪→ Rn, defined
by

δ(L) := vol(Bn(0, 1))−1 ·D(L),

where D(L) ∈]0, 1] is the density introduced earlier. More specifically, here is the result
obtained by Elkies (some of the terminology and notation will be defined in chapter 1):

Theorem 0.1 ([Elk94]). Let n ⩾ 1 be an integer and set q = 2n, k = Fq2 . Let a := 0 if n
is odd, and if n is even, fix a ∈ k× such that trk/F2(a) = 1. Consider the elliptic curve
Γn,a : y2 + y = x3 + t2

n+1 + a over K := k(t). Then:

1Let us also mention the works [Shi08, Shi00] which deal with other lattices coming from algebraic geometry.
Moreover, in MAGMA [BCP97], there are commands like GeometricMordellWeilLattice to compute
with some of these lattices.
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1. The rank of Γn,a over k(t) is r := 2q = 2n+1. The L-function of Γn,a is L(Γn,a/k(t), T ) =
(1− q2T )2q and the special value is L∗(Γn,a/k(t)) = 1.

2. We have deg (∆min(Γn,a/K)) = 12⌈q/6⌉ and f(Γn,a/K) = 2q + 4. As n→∞, Brumer’s
bound (theorem 2.2.6) is asymptotically achieved, and the Szpiro ratio (introduced in
definition 2.2.1) tends to 1.

3. The center packing density of the narrow Mordell–Weil lattice Ln,a of Γn,a over K satisfies
the following lower bound:

δ(Ln,a) ⩾


1
2q

− q−2
6

(
q + 4

12

)q
if n odd

q− q−4
6

(
q + 2

12

)q
if n even.

In particular, we have the asymptotic lower bound D(Ln,a) ⩾ r− r
12 (1+o(1)) as the rank r

goes to infinity (equivalently, n→ +∞). ⌟

Here is a table giving some values2. In ranks 128, 256, 512, 1024, these Mordell–Weil lattices
provide the densest known lattice sphere packings in their respective dimensions.

n 5 6 7 8 9 10 11 12
rk(Ln) 64 128 256 512 1024 2048 4096 8192

log2(δ(Ln)) ⩾ 24.718 97.403 294.807 797.123 2012.24 4871.88 11439.76 26286.87

• When n = 1, the rank is r = 4 and L1,a is homothetic to D4, with center density
δ = 1/8. When n = 2, the rank is r = 8 and L2,a is homothetic to E8, with center
density δ = 1/16.

• When n = 3, the 16-dimensional lattice L3,a has center density δ = 1/16, and for n = 4,
the 32-dimensional lattice L4,a has center density δ = (9/8)8.

Here is the result obtained by Shioda; we refer to remark 4.1.11 for more details (in particular
for a table of explicit values).

Theorem 0.2 ([Shi91]). For any prime p ≡ −1 mod 6 and any odd integer e > 0, let E be
the elliptic curve given by y2 = x3 + 1 + tp

e+1 over K := Fp2e(t). Then the rank of E over
K equals r := 2pe − 2 and the center packing density of its narrow Mordell–Weil lattice is
lower-bounded by

δ(E(K)0) ⩾ ((pe + 1)/12)pe−1

pe·(pe−5)/6 .

Moreover, as q →∞, Brumer’s bound (theorem 2.2.6) is asymptotically achieved, and the
Szpiro ratio (introduced in definition 2.2.1) tends to 1. ⌟

D

This leads us to the second topic of interest that underlies this work. Apart from getting
better lower bounds on Hermite constants, another rich source of open problems is the
arithmetic of elliptic curves: while they have been studied for a long time, their rational

2For n ∈ {9, 10, 11}, better lower bounds on the order of the Tate–Shafarevich group can improve the
lower bound on the packing density. See the (unproven) values given in [Elk94, p. 354].
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points are still not fully understood. For instance, it is a challenging task to compute the
Mordell–Weil rank of a given elliptic curve over Q in general (especially when the rank is
⩾ 2). More generally, an important open problem is to know whether the rank of elliptic
curves over a fixed number field can be arbitrarily large.

By contrast, Tate and Shafarevich showed in [TS67] that for every odd prime p ⩾ 3 and
any R > 0, there is an (isotrivial) elliptic curve E over Fp(t) such that E(Fp(t)) has rank
⩾ R. Later on, many other examples of this phenomenon of unbounded rank have been
discovered, as the list from remark 1.3.47 will show. Let us simply cite some relevant works:
[Shi91, Shi86, Ulm02, Ber08, BDS04, DO16].

In that setting, it makes sense to focus on elliptic curves over global function fields and
study the rank of their Mordell–Weil group, or rather their analytic rank, i.e., the order of
vanishing of the L-function at the "central point".

In this thesis, we will compute the L-function and thus the (analytic) rank of two families
of elliptic curves over k(t), where k is a finite field, namely:

• Em,b,b′ : y2 = x3 + bx+ b′tm over k(t), where char(k) ⩾ 3

• E′
m,b,b′ : y2 = x3 + b+ b′tm over k(t), where char(k) ⩾ 5.

These families were chosen based on a result of ours, stated as theorem A below, which
provides some sufficient conditions to get the best possible asymptotic behavior of the lower
bound on the packing density, among Mordell–Weil lattices.

Both curves Em,b,b′ and E′
m,b,b′ are known to satisfy the Birch–Swinnerton-Dyer conjecture,

and the L-function can be expressed in terms of certain Jacobi sums (see theorems B and F
below for a precise statement), so the algebraic rank can be related to those exponential
sums occurring in the corresponding L-function. In the family Em,b,b′ , some interesting
packings arise, especially in characteristic 3 and for m = 3n + 1, where the corresponding
narrow Mordell–Weil lattices are particularly dense. For instance, when n ∈ {3, 4, 5} we
obtain packings with current record densities in dimensions 2 · 3n and 2 · 3n + 1 (using
laminated lattices).

We will take this opportunity to compute the kissing number of one of these lattices (in
dimension 54), and point out some probabilistic methods to compute the corresponding
Gram matrix, thus showing that one can compute very explicitly these lattices. The
techniques used there are also useful to compute the Tate–Shafarevich group of some of the
curves E3n+1,b,b′ in characteristic 3.

In the other family E′
m,b,b′ (studied by Shioda over Fp(t)), it turns out that the rank is

unbounded if and only if p ≡ −1 (mod 3). When p ≡ 1 (mod 3), we will actually prove
that the rank over Fp2160(t) is a non-zero constant. This contrasts with the previously
known examples of Kummer families having bounded rank, as in [Ber12] and [Ulm07a, §5,
§6] because all of them had rank zero (we note that even though E′

m,b,b′ is isotrivial, is it
not a constant elliptic curve).
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Main results
We now review the main results of this thesis, before making them more detailed and
proving them in the following chapters.

In chapter 2, we will give sufficient conditions that ensure (conditionally on Birch–Swinnerton-
Dyer conjecture) that the narrow Mordell–Weil lattices of given elliptic curves have reason-
ably large packing density, from an asymptotic point of view, as in Elkies’ and Shioda’s
examples described in theorems 0.1 and 0.2 above (even though the asymptotic lower bound
is much worse than Minkowski–Hlawka’s bound). This also provides some conceptual
understanding as to why these two authors picked these specific families of elliptic curves.

Theorem A (Theorem 2.3.1). Consider a collection of elliptic curves {Ej/Fqj (t) : j ⩾ 1}
such that the degree fj of the conductor of Ej grows to +∞ when j →∞ (and qj are prime
powers). Let Kj := Fqj (t) and denote by Lj the narrow Mordell–Weil lattice Ej(Kj)0 of
Ej/Kj . Let rj be the (algebraic) rank of Lj and let dj := deg(∆min(Ej)) be the degree of
the minimal discriminant of Ej/Kj . Assume that:

1) The Birch–Swinnerton-Dyer conjecture 1.3.34 holds for the elliptic curves Ej/Kj .

2) There is a constant c0 ⩾ 1 such that qj ⩽ f c0
j for all j ⩾ 1 (i.e., the size of the fields of

constants grows at most polynomially with the conductor).

3) The so-called Szpiro ratio σj := σ(Ej/Kj) := dj
fj

tends to 1 when j →∞.

4) The so-called Brumer’s bound is asymptotically sharp, i.e. the rank of Ej/Kj satisfies

rj ∼
fj log(qj)
2 log(fj)

(j →∞).

Then we have the following asymptotic lower bound on the packing density of Lj , when the
rank rj goes to infinity:

D(Lj) ⩾ r
− 1

12 rj(1+o(1))
j . ⌟

This theorem easily follows from an upper bound on the Brauer–Siegel ratio

BS(E/K) := log(|X(E/K)| · Reg(E/K))
log
(
|k|deg(∆min(E/K))/12

) ⩽ 1 + o(1)

(as the the degree of the discriminant goes to infinity), proved in [HP16]. There is one
subtlety: in the paper [HP16], the size q of the field of constants is fixed, but we checked that
the result holds true even if we allow q = qj to vary (as in the examples from [Elk94, Shi91]),
by making all the implicit constants as explicit as possible, in appendix A. The difficulty of
theorem A does not lie in the proof, but in the discovery of the suitable sufficient conditions
so that the desired conclusion holds. Likewise, a difficult part of theorem C below was to
discover which curves to take in order to possibly get interesting (i.e., with high density)
lattice packings; this is a place where theorem A was useful.

Several families satisfy the conditions from the above proposition, as the ones considered in
theorems 0.1 and 0.2 above; see also example 2.3.2.
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In chapter 3, we will prove the following results. First, we explicitly compute the L-function
of the curves Em,b,b′ : y2 = x3 + bx + b′tm over k(t) (we point out that the statements
of theorem 3.1.3 and theorem B are equivalent by remark 1.4.18). In order to state the
result, let us introduce some notation, also used in the rest of this introduction (we refer to
section 1.4 for more details). Given a finite field k, we denote by kn ⊂ k its extension of
degree n ⩾ 1 and by k̂× its group of multiplicative characters. If k has odd characteristic,
we denote by λk : k× → {±1} the Legendre symbol. Finally, given three multiplicative
characters χ1, χ2, χ3 ∈ k̂×, we define the Jacobi sums as

J(χ1, χ2) :=
∑
x∈k

χ1(x)χ2(1− x), J(χ1, χ2, χ3) :=
∑
x,y∈k

χ1(x)χ2(y)χ3(1− x− y).

Theorem B (Theorem 3.1.3). Let k be a finite field of odd characteristic p, let m ⩾ 1 be
coprime to p and b, b′ ∈ k×. Set d := 4m/ gcd(2,m) and fix a generator γ of k×

ϕ(d), where ϕ
is the Euler totient function. Given r ∈ Z/dZ, let u(r) be the multiplicative order of |k|
modulo d

gcd(d,r) and define the character

χr : k×
u(r) → C×, γu(r) 7→ exp(2πir/d)

where γu(r) := Nkϕ(d)/ku(r)(γ) is a generator of k×
u(r) and N(·) denotes the norm map. Define

Z(m) :=


Z/dZ ∖ m

2 Z/2mZ if m is even and 6 ∤ m
Z/dZ ∖ (m2 Z/2mZ ∪ 2m

3 Z/2mZ) if m is even and 6 | m
Z/dZ ∖

(
2Z/4mZ ∪mZ/4mZ

)
if m is odd

ϵm,b,b′,k(T ) :=


(1− |k|T )2 if m is even and −b ∈ k×,2 and b′ ∈ k×,2

(1 + |k|T )2 if m is even and −b ∈ k×,2 and b′ ̸∈ k×,2

1− |k|2T 2 if m is even and −b ̸∈ k×,2

1 if m is odd.

Finally, let us define the map

αb,b′ :
⊔
n⩾1

k̂×
n −→ C, αb,b′(θ) := λkn(−b′)θ(−b3b′−2)·J(λkn , λknθ

2)·J(θ, θ2) if θ ∈ k̂×
n .

Then the L-function of Em,b,b′ is equal to

L(Em,b,b′/k(t), T ) = ϵm,b,b′,k(T ) ·
∏

[r]∈Z(m)/⟨|k|⟩×

(
1− αb,b′(χr)Tu(r)

)
,

where [r] denotes the orbit of r ∈ Z/dZ under the action of the multiplication by the powers
of |k| on Z/dZ. ⌟

If m is chosen in a suitable way, one can compute explicitly the Jacobi sums appearing in
the coefficient αb,b′(χr) above, thanks to a result of Tate and Shafarevich from [TS67] (see
theorem 1.4.8). This allows us to get elliptic curves with arbitrarily large (analytic) ranks,
as asserted by the following corollary. We can actually get more precise formulas for the
rank in such cases (see corollary 3.1.14).
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Corollary A (Corollary 3.1.20). Fix any odd prime p and b, b′ ∈ F×
p . Then the rank of Em,b,b′

over Fp(t) is unbounded as m ⩾ 1 varies. ⌟

In characteristic 3, it turns out that an interesting phenomenon happens. The following
corollary of theorem B was originally given in our paper [Let22], where we proved it using
the basic fact that the map x 7→ x3 + bx is additive in characteristic 3 (see subsection 3.1.7
for more details about this alternative proof).

Corollary B (Corollary 3.1.22). Let n ⩾ 1 be an integer and set q = 3n. Let b ∈ F×
q be

any element such that b
q−1

2 = (−1)n+1. Let E = E3n+1,b,1 be the elliptic curve given by
y2 = x3 + bx+ t3

n+1. Then the L-function of E over Fq2(t) is equal to L
(
E/Fq2(t), T

)
=

(1− q2T )2·3n

. In particular, the analytic rank of E over Fq2(t) is equal to 2 · 3n. ⌟

From there, one can deduce a lower bound on the packing density of the corresponding
narrow Mordell–Weil lattices, as in [Let22].

Theorem C (Theorem 3.2.7). Let n ⩾ 1 be an integer, fix b ∈ F×
3n such that b(3n−1)/2 =

(−1)n+1, and set q = 3n,K = Fq2(t). Let L′
n,b := E3n+1,b,1 (K)0 be the narrow Mordell–

Weil lattice of the elliptic curve E3n+1,b,1 over K, i.e., the set of all rational points P ∈
E3n+1,b,1 (K) such that the reduction Pv is a non-singular point of the reduction E3n+1,b,1
modulo v, for every place v of K.

Then the rank of L′
n,b is 2 · 3n and its center packing density satisfies the lower bound

δ(L′
n,b) ⩾

(3n−1 + 1
4

)3n

· 3
−n
(

3n−1−1
2

)
− 1

2 . ⌟

In particular, for n ∈ {1, ..., 7}, we get the following values, gathered in the table below.

n rank of L′
n,b log2

(
δ(L′

n,b)
)
⩾

Best lattice packing
density known so far

1 6 log2
(√

3/24
)
≃ −3.79248 δ(E6) =

√
3

24
([CS98], p. xix)

2 18 log2

(√
3

27

)
≃ −3.962406 −3.79248

[CS98], p. xix

3 54 log2

(√
3·527

227·313

)
≃ 15.88002 15.88

(Elkies [CS98], p. xviii)

4 162 144.1852 130.679
[FIdD11]

5 486 741.1001 703.05
[Bal92]

6 1458 3172.032 3236.6
[Bal92]
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In dimension 54, it equals the currently densest known sphere packings, and in dimensions
162, 486, it improves on the previously known packings; in other words, in these two
dimensions, the lattices from theorem C provide the densest sphere packings known so far.

Moreover, we use laminated lattices in proposition 3.2.22 to construct lattices L of rank 55,
163, 487 with center packing densities satisfying respectively

log2(δ(L)) ⩾ 16.833, 145.88, 743.57.

These lattices thus provide the densest sphere packings known so far in their respective
dimensions. Let us also mention that some dense packings in ranks 150 and 306 are obtained
in example 3.2.3.

Moreover, we computed the kissing number of the 54-dimensional lattice found above (using
n = 3 in theorem C). The main point is to show that one can compute quite explicitly
with these lattices, at least with the help of a computer. Unfortunately, it is quite far from
being a record kissing number; already in dimension 48 there is a lattice with much larger
kissing number. The following result was obtained using SAGE [The21], and the code of the
corresponding programs is available at https://gitlab.com/gauthierleterrier/maths.

Computational theorem D (Computational theorem 3.3.1). The kissing number of the
54-dimensional lattice L′

3,1 (from theorem C) is equal to 15309000 = 23 · 37 · 53 · 7. ⌟

In this computational context, we were also interested in a method to determine the Gram
matrices of those lattices coming from the curves in characteristic 3 (and the lattices coming
from Elkies’ curves, defined in [Elk94], as well). We are not going to state a precise result
here, but we will explain in section 3.3 how this approach works. At least, let us mention
that we have found a Gram matrix for L′

3,1, which therefore gives a very explicit description
of this Mordell–Weil lattice (see computational proposition 3.3.10). This relies on the fact
that the Tate–Shafarevich group of the curve y2 = x3 + x+ t28 over F36(t) is trivial, which
is a result obtained in the final section of chapter 3.

Theorem E (theorem 3.4.1). If n ∈ {1, 2, 3} and b ∈ F×
3n is such that b(3n−1)/2 = (−1)n+1

then the Tate–Shafarevich group of y2 = x3 + bx+ t3
n+1 over F32n(t) is trivial. ⌟

This is proved using a 3-descent involving an inseparable isogeny, which required to use
Amitsur–Čech’s description of flat cohomology.

Finally, in chapter 4, we will prove the following results. We determine explicitly the
L-function of the curves E′

m,b,b′ : y2 = x3 + b+ b′tm over k(t). We state the result under the
hypothesis that |k| ≡ 1 mod 3 for simplicity, but we obtained an analogous statement in the
case |k| ≡ −1 mod 3 as well (see theorem 4.1.2 for the exact formulation and remark 1.4.18
which ensures that this formulation is indeed equivalent to theorem F below). We keep the
notation introduced before the statement of theorem B.

Theorem F (Theorem 4.1.2). Let k be a finite field of characteristic p ⩾ 5 such that
|k| ≡ 1 mod 3, let b, b′ ∈ k× and m ⩾ 1 be an integer coprime to p. Fix a generator
γ ∈ k×

ϕ(m). For each r ∈ Z/mZ, let u(r) be the multiplicative order of |k| modulo m
gcd(m,r) ,

9
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define the generator γu(r) := Nkϕ(m)/ku(r)(γ) of k×
u(r) and define the characters3

χr : k×
u(r) → C×, γu(r) 7→ exp(2πir/m),

ψr : k×
u(r) → C×, γu(r) 7→ exp(2πi/3).

Given ϵ ∈ {±1}, we define

α′
b,b′,ϵ(χr) := λku(r)(b) · χr(−bb′−1) · ψϵr(−b) · J

(
ψϵr, χr, λku(r)

)
X(m, ϵ) :=

{
Z/mZ ∖ {0} if 6 ∤ m
Z/mZ ∖

{
0, ϵm6

}
if 6 | m.

Then we have

L(E′
m,b,b′/k(t), T ) =

∏
ϵ∈{±1}

∏
[r]∈X(m,ϵ)/⟨|k|⟩×

(1− α′
b,b′,ϵ(χr)Tu(r))

where [r] denotes the orbit of r ∈ Z/mZ under the action of the multiplication of the powers
of |k| on Z/mZ. ⌟

Having in hand a concrete expression for the L-function, one can study the (analytic) rank
of the curves E′

m,b,b′ over k(t). When the characteristic of k is p ≡ −1 mod 3, we get a
family of unbounded rank, giving some interesting sphere packings from the corresponding
Mordell–Weil lattice as studied in [Shi91]. However, in characteristic p ≡ 1 mod 3, the
situation is radically different, as the next statement shows.

Theorem G (Theorem 4.2.1). For any prime p ≡ 1 (mod 3), for all b, b′ ∈ F×
p and all integers

m′ ⩾ 1 (not necessarily coprime to p), the rank of the elliptic curve E′ := E′
360m′,b,b′ : y2 =

x3 + b + b′t360m′ over Fp2160(t) is equal to a non-zero constant, namely 68, which is also
equal the geometric rank (i.e., the rank of E′ over Fp(t)). ⌟

In other words, this provides an example of an (isotrivial but non-trivial) elliptic curve
E′

360,b,b′ with constant non-zero rank over k(t1/m) for every m ⩾ 1, where k := Fp2160 and
p ≡ 1 (mod 3), which contrasts with previously known examples of Kummer families of
elliptic curves with bounded rank, where the rank is actually always 0. We mention that
one can also use theorem F to compute efficiently the analytic rank of some of these curves
E′
m,b,b′ , for instance to gather data supporting conjecture 4.2.30.

The proof of theorem G relies on Stickelberger’s theorem, which tells us how the principal
ideal generated by a Jacobi sum (inside some ring of cyclotomic integers) factors into prime
ideals. This is related to the geometric rank of elliptic curves as follows. In general, the
analytic rank is twice the number of orbits [r] such that α′

b,b′,ϵ(χr) is a positive integer
(using theorem F), hence fixed by the Galois group of some corresponding cyclotomic field.
We obtain an upper bound on the rank is only considering those [r] such that the ideal
generated by α′

b,b′,ϵ(χr) is Galois-invariant (by considering only the ideal, we miss the
knowledge of the sign of the Jacobi sums, since we work only up to units of the ring of
cyclotomic integers). This is where Stickelberger’s theorem plays a role.

3We note that ψr is a well-defined character of order 3 on k×
u(r), because we assumed that |k| ≡ 1 mod 3,

so that 3 divides k×
u(r) for every r. Here ϕ is Euler totient function and N(·) denotes the norm map.
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Let us also mention a side result, proved in chapter 2. It provides the analogue in
characteristic 2 of Tate–Shafarevich’s theorem from [TS67] on unboundedness of rank of
families of isotrivial elliptic curves in odd characteristic. It is relevant also in the context of
sphere packings, as it uses Elkies’ curves considered in [Elk94] — the only difference being
the base field F2(t) instead of F2(t). This fills a missing case in the table from [BDS04,
page 488] (namely the assumption that p must be odd in Tate–Shafarevich’s result can be
removed).

Theorem H (Theorem 2.5.1). Let n be an odd integer and consider the elliptic curve given
by the Weierstrass equation An : y2 + y = x3 + t2

n+1 over F2(t).

Then the rank of An over F2n(t) equals 2n. Moreover, if n = 1 or if n is an odd prime
number, then the rank of the finitely generated abelian group An(F2(t)) is given by

rkAn (F2(t)) = 2 ·
(

1 + 2n−1 − 1
n

)
. ⌟

Finally, let us mention that some other small results, not easily found explicitly in the
literature, are also written down in this work; for instance see propositions 1.1.6, 1.2.9
and 2.5.3.

Organization of the text
Overall, the chapters are essentially independent of each other (except the background
chapter 1 which is freely used in the other parts of the text).

In the first chapter, we review some standard tools and useful results about lattices
in section 1.1, packings in section 1.2, elliptic curves in section 1.3 (especially Shioda’s
lower bound on the minimal non-zero Néron–Tate height of points in the narrow Mordell–
Weil lattice stated as theorem 1.3.24) and character sums (especially Jacobi sums, Hasse–
Davenport lifting relation stated as theorem 1.4.7, Stickelberg’s theorem 1.4.22 and Tate–
Shafarevich theorem 1.4.8) in section 1.4.

In chapter 2, we study (a lower bound on) the packing density of (narrow) Mordell–Weil
lattices from an asymptotic point of view, that is, when the dimension goes to infinity.
First, in section 2.1, we give a general lower bound on the packing density, which relies on
the use of Birch–Swinnerton-Dyer formula and Shioda’s theorem 1.3.24. Then we introduce
in section 2.2 some of the invariants needed to state theorem A, like Brauer–Siegel and
Szpiro ratios. After proving theorem A in section 2.3, we discuss some generalizations to
abelian varieties and to constant elliptic curves in section 2.4. Finally, in section 2.5, we
prove theorem H.

In chapter 3, we first prove theorem B, corollary A, corollary B in section 3.1. In section 3.2,
we prove theorem C. In section 3.3, we prove computational theorem D and explain how to
compute Gram matrices associated with our Mordell–Weil lattices in characteristic 3. We
end the chapter by proving theorem E in section 3.4.

In chapter 4, we prove theorem F in section 4.1, while in section 4.2 we give the proof of
theorem G.

11
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In chapter 5, we list some unanswered questions related to the various results discussed in
this thesis.

In appendix A, we give a detailed proof of theorem 2.2.4, to make sure that we can allow
the field of constants Fq to vary. We simply follow the proof given in [HP16], but having in
mind that we shall make sure that the implicit constants do not depend on q.

D

For the convenience of the reader, some frequently used notation are gathered in a list of
symbols (list of notation) at the end of this document, on page 239. For completeness, let
us mention that:

• Given a set E, we denote its cardinality by |E| or by #E and by 1E its indicator function
(sometimes we may write 1x∈E for 1E(x)).

• We sometimes denote by 1u=v the Kronecker symbol δu,v.

• Given a complex number z ∈ C, its complex modulus is denoted by |z|.

• Given an integer n ⩾ 1, we denote by ϕ(n) := |(Z/nZ)×| the Euler totient function.

• Given two integers a, b ⩾ 1, we sometimes denote by (a, b) their greatest common divisor.

D

On the following page, a plot4 shows what we know about the (lattice) sphere packing
density in dimensions ⩽ 2048. The density of a packing is always between 0 and 1, and
Minkowski–Hlawka lower bound tells us that there are lattices in dimension n with packing
density at least 2−n, which corresponds to log2(density)/dimension ⩾ −1.

The blue "top" curve is Cohn–Elkies’ upper bound from [CE03] (theorem 1.2.25); the values
being taken from [ACH+20, table 3.1]. The red "bottom" curve is Keith Ball’s lower bound
from [Bal92] (theorem 1.2.16). The "dots" in between correspond to lattices5.

4The data used to produce the graph is available at https://gitlab.com/gauthierleterrier/maths.
5(To be precise, some dots are lower bounds on the packing density of a certain lattice). We observe that some
dots form a line with slope − 1

12 . This is explained by theorem 2.3.1: we have log(D(Lj ))
rk(Lj ) ⩾ − 1

12 log rk(Lj)
for some narrow Mordell–Weil lattices Lj , and since the x-axis shows the dimension in an logarithmic
scale, we get a line of slope − 1

12 .

12

https://gitlab.com/gauthierleterrier/maths
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Chapter 1
Background material

In this chapter, we give some useful material on lattice packings and on elliptic curves over
function fields, which we will need in the following chapters. Most of the notions gathered
in this chapter are classical and well-known, we review them only for convenience and
completeness.

1.1 · Latt ices

1.1 .1 General def init ions

Definition 1.1.1. A lattice is a pair (L, ⟨−,−⟩L) where L is a free abelian group of finite rank
and ⟨−,−⟩L : L×L→ R is a symmetric Z-bilinear form such that1 ⟨−,−⟩L⊗ZR is positive-
definite (i.e., it is an inner product). In other words, the quadratic form qL : x 7→ ⟨x, x⟩L is
positive-definite on L⊗Z R. ⌟

Remark 1.1.2. 1. In the above definition, it is not sufficient to require the positive-definiteness
on L, i.e., ⟨z, z⟩ > 0 for every z ∈ L ∖ {0}, because this only implies positive semi-
definiteness on L⊗Z R. For instance, if we set L = Z+

√
2Z ⊂ R then L is a free abelian

group of rank 2, but is not a discrete subgroup; the quadratic form qL : L→ R, x 7→ |x|2
is not positive definite on L⊗Z R (we have |m+ n

√
2|2 = 0 =⇒ m = n = 0 if m,n ∈ Z

but not if m,n ∈ R).

2. Some authors do not demand the condition of positive-definiteness, in which case they
are using the terminology "non-degenerate lattice", or "indefinite lattice". For instance,
the Néron–Severi lattice of an elliptic surface has signature (1, ρ− 1), by Hodge index
theorem (see [SS19, Theorem 4.14]). ⌟

A morphism f : (L, ⟨−,−⟩)→ (L′, ⟨−,−⟩′) between two lattices is just an additive group
morphism preserving the bilinear forms. There is clearly a bijection between the set of
isomorphism classes of lattices of given rank n ⩾ 1 and the set of GLn(Z)-equivalence
classes of positive-definite quadratic forms on Zn:

{
lattices (L, ⟨−,−⟩) of rank n

}
/ ∼= ←→

{
positive-definite

quadratic forms q : Zn → R

}/
GLn(Z)

One direction is obvious: given q : Zn → R, we consider the lattice (Zn, bq) where
bq(x, y) := 1

2 · (q(x+y)−q(x)−q(y)) for any x, y ∈ Zn. Conversely, if (L, ⟨−,−⟩) is a lattice
of rank n and ϕ : Zn → L is a group isomorphism, then we associate the positive-definite

1The R-linear map ⟨−,−⟩L ⊗Z R : (L⊗Z R)2 ∼= L2 ⊗Z R → R is obtained from the universal property of
tensor products applied to the Z-bilinear map L2 × R → R given by ((v, w), λ) 7→ λ · ⟨v, w⟩L.
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1 – Background material

quadratic form q := qL ◦ ϕ. It is clear that the GLn(Z)-equivalence class of q is independent
of ϕ, and that the two maps we described are inverse of each other.

More importantly, we have a natural bijection relating lattices and discrete subgroups of
Rn. First, it is known that a discrete subgroup L′ ⊂ Rn is a free abelian group of some
rank ⩽ n. When the rank equals n, we have L′ = BZn for some B ∈ GLn(R). Therefore,
the map [B] 7→ BZn gives a bijection

GLn(R)/GLn(Z)←→
{

discrete additive subgroups
L ⊂ Rn of rank n

}
=: Dn.

Secondly, we have a bijection between the set of isometry classes of discrete subgroups of
rank n and the set of GLn(Z)-equivalence classes of positive-definite quadratic forms:

On(R)\GLn(R)←→
{

positive-definite
quadratic forms q : Zn → R

}
=: Qn (1.1.1)

which can be defined as follows. First, the set Qn of positive-definite quadratic forms
q : Zn → R is in one-to-one correspondence with the cone Sym++

n of positive-definite
symmetric real n × n matrices: on the one hand, a quadratic form q corresponds to its
Gram matrix with respect to the canonical basis of Zn, and on the other hand, given
G ∈ Sym++

n , we set q(x) := t
xGx for all x ∈ Zn. (Note that the action of g ∈ GLn(Z) on

Qn by pre-composition corresponds to the action g ·A := t
gAg on A ∈ Sym++

n ).

Then we check that the map On(R)\GLn(R) −→ Sym++
n given by [A] 7→ t

AA is bijective.
Only surjectivity requires a justification: one can argue either via Sylvester’s theorem on
signatures (law of inertia), or more concretely using Cholesky decomposition.

This finally shows that we have two bijections, whose composition is denoted by σ:

σ :
{

lattices (L, ⟨−,−⟩) of rank n
}
/ ∼= ≃−→ Qn/GLn(Z) ≃−→ On(R)\Dn. (1.1.2)

Therefore, when talking about lattices, we may also refer to (isometry classes) of discrete
subgroups L ↪→ Rn of full rank in Rn (using the bijection σ) — this may lead to a slight
abuse of terminology.

We also have the following identifications:

Dn ≃ GLn(R)/GLn(Z)
Dn/isometries ≃ On(R)\GLn(R)/GLn(Z)
Dn/homotheties ≃ GLn(R)/GLn(Z)R× ≃ SLn(R)/SLn(Z) (1.1.3)

We explain how to get the bijection (1.1.3). First, the inclusion GL+
n (R) := {A :

det(A) > 0 } ↪→ GLn(R) induces a map j : GL+
n (R)/SLn(Z) → GLn(R)/GLn(Z) which

is easily seen to be bijective (for the surjectivity, given A ∈ GLn(R) with det(A) < 0, we
have j([A · diag(−1, 1, ..., 1)]) = [A]). Now, for all n ⩾ 1 we have a group isomorphism
GL+

n (R) ∼= SLn(R)× R>0. From this, (1.1.3) follows.

Definition 1.1.3. Let L ↪→ Rn be a lattice, seen as the isometry class σ(L) of a discrete
subgroup of full rank in Rn via the bijection σ defined in equation (1.1.2).
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1.1 – Lattices

1. Given an ordered Z-basis B = (b1, ..., bn) of L, the Gram matrix2 GB(L) attached to B
is the symmetric n× n-matrix with coefficients ⟨bi, bj⟩L for 1 ⩽ i, j ⩽ n. In other words,
GB(L) = t

MB ·MB where MB ∈ GLn(R) is such that MBZn is any representative of
the isometry class σ(L).

2. The covolume of a lattice L is the Lebesgue measure of any fundamental parallelepiped of
Rn/σ(L). In other words if σ(L) = [MZn], then covol(L) = |det(M)|; this is independent
of the matrix M ∈ GLn(R) and of the choice of a representative MZn of the isometry
class. We say that L is unimodular if covol(L) = 1.

The space of unimodular lattices will be denoted by Xn := SLn(R)/SLn(Z), in view of
(1.1.3).

3. The discriminant of L is the square of its covolume and is denoted by disc(L). Al-
ternatively, it is the determinant3 of the Gram matrix attached to any basis of the
lattice.

4. The minimal norm of (L, ⟨−,−⟩L) is λ1(L) := min{ qL(x)1/2 : x ∈ L ∖ {0} }. If σ(L)
is the isometry class of some discrete subgroup L′ ⊂ Rn, then λ1(L) = min{ ∥v∥2 :
v ∈ L′ ∖ {0} }.

5. A minimal vector of L is a lattice point v ∈ L such that qL(v)1/2 = λ1(L). The kissing
number κ(L) of L is the number of minimal vectors.

6. The dual4 of L ↪→ Rn is L∨ = L∗ := {x ∈ Rn : ⟨x, y⟩L ∈ Z,∀y ∈ L}. It is a lattice:
if L = BZn for some B ∈ GLn(R), then L∨ = t

B−1Zn. We say that L is self-dual if
L = L∨ ⊂ Rn.

7. We say that L is integral if ⟨−,−⟩L takes values in Z on L× L, that is, L ⊂ L∨.

We say that L is even if qL takes values in 2Z (this implies that L is integral). ⌟

Remark 1.1.4. Here are some basic facts, which are easy to prove (see [Mar02, proposition
1.3.7] for details; note that his definition of unimodularity includes integrality).

1. If L = BZn is unimodular, then L∨ = t
B−1Zn is also unimodular.

2. If L is integral, then [L∨ : L] = covol(L)/ covol(L∨) = disc(L), since Rn/L∨ ∼= Rn/L
L∨/L .

More generally, if L ⊂ L′ then covol(L) = [L′ : L] covol(L′).

3. A lattice L is self-dual if and only if it is integral and unimodular.

4. We note that if L ⊂ Rn is integral, it does not mean that L ⊂ Zn or that the covolume is
an integer. For instance, if L is spanned by (a1, a2), (b1, b2) ∈ R2 then the corresponding
quadratic form ∥−∥2 : L→ R is such that

∥n(a1, a2) +m(b1, b2)∥2 = n2(a2
1 + a2

2) + nm(2a1b1 + 2a2b2) +m2(b2
1 + b2

2)

2The Gram matrix of a lattice is not unique, but is well-defined up to the action of GLn(Z) on the cone
Sym++

n , considered above.
3We prefer to not use the notation | det(L)| which could be either the determinant of a Z-basis of L, or the
determinant of a Gram matrix of L.

4Under the identification β : V → V ∗, β(v) : w 7→ ⟨v, w⟩, where V = Rn, the dual lattice corresponds to
the set of linear forms on V that are integral on L, i.e., L∗ = β−1({ϕ ∈ V ∗ : ∀x ∈ L, ϕ(x) ∈ Z}).
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1 – Background material

for all n,m ∈ Z. In particular, if L := ⟨(1,
√

3); (0, 2
√

3)⟩, then the quadratic form takes
values in 2Z, so L is an even lattice, so is integral, but covol(L) = 2

√
3 ̸∈ Q. ⌟

Here are some important examples of lattices. Namely, we define the following root lattices,
where n ⩾ 1 is an integer. Some of them, especially E6, will reappear later on in our work
(see remarks 3.2.6 and 3.2.12).

An :=
{

(x1, ..., xn+1) ∈ Zn+1 : x1 + · · ·+ xn+1 = 0
}
, disc(An) = n+ 1

Dn :=
{

(x1, ..., xn) ∈ Zn : x1 + · · ·+ xn ∈ 2Z
}
, disc(Dn) = 4

E8 :=
{

(x1, ..., x8) ∈ Z8 ∪
(1

2 + Z
)8 : x1 + · · ·+ x8 ∈ 2Z

}
, disc(E8) = 1

E7 :=
{

(x1, ..., x8) ∈ E8 : x1 + · · ·+ x8 = 0
}
, disc(E7) = 2

E6 :=
{

(x1, ..., x8) ∈ E8 : x1 + x8 = x2 + · · ·+ x7 = 0
}
, disc(E6) = 3.

All these root lattices L listed above satisfy λ1(L) = 21/2. Note that the root system of
type Bn generates a lattice isomorphic to Zn and the root system of type Cn generates
a lattice isomorphic to Dn. See [CS98, Chapter 4, §6–§8] or [Mar02, chapter 4] for more
details about root lattices. Another important lattice is the Leech lattice Λ24, which is
given various definitions in [CS98, Chapter 24] or in [CS98, Theorem 3b), chapter 26, p.
526] (where it is easily defined using a Lorentzian space). Up to isometries, it is the unique
even unimodular lattice L ⊂ R24 such that λ1(L) = 2.

1.1 .2 Minimal norm of random latt ices

If we define the Hermite constant of a lattice L ↪→ Rn as γ(L) := λ1(L)2/disc(L)1/n, then
a major open problem, as mentioned in the introduction, is to determine the value of the
n-dimensional Hermite constant

γn := sup
L⩽Rn

lattice

γ(L). (1.1.4)

Equivalently, we are looking for unimodular lattices L having the largest possible λ1(L).
We explain in the following paragraphs how the moduli space Xn of unimodular lattices in
Rn is endowed with a probability measure, and how it allows to say something about the
distribution of λ1(L).

Any left Haar measure on the locally compact group SLn(R) is bi-invariant5 and induces
an SLn(R)-left-invariant measure on the quotient topological space Xn := SLn(R)/SLn(Z)
(see [Bou04], chap. VII, §2, corollary 2, page 44). It was shown by Siegel that the measure
of Xn is finite (see [Mor15, theorem 7.0.1] for a modern exposition), and therefore we may
scale it to get a unique SLn(R)-left-invariant probability measure µn on Xn. In this way we
can consider the probability space (Xn, µn) and talk about random (unimodular) lattices.

Using this probabilistic point of view, we can state here a result, often referred to as
Gaussian heuristic, which gives the asymptotic behavior of the expected length of a shortest
non-zero vector in a random unimodular lattice, when the dimension goes to infinity. In
what follows, Bn(0, 1) denotes the L2-ball in Rn of radius 1 centered at 0.

5In fact, if λ is the Lebesgue measure on Rn2
, then µ(E) := λ({ tg : g ∈ E, t ∈ [0, 1] }) defines a

bi-invariant measure on SLn(R) ↪→ Rn2
. See also [Bou04, chap. VII, §3, proposition 6, p. 68] for a proof

of unimodularity of SLn(R).
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1.1 – Lattices

Theorem 1.1.5 (Rogers). Consider the length of a shortest non-zero vector in a random
unimodular lattice as a random variable λ1 : Xn → R>0. When n → +∞, its expected
value (taken over L ∈ Xn, with respect to the probability measure µn) behaves as

EXn [λ1(L)] :=
∫
Xn

λ1(L) dµn(L) ∼ vol(Bn(0, 1))−1/n ∼
√

n

2πe. ⌟

Proof. –– See theorem 9 in [AEN]. The proof is based on a result of Rogers on higher
moments of L 7→ |L ∩ B ∖ {0}| where B ⊂ Rn is an origin-centered ball. He proved in
[Rog56, theorem 3] that for any volume V > 0, the distribution of |(L∖ {0}) ∩BV |, where
BV ⊂ Rn is the origin-centered ball of volume V and L ∈ Xn is random, converges weakly
to the Poisson distribution of mean V/2 as n→ +∞. ■

We can also prove the following version, which gives a lower bound on λ1(L) for a large
proportion of the unimodular lattices.

Proposition 1.1.6. For every ϵ > 0 and all integers n > 0, there is a subset Yn,ϵ ⊂ Xn of
measure µn(Yn,ϵ) ⩾ 1− ϵ

2 and such that for all L ∈ Yn,ϵ we have

λ1(L) ⩾ ϵ1/n vol(Bn(0, 1))−1/n > ϵ1/n
√

n

2πe ⩾ (1− ϵ) ·
√

n

2πe (1.1.5)

where the last inequality holds for all large enough n ⩾ n0(ϵ) = log(ϵ)
log(1−ϵ) . ⌟

So for instance by taking ϵ = 10−2 and n > 1000, we get that 99 % of unimodular lattices
L in Rn have ∥v∥ ⩾ λ1(L) > 0.9954

√
n

2πe for all v ∈ L∖ {0}.

The proof of the above proposition relies on the following important result:

Theorem 1.1.7 (Siegelmean value theorem, [Sie45]). For any compactly supported Riemann-
integrable function f : Rn → R we have∫

Xn

Φf (L) dµn(L) =
∫
Rn

f

where Φf (L) :=
∑
v∈L∖{0} f(x). ⌟

Proof of proposition 1.1.6. –– We can take f = 1B where B := Bn(0, r) is some euclidean
ball. Then Siegel mean value theorem computes the average E[#(B ∩ L ∖ {0})] of the
number of non-zero lattice points in B over all unimodular lattices L. Namely, it says that
this average is vol(B).

Let us take r > 0 such that vol(B) = ϵ = rn vol(Bn(0, 1)), that is r = ϵ1/n vol(Bn(0, 1))−1/n.
Consider the discrete random variable ZB : L 7→ #(B ∩ L ∖ {0}). Note that ZB only
takes even values because of the symmetry: x ∈ L ⇐⇒ −x ∈ L. Let us denote
P(ZB = k) := µn({L ∈ Xn : ZB(L) = k }) for any integer k ⩾ 0. Then we have

vol(B) = ϵ = E[ZB] =
∑
k′⩾0

k′P(ZB = k′) =
∑
k⩾0

2kP(ZB = 2k) =
∑
k⩾1

2kP(ZB = 2k)

⩾ 2
∑
k⩾1

P(ZB = 2k) = 2(1− P(ZB = 0)).
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1 – Background material

Thus P(ZB = 0) ⩾ 1 − ϵ
2 . But note that ZB(L) = 0 ⇐⇒ B(0, r) ∩ L = {0} ⇐⇒

λ1(L) ⩾ r. Thus we proved that we probability at least 1 − ϵ
2 , we have λ1(L) ⩾ r =

ϵ1/n vol(Bn(0, 1))−1/n. The rest follows from Stirling’s approximation, see remark 1.2.13. ■

We give here a few computational remarks.

Remark 1.1.8. 1. It is surprisingly difficult to exhibit lattices achieving the lower bound
as in proposition 1.1.6, when the dimension n gets large (and for fixed ϵ > 0), see
remark 1.2.22 below for more details.

2. Given a lattice L ⊂ Rn, where n is large, determining λ1(L) or finding a minimal vector
is a difficult computational problem, known as the "shortest vector problem" or SVP,
which underlies some post-quantum cryptosystems like NTRU. All known algorithms to
compute λ1(L) (or κ(L)), e.g. Schnorr–Euchner or Kannan–Fincke–Pohst algorithms,
run in exponential time, i.e., the required number of bit operations grows exponentially
with the dimension n.

Given a lattice L ↪→ Rn, the LLL algorithm [LLL82, proposition 1.26] can find in
polynomial time a non-zero vector v ∈ L such that ∥v∥2 ⩽ an−1λ1(L) for any a >√

4/3 ≃ 1.15470, which is exponentially far from λ1(L).

To give some examples of current records, in [GNR10, p. 259] the authors found a
shortest vector in a 110-dimensional lattice in 62 days, while [DSvW21, §7.3, table 1]
solved an approximate SVP on lattices in dimensions 155 to 180, with an error of at most
5 % within the expected value of λ1(L) given in theorem 1.1.5 — the 180-dimensional
case took 51 days. At any rate, this is very far from providing us with an explicit lattice
in dimension > 2048 which achieves Minkowski–Hlawka lower bound, as mentioned in
the introduction.

3. One strategy to determine γn for some fixed (large) dimension n > 0 would be to produce
unimodular lattices uniformly at random with respect to the probability measure µn
introduced above. This is not obvious how to proceed, but it can be done (with an
error that can be made arbitrarily small) for instance using the work [GM03, §1] on
equidistribution of Hecke points.

Then computing λ1(L) for each such random L is quite long as mentioned in the previous
item, and in any case we would only expect to find a result as in theorem 1.1.5, which
does not necessarily tell us much about the Hermite constant γn itself.

4. A more "efficient" way to compute γn would be to run Voronoi’s algorithm as explained
in [Mar02, chapter 7]. It relies on Voronoi’s theorem [Mar02, Theorem 3.4.6], which
characterizes extreme lattices, i.e., lattices at which γ(L) attains a local maximum,
with respect the euclidean topology on Xn. But going through all extreme lattices is
exponentially slow as the dimension increases; even in dimension 9, the algorithm has
been running for years but γ9 is still unknown. ⌟
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1.2 – Packings

1.2 · Packings

1.2.1 General not ions

We review here some general results on packings, mostly to give a broader point of view
on certain questions in discrete geometry. In our setting, we will only consider packings
in some euclidean space Rn (endowed with the L2-norm ∥·∥2), where n ⩾ 1, even though
packings in compact spaces like Fnq , an euclidean ball or a sphere can also be studied.

We denote by vol(·) the Lebesgue measure on Rn. Given x ∈ Rn and real numbers
r > 0, p ⩾ 1, we denote by Bnp (x, r) the open Lp-ball centered at x of radius r. When x = 0
and r = 1, we simply denote the origin-centered unit ball by Bnp . When p = 2, we generally
omit the subscript p.

Definition 1.2.1. 1. A body is a connected subset C ⊂ Rn with non-empty interior and
compact closure.

2. A collection C of bodies in Rn is a packing if for every distinct sets E,E′ ∈ C, the interiors
of E and E′ are disjoint.

3. Given a body C ⊂ Rn, we define:

• a packing of C as a packing C consisting of isometric copies of C, i.e. there is a subset
F ⊂ Isom(Rn, ∥·∥2) ∼= Rn ⋊ On(R) such that C = { f(C) : f ∈ F }.

• a packing of translates of C as a packing C consisting only of translates of C. In other
words, there is a subset T ⊂ Rn such that C = C + T := {C + x : x ∈ T}, where
C + x := { c+ x : c ∈ C } is the Minkowski sum.

• a lattice packing of C as a packing {C + t : t ∈ T } of translates of C where T ⊂ Rn

is a lattice.

4. A packing of a body C is periodic if it is a finite union of translates of a given lattice
packing of C.

5. Let B ⊂ Rn be a fixed body. If C is a countable collection of subsets of Rn, then we
define the density of C with respect to B as

D(C, B) :=
∑
E∈C vol(E ∩B)

vol(B) ∈ [0,∞].

6. Fix a point x0 ∈ Rn and a family C of subsets of Rn. We set

D(C) = lim sup
r→+∞

D(C, Bn(x0, r)), D(C) = lim inf
r→+∞

D(C, Bn(x0, r)). (1.2.1)

If these two numbers coincide in [0,∞], then we call their common value the density of
the collection C, denoted by D(C).

7. Given a body C ⊂ Rn, we define the packing density D(C) of C, resp. the translative
packing density DT (C), resp. the lattice packing density Dℓ(C) as:

D(C) = sup
C packing

of C

D(C), DT (C) = sup
C packing

of translates of C

D(C), Dℓ(C) = sup
C lattice

packing of C

D(C). ⌟
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Remark 1.2.2. • Given a convex body C ⊂ Rn, the definitions of D(C) and D(C) do not
depend on the choice of x0 ∈ Rn (see e.g., [CE03, appendix A, p. 708] and the references
therein). Moreover, if the convergence of D(C,B(x0, r)) to D(C) (as r → +∞) is uniform
in x0 ∈ Rn, then for any x0 ∈ Rn and any convex body P ⊂ Rn containing 0 in its
interior, we have

D(C) = lim sup
r→+∞

D(C, rP + x0).

(see e.g., [CE03, appendix A, p. 708]), where rP := { rx : x ∈ P }. Note that this is
wrong if 0 is in the boundary of P , as pointed out in [PA11, exercise 3.4].

• When C is an euclidean ball of radius r > 0, then a packing for C is simply called a
sphere packing; it is characterized by the subset X ⊂ Rn of centers of the balls, such
that ∥x− y∥2 ⩾ 2r for any distinct points x ̸= y ∈ X. ⌟

As mentioned in [Tó17, p. 34], for d ⩾ 3, « all methods establishing the existence of dense
packings rely on the theory of lattices, thus providing the same lower bounds for D(C)
and DT (C) as for Dℓ(C) ». This is for us a further motivation to specifically study lattice
packings, in which case the density admits an easy expression.

Proposition 1.2.3. Given a convex body C ⊂ Rn and a lattice L ⊂ Rn such that C := {C +
x : x ∈ L } is a packing, we have

D(C) = D(C) = vol(C)
covol(L)

where covol(L) is the Lebesgue measure of any fundamental parallelepiped of L. ⌟

Proof. –– See [Gru07, Corollary 30.1, p. 442] or [Mar02, Proposition 1.8.2]. ■

Proposition 1.2.4. Let C ⊂ Rn be any convex body.

1. The packing density D(C) is attained by some packing, that is, D(C) is a maximum.

2. The lattice packing density Dℓ(C) is attained.

3. The translative packing density DT (C) is attained.

4. The translative packing density DT (C) is the supremum of D(C) over periodic packings
C of C. ⌟

Proof. –– 1. See [Gro86, theorem §2, p. 186] applied to the full group G of isometries of
(Rn, ∥ · ∥2).

2. See [Gru07, theorem 30.1] or [Oes90, corollaire, p. 382] when C is an euclidean ball.
This is a consequence of Mahler’s compactness theorem.

3. See [Gro86, theorem §2, p. 186] applied to the group G ∼= Rn of translations acting on
Rn.

4. See for instance the argument given in [CE03, appendix A, p. 709] or [Rog64, theorem
1.7]. ■
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1.2 – Packings

Remark 1.2.5. It is not known whether, given a convex body C ⊂ Rn, DT (C) is a maximum
over periodic packings. Hans Zassenhaus conjectured that it is indeed a maximum, see
[Gru07, conjecture 30.2]. ⌟

1.2.2 Latt ice packings

For any lattice L ⊂ Rn and any centrally symmetric convex body C ⊂ Rn with compact
closure, we define the following invariants:

Definition 1.2.6. 1. The Minkowski functional6 ∥x∥C := inf{ s ⩾ 0 : x ∈ sC }, for every
x ∈ Rn.

2. The minimal norm of L with respect to C is λ1(C,L) := min
{
∥x∥C : x ∈ L∖ {0}

}
.

3. The Hermite constant of L with respect to C is γ(C,L) := λ1(C,L)2

covol(L)2/n .

4. The center density of L with respect to C is

δ(C,L) := (λ1(C,L)/2)n
covol(L) = 2−n · γ(C,L)n/2.

5. The (packing) density of L with respect to C is D(C,L) := δ(C,L) vol(C). ⌟

When C = Bn(0, 1) is the unit origin-centered euclidean ball, we omit it from the notation;
for instance we set λ1(L) := λ1(Bn(0, 1), L), which is consistent with definition 1.1.3, 4).
The idea behind introducing λ1(C,L) is that given C ⊂ Rn, we want to rescale L so that
the packing {C + x : x ∈ L } is optimal in the sense that for any a > 1, the collection7

{ aC + x : x ∈ L } is not a packing. This is made precise in the following statement.

Proposition 1.2.7. Let C ⊂ Rn be a convex body which is centrally symmetric around 0
(i.e., C = −C := {−x : x ∈ C }). Then

Dℓ(C) = sup
L↪→Rn

lattice

D(C,L). ⌟

Proof. –– Note that for any lattice L, {C + x : x ∈ L } is a packing if and only if
L ∩ int(2C) = {0} if and only if8 λ1(C,L) ⩾ 2 (see [Gru07, Proposition 30.4]).

We know that Dℓ(C) is the supremum of vol(C)
covol(L) over lattices L ↪→ Rn such that {C+x :

x ∈ L } is a packing. For any such lattice L, if we rescale it to get the lattice L′ :=

6It is sometimes referred to as Minkowski gauge. It is a norm on Rn, and any norm can be obtained in
this way, see for instance [Sie89, Lecture I, Theorem 7].

7Here aC := { ac : c ∈ C } ⊂ Rn denotes a homothetic copy of C.
8Let us explain the equivalence L ∩ int(D) = {0} ⇐⇒ λ1(D,L) ⩾ 1 for a centrally symmetric convex
body D. On the one hand, if L∩ int(D) = {0} then for any x ∈ L∖ {0}, we must have ∥x∥D ⩾ 1, because
sD ⊂ int(D) for any 0 ⩽ s < 1; thus λ1(D,L) ⩾ 1. Conversely, if λ1(D,L) ⩾ 1 and x ∈ L ∩ int(D) ∖ {0},
then B2(x, ϵ) ⊂ D for some ϵ > 0. Then λx ∈ D where λ := 1 + ϵ · ∥x∥−1

2 > 1, so that ∥x∥D < 1,
contradicting the hypothesis λ1(D,L) ⩾ 1.
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1 – Background material

2λ1(C,L)−1L, then {C + x : x ∈ L′ } is still a packing (and is "optimal" in the sense that
the translates of C are touching). We have

vol(C)
covol(L′) = vol(C)

covol(L)(2λ1(C,L)−1)n = D(C,L) ⩾ vol(C)
covol(L) .

Taking the supremum over L yields the claim. ■

In particular, it follows9 that D(C,L) ⩽ 1 for all centrally symmetric convex bodies C and
every lattice L. It is convenient to normalize the lattice packing density as follows.

Definition 1.2.8. The center (lattice) density of a centrally symmetric convex body C is

δℓ(C) := vol(C)−1Dℓ(C) = sup
L↪→Rn

lattice

δ(C,L). ⌟

We now say a few words about laminated lattices; we focus on the case of packings of
euclidean balls for simplicity. The idea is simple: given an n-dimensional lattice packing L,
one can create an (n+ 1)-dimensional periodic packing of unit by translating copies of L in
Rn+1 and "stacking" them as closely as possible to still get a packing.

Proposition 1.2.9. Suppose that we have a sublattice L ⊂ L′ of (finite) index N ⩾ 2 in a
lattice L′ ↪→ Rn (we could have for instance L′ = L∨ or L′ = 1

2L). Let a0 = 0, ..., aN−1 ∈ L′

be representatives of smallest length in each coset of the quotient L′/L (in particular
Nai ∈ L for all i). Let S be the set of indices 1 ⩽ j ⩽ N − 1 such that ∥aj∥2 < λ1(L).
Assume that S ̸= ∅ and define

h := max
j∈S

(
λ1(L)2 − ∥aj∥2

2
)1/2

> 0,

P0 :=
N−1⋃
j=0

(
(L+ aj)× (NhZ + jh)

)
⊂ Rn × R ∼= Rn+1.

Then the set P of open euclidean balls of equal radius 1
2λ1(L) centered at points of P0 is a

periodic packing in Rn+1 and has density

D(P) = D(P) = λ1(L)
2h D(L).

Moreover, if L′/L is a cyclic group, then we may re-order the ai’s so that P is a lattice
packing. ⌟

Remark 1.2.10. In the above proposition, if S = ∅ happens (e.g., take L = Z× 2Z as an
index-2 sublattice of L′ = Z× 4Z), then it just means that λ1(L) = λ1(L′) and so L′ gives a
lattice packing in dimension n denser than L, since D(L′) = D(L)[L : L′] by remark 1.1.4.2.
Thus we may take h = 0 and there is no need to go to an (n+ 1)-dimensional space. ⌟

9This also follows from Minkowski’s first theorem. If we let a := 2(covol(L)/ vol(C))1/n and C′ := aC,
then vol(C′) = an vol(C) = 2n covol(L), so there is some x ∈ L ∩ C′ ∖ {0} ̸= ∅, which means that
λ1(C,L) ⩽ a, or equivalently D(C,L) ⩽ 1.
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1.2 – Packings

Proof. –– • We first show that P is indeed a packing. Observe that we have

∀x ∈ L, ∀j > 0, ∀r ∈ Z ∖ {0}, ∥ (x+ aj , rh)︸ ︷︷ ︸
∈Rn+1

∥2 ⩾ λ1(L). (1.2.2)

Indeed, one has ∥(x+ aj , rh)∥2
2 = ∥x+ aj∥2

2 + r2h2 ⩾ ∥aj∥2
2 + r2h2 because the ai’s

are representatives of shortest possible length in their coset. Now we have either
∥aj∥2 ⩾ λ1(L), or j ∈ S in which case ∥aj∥2

2 + h2 ⩾ λ1(L) holds anyway thanks to the
definition of h.

We want to show that for every P ̸= Q ∈ P0, we have ∥P −Q∥2 ⩾ λ1(L). Let
P := (ℓ+ ai, i

′ · h) and Q := (ℓ′ + ak, k
′ · h) ∈ P0 ⊂ Rn+1 be two distinct points, where

ℓ, ℓ′ ∈ L and i′, k′ ∈ Z are such that i′ ≡ i (mod N), k′ ≡ k (mod N). We may write
(ℓ+ ai)− (ℓ′ + ak) = x+ aj ∈ L′ for some unique x ∈ L and 0 ⩽ j ⩽ N − 1. Now there
are two cases.

– If i′ = k′, then we must have i = k, which implies that j = 0. Thus ∥P −Q∥2 =
∥(x, 0)∥2 ⩾ λ1(L) holds since x ∈ L∖ {0}.

– If i′ ≠ k′, then we must have j ̸= 0 and so we may use equation (1.2.2) to conclude
that ∥P −Q∥2 ⩾ λ1(L) holds in this case as well.

This means that the open balls of radius ρL := λ1(L)/2 centered at points of P0 are
disjoint, i.e., P is a packing as claimed.

• The packing P is periodic; it is a (disjoint) union of N translates of the lattice sphere
packing with balls centered at points of L×NhZ. Therefore we may use proposition 1.2.3
to compute its density (since the Lebesgue measure is additive on finite disjoint unions):

D(P) = D(P) = vol(Bn+1(0, 1)) · ρn+1
L N

covol(L)Nh = λ1(L)
2h D(L).

• Note that we have

P0 =
N−1⋃
j=0

(
(L×NhZ) + (bj , j · h)

)
for any set {b0, ..., bN−1} of representatives for L′/L — not necessarily of minimal length
in their coset — provided that bj ≡ aj mod L for all j. If L′/L is cyclic, say generated
by the class of some b1 ∈ L, then we re-arrange the ai’s so that ai ≡ i · b1 = bi mod L
for all i. Then P ⊂ Rn+1 is a lattice, generated by L× {0} and (b1, h) ∈ Rn × R. ■

1.2.3 Packings of eucl idean bal ls

We state here what is known about the densest sphere packings, in some dimensions. For
simplicity, from now on, we will denote Dℓ(n) := Dℓ(Bn(0, 1)) and δℓ(n) := δℓ(Bn(0, 1))
the lattice packing density (resp. center density) of L2-balls in Rn. Similarly, we will use
the notations D(L) := D(Bn(0, 1), L) and δ(L) := δ(Bn(0, 1), L) given a lattice L ↪→ Rn.
Note that δℓ(n) = 2−n · γn/2

n .
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Proposition 1.2.11. The lattices A1, A2, A3, D4, D5, E6, E7, E8,Λ24 maximize the density
of lattice packing of euclidean balls in their respective dimensions n ∈ {1, 2, ..., 8, 24}, with
values of Dℓ(n) given in the table below. Moreover, up to similitudes (i.e., up to isometries
and homotheties), they are the unique such lattices.

In dimensions 1, 2, 3, 8, 24, these lattices also maximize the density of (arbitrary) packing
of balls. In dimensions 8 and 24 respectively, E8 and Λ24 are the unique periodic packings
(up to similitudes) achieving the maximal packing density. ⌟

n 1 2 3 4 5 6 7 8 24

Dℓ(n) 1
π

2
√

3
≃0.90689

π√
18

≃0.74048

π2

16
≃0.61685

π2

15
√

2
≃0.46525

π3

48
√

3
≃0.37294

π3

105
≃0.29529

π4

384
≃0.25366

π12

12!
≃0.00192

δℓ(n) 1
2

1
2

√
3

1
4

√
2

1
8

1
8

√
2

1
8

√
3

1
16

1
16 1

Attained by
the lattice A1 A2 A3 D4 D5 E6 E7 E8 Λ24

Proof. –– See the references given in [CK09, p. 1004] for the statements about the optimality
among lattices and the uniqueness (for dimensions 3 and 4, a modern proof is available
in [CS88, CS89, Theorem 6], and [Mar02, Theorem 6.2.1, Corollary 6.4.4, Theorem 6.5.4,
7), Theorem 6.6.1] for dimensions10 n ⩽ 8. We simply mention explicitly here the work
[Bli35] which proves that E6, E7, E8 have the largest possible lattice packing density in
their respective dimensions.

For the statements about optimality and uniqueness among all packings, see [PA11, Corollary
3.4] for a modern proof in dimension 2 (the result being originally due to A. Thue and L.
Fejes Tóth), [Hal05] in dimension 3, [Via17] in dimension 8 and [CKM+17] in dimension 24.
It is also worth mentioning the Bourbaki seminars [Oes98, Oes19] for an overview of the
proofs in dimensions 3 and 8, 24 respectively. ■

Remark 1.2.12. • The lattices A1 ∼=
√

2Z, A2, A3, D4, D5, E6, E7, E8 are laminated lattices,
see [CS98, chapter 6, theorem 2] for more details.

• In dimensions n ∈ {3, 4, 5, 6, 7}, there are infinitely many non-similar periodic packings
achieving the maximal packing density of balls. This is because the optimal lattice L in
dimension n− 1 satisfies |L∨/L| = disc(L) > 2 in each of those cases.

• In dimension 3, the lattice A3 (similar to D3) is sometimes called the "face-centered cubic"
or fcc arrangement, while the "body-centered cubic" or bcc arrangement (corresponding
to the lattice D∨

3 ) has lower packing density. The "hexagonal close packing" (or hcp) is a
periodic but non-lattice packing; see [CS98, p. 113-117].

• In dimension 9, there is an uncountable family of periodic packings (one of which being
a lattice packing) achieving the best known packing density, see [CS98, Preface p. xviii].

10The optimality of E8 among lattice packings can be deduced from the optimality of E7, together with
Mordell’s inequality (proposition 1.2.17). Similarly, optimality of D4 can be deduced from the one of A3.
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1.2 – Packings

Dimension 10 is the first one where the best known packing is not a lattice packing: it
is a periodic packing discovered by Marc Best, consisting of 40 translates of a lattice
packing (see [CS98, chapter 5, p. 140]).

• According to [CS98, p. 13], it is « a reasonable guess » that when n ⩽ 8, we should have
D(Bn(0, 1)) = Dℓ(n). But it was conjectured in [Rog64, p. 15] that D(n) > Dℓ(n) for
all large enough dimensions. ⌟

Remark 1.2.13. For every real number p ⩾ 1, the Lebesgue measure of any Lp-ball of radius
1 equals 2n · Γ

(
1 + 1

p

)n
· Γ
(

1 + n
p

)−1
. In particular, when p = 2, we have Γ(3/2) =

√
π

2 so

that one gets vol(Bn(0, 1)) = πn/2 · Γ
(
n
2 + 1

)−1
.

When n → +∞, Stirling’s approximation yields vol(Bn(0, 1)) ∼ (πn)−1/2 · (2πe/n)n/2,

which implies in particular that11

vol(Bn(0, 1))1/n ∼
√

2πe
n
, log vol(Bn(0, 1)) = −n2 log(n) · (1 + o(1))

as n→ +∞. ⌟

Remark 1.2.14. 1. It is known, from Voronoi’s theorem and a result of Korkine–Zolotareff,
that Dℓ(Bn(0, 1)) is attained by an integral lattice. In particular, δℓ(Bn(0, 1))2 is a
rational number. See [Mar02, Corollary 3.4.7].

2. From [Rog56, theorem 3] (cited in theorem 1.1.5), one can deduce that the variables
L ∈ Xn 7→ vol[Bn(0, λ1(L))] = λ1(L)n vol(Bn(0, 1)) = 2nD(L) converge weakly to an
exponential law Exp(1/2) with parameter 1/2 (i.e., mean 2), see for instance [AEN,
Corollary 4]. In particular, the expected value of the lattice sphere packing density
function L ∈ Xn 7→ D(L) is asymptotic to 2−n · 2 as n→ +∞.

Note that from proposition 1.1.6 we have D(L) ⩾ ϵ · 2−n for unimodular lattices L in a
subset of Xn of measure at least 1− ϵ

2 .

3. There is a notion of "covering" of balls (or more generally of convex bodies), which is
somehow dual to the notion of "packing". The thinnest coverings of balls are only known
in dimensions 1 and 2, and the thinnest lattice coverings of euclidean balls are known in
dimensions n ⩽ 5, where A∨

n is optimal. See [CS98, Table 1.1, p. 12]. ⌟

1.2.4 Lower and upper bounds on the sphere packing density

1.2.4.1 Lower bounds

There is a general lower bound, valid not only for balls, but for any convex centrally
symmetric body, due to Minkowski and Hlawka. The proof relies on Siegel’s mean value
theorem 1.1.7, so this probabilistic argument does not tell us precisely which lattices achieve
a large packing density.

11We also have an inequality vol(Bn(0, 1))1/n >
√

2πe
n for every n ⩾ 1, which can be shown using refined

versions of Stirling’s approximation, see for instance [Mor10, Corollary 1].
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Theorem 1.2.15 (Minkowski–Hlawka theorem). Let n ⩾ 2. For any star-shaped (e.g.,
convex) and centrally symmetric body C ⊂ Rn, we have Dℓ(C) ⩾ 2ζ(n) · 2−n. ⌟

Proof. –– See Siegel’s proof in [Sie89, Lecture XV, §7–8] or [PA11, Corollary 7.10]. ■

This lower bound was further improved by a linear factor by Schmidt (see [PA11, p. 86]).
On the other hand, Venkatesh’s superlinear improvement in some12 dimensions, given in
[Ven13], is specific to L2-balls and does not apply to general convex centrally symmetric
bodies. The best known bound on Dℓ(n) valid in all dimensions is due to Keith Ball:

Theorem 1.2.16 ([Bal92]). For every n ⩾ 1, we have Dℓ(n) ⩾ 2ζ(n)n− 1
2n . ⌟

In dimensions n ⩾ 8 divisible by 4, this was slightly improved by [Van11]. Let us mention
here a useful result, the so-called Mordell’s inequality: given a lattice L ↪→ Rn and m ⩽ n,
one can get a lower bound on δℓ(m) in terms of δ(L). Some applications will be mentioned
in remark 3.2.4.

Proposition 1.2.17 (Mordell). For all n ⩾ m ⩾ 2, we have δℓ(m) ⩾
(

2m−nδℓ(n)
m−1
n

) m
n−1

. ⌟

Proof. –– We simply apply [Mar02, Theorem 2.3.1], which is stated in terms of Hermite

constants, namely 4 · δℓ(n)2/n = γn ⩽ γ
n−1
m−1
m . It follows that

δℓ(n) = 2−nγn/2
n ⩽ 2−n(γ n−1

m−1
m

)n/2 = 2−n(4 · δℓ(m)2/m) n(n−1)
2(m−1)

=
(
2n−m · δℓ(m)

n−1
m
) n
m−1 ,

which easily implies the claimed inequality. For the case m = n− 1, one can also refer to
[CS98, equation (19), chap. 6, p. 167], which reads δℓ(n− 1) ⩾ 1

2δℓ(n)
n−2
n . ■

Remark 1.2.18. Using laminated lattices, we see that we also have

δℓ(n) ⩾ 1
2δℓ(n− 1). (1.2.3)

Indeed, given a lattice L ⊂ Rn−1 with maximal density, let L′ ⊂ Rn be the lattice generated
by L× {0} ⊂ Rn and en := (0, ..., 0, λ1(L)). We have λ1(L′) = λ1(L) and so

δℓ(n) ⩾ δ(L′) = (λ1(L′)/2)n
covol(L′) = λ1(L)

2 · (λ1(L)/2)n−1

covol(L)λ1(L) = 1
2δ(L).

There is an analogous result about lattice kissing numbers. Given any dimension n > 0,
let κℓ(n) := sup{κ(L) : L ↪→ Rn lattice }; it is finite and we even have κℓ(n) ⩽ 2n+1 − 2
(see [BMP06, §2.4, p. 94]). Now we claim that κℓ(n+ 1) ⩾ κℓ(n) + 2. Indeed, let L ⊂ Rn

be a lattice with maximal kissing number #{x ∈ L : ∥x∥ = λ1(L) } = κℓ(d). Let

12More specifically, it was proved that Dℓ(2 · ϕ(m)) ⩾ m · 2−2ϕ(m) for all m ⩾ 1, where ϕ is Euler totient
function. This implies that for any c < eγ/2 ≃ 0.8905 and any x ⩾ 1, we have Dℓ(n) ⩾ cn log(log(n))2−n,
where n = 2

∏
p⩽x prime

(p− 1) ∈ {2, 4, 16, 96, 960, ...} is a sparse sequence of dimensions. (This was also

proved by other methods in [Mou17, Aut16]).
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L′ ⊂ Rn+1 be the lattice generated by L and en+1 := (0, ..., 0, λ1(L)) ∈ Rn+1. Then we
have λ1(L′) = λ1(L) and

κℓ(n+ 1) ⩾ #{x ∈ L′ : ∥x∥ = λ1(L′) } ⩾ κℓ(n) + 2. ⌟

Remark 1.2.19. For L2-balls, Minkowski–Hlawka lower bound can be achieved asymptotically
by an odd (hence integral) unimodular lattice, and by an even unimodular lattice in
dimensions divisible by 8. The precise statements — originally proved by Conway and
Thompson — are given in [MH73, theorem II.9.5, p. 46–47] or in [CS98, theorem 25,
chapter 7, p. 197].

On the other hand, the sphere packing density of any unimodular integral lattice L

in dimension n (which needs to be a multiple of 8 if the lattice is moreover even) is
asymptotically upper bounded by D(L) ⩽ 2n(α+o(1)) where α := log2

(√
πe/24

)
≃ −0.74538,

see [RS98, theorem 1]. ⌟

Remark 1.2.20. In view of theorem 1.1.5, we note that Minkowski–Hlawka lower bound
from theorem 1.2.15 implies (using the identity λ1(L) = 2

(
D(L)

vol(Bn(0,1))

)1/n
covol(L)1/n and

remark 1.2.13) that for all n ⩾ 1, there exists a lattice Ln ⊂ Rn of covolume 1 such that

λ1(Ln) ⩾ 21/n vol(Bn(0, 1))−1/n =
√

n

2πe · (1 + o(1)). (1.2.4)

On the other hand, from theorem 1.2.23 below we know that for all lattices L ⊂ Rn we
have:

λ1(L) ⩽

√
41−αKLn

2πe covol(L)1/n · (1 + o(1)),

as n→ +∞, where 41−αKL ≃ 1.743381. ⌟

Remark 1.2.21. The lower bounds given in theorems 1.2.15 and 1.2.16 is far from the truth in
low or medium dimensions. For instance, if we look at Zn, it has unit covolume and λ1(Zn) =
1, so it does better than the lower bound (1.2.4) if and only if 1 > 21/n vol(Bn(0, 1))−1/n,
or equivalently vol(Bn(0, 1)) > 2, which happens if and only if n ⩽ 10. The root lattices
An (if 2 ⩽ n ⩽ 12) and Dn (if 3 ⩽ n ⩽ 16) have a sphere packing density greater than the
lower bound in theorem 1.2.16.

In slightly higher dimensions n ⩽ 48, the densest known lattices, listed in [CS98, p. xix-xx,
p. 17], all have a packing density larger than Minkowski bound.

Some families of lattices have a packing density larger than Minkowski bound in medium
dimensions. We mention here Maurice Craig’s cyclotomic lattices defined in [CS98, Chapter
8, §6, §7.3c)] and its improvements as in13 [FIdD11]; they are the densest lattices known in
some dimensions 148 ⩽ n ⩽ 3000 such that n+ 1 is prime ([CS98, Chapter 8, §6, p. 224]),
and they have greater density than Minkowski’s bound if n ⩽ 508.

13There are some typographic mistakes in table 1, p. 1442 of the cited paper: we found for instance
µ2 = 64, µ3 = 109, µ4 = 225, µ5 = 551, µ6 = 1384.
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In some dimensions14 ⩽ 1024, the densest known lattice sphere packings are obtained using
Mordell–Weil lattices, initially studied in [Elk94, Shi91]. This is a motivation for our work:
we are going to investigate more of these lattices in the following chapters (see especially
theorem 3.2.7). We note that Elkies’ 64-dimensional lattice from [Elk94, Theorem 1, p.
352, for n = 5] (with log2(δ) = 24.718) has been superseded by a denser lattice constructed
by G. Nebe in [Neb98] (with log2(δ) = 25.36, see [CS98, page xx]), as mentioned in the
introduction of [Elk01].

Finally, let us point out that applying Mordell’s inequality (proposition 1.2.17) to some
dense lattice in dimension n can be used to improve Minkowski–Hlawka lower bound in
dimension n− 1, even though not in a very explicit way (see example 3.2.3). ⌟

Remark 1.2.22. On the other hand, when n is large enough, finding explicitly lattices
achieving the lower bound (1.2.4) is very challenging: Minkowski’s argument goes through
an averaging argument (over random lattices, using theorem 1.1.7), so it is not constructive,
and we have no idea how to produce some Ln with "large" λ1(L) as soon as n > 2048 (or
even > 1040), as mentioned in the introduction.

However, moreless explicit constructions (using number fields or algebraic curves) due
to Tsfasman in [Tsf91, Theorem 5.5, Theorem 6.2] yield lattices L′

n of covolume 1 (for
some sequence of dimensions n going to +∞), that achieve D(L′

n) ∼ 2−α′n(1+o(1)) for
some α′ > 0, for instance we can take α′ = 1.3888 (equivalently, λ1(L′

n) ⩾ c′√n for some

c′ > 0 since λ1(L) = 2
(

D(L)
vol(Bn(0,1))

)1/n
covol(L)1/n; compare this to proposition 1.1.6).

However, they do not give dense lattices in low or medium dimensions (e.g., when we apply
[Tsf91, Lemma 5.2] to the tower of curves (Xn/Fq2)n⩾3 defined by Garcia and Stichtenoth in
[GS95a, theorem 2.10, proposition 3.1, remark 3.4] with q2 = 9, we get lattices in dimensions
|Xn(Fq2)|−1 ∈ {77, 221, 653, ...} with a packing density much lower than Minkowski–Hlawka
bound).

In fact, producing lattices Ln in an infinite sequence of dimensions satisfying D(Ln) ∼
2−αn(1+o(1)) for some α > 0 — sometimes referred to as asymptotically good families — is
already hard. In comparison, Craig’s cyclotomic lattices L′′

n mentioned in the previous re-

mark 1.2.21 satisfyD(L′′
n) ⩾ n− log(logn)(1/2+o(1)) which yields λ1(L′′

n) ⩾ n1/2−
log(logn)

2n (1+o(1)).
Elkies or Shioda’s narrow Mordell–Weil lattices MWn (see theorems 0.1 and 0.2) achieve
D(MWn) ⩾ n−n(1/12+o(1)) which yields λ1(MWn) ⩾ n5/12(1+o(1)), for a suitable infinite
sequence of dimensions n. Let us also mention the asymptotic behavior of the packing
density of some root lattices: D(Zn) ∼ D(An) ∼ D(Dn) ∼ n−n

2 (1+o(1)). ⌟

1.2.4.2 Upper bounds

The only known upper bounds on Dℓ(n) (valid for all n ⩾ 1) are actually also upper bounds
on D(Bn(0, 1)), and they are all exponentially far from the best known lower bound valid
in all dimensions, given in theorem 1.2.16. Currently, the best known upper bound on
D(Bn(0, 1)) is due to Kabatiantsky and Levenshtein.

14On the other hand, in some dimensions 3332 ⩽ n ⩽ 4096, the paper [Che13] exhibits lattices with larger
density than Shioda’s or Elkies’ Mordell–Weil lattices. But in that range of dimensions, all these lattice
packings are outperformed by Minkowski lower bound anyway.
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Theorem 1.2.23 ([KL78, Corollary 2, p. 13]). Let αKL := 0.59905576. Then as n→ +∞, one
has D(Bn(0, 1)) ⩽ 2−n(αKL+o(1)). ⌟

Remark 1.2.24. Kabatiansky and Levenshtein actually proved that, when n → +∞, we
have

∀θ ∈]π/3, π/2[, 1
n

log2[D(Bn(0, 1))] ⩽ log2(sin(θ/2)) +BKL(θ) + o(1),

BKL(θ) := b+(θ) log2(b+(θ)) − b−(θ) log2(b−(θ)), b±(θ) := 1± sin(θ)
2 sin(θ) .

The optimal value of θ which minimizes the right-hand side is about θ ≃ 1.0995124 ≃
62.99◦ ∈]π/3, π/2[, for which the right-hand side attains a value of ≃ −0.59905576.

In the same paper [KL78], they also got an upper bound on the maximal kissing number
κ(n) in dimension n, namely κ(n) ⩽ 2n(BKL(π/3)+o(1)), where BKL(π/3) ≃ 0.401413. Note
that Chabauty–Shannon–Wyner lower bound (which has the best known exponent so far)
reads κ(n) ⩾ 2n(0.2075−o(1)). The value κ(n) is known for n ∈ {1, 2, 3, 4, 8, 24}.

The asymptotic behavior of the largest lattice kissing number κℓ(n) in dimension n (intro-
duced in remark 1.2.18) is more difficult to study; it is only recently that an exponential
lower bound κℓ(n) ⩾ 2n(0.021937−o(1)) has been found in [Vlă19, Theorems 1.1 and 1.5]. The
value κℓ(n) is known for n ∈ {1, ..., 8, 9, 24}. ⌟

Another central result giving an upper bound on the packing density, valid for centrally
symmetric convex bodies, was found by H. Cohn and N. Elkies. One of its notable features
is that it is sharp for the 8- and 24-dimensional euclidean balls (see [Via17, CKM+17]).

Theorem 1.2.25 ([CE03, appendix B]). For all centrally symmetric convex bodies C ⊂ Rn,
we have15

DT (C) ⩽ ∆LP(C) := inf
{ vol(C)f(0)

2nf̂(0)
: f ∈ FC

}
where (denoting by f̂ the Fourier transform of f)

FC :=
{
f : Rn → R Schwartz function

∣∣∣f ̸= 0, ∀x ̸∈ C, f(x) ⩽ 0, ∀t ∈ Rn, f̂(t) ∈ R⩾0

}
.

⌟

Remark 1.2.26. 1. The best known upper bounds for D(Bn(0, 1)) for 4 ⩽ n ⩽ 9 are given
in the recent work [CdLS22].

2. It is not know whether the limits lim
n→+∞

log2[D(Bn(0, 1))]
n

and lim
n→+∞

log2(Dℓ(n))
n

exist
(see [PBM05, Problem 4, p. 50]), but they are probably both equal to 1 (see for instance
the last paragraph of [Ven13, p. 1629]).

3. The asymptotics behavior of the linear programming bound ∆LP(Bn(0, 1)) as n→ +∞
has been conjectured in [ACH+20, Conjecture 3.2]. If true, it would give the following
improvement on Kabatiantsky–Levenshtein upper bound: D(n) ⩽ 2−(λ+o(1))n where
λ = −1

2 log2(e/(2π)) ≃ 0.60440. ⌟

15If f̂(0) = 0 then we set f(0)/f̂(0) := +∞.
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1 – Background material

1.3 · El l ipt ic curves

1.3.1 General not ions

We first review very standard material about elliptic curves.

In what follows, an algebraic variety X over a field K is a separated integral (i.e., reduced
and irreducible) scheme of finite type over K. We will denote by |X| the set of closed points
of X. A curve is an algebraic variety of dimension 1. A surface is an algebraic variety of
dimension 2. In the rest of this work, when q is a power of prime number, we denote by Fq
a finite field with q elements (it is unique up to isomorphism), and we denote by K and
Ksep an algebraic and separable closures of a given field K (both are unique up to field
isomorphisms). We denote by PnK the projective n-space over K.

Definition 1.3.1. Let K be a field. An elliptic curve over K is a pair16 (E,OE) where E
is a smooth projective geometrically17 irreducible algebraic curve over K of genus 1, and
OE ∈ E(K). ⌟

It is known from Riemann–Roch theorem that any such curve admits a closed embedding
as a smooth cubic curve in P2

K , via a Weierstrass equation like Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3. For simplicity, we will generally write the equation y2 +

a1xy + a3y = x3 + a2x
2 + a4x+ a6 of the affine open subset of the elliptic curve given by

E ∖ {[0 : 1 : 0]}. In that case, we take OE = [0 : 1 : 0] to be the distinguished point, and we
will generally omit it from the notation (E,OE) for elliptic curves.

It is well-known that an elliptic curve is a commutative projective algebraic group, in other
words a 1-dimensional abelian variety, so that E(K ′) is an abelian group for every field
extension K ′/K.

We will mostly focus on the case where K is a global function field, which are somehow the
analogues18 of number fields in positive characteristic.

Definition 1.3.2. A global function field K is a field isomorphic to the function field k(C)
of some smooth projective geometrically19 irreducible curve C over a finite field k (note
that C is uniquely determined by K, up to isomorphism, by [GW20, Theorem 15.21]). ⌟

16The existence of the K-rational point OE is essential: for every prime p > 3, X3 + pY 3 + p2Z3 = 0
defines a smooth projective plane cubic curve over Q, so it has genus 1, but has no points over Q (not
even in Qp), so it is not an elliptic curve over Q. More relevant examples are given by non-trivial elements
of the Tate–Shafarevich group X of an elliptic curve, e.g., Selmer’s curve S : 3X3 + 4Y 3 + 5Z3 = 0 in
the 3-torsion of X of its jacobian Jac(S) : X3 + Y 3 + 3 · 4 · 5Z3 = 0.

17 In fact, geometric irreducibility follows from the fact that E is smooth, irreducible and E(K) ̸= ∅,
see [Poo17, Proposition 2.3.24] and [GW20, Exercise 6.20]. On the other hand, the projective line P1

Fq2

considered as a smooth irreducible (but not geometrically irreducible) curve of genus 0 over Spec(Fq)
has no Fq-rational point.

18For instance, both of these classes of fields are global fields: they are the fraction field of an infinite
integrally closed domain A of finite type over Z (as a ring) such that A/I is finite for any non-zero ideal
I ⊴ A. Equivalently, it is the fraction field of a finitely generated Z-algebra which is an integral domain
of Krull dimension 1 (see [Poo17, §1.1.3]).

19By [Liu06, corollary 2.14, p. 91], this ensures that k(C) ∩ ksep = k.
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There are several reasons for choosing global function fields as setting, instead of taking K
to be a number field:

• One reason is that the Néron–Tate height takes rational values (see remark 1.3.18), and
we have a very explicit lower bound on the minimal non-zero height of a point in the
Mordell–Weil lattice of E over K (see theorem 1.3.24).

• Another reason is that over function fields, the rank of elliptic curves happens to be
unbounded (see theorem 1.3.44), and this can yield high-dimensional lattice sphere packings,
while this is far from being known (and perhaps not even true) over number fields.

• Finally, it is more difficult to compute the L-function of an elliptic curve over a number
field, which is just a Dirichlet series, while over function fields it is a rational function (or
even a polynomial) in some variable T (see theorem 1.3.30). Also, much more is known
on the Birch–Swinnerton-Dyer conjecture over function fields compared to the situation
over number fields.

In the case where K = k(C) is a global function field, there are two "special" classes of
elliptic curves over K.

Definition 1.3.3. Let E be an elliptic curve over K = k(C). We say that E is:

• constant if there is an elliptic curve E0 over k and an isomorphism E0 ×k k(C) ∼= E over
k(C).

• isotrivial (or potentially constant or split) if there is a finite extension K ′/K such that
the base change E×KK ′ is a constant elliptic curve over K ′. Equivalently, its j-invariant
j(E) lies in k. ⌟

Example 1.3.4. For instance, for every prime p ⩾ 5 and any a ∈ F×
p , both E0 : y2 = x3 + a

and E1 : y2 = x3 + at6 are constant curves over Fp(t) (we actually have E1 ∼= E0),
E2 : y2 = x3 + t is isotrivial (we have E2 ∼= E0 over Fp(t1/6)) but not constant (see [Sil08a,
proposition III.3.1.b)]) and E3 : y2 = x3 + x+ t is not isotrivial since j(E3) = 123 · 4

4+27t2
does not lie in Fp. ⌟

There are several invariants attached to an elliptic curve E over a field K. We already
mentioned briefly the j-invariant, which characterizes the K-isomorphism class of E (see
[Sil08a, III.1.4.b)]). We recall that the j-invariant of an elliptic curve E given (when
possible, e.g., if char(K) ̸= 2, 3) by a short Weierstrass equation y2 = x3 + ax + b is

j(E) = 123 · 4a3

4a3 + 27b2 , where the discriminant ∆(a, b) := −16(4a3 + 27b2) does not
vanishes (see [Sil08a, III.§1, p. 42] for the general definitions).

Now we turn to local invariants of E over K, i.e., which are defined used local data at each
place of K. We recall that a place of a global field K is a topological equivalence class of
non-trivial absolute values K → R⩾0.

Definition 1.3.5. We denote by VK a set of representatives of all places of K, and by
V 0
K ⊂ VK the subset of the non-archimedean absolute values (the "finite" places). Note

that when K has positive characteristic (i.e., is a global function field), all places are
non-archimedean (i.e., ultrametric). Given v ∈ VK we denote by Kv the completion of K
with respect to v, and by OKv ⊂ Kv the valuation ring when v is non-archimedean. ⌟
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For a global function field K = k(C), the set VK = V 0
K is in bijection with the set |C| of

closed points of C, which is itself in bijection with the set of Galois orbits of k̄-rational
points in C(k) (see [GW20, Proposition 5.4, Remark 15.23]): given a closed point x ∈ |C|,
the local ring OC,x = Ox is a discrete valuation ring (see [GW20, Proposition 11.39]), with
finite residue field Fx and valuation vx : k(C)→ Z, which yields an ultrametric absolute
value20 | · |x : s 7→ (#Fx)−vx(s). The degree of a place, seen as a closed point x ∈ |C|, is
defined as deg(x) := [Fx : k] (the extension k ↪→ Fx is finite by [GW20, Proposition 3.33]).

Example 1.3.6. For instance, when C = P1
k, the places of k(C) = k(t) are of two types: on

the one hand, we have the closed point "at infinity" ∞ := [1 : 0] ∈ P1
k, whose associated

valuation v∞ is given by21 −deg on k[t] ⊂ k(t). We have Ov∞
∼= kJtK and kv∞

∼= k. All the
other places are the closed points of A1

k, which are given by irreducible monic polynomials
P over k and their "P -adic" valuation. ⌟

In the context of number fields, we typically think of the non-archimedean places as prime
ideals (and then take products of these), while in the context of function fields, we think
of the places as closed points (and then take sums of these). In the latter case, by "sum"
of closed points, we simply mean a divisor22 D on the curve C defined over a field k, i.e.,
a (formal) finite Z-linear combination D =

∑
x∈|C| nx · x of closed points. Its degree is

deg(D) :=
∑
x∈|C| nx[Fx : k].

We can now define the following quantities, attached to an elliptic curve E over a global
field K.

Definition 1.3.7. • Given a non-archimedean place v ∈ V 0
K , we define the reduction Ev of

E modulo v as follows. We fix a minimal integral Weierstrass equation for E, of the
form Y 2Z + a1,vXY Z + a3,vY Z

2 = X3 + a2,vX
2Z + a4,vXZ

2 + a6,vZ
3 for some ai,v

in the discrete valuation ring OKv
. We will denote by Ev the plane projective curve

over Fv defined by reducing the coefficients ai,v modulo the maximal ideal of OKv . The
isomorphism class of this (possibly singular) cubic projective curve Ev does not depend
on the choice of a minimal integral Weierstrass model23, and we have a "reduction
modulo v" map E → Ev coming from the reduction map P2(K) ↪→ P2(Kv) → P2(Fv)
(this follows from [Sil08a, proposition VII.1.3 (b)]; see [Sil08b, VII.2, p. 187]).

• The minimal discriminant ∆min(E/K) is defined for number fields in [Sil08a, VIII.8]
and for function fields in [Sil08b, exercise 3.35]. As opposed to the discriminant attached
to a Weierstrass equation for E (which depends on the chosen equation, see [Sil08a,

20Some authors define, especially in the case of function fields in positive characteristic, |s| := exp(−vx(s)). This
has the effect of changing the height by the multiplicative constant log(#k) (see remark 1.3.17 below).

21The v∞-valuation of a rational fraction f/g with f, g ∈ k[t] and gcd(f, g) = 1 is therefore deg(g) − deg(f) ∈ Z.
It is not the degree of f/g seen as a rational map P1 99K P1 (which is always non-negative), as done
in equation (1.3.1). Note that the place attached to v∞ is called "place at infinity" even though it is a
non-archimedean place (for number fields, "infinite" places generally refer to the archimedean ones).

22Some authors define a divisor on C as being a finite Z-linear combination of k-rational points (which
for us would be a divisor on C ×k k), in which case our definition of divisor would deserve the name of
"k-rational divisor" (i.e., Galois-invariant).

23It is important here to take a minimal integral Weierstrass model. For instance for any prime p > 3, the
smooth plane cubic projective curve XY (X − Y ) = pZ3 is an elliptic curve over Q, and its reduction
mod p is not given by XY (X − Y ) = 0 in P2

Fp
(this curve has 3p+ 1 Fp-rational points!).
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Table 3.1]), the minimal discriminant only depends on the isomorphism class of E over
K. In the case of function fields, we see ∆min(E/K) as an effective divisor on C.

