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Abstract

In this thesis, we conduct a comprehensive investigation into structural instabilities of both
elastic and magneto-elastic beams and shells, resulting in a creative proposal to design
a programmable braille reader. Methodologically, we combine numerical simulations
using the finite element method, precision model experiments, and theoretical modeling.
Through our studies, we enhance the understanding of fundamental aspects of the
longstanding problem of imperfection-sensitive shell buckling. We also show the potential
for groundbreaking applications in functional magneto-active structures.

First, we examine the effect of defect geometry on the buckling strength of pressurized
spherical shells. A comparative study between dimpled and bumpy Gaussian defects
reveals that shells with the latter exhibit higher knockdown factors than their dimpled
counterparts. An interpretation based on curvature profiles adds support to the findings.

Second, we address the importance of imperfection sensitivity in predicting the buckling of
spherical shells, a canonical challenge in structural mechanics. We focus on the mechanical
response of pressurized spherical shells containing a single defect to a point probe. We
quantify the nonlinear force-indentation response of these shells under indentation, seeking
to predict their critical buckling capacity non-destructively. We examine systematically
how the location of the indentation affects the probing efficacy. We show that non-
destructive prediction of the onset of buckling is only attainable when the probe is close
to the defect.

Third, we present preliminary results from an ongoing investigation into the probing of
spherical shells containing a random distribution of defects. Following a probabilistic
approach using a large data set obtained from finite element simulations, we analyze
the indentation of shells with stochastically located defects. Our findings reveal that
the accuracy of the extrapolated (non-destructive) outcomes, including the prediction
of the actual knockdown factor, depends strongly on the chosen extrapolation method.
Nevertheless, we find that adopting a conservative extrapolation threshold yields a safe
lower bound for the knockdown factor, even if these predictions are overly conservative.
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Fourth, we turn to bistable, hard-magnetic, elastic beams, combining experiments, finite
element modeling, and a reduced-order theory to examine their response under combined
mechanical and magnetic loading. The beam, with antiparallel magnetization, exhibits
reversible snapping between two stable states. Critical field strengths and high-order
deformation modes are characterized using a numerical framework that is first validated
against experiments. Additionally, we explore the interplay of magnetic loading and a
poking force, providing an understanding of these magneto-elastic structural elements.
Finally, we tackle the computational design of programmable braille readers. Leveraging
bistable shell buckling, magnetic actuation, and pneumatic loading, a building block,
the “dot", is conceptualized. The design process is guided by finite element simulations,
which are first validated through experiments on a scaled-up model. The results show
the feasibility of selecting design parameters that fulfill geometric and force requirements
imposed by Braille standards. The proposed bistability and rapid switching capabilities
promise to advance accessibility to tactile information.

Key words: Mechanics of shells, spherical shells, shell buckling, non-destructive
probing technique, probabilistic shell buckling, Magneto-rheological elastomer,
bistable structures, snap buckling, braille reader
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Résumé

Dans cette thèse, nous menons une étude approfondie sur les instabilités structurelles des
poutres et des coques élastiques et magnéto-élastiques, qui débouche sur une proposition
créative de conception d’un lecteur de braille programmable. Sur le plan méthodologique,
nous combinons des simulations numériques utilisant la méthode des éléments finis, des
expériences modèles et une modélisation théorique. Grâce à nos études, nous améliorons
la compréhension des aspects fondamentaux du problème de longue date du flambage des
coques sensible aux imperfections. Nous montrons également le potentiel d’applications
dans les structures magnéto-actives fonctionnelles.

Tout d’abord, nous examinons l’effet de la géométrie des défauts sur la résistance au
flambage des coques sphériques pressurisées. Une étude comparative entre les défauts
gaussiens à fossettes et les défauts gaussiens bosselés révèle que les coques avec ces derniers
présentent des facteurs de déformation plus élevés que leurs homologues à fossettes. Une
interprétation basée sur les profils de courbure vient étayer les résultats.

Deuxièmement, nous abordons l’importance de la sensibilité aux imperfections dans la
prévision du flambage des coques sphériques, un défi canonique en mécanique structurelle.
Nous nous concentrons sur la réponse mécanique de coques sphériques pressurisées
contenant un seul défaut à une sonde ponctuelle. Nous quantifions la réponse non linéaire
de ces coques sous indentation, en cherchant à prédire leur capacité critique de flambage
de manière non destructive. Nous examinons systématiquement comment l’emplacement
de l’indentation affecte l’efficacité du sondage. Nous montrons que la prédiction non
destructive du début du flambage n’est possible que lorsque la sonde est proche du défaut.

Troisièmement, nous présentons les résultats préliminaires d’une étude en cours sur le
sondage de coquilles sphériques contenant une distribution aléatoire de défauts. En suivant
une approche probabiliste utilisant un large ensemble de données obtenues à partir de
simulations par éléments finis, nous analysons l’indentation de coquilles avec des défauts
localisés de manière stochastique. Nos résultats révèlent que la précision des résultats
extrapolés (non destructifs), y compris la prédiction du facteur d’enfoncement réel,
dépend fortement de la méthode d’extrapolation choisie. Néanmoins, nous constatons que
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l’adoption d’un seuil d’extrapolation conservateur permet d’obtenir une limite inférieure
sûre pour le facteur d’abattage, même si ces prédictions sont trop conservatrices.
Quatrièmement, nous nous intéressons aux poutres élastiques bistables, dures et magné-
tiques, en combinant des expériences, une modélisation par éléments finis et une théorie
d’ordre réduit pour examiner leur réponse sous une charge mécanique et magnétique
combinée. La poutre, avec une magnétisation antiparallèle, présente claquage ; une tran-
sition de flambage, discontinue et réversible, entre deux états stables entre deux états
stables. Les intensités de champ critiques et les modes de déformation d’ordre élevé
sont caractérisés à l’aide d’un cadre numérique qui est d’abord validé par rapport aux
expériences. En outre, nous explorons l’interaction de la charge magnétique et d’une force
d’indentation, ce qui permet de comprendre ces éléments structurels magnéto-élastiques.
Enfin, nous nous attaquons à la conception computationnelle de lecteurs de braille
programmables. En s’appuyant sur le flambage bistable de la coque, l’actionnement
magnétique et une charge pneumatique, un brique de base, le "point", est conceptualisé.
Le processus de conception est guidé par des simulations par éléments finis, qui sont
d’abord validées par des expériences sur un modèle à échelle réduite. Les résultats
montrent qu’il est possible de sélectionner des paramètres de conception qui répondent aux
exigences géométriques et de force imposées par les normes Braille. La bistabilité proposée
et les capacités de commutation rapide promettent de faire progresser l’accessibilité à
l’information tactile.
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Zusammenfassung

In dieser Arbeit führen wir eine umfassende Untersuchung der strukturellen Instabilitäten
von elastischen und magnetoelastischen Balken und Schalen durch, die in einem kreativen
Vorschlag zur Entwicklung eines programmierbaren Braille-Lesegeräts mündet. Methodisch
kombinieren wir numerische Simulationen mit der Finite-Elemente-Methode, Präzisions-
modellexperimente und theoretische Modellierung. Durch unsere Studien verbessern wir
das Verständnis grundlegender Aspekte des seit langem bestehenden Problems des imper-
fektionsempfindlichen Schalenknickens. Wir zeigen auch das Potenzial für bahnbrechende
Anwendungen in funktionalen magneto-aktiven Strukturen.

Zunächst untersuchen wir die Auswirkung der Defektgeometrie auf die Knickfestigkeit
von unter Druck stehenden Kugelschalen. Eine vergleichende Studie zwischen vertieften
und genoppten Gauß-Defekten zeigt, dass Schalen mit letzteren höhere Knickfaktoren
aufweisen als ihre genoppten Gegenstücke. Eine Interpretation auf der Grundlage von
Krümmungsprofilen untermauert die Ergebnisse.

Zweitens befassen wir uns mit der Bedeutung der Empfindlichkeit von Defekten bei der
Vorhersage des Knickens von Kugelschalen, einer klassischen Herausforderung in der
Strukturmechanik. Wir konzentrieren uns auf die mechanische Reaktion von unter Druck
stehenden Kugelschalen, die einen einzelnen Defekt enthalten, auf eine Punktsonde. Wir
quantifizieren die nichtlineare Kraft-Eindruck-Reaktion dieser Schalen unter Eindrücken
und versuchen, ihre kritische Knickkapazität zerstörungsfrei vorherzusagen. Wir unter-
suchen systematisch, wie sich der Ort der Einkerbung auf die Wirksamkeit der Prüfung
auswirkt. Wir zeigen, dass eine zerstörungsfreie Vorhersage des Knickbeginns nur möglich
ist, wenn sich die Sonde nahe am Defekt befindet.

Drittens stellen wir vorläufige Ergebnisse einer laufenden Untersuchung der Sondierung
von Kugelschalen mit einer zufälligen Verteilung von Defekten vor. Mit Hilfe eines proba-
bilistischen Ansatzes und eines großen Datensatzes, der aus Finite-Elemente-Simulationen
stammt, analysieren wir die Vertiefung von Schalen mit stochastisch verteilten Defekten.
Unsere Ergebnisse zeigen, dass die Genauigkeit der extrapolierten (zerstörungsfreien)
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Ergebnisse, einschließlich der Vorhersage des tatsächlichen Abschlagfaktors, stark von
der gewählten Extrapolationsmethode abhängt. Wir stellen jedoch fest, dass die An-
nahme einer konservativen Extrapolationsschwelle eine sichere untere Grenze für den
Knockdown-Faktor ergibt, selbst wenn diese Vorhersagen zu konservativ sind.
Viertens wenden wir uns bistabilen, hartmagnetischen, elastischen Balken zu, wobei wir
Experimente, Finite-Elemente-Modellierung und eine Theorie reduzierter Ordnung kombi-
nieren, um ihre Reaktion unter kombinierter mechanischer und magnetischer Belastung zu
untersuchen. Der Balken mit antiparalleler Magnetisierung zeigt ein reversibles Einschnap-
pen zwischen zwei stabilen Zuständen. Kritische Feldstärken und Verformungsmoden
höherer Ordnung werden mithilfe eines numerischen Rahmens charakterisiert, der zu-
nächst anhand von Experimenten validiert wird. Darüber hinaus wird das Zusammenspiel
von magnetischer Belastung und einer Stoßkraft untersucht, um ein Verständnis für diese
magnetoelastischen Strukturelemente zu gewinnen.
Schließlich befassen wir uns mit dem rechnerischen Entwurf von programmierbaren Braille-
Lesegeräten. Mit Hilfe von bistabiler Schalenverformung, magnetischer Auslösung und
pneumatischer Belastung wird ein Baustein, der “Punkt", konzipiert. Der Entwurfsprozess
wird durch Finite-Elemente-Simulationen geleitet, die zunächst durch Experimente an
einem vergrößerten Modell validiert werden. Die Ergebnisse zeigen die Machbarkeit der
Auswahl von Designparametern, die die geometrischen und Kraftanforderungen der Braille-
Normen erfüllen. Die vorgeschlagene Bistabilität und die schnellen Umschaltmöglichkeiten
versprechen, die Zugänglichkeit zu taktilen Informationen zu verbessern.
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1 Introduction

From the early days of Euler Bernoulli’s foundational work on structural mechanics to the
groundbreaking contributions of Germain, Navier, Kirchhoff, and Von Kármán, the study
of slender structures during the past few decades has experienced a significant revival
across various fields of engineering and physics [1]. Slender structures are characterized by
at least one dimension with a length scale significantly smaller than the others, exhibiting
unique mechanical behaviors that are strongly rooted in nonlinear geometry and different
from their bulk counterparts [2]. Understanding the behavior of this class of structures is
crucial for designing and analyzing a wide range of systems, from bridges and aerospace
structures to nanoscale devices [3, 4, 5, 6, 7, 8, 9]. The mechanics of slender structures
encompass a diverse range of phenomena, including their deformation, (in)stability, and
response to external loads [10]. Of particular interest are the buckling phenomena,
where a slender structure undergoes sudden and catastrophic failure due to compressive
loads [1, 11]. The buckling of slender structures is influenced by various factors such as
geometry, geometric imperfections, material properties, and boundary conditions [12].
Therefore, rationalizing these factors is crucial for designing and optimizing performance
and reliability [1]. In this thesis, we delve into the mechanics of slender structures,
particularly thin shell structures (see Figure 1.1). Our main focus is on understanding
their buckling instability from a fundamental point of view. We also exploit the mechanical
instabilities of slender structures as opportunities for scalable, reversible, and robust
functional mechanisms that can first be predictively understood and then harnessed for
function.

A shell is a slender structure comprising a solid bulk material bounded by two curved
surfaces, with the distance between them (the shell thickness, h) being small compared
to all other length scales of the structure (e.g., the radius, R, for spherical shells) [16].
Shell structures are critical components in nature and engineering across a wide range of
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(a) (b) (c)Beam Plate Shell

Figure 1.1: Instability of slender structures. Sample of one- (a), two- (b), and three-
demensional (c) slender structures. (a) Large lateral misalignments result in catastrophic
derailments in the continuous welded rail (CWR) track. Image adapted from Ref. [13].
(b) Cell changes cause buckling of dead leaves due to compression. Image adapted from
Ref. [14]. (c) The axial compression on a Coke Can causes it to buckle. Image adapted
from Ref. [15].

length scales [17]. The majority of them play a critical role in protecting their contents,
making them an essential aspect of structural design [18], where their failure is often
undesirable. Shell buckling, as a mode of failure, has long been a canonical problem
in the structural mechanics community that can severely compromise the mechanical
integrity of the entire system [11]. Hence, it is necessary to address the shortcomings of
shell buckling to improve the efficiency and reliability of these structures, which, despite
many decades of research, still calls for further, much-needed investigations.