• Another important invariant is the conductor, defined in [Sil08b, IV.10] and [Sil08b,
exercise 3.36]. More specifically, for each non-archimedean place v of a global field K, one
can attach a sum of two non-negative integers fv(E/K) = ϵv(E/K) + δv(E/K) (which
is 0 if and only if E has good reduction at v), defined using the Galois action on some
ℓ-adic Tate module of E. Here δv is called the wild part (or Swan conductor; it is 0 if
char(k) ⩾ 5) and ϵv ∈ {0, 1, 2} is the tame part of the conductor. In the case of function
fields, we then define the conductor as the effective divisor f(E/K) :=

∑
x∈|C| fx(E/K) ·x

on C. We denote by f(E/K) its degree.

• We will need to use the Tamagawa numbers. Given a non-archimedean place v ∈ V 0
K ,

we define cv(E/K) := [E(Kv) : E(Kv)0], where E(Kv)0 is the set of points P ∈ E(Kv)
such that their reduction P ∈ Ev(Fv) is a non-singular point. See [Sil08b, Corollary
IV.9.2] for more details (in particular, for the fact that this index is finite). We have
cv(E/K) = 1 at every place v of good reduction for E. Thereby we may define the
integer c(E/K) :=

∏
v∈V 0

K

cv(E/K).

• Finally, an important object measuring the failure of the local-global principle for E-
torsors is the Tate–Shafarevich group. For each place (archimedean or not), we fix a
K-embedding iv : Ksep ↪→ Ksep

v of the separable closures, where Kv is the completion of
K with respect to the absolute value induced by v. This induces a injective24 morphism
between the absolute Galois groups i∗v : GKv := Gal(Ksep

v /Kv) ↪→ GK := Gal(Ksep/K),
using "conjugation" by iv. These are profinite groups, endowed with the Krull topology
(in particular they are compact, and in fact GKv is finite when v is archimedean). In
any case, they act continuously on the discrete abelian groups E(Ksep

v ) and E(Ksep)
respectively.

To this data, we can associate the Galois cohomology groups (by taking continuous
cocycles and coboundaries) and the restriction maps resv : H1(GK , E(Ksep)) −→
H1(GKv , E(Ksep)) −→ H1(GKv , E(Ksep

v )), which do not depend25 on the choice of
the embedding iv. This prompts us to introduce the Tate–Shafarevich group of E over
K as:

X(E/K) := ker
(

H1(GK , E(Ksep))
(resv)v∈VK−−−−−−−→

∏
v∈VK

H1(GKv , E(Ksep
v ))

)
. ⌟

Remark 1.3.8. In practice, the conductor, the Tamagawa numbers, the reduction types

24It is not difficult to see that i∗v is well-defined, i.e., σ(iv(Ksep)) ⊂ iv(Ksep) for any σ ∈ GKv
. Injectivity

of iv follows from Krasner’s lemma, which asserts that the subset Ksep ⊂ Ksep
v is dense (for the topology

induced by the unique extension to Kv of the absolute value |·|v on Kv), and the fact that any element
σ ∈ GKv

defines a continuous bijection of the topological Hausdorff (but not locally compact) field Ksep
v ,

namely it acts by isometries on Ksep
v .

25Two embeddings iv, i′v differ by multiplication by some g ∈ GK , which imply that (i′v)∗ = gi∗vg
−1

are conjugate. Note that conjugation by g gives an isomorphism ϕg : H := GKv

∼=−→ gHg−1. Let
A := E(Ksep) and c : GK → A be a 1-cocycle. Then c′ := c|gHg−1 ◦ ϕg : H → A is generally not a
1-cocycle, but g−1c′ is. An easy computation (using the fact that c(g−1) = −g−1c(g)) shows that g−1c′

and c|H are cohomologous, so they are equal as cohomology classes in H1(H,A).
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(good, additive, multiplicative) and other local invariants (e.g., the Kodaira symbols) can
be computed using Tate’s algorithm described in [Sil08b, IV.9, p. 364–369]. ⌟

Remark 1.3.9 (Elliptic surfaces). Elliptic curves over a function field k(C) are strongly
related to elliptic surfaces over C.

• More specifically, given an elliptic curve E over k(C) (where k is any perfect field), there
is, up to isomorphism, a unique pair (E , π : E → C) consisting of a surface E over k and
of a morphism E → C, such that:

– E is smooth over k, projective and geometrically irreducible,

– π : E → C is a surjective morphism with generic fiber Eη isomorphic to E over k.

– For any pair (E ′, π′ : E ′ → C) satisfying the above two properties, if f : E → E ′ is
a birational morphism such that π′ ◦ f = π, then f is an isomorphism.

Its existence and uniqueness are given in [SS19, theorem 5.19], [Ulm11, Lecture 3,
Proposition 1.1] or in [SS10, §3.2]. See also [Ulm14a, proposition 2.1.1] (which mentions
that π : E → C is flat, with connected — but not necessarily irreducible or reduced

— fibers). In general, E can be constructed by resolving singularities of a "Weierstrass
model" of E.

We will say that E (together with the fibration π) is the elliptic surface associated to E
over k(C); it is the minimal regular model of E.

The Néron model E of E is the smooth locus of π : E → C, i.e., E ↪→ E is the open
(quasi-projective) subscheme obtained by removing from E the finite set of points x ∈ E

that are singular in the fiber π−1(π(x)) (see [Sil08b, theorem IV.6.1]).

For example, the elliptic surface attached to the elliptic curve E ↪→ P2
k given by X3 +

Y 3 +Z3 = tXY Z is the smooth26 surface E ⊂ P2×P1 given by (see [SS19, example 5.7],
see also the remarks in [Sil08b, p. 200]){

([x : y : z], [t0 : t1]) ∈ P2 × P1 : t0(x3 + y3 + z3)− t1xyz = 0
}
.

A more delicate example is computed in [Ulm02, §3].

• There is a natural one-to-one correspondence between k(C)-rational points of E and
sections of π : E → C defined over k (see [SS19, proposition 5.4] or [Sil08b, proposition
III.3.10]) : given a section σ : C → E of π (i.e., π ◦ σ = idC), we attach the point
P = Eη ∩ σ(C). Conversely, we will denote by σP the unique section corresponding to
P ∈ E(k(C)) and we will denote by

(P ) := σP (C) ⊂ E

its image. It is a smooth irreducible divisor on E , which is isomorphic to C.

• Almost all the fibers Fv := π−1(v) of π (above v ∈ |C|) are elliptic curves. In general,
fibers are classified according to their Kodaira symbol (see [Sil08b, table 4.1, p. 365]).

26 In general, the construction from [Sil08b, p. 200] does not give a smooth surface. For instance, if we
consider the projective surface −Y 2Zm−2 +X3Zm−3 + Zm + Tm = 0 in P3

k, then it is singular at all
points of the form [X : Y : 0 : 0].
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We denote by mv the number of irreducible components of a fiber Fv over k = Fv,
counted without multiplicity (note that in general we have an equality mv ⩾ cv(E/K)
which is not always an inequality, compare the 3rd and 4th rows of table 4.1 in [Sil08b, p.
365]). See also [Ulm14a, §2.3] for the notion of multiplicity. We will denote by {Θv,i :
0 ⩽ i ⩽ mv − 1 } the set of irreducible components of Fv, where Θv,0 is the unique
irreducible component that intersects the zero section (O).

• We will denote by Div(E ) the free abelian group of divisors (or 1-cycles) on E , generated
by closed irreducible curves C ⊂ E . An element in Div(E )⊗ZQ will be called a Q-divisor
(this will be used in proposition 1.3.26).

• Given a smooth projective surface S, we will denote by D ·D′ the intersection product
of two divisors D,D′ ∈ Div(S) (see e.g., [SS19, §4.3]). It induces a symmetric bilinear
pairing Pic(S) × Pic(S) → Z and actually this descends to a bilinear map NS(S) ×
NS(S) → Z where NS(S) denotes the Néron–Severi group of S (i.e., the intersection
product is invariant under algebraic equivalence and not only linear equivalence).

• Given a smooth projective surface S over a perfect field k, we define the Euler character-
istic as χ(S) :=

∑2
i=0(−1)i dimk Hi(S,OS), using sheaf cohomology (see [SS19, §4.3, p.

63]).

We define the topological Euler number of a proper variety X as follows: we fix a prime
ℓ ̸= char(k) and set e(X) :=

∑
i⩾0(−1)i dimQℓ

(
Hi

ét(X ×k k,Qℓ)
)

(see [SS19, §4.7, p. 70]
and [Dol72, §1] which will be needed in the proof of item 4 of proposition 1.3.26). ⌟

1.3.2 Heights and Mordel l–Weil latt ices

One of the most important results on the arithmetic of elliptic curves over global fields is
the following finiteness statement.

Theorem 1.3.10 (Mordell, Weil, Lang, Néron). Let E be an elliptic curve over a field K.
Then the abelian group E(K) of K-rational points, called the Mordell–Weil group of E
over K, is finitely generated in the following cases:

• K is a global field (i.e., a number field or a global function field),

• K = k(C) is a function field of some smooth projective geometrically irreducible curve
C over a field k, and E is non-constant. ⌟

Proof. –– For the first item, see [Sil08a, theorem VIII.6.7] or [HS00, Theorem C.0.1] for
"modern proofs" over number fields and [Con06, corollary 7.2] or [Kah06, corollaire 3] over
global function fields (the latter two references prove Lang–Néron theorem, which asserts in
particular that A(K) is finitely generated for any abelian variety A over a field K which is
finitely generated over its prime subfield). See [Sil08b, theorem III.6.1] or [Con06, example
2.2, theorem 2.3] for the second item. For a sketch of the proof in the case of global function
fields, see remark 1.3.19 below. ■

Definition 1.3.11. 1. Let K be a field as in the above theorem 1.3.10 and E be an elliptic
curve over K, so that E(K) ∼= Zr ⊕ T for some unique integer r ⩾ 0 and a unique finite
abelian group T .
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The integer r = dimQ(E(K)⊗ZQ) is called the algebraic rank or Mordell–Weil rank of E
over K and is denoted rkZ(E(K)) or rk(E(K)) or rk(E/K). The subgroup T ↪→ E(K)
is the torsion subgroup, which we will denote by E(K)tors.

2. If K = k(C) is any function field and E is a non-constant elliptic curve over K, then the
geometric rank of E is defined as the Mordell–Weil rank of E over k(C). ⌟

When K is a global field, an important feature of the Mordell–Weil group E(K) is that it is
endowed with a quadratic form ĥ : E(K)→ R, which we now describe in the case of global
function fields (and it can somehow be used to prove theorem 1.3.10, see remark 1.3.19).

Given a Weierstrass equation for E ↪→ P2
K over K = k(C), we have a degree-2 cover map

x : E → P1 given by the x-coordinate27. Moreover, any element f ∈ k(C) ∖ k = k(C) ∖ k

determines a unique dominant rational map C 99K P1 over k (see [GW20, corollary 15.22]),
which has to be a surjective morphism since C is a normal curve and P1 is projective (see
[GW20, propositions 15.5, 15.16]). Thus, its degree deg(f : C → P1) is well-defined. We
extend this definition to the constants by setting deg(a) := 0 for any a ∈ k. Now, for every
P ∈ E(k(C))∖{OE}, we can see the element x(P ) ∈ P1(k(C))∖{[1 : 0]} = A1(k(C)) = k(C)
as a rational map C 99K P1. Following [Sil08b, III.§4], we can therefore define the naive
height as28

h : E(K) −→ Z⩾0

P 7−→
{

deg(x(P )) if P ̸= OE

0 else.
(1.3.1)

Remark 1.3.12. Note that for instance, when C = P1 and x(P ) = a(t)
b(t) ∈ k(t) for some

coprime polynomials a, b ∈ k[t], then deg(x(P )) = max{deg(a),deg(b)} (see [Gal12, Lemma
8.1.9]). ⌟

We then define the (canonical) Néron–Tate height as

ĥ(P ) := lim
n→+∞

n−2 · h(nP ) ∈ R⩾0 (1.3.2)

for every P ∈ E(K) (see [Sil08b, theorem III.4.3.a), b)] — or [Sil08a, proposition VIII.9.1]
over number fields — for the existence of the limit). It is a quadratic form, such that
ĥ(P ) = 0 if and only if P ∈ E(K)tors (see29 [Sil08b, theorem III.4.3]). We can associate the
Z-bilinear pairing ⟨−,−⟩NT : E(K)× E(K)→ R given by

⟨P,Q⟩NT := 1
2 ·
(
ĥ(P +Q)− ĥ(P )− ĥ(Q)

)
. (1.3.3)

27For instance if E is given by Y 2Z = X3 + aXZ2 + bZ3 then we have a rational map x : [X : Y : Z] 7→
[X : Z] well-defined on E ∖ {OE}. When X ̸= 0 ̸= Z, we have [X : Z] = [X3 : ZX2] = [Y 2Z − aXZ2 −
bZ3 : ZX2] = [Y 2 − aXZ − bZ2 : X2] which defines a rational map x′ : E 99K P1. But actually we have
x = x′ : E → P1 as morphisms, so that x(OE) = [1 : 0].

28To be precise, we should denote this height by hE/K,ι where ι : E ↪→ P2 is the embedding given by a
Weierstrass equation. Indeed, the naive height is not invariant under base-change: if K = k(C) ↪→ K′ =
k(C′), then an element x ∈ K gives raise to maps C → P1 and C′ → C → P1 which may not have the
same degree. Here we do not normalize by 1/[k(C) : k(t)].

29In part d) of [Sil08b, theorem III.4.3], the author assumed that E is not constant over k(C), but here
we do not need this assumption. What matters is that for each B ⩾ 0, there are only finitely points of
height at most B, which is true when k is finite (see the end of remark 1.3.19 for the case C = P1).
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We note that ĥ induces a quadratic form on E(K)/E(K)tors (that we still denote by ĥ),
because we have ĥ(P + T ) = ĥ(P ) for all P ∈ E(K) and T ∈ E(K)tors; equivalently, we
have ⟨P, T ⟩NT = 0 for all such points (if nT = OE for some n ⩾ 1 then n⟨P, T ⟩NT =
⟨P, nT ⟩NT = ⟨P,OE⟩NT = 0).

It follows (from the equivalence ĥ(P ) = 0 ⇐⇒ P ∈ E(K)tors) that ĥ is positive definite
on E(K)/E(K)tors. In fact, more is true: ĥ is positive-definite on E(K)⊗Z R (see [HS00,
Corollary B.5.4.1] or [Sil08a, Lemma VIII.9.5]). Henceforth, we can introduce the following
terminology.

Definition 1.3.13. Given an elliptic curve E over a global field K, the Mordell–Weil lattice
of E over K is the lattice given by the pair

(
E(K)/E(K)tors, ĥ

)
. ⌟

The discriminant of the Mordell–Weil lattice of E over K is known as the regulator :

Definition 1.3.14. The regulator of an elliptic curve E over a global field K is defined as

Reg(E/K) := det
(

(⟨Pi, Pj⟩NT)1⩽i,j⩽r

)
∈ R>0,

where {P1, ..., Pr} is any Z-basis of the free abelian group E(K)
/
E(K)tors (in particular30,

we have Reg(E/K) = 1 if the rank is r = 0). ⌟

Here is the relation between the naive and the Néron–Tate heights; the following useful
result actually characterizes the Néron–Tate height.

Lemma 1.3.15. Let E be an elliptic curve over a global field K. Then:

1. The Néron–Tate and naive heights differ by a bounded function: ĥ− h = O(1). In other
words, there is a constant C > 0 such that for all P ∈ E(K), we have |h(P )− ĥ(P )| ⩽ C.

2. Moreover, ĥ is the unique quadratic form on E(K) that is such that ĥ− h is bounded.
More precisely, let d ⩾ 2 be a given integer, P ∈ E(K) and h′ : E(K)→ R be a function
such that h′(drP ) = d2rh′(P ) for all r ⩾ 0 and h′ − h is bounded on { drP : r ⩾ 1 }.
Then h′(P ) = ĥ(P ). ⌟

Proof. –– 1. See [Sil08b, theorem III.4.3.b)] when K is a function field (the statement
therein has a factor 1

2 , which we do not have; see remark 1.3.17).

2. Let C ′ > 0 be such that
∣∣∣h′(drP )− ĥ(drP )

∣∣∣ ⩽ C ′ for all r ⩾ 0 and set C ′′ :=
max{C,C ′} > 0, where C in as in the first item. Then for all integers r > 0 we
have

|ĥ(P )− h′(P )| =
∣∣∣ĥ(P )− d−2rh′(drP )

∣∣∣
⩽
∣∣∣ĥ(P )− d−2rh(drP )

∣∣∣+
∣∣d−2rh(drP )− d−2rh′(drP )

∣∣
⩽ 2 · d−2r · C ′′ → 0,

as r → +∞, which shows that h′(P ) = ĥ(P ) as desired. ■

30This is not a "convention". An r× r real matrix is a map {1, ..., r}2 → R, so when r = 0 there is a unique
such matrix (the empty map), and its determinant is a sum over Bij(∅) = {id} of an empty product, so
it equals 1.
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Remark 1.3.16. We briefly explain here why ĥ : E(K) → R⩾0 is a quadratic form. It is
equivalent to saying that ĥ(OE) = 0 and for all P1, P2, P3 ∈ E(K) we have ĥ(−P1) = ĥ(P1)
and

ĥ(P1+P2+P3)− ĥ(P1+P2)− ĥ(P1+P3)− ĥ(P2+P3) + ĥ(P1) + ĥ(P2) + ĥ(P3) = 0. (1.3.4)

Indeed, (1.3.4) corresponds to the Z-bilinearity of ⟨−,−⟩NT, and then using the properties
ĥ(OE) = 0 and ĥ(−P ) = ĥ(P ) for all P ∈ E(K), one can deduce that ĥ is Z-homogeneous
of degree 2, i.e., ĥ(nP ) = n2ĥ(P ) for all n ∈ Z, see [HS00, lemma A.7.2.6] (so in particular

— using n = 2 — one gets ĥ(P ) = ⟨P, P ⟩NT).

The facts that ĥ(OE) = 0 and ĥ is even are obvious, while (1.3.4) can be proved "by hand"
as in [Sil08a, Theorem VIII.9.3] (or [Mil06, proposition IV.4.9]), but we can argue as in
[HS00, Theorem B.5.1] or [Ser89, §3.3, p. 35-36] via more conceptual arguments.

Namely, the theorem of the cube (see [EvdGM, theorems 2.5, 2.7], [Mum12, II.§6, p. 52] or
[HS00, A.7.2.1]) implies that for any divisor D on E, the divisor

∑
∅̸=I⊂{1,2,3}

(−1)1+|I|π∗
I (D)

is a principal divisor on the variety E3, where πI : E3 → E is the morphism (x1, x2, x3) 7→∑
i∈I xi. This implies that

∑
∅̸=I⊂{1,2,3}

(−1)1+#IhD◦πI is bounded as a function E(K)3 → R

(see [HS00, theorem B.3.2]), where hD : E(K)→ R is the height defined (up to a bounded
function) in [HS00, Theorem B.3.2]. From there, it readily follows that (1.3.4) holds (i.e.,∑
∅̸=I⊂{1,2,3}

(−1)1+#I ĥ ◦ πI = 0) by taking the ample basepoint-free divisor D = 2(OE) (for

which hD = h is the naive height, see [Ser89, §3.5, p. 39-40]: D provides a morphism
E → P(L(D)) ∼= P1 where L(D) is the Riemann–Roch space of D, of dimension 2) and
taking the limit defining ĥ as in equation (1.3.2). ⌟

Remark 1.3.17. We point out that the heights are sometimes normalized in a different way.
The main properties of the canonical height ĥ (quadratic form, positive-definite on the
torsion-free part, finiteness of the number of points of bounded height) are preserved under
scaling by positive real numbers. However, there is a unique normalization that can make
the BSD formula (1.3.13) and theorem 1.3.24 true.

• Some authors define the naive height as h′(P ) := 1
2 deg(x(P )) so their "canonical" height

ĥ′ is half ours, i.e., ĥ′ = 1
2 ĥ (or for instance in [Sil08b, Theorem III.4.3], the naive height

is the same as ours but Silverman defined ĥ′ with a factor 1
2 in front). But in general

they also define ⟨P,Q⟩′ := ĥ′(P +Q)− ĥ′(P )− ĥ′(Q) (as in [Sil08b, Theorem III.4.3.c)]
or [Sil08a, VIII.§9]), which is consistent with our definition of ⟨−,−⟩NT.

For instance, in [Oes90], the height of a point P in a constant elliptic curve E over k(C)
is defined as h′(P ) = deg(ϕP ), where ϕP : C → E is defined in remark 2.4.1. But then
the regulator is defined with respect to the a pairing such that ⟨P, P ⟩ = 2h′(P ), so that
it coincides with the one we defined31.

• In some cases, there is a factor log(#k) in the definition of the heights (see also the
footnote on page 34). For instance, in [Gro11, Lecture 3, §2], in the case of constant

31However, on page 388, we point out that there is a missing factor |k|
1

12 deg(∆min) in his Birch–Swinnerton-
Dyer formula. (This does not affect the rest of his paper since the author is considering constant
curves).
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curves E/k(C), the author defines ⟨P, P ⟩′ = 2 log(#k) deg(ϕP : C → E) = log(#k)h(P )
(see remark 2.4.1 for the notations). See also remark 1.3.33.3. ⌟

Remark 1.3.18. It is shown in [Sil08b, theorem III.9.3] that when E is an elliptic curve over
a global function field K = k(C), the Néron–Tate height takes values in Q, that is, we have
a map ĥ : E(K)→ Q. (Depending on the normalization mentioned in remark 1.3.17, some
authors consider a height with values in log(#k) ·Q ⊂ R; in any case the image is contained
in a 1-dimensional Q-vector space). We will actually give soon a stronger statement for a
certain sublattice of the Mordell–Weil lattice in theorem 1.3.24. This contrasts with the
situation over number fields, where the Néron–Tate height is typically expected to take
transcendental values. ⌟

Remark 1.3.19. With the help of the canonical height, we can sketch the proof of theo-
rem 1.3.10 when E is any elliptic curve over K = k(t) and k is finite.

• First, we show that the quotient group E(K)/mE(K) is finite for every integer m ⩾
1 which is coprime to char(K). For any finite Galois extension K ′/K, the map
E(K)/mE(K) ↪→ E(K ′)/mE(K ′) is injective by [Sil08a, VIII.1.1.1], so we may as-
sume that E[m] ⊂ E(K), which implies µm(K) ⊂ K× by Corollary III.8.1.1 in [Sil08a]
and so E[m] ∼= (Z/mZ)2 ∼= µ2

m as Galois modules. Since the multiplication-by-m map
[m] : E → E is surjective on Ksep-rational points (because m is coprime to char(K),
[EvdGM, corollaries 5.10, 5.11] apply), we obtain an injective morphism

E(K)/mE(K) ↪→ H1(GK , E[m]) ∼= (K×/K×,m)2, (1.3.5)

from the long exact sequence in Galois cohomology and Kummer isomorphism. Now, it
turns out that the image of the map (1.3.5) lies in K(S,m)2, where

K(S,m) := {f ∈ K×/K×,m : v(f) ≡ 0 (mod m),∀v ∈ V 0
K ∖ S}

and S is a finite set of valuations on K (see [Sil08b, p. 194] for m = 2). Thus we
are left with proving that K(S,m) is a finite set, which is just a statement about
global fields (not about elliptic curves). In the case of function fields, one needs to
use the facts that the m-torsion of the class group of K = k(C) is finite (in general
Cl(K)[m] ∼= Pic0(C)[m] ↪→ (Z/mZ)2g where g is the genus of the curve C) and the
obvious fact that O×

K/O
×,m
K is finite, where OK = OK,∅ := k.

• The second part of the proof involves heights. If S ⊂ A := E(K) is a finite set of points
whose classes modulo m generate E(K)/mE(K), then one can show (see VIII.3.1 in
[Sil08a] or C.0.3 in [HS00]) that E(K) is generated by the set

S′ := {P ∈ E(K) : ĥ(P ) ⩽ max
Q∈S

ĥ(Q) }.

It remains to check that there are only finitely many points with bounded Néron–Tate
height, or equivalently with bounded naive height (by lemma 1.3.15). For every B > 0
we have {P ∈ E(K) : h(P ) ⩽ B } ⊂ x−1({Q ∈ K : deg(Q) ⩽ B }) where x : E → P1

is a degree-2 morphism and deg(Q) is described in remark 1.3.12. Now, the fibers of x
have size at most 2, and it is clear that there are only finitely many rational functions in
k(t) of degree ⩽ B (because k is finite). From this it follows that the above set S′ is
finite, as desired. ⌟
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We now introduce a sublattice of
(
E(K)/E(K)tors, ĥ

)
, which is very convenient because of

theorem 1.3.24 stated later, which gives an explicit lower bound on the λ1 of this sublattice.

Definition 1.3.20. Let E be an elliptic curve over a global field K. We define E(K)0 ⊂ E(K)
to be the set of all the points P ∈ E(K) such that for every non-archimedean place v
of K, the reduction P is a non-singular point on the reduction Ev of a minimal integral
Weierstrass model Ev of E at v. In other words, we have

E(K)0 :=
⋂
v∈V 0

K

(E(K) ∩ E(Kv)0),

using the notation E(Kv)0 from definition 1.3.7. ⌟

It is known that E(K)0 ⊂ E(K) is in fact a subgroup. This follows from the fact that
E(Kv)0 ⊂ E(Kv) is a subgroup for all v ∈ V 0

K , see the proof of [Sil08a, proposition VII.2.1]
(which uses the description of the group law on elliptic curves in terms of intersection of
lines with the cubic curve). Alternatively, one can use the fact that E(Kv)0 = E0

v (OKv ) is a
subgroup inside Ev(OKv ) ∼= E(Kv) where Ev denotes the Néron model of E over K and E0

v

is the connected component of the neutral element (see [Sil08b, Remark IV.6.1.2, Exercise
4.25, Corollary IV.9.2]). Then we may give the following definition.

Definition 1.3.21. The narrow Mordell–Weil lattice of E over K is the free abelian group
E(K)0/(E(K)0 ∩ E(K)tors) endowed with the quadratic form induced by ĥ. ⌟

Remark 1.3.22. There are alternative definitions of the narrow Mordell–Weil lattice, in-
volving the elliptic surface E → C associated to C. See lemma III.9.4 and remark 9.4.1 in
[Sil08b] or [SS19, §6.7]. In the latter reference, they define E(K)0 as the set of all points
P ∈ E(K) such that at each closed point v ∈ |C|, the section (P ) ⊂ E intersects the
connected component of the fiber Ev that meets the identity section (OE). ⌟

Lemma 1.3.23. Let E be an elliptic over a global field K. Then the index
[
E(K) : E(K)0]

is finite and divides the product c(E/K) =
∏

v∈V 0
K

cv(E/K) of the Tamagawa numbers. In

particular, the narrow Mordell–Weil lattice is a sublattice of the Mordell–Weil lattice which
has the same rank. ⌟

Proof. –– We first observe that there is an exact sequence of abelian groups

0 E(K)0 E(K)
∏

v∈V 0
K

E(Kv)/E(Kv)0.

which induces an injective group morphism E(K)/E(K)0 ↪→
∏

v∈V 0
K

E(Kv)/E(Kv)0 =: G. In

view of the properties of the Tamagawa numbers mentioned in definition 1.3.7, we know
that G is finite of order c(E/K) (recall that for all but finitely many places v, we have
cv(E/K) = 1). Thus the index

[
E(K) : E(K)0] is indeed finite and divides c(E/K). ■

Over global function fields K = k(C), the important features of the narrow Mordell–Weil
lattice are given by following result.

42



1.3 – Elliptic curves

Theorem 1.3.24 (Shioda). Let E be an elliptic curve over a global function field K = k(C).
Then the narrow Mordell–Weil lattice is an even (hence integral) lattice: ĥ(P ) ∈ 2Z⩾0 for
all P ∈ E(K)0. Moreover, for every P ∈ E(K)0 ∖ {0} one has

ĥ(P ) ⩾ deg (∆min(E/K))
6 .

In particular, if E has at least one place of bad reduction over K, then E(K)0 is torsion-free,
so that (E(K)0, ĥ) is a lattice with λ1(E(K)0) ⩾

(deg(∆min(E/K))
6

)1/2
> 0. ⌟

Proof. –– See theorem 6.44, as well as theorem 6.24 and §5.12 (especially theorem 5.47 and
corollary 5.50), in the book32 [SS19]. For convenience, a sketch of the proof of Shioda’s
result is given after proposition 1.3.26 below (in particular, we check that the pairing ⟨−,−⟩
defined in [SS19, Theorem 6.20] coincides with the Néron–Tate pairing ⟨−,−⟩NT defined in
equation (1.3.3)).

Note that in [SS19, chapter 6], it is assumed that k is algebraically closed, so the lower
bound on ĥ(P ) in fact holds for any P ∈ E(k(C))0 ∖ {0}. The fact that E(K)0 is integral
is also proved in [Sil08b, Theorem III.9.5.c)]. ■

Remark 1.3.25. 1. In [SS19], all elliptic surfaces are assumed to have at least one singular
fiber (by convention 2.10, ibid.), i.e., E has always at least one place of bad reduc-
tion over K. If C = P1

k, it suffices to assume that E is not constant to ensure that
deg (∆min(E/K)) > 0, see [Spr13]. For a general curve C, assuming that an elliptic
curve E over k(C) is non-isotrivial is sufficient (any pole of the j-invariant — seen as a
rational map j : C → P1 — is a place of bad reduction for E).

2. The lower bound from theorem 1.3.24 is not always attained. For instance, in [Elk97],
one takes K = k(t) with k = F212 and E : y2 + y = x3 + t33 + a6 where a6 ∈ k is such
that trk/F2(a6) = 1. Now, it is proved in [Elk97] that E(K) = E(K)0 (on page 3) and
that λ1(E(K))2 = 8 (on page 4), while we have 1

6 deg (∆min(E/K)) = 36
6 = 6 (this then

gives a Mordell–Weil lattice E(K) homothetic to the Leech lattice). However, in many
examples we will treat, the lower bound will be sharp (see proposition 3.2.14).

3. For the full Mordell–Weil lattice E(K)/E(K)tors, see [SS19, Theorems 6.20, 6.24, Table
6.1] for an explicit description of the height pairing. It is not true that the height takes
values in the integers (see [SS19, Example 6.26] or the point Qn in remark 3.2.21), but it
always takes values in Q, as mentioned in remark 1.3.18. More specifically, let E → C be
the elliptic surface attached to E/K = k(C) as in remark 1.3.9, and denote by (P ) ⊂ E

the (image of the) section attached to a rational point P ∈ E(K). Then [SS19, theorem
6.24] states that

ĥ(P ) = 2χ(E ) + 2(P ) · (O)−
∑
v∈V 0

K

γv(P ) (1.3.6)

where γv(P ) ∈ Q are certain rational numbers, such that γv(P ) = 0 if v is a place of
good reduction or if P ∈ E(K)0. See [SS19, definition 6.23 and table 6.1, p. 127] for
more details. (Furthermore, by proposition 1.3.26 we have χ(E ) = 1

12 deg (∆min(E/K))).

32In convention 2.10 ibid., it is assumed that E has at least a place of bad reduction, but the above lower
bound trivially holds without this assumption, for instance when E is a constant curve.
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4. Theorem 1.3.24 can be seen as a variation33 on a conjecture of Lang (over function
fields), which asserts that for any global field K, there is constant cK > 0 such that for
any non-torsion point P on any elliptic curve E over K, one has

ĥ(P ) ⩾ cK ·
{

log
(
NK/Q(∆min(E/K))

)
if K is a number field,

deg (∆min(E/K)) if K is a function field.

See for instance [HS88], [GS95b, theorem 7, p. 79]34 or the proof of [HP16, proposition
7.6, p. 80] for some results towards this.

For an upper bound on λ1(E(K)) over number fields, see [Sil08a, Conjecture VIII.10.2]. ⌟

To finish this subsection, we explain some steps towards a proof of theorem 1.3.24. Here is
a quick overview that summarizes the key ingredients, where we use the notations from
remark 1.3.9.

1. First, the Néron–Tate height is expressed in terms of an intersection product: ĥ(P ) =
−DP ·DP , where DP is a certain Q-divisor on the elliptic surface E → C attached to E,
involving the section (P ) as well as other prime divisors, with the Euler characteristic
χ(E ) ∈ Z appearing in some coefficient. In particular, the canonical height takes values
in Q.

2. The canonical bundle formula and adjunction formula will imply the following identity for
the self-intersection product of a section of a point P ∈ E(K): (P ) · (P ) = −χ(E ). Using
the first step, it will give us the lower bound ĥ(P ) ⩾ 2χ(E ) for every P ∈ E(K)0 ∖ {0}.

3. Finally, there is an identity χ(E ) = 1
12 deg(∆min). Together with the step 2 above, this

allows to conclude the proof of theorem 1.3.24.

We now make these steps a bit more detailed, by stating the following results (and using
notations from remark 1.3.9).

Proposition 1.3.26. Let E be an elliptic curve over a global function field k(C) as in
definition 1.3.2.

1. Assume that E is given by y2 = x3 +Ax+B and let P ∈ E(K) be such that 2P ̸= O

and x(P ), y(P ) have no poles in common with A and B. Then

(P ) · (O) = 1
2h(P ).

2. There exists a map E(K)→ Div(E )⊗Z Q denoted P 7→ ΓP such that

(a) The set { ((P )− (O)) · ΓP : P ∈ E(K) } ⊂ Q is finite.

(b) If P ∈ E(K)0 ∖ {O} then ((P )− (O)) · ΓP = 0.

33The point is that Shioda’s lower bound is valid for E(K)0, not for the full Mordell–Weil lattice, where
bad places will play a role (see e.g. [SS19, Table 6.1] for the local contributions to the height at places of
bad reduction).

34As pointed out in [HP16, remark 1.18], an hypothesis of separability of the j-invariant is omitted from
the original statement, but is used in the proof.
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1.3 – Elliptic curves

(c) If we let DP := (P )− (O) + ΓP , then the self-intersection product of DP satisfies
−DP ·DP = 2(P ) · (O)− (P )2 − (O)2 + ((P )− (O)) · ΓP .

(d) The assignement (P,Q) 7→ −DP ·DQ is bilinear on E(K)× E(K).

3. For all P ∈ E(K), the self-intersection of the section (P ) equals (P ) · (P ) = −χ(E ) (in
particular, it does not depend on P ).

4. We have χ(E ) = 1
12e(E ) and e(E ) = deg (∆min(E/K)). (In particular, deg (∆min(E/K))

is an integral multiple of 12). ⌟

Before explaining how the proof of the above proposition 1.3.26 goes, we use it to deduce
Shioda’s lower bound on λ1(E(K)0).

Sketch of the proof of theorem 1.3.24. –– • We first check that ĥ(P ) = −DP ·DP for all
P ∈ E(K), where DP is as in item 2c above (we fix a choice of ΓP ). From items 2c
and 3 we have

−DP ·DP = 2χ(E ) + 2(P ) · (O) + ((P )− (O)) · ΓP
= 2(P ) · (O) +O(1) by item 2a
= h(P ) +O(1) by item 1.

Thus, using the bilinearity of (P,Q) 7→ −DP · DQ stated in item 2d, we see that
lemma 1.3.15 allows us to conclude that ĥ(P ) = −DP ·DP . In particular, ĥ(P ) ∈ Q for
all P ∈ E(K).

• Now, if P ∈ E(K)0 ∖ {O} we have

ĥ(P ) = −DP ·DP = 2χ(E ) + 2(P ) · (O) by item 2b (1.3.7)

⩾ 2χ(E )

= deg (∆min(E/K))
6 by item 4

where we used the fact that if P ̸= O, then the sections (P ) and (O) are distinct
irreducible curves on E , so their intersection product is non-negative. Hence we get the
desired lower bound. ■

Proof of proposition 1.3.26. –– 1. See [Sil08b, proof of theorem III.9.3, p. 250] (it is as-
sumed that k is algebraically closed of characteristic 0, but the proof of this part does not
rely on these hypothesis). This is shown by writing (P ) ·(O) as a sum of local intersection
numbers, and relating each of them to the valuation of x(P ) at the corresponding place.
(Note that [Sil08b, theorem III.9.3] has a factor 1

2 in the last part of the statement; see
remark 1.3.17 above).

2. The map P 7→ ΓP is not unique; one definition is given in [Sil08b, p. 247] using [Sil08b,
proposition III.8.3], another one is given in [SS19, lemma 6.16]. In both cases, the
properties stated in proposition 1.3.26, item 2 hold: see [Sil08b, proof of theorem III.9.3,
p. 248-249].

Namely, we can take ΓP as the Q-divisor given by

ΓP := −((P ) · (O) + χ(E ))E +
∑
v∈|C|

−→Θv · (−A−1
v ) · −−→JP,v ∈ Div(E )⊗Z Q,
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where, using the notations from remark 1.3.9, −→Θv := (Θv,1 · · ·Θv,mv−1) is a vector
of irreducible divisors on E , −−→JP,v := t((P ) ·Θv,i)1⩽i⩽mv−1 is a column-vector with
integral entries given by intersection products, and the Gram matrix Av is defined via
(Av)i,j = Θv,i ·Θv,j .

3. This is [SS19, Corollary 5.45]. The proof relies on the adjunction formula (which allows
to compute the self-intersection product in terms of the canonical divisor class KE of
the elliptic surface E , see [SS19, Theorem 4.11]) and on the canonical bundle formula
of Kodaira (which tells us more precisely what is KE , see [SS19, Theorem 5.44]) — the
latter being specific to elliptic surfaces.

4. The first identity is proved as [SS19, Corollary 5.50]; it relies on Noether’s formula
(Riemann–Roch theorem for surfaces).

The second identity is given in [SS19, §5.12]. It is convenient to assume that k is
algebraically closed, so that all places v ∈ |C| have degree 1. First, one can relate35 the
Euler number of a fiber Fv of π : E → C above v ∈ |C| to its number of components mv.
Then a result of Dolgachev [Dol72] (based on work of Grothendieck) states that

e(E ) =
∑
v∈|C|

(e(Fv) + δv), (1.3.8)

where δv is the wild ramification part of the local conductor (as defined in [Sil08b, IV.10,
p. 380]; we have δv = 0 unless char(k) ∈ {2, 3}). Finally, using Ogg’s formula (see [Sil08b,
theorem IV.§11]), one can prove that e(Fv) + δv = v(∆) for all places v ∈ V 0

K , by doing a
case-by-case analysis depending on whether v is a place of good, additive or multiplicative
reduction. All in all, this allows to conclude that e(E ) = deg (∆min(E/K)). ■

1.3.3 L-functions, ranks and Birch–Swinnerton-Dyer conjecture

An important tool to study some arithmetic invariants of an elliptic curve E over a global
field K is to look at its L-function L(E/K, s), whose special value at s = 1 contains a lot of
information, as the rank, at least conjecturally. We now recall how the L-function is defined.
In the sequel we assume that K = k(C) is a global function field as in definition 1.3.2.

Definition 1.3.27. Let E be an elliptic curve over K = k(C) and let kn ⊂ k be the extension
of degree n over k.

1. For every place v ∈ V 0
K , define the integers

AE(v, j) := |k|j + 1−
∣∣Ev(kj)∣∣ ,

av(E) := AE(v,deg(v)) = |Fv|+ 1−
∣∣Ev(Fv)∣∣ , (1.3.9)

where j ⩾ 1 is any integer multiple of deg(v) := [Fv : k] (so in particular kj is an
extension of Fv).

35For instance, if the fiber Fv is multiplicative with Kodaira type In, where n ⩾ 2, then e(Fv) = mv, since
Fv is given by "gluing" n copies of P1 (see [Sil08b, theorem IV.8.2, p. 353]), so

e(In) = e
( n⊔

i=1

P1
)

− n︸︷︷︸
n gluings

= n · e(P1) − n = 2n− n = n = |π0(Fv)|.
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2. We define the local factor at v as

Lv(E/K, T ) :=
{

1− av(E)T deg(v) + |k|deg(v)T 2 deg(v) if E has good reduction at v
1− av(E)T deg(v) else.

3. The L-function of E over K is defined as36

L(E/K, T ) :=
∏
v∈V 0

K

Lv(E/K, T )−1 ∈ ZJT K. ⌟

Remark 1.3.28. 1. We explain how av(E) behaves when v is a place of bad reduction
for E. Namely, av(E) is equal 0 if E has additive reduction at v, and ±1 if E has
multiplicative reduction at v, the sign depending on whether the reduction is split or
non-split multiplicative (this follows from proposition III.2.5 in [Sil08a], see also section
2.10 in [Was08]); see also footnote 23 on page 34.

2. Over number fields, the L-function is rather defined as a function of a complex variable
s ∈ C with Re(s)> 3/2 by taking the product of Lv(E/K,N(p)−s)−1 over all primes
v=p ∈V 0

K . So it is not defined as a formal Laurent series in some variable T . ⌟

One can re-write the L-function as follows, by an elementary computation. This will be
very useful in the sequel.

Proposition 1.3.29. Let E be an elliptic curve over a global function field K = k(C). Then
we have, using the notations from definition 1.3.27:

logL(E/K, T ) =
∑
j⩾1

( ∑
x∈C(kj)

AE(vx, j)
)
T j

j
.

where vx is the place corresponding to the closed point attached to the rational point x
(i.e., its Galois orbit under Gal(k/k)) and kj ⊂ k is the extension of degree j of k. ⌟

Proof. –– This is [Gri16, Lemme 1.3.15], which is stated only for C = P1, but the proof
immediately generalizes. ■

In fact, we can say more about the L-function.

Theorem 1.3.30 (Grothendieck, Deligne, Raynaud). Let E be an elliptic curve over over a
global function field K = k(C) and let gC ⩾ 0 be the genus of C. Then:

• The L-function L(E/K, T ) is a rational function of T , i.e., L(E/K, T ) ∈ Q(T ). Its
degree37 is D(E/K) := f(E/K) + 2 · (2gC − 2).

• For any root α of L(E/K, T ) and any complex embedding ι : Q ↪→ C, the complex
modulus of ι(α) is |ι(α)| = (#k)−1.

36We explain what this infinite product of rational fractions means (see also [Lor96, VIII.§4]). By taking
the Taylor expansion at T = 0, one can see that Lv(E/K, T )−1 ∈ ZJT deg(v)K (the coefficients are integers
since Lv(E/K, 0) = 1). Then the product over v ∈ V 0

K makes sense (as a power series) because for all
n ⩾ 1, there are only finitely many places v of degree n.

37Here we take deg = −v∞, where v∞ is the valuation described in example 1.3.6.
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• We have a functional equation

L(E/K, |k|−2T−1) = ϵ · (|k|T )−D(E/K) · L(E/K, T ), (1.3.10)

for some ϵ ∈ {±1}, where D(E/K) is as in the first item.

• If moreover E is non-constant, then L(E/K, T ) ∈ Z[T ] is a polynomial with constant
term 1. ⌟

Proof. –– See [Gro11, theorem 2.6 and appendix D (for char(k) ⩾ 5)] and [Ulm11, Lecture
1, Theorem 9.3 and Lecture 4, §1 (Theorems 1.3.3, 1.4.1) and §2]38 for modern expositions,
including the case of more general Galois representations (e.g., arising from abelian varieties).

The last item is proved by constructing, for any fixed prime ℓ ̸= char(k), a certain finite-
dimensional Qℓ[Gk]-module V (E/K), where Gk := Gal(k/k) (coming from the first étale
cohomology group of some lisse ℓ-adic sheaf on C ×k k) such that L(E/K, T ) = det[id−
TFrk ↷ V (E/K)] ∈ Qℓ[T ] is the "reciprocal" characteristic polynomial of the Frobenius
Frk : x 7→ x|k| acting on V (E/K). See [Ulm11, lecture 4, theorem 1.3.3] for more details. ■

Remark 1.3.31. 1. In particular, theorem 1.3.30 allows us to speak of the order of vanishing
of the L-function at any39 given value of T in C.

2. It is not too difficult to show that the L-function is a rational function, by relating it
to the zeta functions of the elliptic surface E attached to E (as in remark 1.3.9) and of
the curve C. The details are given in [Ulm11, Lecture 3, §6] and [Shi92b, lemma 5, p.
105]. But this approach does not explain why the L-function is a polynomial when E is
non-constant; this fact requires étale cohomology to be proved.

3. If E ∼= E0 ×k k(C) is constant, then the L-function can be expressed in terms over the
zeta function of C over k as

L(E/K, T ) = Z
(
C/k, β1T

)
Z
(
C/k, β2T

)
= Z

(
C/k,

|k|T
β1

)
Z
(
C/k,

|k|T
β2

)
(1.3.11)

where β1, β2 ∈ Q are such that the numerator of the zeta function Z(E0/k, T ) of E0 over
k is (1 − β1T )(1 − β2T ) (see [Oes90, §3.2, p. 391] and [Gro11, equation (D.3)]; recall
that β1β2 = |k|). We see that, as a ratio of two coprime polynomials of degree 4g and 4
respectively, the L-function has degree 4g − 4 as expected. ⌟

We now recall what the Birch–Swinnerton-Dyer (BSD) conjecture is, and what is known
about it. Originally, it was stated for elliptic curves over Q, but it was then generalized to
abelian varieties over any global field. We first introduce the following notations.

Definition 1.3.32. Let E be an elliptic curve over a global function field K.

1. The (exponential differential) height of E/K is H(E/K) := |k|
deg(∆min(E/K))

12 .

38Note that the equation (1.3.1) loc. cit. has some typographic misprints; it should read L(ρ, T ) =∏
v

det(1 − T deg(v)Frv | V Iv )−1.
39Except possibly if E ∼= E0 ×k K is constant, in which case T ∈ {(|k| · β1)−1, (|k| · β2)−1, β−1

1 , β−1
2 } are

the 4 poles of L(E/K, T ), where β−1
1 , β−1

2 are the 2 roots of the (numerator of the) zeta function of E0
over k (see equation (1.3.11)).

48
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2. The analytic rank ρ(E/K) of E over K is the order of vanishing of L(E/K, T ) at
T = |k|−1, that is, ρ(E/K) := ordT=|k|−1 L(E/K, T ).

3. The special value of the L-function of E/K is the non-zero rational number

L∗(E/K) := 1
ρ!L

(ρ)(E/K, T )
∣∣∣
T=|k|−1

where ρ = ρ(E/K) and L(ρ) denotes the derivative of order ρ of the L-function. ⌟

Remark 1.3.33. 1. Because the L-function is a rational function in Q(T ) by theorem 1.3.30,

we also have L∗(E/K) = L(E/K, T )
(1− |k|T )ρ

∣∣∣∣
T=|k|−1

and this is a non-zero rational number.

2. From theorem 1.3.30 and equation (1.3.11) we deduce an upper bound on the analytic
rank:

ρ(E/K) ⩽
{

4gC if E is constant
f(E/K) + 4gC − 4 else.

(1.3.12)

We will see in theorem 1.3.35 that rkE(K) ⩽ ρ(E/K) always holds, so this also gives an
upper bound on the algebraic rank. When E is non-constant, this is actually a bound
on the geometric rank of E over k(C) (see definition 1.3.11), since the degree of the
conductor does not change under algebraic extensions of the field of constants.

3. We can consider the following complex-analytic version of the L-function: theorem 1.3.30
allows us to define

L(E/K, s) := L(E/K, |k|−s)
for any s ∈ C (we may get finitely many poles if E is constant, see footnote 39 on
page 48). Since 1− |k|1−s ∼ log(|k|) · (s− 1) as s→ 1, the leading term L∗(E/K) in the
Taylor expansion of L(E/K, s) around s = 1 (that is, L(E/K, s) ∼ L∗(E/K) · (s− 1)ρ)
satisfies L∗(E/K) = log(|k|)ρL∗(E/K).

This is related to remark 1.3.17: if one uses the normalization ĥ′ := log(|k|) · ĥ of the
Néron–Tate height then one uses the special value L∗(E/K) instead of L∗(E/K) in
the BSD formula given below, because the corresponding regulator is Reg′(E/K) :=
log(|k|)r Reg(E/K) where r := rkE(K).

4. We have L∗(E/K) ∈ Q>0 (see [Gri16, remarque 1.3.13]) and ρ(E/K) ∈ Z⩾0 (this is clear
if E is not constant since L(E/K, T ) is a polynomial in that case, and if E is constant
then one can use equations (1.3.11) and (2.4.5) and the Riemann hypothesis for curves
over finite fields). ⌟

The analytic rank of E/K, as the name suggests, is conjecturally related to the (algebraic)
rank of the Mordell–Weil group E(K) introduced in definition 1.3.11: in fact we expect them
to be equal, and the special value L∗(E/K) to be related to many arithmetic invariants of
the elliptic curve. Here is the precise formulation of the conjecture, as given in40 [Gro11,
lecture 2, conjecture 2.10] (which includes the case of elliptic curves over number fields) or
[HP16, conjecture 2.2] for abelian varieties over function fields (see also subsection 2.4.2).

40Beware that both of these references normalize the Néron–Tate height so that it takes values in Q·log(#k),
see also remarks 1.3.17 and 1.3.33.
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Conjecture 1.3.34 (Birch, Swinnerton-Dyer). Let E be an elliptic curve over a global function
fieldK = k(C) as in definition 1.3.2. Let gC be the genus of C. Then the following statements
hold:

a) The algebraic rank of E over K is equal to the analytic rank of E over K. In other
words, the rank of the finitely generated abelian group E(K) is equal to the order of
vanishing of the L-function of E/K at T = |k|−1, i.e.,

rkZ
(
E(K)

)
= ord
T=|k|−1

L(E/K, T ).

b) The Tate–Shafarevich group X(E/K) is finite and we have the following identity, called
the BSD formula (using notations from definitions 1.3.7 and 1.3.32):

L∗(E/K) = |X(E/K)| · Reg(E/K) · c(E/K)
|E(K)tors|2 · |k|gC−1 ·H(E/K) . (1.3.13)

⌟

While this conjecture remains widely open, many cases are known, for instance:

• The case where the elliptic curve E is isotrivial (see definition 1.3.3 and theorem 1.3.35).

• The case where E has a Weierstrass equation given by a sum of 4 monomials (see
theorem 1.3.40).

See also the works [Ber08, theorem 2.3] and [PU16, Corollary 3.1.4] for other proved cases
of conjecture 1.3.34. Let us also mention that one finds in [Gro11, lecture 2, §5] an explicit
example where the BSD conjecture is verified.

The first important result towards the BSD conjecture can be stated as follows.

Theorem 1.3.35 (Artin, Tate, Milne). Let E be an elliptic curve over a global function field
K = k(C). Then:

1. The statements a) and b) in conjecture 1.3.34 are equivalent.

2. We always have the inequality rk(E(K)) ⩽ ρ(E/K) := ordT=|k|−1 L(E/K, T ). (In
particular, conjecture 1.3.34 is true if the analytic rank of E over K is 0).

3. Assume that E is isotrivial. Then both statements of conjecture 1.3.34 are true. ⌟

Proof. –– The first part is proved in [Mil75, theorem 8.1] (which assumes char(k) to be
odd, but using the work [Ill79] one can drop this condition), see also [Tat66b, KT03, Sch82]
and [Gro11, theorem 3.1].

The second statement is originally proved in [Tat66b, proof of theorem 5.2, p. 436-437], see
also [Ulm11, lecture 3, theorem 8.1].

The third claim is proved in [Ulm11, lecture 3, §8] (see also [Mil68, theorem 3, p. 100] for
constant abelian varieties). Most of these results use the relation between conjecture 1.3.34
and Tate’s conjecture for the elliptic surface E . ■
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Another important class of elliptic curves over k(t) for which the BSD conjecture 1.3.34 is
known is described as follows. Following the terminology of [SS19, §13.2.1.2] for surfaces
named after Jean Delsarte, we introduce the following notion.

Definition 1.3.36. Let K = k(t) be the function field of P1
k, where k is any field. A Delsarte

elliptic curve is an elliptic curve over K which is birational to the affine plane curve given
by g(X,Y ) = 0 where

g =
4∑
i=1

cit
ei1Xei2Y ei3 ∈ k[t][X,Y ] ⊂ K[X,Y ]

is a sum of exactly 4 monomials in t,X, Y (i.e., ci ∈ k× for every i) such that the following
conditions are fulfilled:

• We let M := max1⩽i⩽4
∑3
j=1 eij and define ei4 := M−

∑3
j=1 eij ⩾ 0 for each i ∈ {1, ..., 4}.

Then we require that for any j, there is some i such that eij = 0.

• We consider the 4× 4 integer matrix A := (eij)1⩽i,j⩽4. Then we require the image of
det(A) in k to be non-zero (when char(k) = p > 0, this means det(A) ̸≡ 0 (mod p)). ⌟

Remark 1.3.37. We use this definition to match with [Shi86, SS19], but any g as above
satisfies "Shioda’s 4-monomial condition" in the terminology of [Ulm11, lecture 3, exercise
10.1]. ⌟

Example 1.3.38. For instance, for any prime p ⩾ 5 and any integer m > 0 coprime to p,
the elliptic curves with (affine) Weierstrass equation

y2 + xy = x3 + tm, y2 = x3 + x+ tm, y2 = x3 + 1 + tm

over Fp(t) are of Delsarte type, because the associated matrices A are respectively

A =


0 0 2 m− 2
0 1 1 m− 2
0 3 0 m− 3
m 0 0 0

 ,


0 0 2 m− 2
0 3 0 m− 3
0 1 0 m− 1
m 0 0 0

 ,


0 0 2 m− 2
0 3 0 m− 3
0 0 0 m

m 0 0 0


and have determinant −m2, 4m2, 6m2 respectively. Delsarte elliptic curves have been
classified in [Hei11, Hei12]: there are 42 families of them. ⌟

Remark 1.3.39. We explain that the k(t)-isomorphism class of a Delsarte elliptic curve E
"essentially" does not depend on the coefficients c1, ..., c4.

• More precisely, assume that E ↪→ P2
K is given as a plane projective curve E : g̃(X,Y, Z) =∑4

i=1 cit
ei1Xei2Y ei3Zei4 = 0, using the notations from definition 1.3.36 which ensures

that g̃ is a homogenous polynomial in K[X,Y, Z] (which has degree ⩽ 4 because E is
assumed to be an elliptic curve). Let E1 :

∑4
i=1 t

ei1Xei2Y ei3Zei4 = 0. Then we claim
that there is a commutative diagram

E E1

Spec(k(t)) Spec(k(t))

ϕ

ψ
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where ϕ : E → E1 is an isomorphism and ψ is induced by an automorphism of k(t) of
the form t 7→ λ1t for some λ1 ∈ k.

First, the assumption det(A) ̸≡ 0 mod p certainly implies det(A) ̸= 0 so that A ∈ GL4(Q).
Write A−1 = det(A)−1A′ for some integral matrix A′ = (a′

ij) ∈M4×4(Z). Then we can
find λ1, ..., λ4 ∈ k

× such that

∀i ∈ {1, ..., 4}, λei1
1 λei2

2 λei3
3 λei4

4 = c−1
i .

Namely, let c′
i ∈ k be such that c′

i
det(A) = c−1

i and let λj =
∏4
r=1 c

′
r
a′

jr ; this implies

4∏
j=1

λ
eij

j =
4∏
r=1

c′
r

∑4
j=1

eija
′
jr = c′

i
det(A) = c−1

i .

Now, the change of variables (t,X, Y, Z) 7→ (λ1t, λ2X,λ3Y, λ4Z) shows that E is isomor-
phic to E1 over k(t) as desired.

• We point out however that E and E1 do not need to be isomorphic over k(t) if we do not
allow any automorphism of k(t): for instance take k = F5, then E1 : y2 = x3 + x+ t has
j-invariant j(t) = 1

t2+2 while E : y2 = x3 + x+ 2t has j-invariant −1
t2+3 = j(2t) ̸= j(t).

Nevertheless, the algebraic rank and the L-function of E and E1 over k′(t) are equal,
where k′ = k(λ1, λ2, λ3, λ4) ⊂ k and λi are as above. In particular, the geometric rank
of E and E1 are equal (if they are non-constant). ⌟

Theorem 1.3.40 (Shioda). Let E be a Delsarte elliptic curve over k(t). The Birch–
Swinnerton-Dyer conjecture 1.3.34 is true. ⌟

Proof. –– See [Ulm11, lecture 1, theorem 12.4 and lecture 3, §10] or [Ulm07b, theorem 6.2]
for a more general statement about jacobians. The strategy is to show that the associated
elliptic surface E (as in remark 1.3.9) is dominated by a Fermat surface (via a morphism
that can be explicitly defined, see [Shi86, p. 421]), and then to apply Tate’s conjecture
which is known for Fermat surfaces (because they are dominated by a product of Fermat
curves). ■

We also recall the following well-known facts.

Proposition 1.3.41. Let E,E′ be two elliptic curves over a global function field K.

1. If E′ is isogenous to E over K, then they have the same L-function, i.e., L(E/K, T ) =
L(E′/K, T ) ∈ Q(T ). In particular, they have the same analytic rank.

2. If Lv(E/K, T ) = Lv(E′/K, T ) for all places v ∈ V 0
K then E and E′ are isogenous over K.

3. The algebraic rank is also invariant under isogenies: if E′ is isogenous to E over K, then
rkE(K) = rkE′(K). ⌟

Proof. –– 1. One method is to see that an isogeny f : E → E′ induces, for any prime
ℓ ∤ char(k) · deg(f), an isomorphism of Zℓ[GK ]-modules Tℓ(E) ∼= Tℓ(E′) := lim←−

n

E′[ℓn]

between the ℓ-adic Tate modules. But the L-function of E is entirely determined by
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Tℓ(E), so that isogenous curves must have equal L-functions, as explained in [Gro11,
lecture 2, p. 13 and appendix C]. See also [Dok13, §3, p. 218-219] (in the case of number
fields) to see in particular why the local factors of the L-function at bad places v are
indeed given by the action of an arithmetic Frobenius Frv ∈ GK on the inertia-invariant
subspace of Vℓ(E) := Tℓ(E)⊗Zℓ

Qℓ.

2. This is due to Parshin, Zahrin (in characteristic ̸= 2) and Mori; see [MB85, théorème
XII.2.5, p. 244] and apply ideas of Tate given in [Tat66a, §3, theorem 1] or in [EvdGM,
corollary 16.25]. (Over number fields, the statement of item 2 above is also true; this is
due to Faltings’ work on Mordell’s conjecture; see also [Sil93, theorem 3.3]).

3. If f : E → E′ is an isogeny of elliptic curves defined over a global field K, then
the group morphism E(K) → E′(K) is surjective with finite kernel. Hence the (non-
necessarily surjective) group morphism E(K)→ E′(K) has finite kernel (say of size n),
and induces a morphism E(K)/E(K)tors ↪→ E′(K)/E′(K)tors which has to be injective
(if f(P ) ∈ E′(K)tors, say m ·f(P ) = OE′ , then nm ·P = OE so P ∈ E(K)tors). Therefore
rkE(K) ⩽ rkE′(K).

Applying the same reasoning to the dual isogeny f̂ : E′ → E yields rkE′(K) ⩽ rkE(K),
so we finally get the desired equality. ■

Remark 1.3.42. In general, it is not true that if L(E/K, T ) = L(E′/K, T ) then the two
elliptic curves E and E′ are isogenous over K. While this is true over Q, it fails over Q(i)
(see the explicit example given in [Sil93, remark 3.4]) and also over global function fields,
even over the function field of P1.

Already proposition 1.3.29 points out what goes wrong: the equality of L-functions only
gives that

∑
x∈P1(Fqj ) AE(vx, j) =

∑
x∈P1(Fqj ) AE′(vx, j) holds for all j ⩾ 1, while being

isogenous means that AE(v,deg(v)) = AE′(v,deg(v)) for all places v ∈ V 0
K .

Here is an explicit example (see also remark 4.1.12): for any prime p ≡ −1 (mod 12), if
we let q = pn for some odd integer n > 0, then the curves E2 : y2 = x3 + tq+1 + 1 and
E11 : y2 = x3 + tq − t have the same L-function over Fq2(t), namely (1− q2T )2(q−1), but
they are not isogenous since they have different conductors: E2 has good reduction at t = 0,
while E11 does not. ⌟

Proposition 1.3.43. Let E be a non-constant elliptic curve over a global field K = k(C)
(where k is a finite field). For each n ⩾ 1, let kn ⊂ k be the extension of k of degree n.

By theorem 1.3.30, we may write the L-function of E as a polynomial L(E/k(C), T ) =∏D
i=1(1− αiT ) for some αi ∈ Q. Then

L(E/kn(C), T ) =
D∏
i=1

(1− αni T ). ⌟

Proof. –– This is stated in [Ulm19, item (4), p. 1088]. Essentially, this relies on the fact
that L(E/K, T ) is the "reciprocal" characteristic polynomial det[id− T · Frk ↷ V (E/K)],
using the notations from the proof of theorem 1.3.30, and on the fact that Frkn = Frnk . (For
a constant elliptic curve, this can be proved using equation (1.3.11) and the corresponding
fact for zeta functions). See also remark 4.2.10 for a more direct proof in some cases. ■
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1.3.4 Famil ies of el l ipt ic curves with unbounded rank

We will be interested in Mordell–Weil lattices of large rank, to get sphere packings in
high-dimensional euclidean spaces. As mentioned in subsection 1.3.1, one reason to work
over a global function field K (of positive characteristic) is that the algebraic rank of elliptic
curves over K can be arbitrary large, as asserted by the following result.

Theorem 1.3.44 (Tate–Shafarevich, Ulmer). For every global function field K, the set of
Mordell–Weil ranks of elliptic curves over K is unbounded. More precisely, for every prime
p, if we set K = Fp(t), then we have

sup{ rk(E(K)) : E ∈ E } = +∞,

where E is either the set of (isomorphism classes of) isotrivial elliptic curves over K, or the
set of non-isotrivial elliptic curves over K. ⌟

Proof. –– For the isotrivial case when p ̸= 2, see [TS67, theorem 2], where it is shown
that, given a supersingular elliptic curve A0 over Fp, the rank is unbounded among the
quadratic twists An of A := A0 ×Fp Fp(t) by quadratic extensions Fp(Cn)/Fp(t) where Cn
is a hyperelliptic curve given by an affine equation u2 = tp

n+1 + 1 and n ⩾ 3 is an odd
prime. In fact, Tate and Shafarevich prove that rk[An(Fp(t))] = pn−p

n + p − 1. See also
[SS19, §13.3.1].

For the isotrivial case when p = 2, see our theorem H (= theorem 2.5.1) and its corollary 2.5.5.

For the non-isotrivial case, see [Ulm02, theorems 1.5, 9.2] where it is shown that for every
n ⩾ 1, the rank of the Delsarte elliptic curve

Γ1,pn+1 : y2 + xy = x3 − tp
n+1

over Fp(t) is ⩾ pn−1
2n . ■

The main source of elliptic curves with unbounded rank over k(t) (where k is a finite field) is
obtained by base-change. This prompts us to introduce the following terminology, following
[Ulm19, §2.3].

Definition 1.3.45. Let k be a finite field and E be an elliptic curve over K = k(t).

1. Given a non-constant rational fraction b ∈ K ∖ k, we denote by ϕb : K → K the unique
k-algebra endomorphism of K such that ϕb(t) = b(t) ∈ K. It induces a scheme morphism
Φb : Spec(K)→ Spec(K) and we denote by E(b) the elliptic curve obtained as the fiber
product (the pull-back) E(b) := E ×K,Φb

K as in the following cartesian diagram:

E(b) E

Spec(K) Spec(K)Φb

where the right-vertical arrow E → Spec(K) is the structural morphism.
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More concretely, if E ↪→ P2
K is given by a Weierstrass equation f(X,Y, Z) = f(t,X, Y, Z) =

0, where f ∈ k[t,X, Y, Z] ⊂ K[X,Y, Z] is a homogeneous cubic polynomial41 over k(t),
then E(b) is defined by the affine Weierstrass equation f(b(t), X, Y, Z) = 0.

2. The Kummer family attached to E is the set of elliptic curves {E(tm) : m ⩾ 1 } over
k(t).

3. The Artin–Schreier family attached to E is the set of elliptic curves {E(tqm − t) :
m ⩾ 1 } over k(t), where q = |k|. ⌟

For instance, if E is the elliptic curve given by f(X,Y ) = Y 2− (X3 + 1 + t) = 0 then E(tm)
has a Weierstrass equation given by Y 2 = X3 + 1 + tm over k(t).

We state here some useful results. The first item allows us to think of Kummer families of
elliptic curves over k(t) as the base change of a fixed elliptic curve over a family of function
fields k(t1/m), as m ⩾ 1 varies (a similar result holds for Artin–Schreier families).

Proposition 1.3.46. Let E be an elliptic curve over k(t) where k is a finite field. For any
integer m > 0, we set E(m) := E(tm) as in definition 1.3.45.

1. We have an isomorphism E(m)(k(t)) ∼= E(k(t1/m)) of abelian groups. In particular, if
m,m′ ⩾ 1 are integers such that m divides m′, then

rk(E(m′)) ⩾ rk(E(m)).

2. Consider the integer m = m′ · |k|e for some integer m′ coprime to |k| and e ⩾ 0. Then

rkE(m′)(k(t)) = rkE(m)(k(t)). ⌟

Proof. –– 1. To clarify the exposition we write b(t) = tm, we let Km be the K-algebra
given by the ring morphism ϕb : K → K (i.e., Km = K as a ring, and its K-algebra
structure is given by t acting as tm on 1K) and let Φb : Spec(Km) → Spec(K) be the
corresponding scheme morphism. Define K ′

m := k(t1/m), which is a K-algebra via the
inclusion ι : K ↪→ Km. Note that the morphism t 7→ t1/m from Km to K ′

m defines a
K-algebra isomorphism (Km, ϕb) ∼= (K ′

m, ι).

Now E(b) is an elliptic curve over Km and for any field extension L/Km, we have a
group isomorphism HomKm(Spec(L), E(b)) ∼= HomK(Spec(L), E) = E(L), where we
consider Spec(L)→ Spec(Km) Φb−−→ Spec(K) (see [GW20, equation (4.7.1)]). When we
take L = Km, we find

E(m)(K) = E(m)(Km) ∼= E(Km, ϕb) ∼= E(K ′
m, ι) = E(k(t1/m)).

Finally, if m divides m′ then we clearly have an embedding of fields k(t1/m) ↪→ k(t1/m′),
so from the previous observation, we deduce the inequality rk(E(m)) ⩽ rk(E(m′)).

2. If char(k) = p then the Frobenius morphism ϕpf : E(m′) → E
(pf )
(m′) is an isogeny for any

f ⩾ 0. Moreover, when pf = |k|e is a power of |k|, then E
(pf )
(m′) and E(m) are isomorphic

41It is an elliptic curve since the discriminant ∆E(b) ∈ k(t) = K of this Weierstrass equation for E(b) is
just ∆E(b(t)) ̸= 0.
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over K. Thus E(m′) and E(m) are isogenous, so that proposition 1.3.41 tells us that these
two curves have the same Mordell–Weil rank (as well as the same analytic rank). ■

Remark 1.3.47. Many other cases of families of elliptic with unbounded rank over global
function fields have been discovered.

1. Shioda deals in [Shi91, theorem 1.2] with an isotrivial family of Delsarte elliptic curves
with arbitrarily large geometric rank, i.e. Mordell–Weil rank over Fp(t) (see defini-
tion 1.3.11). He showed that given a prime p ≡ −1 (mod 6) and an odd integer n ⩾ 1,
the rank of

Γ2,pn+1 : y2 = x3 + 1 + tp
n+1

over Fp2n(t) equals 2(pn + 1)− 4 = 2pn − 2.

(For the rank of Γ2,pn+1 over Fp(t), and for the case p ≡ 1 (mod 6), see theorem F and
theorem G).

Moreover, in [Shi86, remark 10], Shioda gives a non-isotrivial family of Delsarte elliptic
curves with unbounded geometric rank, namely given a prime p ≡ −1 (mod 4) and an
odd integer n ⩾ 1, the rank of

Γ
3, p

n+1
2

: y2 = x3 + x+ t
pn+1

2

over Fp(t) is pn − 1 if p ≡ 1 (mod 3) and is pn − 3 is p ≡ −1 (mod 3).

(For the rank of Γ
3, p

n+1
2

over Fp(t), and for the cases p ≡ 1 (mod 4) or p = 3, see

theorem B and corollary 3.1.20).

2. Elkies found in [Elk94, p. 347-348] an isotrivial family of Delsarte elliptic curves with
unbounded rank over F2(t). Namely, for any odd integer n ⩾ 1, the curve

Γ4,2n+1 : y2 + y = x3 + t2
n+1

has rank 2n+1 over F22n(t). This is an analogue in characteristic 2 (over the algebraic
closure) of the work [TS67], since Γ4,2n+1 is a quadratic twist of a constant supersingular
curve by the quadratic extension of F2(t) defined by the hyperelliptic curve u2+u = t2

n+1.
See also [SS19, example 13.39].

(For the rank of Γ4,2n+1 over F2(t), see our theorem H).

3. In [Ulm14c, corollaries 4.3, 5.3], Ulmer proves that for any odd prime p, the rank of

Γ5,d : y2 = x(x+ 1)(x+ td)

over Fp(t) is unbounded as d = pn + 1 and n ⩾ 1. See also [CHU13, Ulm14b, PU13] and
[Gri16, proposition 4.3.5].

4. In the work [Ulm07b, theorems 1.3, 4.7 and §9], Ulmer gives conditions to ensure that
elliptic curves (or more general L-functions) over global function fields have a large
analytic rank (see theorem 1.3.48 below). Concrete applications of these results are
given in [Ulm11, corollary 3.4.2] and also in [Gri16, proposition 5.3.5], where the rank is
unbounded in the family of Delsarte elliptic curves

Γ6,d : y2 + 3tdxy + y = x3
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(with short Weierstrass equation y2 = x3 + (3xtd + 4)2, see [Gri16, lemme 5.2.3]).

5. Lisa Berger gives in [Ber08, theorem 4.1] other examples of families of (non-Delsarte)
elliptic curves with unbounded algebraic rank over global fields (see also [Ulm11, the-
orem 4.2.1]), by proving the BSD conjecture 1.3.34 for these curves and applying the
aforementioned result [Ulm07b, theorem 4.7] (stated as theorem 1.3.48 below). See also
[Gri16, remarque 8.1.1, §8.2.1, corollaire 8.3.13], where it is proved that for every prime
p ⩾ 5, the curves

Γ7,d : y2 = (x− 2td)(x2 + td(td − 4)x− 2t3d)

have unbounded rank over Fp(t) as d ⩾ 1 varies over integers coprime to p (which also
follows from theorem 1.3.48).

This work is used in [Ulm13, theorem 8.1] (see also [Ulm11, lecture 5, §3]), where Ulmer
proves that for any prime p and any integer n ⩾ 1, if we let d = pn + 1 then the rank of

Γ8,d : y2 + xy + tdy = x3 + tdx2

(with short Weierstrass equation y2 = (x+ 4td)(x2 + x+ 4td), see [Gri16, §6.2.1]) has
rank d − 1 over Fp(t) if p = 2 and geometric rank d − 2 if p > 2 (moreover, explicit
generators for a subgroup of finite index in the Mordell–Weil group are described, and
the Mordell–Weil lattice is described in [Ulm13, remark 8.10] as being homotethic to
A∨
d/2 ⊕A∨

d/2 if p > 2). See also [Gri16, Proposition 6.3.4].

Moreover, by [Ulm11, lecture 5, §5], the geometric rank is also unbounded in the family
given over Fp(t), for any odd prime p, by

Γ9,d : y2 + 2tdxy = x3 − t2dx.

6. In [BDS04] and [DS07], Bouw, Diem and Scholten prove the existence of (isotrivial)
elliptic curves with large rank, which are quadratic twists of base change of a constant
ordinary elliptic curve.

7. Griffon proved in [Gri20] that for every odd prime p, the rank of

Γ10,d : y2 = x(x2 + t2dx− 4t2d)

over Fp(t) is unbounded as d ⩾ 1 ranges over integers coprime to p.

8. All the examples above are Kummer families, obtained by base-changing a curve over
k(t) to k(t1/d). On the other hand, in the paper [GU20, proposition 8.4.1], it is proved
that the Artin–Schreier family of isotrivial Delsarte elliptic curves

Γ11,pn : y2 = x3 + tp
n

− t (1.3.14)

has unbounded rank over Fp(t) for every prime p ≡ −1 mod 6, as n ⩾ 1 varies. See also
[PU16, corollary 2.7.3 and §§4.3, 6.4, 6.5] and [Gri19, corollary 4.8]: for any odd prime
p, the family

Γ12,pn : y2 = x(x+ 1)(x+ (tp
n

− t)2)

has unbounded rank over Fp(t) as n ⩾ 1 varies.
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9. Davis and Occhipinti show in [DO16, proposition 3.7] that, given a power q of a prime
p ⩾ 5, the curve

Γ13,q+1 : y2 + xy − tq+1y = x3

has rank q over Fq2(t) if q ≡ 1 mod 3 and rank q− 2 over Fq2(t) if q ≡ 2 mod 3. See also
[Gri16, proposition 7.3.5].

Moreover, the paper [Occ12, theorem 2] provides, based on Lisa Berger’s work, for each
prime p, an example of elliptic curve E over Fp(t) such that rkE(Fp(t1/d)) ⩾ d for all d
coprime to p.

10. In [Ulm07b, §1, §7.11], it is proved in particular (by taking g = 1 in loc. cit.) that for
any prime p ⩾ 5, the Delsarte elliptic curve with affine equation y2 = x4 + x3 + tp

n+1

has unbounded rank over Fp(t) as n ⩾ 1 varies. A short Weierstrass equation for this
curve is

Γ14,d : y2 = x3 + (−4td)x+ td

where d = pn + 1. ⌟

Here is a result that ensures that some elliptic curves have large analytic rank.

Theorem 1.3.48 (Ulmer). Let E be an elliptic curve over K = k(t) where k is a finite field
with q elements. Let f′(E/K) = f(E/K)− ϵ0(E/K)[0 : 1]− ϵ∞(E/K)[1 : 0] ∈ Div(P1) be
the conductor of E where we remove the tame parts at the places 0,∞ (see definition 1.3.7).

If deg(f′(E/K)) is odd, then there is a constant c ∈ Z such that for all n ⩾ 1, the analytic
rank of E over k(t1/d) is at least qn+1

2n − c, where d := qn + 1. ⌟

Proof. –– See [Ulm07b, theorem 4.7 and §9] and [Ulm11, theorem 3.1.1 and §3.3]. ■

Remark 1.3.49. 1. If k is a field of characteristic 0 (for instance Q,Q,C), then the rank
of non-constant elliptic curves over K = k(t) (which is finite by theorem 1.3.10) is not
known to be unbounded (despite some claims by A. I. Lapin, see [SS19, Remark 13.20]).
The largest known rank for an elliptic curve over Q(t) is given by the isotrivial Delsarte
elliptic curve y2 = x3 + 1 + t360 of Mordell–Weil rank 68, see [SS19, theorem 13.26] (for
a non-isotrivial curve, y2 = x3 + x+ t1260 has the largest known rank over Q(t), namely
56, see [Shi86, corollary 9, p. 431]).

In fact, the rank of any Delsarte elliptic curve over k(t) is proved to be at most 68, when
char(k) = 0 (see [Hei12, theorem 1.2 and §6] or [Hei11]).

We note that if the ranks of non-constant elliptic curves over Q(t) are unbounded, this
would imply that the ranks of elliptic curves over Q are unbounded, by Silverman’s
specialization theorem [Sil08b, theorem III.11.4].

2. In view of the analogy between function fields and number fields, we may wonder whether
the rank of elliptic curves over a given number field should be bounded or not (which is,
as of now, a notorious open question). An interesting observation is made in [PPVW19,
remark 12.3.1]: all known families {Ei : i ⩾ 1 } of elliptic curves over Fq(t) with
unbounded rank have the property that for all but finitely many i ⩾ 1, the curve Ei is
defined over a proper subfield of Fq(t) (typically, Fq(td) or Fq(tq

d − t) for some d > 1).
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We say that E is defined over a subfield F ⊂ K if it is the base change of a curve E0 over
F , i.e., E ∼= E0 ×F K. In that case, we have j(E) ∈ F ; in other words, if j(E) does not
belong to a proper subfield of K then E is not defined over a proper subfield. However,
the converse does not hold, because the j-invariant only characterizes an elliptic curve up
to K-isomorphism: for instance the curve E : y2 = x3 + t over k(t) (where char(k) ̸= 2, 3)
has j-invariant 0, but E cannot be defined over k (but the base change of E to k(t1/6)
can be defined over k).

In fact, if E : y2 = x3 + Ax + B is an elliptic curve over k(t) not defined over proper
subfield, where A,B ∈ k[t], then either A = 0 and B is a polynomial of degree 1 or
A−3B2 = f is a Möbius transformation (i.e., a non-constant ratio of two polynomials
of degree ⩽ 1). When f ∈ k[t], this implies that A = f−1Q2, B = ±f−1Q3 for some
Q ∈ k[t].

When ϵ ∈ {±1}, f(t) = tϵ and Q(t) = tr, we get the elliptic curves y2 = x3+tϵ+3rx+tϵ+2r

which are not defined over a proper subfield of k(t). These are the curves y2 = x3+tnx+tm
for |2m − 3n| = 1 (which implies that gcd(n,m) = 1 but not conversely) studied in
[Shi86, theorem 8], where it is proved that they have bounded rank over Fp(t) for any
odd prime p.

In [PPVW19, §12.5], it is guessed that for any global function field K, the rank of elliptic
curves E/K not defined over a proper subfield of K is bounded.

3. It is proved in [Gri20, theorem 7.9] that for any odd prime p, every positive odd integer
occurs as the Mordell–Weil rank of some elliptic curve E over Fp(t), provided that there
is a prime ℓ ̸= 2, p such that p generates (Z/ℓ2Z)× (in fact, E can be taken of the form
y2 = x3 + t2dx2 − 4t2dx for some d > 0).

4. The examples of Kummer families from remark 1.3.47 exhibit elliptic curves E over k(t)
such that42 supd⩾1 rkE(k(t1/d)) = +∞. The function field k(t1/d) has genus 0. One
could look at the rank of E(k(C)) for more general curves. This is for instance done in
[Oes90, proposition 4, §3.3] in the case where E is constant and C is a Fermat curve.

5. The rank of families of abelian varieties (especially jacobians) has also been studied. For
instance, [Ulm07b, theorem 1.1, §7.1.1] provides families of simple abelian varieties of
any dimension g ⩾ 1 having arbitrarily large rank over Fp(t) for any prime p.

See also [UZ10] (where jacobians with large rank over function fields of characteristic 0
are found — but not families with unbounded rank!), or [Shi92a, §3], [BHP+20, Ulm13,
PU16, AGTT21].

6. One can point out some results about the "average" rank of elliptic curves, when ordered
by (some notion of) height. Despite results like theorem 1.3.48 or [Ulm07b, theorem
1.3] (which give many examples of families of elliptic curves with unbounded rank), the
average rank of elliptic curves over Fq(t) is finite. In fact, De Jong showed in [Jon02,
corollary 1.3] that the average rank of elliptic curves over Fq(t) is bounded above by
3
2 +O(1/q), improving Brumer’s bound of 2.3 (see [Bru92, theorem 7.11]). Moreover, it

42We can mention that it is not too difficult to show that sup{ rkE(L) : L/K finite } = +∞ when
K = k(t) by taking successive quadratic extensions.
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is conjectured that for elliptic curves over Q or over Fq(t), the average rank is 1
2 . See

also Brumer’s bound stated as theorem 2.2.6 in the next chapter. ⌟

Remark 1.3.50. There are also examples of Kummer or Artin–Schreier families of elliptic
curves with bounded rank.

For Kummer families with bounded rank, see [Ulm07a]:

• Theorem 4.5 states that a certain quadratic twist E of an ordinary constant elliptic
curve (base-changed to Fp(t)) is such that the rank of E(Fp(t1/d)) is bounded as d ⩾ 1
varies43. However the rank is not explicitly given.

• Theorem 5.2 shows that the curve E1 : y2 +xy = x3− t has rank 0 in a certain "Zℓ-tower"
of Fp(t), given by Fp(t1/ℓ

n) where n ⩾ 1 varies and ℓ > 5 is a prime dividing p− 1.

• Theorem 6.2 proves that if p ⩽ 11 is prime, then there is a non-isotrivial elliptic curve E
over Fp(t) such that E(Fp(t1/d)) has rank 0 for any d ⩾ 1 (so the parity condition on
the conductor in theorem 1.3.48 is not fulfilled for those E).

Moreover, Ulmer conjectured in [Ulm07a, §6.6] that there should be such examples for
any prime p. This was later proved by Lisa Berger in [Ber12, theorem 1.2].

As stated in theorem G, we found that the (isotrivial) elliptic curve E2 : y2 = x3 + 1 + t

over Fp(t), with p ≡ 1 (mod 6), has constant (hence bounded) non-zero rank over k(t1/d)
where k is a certain finite extension of Fp and d ⩾ 1 is any integer.

For Artin–Schreier families, all known examples with bounded rank seem to actually have
rank 0; see [GU20] (curves E11 defined in equation (1.3.14), for p ≡ 1 (mod 6)), [Gd21,
Corollary 5.4] or [PU16, §6.2]. ⌟

Remark 1.3.51. The work [Shi86] allows to compute the geometric rank of Delsarte elliptic
surfaces. See remark 4.2.33. ⌟

1.4 · Character sums

1.4.1 General def int ions and results on Gauss and Jacobi sums

We will be interested in computing explicitly the L-function of some elliptic curves, which
allows to determine the analytic rank of those curves. These computations will involve
character sums (mostly Jacobi sums), so we recall some facts above those exponential sums.
First we setup some notations used in the rest of this work.

Definition 1.4.1. Let k be a field.

1. A multiplicative character of k is a group morphism χ : k× → Q×. The set of multiplica-
tive characters on k forms a group, denoted by k̂× (this is the Pontryagin dual for the
discrete topology on k×). In particular, the set of characters on k× of order divisible by
d is the d-torsion subgroup k̂×[d].

43It is assumed in [Ulm07a, theorem 4.5] that gcd(d, p) = 1, but this is not necessary, see proposition 1.3.46.
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1.4 – Character sums

2. The trivial character 1 is the constant map k× → {1}.

3. Given χ ∈ k̂×, we set χ(0) := 0 if χ is non-trivial and 1(0) := 1.

4. If k is finite of odd characteristic, the Legendre symbol is the unique character of order 2
on k×, and is denoted by λk. We have λk(x) = ι

(
x

|k|−1
2
)

for all x ∈ k×, where ι denotes
the isomorphism k×[2] = {±1} ∼= Z× ⊂ Q×.

5. Given a finite extension k′/k, we denote by Nk′/k : k′× → k× the norm map and by
trk′/k : k′ → k the trace map.

6. If k is finite, then for every integer n ⩾ 1, we denote by kn ⊂ k its unique extension of
degree n.

7. For every integer n ⩾ 1, we write µn(k) := k×[n] for the subgroup of n-th roots of unity
in k× (it has order ⩽ n). We also define ζn := exp(2πi/n) ∈ Q ↪→ C, which is a primitive
n-th root of unity.

8. Given an element a ∈ (Z/dZ)×, we denote by ord×(a mod d) its (multiplicative) order
and by (Z/dZ)/⟨a⟩× the quotient set where the cyclic subgroup ⟨a⟩× := { aj : j ∈ Z } ⩽
(Z/dZ)× acts by multiplication on the set Z/dZ.

9. Given a real number x ∈ R, we let x := x− ⌊x⌋ ∈ [0, 1[ be the fractional part of x. ⌟

Remark 1.4.2. When k ↪→ k′ is a quadratic extension of finite fields of odd characteristic,
we do not have λk(x) = λk′(x) for all x ∈ k, since λk′ is trivial on k×.

On the other hand, if k ↪→ k′ is any extension of finite fields of odd characteristic, then
one has λk′ = λk ◦ Nk′/k, where Nk′/k : (k′)× → k× denotes the norm map (indeed,
Nk′/k is a surjective group morphism, so λk ◦ Nk′/k has order exactly 2). In particular,
λk′(x) = λk(x)[k′:k] for all x ∈ k.

Let us mention that both the trace and norm maps are surjective and we have Nk′/k(x) =
x|k′×|/|k×| for all x ∈ k′×. ⌟

We can use characters to count solutions of simple equations over finite fields, as the
following standard results show.

Proposition 1.4.3. Let k be a finite field.

1. For all w ∈ k and all integers d ⩾ 1, we have

#{ t ∈ k : td = w } =
∑

χ∈k̂×[d]

χ(w),

2. More generally, for every z, w ∈ k× and all integers n,m ⩾ 1, we have

#{ t ∈ k× : tn = z, tm = w } = 1
|k×|

∑
χ,χ′∈k̂×

χnχ′m=1

χ(z)χ′(w).
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3. Fix a prime power q and an integer n ⩾ 1 such that k = Fqn . For all w ∈ k, we have

#{x ∈ k : xq − x = w } =
∑

ψ:Fq→Q×

ψ(trk/Fq
(w)), (1.4.1)

where the sum runs over all additive characters of Fq (not of k). In particular, we have

∃x ∈ k, xq − x = w ⇐⇒ trk/Fq
(w) = 0. (1.4.2)

⌟

Proof. –– 1. When w = 0, both sides are equal to 1 = 1(0) (since we set χ(0) := 0 when
χ ̸= 1). When w ̸= 0, the left-hand side is{

0 if w ̸∈ Im(fd)
| ker(fd)| = |k×|/| Im(fd)| if w ∈ Im(fd),

where fd is the group morphism fd : k× → k×, x 7→ xd. On the other hand, let
H := Im(fd) ⩽ G := k×, so that we have

{χ ∈ Ĝ : χd = 1 } = H⊥ := {χ ∈ Ĝ : χ|H = 1 } (1.4.3)

Let us denote by π : G → G/H the quotient morphism. It is known that the map
Ĝ/H → H⊥, χ 7→ χ ◦ π is an isomorphism and consequently, we may rewrite the
right-hand side as∑
χd=1

χ(w) =
∑

χ∈Ĝ/H

χ([w]) = |G/H| · 1w∈H = | ker(fd)| · 1w∈H = #{x ∈ k : xd = w }.

2. The proof is similar to the previous case. Consider the group G := k× × k× and the
group morphism ϕ : k× → G, t 7→ (tn, tm) as well as its image H := Im(ϕ). We have
(using the fact k×/ ker(ϕ) ∼= H)

#{ t ∈ k× : tn = z, tm = w } = | ker(ϕ)| · 1(z,w)∈Im(ϕ)

= 1
|k×|

·
∣∣G/H∣∣ · 1(z̄,w̄)≡(1̄,1̄) mod H

= 1
|k×|

∑
χ∈Ĝ/H

χ̄(z̄, w̄)

= 1
|k×|

∑
χ∈H⊥

χ(z, w)

where
H⊥ := {χ ∈ Ĝ : χ|H = 1 } = {χ ∈ Ĝ : ∀t ∈ k×, χ(tn, tm) = 1 }.

Note that there is an isomorphism Ĝ ∼=
(
k̂×
)2 where a pair (χ, χ′) of multiplicative

characters on k is mapped to the character (z, w) 7→ χ(z)χ′(w). Under this isomorphism,
H⊥ corresponds to the set of pairs (χ, χ′) such that χnχ′m = 1, whence the claim.
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3. We first prove (1.4.2) (additive version of Hilbert 90 theorem), because it is equivalent to
(1.4.1). Indeed, from (1.4.2) we deduce that xq − x = w has 0 solution if tr(w) ̸= 0, and
has q solutions otherwise (if it has at least one solution x0, then x0 + α is a solution for
any α ∈ Fq). By orthogonality of characters, the same holds for

∑
ψ:Fq→C× ψ(trk/Fq

(w)),
so the conclusion follows.

We actually prove a more general fact than (1.4.2). Namely, given any finite cyclic Galois
extension L/K of fields, given a generator σ of Gal(L/K) and given w ∈ L, we have

σ(x)− x = w has a solution in L ⇐⇒ trL/K(w) = 0. (1.4.4)

Here is a first (cohomological) proof. One has Hr(Gal(L/K), (L,+)) = {0} for all r ⩾ 1
(even for non-cyclic extensions), and when G is a cyclic group acting on some G-module
A, then H1(G,A) ∼= H−1

T (G,A) := ker(
∑
g∈G g)/⟨ga − a : a ∈ A⟩ (the latter group

comes from Tate cohomology), from which the equivalence (1.4.4) immediately follows.

We can also give a direct proof of (1.4.4). The implication =⇒ is clear, so assume that
trL/K(w) = 0. Define the map g : L → L, x 7→ σ(x) − x. It is a K-linear map, with
kernel ker(g) equal to K, since Gal(L/K) is generated by σ. As we just noticed, we have
Im(g) ⊂ ker(trL/K).

Moreover, we have Im(trL/K) = K, i.e., trL/K : L → K is surjective (indeed, by K-
linearity, proving surjectivity of the trace amounts to showing that trL/K ̸= 0; this is
in fact equivalent to L/K being separable). But then comparing K-dimensions, we
conclude that Im(g) = ker(trL/K). Thus equations (1.4.2) and (1.4.4) hold. ■

Remark 1.4.4. In proposition 1.4.3, the second item is indeed a generalization of the first
one because we may take z = w and n = m. Also, if we assume that n = m, then when
z ̸= w, or when z = w is not an n-th power in k×, the sum

∑
χ,χ′∈k̂×

χnχ′m=1

χ(z)χ′(w) vanishes,
which can be checked directly:∑

χ∈k̂×

(
χ(z)

∑
χ′∈k̂×

(χχ′)n=1

χ′(w)
)

=
∑
χ∈k̂×

χ(zw−1)
∑

χ′=:χ−1χ̃∈k̂×

(χχ′)n=1

(χχ′)(w)

= [k× : k×,n] ·
∑
χ̃∈k̂×

χ̃(zw−1)1w∈k×,n

= [k× : k×,n] · |k×| · 1w∈k×,n · 1z=w. ⌟

Definition 1.4.5. Let k be a finite field of characteristic p and let χ, χ1, ..., χn : k× → Q×

be multiplicative characters on k.