In recent years, there has been a growing interest in exploring the interaction between
internal degrees of freedom of the structures and material strains, opening up opportunities
for exploring novel structural instabilities within the fields of engineering design and
advanced functional materials [19, 20]. Mastering the mechanisms underlying instability
could lead to the conception of novel mechanical systems that harvest instability as a
route to new functionalities [21]. The elastic buckling of slender structures is a promising
way to achieve large, reversible, and out-of-plane deformations to generate advanced
functionality [21]. Therefore, it is essential to note that taking full advantage of the
buckling and post-buckling regime requires new fundamental approaches for numerical,
experimental, and theoretical analysis. Snap-through instabilities are another intriguing
aspect of this class of structures [22], which enables rapid deformations. When an elastic
object reaches a critical criterion, an elastic object rapidly jumps from one state to another,
paving the way for various applications [23, 24, 25]. This snap-through instability presents
a unique opportunity to explore a different structural behavior, which complements the
more gradual deformations associated with elastic buckling.

2
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Combining slender structures with active materials and non-mechanical stimuli has
emerged as a fascinating field of research with diverse applications [26, 27, 28, 29].
Although the mechanical stimuli can cause significant bulk deformation, the time scales
for the actuation processes can be relatively long, which might not be optimal in scenarios
where rapid actuation is necessary [30, 31]. In contrast, the interplay between external
stimuli and elasticity offers a valuable pathway for achieving remote and controllable
actuation, with magnetism being a common example [32, 33, 34]. More specifically,
magneto-active slender structures made of magneto-rheological elastomers (MREs) have
emerged as an active and exciting research area [35]. MREs are smart composite materials
that exhibit changes in their mechanical behavior under the influence of an external
magnetic field [32]. These structures possess the unique ability to dynamically alter their
mechanical properties in response to an external magnetic field, making them highly
versatile and controllable for a wide range of applications, from soft robotics [36, 37, 38]
to biomedical devices [39]. Thus, rationalizing the mechanics of these structures is crucial
for unlocking their full potential.

Drawing upon insights acquired through exploring structural instabilities and their
potential for new functionality, this thesis embarks on a comprehensive investigation into
the intriguing domain of instability of slender structures. In particular, we will revisit the
imperfection sensitivity in shell buckling and explore a non-destructive testing method for
probing their (in)stability with modern research tools, including numerical simulations and
precision experiments, to rationalize the fundamentals of shell buckling. Our findings will
contribute to developing more accurate and predictive models for shell stability, paving
the way for the design of safer and more practical structures. Furthermore, we harness
the mechanical instabilities of bistable slender structures as opportunities for novel modes
of functionality –Buckliphilia– instead of the more traditional view of instabilities as the
first route for damage or failure –Buckliphobia [21]. Subsequently, we will turn to coupling
magnetism and elasticity to study magneto-active slender structures. Through a thorough
analysis of magnetically induced buckling phenomena, this thesis study aims to contribute
to the fundamental understanding and practical implementation of magneto-active slender
structures.

This introductory chapter is organized as follows. In Section 1.1, we first provide a brief
overview of the literature on the mechanics of spherical shells, their applications, and
failure mechanisms. Section 1.2, is dedicated to the important aspect of imperfection
sensitivity of shell buckling. Then, in Section 1.3, we describe recent advances on a non-
destructive probing technique to estimate the buckling capacity of shell structures. We
review recent studies on magneto-rheological elastomers (MREs) and their characteristics
and applications in Section 1.4. In Section 1.5, we discuss the history of numerical
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modeling and finite element simulation for analyzing structures made of these MRE
materials. We also focus on the actuation of MRE slender structures (shells, plates, and
beams) and investigate their (in) stability and modes of deformation. In Section 1.6, we
describe our research niche and the research questions that will be addressed through the
thesis. Finally, in Section 1.7, we present the thesis outline.

1.1 Shells Structures and Their Application

In the field of structural engineering, shells constitute a remarkable category of structures
designed to distribute loads and stresses efficiently through their curved surfaces while
maintaining a lightweight construction due to their slim profile [40], making them highly
desirable for a wide range of applications. The mechanism underlying the load-bearing
capacity exhibited by shells confers significant benefits compared to other classes of
structural elements, such as beams, trusses, or plates [11]. These advantages include
exhibiting high stiffness and geometry-induced rigidity [41], possessing significant strength
and structural integrity, effective load-carrying capacity, offering a high strength-to-weight
ratio, and providing space containment [42].

Shells are a versatile structural type found countlessly throughout nature and engineering
since antiquity [43, 44]. In Figure 1.2, we present several examples of shells across length
scales, characterized into two distinct categories: natural shells and engineered shells. In
nature (Figures 1.2a, b, c), small-scale shell structures such as pollens play a vital role
in facilitating the reproductive process in flowering plants [43]. These tiny structures
have evolved to aid in pollination [45] (Figure 1.2a). Nature showcases sub-meter scale
shells in various living forms (Figure 1.2b). For instance, animals that possess shells, like
pangolin [46], exhibit natural shells in the animal domain. Among living organisms, human
skulls [47] is another remarkable example of natural shell structures that encapsulate and
protect the vital brain within the human anatomy. Other examples include eggshells [48]
and coconut shells [49], which possess protective and structural qualities (Figure 1.2b).
Nature also exhibits shell structures at much larger scales. One remarkable example is
the Algarve cave [50] (Figure 1.2c), a natural formation that showcases the magnitude
and beauty of shell-like structures on a grand scale.

Throughout history, humans have accumulated knowledge and expertise in harnessing
the utility of shells for both individual and societal benefits, encompassing primitive and
purposeful approaches [42]. Engineered shell structures find applications in various fields
at different length scales (see Figures 1.2d, e, f, g, h, and i). In the pharmaceutical industry,
centimeter-scale shell structures are used in the form of capsules [51] (Figure 1.2d). These
capsules act as protective shells for medications, ensuring their stability and controlled

4



Introduction Chapter 1

Figure 1.2: Exploring shell structures across length scales: in nature (a, b, c)
and engineering (d, e, f). In nature, shells can be observed at (a) small-scale, e.g.
pollen grains, (b) at a sub-meter scale, such as animal shells, human skulls, eggshells, and
coconut shells, and (c) spanning hundreds of meters like the Algarve cave. In engineering,
shells can find their application in (d) pharmaceuticals, notably in capsules at a small
scale, (e) the hand-made pottery at the sub-meter scale. The engineered shell structures
at the hundreds of meters scale can be found in (f) the civil structures and (g) aerospace
structures such as the airplanes, (h) space shuttles and (i) satellites. These images in
(a), (b), (c), (d), (e), (g), (h), and (i) were adopted from Refs. [45], ([46], [47], [48], [49]),
[50], [51], [52], [53], [54], and [55], respectively.

release. Looking back through history, we find that skilled artisans have created beautiful
designs and textures in handmade pottery, drawing inspiration from the intricate patterns
in natural shells. This centuries-old tradition highlights the enduring appeal and artistic
expression that shells have offered [52] (Figure 1.2e). Engineering shell structures are also
commonly employed in civil engineering, spanning hundreds of meters. These structures
construct visually striking and structurally efficient buildings while serving as architectural
wonders that blend aesthetics and engineering principles to create captivating structures
such as the masterpiece Duomo Santa Maria del Fiore in Florence (Figure 1.2f).

One of the main applications of engineered shell structures in the 20th century at hundreds
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of meters was in the aerospace industry [56]. Shells have played a pivotal role in designing
and constructing critical engineering components of aerospace vehicles, including airplanes
(Figure 1.2g), space shuttles (Figure 1.2h), and satellites (Figure 1.2i). In aviation, aircraft
designers have harnessed the structural efficiency of shell structures to create lightweight
yet robust fuselages, wings, and control surfaces [57]. These aerodynamic shells contribute
to reduced drag and improved fuel efficiency and ensure the structural integrity required
for safe and reliable flight [58]. In space exploration, the development of space rockets and
shuttles relied on shell structures to withstand the extreme conditions of launch and re-
entry and provide habitable environments for astronauts during missions [59]. The unique
combination of strength and low weight inherent in shell structures proved invaluable
for the success of space programs [59]. Shell structures have also been employed in
designing and constructing satellites, where their lightweight and space-efficient properties
are crucial for placing payloads into orbit [60]. By exploring the application of shell
mechanics in these aerospace contexts, researchers have not only pushed the boundaries
of engineering but have also contributed to the advancement of space exploration and air
travel [61].

These three-dimensional curved structures can be classified into two categories: singly
curved (shows curvature in one direction) and doubly curved (shows curvature in two
directions) surfaces, exemplified by cylindrical and spherical shells, respectively [62]. A
spherical shell, which can be seen as an extension of an annulus into three dimensions,
represents the region of a ball confined by two concentric spheres of varying radii [63]. A
cylindrical shell is a three-dimensional region enclosed by two circular cylinders sharing
the same axis and featuring two parallel annular bases perpendicular to the common
axis [64]. Understanding the fundamental characteristics of these shell structures is
pivotal, as it forms the basis for optimizing their performance and ensuring structural
integrity. Specifically, this thesis focuses on exploring the mechanics and harvesting
functionality through the instability of spherical shells. We will delve into their buckling
behavior and stability landscape under various loading conditions. By gaining deeper
insights into the mechanics of spherical shells, this research aims to pave the way for
engineering advancements, offering innovative solutions for developing robust and efficient
shell structures suitable for diverse applications in the modern world.

1.2 Shell Buckling and the Imperfection Sensitivity

The history of research on the mechanics of shells reflects a captivating journey through
engineering and mathematics [65]. Beginning in the 15th century, the polymath Leonardo
da Vinci explored the principles of thin structures amongst a myriad of other topics
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and set the stage for centuries of exploration in this class of systems [66]. Da Vinci’s
keen observations and sketches laid the groundwork for understanding the behavior of
curved structures under various loading conditions [66]. Advancing into the 17th century,
Galileo Galilei’s experiments on the strength of materials, coupled with his investigations
of the strength and deformation of shells, contributed essential insights into the field
and provided valuable empirical knowledge [67], and the study of shell mechanics gained
further momentum [67]. In the 18th century, the Swiss mathematician Leonhard Euler
made groundbreaking contributions to the theory of elasticity and the mathematical
understanding of shell structures, which laid the foundation for subsequent mathematical
developments in shell theory [68]. At the start of the 19th century, researchers such as
Cauchy and Gauss further advanced the mathematical underpinnings of shell mechanics.
Their work in differential geometry and the theory of surfaces significantly contributed to
the theoretical framework for understanding curved structures [69, 70].

However, it was not until the 20th century that the field truly matured, thanks to the
groundbreaking contributions and the key advancements of eminent figures such as Love,
who developed the theory of elasticity for thin shells [71], Mindlin, who introduced
the concept of transverse shear deformation in shells [72], Donnell [73] who provided a
simplified approach to analyzing of moderately thick shells, Reissner [74] who brought
about the modern understanding of shell behavior, and Koiter, Sander, and Budiansky [75,
76, 11] who made an influential contribution to the development of shell theories. These
developments intertwined theories of elasticity, plasticity, and geometry, leading to the
design innovations of remarkable shell structures today [61].

We can infer important implications for the mechanical behavior of shells by examining
the fundamental differences between shells and plates when they are in their original,
unstressed forms. Unlike a plate structure, which is flat at rest, a shell structure exhibits
curvature in its undeformed configuration (Figure 1.3a). This fundamental difference
holds significant importance for the mechanical behavior of shells [77]. The deformation of
plates primarily involves bending energy, with stretching energy often being negligible. In
contrast, in shells, due to the existence of curvature and their particular geometry, bending
and stretching energies are intrinsically coupled and of the same order of magnitude
in resistance to external loads, evenly distributing the forces across their surfaces [77].
This distinction between shell and plate structures forms the basis for understanding the
mechanical properties and design considerations associated with these structural elements,
making them ideal for applications with more complex loading conditions [77].

This difference between the mechanical response of plate and shell structures can also
be demonstrated by comparing the critical buckling stress. Considering a shell of radius
R and thickness h under external radial compression loading and a circular plate with
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Figure 1.3: Shell versus plate structures. The normalized critical buckling stress
of shell, σCsh/E, and plate, σCp/E, structures versus their slenderness ratio h/R, with
fixed Poisson ratio of ν = 0.3.

the same radius of R and thickness of h under radial in-plane compression, the critical
buckling stress can be written for a spherical shell as,

σsh
C = 2

√
DS

Rh
=

E√
3 (1− v2)

h

R
, (1.1)

and for a circular plate as,

σp
C = 14.6

D

R2h
= 1.22

E

(1− v2)

(
h

R

)2

, (1.2)

where E and ν are the Young’s modulus, and Poisson’s ratio and D = Eh3/12(1− ν2),
and S = Eh, are the bending stiffness and the stretching stiffness of the shell and plate
structures. Figure 1.3(b) shows an illustrative plot of the critical stress of a shell, σsh

C /E

(Equation 1.1), and a plate, σp
C/E (Equation 1.2), as a function of their slenderness ratio,

h/R. Considering the same slenderness ratio in both structures, shell structures can carry
significantly higher loads prior to buckling compared to their plate counterparts due to
the shell effect [2].

The buckling of thin shells has long been a research subject in the structural mechanics
community [78, 79, 80], and the prediction of critical loads is at the basis of their design [81,
6]. Thin shells come in various geometries, each with its own unique characteristics and
challenges in mechanical design. As already mentioned above, two common types of
shells are spherical shells and cylindrical shells. For a spherical shell, one of the most
commonly used geometries in engineering structures, the critical load under a uniform
pressure loading was first proposed by Zoelly [82] in 1915, based on a linear buckling
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analysis,

pc =
2E√

3(1− ν2)
(η)−2 , (1.3)

where η = R/h is the slenderness ratio of the shell. Notwithstanding, subsequent
studies [83, 84, 85, 86, 87, 88] evidenced that this prediction, pc, was in systematic
disagreement with experimental measures of the buckling pressure, pmax, consistently
yielding overestimates. Trying to bring together these two elements has been a fundamental
aspect of structural mechanics [80]. The ratio between pmax and pc is classically referred
to as the knockdown factor,

κ =
pmax

pc
, (1.4)

which can be as low as 0.2 in practical structures (i.e., 80% lower than the value predicted
by theory; Equation 1.3) [89]. In reverse, κ = 1 for a perfect spherical shell.

This inconsistency between classical theoretical predictions and measurements was ex-
plored by the survey of classical and new experimental measurements of the knockdown
factor as a function of radius to thickness ratio (plotted in Figure 1.4) for shells under
compression. In these historical experimental studies, for the radius to thickness range
of 76 ≤ η ≤ 2834, the knockdown factor spread in the range 0.17 ≤ κ ≤ 0.9, and by
increasing η, κ decreases with a large spread. The shells made by low precision fabrication
techniques such as metal spinning [84, 85], or plastic vacuum drawing [86] had low values
of knockdown factor (0.17 ≤ κ ≤ 0.8) due to the defects imparted onto a shell during
fabrication or operational usage. However, shell structures made through high-precision
fabrication techniques, such as machining aluminium [87] and electrodeposition [88],
had higher knockdown factors (045 ≤ κ ≤ 0.9), even if still with considerable scatter.
This discrepancy between theory and experiment was eventually attributed to the high
imperfection sensitivity of shells, meaning that the load at which a shell buckle depends
strongly on defects in the geometry and material heterogeneities [11, 90, 91].

The highly sensitive nature of shells to imperfections required a reliable prediction of the
critical buckling load. Early attempts to rationalize the origin of sub-unity knockdown
factors were mostly unsuccessful [92, 93, 94, 83]. In 1945, Koiter [11] carried out a
breakthrough theoretical work by developing a general theory of stability for elastic
systems subject to conservative loading. Following this seminal development, a vast series
of studies were subsequently performed to study the fundamental bases of imperfection
sensitivity. The defects were identified in geometry [90, 91], loading [95], pre-buckling
deformations [96] or boundary conditions [97] as the culprits of the below-unity knockdown
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Figure 1.4: Experimental survey on the knockdown factor of spherical shells.
Knockdown factor, κ, against the radius to thickness ratio, R/t, of spherical shells under
pressure. The Figure is adapted from Ref. [89].

factor, κ < 1. Despite the extensive theoretical and computational studies since Koiter,
practical knowledge of shell buckling has remained primarily qualitative, with a striking
difficulty in mapping the characterization of the imperfections of a realistic shell into a
concrete prediction for its buckling load. Experimental research on shell buckling has
long lagged behind the theory and computation [98, 78, 86, 90]. It has become evident
that the gap in understanding between theory and practice has been mostly due to a
misalignment in the type, quality, and volume of experimental data that was available to
provide the necessary physical insight required to construct appropriate models and their
validation.

Consequently, for decades, engineers have relied primarily on acquired experience, ad hoc
guidelines, and over-conservative engineering codes [44]. As part of NASA’s endeavor for
large shell structures, traditional empirical factors used in design codes were replaced
with a new method, which involved initially assessing the manufacturing-specific imper-
fection signatures and determining the knockdown factors [44, 99]. Given the undeniable
importance of the design of engineering shell structures against buckling, which can lead
to global failure, the field begs for comprehensive, systematic, and generalizable tools
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rooted in a predictive mechanics-based framework that can accurately capture knockdown
factors. Early experiments on shells were done on spherical caps fabricated by metal
spinning [84, 85], plastic vacuum drawing [86], and machining aluminum [87]. In the
1960s, Thompson [100] and Carlson et al. [88] fabricated complete spherical shells by
electro-forming, thereby dramatically improving the quality of specimens. However, this
technique had drawbacks; the distribution of imperfections could not be systematically
varied, and the fabrication process were cumbersome and time-consuming. As such, there
was a need for an experimental technique that enabled the fabrication of shells with
precision-engineered imperfections of known geometry, which also being sufficiently fast
to yield large experimental data sets with a systematic variation of parameters.

Recently, to fill the gap between theory and experiment, Lee et al. [101] have revived
the experimental research in shell buckling by introducing a rapid, robust, versatile,
and precise coating technique to prototype thin spherical shells in a laboratory setting.
This fabrication of hemispherical elastic shells was based on the gravity-driven coating
of a curved surface with a viscous polymer solution, yielding a nearly uniform shell
upon polymerization of the resulting thin film. This technique was later modified to
produce a precisely engineered defect of controllable geometry in the shell [89, 102,
103, 104]. Considering the precise defect geometry, for the first time, quantitative
relationships between the critical pressure and the geometry of imperfection were obtained
by manipulating the defect amplitude, δ [89]. This was achieved through the measurement
of the knockdown factor, as illustrated in Figure 1.5. The authors showed that as the
amplitude of a single dimple-like defect increases, the knockdown factor decreases until
it reaches a plateau, which occurs when the defect amplitude is approximately equal to
the shell thickness. A detailed study of the knockdown factor’s dependence on geometric
parameters of the defect and shell has been conducted [105]. These experimental advances
have played an essential role in the revival of the interest in the buckling of both perfect
and imperfect shells [106, 107, 108, 109, 105, 110]. However, detailed prior knowledge of
the imperfections is still necessary for theoretical or numerical tools to predict the onset
of buckling.

Even with the notable progress discussed earlier in the theoretical, experimental, and
computational analysis of shells with one defect, numerous unresolved issues persist
when considering the more realistic and important scenario of shell buckling caused
by multiple imperfections and the possibility of interactions among these defects. The
investigation conducted by Wullschleger [111] using nonlinear buckling analysis focused on
examining cylindrical shells with two identical dimple imperfections positioned at different
distances. The normalized critical buckling load as a function of the circumferential
separation for the case of two defects without axial separation (Figure 1.6a) and with
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Figure 1.5: The knockdown factor characterization. Results obtained from finite
element simulations (lines) and experiments (data points) on the relation between the
knockdown factor, κ, and the defect geometry. The image is adapted from Ref. [89].

axial separation (Figure 1.6b) was examined. The study by Wullschleger [111] revealed
that the interactions between the defects become important when they are near each other
and decrease when far apart; at a specific separation, the shell even has a higher buckling
capacity than a single defect case. Recently, the impact of defect-defect interactions on the
pressure-induced buckling of thin spherical shells containing two dimpled imperfections
was investigated [112]; the present author of the thesis collaborated in this reported study
(more details are provided in Appendix A). The parameter space, including the angular
separation between the defects, the defect geometry, and the radius-to-thickness ratio of
the shell, were explored systematically. In Figure 1.6(c) and (d), we plot representative
examples of the knockdown factor as a function of the angular separation for the cases of
two identical and two different defects, respectively [112]. Qualitatively similar results
were observed compared to cylindrical shells with two defects. It was found that the
onset of the defect-defect separation for them to interact is set by the critical buckling
wavelength reported in the classic shell-buckling literature [113]. Beyond this separation
threshold, within the plateau regime, the buckling behavior of the shell is dictated by the
largest defect. Additionally, the interaction between two neighboring defects could either
reinforce or weaken the shell, depending on the distance between the defects, compared
to a single-defect scenario (see Appendix A).

Beyond considering scenarios with only two defects, probabilistic approaches have been
suggested to forecast the knockdown factor of cylindrical and spherical shells with a
distribution of imperfections. An early study conducted by Amazigo [114] focused on
examining cylindrical shells containing axisymmetric defects. They employed a modified
truncated hierarchy approach and determined that the spectral density of the random
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(a) (c)

(b) (d)

Figure 1.6: Cylindrical and spherical shells containing two defects. The normalized
buckling load as a function defect separation for a cylindrical shell containing two identical
defects (a) without axial distance and (b) with axial distance. The plots are adopted from
Ref. [111]. (c) The knockdown factor as a function of angular separation for spherical
shells with (c) identical and (d) different defects. The plots are adopted from Ref. [112]
which are described in detail in Appendix A.

imperfections influences the ability of the shell to withstand buckling. In a similar
investigation on the behavior of imperfect cylindrical shells under axial compression,
the Monte Carlo method has been used to statistically study shells containing symmet-
rical [115] or asymmetrical [116] defects. The investigation showed that probabilistic
methods emerged superior to deterministic approaches when evaluating design standards
for cylindrical shells. Elishakoff [117] comprehensively examined different probabilistic
methods applicable to shell buckling. Recently, Derveni et al. [118] examined the realistic
case of spherical shells with numerous randomly distributed geometric imperfections on
the surface of the shells. These authors discovered that when the amplitude of the defects
follows a log-normal distribution, the resulting knockdown factor can be described using
a 3-parameter Weibull distribution. This observation categorizes shell buckling as part
of a broader group of statistical phenomena known as extreme-value statistics [119, 120,
121, 122, 123, 124].
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1.3 Non-Destructive Probing Technique for Shell Structures

As discussed in the previous section, defects significantly impact the ability of thin-walled
structures to withstand compression. This finding presents a challenge toward accurately
predicting the critical loads at which buckling may occur, as it requires detailed knowledge
about the specific characteristics of the defects. Unfortunately, in practice, these defects
are often unidentified and can be difficult to detect, which raises the following question: Is
there an alternative approach to assessing the stability of shells and categorizing defects
non-destructively?

Recently, there have been promising advancements toward developing a general framework
to characterize the stability of shells. Therefore, using non-destructive probing techniques
or poking from the side to estimate the resistance of shells against buckling loads was
proposed [125, 126, 127]. The concept of "probing" can also be linked to the influential
study conducted by Eßlinger and Geier in 1972 [128], who explored the effects of tapping
cylinders at various levels of axial compression using a finger. While the concept of
probing loaded shell structures has been around for some decades [129, 130, 131], it
was only in recent years that employing probing as a systematic approach to investigate
stability gained traction [127]. This approach was introduced to delve deeper into the
exploration of stability landscape in shell structures and to uncover valuable insights into
their stability through a low dimensional description and a natural phase-space [130, 125].

The basis of this non-destructive probing approach is to measure the nonlinear force
displacement response of the shell to a point probe (Figure 1.7a). Figure 1.7 demonstrate
the poking of a compressed cylindrical shell from the side transversely with a controlled
displacement. The nonlinear probing response is measured at different levels of compres-
sion, and the area under load-displacement curves gives the energy barrier that must be
overcome by any static or dynamic lateral disturbances to buckle the shell [130, 125, 132]
(see Figure 1.7a). The force-displacement relationship measured by systematically varying
the compression level is then used to construct the stability landscape (Figure 1.7b).
This novel non-destructive probing technique has been first applied to axially compressed
cylindrical shells [130, 125, 126, 127, 133]. Virot et al. [127] built an experimental
setup to exert a point probe on a cylindrical shell under axial compression (Figure 1.7b).
The authors provided experimental evidence that the hyper-dimensional landscape fully
characterizes the complex stability of perfect and imperfect cylindrical shells by reducing
it to a three-dimensional phase space description that can be analyzed using modern
experimental and computational research tools. The ridge can be characterized as the
path traced by the peak points of the poker force. Consequently, tracking the ridge down
to zero poking force guides spontaneous buckling, and the knockdown factor of cylindrical
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shells could be extrapolated correctly.

(a) (b)

Figure 1.7: The probing technique for cylindrical shells (a) Schematic illustration
of the proposed probing technique on a cylindrical shell adopted from Ref. [125]. The
probing force diagrams are determined at compression levels less than their critical value.
(b) An experimental force landscape was created by testing an axially compressed Coke
Can specimen by Virot et al. [127]. The picture is adopted from Ref. [127].