1. We define the Gauss sum of χ as44 G(χ) :=
∑
x∈k×

χ(x) exp
(

2πi
trk/Fp

(x)
p

)
.

2. We define the Jacobi sum of χ1, ..., χn as

J(χ1, ..., χn) :=
∑

x1,...,xn∈k
x1+...+xn=1

χ1(x1) · · ·χn(xn). ⌟

44Here we view the algebraic closure of Q as the set of complex numbers which are algebraic over Q, so

that exp
(

2πi
trk/Fp

(x)
p

)
lies in Q.
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Note that G(χ) is a sum over k×, not over k. When n = 1, we have J(χ1) = χ1(1) = 1.
When n = 3, we sometimes speak of "triple Jacobi sum". Here are some basic properties of
these sums.

Proposition 1.4.6. Let k be a finite field of characteristic p and let χ, χ1, ..., χn ∈ k̂×.

1. We have G(1) = −1 and if χ ̸= 1, then |ι(G(χ))| = |k|1/2 for any field embedding
ι : Q ↪→ C.

2. If χi ̸= 1 for all i, then we have

J(χ1, ..., χn) =


−χn(−1)J(χ1, ..., χn−1) if χ1 · χ2 · · ·χn = 1,
G(χ1) · · ·G(χn)
G(χ1 · χ2 · · ·χn) else.

In particular, if χ1 · χ2 · · ·χn ̸= 1 and χi ̸= 1 for all i, then |ι(J(χ1, ..., χn))| = |k|
n−1

2

for any embedding ι : Q ↪→ C. Moreover, if some of the characters χi are trivial but not
all, then J(χ1, ..., χn) = 0.

3. We have G(χp) = G(χ) and J(χp1, ..., χpn) = J(χ1, ..., χn) (hence, applied successively, we
have J(χ|k|

1 , ..., χ
|k|
n ) = J(χ1, ..., χn)). ⌟

Proof. –– See [Coh07, §2.5.2, §2.5.3] or [BEW98, theorem 1.1.4] for the first two items. The
third item follows from the fact that x 7→ xp is a field automorphism of k and preserves the
trace map (i.e., trk/Fp

(x) = trk/Fp
(xp) for all x ∈ k). ■

Note that when n = 2, the second item of proposition 1.4.6 yields45 J(χ, χ−1) = −χ(−1)
for any non-trivial χ ∈ k̂×.

1.4.1 .1 Hasse–Davenpor t and Tate–Shafarevich theorems

An important fact is the following relation between the Gauss or Jacobi sums over various
extensions of a finite field.

Theorem 1.4.7 (Hasse–Davenport lifting relation). Let k be a finite field and, for every
n ⩾ 1, let kn ⊂ k be its extension of degree n. Let χ, χ1, ..., χm ∈ k̂× be non-trivial
characters. Then we have:

−G(χ ◦Nkn/k) = (−G(χ))n,
J(χ1 ◦Nkn/k, ..., χm ◦Nkn/k) = (−1)(n−1)(m−1)J(χ1, ..., χm)n. ⌟

Proof. –– See [Coh07, theorem 3.7.4, corollary 3.7.5]. Note that the second identity follows
from the first, by proposition 1.4.6. One strategy to prove the first identity is to make
use of the Dirichlet L-function L(ηχ, T ) (especially the fact that it is a polynomial in T )
attached to a certain Dirichlet character ηχ : k×

M :=
(
k[X]/(M(X))

)× ∼= (k,+)×k× −→ C×

where M(X) = X2 and ηχ([f ]) = χ(f(0)) · ψ(f ′(0)/f(0)) for all [f ] ∈ k×
M , where ψ(x) :=

exp(2πi trk/Fp
(x)/p) for all x ∈ k. ■

45This can be proved directly: Note that the map x 7→ x
1−x is injective from k ∖ {1} to k ∖ {−1} (indeed,

x
1−x = x′

1−x′ implies x − xx′ = x′ − xx′ so x = x′), thus is bijective and then we have, when χ is not
trivial: J(χ, χ−1) =

∑
x∈k∖{1} χ(x(1 − x)−1) =

∑
x′∈k∖{−1} χ(x′) = −χ(−1).
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The following crucial result computes explicitly some Gauss sums and Jacobi sums, in
particular giving a sufficient condition for a Jacobi sum to be equal to a positive integer.
This will be important to compute (as in corollary 3.1.14, for instance) the analytic rank of
some elliptic curves over k(t) whose L-function can be written (essentially) as a product∏
r(1− αrT ) where each αr is (related) to a Jacobi sum: the analytic rank is the number

of indices r such that αr = |k| (which is a positive integer).

Theorem 1.4.8 (Tate–Shafarevich). Let k2/k be a quadratic extension of finite fields and
χ ∈ k̂×

2 be non-trivial. Assume that the restriction χ|k× = 1 is trivial. Then one has
G(χ) = χ(z)|k|, where z ∈ k×

2 is any non-zero element such that trk2/k(z) = z + z|k| = 0.

Consequently, if χ1, ..., χm ∈ k̂×
2 are non-trivial characters that are trivial on k× and such

that χ1 · · ·χm ̸= 1, then
J(χ1, ..., χm) = |k2|

m−1
2 . ⌟

Proof. –– See [TS67, lemma, p. 918] or [Ulm02, lemma 8.3] (note that in the latter reference,
the Gauss sum is defined with a minus sign in front). Note that χ(z) is independent of z,
since any two elements in k×

2 of trace 0 differ by some multiplicative constant in k× (the
kernel of the trace is 1-dimensional over k) and χ is trivial on k×. The second claim about
Jacobi sums readily follows from the first part and from proposition 1.4.6. ■

Remark 1.4.9. Assume that k is a finite field of odd cardinality q. If g generates the group
k×

2 , then the element z := g
q+1

2 has trace 0 over k. Indeed, we have a chain of equivalences:

trk2/k(z) = z + zq = 0 ⇐⇒ g
q+1

2 = −gq· q+1
2 = g

q2−1
2 + q(q+1)

2

⇐⇒ q + 1 ≡ q2 − 1 + q2 + q (mod q2 − 1) ⇐⇒ 2(q2 − 1) ≡ 0 mod q2 − 1.

⌟

1.4.2 Teichmüller character

Let k be a finite field. The groups k̂×
n are cyclic for any n ⩾ 1, and there is actually a way

to have a "compatible" family of generators, thanks to the Teichmüller character. There
are several equivalent ways to define it. We start with the following observation.

Lemma 1.4.10. Let R be an integral domain (e.g., R = Z) with field of fractions K. Fix a
maximal ideal m ⊴ R. Denote by K an algebraic closure of K, and let R be the integral
closure of R in K. Then there exists a maximal ideal m ⊴ R above m (that is, m = m ∩R),
and for any such ideal, the quotient ring R/m is an algebraic closure R/m. ⌟

Proof. –– The existence of m follows from the "lying over" property for prime ideals applied
to the integral extension R ⊂ R and by using Zorn’s lemma.

Note that we have an injection R/m ↪→ R/m since m = m ∩ R, and this extension is
algebraic. It remains to check that R/m is algebraically closed. Let F̃ ∈ (R/m)[X] be a
polynomial, which we may assume to be monic. We can lift F̃ to some monic polynomial
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F ∈ R[X]. Since K is algebraically closed, F splits over K, but we shall show that all roots
of F belong to R, and hence F̃ splits completely over R/m.

Fix a root a ∈ K of F . If we write F (x) = xn + fn−1x
n−1 + · · · + f1x + f0, then

S := R[f0, ..., fn−1] ⊂ R is finitely generated as R-module. Moreover, S[a] is finitely
generated as R-module, since an = −(fn−1a

n−1 + · · ·+ f1a+ f0). Thus S[a] is finite over
R, and so is R[a], which implies that a ∈ R is an algebraic integer over R as desired. ■

In particular for R = Z and any46 maximal ideal P ⊴ Z (in the ring of algebraic integers
Z) above pZ, we have Z/P ∼= Fp. Now we denote by πP : Z −→ Z/P ∼= Fp the reduction
morphism. The main claim to construct the Teichmüller character is the following lemma.

Lemma 1.4.11. Consider the subgroup

µ(p) :=
{
x ∈ Q× : ∃m ∈ Z, xm = 1, gcd(m, p) = 1

}
⩽ Z×

Then πP restricts to an isomorphism πP |µ(p) : µ(p) ∼=−→ Fp
×
. ⌟

Definition 1.4.12. Given a prime p, we fix once and for all a maximal ideal P ⊴ Z above
p. The Teichmüller character Θ = ΘP : Fp

× → µ(p) ⊂ Q× is the inverse of the morphism
πP |µ(p) defined in lemma 1.4.11. ⌟

Proof of lemma 1.4.11. –– • We first prove the surjectivity of π|µ(p) . We fix y ∈ Fp
× so

that y ∈ F×
pr for some r ⩾ 1. If we set m = pr − 1, then ym = 1. Since gcd(m, p) = 1, it

follows that y is a simple root of the polynomial Tm − 1 ∈ Fpr [T ]. There is a (unique
unramified) extension Kr of Qp with residue field OKr/p

∼= Fpr ; in fact we may take
Kr = Qp(ζpr−1). Applying Hensel’s lemma to it, we get an element x ∈ Kr such that
xm = 1 and x ≡ y (mod p). Then x ∈ µ(p) ↪→ Z× is a preimage of y under π, showing
the claimed surjectivity.

• We now check the injectivity of π|µ(p) . Assume that x belongs to the kernel, that is:
xm = 1 for some integer m ⩾ 2 coprime to p and x ≡ 1 (mod P ). We want to show that
x = 1. We may write x = 1 + y for some y ∈ P , and then

1 = xm = (1 + y)m = 1 +my + · · ·+ ym (1.4.5)

so that y(m+ · · ·+ ym−1) = 0. If y ̸= 0, then we see that m can be expressed as sums
of powers of y, so m ∈ P since P is an ideal and y ∈ P . But then m ∈ P ∩ Z = pZ,
contradicting the fact that gcd(m, p) = 1 E. Thus this forces y = 0 and x = 1 as
desired. ■

Remark 1.4.13. 1. The injectivity of πP fails on the p-th roots of unity. Namely, consider
Z[ζp] ⊂ Z, and the prime ideal p = (1− ζp) which lies above p. Then ζp ̸= 1 but ζp ≡ 1
(mod p), so πP is not injective on µp.

46There are infinitely many such ideals, and the absolute Galois group GQ of Q acts transitively on those;
see [Was97, Appendix §2, Lemma, p. 394]. Since Z ⊂ Z is integral, they both have the Krull dimension
1, so any non-zero prime ideal of Z is maximal.
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2. There are other ways to define the Teichmüller character. Let k be a finite field with
q = pr elements.

• Following [Was97, chap. 6, p. 95], if we fix a prime ideal p of (the ring of integers of)
Q(ζq−1) lying above p, then Z[ζq−1]/p ∼= Fq ∼= k and the (q − 1)-st roots of unity are
distinct modulo p (see [Was97, lemma 2.12] or [Coh07, lemma 3.6.1]), so this yields
an isomorphism k× → µq−1(Q) which is nothing but the restriction Θ|k× .

• Alternatively, one may use a purely p-adic approach: as before we let Or = Zp[ζq−1]
be (the ring of Witt vectors of k or equivalently) the ring of integers of the unique
unramified extension Kr of Qp with residue field Or/p ∼= Fq ∼= k. For a = [z]p ∈ k×

we define the value47 ωq(a) := limn→∞ zq
n , which is the unique (q − 1)-th root of

unity in Or such that ωq(a) ≡ a (mod p). We get a section ωq : k× → µq−1(Z) ⊂ O×
r

of πq : O×
r → k×. One can check that Θ|k× = ωq.

• Finally, one can mention that given an integer m ⩾ 1 not divisible by some prime p,
if we let a prime p ⊴ Z[ζm] above p, then k := Z[ζm]/p has q = pf elements, where

f = ord×(p mod m) and Θ|
|k×|
m
k× is the m-th power residue symbol (or reciprocity

symbol), see e.g. [Coh07, definition 3.6.2, lemma 3.6.24]: it is the unique multiplicative
character χp,m : k× → µm(Z) of order m such that χp,m(x) ≡ x

q−1
m (mod p) for

all x ∈ Z[ζm] ∖ p. In particular when m = q − 1, we get Θ(x) ≡ x mod p for all
x ∈ Z[ζq−1] ∖ p. ⌟

Proposition 1.4.14. Let Θ : Fp
×
↪→ Q× be the Teichmüller character. Let k ⊃ Fp be a

finite field. Then Θ|k× generates the cyclic group k̂× and there is a unique generator g of
k× such that Θ(g) = exp

(
2πi
|k×|

)
.

More generally, if d divides |k×| then the restriction of Θ
|k×|
d to k× is a character of

order exactly d which generates k̂×[d], and its value on the generator g from above is

Θ
|k×|
d (g) = exp

(2πi
d

)
. ⌟

Proof. –– The fact that Θ|k× generates the cyclic group k̂× is proved in [Gri16, lemme
2.1.2]. The existence of an element g ∈ k× such that Θ(g) = exp

(
2πi
|k×|

)
is clear since the

image of Θ|k× is the subgroup µ|k×| ⊂ Q×. Then g must be a generator of k× since its
order is at least as large as the order of Θ(g) = exp

(
2πi
|k×|

)
which equals |k×|. Uniqueness

of such a g ∈ k× is clear as Θ is injective. The rest of the statement of the proposition is
easily deduced from the previous claims. See also remark 1.4.18. ■

1.4.2.1 Characters of order dividing d

It is convenient to introduce some notations in order to classify the characters of order
dividing d (namely the elements of k̂×

n [d]).

Definition 1.4.15. Let us fix a power q of some prime p and an integer d ⩾ 1 coprime to q.

47One easily shows that the sequence (zqn

)n⩾1 is Cauchy (it suffices to check that |zqn+1
− zqn

| → 0 as
n → ∞ by the ultrametric property of Or), so it converges in Or by completeness.
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1. We define the map

uq,d : Z/dZ −→ Z
r mod d 7−→ min

{
j ⩾ 1 : d | (qj − 1)r

}
.

(1.4.6)

Note that it is indeed well-defined on Z/dZ. In other words, uq,d(r) is the cardinality
of the orbit r ∈ Z/dZ under the action of the group ⟨q⟩ ⩽ (Z/dZ)× of powers of q by
multiplication on Z/dZ.

2. Given r ∈ Z/dZ and an integer n ∈ uq,d(r)Z>0, we define the character

θFqn ,d,r : F×
qn −→ Q×

x 7−→ Θ(x)
(qn−1)r

d

Note that this definition does not make sense for every n ∈ Z>0, but only for those n which
are integer multiples of uq,d(r) because then we have (qn−1)r

d ∈ Z (as proposition 1.4.16.3
will show). ⌟

We state a few properties of uq,d and θFqn ,d,r in the following two easy propositions.

Proposition 1.4.16. Let q and d ⩾ 1 be as in definition 1.4.15.

1. For every r ∈ Z/dZ, the value uq,d(r) is equal to the multiplicative order of q in the

group
(
Z
/

d
(d,r)Z

)×
. Here (d, r) denotes the gcd between d and r.

2. We have uq,d(r) = uq,d(qjr) for all j ∈ Z. (Note that q is invertible in Z/dZ so that qjr
makes sense even when j < 0).

3. Given r ∈ Z/dZ and j ⩾ 1, we have d | r · (qj − 1) ⇐⇒ uq,d(r) | j.

4. Given an integer A ⩾ 1, we have #{ r ∈ Z/dZ : d | A · r } = gcd(d,A). In fact, we have
the equivalences d | A · r ⇐⇒ d

gcd(d,A)

∣∣∣ r ⇐⇒ d
gcd(d,r)

∣∣∣ A. ⌟

Proof. –– We first prove item 4 and then the rest will follow.

4. It suffices to check the first equivalence, because the second one follows by symmetry
(swap A and r), and it also follows that { r ∈ Z/dZ : d | A · r } = d

(d,A)Z
/
dZ. Now the

equivalence d | A · r ⇐⇒ d
gcd(d,A)

∣∣∣ r can be checked by considering the ℓ-adic valuations
vℓ for all primes ℓ, which amounts to checking that vℓ(A) + vℓ(r) ⩾ vℓ(d) ⇐⇒ vℓ(r) ⩾
vℓ(d)−min{vℓ(A), vℓ(d)} for all primes ℓ, which is clear (since vℓ(r) ⩾ 0).

1. From item 4 we get d | r · (qj − 1) ⇐⇒ d
(d,r)

∣∣∣ (qj − 1), so that uq,d(r) is indeed the
multiplicative order of q modulo d

(d,r) .

3. This is clear from items 1 and 4.

2. This also follows from item 1, since gcd(d, q) = 1. ■

It is also useful to note that for all N ⩾ 1, we have uqN ,d(r) = ord
(
qN mod r

(d,r)
)

=
uq,d(r)

gcd(N,uq,d(r)) (recall that in for any element g of a finite group we have ord(gN ) =
ord(g)

gcd(N,ord(g))).
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Proposition 1.4.17. Let q and d ⩾ 1 be as in definition 1.4.15. Fix r ∈ Z/dZ.

1. Let n,N ∈ uq,d(r)Z. Assume n | N so that Fqn ⊂ FqN . Then we have

θFqN ,d,r = θFqn ,d,r ◦NFqN /Fqn (1.4.7)

2. Let n ∈ uq,d(r)Z. The character θFqn ,d,r ∈ F̂×
qn has order exactly d

(d, r) .

3. Let k be a finite field. We have

k̂×
n [d] =

{
θkn,d,r : r ∈ Z/dZ such that u|k|,d(r) | n

}
, (1.4.8)

and consequently we have the equality of sets⊔
n⩾1

k̂×
n [d] =

⊔
r∈Z/dZ

{
θkn,d,r : n ∈ u|k|,d(r)Z>0

}
. (1.4.9)

In particular, when |k| ≡ 1 (mod d), then u|k|,d(r) = 1 for all r and

k̂×
n [d] =

{
θk,d,r ◦Nkn/k : r ∈ Z/dZ

}
=
{
χ ◦Nkn/k : χ ∈ k̂×[d]

}
. ⌟

The second equality in item 3 is especially interesting: we can express an infinite union of
finite sets as a finite union of infinite sets of characters given by pre-composing with the
norm map of arbitrary finite extensions of ku(r), which will be the key to get the rationality
of the L-function.

Proof. –– 1. To ease the notation, let k = Fqn and write m = N/n ∈ Z, so that km := FqN

is the extension of k of degree m. The main point is to observe that the norm is given by

Nkm/k(x) =
∏

σ∈Gal(km/k)
σ(x) = x · xq

n

· xq
2n

· · ·xq
(m−1)n

= x1+qn+···+q(m−1)n

= x
qN −1
qn−1

for all x ∈ km. Thus we get

θFqN ,d,r(x) = Θ(x)
(qN −1)r

d = Θ(x)
qN −1
qn−1

(qn−1)r
d

= Θ
(

NFqN /Fqn (x)
) (qn−1)r

d = θFqn ,d,r

(
NFqN /Fqn (x)

)
.

2. By proposition 1.4.14, there is a unique generator g of F×
qn such that

θFqn ,d,r(g) = exp
( 2πi
qn − 1 ·

r · (qn − 1)
d

)
= exp

(2πir
d

)
.

Let A be the order of θFqn ,d,r. Then exp
(2πir

d

)A = 1 so that d | A · r and proposi-
tion 1.4.16.4 implies that A is a multiple of d

(d,r) . On the other hand, it is clear that

θ

d
(d,r)
Fqn ,d,r = 1 from the above equation, so we can conclude that A = d

(d,r) .
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3. The inclusion ⊃ in equation (1.4.8) follows from the previous item since θkn,d,r has order
exactly d/(d, r). Now we show that the sets on both sides of equation (1.4.8) have the
same cardinality. We know that k̂×

n [d] has cardinality gcd(|k×
n |, d). On the other hand,

the characters θkn,d,r in the set on the right-hand side of (1.4.8) are pairwise distinct (as
it can be seen by evaluating them at a generator of k×

n , see proposition 1.4.14). Note that
this implies that the set on the right-hand side of equation (1.4.9) is indeed a disjoint
union. But now, we know from items 3 and 4 of proposition 1.4.16 that

#{ r ∈ Z/dZ : u|k|,d(r) | n } = #{ r ∈ Z/dZ : d | #k×
n · r } = gcd(|k×

n |, d),

which concludes the proof. Finally, in the case |k| ≡ 1 (mod d), one can use item 1 to
deduce the claimed description of k̂×

n [d]. ■

Remark 1.4.18. We explain here a more concrete approach to proposition 1.4.17, which can
be important for computational reasons. Fix a finite field k and a "norm-compatible" family
of generators (γn)n⩾1 ∈

∏
n⩾1 k

×
n in the sense that for any n | N , we have γn = NkN/kn

(γN ).
Such families exist since the norm maps are surjective; in more conceptual terms, if En ⊂ k×

n

denotes the set of generators of k×
n , then we have surjective48 maps given by the (restriction

of the) norm Nrn,N : EN → En whenever n | N and then the projective limit of the inverse
system

(
(En)n⩾1, (Nrn,N )n|N )

)
is non-empty.

Fix an integer d ⩾ 2, an element r ∈ Z/dZ and an integer n ∈ u|k|,d(r)Z>0. Then we may
define a character θ′

kn,d,r
∈ k̂×

n be setting

θ′
kn,d,r(γn) := exp

(2πir
d

)
. (1.4.10)

Note that θ′
kn,d,r

has order exactly d/(d, r) (and it is well-defined because we assumed
n ∈ u|k|,d(r)Z>0). Moreover, if n | N , then

θ′
kN ,d,r(γN ) = θ′

kn,d,r(γn) = θ′
kn,d,r(NkN/kn

(γN ))

so that the same property as item 1 in proposition 1.4.17 is satisfied. Finally, (1.4.8)
also holds if we consider the characters θ′

kn,d,r
instead of θkn,d,r; the same proof applies.

Therefore, in most of the applications (especially in proposition 1.4.26), we could work with
the characters θ′

kn,d,r
instead of θkn,d,r. ⌟

Remark 1.4.19. Let us mention that for any finite field k of odd characteristic, the Legendre
symbol can be written as λk = θk,2,1. If 3 divides |k×| (i.e., |k| ≡ 1 mod 3), then θk,3,±1
are the two characters of order exactly 3 in k̂×. ⌟

48We use the fact that for every surjective morphism of cyclic groups Z/abZ → Z/aZ, [x] 7→ [dx] (with
a, b ⩾ 1), any generator [h] ∈ Z/aZ can be lifted to a generator of Z/abZ. First, we may assume that the
surjective morphism is given by a canonical quotient map, since gcd(d, a) = 1. Without loss of generality
we can suppose that gcd(a, b) = 1. Then we just use Chinese remainder theorem.

Concretely, in SAGE [The21], the command GF(q).multiplicative_generator() can be used to get
norm-compatible families of generators. In practice (e.g., in proposition 1.4.26) we may assume that
n = u|k|,d(r) divides ϕ(d) for some fixed integer d ⩾ 1.
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1.4.2.2 Stickelberger ’s theorem

It is clear that given a finite field k and any multiplicative characters χ1, ..., χn ∈ k̂× of order
dividing some integer D ⩾ 2 (for instance D = |k×|), the Jacobi sum J(χ1, ..., χn) ∈ Z[ζD]
is an algebraic integer in the cyclotomic field Q(ζD). An important question is to know how
the principal ideal generated by J(χ1, ..., χn) decomposes as a product of prime ideals. The
answer is given by Stickelberger theorem 1.4.22, stated below, which requires the following
notations.

Definition 1.4.20. Let us fix a prime p and a primitive D-root of unity ζD, where D ⩾ 2 is
coprime to p. Fix a power q = pe of p.

1. We denote by p = P ∩Z[ζD] the prime ideal of Z[ζD] above p which is below the maximal
ideal P ⊴ Z used in definition 1.4.12. For any t ∈ (Z/DZ)×, we define σt ∈ Gal(Q(ζD)/Q)
to be the unique element such that σt(ζD) = ζtD.

2. We define the character
ωq,D := θFqm ,D,1 : F×

qm −→ Q×

where m := uq,D(1) = ord×(q mod D).

3. Given a vector b⃗ = (b1, ..., bn) ∈ (Z/DZ ∖ {0})n, we define

β(⃗b) = βq,D (⃗b) :=
f−1∑
j=0

(
− 1 +

n+1∑
i=1

−bi · pj

D

)
where bn+1 := −

∑n
i=1 bi, f ⩾ 1 is such that pf = qord×(q mod D) (that is, f = e ·

ord×(q mod D)) and x is the fractional part of x as in definition 1.4.1. ⌟

Remark 1.4.21. 1. We note that ωq,D is a character of order exactly D on F×
qord(q mod D) by

proposition 1.4.17.

2. Moreover, given an integer d ⩾ 1 coprime to q and r ∈ Z/dZ, we set D := d
gcd(d,r) so

that n := uq,d(r) = uq,D(1) by proposition 1.4.16.1. Then we find

θFqn ,d,r = Θ
(qn−1)·r

d = Θ
(qn−1)·r/ gcd(d,r)

D = ω

r
gcd(d,r)
q,D . (1.4.11)

3. It can be checked that β(⃗b) is an integer (see [Gri16, remarque 3.3.4]). ⌟

We are now ready to state how the principal ideal generated by a Jacobi sum decomposes
into a product of prime ideals.

Theorem 1.4.22 (Stickelberger). Let q = pe be a power of a prime p, where e ⩾ 1. Let
D ⩾ 2 be coprime to p and let a⃗ = (a1, ..., an) ∈ (Z/DZ ∖ {0})n be such that

∑n
i=1 ai ̸= 0.

Then, using the notations from definition 1.4.20, we have

J(ωa1
q,D, ..., ω

an

q,D)Z[ζD] =
∏

[t]∈(Z/DZ)×/⟨p⟩×

σt−1(p)βq,D(t·⃗a)
⌟

Proof. –– See [Gri16, théorème 3.3.9] (the result is deduced, using proposition 1.4.6, from a
similar statement about Gauss sums; see also [BEW98, theorems 11.2.2, 11.2.3] or [Coh07,
proposition 3.6.10]). ■
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Remark 1.4.23. We check that the product over [t] ∈ (Z/DZ)×/⟨p⟩× appearing in theo-
rem 1.4.22 is well-defined in the sense that the factors do not depend on which representative
t ∈ (Z/DZ)× we choose.

Namely, we have βq,D(p⃗b) = βq,D (⃗b) (this is clear since β is defined using a sum over
elements in ⟨p⟩ ⩽ (Z/DZ)×, repeated e

gcd(ord(p mod D),e) times) and σp(p) = p (because σp
is the Frobenius element at p in Gal(Q(ζD)/Q); it actually generates the decomposition
subgroup at p which is the stabilizer of p under the action of the Galois group). ⌟

Stickelberger’s result will be important to us in the following way. In a nutshell, it
gives an upper bound on the geometric rank of some elliptic curves. If the L-function
of an elliptic curve E over a global function field K = k(C) is expressed as a product
L(E/K, T ) =

∏d
j=1(1− αjT ), then computing the order of vanishing of this L-function at

T = |k|−1 amounts to counting how many αj are equal to |k|. All such αj are rational (and
conversely, if αj ∈ Q then αj = ±|k| by theorem 1.3.30), and thus the ideal (αj) ⊴ Z[ζq−1]
is Galois-invariant (but not conversely; we miss roots of unity by passing to the ideal!). If
the αj ’s are related to Jacobi sums, then we see that Stickelberger’s theorem 1.4.22 tells
us how this principal ideal factors into prime ideals. For more details, see section 4.2 in
chapter 4.

1.4.3 Characters and L-funct ions

A general strategy to compute the L-function of an elliptic curve E over k(t) is to first try
to express it via character sums. Namely, we wish to find some integers d ⩾ 1, δ | d and a
function (using the notations from definition 1.4.1)

α :
⊔
n⩾1

k̂×
n [d] −→ C

satisfying some properties (stated in proposition 1.4.26) and such that

logL(E/k(t), T ) = −
∑
n⩾1

( ∑
χ∈k̂×

n [d]∖k̂×
n [δ]

α(χ)
)
Tn

n
. (1.4.12)

Remark 1.4.24. We point out that it is not always possible to take α so that its image lies
in the maximal abelian extension Qab = Q(ζn;n ⩾ 1) of Q (which would be reasonable to
have if α is defined in terms of character sums like Jacobi sums, for instance). Here is a
concrete example inspired by [Ulm07a, §6.5]. We take p = 5, d = 3, k = Fp and we consider
the elliptic curve

E : y2 = x3 + (td − 1)4x+ (td + 1)(td − 1)5 (1.4.13)

over K = Fp(t). The L-function of E over K is 390625T 8−2500T 6−150T 4−4T 2 +1 ∈ Z[T ]
which is an irreducible polynomial, and the Galois group of its splitting field is a non-abelian
group of order 16 (e.g., using MAGMA [BCP97]), so its roots cannot lie in some cyclotomic
field, in particular they cannot be sums of roots of unity. ⌟
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Remark 1.4.25. Assume that at each place v ∈ VK ∖ {v∞} ≃ |A1
k|, the elliptic curve E has

a minimal integral Weierstrass model of the form y2 = fv(x, t) for some monic polynomial
fv(x, t) ∈ K[t, x] of degree 3 in x. Then proposition 1.3.29 allows us to write

logL(E/K, T ) =
∑
j⩾1

(
AE(v∞, j)−

∑
x,t∈kj

λkj (fv(x, t))
)
T j

j
.

If we have fv(x, t) = gv(x, td) for some polynomials gv and some integer d ⩾ 1 coprime to
char(k) (independent of v), then we may use proposition 1.4.3 to get an expression of the
L-function as in equation (1.4.12). ⌟

The following result, which is proved (with different notations) in [Gri16, Proposition 2.1.15],
will be essential to express the L-function L(E/k(t), T ) of some elliptic curves E over k(t) as
a polynomial (as in theorem 1.3.30) with explicit roots, which will then allow to determine
the order of vanishing at T = |k|−1.

Proposition 1.4.26. Fix a finite field k and two integers d, δ ⩾ 1 coprime to |k| such that
δ | d. Assume that we have a map

α :
⊔
n⩾1

k̂×
n [d] −→ C

satisfying the following two properties:

1. (Compatibility with the Frobenius morphism). For every n ⩾ 1 and every χ ∈ k̂×
n [d], one

has α(χ) = α(χ|k|).

2. (Hasse–Davenport relation). For every finite extensions L ⊃ F ⊃ k of k and any character
χ ∈ F̂×[d], we have α(χ ◦NL/F ) = α(χ)[L:F ].

Then the following identity holds in CJT K :

∑
n⩾1

( ∑
χ∈k̂×

n [d]∖k̂×
n [δ]

α(χ)
)
Tn

n
= −

∑
[r]∈(Z/dZ∖ d

δ Z/dZ)/⟨|k|⟩×

log
(

1− α(θku(r),d,r)Tu(r)
)

(1.4.14)

where u(r) := u|k|,d(r) is as in definition 1.4.15. The sum on the right-hand side runs over
the orbits of the action of the group ⟨|k|⟩× ⩽ (Z/dZ)× of powers of |k| on Z/dZ ∖ d

δZ/dZ
(note that d is coprime to |k| so |k| is invertible in Z/dZ). ⌟

Proof. –– We first point out that the right-hand side of equation (1.4.14) is well-defined.
Namely, we show that 1 + α(θku(r),d,r)Tu(r) is independent of the representative of the
orbit [r] = { |k|j · r : j ∈ Z } ⊂ Z/dZ. First of all, proposition 1.4.16.2 indicates that
u(r) = u(|k|jr) for any j ∈ Z. While the character θku(r),d,r might depend on the choice of
a representative r, the value α(θku(r),d,r) only depends on the orbit [r]. Indeed, it is clear
that θku(qr),d,qr = θqku(r),d,r

, where q := |k|. Then, from hypothesis 1 on α, one deduces that

α(θku(qj r),d,q
jr) = α(θku(r),d,r)

holds for every j ∈ Z.

73



1 – Background material

Now we compute the series on the left-hand side of equation (1.4.14), mainly using proposi-
tion 1.4.17. First, notice that given r′ ∈ Z/δZ, we have

u|k|,δ(r′) = ord×
(
|k| mod δ

(δ, r′)
)

= ord×
(
|k| mod d

(δ, r′) · d/δ
)

= u|k|,d
(d
δ
r′)

and for each n ∈ u|k|,δ(r′)Z>0 we have

θkn,δ,r′ = Θ|k×
n |·r′/δ = Θ|k×

n |·r′· d
δ /d = θkn,d,

d
δ r

′

Therefore, the elements r′ ∈ Z/δZ can be replaced by r = d
δ r

′ ∈ d
δZ/dZ and we compute:∑

n⩾1

( ∑
χ∈k̂×

n [d]∖k̂×
n [δ]

α(χ)
)
Tn

n
=

∑
r∈Z/dZ∖ d

δ Z/dZ

( ∑
n∈u|k|,d(r)Z>0

α(θkn,d,r)
)
Tn

n
(⋆)

=
∑

r∈Z/dZ∖ d
δ Z/dZ

∑
ν⩾1

α(θku(r)·ν ,d,r)
Tu(r)·ν

u(r) · ν

=
∑

r∈Z/dZ∖ d
δ Z/dZ

∑
ν⩾1

α(θku(r),d,r ◦Nku(r)ν/ku(r))
Tu(r)·ν

u(r) · ν (⋆⋆)

=
∑

r∈Z/dZ∖ d
δ Z/dZ

∑
ν⩾1

α(θku(r),d,r)ν
Tu(r)·ν

u(r) · ν (♢)

=
∑

r∈Z/dZ∖ d
δ Z/dZ

∑
ν⩾1

(
α(θku(r),d,r)Tu(r))ν

u(r) · ν


= −

∑
r∈Z/dZ∖ d

δ Z/dZ

1
u(r) log

(
1− α(θku(r),d,r)Tu(r)

)
(△)

= −
∑

[r]∈(Z/dZ∖ d
δ Z/dZ)/⟨|k|⟩

log
(

1− α(θku(r),d,r)Tu(r)
)

where the last step follows because u|k|,d(r) is (by definition) the cardinality of the orbit
[r] of r ∈ Z/dZ under the action of the powers of |k| on Z/dZ. Equality (⋆) uses proposi-
tion 1.4.17.3, (⋆⋆) uses proposition 1.4.17.1, (♢) uses hypothesis 2 on α, and (△) uses the
identity log(1− aT ) = −

∑
ν⩾1

(aT )ν/ν. ■

The following lemma determines explicitly the number of factors appearing in equa-
tion (1.4.14).

Lemma 1.4.27. Let a, n ⩾ 2 be two coprime integers, and let the cyclic group ⟨a⟩× ⊂
(Z/nZ)× of powers of a act on the set Z/nZ. Then

1. The number of orbits for this action is equal to∣∣∣Z/nZ/⟨a⟩×∣∣∣ =
∑
e|n

ϕ(e)
ord×(a mod e)

=
∑
e|n

[(Z/eZ)× : ⟨a⟩×].

2. Moreover, we have
∣∣∣Z/(a+ 1)Z

/
⟨a⟩×

∣∣∣ = g + a+1−g
2 where g := gcd(a − 1, 2) and∣∣∣Z/(a+ 1)Z

/
⟨a2⟩×

∣∣∣ = a+ 1. More generally,
∣∣∣Z/nZ/⟨a⟩×∣∣∣ ⩾ n

ord×(a mod n) .
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3. Assume that n = aℓ + 1 where ℓ is either some odd prime. Define g := gcd(a − 1, 2).
Then ∣∣∣Z/nZ/⟨a⟩×∣∣∣ = g + a+ 1− g

2 + aℓ − a
2ℓ . ⌟

Proof. –– 1. First, note that the additive order of any element x ∈ Z/nZ is a divisor e of n.
We claim that if the additive order of x equals ord+(x mod n) = e, then the orbit of x
has size | orb(x)| = ord×(a mod e) equal to the multiplicative order of a mod e. Then
the formula will immediately follow since given a group action G↷ X, the number of
orbits is |X/G| =

∑
A∈X/G 1 =

∑
A∈X/G

∑
x∈A

1
|A| =

∑
x∈X

1
| orb(x)| .

The orbit of x is {x, ax, a2x, a3x, ...} ⊂ Z/nZ. Since ex ≡ 0 (mod n) and aord×(a mod e) =
1 + eα for some α ∈ Z, we get aord×(a mod e)x ≡ x (mod n), so the orbit has size at most
ord×(a mod e). In fact we have

ajx ≡ x (mod n) ⇐⇒ aj − 1 ≡ 0 (mod e) ⇐⇒ ord ×(a mod e) | j,

so this proves | orb(x)| = ord×(a mod e). (We note that e = n
gcd(x,n) , so we can generalize

the proof of proposition 1.4.16.1 to conclude that | orb(x)| = ord×(a mod e)).

2. Assume now that n = a+ 1. Then a ≡ −1 mod n implies that all the orbits have size 2,
except the orbits of x ∈ Z/nZ such that x ≡ −x, i.e. x ≡ 0 or x ≡ n

2 if a is odd (i.e.,
g = 2). Thus, if a is even we have a

2 + 1 orbits and if a is odd we have a−1
2 + 2 orbits,

which shows the claim.

The second identity is obvious: ⟨a2⟩ acts trivially on Z/(a+ 1)Z since a2 ≡ 1 mod (a+ 1).

The last inequality follows from the fact that we have a reduction map (Z/nZ)× →
(Z/eZ)× for any divisor e | n, and this implies that ord×(a mod e) | ord×(a mod n).
Now it suffices to recall that

∑
e|n ϕ(e) = n.

3. We start with the case where ℓ is an odd prime. Consider the action Z ↷ Z/nZ defined by
j · x := ajx for all j ∈ Z. We have aℓx ≡ −x mod n for all x ∈ Z/nZ (since n = aℓ + 1),
so a2ℓx ≡ x mod n, which implies that the action factors through Z/2ℓZ ↷ Z/nZ.
In particular, all orbits have size dividing 2ℓ. Since ℓ is prime, the sizes are among
{1, 2, ℓ, 2ℓ}. Given k ⩾ 1, let

ak := #{x ∈ Z/nZ : akx ≡ x mod n }, Ak := #{x ∈ Z/nZ : | orb(x)| = k },

so that the number of orbits of size k is 1
k
Ak. We have (by inclusion-exclusion principle)

A1 = a1, A2 = a2 − a1, Aℓ = aℓ − a1, A2ℓ = a2ℓ − aℓ − a2 + a1,

since ℓ is an odd prime. Moreover, define the endomorphism f : Z/nZ → Z/nZ by
f(x) := (ak − 1)x. We have

ak = # ker(f) = n

# Im(f) = n

[(ak − 1)Z + nZ : nZ] = n

n/ gcd(n, ak − 1) = gcd(n, ak − 1).

One concludes that

a1 = gcd(aℓ + 1, q − 1) = gcd
(aℓ − 1
a− 1 (a− 1) + 2, a− 1

)
= gcd(a− 1, 2),
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a2 = gcd(aℓ + 1, a2 − 1) ℓ odd= gcd
(
a
(
aℓ−1−1
a2−1 (a2 − 1) + 1

)
+ 1, a2 − 1

)
= a+ 1,

aℓ = gcd(aℓ + 1, aℓ − 1) = gcd(aℓ + 1, 2) = gcd(a− 1, 2),
a2ℓ = gcd(aℓ + 1, a2ℓ − 1) = aℓ + 1.

Hence the total number of orbits is∣∣∣Z/nZ/⟨a⟩×∣∣∣ =
∑

k∈{1,2,ℓ,2ℓ}

Ak
k

= g + a+ 1− g
2 + 0 + aℓ − a

2ℓ ,

where g := gcd(a− 1, 2) as desired.

(Note also that in general if a = q is a prime power and gcd(n, q) = 1, the number of
⟨q⟩×-orbits on Z/nZ is the number of irreducible factors of Xn−1 in Fq[X]: such a factor
corresponds to a Galois-orbit of an n-th root of unity in F×

q , and Gal(Fq/Fq) is generated
by Frq : x 7→ xq whose iterates are given by powers of q, namely Frjq : x 7→ xq

j ). ■

1.4.4 Expl ic i t Jacobi sums

We now give some examples where the hypothesis of Tate–Shafarevich’s theorem 1.4.8 are
fulfilled. To this end, we start with a small lemma.

Lemma 1.4.28. Let a ⩾ 2, ν ⩾ 1 be integers and D be a divisor of aν + 1 (in particular,
gcd(a,D) = 1). Assume that D ⩾ 3. Then:

1. The multiplicative order ord(a) := ord×(a mod D) of a modulo D is even and

aord(a)/2 ≡ −1 (mod D).

2. Moreover, ord(a)
2 divides ν and the ratio ν

ord(a)/2 is odd.

3. Finally, we have
aord(a) − 1
D · (a− 1) ∈ Z. ⌟

Proof. –– We prove the first two items simultaneously. Let us write ord(a) = 2α + ϵ for
some α ⩾ 1 and ϵ ∈ {0, 1}. Then

1 ≡ aord(a)·ν = (aν)2α+ϵ ≡ (−1)2α+ϵ ≡ (−1)ϵ (mod D)

and since D ⩾ 3, this implies that ϵ = 0, i.e. ord(a) is even.

Moreover, we know that a2ν ≡ 1 (mod D), so the order of a divides 2ν, which means that
ν = αν1 for some integer ν1 ⩾ 1. Let us write ν1 = 2ν′ + ϵ′ for some ν′ ⩾ 0 and ϵ′ ∈ {0, 1}.
Then

−1 ≡ aν = (aα)2ν′+ϵ′
= 1ν

′
· aαϵ

′
(mod D),

which means (again because D ⩾ 3) that ϵ′ = 1 and aα = aord(a)/2 ≡ −1 (mod D) as
desired. This also proves that ν = ord(a)

2 · ν1 for some odd integer ν1 ⩾ 1.
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Finally let us check that aord(a)−1
D·(a−1) is an integer. From item 1, we know that ord(a) = 2α is

even and that aα ≡ −1 (mod D). Now, we have

aord(a) − 1
a− 1 =

ord(a)−1∑
i=0

ai ≡
α∑
i=1

ai +
2α∑

i=α+1
ai ≡

α∑
i=1

ai +
α∑
i=1

(−ai) = 0 (mod D),

which confirms that aord(a)−1
a−1 is an integer divisible by D. ■

We get the following corollary.

Corollary 1.4.29. Let d ⩾ 1 be an integer and r ∈ Z/dZ ∖ {0} such that r ̸= d
2 if d is even.

Let k be a finite field. Assume that49 there is some integer ν ⩾ 1 such that |k|ν ≡ −1
(mod d).

Then u(r) := u|k|,d(r) is even, so that ku(r) has a (unique) quadratic subfield. Moreover,
the restriction of the non-trivial character θku(r),d,r to this quadratic subfield is trivial. ⌟

Proof. –– • Since r ̸= 0, d/2 mod d, we have D := d
(d,r) ⩾ 3 and by proposition 1.4.16 we

have u|k|,d(r) = ord ×(|k| mod D). Since |k|ν ≡ −1 mod d, we also have |k|ν ≡ −1 mod
D and so we may apply lemma 1.4.28, which asserts that u(r) := u|k|,d(r) ∈ 2Z is even
and that |k|u(r)/2 + 1 ≡ 0 (mod D). From proposition 1.4.16.4 we get

r · (quq,d(r)/2 + 1) ≡ 0 (mod d). (1.4.15)

• We now prove that θ := θku(r),d,r is trivial on k×
u(r)/2. Note also that θku(r),d,r is non-

trivial on ku(r), since r ̸≡ 0 (mod d), by proposition 1.4.17.2. Now, there is a unique
generator g of k×

u(r) such that θ(g) = exp(2πir/d) by proposition 1.4.14. Note that
g′ := gq

u(r)/2+1 = Nku(r)/ku(r)/2(g) is a generator of k×
u(r)/2. We have

θ(g′) = exp
(2πir

d
(qu(r)/2 + 1)

)
= 1 (1.4.16)

where the second equality follows from equation (1.4.15). This concludes the proof. ■

We can generalize slightly the above results to get the following. The point is that we do
not assume that |k|ν ≡ −1 (mod d) but only pν ≡ −1 (mod d) (for some ν ⩾ 1).

Lemma 1.4.30. Let p be any prime, d, e ⩾ 1 be integers, set k = Fpe and let r ∈ Z/dZ∖{0}
such that r ̸= d/2 if d is even. Set θ := θku(r),d,r where u(r) := u|k|,d(r).

Assume that pν ≡ −1 mod d for some integer ν ⩾ 1. Then:

1. For any M ⩾ 2 there is a sign ϵ ∈ {±1} such that for any a1, ..., aM ∈ Z/ d
(d,r)Z ∖ {0}

satisfying a1 + · · ·+ am ̸= 0, we have

J(θa1 , ..., θaM ) = ϵ · |k|(M−1)·u(r)/2.

Moreover, we may take ϵ = +1 if M is odd.

49For instance, this is fulfilled if k = Fpe for some prime p and some odd integer e ⩾ 1 such that there is
some integer ν′ ⩾ 1 satisfying pν′

≡ −1 (mod d).
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2. If k′ ⊂ k is a subfield such that the degree c := [k′ : Fp] is odd50, then the restriction of
θ to k′ is trivial and the degree [ku(r) : k′] is even. ⌟

Proof. –– 1. Here we may not be able51 to use the Tate–Shafarevich theorem 1.4.8 directly
on θ (unless we assume that e divides ν which implies |k|ν ≡ −1 mod d, in which case
corollary 1.4.29 applies). But we will use Tate–Shafarevich theorem 1.4.8 on a different
character and then apply the Hasse–Davenport relation (theorem 1.4.7).

Namely, we apply corollary 1.4.29 to k′ = Fp in order to get that u′(r) := up,d(r) is
even and θ′ := θk′

u′(r),d,r
is trivial on the quadratic subfield of k′

u′(r). Then so is θ′ai for
any 1 ⩽ i ⩽ M . Note that none of the θ′ai nor θ′a1+···+aM are trivial on k′

u′(r) since
ai ̸≡ 0 ̸≡ a1 + · · ·+ am mod d

(d,r) and θ′ has order d
(d,r) . By theorem 1.4.8, we find

J(θ′a1 , ..., θ′aM ) = p(M−1)·u′(r)/2

Now, we compute

[ku(r) : Fp] = e · u|k|,d(r) = e · ord
(
pe mod d

(d, r)
)

= e

gcd(e, up,d(r))
· up,d(r). (1.4.17)

Hence ku(r) is an extension of k′
u′(r) of degree

n := e

gcd(e, up,d(r))
.

Thus, theorem 1.4.7 together with proposition 1.4.17.1 yield

J(θa1 , ..., θaM ) = (−1)(n−1)(M−1)p(M−1)·n·u′(r)/2 = (−1)(n−1)(M−1)|k|(M−1)·u(r)/2

(1.4.18)

which concludes the proof, by setting ϵ := (−1)(n−1)(M−1) (which does not depend on
the ai’s).

2. Since k′ = Fpc is a subfield of k = Fpe , we may write e = c · e′ for some e′ ⩾ 1. By
proposition 1.4.14, there is a unique generator g ∈ k×

u(r) such that θ(g) = exp(2πir/d).
Now, g′ := Nk/k′(g) = g|k×|/|k′×| is a generator of k′× and

θ(g′) = exp(2πiX), X := r · (pce′u(r) − 1)
d · (pc − 1)

so we want to prove that X ∈ Z. Let a := pc and D := d
(d,r) ; we have D ⩾ 3 in view of

the hypothesis on r. We have

X = r

(d, r) ·
ae

′ ord(ae′
mod D) − 1

D · (a− 1) .

50The character θ does not need to be trivial on k′ if c is even. For instance, if k = F24 and g is a generator of
k× such that θk,3,1(g) = exp(2πi/3), then k′× = F×

22 is generated by g5 and θk,3,1(g5) = exp(10πi/3) ̸= 1.
51It is always true that e · u|k|,d(r) is even (i.e., ku(r) has a quadratic subfield), but when 4 | e, it may not

be true that d | r · (|k|u(r)/2 + 1) which is needed for the triviality of θ over that quadratic subfield. For
instance, take p = 2, d = 3, r = 1, |k| = p4: we have u|k|,d(r) = 1 and d ∤ (p2 + 1).
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Now, observe that ae′ ord(ae′
mod D) − 1 is an integer multiple of aord(a mod D) − 1 and

that aν = (pν)c ≡ −1 mod D because c is odd. Henceforth lemma 1.4.28 allows us to
conclude that X ∈ Z as desired. Finally, from equation (1.4.17) and the fact that up,d(r)
is even (as seen above), we deduce that e · u|k|,d(r) = c · e′ · u(r) is even. Since c is odd,
this means that [ku(r) : k′] = e′ · u(r) is even, which finishes the proof. ■

We will also need the following generalization of corollary 1.4.29.

Lemma 1.4.31. Let d ⩾ 1 be an integer, let δ | d be a divisor of d and let r ∈ Z/dZ be such
that r is not a multiple of δ

gcd(δ,2) and is a multiple of d
δ . Let k = Fq be a finite field with q

elements. Assume that there is some integer ν ⩾ 1 such that qν ≡ −1 (mod δ).

Then u(r) := uq,d(r) is even and

qu(r)/2 ≡ −1 mod d
(d,r)

and the restriction of character θku(r),d,r to k×
u(r)/2 is trivial. ⌟

Proof. –– The assumption implies that qν ≡ −1 mod δ′ where δ′ := δ
(δ,r) . Note that δ′ ⩾ 3,

because δ′ = 1 would give that δ | r, and δ′ = 2 would give that δ is even and δ/2 divides r.
Both cases are excluded by hypothesis.

Then by lemma 1.4.28, we deduce that the multiplicative order ord×(q mod δ′) of q mod δ′ is
even. We claim that δ′ divides d

(d,r) , from which we can easily conclude that uq,d(r) = ord ×(q
mod d

(d,r)) is even. As far as the divisibility is concerned, the hypothesis ensures that we
can write r = d

δ r
′ for some integer r′ ⩾ 1. Then d · (δ, r) = d · (δ, dδ r′) is a multiple of

d · (δ, r′) = (dδ, dr′) = (dδ, rδ) = δ · (d, r) (1.4.19)

and this is equivalent to saying that δ′ = δ
(δ,r) divides d

(d,r) .

We now check that qu(r)/2 ≡ −1 mod d
(d,r) . First, observe that d/(d, r) divides δ, as can

be seen from equation (1.4.19). The assumption qν ≡ −1 mod δ implies that qν ≡ −1
mod d′ where d′ := d/(d, r). Then we can apply lemma 1.4.28 to d′ (note that d′ ⩾ 3 since
we cannot have r ∈ {0, d/2, d}). This ensures that r · (qu(r)/2 + 1) ≡ 0 (mod d), which is
exactly what we needed in the proof of corollary 1.4.29 to check that θku(r),d,r is trivial on
k×
u(r)/2 (see equation (1.4.16)). ■
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Chapter 2
Packing density of Mordell–Weil lattices and

asymptotics

In this chapter, we first give a general lower bound on the sphere packing density of (narrow)
Mordell–Weil lattices of elliptic curves over global function fields like Fq(t) satisfying the
Birch–Swinnerton-Dyer conjecture 1.3.34 (see proposition 2.1.1), which relies on Shioda’s
theorem 1.3.24.

Moreover, we analyze the asymptotic behavior of this lower bound as the rank goes to
infinity (see theorem 2.3.1). This requires an upper bound on the Brauer–Siegel ratio of
elliptic curves as given in [HP16]. As a result, we get sufficient conditions on a sequence of
elliptic curves (En)n⩾1 so that the packing density of the corresponding narrow Mordell–

Weil lattices (Ln)n⩾1 satisfies D(Ln) ⩾ r
− rn

12 (1+o(1))
n where rn is the rank of Ln. This

includes the families studied by Elkies and Shioda in [Elk94] and [Shi91] respectively, hence
providing some conceptual explanation behind the choice of these curves to get "interesting"
sphere packings. In section 2.4, we mention how some of the ideas can be generalized to
abelian varieties, and to constant elliptic curves.

Finally, in section 2.5, we answer a natural question raised by the work [Elk94]: when n ⩾ 1
is odd, what is the rank of the elliptic curve y2 + y = x3 + t2

n+1 over F2(t) (instead of
F22n(t) as done in the Elkies’ paper)? Even though the lower bound on the packing density
of the corresponding narrow Mordell–Weil lattices is asymptotically "as good as" the lattices
from [Elk94, Shi91], they do not give rise to very dense sphere packings in low dimensions.
In any case, these elliptic curves provides an explicit example of a family of isotrivial elliptic
curves in characteristic 2 with unbounded rank, in analogy with the work [TS67] which
deals with isotrivial curves in odd characteristic.

We remind the reader that a list of symbols can be found at the end of this work, on
page 239.

D

2.1 · Lower bound on the packing density

We start by giving a general lower bound on the sphere packing density of narrow Mordell–
Weil lattices.
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Proposition 2.1.1. Let E be an elliptic curve over a global function field K = k(C) as in
definition 1.3.2. Let g be the genus of C and r be the Mordell–Weil rank of E(K). Assume
that E/K satisfies the BSD conjecture 1.3.34.

Then the center (sphere packing) density of the narrow Mordell–Weil lattice
E(K)0 ⊂ E(K) is bounded from below by

δ
(
E(K)0) ⩾

(deg (∆min(E/K))
24

)r/2

c(E/K)1/2 · L∗(E/K)1/2 · |E(K)tors| · |k|
g−1

2 ·H(E/K)1/2
. (2.1.1)

Moreover, this lower bound is an equality if and only if the following equalities hold:

λ1(E(K)0)2 = 1
6 deg (∆min(E/K)) , |X(E/K)| = 1, [E(K) : E(K)0] = c(E/K).

⌟

Proof. –– We apply BSD formula (item a) from conjecture 1.3.34) to get an upper bound
on the discriminant of E(K), by simply using the fact |X(E/K)| ⩾ 1:

Reg(E/K) ⩽ L∗(E/K) · |E(K)tors|2 · |k|g−1 ·H(E/K) · c(E/K)−1. (2.1.2)

From theorem 1.3.24, we have

λ1
(
E(K)0) ⩾

(deg (∆min(E/K))
6

)1/2
. (2.1.3)

Now, using remark 1.1.4.2, the covolume of E(K)0 is given by

covol
(
E(K)0) = [E(K) : E(K)0] · covol(E(K)) = [E(K) : E(K)0] · Reg(E/K)1/2.

Using lemma 1.3.23, together with equation (2.1.2), we deduce

covol
(
E(K)0) ⩽ c(E/K)1/2 · L∗(E/K)1/2 · |E(K)tors| · |k|g/2−1/2 ·H(E/K)1/2

(Note that L∗(E/K) > 0 by remark 1.3.33.4, so taking its square root makes sense).

Combining the above inequalities yields the claimed lower bound on δ(E(K)0). The case
of equality is clearly attained exactly when the lower bounds (2.1.3), |X(E/K)| ⩾ 1 and
[E(K) : E(K)0] ⩽ c(E/K) (which are the only ones we used to get a lower bound on
δ(E(K)0)) are all equalities. In general, the right-hand side of equation (2.1.1) can be
multiplied by |X(E/K)|1/2 ∈ Z>0. ■

Remark 2.1.2. Here is the strategy to compute the lower bound on δ(E(K)0) from proposi-
tion 2.1.1.

1 Compute the L-function L(E/K, T ) as explicitly as possible. This gives the analytic
rank, and also the algebraic rank (since E satisfies the BSD conjecture by assumption).
From this, we can also compute the special value L∗(E/K).
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2 Using Tate’s algorithm (see [Sil08b, IV.9, p. 364–369]), one can compute deg (∆min(E/K))
(and hence H(E/K)) and c(E/K).

3 It only remains to determine |E(K)tors|, which can be done in various ways (for instance
using the injectivity of reduction maps, see [Sil08a, VII.3.1(b)], or using a function field
analogue of Nagell–Lutz theorem [Sil08a, VIII.7.2]). We mention another method in the
following proposition 2.1.3. ⌟

Proposition 2.1.3. Let E be an elliptic curve over a global function field K with at least one
place of bad reduction (in particular1, E is non-constant). Then |E(K)tors|2 divides c(E/K).
Moreover, there is an injective group morphism E(K)tors ↪−−→

∏
v∈V 0

K
E(Kv)/E(Kv)0. ⌟

Proof. –– See [SS19, proposition 6.31] (where the authors use notations from §5.4, p. 87
ibid.; note in particular that their convention 5.10 corresponds to our hypothesis about bad
reduction) or [SS10, corollary 7.5] for the second claim. ■

We also have the following uniform bound.

Proposition 2.1.4. Let g ⩾ 0 be an integer. Then there is a constant Tg > 0 such that for
every global function field K = k(C) where C has genus g and every non-constant elliptic
curve E over K, one has |E(K)tors| ⩽ Tg. ⌟

Let us mention that when E is constant over k(C), we have E(K)tors = E(k) as mentioned
in remark 2.4.1; so it has size |k|+ 1− a for some a ∈ Z such that |a| ⩽ 2|k|1/2.

Proof. –– See [Lev68, theorem 1, p. 460] and [Ulm11, lecture 1, proposition 7.1] for the
case where E is non-isotrivial. The proof of [Ulm11, lecture 1, proposition 7.1] only relies
on the fact that E is non-constant. (Also, as pointed out in [Sch05] after the proof of
proposition 1.9, if E is isotrivial but not constant and if p = char(k), then the p-primary
part of E(K)tors (i.e., the p-Sylow subgroup) has size ⩽ 2).

See [McD18, McD19] for the full (finite) list of groups that occur as E(K)tors for some
non-isotrivial curve E/K, when K has genus 0 or 1: while the list might depend on char(k),
there is indeed an upper bound on |E(K)tors| that is independent of k.

See also [GS95b, theorem 13] for a bound that depends on the inseparability degree of
jE : C → P1. ■

2.2 · Brauer–Siegel and Szpiro rat ios, Brumer ’s bound
In order to study the asymptotic behavior of the lower bound from proposition 2.1.1 (as
the rank goes to infinity), we need some tools which we introduce now.

We first define two notions, following [HP16, definition 1.2 and §7.2, p. 80]

Definition 2.2.1. Let E be an elliptic curve over a global function field K. Assume that
f(E/K) > 0 (in particular E is non-constant).

1See also remark 1.3.25.
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1. The Szpiro ratio of E over K is the positive rational number

σ(E/K) := deg (∆min(E/K))
f(E/K) .

2. Assume that X(E/K) is finite. The Brauer–Siegel ratio of E over K is the non-negative
real number

BS(E/K) := log(|X(E/K)| · Reg(E/K))
log(H(E/K)) . ⌟

Observe that BS(E/K) is well-defined since the assumption f(E/K) > 0 implies that there
is at least one place of bad reduction for E, so that H(E/K) > 1 (thus log(H(E/K)) ̸= 0).
Let us mention here some results about these invariants. First, we deal with the Szpiro
ratio.

Theorem 2.2.2 (Ogg, Pesenti–Szpiro). Let E be an elliptic curve over a global function
field K = k(C) such that f(E/K) > 0.

1. We have σ(E/K) ⩾ 1 (or equivalently f(E/K) ⩽ deg (∆min(E/K))), with equality if
and only if for every place v ∈ V 0

K , the reduction type of E at v has Kodaira symbol
I0, I1 or II.

2. Let g be the genus of C and let pe be the degree of inseparability of the j-invariant
jE : C → P1. Assume that E is not constant if g = 0. Then we have the inequality
deg (∆min(E/K)) ⩽ 6pe · (f(E/K) + 2g − 2). ⌟

Proof. –– 1. The inequality follows from Ogg’s formula (see [Sil08b, IV.11.1, p. 389]), which
reads v(∆min(E/K)) = fv + mv − 1 ⩾ fv, where mv ⩾ 1 is the number of irreducible
components, defined over k and counted without multiplicity, of the fiber of π : E → C

over v (we use the notations from remark 1.3.9). The other claim is given in [Sil08b,
corollary IV.11.2, p. 396], see also [Sil08b, exercise 3.36, p. 287].

2. See [PS00, theorem 0.1] (this is an analogue over function fields of a famous conjecture
of Szpiro, itself related to the abc conjecture, see [Sil08a, VIII.11]). ■

Remark 2.2.3. The degree of inseparability of jE plays an essential role in the bound
from theorem 2.2.2.2, as the following example shows. We use Frobenius twists E →
E(pn) (these are isogenies over K = Fp(t), so the conductor is preserved). Let p = 31
so that the equations α3 = −4 mod p, β2 = −27 mod p have a solution, for instance
(α, β) = (3, 2), and 3−1 ≡ 21, 2−1 ≡ 16 mod p. Define En : y2 = x3 + 21tpn

x + 16. We
have j(En) = 123 4a3

4a3+27b2 = −123 t3pn

t3pn +1 = −123( t3

t3+1
)pn

. We have f(En/K) = 5 while
deg(∆min(En/K)) ∼ 3pn as n→∞. ⌟

Now, we deal with some known results on the Brauer–Siegel ratio.

Theorem 2.2.4 (Hindry–Pacheco). Fix real numbers ϵ > 0, c0 ⩾ 1 and an integer g ⩾ 0.
Then there are constantsBϵ,g,c0 , B

′
ϵ,g,c0

> 0 such that for every global function fieldK = k(C)
where C has genus g, and every elliptic curve E over K with finite Tate–Shafarevich group
and with f(E/K)c0 ⩾ |k| and f(E/K) ⩾ Bϵ,g,c0 , we have

|X(E/K)| · Reg(E/K) ⩽ B′
ϵ,g,c0

·H(E/K)1+ϵ.

84



2.2 – Brauer–Siegel and Szpiro ratios, Brumer’s bound

Therefore, if (En/kn(Cn))n⩾1 is a sequence of elliptic curves with finite Tate–Shafarevich
groups such that limn→∞ H(En/Kn) = +∞, the genus of Cn stays bounded and |kn| ⩽
f(En/Kn)c0 for some absolute c0 ⩾ 1, then we have

lim sup
n→+∞

BS(En/Kn) ⩽ 1. ⌟

Proof. –– See [HP16, theorem 1.10 and its proof on page 54] for a statement where the
constant B′

ϵ,g,c0
actually might depend on q (this is also why they do not assume explicitly

that the curves are non-constant). For safety, we make a detailed proof that allows K to
vary (with a fixed genus g), which can be found in the appendix A. ■

Remark 2.2.5. 1. Corollary 1.13 and proposition 7.6 in [HP16] give a lower bound on the
Brauer–Siegel ratio: namely, for all ϵ > 0 and all global function fields K, there is
Cϵ,K > 0 such that for all elliptic curves E over K with finite Tate–Shafarevich group,
we have

|X(E/K)| · Reg(E/K) ⩾ Reg(E/K) ⩾ Cϵ,K ·H(E/K)−ϵ,

which yields lim infE BS(E/K) ⩾ 0, where the liminf is taken over the collection of elliptic
curves over K with finite Tate–Shafarevich group, ordered by increasing height H(E/K).
However, in all the known examples (given for instance in [HP16, Gri16, Gri17]), the
inequality lim supn→+∞ BS(En/Kn) ⩽ 1 is an equality! As of now, there is no example
of families of elliptic curves where the limit of the Brauer–Siegel ratio is < 1, even though
such examples are believed to exist, according to [HP16, conjecture 1.7]. (We also note
that the results from [HP16] are actually more general: they hold for abelian varieties2).

2. Theorem 2.2.4 provides an analogue over function fields of Lang’s conjecture in [Lan83,
p. 159].

3. Theorem 2.2.4 may fail if we allow the genus to vary in an unbounded fashion. For
instance, [Oes90, proposition 4c)] gives an example of constant elliptic curves En over
Fq2(Xq+1) (so H(En) = 1) with |X(En) Reg(En)| → +∞ as n→ +∞. Here the Fermat
curves Xq+1 have genus going to infinity as q → +∞. See the work [KT08] and its
erratum. ⌟

Another tool that we will need is a bound on the analytic rank of an elliptic curve in terms
of its conductor. Recall also that the Mordell–Weil rank is always bounded from above by
the analytic rank (theorem 1.3.35), that is: rkE(K) ⩽ ρ(E/K).

Theorem 2.2.6 (Brumer). Let K = Fq(C) be a global function field and let gC be the genus
of the curve C. Then there are explicit constants βK , cK > 0 such that for any elliptic
curve E over K such that the degree fE of the conductor of E/K is > 1 (in particular, E
is non-constant), the analytic rank of E/K satisfies:

ρ(E/K) ⩽ fE + 4gC − 4
2 log(fE) log(q) + fE log(q)2

log(fE)2(1− q−1/2)2 + 1 + 2βK + cK log(q)
2 log(fE) .

2We note that the full generality of proposition 7.6 from [HP16] relies on some unpublished work (or work
in progress) of A. Pacheco and S. David (see page 80 ibid.).

85



2 – Packing density of Mordell–Weil lattices and asymptotics

In particular, if q is fixed and fE → +∞ we get

ρ(E/K) ⩽ fE + 4gC − 4
2 log(fE) log(q) +Oq,C

(
fE

log2(fE)

)
. ⌟

Proof. –– See [Bru92, proposition 6.9] (where it is assumed that p ⩾ 5 at the beginning
of §6, but the proof does not require this assumption) and [Paz22, lemma 3.1] (where the
result can be improved by noticing that qY/2 ⩽ fE · q1/2 just after equation (11)). See also
[Ulm07b, §11].

More specifically, Brumer shows in [Bru92] (using Weil’s explicit formulas and some trigono-
metric polynomials as the Féjer kernel) that if we define the constants

βK := (2gC + 1)(1− q−1)−1

cK := 4βK
q1/2 − 1 + 4

√
q(1− q−1/2)2 + 4βK

(q − 1)(1− q−1/2)

then we have3

ρ(E/K) ⩽ fE + 4gC − 4
Y

+ 4qY/2

q1/2Y 2(1− q−1/2)2 + 1 + 2βK + cK
Y

(2.2.1)

for every integer Y ⩾ 1. Observe that since q ⩾ 2, we have βK ⩽ 4gC + 2 and cK ⩽ 4βK(3 +
2
√

2) + 4(3
√

2 + 4) = O(gC).

Let Y :=
⌈

2 log(fE)
log(q)

⌉
. We have Y ⩾ 1 (since fE ⩾ 2 by assumption) and Y

2 ⩽ log(fE)
log(q) + 1

2 =
logq(fE) + 1

2 so that qY/2 ⩽ qlogq(fE)+ 1
2 = fEq

1/2. This yields the desired upper bound. ■

Finally, the following result will be useful to get an upper bound the index of the narrow
Mordell–Weil lattice in the full Mordell–Weil lattice.

Proposition 2.2.7. Let ϵ > 0 and g ⩾ 0. Then there is a constant d(ϵ, g) > 0 such that
for all elliptic curves E over any global function field K = k(C) where C has genus g and
deg (∆min(E/K)) ⩾ d(ϵ, g), we have

log(c(E/K)) ⩽ ϵ log(q) deg (∆min(E/K)) .

In particular, we have c(E/K) = o(H(E/K)) as deg (∆min(E/K))→ +∞. ⌟

Proof. –– This is proven as [Gri16, théorème 1.5.4]. More specifically, on page 82 ibid., one
has (given ϵ > 0)

log(c(E/K)) ⩽ max
{
ϵ

2 ·∆ ·
(

1 + log(5)
log(∆)

)
, log(q) ·∆ · 12(g + 1) · log(10/ϵ) + log log(∆)

log(∆)

}
,

where we set ∆ := deg (∆min(E/K)) for simplicity. We now choose d = d(ϵ, g) > 0 so that
12(g + 1) ·

( log(10/ϵ)+log log(∆)
log(∆)

)
⩽ ϵ and 1 + log(5)

log(∆) ⩽ 2 log(2) for all ∆ ⩾ d. It follows that

log(c(E/K)) ⩽ max{ϵ ·∆ · log(2), ϵ ·∆ · log(q)} ⩽ ϵ · log(q) · deg (∆min(E/K))

as soon as deg (∆min(E/K)) ⩾ d(ϵ, g) as desired. ■

3This is obtained just before the statement of [Bru92, proposition 6.9], but there is possibly a typographic
error: it is written βK instead of 2βK in the sum (see also the proof of [Paz22, lemma 3.1] where there is
indeed 2βK as well).
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2.3 · Asymptotic behavior of the lower bound
We are now ready to analyze how the lower bound from proposition 2.1.1 behaves in terms
of the rank of the Mordell–Weil lattice. We give sufficient conditions to get a "large" packing
density among packings obtained from narrow Mordell–Weil lattices.

Theorem 2.3.1 (Theorem A). Consider a collection of elliptic curves {Ej/Kj : j ⩾ 1 }
where Kj = Fqj (Cj) is the function field of a smooth projective geometrically irreducible
curve Cj with bounded genus, and such that the degree fj := f(Ej/Kj) of the conductor
goes to +∞ when j →∞.

Denote by Lj := Ej(Kj)0 the narrow Mordell–Weil lattice of Ej/Kj . Let rj be the
(algebraic) rank of Lj and let dj := deg (∆min(Ej/Kj)) be the degree of the minimal
discriminant of Ej/Kj .

Assume that:

1) The Birch–Swinnerton-Dyer conjecture 1.3.34 holds for the elliptic curves in the family
(in particular, the Tate–Shafarevich groups X(Ej/Kj) are finite).

2) There is a constant c0 ⩾ 1 (independent of j) such that qj ⩽ f c0
j for all j ⩾ 1.

3) The Szpiro ratio σj := σ(Ej/Kj) = dj
fj

tends to a finite value4 σ ⩾ 1 when j →∞.

4) The ratio between the rank of Ej/Kj and Brumer’s bound stays away from zero, that
is, there exists a constant β ∈]0, 1] such that

rj ∼ β · fj log(qj)
2 log(fj)

(j →∞),

Then we have the following asymptotic lower bound as j → +∞ (hence the rank rj goes to
infinity):

log(δ(Lj)) ⩾ (1 + o(1)) ·
(
rj log(rj)

(1
2 −

σ

12β
)

+ 1
2 log(|X(Ej/Kj)|)

)
.

In particular when σ = 1 and β = 1 (i.e., Brumer’s bound is asymptotically sharp5), we get

D(Lj) ⩾ r
− 1

12 rj(1+o(1))
j . ⌟

Before proving this result, let us mention some examples of families of elliptic curves that
satisfy the conditions from the above theorem 2.3.1, showing that this result provides some
conceptual explanation as to why these families might be interesting for sphere packings.

Example 2.3.2. We use the notations from remark 1.3.47.

4We have σ ⩾ 1 by theorem 2.2.2.1.
5This is a slight abuse of terminology: since we allow qj to vary, the main term of Brumer’s bound as in
theorem 2.2.6 may not be the one indicated in the last part of theorem 2.2.6.
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• In [Elk94], the isotrivial elliptic curves En := Γ4,2n+1 over Kn := Fqn(t) (where qn := 22n

and n ⩾ 1 is odd) have rank 2n+1 and satisfy deg (∆min(En/Kn)) = 12⌈2n/6⌉ and
f(En/Kn) = 2n+1 + 4 (see theorem 0.1). We see that qn ⩽ f(En/Kn)2 for all n ⩾ 1,
that Brumer’s bound is asymptotically achieved and that the Szpiro tends to 1 as
n → +∞. Morevoer, these curves are isotrivial so they satisfy the Birch–Swinnerton-
Dyer conjecture 1.3.34 by theorem 1.3.35. See also remark 2.5.9.

• In [Shi91], the isotrivial elliptic curves Ep := Γ2,p+1 over Kp := Fp2(t) (where p ≡ −1
(mod 6) is prime) have rank 2p − 2 and satisfy deg (∆min(Ep/Kp)) = 2(p + 1) and
f(Ep/Kp) = 2(p+1) (see proposition 4.1.4). Thus one checks easily that the 4 conditions
of theorem 2.3.1 are fulfilled, as p→ +∞.

• The family of non-isotrivial elliptic curves Γ
3, p

n+1
2

with arbitrarily large rank (from

remark 1.3.47), satisfies the conditions of theorem 2.3.1, as we will explain at the
beginning of section 3.2. ⌟

Proof of theorem 2.3.1. –– By definition 1.2.6, the center sphere packing density of the
lattice Lj is

δ(Lj) = (λ1(Lj)/2)rj

[Ej(Kj) : Lj ] · Reg(Ej/Kj)1/2 ,

for any j ⩾ 1. Using lemma 1.3.23 and theorem 1.3.24 as well as the identity |X(Ej/Kj)| ·
Reg(Ej/Kj) = H(Ej/Kj)BS(Ej/Kj), we get

δ(Lj) ⩾
(dj/24)rj/2 · |X(Ej/Kj)|1/2

c(Ej/Kj) ·H(Ej/Kj)BS(Ej/Kj)/2 , (2.3.1)

which yields

log(δ(Lj)) ⩾
rj
2 log

(dj
24
)

+ 1
2 log(|X(Ej/Kj)|)− log(c(Ej/Kj))−

BS(Ej/Kj) · dj
24 log(qj).

(2.3.2)

Notice that when j →∞, the rank rj , the (degree of the) conductor fj and the minimal
discriminant dj all tend to infinity (because fj ⩽ dj from theorem 2.2.2.1 and by assumptions
2) and item 4)). Because of the condition 4) and the assumption 2) — which implies that
log(log(qj)) = o(log(fj)) — we can express the degree f(Ej) of the conductor of Ej/Kj in
terms of the rank rj :

fj ∼
2rj log(rj)
β · log(qj)

. (2.3.3)

Indeed, we have

log(rj) ∼ log(β) + log(fj) + log log(qj)− log(2 log fj) ∼ log(fj) + log log(qj) ∼ log(fj)

so that rj ∼
β · fj log(qj)

2 log(rj)
from which equation (2.3.3) follows.

Let us denote B := lim sup
j→+∞

BS(Ej/Kj). We know that B ⩽ 1 by theorem 2.2.4. Then,

using the fact that dj ∼ σ · fj , equation (2.3.2) becomes

log(δ(Lj)) ⩾ (1 + o(1)) ·
(rj

2 log
(σ · 2rj log(rj)

24β · log(qj)
)

+ 1
2 log(|X(Ej/Kj)|)
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− log(c(Ej/Kj))−
B · σ · 2rj log(rj)

24β
)

= (1 + o(1)) ·
(
rj log(rj)

(1
2 −

B · σ
12β

)
+ o(rj log(rj))

+ 1
2 log(|X(Ej/Kj)|)− log(c(Ej/Kj))

)
= (1 + o(1)) ·

(
rj log(rj)

(1
2 −

B · σ
12β

)
+ 1

2 log(|X(Ej/Kj)|)
)
, (2.3.4)

where we used the fact that log log(qj) = o(log(rj)) in the second equality and proposi-
tion 2.2.7 in the third equality, which ensures that

log(c(Ej/Kj)) = o(log(qj)dj) = o(σ · log(qj) · fj) = o(σ · rj log(rj)).

This concludes the proof of the main inequality of theorem 2.3.1, by using the inequality
B ⩽ 1.

Moreover, if we now assume that σ = 1 and β = 1, then the trivial bound |X(Ej/Kj)| ⩾ 1
yields

log(δ(Lj)) ⩾ (1 + o(1)) · rj log(rj)
(1

2 −
1
12
)
.

Recalling that D(Lj) = vol(Brj (0, 1))δ(Lj) and using remark 1.2.13 (which tells us that
log vol(Br(0, 1)) ∼ − r2 log(r) as r → +∞), we finally deduce

D(Lj) ⩾ r
− 1

12 rj(1+o(1))
j . ■

Remark 2.3.3. 1. We note that the lower bound D(Lj) ⩾ r
− 1

12 rj(1+o(1))
j from theorem 2.3.1

is very far from Minkowski lower bound stated in theorem 1.2.15. In fact, any bound
on the form D(L′

n) ⩾ αn for some α ∈]0, 1
2 [ and some lattices L′

n ↪→ Rn yields (by
remark 1.2.13, as n→ +∞)

log δ(L′
n) ∼ n

2 log(n) + logD(Ln) ⩾ n

2 log(n) + α · n = 1
2n log(n) · (1 + o(1)).

while we obtained log δ(Lj) ⩾ 5
12rj log(rj) · (1 + o(1)). Note that a family of lattices

L′
n ↪→ Rn satisfying log δ(L′

n) ∼ n
2 log(n) · (1 + o(1)) does not necessarily achieve

Minkowski lower bound: we could have for instance logD(L′
n) ∼ αn log logn (as for

Craig’s lattices mentioned in remarks 1.2.21 and 1.2.22).

2. It is difficult to give a general asymptotic upper bound. First one would need an upper
bound on λ1(E(K)0) (see [Sil08a, conjecture VIII.10.2]) and also on X(E/K). Instead,
we may want to use some "trivial" upper bounds on the packing density to say something
about some invariants of elliptic curves with large ranks.

• For instance, if we have a family {Ej/K : j ⩾ 1 } of elliptic curves over K := Fq(t)
satisfying the 4 conditions of theorem 2.3.1, then we cannot have |X(Ej/K)| ∼
qτ ·f(Ej)·(1+o(1)) for a constant τ > σ

12 . Indeed, if this was the case then theorem 2.3.1
would yield

log δ(Ej(K)0) ⩾ (1 + o(1)) · rj log(rj) ·
(1

2 −
σ

12β + τ

β

)
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But the obvious bound D(Ej(K)0) ⩽ 1 yields

log δ(Ej(K)0) ⩽ 1
2rj log(rj)(1 + o(1)) (2.3.5)

by remark 1.2.13, so the above (asymptotic) inequality forces 1
2 ⩾ 1

2 −
σ

12β + τ

β
, which

means τ ⩽ σ
12 as claimed.

• As mentioned in remark 2.3.6 below, Shioda found an example of a family {Ej} with
β = σ = 1 and such that, with e := 3, we have

log |X(Ej/Kj)| ∼ rj log(rj)
1
6e
(

1− 1
e

)
∼ f(Ej) log(qj)

2 · 6e
(

1− 1
e

)
= f(Ej) log(qj)·

1
648 .

• Similarly, families of curves {Ej/Kj : j ⩾ 1 } satisfying the 4 conditions of theo-
rem 2.3.1 must have a Brauer–Siegel ratio lower bounded by 0, i.e., BS(Ej/Kj) ⩾
0− o(1) as it follows from equations (2.3.4) and (2.3.5). Such a lower bound actually
holds for any family of abelian varities with conductor going to infinity, as shown in
[HP16, corollary 1.13].

3. It is likely that condition qj ⩽ f c0
j in theorem 2.3.1 could be relaxed by using different

values of the parameter Y in the proof of Brumer’s bound (see theorem 2.2.6). ⌟

Remark 2.3.4. The result of theorem 2.3.1 only tells us something about the asymptotics,
when the rank goes to infinity, so it does not ensure that we get "interesting" sphere packings
in low dimensions.

On the one hand, it might happen that the asymptotic of the (lower bound on the)
packing density D(Ln) of some Mordell–Weil lattices (Ln)n⩾1 of ranks rn is worse than

D(Ln) ⩾ r
− 1

12 rn(1+o(1))
n , but some lattice Ln are quite dense. For instance, the family of

lattices (Lp,n) from [Oes90] mentioned in remark 2.4.2 satisfies D(Lp,n) ⩾ r
− 3

8 rn(1+o(1))
n ,

but for (p, n) ∈ {(2, 1), (3, 1), (2, 2)} we get respectively the D4, Coxeter-Todd and Leech
lattices.

On the other hand, even if the four sufficient conditions from theorem 2.3.1 are fulfilled, it
might not be true that in medium dimensions, the Mordell–Weil lattices are denser than
Minkowski–Hlawka lower bound. See remark 2.5.9 for an explicit example over F2(t). ⌟

Remark 2.3.5. All the families of elliptic curves in remark 1.3.47 have unbounded rank
(and for most of them Brumer’s bound from theorem 2.2.6 is asymptotically achieved as the
conductor grows to infinity). However, for most of these families, the Szpiro ratio tends to
an integer ⩾ 2 so that the lower bound on the packing density is not as good as for families
having a Szpiro ratio tending to 1, as theorem 2.3.1 tells us (this also applies to the family
Γ1,pn+1 considered in theorem 1.3.44: its Szpiro ratio tends to 2, so this seems to give a
negative answer to a question from [Ulm02, §1.9] which asks whether these curves give
dense packings). Notable exceptions are the families Γ2,pn+1,Γ3, pn+1

2
,Γ4,2n+1 and Γ11,pn

(see remark 4.1.12). ⌟

Remark 2.3.6. The size of the Tate–Shafarevich group is of great interest in view of the
asymptotic lower bound on δ(E(K)0) from theorem 2.3.1.
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2.4 – Some generalizations

1. For instance, Shioda was able to prove a lower bound on |X(E/K)| for his family of
elliptic curves Γ2,m : y2 = x3 + 1 + tm (given in remark 1.3.47.1) which is enough to
improve the lower bound log2 δ(E(K)0) ⩾ 5

12r log(r) · (1 + o(1)), but not sufficient to get
1
2r log(r). More specifically, [Shi91, proposition 4.3, corollary 4.6] imply that for every
odd integer e ⩾ 1 and all primes p ≡ −1 (mod 6), if we let m = pe + 1 and K := Fp2e(t),
then

|X(Γ2,m/K)| ⩾ p2(e−1)n0

where n0 :=
(p−5

6
)e. This implies that

log2 δ(Γ2,m(K)0) ⩾ r log2(r)
(1

2 −
1
12 + 1

2 · 6e
(

1− 1
e

))
· (1 + o(1)),

when p → ∞ (and e is fixed), where the rank of the (narrow) Mordell–Weil lattice is
given by r = 2 · (pe−1). When e runs over the odd integers, then 1

2·6e

(
1− 1

e

)
is maximal

at e = 3, with value 1
3·63 = 1

648 , and the lower bound on |X(Γ2,m/K)| is actually sharp
(see [Shi91, proposition 4.3, corollary 4.6]), as is the lower bound on the minimal norm
(see [Shi91, proposition 5.2]), so in this case we get log δ(Γ2,m(K)0) ∼ r log(r)(1

2 −
1

12 +
1

648) = 271
648r log(r) ≃ 0.4182r log(r).

2. In general, it is known that |X(E/K)| ≪ϵ |k|f(E/K)
(1

2 +ϵ
)

when f(E/K) → ∞ (see
[HP16, corollary 1.17] and also [GS95b, theorem 15]). Examples of families with
log |X(E/K)| ∼ logH(E/K) and log |X(E/K)| ∼ log

(
|k|f(E/K)

(1
4 +ϵ
))

are given in
[Gd21, theorem C, proposition 1.2, equation (2.3)], but the algebraic rank of those elliptic
curves is 0 (see proof of proposition 2.1, ibid.). ⌟

Remark 2.3.7. In remark 3.1.21 we will see an example where the Szpiro ratio is asymptotic
to 1, but Brumer’s bound does not seem to be achieved; the rank is only (at least) half of
Brumer’s upper bound.

More examples can be obtained as follows: as explained at the end of [Ulm07b, §11], the
lower bound on the analytic rank from theorem 1.3.48 is asymptotic to Brumer’s bound
(i.e., β = 1 in the notations of theorem 2.3.1) if and only if deg(f′(E/K)) = 1, using the
notation from theorem 1.3.48. ⌟

2.4 · Some general izat ions

2.4.1 Mordel l–Wei l latt ices of constant el l ipt ic curves

We point out that theorem 2.3.1 does not apply to constant elliptic curves E over K, since
we require the degree of the conductor to go to infinity. In fact, we note that the lower bound
from proposition 2.1.1 in the case of a constant curve is trivial, since deg (∆min(E/K)) = 0.
The following remark gives some details about Mordell–Weil lattices of constant elliptic
curves, and especially how to get a non-trivial lower bound on λ1(E(K)) (observe that we
have E(K)0 = E(K) if E is constant).
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Remark 2.4.1. Let E be a constant elliptic curve over a global function field K = k(C), that
is, E is defined over k. We note that under this hypothesis, the elliptic surface E attached
to E (in remark 1.3.9) splits, i.e., E ∼= C ×k E. The main properties of the Mordell–Weil
lattice of E over K are discussed in [Oes90], [Gro11, Lecture 3, §2].

1. First we describe the abelian group E(K). There is a group isomorphism

ϕ : E(k(C)) ∼= Homk(C,E), P 7→ ϕP , (2.4.1)

described as follows. Given a point P = (x, y) ∈ E(k(C)) we define the rational
map ϕP : t 7→ (x(t), y(t)) which is actually a morphism C → E since C and E are
smooth projective curves (see [GW20, proposition 15.5]). Under the isomorphism (2.4.1),
the torsion subgroup E(k(C))tors ∼= E(k) is identified with the constant morphisms
cP : C → E, t 7→ P (see for instance [Ulm11, Lecture 1, Proposition 6.1]).

Moreover, we have a morphism f∗ : Homk(C,E) −→ HomAVk
(Jac(C), E) (where we

consider the category AVk of abelian varieties over k), given by the universal property
of the Albanese functor. In general, it has a finite cokernel, but when k is a finite field
(which is the case as k(C) is a global function field), there is6 a divisor of degree 1 on C,
used to define an Abel–Jacobi map C ↪→ Jac(C) which in turn can be used to show that
f∗ is surjective. In other words, we get a short exact sequence

0 E(k) Homk(C,E) HomAVk
(Jac(C), E) 0

P cP f f∗

(2.4.2)

(see [Ulm11, Lecture 2, Proposition 6.1] and [BDS04, §1]). This implies that

E(K)/E(K)tors ∼= HomAVk
(Jac(C), E) (2.4.3)

and this free abelian group has rank at most g ·rkZ Endk(E) ⩽ 4g, where g is the genus of
C. In fact, if Jac(C) is isogenous to Er×

∏s
i=1 Ai for some simple abelian varieties Ai not

isogenous to E, then E(K) has rank r · rkZ Endk(E) (see [EvdGM, exercise 1.4, p. 15]).
Moreover, if the numerator of the zeta function of C over k is written as

∏2g
i=1(1− αiT )

and the numerator of the zeta function of E over k is denoted (1 − β1T )(1 − β2T ),
then using Tate’s theorem from [Tat66a, theorem 1(a), p. 139], one finds (see [EvdGM,
corollary 16.23] or [Oes90, proposition 3]):

rkE(K) = #{ (i, j) ∈ {1, ..., 2g} × {1, 2} : αi = βj }. (2.4.4)

2. Secondly, we describe the Néron–Tate height. We claim that ĥ(P ) = h(P ) = 2 deg(ϕP )
for any P ∈ E(K) ∼= Homk(C,E). The second equality is clear, since h(P ) = deg(x ◦
ϕP : C → P1

k) = 2 deg(ϕP ) ∈ 2Z⩾0 (recall that the degree of a constant morphism is set
to be 0).

To show that the naive and the Néron–Tate heights coincide, it suffices, by lemma 1.3.15,
to show that the naive height, or the map deg : Homk(C,E)→ Z, is a quadratic form.
This follows from [Ser89, Theorem p. 32] (and from [Sil08a, corollary III.6.3] if C is an

6This is a theorem of F. K. Schmidt, see [Lor96, Proposition VIII.6.2].
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elliptic curve); the reasoning is analogous to the one in remark 1.3.16. Namely, one can
show that for all f, g, h ∈ Homk(C,E) we have

deg(f + g + h)− deg(f + g)− deg(f + h)− deg(g + h) + deg(f) + deg(g) + deg(h) = 0.

Fix a line bundle L on E of positive degree. Then [EvdGM, Corollary 2.8] or [HS00,
corollary A.7.2.4] states that

(f + g + h)∗L⊗ (f + g)∗L−1 ⊗ (f + h)∗L−1 ⊗ (g + h)∗L−1 ⊗ f∗L⊗ g∗L⊗ h∗L

is isomorphic to the trivial line bundle on C. Since deg(f∗L) = deg(f) deg(L) holds
whenever C,E are curves, and since deg(L⊗ L′) = deg(L) + deg(L′), we get the desired
result.

To get a lower bound on the Néron–Tate height of ϕ : C → E, one notices that whenever
one has finite subsets S ⊂ C(k), T ⊂ E(k) such that ϕ(S) ⊆ T we have

deg(ϕ) ⩾ #S
#T .

(For instance, we may take S = X(kn), T = E(kn) for some extension kn/k of degree n;
see [Gro90, corollary 11.12] for other examples). Indeed, we have

#T · deg(ϕ) =
∑
Q∈T

deg(ϕ) ⩾
∑
Q∈T

#ϕ−1({Q}) ⩾ #S.

3. The L-function of E over K was described in equation (1.3.11) in terms of the zeta
functions of E and C over k:

L(E/K, T ) =
2∏
j=1

∏2g
i=1(1− |k|αiT/βj)

(1− |k|T/βj) · (1− |k|2T/βj)
. (2.4.5)

In view of equation (2.4.4), it follows that the analytic rank is actually equal to the
algebraic rank, ρ(E/K) = rkE(K), so that part a) of the BSD conjecture 1.3.34 is true.
Recalling that β1β2 = |k| and |E(k)| = (1−β1)(1−β2), we find that

∏2
j=1(1−|k|T/βj) ·

(1− |k|2T/βj) = |E(k)|2/|k| and therefore

L∗(E/K) = |k|
|E(k)|2 ·

∏
i,j

αi ̸=βj

(
1− αi

βj

)
. (2.4.6)

4. In the end, using BSD formula (item b) of conjecture 1.3.34; it reads Reg(E/K) ·
|X(E/K)| = L∗(E/K) · |k|g−1 · |E(k)|2 in our case) and the fact E(K)tors ∼= E(k), we
find that the center density of the Mordell–Weil lattice L :=

(
E(K)/E(K)tors; ĥ

)
is

bounded below by

δ(L) ⩾ (|X(k′)|/2|E(k′)|)r/2(
|k|g

∏
i,j

αi ̸=βj

(
1− αi

βj

))1/2 (2.4.7)

where r is the rank of E(K) and where k′ ⊃ k is any finite extension.