Horák et al. [129] conducted numerical investigations into the energy landscape of
cylindrical shells. They investigated various loading conditions of the system along
with their associated energy levels. By employing a ’mountain pass’ algorithm [129],
which is used in the calculus of variations and in finding solutions to nonlinear PDEs,
they successfully identified the path of least energy leading to buckling. Interestingly,
this path involved a localized equilibrium mode, which differs from the global modes
typically obtained through linear stability analysis [1, 134]. Moreover, a new numerical
solution was recently proposed, where instead of considering the linear instability of a shell
with defects, a finite, nonlinear destabilizing perturbation was imposed on an otherwise
perfect shell [133]. In this study, the elastic response of the shell was captured by the
Donnell–Mushtari–Vlasov (DMV) theory. The fully nonlinear equilibrium states on the
boundary of the unbuckled state’s basin of attraction for an axially loaded cylindrical
shell were identified. It was shown that, for changes in the applied compression, a single
dimple undergoes circumferential snaking, resulting in the circumference being filled with
a ring of buckles.

In the series of studies mentioned in the previous paragraph, the non-destructive probing
technique was applied to cylindrical thin shells containing local dimple-like imperfec-
tions, both computationally [135, 136] and experimentally [127, 137]. The influence of
background imperfections and the location of probing relative to the imperfections were
considered by examining the robustness of the technique. Abramian et al. [138] applied
this probing technique to commercial cylinders containing a hole and showed that when
the location where buckling nucleates was known, the buckling load of each shell could
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be accurately predicted. Ankalhope and Jose [139] showed that the buckling event could
be avoided when extrapolating the true buckling load of an imperfect cylinder, but the
precision of ridge tracking in evaluating the load-carrying capacity significantly relies
on the position of measurement and the distribution of imperfections. The inherent
difficulty with this approach was that the resistance to probing would only reach zero if
the deformation caused by probing aligns precisely with the natural buckling mode of the
cylinder. Therefore, if probing is not performed in a location where the dimple is located
(particularly the location of the dominant imperfection [140, 141]), ridge tracking will
overestimate the buckling load [137]. Cuccia et al. [142] investigated the elastic buckling
of thin-shell soda cans with intentional dents, which already possess inherent background
imperfections, causing them to buckle at loads well below those of a perfect cylinder. The
authors revealed that to identify the most likely initiation site and associated buckling
load, the investigation must be conducted with sufficient resolution.

However, despite the body of research summarized above, it remained inconclusive
whether the probing technique could serve as an effective way of assessing the stability of
spherical shells, which parallels the successful case of cylindrical shells in the early studies
mentioned above [127]. The response of perfect spherical shells subjected to external
uniform pressure with and without a probing force was recently investigated by [107,
108] based on a small-strain and moderate-rotation shell theory formulation, both under
prescribed pressure and prescribed volume change. Thompson et al. [126] addressed the
testing of compressed shell structures using the concept of probing by a controlled lateral
displacement to gain quantitative insight into their buckling behavior and to measure the
energy barrier against buckling, providing design information about a structure’s stiffness
and robustness against buckling in terms of energy and force landscapes.

The first experimental study on probing of imperfect spherical shells was carried out
by Marthelotet al. [102]. They investigated the buckling strength and energy barrier of
shells containing a geometric defect subjected to a simultaneous combination of pressure
loading and a probing force, demonstrating that the probing strategy applied to the
defect successfully assesses the stability of spherical shells. However, considering a point
load located off-axis from the defect, the energy barrier measured from the probe was
similar to that of a perfect shell but dramatically jumped to zero when buckling occurred.
However, these experiments were only conducted in limiting cases; the probe was either
located exactly at the center of the defect or far away from the defect. Therefore, there
is a need to more systematically explore the response of the spherical shell loaded by a
probe located in between the two extreme locations. This timely data would show the
limitations and range of applicability of the probing technique in identifying the critical
buckling conditions and encoding the characteristics of the stability of spherical shells.

16



Introduction Chapter 1

It is within this context that we have performed a thorough investigation into how the
response of an imperfect spherical shell is affected by the location(angle) of indentation
with respect to the location of the defect; Chapter 3 is dedicated to this research problem.

1.4 Magneto-Rheological Elastomers and Their Applications

In the previous section, we reviewed relevant past literature on the mechanics of shell
structures and their buckling phenomena within the domain of linearly elastic materials.
We focused on the understanding of the fundamental principles governing the behavior
of shells under various loading conditions. As we transition to the next section, our
focus shifts towards soft active materials, especially the unique properties of magneto-
rheological elastomers (MREs) and active structures harnessing them. Unlike their passive
counterparts, MREs can actively adapt and respond to external stimuli, allowing for
adaptive and controllable mechanics. This chapter aims to merge the insights gained from
the mechanics of slender structures with the potential of active soft materials as we tackle
an understanding of linearly elastic and magnetically responsive systems. Eventually,
later in this thesis, in Chapter 6, you will combine the mechanics of shells with the active
response of MREs.

The general class of soft active materials, distinguished by their mechanical flexibility
and capacity to undergo substantial deformations in response to external stimuli, offers
the opportunity for creating smart structures and systems across various applications.
These applications span diverse fields, from developing sensors [143] and high-performance
actuators [28] to tissue engineering [144] and efficient energy harvesting [145, 146].
Various subtypes within this category of materials stand out for their unique capabilities,
including photo-activated polymers, which respond to light stimuli [147, 148], shape-
memory polymers capable of recovering their original configuration after deformation [149,
150], magnetorheological elastomers (MREs) exhibiting magnetic-field-driven mechanical
changes [151, 29, 145], and thermally activated polymers, exhibiting controlled responses
to temperature variations [152, 153].

Despite a diverse array of soft active materials, our attention now narrows to a particular
subset: magneto-rheological elastomers (MREs). There has been a burgeoning interest
in MREs, distinguished by their ability to undergo substantial mechanical deformations
under an external magnetic field [32]. MREs offer a unique blend of mechanical flexibility
and tunability. The precise control over their mechanical and physical properties through
external magnetic fields makes them an enticing subject of study for designing intelligent
structures and systems, with a distinctive capacity to respond swiftly and robustly to
applied fields, further emphasizing their potential for the design of cutting-edge engineering
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solutions [34].

MREs are active composite materials typically consisting of magnetically permeable
micron-sized particles homogeneously embedded into a soft polymeric matrix (see Fig-
ure 1.8). This unique combination of their structure allows them to possess magnetic
properties and the ability to undergo large mechanical deformation. The particles form
ordered structures that result in performance enhancements under the influence of a
magnetic field. They exhibit a mechanical response that can be adjusted under an external
magnetic field [154, 155]. When a magnetic field is applied, it exerts torques and/or forces
on the particles within the soft matrix, leading to deformation in the composite material.
These materials typically exhibit short response times, enabling them not only to modify
their viscoelastic properties and stiffness in response to external magnetic fields but also
to undergo substantial deformations.

Matrix

Particles

Mixing
Magnetizing

B

Figure 1.8: Magneto-rheological elastomer. The magneto-rheological elastomers are
composite materials containing a homogeneous suspension of magnetic particles in a
polymeric matrix and exposed to a strong magnetic field in order to align the particles in
the direction of the magnetic field and acquire magnetic characteristics.

Over the past few years, MREs have gained significant attention due to their remarkable
ability to offer fast, reversible, and remotely controlled shape-shifting behavior [27, 26,
156, 28, 151, 36, 29, 157, 158, 145]. The relationship between mechanics and magnetism
in MREs has been utilized in recent studies to create practical devices for a range
of applications [26, 27, 28, 29]. Additionally, the latest advancements in materials
engineering, simulation, and manufacturing methods of magnetic soft materials, along
with the progress in magnetic actuation platforms, have significantly expanded their
potential applications in various fields, and we list a number of them below.

MREs have attracted particular attention for their possible applications in soft-robotics [159,
161, 162, 163, 164, 34, 36, 39, 165, 160] (Figure 1.9a, b). For example, using hard-magnetic
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composites, magnetic soft robots can swim, walk, and roll in fluid or solid environments,
as well as deliver cargo through spatiotemporal control of the magnetic field activation
[36] (Figure 1.9a). In Figure 1.9(b), a microswimmer has been developed using a magnetic
hydrogel that imitates the helical propulsion of bacterial flagella when subjected to
rotating magnetic fields [166]. In soft robotics, MREs have also been applied to the
design of many different types of actuators, ranging from undulating [167] to multimodal
swimming robots [36] or guided wires [39].

Besides soft-robotics, MREs find applications in other fields, including origami and
metamaterials [151, 157, 168, 169, 151, 170, 171, 172] (Figure 1.9c, d). In Figure 1.9(c), a
2D lattice structure was illustrated by assembling hard-magnetic composites manually,
with the composites connected by bendable joints. This structure displays varying torque-
driven auxetic behavior, which depends on the direction of the applied magnetic field and
displays magnetically tunable acoustic properties [173]. A hard-magnetic soft composite
Miura-ori fold was created by incorporating alternating oblique patterns of magnetic
polarities in Figure 1.9(d). This 3D-printed structure exhibits auxetic properties with
negative Poisson’s ratios [39]. Additionally, MREs find application in programmable
and reconfigurable surfaces [174, 175, 176, 177, 178, 179, 180, 181, 182], such as fluids
containing hard magnetic particles propelled through the use of traveling metachronal
waves when subjected to rotating magnetic fields [181, 182] (Figure 1.9e). Figure 1.9(f)
presents an example of MREs in soft and flexible electronic devices [183, 184, 185,
186, 187, 19]; hard-magnetic composite with electroplated flexible circuits [183]. In the
domain of bio-medical devices [39, 188, 189, 190, 191, 192], MREs are used, for example,
in magnetic guided wires utilizing hard magnetic-soft composite materials to navigate
intricate neurovascular pathways [39] (Figure 1.9g).

Based on the magnetic response of the embedded particles to applied magnetic fields,
MREs are classified into two groups: soft-MREs (s-MREs) and hard-MREs (h-MREs).
These two classes of magnetic materials differ qualitatively according to the characteristics
of their magnetization hysteresis curves: magnetization, M, versus applied filed, H
(Figure 1.10). Two quantities are particularly important in these curves: the remanence (or
remanent magnetization), Mr, and the coercivity (or coercive field), Hc. The remanence
denotes the magnetization that remains in the material once it gets magnetically saturated
and after an external magnetic field is removed. The coercivity measures the strength of
the magnetic field required to remove the remanent magnetization in the material.

S-MREs contain soft-ferromagnetic particles, which are often iron or iron oxide, and they
can reach a high level of saturation magnetization, Ms (see Figure 1.10). However, the
external magnetic field [193] modifies the magnetization of particles, which is changed
significantly when the external field is removed, meaning they have a low coercivity. In
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Figure 1.9: Application of magnetic soft materials. The magneto-rheological elas-
tomers find various applications in (a, b) soft robotics, (c,d) origamis and metamaterials,
(e) programmable and reconfigurable surfaces, (f) soft and flexible electronic devices, and
(g) biomedical devices. The pictures in Figures (a), (b), (c), (d), (e), (f), and (g) are
adopted from Refs [36], [166], [173], [39], [181, 182], [183], and [39], respectively.

s-MREs, when the particles are embedded in a compliant elastomeric matrix, due to
dipole-dipole interactions, they tend to form chains along the field direction [194, 155].
The displacements of the constituent micro-scale particles within the matrix result in
macro-scale deformations and changes in the elastic properties of the composite [195,
196, 155]. This class of s-MREs has attracted significant attention. For example, by
applying a field gradient to actuate the large deflection of structures made of s-MREs,
the rearrangement of the particles inside the matrix causes large deformations and a
variation in elastic properties [197, 194]. This actuation have been often used to devise
tunable vibration absorbers [198, 199, 200], microfluidic pumps [201, 202]), and force
sensors [19] or strain sensors [203]. In devices made of s-MREs, the deformation is induced
by the formation of particle chains along the magnetic field (magneto-striction), and these
materials often find applications involving compression/elongation motions [161, 204].
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(b)

Figure 1.10: Soft- versus hard-MREs. The magnetic hysteresis loops (M-H curves)
of soft-magnetic and hard-magnetic materials. Unlike hard magnetic materials, soft
magnetic materials cannot retain a high magnetization level despite acquiring a higher
magnetization due to low coercivity. The figure is adapted from Ref. [145]

By contrast, in h-MREs, which are the focus of this thesis, the hard-ferromagnetic
particles such as neodymium-iron-boron (NdFeB) are embedded in the elastomeric matrix.
These particles possess a sufficiently high coercivity, Hc compared to s-MREs (see the
hysteresis curves in Figure 1.10) and resist the demagnetization by external fields after
field saturation [193, 29]. Consequently, the remnant magnetization of h-MRE can be
retained during actuation. In particular, flexible slender structures made of h-MREs
are capable of significant shape changes, driven by the magnetic body torques induced
by the interaction between the intrinsic magnetization of the material and the applied
field [34, 151]. While complex motions are challenging to achieve with s-MREs, h-MREs
are adapted to more complex 3D deformations, particularly rotational motion, due to the
possibility of inducing magnetic torques. The magnetization profile of h-MRE structures
can be (inverse) designed and programmed by the local orientation of the magnetized
particles to generate complex 3D-shape transformations and optimize the shape-shifting
modes for specific applications [34, 151, 205, 206, 207, 158, 38]. This class of MREs shows
the rapid, reversible, and controllable ability to change shape, which introduced innovative
capabilities in soft robotics [36, 37, 208], biomedicine [39], and meta materials [157, 172],
and micro-machines [38].