93



2 – Packing density of Mordell–Weil lattices and asymptotics

5. It is unclear how to study the asymptotic behavior of the lower bound (2.4.7) in terms of
the rank r, as r → +∞. This is because the rank is, as in equation (2.4.4), the number
the pairs (i, j) such that αi = βj but relating it to the product over αi ̸= βj appearing
in (2.4.7) does not seem very easy. ⌟

Remark 2.4.2. In [Oes90], Oesterlé used constant elliptic curves over a Fermat curve over
Fp2 to get Mordell–Weil lattices (Lp,n)n⩾1,p prime (some of them being homothetic to D4 or

the Leech lattice), satisfying δ(Lp,n) ⩾ r
1
8 rn·(1+o(1))
n where rn = 2pn(pn − 1) is the rank of

Lp,n. In other words, D(Lp,n) ⩾ r
− 3

8 rn·(1+o(1))
n as n→ +∞. (In fact, using a lower bound

on |X(E/K)| for those curves given in [Gro90, proposition 14.10], one can improve this
asymptotic lower bound on the packing density; see also [Dum95]).

The idea was to use a maximal curve C over k = Fq2 , i.e., a curve with as many points as
allowed by Hasse–Weil bound |X(k)| ⩽ |k|+ 1 + 2g|k|1/2. Instead, one could try to look at
families of curves achieving the so-called Drinfeld–Vladut bound such as the tower (Cn)n⩾1
defined Garcia and Stichtenoth in [GS95a]. The difficulty to estimate the packing density
of E(k(Cn)) is then to compute explicitly the zeta function of Cn, which is not known in
general, despite the work [MZ10]. ⌟

2.4.2 Higher dimensional abel ian variet ies and jacobians

We mention here a few remarks about Mordell–Weil lattices of abelian varieties in general
(but these remarks do not lead to new results). Indeed, most of the theory explained in
section 1.3 can be generalized to abelian varieties A over a global function field K = k(C).

Remark 2.4.3. 1. The abelian group A(K) is finitely generated and there is an L-function
L(A/K, T ) ∈ Q(T ) attached to the ℓ-adic representation GK → AutQℓ

(Vℓ(A)) coming
from the Tate module, where ℓ ̸= char(k) is any prime.

Moreover, the Birch–Swinnerton-Dyer conjecture can be formulated in this setting (see
[HP16, conjecture 2.2] or [KT03, Sch82]). Let ρ = ρ(A/K) be the analytic rank of A
over K, i.e., the order of vanishing of L(A/K, T ) at T = |k|−1. Then it is conjectured
that rkA(K) = ρ(A/K), that the Tate–Shafarevich group X(A/K) is finite, and that

L∗(A/K, 1) := L(ρ)(A, 1)
ρ! = |X(A/K)| · Reg(A/K) · c(A/K)

H(A/K) · |k|d·(g−1) · |A(K)tors| · |A∨(K)tors|
,

where:

• c(A/K) denotes the product of the Tamagawa numbers,

• A∨ is the dual abelian variety,

• g is the genus of C and d := dim(A),

• H(A/K) := |k|deg(ωA/K) where ωA/K := e∗
A(Ω1

A/C), ϕ : A → C is the Néron model
and eA : C → A the zero section of ϕ (see [HP16, definition 2.1]; in the case of an
elliptic curve A = E, it coincides with the definition 1.3.32 of H(E/K): by [GS95b,
lemma 5, p. 79] we have deg(ωE/K) = χ(E ) and then we apply proposition 1.3.26.4),
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• Reg(A/K) := |det((⟨Pi, Qj⟩)1⩽i,j⩽r)| where P1, ..., Pr is any Z-basis ofA(K)/A(K)tors,
Q1, ..., Qr is any Z-basis of A∨(K)/A∨(K)tors and ⟨−,−⟩ : A(K)×A∨(K)→ Q is the
Néron–Tate pairing defined via the Poincaré line bundle PA on A×A∨ (see [HS00,
theorems B.5.8 and A.7.3.4]), i.e.,

⟨−,−⟩ : A(K)×A∨(K)→ R, (a,L ) 7−→ ĥA×A∨,PA
(a,L ) = ĥA,L (a).

The conjecture is known for isotrivial abelian varieties by [Mil68, theorem 3, p. 100 and
§4.(2), p. 103] and [KT03].

2. When A is a Jacobian, the height H(A/K) and the global Tamagawa number c(A/K) can
be computed using a generalization of Tate’s algorithm developed in [Dok21]. Moreover,
some examples of computations of L-functions L(A/K, T ), as well as of the invariants
H(A/K) and c(A/K) can be found in [AGTT21, §2.3, §2.5, §4].

3. We can endow A(K) with several lattice structures using heights: by [HS00, proposition
B.5.3] (only stated for number fields), any ample symmetric divisor D on A induces a
quadratic form ĥA,D : A(K)→ R which is positive-definite on A(K)⊗Z R. Then we may
define the bilinear pairing on A(K) by ⟨P,Q⟩D := 1

2(ĥA,D(P +Q)− ĥA,D(P )− ĥA,D(Q)).
The corresponding Gram matrix has determinant denoted by RegD(A/K).

According to7 [AHP18, §2.3], it relates to the regulator Reg(A/K) defined above as
follows:

RegD(A/K) = [A∨(K) : ΦD(A(K))] · 2− rkA(K) · Reg(A/K), (2.4.8)

where ΦD : A→ A∨, p 7→ [t∗pD −D] is the polarization attached to D (and tp : A→ A

is the translation by p).

When A = E is an elliptic curve, the Néron–Tate height as defined in equation (1.3.2)
is associated to the ample symmetric divisor 2(OE) (see remark 1.3.16). We have
ĥ = ĥE,2(O) = 2ĥE,(O) (see [Ser89, §3.5, p. 39-40]). Now, the polarization Φ(O) attached
to (O) has8 degree 1 (this is a principal polarization), so the isomorphism Φ(O) : E → E∨

over K ensures that the index is [E∨(K) : Φ(O)(E(K))] = 1. Thus

Reg2(O)(E/K) = 2rkE(K) Reg(O)(E/K)
(2.4.8)= 2rkE(K) · (1 · 2− rkE(K) · Reg(E/K)) = Reg(E/K), (2.4.9)

so that the two definitions of regulator coincide when A = E is an elliptic curve.

4. Let us discuss the case of jacobian varieties. If A = Jac(X) is the jacobian of a curve X
over k(C), or more generally a principally polarized abelian variety (PPAV), then there
is an isogeny A→ A∨ (in fact a polarization, so the isogeny is "coming from an ample
line bundle") of degree 1, so that we get an isomorphism A ∼= A∨; see [HS00, corollary
A.8.2.3]. In particular, we have |A(K)tors| = |A∨(K)tors|.

7See also [HS00, remark F.4.1.3, p. 459], but there is probably a typographic error: the equality
ĥD(P ) = ⟨P, ϕD(P )⟩P should use the polarization ΦD : A → A∨ (instead of the map ϕD : A → P(L(D)))
and we actually have ĥD(P ) = 1

2 ⟨P, ϕD(P )⟩P , according to the proof of theorem B.5.8 (p. 208), ibid.
8In general, see [EvdGM, theorem 9.11]: the degree of ΦD is the square of the Euler characteristic of
OA(D). On a curve X, we have χ(OX(D)) = 1 − g(X) + deg(D) by Riemann–Roch theorem.
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The BSD conjecture is known in the case of jacobians of certain plane curves defined by
a sum of exactly 4 monomials as in theorem 1.3.40, see [Ulm07b, theorem 6.2].

In the case of a jacobian A = Jac(X), the theta divisor Θ provides a principal polarization
λΘ : A

∼=−→ A∨ over K. Then the divisor Θ′ := Θ + [−1]∗Θ is ample and symmetric and
can be used to get a Néron–Tate height on A, as in [HS00, Proof of theorem B.6.5, p.
216] or see [BG06, §9.4], which is a quadratic form ĥΘ′ : A(K)→ R, positive-definite on
A(K)⊗Z R. When A = X = E is an elliptic curve, then Θ = (OE) and Θ′ = 2(OE) so
this corresponds to the Néron–Tate height as defined in equation (1.3.2).

5. Now that we have lattices (A(K), ĥA,D), the main question is how to get a lower bound
on the height of non-torsion points, analogous to Shioda’s theorem 1.3.24. To be short,
no such generalization is known as of now, but we mention some approaches.

In general, Lang–Silverman conjecture predicts (as in [Pazar, conjecture 4.1] over number
fields) that given a global function field K and an integer g ⩾ 1, there is a constant
c(K, g) > 0 such that for any simple abelian variety A over K of dimension g, any ample
symmetric divisor D on A and any non-torsion point P ∈ A(K), one has

ĥA,D(P ) ⩾ c(K, g) ·max{log|k| H(A/K), 1}.

Some cases are known, as mentioned in [HP16, proof of proposition 7.6, p. 80].

However, one would need a very explicit (and optimal) expression for c(K, g). We
now assume that A = J := Jac(X) is the jacobian of some curve X over k. In
[Shi92a, theorem 2.4] and [Shi99a, theorem 7], Shioda found a generalization of the
formula ĥ(P ) = −DP ·DP given in proposition 1.3.26 and its proof. One would have
to check whether the height defined by Shioda coincides with the Néron–Tate height
ĥJ,Θ′ (as showed for elliptic curves in [Sil08b, III.9.3, p. 247-248]). See also the works
[Shi15, Ngu00].

Also, it is worth working with the narrow Mordell–Weil sublattice J(K)0 ⊂ J(K) as in
definition 1.3.20, where an explicit lower bound on the height may be easier to get (as in
theorem 1.3.24). It is defined in [Shi92a, Shi99a] in a slightly different way, but the two
definitions should be equivalent by an argument similar as [SS19, theorem 6.47]. In any
case, Shioda shows that ⟨P, P ⟩ = −DP ·DP for any P ∈ J(K)0 where DP is a certain
divisor on a certain surface S → C with generic fiber X.

The difficulty in generalizing theorem 1.3.24 lies in the task of analyzing certain self-
intersection products on the surface S, as in item 3 of proposition 1.3.26, which relied
on the use of Kodaira’s canonical bundle formula which is specific to elliptic surfaces.

However, if S happens to be birational to a quotient F/Γ of a Fermat surface F by
some finite group Γ, then one may use known facts on the intersection theory on F and
functorial properties of the intersection product (e.g., push-forward under F 99K S) to
get information on DP ·DP . ⌟

Remark 2.4.4. In the case of a constant abelian variety A over k(C), i.e. A ∼= A0 ×k K for
some abelian variety A0 over k, we should have A(k(C)) ≃ Homk(C,A) and A(K)tors = A(k)
(indeed, if f : C → A is torsion, say N · f = 0, then Im(f) ⊂ A[N ], but since A[N ] is a
0-dimensional subvariety, this forces f to be constant). The height ĥΘ′ is related to the
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degree map on Homk(C,A) (or at least to the degree of the divisor f∗Θ′ over C; see [Mil68,
§3, lemma 2] and [Kel14, Theorem 4.2.17]).

Moreover, if we let g be the genus of C then similarly to remark 2.4.1, we have

|X(A/K)| · Reg(A/K) = |k|g·dim(A) ·
∏

1⩽i⩽2g
1⩽j⩽2 dim(A)

αi ̸=βj

(
1− αi

βj

)

where βj are the roots of the characteristic polynomial of the Frobenius endomorphism of
A (see [Mil68, theorem 3] and [EvdGM, theorem 12.18]). ⌟

Remark 2.4.5. Let us discuss how theorem 2.3.1 can be generalized to higher dimensional
abelian varieties A over a global function field K = k(C) where |k| = q.

• First, Brumer’s bound still holds, see [Ulm07b, equation (11.2)]: we have

ρ(A/K) ⩽ f(A/K) log(|k|)
2 log(f(A/K)) +Oq,C

(
f(A/K)

log2(f(A/K))

)
where f(A/K) is the degree of the conductor of A (seen as a divisor on the curve C).

• Secondly, the Brauer–Siegel ratio of a family of abelian varieties Aj/K of fixed dimension
(here we fixK) such that f(Aj/K)→ +∞ is upper-bounded by 1: lim supj→+∞ BS(Aj/K) ⩽
1, as showed in [HP16, Ulm19].

• In general, we consider the higher-dimensional Szpiro ratio (assuming that A has at least
one place of bad reduction, i.e., f(A/K) > 0)

σ′(A/K) = h(A/K)
f(A/K) ,

where h(A/K) := logq(H(A/K)). Note that when A = E is an elliptic curve we have
σ′(E/K) =

1
12 deg(∆min(E/K))

f(E/K) = 1
12σ(E/K). By theorem 2.2.2.1, we have σ′(E/K) ⩾ 1

12
for any elliptic curve E/K.

• Let us assume that for all i ⩾ 1, we have a jacobian Ai = Ji := Jac(Xi) of a curve
Xi over K and that Ji is simple (as an abelian variety). Consider the height ĥΘ′ as in
remark 2.4.3.4. By equation (2.4.9), this quadratic form ĥΘ′ on Ji(K) has discriminant
equal to the regulator Reg(Ji/K).

In view of Lang–Silverman conjecture mentioned in item 5 of remark 2.4.3, we assume
that ĥΘ′(P ) ⩾ c1 · h(Ji/K) for all non-torsion points P ∈ Ji(K) and some constant
c1 > 0 independent of P .

Assume that:

– The conductor fi of Ji/K goes to infinity as i→ +∞.

– The Birch–Swinnerton-Dyer conjecture holds for Ji, for all i ⩾ 1.

– Brumer’s bounded is asymptotically achieved, and the generalized Szpiro ratio tends
to some σ′ > 0. In other words, as i→ +∞, we have ri := rk Ji(K) ∼ fi log(|k|)

2 log(fi) and
h(Ji/K) ∼ σ′ · fi.
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If we denote by ri the rank of Ji(K), then we have, as in proof of theorem 2.3.1:

δ(Ji(K)) ⩾ (c1/2
1 · h(Ji/K)1/2/2)ri · |X(Ji/K)|1/2

H(Ji/K)BS(Ji/K)/2

so this gives

log δ(Ji(K)) · (1 + o(1)) ⩾ ri
2 · log

(c1σ
′fi

4

)
+ 1

2 log |X(Ji/K)| − BS(Ji/K)
2 σ′fi log(|k|)

⩾
ri
2 · log

(c1σ
′ri log(ri)

2 log(|k|)

)
+ 1

2 log |X(Ji/K)| − BS(Ji/K) · σ′ · ri log(ri)

⩾ ri log(ri) ·
(1

2 − σ
′). ⌟

2.5 · Isotr iv ial el l ipt ic curves over F2 (t) with arbi-
trar i ly large rank

In this section, we give an answer to a natural question raised by the work [Elk94] of Elkies,
where he considered Mordell–Weil lattices of the elliptic curves y2 + y = x3 + tm + a over
Fq2(t) where q = 2n (for any integer n ⩾ 1), m = q + 1 = 2n + 1 and finally a = 0 if n is
odd, while if n is even, a ∈ Fq2 is any element such that trFq2/F2(a) = 1. The rank of these
lattices is 2n+1.

When n is odd, we may wonder what can be said about the Mordell–Weil lattice of

An : y2 + y = x3 + t2
n+1 (2.5.1)

over F2(t), instead of taking it over Fq2(t)? In particular, does it give rise to some dense
sphere packings in low or medium dimensions?

We show that the rank still grows to infinity, but the answer to the latter question about
packings is no, even though the lower bound on the packing density of An(F2(t)) is
asymptotically "as good as" the one for An(F22n(t)) (at least if n is an odd prime). Namely,
using the notations from theorem 2.3.1, we have σ = 1 and β = 1 which means that Brumer’s
bound is asymptotically sharp and the Szpiro ratios converge to 1 (see also remark 2.3.4).

We first determine the rank of An over F2(t) in the following way.

Theorem 2.5.1 (Theorem H). Let n ⩾ 1 be an integer, and consider the elliptic curve An
over F2(t) given by the equation (2.5.1). Let k ⊃ F2 be a finite extension of odd degree
dividing n. Then the rank of the abelian group An(k(t)) is given by

rkAn(k(t)) =


0 if n is even

2 ·
∑

e|(2n+1)
e ̸=1

ϕ(e)
ord×(|k| mod e)

if n is odd.

In particular, we have rkAn(F2n(t)) = 2n when n is odd, and when n = 1 or when n is an
odd prime, we have

rkAn(F2(t)) = 2 ·
(

1 + 2n−1 − 1
n

)
. ⌟
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We first sketch the proof of theorem 2.5.1. Consider the unique smooth projective curves9

given by the affine equations

A : y2 + y = x3, C ′
n : u2 + u = t2

n+1 (2.5.2)

over F2. There are two key properties:

• The first one is that An is a quadratic twist of A×F2 F2(t) over the quadratic extension
F2(C ′

n)/F2(t) corresponding to the hyperelliptic degree-2 cover C ′
n → P1 given by the

x-coordinate of a point of the hyperelliptic curve C ′
n (see the proof of corollary 2.5.5).

• The second important fact is that the numerator Z1(A/F2, T ) = 1 + 2T 2 of the zeta func-
tion of A appears with high multiplicity (when n→ +∞) in the numerator Z1(C ′

n/F2, T )
of the zeta function of C ′

n. We will compute explicitly the zeta function of C ′
n over F2

using Gauss sums. A classical result of Tate [Tat66a] will then allow us to conclude the
proof of theorem 2.5.1.

2.5.1 Quadrat ic twists

To make the above two items more precise, we mention a few (well-known) facts on quadratic
twists.

Proposition 2.5.2. Let K be a field and let E be an elliptic curve over K.

1. Assume that K is a field of characteristic ̸= 2 and fix u ∈ K× ∖ K×,2. If E has a
Weierstrass equation of the form E : y2 = f(x), then the curve E′ : uy2 = f(x) over K is
a quadratic twist of10 E over K ′ := K(u1/2) and we have an isomorphism of Q-vector
spaces

E(K ′)⊗Z Q ∼= E(K)⊗Z Q ⊕ E′(K)⊗Z Q. (2.5.3)

2. Assume that char(K) = 2. Fix an element d ∈ K such that P (X) := X2+d′X+d ∈ K[X]
is irreducible separable and let K ′ = K[X]/(P (X)) = K(α), where α ∈ K is a root of P .
If E is given by a Weierstrass equation E : y2 + a1xy+ a3y = x3 + a2x

2 + a4x+ a6, then

E′ : y2 + a1xy + a3y = x3 + (a2 + dd′−2a2
1)x2 + a4x+ a6 + dd′−2a2

3

is a quadratic twist of E over K ′ and the isomorphism (2.5.3) also holds. ⌟

Proof. –– 1. The extension K ′ = K(u1/2)/K has degree 2, and its Galois group is generated
by an element σ such that σ(u1/2) = −u1/2. The map

g : E(K ′) ≃−→ E′(K ′), (x, y) 7−→ (x, u
1
2 y)

provides an isomorphism of algebraic curves E ×K K ′ ∼= E′ ×K K ′ over K ′, so that E′

is indeed a quadratic twist of E.

9Existence and uniqueness (up to isomorphism) follow from [GW20, theorem 15.21]. Namely, there is a
unique smooth projective curve C′

n such that F2(C′
n) ∼= F2(t)[u]/(u2 + u− t2

n+1). Notice that in general
C′

n will not be given by the projective closure of u2 + u = t2
n+1 in P2, which is singular!

10If f(x) = x3 + a2x
2 + a4x+ a6 then E′ has a Weierstrass equation y′2 = x′3 + ua2x

′2 + u2a4x
′ + u3a6,

by writing y = u−2 · y′ and x = u−1 · x′.
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Now, consider the Q-vector space V := E(K ′) ⊗Z Q, endowed with the action of the
Galois group Gal(K ′/K) = ⟨σ⟩. We can decompose V into eigenspaces for σ. Indeed we
have σ2 = idK′ , the eigenvalues of the Q-linear map induced by σ on V are −1 and +1,
and this yields

V = V σ=1 ⊕ V σ=−1.

We have11 V σ=1 = E(K)⊗Z Q. Moreover,

E(K ′)σ=−1 = {(x, y) ∈ E(K ′) : σ · (x, y) = −(x, y)}
= {(x, y) ∈ E(K ′) : (σ(x), σ(y)) = (x,−y)}

Notice that σ(y) = −y ⇐⇒ σ(u1/2y) = u1/2y ⇐⇒ u1/2y ∈ K, so we deduce that
g(E(K ′)σ=−1) = E′(K). Finally, we conclude that the isomorphism (2.5.3) holds.

2. Let us deal with the case where K has characteristic 2. The extension K ′/K has degree
2 with Galois group generated by an element σ such that σ(α) = α+d′. Note that d′ ≠ 0
since P (X) is separable (by replacing X with d′X and d with d′−2d, we may assume
that d′ = 1). The map

g : E(K ′)→ E′(K ′) (x, y) 7→ (x, y + αd′−1(a1x+ a3))

is an isomorphism which proves that E′ is a quadratic twist of E. Moreover, one easily
sees that

E(K ′)σ=− id = {(x, y) ∈ E(K ′) : (σ(x), σ(y)) = (x, y + a1x+ a3)}

from which it easily follows that g(E(K ′)σ=− id) = E′(K). Once again, we obtain as
before a decomposition (2.5.3). ■

The following result is a standard fact, but we include a proof here since it does not seem
easy to find a complete proof in the literature.

Proposition 2.5.3. Let K be a global function12 field and K ′/K be a separable quadratic
extension. Let E be an elliptic curve over K. Then there is a unique (up to K-isomorphism)
quadratic twist E′/K of E over K ′ and we have

L(E/K ′, T ) = L(E/K, T ) · L(E′/K, T ). ⌟

Proof. –– • In general, we may write K ′ = K(α) for some root α of an irreducible
polynomial P (X) = X2 + d′X + d ∈ K[X] (this is due to the primitive element theorem,
since K ′/K is separable). Without loss of generality, we may assume that P ∈ OK [X].
When char(K) ̸= 2, we may also assume that d′ = 0. When char(K) ̸∈ {2, 3}, [Sil08a,
proposition X.5.4] implies that E has a unique quadratic twist over K ′. When char(K) ∈
{2, 3} and j(E) ̸= 0, we have AutK(E) = {±1} by [Sil08a, proposition A.1.2, p. 410],

11This seems obvious, but if we replaced Q by S := F2, this could become wrong (namely, if G := Z/2Z
acts on M := Z via multiplication by −1, then MG = {0} but G acts trivially on M ⊗Z S ∼= F2 — here
we assume that G acts trivially on S, as it does on Q). The key here is that Q is torsion-free, so that
TorZ1(−,Q) = 0 and the universal coefficient theorem applies since Z is a PID.

12An analogous statement holds over number fields, in which case one has to work with the "complex-
analytic" L-function L(E/K, s).
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so that E has also a unique13 quadratic twist over K ′. If char(K) = 2 and j(E) = 0,
then E can be defined over F2 and [KST17, proposition 3.1] implies that it has a unique
quadratic twist over K ′. Finally, if char(K) = 3 and j(E) = 0, then E can be defined
over F3 and [KST17, proposition 2.1] implies once again that it has a unique quadratic
twist over K ′.

It follows that E′ is isomorphic over K to the curve described in proposition 2.5.2.

• Fix a prime ℓ ≠ char(k) and denote by ρE,ℓ : GK := Gal(Ksep/K) → AutQℓ
(Vℓ(E)) ∼=

GL2(Qℓ) the ℓ-adic Galois representation of E, and same for ρE′,ℓ. Denote by

χ : GK ↠Gal(K ′/K) ∼= {±1} ⊂ Q×
ℓ (2.5.4)

the quadratic character of kernel GK′ . We claim that we have an isomorphism

ρE′ ∼= ρE ⊗ χ, (2.5.5)

and we will explain in the next item that it implies the main claim of proposition 2.5.3.

Let S ⊂ V 0
K be the union of the places ramified in K ′, the places above the infinite

place v∞, the places v where the Weierstrass equations defining E and E′ (given in
proposition 2.5.2) are not integral at v, and the places v for which the valuation of the
discriminants of the Weierstrass equations defining E and E′ in proposition 2.5.2 is
positive (in particular, this includes the bad places for E and the bad places for E′).
Note that S is a finite set. Moreover, the Weierstrass models for E,E′ as given in
proposition 2.5.2 are minimal integral at each v ̸∈ S (since v(∆E) = v(∆E′) = 0).

By [Lan91, lemma IV.4.4, p. 113], the isomorphism (2.5.5) holds once we prove that the
traces of Frobenius conjugacy classes Frobv ⊂ GKv/Iv at each v ̸∈ S agree (where Iv is
the inertia subgroup at v), which amounts to checking that

av(E′) = av(E) · χ(Frobv) (2.5.6)

for all v ∈ VK ∖ S, where av(E) is defined in equation (1.3.9). Recall that for every
v ∈ VK ∖ S, we have

χ(Frobv) = 1 ⇐⇒ Frobv ∈ GK′ ⇐⇒ Frobv |K′ = idK′ ⇐⇒ v splits in K ′. (2.5.7)

Fix v ∈ VK ∖S and let us show the equality (2.5.6). Since S contains the ramified places
of K ′/K and since K ′/K is quadratic, we know that either v is inert or (totally) split in
K ′.

– Assume that v is split in K ′. This means that P (X) splits modulo v, i.e., has roots in
Fv = OK/pv. Therefore, the reductions Ev and E′

v are isomorphic over Fv, in view of
the proof fo proposition 2.5.2. Thus av(E′) = av(E) = av(E) · χ(Frobv), in view of
(2.5.7). This proves equation (2.5.6) in that case.

– Assume now that v is inert in K ′.

13Namely, these twists are classified by the cohomology set H1(Gal(K′/K),AutK′ (E)) (which is a group
in that case), and it is just Hom(Z/2Z,Z/2Z) ∼= Z/2Z.
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∗ Assume that char(K) ̸= 2 (and d′ = 0). Then d is not a square modulo v, i.e., its
Legendre symbol is λFv

(d) = −1. Since E,E′ are given by y2 = f(x), y2 = d−1f(x)
respectively which are minimal integral Weierstrass models at v, we compute:

av(E) + av(E′) = |Fv|+ 1− |Ev(Fv)| + |Fv|+ 1− |E′
v(Fv)|

= −
∑
x∈Fv

λFv (f(x))−
∑
x∈Fv

λFv (d−1 · f(x)) = 0

which yields av(E′) = −av(E) = av(E)·χ(Frobv), hence also proving equation (2.5.6)
in this case.

∗ Assume that char(K) = 2. By replacing α with d−1α, we may assume that
P (X) = X2 + X + d, i.e., d′ = 1. We know that P has no roots modulo v, since
v is inert, which is equivalent to saying trFv/F2(d) ̸= 0 by proposition 1.4.3.3. We
claim that

|Ev(Fv)|+ |E′
v(Fv)| = 2|P1(Fv)| = 2(|Fv|+ 1) (2.5.8)

We pick x ∈ Fv and let Ax := a1x+ a3, Bx := x3 + a2x
2 + a4x+ a6 ∈ Fv. In view

of the equation for E′ in proposition 2.5.2, we need to show

#{ y ∈ Fv : y2 +Axy +Bx = 0 }+ #{ y ∈ Fv : y2 +Axy +Bx + dA2
x = 0 } = 2.

If Ax = 0 then this amounts to #{ y ∈ Fv : y2 = Bx } = 1 which is true since in a
finite field of characteristic 2, any element has a unique square root. If Ax ̸= 0, we
find that

#{ y ∈ Fv : y2 +Axy +Bx = 0 } = #{ y ∈ Fv : A−2
x (y2 +Axy +Bx) = 0 }

= #{ y ∈ Fv : (A−1
x y)2 +A−1

x y +A−2
x Bx = 0 }

= #{ y′ ∈ Fv : y′2 + y′ +A−2
x Bx = 0 }

= 2 · 1tr(A−2
x Bx)=0

where the last equality comes from proposition 1.4.3.3. Similarly,

#{ y ∈ Fv : y2 +Axy +Bx + dA2
x = 0 } = 2 · 1tr(A−2

x Bx+d)=0

Now, the trace down to F2 is either 0 or 1, and we know that tr(d) ̸= 0 since v is
inert. From there, we deduce that equation (2.5.8) holds, which implies once again
that av(E′) = −av(E) = av(E) ·χ(Frobv), which shows equation (2.5.6) in this case.

• Now we explain how equation (2.5.5) implies that L(E/K ′, T ) = L(E/K, T )L(E′/K, T )
(see also [Ulm07b, §4.4]). In general, if we take a Galois representation ρ : G = GK →
GL(W ) for some finite-dimensional Qℓ-vector space W , where ℓ ̸= char(k), we may
consider its restriction ResGH ρ to the normal subgroup H = Gal(Ksep/K ′) ⊴ G. Given
another Galois representation H → GL(V ), we always have

IndGH(V ⊗ ResGHW ) ∼= (IndGH V )⊗W

and since Artin L-functions behave well with respect to induction (see [Neu99, proposition
VII.10.4]), this yields (using V = 1):

L(ResGH ρ, T ) = L(IndGH ResGH ρ, T ) = L(IndGH(1⊗ ResGH ρ), T ) = L((IndGH 1)⊗ ρ, T ).
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Now, IndGH(V ) has degree [G : H] dim(V ) = [K ′ : K] since V = 1, and is actually
isomorphic to Qℓ[G/H] = Qℓ[Gal(K ′/K)]. The subspace Qℓ idK′ ⊂ Qℓ[Gal(K ′/K)] is
the trivial subrepresentation, and we can decompose

Qℓ[Gal(K ′/K)] = 1⊕ χ,

where χ is the quadratic character defined above in equation (2.5.4) (seen as one-
dimensional representation). Thus we get14 (using [Neu99, proposition VII.10.4]):

L(ResGH ρ, T ) = L((1⊕ χ)⊗ ρ, T ) = L(ρ, T )L(ρ⊗ χ, T )

Now, if we take ρ = ρE,ℓ for some prime ℓ ̸= p, it is known that L(ρE,ℓ, T ) = L(E/K, T )
and similarly L(ρE′,ℓ, T ) = L(E′/K, T ) (see [Gro11, lecture 2, p. 13 and appendix C]
and [Dok13, §3, p. 218-219]). Thus the statement of the proposition indeed follows from
the isomorphism (2.5.5). ■

Proposition 2.5.4. Let k be a finite field and E0 be an elliptic curve over k. Set K = k(t)
and consider the constant curve E := E0 ×k K over K. Choose a square-free polynomial
d(t) ∈ k[t] ↪→ K and define the hyperelliptic curve Cd over k by an affine open subset (see
also footnote 9 on page 99) so that:

• If char(k) ̸= 2, then d ∈ K× ∖K×,2 and Cd : y2 = d(t).

• If char(k) = 2, then X2 +X + d ∈ K[X] is irreducible and Cd : y2 + y = d(t).

Let g be the genus of Cd and let us write the numerators of the zeta functions of Cd and
E0 respectively as

Z1(Cd/k, T ) =
2g∏
i=1

(1− αiT ), Z1(E0/k, T ) = (1− β1T )(1− β2T ).

Consider the quadratic twist E′ of E over K ′ := K(Cd)/K as in proposition 2.5.2. Then
we have

rkE′(k(t)) = rkE(k(Cd)) = #{ (i, j) ∈ {1, ..., 2g} × {1, 2} : αi = βj } (2.5.9)

L(E′/k(t), T ) = Z1(C, β1T )Z1(C, β2T ) =
∏

1⩽i⩽2
1⩽j⩽2g

(1− αiβjT ) (2.5.10)

and BSD conjecture 1.3.34 holds for E′ over k(t). ⌟

Proof. –– From the exact sequence (2.4.2), we know15 that E(K) has rank 0, since Jac(P1) =
0. Then we deduce from proposition 2.5.2 (especially the isomorphism (2.5.3)) that the
finitely generated abelian groups E(K ′) and E′(K) have the same rank.

14More generally, given a finite Galois extension K′/K, we have L(E/K′, T ) =
∏

χ
L(ρE,ℓ ⊗ χ, T )dim(χ)

where the product runs over the irreducible representations χ of the Galois group. See also remark 3.1.25.
15In other words, the only morphisms P1 → E are constant. This can be seen for separable morphisms

using Riemann–Hurwitz formula, since the genus of E is 1 and P1 has genus 0. More generally, see
[EvdGM, corollary 1.7].
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Now, equation (2.4.4) implies that

rkE′(k(t)) = rkE(K ′) = rk Homk(Jac(Cd), E) = #{ (i, j) ∈ {1, ..., 2g} × {1, 2} : αi = βj }.

It remains to compute the L-function of the quadratic twist E′ over K. The L-function of
E over K ′ and over K are given by equations (1.3.11) and (2.4.5):

L(E/K ′, T ) =
2∏
j=1

∏2g
i=1(1− |k|αiT/βj)

(1− |k|T/βj) · (1− |k|2T/βj)
.

The L-function of E/K is simpler, as the numerator is just equal to 1, since the genus
of K = k(t) = k(P1) is 0. Since K ′/K is a separable quadratic extension, we have
L(E/K ′, T ) = L(E/K, T )L(E′/K, T ) by proposition 2.5.3. Therefore, we obtain:

L(E′/K, T ) = L(E/K ′, T )
L(E/K, T ) =

∏
1⩽i⩽2

1⩽j⩽2g

(1− |k|αiT/βj) =
∏

1⩽i⩽2
1⩽j⩽2g

(1− αiβjT ),

since β1β2 = |k|. In particular, we see that the analytic rank of E′ over K is equal to the
algebraic rank, so that (the "rank part" of) BSD conjecture 1.3.34 holds (this also follows
from (2.5.3) in proposition 2.5.2). ■

An immediate consequence of theorem 2.5.1 is that the analogue of the main result of
[TS67] cited in theorem 1.3.44 holds in characteristic 2.

Corollary 2.5.5. The rank of isotrivial elliptic curves over F2(t) is unbounded. ⌟

Proof. –– Thanks to theorem 2.5.1, the only thing left to prove is that the curves An over
F2(t) are isotrivial. In fact, they are quadratic twists of constant curves. More precisely,
An is a quadratic twist of A×F2 F2(t) over the quadratic extension F2(C ′

n)/F2(t), using the
notations of equation (2.5.2). This follows from proposition 2.5.2.2 with d := t2

n+1 ∈ K :=
F2(t) and a3 := 1, a1 = a2 = a4 = a6 := 0. ■

2.5.2 Zeta funct ion of some hyperel l ipt ic curves

We now compute explicitly the zeta function16 of the hyperelliptic curves C ′
n in terms of

Gauss sums.

Proposition 2.5.6. Let m ⩾ 1 be any odd integer and Cm be the hyperelliptic curve defined
by the affine open subset u2 + u = tm over F2 (see footnote 9 on page 99).

Then the zeta function of Cm over a finite extension k/F2 is given by

Z(Cm/k, T ) = ((1− T )(1− |k|T ))−1 ·
∏

[r]∈((Z/mZ)∖{0})/⟨|k|⟩×

(
1 +G(θku(r),m,r)Tu(r)),

where u(r) = u|k|,m(r) is as in definition 1.4.15. ⌟

16The work [Kob91] contains an expression the zeta function of Cn in terms of certain Jacobi sums, at
least when 2n + 1 is prime. We found out that a similar computation is now given in [Waw21, §3],
where it is assumed that |k| ≡ 1 (mod m). Note also that Elkies showed in [Elk94, Proposition 1] that
Z1(C′

n/Fq2 , T ) = (1 + qT )q.
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Proof of proposition 2.5.6. –– Let Caff
m be the affine plane curve u2 +u = u2−u = tm over

F2. Then Cm is the unique smooth projective geometrically17 irreducible curve such that
F2(Cm) ∼= F2(Caff

m ). We note that Cm has a unique point at infinity, that is |Cm∖Caff
m | = 1,

and Cm has genus m−1
2 since m is odd (see [Gal12, §10.1.1] or [GPS02, proposition 2]).

Now, for every j ⩾ 1, we compute

|Cm(kj)| = 1 + |Caff
m (kj)| = 1 +

∑
t∈kj

#{u ∈ kj : u2 − u = tm }

= 1 +
∑
t∈kj

∑
ψ∈F̂2

ψ(trkj/F2(tm)) proposition 1.4.3.3

= 1 + |kj |+
∑
t∈kj

(−1)tr(tm)

= 1 + |kj |+
∑
t′∈kj

∑
χ∈k̂×

j [m]

(−1)tr(t′)χ(t′) proposition 1.4.3.1

= 1 + |kj |+
∑

χ∈k̂×
j [m]

(G(χ) + χ(0)) definition 1.4.5.1

= 1 + |kj |+
∑

χ∈k̂×
j [m]∖{1}

G(χ).

Now, the map α : χ 7−→ −G(χ) satisfies the hypothesis of proposition 1.4.26 thanks to
theorem 1.4.7.1 and proposition 1.4.6.3. Thus we get

log(Z(Cm/k, T )) =
∑
j⩾1
|C(kj)|

T j

j

= − log((1− T )(1− |k|T ))−
∑
j⩾1

∑
χ∈k̂×

j [m]∖{1}

(−G(χ))T
j

j

= − log((1− T )(1− |k|T )) +
∑

[r]∈((Z/mZ)∖{0})/⟨|k|⟩×

log
(
1 +G(θku(r),m,r)Tu(r)),

which concludes the proof. ■

Let us deduce some consequences of proposition 2.5.6.

Corollary 2.5.7. Let n ⩾ 1 be an integer and set C ′
n := Cm where m := 2n + 1. Then for

any finite extension k/F2 of degree dividing n, we have

Z(C ′
n/k, T ) = ((1− T )(1− |k|T ))−1 ·

∏
[r]∈((Z/mZ)∖{0})/⟨|k|⟩×

(
1 + (|k|1/2T )u|k|,m(r)). ⌟

Proof. –– Using proposition 2.5.6, the identity for Z(C ′
n/k, T ) follows from theorem 1.4.8

and corollary 1.4.29, which can be applied since [k : F2] | n (namely, there is an integer

17Here Caff
m is smooth over F2 (the jacobian matrix reads ∇ = [mtm−1, 1]), but it is not needed to get

a projective model. For instance, y2 = x3 is singular but it is birational to P1. However, smoothness
of Caff

m ensures that Caff
m embeds in Cm, see [GW20, proposition 15.5]. See also footnote 9 on page 99.

Moreover, geometric irreducibility is discussed in footnote 17 on page 32.

105



2 – Packing density of Mordell–Weil lattices and asymptotics

ν ⩾ 1 such that |k|ν ≡ −1 (mod 2n + 1)). This tells us that for all r ∈ Z/mZ ∖ {0}, u(r)
is even and we have

G(θku(r),m,r) = θku(r),m,r(z) · |k|
u(r)

2

where z ∈ ku(r) is any non-zero element such that its trace to ku(r)/2 is zero, i.e., z+z
u(r)

2 = 0.

We may take z = 1, since char(k) = 2, so that G(θku(r),m,r) = |k|
u(r)

2 . This finishes the
proof. ■

2.5.3 Proof of theorem 2.5.1

From there, we can prove theorem 2.5.1 (= theorem H).

Proof of theorem 2.5.1. –– Since the curve A : y2+y = x3 satisfies |A(F2)| = 3, one deduces
that the numerator of its zeta function over F2 is Z1(A/F2, T ) = 1+2T 2 = (1−β1T )(1−β2T )
with β1 = i

√
2 = −β2 = β2 (indeed, we have β1β2 = 2 and |A(F2)| = 2 + 1− (β1 + β2)).

In general, the numerator of the zeta function of A over k ⊃ F2 is (1−β[k:F2]
1 T )(1−β[k:F2]

2 T )
(see [Gri16, proposition 1.3.7] or [Lor96, lemma VIII.5.7]), so

Z1(A/k, T ) =
{

1 + |k|T 2 if [k : F2] is odd
(1− (−1)j |k|1/2T )2 if [k : F2] =: 2j is even.

(2.5.11)

Let m := 2n+ 1. For all r ∈ Z/mZ∖{0}, we know that u|k|,m(r) is even by corollary 1.4.29:
indeed [k : F2] divides n by assumption, so there is an integer ν ⩾ 1 such that |k|ν ≡ −1
(mod m). Moreover, for every u ∈ 2Z⩾1, the polynomial 1 + |k|T 2 divides 1 + (|k|1/2T )u in
Z[T ] if and only u/2 is odd, in which case the factor 1 + |k|T 2 occurs with multiplicity 1 in
1 + (|k|1/2T )u.

Assume now that [k : F2] is odd. Then using proposition 2.5.4 (especially equation (2.5.9))
and corollary 2.5.7, we deduce that the rank of An over k(t) is (recall that m = 2n + 1)

rkAn(k(t)) = 2 ·#
{

[r] ∈ (Z/mZ ∖ {0})
/
⟨|k|⟩× :

u|k|,m(r)
2 is odd

}
.

Using lemma 1.4.28 on D := m
gcd(m,r) ⩾ 3, we see that n

u(r)/2 is always an odd integer. If n
is odd, then u(r)/2 is odd for any r. If n is even, then u(r)/2 is even for any r. Thus, we
find

rkAn(k(t)) =

0 if n is even
2 ·
∣∣∣(Z/mZ ∖ {0})

/
⟨|k|⟩×

∣∣∣ if n is odd.

Lemma 1.4.27.1 gives a general formula for the number of orbits of ⟨|k|⟩× on Z/mZ, while
lemma 1.4.27.2 gives the case k = F2n .

Finally, when m = 2n + 1 and n is either an odd prime or n = 1, lemma 1.4.27.3 yields∣∣∣(Z/mZ ∖ {0})
/
⟨2⟩×

∣∣∣ = 1 + 2
2 + 2n − 2

2n − 1 = 1 + 2n−1 − 1
n

and this concludes the proof. ■

106



2.5 – Isotrivial elliptic curves over F2(t) with arbitrarily large rank

Remark 2.5.8. Note that when [k : F2] = 2n (i.e., k = F22n) and n is odd, we recover the
result from [Elk94, p. 347-348] which asserts that rkAn(F22n(t)) = 2n+1.

Indeed, if we let k′ = F2n then all the orbits of the multiplicative action of ⟨2n⟩× on
Z/(2n + 1)Z ∖ {0} have size 2 (see lemma 1.4.27), so corollary 2.5.7 implies that the

numerator of Z(C ′
n/k

′, T ) equals (1 + |k′|T 2)
m−1

2 .

Then the numerator of Z(C ′
n/k, T ) equals

Z1(C ′
n/k, T ) =

(
(1− (i|k′|1/2)2T ) · (1− (−i|k′|1/2)2T )

)m−1
2 = (1 + |k′|T )m−1.

Now, from equation (2.5.11) we have Z1(A/k, T ) = (1 + |k′|T )2 so proposition 2.5.4 yields

rkAn(F22n(t)) = 2 · (m− 1) = 2n+1

as claimed. ⌟

Remark 2.5.9. We expand a bit on remark 2.3.4. The family {An/F2(t) : n ⩾ 1 odd prime }
satisfies the conditions of theorem 2.3.1. Namely, we have deg (∆min(An)) = 2 · 2n + 8 and
f(An) = 2 ·2n+4, so the Szpiro ratio tends to 1 as n→ +∞. Moreover, from theorem 2.5.1,
we know that Brumer’s bound is asymptotically achieved:

rkAn(F2(t)) ∼ 2n
n

= 2 · 2n · log(2)
2 · log(2n) ∼ f(An) log(2)

2 log f(An) .

Therefore, the asymptotic lower bound on the packing density of An(F2(t))0 is the same as
for Elkies’ and Shioda’s examples from [Elk94, Shi91] (see theorems 0.1 and 0.2). However,
in low dimensions, we do not get sphere packing records. Assume that n is odd.

• Over F2(t), for n = 11 we get a 188-dimensional lattice L with log2 δ(L) ⩾ 16.05,
much worse than Minkowski–Hlawka lower bound from theorem 1.2.15 (which reads
log2 δℓ(188) ⩾ 142.88). For n = 13 we get a 632-dimensional lattice, for n = 9 we get a
60-dimensional lattice; both are very far from achieveing Minkowski bound.

• Let k′ = F2n . When n is odd, we have Z1(C ′
n/k

′, T ) = (1 + 2nT 2)2n−1 =:
∏2gn

j=1(1−αjT )
as explained in remark 2.5.8, where gn = 2n−1 is the genus of C ′

n. Moreover we
have Z1(A/k′, T ) = 1 + 2nT 2 =: (1 − β1)(1 − β2) by equation (2.5.11). We have
L(An/F2n(t), T ) = (1 − 22nT 2)2n by equation (2.5.10). Then the special value of An
over F2n(t) is

L∗(An/F2n(t)) =
∏

αiβj ̸=|k′|

(1− αiβj |k′|−1) =
gn∏
j=1

(1 + 1)2 = 22gn = 22n

.

(Compare this with L∗(An/F22n(t)) = 1: changing the field of constants to a quadratic
subextension heavily changes the special value and the rank). Using proposition 2.1.1, if
we let Ln := An(F2n(t))0 then we find:

– For n = 7, the rank of Ln is 128 and log2 δ(Ln) ⩾ 82.903.

– For n = 9, the rank of Ln is 512 and log2 δ(Ln) ⩾ 749.623.
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2 – Packing density of Mordell–Weil lattices and asymptotics

The density exceeds Minkowski lower bound only when n = 7, but both densities are
smaller than the ones found by Elkies in [Elk94] (see theorem 0.1). ⌟

Remark 2.5.10. Let k = F22n where n ⩾ 1 is odd and set q = 2n. We have An(k(C ′
n)) ∼=

A(k(C ′
n)) since An is a quadratic twist of A : y2 + y = x3 over k(C ′

n). We find by
equation (1.3.11)

L(An/k(C ′
n), T ) = Z(C ′

n/k,−qT )2 = (1− q2T )2n·2

((1 + qT )(1 + q3T ))2

so An(k(C ′
n)) has rank 2n+1. The special value at T = |k|−1 = q−2 is

L∗(An/k(C ′
n)) = ((1 + q−1)(1 + q))−2 = q2

(1 + q)4

and we can compute a lower bound on δ[An(k(C ′
n))] by equation (2.4.7). For n = 1, we get

a 4-dimensional lattice with the same density as the root lattice D4, but as soon as n ⩾ 3,
the lower bound is very far from beating Minkowski lower bound. ⌟

2.5.4 Alternat ive proof of theorem 2.5.1

In this subsection, we give a slightly different computation of the zeta function of C ′
n : u2 +

u = t2
n+1 when n = 1 or is an odd prime, which allows us to deduce the last equality of

theorem 2.5.1.

Proposition 2.5.11. Let n be an odd prime or n = 1, and r ⩾ 1 be an integer.

1. We have

|C ′
n(F2r )| =


2r + 1 if r odd
2r + 1 + (−2)

r
2 +1 if r even and [n ∤ r or n = 1]

2r + 1− (−1)
r

2n 2n+ r
2 if r even and [n | r and n > 1].

2. Write n = 2n′ + 1. The numerator of the zeta function of C ′
n over F2 is

Z1(C ′
n/F2, T ) =

n−1∏
j=0

((1− ajT )(1− ajT ))dj

where

aj :=
√

2e
i(2j+1)π

2n , 0 ⩽ j ⩽ n− 1

dj = d0 := 2n−1 − 1
n

∀j ̸= n′, dn′ := d0 + 1. ⌟

Observe that the degrees dj satisfy
n−1∑
j=0

2dj = 2gn = 2n, where gn = 2n−1 is the genus of

C ′
n (see the proof of proposition 2.5.6), since dn′ = 2n−1 − (n− 1)d0.

Now, if we assume proposition 2.5.11, then the rank of An over F2(t) is 2dn′ (by propo-
sition 2.5.4), because from equation (2.5.11) we have Z1(A/F2, T ) = 1 + 2T 2 = (1 −
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β1T )(1 − β2T ) with β1 = i
√

2 = −β2. Now an′ = i
√

2 = β1 occurs with multiplicity
dn′ in Z1(C ′

n/F2, T ), and the same holds for an′ = β2, so we obtain the last claim from
theorem 2.5.1.

It remains to prove proposition 2.5.11, which occupies the rest of this subsection. It is not
difficult to see that item (2) implies (1) in proposition 2.5.11, as we shall see here. The
converse is not obvious to prove directly, but it follows by uniqueness of the zeta function
given the number of points on all field extensions (by definition of the zeta function).
Afterwards, we will prove part (1) itself.

Proof of (2) =⇒ (1) in proposition 2.5.11. –– If we assume (2) in proposition 2.5.11, then
we have |C ′

n(F2r )| = 2r + 1−
∑n−1
j=0 dj(arj + aj

r). Almost all dj are equal to d0, except for
dn′ , so it makes sense to start with looking at the sum

∑n−1
j=0 (arj + aj

r) = 2 Re
(∑n−1

j=0 a
r
j

)
.

Let ζ = ζn,r := exp
(
riπ
2n
)
. We compute (using the notations from proposition 2.5.11):

2−r/2
n−1∑
j=0

arj =
n−1∑
j=0

exp
(
r(2j + 1)iπ

2n

)

=
n−1∑
j=0

ζ2j+1

=

ζ ·
1− (−1)r

1− ζ2 if ζ2
n,r ̸= 1 (⇐⇒ 2n ∤ r)

nζ = n(−1)
r

2n if ζ2
n,r = 1 (⇐⇒ 2n | r)

Notice that ζ2n = (−1)r was used in the last equality, and that this sum is 0 if r is even
and not divisible by n (since 1− (−1)r = 0).

Now we have
n−1∑
j=0

dj(arj + aj
r) = d0

∑
j ̸=n′

(arj + aj
r) + (d0 + 1)(arn′ + an′

r)

= d0

n−1∑
j=0

(arj + aj
r) + (arn′ + an′

r). (⋆)

• If r is even and n ∤ r, then the above sum (⋆) simplifies to

d0 · 0 + 2r/2(ir + (−i)r) = 2r/2 · 2 · (−1)r/2,

i.e., |C ′
n(F2r )| = 2r + 1− 2r/2 · 2 · (−1)r/2 in that case, as wanted.

• If r is even and n | r, we immediately get

|C ′
n(F2r )| = 2r + 1− 2r/2

(
2d0n(−1)

r
2n + 2 · (−1)r/2

)
= 2r + 1− 2r/2+1((2n−1 − 1)(−1)

r
2 + (−1)r/2)

= 2r + 1− (−1)r/22r/2+1 · 2n−1.
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2 – Packing density of Mordell–Weil lattices and asymptotics

• If r is odd, then the sum (⋆) simplifies to

2 Re
(
d0ζ ·

1− (−1)r
1− ζ2

)
+ 2r/2 (ir + (−i)r)︸ ︷︷ ︸

=0

= 4d0 Re
(

ζ

1− ζ2

)
= 0,

where the last equality holds because |ζ| = 1 implies

ζ

1− ζ2 = ζ(1− ζ2)
|1− ζ2|2

= ζ − ζ
|1− ζ2|2

∈ iR.

Therefore |C ′
n(F2r )| = 2r + 1 in that case, as desired. ■

Finally, we prove the first part of proposition 2.5.11, which we have seen to be equivalent
to the second statement.

Proof of (1) in proposition 2.5.11. –– First of all, notice that C ′
n has a single point at infinity

(see the proof of proposition 2.5.6).

• Assume that r is odd. When Q is a prime power, we start by letting ψ : F×
Q → F×

Q

be the multiplicative map t 7→ tN . Its kernel has size d := gcd(N,Q − 1). When
N = 2n + 1, n ⩾ 1 and Q = 2r, where r is odd, we have d = gcd(2n + 1, 2r − 1) = 1.
Indeed, we have 2n ≡ −1 (mod d), 2r ≡ 1 (mod d). Then the order of 2 modulo d

divides gcd(r, 2n) = gcd(r, n) | n (since r is odd). Therefore −1 ≡ 2n ≡ 1 mod d. Thus
d must divide 2, and since it is an odd integer, we conclude d = gcd(2n + 1, 2r − 1) = 1.

Therefore, ψ is injective and therefore surjective, so that

|C ′
n(F2r )| = 1+

∑
t∈F2r

#{y ∈ F2r : y2 +y = t2
n+1} = 1+

∑
z∈F2r

#{y ∈ F2r : y2 +y = z}.

Proposition 1.4.3.3 states that y2 + y = y2 − y = z has a solution for y if and only if
trk/F2(z) = 0, in which case there are exactly two solutions {y, y + 1}.

Hence, since the trace is surjective, we have |C ′
n(F2r )| = 1+2| ker(tr)| = 1+2·2r−1 = 1+2r,

as claimed.

• For r = 2n, we can see that C ′
n(F22n) has 2q2 + 1 = 1 + q2 − 2gn · (−q) rational points,

where q = 2n and gn = 2n−1, as proved in [Elk94, proposition 1, p. 345]. This implies
that the numerator of the zeta function of C ′

n over Fq2 is (1 + qT )2gn . Therefore, when
2n | r = 2nr′ (for some r′ ⩾ 1), we have

|C ′
n(F2r )| = |C ′

n(F(q2)r′ )| = 2r + 1−
2gn∑
i=1

(−q)r
′

= 2r + 1− q1+r′
(−1)r

′

= 2r + 1− (−1)r/(2n)2n+r/2.

• Finally, assume that r = 2r′ is even but not divisible by n. Proposition 1.4.3.3 states
that the equation x2 + x = b has a solution for x (in which case it has exactly two
solutions {x, x+ 1}) if and only if trF2r/F2(b) = 0. We have

|C ′
n(F2r )| = 1 +

∑
t∈F2r

#{y ∈ F2r : y2 + y = t2
n+1}
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2.5 – Isotrivial elliptic curves over F2(t) with arbitrarily large rank

= 1 + 2#{t ∈ F2r : trF2r/F2(t2
n+1) = 0}

For a ∈ F2, define

T (a) = Tn,r(a) := #{t ∈ F2r : trF2r/F2(t2
n+1) = a}.

We claim that if r is even and coprime to n (which is automatic if n is an odd prime or
n = 1, as soon as n ∤ r), then

T (0)− T (1) = (−2)r/2+1. (2.5.12)

Since T (0) + T (1) = 2r, we will get

|C ′
n(F2r )| = 1 + 2T (0) = 1 + (T (0) + T (1)) + (T (0)− T (1)) = 1 + 2r + (−2)r/2+1,

as claimed in proposition 2.5.11.

Let us show equation (2.5.12), in order to conclude the proof. Define the additive
character

ψ : F2r −→ C×

x 7−→ exp
(2πi

2 trF2r/F2(x)
)

= (−1)trF2r /F2 (x)

Then proposition 1.4.3 yields

T (0)− T (1) =
∑
t∈F2r

ψ(t2
n+1) =

∑
x∈F2r

∑
χ:F×

2r →C×

χ2n+1=1

ψ(x)χ(x) =
∑

χ:F×
2r →C×

χ2n+1=1

G(χ)

where G(χ) denotes the Gauss sum attached to the multiplicative character χ.

We are summing characters such that

χ2n+1 = 1 = χ2r−1

so that χg = 1, where g := gcd(2n + 1, 2r − 1). The key point now is that g = 3. Indeed,
we can write a Bézout relation nu+ r′v = 1 (since n is an odd prime and n ∤ r = 2r′,
the case n = 1 also works), so the identities 2n ≡ −1 mod g, 2r ≡ 1 mod g yield
22nu+rv = 4 ≡ 1 mod g, i.e. g | 3. One easily sees that in fact g = 3 : since n = 2k + 1
is odd, we have 2n + 1 = 2 · 4k + 1 ≡ 2 + 1 = 0 mod 3 and 2r − 1 = 4r′ − 1 ≡ 1− 1 = 0
mod 3.

Therefore, if χ3 denotes any of the two cubic characters of F×
2r , then

T (0)− T (1) = G(1) +G(χ3) +G(χ2
3) = G(χ3) +G(χ2

3).

The explicit computation of those cubic Gauss sums in characteristic 2 is now possible,
either by using Hasse–Davenport relation (see remark 2.5.12), or by direct methods as in
[DS11, theorem 1, corollary 1]. Namely, we have G(χ3) = G(χ2

3) = −(−2)r/2 (recall that
r is even in our case). This proves the result (2.5.12) about T (0)− T (1), and therefore
about |C ′

n(F2r )|. ■
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2 – Packing density of Mordell–Weil lattices and asymptotics

Remark 2.5.12. We explain how the cubic Gauss sums can be sometimes computed using
the Hasse–Davenport relation. The key point is that if q ≡ 1 (mod m), then for every
s ⩾ 1, we have by the last equality of proposition 1.4.17.3

{χ ∈ F̂×
qs : χm = 1} = {χ′ ◦NFqs/Fq

: χ′m = 1}

(notice that χm = 1 if and only if the order of χ divides m). In particular, since 4 ≡ 1
(mod 3), it suffices to describe cubic Gauss sums over F4 to determine those sums over
F4s = F22s .

Now we compute the cubic Gauss sums explicitly. Write F4 = {0, 1, a, a+1} where a2 = a+1.
Define a cubic character χ : F×

4 = ⟨a⟩ → C× by χ(a) = exp(2πi/3) =: ζ3. Recall that ζ2
3 +

ζ3 + 1 = 0. Define the additive character ϕ : F4 → C×, x 7→ exp(πi trF4/F2(x)) = (−1)tr(x).
We can now evaluate

G(χ) =
∑
x∈F4

χ(x)ψ(x) = χ(0)ψ(0) + χ(1)ψ(1) + χ(a)ψ(a) + χ(a+ 1)ψ(a+ 1)

= 0 + 1 + ζ3 · (−1) + ζ2
3 · (−1)

= 1− ζ3 − ζ2
3 = 1− (−1) = 2

Similarly, G(χ2) = 2. Therefore, over F4s , we have −GF4s (χ ◦ NF4s/F4) = (−GF4(χ))s =
(−2)s by Hasse–Davenport relation stated in theorem 1.4.7. ⌟
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Chapter 3
The family y2 = x3 + bx + b′tm

In this chapter, we study the Mordell–Weil lattices attached to the elliptic curves given by
y2 = x3 + bx+ b′tm over Fq(t) for some odd prime power q, some b, b′ ∈ F×

q and m ⩾ 1.

In section 3.1, we first compute its L-function in terms of Jacobi sums (theorem 3.1.3) and
give some formulas for the rank (corollaries 3.1.14 and 3.1.16). In particular, we deduce in
corollary 3.1.20 that for any fixed odd prime p, the rank of these curves is unbounded as we
vary m (however, Brumer’s bound from theorem 2.2.6 seems to be asymptotically achieved
only if p ≡ −1 mod 4). In characteristic 3, an alternative computation of the L-function is
given in corollary 3.1.22, using the fact that the map x 7→ x3 + bx is additive.

In section 3.2, we study some dense sphere packings we can get from these Mordell–Weil
lattices (e.g., in dimensions 150 and 306 as in example 3.2.3). The curves in characteristic 3
provide lattices in dimensions 2 ·3n = 54 ; 162 ; 486 (for n ∈ {3, 4, 5}) which are the densest
known so far; see theorem 3.2.7. Using laminated lattices, we also get lattice packings in
dimensions 55, 163, 487, which are the densest known so far in their respective dimensions
(proposition 3.2.22).

In section 3.3, we focus on the 54-dimensional lattice mentioned in the previous paragraph
and discuss some computational aspects related to its kissing number and its Gram matrices.
We end the chapter by proving (in section 3.4) the triviality of the Tate–Shafarevich group
of the some of the above elliptic curves in characteristic 3.

As mentioned in remark 3.1.17, the geometric rank of these curves was computed in [Shi86,
remark 10], provided that the characteristic is p ≡ −1 mod 4. Our method gives the rank
over Fq(t) for any power of p, including when p ≡ 1 mod 4, so the results we obtain are
more general.

D

Let k be a finite field of odd characteristic. For any integer m ⩾ 1 and any b, b′ ∈ k× we let
Em,b,b′ be the elliptic curve over k(t) given by the Weierstrass equation

Em,b,b′ : Y 2Z = X3 + bXZ2 + b′tmZ3. (3.0.1)

Its j-invariant is j(Em,b,b′) = 123 · 4b3

4b3 + 27b′2t2m
so we see that Em,b,b′ is isotrivial if and

only if char(k) = 3, in which case it has j-invariant equal to 0.

This is a Delsarte elliptic curve as in definition 1.3.36 and example 1.3.38. In partic-
ular, Shioda’s theorem 1.3.40 ensures that Em,b,b′ satisfies the Birch–Swinnerton-Dyer
conjecture 1.3.34 over k(t).
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When q is a power of an odd prime, we also define the narrow Mordell–Weil lattice (see
definition 1.3.20)

Lm,b,b′,q := Em,b,b′(Fq(t))0.

In the specific case where m = 3n + 1, q = 32n, b′ = 1 and b ∈ F×
3n satisfies b(3n−1)/2 =

(−1)n+1 (for some integer n ⩾ 1), we will obtain some dense lattice sphere packings, denoted
L′
n,b for simplicity, in dimension 2 · 3n: when n ∈ {3, 4, 5}, they are currently the densest

known packings in their respective dimensions.

We remind the reader that a list of symbols can be found at the end of this work, on
page 239. In particular, we will use the notations from definitions 1.4.1, 1.4.5 and 1.4.15;
for instance kj denotes the extension of degree j ⩾ 1 of a finite field k.

3.1 · L-function of Em ,b ,b ′

In view of the lower bound on the packing density of Mordell–Weil lattices given in
proposition 2.1.1, we need to compute the L-function of Em,b,b′ as explicitly as possible (see
also remark 2.1.2). To give such a description, we introduce the following notations.

Definition 3.1.1. Given an integer m ⩾ 1, a finite field k and elements b, b′ ∈ k×, we define

d = d(m) := 4m
gcd(2,m) =

{
2m if m is even
4m if m is odd

Z(m) :=


Z/2mZ ∖ m

2 Z/2mZ if m is even and 6 ∤ m
Z/2mZ ∖ (m2 Z/2mZ ∪ 2m

3 Z/2mZ) if m is even and 6 | m
Z/4mZ ∖

(
2Z/4mZ ∪mZ/4mZ

)
if m is odd

ϵm,b,b′,k(T ) :=


(1− |k|T )2 if m is even and −b ∈ k×,2 and b′ ∈ k×,2

(1 + |k|T )2 if m is even and −b ∈ k×,2 and b′ ̸∈ k×,2

1− |k|2T 2 if m is even and −b ̸∈ k×,2

1 if m is odd.

Finally, let us define the map

αb,b′ :
⊔
n⩾1

k̂×
n −→ C, αb,b′(θ) := λkn(−b′)θ(−b3b′−2)·J(λkn , λknθ

2)·J(θ, θ2) if θ ∈ k̂×
n .

⌟

Remark 3.1.2. In general, we have Z(m) ⊂ Z/d(m)Z. Note that when 6 | m we have

Z(m) = Z/2mZ ∖
{

0, m2 ,
2m
3 ,m,

3m
2 ,

4m
3

}
.

When 6 ∤ m is even, we have Z(m) = Z/2mZ ∖ {0,m/2,m, 3m/2}. ⌟

We now state the main result of this section, proved in subsection 3.1.3.
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3.1 – L-function of Em,b,b′

Theorem 3.1.3 (theorem B). Let k be a finite field of odd characteristic and let Em,b,b′ be
the elliptic curve over k(t) as in equation (3.0.1). Assume that m is coprime to char(k).
Then, using the notations from definition 3.1.1, the L-function of Em,b,b′ is

L(Em,b,b′/k(t), T ) = ϵm,b,b′,k(T ) ·
∏

[r]∈Z(m)/⟨|k|⟩×

(
1− αb,b′(θku(r),d,r)Tu(r)

)
where u(r) = u|k|,d(r) and θku(r),d,r were introduced in definition 1.4.15. ⌟

Remark 3.1.4. 1. When m is not coprime to p, one can use proposition 1.3.46 to compute
the L-function of Em,b,b′ . More precisely, let vp(m) be the p-adic valuation of m and
set m1 := m/pvp(m). Let b1, b

′
1 ∈ k× be the unique elements such that bp

vp(m)

1 = b

and b′
1
pvp(m)

= b′ (recall that the p-th power Frobenius map is a bijection on k; when
b, b′ ∈ F×

p we may take b1 = b and b′
1 = b′). Then the Frobenius morphism Frvp(m)

p :
Em1,b1,b′

1
−→ Em,b,b′ is an isogeny over k(t), so the curves have the same L-function.

2. As we have explained at the beginning of the proof of proposition 1.4.26, the coeffi-
cient αb,b′(θku(r),d,r) appearing in theorem 3.1.3 does not depend on the choice of a
representative r of the orbit [r] ∈ Z(m)/⟨|k|⟩×. ⌟

3.1.1 Reduction types and local term at the inf ini te place

We start by analyzing the places of bad reduction of Em,b,b′ ; this is a routine calculation
using Tate’s algorithm as in [Sil08b, IV.§9]. We use the notations from definition 1.3.7.

Proposition 3.1.5. Let k be a finite field of odd characteristic p ⩾ 3 and let Em,b,b′ be the
elliptic curve over k(t) as in equation (3.0.1). Assume that m is coprime1 to p. Then the
places of bad reductions of Em,b,b′ are given by:

• The places v above ∆ := 4b3+27b′2t2m (there are none if p = 3), with fv = cv = v(∆) = 1.
Moreover, (3.0.1) is a minimal integral Weierstrass model at v.

• The place at infinity v = ∞ if2 6 ∤ m, in which case the reduction is of additive type.
Further, if we let π := 1/t ∈ k(t), a := ⌈m/6⌉ and α = 6a−m then y′2 = x′3 + bπ4ax′ +
b′π6a−m is a minimal integral Weierstrass model at v =∞ for Em,b,b′ , and

fv = v(∆)− 2(α− 1), v∞(∆) =
{

2α = 12⌈m/6⌉ − 2m if p > 3
12a = 12⌈m/6⌉ if p = 3.

The other local invariants at ∞ are given in the table below.

m ≡ 1 mod 6 II∗ fv = v(∆)− 8 cv = 1

m ≡ 2 mod 6 IV∗ fv = v(∆)− 6 cv =
{

3 if b′ is a square in k

1 otherwise
m ≡ 3 mod 6 I0

∗ fv = v(∆)− 4 cv = 1 + #{x ∈ k : x3 = −b′ }

m ≡ 4 mod 6 IV fv = v(∆)− 2 cv =
{

3 if b′ is a square in k

1 otherwise
m ≡ 5 mod 6 II fv = v(∆) cv = 1

1If gcd(m, p) > 1, then all bad places ̸= ∞ are of multiplicative type with Kodaira symbol Ip.
2This also happens if p = 3, but in that case we must have 6 ∤ m since we assumed gcd(m, p) = 1.
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In particular, we have

deg (∆min(Em,b,b′/k(t))) = 12⌈m/6⌉,

f(Em,b,b′/k(t)) =
{

2m if 6 | m
2m+ 2 if 6 ∤ m

and the Szpiro ratio σ(Em,b,b′/k(t)) tends to 1 as m→∞.

Moreover we always have c(Em,b,b′/k(t)) ∈ {1, 2, 3, 4}. In fact, if 6 | m then c(Em,b,b′/k(t)) =
1, while if m ≡ 2, 4 mod 6 and b′ is a square in k then

c(Em,b,b′/k(t)) = 3. ⌟

Proof. –– We prove the various claims simultaneously. For simplicity we write E = Em,b,b′ .
The discriminant of the Weierstrass equation (3.0.1) is −16∆ = −16(4b3 + 27b′2t2m).

• We first analyze the reduction type at a place v | ∆ (we may see this valuation as an
irreducible polynomial over k). Since there are no such places if p = 3, we may assume
that p > 3 in this item. The assumption gcd(m, p) = 1 ensures that ∆ ∈ k[t] is separable,
so v(∆) = 1 and this implies that Ev has Kodaira type I1, by table IV.4.1, p. 365 in
[Sil08b]. We can however be more precise by doing explicit computations.

Let π ∈ OP1,v denote a uniformizer at v. The jacobian matrix of E reads

∇ = [−(3X2 + bZ2) 2Y Z Y 2 − 2bXZ − 3b′tmZ2]

If we define s := −3b′

2b t
m, then 3s2 + b = 1

4b2 ·∆ ≡ 0 (mod π), so that ∇ vanishes modulo
π at the point [s : 0 : 1]. One easily checks that (s̄, 0̄) ∈ Ev lies on the reduction modulo
π of E, so it is a singular point. In other words, (0̄, 0̄) is a singular point of the reduction
modulo π of

E′ : y2 = (x+ s)3 + x+ s+ tm = x3 + 3sx2 + ( 3s2 + 1︸ ︷︷ ︸
≡0 mod π

)x+ s3 + s+ tm︸ ︷︷ ︸
≡0 mod π

.

Write a1, a2, a3, a4, a6 for the coefficients of this Weierstrass equation of E′ as in [Sil08b, p.
364]. From the table III.3.1 in [Sil08a], we have ∆(E′) = ∆(E), so we still have v(∆) = 1.
Moreover, if we set b2 = 4a2 = 12s = −18b′b−1tm, we have π ∤ b2 so the reduction type is
I1 according to Step 2 of [Sil08b, IV.§9, p. 366] so that fv = 1. Because v(∆) = 1 is odd,
we have cv = 1 in any case (whether we have split or non-split multiplicative reduction).
Moreover, this shows that y2 = x3 + bx+ b′tm is a minimal integral Weierstrass model
at v (see also [Sil08a, remark VII.1.1]).

• We now focus on the place at infinity v = ∞ (corresponding to [1 : 0] ∈ P1(k)). Let
π = t−1 ∈ k(t) be a uniformizer of the discrete valuation ring OP1,v and define

a := ⌈m/6⌉ = min{a′ ⩾ 0 : 6a′ −m ⩾ 0}.

The change of variables (x, y) = (π−2ax′, π−3ay′) shows that E has Weierstrass equation

Ev : y′2 = x′3 + bπ4ax′ + b′π6a−m (3.1.1)
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3.1 – L-function of Em,b,b′

which is integral at v. The associated discriminant is

∆v = −16 · (4b3π12a + 27b′2π2(6a−m))

We have π | ∆ if and only if 6 ∤ m or p = 3. Define α := 6a − m ∈ {0, 1, 2, 3, 4, 5}.
If p > 3, we have v(∆) = 2 · α < 12 so that equation (3.1.1) is a minimal integral
Weierstrass model at v =∞ by [Sil08b, remark VII.1.1]. If p = 3 then v(∆) = 12a. We
have the following coefficients, as defined in [Sil08b, IV.9, p. 364]:

b2 = 0, b4 = 2bπ−4a, b6 = 4b′π6a−m, b8 = −b2π8a

We also let a4 := bπ4a, a6 := b′π6a−m. Now we distinguish several cases.

– Suppose that m ≡ 0 mod 6. If p > 3 then π ∤ ∆v so E has good reduction I0 at v =∞.
(If p = 3 then gcd(m, p) > 1 so we do not consider this case; the reduction type is IV
or IV∗).

– From now on we suppose that 6 ∤ m, which means that α = 6a−m > 0. Moreover, the
reduction modulo π of E is ȳ2 = x̄3, so the only singular point is (0̄, 0̄) ∈ Ev. Further,
we always have π | b2 = 0 so we can proceed with step 4 of Tate algorithm as written
in [Sil08b, IV.9, p. 366].

Suppose that m ≡ 5 mod 6 so α = 1. Then π2 ∤ a6, so the reduction type is II and
fv = v(∆) and cv = 1. If we assume m ̸≡ 5 mod 6, then π2 | a6 and π3 | b8 since
α = 6a−m ⩾ 2 and a ⩾ 1.

– Suppose that m ≡ 4 mod 6 so α = 2. Then π3 ∤ b6 and the reduction type is IV with
fv = v(∆)− 2. Moreover, the polynomial T 2 − π−2a6 = T 2 − b′ splits over Fv = k if
and only if b′ is a (non-zero) square in k, if and only cv = 3. Otherwise cv = 1.

Now we assume that α ⩾ 3. Then π3 | b6 and define the polynomial P (T ) := T 3 +
bπ4a−2T + b′πα−3 as in [Sil08b, p. 367, step 6].

– Suppose that m ≡ 3 mod 6, so α = 3 and p > 3 (since we assumed gcd(m, p) = 1).
Then P has distinct roots in Fv = k and so the reduction type is I0

∗ with fv = v(∆)−4
and cv = 1 + #{x ∈ k : x3 + b′ = 0 }.

Now we assume that α ⩾ 4. Then P has a triple root T = 0 modulo π. Consider the
polynomial Q(Y ) := Y 2 − b′πα−4.

– Suppose that m ≡ 2 mod 6. Then Q has distinct roots modulo π in k so the reduction
type is IV∗ with fv = v(∆) − 6. Moreover, cv = 3 if and only if b′ is a square in k,
otherwise cv = 1.

– Suppose finally that m ≡ 1 mod 6. Then Q has a double root Y = 0 modulo π, and
we conclude that the reduction type is II∗ with fv = v(∆)− 8 and cv = 1.

Moreover, in all those cases, this proves that (3.1.1) is a minimal integral Weierstrass
model (even when p = 3, provided that gcd(m, p) = 1).

The other claims about deg (∆min(E/k(t))) , f(E/k(t)), c(E/k(t)) and the Szpiro ratio
immediately follow from the above analysis. ■

117



3 – The family y2 = x3 + bx + b′tm

Coming back to the L-function, proposition 1.3.29 allows us to write

logL(Em,b,b′/k(t), T ) =
∑
n⩾1

am,b,b′(n)T
n

n

where (using the notations3 from equation (1.3.9) in definition 1.3.27)

am,b,b′(n) :=
∑

w∈P1(kn)
aw(Em,b,b′)

=
∑

w∈P1(kn)

(
|Fw|+ 1− |(Em,b,b′)w(Fw)|

)
.

Here we see the rational points w as places of k(t) by taking their Galois orbits. We mention
that while the notation does not make it explicit, the values am,b,b′(n) depend on the field
of constants k that we fixed.

For each n ⩾ 1, denote by

AEm,b,b′ (∞, n) := |kn|+ 1− |(Em,b,b′)∞(kn)| (3.1.2)

the local term at the place v = v∞ = [1 : 0] ∈ P1
k (see example 1.3.6), as in equation (1.3.9).

From propositions 1.4.3 and 3.1.5 we get

am,b,b′(n) = AEm,b,b′ (∞, n)−
∑
t∈kn

∑
x∈kn

λkn(x3 + bx+ b′tm) (3.1.3)

= AEm,b,b′ (∞, n)−
∑

χ∈k̂×
n [m]

Sb,b′(χ, n) (3.1.4)

where the sum runs over multiplicative characters χ : k×
n → C× such that χm = 1 and

where we set

Sb,b′(χ, n) :=
∑

z,x∈kn

λkn
(x3 + bx+ b′z)χ(z). (3.1.5)

First, let us study the local term Am,b(∞, kn) at the place at infinity of k(t).

Proposition 3.1.6. Let n ⩾ 1. Let k be a finite field of odd characteristic, b, b′ ∈ k× and
m ⩾ 1 be coprime to char(k).

• If 6 ∤ m or if |k|n ̸≡ 1 (mod 3), then AEm,b,b′ (∞, n) = 0.

• If 6 | m and if |k|n ≡ 1 (mod 3), then

AEm,b,b′ (∞, n) = −
∑

ψ∈k̂×
n [3]

ψ(−b′)λkn(b′)J(λkn , ψ)

= −λkn(−1)
∑

ψ∈k̂×
n [3]∖{1}

ψ(−b′)λkn(b′)J(λkn , λknψ
−1). ⌟

3There is a slight conflict of notation here (the use of the letter "a" twice), but it will not be harmful.
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3.1 – L-function of Em,b,b′

Proof. –– When 6 ∤ m, the curve Em,b,b′ has bad reduction of additive type at v = ∞
according to proposition 3.1.5, so that AEm,b,b′ (∞, n) = 0 for all n ⩾ 1 by remark 1.3.28.

When 6 | m, the curve Em,b,b′ has good reduction at ∞ with minimal integral Weierstrass
model E∞ : y2 = x3 + bπ4m/6x + b′ where π = 1/t is a uniformizer at ∞ (thanks to
proposition 3.1.5). Denoting the Legendre symbol λkn simply by λ, we have

AEm,b,b′ (∞, n) = |kn|+ 1− |E∞(kn)|

= −
∑
x∈kn

λ(x3 + b′)

= −
∑
z∈kn

∑
ψ∈k̂×

n [3]

λ(z + b′)ψ(z)

= −
∑
z′∈kn

∑
ψ∈k̂×

n [3]

λ(−b′z′ + b′)ψ(−b′z′)

= −
∑

ψ∈k̂×
n [3]

ψ(−b′)λ(b′)J(λ, ψ).

Observe that

gcd(3, |k×
n |) = gcd(3, |k|n − 1) =

{
3 if |k|n ≡ 1 (mod 3)
1 if |k|n ≡ −1 (mod 3).

In particular, if |k|n ≡ −1 (mod 3) then AEm,b,b′ (∞, n) = 0. When |k|n ≡ 1 (mod 3), there
is a character θ3 : k×

n → C× of order 3, and

−AEm,b,b′ (∞, n) = 1(−b′)λ(b′)J(λ,1)︸ ︷︷ ︸
=0

+θ3(−b′)λ(b′)J(λ, θ3) + θ2
3(−b′)λ(b′)J(λ, θ2

3)

= λ(b′) ·
(
θ3(−b′)J(λ, θ3) + θ2

3(−b′)J(λ, θ2
3)
)

Finally, theorem 2.1.5 in [BEW98] states that

χ, ψ, χψ non-trivial =⇒ J(χ, ψ) = χ(−1)J(χ−1ψ−1, χ) = ψ(−1)J(χ−1ψ−1, ψ) (3.1.6)

and so J(λ, λθ3) = λ(−1)J(θ−1
3 , λ) = λ(−1)J(θ2

3, λ) which yields

J(λ, λθ2
3) + J(λ, λθ3) = λ(−1)

(
J(θ3, λ) + J(θ2

3, λ)
)
. ■

3.1.2 Expressing Sb,b ′ (χ, n) in terms of Jacobi sums

Throughout we let k be a finite field of odd characteristic. Given an integer n ⩾ 1 and
a multiplicative character χ : k×

n → C×, we wish to express the character sum Sb,b′(χ, n)
defined in equation (3.1.5) in terms of well-known Jacobi sums (or Gauss sums).

We can perform an explicit computation if χ2 = 1.

Lemma 3.1.7. Let n ⩾ 1. We have Sb,b′(1, n) = 0 and

Sb,b′(λkn , n) = λkn(b′) · 2|k|n · 1−b∈k×,2
n
. (3.1.7)

Here 1x∈E denotes the value of the indicator function of a set E at x. ⌟
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3 – The family y2 = x3 + bx + b′tm

Proof. –– • We first treat the case where χ = λ. According to [Gri16, lemme 2.2.3], we
have ∑

z∈kn

λ(z2 + d · z) =
{
−1 if d ̸= 0
|kn| − 1 if d = 0.

In particular, we get

Sb,b′(λkn , n) =
∑

z,x∈kn

λkn(b′z2 + z(x3 + bx))

= λkn(b′) ·
( ∑

x∈kn

b′−1(x3+bx) ̸=0

(−1) + (|kn| − 1) · (1 + 2 · 1−b∈k×,2
n

)
)

= λkn(b′) ·
(
− (|kn| − 1− 2 · 1−b∈k×,2

n
) + |kn| − 1 + 2 · (|kn| − 1) · 1−b∈k×,2

n

)
= λkn(b′) · 2|k|n · 1−b∈k×,2

n
.

• As for the case χ = 1, we simply have

Sb,b′(1, n) =
∑
x∈kn

∑
z∈kn

λ(x3 + bx+ b′z) =
∑
x∈kn

0 = 0. ■

From now on, we can focus on the case where χ2 ̸= 1, which means χ ̸= 1, λkn . We will first
express Sb,b′(χ, n) (defined in equation (3.1.5)) in terms of another sum given as follows.
For a multiplicative character ψ on kn, we set

Cb(ψ, n) :=
∑
x∈kn

ψ(x3 + bx) (3.1.8)

which we may call a "ψ-Jacobsthal sum".

Lemma 3.1.8. Let n ⩾ 1 and χ ∈ k̂×
n be such that χ2 ̸= 1. Then the sums from

equations (3.1.5) and (3.1.8) satisfy the following identity (involving a Jacobi sum as given
in definition 1.4.5)

Sb,b′(χ, n) = χ(−b′−1)J(λkn , χ) · Cb(λknχ, n). ⌟

Proof. –– In what follows, we will generally denote the Legendre symbol λkn by λ for
simplicity. The terms with x = 0 in Sb,b′(χ, n) form the sum of the values of the non-trivial
character λχ over k×

n , so this contributes nothing, since χ ̸= λ. Then we may consider the
sum over the non-zero x ∈ kn, and do a change of variables z = b′−1xz′ to get

Sb,b′(χ, n) =
∑

z′,x∈kn

x ̸=0

λkn(x3 + bx+ xz′)χ(xz′)χ(b′−1)

= χ(b′−1)
∑
x∈kn
x ̸=0

(
(λχ)(x)χ(−1)

∑
z′∈kn

λ(x2 + b+ z′)χ(−z′)
)
.

When x2 = −b, the inner sum over z′ vanishes, since χ ̸= λ (so that χλ is not trivial).
Therefore, we may assume that x2 ̸= −b and consider the elements αx = (b+ x2)−1 ∈ k×

n

to get

χ(−b′)Sb,b′(χ, n) =
∑

x∈kn,x2 ̸=0,−b

(
(λχ)(xα−1

x )
∑
z′∈kn

λ(αx(x2 + b+ z′))χ(−αxz′)
)

120



3.1 – L-function of Em,b,b′

=
∑

x∈kn,x2 ̸=0,−b

(
(λχ)(x3 + bx)

∑
z∈kn

λ(1− z)χ(z)
)

= J(λkn , χ) ·
∑
x∈kn

(λχ)(x3 + bx)

which gives the desired result. ■

We now evaluate the character sums Cb(ψ, n) (defined in equation (3.1.8)) in terms of
Jacobi sums.

Proposition 3.1.9. Let n ⩾ 1 and ψ ∈ k̂×
n . We have

Cb(ψ, n) = ψ(b)
∑
θ∈k̂×

n

θ2=ψ

θ(−b)J(θ, ψ) = ψ(b)
∑
θ∈k̂×

n

θ2=ψ

θ(−b)J(θ, θ2).

In particular, if ψ is an odd character, i.e. ψ(−1) = −1, then Cb(ψ, n) = 0, because then
there is no character θ such that θ2 = ψ, so the sum vanishes. ⌟

Proof. –– • If ψ(−1) = −1 then by setting x = −x′ we obtain

Cb(ψ, n) =
∑
x′∈k

ψ(−x′3 − bx′) = ψ(−1)
∑
x′∈k

ψ(x′3 + bx′) = −Cb(ψ, n) (3.1.9)

so that Cb(ψ, n) = 0.

• If ψ(−1) = 1 then by [Gri16, lemme 2.1.1], there is a character θ ∈ k̂×
n such that θ2 = ψ

(and there are exactly two such characters, the other being θλ). Then

Cb(ψ, n) =
∑
x∈kn

θ(x2)ψ(x2 + b)

=
∑
s∈kn

θ(s)ψ(s+ b)(1 + λkn(s))

=
∑
s′∈kn

θ(−1)θ(−bs′)ψ(bs′ + b)(1 + λkn(bs′))

= θ(−1)(θψ)(b)
∑
s′∈kn

θ(−s′)ψ(s′ + 1)(1 + λkn(bs′))

= ψ(b)θ(−b)
(
J(θ, ψ) + λkn(−b)J(θλ, ψ)

)
which is indeed equal to the claimed formulas (the second formula is obtained by replacing
ψ by θ2). ■

We can now summarize the above results in order to express the coefficients am,b,b′(n) of
the L-function (as given in equation (3.1.4)) in terms of Jacobi sums. To this end, it is
convenient to introduce the following set of characters on k×

n .

Definition 3.1.10. Given an integer n ⩾ 1, we let

Xm(n) :=

k̂×
n [2m] ∖

(
k̂×
n [4] ∪ k̂×

n [3]
)

if m is even
k̂×
n [4m] ∖

(
k̂×
n [2m] ∪ k̂×

n [4]
)

if m is odd.
⌟
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3 – The family y2 = x3 + bx + b′tm

Note that when m is even, the subgroup k̂×
n [3] is non-trivial if and only if 6 | m (which is

related to the condition we have in proposition 3.1.6).

Corollary 3.1.11. Let k be a finite field of odd characteristic and fix b, b′ ∈ k×. Let m ⩾ 1
be an integer coprime to char(k). Then for all n ⩾ 1, the coefficient am,b,b′(n) from
equation (3.1.4) can be expressed as

am,b,b′(n) = −λkn
(b′) · 2|k|n · 1−b∈k×,2

n
· 1m even

− λkn
(−b′)

∑
θ∈Xm(n)

θ2(b′−1)θ3(−b)J(λkn
, λkn

θ2) · J(θ, θ2) (3.1.10)

where 1m even equals 1 if m is even and 0 otherwise. ⌟

Proof. –– • The first step is to combine equation (3.1.4), lemmas 3.1.7 and 3.1.8, and propo-
sition 3.1.9. We find

am,b,b′(n) = AEm,b,b′ (∞, n)

− λkn
(b′) · 2|k|n · 1−b∈k×,2

n
· 1m even −

∑
χ∈k̂×

n [m]∖k̂×
n [2]

Sb,b′(χ, n),

and for all χ ∈ k̂×
n [m] ∖ k̂×

n [2] we have

Sb,b′(χ, n) = χ(−b′−1)J(λkn , χ) · (λknχ)(b)
∑

θ2=λknχ

θ(−b)J(θ, θ2)

=
∑

θ2=λknχ

(
(λknθ

2)(−b′−1)J(λkn , λknθ
2) · θ2(b)θ(−b)J(θ, θ2)

)
= λkn(−b′−1)

∑
θ2=λknχ

θ2(b′−1)θ3(−b)J(λkn , λknθ
2) · J(θ, θ2).

It is easy to check the following equality of sets of characters

X ′
m(n) :=

{
θ ∈ k̂×

n : ∃χ ∈ k̂×
n , θ

2 = λknχ, χ
m = 1, χ2 ̸= 1

}
(3.1.11)

=

k̂×
n [2m] ∖ k̂×

n [4] if m is even
k̂×
n [4m] ∖

(
k̂×
n [2m] ∪ k̂×

n [4]
)

if m is odd.
(3.1.12)

This allows to re-write the coefficients am,b,b′(n) as follows:

am,b,b′(n) = AEm,b,b′ (∞, n)− λkn(b′) · 2|k|n · 1−b∈k×,2
n
· 1m even

− λkn(−b′−1)
∑

θ∈X′
m(n)

θ2(b′−1)θ3(−b)J(λkn , λknθ
2) · J(θ, θ2). (3.1.13)

• The second step is to take care of the local term at infinity. In the above sum, none
of λkn , λknθ

2, θ2 is trivial (since θ4 ̸= 1). On the other hand, the second Jacobi sum
J(θ, θ2) is a root of unity if and only if θ3 = 1 by proposition 1.4.6 (since none of θ, θ2

can be trivial). We now distinguish two cases.
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– Assume that 3 ∤ m or that |kn| ≡ −1 (mod 3). Then there is no character of
order 3 in X ′

m(n). In other words, in this case, we have X ′
m(n) = Xm(n) and

proposition 3.1.6 tells us that in this case we have Am,b(∞, kn) = 0. Then we see
that equation (3.1.13) is exactly the same as equation (3.1.10).

– Assume that 3 | m and m is odd and |kn| ≡ 1 (mod 3). Then there is indeed
a character θ3 ∈ k̂×

n [m] of order 3, but χ := θ2
3λkn satisfies χm = λkn ̸= 1, so

θ3 ̸∈ X ′
m(n). In other words, in that case, we have X ′

m(n) = Xm(n) and furthermore
we have Am,b,b′(∞, kn) = 0 by proposition 3.1.6. Hence we see that equation (3.1.13)
is exactly the same as equation (3.1.10).

– Assume that 3 | m and m is even (equivalently 6 | m) and |kn| ≡ 1 (mod 3). Then
there is indeed a character θ3 ∈ k̂×

n [m] of order 3, and χ := θ2
3λkn satisfies χm = 1,

so θ3, θ
−1
3 ∈ X ′

m(n). The above sum (appearing in (3.1.13)) over the two terms
{θ3, θ

−1
3 } ⊂ X ′

m(n) reduces to, in view of proposition 1.4.6 (recall that θ2
3 = θ−1

3 ):

− λkn
(−b′−1)

∑
θ∈{θ±1

3 }

θ2(b′−1)θ3(−b)J(λkn , λknθ
2) · J(θ, θ2)

=− λkn(−b′)
∑

θ∈{θ±1
3 }

θ2(b′−1)J(λkn , λknθ
2) · (−θ(−1))

= λkn(−b′)
∑

θ∈{θ±1
3 }

θ(−b′)J(λkn , λknθ
2).

Furthermore, in this case we have by proposition 3.1.6:

AEm,b,b′ (∞, n) = −λkn(−b′)
∑

ψ∈k̂×
n [3]∖{1}

ψ(−b′)J(λkn , λknψ
−1).

Thereby we find

am,b,b′(n) = −λkn(b′) · 2|k|n · 1−b∈k×,2
n
· 1m even

− λkn(−b′)
∑

θ∈X′
m(n)

θ3 ̸=1

θ3(−b)θ2(b′−1)J(λkn , λknθ
2) · J(θ, θ2)

which means that formula (3.1.10) holds, as claimed. ■

Remark 3.1.12. Given a non-trivial character χ ∈ k̂× such that χ2, χ3 ̸= 1, proposition 1.4.6
gives

J(λk, λkχ2)J(χ, χ2) = G(λk)G(λkχ2)
G(χ2)

G(χ)G(χ2)
G(χ3) = J(λk, χ, λkχ2). ⌟

3.1.3 Proof of theorem 3.1.3

Now that we have computed the coefficients ab,b′,m(n) explicitly in terms of Jacobi sums,
we can apply proposition 1.4.26 to express the L-function of the elliptic curve Em,b,b′ as a
rational function.
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3 – The family y2 = x3 + bx + b′tm

Proof of theorem 3.1.3. –– Let us check the two assumptions from proposition 1.4.26 on
the map αb,b′ considered in definition 3.1.1. For simplicity, we will simply denote this map
by α in the sequel.

• Let n ⩾ 1 and θ ∈ k̂×
n . We want to prove that α(θ) = α(θ|k|). Since b ∈ k, we have

b|k| = b so θ3(−b) = (θ|k|)3(−b). Moreover, since |k| is odd we have λ|k|
kn

= λkn , so that
proposition 1.4.6.3 yields

J(λkn , λknθ
2) = J(λ|k|

kn
, λ

|k|
kn
θ2|k|) = J(λkn , λkn · (θ|k|)2).

The same holds for the other Jacobi sum occurring in α(θ), so this proves the first needed
hypothesis.

• Let us fix two finite extensions L ⊃ F ⊃ k and a character θ on F×. We wish to show that
α(θ ◦NL/F ) = α(θ)[L:F ]. We perform a direct computation, applying Hasse–Davenport
relation 1.4.7 (recalling that b ∈ k so that NL/F (b) = b[L:F ] and using remark 1.4.2):

α(θ ◦NL/F ) = λL(−1)θ3(NL/F (−b)) · J(λF ◦NL/F , (λF · θ2) ◦NL/F ) · J(θ ◦NL/F , θ
2 ◦NL/F )

=
(
λF (−1)θ3(−b)

)[L:F ] · (−1)(−J(λF , λF θ2))[L:F ] · (−1)(−J(θ, θ2))[L:F ]

= α(θ)[L:F ].

Then a direct application of proposition 1.4.26 gives the result, in view of definition 3.1.10
and corollary 3.1.11, since

logL(Em,b,b′/k(t), T ) =
∑
n⩾1

am,b,b′(n)T
n

n
,

am,b,b′(n) = −λkn(b′) · 2|k|n · 1−b∈k×,2
n
· 1m even −

∑
θ∈Xm(n)

αb,b′(θ)

We explain in detail how to compute the factor ϵm,b,b′,k(T ) given by

log(ϵm,b,b′,k(T )) = −
∑
n⩾1

λkn(b′) · 2|k|n · 1−b∈k×,2
n
· 1m even ·

Tn

n
.

• First, if m is odd then −λkn
(b′) · 2|k|n · 1−b∈k×,2

n
· 1m even = 0 for all b, b′, n so we get

ϵm,b,b′,k(T ) = 1.

• From now on, we assume that m is even. If −b and b′ are both squares in k×, then

log(ϵm,b,b′,k(T )) = −2
∑
n⩾1

(|k|T )n
n

= log((1− |k|T )2).

• If −b is a square in k× and b′ is not a square in k×, then we split the sum according to
whether n is odd or even:

log(ϵm,b,b′,k(T )) = −2
∑
n′⩾1

(|k|T )2n′

2n′ + (−2)
∑
n′⩾0

(−1)(|k|T )2n′+1

2n′ + 1

= log(1− (|k|T )2) + 2arctanh(|k|T ) = log(1− (|k|T )2) + log
(1 + |k|T

1− |k|T
)

= log((1 + |k|T )2).
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3.1 – L-function of Em,b,b′

• Finally, if −b is not a square in k×, then

log(ϵm,b,b′,k(T )) = −2
∑
n′⩾1
|k|n · T

2n′

2n′ = log(1− (|k|T )2).

This finishes the proof of theorem 3.1.3. ■

Remark 3.1.13. We can make a sanity check about the degree of the L-function (as a
polynomial in T ), say in the case where m is even and 6 ∤ m. On the one hand, it is equal to

2+
∑

r∈Z(m)/⟨|k|⟩

u|k|,d(m)(r) = 2+#(Z/2mZ∖{0,m/2,m, 3m/2}) = 2+(2m−4) = 2m−2.

On the other hand, it should be equal to f(Em,b,b′)−4 by theorem 1.3.30. Since we assumed
6 ∤ m, we get from proposition 3.1.5 that f(Em,b,b′) = 2m+ 2, which is consistent with our
computation. ⌟

3.1.4 Expl ic i t Jacobi sums and analyt ic rank

In view of theorem 3.1.3, we know that the analytic rank of Em,b,b′ over k(t), i.e. the
order of vanishing of its L-function at T = |k|−1, is given by (using the notations from
definition 3.1.1)

ρ(Em,b,b′/k(t)) = ord
T=|k|−1

ϵm,b,b′,k(T ) + #{ [r] ∈ Z(m)/⟨|k|⟩ : αb,b′(θku(r),d,r) = |k|u(r) }

(3.1.14)

= ord
T=|k|−1

ϵm,b,b′,k(T ) + #{ [r] ∈ Z(m)/⟨|k|⟩ : αb,b′(θku(r),d,r) ∈ R>0 }

(The second equality follows because αb,b′(θku(r),d,r) has complex modulus equal to |k|u(r);
see proposition 1.4.6 or theorem 1.3.30).

In some cases, all the coefficients αb,b′(θ) are actually positive integers, which allows an
explicit formula for the rank of Em,b,b′ .

Corollary 3.1.14. Let k be a finite field of odd characteristic p ⩾ 3 and fix b, b′ ∈ k×. Let
m ⩾ 1 be an integer and set d = d(m) := 4m

gcd(2,m) as in definition 3.1.1. Assume that:

1. Either |k|ν ≡ −1 mod d(m) for some integer ν ⩾ 1 (in particular, m is coprime to |k|).

2. Or pν ≡ −1 mod d(m) for some integer ν ⩾ 1 and the degrees of b and b′ over Fp are
both odd (that is, [Fp(b, b′) : Fp] is odd).

Then the (algebraic) rank of Em,b,b′(k(t)) is equal to

∑
e|d(m)
e∤4,e∤δm

ϕ(e)
ord×(|k| mod e)

+


2 if m is even and −b ∈ k×,2 and b′ ∈ k×,2

0 if m is even and −b ∈ k×,2 and b′ ̸∈ k×,2

1 if m is even and −b ̸∈ k×,2

0 if m is odd.
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3 – The family y2 = x3 + bx + b′tm

where

δm :=
{

3 if m is even
2m if m is odd

In particular when m is even, we have

rkEm,b,b′(k(t)) ⩾ 2m− 6
ord×(|k| mod 2m)

. ⌟

Proof. –– As mentioned at the beginning of the chapter, theorem 1.3.40 ensures that Em,b,b′

satisfies the Birch–Swinnerton-Dyer conjecture 1.3.34, so the algebraic rank coincides with
the analytic rank.

Let us fix r ∈ Z(m) ⊂ Z/d(m)Z and set u(r) := u|k|,d(r). We have r ̸≡ 0 and r ̸≡ d
2 mod d

(see remark 3.1.2). To ease the notation, let us write the Legendre symbol of ku(r) as
λ := λku(r) and set θ := θku(r),d,r.

We check that none of λθ2, θ2, θ3 is trivial. Recall from proposition 1.4.17 that θ has order
exactly d

(d,r) . Since r ∈ Z(m), it can be seen (using definition 3.1.1 and remark 3.1.2) that
d

(d,r) ̸∈ {2, 3, 4}. It follows that λθ2, θ2, θ3 ̸= 1.

• In the case where |k|ν ≡ −1 (mod d), we may apply corollary 1.4.29, which ensures that
u(r) is even so that ku(r) has a unique quadratic subfield ku(r)/2 (which contains k) and
also that the restriction of θ to ku(r)/2 is trivial.

Observe that the Legendre symbol λku(r) is trivial on ku(r)/2. In particular, the restrictions
of λ, λθ2 and θ2 to ku(r)/2 are all trivial.

Thus, the characters λ, λθ2 and θ, θ2 satisfy the hypothesis of Tate–Shafarevich theo-
rem 1.4.8, which yields

αb,b′(θ) = λ(−b′)θ(−b3b′−2) · J(λ, λθ2) · J(θ, θ2) definition 3.1.1

= 1 · 1 · |ku(r)|1/2 · |ku(r)|1/2 theorem 1.4.8

= |k|u(r)

• In the case where hypothesis 2 holds, we rather apply lemma 1.4.30 to get

αb,b′(θ) = λ(−b′)θ(−b3b′−2) · (±1) · |ku(r)|1/2 · (±1) · |ku(r)|1/2

= |ku(r)|

since θ is trivial on k′ := Fp(b, b′) by lemma 1.4.30 because this field has odd degree
over Fp, and λku(r) is trivial on k′ since the degree [ku(r) : k′] is even once again by
lemma 1.4.30.

Thus from equation (3.1.14) and lemma 1.4.27 we deduce that

rkEm,b,b′(k(t)) = ρ(Em,b,b′/k(t))

=
∣∣∣Z(m)

/
⟨|k|⟩×

∣∣∣+ ord
T=|k|−1

ϵm,b,b′,k(T ) (3.1.15)
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3.1 – L-function of Em,b,b′

=



∑
e|2m
e∤4

ϕ(e)
ord×(|k| mod e) if m is even and 6 ∤ m∑

e|2m
e∤4,e∤3

ϕ(e)
ord×(|k| mod e) if m is even and 6 | m∑

e|4m
e∤2m,e∤4

ϕ(e)
ord×(|k| mod e) if m is odd

+


2 if m is even and −b ∈ k×,2 and b′ ∈ k×,2

0 if m is even and −b ∈ k×,2 and b′ ̸∈ k×,2

1 if m is even and −b ̸∈ k×,2

0 if m is odd.

For the last equality, note for instance that when m is even and 6 ∤ m, then the additive
order of any r ∈ Z/2mZ divides 4 if and only if r ∈ m

2 Z/2mZ. Looking at the proof of
lemma 1.4.27 we see that we need the condition e ∤ 4 in the above sum, since r ∈ Z(m).
The other cases are treated in a similar way. (Observe also that when 6 ∤ m is even and
e | 2m, e ∤ 4, then we automatically have e ∤ 3).

The last inequality follows from item 2 of lemma 1.4.27: when m is even, we have

∑
e|d(m)
e∤4,e∤δm

ϕ(e)
ord×(|k| mod e)

⩾
d(m)− ϕ(1)− ϕ(2)− ϕ(3)− ϕ(4)

ord×(|k| mod d(m))
. ■

Remark 3.1.15. Because d(m) is a multiple of 4 for any m ⩾ 1 (we keep the notations from
definition 3.1.1), the condition pν ≡ −1 mod d(m) given in item 2 of corollary 3.1.14 forces
p ≡ −1 (mod 4) and ν to be odd. ⌟

When p ≡ −1 mod 4 is prime and e is odd, we can say more about the rank of Em,b,b′ over
Fp2e(t), for instance if m = pe+1

2 (which is even) or if m = pe+1
4 and pe ≡ 3 (mod 8) (so

that m is odd).

Corollary 3.1.16. Let p be a prime such that p ≡ −1 (mod 4), e ⩾ 1 be an odd integer. Let
m ⩾ 1 be an integer and set d = d(m) = 4m

gcd(2,m) . Let b, b′ ∈ F×
pe be any elements.

If pe ≡ −1 (mod d), then we have

L(Em,b,b′/Fp2e(t), T ) = (1− p2eT )|Z(m)| + 2·1m even

so the rank of Em,b,b′ over Fp2e(t) is

rkEm,b,b′(Fp2e(t)) =
{

2m− 4 if 6 | m
2m− 2 if otherwise.

Moreover, the algebraic rank over Fp2e(t) is equal to the geometric rank, and when m = pe+1
2 ,

Brumer’s bound from theorem 2.2.6 is asymptotically attained as m→ +∞. ⌟

Proof. –– We notice that ⟨p2e⟩× acts trivially on Z(m) ⊂ Z/d(m)Z since pe ≡ −1 (mod d).
Note that b, b′ ∈ F×

pe are necessarily both squares in Fp2e , so that ϵm,b,b′,Fp2e (T ) = (1−p2eT )2

if m is even and ϵm,b,b′,Fp2e (T ) = 1 if m is odd. Observe that b, b′ have odd degree over
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3 – The family y2 = x3 + bx + b′tm

Fp since e is odd. By equations (3.1.14) and (3.1.15) and theorem 3.1.3, we know that
the L-function L(Em,b,b′/Fp2e(t), T ) is as displayed above. The rank rkEm,b,b′(Fp2e(t)) is
therefore equal to

{
2 if m is even
0 if m is odd

+


2m− 4 if m is even and 6 ∤ m
2m− 6 if m is even and 6 | m
4m− (2m+ 4) + 2 = 2m− 2 if m is odd.

Moreover, the same reasoning applies if we replace Fp2e(t) by k(t) for any finite extension
k ⊃ Fp2e , so the geometric rank is equal to rkEm,b,b′(Fp2e(t)). This can be also be proved
by noticing (thanks to proposition 3.1.5) that rkEm,b,b′(Fp2e(t)) = f(Em,b,b′)− 4, so that
the upper bound from equation (1.3.12) in remark 1.3.33 is an equality. Since the degree of
the conductor does not depend on the field of constants, the fact that this upper bound is
an equality shows that the geometric rank must also be equal to f(Em,b,b′)− 4.

Finally, Brumer’s bound indicates that

pe +O(1) = rkEm,b,b′(Fp2e(t)) ⩽ f(Em,b,b′) log(p2e)
2 log(f(Em,b,b′)) (1 + o(1))

= 2m log(p2e)
2 log(2m) (1 + o(1)) = 2e · pe log(p)

2e log(p) (1 + o(1)),

so we see that this upper bound is asymptotically sharp (in the sense that the ratio between
the rank and Brumer’s upper bound tends to 1), as m→ +∞. ■

Remark 3.1.17. Corollary 3.1.16 generalizes and makes more precise a result stated in
[Shi86, remark 10]. Namely, Shioda showed (using other techniques) that if p ≡ −1 mod 4
and e is odd, then the rank of y2 = x3 + x+ t

pe+1
2 over Fp(t) equals{

pe − 3 if p ≡ −1 mod 12
pe − 1 if p ̸≡ −1 mod 12.

Indeed, m := pe+1
2 is even so d(m) = pe + 1 and 6 | m ⇐⇒ pe ≡ −1 mod 12.

We showed that this rank is achieved over Fp2e(t), which is an unproven claim in [Ulm02,
§1.8]. ⌟

Example 3.1.18. When m is even, there are always the obvious solutions (0,±tm/2) ∈
Em,b,1(K) on y2 = x3 + bx+ tm. We give here an example when m is odd, by taking p = 5,
m = p+1

2 = 3 and b = −1. We thus consider the curve

E := E3,−1,1 : y2 = x3 − x+ t3 over F5(t).

Notice that p ≡ 1 mod 4 so that corollary 3.1.14 does not apply. However theorem 3.1.3 can
be used to get L(E/F5(t), T ) = (5T )4 + 1 =

∏
ζ8=1 ̸=ζ4(1− 5ζT ). From proposition 1.3.43

we find, for any n ⩾ 1:

L(E/F5n(t), T ) =
∏

ζ8=1̸=ζ4

(1− (5ζ)nT ),
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so the rank is 0 over F54(t) and is 4 over F58(t).

Can we even give an example of a point on E over K := F58(t)? Since the discriminant of
this Weierstrass equation is 3t6 + 4, Shioda’s theorem 1.3.24 indicates that any point in
the narrow Mordell–Weil lattice has height ⩾ deg(∆)/6 = 1. We may then try to find an
integral point P = (x, y) ∈ E(K) where x has degree 1, say x(t) = at+ b. We want

x3 − x+ t3 = (a3 + 1)t3 + 3a2bt2 + (3ab2 − a)t+ b3 − b

to be a square in K, which can only happen if a3 = −1, so we may set a = −1. We wish to
find b, c, d ∈ F58 so that 3bt2 + (1− 3b2)t+ b3 − b = (ct+ d)2 = c2t2 + 2cdt+ d2.

We find
b = c2

3 = 2c2, 2cd = 1− 3(2c2)2, d2 = b3 − b = (2c2)3 − 2c2,

and since c ̸= 0 we get d = 1−12c4

2c from the second equation. Replaced in the third equation,
we get d2 = (1−2c4)2

−c2 = 8c6 − 2c2. This is an equation of degree 8 in c over F5, so it
has a solution in F58 , hence there is a point P =

(
−t+ 2c2, ct+ 1−12c4

2c

)
in E(F58(t)). ⌟

Example 3.1.19. Corollary 3.1.14 predicts that y2 = x3 + x+ t7 has rank 2 over F3(t), since
p3 ≡ −1 mod d(m) where p := 3 and m := 7 (so d(m) = 28). Can we exhibit some rational
points? This can be done for instance using techniques described in section 3.3. We found
no integral points with deg(x(t)) ⩽ 14, and the rational point with the smallest deg(x) we
found is

P =
( t6 + 2t5 + t4 + t2 + 1

t2
,

2t9 + 2t6 + t4 + 2
t3

)
.

We also found the point

Q =
( t18 + t15 − t13 + t12 + t6 + 1

t6
,
−t27 + t18 − t12 + 1

t9

)
.

Using lemma 3.2.15 to be stated later, one can check that ĥ(P ) = h(P ) = 6 and ĥ(Q) =
h(Q) = 18. From this it can be shown that P,Q are linearly independent in E(K). Indeed,
if we had aP = bQ for some integers a, b then we would get (by taking the heights on both
sides) 6a2 = 18b2, but

√
3 is irrational. ⌟

3.1.5 Unbounded ranks

We explain here that the curves Em,b,b′ provide a Kummer family of (non-isotrivial if p > 3)
elliptic curves with unbounded rank over Fp(t), for any odd prime p.

Corollary 3.1.20. Fix any odd prime p and b, b′ ∈ F×
p . Then the rank in the Kummer family

{Em,b,b′/Fp(t);m ⩾ 1} is unbounded, that is

sup{ rkEm,b,b′(Fp(t)) : m ⩾ 1 } = +∞. ⌟

Proof. –– • Assume first that p ≡ −1 mod 4. For any odd integer ν ⩾ 1, consider the
even integer mν := pν+1

2 . Note that ord×(p mod 2mν) divides 2ν. Therefore, the last
inequality in corollary 3.1.14 yields

rkEmν ,b,b′(Fp(t)) ⩾
2mν − 6

2ν = pν − 5
2ν ,
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which proves the claim in that case, by letting ν → +∞ (among odd integers).

• Suppose now that p ≡ 1 mod 4 and let k = Fp. Consider an even integer ν ⩾ 1 and set
m = mν = pν + 1. We have d := d(m) = 2m; moreover m is even, 6 ∤ m and m/2 is odd.
Recall from equation (3.1.14) that the analytic rank satisfies

ρ(Em,b,b′/k(t)) ⩾ #{ [r] ∈ Z(m)/⟨|k|⟩ : αb,b′(θku(r),d,r) = |k|u(r) }.

While corollary 3.1.14 does not apply (as mentioned in remark 3.1.15), we claim that
at least roughly "half" of the classes [r] ∈ Z(m)/⟨|k|⟩× are such that αb,b′(θku(r),d,m) =
|k|u(r).

We have pν ≡ −1 (mod δ) where δ := d/2 = m divides d. Applying lemma 1.4.31, we
deduce that if r ∈ Z/dZ∖ {0, d/4, 2d/4, 3d/4} is even, then the restriction of θku(r),d(m),r
to k×

u(r)/2 is trivial. In particular, for all b, b′ ∈ k×, we get from Tate–Shafarevich
theorem 1.4.8 that

αb,b′(θku(r),d,r) = |ku(r)|

if r ∈ Z(m) ∖ {0, d/4, 2d/4, 3d/4} is even (since u(r) is even, λku(r) is also trivial on
k = Fp). Thereby the analytic rank of Em,b,b′ over k(t) is at least

ρ(Emν ,b,b′/k(t)) ⩾
∣∣∣Z ′(m)

/
⟨|k|⟩

∣∣∣, where Z ′(m) := 2Z/2mZ ∖ {0,m}.

The argument from lemma 1.4.27 shows that

ρ(Emν ,b,b′/k(t)) ⩾
∑
e|mν

e∤2

ϕ(e)
ord×(p mod e)

⩾
∑
e|mν

e∤2

ϕ(e)
2ν = mν − ϕ(1)− ϕ(2)

2ν = pν − 1
2ν .

This can be made arbitrarily large as ν → +∞ (among even integers). ■

Remark 3.1.21. 1. We point out that the parity condition stated in theorem 1.3.48 is
not satisfied here when p ⩾ 5, so that unboundedness of rank in the Kummer family
{Em,b,b′ ;m ⩾ 1} does not follow from this general result. Indeed, proposition 3.1.5
ensures that the conductor has even degree and the tame part at the place at infinity
ϵ∞ = f∞(Em,b,b′) is also even (when p ⩾ 5), so that deg(f′) is not odd, using the notation
from theorem 1.3.48.

2. We have seen in corollary 3.1.16 that Brumer’s bound is asymptotically sharp if p ≡
−1 mod 4. However, if p ≡ 1 mod 4 it is not clear whether is it achieved; rather the
above argument only indicates that the rank only attains at least "half" of Brumer’s
bound:

pν

2ν · (1 + o(1)) ⩽ rkEmν ,b,b′(Fp(t)) ⩽
f(Emν ,b,b′) log(p)
2 log(f(Emν ,b,b′)) · (1 + o(1)) ⩽ pν

ν
.

Proving that Brumer’s bound is not asymptotically achieved would require to show that
most of the coefficients αb,b′(θku(r),d,r) are not positive integers when r ∈ Z(m) is odd.
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This would yield an upper bound on the (analytic) rank. Detecting whether some power
of αb,b′(θku(r),d,r) is an integer can be done using Stickelberger’s theorem 1.4.22. More
details will be given in chapter 4, see for instance lemma 4.2.11 (about another family of
curves, though). ⌟

3.1.6 Case of character ist ic 3

We focus here on the case of a finite field k of characteristic 3 and assume that m = 3n + 1
for some integer n ⩾ 1 (so d(m) = 2m). We look at the elliptic curve Em,b,b′ : y2 = x3 +
bx + b′t3

n+1 over k(t). Notice that4 we do not have 3ν ≡ −1 mod d(m) for some ν ⩾ 1,
i.e., the conditions of corollary 3.1.14 are not fulfilled. However, we are going to show that
the L-function is of the form (1 − |k|T )ρ when k = F32n so that the analytic rank is "as
large as possible", using specifically the fact that the base field has characteristic 3. This
will then give dense sphere packings as studied in the next section 3.2.

More specifically, we prove that a consequence of theorem 3.1.3 is the following corollary.
We will also give an alternative and more direct proof in subsection 3.1.7.

Corollary 3.1.22 (corollary B). Let n ⩾ 1 be an integer and set q = 3n. Let b ∈ F×
q be any

element such that5 b
q−1

2 = (−1)n+1.

Then the L-function of the elliptic curve E3n+1,b,1 over Fq2(t) is equal to

L
(
E3n+1,b,1/Fq2(t), T

)
= (1− q2T )2·3n

.

In particular, the analytic and algebraic ranks of E3n+1,b,1 over Fq2(t) are equal to 2 · 3n. ⌟

Proof. –– • Note that m := 3n + 1 is even and 6 ∤ m. We have d := d(m) = 2m from
definition 3.1.1. Let us write k := Fq2 = F32n and notice that −1 and b are squares in k×

(since b ∈ F×
3n). Observe that we have 32n − 1 = (3n − 1) ·m ≡ 0 mod d which implies

that u|k|,d(r) = ord×(|k| mod d
(d,r)) = 1 for any r ∈ Z/dZ ∖ {0}. From theorem 3.1.3,

we deduce

L(Em,b,1/k(t), T ) = (1− |k|T )2 ·
∏

[r]∈Z(m)/⟨|k|⟩×

(
1− αb,1(θk,d,r)T

)
,

αb,1(θ) := θ(−b3) · J(λkn
, λkn

θ2) · J(θ, θ2) if θ ∈ k̂×
n .

where θku(r),d,r was introduced in definition 1.4.15.

Fix r ∈ Z(m) = Z/2mZ ∖ {0,m/2,m, 3m/2}. We claim that αb,1(θk,d,r) = |k| = q2 =
32n.

4Indeed, 2n is the multiplicative order of 3 modulo m = 3n + 1. If 3ν ≡ −1 (mod 2m), then 32ν ≡ 1
(mod m) so that 2n divides 2ν. Since −1 is not a square modulo 4 and m is even, ν must be odd. Then
r := ν/n is an odd integer and 3ν + 1 = (3n + 1)

∑r−1
k=0(−3n)k is the product of m by an odd integer, so

it cannot be 0 mod 2m.
5In other words, if n is odd, b is a square in F×

q (for instance b = 1), and if n is even, b ∈ F×
q is not a

square.
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• Observe that we cannot apply Tate–Shafarevich theorem 1.4.8 directly to compute the
Jacobi sum J(θk,d,r, θ2

k,d,r) because the restriction of θk,d,r ∈ k̂× to F×
q is not trivial

when r is odd (using the notation from definition 1.4.12):

θk,d,r = Θ|
|k×|·r

2m
k = Θ|

r·(q2−1)
2·(q+1)
k = Θ|r· q−1

2
k .

While Θq−1 is trivial on F×
q , the above character is not when r is odd (its restriction to

F×
q is the Legendre symbol over Fq). But this computation shows that θ2

k,d,r is trivial
over F×

q .

• Set θ := θk,d,r for simplicity. The key point is that when r ∈ Z(m), we have J(θ, θ2) =
G(θ)G(θ2)
G(θ3) by proposition 1.4.6 and because k has characteristic 3, we have G(θ) =

G(θ3) by proposition 1.4.6.3, and now G(θ2) can be determined using Tate–Shafarevich
theorem 1.4.8.

Because r ∈ Z(m) we have r ̸≡ 0,m/2,m, 3m/2 mod d so none of the characters λk, θ, θ2

is trivial, and θ3 is non-trivial since the order of θ is d
(r,d) , which divides d = 2m and

6 ∤ m. Then we find:

αb,1(θk,d,r) = θ(−b)3J(λk, λkθ2)J(θ, θ2)

= θ(−b)3 · G(λk)G(λkθ2)
G(θ2) · G(θ)G(θ2)

G(θ3) proposition 1.4.6

= θ(−b)3G(λk)G(λkθ2) proposition 1.4.6

= θ(−b)3 · λk(z)3n · (λkθ2)(z)3n theorem 1.4.8

= θ(−b)3 · θ2(z)32n (⋆)

where z ∈ k× is any non-zero element such that trk/Fq
(z) = z + zq = 0.

• It remains to evaluate θ(−b)3 · θ2(z). While the value θ(z) might depend on z (such that
trk/Fq

(z) = 0), the value θ2(z) does not, since we have seen above that θ2 is trivial on
F×
q .

– We claim that θ2(z) = (−1)r. By proposition 1.4.14, let g be the generator of k×

such that θ(g) = exp
(2πir

d

)
. According to remark 1.4.9 we may take z = g

q+1
2 .

Then we find, recalling that m = q + 1:

θ2(z) = exp
(

2 · 2πi(q + 1) · r
2d

)
= exp

(
πi(q + 1) · r

m

)
= exp(πir) = (−1)r.

– In order to determine θ(−b), we let β ∈ Z be an integer such that b = g(q+1)β.
Such an integer always exists since b ∈ F×

q and gq+1 = Nk/Fq
(g) generates the

multiplicative subgroup F×
q of k×. We have

θ(−b) = θ
(
g
q2−1

2 · g(q+1)β
)

= exp
(2πir

( q2−1
2 + (q + 1)β

)
2m

)
= exp

(
πir

(
q−1

2 + β
))
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which is always ±1, and we have (recalling that q = 3n)

θ(−b) = (−1)r ⇐⇒ r ·
( q−1

2 +β− 1
)

is even ⇐=
{
β is odd and n is even, or
β is even and n is odd.

• All in all, we found that θ(−b)3 · θ2(z) = 1 if{
b is a non-square in F×

3n and n is even, or
b is a square in F×

3n and n is odd.

In both cases, we deduce from equation (⋆) that αb,1(θk,d,r) = 32n for all r, which is
what we wanted. This finally implies that the L-function of E3n+1,b,1 over F32n(t) is
given by

L(Em,b,1/k(t), T ) = (1− |k|T )2 · (1− |k|T )|Z(m)|

= (1− |k|T )2+(2m−4) = (1− 32nT )2m−2

which means that the analytic rank of Em,b,1 over F32n(t) is equal to 2(m− 1) = 2 · 3n,
if m = 3n + 1 and λF3n (b) = (−1)n+1. The algebraic rank is equal to the analytic rank
by theorem 1.3.40. This concludes the proof. ■

Remark 3.1.23. Fix any sequence bn ∈ F×
3n satisfying b(3n−1)/2 = (−1)n+1 for all n ⩾ 1.

Then the family {E3n+1,bn,1/F32n(t) : n ⩾ 1 } attains Brumer’s bound from theorem 2.2.6
asymyptotically when n→ +∞. Indeed, we have (using proposition 3.1.5):

ρ(E3n+1,bn,1/F32n(t)) = 2 · 3n ⩽
f(E3n+1,bn,1) · log(32n)

2 · log f(E3n+1,bn,1) (1 + o(1)) ∼ 2 · 3n · 2n · log(3)
2 log(2 · 3n) . ⌟

Remark 3.1.24. We will see in proposition 3.4.3 that for any m ⩾ 1 coprime to 3 and
b ∈ F×

3n , the rank of Em,b,1 over F32n(t) is an even integer (for every n ⩾ 1). ⌟

3.1.7 Alternat ive proof of corol lary 3.1.22

In this subsection, we give an alternative proof to corollary 3.1.22. Throughout, we fix
an integer n ⩾ 1, an odd prime p, set q = pn,m = pn + 1, k = Fq2 and fix b ∈ F×

q such
that NFq/Fp

(b) = (−1)n+1. When p = 3, the sums of Legendre symbols appearing in
the L-function of Em,b,1 over Fq2(t) (as in remark 1.4.25 and equation (3.1.3)) can be
determined thanks to an auxiliary superelliptic curve over Fq (see subsection 3.1.7.1), and
using the fact that x 7→ xp + bx is an additive map in characteristic p (see lemmas 3.1.27
and 3.1.28). Moreover, the number of points over Fq2 of this auxiliary superelliptic curve
can be computed essentially because its jacobian is isogenous to a power of a supersingular
elliptic curve.

The idea behind this approach was inspired by the work of N. Elkies [Elk94], where a
counting argument about hyperelliptic curves has been used. In our case, this will get
replaced by a superelliptic curve (see subsection 3.1.7.1). In both works, the elliptic curves
(over function fields of characteristic 2 and 3 respectively) are isotrivial. But in our case
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3 – The family y2 = x3 + bx + b′tm

E3n+1,b,1 is a cubic twist of a constant curve (see proposition 3.2.9), while the elliptic
curves studied in [Elk94] were quadratic twists of a constant curve, which allowed to use
proposition 2.5.3 to compute the L-function.

This alternative approach is useful because many of the steps can be performed in arbitrary
(odd) characteristic p. However, the case p = 3 is specifically related to elliptic curves;
in general one would need to work with jacobians of hyperelliptic curves of the form
y2 = xp + bx+ tp

n+1 (see also remark 2.4.3).

Some of the content in this subsection has been published my paper [Let22].

Remark 3.1.25. In [Elk94], the method is slightly different, because quadratic twists are
being used. This does not seem to have an analogue in our setting: while we could consider
cubic twists of the L-functions of our elliptic curve, they do not correspond to the L-function
of cubic twists. Assume that b = b′ = 1 and p = 3 for simplicity. We consider the (smooth
projective models of the) curves

E0 : y2 = x3 + x over Fq2

Em,1,1 : y2 = x3 + x+ tm over Fq2(t)
C : u3 + u = tm over Fq2

The field extension F := Fq2(C) / K := Fq2(t) has degree 3, and is Galois, with cyclic
Galois group generated by the field automorphism u 7→ u + i, where i ∈ Fq2 is a square
root of −1. The elliptic curve E is a cubic twist of E0: they are isomorphic over Fq2(C)
(see proposition 3.2.9). Under the assumptions of corollary 3.1.22, the jacobian of C is
supersingular: it is in fact isogenous to a power of E0. Therefore, by remark 2.4.1, we have

rkE0(F ) = rk Hom(C,E0) = rk(End(E0)g(C)) = 4 · 3n.

Then we wish to decompose E0(F ) into eigenspaces for the Galois action, and ideally we
would have

E0(F ) ∼= E0(K)⊕ E(K)⊕ E′(K),

where K = Fq2(t) and E′ is another cubic twist of E0 over F (different from E), and finally
we would hopefully prove that rkE(K) = rkE′(K) = 2 · 3n (knowing that E0(K) has rank
0). But this is not possible: E0 has only 2 twists over F .

Indeed, the set of isomorphism classes of elliptic curves over K which are isomorphic to
E0 over F is in one-to-one correspondence with the Galois cohomology set H1(Gal(F/K);
AutF (E0)). But we have AutF (E0) = AutF32 (E0) so the Galois action is trivial, and
AutF32 (E0) is the dicyclic group Dic12 of order 12. Therefore, H1(Gal(F/K); AutF (E0)) is
in bijection with the 3-torsion part of Dic12 up to conjugacy, and this set has 2 elements.
So the only corresponding twists are E0 and E.

Alternatively, we can write L(E/F, T ) =
∏
χ L(E/K,χ, T ) where χ runs over the complex

characters of the Galois group of F/K, which is isomorphic to Z/3Z (see footnote 14 on
page 103). But those twisted L-functions do not correspond to L-functions of twists of E0:
the local factors of the former may involve complex cubic roots of unity, while the latter
only involve integers. ⌟
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We now explain the alternative proof of corollary 3.1.22. We start by re-using equation (3.1.3),
which reads

logL(Em,b,1/k(t)) = −
∑
j⩾1

Rb(n, j)
T j

j
(3.1.16)

where we define
Rb(n, j) :=

∑
w,x∈kj

λkj

(
x3 + bx+ w3n+1

)
. (3.1.17)

Notice that we can discard the terms with w = [1 : 0] since we have AEm,b,1(∞, j) = 0 for
every j ⩾ 1 by proposition 3.1.5.

The strategy to evaluate those sums Rb(n, j) consists of two steps:

1 First, we will compute the number of points on a certain superelliptic curve Cn,b, given
by v3n+1 = u3 +bu over kj for every j ⩾ 1, where b ∈ F×

3n is chosen as in corollary 3.1.22.

2 Secondly, we study the sums

σb(j, t) :=
∑
x∈kj

λkj (x3 + bx+ t), (3.1.18)

where t ∈ kj and j ⩾ 1 is any integer.

3.1.7.1 Number of points on the superel l ipt ic curve Cn,b

We fix an odd prime number p and set k = Fp2n . For any n ⩾ 1, let Caff
n,b be the affine curve

Caff
n,b : vp

n+1 = up + bu, (3.1.19)

defined over Fpn , where b ∈ F×
pn . Note that Caff

n,b is smooth.

There is a smooth projective irreducible curve Cn,b over Fpn (unique up to isomorphism)
such that its function field is the same as the one of Caff

n,b (by [GW20, theorem 15.21]): in
fact Cn,b is a superelliptic curve.

In this paragraph, we compute the zeta function of Cn,b over Fp2n , which completes the
step 1 announced above (by specializing to p = 3).

Proposition 3.1.26. Let n ⩾ 1 be an integer and let b ∈ F×
pn be such that NFpn/Fp

(b) =

b
pn−1
p−1 = (−1)n+1. Then the zeta function of the superelliptic curve Cn,b over k = Fp2n is

given by

Z
(
Cn,b/k, T

)
= (1 + pnT )(p−1)·pn

(1− T )(1− p2nT ) .

In particular, for every r ⩾ 1, we have

|Cn,b(kr)| = p2nr + 1− (p− 1) · pn · (−pn)r. ⌟

It turns out that Cn,b has a unique point at infinity, defined over Fpn , so that |Cn,b(k′)| =∣∣Caff
n,b(k′)

∣∣+1 for every finite extension k′ of Fpn . Moreover, Cn,b has genus g(Cn,b) = p−1
2 ·p

n

(see proposition 2 in [GPS02]).

The key point is that we will be able to deduce the number of points |Cn,b(kr)|, for all
r ⩾ 1, just from the computation of |Cn,b(k)|. We start with an elementary fact.
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Lemma 3.1.27. Let p be an odd prime, n ⩾ 1 be an integer, set q = pn and let b ∈ F×
pn be

any element such that

NFq/Fp
(b) = b

pn−1
p−1 = (−1)n+1. (3.1.20)

Then all the roots of Xp + bX ∈ Fq[X] belong to Fq2 and we have

#{x ∈ Fq2 : xp + bx ∈ Fq} = pn+1 = p · q. ⌟

Proof. –– Consider the maps f, gb : Fq2 → Fq2 defined by f : x 7→ xq−x and gb : x 7→ xp+bx.
The key point is that these maps are endomorphisms of the additive group (Fq2 ,+) seen as
vector space over Fp, and we can describe the set {x ∈ Fq2 : xp + bx ∈ Fq} as the kernel of
f ◦ gb. Thereby, the proof essentially boils down to a basic argument of linear algebra. A
direct computation shows that f ◦ gb = gb ◦ f (using the fact that b ∈ F×

q ).

The rank-nullity theorem yields

dim(ker(gb ◦ f)) = dim(ker(f)) + dim(ker(gb) ∩ Im(f)), (3.1.21)

where the dimensions are taken over Fp.

It is clear that dim(ker(f)) = n, since q = pn, and that ker(gb) has dimension 1 since it
consists of roots in Fp of the separable polynomial Xp + bX which has degree p, and all
those roots actually lie in Fq2 . Indeed, if xp = −bx then

xp
n

= (−b)1+p+···+pn−1
· x = (−b)

pn−1
p−1 · x (3.1.20)= (−1)

pn−1
p−1 · (−1)n+1x

p odd= (−1)n · (−1)n+1x = −x,
(3.1.22)

which implies that xq2 = (xq)q = (−x)q = x, i.e., x ∈ Fq2 as claimed.

The above computation (3.1.22) also shows that any element x ∈ ker(gb) satisfies xpn = −x,
so that f(x) = −2x, which shows that x ∈ Im(f) (recall that p is odd, so −2 ∈ F×

p is
invertible). In other words, we have ker(gb) ∩ Im(f) = ker(gb). Finally we get dim(ker(f ◦
gb)) = dim(ker(gb ◦ f)) = n+ 1 from equation (3.1.21), which yields

#{x ∈ Fq2 : xp + bx ∈ Fq} = | ker(f ◦ gb)| = pn+1,

which is what we wanted to prove. ■

Proof of proposition 3.1.26. –– We first compute |Cn,b(k)|. The norm map

k× −→ F×
pn , v 7−→ vp

n

· v = vp
n+1 =: w

is a surjective morphism, with kernel of size p
2n − 1
pn − 1 = pn+1. Furthermore, by lemma 3.1.27,

Xp + bX has p roots over k. Therefore, we get

|Cn,b(k)| = 1 + p+ (pn + 1)
∑

w∈F×
pn

#{u ∈ k : up + bu = w} (3.1.23)

= 1 + p+ (pn + 1) (#{u ∈ k : up + bu ∈ Fpn} − p)
= 1 + pn · pn+1
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where the last line follows from lemma 3.1.27.

We now consider Cn,b as a curve over k = Fp2n (instead of a curve over Fpn). Let us write
{ωj : 1 ⩽ j ⩽ 2g(Cn,b) } for the reciprocal of the roots of the numerator (in Z[T ]) of
zeta function Z(Cn,b/k, T ); in particular, they can be seen as complex numbers and their
modulus is known to be equal to |ωj | =

√
|k| = pn. Thereby, Lefschetz trace formula tells

us that

|Cn,b(k)| = |k|+ 1−
2g(Cn,b)∑
j=1

ωj

= 1 + p2n+1 = p · p2n + 1 = p2n + 1−
(p−1)·pn∑
j=1

ωj ,

which implies −(p− 1) · p2n =
(p−1)·pn∑
j=1

ωj . Because the ωj ∈ C satisfy |ωj | = pn, this forces

ωj = −pn for every j (e.g., by taking the real part of the latter sum). We conclude that for
every n ⩾ 1 and every r ⩾ 1 :

|Cn,b(kr)| = |k|r + 1− (p− 1)pn · (−pn)r. ■

3.1.7.2 Evaluat ing the sums σb (j, t)

This paragraph is devoted to the explicit computation of (a generalization of) the sums
σb(j, t) defined in equation (3.1.18), as required by step 2 above. Namely, for an odd prime
number p, an integer n ⩾ 1 and b ∈ F×

pn , we define

σb(j, t) :=
∑
x∈kj

λkj (xp + bx+ t)

where k := Fp2n , j ⩾ 1 and t ∈ kj (when p = 3, we recover the sums from equation (3.1.18)).

Lemma 3.1.28. Let n ⩾ 1 be an integer and fix b ∈ Fpn such that NFpn/Fp
(b) = (−1)n+1.

Let j ⩾ 1 be any integer. Consider the map gb,j : kj → kj defined by gb,j : x 7→ xp + bx.

Then for every t ∈ kj we have :

σb(j, t) =
{
−(p− 1) · (−pn)j if t ∈ Im(gb,j)
(−pn)j otherwise.

⌟

Proof. –– Step 1 – The first key point here is to use again the fact that the map gb,j is
additive, in order to deduce that σb(j, t) takes only two values (for fixed j, b and variable t).

Indeed, if we pick any x0 ∈ kj , then

σb(j, t) =
∑
x∈kj

λkj (gb,j(x) + t) =
∑
x′∈kj

λkj (gb,j(x′ + x0) + t)

=
∑
x′∈kj

λkj (gb,j(x′) + gb,j(x0) + t) = σb(j, t+ gb,j(x0)).
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In other words, σb(j, t) only depends on the class of t in the quotient additive group
kj
/

Im(gb,j). Moreover, notice that for any α ∈ F×
p one has

σb(j, t) =
∑
x′∈kj

λkj

(
gb,j(αx′) + t

)
=
∑
x′∈kj

λkj

(
αgb,j(x′) + t

)
= λkj

(α) · σb(j, α−1t) = σb(j, α−1t),

where the last equality holds because α is a square in Fp2 and hence in k = Fp2n .

Since [kj : Im(gb,j)] = | ker(gb,j)| = p by lemma 3.1.27 (which can be applied since we
assumed NFpn/Fp

(b) = (−1)n+1), we deduce that σb(j, t) only takes (at most) two values,
for fixed j, b and variable t. The first value occurs when t ∈ Im(gb,j) in which case
σb(j, t) = σb(j, 0). Let us denote by σ∗ the other value of σb(j, t), which occurs when
t ̸∈ Im(gb,j). Observe that the value of σ∗ can be deduced from the sum∑
t∈kj

σb(j, t) = | Im(gb,j)| · σb(j, 0) +
(
p2nj − | Im(gb,j)|

)
· σ∗ = p2nj

(1
p
σb(j, 0) + p− 1

p
σ∗
)

because the left-hand side sum vanishes :∑
t∈kj

σb(j, t) =
∑
x∈kj

∑
t∈kj

λkj (xp + bx+ t) = 0,

since all the inner sums are 0 (they are sums of a non-trivial multiplicative character over
the whole group – recall also that λkj (0) = 0). Therefore σ∗ = − 1

p−1σb(j, 0), so it is enough
to determine the value of σb(j, 0).

Step 2 – Now we compute the sum σb(j, 0) =
∑
x∈kj

λkj (xp + bx).

The most conceptual (and easiest, or shortest) proof relies on the fact that if π : Y → X is
a surjective morphism between two smooth irreducible projective algebraic curves (or even
varieties) defined over a finite field, then the numerator of the zeta function of X divides
the one of Y in Z[T ]. This can be argued using the Tate modules of the jacobians of these
curves, see for instance proposition 5 in [AP04].

In our case, we have the morphism

π : Cn,b → Hb (u, v) 7→
(
u, v

pn+1
2
)

where Hb is the hyperelliptic curve given by y2 = xp+bx over Fpn (we defined the morphism
on affine open subsets, but it extends uniquely to a morphism between the smooth projective
curves Cn,b → Hb by [GW20, proposition 15.5]). Being a non-constant morphism between
irreducible curves, π must be surjective.

The numerator of Z(Cn,b/Fp2n , T ) is (1 + pnT )(p−1)·pn by proposition 3.1.26. Therefore,
the numerator of Z(Hb/Fp2n , T ) is (1 + pnT )p−1 since Hb has genus p−1

2 . Notice that Hb

has a unique point at infinity. Thus we deduce from standard arguments that

1 + p2nj + σb(j, 0) = |Hb(kj)| = 1 + p2nj − (p− 1)(−pn)j , (3.1.24)

which gives the claimed value for σb(j, 0). Therefore, from step 1 we get the value σ∗ =
(−pn)j and this finishes the proof. ■
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Remark 3.1.29. When p = 3, it is possible to give more concrete and elementary (but
computationally longer) proofs of the identity σb(j, 0) = −2 · (−3n)j from lemma 3.1.28,
via quartic Jacobi sums.

— A second proof of lemma 3.1.28 when p = 3 is based on [IR90, exercise 11, p. 170]. Let
Db be the affine quadric u2 − v4 = −4b ≡ −b over F3n . Let Eb be the elliptic curve
given by (the projective closure of) the affine equation y2 = x3 + bx over F3n , where
NF3n/F3(b) = λF3n (b) = (−1)n+1.

The key here is to use the morphism of affine curves

ϕ : Db −→ Eb ∖ {[0 : 1 : 0]}
(u, v) 7−→

(
x = 1

2(u+ v2) ; y = vx = 1
2v(u+ v2)

)
and that the number of points of Db can be computed via quartic Jacobi sums. The
map ϕ is well-defined since y2 = v2x2 = x(x2 + b) = x3 + bx ⇐= xv2 = x2 + b ⇐⇒
1
2(u + v2)v2 = 1

4(u2 + 2uv2 + v4) + b ⇐⇒ 2uv2 + 2v4 = u2 + 2uv2 + v4 + 4b ⇐⇒
v4 = u2 + 4b. Moreover, ϕ is an isomorphism onto its image Eb \ {[0 : 1 : 0], [0 : 0 : 1]},
the inverse being (x, y) 7−→ (2x− (y/x)2 , y/x) (where x ̸= 0).

Let α ⩾ 1 be any integer and set Q = 3nα. Now, by proposition 1.4.3 one has

|Db(FQ)| =
∑
v∈FQ

(1 + λFQ
(v4 − 4b)) = Q+

∑
w∈FQ

∑
χ4=1

χ(w)λ(w − 4b),

where χ : F×
Q → C× runs over multiplicative characters of order dividing 4. Moreover,∑
w∈FQ

χ(w)λ(w − 4b) =
∑
w′∈FQ

χ(−4bw′)λ(−4bw′ − 4b)

= χ(4b)λFQ
(−4b)

∑
w′∈FQ

χ(−w′)λ(w′ + 1)

= χ(4b)λFQ
(−4b) · J(χ, λ).

In short, we get
|Db(FQ)| = Q+ λFQ

(−4b)
∑
χ4=1

χ(4b) · J(χ, λ). (3.1.25)

– If n · α is odd, then there are only 2 characters F×
Q → C× of order dividing 4, namely

the trivial one and the Legendre symbol, because gcd(|F×
Q|, 4) = gcd(3nα − 1, 4) = 2.

The above identity (3.1.25) then yields

|Db(FQ)| = Q+ λFQ
(−4b)λFQ

(4b) · J(λFQ
, λFQ

) = Q− 1,

where we used the fact J(1, λ) = 0 and J(λ, λ) = −λ(−1). (We see that the identity
|Db(FQ)| = Q− 1 actually holds for any Q = pnα and any b ∈ F×

Q such that n · α is
odd and p ≡ −1 (mod 4)).

– If n · α is even, then there exists a character χ4 : F×
Q → C× of order exactly 4 (since 4

divides |F×
Q| = 3n·α − 1, as nα is even). In particular, χ2

4 = λFQ
.

From equation (3.1.25) we get (recall that J(1, λ) = 0, so in the sum below, the term
for k = 0 vanishes):

|Db(FQ)| = Q+ λFQ
(−4b)

3∑
k=1

χk4(4b) · J(χk4 , λ)
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3 – The family y2 = x3 + bx + b′tm

= Q+ λFQ
(−4b)

(
λ(4b) · J(λ, λ)︸ ︷︷ ︸

=−λ(−1)

+2 Re(χ4(4b) · J(χ4, λ))
)

= Q− 1 + 2λFQ
(−4b) Re(χ4(4b) · J(χ4, λ)) (3.1.26)

When α · n = n is even, then χ4(b)2 = λF3n (b) = −1 by assumption, so χ4(4b) =
λF3n (2)χ4(b) is purely imaginary. On the other hand, J(χ4, λ) is a real number.

Indeed, we have J(χ4, λF3n ) = G(χ4) ·G(λ)
G(χ4λ) by proposition 1.4.6. Since χ4 and

χ4λ = χ−1
4 have both order 4, and since p := 3 ≡ −1 (mod 4), theorem 11.6.3 in

[BEW98] yields
G(χ4) = G(χ4λ) = pn/2 · (−1) n

2 −1+ (p+1)n
8 .

Moreover, it is well-known (see [BEW98, theorem 11.5.4]) thatG(λFQ
) = (−1)n−1Q1/2in

= −(−3)n/2 since p ≡ 3 (mod 4) and n is even (here i ∈ C denotes a square root of
−1).

All in all, when α · n = n is even, equation (3.1.26) finally implies that

|Db(F3n)| = 3n − 1 + 2λF3n (−4b) · 0 = 3n − 1.

Finally, |Eb(FQ)| = |Db(FQ)| + 2 yields |Eb(F3n)| = 3n − 1 + 2 · 0 + 2 = 3n + 1 for
every n (even or odd). By Hasse–Weil theorem we can write the number of points as
|Eb(F3n)| = 3n + 1− (t1 + t2) with t1t2 = 3n so t1 = −t2 = 3n/2i ∈ C and therefore

|Eb(F32nj )| = 1 + 32nj − 3n(i2j + (−i)2j) = 1 + 32nj − 2(−3n)j ,

as we had in equation (3.1.24).

— The third and last proof of lemma 3.1.28, when p = 3 and n is even (and λF3n (b) = −1),
is similar to the previous one, but is more enlightening about the appearance of the
quartic curve Db (or rather the character χ4 of order 4), which seemed to be just a
clever trick.

The idea to compute T (b) := σb(1, 0) =
∑
x∈F32n

λF32n (x3 + bx) is to let b ∈ F×
3n vary

(and then we will be able to deduce σb(j, 0) for all j ⩾ 1). We observe that for any
u ∈ F×

3n , one has

T (b) = σb(1, 0) =
∑

x′∈F32n

λ((ux′)3 + bux′)

= λ(u3)σu−2b(1, 0) = λ(u)T (u−2b)

In particular, we have T (b) = T (v4b) for every v ∈ F×
3n , that is: T (b) only depends on

the class of b in F×
3n/F×,4

3n , i.e. modulo the 4-th powers. If n is even, then this group has
size 4 (equal to the kernel of the endomorphism x 7→ x4 of F×

3n).

We show that for every prime p ≡ 3 (mod 4), every even integer n ⩾ 2 and every b ∈ F×
pn

such that λFpn (b) = −1, we have

S(b) :=
∑
x∈Fpn

λFpn (x3 + bx) = 0. (3.1.27)
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This is not the same as T (b) because we are summing over F3n and not over F32n , but
it will be sufficient, by Hasse–Weil theorem, to deduce6 T (b). Similarly to T (b), we see
that S(b) = S(u4b) for every u ∈ F×

pn . Then

(pn − 1)S(b) =

S(0) = 0

∑
u∈Fpn

S(bu4)

=

λ(0) = 0

∑
x∈F×

pn

∑
u∈Fpn

λ(x3)λ(1 + bx−2u4)

=
∑
x∈F×

pn

∑
z∈Fpn

∑
χ4=1

λ(x3)λ(1 + bx−2z)χ(z)

=
∑
x∈F×

pn

λ(x)
∑
χ4=1

χ(−b−1x2)
∑
z∈Fpn

χ(−bx−2z)λ(1 + bx−2z)

=
∑
x∈F×

pn

λ(x)
∑
χ4=1

χ(−b−1x2)J(χ, λ)

=

n even =⇒ χ4 exists

3∑
k=0

J(χk4 , λ)χk4(−b−1)
∑
x∈F×

pn

λ1+k(x)

Now notice that ∑
x∈F×

pn

λ1+k(x) =
{

0 if k ∈ {0, 2}
pn − 1 if k ∈ {1, 3}

This yields

S(b) =
∑

k∈{1,3}

J(χk4 , λ)χk4(−b−1)

= 2 Re
(
J(χ4, λ)χ4(−b−1)

)
= 2 Re (J(χ4, λ)χ4(−b)) ,

which reminds us of equation (3.1.26). We conclude as before that S(b) = 0 since −b
is not a square in Fpn by assumption (so that χ4(−b) is purely imaginary), while the
Jacobi sum J(χ4, λ) is a real number. This terminates the proof. ⌟

3.1.7.3 Conclusion of the proof

We are now in position to give a new proof of corollary 3.1.22.

Second proof of corollary 3.1.22. –– Recall from equations (3.1.16) to (3.1.18) that we
have

logL(Em,b,1/k(t)) = −
∑
j⩾1

Rb(n, j)
T j

j
, Rb(n, j) =

∑
w∈kj

σb(j, w3n+1). (3.1.28)

6Indeed, if S(b) = 0 then the elliptic curve A : y2 = x3 + bx satisfies |A(Fpn )| = pn + 1 − (α+ β) where
α+ β = 0, αβ = pn so that α = −β = ipn/2 and then T (b) = |A(Fp2n )| − (p2n + 1) = −(α2 + β2) = 2 · 3n.
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3 – The family y2 = x3 + bx + b′tm

For general odd prime p, assume that b ∈ F×
pn satisfies NFpn/Fp

(b) = (−1)n+1, define the set

Γb(n, j) :=
{
w ∈ kj : wp

n+1 ∈ Im(gb,j)
}
,

where gb,j : kj → kj denotes the map x 7→ xp + bx as in lemma 3.1.28. Recall that we
introduced the affine curve Caff

n,b : vpn+1 = up + bu in equation (3.1.19). Observe that all
the fibers of the map

Caff
n,b(kj) −→ Γb(n, j), (u, v) 7−→ v

have size p since ker(gb,j) is 1-dimensional over Fp by lemma 3.1.27; it can be applied thanks
to our assumption on b. Thereby, we deduce from proposition 3.1.26 that

|Γb(n, j)| =
1
p

(|Cn,b(kj)| − 1) = 1
p

(p2nj − (p− 1) · pn · (−pn)j). (3.1.29)

Therefore, using lemma 3.1.28 and the above expression (3.1.28) of Rb(n, j), we get

Rb(n, j) = −(p− 1) · (−pn)j · |Γb(n, j)| + (−pn)j ·
(
p2nj − |Γb(n, j)|

)
= (−pn)j ·

(
p2nj − p · |Γb(n, j)|

)
(3.1.29)= (−pn)j · (p− 1) · pn · (−pn)j

= (p− 1) · pn(1+2j) = (p− 1)q1+2j ,

Finally, we conclude that

−
∑
j⩾1

Rb(n, j)
Tn

n
= −(p− 1)q

∑
j⩾1

(q2T )j
j

= (p− 1)pn · log(1− q2T ). (3.1.30)

We now specialize to the case where p = 3 so that q = 3n and k = F32n . Notice that the
hypothesis in corollary 3.1.22 reads7 b

pn−1
2 = NF3n/F3(b) = (−1)n+1, in which case (3.1.28)

becomes L
(
Em,b,1/Fq2(t), T

)
= (1− q2T )(p−1)·pn = (1− q2T )2·3n

, as desired. This finishes
the proof8. ■

3.2 · Sphere packings from Em ,b ,b ′

We are looking for some examples of elliptic curves satisfying the asymptotic conditions of
theorem 2.3.1 and it turns out that Em,b,b′/Fp2e(t) verifies9 them if m = (pe + 1)/2, p ≡
−1 mod 4 and e > 0 is odd. Indeed, as mentioned in proposition 3.1.5, the Szpiro ratio of
Em,b,b′ tends to 1 when m→ +∞. Moreover, corollary 3.1.16 asserts that Brumer’s bound
is asymptotically attained (but probably not if p ≡ 1 mod 4, see remark 3.1.21).

7The norm map N : F×
3n → F×

3
∼= {±1} is surjective, so it gives a non-trivial character of order two: the

Legendre symbol.
8We see that one should expect the rank of the jacobian of y2 = xp + bx + tp

n+1 over Fp2n (t) to be
(p− 1) · pn if NFpn /Fp

(b) = (−1)n+1 (however a complete proof would require the analysis of the reduction
type at v = ∞). See also remark 2.4.3.

9The cardinality of the field of constants satisfies qj := p2e ∼ (2m)2 ∼ f(Em,b,b′ )2, so we may take c0 := 2
in the statement of theorem 2.3.1.
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3.2 – Sphere packings from Em,b,b′

3.2.1 Case m = pe +1
2

When m := pe+1
2 , we compute the lower bound on the center density of the narrow

Mordell–Weil lattice Lm,b,b′,q of Em,b,b′ over Fp2e(t).

Theorem 3.2.1. Let p be a prime number such that p ≡ −1 (mod 4) and let e > 0 be an
odd integer. Fix b, b′ ∈ F×

pe and set m = pe + 1
2 as well as k := Fp2e . Then:

• The rank of the lattice Lm,b,b′,p2e = Em,b,b′(k(t))0 is given by

r =
{
pe − 1 if p ≡ 1 (mod 3), or p = 3
pe − 3 if p ≡ −1 (mod 3)

• The center sphere packing density of Lm,b,b′,p2e (introduced in definition 1.2.6) satisfies

δ(Lm,b,b′,p2e) ⩾ (D/24)r/2

c1/2 · pe·(D/12−1)

where

D := 12
⌈pe + 1

12
⌉

=


pe + 1 if p ≡ 11 (mod 12),
pe + 5 if p ≡ 7 (mod 12),
pe + 9 if p ≡ 3 (mod 12)

c :=
{

1 if p ≡ −1 (mod 12),
3 otherwise

⌟

Following the strategy sketched in remark 2.1.2, we first study the torsion subgroup of
Em,b,b′(k(t)).

Lemma 3.2.2. Let p be an odd prime, b, b′ ∈ Fp
× and m ⩾ 1 be an even integer coprime to

p. Then the abelian group Em,b,b′(Fp(t)) is torsion-free. ⌟

Proof. –– From proposition 3.1.5, we know that c(Em,b,b′/k(t)) ∈ {1, 3} for any finite
field k ⊃ Fp(b, b′); in particular this global Tamagawa number is square-free. Thanks
to proposition 2.1.3, we deduce that Em,b,b′(k(t)) is torsion-free for all such k. Then
Em,b,b′(Fp(t)) is torsion-free as well. ■

Proof of theorem 3.2.1. –– The result on the rank readily follows from corollary 3.1.16. The
lower bound on the center density comes from proposition 2.1.1. Indeed, corollary 3.1.16
ensures that the special value of the L-function is L∗(Em,b,b′/k(t)) = 1. Moreover, we
have just seen that Em,b,b′(k(t))tors is trivial. Finally D = deg (∆min(Em,b,b′/k(t))) and
c = c(Em,b,b′/k(t)) have been determined in proposition 3.1.5. A direct computation then
yields the claimed inequality (notice that b′ ∈ F×

pe is always a square in k = Fp2e). ■

Example 3.2.3. The following table shows some dimensions for which the lattice above
has "interesting" center density. For simplicity we let L(p, e) := L(pe+1)/2, 1, 1,p2e when
p ≡ −1 mod 4 and e > 0 is odd. The last two columns compare our bound for r = 150
and r = 306 to the previously known results of Keith Ball [Bal92] (theorem 1.2.16 which
improves on Minkowski–Hlawka lower bound from theorem 1.2.15) and the improvements
of Craig’s lattices from [FIdD11] discussed in remark 1.2.21. Our values therefore seem to
be the best known lattice sphere packing densities in these two dimensions.
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3 – The family y2 = x3 + bx + b′tm

rank r p log2 δ(L(p, 1)) ⩾ [Bal92]
δℓ(n) ⩾

[FIdD11]
δℓ(n) ⩾

2 3 log2(δ(A2))
6 7 log2(δ(E6))
8 11 log2(δ(E8))

150 151 114.8796 97.758 114.6448
306 307 358.8224 345.18 357.5522

Here are a few other values:
rank r p log2 δ(L(p, 1)) ⩾

66 67 21.1808
68 71 23.1399
78 79 31.8717
80 83 34.044
102 103 56.3817
104 107 58.9044
126 127 84.2649
128 131 87.0694
138 139 99.2616

rank r p log2 δ(L(p, 1)) ⩾
162 163 131.0698
164 167 134.2149
176 179 151.033
188 191 168.3386
198 199 182.6803
248 251 261.2165
356 359 449.2792
416 419 562.7234
464 467 657.25672

Moreover, L(3, 5) has rank 242, log2 δ(L(3, 5)) ⩾ 251.1816 and L(7, 3) has rank 342 and
log2 δ(L(7, 3)) ⩾ 423.1044.

• Applying Mordell’s inequality from proposition 1.2.17 (with n = 72 > m = 66) to the even
unimodular 72-dimensional lattice with minimal norm 81/2 found by G. Nebe in [Neb12]
gives log2 δℓ(66) ⩾ 24.6338 > log2 δ(L(67, 1)). So our 66-dimensional lattice L(67, 1) is
not the densest possible; however Mordell’s inequality does not provide explicitly a lattice
achieving the bound 24.6338.

We observe that L(67, 1) is denser than the narrow Mordell–Weil lattice obtained from
[Shi91, theorem 1.2] with m = 34, p = 101 (which has log2(δ) ≃ 18.220), and is also
denser than Craig’s lattice A(8)

66 (which has log2(δ) ≃ 20.504; see [CS98, Chapter 8, §6,
§7.3c)] and remark 1.2.21). But the improvement of Craig’s lattice given in [FIdD11]
satisfies log2(δ) ≃ 21.504, which is slightly better than what we found.

• In fact, most of the packing densities in the second table are superseded by applying
Mordell’s inequality to some Mordell–Weil lattices from [Shi91, theorem 1.2] or to some
improvement of Craig’s lattices from [FIdD11]. However, all the packing densities in the
second table are greater than the values obtained from Ball’s lower bound (theorem 1.2.16)
in their respective dimensions. ⌟

Remark 3.2.4. We point out that one can use Mordell’s inequality (proposition 1.2.17) to
improve some of the packing densities obtained in [Shi91, example 1.3] and remark 4.1.11
stated later, which are the best known so far in their respective dimensions.

• Using p = 257,m = p+ 1 in [Shi91, proposition 1.2] yields a 512-dimensional lattice with
log2(δ) = 796.8875, and then Mordell’s inequality gives log2 δℓ(508) ⩾ 780.4962, much
better than the density of the 508-dimensional lattice L obtained using p = 509,m =
(p+ 1)/2 which satisfies log2(δ(L)) ≃ 745.6273.
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• In fact, [Elk94] exhibits a 512-dimensional lattice with log2(δ) ⩾ 797.1237, which implies
log2 δℓ(508) ⩾ 780.7287.

• Similarly, using p = 263,m = p+ 1 in [Shi91, proposition 1.2] yields a 524-dimensional
lattice with log2(δ) = 822.6975, and then Mordell’s inequality gives log2 δℓ(520) ⩾
806.1962, improving by far the density of the 520-dimensional lattice L obtained using
p = 521,m = (p+ 1)/2 which satisfies log2(δ(L)) ≃ 770.3712. ⌟

3.2.1.1 Sharpness of the lower bound on the packing density of Lm,b,b ′ ,q

We discuss here some results related to the equality case of the inequality on the packing
density of Lm,b,b′,q given in theorem 3.2.1. Namely, proposition 2.1.1 states necessary and
sufficient conditions for the displayed lower bound on δ(Lm,b,b′,q) to be sharp. Two of them
are:

• The index of the narrow Mordell–Weil lattice in the full Mordell–Weil lattice equals the
global Tamagawa number.

• There is a point P ∈ Lm,b,b′,q with ĥ(P ) = 1
6 deg (∆min(Em,b,b′/Fq(t))) (i.e., the lower

bound on the minimal non-zero height from Shioda’s theorem 1.3.24 is attained).

We fix a prime p ≡ −1 mod 4 and an odd integer e > 0. We consider the even integer
m := pe+1

2 and fix b, b′ ∈ F×
pe , let k = Fp2e and K = k(t).

When p ≡ −1 mod 12 then from proposition 3.1.5, we know that c(Em,b,b′/K) = 1, so by
lemma 1.3.23 we must have [Em,b,b′(K) : Em,b,b′(K)0] = 1 = c(Em,b,b′/K). In other words,
the condition in the first item above is satisfied. We now check that the condition in the
second item is also fulfilled, when p ≡ −1 mod 12 and b = b′ = 1.

Proposition 3.2.5. Let p, e,m,K be as above. Let ϵ ∈ {−i, 0, i} where i ∈ Fp2 satisfies
i2 = −1. For simplicity we denote by E = Em,1,1 the elliptic curve y2 = x3 + x+ tm over
K.

1. The point Pϵ := (ϵ, tm/2) ∈ E(K) lies in the narrow Mordell–Weil lattice E(K)0 ⊂ E(K),
if and only if 6 | m.

2. If m ≡ 0 (mod 6) (i.e., if p ≡ −1 mod 12), then the Néron–Tate height of Pϵ is ĥ(Pϵ) =
m
3 = 1

6 deg (∆min(E/K)).

3. In general, Q := P0 − Pi ∈ E(K)0 and when m = 2 (i.e., p = 3, e = 1), we have
ĥ(Q) = 2 = 1

6 deg (∆min(E/K)). ⌟

Proof. –– 1. At all (bad) places v above 4 + 27t2m, we know that cv = 1 according to
proposition 3.1.5. So we only need to study which points reduce to smooth points at the
bad place v =∞ (with uniformizer π = t−1).

Let a := ⌈m/6⌉, so that the transformation

(x, y) 7→ (x′ := t−2ax, y′ := t−3ay) (3.2.1)
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3 – The family y2 = x3 + bx + b′tm

gives a Weierstrass model y′2 = x′3 + x′t−4a + tm−6a which is minimal integral at v =∞
by proposition 3.1.5. Now Pϵ gets mapped to

(ϵt−2a, tm/2−3a) ≡
{

(0, 0) (mod t−1) if 6 ∤ m
(0, 1) (mod t−1) if 6 | m.

When 6 ∤ m, (0, 0) is the unique singular point of the reduction Ev : y2 ≡ x3. When
6 | m, the reduction is y2 ≡ x3 + 1 (mod t−1), so this is smooth (because p ̸= 3, since
otherwise m ≡ 2 (mod 6)). We deduce that Pϵ = (ϵ, tm/2) ∈ E(K)0 if and only if 6 | m.

2. This follows from proposition 5.1 in [Shi91], with χ := ⌈m/6⌉ = m/6. The coefficients of
the Weierstrass equation of E satisfy the condition (5.2) ibid. (especially deg(4+27t2m) >
12(χ− 1) because p ̸= 3). For (x(t), y(t)) = (ϵ, tm/2), we have deg(x) ⩽ 2χ, deg(y) = 3χ,
so that

ĥ(Pϵ) = 2χ+ 2(Pϵ) · (O) = 2χ = 1
6 deg (∆min(E/K)) = m

3 ,

by equation (1.3.7) and proposition 1.3.26.4, using notations from remark 1.3.9.

3. Consider the point

Q := P0 − Pi =
(
−4tm − i ; 8it3m/2 − 3tm/2

)
∈ E(K).

Under the change of variables (3.2.1), the point Q is mapped to

Q∞ :=
[
(−4tm − i)ta−3m/2 : (8it3m/2 − 3tm/2)t−3m/2 : t3a−3m/2

]
.

If m = 2a (equivalently, m = 2, a = 1), the reduction of this point modulo t−1 is
[−4 : 8i : 1], and otherwise it is [0 : 1 : 0]. Both points are smooth on the reduction
Ev, so that Q ∈ Em(Fp2(t))0 for every (even) m = (pe + 1)/2. Now the conditions
deg(x) = m ⩽ 2χ = 2⌈m/6⌉,deg(y) = 3m/2 ⩽ 3χ from proposition 5.1 in [Shi91] for the
point Q = (x(t), y(t)) are satisfied if and only if m = 2. In that case, the height of Q is
ĥ(Q) = 2χ = 2. Therefore, the lower bound from theorem 1.3.24 is sharp, according to
the value deg (∆min(E/K)) = 12 in that case. ■

Remark 3.2.6. The lower bound on the packing density displayed in the first table of
example 3.2.3 for p = 3, 7, 11 tell us that the Tate–Shafarevich group X of E(p+1)/2,1,1
over Fp2(t) is trivial for these three primes. Indeed, using the optimality of A2, E6, E8
among lattice packings stated in proposition 1.2.11, we must have equalities δ(L(3, 1)) =
δ(A2), δ(L(7, 1)) = δ(E6) and δ(L(11, 1)) = δ(E8), where L(p, 1) := L(p+1)/2,1,1,p2 is as in
example 3.2.3. Then we conclude by using the last part of proposition 2.1.1. ⌟

3.2.2 Case m = 3n + 1 : latt ice packings in dimensions 2 · 3n

from character ist ic 3

We now focus on the case where m = pn + 1 and the characteristic is p = 3. The following
result appeared in my paper [Let22].

Theorem 3.2.7 (theorem C). Let n ⩾ 1 be an integer, set q = 3n and fix b ∈ F×
3n such

that b
q−1

2 = (−1)n+1. Consider the narrow Mordell–Weil lattice L′
n,b := L3n+1,b,1,32n of
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y2 = x3 + bx + t3
n+1 over F32n(t). Then the rank of L′

n,b is 2 · 3n and its center density
satisfies the lower bound

δ(L′
n,b) ⩾

(3n−1 + 1
4

)3n

· 3
−n
(

3n−1−1
2

)
− 1

2 . ⌟

In particular, for n ∈ {1, ..., 7}, we get the following values, gathered in the table below.

n rank of L′
n,b log2

(
δ(L′

n,b)
)
⩾

Best lattice packing
density known so far

1 6 log2
(√

3/24
)
≃ −3.79248 δ(E6) =

√
3

24
([CS98], p. xix)

2 18 log2

(√
3

27

)
≃ −3.962406 −3.79248

[CS98], p. xix

3 54 log2

(√
3·527

227·313

)
≃ 15.88002 15.88

(Elkies [CS98], p. xviii)

4 162 144.1852 130.679
[FIdD11]

5 486 741.1001 703.05
[Bal92]

6 1458 3172.032 3236.6
[Bal92]

We see that in dimension 54, we get the same density as the densest lattice packings of
balls known so far (in fact no construction is explained for the 54-dimensional lattice MW54
listed in [CS98], p. xx). Moreover, in dimensions 162 and 486, we improve the current
records. But in dimension 18, another construction achieves a higher packing density, and
in dimensions above 1458, non-constructive lower bounds (as in theorems 1.2.15 and 1.2.16)
are the best known so far. Observe that in dimension 6, we get the same density as the E6
lattice; see also remark 3.2.12.

Remark 3.2.8. By applying Mordell’s inequality (proposition 1.2.17) to the above lattices,
we get the following lower bounds for the maximal lattice packing densities in dimensions
52, 53, 160, 161, 484, 485:

n 52 53 160 161 484 485
log2(δℓ(n)) ⩾ 12.7525 14.2918 138.648 141.405 733.010 737.050 ⌟

Before proving theorem 3.2.7, we first point out that in characteristic 3, the curves Em,b,b′

are isotrivial. The proof also gives information on the torsion subgroup of Em,b,b′(F32n(t)).

Proposition 3.2.9. Let k be a finite field of characteristic 3. Let m ⩾ 1 be an integer
coprime to 3. Let b, b′ ∈ k×. Then the elliptic curve Em,b,b′ over K = k(t) is isotrivial.
More precisely, it is a cubic twist of the constant curve E′ : y′2 = x′3 + bx′ over k.

Moreover, the Mordell–Weil group Em,b,b′(K) is torsion-free. ⌟
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3 – The family y2 = x3 + bx + b′tm

Proof. –– The first statement is immediate from the change of variables y = y′, x = x′ − u
where u ∈ k(t) satisfies u3 + bu = b′tm (this exactly defines the superelliptic curve from
subsection 3.1.7.1 when b′ = 1,m = 3n + 1). Indeed, if we consider the cubic extension
K ′ := K(u) of K, with u ∈ K as above, then we have an isomorphism

f : E′(K ′)
∼=→ Em,b,b′(K ′), (x′, y′) 7→ (x′ − u, y′). (*)

One can also see that the j-invariant of Em,b,b′ is 0, so it must be an isotrivial elliptic curve.

Finally, Em,b,b′(K) is torsion-free directly follows from lemma 3.2.2 when m is even, but
we can provide an alternative argument anyway. We have E′(K ′)tors = E′(k) by [Ulm11,
Proposition 6.1, lecture 1] (see also remark 2.4.1). Since x′ − u ̸∈ K whenever x′ ∈ k, this
proves that Em,b,b′(K)tors has to be trivial by the isomorphism (*). ■

Remark 3.2.10. Let E := E3n+1,b,1, K := k(t) where k := F32n . From corollary 3.1.22,
we know the special value: L∗(E/K) = 1. Moreover, we have deg (∆min(E/K)) =
12⌈(3n + 1)/6⌉ = 2 · (3n + 3) and c(E/K) = 3 by proposition 3.1.5. From BSD formula (see
conjecture 1.3.34), we get

|X(E/K)| · Reg(E/K) = c(E/K)−1 · |E(K)tors|2 · |k|−1 ·H(E/K)

= 3−1 · 3−2n · 32n· 3n+3
6 = 3n(3n−1−1)−1 (3.2.2)

Moreover, we know that E(K)0 is an integral lattice, so its discriminant is an integer, and
since [E(K) : E(K)0] = c(E/K) = 3 by proposition 3.2.14, it follows that Reg(E/K) ∈
1
32 Z>0. We will discuss the Tate–Shafarevich groups further in section 3.4. ⌟

Proof of theorem 3.2.7. –– For ease of notation, in what follows, we write Kn := F32n(t).
First of all, we notice that the rank of the lattice L′

n,b is equal to r = 2 · 3n. Indeed,
theorem 1.3.35 and proposition 3.2.9 imply that the BSD conjecture 1.3.34 is fulfilled (we
already knew this thanks to theorem 1.3.40, as mentioned at the beginning of the chapter).
In particular, the algebraic rank of E3n+1,b,1 over Kn agrees with the analytic rank, which
equals 2 · 3n by corollary 3.1.22.

In fact, corollary 3.1.22 also tells us that the special value of the L-function is equal to
1, i.e., L∗(E3n+1,b,1/Kn) = 1. Now we may apply proposition 2.1.1 using the values from
proposition 3.1.5 (see also remark 3.2.10) and the last statement of proposition 3.2.9 to
deduce the lower bound stated in theorem 3.2.7. This concludes the proof. ■

Remark 3.2.11. We mention here that when n→ +∞, we have the asymptotic lower bound
log2(δ(L′

n,b)) ⩾ 3n · n · log2(3)− n·3n−1

2 log2(3) + o(n · 3n) from theorem 3.2.7. Because the
rank of L′

n,b is r = 2 · 3n, this reads

log2(δ(L′
n,b)) ⩾

(1
2 −

1
12

)
r log2(r) + o(r log2(r)),

which implies

D(L′
n,b) ⩾ 2− 1

12 r log2(r)·(1+o(1)) = r−r/12·(1+o(1)), (3.2.3)
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3.2 – Sphere packings from Em,b,b′

where D(L′
n,b) ∈ [0, 1] is the packing density as introduced in definition 1.2.6. Although this

is far from attaining Minkowski–Hlawka lower bound ⩾ 2−r, we get the same asymptotic
density as in [Elk94, theorem 1] and [Shi91, equation (1.12)].

This observation actually follows from theorem 2.3.1, together with proposition 3.1.5 (which
asserts that the Szpiro ratio of our elliptic curves tends to 1 when the conductor goes to
infinity) and remark 3.1.23 (which shows that Brumer’s bound is asymptotically sharp). ⌟

Remark 3.2.12. When n = 1 and b = 1 (which is the only square in F×
3 ), theorem 3.2.7

provides a 6-dimensional lattice L′
1,1 which has a sphere packing density greater than or

equal to the one of the E6 lattice. Since the latter is optimal among lattice packings by
proposition 1.2.11, we must actually have equality δ(L′

1,1) = δ(E6). Then the last part of
proposition 2.1.1 tells us (in particular) that the Tate–Shafarevich group of E4,1,1 : y2 =
x3 + x+ t3

1+1 over F32(t) is trivial: |X(E4,1,1/F32(t))| = 1. ⌟

3.2.2.1 Discussion of the sharpness of the lower bound on the packing
density

In this paragraph, we shorty study some of the necessary conditions under which the
inequality in theorem C is actually an equality.

Proposition 3.2.13. If n ∈ {1, 2, 3} and b ∈ F×
3n is such that b

3n−1
2 = (−1)n+1, then the

lower bound from theorem 3.2.7 on the packing density of L′
n,b is an equality. ⌟

Proof. –– We have to check the three conditions stated at the end of proposition 2.1.1.
Consider the curve E := E3n+1,b,1 over K := F32n(t) so that L′

n,b = E(K)0. The condition
λ1(E(K)0) = 1

6 deg (∆min(E/K)) and [E(K) : E(K)0] = c(E/K) are given in the next
proposition 3.2.14, since n ⩽ 5. Finally, since n ⩽ 3, we will see later (in theorem 3.4.1)
that the Tate–Shafarevich group of E/K is trivial. This concludes the proof. ■

Proposition 3.2.14. Let n ⩾ 1 be an integer and for a given element b ∈ F×
3n such that

b
3n−1

2 = (−1)n+1, we consider the elliptic curve E := E3n+1,b,1 over K := F32n(t). Then:

1. The index [E(K) : E(K)0] is equal to c(E/K) = 3. In fact, if we let

Qn :=
(

0, t(3n+1)/2
)
∈ E3n+1,b,1(F3(t)) ↪→ E(K)

then {−Qn, O,Qn} is a set of representatives for E(K)/E(K)0.

2. If n ⩽ 5, then there is some b ∈ F×
3n as above such that there exists a point Pn ∈ E(K)0

such that ĥ(Pn) = 1
6 deg (∆min(E/K)) = 3n−1 + 1. ⌟

We start with a useful lemma, which works specifically in the case of characteristic 3.

Lemma 3.2.15. Let k be a finite field of characteristic 3, let b, b′ ∈ k× and m ⩾ 1 be
an integer coprime to 3. Set K := k(t). Fix a point P = (x, y) ∈ Em,b,b′(K) such that
deg(x1) > m

3 + deg(x2), where x = x1/x2 ∈ K is written as the ratio of two coprime
polynomials x1, x2 ∈ k[t]. Then the naive and the canonical heights coincide at P , that is,
h(P ) = ĥ(P ). ⌟
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3 – The family y2 = x3 + bx + b′tm

Proof. –– The idea is to use lemma 1.3.15.2: it tells us that if h′ : E(K)→ R is a function
such that h′(3rP ) = 9rh′(P ) for all r ⩾ 0 and h′ − h is bounded on { 3rP : r ⩾ 0 }, then
h′(P ) = ĥ(P ).

Since char(k) = 3, the multiplication-by-3 map on Em,b,b′ is given by

Q = (x, y) 7−→ 3Q = (b−4x9 + b−4b′3t3m − b−1b′tm , y · r(x)) (3.2.4)

where r ∈ K[x] is a polynomial of degree 12, see lemma 3.2.16 below. If x = x1/x2 ∈ K
and deg(x1) > 3m

9 + deg(x2) then

deg(b−4x9 + b−4b′3t3m − b−1b′tm) = max{deg(x9
1 + x9

2(b′3t3m − b3b′tm)),deg(x9
2)}

= 9 max{deg(x1), deg(x2)}

which means that h(3P ) = 9h(P ) whenever P = (x, y) satisfies the condition given in the
statement.

Since x1(3P ) = b−4x1(P )9 + x2(P )9(b−4b′3t3m − b−1tm) has degree 9 deg(x1(P )) and
x2(3P ) = x2(P )9, we get that the inequality

deg(x1(3P )) > 9 · m3 + 9 deg(x2(P )) = m

3 + deg(x2(3P ))

so we may apply the same reasoning to 3P instead of P . By induction, we can conclude
that h(3rP ) = 9rh(P ) for all integers r ⩾ 0. Thus we may apply lemma 1.3.15 to the naive
height h : E(K)→ R to get the conclusion. ■

Lemma 3.2.16. Consider an elliptic curve y2 = x3 + Ax + B =: f(x) over a field K of
characteristic 3 and fix Q = (xQ, yQ) ∈ E(K)∖E[6]. Then the x and y-coordinates of 3Q are

x(3Q) = A−4x9
Q +A−4B3 −A−1B,

y(3Q) = −A−6yQ · f(xQ)4. ⌟

Proof. –– This is a tedious but direct computation. Since Q ̸∈ E[2], we notice that yQ ̸= 0
and y−1

Q = yQ

f(xQ) . By [Sil08a, p. 54], we find

x(2Q) = xQ + A2

f(xQ) ,

y(2Q) = −A · x(2Q)
2yQ

−
x3
Q −AxQ +B

yQ

= y−1
Q ·

(
A ·
(
xQ + A2

f(xQ)
)
− x3

Q +AxQ −B
)

= yQ
f(xQ)

(
− f(xQ) + A3

f(xQ)
)

= −yQ + A3yQ
f(xQ)2 .

Since 2Q ̸= ±Q, we may set

λ := y(2Q)− yQ
x(2Q)− xQ

= A−2yQf(xQ) · (1 +A3 · f(xQ)−2)

ν := yQ · x(2Q)− y(2Q) · xQ
x(2Q)− xQ
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and then

x(3Q) = λ2 − x(2Q)− x(Q) = λ2 + xQ −A2f(xQ)−1

= A−4y2
Qf(xQ)2 · (1 + 2A3 · f(xQ)−2 +A6 · f(xQ)−4) + xQ −A2f(xQ)−1

= A−4f(xQ)3 −A−1f(xQ) +A2f(xQ)−1 + xQ −A2f(xQ)−1 (3.2.5)

= A−4(x9
Q +A3x3

Q +B3) − A−1(x3
Q +AxQ +B) + xQ

= A−4x9
Q +A−4B3 −A−1B.

Finally, we compute

ν = f(xQ)
A2 ·

(
yQ ·

(
xQ + A2

f(xQ)
)
− xQ ·

(
− yQ + A3yQ

f(xQ)2

))
= f(xQ) · yQ

A2 ·
(
− xQ + A2

f(xQ) −
A3xQ
f(xQ)2

)
so we find (for simplicity we denote f := f(xQ), x := xQ, y := yQ)

y(3Q) = −λ · x(3Q)− ν
(3.2.5)= −λ · (A−4f −A−1f + x)− ν

= −A−2y · f ·
(
A−4f3 +A−1f − A−1f −A2f−1 + x+A3f−2x

)
−
(
fyA−2 · (−x) + y −A · xy · f−1)

= −A−6yQ · f(xQ)4. ■

We also state a useful result which tells us more about points of integral Néron–Tate height.

Lemma 3.2.17. Let k be a finite field of characteristic 3, let b, b′ ∈ k× and m ⩾ 1 be an even
integer coprime to 3. Set K := k(t) and E := Em,b,b′ . Fix a point P = (x, y) ∈ Em,b,b′(K)
such that ĥ(P ) ∈ Z (e.g., ĥ(P ) = 1

6 deg (∆min(E/K))). Then:

1. The point P lies in the narrow Mordell–Weil lattice, i.e., P ∈ E(K)0.

2. If ĥ(P ) = 1
6 deg (∆min(E/K)) then both coordinates of P are polynomials, i.e., x, y ∈ k[t].

3. We have ĥ(P ) = h(P ). ⌟

Proof. –– 1. From equation (1.3.6) we have

ĥ(P ) = 1
6 deg (∆min(E/K)) + 2(P ) · (O)− γ∞(P ) · 1P ̸∈E(K)0

where γ∞(P ) ∈ {2
3 ,

4
3} are the values given in [SS19, table 6.1, p. 127], depending

on whether Em,b,b′ has reduction type IV or IV∗ at the place at infinity ∞ according
to proposition 3.1.5, since m ≡ 2, 4 mod 6. Because γ∞(P ) is never an integer, the
assumption ĥ(P ) ∈ Z implies that P ∈ E(K)0.

2. The above argument shows that if ĥ(P ) = 1
6 deg (∆min(E/K)) then we must have

(P ) · (O) = 0. We prove that x, y ∈ k[t]. First observe that it is enough to check that
either x or y is a polynomial because the relation y2 = x3 + bx+ b′tm and the fact that
k[t] is integrally closed will ensure that both x and y are polynomials. Inspecting the
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3 – The family y2 = x3 + bx + b′tm

proof of [Sil08b, theorem III.9.3, p. 250], the fact that (P ) · (O) = 0 implies that x
cannot have a pole at any t ∈ A1 (that is, we must have vt(x) ⩾ 0). This forces x to be
a polynomial.

3. By lemma 3.2.15, the equality ĥ(P ) = h(P ) holds as soon as deg(x1) > m
3 + deg(x2),

where x is written as a ratio x = x1
x2

of two coprime polynomials x1, x2 ∈ k[t]. Therefore
it is sufficient to prove that the equality deg(x1) < m

3 +deg(x2) can never occur, provided
that ĥ(P ) ∈ Z (we have a strict inequality since 3 ∤ m). For the sake of a contradiction,
assume that such an inequality holds. By equation (3.2.4), we have

x(3P ) = z1

z2
, z1 := b−4x9

1 + (b−4b′3t3m − b−1b′tm) · x9
2, z2 := x9

2.

Note that z1, z2 ∈ k[t] are coprime since x1, x2 are, and using the assumption deg(x1) <
m
3 + deg(x2), we get deg(z1) = 3m + 9 deg(x2) > m

3 + deg(z2). In particular, we may
apply lemma 3.2.15 to the point 3P , which asserts that ĥ(3P ) = h(3P ) = deg(z1) = 3m+
9 deg(x2). Thus ĥ(P ) = 1

9 ĥ(3P ) = m
3 + deg(x2) is not an integer (since gcd(m, 3) = 1),

so this yields a contradiction, which concludes the proof. ■

It is worth mentioning an important consequence of lemma 3.2.17.

Corollary 3.2.18. We keep the notations k, b, b′,m from lemma 3.2.17. Then the Néron–Tate
and naive heights coincide on the narrow Mordell–Weil lattice Em,b,b′(k(t))0. ⌟

Proof. –– This is immediate from the above lemma, recalling that the Néron–Tate height
takes integral values on the narrow Mordell–Weil lattice by theorem 1.3.24. ■

Proof of proposition 3.2.14. –– 1. First, we know from lemma 1.3.23 that [E(K) : E(K)0]
must divide c(E/K) and we have c(E/K) = 3 by proposition 3.1.5, so the index
[E(K) : E(K)0] is either 1 or 3. We prove that the index cannot be equal to 1 by
noticing that the point Qn does not belong to E(K)0. Indeed, if we set µ :=

⌈
3n+1

6

⌉
,

then the point Qn gets mapped to the point (Qn)∞ :=
(
0, t(3n+1)/2−3µ) on the minimal

integral Weierstrass model E∞ : y2 = x3 + bxt−4µ+ t3
n+1−6µ of E at the place at infinity

(via the map (x, y) 7→ (xt−2µ, yt−3µ)), as in proposition 3.1.5. Then (Qn)∞ modulo
t−1 is the singular point (0, 0) of E∞ (because m := 3n + 1 is not a multiple of 6).
Therefore, Qn ̸∈ E(K)0, as claimed. It follows that [E(K) : E(K)0] = 3 and therefore
{−Qn, O,Qn} is a set of representatives for E(K)/E(K)0.

2. We first exhibit those rational points Pn explicitly, and then prove that they lie in the
narrow Mordell–Weil sublattice and finally explain how to compute their Néron–Tate
height. Some of these points can be found for instance using techniques described in
section 3.3.

— When n = 1 and b = 1, there is the rational point of height 2

P1 = (t2,−t3 + t) ∈ E4,b,1(F3(t)) ↪−−→ E4,b,1(K).

— If n = 2, let us write F32 ∼= F3[X]/(X2 −X − 1) and let z be the class of X in F32 .
One can take b := z since z(3n−1)/2 = z4 = −1. There is a point of height 4:

P2 :=
(
t4 + (z + 1)t2 − 1 , −t6 + t4 − t2 − z + 1

)
∈ E10,b,1(F32(t)) ↪→ E10,b,1(F32n(t))
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— If n = 3 and b = 1, then there is a point of height 10 = 3n−1 + 1:

P3 =
(
t10 + t8 + t2 , −t15 + t13 − t11 − t7 − t5 + t

)
∈ E28,b,1(K)

— If n = 4, let q = 3n, Fq2 ∼= F3[X]/(f8(X)) and z be the class of X, where f8 = X8 −
X5 +X4 −X2 −X − 1 ∈ F3[X] is the Conway polynomial of degree 8 over F3. Let
b = zq+1 = NFq2/Fq

(z), which is a generator of F×
q and in particular it is not a square

in F×
q . Then the following rational point has height 28 = 3n−1 + 1:

P4 =
(
t28 + b52t26 + b56t24 + b52t22 + b35t20 + b75t18 + b70t16

+ b28t14 + b54t12 + b71t10 + b71t8 + b15t6 + b29t4 + b60t2 − 1 ,
− t42 + t40 − t38 + b39t36 + b67t34 − t32 + b47t30

+ b49t28 + b70t24 + b70t22 + bt20 + b3t18 + b46t16 − t14

+ b51t12 + b5t10 + b76t6 + b18t4 + b27t2 + b74) ∈ E82,b,1(Fq(t)).