To harness the full potential of MREs, it is essential to develop accurate and predictive
models that can capture their complex mechanical behavior under various magnetic
fields and loading conditions. These mechanics-based models play a crucial role in
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designing innovative MRE-based devices and structures. As a result, MREs’ properties
and behaviors are investigated, advancing material science and engineering to create more
responsive and versatile structures. For a better understanding of magneto-mechanical
effects in MREs, many theoretical, numerical, and experimental research integrating
electromagnetism and mechanics have been conducted, which we will elaborate on in the
next section.

1.5 Modeling of Magneto-Rheological Elastomers

Significant theoretical, numerical, and experimental research has been conducted on
developing predictive models for MREs to rationally design magneto-active systems.
These studies aimed to investigate the behavior of MREs when subjected to mainly
magnetic actuation [209, 210, 211, 212]. Next, we provide an overview of some of the
main concepts regarding the modeling of MREs that will be needed later in this thesis.

The origins of the research on MREs can be traced back to the last century when the
theoretical groundwork for the field was established within the domains of continuum
mechanics, thermodynamics, and electrodynamics to study their response under magnetic
actuation [209, 210, 211, 212]. These initial theoretical advancements in the field of
magneto(electro)mechanics preceded the earliest recognized experimental investigations
into MRE, which was conducted by Jolly et al. in 1996 [213]. In this work, a quasistatic
dipolar model was developed to explain the modulus change of an MRE, and experimental
testing was conducted to examine the material properties of a composite material com-
prising an elastomer embedded with ferrous particles under a magnetic field. Following
these foundational works, several magneto-mechanical models were then developed, both
for soft and hard MREs [35, 214, 215, 216, 32, 217], taking into account, for instance,
their anisotropy [197], viscoelasticity [218], and magnetic hysteresis [219]. Additionally,
experimental studies were conducted in order to evaluate the developed models [210,
32, 197]. Particularly, Zhao et al. [32] developed a simple model based on 3D-printed
heterogeneous magnetization profiles for h-MREs, building on past work conducted on
the equilibrium of deformable solids under magnetic torques and forces [210, 211] and
validated the model with 2D and 3D structures.

Dorfman and Ogden [35, 214, 215] revisited and modernized the modeling of MREs
and established the fundamental principles in this area by presenting a framework that
combines Maxwell’s equations, mechanical balance laws, and thermodynamic equations
for a deformable 3D material. They further adapted this general theory specifically
for magneto-sensitive elastomers, simplifying the constitutive relations based on the
incompressibility and hyperelasticity of the elastomer. Voropaieff et al. [220] proposed an
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approach based on a continuum description to characterize the constitutive behavior of
MREs [216, 197]. For this purpose, they numerically implemented MREs in 3D finite
element modeling (FEM) and validated their model by comparing it with experimental
data. Using this approach, the MRE structure design could be improved based on an
entire overview of the coupled behavior.

Lately, in a pioneering work, Zhao et al. [32] introduced a constitutive model to describe
the response of h-MREs under the magnetic field. This torque-based theoretical framework
took into account the macroscopic behavior, and the authors made several key assumptions
in their study. Firstly, they assumed that the h-MRE was pre-magnetized with a known
magnetization profile and had a relative permeability close to unity, meaning that the
permeability of the MRE is approximately equal to vacuum or air. Secondly, they
assumed that the magnetic field within the entire domain was equal to the externally
applied field in a vacuum, neglecting the influence of the magnetization of MREs. As
a result of these assumptions, the problem was simplified into a mechanical problem
under magnetic loading, where the deformation gradient and displacement field served as
the only independent variables, eliminating the need to solve the fully coupled magneto-
mechanical equations. Next, we provide a concise overview of the fundamental theoretical
framework.

The torque-based model proposed by Zhao et al. [32] considered magneto-active materials
as a homogenized continuum body with a physical behavior given by the Helmholtz free
energy configuration. The combined total Helmholtz free energy density of the ideal
hard-magnetic soft material per unit volume composed of elastic strain energy density per
unit volume, U e, and magnetic energy density, Um, concerning the initial configuration
as:

U = U e + Um. (1.5)

The magnetic part of the strain energy density is defined as the potential of the magnetic
body torque, T = m×Ba, imposed by the magnetic flux density, Ba as

Um = −Jm.Ba, (1.6)

where m is the magnetization of the deformed h-MRE body. This magnetization is related
to its undeformed magnetization configuration M as

m = J−1FM, (1.7)

where F is the deformation gradient, and J = det(F) measures the relative volume change.
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Therefore, the magnetic potential density with respect to the initial configuration is
written as

Um(F) = −FM.Ba. (1.8)

This magnetic energy density couples the magnetic actuation and the elastic deforma-
tion. Regarding the magnetic part of the magnetic energy potential, based on ideal
hard-magnetic soft material, they assumed a linear relationship between the applied
magnetic field H and the magnetic flux density B (linear regime of the hysteresis curve
in Figure 1.10). This assumption is valid as long as the applied field H is far below the
coercivity Hc. More precisely, they assume the slope of this relationship to be the vacuum
permeability, µ0 as:

H =
1

µ0
(B − Br), (1.9)

where Br, the residual magnetic flux density (in the current configuration) corresponds
to the magnetic flux density that the material can maintain in the absence of any
applied exterior field. The free magnetic energy density (per unit volume) in the current
configuration can be derived as the energy to realign this magnetic moment with the
applied magnetic flux density [221]. Zhao et al. [32] implemented the equilibrium equation
of a hard-magnetic body under a uniform field, along with the constitutive law, into
3D finite element modeling (FEM) through a user-defined element subroutine (UEL)
developed in the commercial finite element software package Abaqus/Standard. The
inputs of the simulation are the global shear and bulk moduli, G and K, respectively,
the applied magnetic flux density vector Ba and the residual flux density vector in the
reference configuration Br. The torque-based model underwent validation through various
test cases involving thin-walled structures subjected to pure magnetic loading [151, 32],
soft active robots [39], and morphing architectures [222].

This model predicted the magnetic-activated shape-change of structures fabricated with
this hard-magnetic soft material. In Figure 1.11(a), we reproduce a figure adapted from
the work of Zhao et al. [32] comparing their model-based simulation with the experimental
results for the printed 2D and 3D structures. The authors showed programmed shape
changes due to the inscribed magnetic domains, observing a good agreement between the
experiment and simulations. They also validated their model with experiments in the
magnetically actuated bending of the beam with large and extreme deformation (up to
180◦), respectively (see Figure 1.11b and c).

In a subsequent study, Garcia-Gonzalez [223] expanded this torque-based model to
incorporate viscous contributions to account for relaxation and dissipation effects in the
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(a) (b)

(c)

Figure 1.11: Validation of continuum torque-based model with experiments.
FEM modeling with implemented UEL subroutine for the magnetically actuated (a) 2D
and 3D structures with programmed magnetic domains, (b) beam bending with magnetic
field perpendicular, and (c) in the opposite direction to the magnetization profile. The
pictures are adopted from Ref. [32].

deformation process of these materials when subjected to external magnetic fields and/or
mechanical loading. Then, based on this torque-based model, Zhang et al. [224] considered
the interactions between the magnetic particles and the soft matrix and explored the
impact of these interactions on actuation efficiency by employing a micromechanics
approach in representative volume element simulations. Their findings demonstrated that
particle rotations significantly influence the actuation efficiency, specifically regarding the
efficiency of torque transmission.

More recently, coupled constitutive models for MREs with iron particles have been pro-
posed [217]. In this model, an augmented variational principle is developed and used
to properly evaluate the homogenized response of MREs. The analytical models are
compared with full-field numerical FE simulations of random polydisperse representative
volume elements. Following their previous work, Mukherjee et al. [219] introduced a
fully-coupled modeling framework for incompressible h-MREs through microstructural
guidance. The constitutive formulation was established with a strong focus on thermody-
namic consistency, and the model parameters were determined through homogenization
techniques (see Figure 1.12). In this homogenization technique, each point of the macro-
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continuum (Figure 1.12a) is assumed to be described by a representative volume element
(RVE) comprising two phases of particle and matrix (Figure 1.12c). A slowly varying
microstructure was also considered such that the microstructure can be assumed to be
(locally) periodic (Figure 1.12c), resulting in periodic boundary conditions applied on a
single RVE (Figure 1.12b).

This novel framework could account for the self-field generated by the MRE and the
interactions between microscopic magnetic particles. In contrast to previous studies, the
model of Mukhreje et al. [225] takes magnetic hysteresis into account in the constitutive
relations, enabling it to represent the nonlinear behavior under intense magnetic actuation,
even beyond the coercivity of the particles and during particle magnetization, contradicting
the observation of the previous torque-based model presented by Zhao et al. [32], which
considered the effect of stretching deformation of matrix on magnetization. Utilizing
this model, the authors analyzed the deformation of an inhomogeneously magnetized
cantilever beam, considering cases where neglecting the self-field was not applicable.
Moreover, their homogenization simulations demonstrated that the magnetization of a
bulk pre-magnetized incompressible hard-MRE with a moderately soft matrix remained
unaffected by stretching deformations; a more extended discussion on this point will be
presented below, in Section 1.5.1.

Following previous studies, Garcia-Gonzalez and Hossain [226] presented a microstructural
model to examine the impact of dipole-dipole interactions on the deformation of h-MREs.
The model solely focuses on the rotation of rigid particles to derive the potentials
associated with the mutual interactions among the particles and the interactions between
the external field and the particles. Then, Rambausek et al. [218] conducted a detailed

Figure 1.12: Schematic diagram of homogenization of MREs. (a) Macroscopic
boundary value problem of MRE in the air with the (b) periodic representative volume
elements (RVEs), and (c) an RVE occupying a reference volume. The pictures are adopted
from Ref. [219].

26



Introduction Chapter 1

investigation into the interaction between the viscoelastic properties of the polymeric
matrix and the ferromagnetic hysteresis of the particles in h-MREs. They developed a
more thorough theoretical and numerical framework that allows for modeling finite strain
MREs comprising mechanically soft nonlinear elastic–viscoelastic polymer phases and
magnetically hard or soft magnetic phases.

Additionally, numerous research efforts have studied the interaction between particles in
h-MREs at the microstructural level. These studies aim to understand how such micro-
interactions affect the magnetization and deformation behavior of the composite material.
For example, for h-MREs with an extremely soft matrix, dipole-dipole interactions
and asymmetric rotations of particles may play an important role in their macroscopic
properties and response, as has been recently demonstrated in the literature [227, 228,
229, 224, 226]. In more complex settings, Psarra et al. [230] and Sano [231] studied
magnetic dissipation and self-interactions using a complete full-field theory, respectively.

1.5.1 Does the Stretching of MREs Affect the Magnetization?

Following the examination of the modeling frameworks for MREs discussed above, this
section reviews, as a comparative analysis, the recently introduced 3D continuum theories
considering and neglecting the effect of stretching deformation on the magnetization
of h-MREs anointed as "R-based" and "F-based", respectively. We seek to clarify the
distinctions and limitations of these recent theoretical developments.

In the recent study by Mukherjee et al. [217] as discussed above, it was shown that the
magnetization of the bulk pre-magnetized incompressible h-MREs with a moderately soft
matrix is independent of the stretching deformation. Their homogenization simulations
performed on representative volume elements (RVEs) demonstrated that when the h-
MRE is under uniaxial tension, and the loading is perpendicular to the pre-magnetization
vector, the magnetization remains constant because the matrix is much more compliant
to the stretching than the magnetic particles, which remain approximately, undeformed.
According to this observation, the authors conclude that the magnetization of h-MRE
only depends on its rotation [219, 226], in contrast to the continuum torque-based model
proposed by Zhao et al. [32] for the magnetization of deformed h-MRE. This latter model
is not able to yield accurate predictions when significant stretching deformation is present
due to the incorrect description of magnetization.

Subsequently, in an even more recent study, Yan et al. [232] studied thin magnetic plates
made of h-MREs and found disagreement between the experimental results and the
prediction from the F-based model for the cases where the magnetic field was parallel
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to the magnetization profile of the plate. Then, they were motivated by the prior
demonstration of the stretch-independence of the magnetization of bulk h-MREs [219].
They expected that using the 3D continuum torque-based model proposed in Ref. [32]
may lead to error in the magnetic part of the Cauchy stress tensor due to the inaccurate
description of magnetization, leading to the unreliable prediction of deformation of MREs.
As an alternative, Yan et al. [232] proposed a model derived through dimensional reduction
of a 3D continuum theory, adapting the torque-based theory of h-MREs [32]. Considering
the composite nature of the MREs with magnetization emerging from the magnetized
particles, the magnetization of the h-MREs in its deformed configuration is determined
by the deformation gradient F defined as

F = RU, (1.10)

composed of the rotation, R, and the stretch, U, tensors. However, this continuum
description contradicts the findings by Mukherjee et al. [219] concerning incompressible
h-MREs, which indicates that the effective magnetization of the deformed MRE primarily
relies on rotation, regardless of stretching, as individual particles exhibit significant
stiffness in contrast to the matrix. Therefore, Yan et al. [232] proposed a rotation-based
(R-based) theory by replacing the deformation gradient, F, with the rotation tensor in
Equation 6.1 as

m = J−1RM = J−1(FU−1)M. (1.11)

The authors considered the assumption that the matrix is moderately soft [219], and the
rotations of the microscopic particles and the macroscopic MRE remain the same [227,
229, 224]. As a result, the magnetic potential in Equation 1.8 was revised as

UR
m(F) = −RM.Ba. (1.12)

The proposed model was labeled the "R-based" 3D continuum theory while Equation 1.8
was named the "F-based" 3D continuum theory. In this R-based theory, a connection
between the magnetizations in both the initial and deformed configurations is established
by solely employing the rotation tensor R, decomposed from the deformation gradient
F. The subsequent experiments by Yan et al.. [232] showed that the R-based model is
necessary for modeling plate structures subjected to non-negligible stretching deformation
under an applied field parallel to the initial magnetization, and the F-based model
introduced errors due to the incorrect description of the magnetization of the structure.

In summary, the two 3D continuum theories, R-based and F-based, presented earlier
yield consistent results in scenarios where stretching can be neglected. This condition
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aligns with the specific problem addressed in this thesis: the snap buckling of bistable
magneto-active beams. As a result, the F-based 3D continuum theory proposed by Zhao
et al. [32] will be the primary framework employed throughout this thesis.

1.5.2 Slender Magneto-Active Structures and Dimensional Reduction

Using the models highlighted above, the mechanics of magnetic slender structural elements
such as beams and rods, plates, and shells have been investigated through a dimensional
reduction in various studies to improve the functionality of hard-MRE structures through
geometry [233, 234, 232]. Dimensional reduction involves simplifying the mathematical
representation of these structures while preserving their essential mechanical behavior [2].
This approach leverages the inherent symmetries and geometry of the system to reduce
the number of variables and degrees of freedom, which can obtain effective reduced-order
models that capture the dominant features of the original system. Next, we elaborate on
some of the main recent findings in this domain.

Flexible and highly deformable structural elements with magnetic properties, such as
beams and rods, have been widely employed in various magneto-mechanical systems,
allowing for significant deflections in three-dimensional space [34, 203, 39, 37, 208, 158].
In many cases of structural design, employing an extensive 3D continuum theory can
be excessive and lead to complex analysis. Therefore, it is preferable to use simplified
structural theories to comprehend the magnetic impact and better pinpoint the essential
system parameters. The simple shape of these one-dimensional elements simplifies their
modeling, design, and fabrication. In parallel with the development of the continuum
theories for h-MREs presented in Section 1.5, many research studies have examined how
thin beams behave when subjected to magnetic actuation. These investigations have
involved a combination of theoretical, computational, and experimental approaches [34,
33, 206, 207, 235, 236, 237].

Based on the 3D continuum model of Ref. [32], and using dimensional reduction, theories
for inextensible, hard-magnetic elastica were derived and validated against experiments
under either a uniform [158, 34, 233] or constant-gradient [233] magnetic fields. Lum
et al. [34] introduced a geometrically nonlinear and inextensible beam model developed
through the equilibrium of forces and torques along the beam centerline, which was
confirmed through experimental validation [203]. The authors subsequently applied
the model to optimize the magnetization of the beam to achieve a specific deformation
under both uniform and gradient magnetic fields (Figure 1.13a). Using the torque-based
continuum model, Wang et al. [33] presented a nonlinear inextensible model for hard-
magnetic elastica capable of predicting the large deformation of slender beams under
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(a) (b)

(c)

(d)

(e)

Figure 1.13: Magnetic beam structures. (a) A nonlinear inextensible magnetic beam
model with the optimized magnetization profile and (b) large deformation, which was
used (c) for the design of soft robots. The reduced order model was then used (d) elastic
for magnetic beam and (e) Kirchhoff-like theory for magnetic rods. Panels in (a), (b), (c),
(d), and (e) are adapted from Refs. [34], [33], [158], [233], and [234], respectively.

a uniform magnetic field (Figure 1.13b). This model was then used to design 1D soft
continuum robots [158] (Figure 1.13c).

Yan et al. [233] presented a model combining reduced order modeling, 3D finite element
simulation, and experiments to investigate the actuation of h-MRE beams under magnetic
field with a focus on non-uniform external fields with a constant gradient (Figure 1.13d).
Although theoretical concepts for planar deformations of one-dimensional hard magnetic
slender structures (such as beams and elastica) were already well-established by the time
of their study, there remained a gap in modeling 3D deformations for hard magnetic rods
with inherent curvatures. Therefore, considering the 1D structural elements under both
bending and twisting, Sano et al. [234, 231] developed a similar dimensional reduction
and derived a Kirchhoff-like theory for describing the 3D deformation of hard-magnetic
rods and investigated the instability of straight and helical rods under the uniform and
gradient magnetic actuation (Figure 1.13e).

To account for the extensibility and stretch of the centerline, a geometrically exact
beam model incorporating precise geometric nonlinearity was formulated and applied to
anticipate the deformation of cantilever beams in uniform fields [237, 206, 207, 235], albeit
finding negligible differences with the inextensible model. Also, considerable attention
has been dedicated to the (reverse) engineering of beam magnetization profiles, aiming
to enhance shape modifications for diverse applications through the utilization of the
inextensible and geometrically precise beam model [34, 205, 206, 207, 158, 238].
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Even if there have been several studies on modeling the deformation of magneto-active
1D structures, their instability and, more specifically, the snap-through phenomenon
under magnetic actuation remained an ongoing research topic, the elastic counterparts of
which have been studied extensively [239, 240, 241, 242]. Tan et al. [243] investigated
the dynamic response and the snap-through instability of a hard magneto-active beam.
They focused on the snap-through dynamics of magneto-active bistable beams and
proposed a dynamic model using the Euler-Lagrange equations and considering the
damped oscillations to predict the dynamic snap-through instability through experiment
and theory. Later, Stewart and Anand [244] proposed a R-based continuum finite-
deformation theory for predicting the magneto-viscoelasticity of hard magneto-rheological
materials and describing the snap-through dynamics of bistable h-MRE arches. Using finite
element simulation, they showed that their theory could reproduce the results of several
magnetically induced snap-through experiments on bistable arches in Ref. [243]. Their
model accounted for the magneto-elastic coupling with large deformation viscoelasticity,
near-incompressibility of the material, and inertial effects.

While significant focus has been directed toward magneto-active 1D structures, there
has been comparatively less emphasis on 2D (plates) and 3D (shells) configurations,
which form integral components of these structures and have garnered relatively less
attention in the existing body of research. We proceed by highlighting noteworthy
recent advancements within this domain. Psarra et al. [230] examined the stability and
post-bifurcation phenomena of an MRE film adhered to a passive elastomer substrate,
combining experimental and numerical approaches. The film-substrate system underwent
controlled uniaxial mechanical pre-compression loads, enabling an in-depth analysis of
pattern formation and its subsequent evolution under large magnetic fields and pre-
compression conditions. Yan et al. [232] developed a reduced-order model for thin plates
made of h-MREs based on a new rotation-based (R-based; see Section 1.5.1) magnetic
potential, an alternative to existing torque-based 3D continuum theory (see Figure 1.14a).
This model showed that the rotation-based model is necessary for plates subjected
to non-negligible stretching deformation under an applied field parallel to the initial
magnetization, supporting the findings of Mukherjee et al. [225].

While addressing shell structures, it becomes evident that theoretical models that in-
corporate non-axisymmetric deformations of magneto-active shells have yet to receive
substantial attention. Previous efforts in this direction have primarily been limited to
shallow shells, as exemplified by works like those of Seffen et al. [245] and Loukaides et
al. [246]. However, understanding the complex interplay between magnetism and mechan-
ics remained a challenge. In the research conducted by Yan et al. [104], a theoretical
framework was established to describe the axisymmetric deformation and geometrically
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(a) (b)

Figure 1.14: Magnetic plate and shell structures. (a) A thin plate made of a h-MRE
in its initial configuration, subjected to an external magnetic field, Ba. (b) Knockdown
factor versus flux density of the applied field for magnetic shells containing the defects
using experimental results and theoretical predictions. The panels (a) and (b) are adapted
from Refs. [232] and [104], respectively.

exact strain measures of thin magnetic elastic shells, effectively explaining the fundamental
mechanism of elasto-magnetic thin shells and showcasing a good agreement between their
modeling and experiments. Using the magnetic field, it was found that it is possible to
tune the critical buckling pressure of spherical shells [90, 109]. Figure 1.14(b) shows the
knockdown factor of the magnetic shell as a function of the applied magnetic field, which
can be increased or decreased depending on the polarity of the field. The authors also
identified a dimensionless magneto-elastic buckling number as

Λm =
BrBa

µ0E

(
R

h

)
(1.13)

which is a critical factor that integrates the geometric, mechanical, and magnetic prop-
erties of the system under both magnetic field and external pressure. Subsequently,
Pezzulla et al. [247] formulated a framework for analyzing slender, elastic, magnetic shells
employing geometrically exact strain measures [78, 248, 249], broadening the scope of
the model by Yan et al. [104], which was restricted to axisymmetric shells experiencing
axisymmetric deformations. Recently, to showcase the versatility and practicality of the
theory, which was developed to predict the snap-through dynamics of bistable arcs, Stew-
art and Anand [244] employed fully 3D FEM simulations to replicate intricate geometric
transformations of the magnetically driven eversion and reversion of a hemispherical shell.

While there have been notable advancements in magneto-active materials and structures,
several questions still need to be answered, including the investigation of buckling and
snap-through instability in these structures under the influence of a magnetic field.
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Addressing these questions is essential for advancing toward the predictive design of
magneto-elastic structures. For instance, it remains a subject of great interest to explore
how the instability and buckling behavior of these components can be harnessed to enable
a wide range of future functionalities. Potential applications span actuators, robotics,
MEMS (Micro-Electro-Mechanical Systems), programmable devices, metamaterials, and
energy harvesting devices. Furthermore, it is crucial to study how these structures respond
dynamically to various external stimuli and interact with other physical phenomena.

1.6 Research Niche and Overall Goal of the Thesis

The research objective of this thesis is to leverage the stability and instability of shells
coupled with magneto-rheological elastomers to design a new class of tactile braille readers
whose displayed patterns can be changed on demand by applying a magnetic field. We
will harvest the buckling of magnetic shells to design active structures that can actively
morph under an external magnetic field. Subsequently, we define the research questions
and expand on the potential content toward the ultimate research question.

To address this goal, we will need to gain fundamental insight into the mechanics of thin
spherical shells, including the multi-stability behavior of shallow shell sections. First, we
will study their imperfection sensitivity, the principal factor in their failure mechanism.
We will compare the effect of different types of geometric imperfections and their impacts
on the buckling capacity of spherical shells. Then, we will characterize their stability
landscape through modern research tools, modeling, and experiments. Knowing that
defects strongly reduce the buckling resistance of thin shell structures and predicting the
critical buckling loads is challenging for a shell structure, we will investigate the recently
proposed non-destructive probing technique to predict the critical loading conditions of
imperfect spherical shells containing one imperfection. We will also identify the limiting
conditions; e.g., the poking location plays a crucial role in the efficacy of prediction.
However, the defects are generally unknown and often difficult to identify. As a result, the
probing technique will be evaluated on a shell with a realistic defect scenario (imperfect
shells with a random distribution of defects) from a statistical point of view, which can
inform the design rules of thin-walled structures. In summary, through Part I of this
thesis, which includes Chapters 2, 3 and 4, we will tackle the following research questions:

• How does defect geometry (bumpy and dimpled Gaussian defect) influence the
critical buckling conditions of spherical shells under external pressure loading?

• What are the non-destructive probing technique limitations for spherical shells, and
how does this contribute to mapping the stability landscape of spherical shells?
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• Can the proposed poking technique accurately predict the buckling capacity of
imperfect spherical shells with a random distribution of imperfections, and what
insights can be gained from the probabilistic characterization of stability?

The second direction toward the proposed goal of the thesis is to study the mechanics of
active structures made out of magneto-rheological elastomers that can be actuated in the
presence of an external magnetic field. We first aim to study the magnetic-driven buckling
instability of a simple case of magnetic slender structures (a magnetic beam) under both
poking and magnetic actuation. The instability and, more specifically, the snap-through
phenomenon of the bistable structure under magnetic and mechanical actuation were
studied to identify the rationale between the onset of snapping and the geometry of the
beam. The experimental, theoretical, and computational tools needed to predict the
critical conditions and snap-through response of magneto-active bistable structures will
be developed, which would be valuable for the predictive and rational design of bistable
magneto-elastic shells. In summary, in Part II of this thesis, which includes Chapter 5,
we will tackle the following research questions:

• How does the magnetization profile of the structure affect the triggering of snap
buckling under a magnetic field?

• What critical field strength is required for the onset of snapping in the h-MRE
bistable beam?

• How does the reduced-order beam theory rationalize the observed magneto-elastic
response in the bistable magnetic beam?

• How does the magnetic field affect the poking-induced snapping of bistable beams?