— If n = 5 and b = 1, then there is a point10 of height 82 = 3n−1 + 1:

P5 =
(
t82 − t76 + t68 − t66 − t64 + t60 + t58 + t56 − t52 − t48 + t46−

t44 − t42 + t36 − t34 − t32 + t30 − t26 + t24 + t16 + t12 − t8 − t4 + t2 ,

t123 − t121 + t119 + t117 − t115 + t113 − t105 + t101 − t99

+ t95 − t87 + t85 + t81 − t67 − t61 + t59 − t57 − t55 + t51 + t45

− t43 + t41 + t37 + t33 − t31 − t27 − t19 − t11 + t9 − t7 − t3 − t
)
∈ E244,b,1(F3(t)).

It readily follows from11 lemma 3.2.15 that for each n ⩽ 5, we have ĥ(Pn) = h(Pn) =
3n−1 + 1 ∈ Z.

We check that for each n ⩽ 5, the point Pn lies in the narrow Mordell–Weil sublattice
E(K)0, i.e., its reduction modulo the place at infinity is not the singular point (0, 0) of
E∞ : ȳ2 = x̄3. This follows from lemma 3.2.17, but we give a direct argument. Recall
from equation (3.2.1) and proposition 3.1.5 that if we let m := 3n + 1 and a := ⌈m/6⌉
then the transformation

(x, y) 7→ (x′ := t−2ax, y′ := t−3ay)

gives a Weierstrass model E∞ : y′2 = x′3 + x′t−4a + tm−6a which is minimal integral
at v = ∞. If we are given a point P = (x, y) ∈ E(K) such that x, y ∈ F32n [t] are
polynomials with deg(x) = 2a,deg(y) = 3a, then the corresponding point (x′, y′) ∈ E∞
is such that both x′ and y′ have a non-zero constant term in t−1, so their reduction
modulo t−1 is not (0, 0). In particular, this applies to the points P1, ..., P5 above. ■

10See the file SAGE_computation_check_for_Proposition_3.2.14__2_.ipynb available at https://
gitlab.com/gauthierleterrier/maths.

11One could also argue as in the proof of Proposition 5.1 of [Shi91] (even though the exact statement from
there does not directly apply in characteristic 3; one has to work with deg (∆min(E/K)) in equation
(5.2) ibid). The idea is to use equation (1.3.7), proposition 1.3.26.4 and the fact that Pn ∈ E(K)0, to
get ĥ(Pn) = 1

6 deg (∆min(E/K)) + 2(Pn) · (O) where, using notations from remark 1.3.9, E → P1 is the
elliptic fibration attached to E over K and (Pn), (O) ⊂ E are the sections corresponding to the rational
points Pn, O ∈ E(K). Then [Shi91, Proposition 5.1] gives a condition so that (Pn) and (O) do not
intersect.
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Remark 3.2.19. Let E and K be as in proposition 3.2.14. For every Q ∈ E(K), we have

ĥ(Q) = 1
9h(3Q) .

Indeed, since [E(K) : E(K)0] = 3 by proposition 3.2.14, we know that 3Q ∈ E(K)0. Thus
by corollary 3.2.18 we have 9ĥ(Q) = ĥ(3Q) = h(3Q), whence the above identity. ⌟

Remark 3.2.20. We keep the notations from proposition 3.2.14. If we fix an element
β ∈ F×

32n such that β2 = −b, then for every ϵ ∈ {−β, 0, β}, the six points (ϵ,±t(3n+1)/2)
belong to E(K) ∖ E(K)0, but this does not contradict the fact that E(K)0 has index 3 in
E(K). For instance, we have (β, t(3n+1)/2)− (0, t(3n+1)/2) ∈ E(K)0 (i.e. those two points
give the same element in the quotient E(K)/E(K)0 ∼= Z/3Z).

For instance, if n = 1 and b = 1, this difference is equal to Q′ := (2t4 + 2β, βt6). At v =∞,
it gets mapped to

(Q′)∞ = (2t2 + 2βt−2, βt3) = [2t−1 + 2βt−4 : β : t−3] ≡ [0 : β : 0] = OE∞
mod π,

where π := t−1. Therefore we have Q′ ∈ E(K)0 as claimed, since Q′ reduces to a regular
point modulo all places v of K (at v ̸=∞, E has good reduction, so this is obvious, and at
v =∞, it reduces the point at infinity mod π, which is a smooth point). ⌟

Remark 3.2.21. The densities of the narrow and the full Mordell–Weil lattices of E3n+1,b,1
over F32n(t), denoted L′

n,b and Mn,b respectively, compare as follows. Define Qn :=(
0, t(3n+1)/2

)
as in proposition 3.2.14. One can show12 that ĥ(Qn) = 3n−1 + 1− 2

3 . Indeed,
by lemma 3.2.16 we have x(3Qn) = b−4t3m− b−1tm where m := 3n+1 so that lemma 3.2.15
applies. We find 9 · ĥ(Qn) = ĥ(3Qn) = h(3Qn) = 3m, whence the result. Now, we have

δ
(
Mn,b

)
⩽

(
ĥ(Qn)1/2/2

)2·3n

covol(Mn,b)
.

By proposition 3.2.14, we have [Mn,b : L′
n,b] = 3 so we get

δ
(
Mn,b

)
δ(L′

n,b)
⩽ 3 ·

(
ĥ(Qn)

λ1(L′
n,b)2

)3n

⩽ 3 ·
(3n−1 + 1− 2/3

3n−1 + 1

)3n

= 3 ·
(

1− 2
3n + 3

)3n

.

Thus the narrow Mordell–Weil lattice L′
n,b is always denser than the full Mordell–Weil

lattice Mn,b, and the ratio of the densities tends to 3e−2 ≃ 0.406 as n→ +∞. ⌟

3.2.3 Laminated latt ices

We now laminate the lattices obtained in theorem 3.2.7 to get sphere packings in dimension
2 · 3n + 1 for n ⩽ 5, using "holes" of the narrow Mordell–Weil lattices L′

n,b introduced in
theorem 3.2.7 (i.e., points in the euclidean space R2·3n that are "far" from lattice points).

12This can also be proved using equation (1.3.6) and [SS19, Table 6.1, p. 127] and the fact that the
reduction of E3n+1,b,1 at v = ∞ has type IV (by proposition 3.1.5), via an argument similar as in
footnote 11 (namely one shows that the sections (Qn) and (O) do not intersect in the elliptic surface
E → P1 attached to E3n+1,b,1).

154



3.2 – Sphere packings from Em,b,b′

Proposition 3.2.22. For each n ⩽ 5, there is a lattice packing Pn of euclidean balls in
dimension 2 · 3n + 1 with center density at least δ(L′

n,b) · 1
2

(
3n+3

2

)1/2
, where L′

n,b is a lattice
described in theorem 3.2.7. ⌟

We get the following values:

n dimension of Pn log2 (δ(Pn)) ⩾

1 7 −4

2 19 −3.669925

3 55 16.833472

4 163 145.88137

5 487 743.57141

To our knowledge, in dimensions 55, 163 and 487, the above lattices are the densest sphere
packings known so far.

Observe that the 7-dimensional lattice packing P1 has a density at least as big as the one of
the E7 root lattice. Since the latter maximizes the sphere packing density among lattices by
proposition 1.2.11, it follows that δ(P1) is equal to 2−4. In dimension 19, we get a density a
bit worse than the best known lattice packing which gives log2 δℓ(19) ⩾ −3.5 (see [CS98, p.
xix]).

Proof. –– Let n ∈ {1, ..., 5} and fix b ∈ F×
3n such that b(3n−1)/2 = (−1)n+1. We apply

proposition 1.2.9 to the sublattice L′
n,b ⊂ Mn,b of the full Mordell–Weil lattice Mn,b :=

E3n+1,b,1(F32n(t)).

We know that {−Qn, O,Qn} are representatives for the quotient Mn,b/L
′
n,b, as proposi-

tion 3.2.14 shows and each of them has the smallest possible height in their coset. In fact,
we can see from equation (1.3.6) that any point Q ∈Mn,b satisfies

ĥ(Q) ⩾ 1
6 deg (∆min(E/K))− γ∞(Q) · 1Q̸∈L′

n,b

where γ∞(Q) = 2
3 is the value given in [SS19, table 6.1, p. 127], using the fact E3n+1,b,1

has bad additive reduction at the place at infinity ∞, with Kodaira symbol IV as stated
in proposition 3.1.5. Since we assumed that n ⩽ 5, proposition 3.2.14 ensures that
λ1(L′

n,b)2 = 3n−1 + 1, and from the equalities ĥ(Qn) = ĥ(−Qn) = 3n−1 + 1 − 2
3 (see

remark 3.2.21), we get the value h = (2
3)1/2 introduced in proposition 1.2.9. Thus the open

balls of radius λ1(L′
n,b)/2 centered at the points of

Pn := L′
n,b × 3hZ ∪ (L′

n,b +Qn)× (3hZ + h) ∪ (L′
n,b −Qn)× (3hZ− h)
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3 – The family y2 = x3 + bx + b′tm

form a packing by proposition 1.2.9, which also tells us that Pn is a lattice packing and not
only a periodic packing (since Mn,b/L

′
n,b is cyclic, of order 3). Moreover, one has

δ(Pn) =
λ1(L′

n,b)
2 · (2/3)1/2 · δ(L

′
n,b) = δ(L′

n,b) ·
1
2

(3n + 3
2

)1/2
. ■

3.3 · Kissing numbers and Gram matrices
We now discuss some computational results regarding the narrow Mordell–Weil lattices
L′
n,b ↪→ R2·3n we introduced in theorem 3.2.7. Some of these algorithmic aspects are useful

because they show that it is possible to work quite concretely with those lattices, for
instance by finding rational points on the corresponding elliptic curve E3n+1,b,1. Recall
that given n ⩾ 1 and b ∈ F×

3n such that b(3n−1)/2 = (−1)n+1, we consider the curve
E3n+1,b,1 : y2 = x3 + bx+ t3

n+1 over F32n(t) and the lattice L′
n,b = E3n+1,b,1

(
F32n(t)

)0.

More specifically, with the help of the computer algebra system SAGE [The21], we can
determine the kissing number of our 54-dimensional lattice L′

3,1 which is the densest lattice
sphere packing known so far in R54.

Computational theorem 3.3.1 (Computational theorem D). The kissing number of the
54-dimensional lattice L′

3,1 is equal to κ(L′
3,1) = 15309000 = 23 · 37 · 53 · 7. ⌟

The proof is given in subsection 3.3.1.3; the SAGE code is available at https://gitlab.
com/gauthierleterrier/maths and can be tested on https://www.cocalc.com. This
value is not a record because in dimension 48, there is a lattice with kissing number
52416000 (see [CS98, p. xxii]), and we have κℓ(d+ 1) ⩾ κℓ(d) + 2 for every dimension d > 0
by remark 1.2.18. However, it is interesting to see that it is possible to compute the kissing
number of these Mordell–Weil lattices. It is also possible to do so with the Mordell–Weil
lattices in characteristic 2 from [Elk94, p. 360]: it is stated that the 64-dimensional lattice
has kissing number 89413632 (see remark 3.3.5).

3.3.1 Kissing number of a 54-dimensional Mordel l–Wei l latt ice

Computing the kissing number can be done by producing minimal vectors in the lattice.
Thereby, a first step to compute κ(L′

3,1) is to have a criterion to exhibit rational points on
the elliptic curve E28,1,1 : y2 = x3 + x+ t28 over F36(t).

Lemma 3.3.2. Let k be a finite field of prime characteristic p ⩾ 2 and fix b ∈ k×. Let
z(t) =

∑d
j=0 zjt

j ∈ k[t] be of degree d divisible by p. Then the following are equivalent:

1. There exists a polynomial s ∈ k[t] such that z = sp + bs.

2. We have z0 = sp0 + bs0 for some s0 ∈ k and for every integer j ⩾ 1 coprime to p, we have

fj :=
R(j)∑
r=0

(−1)rb−pr+1−1
p−1 zp

r

pR(j)−rj
= 0 (3.3.1)

where R(j) :=
⌊
logp(d/j)

⌋
.
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3.3 – Kissing numbers and Gram matrices

Moreover, if 2) holds, then the polynomial s in 1) is uniquely determined by z up to an
additive constant in k, and for each j ⩾ 1 coprime to p its j-th coefficient is sj = b−1zj .

Finally, an analogous statement holds for Laurent series z ∈ k
((
t−1)): if 1) holds for some

s ∈ k
((
t−1)) then 2) holds. ⌟

Note that pr+1−1
p−1 = 1 + p+ p2 + · · ·+ pr and that R(j) = 0 whenever j > d/p, in which

case the equation reads b−1zj = 0 (if gcd(j, p) = 1), i.e., zj = 0, which is automatically true
when j > d.

Proof. –– • We first prove 1) =⇒ 2). Let us write s(t) =
∑d/p
j=0 sjt

j so that

sp + bs =
d/p∑
j=0

(spj tpj + bsjt
j) =

d∑
j=0

(spj/p + bsj)tj

where we set sj′ := 0 if j′ ̸∈ Z or j′ > d/p. Thus we get zj = spj/p + bsj for all j ⩾ 0. In
particular, when j ̸∈ pZ we get zj = bsj .

Let us fix some j ⩾ 1 coprime to p. Then we get successively

spj + bspj = zpj =⇒ spj = b−1(zpj − spj ) = b−1(zpj − b−pzpj )

sppj + bsp2j = zp2j =⇒ sp2j = b−1(zp2j − sppj) = b−1zp2j − b−p−1zppj + b−p2−p−1zp
2

j .

By induction on R ⩾ 0, we deduce

spRj = b−1zpRj − b−(p+1)zppR−1j + b−(p2+p+1)zp
2

pR−2j − · · · ± b
−(pR+pR−1+···+1)zp

R

j .

(3.3.2)

When R = R(j) > logp(d/j) − 1 = logp
(
d
pj

)
we have pR(j)j > d/p which means that

spR(j)j = 0, i.e., equation (3.3.1) holds.

• The converse 2) =⇒ 1) follows from the discussion above. Let z ∈ k[t] be a polynomial
as in 2). The coefficient s0 is given by assumption. Given j ̸∈ pZ, we set sj := b−1zj .
If j ⩾ 1 is coprime to p, then we have to define spr·j for all r ⩾ 1. This can be
done using equation (3.3.2) and the other equations displayed above; for instance
sp·j = b−1(zpj − b−pzpj ). One can then check using (3.3.2) that zj = spj/p + bsj for every
j ⩾ 0 (not necessarily coprime to p), which proves that z = sp + bs.

Finally, note that a polynomial s ∈ k[t] such that sp + bs = z must be unique up to an
additive constant, because if s1, s2 are two such polynomials then (s1−s2)p = −b(s1−s2)
so taking degrees on both sides shows that s1 − s2 must be constant.

• The proof of 1) =⇒ 2) from above immediately generalizes to the case of Laurent series
z =

∑d
j=−∞ zjt

j ∈ k
((
t−1)) and s ∈ k

((
t−1)). ■

Remark 3.3.3. When b = −1, the condition z0 = sp0 + bs0 for some s0 ∈ k is equivalent to
trk/Fp

(z0) = 0 by proposition 1.4.3. See also lemma 3.1.27. ⌟
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3 – The family y2 = x3 + bx + b′tm

Recall from corollary 3.1.22 that the narrow Mordell–Weil lattice L′
3,1 = E28,1,1(F36(t))0 of

E28,1,1 has rank 54 and from proposition 3.2.14 that λ1(L′
3,1)2 = 33−1 + 1 = 10. In other

words, we want to count the number of points P ∈ L′
3,1 with ĥ(P ) = 10.

By lemma 3.2.17, all points P = (x, y) ∈ E28,1,1(F36(t)) with Néron–Tate height 10 must
lie in the narrow Mordell–Weil lattice and both x, y are polynomials with deg(x) = h(P ) =
ĥ(P ) = 10. Moreover, from the relation y2 = x3 + x + t3

n+1 and deg(x) = 3n−1 + 1 we
deduce that deg(y) = 3n+3

2 (for any n ⩾ 1); when n = 3 this implies that deg(y) = 15. In
other words, we want to compute

κ(L′
3,1) = #{ (x, y) ∈ F36 [t]× F36 [t] : deg(x) = 10, y2 = x3 + x+ t28 }. (3.3.3)

In what follows, we will denote k := F36 and E := E28,1,1 for simplicity. We have |k| = 729
and it is not reasonable to do a naive "brute-force" approach to list all the solutions
as in equation (3.3.3) (e.g., the space of polynomials x(t) of degree 10 over k has size
|k|11 > 3 · 1031, so running over x and checking whether x3 + x+ t28 is a square in k[t] gives
an extremely inefficient strategy).

3.3.1.1 Polynomial equations in the coeff ic ients yj

Instead, we will run over y ∈ k[t] (despite having larger degree, namely 15) and check
for solutions in x thanks to lemma 3.3.2. Given y =

∑15
j=0 yjt

j ∈ k[t] of degree 15, we
are looking for polynomials x ∈ k[t] of degree 10 such that (x, y) ∈ E(k(t)). Consider
the polynomial z(t) := y2 − t28 =

∑30
j=0 zjt

j of degree 30. By lemma 3.3.2, there is a
polynomial x ∈ k[t] such that z = x3 + x if and only if the equations (3.3.1) are satisfied,
and z0 = y2

0 = s3
0 + s0 for some s0 ∈ k.

We can express each coefficient zj in terms of the 16 unknowns yj . For instance,

z30 = y2
15, z29 = −y14y15, z28 = y2

14 − y13y15 − 1, z26 = y2
13 − y12y14 − y11y15.

(3.3.4)

Assume now that there is a polynomial x =
∑10
j=0 xjt

j ∈ k[t] with z = x3 + x. Lemma 3.3.2
gives us equations fj = 0 for each integer j ⩾ 1 coprime to 3. In particular, they tell us
that:

• For every j ⩾ 1 coprime to 3, we have zj = xj . This holds exactly when j ∈ {1, 2, 4, 5, 7, 8,
10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29}.

• In particular, for all j > 30/3 = 10 coprime to 3, we have zj = xj = 0. In other words,
we have

z11 = z13 = z14 = z16 = z17 = z19 = z20 = z22 = z23 = z25 = z26 = z28 = z29 = 0. (3.3.5)

• Moreover, lemma 3.3.2 will give us equations involving the 7 variables z1, z2, z4, z5, z7,
z8, z10 and the corresponding indices multiplied by powers of 3. (e.g., z3, z9, z27; z6, z18,
etc.)

• The polynomial x is necessarily unique up to an additive constant in k. More precisely,
there are exactly 3 solutions to the equation α3 + α = 0 in F32 ↪→ k, so there are exactly
3 polynomials x(t) such that x3 + x = z(t).
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3.3 – Kissing numbers and Gram matrices

Using equation (3.3.5) and remembering that y15 ̸= 0, we find successively:

z29 = −y14y15 = 0 =⇒ y14 = 0

z28 = −y13y15 − 1 = 0 =⇒ y13 = −y−1
15

z26 = y−2
15 − y11y15 = 0 =⇒ y11 = y−3

15

z25 = (−y10y
2
15 + y12)/y15 = 0 =⇒ y10 = y12y

−2
15

z23 = −y8y15 = 0 =⇒ y8 = 0 (3.3.6)

z22 = (−y7y
7
15 − y2

12y
4
15 + y9y

5
15 + 1)/y6

15 = 0 =⇒ y7 = y−7
15 (−y2

12y
4
15 + y9y

5
15 + 1)

z20 = (−y5y
9
15 + 1)/y8

15 =⇒ y5 = y−9
15

z19 = (−y4y
8
15 + y3

12y
4
15 + y9y12y

5
15 + y6y

6
15 − y12)/y7

15 =⇒ y4 = y−8
15 (y3

12y
4
15 + y9y12y

5
15 + y6y

6
15 − y12)

z17 = (−y2y
6
15 − y3

12)/y5
15 = 0 =⇒ y2 = −y−6

15 y
3
12

Moreover, from the equation z16 = 0 we can deduce that:

y1 = y−13
15 (−y4

12y
8
15 − y2

9y
10
15 + y6y12y

10
15 + y3y

11
15 + y2

12y
4
15 − y9y

5
15 − 1)

z14 = 0

and from the equation z13 = 0 we can deduce that:

y0 = −y−12
15 (y5

12y
8
15 − y9y

3
12y

9
15 + y6y9y

11
15 + y3y12y

11
15 − y9y12y

5
15 − y6y

6
15 + y12)

z11 = 0.

From these computations, we see that we are left with 5 free variables, namely y3, y6, y9, y12,
y15 in k. This is still too large for a brute-force computation (we have |k|5 > 1014). We
have not used the remaining 7 equations f1, f2, f4, f5, f7, f8, f10 = 0 from lemma 3.3.2 yet.
In general, they are given as follows (but recall that we have set b := 1 ∈ F×

33 in our case):

b · f1 = z27 − b−3z3
9 + b−12z9

3 − b−39z27
1 , b · f2 = z18 − b−3z3

6 + b−12z9
2 , b · f4 = z12 − b−3z3

4

b · f5 = z15 − b−3z3
5 , b · f7 = z21 − b−3z3

7 , b · f8 = z24 − b−3z3
8 , b · f10 = z30 − b−3z3

10.

Since the coefficients zj can be expressed in terms of the yj (as in equation (3.3.4)), these
7 equations yield (complicated) polynomial equations in k[y3, y6, y9, y12, y

±1
15 ]. We may

assume that the degree in each variable is < |k| since each yj belongs to k and α|k| = α
for all α ∈ k. For instance we have f10 = −y6

5 + y3
4y

3
6 + y3

3y
3
7 + y3

2y
3
8 + y3

1y
3
9 + y3

0y
3
10 + y2

15b
3

which becomes

f10 = y−54
15 · (y56

15 − y18
12y

36
15 + y3

6y
9
12y

42
15 − y9

9y
45
15 + y3

6y
3
9y

3
12y

45
15 + y3

3y
6
12y

45
15

+ y6
6y

48
15 − y3

3y
3
9y

48
15 − y3

9y
6
12y

27
15 − y6

9y
30
15 + y3

3y
33
15 − y6

12y
12
15 − y3

9y
15
15 − 1).

Therefore f10 = 0 implies y3
3 · U10 + V10 = 0 where

U10 := y6
12y

45
15 + y33

15 − y3
9y

48
15 , (3.3.7)

V10 := y56
15 − y18

12y
36
15 + y3

6y
9
12y

42
15 − y9

9y
45
15 + y3

6y
3
9y

3
12y

45
15 + y6

6y
48
15 − y3

9y
6
12y

27
15 − y6

9y
30
15 − y6

12y
12
15 − y3

9y
15
15 − 1.

The point here is that U10 and V10 only depend on y6, y9, y12, y15 but not on y3. So we have
two disjoint cases:

1 Either U10 = 0, i.e., y33
15(y2

12y
4
15 − y9y

5
15 + 1)3 = 0. This implies

y9 = y−5
15 (y2

12y
4
15 + 1). (3.3.8)
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Substituting this value in the equation f7 = 0 gives

y3
3 · U7 + V7 = 0

U7 := −y9
12y

15
15 − y3

6y
21
15 + y3

12y
3
15 (3.3.9)

V7 := −y3
12y

26
15 − y6y

28
15 + y3

6y
12
12y

12
15 + y6

6y
3
12y

18
15 + y12y

22
15 − y3

6y
6
12

Therefore:

• either U7 = (−y3
12y

5
15 − y6y

7
15 + y12y15)3 = 0, which determines y6 uniquely. In this

case, the only free variables are y3, y12, y15.

• or U7 ̸= 0 and we have a formula for y3
3 = −V7 · U−1

7 so that y3 = (−V7 · U−1
7 )|k|/3.

In this case, the only free variables are y6, y12, y15.

2 Or U10 ̸= 0 so that y3
3 = −U−1

10 V10 which gives

y3 = (−U−1
10 V10)

|k|
3 (3.3.10)

In this case, the only free variables are y6, y9, y12, y15.

3.3.1.2 Using isometr ies to reduce the search space

We could possibly investigate more deeply the other equations fj = 0, but instead we use
symmetries to further reduce the search space, i.e., we make use of some automorphisms (=
isometries) of the lattice E(K)0.

Let us consider the curves Eq+1,b,1 over k(t) where q = pn, p := 3, n = 3, k := Fq2 and
b ∈ F×

q satisfies NFq/Fp
(b) = (−1)n+1. First, the most obvious isometries are (x, y) 7→ (x,−y)

and (x, y) 7→ (x + β, y) where β3 + bβ = 0 (since b ∈ F3n , there are always 3 solutions
β ∈ k = F32n).

Secondly, define σ : K → K to be the field automorphism of K = k(t) such that σ(t) = t

and σ(a) = a3 for all a ∈ k. If b ∈ F×
3 (i.e., σ(b) = b), then

fσ : (x, y) 7→ (σ(x), σ(y))

is a (surjective) isometry13 of E(K)0. Finally, the map

gα : (x(t), y(t)) 7→ (x(αt), y(αt)) (3.3.11)

is well-defined onto E(K)0 provided that αq+1 = 1 (see remark 3.3.4 below) and this is an
isometry.

Note that fσ : (x, y) 7→ (σ(x), σ(y)) changes the y15-coefficient to y3
15 and gα : (x(t), y(t)) 7→

(x(αt), y(αt)) changes it to α15y15. We check that these isometries preserve the non-
vanishing of the polynomials U10 and U7 (given in equations (3.3.7) and (3.3.9)) that define
the two cases 1 and 2 above. It is clear for the isometry fσ, since σ ∈ Gal(k(t)/F3(t))
preserves polynomial functions of y6, y9, y12, y15 ∈ k. As for gα, where α3n+1 = α28 = 1,
we (miraculously?) find that:

13Observe that Néron–Tate height is preserved under this map thanks to corollary 3.2.18.
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• We have U10 = 0 if and only if y2
12y

4
15 − y9y

5
15 + 1 = 0. Now, the action of gα on a

polynomial y(t) changes the coefficient yj into αjyj . We have

(α12y12)2 · (α15y15)4 − α9y9 · (α15y15)5 + 1 = α84y2
12y

4
15 − α84y9y

5
15 + 1

= y2
12y

4
15 − y9y

5
15 + 1,

since 84 ≡ 0 mod 28 and α28 = 1.

• We have U7 = 0 if and only if −y3
12y

5
15 − y6y

7
15 + y12y15 = 0. We find

− (α12y12)3 · (α15y15)5 − α6y6 · (α15y15)7 + α12y12 · α15y15

= −α111y3
12y

5
15 − α27y6y

7
15 + α111y12y15

= α−1 · (−y3
12y

5
15 − y6y

7
15 + y12y15).

Let z be a generator of k×. Then ker(Nk/Fq
) is a subgroup of k× of size q+1 = 28, generated

by zq−1 = z26. We want to use the isometries gα from equation (3.3.11), where αq+1 = 1,
that is, α ∈ ker(Nk/Fq

). Recall that under gα, the coefficient y15 becomes α15y15. Now,
α 7→ α15 is a bijection of k× (because gcd(15, |k×|) = gcd(3 · 5, 23 · 7 · 13) = 1) and hence of
ker(Nk/Fq

). Thereby, we may assume that y15 = ze15 for some 0 ⩽ e15 < 26; this can be
achieved by applying gα for some α ∈ ⟨z26⟩ = ker(Nk/Fq

).

Furthermore, the isometry (x, y) 7→ (σ(x), σ(y)) allows us to assume without loss of
generality that e15 ∈ {0, 1, 2, 4, 5, 7, 8, 13, 14, 17}, because these 10 values from a complete
set of representatives14 for the action of the cyclic group ⟨3⟩× ⩽ (Z/26Z)× on Z/26Z. This
leaves us with 10 values for y15 (instead of q2 − 1 = 728 initially).

Remark 3.3.4. More generally, given α, β, γ ∈ k and Db,β(t) ∈ k[t], we could define15 the
automorphism of E(k(t))

(x(t), y(t)) 7−→
(
x(α(t+ β)) +Db,β(t) + γ, y(α(t+ β))

)
provided that

αq+1 = 1, γp + bγ = βq+1, Db,β(t)p + bDb,β(t) = βtq + βqt. (3.3.12)

However we will not make use of these extra automorphisms. Notice that if NFq/Fp
(b) =

(−1)n+1, then for every β ∈ k, there is some Db,β(t) ∈ k[t] such that Db,β(t)p + bDb,β(t) =

14There are indeed 10 representatives, as lemma 1.4.27 shows.
15Indeed,

y(α(t+ β))2 = x(α(t+ β))p + b · x(α(t+ β)) + (α(t+ β))q+1

= x(α(t+ β))p + b · x(α(t+ β)) + αq+1(t+ β)(tq + βq)

= x(α(t+ β))p + b · x(α(t+ β)) + αq+1(tq+1 + βtq + βqt+ βq+1)

and if we let ξ(t) := x(α(t+ β)) +Db,β(t) + γ then

ξ(t)p + bξ(t) + tq+1 = x(α(t+ β))p + b · x(α(t+ β)) + tq+1 + Db,β(t)p + b ·Db,β(t) + γp + bγ.

We see that the two expressions match if equation (3.3.12) is satisfied.
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βtq + βqt holds, as lemma 3.3.2 shows. Indeed, in the lemma, the only relevant equation is
for j = 1, when R(j) = n and we get the condition

(−1)0b−1β + (−1)nb−pn+1−1
p−1 βq

2
= 0.

Note that βq2 = β and we have

b−1 + (−1)nb− pn+1−1
p−1 = 0 ⇐⇒ 1 + (−1)nb−(p+...+pn) = 0 ⇐⇒ 1 + (−1)n NFq/Fp

(b)−p = 0

and the latter equation holds precisely because p = 3 is odd and NFq/Fp
(b) = (−1)n+1. ⌟

3.3.1.3 Conclusion

We can now summarize the above discussion to explain the computation of the kissing
number κ(L′

3,1). The SAGE program used for the computation is available at https://
gitlab.com/gauthierleterrier/maths.

Proof of computational theorem 3.3.1. –– The general procedure for the computation of
κ(L′

3,1) is as follows. Fix a generator g of k×. For each of the 10 integers e15 ∈ S :=
{0, 1, 2, 4, 5, 7, 8, 13, 14, 17}, let y15 = ge15 and loop over y12 ∈ k: there are two disjoint cases
1 and 2 to consider as above.

1. Either we use equation (3.3.8), in which case we solve a system of polynomial equations
in either y3 ∈ k or in y6 ∈ k.

2. Or we use equation (3.3.10), in which case we solve a system of polynomial equations in
y6, y9 ∈ k.

For each solution, we get the 5 coefficients y3, y6, y9, y12, y15 and then we define y0, y1, y2, y4,
y5, y7, y8, y10, y11, y13, y14 using the equations (3.3.6) and set y :=

∑15
j=0 yjt

j ∈ k[t]. We
check that y2

0 = s3
0 + s0 for some s0 ∈ k. Then lemma 3.3.2 ensures that there are exactly

3 polynomials x ∈ k[t] such that P = (x, y) ∈ E(K)0 has Néron–Tate height 10 (see also
discussion on page 158).

Let us say a few words about each case.

1. The first case only involves polynomial equations in 1 variable (either y3 or y6), so
SAGE [The21] only took 40 seconds to complete the search: only e15 = 0 and e15 = 13
have a non-zero number of solutions y(t), and both of them had 1458 solutions y(t),
corresponding to 3 · 1458 = 4374 minimal vectors (x(t), y(t)) in E(K)0. Thus, for each
multiple e15 of 13, we have 1458 · 3 minimal points (x(t), y(t)) with y15 = ge15 . Since
(q2 − 1)/13 = 56, we get in total 56 · 1458 · 3 = 244944 minimal vectors such that
equation (3.3.8) is satisfied.

2. The second case takes longer (roughly 28 minutes on SAGE [The21]) to list all the
corresponding y-coordinates with y15 = ge15 , distributed as follows:

e15 0 1 2 4 5 7 8 13 14 17
Number of y(t) 6561 5832 8019 8019 8019 5832 5832 6561 5832 8019

Given an integer e ∈ Z ∩ [0, q2 − 1], its orbit of its class modulo 26 under the mul-
tiplicative action of the powers of 3 ∈ (Z/26Z)× has a unique representative e15 in
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S = {0, 1, 2, 4, 5, 7, 8, 13, 14, 17}. Then the number of minimal vectors (x, y) ∈ E(K)0

with y15 = ge is given by 3 times the number of y(t) corresponding to e15 in the above
table.

This allows us to deduce that there are exactly 15064056 points (x, y) ∈ E(K)0 of
height 10 such that U10(y9, y12, y15) ̸= 0 (see equations (3.3.8) and (3.3.10); it just means
y9 ̸= y−5

15 (y2
12y

4
15 + 1)).

All in all, the kissing number of L′
3,1 = E(K)0 is:

15064056 + 244944 = 15309000 = 23 · 37 · 53 · 7,

which concludes the proof. ■

Remark 3.3.5. A similar strategy can be used to determine the kissing number of Elkies’
64-dimensional lattice obtained in [Elk94] as the narrow Mordell–Weil lattice MW64 of the
curve E : y2 + y = x3 + tq+1 over FQ(t) where n = 5, q = 2n = 32, Q = q2 = 1024, k = FQ.
The minimal non-zero height is 12. Here we first fix x(t) =

∑12
j=0 xjt

j ∈ k[t] with x12 ̸= 0
and then check whether z(t) := x(t)3 + tq+1 can be written as y2 + y, using lemma 3.3.2.
There is such a polynomial y such that (x(t), y(t)) ∈ E(k(t)) if and only if trk/F2(x3

0) = 0
and for every odd integer j ⩾ 1, we have

fj :=
R(j)∑
r=0

z2R(j)−r

2rj = 0.

where R(j) := ⌊log2(d/j)⌋. For j = 1, 3, 5, ..., 35 this yields:

z32 + z2
16 + z4

8 + z8
4 + z16

2 + z32
1 = 0, z8

3 + z4
6 + z2

12 + z24 = 0, z4
5 + z2

10 + z20 = 0,
z4

7 + z2
14 + z28 = 0, z4

9 + z2
18 + z36 = 0, z2

11 + z22 = 0, · · · , z2
19 + z38 = 0.

Note that z19 = ... = z35 = 0 and z38 = 0. Some of these equations force some relations
between the coefficients xj , as:

x6 = (1 + x3
10x

3
12)/x5

12

x11 = 0
x9 = (x3

11 + 1)/x2
12

x7 = (x2
10x11 + x9x

2
11)/x2

12 = 0
x5 = (x9x

2
10 + x2

9x11 + x7x
2
11)/x2

12

x3 = (x3
9 + x7x

2
10 + x2

8x11 + x5x
2
11)/x2

12

x1 = (x2
8x9 + x7x

2
9 + x5x

2
10 + x2

7x11 + x3x
2
11)/x2

12

Then from f17 = 0, one can express x4 in terms of x8, x10, x12. Moreover,

• If x10 ̸= 0, the equation f11 = 0 implies that one can express x2 in terms of x8, x10, x12.
Thus this leaves us with 4 free variables x0, x8, x10 and x12 ∈ k (and 6 equations f1, f3, f5,
f7, f9, f13 = 0, together with the condition trk/F2(x3

0) = 0).

• If x10 = 0, then the equation f9 = 0 gives a relation between x0, x2, x8, x12.
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Let σ : K → K be the field automorphism of K = K(t) such that σ(t) = t and σ(a) = a2

for all a ∈ k. Let g be a generator of k×. Recall that k = Fq2 where q = 2n and n = 5.

Using the isometry (x(t), y(t)) 7→ (x(at), y(at)) where aq+1 = 1, we may assume that a = ge

with 0 ⩽ e < q − 1. Using the isometry (x, y) 7→ (σ(x), σ(y)), we may assume that e ranges
over the set {0, 1, 3, 5, 7, 11, 15} of 7 representatives of the action of the powers of 2 on
Z/(q − 1)Z = Z/31Z.

The procedure is then as follows: for each e12 ∈ {0, 1, 3, 5, 7, 11, 15}, we set x12 = ge12

and then we loop over x10 ∈ k to solve a system of polynomial equations in x0, x8 ∈ k (if
x10 = 0, we also have the variables x0, x2) and one checks that the condition trk/F2(x3

0) = 0
is indeed satisfied.

In total, using SAGE [The21], this gives us 85155840 minimal points (x, y) ∈ E(K)0 with
x10 ̸= 0, 4249080 minimal vectors with x10 = 0 ̸= x8, and 4356 · 2 = 8712 minimal vectors
with x10 = x8 = 0.

All in all, we conclude that the kissing number of MW64 equals

8712 + 4249080 + 85155840 = 89413632,

which is indeed the result stated in [Elk94, p. 360]. ⌟

Remark 3.3.6. The kissing number of some narrow Mordell–Weil lattices of the curves
y2 = x3 +1+tq+1 (studied in [Shi91]) has been determined in [Neb98, p. 494 (after corollary
4.7)], using techniques from group theory. For instance when q = p = 23 ≡ −1 (mod 6),
the corresponding 44-dimensional lattice has kissing number 2708112, which seems to still
be the best known lattice kissing number (for non-lattice the best known is 2948552). ⌟

3.3.2 Gram matr ices

In what follows, we will also describe a probabilistic algorithm to compute the Gram
matrix of certain Mordell–Weil lattices. The computations rely on the specific shape of
the Weierstrass equation, namely, there is a "linear part" like y2 + y in characteristic 2 and
x3 + bx in characteristic 3 (in order to use lemma 3.3.2).

In general, computing the Gram matrix of a Mordell–Weil lattice (in a deterministic way)
seems to be a difficult task. In particular, it would allow to determine the regulator of
the elliptic curve, which is (by BSD formula from conjecture 1.3.34) very closely related to
determining the order of the Tate–Shafarevich group X of the curve.

3.3.2.1 General strategy

We give here an overview of the probabilistic algorithm. We consider a lattice L ↪→ L⊗Z
R ∼= Rn, which we see as a free abelian group of rank n together with an inner product
⟨−,−⟩ : L × L → R (in the case of narrow Mordell–Weil lattices, this inner product is
integer-valued).

1. The first step is to find n lattice points P1, ..., Pn ∈ L that are linearly independent over
R. In particular, they generate a full-rank sub-lattice L0 ⊆ L.
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Note that in the case of an integral lattice L, the equality covol(L0) = [L : L0] covol(L)
implies disc(L) divides disc(L0) = [L : L0]2 disc(L).

2. The idea is that if we can produce random points Q in L ∩B for some origin-centered
ball B, then the probability that Q ∈ L0 should behave like 1

[L:L0] (this can be made
precise by letting the radius of the ball go to infinity). Therefore, if L0 ̸= L, then
the probability that among r random points Q ∈ L ∩B at least one of them does not
lie in L0 is 1 − [L : L0]−r ⩾ 1 − 2−r. For large enough r, this is means that with
very high probability we find a sublattice L1 ⊂ L with covol(L1) ⩽ covol(L0)/2 (see
subsection 3.3.2.3 for more details).

Detecting whether a point Q belongs to L0 is easy: it suffices to express Q as a (unique)
R-linear combination of P1, ..., Pn and check whether all the coefficients are integers.

We keep producing random points to get sublattices Lj ⊂ L with covol(Lj) ⩽ covol(Lj−1)/2.
This process has to stop since we have the lower bound covol(Lj) ⩾ covol(L) for any
j. Eventually we get with very high probability a sublattice Lj0 ⊂ L with an explicit
Z-basis, and having the same covolume as L, which means that Lj0 = L. Then we can
compute a Gram matrix of L by using the basis of Lj0 .

3.3.2.2 Finding l inearly independent points

One idea is to take random lattice points P1, P2, ... ∈ L ∩B and successively compute the
Gram matrix of B0,d := {Pi : 1 ⩽ i ⩽ d } for d ∈ {1, 2, 3, ...}. The rank of the Gram
matrix of d vectors in Rn equals the dimension of the space spanned by these vectors.

Assume that the Gram matrix of B0,d−1 has non-zero determinant for some d ⩾ 2 (this is
the case for d = 2). This means that P1, ..., Pd−1 are linearly independent over R (hence over
Z), see [Sil08b, Lemma III.11.5]. Then we pick another point Pd ∈ L ∩B and if the Gram
matrix of B0,d := B0,d−1 ∪ {Pd} has zero determinant, then we discard Pd and pick a new
point P ′

d. We repeat the process until the Gram matrix of B0,d has non-zero determinant.
We continue like this until d = n = rk(L). This will give us a Z-basis B0 := B0,n of a
certain sublattice L0 ⊂ L of finite index.

Remark 3.3.7. It may happen that we can obtain linearly independent lattice points of
minimal length (i.e., lying in L ∩ S where S is the sphere of radius λ1(L), instead of L ∩B
for some origin-centered ball B).

There are several related notions for a lattice L ⊂ Rn:

1. The minimal vectors of L span Rn as R-vector space, i.e., L is well-rounded.

2. The minimal vectors of L span L as a Z-module.

3. An arbitrary set of n minimal vectors of L which are R-linearly independent span L.

4. There is a Z-basis of L consisting of minimal vectors of L.

Here are some relations between these various properties.

• We always have 4) =⇒ 2) =⇒ 1). In dimension ⩽ 4, we have 1) =⇒ 2), i.e., a
well-rounded lattice is generated (as an abelian group) by its minimal vectors. In fact,
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we even have 1) =⇒ 3) in dimension ⩽ 4, except if L is homothetic16 to D4, see [Mar01,
théorème 1.7, proposition 4.1] and [Mar02, §9.2, p. 329].

• The implication 1) =⇒ 2) is wrong in dimensions ⩾ 5. For instance, D∨
5 is spanned by

e1, ..., e4, b5 := 1
2(e1 + ... + e5), where ei ∈ R5 is the i-th vector of the canonical basis,

and has kissing number 10 with minimal norm 1 with minimal vectors being {±ei} (see
[CS98, p. 120]). Thus D∨

5 is well-rounded, but the minimal vectors do not span D∨
5 as

an abelian group. This argument fails for D∨
4 , since in that case b4 := 1

2(e1 + ...+ e4)
has norm 1 and is among the minimal vectors!

• The implication 2) =⇒ 4) holds in dimensions n ⩽ 9, but not in dimension ⩾ 10 (see
[MS12, CS95]. ⌟

3.3.2.3 Reducing the covolume

Let L ↪→ Rn be a lattice and assume that we are given points P1, ..., Pn ∈ L which are
R-linearly independent (as explained in the above step). Let L0 ⊂ L be the sublattice
generated by the Pi’s.

Given Q ∈ L, let us write Q =
∑n
i=1 αiPi for some αi ∈ R. By substracting some integer

multiple of Pi if necessary, we get a (unique) point Q′ =
∑n
i=1 α

′
iPi where −1/2 < α′

i ⩽ 1/2
for all i. Note that Q′ ≡ Q mod L0. If Q′ ̸∈ L0 then there is some index r such that
α′
r ̸= 0; we choose such an index r. We define

P ′
i :=

{
Q′ if i = r

Pi if i ̸= r.

In other words, we replace Pr by Q′. We claim that {P ′
i : 1 ⩽ i ⩽ n } ⊂ L are linearly

independent vectors that span a sublattice L1 ⊂ L with covol(L1) ⩽ covol(L0)/2. We prove
both claims at once. Without loss of generality, we may assume that r = 1. By embedding
L into Rn, we may consider the matrix whose columns are given by the P ′

i , so that

covol(L1) = |det(P ′
1 , P

′
2, · · · , P ′

n)|

=
∣∣∣∣∣det(

n∑
i=1

αiPi , P
′
2, · · · , P ′

n)
∣∣∣∣∣

=
∣∣∣∣∣
n∑
i=1

αi det(Pi , P2, · · · , Pn)
∣∣∣∣∣

= |α1 det(P1 , P2, · · · , Pn)|

= |α1| covol(L0) ⩽ 1
2 covol(L0)

In particular, we note that covol(L1) > 0 which means that the points P ′
i are linearly

independent.

16The root lattice D4 can be generated by a1 = (1, 1, 0, 0), a2 = (1,−1, 0, 0), a3 = (0, 0, 1,−1) and
a4 = (0, 1,−1, 0). The sublattice L generated by a1, a2, a3 and (0, 0, 1, 1) has index 2 in D4 and is
generated by minimal vectors of D4.
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Remark 3.3.8. For instance if r = 1, then we get two new lattices

L̃1 = ZQ⊕ ZP2 ⊕ · · · ⊕ ZPn, L1 = ZQ′ ⊕ ZP2 ⊕ · · · ⊕ ZPn.

It is not necessarily true that they contain L0 = ZP1⊕ZP2 · · ·⊕ZPn, unless α1 = ±1 ∈ Z×.
Also, L̃1 does not contain or is not contained in L1 in general, because Q =

∑n
i=1 αiPi is a

sum that involves P1 (since α1 ̸= 0 by our assumption that r = 1). Anyway if all Pi and Q
are minimal vectors, it follows that L̃1 and L1 are generated by minimal vectors, but L1
does not necessarily have a basis of minimal vectors (at least Q′ might not be a minimal
vector). ⌟

In practice, we do not compute explicitly the points Q′ but rather work with matrices. The
issue is that it can happen that Q′ has very large norm, which is not convenient to work
with. First, the following easy fact tells us how to compute the coefficients αi of a point
Q ∈ L in terms of a given basis of a sublattice L′ ⊂ L.

Lemma 3.3.9. Let v1, ..., vn ∈ Rn be a basis and let G = (⟨vi, vj⟩)i,j be the corresponding
Gram matrix. Let w ∈ Rn. Then

w =
n∑
j=1

αjvj , α⃗ := G−1 · (⟨w, vi⟩)ni=1. ⌟

Proof. –– Since the vi form a basis of Rn, there are unique coefficients αj such that
w =

∑n
j=1 αjvj . We have ⟨w, vi⟩ =

∑
j αj⟨vj , vi⟩ =

∑
j Gijαj = (Gα⃗)i. Inverting G yields

the conclusion. ■

Now the procedure to compute a Gram matrix of L is as follows. By subsection 3.3.2.2, we
consider a basis B0 = {Pi : 1 ⩽ i ⩽ n } of a sublattice L0 ⊂ L with Gram matrix G0. We
start by initializing a matrix A to the identity matrix: A := In×n. Using lemma 3.3.9, we
can compute the coefficients of a random point Q ∈ L with respect to this R-basis B0.

If all the coefficients are integers, then Q ∈ L0 so we discard the point. Otherwise we
consider Q′ := Q mod L0 =

∑n
i=1 α

′
iPi, with coefficients α′

i between −1/2 and 1/2, and
one of these coefficients, say α′

r, is non-zero.

Then we want to replace Pr by Q′ as explained before, to get a basis B1 of a new sublattice
L1, which has a certain matrix A1 with respect to the basis B0: it is the identity matrix
except that on the r-th row we write the R-coefficients α′

i of Q′ with respect to B0. We set
A← A1 ·A = A1 · In×n = A1. The Gram matrix gets updated as G1 = A1G0

t
A1.

Continuing like this, we pick a random point Q2 ∈ L and we get a matrix A2, a sublattice
L2 ⊂ L and update A← A2 ·A. Eventually, we get a sublattice Lj0 ⊂ L such that random
points Q ∈ L lie in Lj0 with very high probability, which means that we should have
Lj0 = L. The final matrix A ∈ GLn(R) gives the new basis with respect to B0 and the final
Gram matrix is G = AG0

t
A (which is provably a Gram matrix for Lj0). In fact, if we know

the covolume of L, we can check whether covol(Lj0) = det(G)1/2 = covol(L), and in this
case we provably have Lj0 = L.

Finally, we can apply the LLL algorithm (on the level of the Gram matrix directly) to get a
"nicer" basis (with smaller coefficients).
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3.3.2.4 Results

We used the method described above to compute a Gram matrix attached to sublattices of
the 54-dimensional narrow Mordell–Weil lattice L′

3,1 introduced in theorem 3.2.7. Using
SAGE [The21], we obtain the following result; the code is available at https://gitlab.
com/gauthierleterrier/maths.

Computational proposition 3.3.10. The narrow Mordell–Weil lattice L′
3,1 of E : y2 = x3 +

x+ t28 over K := F36(t) is well-rounded, i.e., there is a set of minimal vectors that spans
the euclidean space L⊗Z R.

Moreover, if17 |X(E/K)| = 1 then L′
3,1 is generated over Z by its minimal vectors and a

Gram matrix G is given by:



10 5 4 1 0 1 −3 4 −2−4−3 3 −3 5 3 4 −1 3 −4 3 1 1 −3−2 0 −3−5 3 4 −5 4 −3 5 −1−2 3 −3−2−5 4 −3 4 4 −1−2 2 2 −1 1 −3−3−1 1 −4
5 10 −1−1 1 −2 2 5 −3−3 1 0 −4 2 5 5 3 −1 0 −2−3 3 −3 1 2 −3 1 5 0 −5−1 1 2 −1−4 1 −4−4−4−1−2−1 2 1 −3 2 −1−4−3−1−5−4−1 1
4 −1 10 1 −2 5 −3−2 3 −2−5−1−1 1 3 0 1 3 −1 5 3 −3−1−2−4 3 −3 3 2 −1 6 1 3 −3−1 4 −3 0 −1 2 −4 6 2 −1−2 2 3 2 1 −2 1 4 −2−6
1 −1 1 10 −5 1 −1 2 −2−3−2−1−1 3 −4−1−4 4 2 −1 4 2 −4−3−4 2 −4 0 2 4 −1 2 3 4 −4 1 4 3 3 0 −4−1−3 0 1 −2−4 4 0 3 3 1 −4−4
0 1 −2−5 10 −1 1 −1 0 0 −1 3 3 −3 3 −2 1 −3−1−3−3 1 3 2 2 −1 1 1 −4−1 1 −2−3−4 2 0 0 −1−2 3 0 1 0 −2−3 1 −1−1−3−5−4−4 5 3
1 −2 5 1 −1 10 2 −1 5 1 −1−4 0 2 −3 1 −1 3 2 2 5 −5−3 1 0 3 1 −1 4 1 3 1 1 1 2 5 −4 2 −1 3 −1 4 −1 1 −2 2 3 3 2 −2 1 6 2 −6
−3 2 −3−1 1 2 10 0 0 −1 3 −2 2 0 −1 1 1 −3 4 −4 1 −3 1 1 4 −1 7 1 2 −1−3 1 −4 2 2 2 −3 1 −1−4−1−1−3−1−3−2−3−2−2 0 1 −1 2 3
4 5 −2 2 −1−1 0 10 −5−1 1 0 −3 3 0 3 −1 2 −3−1−1 2 −3−1 2 −2 0 1 2 −2−1 1 1 4 −4−1 2 −4−4 1 −3−2 0 2 0 3 0 0 2 −1 0 −4 0 2
−2−3 3 −2 0 5 0 −5 10 4 1 −3−1−2−3 0 −1 2 0 1 2 −3 0 2 −3 3 0 −2 0 1 0 0 2 −3 2 3 −2 3 −1 3 0 3 −2 2 1 −1 4 1 −1−2 0 3 −1−5
−4−3−2−3 0 1 −1−1 4 10 5 −1−1−1−5−2−1 1 −3−1−3−3 1 0 −2−1 3 −3−2 1 −3 0 0 2 3 0 2 −1−2 2 2 0 −3 1 3 3 3 −1 1 0 0 3 0 −1
−3 1 −5−2−1−1 3 1 1 5 10 1 1 −1−2−1−2−2 0 −1−4−2 2 3 0 −2 6 −4−2−2−3 2 1 4 0 −3 1 −2−2 0 1 −2−2 0 2 1 1 −1 0 2 1 0 −1 2
3 0 −1−1 3 −4−2 0 −3−1 1 10 4 2 3 −3−3−3−5 2 −3−1 3 −3−2−5−3 1 0 −3 1 −3 1 −1 1 −3 2 −3−3 4 −1 3 2 −5 1 −1 1 0 1 0 −2−2 0 0
−3−4−1−1 3 0 2 −3−1−1 1 4 10 0 −1−3−1−3 0 0 −1−3 3 −1 0 −1 3 −1 0 1 0 −1−3−1 2 −1 1 1 0 −1 0 0 −1−3−2−1 0 3 0 −1 3 0 1 2
5 2 1 3 −3 2 0 3 −2−1−1 2 0 10 −3 3 −3 3 −3 2 1 −3−5−3 0 −5−1 3 6 −3−2−1 2 2 0 4 −2−2−2 1 0 1 2 −1−1 0 2 1 2 1 −1 1 1 −5
3 5 3 −4 3 −3−1 0 −3−5−2 3 −1−3 14 −1 6 −6−1 3 −2 2 4 3 2 0 0 4 −4−4 5 0 0 −4−2−2−2−3 0 1 −1 3 4 −1−2 1 1 −1−1−1−5−3−2 3
4 5 0 −1−2 1 1 3 0 −2−1−3−3 3 −1 10 1 1 1 1 1 1 −5 0 2 −1−1 1 4 −3 0 0 0 −2 0 3 −5−1−2−1 0 −1 3 2 −2 2 1 −2 1 −1−2−2 2 0
−1 3 1 −4 1 −1 1 −1−1−1−2−3−1−3 6 1 10 −4 0 −1−2 2 2 1 4 0 2 4 −2 0 0 0 −3−3 1 0 −3−1 1 −3 1 0 1 1 −2 1 1 −2−1−2−3 0 −1 3
3 −1 3 4 −3 3 −3 2 2 1 −2−3−3 3 −6 1 −4 10 0 −1 2 0 −4−3−2 2 −2 0 4 0 1 0 4 1 −3 4 1 2 −2 0 −1−1−1 3 0 1 1 0 0 −1 3 3 −1−5
−4 0 −1 2 −1 2 4 −3 0 −3 0 −5 0 −3−1 1 0 0 12 −2 3 1 −1 3 1 5 2 −1 0 3 1 5 −2 0 0 1 −3 3 6 −6 3 −3 0 1 −1−1−5−1−2 3 2 3 1 1
3 −2 5 −1−3 2 −4−1 1 −1−1 2 0 2 3 1 −1−1−2 10 1 −3 1 1 −2 1 −3−1 2 −1 4 0 3 0 2 0 −1−1 0 3 0 5 5 −2 1 1 4 3 5 1 0 2 1 −3
1 −3 3 4 −3 5 1 −1 2 −3−4−3−1 1 −2 1 −2 2 3 1 10 0 −2−1 0 2 −4−2 4 2 2 −2 1 2 1 3 −2 4 3 0 0 2 −1 2 1 −2−1 3 2 1 3 4 1 −3
1 3 −3 2 1 −5−3 2 −3−3−2−1−3−3 2 1 2 0 1 −3 0 10 0 1 0 0 −4 0 −4 2 −1−1 2 0 −3−3 2 1 2 −1 1 −4 0 3 1 −1−3 0 −3 0 −1−3−2 3
−3−3−1−4 3 −3 1 −3 0 1 2 3 3 −5 4 −5 2 −4−1 1 −2 0 10 1 0 0 2 −2−4 0 1 −2−1−1 3 −3 3 0 1 −1 1 2 −1−2 1 −1 0 0 0 −2 2 −1 0 4
−2 1 −2−3 2 1 1 −1 2 0 3 −3−1−3 3 0 1 −3 3 1 −1 1 1 10 2 3 3 −3−4 1 1 2 0 0 −1−1−2 1 2 1 4 −2 1 2 −1 0 0 1 −2 0 −1−1 1 2
0 2 −4−4 2 0 4 2 −3−2 0 −2 0 0 2 2 4 −2 1 −2 0 0 0 2 12 −2 4 0 2 −2−1−2−5 1 3 0 −3 1 0 −3 4 −2 2 2 −2−1 1 −4 1 −1−3−1 6 5
−3−3 3 2 −1 3 −1−2 3 −1−2−5−1−5 0 −1 0 2 5 1 2 0 0 3 −2 10 0 −2−2 4 3 3 0 −1−2 0 1 4 4 −1−2−1−1 1 0 0 −2 2 0 0 3 1 −1−1
−5 1 −3−4 1 1 7 0 0 3 6 −3 3 −1 0 −1 2 −2 2 −3−4−4 2 3 4 0 14 0 −2−2−2 3 −4 2 0 0 −1−1−2−4 1 −3−3 1 −3 1 1 −2−2 0 1 −1 1 4
3 5 3 0 1 −1 1 1 −2−3−4 1 −1 3 4 1 4 0 −1−1−2 0 −2−3 0 −2 0 10 2 −2−1 1 −1−3−2 3 −3−2−3−1−2 1 1 −1−4 0 −1−2−3−1−4−1−1−2
4 0 2 2 −4 4 2 2 0 −2−2 0 0 6 −4 4 −2 4 0 2 4 −4−4−4 2 −2−2 2 12 −2 1 −2 1 2 1 4 −3 2 −4 0 0 1 2 0 0 0 1 −1 4 0 2 3 2 −3
−5−5−1 4 −1 1 −1−2 1 1 −2−3 1 −3−4−3 0 0 3 −1 2 2 0 1 −2 4 −2−2−2 10 −1 1 −1 1 1 −1 4 5 4 0 1 −1−4 1 1 −2−2 4 0 1 2 2 −2 0
4 −1 6 −1 1 3 −3−1 0 −3−3 1 0 −2 5 0 0 1 1 4 2 −1 1 1 −1 3 −2−1 1 −1 12 1 2 −2−1 1 −2 0 −1 4 0 4 3 −1−1 4 2 0 3 −3 1 3 0 0
−3 1 1 2 −2 1 1 1 0 0 2 −3−1−1 0 0 0 0 5 0 −2−1−2 2 −2 3 3 1 −2 1 1 12 −3 1 −2 0 1 −2 3 −1−1−2−1 1 −1 2 0 0 0 2 1 0 −2−1
5 2 3 3 −3 1 −4 1 2 0 1 1 −3 2 0 0 −3 4 −2 3 1 2 −1 0 −5 0 −4−1 1 −1 2 −3 12 1 −4 0 0 1 −3 2 −2 3 1 1 2 1 1 1 0 −1 1 3 −4−4
−1−1−3 4 −4 1 2 4 −3 2 4 −1−1 2 −4−2−3 1 0 0 2 0 −1 0 1 −1 2 −3 2 1 −2 1 1 12 0 0 3 1 0 −1 0 −2−2 0 3 0 −2 1 2 4 4 2 0 1
−2−4−1−4 2 2 2 −4 2 3 0 1 2 0 −2 0 1 −3 0 2 1 −3 3 −1 3 −2 0 −2 1 1 −1−2−4 0 12 1 −2 1 2 0 2 3 0 −2 0 −2 3 0 3 −1−1 2 6 −1
3 1 4 1 0 5 2 −1 3 0 −3−3−1 4 −2 3 0 4 1 0 3 −3−3−1 0 0 0 3 4 −1 1 0 0 0 1 12 −4 2 −2 0 −2 3 −1 0 −4 1 0 0 −2−2−1 2 1 −5
−3−4−3 4 0 −4−3 2 −2 2 1 2 1 −2−2−5−3 1 −3−1−2 2 3 −2−3 1 −1−3−3 4 −2 1 0 3 −2−4 14 2 2 3 −3 0 −4−1 3 −1−1 4 1 1 1 −4−3 2
−2−4 0 3 −1 2 1 −4 3 −1−2−3 1 −2−3−1−1 2 3 −1 4 1 0 1 1 4 −1−2 2 5 0 −2 1 1 1 2 2 12 1 −1 0 0 −2 1 0 −4−1 1 −1−1 2 2 0 −1
−5−4−1 3 −2−1−1−4−1−2−2−3 0 −2 0 −2 1 −2 6 0 3 2 1 2 0 4 −2−3−4 4 −1 3 −3 0 2 −2 2 1 14 −4 3 −2 1 0 3 −3−3 3 0 5 2 1 0 1
4 −1 2 0 3 3 −4 1 3 2 0 4 −1 1 1 −1−3 0 −6 3 0 −1−1 1 −3−1−4−1 0 0 4 −1 2 −1 0 0 3 −1−4 14 −2 5 0 −1 1 3 4 4 2 −3−5 0 0 −4
−3−2−4−4 0 −1−1−3 0 2 1 −1 0 0 −1 0 1 −1 3 0 0 1 1 4 4 −2 1 −2 0 1 0 −1−2 0 2 −2−3 0 3 −2 14 −3 3 3 3 0 1 −3 1 2 −1 5 2 3
4 −1 6 −1 1 4 −1−2 3 0 −2 3 0 1 3 −1 0 −1−3 5 2 −4 2 −2−2−1−3 1 1 −1 4 −2 3 −2 3 3 0 0 −2 5 −3 12 2 −4 0 1 4 1 2 −3−3 3 0 −5
4 2 2 −3 0 −1−3 0 −2−3−2 2 −1 2 4 3 1 −1 0 5 −1 0 −1 1 2 −1−3 1 2 −4 3 −1 1 −2 0 −1−4−2 1 0 3 2 10 −2 2 1 2 −2 2 1 −2 1 3 1
−1 1 −1 0 −2 1 −1 2 2 1 0 −5−3−1−1 2 1 3 1 −2 2 3 −2 2 2 1 1 −1 0 1 −1 1 1 0 −2 0 −1 1 0 −1 3 −4−2 10 0 1 2 0 −1 0 1 0 −2 0
−2−3−2 1 −3−2−3 0 1 3 2 1 −2−1−2−2−2 0 −1 1 1 1 1 −1−2 0 −3−4 0 1 −1−1 2 3 0 −4 3 0 3 1 3 0 2 0 10 −1 1 0 3 3 2 2 −2 1
2 2 2 −2 1 2 −2 3 −1 3 1 −1−1 0 1 2 1 1 −1 1 −2−1−1 0 −1 0 1 0 0 −2 4 2 1 0 −2 1 −1−4−3 3 0 1 1 1 −1 10 1 −2 2 −3−1 2 0 1
2 −1 3 −4−1 3 −3 0 4 3 1 1 0 2 1 1 1 1 −5 4 −1−3 0 0 1 −2 1 −1 1 −2 2 0 1 −2 3 0 −1−1−3 4 1 4 2 2 1 1 12 1 3 −2−2 2 −1−4
−1−4 2 4 −1 3 −2 0 1 −1−1 0 3 1 −1−2−2 0 −1 3 3 0 0 1 −4 2 −2−2−1 4 0 0 1 1 0 0 4 1 3 4 −3 1 −2 0 0 −2 1 12 1 1 2 0 −1−3
1 −3 1 0 −3 2 −2 2 −1 1 0 1 0 2 −1 1 −1 0 −2 5 2 −3 0 −2 1 0 −2−3 4 0 3 0 0 2 3 −2 1 −1 0 2 1 2 2 −1 3 2 3 1 10 0 2 2 2 0
−3−1−2 3 −5−2 0 −1−2 0 2 0 −1 1 −1−1−2−1 3 1 1 0 −2 0 −1 0 0 −1 0 1 −3 2 −1 4 −1−2 1 −1 5 −3 2 −3 1 0 3 −3−2 1 0 10 1 1 −2 0
−3−5 1 3 −4 1 1 0 0 0 1 −2 3 −1−5−2−3 3 2 0 3 −1 2 −1−3 3 1 −4 2 2 1 1 1 4 −1−1 1 2 2 −5−1−3−2 1 2 −1−2 2 2 1 12 2 −2 1
−1−4 4 1 −4 6 −1−4 3 3 0 −2 0 1 −3−2 0 3 3 2 4 −3−1−1−1 1 −1−1 3 2 3 0 3 2 2 2 −4 2 1 0 5 3 1 0 2 2 2 0 2 1 2 14 −1−4
1 −1−2−4 5 2 2 0 −1 0 −1 0 1 1 −2 2 −1−1 1 1 1 −2 0 1 6 −1 1 −1 2 −2 0 −2−4 0 6 1 −3 0 0 0 2 0 3 −2−2 0 −1−1 2 −2−2−1 14 1
−4 1 −6−4 3 −6 3 2 −5−1 2 0 2 −5 3 0 3 −5 1 −3−3 3 4 2 5 −1 4 −2−3 0 0 −1−4 1 −1−5 2 −1 1 −4 3 −5 1 0 1 1 −4−3 0 0 1 −4 1 14


⌟

Proof. –– 1. We first have to produce 54 R-linearly independent minimal vectors in L′
3,1,

that is, rational points (x, y) ∈ E(K) with x, y ∈ F36 [t] and deg(x) = 10.

17We will actually prove in theorem 3.4.1 that the Tate–Shafarevich group of E/K is indeed trivial. Here
we prefer to state this as an assumption to emphasize how it is used in the proof.
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3.3 – Kissing numbers and Gram matrices

Given two elements y15 ∈ k×, y12 ∈ k, we may use identities (3.3.6), equation (3.3.10)
to solve a system of polynomial equations in y6, y9 ∈ k and for each solution y6, y9 we
can deduce coefficients y0, ...., y14 ∈ k. Moreover, we check that y2

0 = s3
0 + s0 for some

s0 ∈ F36 . Then we set y(t) :=
∑15
j=0 yjt

j ∈ k[t] and there are exactly 3 polynomials x(t)
such that (x, y) ∈ E(K); we choose one of them.

In this way, we can produce ("random") points in E(K) with Néron–Tate height 10.
Following subsection 3.3.2.2, we compute successive Gram matrices, until we get a
54-dimensional invertible matrix. Notice that the Néron–Tate height coincides with the
naive height by corollary 3.2.18, so one can easily compute the Gram matrices.
More specifically, the following 54 minimal vectors are linearly independent over R, given
by their x-coordinates as follows18. We write F36 = F3[X]/(X6 − X4 + X2 − X − 1)
so that the class g of X is a generator of F×

36 . Then for each i ∈ {0, ..., 53}, we give a
list of 11 elements ej which are either the discrete logarithm of the j-th coefficient of
x(t) ∈ F36 [t] in base g (i.e., xj = gej ), or ej is the empty string ”, in which case we set
xj := 0. For instance, when i = 0, we get the point with x-coordinate x(t) = t2 + t8 + t10.

0 [”, ”, 0, ”, ”, ”, ”, ”, 0, ”, 0]
1 [182, ”, 0, ”, ”, ”, ”, ”, 0, ”, 0]
2 [”, ”, 390, ”, ”, ”, ”, ”, 468, ”, 494]
3 [182, ”, 390, ”, ”, ”, ”, ”, 468, ”, 494]
4 [32, 420, 532, 56, 0, 56, 448, 448, 588, ”, 252]
5 [140, 420, 532, 56, 0, 56, 448, 448, 588, ”, 252]
6 [”, ”, 52, ”, ”, ”, ”, ”, 208, ”, 260]
7 [182, ”, 52, ”, ”, ”, ”, ”, 208, ”, 260]
8 [”, ”, 442, ”, ”, ”, ”, ”, 676, ”, 26]
9 [182, ”, 442, ”, ”, ”, ”, ”, 676, ”, 26]

10 [420, 532, 140, 168, 0, 168, 616, 616, 308, ”, 28]
11 [96, 532, 140, 168, 0, 168, 616, 616, 308, ”, 28]
12 [”, ”, 104, ”, ”, ”, ”, ”, 416, ”, 520]
13 [182, ”, 104, ”, ”, ”, ”, ”, 416, ”, 520]
14 [”, ”, 494, ”, ”, ”, ”, ”, 156, ”, 286]
15 [182, ”, 494, ”, ”, ”, ”, ”, 156, ”, 286]
16 [”, ”, 364, 91, 364, 182, 0, 0, 546, 637, 0]
17 [182, ”, 364, 91, 364, 182, 0, 0, 546, 637, 0]
18 [”, ”, 364, 364, 455, 546, 91, 91, 182, 182, 0]
19 [182, ”, 364, 364, 455, 546, 91, 91, 182, 182, 0]
20 [”, ”, 364, 273, 364, 546, 0, 0, 182, 455, 0]
21 [182, ”, 364, 273, 364, 546, 0, 0, 182, 455, 0]
22 [0, 273, 273, 182, 455, 455, 455, 455, 364, 273, 0]
23 [637, 273, 273, 182, 455, 455, 455, 455, 364, 273, 0]
24 [”, ”, 364, 364, 637, 182, 273, 273, 546, 546, 0]
25 [182, ”, 364, 364, 637, 182, 273, 273, 546, 546, 0]
26 [0, 91, 91, 546, 637, 637, 637, 637, 364, 91, 0]

27 [637, 91, 91, 546, 637, 637, 637, 637, 364, 91, 0]
28 [285, 665, 44, 486, 438, 648, 530, 530, 120, 384, 486]
29 [180, 665, 44, 486, 438, 648, 530, 530, 120, 384, 486]
30 [650, 338, 189, 719, 4, 564, 90, 90, 581, 387, 486]
31 [332, 338, 189, 719, 4, 564, 90, 90, 581, 387, 486]
32 [497, 63, 243, 138, 547, 356, 202, 202, 125, 649, 486]
33 [369, 63, 243, 138, 547, 356, 202, 202, 125, 649, 486]
34 [210, 282, 410, 318, 191, 672, 127, 127, 176, 164, 486]
35 [434, 282, 410, 318, 191, 672, 127, 127, 176, 164, 486]
36 [520, 253, 377, 13, 122, 225, 245, 245, 255, 663, 486]
37 [85, 253, 377, 13, 122, 225, 245, 245, 255, 663, 486]
38 [695, 229, 235, 232, 628, 543, 16, 16, 120, 257, 486]
39 [401, 229, 235, 232, 628, 543, 16, 16, 120, 257, 486]
40 [218, 139, 486, 675, 557, 462, 56, 56, 581, 282, 486]
41 [338, 139, 486, 675, 557, 462, 56, 56, 581, 282, 486]
42 [691, 272, 658, 727, 15, 154, 620, 620, 125, 317, 486]
43 [457, 272, 658, 727, 15, 154, 620, 620, 125, 317, 486]
44 [3, 462, 618, 315, 523, 341, 530, 530, 120, 319, 486]
45 [202, 462, 618, 315, 523, 341, 530, 530, 120, 319, 486]
46 [605, 390, 122, 520, 197, 71, 363, 363, 176, 77, 486]
47 [243, 390, 122, 520, 197, 71, 363, 363, 176, 77, 486]
48 [237, 368, 218, 659, 343, 398, 363, 363, 176, 328, 486]
49 [418, 368, 218, 659, 343, 398, 363, 363, 176, 328, 486]
50 [198, 530, 306, 360, 70, 181, 473, 473, 255, 330, 486]
51 [549, 530, 306, 360, 70, 181, 473, 473, 255, 330, 486]
52 [109, 265, 297, 27, 478, 437, 127, 127, 176, 577, 486]
53 [31, 265, 297, 27, 478, 437, 127, 127, 176, 577, 486]

2. Using the method explained in subsection 3.3.2.3, one finds the Gram matrix G displayed
above (within less than 15 seconds using SAGE [The21]), corresponding to a certain
sublattice Lj0 ⊂ L′

3,1. We have det(G) = 325. On the other hand, equation (3.2.2) from
remark 3.2.10 ensures that

Reg(E/K) = 323 · |X(E/K)|−1.

Moreover, [E(K) : E(K)0] = 3 by proposition 3.2.14 and so disc(E(K)0) = 32 Reg(E/K)
= 325|X(E/K)|−1. Thus, if the Tate–Shafarevich group of E28,1,1 over F36(t) is trivial,
then the sublattice Lj0 is actually equal to L′

3,1 because they both have the same
covolume. Then G is a Gram matrix for L′

3,1 and, as explained in remark 3.3.8, the
lattice Lj0 = L′

3,1 is generated by minimal vectors. ■

Remark 3.3.11. 1. There is no obvious way to give very explicitly (in terms of rational
points) the points in the basis giving the above Gram matrix G. Indeed, the change-

18See the file Computation Gram matrix of L’_3, 1 at https://gitlab.com/gauthierleterrier/maths
for a computational proof that there are indeed linearly independent.
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3 – The family y2 = x3 + bx + b′tm

of-basis matrix A has coefficients 1/1453 or 1/7 (the denominators are factors of the
determinant of the initial Gram matrix), and it seems difficult for instance to explicitly
divide a point in 7E(K)0 by 7.

2. Another interpretation of the above result is that the Tate–Shafarevich group of E28,1,1
over F36(t) is trivial "with high probability", since random points Q ∈ L′

3,1 lie with very
high probability in the sublattice Lj0 described at the end of the proof of computational
proposition 3.3.10.

3. We can apply the same ideas to the 64-dimensional Mordell–Weil lattice E(K)0 attached
to y2 + y = x3 + t33 over F210(t) given in [Elk94], since lemma 3.3.2 applies here as well.
After a few minutes of computation on SAGE, we end up with a Gram matrix G of
determinant 252. Note that [Elk94, Proposition 3] asserts that covol(E(K)0) = 252/2 =
226 (in this case the Tate–Shafarevich group is proved to be trivial), so in that case G is
provably a Gram matrix of E(K)0.

4. Observe that a lattice has not a unique Gram matrix, but two Gram matrices G,G′ are
GLn(Z)-congruent, i.e., G′ = t

UGU for some U ∈ GLn(Z). ⌟

3.4 · Computation of some Tate–Shafarevich groups
In this final section, we discuss a method to study the Tate–Shafarevich group of the
elliptic curves E := E3n+1,b,1 : y2 = x3 + bx + t3

n+1 over K := F32n(t) that appeared in
theorem 3.2.7, where n ⩾ 1 is any integer and b ∈ F×

3n satisfies b(3n−1)/2 = (−1)n+1. This
is done via "p-descent in characteristic p" (where p = 3), in analogy with the case p = 2
discussed in [Elk94]. There are other methods to study X, involving crystalline cohomology
(see [Shi91, Dum95]); we will not explain this here.

More specifically, in this section we will prove the following statement.

Theorem 3.4.1 (theorem E). If n ∈ {1, 2, 3} and b ∈ F×
3n is such that b(3n−1)/2 = (−1)n+1

then the Tate–Shafarevich group of y2 = x3 + bx+ t3
n+1 over F32n(t) is trivial. ⌟

From remark 3.2.10, we know that

|X(E/K)| · Reg(E/K) = 3n(3n−1−1)−1.

and Reg(E/K) ∈ 1
32 Z. Thus |X(E/K)| divides 3n(3n−1−1)+1. In particular, X(E/K) is

a 3-group, i.e., it is equal to its 3-primary subgroup (equivalently, its 3-Sylow subgroup)
denoted by X(E/K)[3∞]. If X(E/K) is non-trivial, then it must have an element of order
3; in other words we have

X(E/K) = {1} ⇐⇒ X(E/K)[3] = {1}. (3.4.1)

When n ∈ {1, 2, 3, 4, 5} we conclude that |X(E/K)| divides 3, 35, 325, 3105 and 3401 respec-
tively. Furthermore it is known that the order of the Tate–Shafarevich group of an elliptic
curve must be a square in Z (see [Sil08a, corollary C.17.2.1]), so when n = 1, we must have
|X(E/K)| = 1.
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3.4 – Computation of some Tate–Shafarevich groups

Remark 3.4.2. In fact, when n = 1, the lower bound on the density of the 6-dimensional
lattice E4,1,1(F32(t))0 agrees with the density of the root lattice E6. By optimality of the
density of E6 among lattice sphere packings in dimension 6 (see proposition 1.2.11), we know
that the lower bound from theorem 3.2.7 must be sharp when n = 1. In particular we get
another (somehow indirect) proof that X(E4,1,1/F32(t)) is trivial, by proposition 2.1.1. ⌟

One approach to obtain upper bounds on |X(E/K)|, inspired from [Elk94], would be to
use a 3-descent argument.

Proposition 3.4.3. For an integer m ⩾ 1 coprime to 3 and n ⩾ 1, let k := F32n , fix b ∈ F×
3n

and consider the elliptic curve Em,b,1 : y2 = f(x) := x3 + bx+ tm over k(t). Let β ∈ k be a
square root of −b−3. We may define a map

ϕ : Em,b,1 −→ Em,b,1
(x, y) 7−→ (−b−1x3 − b−1tm, β · y · f(x)) = (−b−1(x3 + tm), β · y3) (3.4.2)

where f(x) := x3 + bx+ tm. Then:

1. The map ϕ is a well-defined K-isogeny of degree 3.

2. We have19 ĥ(ϕ(P )) = 3ĥ(P ) for all P ∈ Em,b,1(k(t)) and ϕ2 = ϕ ◦ ϕ = [−3] is the
multiplication by −3. In particular, if we consider the lattice L := Em,b,1(k(t)), then the
rank rk(L) is even and |L/ϕ(L)| = 3rk(L)/2. ⌟

Proof. –– 1. In general, if we consider an elliptic curve of the form y2 = x3+a4x+a6 =: f(x)
over a field K of characteristic 3 (in particular a4 ≠ 0 otherwise the curve would be
singular), and if we fix a square root β ∈ K of −a−3

4 then the K-morphism

ϕ : E −→ E

(x, y) 7−→ (−a−1
4 x3 − a−1

4 a6, β · y · f(x)) = (−a−1
4 x3 − a−1

4 a6, β · y3) (3.4.3)

is well-defined: we simply let x′ := −a−1
4 x3 − a−1

4 a6 and compute

(β · y · f(x))2 = −a−3
4 f(x)3

= −a−3
4 (x9 + a3

4x
3 + a3

6) = −a−3
4 x9 − x3 − (a−1

4 a6)3

f(x′) = x′3 + a4x
′ + a6

= (−a−1
4 x3 − a−1

4 a6)3 + a4(−a−1
4 x3 − a−1

4 a6) + a6

= −a−3
4 x9 − a−3

4 a3
6 − x3.

In our case, the well-defined morphism ϕ is given by:

ϕ([X : Y : Z]) = [−b−1X3 − b−1tmZ3 : βY 3 : Z3]
ϕ([X : Y : Z]) = [0 : 1 : 0] ⇐⇒ Z3 = X3 = 0 (3.4.4)

In particular, ϕ is an isogeny over k(t) of degree 3, since it is a morphism that maps
O := [0 : 1 : 0] to itself (the degree of ϕ is given by the degree in x of its first coordinate,
namely −b−1x3 − b−1tm, by [Gal12, lemma 9.6.13]).

19In other words, ϕ acts as a homothety of ratio (scaling factor)
√

3: if we define the norm ∥P∥ := ĥ(P )1/2,
then ∥ϕ(P )∥ =

√
3∥P∥.
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2. We observe that ϕ2 = ϕ ◦ ϕ is given by

ϕ(ϕ(x, y)) = (−b−1ϕ3
1 − b−1tm, β · ϕ3

2)
=
(
− b−1(−b−1(x3 + tm))3 − b−1tm, β · (βy3)3)

=
(
b−4(x9 + t3m)− b−1tm, β4y9)

Thanks to lemma 3.2.16 and in view of the equality β2 = −b−3, we conclude that
ϕ2 = −[3] is the multiplication by −3.

From this, it follows that we have a chain of sublattices 3L = ϕ(ϕ(L)) ⊂ ϕ(L) ⊂ L, where
L := Em,b,1(k(t)). Moreover, the map L/ϕ(L)→ ϕ(L)/ϕ(ϕ(L)) given by [x] 7→ [ϕ(x)] is
an isomorphism of abelian groups. Then [L : 3L] = 3rk(L) = [L : ϕ(L)]2 is a square, so
that the rank of L is even and |L/ϕ(L)| = 3rk(L)/2.

We finally check that ĥ(ϕ(P )) = 3ĥ(P ) for all P ∈ E(K). From remark 3.2.19, we have
to check that h(3ϕ(P )) = h(ϕ(3P )) = 3h(3P ). Now, Q := 3P belongs to E(K)0 so
by lemma 3.2.17 and the fact that ĥ is integer-valued on E(K)0 (see theorem 1.3.24),
we know that x(Q), y(Q) are both polynomials. Checking that h(ϕ(Q)) = 3h(Q) =
3 deg(x(Q)) is now easy: since Q ∈ E(K)0, we have deg(x(Q)) = h(Q) = ĥ(Q) > m

3 by
corollary 3.2.18, theorem 1.3.24, and proposition 3.1.5 so the first coordinate of ϕ(Q),
given by −b−1(x(Q)3 + tm), has indeed degree deg(x(Q)3) = 3 deg(x(Q)). ■

Now let GK = Gal(Ksep/K) be the absolute Galois group of K. For simplicity, let us
denote X := X(E/K). Note that the K-isogeny ϕ induces a map in Galois cohomology

H1(ϕ) : H1(GK , E(Ksep)) −→ H1(GK , E(Ksep)). (3.4.5)

If we define X[ϕ] := X ∩ ker(H1(ϕ)), then H1(ϕ) (co-)restricts to a map X[ϕ]→X[ϕ].
Moreover, we have X[ϕ] ⊂ X[3]: if s ∈ X satisfies H1(ϕ)(s) = 0 then −3s = 0 since
H1ϕ ◦ H1ϕ = [−3] on H1(GK , E(Ksep)). In particular, if X[3] is trivial then so is X[ϕ].

Conversely, if X[ϕ] is trivial and s ∈X[3] then −3s = H1ϕ(s′) = 0 where s′ := H1ϕ(s) ∈
X[ϕ] = {0}. Because s′ = 0 we deduce that s ∈ X[ϕ] = {0}. In other words, X[3] is
trivial. In conclusion, we get, in view of (3.4.1):

X(E/K) = {0} ⇐⇒ X(E/K)[3] = {0} ⇐⇒ X(E/K)[ϕ] = {0}. (3.4.6)

3.4.1 The need of f lat cohomology

One issue however is that ϕ is not separable. In fact, E is supersingular, since for p := 3,
the coefficient of xp−1 = x2 in f(x)

p−1
2 = f(x) = x3 + bx + tm is 0 (we apply [Sil08a,

theorem V.4.1]). Therefore E[3](K) = {O}. Since ϕ is a 3-isogeny, we have G := E[ϕ] :=
ker(ϕ) ⩽ E[3] and then the kernel of ϕ has no K-rational points (which implies that ϕ is
not separable by [Sil08a, theorem III.4.10]).

Consequently, we can not apply the descent procedure as explained in [Sil08a, chapter X,
§4]. If ϕ was separable, then we would have an exact sequence

0 G(Ksep) E(Ksep) E(Ksep) 0.ϕ
(3.4.7)
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which would yield a short exact sequence involving the Selmer group as central term:

0→ E(K)/ϕ(E(K))→ Selϕ(E/K)→X(E/K)[ϕ]→ 0.

In our case, inseparability of ϕ causes the triviality of the group G(Ksep), and the non-
surjectivity of ϕ on Ksep-rational points of E (even though it is surjective on K-points).
Therefore, we do not have an exact sequence as in (3.4.7).

However, instead of using Galois-invariants and Galois cohomology, we can save the picture
by working with flat cohomology. Some relevant references are [Ulm91, Vol90, Kra77, Bro97]
and especially [Möh14, lemma 6.3.3]. More specifically, we consider the kernel G := ker(ϕ)
of ϕ as a group scheme: while it has no K-rational point, G is not trivial as a group scheme.

Now we let T := Spec(K) and consider G and E as group schemes over T . In fact, they are
sheaves of abelian groups on T with respect to the flat topology: for instance, G is obviously
a presheaf (U → T ) 7→ G(U), and being representable by a scheme, it is actually a sheaf,
by [Mil80, Corollary II.1.7, p. 52]. We point out that since K is a field, any morphism from
a non-empty scheme X to Spec(K) is faithfully flat ([GW20], p. 430).

It makes sense to speak of exact sequences of sheaves of abelian groups over T (in the flat
topology), and it turns out that given any isogeny ϕ : E → E′ between elliptic curves over
K we have an exact sequence of group schemes

0 G = ker(ϕ) E E′ 0.ι ϕ
(3.4.8)

Indeed, by [EvdGM, proposition 5.2], any isogeny is necessarily flat, in which case [Mil80,
exercise II.2.19, p. 67] ensures that ϕ induces a surjective morphism of flat sheaves20 on T .

It induces a long exact sequence in flat cohomology. Note that H0
flat(T,A) ∼= Γ(T,A) =

A(T ) = A(K) for any group scheme A over K, so we find:

0 G(K) = {0} E(K) E′(K)

H1
flat(T,G) H1

flat(T,E) H1
flat(T,E′) · · ·

ι ϕ

δ

H1(ι) H1(ϕ)

(3.4.9)

By a theorem of Grothendieck, if A is a smooth group scheme over T = Spec(K) (for
instance A = E, but not A = G), then H1

flat(T,A) ∼= H1
ét(T,A) ∼= H1(GK , A(Ksep)) (see

[Gro68, corollaire 11.9, p. 183, and p. 125] for the first isomorphism, while the second
isomorphism with Galois cohomology is given in [Mil80, example III.1.7, page 86]; see also
[Mil80, theorem III.3.9]). Therefore, (3.4.9) induces a short exact sequence

0 E′(K)/ϕ(E(K)) H1
flat(T,E[ϕ]) H1(GK , E(Ksep))[ϕ] 0δ H1(ι)

(3.4.10)
where H1(GK , E(Ksep))[ϕ] := ker(H1(ϕ)).

20Moreover, by [EvdGM, proposition 5.6], ϕ is separable if and only if ϕ is étale, in which case ϕ defines a
surjective morphism of étale sheaves (i.e., sheaves of abelian groups on the étale site of T := Spec(K)),
by [Mil80, exercise II.2.19, p. 67].
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For any place v ∈ VK , we can use the same reasoning with Tv = Spec(Kv) to get short
exact sequences as in (3.4.10), which yield a commutative diagram

0 E′(K)/ϕ(E(K)) H1
flat(T,E[ϕ]) H1(GK , E(Ksep))[ϕ] 0

0
∏

v∈VK

E′(Kv)/ϕ(E(Kv))
∏

v∈VK

H1
flat(Tv, E[ϕ])

∏
v∈VK

H1(GKv , E(Ksep
v ))[ϕ] 0

δ

f1 f2

H1ι

f3

(δv) (H1ιv)

(3.4.11)
Here f3 is defined using the restriction maps GKv

↪→ GK , σ 7→ σ|Ksep and Tv := Spec(Kv),
and f2 is obtained using the canonical21 group morphisms H1

flat(Spec(K), ker(ϕ)) →
H1

flat(Spec(Kv), ker(ϕ)).

This prompts to introduce the following group.

Definition 3.4.4. We define the ϕ-Selmer group of E over K as the kernel of (H1(ιv))v∈VK
◦f2,

i.e.,

Selϕ(E/K) := ker
(

H1
flat(Spec(K), ker(ϕ)) −→

∏
v∈VK

H1(GKv , E(Ksep
v ))

)
=

⋂
v∈VK

ker
(
H1

flat(Spec(K), ker(ϕ)) −→ H1(GKv , E(Ksep
v ))

)
=

⋂
v∈VK

Selϕ(E/Kv)

Selϕ(E/Kv) := { γ ∈ H1
flat(Spec(K), ker(ϕ)) : γv ∈ Im(δv) ⊂ H1

flat(Spec(Kv), ker(ϕ)) }. ⌟

All in all, we get a short exact sequence

0 E′(K)/ϕ(E(K)) Selϕ(E/K) X(E/K)[ϕ] 0δ H1ι (3.4.12)

From equation (3.4.6) and the above exact sequence applied to the 3-isogeny ϕ : E → E

from proposition 3.4.3, we deduce that

X(E/K) = {1} ⇐⇒ |E(K)/ϕ(E(K))| = |Selϕ(E/K)|. (3.4.13)

Remark 3.4.5. The inequality |E(K)/ϕ(E(K))| ⩽ |Selϕ(E/K)| always holds. ⌟

3.4.2 Computing the descent map

Now, in order to understand better the ϕ-Selmer group, we want first to determine H1
flat(T,G)

where G = E[ϕ] = ker(ϕ), T = Spec(K) and then describe explicitly the boundary map
δ : E(K)/ϕ(E(K))→ H1

flat(T,G) (appearing in (3.4.10)) as well as δv for all places v.

21Given the map π : X = Spec(Kv) → Y = Spec(K) and any group scheme F on Y , we have functorial
maps Hi

flat(Y,F) → Hi
flat(X,π∗F) extending the morphism on H0 given by F(K) → F(Kv) — see

[Mil80, remark III.1.6 c), p. 85].
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3.4.2.1 Kernel of ϕ

In this paragraph, we find the structure of ker(ϕ) as a group scheme, where ϕ : E → E is
the inseparable 3-isogeny as in equation (3.4.3).

Remark 3.4.6. We will need to work with rational points of E over commutative K-algebras
R which are not necessarily fields. However, we will assume that their Picard group is trivial:
Pic(R) = {0}. The key fact is that under this assumption, the R-rational points of the
projective plane P2 are easily described: P2(R) ∼= L(R)/R× where L(R) is the set of triplets
(x, y, z) ∈ R3 such that the elements x, y, z ∈ R generates the unit ideal ⟨x, y, z⟩ = R. See
[Sta23, Tag 01NE] (when Pic(R) = {0}, all line bundles on Spec(R) are trivial, so we get
the description of P2(R) as in [GW20, exercises 3.19, 4.6]).

In particular, given an embedding E ↪→ P2
K = ProjK[X,Y, Z], we get an inclusion E(R) ↪→

P2(R), so we can write points P ∈ E(R) using projective coordinates. ⌟

Proposition 3.4.7. Let K be a field of characteristic 3 and E be an elliptic curve over
K given by y2 = x3 + a4x + a6 where a6 ∈ K and −a4 ∈ K is a square. Consider the
K-isogeny ϕ : E → E defined in equation (3.4.3).

Then the kernel of ϕ (seen as a subgroup scheme of E) is isomorphic to the affine group
scheme α3 := Spec(K[u]/(u3)). More specifically, there is a unique isomorphism of group
schemes ι : ker(ϕ)→ α3 such that for any K-algebra R with Pic(R) = {0}, the values of ι
on R-rational points are given by

ιR : ker(ϕ)(R)
∼=−→ α3(R), [X : Y : Z] 7−→ X/Y. ⌟

Note that α3 is non-reduced and that we have αp(L) ≃ HomK-alg(K[x]/(xp), L) ≃ {0} for
any field extension L/K.

Proof of proposition 3.4.7. –– Let R be a K-algebra such that Pic(R) = 0. Then, letting
β ∈ K be a square root of −a−3

4 , we have

(ker(ϕ))(R) = { [X : Y : Z] ∈ E(R) ⊂ P2(R) : [−a−1
4 (X3 + a6Z

3) : βY 3 : Z3] = [0 : 1 : 0] }
= { [X : Y : Z] ∈ E(R) ⊂ P2(R) : ∃λ ∈ R×, (X3 + a6Z

3) = Z3 = 0, βY 3 = λ }.

In particular we have X3 = Z3 = 0 for all [X : Y : Z] ∈ (ker(ϕ))(R). For any R-rational
point [X : Y : Z] of ker(ϕ), we know that Y −1 = λ−1βY 2 ∈ R× is a unit, and that
(XY −1)3 = 0, which ensures that XY −1 ∈ α3(R), and thus ιR is well-defined.

We need to study the group law on ker(ϕ). Note that if [X : Y : Z] = [X/Y : 1 : Z/Y ] ∈
ker(ϕ)(R) then the equation of E yields Y 2Z = a4XZ

2 which implies Y 2Z2 = 0 (since
X3 = Z3 = 0) and thus Y 2Z = a4X · 0 = 0 which finally we get Z = 0 (since Y is a unit in
R).

Now, we can add two points P = [x : 1 : 0], P ′ = [x′ : 1 : 0] ∈ ker(ϕ)(R) using the formulas
X

(2)
3 , Y

(2)
3 , Z

(2)
3 from [BL95, §5, p. 237-238], which give the addition law on elliptic curves

over any commutative ring with trivial Picard group. These formulas X(2)
3 , Y

(2)
3 , Z

(2)
3 are

valid whenever the y-coordinate of P − P ′ ∈ ker(ϕ)(R) is non-zero, which is the case here
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since it is actually a unit in R as we have seen. An implementation22 on SAGE [The21] of
these formulas shows that P + P ′ = [x+ x′ : 1 : 0] so that ιR is indeed a group morphism.

Finally, ιR is bijective: its inverse is given by s ∈ α3(R) 7−→ [s : 1 : 0]. It is also
straightforward to check that the isomorphisms ιR are natural in R. The fact that these
maps ιR induce a unique group-scheme morphism ι : ker(ϕ)→ α3 (which is an isomorphism
with inverse induced by ι−1

R ) follows from the next lemma 3.4.8, recalling that all local rings
have trivial Picard group. ■

Lemma 3.4.8. Let K be a field and G,G′ be two finite group schemes over K. Assume
that for all local K-algebras R, we are given group morphisms ιR : G(R)→ G′(R) which
are functorial in R.

Then there is a unique morphism ι : G → G′ of group schemes such that its values on
R-rational points is ιR, for all local K-algebras R. ⌟

Proof. –– Let C be the category whose objects are finite disjoint union of affine schemes with
local underlying ring (and morphisms are given in the obvious way). By [Mil17, proposition
11.2], we know that G and G′ are objects of C. Now there is a unique way to extend our
functor to get morphisms ιS : G(S)→ G′(S) for any S ∈ |C| (simply by using the fact that
G(
∏n
i=1 Ri) ∼=

∏n
i=1 G(Ri)). Then the claim basically follows from Yoneda’s lemma. ■

3.4.2.2 Amitsur–Čech cohomology

In order to describe explicitly the descent map δ : E(K)/ϕ(E(K))→ H1
flat(T,G) (appearing

in (3.4.10)), we need to study the group H1
flat(T,G) (where G = ker(ϕ), T = Spec(K)). By

proposition 3.4.7, we know that there is an isomorphism H1(ι) : H1
flat(T,G) −→ H1

flat(T, α3).
The key point is that flat cohomology groups Hi

flat(S,F) over an affine scheme Spec(R) can
be described very explicitly using the Amitsur–Čech chain complex, as defined in [Sha72,
chapter VI.§3, p. 204–210] or [Sha64, §2].

Given a commutative ring R, a sheaf of abelian group F on the flat site of Spec(R) and a
faithfully flat R-algebra S, we have an exact sequence, i.e., an (augmented) cochain complex :

0 F(R) F(S) F(S⊗2) F(S⊗3) ...
∆0 ∆1 ∆2

where the tensor products are over R,

∆n :=
n+2∑
i=1

(−1)iF(ϵi,n+1) : F(S⊗(n+1))→ F(S⊗(n+2)) (3.4.14)

ϵi,n : S⊗(n+1) −→ S⊗(n+2)

s1 ⊗ · · · ⊗ sn 7−→ s1 ⊗ · · · ⊗ 1⊗ si+1 ⊗ · · · ⊗ sn

(we only defined ϵi,n on pure tensors but we can extend it to S⊗(n+1) by R-linearity). Note
that ϵi,n are R-algebra homomorphisms23, so that F(ϵi,n) makes sense.

22See the file "Kernel of phi and explicit descent map.ipynb" available at https://gitlab.com/
gauthierleterrier/maths.

23However,
∑n+2

i=1 (−1)iϵi,n+1 is typically not a ring morphism; but ∆n is well-defined since it is an
alternating sum of F(ϵi,n).
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For instance, the case F = Ga is discussed in [Mil80, proposition I.2.18]: if R → S is a
faithfully flat morphism of rings, then the sequence of R-modules

0 R S S⊗2 S⊗3 ...
∆0 ∆1 ∆2 (3.4.15)

is exact. We can now introduce the relevant cohomology groups.

Definition 3.4.9. Let R → S be a faithfully flat ring morphism and let F be a sheaf of
abelian groups on the flat site of Spec(R). For each n ⩾ 1, we define the n-th Amistur–Čech
cohomology group as

Ȟn(S/R,F) := ker(∆n)/ Im(∆n−1).

When n = 0, we set Ȟ0(S/R,F) := ker(∆0) ∼= F(R). ⌟

The main theorem (see [Mil80, corollary III.2.10]) is that

H1
flat(Spec(R),F) ∼= lim−→

S∈AlgFR

Ȟ1(S/R,F) (3.4.16)

where AlgFR denotes the directed set of faithfully flat R-algebras of finite type. In fact,
when R = K is a field, there is a final object in AlgFK , namely the algebraic closure K, so
we get (see [Sha72, theorem 42, p. 208] or rather [Sha64, theorem 1, p. 418])

H1
flat(Spec(K),F) ∼= Ȟ1(K/K,F). (3.4.17)

From here, we can give an explicit description of the cohomology group H1
flat(T, αp) where

T = Spec(K) and K is a field of characteristic p > 0.

First, following [Mil80, p. 67 and p. 128], there is a short exact sequence of sheaves of
abelian groups for the flat topology on S:

0 αp Ga Ga 0F (3.4.18)

where F is the Frobenius morphism which is given by Ga(R) ∼= R → R, s 7→ sp for any
K-algebra R. This yields a long exact sequence, where Kp := {xp : x ∈ K } is the additive
subgroup of p-th powers in K:

0 K/Kp H1
flat(T, αp) H1

flat(T,Ga) H1
flat(T,Ga) · · ·∂

(3.4.19)

Since Ga is smooth over S, we have — as discussed in subsection 3.4.1 — H1
flat(T,Ga) ∼=

H1
ét(T,Ga) ∼= H1(GK ,Ksep) = {0} (this is the additive analogue of Hilbert 90 theorem), so

that H1
flat(T, αp) ∼= K/Kp. We are going to make explicit the following boundary map:

∂ : K/Kp ∼=−→ H1
flat(T, αp) ∼= Ȟ1(K/K,αp). (3.4.20)

To this end, we start with some general considerations.
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1 We show that H1
flat(T, αp) is a subgroup of K ⊗K K. First, for a general sheaf F as in

definition 3.4.9, we have

∆0 = F(ϵ1,1)−F(ϵ2,1) : F(S)→ F(S⊗2)
∆0 = F(s 7→ 1⊗ s)−F(s 7→ s⊗ 1)

and

∆1 = F(ϵ1,2)−F(ϵ2,2) + F(ϵ3,2) : F(S⊗2)→ F(S⊗3)
∆1 = F(s⊗ s′ 7→ 1⊗ s⊗ s′)−F(s⊗ s′ 7→ s⊗ 1⊗ s′) + F(s⊗ s′ 7→ s⊗ s′ ⊗ 1).

Note that when K = Fp(t), then K ⊗K K is not reduced! It contains K(t1/p) ⊗K
K ∼= K[X]/(Xp − t)⊗K K ∼= K[X]/((X − t1/p)p) and the class s of X − t1/p satisfies
sp = 0 ̸= s.

2 In the case where F = αp we have

ker(∆1) = ⟨s⊗ s′ ∈ K ⊗K K | (s⊗ s′)p = 0, 1⊗ s⊗ s′ − s⊗ 1⊗ s′ + s⊗ s′ ⊗ 1 = 0⟩
Im(∆0) = { 1⊗ s− s⊗ 1 : s ∈ K, sp = 0 } = {0}.

Thus we see that Ȟ1(K/K,αp) = ker(∆1)/ Im(∆0) is an additive subgroup of K ⊗K K.

3 In general, an exact sequence of commutative group schemes of finite type over K, say

0 A B C 0β γ

induces an exact sequence of (co)chain complexes

0 C•(A) C•(B) C•(C) 0

where C•(A) = (Cr(A),∆r)r⩾0 and Cr(A) := A(K⊗(r+1)) are defined in equation (3.4.14)
(see the proof of [Sha64, theorem 1, p. 418]). Concretely, we have a commutative diagram:

0 A(K) B(K) C(K) 0

0 A(K ⊗K K) B(K ⊗K K) C(K ⊗K K) 0

...
...

...

∆A
0

β0

∆B
0

γ0

∆C
0

∆A
1

β1

∆B
1

γ1

∆C
1

We want to describe the boundary map ∂0 : Ȟ0(K/K,C) → Ȟ1(K/K,A), using
"diagram-chasing". Let c ∈ Ȟ0(K/K,C) = C(K) = ker(∆C

0 ). Let b ∈ B(K) be such
that γ0(b) = c. Then

γ1(∆B
0 (b)) = ∆C

0 (γ0(b)) = 0,

so that ∆B
0 (b) ∈ ker(γ1) = Im(β1), say ∆B

0 (b) = β1(a) for some a ∈ A(K ⊗K K). It
can be checked that a ∈ ker(∆A

1 ) and that the map c 7→ [a] ∈ ker(∆A
1 )
/

Im(∆A
0 ) is

well-defined; this is the desired boundary map ∂ := ∂0.
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We can now compute the boundary map ∂ introduced in equation (3.4.20).

Lemma 3.4.10. The boundary map can be expressed as follows:

∂ : K −→ Ȟ1(K/K,αp) ⊂ K ⊗K K

c 7−→ 1⊗ c1/p − c1/p ⊗ 1

where c1/p ∈ K denotes the unique p-th root of a given element c ∈ K. ⌟

Proof. –– Let us fix c ∈ K and set b := c1/p ∈ K. Consider the exact sequence (3.4.18),
where we use the notations from item 3 above:

0 → A := αp ↪→ B := Ga → C := Ga → 0.

The element a := ∆B
0 (b) = 1 ⊗ b − b ⊗ 1 is easily seen to lie24 in αp(K ⊗K K), because

ap = 1⊗ c− c⊗ 1 = 1⊗ c− 1⊗ c = 0 since c ∈ K and the tensor product is over K. Now
the boundary map ∂ is exactly given by c 7→ a = 1⊗ c1/p − c1/p ⊗ 1, as the discussion from
item 3 above shows. ■

3.4.2.3 Expl ic i t descent map

Fix a field K of characteristic 3, let E be an elliptic curve over K defined by y2 = x3+a4x+a6
and let ϕ be the 3-isogeny introduced in equation (3.4.3). We can now give an explicit
description of the descent map δ : E(K)/ϕ(E(K))→ H1

flat(Spec(K), ker(ϕ)) appearing in
(3.4.9).

We note that in [Elk94], there is an analogous situation in characteristic 2, where it is proved
(theorem 2, p. 355, ibid.) that the map E′(K ′)→ K ′/K ′2, (x, y) 7→ [x] is a group morphism,
where E′ : y2 + y = x3 + t2

n+1, K ′ = F22n(t) and n is odd. However, no explanation is
given in [Elk94] about how this descent map relates to the Tate–Shafarevich group. So our
discussion in the above subsections fills this gap.

Definition 3.4.11. We define the map ϵ : E(K) → K/K3 as the composition ϵ := ∂−1 ◦
H1(ι) ◦ δ, that is:

ϵ : E(K) Ȟ1(K/K, ker(ϕ)) Ȟ1(K/K,α3) K/K3δ H1(ι)
∼=

∂
∼=

where δ,H1(ι) are as in (3.4.9) and ∂ is as in (3.4.20). Note that ϵ is a group morphism,
where K3 denotes the additive subgroup of cubes in K. ⌟

In what follows, we will denote by [z] = z mod K3 the class of an element z ∈ K in the
quotient additive group K/K3.

Proposition 3.4.12. Fix a field K of characteristic 3, let E be an elliptic curve over K
defined by y2 = x3 + a4x + a6 and let ϕ be the 3-isogeny introduced in equation (3.4.3).
Assume that −a4 is a square in K and that E[2](K) = {0}.

24In fact, a lies in ker(∆1) as we would expect:

1 ⊗ (1 ⊗ b) − 1 ⊗ (b⊗ 1) − (1 ⊗ 1 ⊗ b− b⊗ 1 ⊗ 1) + 1 ⊗ b⊗ 1 − b⊗ 1 ⊗ 1 = 0.
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Then the map ϵ : E(K) → K/K3 is given by (xP , yP ) 7→ [−a−3
4 yP ] ∈ K/K3 on affine

K-rational points, and ϵ([0 : 1 : 0]) = 0 mod K3. ⌟

Remark 3.4.13. We will need to consider R-rational points of E where the ring R := K⊗KK
has nilpotents (it is not reduced), but its Picard group is trivial, that is, Pic(R) = {0}.
Indeed, R is the direct limit of AL := K ⊗K L over finite extensions L/K. Then Pic(R) is
the direct limit of Pic(AL), and AL is a finite-dimensional K-algebra so it is a finite product
of artinian local rings, and thus its Picard group is trivial.

This allows to describe the R-rational points of E using projective coordinates as mentioned
in remark 3.4.6. ⌟

Proof of proposition 3.4.12. –– We first describe the map δ using the discussion of item 3

above, applied to the short exact sequence (3.4.8). Namely, δ sends a point P = [xP : yP :
1] ∈ E(K) ∖ {O} to the (K ⊗K K)-rational point of ker(ϕ) ⩽ E given by

δ(P ) = Q′ := [1⊗ xQ : 1⊗ yQ : 1⊗ 1]− [xQ ⊗ 1 : yQ ⊗ 1 : 1⊗ 1]

where Q = (xQ, yQ) ∈ E(K) satisfies ϕ(Q) = P (here we are also using remark 3.4.13).
This means −a−1

4 (x3
Q + a6) = xP and βy3

Q = yP (where β is a square root of −a−3
4 ), so

that x3
Q = −a4xP − a6 ∈ K.

In other words, we have

Q′ = Q1 +Q2, Q1 = [1⊗ xQ : 1⊗ yQ : 1⊗ 1], Q2 = [xQ ⊗ 1 : −yQ ⊗ 1 : 1⊗ 1].

Let us set

x1 := 1⊗ xQ, y1 := 1⊗ yQ, x2 := xQ ⊗ 1, y2 := −yQ ⊗ 1.

We have x3
1 = x3

2 and since a4 is a square in K (so that β ∈ K) we have y3
1 = −y3

2. We
claim that Q1 ̸= Q2.

Indeed, assume for a contradiction that Q1 = Q2 so that x1 = x2. By the exactness
of (3.4.15) applied to R = K,S = K, it follows that xQ ∈ K. Then y2

Q ∈ K and
also we know that y3

Q = β−1yP ∈ K since −a4 is a square in K (so that β ∈ K).
So in all cases yQ ∈ K (either it is 0 or otherwise write yQ = y3

Qy
−2
Q ), which implies

that y2 = −y1. Since we assumed Q1 = Q2, we must have y2 = y1 = −y1, so that
2y1 = −y1 = 0 ∈ K ⊗K K (recall that char(K) = 3).

Now because E[2](K) = {0} we have yQ ̸= 0 ∈ K. Then y1 is a unit in the ring
K⊗KK with inverse y−1

1 = 1⊗y−1
Q and in particular y1 ̸= 0 ∈ K⊗KK, and this yields

a contradiction with the previous assertion. Therefore, we conclude that Q1 ̸= Q2 as
desired.

Now, we can apply the formulas X(1)
3 , Y

(1)
3 , Z

(1)
3 from [BL95, §5, p. 236-237], which give

the addition of any two distinct points on E over any commutative ring with trivial Picard
group (which is the case of K ⊗K K by remark 3.4.13). Using SAGE [The21], we find25

Q′ = [y2(x2 − x1)(y1 − y2)− a4(x2 − x1)2 : y3
2 : 0] (3.4.21)

25See the file "Kernel of phi and explicit descent map.ipynb" available at https://gitlab.com/
gauthierleterrier/maths.
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By proposition 3.4.7 and lemma 3.4.10, we know that once we write the X/Y -coordinate of
Q′ as 1⊗ c1/3 − c1/3 ⊗ 1 (for some c ∈ K), this means that the map ϵ : E(K)→ K/K3 is
given by P 7→ [c].

The key point is that xQ ∈ K +Ky2
Q ⊂ K: indeed from the equation y2

Q = x3
Q + a4xQ + a6

we have

xQ = a−1
4 · (y2

Q − x3
Q − a6) = a−1

4 y2
Q − a−1

4 (x3
Q + a6) = a−1

4 y2
Q + xP .

It follows that (recalling that xP and a−1
4 belong to K):

x2 − x1 = (xP + a−1
4 y2

Q)⊗ 1− 1⊗ (xP + a−1
4 y2

Q) = a−1
4 · (y2

Q ⊗ 1− 1⊗ y2
Q).

From now on, we assume that E[2](K) = {O}. In particular, yQ ̸= 0 since P ∈ E(K) and
βy3

Q = yP , which means that y−1
2 = −y−1

Q ⊗ 1 is a unit in the ring K ⊗K K. Let us write

L := yQ ⊗ 1, R := 1⊗ yQ ∈ K ⊗K K

(the notation stands for "left" and "right" respectively) and note that L3 = R3 (since
y3
Q = β−1yP ∈ K). We finally compute

δ(Q′) = y−2
2 (x2 − x1)(y1 − y2) − a4y

−3
2 (x2 − x1)2

= a−1
4 (y−2

Q ⊗ 1) · (y1 − y2) · (y2
Q ⊗ 1− 1⊗ y2

Q)

− a4a
−2
4 (−y−3

Q ⊗ 1) ·
(
y2
Q ⊗ 1− 1⊗ y2

Q

)2

= a−1
4 L−2(L+R)(L2 −R2) + a−1

4 L−3(L2 −R2)2

= a−1
4 L−2(L3 +RL2 −R2L−R3) + a−1

4 L−3(L4 + L2R2 +R4)
= a−1

4 · (R−R2L−1 + L+ L−1R2 + L−3R4)
= a−1

4 · (R+ L+R)
= a−1

4 (L−R)
= a−1

4 yQ ⊗ 1 − 1⊗ a−1
4 yQ

= 1⊗ (−a−1
4 yQ) − (−a−1

4 yQ)⊗ 1

recalling that 2 = −1 since char(K) = 3. Thus we find that we may take c1/3 = −a−1
4 yQ

which proves the claimed description of the map ϵ. ■

3.4.3 Selmer groups in character ist ic 3

We are now ready to compute the ϕ-Selmer group of E over K (or more precisely, get
an upper bound on its size). In view of the definition 3.4.4 of Selmer groups and of the
description of the descent map

ϵ = ∂−1 ◦H1(ι) ◦ δ : E(K)→ K/K3, (x, y) 7→ [−a−3
4 y]

from proposition 3.4.12, we introduce the following groups, where v ∈ VK :

Sϕ(E/Kv) = { z ∈ K/K3 : z ∈ Im(ϵ′v) ↪→ Kv/K
3
v } (3.4.22)
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Sϕ(E/K) =
⋂
v∈VK

Sϕ(E/Kv) ↪→ K/K3, (3.4.23)

where
ϵ′v := −a3

4 · ϵv : E(Kv)→ Kv/K
3
v , (x, y) 7→ [y]

is (a normalization of) the descent map ϵv described in proposition 3.4.12 applied to Kv

instead of K.

Since ∂,H1(ι) and multiplication by −a3
4 are isomorphisms, it follows that Sϕ(E/Kv) ∼=

Selϕ(E/Kv) and Sϕ(E/K) ∼= Selϕ(E/K) as abelian groups.

Thanks to (3.4.11), one gets a commutative diagram26 , where ϵ′ := −a3
4ϵ : E(K)→ K/K3:

0 E(K)/ϕ(E(K)) K/K3 H1(GK , E(Ksep))[ϕ] 0

0
∏

v∈VK

E(Kv)/ϕ(E(Kv))
∏

v∈VK

Kv/K
3
v

∏
v∈VK

H1(GKv , E(Ksep
v ))[ϕ] 0

ϵ′

f1 f ′
2

H1ι

f3

(ϵ′
v) (H1ιv)

(3.4.24)
from which we deduce a short exact sequence as in (3.4.12):

0 E(K)/ϕ(E(K)) Sϕ(E/K) X(E/K)[ϕ] 0.ϵ′ H1ι

Theorem 3.4.14. Let E : y2 = x3 + bx + a6 over K := k(t) where k is a finite field of
characteristic 3. Assume that |k| > 3, that −b = β2 ∈ k× is a square in k× and that
a6 ∈ k[t] is a polynomial of degree d coprime27 to 3. Let v ∈ VK .

1. If v is a finite place, then

Sϕ(E/Kv) = Im(Ov ∩K −→ K/K3), (3.4.25)

that is, any element [y] ∈ Sϕ(E/Kv) has a v-integral representative.

2. If v = v∞ = −deg, then we have an inclusion

Sϕ(E/Kv) ⊆

 [z] ∈ K/K3 :
deg(z) = d/2 and z2 · a−1

6 ≡ 1 (mod t−1)
or

0 ⩽ deg(z) < d/2 and deg(z) ≡ d mod 3

.
⌟

Before proving the theorem, we state a few preliminary results.

Lemma 3.4.15. Let k be a field, fix R ∈ K = k(t) and let P be a monic irreducible
polynomial in k[t], corresponding to a finite place vP . Then v∞(R′) ⩾ v∞(R) + 1 and

vP (R′) ⩾
{
vP (R)− 1 if vP (R) ̸= 0 in k

vP (R) else
⩾ vP (R)− 1. (3.4.26)

In fact, (3.4.26) holds for any R ∈ KvP
. ⌟

26Here we are using the fact that we have functorial morphisms H1
flat(Spec(K), ker(ϕ)) →

H1
flat(Spec(Kv), ker(ϕ)), in the sense that they commute with the boundary maps ∂ : K/K3 →

H1
flat(Spec(K), ker(ϕ)) and ∂v : Kv/K

3
v → H1

flat(Spec(Kv), ker(ϕ)). We are also using the fact that
Amitsur–Čech cohomology is functorially isomorphic to the flat cohomology.

27Note that the assumption E[2](K) = {0} from proposition 3.4.12 is satisfied in our case because
x3 + bx+ a6 = 0 cannot have a root x ∈ K if a6 is a polynomial of degree coprime to 3.
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Remark 3.4.16. The last claim of lemma 3.4.15 holds because the derivative map K →
K, f 7→ f ′ is continuous with respect to the v-adic topology, for any finite place v. In fact,
it is even uniformly continuous (so that it extends uniquely to a map Kv → Kv). Indeed,
we want to show that given any ϵ > 0, there exists δ > 0 such that for all f, g ∈ K we
have |f − g|v < δ =⇒ |f ′ − g′|v < ϵ. This amounts to showing that for all N > 0 there
is M ⩾ 0 such that for all f, g ∈ K, we have vP (f − g) ⩾ N =⇒ vP (f ′ − g′) ⩾ M . The
above lemma 3.4.15 precisely shows that we may take M := N − 1. ⌟

Proof. –– Write R = A/B where A,B ∈ k[t]. Then R′ = A′B−AB′

B2 and

deg(R′) ⩽ max{deg(A′B),deg(AB′)} − 2 deg(B)
= deg(A) + deg(B)− 1− 2 deg(B) = deg(A)− deg(B)− 1
= deg(R)− 1.

Let us turn to the result about vP . First, notice that the displayed inequality holds if R is
a polynomial: if R = P e · S for some e = vP (R) ⩾ 0 and some S ∈ k[t] coprime to P , then
R′ = eP e−1S + P eS′ so

vP (R′) ⩾ min{e− 1 + vP (e), e+ vP (S′)} ⩾
{
e− 1 if e = vP (R) ̸= 0 in k

e else.
(3.4.27)

In fact, the first inequality is an equality, since either e = 0 ∈ k and S′ = 0, or otherwise we
have vP (e) ∈ {0,+∞} so that vP (eP e−1S) ̸= vP (P eS′).

Now let R = A/B for some coprime polynomials A,B ∈ k[t]. Using the previous step for
polynomials, we get vP (R′) = vP (A′B −AB′)− 2vP (B) ⩾ vP (A) + vP (B)− 1− 2vP (B) =
vP (R)− 1. ■

Example 3.4.17. If k = F2, S(t) = t2 + 1 and P (t) = t then R(t) = te(t2 + 1) and
R′(t) = te−1(e(t2 +1)+2t2) = ete−1(t2 +1) ∈ F2[t]. Therefore vt(R′) = +∞ if e is even and
vt(R′) = e− 1 if e is odd. If we work over Fp[t] with p odd and p | e, then vt(R′) = e+ 1. ⌟

We will also need the following three lemmas.

Lemma 3.4.18. Let k be a perfect field of characteristic p, set K = k(t) and denote by
Kp the additive subgroup of p-th powers in K. Then the kernel of the derivative map
K → K,R 7→ R′ is exactly Kp. In particular, if R ∈ K has zero derivative R′ = 0, then
R ∈ Kp is a p-th power in K. ⌟

Proof. –– It is clear that any p-th power in K has a zero derivative. Conversely, let us
write R = P/Q for some coprime polynomials P,Q ∈ k[t] and assume that R′ = 0. Then
R′ = P ′Q−PQ′

Q2 = 0 implies that P ′Q = PQ′. Then P divides P ′Q and since gcd(P,Q) = 1,
we get P | P ′, which forces P ′ = 0. Similarly, we get Q′ = 0.

So we are left with proving the claim when R =
∑N
i=0 ait

i is a polynomial, which is easy: if
R′ =

∑N
i=0 iait

i−1 = 0 then iai = 0 for all i, so we get ai = 0 for all indices i coprime to p.
Since k is perfect, apj = bpj ∈ k is a p-th power for all j ⩾ 0, so that R =

∑⌊N/p⌋
j=0 bpj t

jp is
clearly a p-th power in K. ■
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Lemma 3.4.19. Let k be a finite field of characteristic p, let v be a finite place of K = k(t)
(corresponding to some monic irreducible polynomial P ∈ k[t]) and fix x ∈ K. Define
O(v) := Ov ∩K. If v(x′) ⩾ 0 then x ∈ O(v) +Kp, that is: up to adding a p-th power, x is
v-integral. ⌟

Proof. –– Let us write x = x0 +
∑N
i=1

fi

P i for some x0 ∈ O(vP ), N ⩾ 0, fi ∈ k[t] and
deg(fi) < deg(P ) for all i, as it can be done by "partial fraction decomposition" (which
provides an explicit k-basis of k(t)) — note that possibly fi = 0.

• Claim 1: x′
0 ∈ O(vP ).

It is enough to show this for the elements of "the" k-basis of k(t) provided by partial
fraction decomposition. First, if x0 ∈ k[t] then it is clear that vP (x′

0) ⩾ 0. Now let
us assume that x0 = f

Qe where f ∈ k[t], e ⩾ 1 and Q ̸= P is irreducible (in particular,
vP (Q) = 0). Then x′

0 = g
Q2e for some polynomial g ∈ k[t]. Thus vP (x′

0) = vP (g) −
2evP (Q) ⩾ 0− 0 = 0.

• Claim 2: if we let s :=
∑N
i=1

fi

P i then vP (s′) ⩾ 0 and s ∈ Kp is a p-th power.

If we had vP (s′) < 0 then, because vP (x′
0) ⩾ 0 (by the previous claim), it would follow

that vP (x′) = min{vP (s′), vP (x′
0)} < 0, contradicting our assumption.

Now, let us write s = g
PN for some polynomial g ∈ k[t]. Note that g =

∑N
i=1 fiP

N−i

is not divisible by P (as the term with i = N shows), i.e., vP (g) = 0. Then using
equation (3.4.27) (applied to e := −N) and the remark thereafter we get:

vP (s′) = min{−N − 1 + vP (−N), −N + vP (g′)}.

Observe that −N−1+vP (−N) is either −N−1, in which case it is < −N+vP (g′) (since
g is a polynomial), or it is +∞. So we get either vP (s′) = −N − 1 < 0 or vP (s′) = +∞.
Since vP (s′) ⩾ 0, the only possibility is the latter, which means s′ = 0 and thus s ∈ Kp

(by lemma 3.4.18) as desired.

Combining those two claims immediately concludes the proof. ■

Lemma 3.4.20. Let k be a finite field of characteristic p and fix y ∈ K := k(t). Assume
that for every finite place v ∈ V 0

K , there is sv ∈ K such that y − spv ∈ Ov (i.e., up to adding
a p-th power in K, y is v-integral).

Then there is s ∈ K such that y∗ := y − sp is a non-constant polynomial (this means that
y∗ ∈ Ov for every finite place v ∈ V 0

K , and that [y] = [y∗] ∈ K/Kp; said differently [y] has a
representative which is a non-constant polynomial). ⌟

Proof. –– Let us write the partial fraction decomposition of y ∈ K as

y = y0 +
∑
P

∑
j⩾1

fP,j
P j

(3.4.28)

where y0, fP,j ∈ k[t], P runs over monic irreducible polynomials, and deg(fP,j) < deg(P )
for all j (and fP,j = 0 for all but finitely many pairs P, j).
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Let Q be a monic irreducible polynomial, corresponding to a finite place vQ. Let us write
rvQ

:=
∑
j⩾1

fQ,j

Qj = f
Qd for some d ⩾ 1 and where Q ∤ f =

∑n
i=0 fit

i ∈ k[t]. Note that f
has degree < d · deg(Q).

By assumption, there is some svQ
∈ K such that y − spvQ

∈ OvQ
. We may assume that

svQ
= g

Qe for some e ⩾ 1 and Q ∤ g =
∑m
i=0 git

i ∈ k[t] (up to adding some vQ-integral terms
to svQ

). Note that g has degree < e · deg(Q).

Writing y = y0 + rvQ
+
∑
P ̸=Q rvP

, we see that y − rvQ
is vQ-integral. Then the element

rvQ
− spvQ

= f

Qd
− gp

Qp·e

is vQ-integral, which forces d = p · e and vQ(f − gp) ⩾ p · e. If f − gp ̸= 0 then

p ·e ·deg(Q) ⩽ deg(f−gp) ⩽ max{deg(f), pdeg(g)} < deg(Q) max{d, pe} d=pe= p ·e ·deg(Q),

which is a contradiction. Thereby, we must have f = gp and consequently rvQ
∈ Kp is a

p-th power.

Thus we get y = y0 +
∑
Q

rvQ︸ ︷︷ ︸
∈Kp

, we conclude that y ≡ y0 (mod Kp) where y0 is a polynomial.

Since all elements in k are p-th powers, we may assume that y∗ := y0 is non-constant, which
finishes the proof. ■

We can now prove our result on the explicit description of the Selmer groups.

Proof of theorem 3.4.14. –– 1. Let v be a finite place. Observe that because a6 is a
polynomial, it is v-integral.

• ⊆. Let us fix [y] ∈ Sϕ(E/Kv) ⊂ K/K3, which means that there is a point P =
(x, y) ∈ E(Kv) whose y-coordinate is the given element y ∈ K. We want to show
that y ∈ Ov + K3 (i.e., there is some v-integral element y∗ ∈ Ov such that y ≡ y∗

mod K3).

If v(y) ⩾ 0, then it is clear that y ∈ Ov ∩K. From now on, assume that v(y) < 0.
Then we have v(x) < 0 because otherwise y2 = x3 + bx + a6 would be v-integral.
Consequently,

0 > 2v(y) = v(x3 + bx+ a6) = min{v(x3 + bx), v(a6)} = 3v(x)

so there is z ∈ Z<0 such that v(y) = 3z, v(x) = 2z < 0.

Differentiating both sides of the equation of E yields 2yy′ = bx′ + a′
6. Therefore

v(y′) = v(bx′ + a′
6)− v(y)

⩾ min{v(x′), v(a′
6)} − v(y) (3.4.29)

⩾ 2z − 1− 3z = −z − 1 ⩾ 0 by lemma 3.4.15 applied to x ∈ Kv

From lemma 3.4.19, it follows that y ∈ Ov +K3.
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• ⊇. Let y ∈ O(v) := Ov∩K be v-integral. We prove the existence of a Kv-rational point
Pv = (x0, y0) ∈ E(Kv) whose y-coordinate is y0 ∈ K such that y0 ≡ y (mod K3) (so
that ϵ′v(Pv) = [y] ∈ K/K3).

We claim that there are v-integral elements x1, y1 ∈ O(v) such that y1 ≡ y mod K3
v

and η := y2
1 − (x3

1 + bx1 + a6) ≡ 0 mod mv. From there we can check that that the
point28 (recall that −b = β2 ∈ k×):

Pv := (x0 , y1), where x0 := x1 + β
∑
m⩾0

(b−1β−1η)3m

∈ Ov

is a Kv-rational point of E, since

x3
0 + bx0 + a6 = x3

1 + β3
∑
m⩾1

(b−1β−1η)3m

+ bx1 + bβ
∑
m⩾0

(b−1β−1η)3m

+ a6

= x3
1 − bβ

∑
m⩾1

(b−1β−1η)3m

+ bx1 + bβ
(
b−1β−1η +

∑
m⩾1

(b−1β−1η)3m
)

+ a6

= x3
1 − bβ

∑
m⩾1

(b−1β−1η)3m

+ bx1 + η + bβ
∑
m⩾1

(b−1β−1η)3m

+ a6

= x3
1 + bx1 + η + a6

= y2
1 by definition of η.

Proving the existence of x1, y1 amounts to finding s, x1 ∈ Fv := Ov/mv such that
(y + s3)2 ≡ x3

1 + bx1 + a6. The change of variables x1 = x̃ + s2 − y1/3s (where the
reduction y ∈ Fv of y has a unique cube root since Fv is a finite field of characteristic
3) yields:

y2 + 2ys3 + s6 = (x̃+ s2 − y1/3s)3 + b · (x̃+ s2 − y1/3s) + a6

which can be rewritten as a cubic plane affine curve C over Fv in the variables s, x̃:

−bs2 + by1/3s = x̃3 + bx̃+ a6 − y2.

It is easy to see that this curve is non-singular. Therefore, its projective closure C in
P2(Fv) is an elliptic curve and so by the Hasse–Weil bound, we have

|C(Fv)| = |C(Fv)| − 1 ⩾ |Fv| − 2|Fv|1/2 + 1− 1 = (|Fv|1/2 − 1)2 − 1 > 0

because we have |Fv| > 4 (since we assumed |k| > 3 and |k| must be a power of 3).
Therefore this proves the existence of x1, y1 ∈ Ov as desired.

2. We now consider the infinite place v = v∞. Let (x, y) ∈ E(Kv) be such that y ∈ K.
Recall that v∞(a6) = −d < 0 is coprime to 3. We have

v(y2) = min{v(x3 + bx), v(a6)}

=
{
−d if v(x3 + bx) ⩾ −d,
3v(x) < 0 else.

We split the analysis into 2 cases.

28Note that |η|v < 1 so that x0 indeed converges in Ov.
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• If v(y) = −d/2 then v(x3 + bx) ⩾ −d (because otherwise v(y2) = 3v(x) = −d would
not be coprime to 3) so v(x) ⩾ −d/3. In fact, since d is coprime to 3 and v(x) is an
integer, we must have a strict inequality v(x) > −d/3.

Therefore, we find

v(x3a−1
6 ) > −d− (−d) = 0

v(xa−1
6 ) > −d/3− (−d) > 0

which implies that x3a−1
6 ≡ −bxa−1

6 ≡ 0 mod mv so (x3 + bx)a−1
6 = (y2 − a6)a−1

6 ≡ 0
and hence y2a−1

6 ≡ 1 mod mv (and in particular y2a−1
6 ∈ Ov is v-integral).

• Otherwise we assume that v(x3 + bx) < −d (so that v(y) < −d2 ), in which case
v(y) =: 3z < 0 is a multiple of 3 and v(x) = 2z. In particular v(x3 + bx) = 6z < −d
so −3z > −d2 . From equation (3.4.29) we know that

v(y′) ⩾ min{v(x′),−d+ 1} − v(y)

=
{
v(x′)− v(y) ⩾ 2z − 1− 3z = −z − 1 ⩾ 0 if v(x′) ⩽ −d+ 1,
−d+ 1− 3z > −d+ 1 + d

2 = −d2 + 1 else.
(3.4.30)

Note that if v(x′) < −d+ 1, then we have an equality v(y′) = −d+ 1− 3z.

From lemma 3.4.20 and part 1) of theorem 3.4.14, we know that y = y∗ + s3 for some
y∗ ∈ k[t]∖k, s ∈ K. We may assume (without loss of generality) that the coefficient of
tj in y∗ ∈ k[t] vanishes if 3 | j, up to changing s. Since v∞(y′) = v∞((y∗)′) < 0, only
the second case can occur in (3.4.30), which means that deg(y′) = deg((y∗)′) < d

2 − 1,

and consequently deg(y∗) < d

2 . Moreover, we have

deg(y∗) = −v(y∗) = −v((y∗)′) + 1 = −(−d+ 1− 3z) + 1 = d+ 3z ≡ d mod 3.
(3.4.31)

In that case, observe that we have

v(y) = 3z = deg(y∗)− d. (3.4.32)

Finally, it suffices to combine the various items to conclude the proof. ■

We deduce the following consequence from theorem 3.4.14 and its proof.

Corollary 3.4.21. Let E : y2 = x3 + bx+A6 be an elliptic curve over K := k(t) where k is
a finite field of characteristic 3. Assume that |k| > 3, that −b = β2 ∈ k× is a square in k×

and that A6 ∈ k[t] is a polynomial of degree d coprime to 3.

Then the Selmer group Selϕ(E/K) is contained in the image in K/K3 of the set S(d) of
polynomials y ∈ k[t] of degree D ⩽ d/2 such that:

• For every index j such that 3 | j, the coefficient yj of tj in y vanishes, that is, yj = 0.

• If D < d/2 then D ≡ d mod 3.
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• If D = d/2 then y2 ·A−1
6 ≡ 1 (mod t−1).

More precisely, the reduction map S(d) → K/K3 is injective and its image contains
Sϕ(E/K) ∼= Selϕ(E/K), which means that |Selϕ(E/K)| ⩽ |S(d)|. ⌟

Remark 3.4.22. If we take some element [z] ∈ Sϕ(E/K) ↪→ K/K3 where z ∈ S(d) then
[z] ∈ Sϕ(E/Kv∞) ↪→ Kv∞/K

3
v∞

is equal to ϵ′v∞
(P ) = [y] for some P = (x, y) ∈ E(Kv∞).

Let us write y =
∑
j⩽d yjt

j ∈ Kv∞ = k
((
t−1)) and z =

∑D
r=0 zrt

r ∈ k[t].

We have y = z + s3 for some s ∈ Kv∞ so that taking derivatives yields y′ = z′ and so we
conclude that yj = zj for all indices j coprime to 3. ⌟

3.4.4 Conclusion on Tate–Shafarevich groups

We finally prove theorem 3.4.1.

Proof of theorem 3.4.1. –– First of all, recall from equation (3.4.13) that the Tate–Shafarevich
group of E over K is trivial if and only if |E(K)/ϕ(E(K))| = |Selϕ(E/K)|. Thanks to
proposition 3.4.3.2 and since the Selmer group is a finite-dimensional F3-vector space (seen
as a subgroup of K/K3), we deduce that

X(E/K) = {0} ⇐⇒ dimF3 Selϕ(E/K) = rk(E(K))
2 . (3.4.33)

Under the hypothesis on b, we know that rk(E(K)) = 2 · 3n by corollary 3.1.22. Also, note
that in each case the field of constants k = F32n has size > 3 so that the hypothesis from
theorem 3.4.14 is fulfilled.

1. Let n = 1. In that case, the statement was already proved (in two ways: using the
E6-lattice, or using the fact that |X| is always a square of an integer; see remark 3.4.2
and the discussion preceding it). We now give a third proof: first, d = 3n + 1 = 4 and
k = F32n so S(d) = { a1t+ a2t

2 : ai ∈ k, a3
2 = a2 } has size |k| · 3 = 32n+1. Thus from

theorem 3.4.14 and remark 3.4.5 we get

rk(E(K))/2 = 3n = 3 ⩽ dimF3 Selϕ(E/K) ⩽ dimF3(S(d)) = 2n+ 1 = 3,

thus equality holds and consequently, we find that X(E/K) = {0} is trivial as claimed,
thanks to the equivalence (3.4.33).

2. Let n = 2. Then d = 3n + 1 = 10 so that S(d) = { a1t + a2t
2 + a4t

4 + a5t
5 :

ai ∈ k, a3
5 = a5 } has size |k|3 · 3 = 33·2n+1 = 313. We get

rk(E(K))/2 = 3n = 9 ⩽ dimF3 Selϕ(E/K) ⩽ dimF3(S(d)) = 13,

which is not sharp, so we need further conditions on the elements of Selϕ(E/K) to
conclude. For instance we cannot have a5 = a4 = 0 ̸= a2 since the degree (if < d/2 = 5)
must be ≡ d = 1 (mod 3) by corollary 3.4.21.

By using the points (0,±t5) ∈ E(K) (which get mapped to ±t5 via ϵ′ = −a3
4ϵ : E(K)→

K/K3, (x, y) 7→ [y]), we know that if [a1t+ a2t
2 + a4t

4 + a5t
5] ∈ Sϕ(E/K) then [a1t+

a2t
2 + a4t

4] ∈ Sϕ(E/K) because a5 ∈ {±1, 0} by the condition a3
5 = a5.
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Let us take y∗ := a1t + a2t
2 + a4t

4 ∈ S(d) ⊂ k[t] such that [y∗] ∈ Sϕ(E/K) ⊂ K/K3.
Note that corollary 3.4.21 ensures that deg(y∗) ≡ d ≡ 1 (mod 3). We use remark 3.4.22
to get conditions on the coefficients aj , by distinguishing 2 cases:

• Assume that deg(y∗) = 4. We have [y∗] = [y] ∈ Kv∞/K
3
v∞

for some P = (x, y) ∈
E(Kv∞). Moreover, equation (3.4.32) ensures that deg(y) = 6. Let us write y =∑6
j=−∞ yjt

j with y6 ̸= 0. From remark 3.4.22, we know that yj = 0 whenever j < 0
is not divisible by 3.

Using lemma 3.3.2 applied to z := y2 − t10 ∈ Kv∞ = k
((
t−1)), we know that if

j > d/p = 12/3 = 4 is coprime to 3, then fj = 0 (using the notation from this lemma).
This gives29 y5 = 0, y4y6 = −1, y2y6 = y2

4, which yields y2 = y−3
6 = −y3

4. Using
remark 3.4.22, we deduce the relation a2 = −a3

4.

• Assume that deg(y∗) = 1. We have [y∗] = [y] ∈ Kv∞/K
3
v∞

for some P = (x, y) ∈
E(Kv∞). Moreover, by equation (3.4.32) we have deg(y) = −v(y) = d− deg(y∗) = 9.
Let us write y =

∑
j⩽9 yjt

j with y9 ̸= 0.

Using lemma 3.3.2 applied to z := y2 − t10, we know that if j > d/p = 12/3 = 4
is coprime to 3, then fj = 0 (using the notation from this lemma). This gives
y8 = y7 = y5 = y4 = y2 = 0, so in particular y2 = −y3

4 is also satisfied in this case.

All in all, we see that the Selmer group Selϕ(E/K) injects in

S′ := { a1t+ a2t
2 + a4t

4 + a5t
5 : ai ∈ k, a3

5 = a5, a2 = −a3
4 }

which is a space of cardinality |S′| = 3·|k|2 = 31+2·2n = 39, so we find dimF3 Selϕ(E/K) ⩽
dimF3(S′) = 9 and we can therefore conclude that X(E/K) is trivial by (3.4.33).

3. Let n = 3. Then d = 3n + 1 = 28 so that

Selϕ(E/K) ↪→ S(d) = {a1t+ a2t
2 + a4t

4 + a5t
5 + a7t

7 + a8t
8+

+ a10t
10 + a11t

11 + a13t
13 + a14t

14 ; ai ∈ k, a3
14 = a14}.

Let us find extra constraints on the coefficients aj of a polynomial y∗ := a1t + a2t
2 +

a4t
4 +a5t

5 +a7t
7 +a8t

8 +a10t
10 +a11t

11 +a13t
13 +a14t

14 ∈ S(d) ⊂ K whose class modulo
(K3,+) is in the Selmer group. Some steps are performed with SAGE [The21]; see the
files in the folder SAGE-Tate-Shafarevich-groups-in-characteristic-3 available at
https://gitlab.com/gauthierleterrier/maths.

As before, using the rational points (0,±t14) ∈ E(K), we may assume that a14 = 0.
Note that by corollary 3.4.21 we must have deg(y∗) ≡ d = 1 (mod 3) (since we assumed
a14 = 0 so that deg(y∗) < d/2), which implies that deg(y∗) ∈ {1, 4, 7, 10, 13}. In any
case, there is (x, y) ∈ E(Kv∞) such that [y∗] = [y] ∈ K/K3. By equation (3.4.32), we
have v∞(y) = −deg(y) = deg(y∗)− 28. We distinguish several cases.

• When deg(y∗) = 13, then deg(y) = 15. We get, from equation (3.3.6), y11 = −y3
13, y8 =

0, y5 = −y9
13, y2 = −y3

10. Note also that yj = 0 for all j < 0 which are coprime to 3,
and y14 = 0. Further we get the following relations, using the fact that the element

29See the files in SAGE-Tate-Shafarevich-groups-in-characteristic-3 available at https://gitlab.
com/gauthierleterrier/maths.
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z := y2 − t28 ∈ Kv∞ satisfies zj = 0 for all j > d/p = 10 coprime to 3, thanks to
lemma 3.3.2:

y15 = −y−1
13 ̸= 0

y12 = y10y
−2
13

y9 = (y8
13 − y2

10 + y7y13) · y−3
13

y6 = (−y10y
8
13 + y3

10 + y7y10y13 + y4y
2
13) · y−4

13

y3 = (−y16
13 + y2

10y
8
13 − y7y

9
13 − y4

10 − y2
7y

2
13 + y4y10y

2
13 + y1y

3
13) · y−5

13

y0 = (y10y
16
13 + y3

10y
8
13 − y7y10y

9
13 − y4y

10
13 + y5

10 − y7y
3
10y13 + y4y7y

3
13 + y1y10y

3
13) · y−6

13 .

We also have equations fj = 0 for j ∈ {1, 2, 4, 5, 7, 8, 10} using lemma 3.3.2. Let us
denote by f̃j the numerator of fj in k[y1, ..., y13] (i.e., we get rid of the possible powers
of y13 in the denominator). Using the above formulas for the yi’s when 3 | i, we get a
miraculously simple formula:

(−f̃5 − f̃7 · y3
13) + f̃10 · y3

10 = y3
10 · y9

13 · (−y9
7 + b3y7) = 0

from which it follows that either y10 = 0 or y9
7 = b3y7. Using remark 3.4.22, we deduce

that the coefficients of y∗ also satisfy a10 · (a9
7 − b3a7) = 0.

• When deg(y∗) = 10, then deg(y) = 18. Applying lemma 3.3.2 to z := y2 − t28 ∈
k
((
t−1)) yields equations, from which we find y5 = y8 = y11 = y13 = y14 = y16 =

y17 = 0 together with y10 = −y−1
18 , y2 = y−3

18 = −y3
10 and

y15 = y7y
2
18

y12 = y2
7y

3
18 + y4y

2
18

y9 = y3
7y

4
18 − y4y7y

3
18 + y1y

2
18

y6 = y4
7y

5
18 + y2

4y
3
18 − y1y7y

3
18

y3 = y5
7y

6
18 + y4y

3
7y

5
18 − y1y4y

3
18.

Then the equation f11 = 0 from lemma 3.3.2 becomes y9
7y

3
18 − y7y

3
18b

3 = 0 so we get
again the relation y9

7 = b3y7. Using remark 3.4.22, we deduce that the coefficients of
y∗ also satisfy a9

7 = b3a7.

• When deg(y∗) = 7, then deg(y) = 21. We know (since (y∗)′ = y′ are equal derivatives,
or by remark 3.4.22) that yj = 0 for all j > 7 coprime to 3, and that y7 = a7 ̸= 0.
Moreover, using the equations from lemma 3.3.2 applied to z = y2 − t28, we get
y2 = y5 = 0. Moreover we find:

y21 = −y−1
7

y18 = y4y
−2
7

y15 = (−y2
4 + y1y7) · y−3

7

y12 = (y3
4 + y1y4y7) · y−4

7

y9 = (−y4
4 − y2

1y
2
7) · y−5

7

from which f14 = 0 becomes −y8
7 + b3 = 0 so again we get the relation (using

remark 3.4.22) a9
7 = b3a7.
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• When deg(y∗) = 4, then deg(y) = 24. Here we get yj = 0 for any j > 4 coprime to
3, so in particular y8 = 0, y11 = 0 = y13, y2 = 0 = y10 and y7 = 0 (which implies
y9

7 = b3y7).

• When deg(y∗) = 1, then deg(y) = 27. Here we get yj = 0 for any j > 1 coprime to 3,
so the same equations as in the above item are still true.

All in all, we get an embedding of the Selmer group into a smaller subset30 S′ of
polynomials:

Selϕ(E/K) ↪→ S′ :=
14∑
j=1

ajt
j : aj ∈ k, a3

14 = a14, aj = 0 if 3 | j ;
a11 = −a3

13, a8 = 0,
a5 = −a9

13, a2 = −a3
10,

a10 · (a9
7 − b3a7) = 0

.
There are 9 possibilities31 for a7, 3 choices for a14, and all the other coefficients are
determined by a1, a4, a10, a13 ∈ k. Thus |S′| = 3|k|2 · ( |k|︸︷︷︸

a10=0
a7 arbitrary

+ (|k| − 1) · 9).

Henceforth, we obtain

rk(E)/2 = 3n = 27 ⩽ dimF3 Selϕ(E/K) ⩽ log3 |S′| < 27.0948

which means dimF3 Selϕ(E/K) = 27 = rk(E)/2. Thanks to (3.4.33), we conclude that
the Tate–Shafarevich group X(E/K) is trivial in that case as well! ■

30Ideally, it should embed into a subspace, but we are not sure whether the condition a9
7 = b3a7 always

holds in the case where deg(y) = 15 (especially if a10 = 0).
31In general, if an element b ∈ F×

pn (for some odd prime p and some n ⩾ 1) satisfies NFpn /Fp
(b) = (−1)n+1

then #{ a ∈ Fp2n : ap2
= bp · a } = p2. Indeed, it suffices to show that any root a ∈ Fp of the separable

polynomial Xp2
− bpX belongs to Fp2n , which can done following the proof of lemma 3.1.27.
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Chapter 4
The family y2 = x3 + b + b′tm

In this chapter, we study how the rank of the elliptic curves y2 = x3 + b+ b′tm over Fq(t)
behaves as we vary m ⩾ 1 and fix b, b′ ∈ F×

q , where q is a power of a prime p ⩾ 5. Interesting
sphere packings associated to the narrow Mordell–Weil lattice of these curves were obtained
in [Shi91], when the characteristic is p ≡ −1 mod 6. After computing the L-function of
these curves (theorem 4.1.2 from section 4.1) in terms of triple Jacobi sums, we can actually
recover the results from [Shi91] (see remark 4.1.11).

However, the case of characteristic p ≡ 1 mod 6 was not discussed in the cited paper. We
show in section 4.2 (especially theorem 4.2.1) that under such a congruence condition on p,
the rank of the curves y2 = x3 + b+ b′tm over Fq(t) is uniformly bounded (by 68), and we
give more precise upper bounds in corollary 4.2.23. This is done by analyzing which Jacobi
sums (appearing in the L-function of these curves) are pure, i.e., some non-zero power is
an integer (see definition 4.2.5), using Stickelberger’s theorem 1.4.22. This gives us more
information about the geometric rank of these curves, which happens to be equal to the
rank of the curve over Fp2160(t) (see theorem 4.2.1).

D

Let k be a finite field of characteristic p ⩾ 5, let b, b′ ∈ k× and m ⩾ 1 be an integer. Let
E′
m,b,b′ be the elliptic curve over k(t) given by the short (affine) Weierstrass equation

E′
m,b,b′ : y2 = x3 + b+ b′tm (4.0.1)

It is a Delsarte elliptic curve in the sense of definition 1.3.36, when m is coprime to char(k).

When k ∼= Fq has q elements, we consider the narrow Mordell–Weil lattice L′
m,b,b′,q :=

E′
m,b,b′(Fq(t))0. These lattices were considered for b = b′ = 1 and some values of m, q in

[Shi91].

The j-invariant of E′
m,b,b′ is 0. In particular, E′

m,b,b′ is isotrivial (but it is not trivial over
k(t), see remark 4.2.2). Moreover, the Birch–Swinnerton-Dyer conjecture 1.3.34 holds for
E′
m,b,b′ over k(t), either by theorem 1.3.35 (or by theorem 1.3.40 when m is coprime to

char(k)).

We remind the reader that a list of symbols can be found at the end of this work, on
page 239. In particular, we will use the notations from definitions 1.4.1, 1.4.5 and 1.4.15;
for instance kj denotes the extension of degree j ⩾ 1 of a finite field k.
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4.1 · L-function of E ′m ,b ,b ′

We use the notation from section 1.4, especially definitions 1.4.1 and 1.4.12.

In order to state the main result about the L-function of E′
m,b,b′ , we introduce the following

notation.

Definition 4.1.1. 1. When 3 | #k×
s , we let ψks ∈ k̂×

s [3] be the restriction of Θ
#k×

s

3 to k×
s ,

where Θ denotes the Teichmüller character. In other words, ψks
has order exactly 3.

(We have ψks = θks,3,1, see also remark 1.4.19).

2. Assume that |k| ≡ 1 mod 3, so that ψks exists for every s ⩾ 1. Given ϵ ∈ {±1}, we define
maps

α′
b,b′,ϵ :

⊔
s⩾1

k̂×
s −→ C×

χ ∈ k̂×
s 7−→ λks(b)χ(−bb′−1)ψϵks

(−b)J(ψϵks
, χ, λks).

(4.1.1)

3. For ϵ ∈ {±1}, define

X(m, ϵ) :=
{
Z/mZ ∖ {0} if 6 ∤ m
Z/mZ ∖

{
0, ϵm6

}
if 6 | m.

⌟

An explicit expression of the L-function is now given in the following result, which will be
proved in subsection 4.1.2 in the case where |k| ≡ 1 mod 3 and subsection 4.1.3 in the case
where |k| ≡ −1 mod 3.

Theorem 4.1.2 (theorem F). Let k be a finite field of characteristic ⩾ 5, let b, b′ ∈ k×

and m ⩾ 1 be an integer coprime to |k|. Let E′
m,b,b′ be the elliptic curve over k(t) as in

equation (4.0.1).

1. If |k| ≡ 1 mod 3, then we have

L(E′
m,b,b′/k(t), T ) =

∏
ϵ∈{±1}

∏
[r]∈X(m,ϵ)/⟨|k|⟩×

(1− α′
b,b′,ϵ(θku(r),m,r)Tu(r))

where u(r) := u|k|,m(r) (see section 1.4), X(m, ϵ), α′
b,b′,ϵ are as in the above definition 4.1.1

and where [r] denotes the orbit of r ∈ Z/mZ under the action of the multiplication of
the powers of |k| on Z/mZ.

2. If |k| ≡ −1 mod 3, then we have1

L(E′
m,b,b′/k(t), T ) =

∏
[r]∈X(m,1)/⟨|k2|⟩×

(1− α′
b,b′,1(θk2u(r),m,r)T 2u(r))

where2 u(r) := u|k2|,m(r). ⌟

1Notice that we have |k2u(r)| ≡ 1 mod 3 for all r, so that α′
b,b′,1(θk2u(r),m,r) is well-defined (namely, the

character ψk2u(r) of order 3 on k2u(r) = k′
u(r) does exist, where k′ := k2).

2Note the difference with the case |k| ≡ 1 mod 3 where we had set u(r) := u|k|,m(r) (and not u(r) :=
u|k2|,m(r)).
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m,b,b′

Remark 4.1.3. 1. When m is not coprime to p := char(k), one may use the (proof of the)
second item of proposition 1.3.46 to determine the L-function of E′

m,b,b′ over k(t). More
precisely, let vp(m) be the p-adic valuation of m and set m1 := m/pvp(m). Let b1, b

′
1 ∈ k×

be the unique elements such that bp
vp(m)

1 = b and b′
1
pvp(m)

= b′ (recall that the p-th power
Frobenius map is a bijection on k; when b, b′ ∈ F×

p we may take b1 = b and b′
1 = b′).

Then the Frobenius morphism Frvp(m)
p : E′

m1,b1,b′
1
−→ E′

m,b,b′ is an isogeny over k(t), so
the curves have the same L-function. In particular (by proposition 1.3.41 or because
E′
m,b,b′ satisfies BSD conjecture 1.3.34), they also have the same algebraic rank.

2. When |k| ≡ 1 mod 3, the (analytic) rank of E′
m,b,b′ over k(t) is always even. (This is not

true if |k| ≡ −1 mod 3: when k = F5,m = 2, b = b′ = 1, the rank is 1).

Indeed, observe that for every multiplicative character χ, we have α′
b,b′,−1(χ) = α′

b,b′,1(χ),
where · denotes the complex conjugation. Moreover, we have θku(r),m,r = θku(r),m,−r
(and u(r) = u(−r)) and r ∈ X(m,−1) ⇐⇒ −r ∈ X(m, 1). Thus, we have
α′
b,b′,−1(θku(r),m,r) = |k|u(r) (i.e., this index r ∈ X(m,−1) has a contribution of +1

to the analytic rank) if and only if α′
b,b′,1(θku(r),m,−r) = |k|u(r).

3. As we have explained at the beginning of the proof of proposition 1.4.26, the coeffi-
cient α′

b,b′,ϵ(θku(r),m,r) appearing in theorem 4.1.2 does not depend on the choice of a
representative r of the orbit [r] ∈ X(m, ϵ)/⟨|k|⟩×. ⌟

4.1.1 Reduction types and local term at the inf ini te place

The places of bad reduction of E′
m,b,b′ are easily analyzed using Tate’s algorithm; the results

are actually already given in [Shi91, lemma 3.1].

Proposition 4.1.4. Consider the elliptic curve E′
m,b,b′ over k(t) as in equation (4.0.1).

Assume that m is coprime to char(k). Then the discriminant of the given Weierstrass
equation is −16 · 27(b′tm + b)2, and the bad places are given as follows.

• At places v | (b′tm+b), the reduction type of E′
m,b,b′ is II, so that cv = 1, v(∆v) = 2, fv = 2.

Moreover equation (4.0.1) is a minimal integral Weierstrass model of E′
m,b,b′ at v.

• At v =∞, let π := t−1 and a := ⌈m/6⌉. Then the change of variables (x, y) 7→ (x̃, ỹ) =
(π2ax, π3ay) gives a minimal integral Weierstrass model ỹ2 = x̃3 + bπ6a + b′π6a−m at v.
Morever the reduction of E′

m,b,b′ is:

– good if m ≡ 0 (mod 6).

– type II∗ if m ≡ 1 (mod 6), so cv = 1, v(∆v) = 10, fv = 2.

– type IV∗ if m ≡ 2 (mod 6), so v(∆v) = 8, fv = 2 and cv = 3 if b′ is a square in k.

– type I∗
0 if m ≡ 3 (mod 6), so v(∆v) = 6, fv = 2 and cv = 4 if −b′ has 3 cube roots

in k.

– type IV if m ≡ 4 (mod 6), so v(∆v) = 4, fv = 2 and cv = 3 if b′ is a square in k.

– type II if m ≡ 5 (mod 6), so cv = 1, v(∆v) = 2, fv = 2.

• All other places v are of good reduction, so that cv = 1 and fv = v(∆v) = 0.
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In particular, the degree of the minimal discriminant is deg
(

∆min(E′
m,b,b′/k(t))

)
= 2m+

2ϵ = 12⌈m/6⌉ and f(E′
m,b,b′/k(t)) = 2m+ 2δ, where ϵ ∈ {0, ..., 5} is such that ϵ ≡ 6−m

(mod 6), and δ = 0 if 6 | m and δ = 1 otherwise. ⌟

We state some more properties of E′
m,b,b′ as given in Shioda’s paper [Shi91].

Proposition 4.1.5. Let E′
m,b,b′ and k be as in proposition 4.1.4 (in particular, we assume

that gcd(m, char(k)) = 1).

1. The curve E′
m,b,b′ is isotrivial; in fact it has a constant sextic twist.

2. The torsion subgroup of E′
m,b,b′(k(t)) is trivial.

3. The index of the narrow Mordell–Weil lattice E′
m,b,b′(k(t))0 in E′

m,b,b′(k(t)) is equal to
c∞(E′

m,b,b′/k(t)). ⌟

Proof. –– 1. We have already seen that E′
m,b,b′ is isotrivial since its j-invariant is 0. If we

let u ∈ k(t) be such that u6 = b′tm + b then the change of variables (x, y) 7→ (x′ =
xu−2, y′ = yu−3) shows that E′

m,b,b′ is a sextic twist of the constant curve w2 = z3 + 1.

2. This is [Shi91, proposition 3.7].

3. This is [Shi91, corollary 4.7 and equation (3.5)]. ■

Consider the local term at v =∞ given by equation (1.3.9) (for any s ⩾ 1):

AE′
m,b,b′

(∞, ks) := |ks|+ 1− |(E′
m,b,b′)∞(ks)|.

When 6 | m, it can be expressed via Jacobi sums (introduced in definition 1.4.5).

Proposition 4.1.6. Let m ⩾ 1 be coprime to char(k). Then for every s ⩾ 1, we have
AE′

m,b,b′
(∞, ks) = 0 if 6 ∤ m, and if 6 | m we have

AE′
m,b,b′

(∞, ks) = −λks(b′)
∑

ψ∈k̂×
s [3]∖{1}

ψ(−b′)J(λks , ψ). ⌟

Proof. –– First, we note that the minimal integral Weierstrass model of E := E′
m,b,b′ at ∞

is y2 = x3 + bπ6α + b′π6α−m, where π := t−1, α := ⌈m/6⌉. By proposition 4.1.4, we know
that E has additive reduction at ∞ if 6 ∤ m, and good reduction otherwise. In particular, if
6 ∤ m then we get A(∞, ks) = 0 for every s ⩾ 1.

When 6 | m, then the reduction E′
∞ is y2 = x3 + b′, which implies that

AE′
m,b,b′

(∞, ks) = −
∑
x∈ks

λks(x3 + b′)

= −
∑
x′∈ks

∑
ψ∈k̂×

s [3]

λ(x′ + b′)ψ(x′)

= −λks
(b′)

∑
ψ∈k̂×

s [3]

ψ(−b′)J(λ, ψ).

Finally, we may run the sum over those characters ψ that are non-trivial, since a Jacobi
sum involving exactly one trivial character is 0 by proposition 1.4.6. ■
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4.1 – L-function of E′
m,b,b′

Let us assume that m is coprime to char(k). From proposition 4.1.4, we know that
equation (4.0.1) is a minimal integral model of E′

m,b,b′ at every place v ̸= ∞. Therefore,
proposition 1.3.29 yields

logL(E′
m,b,b′/k(t), T ) =

∑
s⩾1

cm,b,b′(s)T
s

s
(4.1.2)

where cm,b,b′(s) := AE′
m,b,b′

(∞, ks)−
∑
x,t∈ks

λks(x3 + b+ b′tm). (4.1.3)

We can express these coefficients cm,b,b′(s) in terms of Jacobi sums.

Proposition 4.1.7. Let k be a finite field of characteristic p ⩾ 5, fix b, b′ ∈ k× and let m ⩾ 1
be coprime to p. Then for all integers s ⩾ 1 one has:

cm,b,b′(s) = −λks(b)
∑

χm=1=ψ3

ψ,χ,χψλ̸=1

χ(−bb′−1)ψ(−b)J(χ, ψ, λks). ⌟

Proof. –– We first study the following sum (using proposition 1.4.3):∑
x,t∈ks

λks(x3 + b+ b′tm) =
∑

χ∈k̂×
s [m]

ψ∈k̂×
s [3]

∑
x′,z′∈ks

λ(x′ + b+ b′z′)χ(z′)ψ(x′)

x′ = −bx′′, z′ = −bz′′ → =
∑

χ∈k̂×
s [m]

ψ∈k̂×
s [3]

∑
x′′,z′∈ks

λ(−bx′′ + b− bb′z′′)χ(−bz′′)ψ(−bx′′)

x = x′′, z = b′z′′ → = λks(b)
∑

χ∈k̂×
s [m]

ψ∈k̂×
s [3]

χ(−bb′−1)ψ(−b)
∑

x,z∈ks

λ(−x+ 1− z)χ(z)ψ(x)

= λks
(b)

∑
χ∈k̂×

s [m]

ψ∈k̂×
s [3]

χ(−bb′−1)ψ(−b)J(χ, ψ, λks).

Note that this sum is 0 if 3 ∤ #k×
s , because in that case ψ has to be the trivial character

and the corresponding Jacobi sum vanishes. Moreover, we may run the sum over those
characters χ, ψ that are non-trivial, since a Jacobi sum involving a trivial character and the
Legendre symbol (which is non-trivial) is 0 by proposition 1.4.6.

We note that when χψλ = 1 and χ, ψ ̸= 1, then J(χ, ψ, λks) = −χ(−1)J(ψ, λks) by
proposition 1.4.6. If ψ ̸= 1, then ψ has order exactly 3, so that χ = ψ−1λ has order exactly
6 = lcm(3, 2) in which case we have 6 | m.

In other words, we have (using the identity χ(−bb′−1) = ψ−1λ(−bb′−1) when χψλ = 1)

λks(b)−1
∑
x,t∈ks

λks(x3 + b+ b′tm)

=
∑

χm=1=ψ3

ψ,χ,χψλ̸=1

λks(b)−1λks(x3 + b+ b′tm) +
∑

χm=1=ψ3

ψ,χ̸=1,χψλ=1

λks(b)−1λks(x3 + b+ b′tm)
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4 – The family y2 = x3 + b + b′tm

=
∑

χm=1=ψ3

ψ,χ,χψλ̸=1

χ(−bb′−1)ψ(−b′)J(χ, ψ, λks)− 16|m ·
∑

ψ3=1 ̸=ψ

λ(bb′−1)ψ(−b′)J(ψ, λks).

Finally, we get (using the identity λ(b′−1) = λ(b′))∑
x,t∈ks

λks(x3 + b+ b′tm) = λks(b)
∑

χm=1=ψ3

ψ,χ,χψλ̸=1

χ(−bb′−1)ψ(−b)J(χ, ψ, λks)

− 16|m ·
∑

ψ3=1 ̸=ψ

λ(b′)ψ(−b′)J(ψ, λks).

Combining this with proposition 4.1.6 finishes the proof. ■

4.1.2 Case |k | ≡ 1 (mod 3)
We now assume that |k| ≡ 1 (mod 3). In this case, the character ψks of order 3 (from
definition 4.1.1) exists for every s ⩾ 1.

For every s ⩾ 1, we have from proposition 4.1.7:

cm,b,b′(s) = −λks(b)
∑

ϵ∈{±1}

∑
χm=1

χ ̸=1,χ̸=λksψ
−ϵ
ks

χ(−bb′−1)ψϵks
(−b)J(χ, ψϵks

, λks)

= −
∑

ϵ∈{±1}

∑
χ∈k̂×

s [m]
χ ̸=1,χ̸=λksψ

−ϵ
ks

α′
b,b′,ϵ(χ)

using the notations from definition 4.1.1.

Now, the map α′
b,b′,ϵ satisfies the two hypothesis from proposition 1.4.26, thanks to the-

orem 1.4.7 and proposition 1.4.6; this is very similar to the beginning of the proof of
theorem 3.1.3 on page 124. To check the first hypothesis, note that |k| is odd so λ|k|

ks
= λks

and |k| ≡ 1 mod 3 implies (ψϵks
)|k| = ψϵks

, for all s ⩾ 1 and ϵ ∈ {±1}.

Using equation (4.1.2), the above expression for cm,b,b′(s) and proposition 1.4.26, we deduce
the result from theorem 4.1.2 in the case where |k| ≡ 1 mod 3. Note that when 6 | m, the
character χ := λks · ψ−ϵ

ks
∈ k̂×

s [m] is the restriction to k×
s of the character

Θ|k×
s |·
(1

2 − ϵ
3
)

= Θ|k×
s |· 3−2ϵ

6 = Θ|k×
s |· ϵ6

where the last equality can be checked for the two cases ϵ = +1 and ϵ = −1 (recalling that
Θ|k×

s | is trivial on k×
s ). This is why we removed the element ϵm/6 ∈ Z/mZ in the definition

of X(m, ϵ) when 6 | m, since the above expression of cm,b,b′(s) requires χ ̸= λks
ψ−ϵ
ks

.

4.1.3 Case |k | ≡ −1 (mod 3)
We now assume that |k| ≡ −1 (mod 3). In this case, we have c(s) = 0 for all odd s ⩾ 1, by
proposition 4.1.7, since there is no character of order exactly 3 on k×

s for all odd s ⩾ 1. Let
k′ = k2 be the quadratic extension of k.
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m,b,b′

Remark 4.1.8. If |k| ≡ −1 (mod 3), then for every s ⩾ 1, the characters λk′
s

and ψk′
s

are
trivial on k×. Since b, b′ ∈ k, we deduce that

α′
b,b′,ϵ(χ) = χ(−bb′−1)J(ψϵk′

s
, χ, λk′

s
),

which implies that the L-function will depend at most on bb′−1 and not on both b, b′. ⌟

Thus if we set c′
m,b,b′(s′) := cm,b,b′(2s′) for all s′ ⩾ 1, we have, in view of equation (4.1.2):

logL(E′
m,b,b′/k(t), T ) =

∑
s⩾1,s=2s′ even

cm,b,b′(s)T
s

s
=
∑
s′⩾1

c′
m,b,b′(s′)T

2s′

2s′ .

For all s′ ⩾ 1, we have by proposition 4.1.7

c′
m,b,b′(s′) = cm,b,b′(2s′) = −λk′

s′
(b)

∑
ϵ∈{±1}

∑
χm=1

χ ̸=1,λk′
s′
ψ−ϵ

k′
s′

χ(−bb′−1)ψϵk′
s′

(−b)J(χ, ψϵk′
s′
, λk′

s′
)

= −
∑

ϵ∈{±1}

∑
χm=1

χ ̸=1,λψ−ϵ

k′
s′

α′
b,b′,ϵ(χ).

Here we consider the restriction of α′
b,b′,ϵ to the characters in k̂′

s
× = k̂×

2s:

α′
b,b′,ϵ :

⊔
s⩾1

k̂′
s

× −→ C×.

Therefore, if we write u(r) := u|k′|,m(r), we get, following the proof of proposition 1.4.26:

logL(E′
m,b,b′/k(t), T ) =

∑
s′⩾1

c′(s′)T
2s′

2s′ = −
∑

ϵ∈{±1}

∑
s′⩾1

∑
χm=1

χ ̸=1,λψ−ϵ

k′
s′

α′
b,b′,ϵ(χ)T

2s′

2s′

= −
∑

ϵ∈{±1}

∑
r∈X(m,ϵ)

∑
s′∈u(r)Z>0

α′
b,b′,ϵ(θk′

s′ ,m,r
)T

2s′

2s′

= −
∑

ϵ∈{±1}

∑
r∈X(m,ϵ)

∑
ν⩾1

α′
b,b′,ϵ(θk′

u(r),m,r
)ν (T 2u(r))ν

2u(r)ν

= 1
2
∑

ϵ∈{±1}

∑
[r]∈X(m,ϵ)/⟨|k′|⟩

log
(
1− α′

b,b′,ϵ(θk′
u(r),m,r

)T 2u(r)).
This yields the following intermediate result.

Lemma 4.1.9. Let k be a finite field of characteristic ⩾ 5 such that |k| ≡ −1 (mod 3). Let
b, b′ ∈ k× and m ⩾ 1 be coprime to char(k). Let k′ = k2 be the quadratic extension of k.
Then we have

L(E′
m,b,b′/k(t), T )2 =

∏
ϵ∈{±1}

∏
[r]∈X(m,ϵ)/⟨|k′|⟩

(1− α′
b,b′,ϵ(θk′

u(r),m,r
)T 2u(r)) (4.1.4)

where u(r) = u|k′|,m(r). ⌟
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We explain how to express the L-function itself and not just its square. Fix ϵ ∈ {±1}.

• First of all, for any finite extension F of k′ = k2 and any character χ ∈ F̂×, we get from
proposition 1.4.6

J(χ, ψϵF , λF ) = G(ψϵF )G(λF )G(χ)
G(ψϵFλFχ) = J(ψϵF , λF ) · J(ψϵFλF , χ) (4.1.5)

whenever χ ̸= ψ−ϵ
F λF (and we have ψϵFλF ̸= 1 anyway).

Since we assumed that |k| ≡ −1 (mod 3), then we can apply Hasse–Davenport relation
and Tate–Shafarevich theorem 1.4.8 to study the Jacobi sum J(ψϵk2u(r)

, λk2u(r)), where
u(r) = u|k′|,m(r). Consider the following field extensions:

ku(r) k2u(r)

k k2

⊂

⊂

⊂ ⊂
We have

J(ψϵk2u(r)
, λk2u(r)) = J(ψϵk2

◦Nk2u(r)/k2 , λk2 ◦Nk2u(r)/k2) proposition 1.4.17

= −
(
− J(ψϵk2

, λk2)
)u(r) theorem 1.4.7

= −(−|k|)u(r) theorem 1.4.8

where the last step uses Tate–Shafarevich lemma and the fact that the restrictions of
ψϵk2

, λk2 to k× are both trivial (the triviality of ψk2 on k× requires3 the assumption
|k| ≡ −1 (mod 3)). In particular, J(ψϵk2u(r)

, λk2u(r)) is always an integer when |k| ≡ −1
(mod 3), hence a real number, that is: it is invariant under complex conjugation.

• Secondly, we claim that if q := |k| ≡ −1 (mod 3) then

J(ψϵk′
s
λk′

s
, χ) = J(ψϵk′

s
λk′

s
, χg) (4.1.6)

for any character χ : k′
s

× → C× of order dividing m (i.e., χ ∈ k̂′
s

×[m]), where g :=
(−q)−1 mod m (recall that we assume that gcd(m, char(k)) = 1).

Indeed, we first note that χ(x) = χ−1(x) = χg·q(x) = χg(xq) for every x ∈ k×
s , since

g · q ≡ −1 mod m. Moreover, we have λq = λ = λ−1 since q is odd, and ψq = ψ−1 since
ψ ∈ k̂×

s has order 3 and q ≡ −1 mod 3. Therefore, (ψϵλ)q = (ψϵλ)−1 and hence

J(ψϵk′
s
λk′

s
, χ) =

∑
x∈k′

s

(ψϵk′
s
λk′

s
)−1(1− x) · χ(x)

=
∑
x∈k′

s

(ψϵk′
s
λk′

s
)(1− xq) · χg(xq)

=
∑
x′∈k′

s

(ψϵk′
s
λk′

s
)(1− x′) · χg(x′)

= J(ψϵk′
s
λk′

s
, χg).

3Indeed, if |k| ≡ −1 (mod 3), then the map k× → k× given by x 7→ x3 is injective and hence surjective, so
that all elements of k are cubes, which implies that ψk2 is trivial on k×.
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Observe that ψϵk′
s
(−b) = 1 since b ∈ k× and ψk′

s
is trivial on k× whenever |k| ≡ −1 (mod 3).

As a result of the above two items, for every χ ∈ k̂′
s

×[m] we get, using remark 4.1.8:

α′
b,b′,ϵ(χ) = χ(−bb′−1)J(ψϵk′

s
, λk′

s
) · J(ψϵk′

s
λk′

s
, χ) by equation (4.1.5)

= χg((−bb′−1)q)J(ψϵk′
s
, λk′

s
) · J(ψϵk′

s
λk′

s
, χg) by equation (4.1.6)

= α′
b,b′,ϵ(χg) (since b, b′ ∈ k×).

where g := (−q)−1 mod m and q := |k|. Note also that α′
b,b′,−1(χ) = α′

b,b′,1(χ), where ·
denotes the complex conjugation. Therefore, we get∏

[r]∈X(m,−1)/⟨|k′|⟩

(1− α′
b,b′,−1(θk′

u(r),m,r
)T 2u(r))

=
∏

[r]∈X(m,−1)/⟨|k′|⟩

(1− α′
b,b′,1(θ−1

k′
u(r),m,r

)T 2u(r))

=
∏

[r]∈X(m,−1)/⟨|k′|⟩

(1− α′
b,b′,1(θ−g

k′
u(r),m,r

)T 2u(r))

=
∏

[r]∈X(m,−1)/⟨|k′|⟩

(
1− α′

b,b′,1(θk′
u(q−1r)

,m,q−1r)T 2u(q−1r))
=

∏
[r′]∈X(m,1)/⟨|k′|⟩

(1− α′
b,b′,1(θk′

u(r′),m,r
′)T 2u(r′)),

where u(x) = uq2,m(x) and we have set r′ := q−1r (mod m) in the last line. Note that
q−1 ≡ −1 (mod 6) (since q := |k| is odd and q ≡ −1 mod 3), so we have q−1X(m,−1) =
X(m, 1).

Henceforth, from equation (4.1.4) we get

L(E′
m,b,b′/k(t), T )2 =

∏
[r]∈X(m,1)/⟨|k′|⟩

(1− α′
b,b′,1(θk′

u(r),m,r
)T 2u(r))2

Because the L-function has a constant coefficient equal to 1, we finally conclude

L(E′
m,b,b′/k(t), T ) =

∏
[r]∈X(m,1)/⟨|k′|⟩

(1− α′
b,b′,1(θk′

u(r),m,r
)T 2u(r))

which finishes the proof of theorem 4.1.2 in the case |k| ≡ −1 mod 3.

4.1.4 Some consequences and sphere packings

In characteristic p ≡ 1 mod 3, we cannot apply Tate–Shafarevich theorem 1.4.8 to get large
analytic rank of E′

m,b,b′ over Fp(t), since the character ψku(r) appearing in the L-function
(see theorem 4.1.2) is not trivial on k = Fp. In fact, the rank will actually be bounded when
m ⩾ 1 varies, as we will show in theorem 4.2.1.

However, when k has characteristic p ≡ −1 mod 3, we can recover Shioda’s result from
[Shi91, theorem 1.2].

Corollary 4.1.10. Let p ⩾ 5 be a prime and m ⩾ 1 be an integer coprime to p. Assume that
there is some integer ν > 0 such that pν ≡ −1 mod d(m) where d(m) := lcm(6,m). Let
k = Fp2ν and let b, b′ ∈ F×

pν .
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4 – The family y2 = x3 + b + b′tm

Then the (analytic) rank of E′
m,b,b′ over k(t) equals

ρ =
{

2m− 4 if 6 | m
2m− 2 if 6 ∤ m

and the L-function is L(E′
m,b,b′/k(t)) = (1− |k|T )ρ. In particular, the geometric rank of

E′
m,b,b′ is equal to ρ. ⌟

Proof. –– From theorem 4.1.2, using the fact that |k| = p2ν ≡ 1 mod 3, we know that the
analytic rank is

ρ(E′
m,b,b′/k(t)) =

∑
ϵ∈{±1}

#
{

[r] ∈ X(m, ϵ)
/
⟨|k|⟩ : α′

b,b′,ϵ(θku(r),m,r) = |k|u(r)
}
.

where u(r) := u|k|,m(r) = 1 for all r, since pν ≡ −1 mod m.

Let k′ := Fpν ⊂ k and fix r ∈ X(m, ϵ). The assumption implies that pν ≡ −1 mod 3 so it
forces ν to be odd (and p ≡ −1 mod 6). By the second item of lemma 1.4.30 (applied to
d = m and c = ν), we know that if r ̸= m/2 when m is even, then θk,m,r is trivial on k′, so
θk,m,r(−bb′−1) = 1. If m is even and r = m/2, then θk,m,r = λk is the Legendre symbol,
and b, b′ ∈ k′ are necessarily squares in k, so we also have that θk,m,r is trivial on k′ (so
θk,m,r(−bb′−1) = 1) in that case. Moreover, we always have λk(b) = 1 since b ∈ k′.

Finally, since pν ≡ −1 mod 3, any element of F×
pν is a cube in F×

pν ; in particular −b is a
cube in k′ and hence in k. Because ψk has order 3, it follows that ψk is trivial on k′; in
particular ψϵk(−b) = 1. Therefore we find

α′
b,b′,ϵ(θk,m,r) = J(ψϵk ; θk,m,r ; λk) = G(ψϵk) ·G(θk,m,r) ·G(λk) ·G(χ)−1, (4.1.7)

where χ := ψϵk · θk,m,r · λk is non-trivial since r ̸= ϵm/6 if 6 | m (recall that r ∈ X(m, ϵ)), so
we have been able to apply proposition 1.4.6. From the above discussion, we have seen that
the four characters ψϵk ; θk,m,r ; λk and χ are trivial on k′. Therefore, Tate–Shafarevich
theorem 1.4.8, together with (4.1.7), imply that α′

b,b′,ϵ(θk,m,r) = |k| for all r ∈ X(m, ϵ).
Therefore, we find4

ρ(E′
m,b,b′/k(t)) =

∑
ϵ∈{±1}

#X(m, ϵ)

since |k| = p2ν ≡ 1 mod m acts trivially (by multiplication) on Z/mZ. Therefore, we get
the claimed formula for the rank (recall also that E′

m,b,b′ satisfies the Birch–Swinnerton-
Dyer conjecture 1.3.34, so analytic and algebraic ranks agree).

The asserted expression of the L-function is also clear from here. Finally, the geometric rank
must be equal to r, as it can be seen by repeating the argument with any finite extension
kn of k (the key point is that |kn| ≡ 1 mod lcm(3,m)). Alternatively, one may argue using
the bound (1.3.12) from remark 1.3.33: we have ρ(E′

m,b,b′/k(t)) = f(E′
m,b,b′) − 4, using

proposition 4.1.4. ■

4Similarly, using theorem 4.1.2, we find ρ(E′
m,b,b′/Fpν (t)) =

∣∣X(m, 1)/⟨p2ν⟩
∣∣ = |X(m, 1)|.
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4.1 – L-function of E′
m,b,b′

Remark 4.1.11. We can recover some results from Shioda’s work [Shi91], and give more
computations for the packing densities of these Mordell–Weil lattices L′

m,b,b′,p2e , where
pe ≡ −1 (mod lcm(6,m)) and b, b′ ∈ F×

pe . Note that pe ≡ −1 mod 3 ensures that any
element in F×

pe (for instance −b′) has 3 cube roots, and moreover we know that b, b′

are squares in k := Fp2e . Thus the Tamagawa number c∞ of E′
m,b,b′ at v = ∞ is as

indicated in proposition 4.1.4. From corollary 4.1.10 we know that L∗(E′
m,b,b′/k(t)) = 1

and proposition 4.1.5 ensures that E′
m,b,b′(k(t)) is torsion-free. Thus, by proposition 2.1.1,

we get a lower bound on the center packing density of L′
m,b,b′,p2e given by

δ(L′
m,b,b′,p2e) ⩾ (∆/24)r/2

c
1/2
∞ · |k|∆/24−1/2

where ∆ := deg
(

∆min(E′
m,b,b′/k(t))

)
is given in proposition 4.1.4 and r := rk(L′

m,b,b′,p2e)
is given in corollary 4.1.10. In particular, when 6 | m, we get ∆ = 2m, r = 2m− 4, c∞ = 1
so that

δ(L′
m,b,b′,p2e) ⩾ (m/12)m−2

p2e(m/12−1/2) .

When the rank r goes to infinity, the (non-normalized) packing density satisfies an asymptotic
lower bound

D(L′
m,b,b′,p2e) ⩾ r− r

12 (1+o(1)),

which is consistent with theorem 2.3.1, since by proposition 4.1.4 the Szpiro ratio of E′
m,b,b′

tends to 1, and by corollary 4.1.10, Brumer’s bound is asymptotically achieved. It can be
improved in some cases using better lower bounds on the size of the Tate–Shafarevich group,
see remark 2.3.6.

Here are few examples of dense Mordell–Weil lattices L′
m,b,b′,p2e where b, b′ ∈ F×

pe , when p

is small and e = 1 (see also remark 3.5 in [Shi91]):

m p rk(L′
m,b,b′,p2) δ(L′

m,b,b′,p2e)
2 5 2 1

2
√

3 = δ(A2)
3 5 4 1

8 = δ(D4)
4 11 6 1

8
√

3 = δ(E6)
6 5 8 1

16 = δ(E8)
5 29 8 1

16 = δ(E8)
12 11 20 1

11 < δ(Λ20) = 1
8

When p = 17,m = 18, the 32-dimensional narrow Mordell–Weil lattice has center density
log2(δ) = 1.184, a bit worse than the Quebbemann lattice Q32 which has log2(δ) = 1.359.

Here is a table giving more examples of dense Mordell–Weil lattices L′
m,b,b′,p2e where

b, b′ ∈ F×
pe . In some dimensions, they are the densest sphere packings known so far in their

respective dimensions if the rank is ⩽ 980 (in particular, they have a greater density than
Keith Ball’s lower bound from theorem 1.2.16; in dimensions 1004,1016 and 1040 they still
achieve a density greater than Minkowski’s lower bound from theorem 1.2.15).
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4 – The family y2 = x3 + b + b′tm

m p e rank log2(δ) ⩾
21 41 1 40 2.9273
24 23 1 44 8.4293
30 29 1 56 17.5821
36 71 1 68 23.14
38 113 1 74 25.1586
42 41 1 80 40.1489
48 47 1 92 53.1179
54 53 1 104 67.0127
57 113 1 112 67.6464
60 59 1 116 81.728
63 5 3 124 81.8269
69 137 1 136 96.6991
72 71 1 140 113.3002
80 239 1 158 118.2773
84 83 1 164 147.3276
87 173 1 172 144.9078
90 89 1 176 165.1461
96 191 1 188 168.3386
99 197 1 196 179.6185
102 101 1 200 202.2149
108 107 1 212 221.4071
114 113 1 224 241.0047
126 5 3 248 281.3317
132 131 1 260 302.0242
138 137 1 272 323.0477
147 293 1 292 334.3288
150 149 1 296 366.0307
168 167 1 332 432.6609
174 173 1 344 455.4031
180 179 1 356 478.3959
192 191 1 380 525.0997
198 197 1 392 548.7956

m p e rank log2(δ) ⩾
210 419 1 416 562.7234
216 431 1 428 586.0599
222 443 1 440 609.5979
225 449 1 448 624.5446
228 227 1 452 670.4493
234 233 1 464 695.3742
240 239 1 476 720.4851
252 251 1 500 771.2461
258 257 1 512 796.8875
264 263 1 524 822.6976
270 269 1 536 848.6723
282 281 1 560 901.1013
294 293 1 584 954.1469
312 311 1 620 1034.817
318 317 1 632 1061.9892
348 347 1 692 1199.8503
354 353 1 704 1227.8059
360 359 1 716 1255.8843
384 383 1 764 1369.3844
390 389 1 776 1398.0466
402 401 1 800 1455.7034
420 419 1 836 1542.9947
432 431 1 860 1601.7081
444 443 1 884 1660.8235
450 449 1 896 1690.5285
462 461 1 920 1750.2265
468 467 1 932 1780.217
480 479 1 956 1840.475
492 491 1 980 1901.0946
504 503 1 1004 1962.0669
510 509 1 1016 1992.6828
522 521 1 1040 2054.1686

⌟

Remark 4.1.12. The elliptic curves E : y2 = x3 + tp
e − t over Fp2e(t) from [GU20] have

narrow Mordell–Weil lattices with the same lower bound on the packing density as the
lattices L′

pe+1,b,b′,p2e , when pe ≡ −1 mod 12 (and the same rank, namely 2(pe − 1)).

Note that they are both sextic twists of the same constant curve (in particular both are
isotrivial), but it does not mean that those two curves are sextic twists of one another (they
are only twists of each other over a compositum LL′ where [L : K] = [L′ : K] = 6). The
two curves E and E′

pe+1,1,1 are not isogenous over K since their conductors are different
(they do not have the same places of bad reduction, as v := t = 0 shows). However the
degree of the conductor is the same in both cases (namely 2(pe + 1)). ⌟
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4.2 – Bounded ranks in characteristic p ≡ 1 mod 3

4.2 · Bounded ranks in characterist ic p ≡ 1 mod 3
We have seen in corollary 4.1.10 that in given characteristic p ≡ −1 mod 3, the rank of
E′
m,b,b′ over5 Fp2e(t) (hence over Fp(t)) can get arbitrarily large as we vary m ⩾ 1. The

situation is not the same when p ≡ 1 mod 3. In this section, we are going to prove the
following result (see subsection 4.2.3).

Theorem 4.2.1 (theorem G). For any finite field k of characteristic p ≡ 1 (mod 3), for all
b, b′ ∈ k× and all integers m ⩾ 1 (not necessarily coprime to p), the rank of the elliptic
curve E′

m,b,b′ : y2 = x3 + b+ b′tm over k2160(t) is equal to its geometric rank and is at most
68 (where kn ⊂ k denotes the extension of degree n as in definition 1.4.1).

Moreover, if m is divisible by 360, then the rank of the elliptic curve E′
m,b,b′ over k2160(t) is

equal to 68. ⌟

Remark 4.2.2. • Equivalently, by proposition 1.3.46, this means that the curve y2 = x3 +
b + b′t360 has rank 68 in the "Kummer family" of function fields Fp2160(t1/m′) for all
m′ ⩾ 1, whenever p ≡ −1 mod 3.