Finally, considering buckling as a mode of functionality and the knowledge acquired from
the first direction of the research, studying the mechanics of shell structures (Part I:
Chapter 2, 3, and 4), and the second direction of the research, actuation mechanism of
magneto-active materials and structures (Part II: Chapter 5), we propose a novel mechan-
ical design concept for braille dots, the building block of a new class of programmable
braille readers. Our design leverages the buckling and (in)stability of bistable thin shell
structures and magnetically responsive MREs (Chapter 6). For the final objective of the
thesis, we addressed the following research questions:

• How can we create a braille reader actuator using a magnetic shell that can resist
buckling under fingertip indentation while easily snapped on-demand with an
external magnetic field?
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Design a programmable 
braille reader actuator

(Chapter 6)

Part I:
Mechanics of shell 

structures
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Figure 1.15: Schematic diagram of the objective of the thesis. By combining the
two lines of mechanics of shell structures and magneto-active materials, we aim to address
the final research goal.

• What design parameters are feasible for adhering to standardized geometric and
physical specifications of braille systems?

• How to expand the design possibilities while maintaining the required geometry for
braille standards?

• What advantages does this design offer over existing solutions of refreshable braille
readers?

1.7 Outline of the Thesis

The overall outline of the research goal is presented in Figure 1.15. This thesis is divided
into two parts aligned with the two lines of research. Part I is dedicated to the mechanics
of thin shell structures and spherical shell buckling (Chapters 2, 3, and 4). In Part II, we
focus on the magneto-active materials and structures (Chapters 5). The final goal of the
thesis is also the main focus of Chapter 6.

In Chapter 2, we revisit the buckling of spherical shells by investigating the effect of
defect geometry in dictating the sensitivity of the critical buckling conditions of the shells
under external pressure loading. Specifically, we perform a comparative study between
shells containing Gaussian defects that are either dimpled (inward) or bumpy (outward).
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We employ FEM simulations to compute the knockdown factors for the two cases while
systematically exploring the parameter space of the defect geometry. This work has led to
the following publication: Arefeh Abbasi, Fani Derveni, and Pedro M. Reis, “Comparing
the Buckling Strength of Spherical Shells With Dimpled Versus Bumpy Defects”, Journal
of Applied Mechanics, 90(6), 061008 (2023).

In Chapter 3, we focus on predicting the critical buckling conditions of shell structures.
We study the mechanical response of pressurized spherical shells containing a single
dimple–like defect to a point probe. Combining experiments, FEM simulations, and
existing results from classic shell theory, we characterize the nonlinear force-indentation
response of imperfect shells at different pressurization levels, and we seek to identify
the critical buckling pressure of the shell. Specifically, the location of the indentation is
varied systematically to determine how it affects probing efficiency. This work has led to
the following publication: Arefeh Abbasi, Dong Yan, and Pedro M. Reis, “Probing the
buckling of pressurized spherical shells”, Journal of Mechanics and Physics of Solids , 155,
104545 (2021).

In Chapter 4, we investigate the buckling of spherical shells containing a random distri-
bution of defects based on a non-destructive probing technique. Using FEM simulations,
we perform a statistical analysis of these imperfect shells in two scenarios: (1) sampling
the random variable as the defect distribution and (2) sampling the random variable from
the random-chosen poking locations. Such shells are more realistic and practically relevant
than the previous single-defect cases. Finally, we compare the predicted knockdown factor
statistics using a probing technique with the statistics of the measured knockdown factor.

In Chapter 5, we investigate the mechanics of bistable, hard-magnetic, elastic beams,
combining experiments, FEM simulations, and a reduced-order theory. This theory
is developed in collaboration with Tomohiko Sano. We quantify how the critical field
strength required for buckling depends on the imposed end-to-end shortening, the beam
geometry, and the material and magnetization properties. A centreline-based theory
is developed to rationalize the trade-offs between the various loading and geometric
parameters, predicting the conditions for the onset of snapping. We also adapt the FEM
for 3D h-MREs to make it amenable to a Riks (arclength) analysis. Additionally, we
probe the beam’s load-bearing capacity when the external loading combines a constant
magnetic field and poking force. This work has led to the following publication: Arefeh
Abbasi, Tomohiko G. Sano, Dong Yan, and Pedro M. Reis, “Snap buckling of bistable
beams under combined mechanical and magnetic loading”, Philosophical Transactions of
the Royal Society A, 381(2244), 20220029 (2023).

In Chapter 6, we combine the knowledge of the mechanics of thin shell structures

36



Introduction Chapter 1

and magneto-active materials. The objective is to propose a mechanical design concept
for the building block, a dot, of programmable braille readers utilizing bistable shell
buckling, magnetic actuation, and pneumatic loading. The design process is guided by
FEM, which is initially validated through precision experiments conducted on a scaled-up,
single-shell model system. Then, the simulations are leveraged to systematically explore
the design space, adhering to the standardized geometric and physical specifications of
braille systems. Eventually, the geometric design space is proposed for the programmable
braille reader actuator, which can be improved through pneumatic loading. This work
has led to the following submitted manuscript: Arefeh Abbasi, Tian Chen, Bastien F. G.
Aymon, and Pedro M. Reis, “Snap buckling of bistable magnetic shells for a braille reader
design”.

In the concluding Chapter 7, we summarize the primary findings presented throughout
this thesis, providing a comprehensive overview. Furthermore, we identify potential
directions for future research that have been inspired by the insights discovered within
this study.
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2 Buckling of Spherical Shells with
Dimpled and Bumpy Defects

In this Chapter, we investigate the effect of defect geometry in dictating the sensitivity
of the critical buckling conditions of spherical shells under external pressure loading.
Specifically, we perform a comparative study between shells containing dimpled (inward)
versus bumpy (outward) Gaussian defects. The former has become the standard shape in
many recent shell-buckling studies, whereas the latter has remained mostly unexplored. We
employ finite-element simulations, which were validated previously against experiments,
to compute the knockdown factors for the two cases while systematically exploring the
parameter space of the defect geometry. For the same magnitudes of the amplitude and
angular width of the defect, we find that shells containing bumpy defects consistently
exhibit significantly higher knockdown factors than shells with the more classic dimpled
defects. Furthermore, the relationship of the knockdown as a function of the amplitude
and width of the defect is qualitatively different between the two cases, which also exhibit
distinct post-buckling behavior. A speculative interpretation of the results is provided
based on the qualitative differences in the mean curvature profiles of the two cases.

The text and figures in this Chapter are adapted from the published manuscript in
Ref. [110]: Arefeh Abbasi, Fani Derveni, and Pedro M. Reis. "Comparing the buckling
strength of spherical shells with dimpled versus bumpy defects." Journal of
Applied Mechanics 90(6), 061008 (2023).

The structure of this Chapter is as follows. The motivation of this study and a brief
literature review on the effect of defect geometry on imperfection sensitivity are presented
in Section 2.1. In Section 2.2, we detail the finite element modeling (FEM) simulation
performed to acquire the result. Then, in Section 2.3, we perform a detailed comparison
between the buckling capacity and knockdown factor of spherical shells containing a
single dimpled and bumpy defect based on the geometrical properties of the defect.
In Section 2.4, we provide an observational discussion regarding the difference in the
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knockdown factor for the two types of defect geometry. Furthermore, in Section 2.5, we
summarize our findings and provide a perspective for future work.

2.1 Literature Review and Motivation

The mechanical response of thin elastic shells under compression is highly nonlinear [249,
248], with a strong sensitivity to imperfections [250, 251, 11, 252]. Predicting the
buckling strength of shells is a longstanding canonical problem in the structural mechanics
community [80, 79]. Despite the classic, albeit still challenging, nature of the problem,
there has been a recent revival in the interest and research of shell buckling. The study
of the critical buckling conditions of spherical shells has been reinvigorated by recent
advances in experiments and computation [101, 89, 102, 253, 103, 127, 254, 135, 41].

Most of the recent investigations on spherical-shell buckling are mentioned in Sec-
tion 1.2 [106, 107, 108, 109, 131, 126] have considered standardized dimpled (Gaussian)
defects. Other types of imperfections (e.g., through-thickness defects [253, 90, 255], and
dent imperfections [256]) have also been considered, but such cases are sparser. A benefit
of focusing on standardized dimples is that they allow for a better contextualization
and interpretation of results across different studies. These dimpled imperfections are
axisymmetric, localized, and characterized by a radial modulation of the shell mid-surface
from a perfect sphere of radius R, by

wI = cδe−(β/β◦)
2

, (2.1)

where β is the polar angle measured from the north pole (β◦ where the center of the defect
is located), and the constants β◦ and δ control the width and amplitude of the defect
(see Figure 2.1). The defect amplitude, which is typically normalized by the thickness
of the shell, δ = δ/h, corresponds to the maximum radial deviation at the center of the
defect. It is also common to define a geometric parameter [257],

λ =
{
12
(
1− ν2

)}1/4
η1/2β◦, (2.2)

to rescale the defect width, normalizing effects arising from the radius-to-thickness ratio,
η, of the shell.

In the existing literature, the prefactor c in Eq. (2.1) has been consistently set to c = −1,
corresponding to inward-pointing dimples, as shown schematically in Figure 2.1(a). The
knockdown factor, κ (see Equation 1.4), of such shells containing dimpled defects, was
found in experiments, as well as theoretical and computational analyses, to depend

40



Buckling of Spherical Shells with Dimpled and Bumpy Defects Chapter 2
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Figure 2.1: Schematic diagrams of the two types of geometry considered for our
imperfect shells containing (a) a dimpled defect and (b) a bumpy defect, with c = −1
and c = +1 (cf. Equation 2.1), respectively. In both cases, the hemispherical shells have
radius R and thickness h, and the defect is located at the pole (β◦) with a geometry
characterized by the amplitude, δ, and half-angular width, β◦.

strongly on δ, dropping sharply from unity for 0 < δ ≲ 1 and reaching a plateau for
δ ≳ 1 [89]. Moreover, these results demonstrated that the geometric parameter λ governs
the onset and level of the plateau in the κ(δ) curves, as characterized thoroughly in
Ref. [105]. The authors revealed a lower bound of the plateau level that depends solely
on η and λ.

Here, we revisit the buckling of a spherical shell containing a single Gaussian defect
according to Equation (2.1). We perform a comparative study of the knockdown factor for
the previously considered dimpled (inward) defects (c = −1; see Figure 2.1a) compared
to the symmetric case for bumpy (outward) defects (c = +1; see Fig. 2.1b). Recently,
Derveni et al. [118] have studied the buckling of shells containing a large distribution of
defects, validating FEM simulations against experiments using bumpy defects, a choice
that was driven by practical experimental constraints; but the difference between dimples
and bumps was not explored in detail (see Section 1.2). Otherwise, to the best of our
knowledge, bumpy defects have not been investigated systematically to date. We will
focus on the following research question: How does the buckling strength compare between
single-imperfection shells containing a dimpled versus a bumpy defect?

2.2 Finite Element Simulations

In Figure 2.1, we present schematic diagrams of the two types of geometries for the
imperfect hemispherical shells that we will consider, containing either a dimpled defect
(c = −1 in panel (a)) or a bumpy defect (c = +1 in panel (b)). We will focus on
hemispherical shells of radius R = 24.85mm, thickness h = 0.23mm, and, thus, η =

R/h = 108 with a single imperfection located at the pole, without loss of generality [106]
given the large value of η. This generality assumes there is essentially no dependence of
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knockdown factor characterization on η for sufficiently slender shells as long as the defect
width is scaled according to Equation (2.2). Each shell is clamped at the equator and
(de)pressurized to load it under compression until buckling occurs.

The initial shell geometry considered in the simulations is axisymmetric. As such, the
2D cross-sectional profiles of the imperfect shells presented in Figure 2.2 for different
values of δ and λ (see color bar) suffice to fully describe this initial geometry. The
perfectly spherical case (δ = 0, λ = 0) is represented by the dashed line. Panels (a,
c) and (b, d) represent the shell with dimpled (c = −1) and bumpy (c = +1) defects,
respectively. Representative defects with the same defect width, λ = 2.5, in a range
of amplitudes, δ ∈ {1, 2, 3, 4, 5}, are shown in Figures 2.2(a,b). In Figures 2.2(c,d), we
present representative shell profiles with the same defect amplitude, δ = 2.5, in a range of
widths, λ ∈ {1, 2, 3, 4, 5}. The corresponding lower panels in Figures 2.2 show magnified
views of the defect profiles localized at the pole. Beyond these representative cases, our
investigation will consider the following ranges for the geometric-parameters space of the
defect: δ ∈ [0.1, 5] in steps of ∆δ = 0.1 for the defect amplitude and λ ∈ [0.25, 5] in
steps of ∆λ = 0.25 for λ ≤ 1 and ∆λ = 0.5 for λ ≥ 1 for the (normalized) defect width;
while fixing all other parameters mentioned above. Although these initial geometries
are axisymmetric, it is important to anticipate, as our results will evidence, that the
post-buckling modes can be asymmetric, especially for shells with bumpy defects.

The material was modeled as a neo-Hookean solid, with Young’s modulus of E = 1.26MPa,
and a Poisson’s ratio of ν ≈ 0.5 (assuming incompressibility). These material-specific
material properties were chosen to align with the previous experimental studies in Ref. [89,
102, 253, 258, 118], where they were measured directly from experiments and used to
validate the finite-element simulations.