• The geometric rank does not depend on the coefficients b, b′ by remark 1.3.39.

• To our knowledge, this is the first explicit example of an (isotrivial) elliptic curve with
constant non-zero rank on this Kummer family of function fields of positive characteristic.
At the end of [Ulm07a, §6.6], it was conjectured that for all primes p there are elliptic
curves6 over Fp(t) which have bounded Mordell-Weil ranks in the "tower" Fp(t1/d). It
was proved for p ∈ {2, 3, 5, 7, 11} in [Ulm07a, theorem 6.2] with (non-isotrivial) curves of
rank 0. The work [Ber12, theorem 1.2] seems to answer the conjecture from [Ulm07a,
§6.6], but here the (non-isotrivial) curves given in that work have rank 0.

• Note that theorem 4.2.1 involves the isotrivial elliptic curve E′
m,b,b′ , which is not trivial

over k(t1/m), for any m ⩾ 1 coprime to char(k). Indeed, it is trivial if and only if there
is some u = f

g ∈ k(t) such that 1 + tm = u6, where f, g ∈ k[t] are coprime. This yields
g6 · (1 + tm) = f6 ∈ k[t] so that for all non-zero prime ideals p ⊴ k[t], the p-adic valuation
of 1 + tm is divisible by 6 and is non-negative. This means that 1 + tm = u6 for a
polynomial u(t) ∈ k[t]. Then taking derivatives on both sides yields 6u5u′ = mtm−1 so
that the only factors of u(t) are powers of t, i.e. u(t) = αtd for some α ∈ k× and d ⩾ 1.
But then the equality 1 + tm = u(t)6 does not hold (as evaluating at t = 0 shows). ⌟

Remark 4.2.3. The work [Shi86, theorem 1] provides an algorithm to compute the geometric
rank of any Delsarte elliptic curve (see definitions 1.3.11 and 1.3.36), as we will explain
later in remark 4.2.33.

In particular, it is proved that y2 = x3 + 1 + tm has rank ⩽ 68 over C(t), and this is an
equality if and only if 360 | m; see [SS19, theorem 13.26] and [Hei11, §4.1, p. 26]. This
holds also over Fp(t) provided that p ≡ 1 mod lcm(6,m) (see the works [Usu01, p. 65] and

5What matters here is the characteristic, not the size of the base field, which is p2e ≡ +1 mod 3 here!
6Non-isotriviality is probably assumed, or at the very least non-triviality over Fp(t1/d) for any d > 0. If we
take E′ : y2 = x3 + t over Fp(t), then E′ is isotrivial and not trivial, but it becomes trivial over k(t1/6),
so the rank is obviously bounded in the family of fields k(t1/m) (and the rank is 0 whenever 6 | m by
remark 2.4.1).
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4 – The family y2 = x3 + b + b′tm

[Usu00, Usu06, Usu08]; the point is that the sets B2
d(p) and B2

d defined in [Shi86, equations
(2.7), (2.8)] are equal when p ≡ 1 mod d, see also [Shi86, theorem 7]).

But for fixed p, the condition p ≡ 1 mod lcm(6,m) is quite restrictive since this leaves us
with finitely many m (while we want m ⩾ 1 to vary among all positive integers!). In some
sense, we will show that the condition p ≡ 1 mod 3 suffices. Moreover, our approach allows
to study the (analytic) rank of E′

m,b,b′ over k(t) when k is a finite field, see corollary 4.2.23
(as opposed to when k is algebraically closed, which only gives the geometric rank). ⌟

Remark 4.2.4. We point out that the parity condition in from theorem 1.3.48 is not satisfied
here, by proposition 4.1.4, which is indeed expected since the rank is bounded in the Kummer
family {E′

m,b,b′/k(t) : m ⩾ 1 } if char(k) ≡ 1 mod 3. ⌟

4.2.1 Pure Jacobi sums and geometr ic rank of el l ipt ic curves

We start with the notion of pure exponential sum. Throughout, we fix a field embedding
Q ↪→ C.

Definition 4.2.5. 1. Given an integer n ⩾ 1, we say that a complex number z is pure of
degree n if z ̸= 0 and zn ∈ R is a real number. We say that z is pure if it is pure of
degree n for some integer n ⩾ 1. (In particular, z2n is equal to the positive real number
|z|2n).

2. For a field K, we denote by µ∞(K) ⊂ K× the subgroup of all roots of unity and by
µn(K) := K×[n] ⩽ K× the subgroup of n-th roots of unity. When K = C or K = Q we
simply write µ∞ and µn respectively. ⌟

Remark 4.2.6. If z ∈ C is pure, then there exists some integer n ⩾ 1 such that
(
z

|z|
)n ∈

S1 ∩R = {±1}, where S1 ⊂ C denotes the unit circle. This implies that z = ζ|z| where ζ is
some (2n)-th root of unity. In particular, if the modulus |z| is an integer, then z2n = |z|2n
is a positive integer. ⌟

Lemma 4.2.7. Let k be a finite field. Let E be a non-constant elliptic curve over k(t) which
satisfies the Birch–Swinnerton-Dyer conjecture 1.3.34 over kn(t) for any n ⩾ 1. Let us
write its L-function as L(E/k(t), T ) =

∏D
j=1(1− ωjT ) where ωj ∈ Q is a |k|-Weil number

of weight 1, for each j ∈ {1, ..., D} (as allowed by theorem 1.3.30).

Define the set
P := { j ∈ {1, ..., D} : ωj pure }

and let N ⩾ 1 be an integer7 such that ωNj ∈ Z>0 for each j ∈ P .

Then the geometric rank of E over k(t) is given by

rkZE(k(t)) = rkZE(kN (t)) = |P |. ⌟

Proof. –– Since E is non-constant, the group E(k(t)) is finitely generated, and so there is
some integer M ⩾ 1 such that E(k(t)) = E(kM (t)). Let s0 = lcm(M,N)/N so that N · s0

7Such an integer exists since |ωj | = |k| ∈ Z>0 for all j, so that remark 4.2.6 applies.

206
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is a multiple of M ; in particular we have E(k(t)) = E(kN ·s0(t)) and hence rkZE(k(t)) =
rkZE(kNs0(t)).

Let s ⩾ 1 be an arbitrary integer. Since the ωj ’s are |k|-Weil number of weight 1, for
each j ∈ P we must have ωN ·s

j = |k|N ·s. On the other hand, if j ̸∈ P , then ωN ·s
j ≠ |k|N ·s,

because ωj is not pure.

Since E/kN ·s(t) satisfies the BSD conjecture, it follows that, using proposition 1.3.43:

rkZE(kN ·s(t)) = ord
T=|kNs|−1

L(E/kNs(t), T ) = |P |.

In particular, applying the above equality to s = s0 and s = 1, we get

rkZE(k(t)) = rkZE(kNs0(t)) = |P | = rkZE(kN (t))

as desired. ■

In some cases, we can say a bit better, as the next lemma explains.

Lemma 4.2.8. Let k be a finite field and E be a non-constant elliptic curve over k(t) which
satisfies the Birch–Swinnerton-Dyer conjecture 1.3.34. Assume that the L-function takes
the form

L(E/k(t), T ) =
D′∏
r=1

(1− α(r)Tu(r))

for some α(r) ∈ Q, some integers u(r) ⩾ 1 and some D′ ⩾ 1, (note that we have |α(r)| =
|k|u(r) for all r). Let P = { r ∈ {1, ..., D′} : α(r) is pure } and for all r ∈ P , fix an integer
M(r) ⩾ 1 such that α(r)M(r) ∈ Z>0 . Let N ⩾ 1 is an integer such that

∀r ∈ P, M(r)
∣∣∣ N

gcd(N, u(r)) . (4.2.1)

Then the rank of E over kN (t) equals
∑
r∈P gcd(N, u(r)). In particular, if N ⩾ 1 satisfies

∀r ∈ P, M(r) · u(r) | N, (4.2.2)

then the geometric rank is equal to the rank of E over kN (t), which is equal to
∑
r∈P u(r). ⌟

We first explicitly write the L-function of the base change:

Lemma 4.2.9. Assume that the L-function of an elliptic curve E over k(t) takes the form

L(E/k(t), T ) =
D′∏
r=1

(1− α(r)Tu(r))

for some parameters α(r) ∈ C, u(r) ∈ Z⩾1. Then for all N ⩾ 1 we have

L(E/kN (t), T ) =
D′∏
r=1

(
1− α(r)

N
gcd(N,u(r))T

u(r)
gcd(N,u(r))

)gcd(N,u(r))
. ⌟
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Proof. –– Let us write α(r) = |α(r)|eiθ(r) for some unique θ(r) ∈ [0, 2π[ so that

L(E/k(t), T ) =
D′∏
r=1

u(r)∏
j=1

(1− |α(r)|
1

u(r) e
iθ(r)
u(r) ζju(r)T )

where ζu(r) := exp(2πi/u(r)). Therefore proposition 1.3.43 yields

L(E/kN (t), T ) =
D′∏
r=1

u(r)∏
j=1

(1− |α(r)|
N
u(r) e

iNθ(r)
u(r) ζN ·j

u(r)T ).

Note that ζNu(r) is a primitive root of unity of order u′(r) := u(r)
gcd(u(r),N) , so we get

L(E/kN (t), T ) =
D′∏
r=1

u(r)
gcd(u(r),N)∏

j=1

(
1− |α(r)|

N
u(r) e

iNθ(r)
u(r) ζN ·j

u(r)T
)gcd(u(r),N)

.

Finally, note that

|α(r)|
N
u(r) e

iNθ(r)
u(r) = |α(r)|

N/ gcd(u(r),N)
u(r)/ gcd(u(r),N) · e

iNθ(r)/ gcd(u(r),N)
u(r)/ gcd(u(r),N)

= |αN (r)|
1

u(r)/ gcd(u(r),N) · e
iθN (r)

u(r)/ gcd(u(r),N)

where αN (r) := α(r)
N

gcd(u(r),N) and θN (r) := N
gcd(N,u(r))θ(r). Set ζu′(r) := ζNu(r) =

exp
(
2πiN/ gcd(u(r),N)

u′(r)
)
, which is a primitive u′(r)-th root of unity. We finally get

L(E/kN (t), T ) =
D′∏
r=1

u′(r)∏
j=1

(
1− |αN (r)|

1
u′(r) e

iθN (r)
u′(r) ζju′(r)T

)gcd(u(r),N)

=
D′∏
r=1

(
1− αN (r)Tu

′(r))gcd(u(r),N)
,

since αN (r) = |αN (r)| · ei·θN (r), which gives the claimed identity. ■

Proof of lemma 4.2.8. –– For every integer H ⩾ 1, the analytic rank over kH(t) is given
by the order of vanishing of L(E/kH(t), T ) at T = |kH |−1 = |k|−H . Moreover, observe that
for any integers q, v ⩾ 1, the polynomial 1− (qT )v vanishes with order 1 at T = q−1, while
(1− qT )v vanishes with multiplicity v (just take derivatives with respect to T ).

Let N ⩾ 1 be such that (4.2.1) holds, and let H = c ·N ⩾ 1 be a multiple of N . Note that
H

(H,u(r)) = cN
(cN,u(r)) is a multiple of cN

(cN,cu(r)) = N
(N,u(r)) , hence a multiple of M(r), for any

r ∈ P . From lemma 4.2.9, we know that the analytic rank of E over kH(t) is

ρ(E/kH(t)) =
D′∑
r=1

gcd(H,u(r)) · 1
(
α(r)

H
(H,u(r)) = |kH |

u(r)
(H,u(r)) )

)
.

We can run the above sum over r ∈ P , because when r ̸∈ P , no non-zero power of α(r) can
be an integer. Since H

(H,u(r)) is a multiple of M(r) for all r ∈ P , and α(r)M(r) = |k|u(r)·M(r),
we get

ρ(E/kH(t)) =
∑
r∈P

gcd(H,u(r)).
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In particular, if N is a multiple of u(r) for any r ∈ P (i.e., it satisfies (4.2.2)), then the rank
of E over kc·N (t) equals

∑
r∈P u(r) for any c ⩾ 1, so it is equal to the geometric rank of

E. ■

Remark 4.2.10. In the specific cases of the curves Em,b,b′ and E′
m,b,b′ we consider, one can

prove lemma 4.2.9 in a different way, using the Hasse–Davenport relation from theorem 1.4.7
(and without using proposition 1.3.43).

Assume that there is some subset X(d) ⊂ Z/dZ (for some d ⩾ 1) such that for every finite
extension k′/k, the L-function is written as

L(E/k′(t), T ) =
∏

[r]∈X(d)/⟨|k′|⟩×

(
1− α(θk′

u(r),d,r
)Tu(r)

)
,

where u(r) := u|k′|,d(r) and α :
⊔
n⩾1 k̂

×
n → C is a map satisfying the 2 conditions from

proposition 1.4.26. The above formula applied to kN (t) yields

L(E/kN (t), T ) =
∏

[r]∈X(d)/⟨|k′|⟩

(
1− α(θk′

u′(r),d,r
)Tu

′(r)
)

where k′ := kN and

u′(r) := u|k′|,d(r) = ord ×
(
|k′| mod r

(d, r)

)
= u(r)

(N, u(r)) .

Therefore k′
u′(r) = k N·u(r)

(N,u(r))
is an extension of ku(r) of degree N

(N,u(r)) . By proposition 1.4.17
and by property 2 of α in proposition 1.4.26, we deduce that

L(E/kN (t), T ) =
∏

[r]∈X(d)/⟨|k′|⟩

(
1− α(θku(r),d,r)

N
(N,u(r))Tu

′(r)
)

=
∏

[r]∈X(d)/⟨|k′|⟩

(
1− α(θku(r),d,r)

N
(N,u(r))T

u(r)
(N,u(r))

)
=

∏
[r]∈X(d)/⟨|k|⟩

(
1− α(θku(r),d,r)

N
(N,u(r))T

u(r)
(N,u(r))

)(N,u(r))

where the last step follows because, if we let q = |k|, then the ⟨q⟩-orbit of each r ∈ X(d)
splits into gcd(N, u(r)) ⟨qN ⟩-orbits. Indeed,

# orb⟨qN ⟩(r) = #{r, qNr, q2Nr, ...} = uqN ,d(r) = uq,d(r)
(N, uq,d(r))

=
# orb⟨q⟩(r)
(N, uq,d(r))

. ⌟

In view of lemma 4.2.7 and of the fact that the L-function of E′
m,b,b′ is expressed in terms

of Jacobi sums (by theorem 4.1.2), it makes sense to study when those sums are pure. This
is possible thanks to Stickelberger’s theorem 1.4.22. We recall from definition 1.4.1 that
x ∈ [0, 1[ denotes the fractional part of a real number x.

A statement for Gauss sums analogous to the next lemma is given in [Aok12, proposition
4.4], [Aok04, 2.3], and in [Aok97, proposition 3.1] for Jacobi sums (but the proof is not
self-contained there and not as complete as ours).
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4 – The family y2 = x3 + b + b′tm

Lemma 4.2.11. Let k = Fq be a finite field where q = pe for some prime p and some
e ⩾ 1. Let n ⩾ 1, D ⩾ 2 be integers8 such that gcd(D, p) = 1 and n is odd. Let
a⃗ = (a1, ..., an) ∈ (Z/DZ ∖ {0})n be such that an+1 := −

∑n
i=1 ai ̸= 0. Consider the

character ωq,D on k×
ord(q mod D) of order m as in definition 1.4.20 and define the map

β′ : (Z/DZ)× → Z, t 7→ βq,D(t · a⃗)

where we use the notations from definition 1.4.20.

Consider the Jacobi sum J := J(ωa1
q,D, ..., ω

an

q,D) as an algebraic integer in Z[ζD]. Then the
following are equivalent:

1. The algebraic number J is pure.

2. The ideal (J) ⊴ Z[ζD] is Galois-invariant (under the action of Gal(Q(ζD)/Q)).

3. The ideal (J) ⊴ Z[ζD] is invariant under complex conjugation.

4. The map β′ is a constant map.

5. We have β′(t) = β′(−t) for all t ∈ (Z/DZ)×.

6. We have β′(t) = f ·(n−1)
2 for all t ∈ (Z/DZ)×, where f ⩾ 1 is such that pf = qord×(q mod D).

Equivalently,

∀t ∈ (Z/DZ)×, β′(t) + f =
f−1∑
j=0

n+1∑
i=1

−t · ai · pj

D
= f · (n+ 1)

2 . (4.2.3)

⌟

Remark 4.2.12. When n = 3, equation (4.2.3) is exactly the condition that defines the set
Bd(p) given in [Shi91, equation (2.8)]. See also remark 4.2.33 for more details. ⌟

Proof. –– We prove the following implications:

1

2

34

5

6

1 =⇒ 2. Since
∑n
i=1 ai ≠ 0 ̸= ai for all i, we can apply proposition 1.4.6 to deduce that

|J | = Q(n−1)/2 where Q := qord(q mod D). Note that |J | ∈ Q since we assumed n to be odd.
If J is pure, then J = ζ · |J | for some root of unity ζ = J · |J |−1 ∈ Z[ζD]×, which means
that we have an equality of ideals (J) = (|J |) ⊴ Z[ζD]. Since |J | is rational, it is clear that
(J) is Galois-invariant.

2 =⇒ 3. Immediate.

8This integer D has nothing to do with the degrees D or D′ of the L-functions considered in lemmas 4.2.7
to 4.2.9.
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4.2 – Bounded ranks in characteristic p ≡ 1 mod 3

2 ⇐⇒ 4. For each t ∈ (Z/DZ)×, we denote by σt ∈ Gal(Q(ζD)/Q) the unique element
such that σt(ζD) = ζtD. From Stickelberger’s theorem 1.4.22, we know that we have a prime
factorization

(J) =
∏

[t]∈(Z/DZ)×/⟨p⟩×

σt−1(p)β
′(t)

where p ⊴ Z[ζD] is the prime ideal above p as in definition 1.4.20. For every s ∈ (Z/DZ)×

we have

σs((J)) =
∏

[t]∈(Z/DZ)×/⟨p⟩×

σsσt−1(p)β
′(t)

=
∏

[t]∈(Z/DZ)×/⟨p⟩×

σst−1(p)β
′(t) =

∏
[t′]∈(Z/DZ)×/⟨p⟩×

σt′−1(p)β
′(s−1t′),

where the last equality follows by setting t′ := s−1t. We know that (J) is Galois-invariant
if and only if σs((J)) = (J) for all s ∈ (Z/DZ)×. The uniqueness of the decomposition into
prime ideals forces the equality β′(t) = β′(s−1t) for every s, t ∈ (Z/DZ)×. It follows β′ is a
constant map if and only if (J) is Galois-invariant.

3 ⇐⇒ 5. Invariance under complex conjugation means that we take s = −1 in the above
computation (since σ−1 is the complex conjugation). This exactly means that β′(t) = β′(−t)
for all t.

4 =⇒ 5. Immediate.

5 =⇒ 6. Recall from definition 1.4.20 that for all t, we have

β′(t) =
f−1∑
j=0

(
−1 +

n+1∑
i=1

−tai · pj

D

)
where f := e · ord×(q mod D). The key fact is that for every x ∈ R ∖ Z, we have
−x = 1− x . Since (p,D) = 1, t ∈ (Z/DZ)× and ai ̸≡ 0 mod D for all i, we know that

−tai·pj

D is never an integer. Thus, we find

β′(t) =
f−1∑
j=0

(
−1 +

n+1∑
i=1

(
1− tai · pj

D

))
= −f + f · (n+ 1)−

f−1∑
j=0

n+1∑
i=1

tai · pj

D

= f + f · (n− 1)−
f−1∑
j=0

n+1∑
i=1

tai · pj

D

= f · (n− 1)− β′(−t).

By assumption, we have β′(−t) = β′(t), which implies that β′(t) = f ·(n−1)
2 .

6 =⇒ 4. Immediate.

6 =⇒ 1. We know that |J | = Q(n−1)/2 where Q := qord(q mod D) = pf . Now the ideal
generated by Q(n−1)/2 in Z[ζD] is (p)f ·(n−1)/2 = (p1 · · · pg)f ·(n−1)/2, where pi are the primes
above p. The assumption on β′ implies that the ideals (J) = (Q(n−1)/2) coincide, which
means that J = u · Q(n−1)/2 for some unit u ∈ Z[ζD]×. Since n is odd, Q(n−1)/2 ∈ Q.
Moreover, for any σ ∈ Gal(Q(ζD)/Q) we have |σ(J)| = Q(n−1)/2, which means that
|σ(u)| = 1. By Kronecker’s theorem (see [Coh07, Proposition 3.3.9]), it follows that u must
be a root of unity, which in turn implies that J is pure, as desired. ■
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4 – The family y2 = x3 + b + b′tm

We will need the following result, which is an analogue of Lemma 6, p. 246 in [Eva81] for
Jacobi sums. It tells us which power of a pure Jacobi sum gives a positive integer.

Lemma 4.2.13. Let k = Fpe be a finite field where p is some prime and e ⩾ 1 is an integer.
Let n ⩾ 1 be an odd integer and χ1, ..., χn : k× → Q(ζD)× be non-trivial characters of
order dividing some integer D > 1. Assume that the product χ1 · · ·χn is non-trivial.

Set N := gcd
(

D
(D,2) , p− 1

)
. If the Jacobi sum J(χ1, ..., χn) is pure, then

J(χ1, ..., χn)2N = |k|(n−1)N . ⌟

Proof. –– • Define J ′ := 1
|k|(n−1)/2J(χ1, ..., χn), which is a complex number of modulus 1,

since χ1 · · ·χn ̸= 1 (see proposition 1.4.6). If the Jacobi sum J(χ1, ..., χn) is pure, then
J ′ is a root of unity by remark 4.2.6. Note that |k|(n−1)/2 ∈ Z since n is odd. This
implies that J ′ belongs to Q(ζD) ∩ µ∞, since all characters χi have order dividing D.
The only roots of unity in Q(ζD) are µ2D/ gcd(2,D) ⊂ µ2D, by [Coh07, Corollary 3.5.12].
In particular, J ′ ∈ µ2D/ gcd(2,D) which precisely means that

J
′ 2D
gcd(2,D) = 1. (4.2.4)

• Finally, we check that J ′2(p−1) = 1, which is equivalent to J ′2p = J ′2. Since p and D are
necessarily coprime, we consider the field automorphism σp ∈ Gal(Q(ζD)/Q) such that
σp(ζ) = ζp for any D-th root of unity ζ ∈ µD. In particular, by equation (4.2.4) we can
consider J ′2 ∈ µD, which yields

σp(J ′2) = J ′2p. (4.2.5)

On the other hand, we compute (similarly to proposition 1.4.6.3)

σp(J(χ1, ..., χn)) =
∑

x1,...,xn∈k
x1+···+xn=1

σp(χ1(x1) · · ·χn(xn))

=
∑

x1,...,xn∈k
x1+···+xn=1

χ1(x1)p · · ·χn(xn)p

=
∑

x1,...,xn∈k
x1+···+xn=1

χ1(xp1) · · ·χn(xpn) = J(χ1, ..., χn),

where the last equality follows because the Frobenius automorphism induces a bijection
of the set { (x1, ..., xn) ∈ kn : x1 + · · · + xn = 1 }. This computation shows that
σp(J ′2) = J ′2. Together with equation (4.2.5), we get the desired equality J ′2p = J ′2.

All in all, we combine the identities J ′2(p−1) = 1 and J ′2D/ gcd(2,D) = 1 to deduce
J ′2 gcd(p−1,D/(2,D)) = 1, which concludes the proof. ■
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4.2.2 Purity of tr iple Jacobi sums with a cubic character and
the Legendre symbol

Assume that k is a finite field of characteristic p ≡ 1 mod 3. We are going to determine for
which integers m the Jacobi sums of the form9

Jk,m,r := J
(
θku(r),m,r ; ψku(r) ; λku(r)

)
(4.2.6)

(appearing in theorem 4.1.2) are pure.

Definition 4.2.14. We define a set of 34 rational numbers and a set of 11 integers:

S :=
{1

2 ,
1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

5
6 ,

2
9 ,

5
9 ,

8
9 ,

5
12 ,

11
12 ,

5
18 ,

11
18 ,

17
18 ,

5
24 ,

11
24 ,

17
24 ,

23
24 ,

11
30 ,

17
30 ,

23
30 ,

29
30 ,

11
60 ,

17
60 ,

23
60 ,

29
60 ,

41
60 ,

47
60 ,

53
60 ,

59
60
}

M := {2, 3, 4, 5, 6, 9, 12, 18, 24, 30, 60}. ⌟

We note that the least common multiple of the integers m ∈M is 360 = 23 · 32 · 5, and that
M is exactly the set of denominators of the elements in S.

When the characteristic of k is p ≡ 1 mod 3, we can determine exactly which Jacobi sums
Jk,m,r (introduced in (4.2.6)) are pure. The goal of this subsection is to show the following
assertion.

Proposition 4.2.15. Let k be a finite field of characteristic p ≡ 1 mod 3. Let m ⩾ 1 be
coprime to p and fix r ∈ {1, ...,m− 1} such that r ̸= m/6 if 6 | m. Then:

Jk,m,r is pure if and only if r ∈ mS := {m · x : x ∈ S }.

In particular, if Jk,m,r is pure then mS ∩Z ̸= ∅, so m ∈MZ := {xy : x ∈M, y ∈ Z } and
the order m

(m,r) of the character θku(r),m,r belongs to M. ⌟

The roadmap will be as displayed in the following dependency graph.

lemma 4.2.17 proposition 4.2.18 corollary 4.2.20 proposition 4.2.15

lemma 4.2.21 lemma 4.2.22lemma 4.2.11

We first start with some notations; we recall that x ∈ [0, 1[ denotes the fractional part of
any real number x.

Definition 4.2.16. 1. Define the map g : R3 → R by

g(x1, x2, x3) := x1 + x2 + x3 + −x1 − x2 − x3 .

2. Given an integer d ⩾ 1, ϵ ∈ {±1}, a ∈ Z/dZ and x ∈ Z, we set

Gd,ϵ(a, x) := g(ax/d, ϵx/3, x/2) = ax

d
+ ϵx

3 + x

2 + −x
d
·
(
a+ ϵd

3 + d

2
)
. ⌟

9Observe that the assumption p ≡ 1 mod 3 ensures that 3 divides |k×
u(r)|, so that the character ψ of order

3 on k×
u(r) indeed exists.
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4 – The family y2 = x3 + b + b′tm

The following easy result is very useful.

Lemma 4.2.17. 1. Given real numbers 0 ⩽ x1, x2, x3 < 1 such that x1x2x3 > 0 we have

g(x1, x2, x3) =


1 if x2 + x3 ⩽ 1 and 0 ⩽ x1 ⩽ 1− x2 − x3

2 if x2 + x3 ⩽ 1 and x1 > 1− x2 − x3

2 if x2 + x3 > 1 and 0 ⩽ x1 ⩽ 2− x2 − x3

3 if x2 + x3 > 1 and x1 > 2− x2 − x3.

2. If 6 | d and x ∈ Z is coprime to d, then

Gd,ϵ(a, x) =


1 if x ≡ ϵ mod 6 and xa

d ⩽ 1
6 = 1− 1

2 −
1
3

2 if x ≡ ϵ mod 6 and xa
d > 1

6

2 if x ≡ −ϵ mod 6 and xa
d ⩽ 5

6 = 2− 1
2 −

2
3

3 if x ≡ −ϵ mod 6 and xa
d > 5

6 .

(4.2.7)

⌟

Proof. –– 1. This is an immediate case-by-case verification.

2. Since x is coprime to d and 6 | d, we may write x = 6t1 + t0 for some t0 ∈ {±1} and
t1 ∈ Z. Then we get

x
2 = 3t1 + t0

2 = t0
2 = 1

2

x
3 = t0

3 =
{

1
3 if x ≡ 1 mod 6
2
3 if x ≡ −1 mod 6.

So for instance if x ≡ ϵ mod 6 and xa
d ⩽ 1

6 = 1− 1
2 −

1
3 , then

Gd,ϵ(a, x) = ax
d + 1

3 + 1
2 + −axd −

1
3 −

1
2 = g

(
ax
d , 1

3 ,
1
2
)
,

so the result follows from the first item. The other cases are analyzed in a similar
way. ■

The following result is the place where we use the hypothesis p ≡ 1 mod 3.

Proposition 4.2.18. Let q be a power of a prime p ≡ 1 mod 3 and let d ⩾ 1 be an integer
coprime to q and suppose that 6 | d. Let v := ord×(q mod d) and write qv = pf for some
integer f ⩾ 1. Consider the character ω := ωq,d ∈ F̂×

qv of order d as in definition 1.4.20. Let
a ∈ Z/dZ ∖ {0} and ϵ ∈ {±1}.

Then the Jacobi sum J := J(ωa, ωϵd/3, ωd/2) is pure if and only if

∀t ∈ (Z/dZ)×, Gd,ϵ(a, t) = 2. (4.2.8)

⌟
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4.2 – Bounded ranks in characteristic p ≡ 1 mod 3

Proof. –– From lemma 4.2.11, we know that J is pure if and only if equation (4.2.3) holds
(for any −t ∈ (Z/dZ)×) for the odd integer n = 3, which means that for every t ∈ (Z/dZ)×

one has:
f−1∑
j=0

( tapj

d
+ tϵdpj/3

d
+ tdpj/2

d
+ − tap

j

d
− tϵpj

3 − tpj

2
)

=

=
f−1∑
j=0

Gd,ϵ(a, tpj) = f · (n+ 1)
2 = 2f. (4.2.9)

It is clear that if (4.2.8) holds true, then (4.2.9) holds as well.

Let us show the converse by the contrapositive. Namely, let us suppose that (4.2.8) is not
verified, i.e., there is some t0 ∈ (Z/dZ)× such that Gd,ϵ(a, t0) ̸= 2. We are going to show
that (4.2.9) is not fulfilled for t0 ∈ (Z/dZ)×.

Up to replacing t0 by −t0, we may assume that Gd,ϵ(a, t0) = 1 in view of lemma 4.2.17. Now,
the assumption p ≡ 1 mod 6 (observe that p is necessarily odd) implies that Gd,ϵ(a, t0pj) ∈
{1, 2} for all j (again by lemma 4.2.17), since t0pj ≡ ϵ mod 6. But then the equality (4.2.9)
cannot be true for t0 because

f−1∑
j=0

Gd,ϵ(a, t0pj) = 1 +
f−1∑
j=1

Gd,ϵ(a, t0pj) ⩽ 1 + 2(f − 1) = 2f − 1,

which concludes the proof. ■

Remark 4.2.19. The condition (4.2.8) is exactly the one that defines the set B2
d in [Shi86,

equation (2.7)]. See remark 4.2.33 for more details. ⌟

We now consider the case ϵ = +1.

Corollary 4.2.20. Let k be a finite field of characteristic p ≡ 1 mod 3 and let m ⩾ 1 be
coprime to p. Let r ∈ X(m, 1) and set d = lcm(6,m). Then the Jacobi sum Jk,m,r from
equation (4.2.6) is pure if and only if

∀t ∈ (Z/dZ)×, t ≡ 1 mod 6 =⇒ t · r
m

>
1
6 . (4.2.10)

⌟

Proof. –– The basic idea in order to apply proposition 4.2.18 is to express the three characters
θku(r),m,r, ψ and λ ∈ k̂×

u(r) as powers of a single character of order d := lcm(6,m). However,
such a character might be defined only over an extension of ku(r), but then one can use
Hasse–Davenport theorem 1.4.7 to conclude.

Let us first introduce some notations for convenience:

q := |k|, v := ord×(q mod d), c := 6
gcd(m, 6) .

Observe that d := lcm(6,m) = 6m
gcd(6,m) = c ·m. Consider the character ω := ωq,d ∈ k̂×

v of
order d as in definition 1.4.20.

215
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• We claim that Jk,m,r is pure if and only if J(ωr·c, ωd/3, ωd/2) is pure. In fact, we shall
prove that

J(ωr·c, ωd/3, ωd/2) = J

v
u(r)
k,m,r, (4.2.11)

from which the claim immediately follows.

We first check that kv is an extension of ku(r). By definition we have

u(r) = uq,m(r) = ord×
(
q mod m

(m, r)
)

and we have a group morphism (Z/dZ)× →
(
Z/ m

(m,r)Z
)× which shows that u(r) must

divide v = ord×(q mod d).

By proposition 1.4.17, we have

θkv,m,r = θku(r),m,r ◦Nkv/ku(r)

and similarly ψkv = ψku(r) ◦ Nkv/ku(r) and λkv = λku(r) ◦ Nkv/ku(r) (see remark 1.4.19).
Hence, Hasse–Davenport lifting relation from theorem 1.4.7 implies that

J(θkv,m,r; ψkv ; λkv ) = J

v
u(r)
k,m,r. (4.2.12)

Now, we observe that (see also equation (1.4.11))

θkv,m,r = Θ
|k×

v |·r
m = Θ

|k×
v |·c·r
d = ωc·rq,d

where Θ denotes the restriction of the Teichmüller character Fp
× → Q× to k×

v . It is

also clear that ψkv = ω
d
3
q,d and λkv = ω

d
2
q,d (which is the unique character of order 2).

Consequently, we see that equation (4.2.12) is exactly the same as equation (4.2.11).

• By proposition 4.2.18, we know that J(ωr·c, ωd/3, ωd/2) is pure if and only if for all
t ∈ (Z/dZ)×, we have Gd,1(r · c, t) = 2. By considering −t instead of t, lemma 4.2.17
tells us that this is equivalent to

t·r·c
d = t·r

m >
1
6

for all t ∈ (Z/dZ)× such that t ≡ 1 mod 6. This concludes the proof. ■

We will need the following "technical" lemma.

Lemma 4.2.21. Let m ⩾ 1 be an integer. Let r ∈ Z/mZ and d := lcm(6,m). Define
r0 = r

(r,m) ,m0 = m

(r,m) .

1. Assume that m0 ⩾ 6 and [r0 ≡ 1 mod 3 or 3 ∤ m0]. Then (4.2.10) is not satisfied, i.e.,
there is an integer t ≡ 1 mod 6, coprime to d such that tr

m ⩽ 1
6 .
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2. Assume that 3 | m0 and r0 ≡ −1 mod 3. Then we have an equivalence:

∃t ∈ Z, t ≡ 1 mod 6, gcd(t, d) = 1, tr
m ⩽

1
6

⇐⇒ ∃t′ ∈ Z, t′ ≡ −1 mod gcd(m0, 6), gcd(t′,m0) = 1, t′

m0
⩽

1
6 ⌟

Proof. –– In what follows, we denote by m1 the product of the primes p | d = lcm(6,m)
such that p ∤ m0. Note that gcd(m0,m1) = 1.

1. First, we observe that r0 is coprime to m0. Using the Chinese remainder theorem, we
find some integer t such that {

t ≡ r−1
0 mod m0

t ≡ 1 mod m1.

We have tr
m = tr0

m0
= 1

m0
⩽ 1

6 , since m0 ⩾ 6. Moreover, t is coprime to m0 and
m1 and hence to d as well. Finally, we check that t ≡ 1 mod 6. To this end, set
g := gcd(6,m0) ∈ {1, 2, 3, 6}. Our assumption implies that either r0 ≡ 1 mod 3 or 3 ∤ m0
in which case g ∈ {1, 2}.

• If g = 1, then 6 | m1 so we simply use the fact that t ≡ 1 mod m1.

• If g = 2, then r0 must be odd (it is coprime to m0), so that we have t ≡ 1 mod 2.
Furthermore, we have 3 | m1 which implies that t ≡ 1 mod 3. Consequently, we have
t ≡ 1 mod 6.

• If g = 3, then t ≡ r−1
0 ≡ 1 mod 3. Moreover, 2 | m1, which implies that t ≡ 1 mod 2,

so the conclusion holds here as well.

• If g = 6, then r0 ≡ 1 mod 3. Since r0 is coprime to m0, it must be odd. Thus we
must have t ≡ r−1

0 ≡ 1 mod 6 in that case.

2. =⇒ : Suppose that there exists some t ∈ Z as in the "left-hand side" of the equivalence.
We define t′ := t · r0, which clearly satisfies t′

m0
= tr

m ⩽ 1
6 .

Note that r0 and m0 are coprime. Moreover, by assumption, we know that t is coprime
to d hence to m0. Therefore t′ is coprime to m0.

Finally, we check that t′ ≡ −1 mod gcd(m0, 6). Since 3 | m0, we know that g :=
gcd(m0, 6) ∈ {3, 6}. If g = 3, then we clearly have t′ = tr0 ≡ −1 mod g since r0 ≡
−1 mod 3 by assumption. If g = 6, then m0 is even and because r0 is coprime to m0,
this ensures that r0 is odd, so we must have r0 ≡ −1 mod 6. This shows t′ ≡ −1 mod g
in that case as well.

⇐= : Conversely, let us suppose that there exists some t′ ∈ Z as in the "right-hand side"
of the equivalence. By the Chinese remainder theorem, there is some t ∈ Z such that{

t ≡ t′r−1
0 mod m0

t ≡ −1 mod m1,

where we use the notations m1 from item 1 above.
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We clearly have tr
m = tr0

m0
= t′

m0
⩽ 1

6 . Moreover, t is coprime to m0 and to
m1, so it is coprime to d. Let g := gcd(m0, 6) ∈ {3, 6}. If g = 3, then we know
that t ≡ (−1) · (−1) = 1 mod 3. But we must have 2 | m1, so t must be odd since
t ≡ −1 mod m1. Henceforth, we get t ≡ 1 mod 6 in this case. Finally, if g = 6 then we
directly get t ≡ 1 mod 6 (since r0 ≡ −1 mod 6 because r0 must be odd in that case). ■

The following result is crucial for the rest; it determines the order m0 of the characters χ
such that the Jacobi sum J(χ, ψ, λ) is pure over fields of characteristic p ≡ 1 mod 6.

Lemma 4.2.22. Let m0 ⩾ 1 be an integer. The following statements are equivalent:

a) For all integers t ∈ Z coprime to m0 such that t ≡ −1 mod gcd(m0, 6), we have
t
m0

> 1
6 .

b) m0 ∈M = {2, 3, 4, 5, 6, 9, 12, 18, 24, 30, 60}. ⌟

Proof. –– • We prove that a) implies b). There are 3 cases.

– First, if gcd(m0, 6) = 1 or gcd(m0, 6) = 2, then we may take t = 1 in a), to get
m0 < 6t = 6, that is m0 ∈ {2, 3, 4, 5} (note that m0 = 1 does not work since
t/m0 = 0 in that case).

– If gcd(m0, 6) = 3 then we may take t = 2 in a) to get m0 < 6t = 12, so that
m0 ∈ {3, 9}.

– Finally, assume that gcd(m0, 6) = 6. If gcd(m0, 5) = 1, then we may take t = 5 ≡
−1 mod 6 in a) to get m0 < 30 so that m0 ∈ {6, 12, 18, 24}.

Otherwise, gcd(m0, 5) = 5 which implies that 30 | m0. Property a) implies that if
p ⩽ m0

6 is a prime such that p ≡ −1 (mod 6) then p divides m0. Let us define the

ratio m′ := m0/
R∏
i=1

pi where p1 = 5 < p2 < ... < pR are all the prime divisors of m0

such that pi ≡ −1 (mod 6) for every i. Note that we must have 6 | m′, R ⩾ 1 (and
m′ may have some prime factors p ≡ −1 mod 6).

Define t′ := 6 ·
R−1∏
i=1

pi + pR > 0. Note that t′ ≡ pR ≡ −1 mod 6, so there exists a

prime factor t | t′ such that t ≡ −1 mod 6. Moreover t is coprime to m0, otherwise t
would have to be equal to pi for some i (since t would be a prime factor of m0 such
that t ≡ −1 mod 6), which is impossible: it is quite clear that pi does not divide t′
for any i. Thus assumption a) implies that t > m0

6 . Consequently, we get

t′ = 6 ·
R−1∏
i=1

pi + pR ⩾ t >
m′

6

R∏
i=1

pi ⩾
R∏
i=1

pi. (4.2.13)

We now claim that R = 1. If we assume that R ⩾ 2, then dividing both sides of

(4.2.13) by
R−1∏
i=1

pi ⩾ p1 = 5 yields

pR ·
(

1− 1
5
)
⩽ pR ·

(
1−

(R−1∏
i=1

pi
)−1)

< 6.
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Thus pR < 15
2 , and because pR ≡ −1 (mod 6) we find pR = 5 which is a contradiction

since pR ⩾ p2 > p1 = 5. Therefore we get R = 1.

On the other hand, if m0 ⩾ 90 then p := 11 ⩽ 15 ⩽ m0
6 is such that p ≡ −1 mod 6

and so hypothesis a) would tell us that p | m0, which would mean that R ⩾ 2
(with p2 = 11). This is impossible by the observation we just made. Therefore, we
conclude that m0 ∈ {30, 60} which finishes the proof of a) =⇒ b).

• To prove that b) implies a), we simply check that for each m0 ∈ M, any integer
1 ⩽ t ⩽ m0

6 coprime to m0 must satisfy t ̸≡ −1 mod gcd(m0, 6). This is an easy
computation.

If 1 < m0 < 6, then there are no integer t such that 1 ⩽ t ⩽ m0
6 , so this is clear. If

m0 ∈ {6, 9, 12, 18, 24, 30}, then the only integer t ∈ [1, m0
6 ] coprime to m0 is t = 1 and

we indeed have t ̸≡ −1 mod gcd(m0, 6). Finally, if m = 60, the only integers t ∈ [1, m0
6 ]

coprime to m0 are t = 1 and t = 7, which satisfy t ̸≡ −1 mod 6. This concludes the
proof. ■

Proof of proposition 4.2.15. –– By corollary 4.2.20, we know that the Jacobi sum Jk,m,r
(from equation (4.2.6)) is pure if and only if (4.2.10) holds. All we have to do is to check
that the latter condition is equivalent to r ∈ mS. Let us define r0 = r

(m,r) ,m0 = m
(m,r) .

• If m0 ⩽ 6, then because we assumed 0 < r < m, we must have (recalling that r0 and m0
are coprime)

r

m
= r0

m0
∈
{1

2 ,
1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

1
6 ,

5
6

}
=: S1.

If r
m ∈ S1 ∖ {1

6}, then for any t ∈ Z coprime to m (hence coprime to m0), we know that
tr
m is not an integer so we get tr

m ⩾ r
m > 1

6 . In particular, (4.2.10) holds which means
that Jk,m,r is pure. Conversely, if Jk,m,r is pure then in particular by setting t = 1 in
(4.2.10), we see that r

m ∈ S1 ∖ {1
6} whenever m0 ⩽ 6.

(Notice that removing 1/6 from S1 is exactly asking that r ≠ m/6 when 6 | m, which is
ensured by having r ∈ X(m, 1) as in definition 4.1.1).

• Let us assume now that m0 > 6. If r0 ≡ 1 mod 3 or if 3 ∤ m0, then Jk,m,r is not pure in
view of corollary 4.2.20 and lemma 4.2.21.

Conversely, we show that if r0 ̸≡ 1 mod 3 and if 3 | m0, then Jk,m,r is pure if and
only if r ∈ mS. Because gcd(r0,m0) = 1, we must have r0 ≡ −1 mod 3. Thus by
lemma 4.2.21 and lemma 4.2.22, we know that Jk,m,r is pure if and only if m0 ∈M =
{2, 3, 4, 5, 6, 9, 12, 18, 24, 30, 60}. Since m0 > 6 and r0 ≡ −1 mod 3 is coprime to m0, this
tells us that r

m = r0
m0

belongs to

S2 :=
{2

9 ,
5
9 ,

8
9 ,

5
12 ,

11
12 ,

5
18 ,

11
18 ,

17
18 ,

5
24 ,

11
24 ,

17
24 ,

23
24 ,

11
30 ,

17
30 ,

23
30 ,

29
30 ,

11
60 ,

17
60 ,

23
60 ,

29
60 ,

41
60 ,

47
60 ,

53
60 ,

59
60
}
.

All in all, we conclude that Jk,m,r is pure if and only if r
m ∈ S1 ∪ S2 ∖ {1

6} = S, which
exactly means that r ∈ mS. This finishes the proof. ■
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4.2.3 Rank of the curves E ′
m,b,b ′ in character ist ic p ≡ 1 mod 3

In our case, the L-function of E′
m,b,b′ is expressed in terms of Jacobi sums so we get the

following expression for its geometric rank.

Corollary 4.2.23. Let k be a finite field of characteristic p ≡ 1 mod 3. Let b, b′ ∈ k× and
m ⩾ 1 be coprime to p. Then:

1. We have an upper bound on the rank:

rkE′
m,b,b′(k(t)) ⩽ 2 ·#

{
[r] ∈ X(m, 1)/⟨|k|⟩× : r

m ∈ S
}
.

2. The geometric rank rkE′
m,b,b′(k(t)) is equal to

2 ·#
{
r ∈ X(m, 1) : r

m ∈ S
}

= 2 · |Z ∩mS|,

where X(m, 1) ⊂ Z/mZ is as in definition 4.1.1 and S ⊂ Q is a 34-element set defined in
definition 4.2.14. In particular, when m is coprime to 30 = 2 · 3 · 5, the geometric rank of
E′
m,b,b′ is 0. ⌟

Remark 4.2.24. As explained at the beginning of the proof of proposition 1.4.26, the Jacobi
sum Jk,m,r (from equation (4.2.6)) does not depend on a representative r ∈ X(m, 1) of
[r] ∈ X(m, 1)/⟨|k|⟩. One can check also that the condition r

m ∈ S does not depend on
the representative (the point is that when m/ gcd(r,m) > 6, the numerator r/ gcd(r,m) is
≡ −1 mod 3, while we have |k| ≡ 1 mod 3).

Moreover, if |k| ≡ 1 mod m, then the upper bound on rkE′
m,b,b′(k(t)) from item 1 matches

the geometric rank, but it does not mean that the geometric rank is achieved over k(t) (i.e.,
is equal to rkE′

m,b,b′(k(t))). ⌟

Proof. –– 1. By theorem 4.1.2 and since |k| ≡ 1 mod 3, we know that the analytic rank is

ρ(E′
m,b,b′/k(t)) =

∑
ϵ∈{±1}

#
{

[r] ∈ X(m, ϵ)
/
⟨|k|⟩ : α′

b,b′,ϵ(θku(r),m,r) = |k|u(r)
}

= 2 ·#
{

[r] ∈ X(m, 1)
/
⟨|k|⟩ : α′

b,b′,1(θku(r),m,r) = |k|u(r)
}

(4.2.14)

where

α′
b,b′,1(θku(r),m,r) = λ(b) · θku(r),m,r(−bb′−1) · ψku(r)(−b) · Jk,m,r

and Jk,m,r was introduced in equation (4.2.6) (as noted in remark 4.1.3 the rank is
always even if |k| ≡ 1 mod 3). If α′

b,b′,1(θku(r),m,r) is a (positive) integer, then it is clear
that Jk,m,r is pure (since these two quantities only differ by roots of unity given by the
values of some characters), so we have an upper bound

ρ(E′
m,b,b′/k(t)) ⩽ 2 ·#

{
[r] ∈ X(m, 1)

/
⟨|k|⟩ : Jk,m,r is pure

}
.

Now the conclusion readily follows from proposition 4.2.15.
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2. This follows from the above discussion, together with lemma 4.2.8. Indeed, using
proposition 1.4.16, the geometric rank is equal to

2 ·
∑

r∈X(m,1)/⟨|k|⟩
Jk,m,r is pure

u|k|,m(r) = 2 ·
∑

r∈X(m,1)
Jk,m,r is pure

1.

Finally, when m is coprime to 30, the set mS ⊂ Q does not contain any integer, so the
geometric rank is 0. ■

We get an analogue of the result cited in [SS19, theorem 13.26] over C(t).

Corollary 4.2.25. Let k be a finite field of characteristic p ≡ 1 mod 3 and b, b′ ∈ k×. Then
the map

Z>0 ∖ pZ −→ Z⩾0, m 7−→ rkE′
m,b,b′(k(t))

is 360-periodic, and achieves its maximum of 68 exactly at the multiples m of 360.

In particular, for any b, b′ ∈ k× and any m ⩾ 1 we have rkE′
m,b,b′(k(t)) ⩽ 68. ⌟

Proof. –– We simply apply the second part of corollary 4.2.23 and the following lemma.

Lemma 4.2.26. Let S ⊂ Q>0 be a finite set of positive rational numbers and let N
be the least common multiple of the denominators of elements of S. Then the map
fS : Z>0 → Z⩾0,m 7→ |Z ∩mS| is N -periodic and attains its maximum whenever m is
a multiple of N , in which case fS(m) = |S|. ⌟

The proof of the lemma is immediate, since NS ⊂ Z. Moreover, note that fS(m) = 0
whenever m is coprime to N .

Applying the lemma to the set S from definition 4.2.14, we have N = 360 = 23 · 32 · 5, and
so the rank of E′

m,b,b′ over k(t) is at most 2|S| = 68, and this upper bound is an equality
when m is a multiple of 360.

As for the last claim, it is clear that { rkE′
m,b,b′(k(t)) : m ⩾ 1, gcd(m, p) = 1 } is bounded

(by 68). Moreover, when p | m, we may apply remark 4.1.3 to the elliptic curve E′
m,b,b′

over k(t) to conclude that its rank is the same as the rank of E′
m1,b1,b′

1
for some b1, b

′
1 ∈ k×,

where m1 := m/pvp(m). So the rank E′
m,b,b′ is also bounded by 68. ■

Example 4.2.27. For p = 7 ≡ 1 mod 3, corollary 4.2.23 tells us that the rank of E′
m,b,b′ :

y2 = x3 + b+ b′tm over F7(t) is at most 28 for all b, b′ ∈ F×
7 and all m ⩾ 1 (not necessarily

coprime to 7, thanks to remark 4.1.3), since the rank is at most 2 · |mS ∩ R| where
R ⊂ {1, ...,m − 1} is a set of representatives of X(m, 1)/⟨|k|⟩, and |mS ∩ R| attains its
maximum when m is a multiple of 360 (as the lemma 4.2.26 showed).

More precisely, we get the following upper bounds for specific values of m (and any
b, b′ ∈ F×

7 ):

m 1 2 3 4 5 6 8 9 10 11 12 60 360
rkE′

m,b,b′(F7(t)) ⩽ 0 2 4 4 2 8 4 6 4 0 12 20 28
⌟
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4 – The family y2 = x3 + b + b′tm

We now prove the main result of this section.

Proof of theorem 4.2.1. –– We are going to use lemmas 4.2.8 and 4.2.13 together with our
knowledge of which Jacobi sums (appearing in the L-function of E′

m,b,b′) are pure, thanks
to proposition 4.2.15.

• We first prove the general statement, when m is coprime to p. Define Pm := Z ∩mS,
which is exactly the set of r ∈ {1, ...,m− 1} such that α′

b,b′,1(θku(r),m,r) (or equivalently
Jk,m,r) is pure by proposition 4.2.15. For each r ∈ Pm, let N(r) ⩾ 1 be an integer such
that JN(r)

k,m,r is a positive real number, where Jk,m,r is the Jacobi sum from equation (4.2.6).
By lemma 4.2.13, we may take

N(r) := gcd
(

lcm
(

m
(r,m) , 6

)
, 2(p− 1)

)
.

Indeed, the character θku(r),m,r has order m
(m,r) (see proposition 1.4.17), ψku(r) has order

3 and the Legendre symbol has order 2, so overall these orders divide D := lcm( m
(r,m) , 6)

(which is an even integer).

Using again this information about the orders of the characters, we know that

α′
b,b′,1(θku(r),m,r)M(r) ∈ R>0 where M(r) := lcm

(
N(r), 6, m

(m, r)
)
.

From lemma 4.2.8 and theorem 4.1.2, we know that the geometric rank is achieved over
kH(t) as soon as H ⩾ 1 satisfies

∀r ∈ Pm, M(r) · u|k|,m(r) | H. (4.2.15)

We claim that H := 2160 always works. First, N(r) certainly divides lcm
(

m
(r,m) , 6

)
so

M(r) divides lcm
(

m
(r,m) , 6

)
as well. Furthermore, u(r) = ord ×(|k| mod m

(m,r)) divides
the value of the Carmichael function10 λ( m

(m,r)). Consequently, (4.2.15) follows as soon
as we have

∀r ∈ Pm, lcm(mr, 6) · λ(mr) | H (4.2.16)

where mr := m
gcd(r,m) .

We know that if r ∈ Pm = Z ∩mS then r
m = r/(r,m)

mr
∈ S so mr ∈ M (we recall that

M = {2, 3, 4, 5, 6, 9, 12, 18, 24, 30, 60}, as in definition 4.2.14). Thereby, to ensure (4.2.16),
it suffices to check that

∀m′ ∈M, lcm(m′, 6) · λ(m′) | H. (4.2.17)

It takes now an easy computation to verify that H := 2160 = 24 · 33 · 5 is the smallest
integer satisfying (4.2.17), since it is the least common multiple of lcm(m′, 6) · λ(m′) as
m′ varies in M.

• When m = 360m′ for some m′ ⩾ 1 is coprime to p then corollary 4.2.25 asserts that
E′

360m′,b,b′ has geometric rank equal to 68.

10We use the standard notation λ, even though it conflicts with our notation of the Legendre symbol, since
it will cause no harm.
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• When p | m, we may use remark 4.1.3 to conclude that the rank of E′
360m,b,b′ over k2160(t)

is the same as the rank of E′
360m1,b1,b′

1
over k2160(t), for some b1, b

′
1 ∈ k× and where

m1 := m/pvp(m). Thus the geometric rank E′
360m,b,b′ is also 68. ■

Remark 4.2.28. The statement of theorem 4.2.1 can be improved (or refined) in several
ways.

1. We know that the geometric rank is attained over kH(t) as soon as H satisfies (4.2.15).
For instance, when p = 7 ≡ 1 mod 3 and m = 3, we find that H = 6 works, so the
geometric rank (which equals 4) of y2 = x3 + b+ b′t3 is attained over Fp6(t). One can
show that this is optimal when b = 3, b′ = 2 in the sense that the rank over F7j (t) is not
equal to the geometric rank if j < 6 (in which case the rank over F7j (t) is actually 0).

2. If b is a 6-th power in k× and b′ = −b (e.g., b = 1, b′ = −1) then b is a square, −b is
a cube and −bb′−1 = 1 so that α′

b,b′,1(θku(r),m,r) = Jk,m,r (the latter Jacobi sum being
defined in equation (4.2.6)).

In that case, we may replace M(r) by N(r) in equation (4.2.15), that is, if H is a multiple
of N(r) · u|k|,m(r) for all r ∈ Pm := Z ∩mS, then the geometric rank of E′

m,b,b′ is equal
to the rank over kH(t). For instance when p = 7,m = 360, the geometric rank of E′

m,1,−1
is achieved over Fp144(t).

It can be checked that H = 720 always works. In fact, if b is a 6-th power in k× and
b′ = −b (and k has characteristic ≡ 1 mod 3), then for any m ⩾ 1 the geometric rank of
E′
m,b,b′ is equal to the rank over kH(t) for some divisor H of 720 = 24 · 32 · 5. (The point

is that one only needs to check primes p = char(k) modulo 360, since N(r) only depends
on the class of p modulo m/(m, r), which divides 360 when r ∈ Pm).

3. On the other hand, if −bb′−1 generates k×, then the factor θku(r),m,r(−bb′−1) (appearing
in α′

b,b′,1(θku(r),m,r)) is a primitive root of unity of order m
(m,r) , so it is pure of rather

"large" degree. It could happen that the Jacobi sum Jk,m,r is pure of large degree as well
(this could occur for instance if α′

b,b′,1(θku(r),m,r) is an integer). But in general we could
expect the rank of E′

m,b,b′ over k(t) to be quite small (typically 0), if −bb′−1 generates
k×, and we could expect the geometric rank is achieved over kN (t) with N ⩽ 2160 being
quite "large".

4. Let us give some examples. When p = 19, then E′
360,1,−1 : y2 = x3 + 1− t360 attains its

geometric rank over Fp36(t).

When p = 1801 ≡ 1 mod 360, then E′
360,1,−1 achieves its geometric rank over Fp60(t).

The geometric rank of E′
5,1,−1 : y2 = x3 + 1− t5 is 8 and is achieved over Fp15(t). These

results can be obtained via explicit computations (using SAGE [The21]) of the Jacobi
sums involved in the L-function of E′

m,1,−1 given in theorem 4.1.2. ⌟

4.2.4 Various comments

Remark 4.2.29. Our upper bounds on the analytic rank of E′
m,b,b′ only take into account

the purity of the coefficients α(r) := α′
b,b′,1(θku(r),m,r) that appear in the L-function as in

theorem 4.1.2.
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A more refined analysis is required to get better control on the (analytic) rank, which is
given by equation (4.2.14) in terms of the number of those coefficients α(r) that are equal
to a positive integer (which is necessarily |k|u(r) by remark 4.2.6), instead of just having a
power being equal to a positive integer — which is what purity means.

Let us assume that b = 1, b′ = −1 as in remark 4.2.28.2, so that α(r) = Jk,m,r (see
equation (4.2.6)). This assumption simplifies the analysis, since very often the rank depends
on b, b′ in some rather erratic manner and it seems difficult to get exact formulas for any
choice of the parameters.

In general, we have Jk,m,r ∈ Z[ζD] where D := lcm(6,m/ gcd(m, r)). Given a finite field k

of characteristic p ≡ 1 mod 3 and m ⩾ 1 coprime to p, we want to understand for which
r ∈ Z/mZ the triple Jacobi sum Jk,m,r is a positive integer. There are two directions:

• We can try to study or compute explicitly Jacobi sum of the form J(χrm, χ3, χ2) where
χ2, χ3, χm : k×

n → C× are characters of order 2, 3,m respectively over some finite
extension kn of k. Up to replacing m by m

gcd(m,r) , we may assume that m ∈M because
otherwise this sum is not pure, by proposition 4.2.15 (recall that we work in characteristic
p ≡ 1 mod 3 and that M was introduced in definition 4.2.14).

When m ∈ {2, 3, 4, 5, 6, 12, 24}, [BEW98, chapter 3] gives explicit computations of some
Jacobi sums and there are some indications for the case m = 18 (hence we get also the
case m = 9 by using χ2

18), and m = 30,m = 60 in [BEW98, exercise 14, p. 149 and
notes on p. 150-151]. However, it seems quite involved and tedious to work with these
results. Moreover, these results are stated exclusively over Fp and not general11 Fq (in
other words, they assume that p ≡ 1 mod m). See [BE79] for the exact evaluation and
determination of some Jacobi sums over Fp2 .

• Another approach is to say that at the very least, Jk,m,r must be a rational number (so we
"forget" about its sign), which means that it is fixed by the Galois group Gal(Q(ζD)/Q)
(in contrast, recall that from lemma 4.2.11 that purity means that the ideal generated
by Jk,m,r is fixed by the Galois group). In general, we may study the abelian extension
Q(Jk,m,r)/Q generated by this triple Jacobi sum. Some works in this direction have been
published: [Aok96, theorem 0.3, remark 6.6], [Hos22, Mik95]; for Jacobi sums where all
the characters are the same (which does not apply to our case), see [OK93, OG93, Ono93];
for double Jacobi sums, see [Yok64, Lemma 2, p. 147] or [Aki96]. ⌟

In view of experimental data gathered and patterns12 observed for a few primes p and some
integers m, we formulate the following open problem, which refines corollary 4.2.25.

Conjecture 4.2.30. For every finite field k of characteristic p ≡ 1 mod 3 and all b, b′ ∈ k×,
the map

Z>0 ∖ pZ −→ Z⩾0, m 7→ rkE′
m,b,b′(k(t))

is periodic, with a period that divides 360 = 23 · 32 · 5. In particular, there is a constant
r = rk,b,b′ ⩾ 0 such that the rank of E′

360m′,b,b′(k(t)) is equal to r, for all m′ ⩾ 1.

11If needed we may assume that p ≡ 1 (mod 360), e.g., p = 1801, so that all the characters of order
m ∈ M = {2, 3, 4, 5, 6, 9, 12, 18, 24, 30, 60} can be defined over Fp.

12See the file q = 7 - List or table of analytic ranks (conjecture 4.2.30).pdf available at https:
//gitlab.com/gauthierleterrier/maths.
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4.2 – Bounded ranks in characteristic p ≡ 1 mod 3

Furthermore, for each such finite field k, there are b, b′ ∈ k× such that rk,b,b′ > 0 is
non-zero. ⌟

Notice that theorem 4.2.1 proves the case where b, b′ ∈ F×
p and k = FpN , where N is any

integer multiple of 2160, in which case rk,b,b′ = 68 > 0.

Remark 4.2.31. Let us introduce the following terminology.

Definition 4.2.32. Let k be a field and E be a non-constant elliptic curve over k(t). A
finite extension k′/k is called:

1. a splitting field of E/k(t) if E(k′(t)) = E(k(t)).

2. a geometric field for E/k(t) if rkZE(k′(t)) = rkZE(k(t)). (In that case, we also say
that the geometric rank is attained or achieved over k′(t)).

In other words, the index of E(k′(t)) in E(k(t)) is 1 or finite, respectively. ⌟

It was shown in [Usu01] that for the values of m given in the table below, there is some
prime p such that k = Fp is a splitting field for E′

m,−1,1 : y2 = x3−1 + tm/Fp(t). In fact, we
have p ≡ 1 (mod m) in all the given cases. No such prime is known for m = 60, although
there is probably one (in characteristic 0, more precisely over Q(t), see [Shi99b]).

m 9 12 18 24 30
p 433 397 433 1801 25261

⌟

Remark 4.2.33. We briefly explain how to apply [Shi86] to get the geometric rank of E′
m,b,b′

over k(t) where k is any (algebraically closed) field of characteristic p ⩾ 0 with p ̸= 2, 3; we
may assume that b = b′ = 1 by remark 1.3.39. The algorithm starts with the projective
surface13 −Y 2Zm−2 +X3Zm−3 + Zm + Tm = 0 over k. This gives us the matrix

A =


0 2 0 m− 2
3 0 0 m− 3
0 0 0 m

0 0 m 0


as in definition 1.3.36 (see also example 1.3.38). Following the notations from [Shi86] we
have: δ = m

(6,m) , d = | det(A)|
δ = 6m2

δ = lcm(6,m). We define

m′ = m

(6,m) , c = 6
(6,m) ,

LA = { [a0, a1, a2,−a0 − a1 − a2]B : ai ∈ Z/dZ }, B :=


0 2m′ c− 2m′ 0

3m′ 0 c− 3m′ 0
0 0 0 c

0 0 c 0

 .
We easily see that LA is Z/dZ-spanned by 3 elements:

LA =
〈
e0 := (0, 2m,−2m′, 0), e1 := (3m′, 0,−3m′, 0), e2 := (0, 0,−c, c)

〉
.

13As noticed in footnote 26 on page 36, this is a singular surface.
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4 – The family y2 = x3 + b + b′tm

Note that e1 = −e1 since 6m′ = d ≡ 0 ∈ Z/dZ. We further introduce (as in [Shi86])

Ad := { v ∈ (Z/dZ)4 : vi ̸= 0,∀i }

Bd(p) :=
{
v ∈ Ad : ∀t ∈ (Z/dZ)×,

3∑
i=0

ord(p)−1∑
j=0

tpjvi

d = 2 ord(p)
}

if p > 0 (4.2.18)

Bd(0) :=
{
v ∈ Ad : ∀t ∈ (Z/dZ)×,

3∑
i=0

tvi

d = 2
}

(4.2.19)

where ord(p) = ord×(p mod d) and we assumed that gcd(d, p) = 1. Then Shioda’s main
result in [Shi86] states that rk(E′

m,b,b′/k(t)) = b2 − λ− t where

λ := |LA ∩ (Ad ∖Bd(p))| and
{
b2 = 2m− 2, t = 2 if 6 | m
b2 = 12⌈m/6⌉ − 2, t = 12− 2(m− 6⌊m/6⌋) if 6 ∤ m.

Simplifying these expressions, we find:

rk(E′
m,b,b′/k(t)) =

{
2m− 4− λ if 6 | m,
2m− 2− λ else.

By analyzing the elements in LA ∩Ad, it can be checked that

λ = 2 ·#{ r ∈ {1, ...,m− 1}∖ {m/6} : (3m′, 2m′,−5m′ − rc, rc) ̸∈ Bd(p) }.

(when 6 ∤ m, we necessarily have r ̸∈ {m/6} since a is an integer).

It is easily seen that the condition (3m′, 2m′,−5m′ − rc, rc) ∈ Bd(p) is tantamount to
equation (4.2.9) (with d := lcm(6,m), q := p and a := r · c).

If p ≡ 1 (mod d), then we have Bd(p) = Bd(0), but proposition 4.2.18 shows that this is
actually the case if we simply assume p ≡ 1 (mod 6). Consequently, for any p ≡ 1 (mod 6),
we have rk(E′

m,1,1/Fp(t)) = rk(E′
m,1,1/k(t)) where k is any algebraically closed field of

characteristic 0. ⌟

Remark 4.2.34. By proposition 4.1.5, the group E′
m,b,b′(k(t)) is torsion-free, so it is not

clear how to use a descent procedure to get upper bounds on the rank (as in [Sil08a, chapter
X], where there is the crucial assumption that E[M ] ⊂ E(K) for some integer M > 1). ⌟
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Chapter 5
Further directions

I have questions to all your answers.

Woody ALLEN

We conclude this text by gathering here some questions that arose from this work, which could
be of some interest but that we did not have time to investigate. See also conjecture 4.2.30.

1. All the examples of Mordell–Weil lattices we have studied are coming from elliptic curves
over k(t), i.e., the function field of P1. Can we obtain anything interesting by looking at
non-constant elliptic curves over k(C), where C has genus > 0?

The case of constant curves E over k(C) was discussed in remark 2.4.1. However the
asymptotic behavior on the lower bound on the packing density has not been analyzed:
what could be obtained here?

2. In [Oes90, §3.4] and [Tsf91, §9, question 10], it is explicitly asked what packings one
can obtain from narrow Mordell–Weil lattices A(K)0 of higher dimensional jacobians or
abelian varieties A over global function fields K. We pointed out in remark 2.4.3 that
the main obstacle here is to get an (explicit) analogue of Shioda’s theorem 1.3.24 on the
minimal non-zero height on A(K)0.

3. We mostly looked at Kummer families of elliptic curves, as in definition 1.3.45. We
mentioned in remark 4.1.12 that the Artin–Schreier family y2 = x3 + tq− t gives packings
with the same (lower bound on the) sphere packing density as the ones from [Shi91].

Can we find some other examples of Artin–Schreier families giving interesting sphere
packings?

4. For fixed n > 0, let B := { b ∈ F3n : NF3n/F3(b) = (−1)n+1 }. When b varies in B, are
the curves E3n+1,b,1 : y2 = x3 + bx+ t3

n+1 isogenous over F32n(t) (they have the same
L-function by corollary 3.1.22 but see remark 1.3.42)? Are the corresponding narrow
Mordell–Weil lattices isometric (= isomorphic)?

More generally, when do two elliptic curves E,E′ over K have isomorphic Mordell–Weil
lattices? For instance, when pe ≡ −1 mod 12, the narrow Mordell–Weil lattices of the
curves y2 = x3 + tp

e − t from [GU20] have the same rank and the same (lower bound
on the) packing density as Shioda’s curves E′

pe+1,1,1 in [Shi91] (these curves are not
isogenous; see remark 4.1.12). Are these lattices isometric? Or do they have the same
theta functions?

As a related question, one could implement some algorithms to determine whether two
elliptic curves over a global function field are isogenous. The work [AW22, Corollary 0.8]
seems to be relevant here.
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5. Is the lower bound on λ1(E(K)0) from theorem 1.3.24 attained in the case of Elkies’
curves Γ4,2n+1 from remark 1.3.47 (when n > 5 is odd), or in the case of the curves
E3n+1,b,1 when n > 5 and NF3n/F3(b) = (−1)n+1 as discussed in subsection 3.2.2.1 and
proposition 3.2.14?

6. Is there a more efficient way to compute the kissing number of the Mordell–Weil lattices
L3n+1,b,1,32n than the method given in section 3.3 (the same question was asked in [Elk01,
§5] for the characteristic 2 family)? For instance, what is the asymptotic behaviour (as
n→ +∞) of κ(L3n+1,b,1,32n)?

It is worth investigating this problem because the exponential rate of lattice kissing
numbers has only been shown quite recently, by Vlăduţ [Vlă19].

As a related question, we do not know if there is a Z-basis of minimal vectors of the 54-
dimensional lattice L3n+1,b,1,32n when n = 3 and b = 1. Computational proposition 3.3.10,
together with theorem 3.4.1, tells us that this lattice is generated (over Z) by its minimal
vectors, though (there are more than 15 millions of them by computational theorem 3.3.1).

7. Can we compute the Tate–Shafarevich group of some of the curves E′
3n+1,b,1 in charac-

teristic 3 when n > 3, as done for n ⩽ 3 in section 3.4? The technique used there only
provides an upper bound on a certain subgroup X[ϕ] of the Tate–Shafarevich group (and
getting better bounds may require the use of a computer as in the proof of theorem 3.4.1
for n = 3).

8. One could generalize the construction of the laminated lattices given in propositions 1.2.9
and 3.2.22 to get new sphere packings in dimensions d+ 2, d+ 3, ... (where d = 2 · 3n)

9. Theorem 4.2.1 provides, for each prime p ≡ 1 mod 3, an isotrivial elliptic curve with
bounded non-zero ranks in the family of fields Fp(t1/m), m ⩾ 1. Are there such examples
in characteristic p ̸≡ 1 mod 3? Are there examples of non-isotrivial elliptic curves with
bounded non-zero rank in such a Kummer family of function fields?

Similarly, in [GU20], there is an example of an Artin–Schreier family with bounded rank,
where the rank is actually constantly zero. Is there an example of Artin–Schreier family
of elliptic curves over global function fields with bounded but non-zero ranks?

10. One could apply Stickelberger’s theorem 1.4.22 to the family y2 = x3 + x+ tm when p ≡
1 mod 4 to see if indeed Brumer’s bound is not attained, as mentioned in remark 3.1.21.

11. For any finite field k and any integer R ⩾ 0, is there an elliptic curve E over k(t) such
that E(k(t)) has rank R? Odd ranks were obtained in [Gri20] under some conditions
somehow similar to Artin’s conjecture on primitive roots, see remark 1.3.49.

12. As mentioned in remark 1.3.49, it was suggested in [PPVW19, §12.5] that elliptic curves
E/k(t) not defined over a proper subfield have bounded rank. One could try to investigate
some examples (beyond the one given in remark 1.3.49).

13. Is there a finite field k and an elliptic curve E over k(t) such that E(k(t1/n)) has
bounded rank but E(k̄(t1/n)) does not, as n ranges over positive integers coprime to
the characteristic of k (i.e., we have unbounded geometric rank but bounded algebraic
rank)?
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14. Here are various questions related to the notions of splitting field introduced in re-
mark 4.2.31.

(a) Given a finite field k, is it true that

rkE(k(t)) = rkE(k(t)) =⇒ E(k(t)) ↪
∼=−−−→ E(k(t)).

(b) Given a field k and m > 1, is it true that

rkE(k(t)) = rkE(k(t1/m)) =⇒ E(k(t)) ↪
∼=−−−→ E(k(t1/m)).

(c) Given two algebraically closed fields K ⊂ L, is it true that

rkE(K(t)) = rkE(L(t)) =⇒ E(K(t)) ↪
∼=−−−→ E(L(t)).

We point out that if E is an elliptic curve over K and K ⊂ K ′ is a finite extension of
global fields such that E(K) and E(K ′) have the same rank and the same torsion, it
does not mean that the inclusion E(K) ⊂ E(K ′) is an equality (we just have a subgroup
of finite index).

For instance, consider K = Q,K ′ = Q(i) and E/Q given by the minimal model y2 = x3 +
x2+4 (a short Weierstrass equation is y2 = x3−432x+190080; this is the curve with labels
112.a2 and 392.1-a1 from the database [LMF22]). The Mordell–Weil groups E(Q) and
E(Q(i)) both happen to be isomorphic to Z/2Z×Z, but P := (−2i, 2i+ 2) ∈ E(Q(i)) ∖
E(Q), so we definitely do not have an equality E(Q) = E(Q(i)). In fact, this point P
generates the torsion-free part of E(Q(i)), while Q := (0, 2) = 2P + (−2, 0) ∈ E(Q)
generates the torsion-free part of E(Q). Here the torsion of both groups is generated by
(−2, 0).
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Appendix A
Proof of the upper bound on the Brauer–Siegel

ratio

In this appendix, we provide a detailed version (with explicit constants) of the proof of the
upper bound on the Brauer–Siegel ratio BS(E/K) ⩽ 1 + o(1) from [HP16], as stated in
theorem 2.2.4. We do not claim originality here; the goal is only to make sure that we can
safely remove the dependency on q := |k| (the cardinality of the field of constants).

In what follows, we will use the "complex-analytic" version of the L-function L(E/K, s) :=
L(E/K, T = q−s) as in remark 1.3.33; in particular we have L∗(E/K) = log(q)rL∗(E/K)
where r is the (analytic) rank of E/K. We point out that in [HP16, Remark 2.5], the
regulator is defined using the pairing log(q) ·⟨−,−⟩NT (see remark 1.3.17), where log denotes
the natural logarithm (in base e). In particular, the Brauer–Siegel ratio of E/K as defined
in [HP16] is equal to BS(E/K) + r log log(q)

logH(E/K) (using our notation from definition 2.2.1).

The general idea in [HP16] to get an upper bound on the Brauer–Siegel ratio can be
described in five steps (we use the notations from theorem 2.2.4):

1. Get "easy" upper bounds on | log(L(E/K, s))|, from Euler product and from Weil conjec-
tures, where Re(s) = 1 + ρ or Re(s) = 3/2 + ρ with ρ ∈]0, 1/3[. See proposition A.4.

2. Apply Phragmen–Lindelöf principle on the strip {s ∈ C : 1 + ρ ⩽ Re(s) ⩽ 3
2 + ρ}, where

ρ ∈]0, 1/3[ (proposition A.5). In particular, we get an upper bound on | log(L(E/K, s))|
for Re(s) = 1 + 2ρ.

3. Use the functional equation of L(E/K, s) to get an upper bound on | log(L(E/K, s))|
for Re(s) = 1− 2ρ. Then apply Phragmen–Lindelöf theorem again, on a strip containing
s = 1. See proposition A.6.

4. Cauchy integral formula together with Brumer’s bound provide an upper bound on
|L∗(E/K)| (proposition A.7).

5. Finally, BSD formula (from conjecture 1.3.34) gives the desired result (theorem 2.2.4).

We start by writing the zeta function of K = k(C) as

ζK(s) = QK(q−s)
(1− q−s)(1− q1−s) ,

where QK(T ) =
2g∏
j=1

(1− ajT ) ∈ Z[T ] has degree 2g, and |aj | = q1/2 for every j. We have

an easy estimate:

Lemma A.1. Let s ∈ C with σ = Re(s) ∈]1, 2[. Then

|ζK(s)| ⩽ 3 · 22g

σ − 1 . ⌟
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We could replace the constant 3 in the numerator by any real number c > max{ζP1
F2

(2); 2
ln(2)}

= max{8/3, 2/ ln(2)} = 2/ ln(2) ≃ 2.885.

Proof of lemma A.1. –– To begin with, we have

|QK(q−s)| =
2g∏
j=1
|1− ajq−s| ⩽ (1 + q1/2−σ)2g ⩽ 22g,

since 1/2− σ < 1− σ < 0.

Thus it is sufficient to show that

|ζk(t)(s)| = |ζP1
k
(s)| =

∣∣∣∣ 1
(1− q−s)(1− q1−s)

∣∣∣∣ ⩽ 3
σ − 1

Recall that |1− q−s| ⩾ |1− |q−s|| = 1− q−σ > 0, so that

|ζP1
k
(s)| ⩽ 1

(1− q−σ)(1− q1−σ)

Therefore we want to show σ − 1 ⩽ 3(1− q−σ)(1− q1−σ) for every σ ∈]1, 2[, i.e.

3(1− x)(1− qx) + ln(x)/ ln(q) + 1 ⩾ 0

for every x = q−σ ∈]q−2, q−1[. Since ln(q) > 0, this is equivalent to show that

fq(x) := 3 ln(q)(1− x)(1− qx) + ln(qx) ⩾ 0

is non-negative on ]q−2, q−1[. This follows from the three easy facts listed below:

• Firstly, fq(q−1) = 0 is clear.

• Secondly, we have fq(q−2) > 0. Indeed, since q ⩾ 2, we get

fq(q−2) = ln(q) · (3(1− q−2)(1− q−1)− 1)
⩾ ln(q) · (3(1− 2−2)(1− 2−1)− 1)

= ln(q) ·
(

3 · 3
8 − 1

)
> 0.

• Thirdly, we check that f ′
q(q−1) < 0. Indeed, we have

f ′
q(x) = 3 ln(q)(2qx− q − 1) + 1

x
,

and using the inequality q ⩾ 2 again, we obtain

f ′
q(q−1) = 3 ln(q)(1− q) + q = (1− q)(3 ln(q)− 1) + 1

⩽ −(3 ln(q)− 1) + 1 = 2− 3 ln(q) ⩽ 2− 3 ln(2) < 0.

Notice that f ′
q(x) = g(x)/x, where g is a convex quadratic function of x. Let a, b ∈ R be

the two zeros of f ′
q and note that we have a < q−1 < b by the third observation f ′

q(q−1) < 0
above.
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— If f ′
q(q−2) ⩾ 0, then fq is increasing on ]q−2, a] and is decreasing on [a, q−1[, so that

fq(x) ⩾ 0 holds true for every x ∈ [q−2, q−1], since fq(q−2) > 0 = fq(q−1).

— If f ′
q(q−2) < 0, then fq is decreasing on [q−2, q−1], so that fq is non-negative on this

interval, because fq(q−2) > 0 = fq(q−1).

In all cases, we have fq ⩾ 0 over ]q−2, q−1[, as desired. ■

Moreover, recall that if E/K is non-constant, then by theorem 1.3.30, we can write the
L-function as a polynomial

L(E/K, s) =
DE/K∏
j=1

(1− βjq−s) (A.1)

for every s ∈ C, where |βj | = q for every j. On the other hand, the Euler product

L(E/K, s) =
∏
v∈|C|

2∏
j=1

(1− av,jq−s
v )−1 (A.2)

(valid whenever Re(s) > 3/2), satisfies1 |av,j | ⩽ q
1/2
v , qv = qdeg(v).

Equations (A.1) and (A.2) yield the upper bounds given respectively in lemmas A.3 and
A.2.

Lemma A.2. If σ = Re(s) > 3/2, then

|L(E/K, s)| ⩽ ζK(σ − 1/2)2d and | log(L(E/K, s))| ⩽ 2d log(ζK(σ − 1/2)). ⌟

Proof. –– The first inequality follows from the second one, so it is sufficient to prove the
second inequality. From (A.2), we have log(L(E/K, s)) = −

∑
v

∑
j log(1− av,jq−s

v ). Recall
that if |z| < 1, then

| ln(1− z)| =

∣∣∣∣∣∣−
∑
n⩾1

zn

n

∣∣∣∣∣∣ ⩽
∑
n⩾1

|z|n

n
= − ln(1− |z|) = | ln(1− |z|)|. (A.3)

Since |av,jq−s
v | ⩽ q

1/2−σ
v < 1, we get

| log(L(E/K, s))| ⩽
∑
v

∑
j

− log(1− |av,j |q−σ
v )

⩽
∑
v

∑
j

− log(1− q1/2−σ
v ) =

∑
v

2d log((1− q1/2−σ
v )−1)

= 2d log(ζK(σ − 1/2)). ■

Lemma A.3. Let s ∈ C with σ := Re(s) > 1. Then

| log(L(E/K, s))| ⩽ DE/K | log(1− q1−σ)|. ⌟

1For all places v of good reduction for E, we have an equality |av,j | = q
1/2
v .
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Proof. –– By equations (A.1) and (A.3), we have

| logL(E/K, s)| ⩽
D∑
j=1
| log(1− βjq−s)|

⩽
D∑
j=1
| log(1− q1−σ)| = DE/K | log(1− q1−σ)|. ■

We can now prove lemma 7.2 from [HP16].

Proposition A.4. Set β := 3 · 22g. Let ρ ∈]0, 1/β].

• If σ := Re(s) ∈ [1 + ρ, 3/2], then

| log(L(E/K, s))| ⩽ 2DE/K | log(ρ)|

• If σ := Re(s) ∈ [3/2 + ρ, 2[, then

| log(L(E/K, s))| ⩽ 4| log(ρ)|. ⌟

Proof. –– The first part readily follows from lemma A.3 and from the inequalities

| log(1− q1−σ)| ⩽ 2 log
( 1
σ − 1

)
⩽ 2 log

(1
ρ

)
= 2| log(ρ)|.

the first one being valid if q ⩾ 2 and σ ∈]1, 3
2 ].

The second part follows from lemmas A.1 and A.2: if σ ∈]3/2 + ρ, 2[ then

| log(L(E/K, s))| ⩽ 2 log(ζK(σ−1/2)) ⩽ 2 log
(3 · 22g

ρ

)
= 2(log(3·22g)+| log(ρ)|) ⩽ 4| log(ρ)|.

■

We now deduce lemma 7.3 from [HP16].

Proposition A.5. Set β := 3 · 22g. Assume that DE/K ⩾ 9 and that ρ := 1
2

log logDE/K

logDE/K
⩽

1/β. Define γ := 2ρ.

Then for every t ∈ R, we have

| log(L(E/K, 1 + γ + it))| ⩽ 12DE/K

log log(DE/K)
logDE/K

. ⌟

Proof. –– Consider the strip S := {s ∈ C : 1 + ρ ⩽ Re(s) ⩽ 3
2 + ρ}. We apply

Phragmen–Lindelöf theorem to2 log L(E/K,s)
D

1−2(s−1−ρ)
E/K

over this strip, where we know the bounds on

the boundaries thanks to proposition A.4. Then for every ρ ∈]0, 1/β], γ ∈ [ρ, ρ + 1
2 ] and

every t ∈ R, one has

| log(L(E/K, 1 + γ + it))| ⩽ 4D1−2(γ−ρ)
E/K | log(ρ)|. (A.4)

2Notice that when s = 1 + γ + it then |D1−2(s−1−ρ)
E/K

| = D
1−2(γ−ρ)
E/K

.
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Define ρ := 1
2

log logDE/K

logDE/K
∈]0, 1/2], and set γ := 2ρ ∈ [ρ, ρ + 1

2 ]. Since we assume that

ρ ⩽ 1/β, the upper bound (A.4) yields

| log(L(E/K, 1 + γ + it))| ⩽ 4D1−2ρ
E/K | log(ρ)|

= 4DE/K ·D
−

log log DE/K
log DE/K

E/K

∣∣∣∣∣log
(

log logDE/K

2 logDE/K

)∣∣∣∣∣
= 4

DE/K

logDE/K
| log log log(DE/K)− log log(DE/K)− log(2)|

⩽ 4
3DE/K

logDE/K
log log(DE/K),

where the last inequality holds if DE/K ⩾ 9. ■

We now use the functional equation for L(E/K, s) to get an upper bound on the vertical
line Re(s) = 1− ρ, and then another application of Phragmen–Lindelöf principle will imply
the following result.

Proposition A.6. There exists a constant D0 > 0 (depending on g but not on q) such that
whenever DE/K ⩾ D0, we have

|L(E/K, s)| ⩽ exp
(
DE/K

log log(DE/K)
logDE/K

(13 + log(q))
)
,

for every s ∈ S′ where S′ := {s ∈ C : 1− γ ⩽ Re(s) ⩽ 1 + γ} and γ :=
log log(DE/K)

logDE/K
. ⌟

Proof. –– The functional equation of L(E/K, s) is L(E/K, 2− s) = ±q(s−1)DE/KL(E/K, s)
by theorem 1.3.30. In particular,

L(E/K, 1− γ − it) = L(E/K, 2− (1 + γ + it)) = ±q(γ+it)DE/KL(E/K, 1 + γ + it)

Using proposition A.5, we deduce that when DE/K is large enough (DE/K →∞), we have
the inequality

| logL(E/K, 1− γ − it)| ⩽ DE/K

log log(DE/K)
logDE/K

(13 + log(q))

for every t ∈ R, where γ :=
log log(DE/K)

logDE/K
.

Combining this upper bound with the one obtained in proposition A.5, we deduce from
Phragmen–Lindelöf principle that the above inequality holds true whenever 1− γ − it is
replaced by s ∈ S′. This terminates the proof. ■

We can now derive an upper bound for the derivatives of L(E/K, s) at s = 1 using Cauchy
integral formulas, and Brumer’s bound from theorem 2.2.6. This corresponds to theorem
7.5 in [HP16].
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Proposition A.7. There exists a constant c1 > 0 (depending on g and the constant c0 given
in the statement of theorem 2.2.4, but does not depend on q) such that

log |L∗(E/K)| ⩽ fE/K
log log(fE/K)

log fE/K
(13 + c1 log(q)). ⌟

Proof. –– Let C be the circle of center 1 and radius γ as in proposition A.6, and r be the
analytic rank of E/K. Then Cauchy integral formula

L(r)(E/K, 1)
r! = 1

2πi

∫
C

L(E/K, z)
(z − 1)r+1 dz

yields

|L∗(E/K)| =
∣∣∣∣∣L(r)(E/K, 1)

r!

∣∣∣∣∣ ⩽ 1
2π length(C) · γ−(r+1) ·max

z∈C
|L(E/K, z)|

= γ−r ·max
z∈C
|L(E/K, z)|.

By Brumer’s theorem 2.2.6 and since we assume that q ⩽ f c0
E/K , we have

r ⩽
fE/K + 4gC − 4

2 log(fE/K) log(q) +
c0fE/K log(q) log(fE/K)
log(fE/K)2(1− 2−1/2)2 + 1 + 2βK +

cKc0 log(fE/K)
2 log(fE/K) .

⩽
fE/K + 4gC − 4

2 log(fE/K) log(q) +
c0 · fE/K log(q)

log(fE/K)(1− 2−1/2)2 +Oc0,g(1)

⩽ c′
1 ·
fE/K log(q)
log(fE/K) (A.5)

for some c′
1 > 0 which depends on g, c0 but not on q.

Since C is contained in the strip S′, proposition A.6 implies that if fE/K is large enough,
then

|L∗(E/K)| ⩽
(

log(DE/K)
log logDE/K

)r
exp

(
DE/K

log log(DE/K)
logDE/K

(13 + log(q))
)

⩽ exp
(
c′

1 ·
fE/K log(q)
log(fE/K) log logDE/K + DE/K

log log(DE/K)
logDE/K

(13 + log(q))
)
.

Thus, since DE/K ∼ fE/K (by theorem 1.3.30, as g is fixed), we get

log |L∗(E/K)| ⩽ fE/K
log log(fE/K)

log fE/K
(13 + c1 log(q)),

where c1 := 1 + c′
1. This concludes the proof. ■

Finally, we are able and ready to prove the upper bound on the Brauer–Siegel ratio, as
stated in theorem 2.2.4.

Proof of theorem 2.2.4. –– By theorem 1.3.35, all elliptic curves E/K in the statement
satisfy the BSD formula.
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Fix ϵ > 0. On the one hand, we have |E(K)tors|2 ≪ O(1) by proposition 2.1.4, where the
implicit constant depends only on g (note that we assumed that f(E/K)c0 ⩾ q = |k|, so
this forces E/K to be non-constant). On the other hand, cv(E/K) ⩾ 1 for every place v,
so BSD formula leads to

|X(E/K)| · Reg(E/K) ⩽ L∗(E/K) · qg−1 ·H(E/K).

As mentioned in remark 1.3.33, we have L∗(E/K) = log(q)−rL∗(E/K) where r is the rank
of E/K. When q > 2, we have L∗(E/K) ⩽ L∗(E/K) since log(q) > 1. When q = 2, we
have log(q)−1 > 1 so equation (A.5) yields

(log(q)−1)r = exp[r · (− log log(q))] ⩽ exp
(
c′

1 ·
fE/K log(2)
log(fE/K) · (− log log(2))

)
Let us set c′

2 := c′
1 ·

log(2)
− log log(2) > 0 and c2 := max{c′

2, 1} (which does not depend on q).
Thus in all cases we have (log(q)−1)r ⩽ exp

(
c2 ·

fE/K

log(fE/K)
)
.

Since fE/K ⩽ deg (∆min(E/K)) by theorem 2.2.2, we get

fE/K ·
log log fE/K

log fE/K
≪ϵ ϵ · deg (∆min(E/K)) ,

as fE/K → +∞. Thereby, proposition A.7 gives, when fE/K →∞:

|X(E/K)| · Reg(E/K)≪g H(E/K) · qg−1 · log(q)−r·

· exp
(
fE/K

log log(fE/K)
log fE/K

(13 + c1 log(q))
)

≪g H(E/K)1+ϵ · exp
(
c2 ·

fE/K
log(fE/K)

)
·

· exp
(
fE/K

log log(fE/K)
log fE/K

(13 + c1 log(q))
)

⩽ H(E/K)1+ϵ · exp(c2 · ϵ · fE/K)·
· exp [ϵ · deg (∆min(E/K)) (13 + c1 log(q))]

⩽ H(E/K)1+ϵ ·H(E/K)
12c2

log(q) ϵ ·H(E/K)
1

log(q) ·ϵ·(13+c1 log(q))

⩽ H(E/K) ·H(E/K)ϵ·(1+12c2 log(2)−1+13 log(2)−1+c1)

The third inequality comes from the fact that log log(t)
log(t) → 0 and 1

log(t) when t→ +∞.

In other words, we proved that for every ϵ > 0, there are some Bϵ,g,c0 , B
′
ϵ,g,c0

> 0 such that
fE/K ⩾ Bϵ,g,c0 implies

|X(E/K)| · Reg(E/K) ⩽ B′
ϵ,g,c0

·H(E/K)1+ϵ,

for every E/K as in the statement of the theorem, which finishes the proof. ■
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