The set of geometric and physical parameters mentioned above was chosen to match with
Ref. [89] toward enabling a direct comparison with this previous study. However, for the
present simulation framework, instead of using the axisymmetry model of Ref. [89, 105],
we use a three-dimensional description of the structure using shell elements to capture
possible asymmetry buckling behavior. This finite element modeling (FEM) approach has
been validated against precision experiments for the specific problem of shell buckling [118,
258]. We followed the FEM methodology to perform simulations with the commercial
package Abaqus/Standard.

We employed four-node S4R shell elements with reduced integration points, allowing for
finite membrane strains. The hemispherical shell was discretized using sweep meshing,
with 300 and 1200 elements in meridional and azimuthal directions, respectively. A
mesh convergence study was also conducted in order to ensure that the results were not
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Figure 2.2: Representative examples of the initial geometric profiles of the
imperfect shells considered. The shells contain defects with (a,b) λ = 2.5 and
0 ≤ δ ≤ 5, and (c,d) δ = 2.5 and 0 ≤ λ ≤ 5. The defects correspond to c = −1 in (a,c)
and c = +1 in (b,d). The lower panels show amplified views near the defects. These
geometric profiles serve as input to the FEM simulations.
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influenced by mesh size. A Riks solver [259] was used to capture the progress of the
simulation along the arc length of the load-displacement curve. We selected an initial arc
length of increment of 10−1, with minimum and maximum increment sizes of 10−5 and
0.5, respectively. Geometric nonlinearities were considered throughout the study.

In the FEM simulations, each imperfect shell geometry was pressurized until the onset of
buckling, at which point the maximum pressure value, pmax, was recorded. Then, the
knockdown factor was computed using Equation (1.4). Throughout this Chapter, for
ease of comparison, we will refer to the knockdown factor of the imperfect shell with a
dimpled defect as κD and κB for the bumpy defect. The FEM results for the dimpled
shells were first verified against Ref. [89] in the previously explored range of parameters
and then expanded to a systematic parameter exploration of dimpled and bumpy defects.

2.3 Knockdown Factor of Bumpy versus Dimpled Shells

Following the methodology introduced above, we start our investigation to explore the
parameter space of dimpled and bumpy defects. We will characterize and compare the
effects of bumps and dimples on the buckling behavior, especially the knockdown factor,
of the pressurized imperfect shells.
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Figure 2.3: Surface plots of the knockdown factor of shells containing (a) a
dimpled imperfection, κD, and (b) a bumpy imperfection, κB, for different values of
the dimensionless geometric parameter (width), 0.25 ≤ λ ≤ 5, and normalized defect
amplitude, 0.1 ≤ δ ≤ 5. Counter lines are superposed for the corresponding values of κD
and κB, in steps of 0.1. The color bar is shared for (a) and (b).

In Figure 2.3, we present surface plots with all the data we obtained from the FEM
simulations for the knockdown factor of shells with a dimpled and bumpy imperfection
in the whole parameter space (δ, λ) specified in Section 2.2: panel (a) for κD and panel
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(b) for κB. Color coding is used to quantify the knockdown factor (see the colorbar).
Contour lines for constant values of κD and κB, in intervals of 0.1, are superposed on the
surface plots. For the dimpled shells (Figure 2.3a), the minimum value of the knockdown
factor, κD ≈ 0.15, is found on the upper extremity of the (δ, λ) parameter space. This
means that a shell with the deepest and widest defect has the lowest knockdown factor, a
fact that is well-established in the literature. By contrast, for bumpy shells (Figure 2.3b),
in the explored range, the minimum knockdown factor (κB ≈ 0.37) occurs for the defects
with the largest amplitude but intermediate width (2 ≲ λ ≲ 3). Overall, the values of κB
are consistently larger than those of κD; the geometry of dimples plays a more significant
role in reducing the knockdown factor of an imperfect shell compared to bumps. These
features highlight the first and major qualitative differences between the two cases.

Next, we elaborate on the data presented in Figure 2.3 to more comprehensively describe
the impact of the various parameters of the defect geometric on the knockdown factor,
κD for dimples and κB for bumps. For this purpose, we first characterize the dependence
of the knockdown factor on the defect amplitude and then on the normalized defect
width for both cases. In Figure 2.4, we present κD and κB as functions of δ, each
curve corresponding to a different value of λ (see colorbar and marker symbols). The
data for shells with dimpled imperfections is shown in panel (a), and those with bumpy
imperfections in panel (b).
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Figure 2.4: Knockdown factor, κ, as a function of the normalized defect ampli-
tude, δ, for imperfect shells with defects in a range of λ ∈ [0.25, 5] (see colorbar and
marker symbols). (a) Knockdown factor, κD(δ), for a shell with a dimpled imperfection;
i.e., c = −1 in Equation (2.1). (b) Knockdown factor, κB(δ), for a shell with a bumpy
imperfection; i.e., c = +1 in Equation (2.1).

Note that the κD(δ) data in Figure 2.4(a) are a re-computation of what is already presented
in Ref. [89], while the range of geometric parameters for λ < 1 and δ > 3 is further
expanded herein. Still, for verification purposes, we selected a specific set of parameters
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(λ(0 < δ ≤ 3) = {1.5, 5}) and confirmed identical results to those in Ref. [89]. We recall
that in this previously studied case of dimpled imperfections, κD decreases monotonically
with δ and eventually reaches a plateau. Both the plateau level and its onset depend on
λ, as characterized previously in Ref. [105]. The plateau is less pronounced when λ < 1

(regime not explored previously). For example, in the extreme case of λ = 0.25 (the
narrowest defects), no plateau is reached; after an initially fast decay, the knockdown
factor continues to decrease as the amplitude increases all the way to high-amplitude
defects of δ = 5. We emphasize that there is little novelty in these results for dimpled
shells, which were already presented in Ref. [89] and are presented here for completeness
to enable a direct comparison with the case of bumpy imperfections discussed next.

Imperfect shells with bumpy defects exhibit a κB(δ) behavior (Figure 2.4b) that is
qualitatively different from the dimpled case discussed above (Figure 2.4a). The main
feature is that the values of κB tend to be higher overall than κD, with smoother decays
as a function of δ, and non-monotonic behavior in some of the curves. Moreover, the
κB curves do not exhibit the prominent plateaux observed in κD. Three regimes are
observed. First, for shells with relatively narrow defects, λ = {0.25, 0.5}, κB remains close
to unity across the entire range of δ; these shells are nearly insensitive to imperfections.
Second, for shells with intermediate-width defects, λ = {0.75, 1}, the κD(δ) curves are
non-monotonic; κB decreases for 0.1 ≤ δ ≲ 3 and then increases beyond δ ≈ 3. Third, for
λ ≥ 1.5, κB(δ) decreases again monotonically.

In Figure 2.5, to characterize the knockdown factor behavior with respect to the defect
width, we present κD for dimpled shells (Figure 2.5a), and κB for bumpy shells (Fig-
ure 2.5b), as functions of λ. The results are qualitatively the same as in Figure 2.5. In
the case of dimpled shells (Figure 2.5a), for small defect amplitudes, δ ≤ 3, the κD(λ)

curves are non-monotonic. First, κD(λ) decreases until a threshold defect amplitude and
then increases. However, for larger defect amplitudes, δ ≥ 3, κD decreases monotonically.
We highlight the fact that the threshold defect amplitude, δ ≈ 3, corresponds to the
largest dimple amplitude before the onset of any of the plateaux for the whole range of λ
considered. Past δ ≈ 3, the κD(λ) curves are monotonic due to the insensitivity of shells
to defect amplitude in this regime, for all λ values explored (cf. Figure 2.5a).

Turning to bumpy defects, in Figure 2.5(b), we plot κB versus λ, noting that the behavior
is different than their dimpled counterpart (Figure 2.5a). We find that κB(λ) is always
non-monotonic, decreasing up to λ ≲ 2.5, and then increasing for λ ≳ 2.5. By contrast,
for the dimpled shells (Figure 2.5a), κD(λ) was only non-monotonic when δ ≤ 3. This
distinguishing feature between bumpy and dimpled shells can be attributed to the fact
that, in the dimple case, the plateau region is insensitive to defect amplitude when δ ≥ 3

for all values of λ; this behavior does not exist in bumpy shells given the absence of any
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Figure 2.5: Knockdown factor, κ, as a function of the normalized defect width,
λ for imperfect shells with defect amplitudes in a range of δ ∈ [0.1, 5] (see colorbar).
(a) Knockdown factor, κD(λ), for a shell with a dimpled imperfection; i.e., c = −1 in
Equation (2.1). (b) Knockdown factor, κB(λ), for a shell with a bumpy imperfection; i.e.,
c = +1 in Equation (2.1).

plateauing.

Representative snapshots of post-buckling configurations obtained in the FEM simulations
are shown in Figure 2.6; the color map represents radial displacements. The top (x-y)
view of the shells is presented in the top row, and the isometric (x-y-z) view is in the lower
row. We refer to the post-buckling configuration as the first stable mode captured along
the pressure-volume path [89] immediately after the onset of buckling. By way of example,
in Figure 2.6, we consider imperfect shells containing a dimpled defect with λ = 2.5 and
δ = 1.8, in panel (A), and bumpy defects with λ = 2.5 and δ = {0.3, 1.3, 2.9, 4.4}, in
panels (B)-(E), respectively.

The axisymmetric post-buckling configuration in Figure 2.6(A) is representative of all
the dimpled imperfect shells within the explored range of parameters: the buckling
initiates at the defect location and expands axisymmetrically outwards. The post-buckling
configurations are qualitatively distinct for shells with bumpy defects and depend on
the value of δ; see Figure 2.6(B)-(E). For small defect amplitudes (e.g., δ = 0.3, B), the
shell buckles with a periodic deformation mode (akin to wrinkling) near the clamped
equator, far from the bumpy defect located at the north pole. It is possible these results
for small-imperfection shells are dominated by imperfections induced by the clamping
conditions or by numerical imperfections (artifacts) caused by the meshing. However, in
the experimental observations of Ref. [118], we did find that the buckling location is close
to the boundary for small bumpy defects, which would tend to suggest that the periodic
deformation mode is not an artifact. For higher values of δ, the loci of buckling occur near
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Figure 2.6: Representative post-buckling configurations. (A) A dimpled post-
buckling configuration is representative of all shells containing a dimpled defect (even
if the exact values of the radial displacement may differ). (B, C, D, E) Post-buckling
configurations of shells containing a bumpy defect, for the selected cases of λ = 2.5 and
δ = {0.3, 1.3, 2.9, 4.4}, respectively.

the bumpy defect but non-axisymmetrically to its side. For example, these post-buckling
configurations are lobed with three, two, or one inverted-cap region for δ = 1.3, 2.9, and
4.4 , respectively. A detailed analysis of these post-buckling configurations for bumpy
shells is beyond the scope of the present study.

Finally, for an even more direct comparison between the dimpled and bumpy cases, in
Figure 2.7, we convey an alternative representation of the same data reported above
by plotting κD as a function of κB. Each data point corresponds to the same pair of
(δ, λ) parameters for bumps and dimples. Different marker symbols and colors define
various values of λ, while the marker size indicates the variation of δ. Beyond the
specific quantitative observations uncovered from the data in Figures 2.4 and 2.5, this
representation highlights that bumpy shells consistently have a higher buckling strength
than dimpled shells, with all of the data lying above the κB = κD line (dashed line in
Figure 2.7). Three different regimes of behavior are observed, similar to Figure 2.7(b).
First, for λ = {0.25, 0.5}, both κB and κD decrease with increasing defect amplitude, but
the reduction in κD is more pronounced than κB ought to the lower sensitivity of bumps
to defect amplitude in this regime. Second, for λ = {0.75, 1}, we observe a non-monotonic
behavior; with increasing δ, first, both κD and κB decrease until a specific value of δ after
which, κB increases, while κD continues to decreases. Two distinct regions are obvious in
the third and last regime for λ ≥ 1.5. Initially, decreasing κD follows a decrease in κB

until the defect amplitude of the plateau onset [105]. After this onset, κB continues to
decrease while κD remains approximately unchanged (plateau region of insensitivity to
defect amplitude).
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Figure 2.7: Knockdown factor of bumpy shells, κB, versus that of dimpled shells,
κD, for a range of dimensionless defect geometric parameters, 0.25 ≤ λ ≤ 5, and defect
amplitudes, 0.1 ≤ δ ≤ 5. The values of λ are color-coded (see color bar), and the values
of δ are represented by the size of the symbol (see legend). The dashed line represents
κB = κD.

2.4 Why are Bumpy Shells Stronger than Dimpled Shells?

In this section, we provide a discussion that seeks to address, even if speculatively, the
following emerging questions: Why are bumps stronger than dimples? Why do bumps
show different buckling modes of deformation compared to dimples?

The dimpled and bumpy shells are only distinguishable by their defect region located
at the pole, with c = ±1 in Equation (2.1). We focus on the difference in the geometry
of their undeformed (initial) configuration, as measured by the mean and Gaussian
curvatures profiles defined, respectively, as

KH(β) =
1

2
(k1 + k2),

KG(β) = k1k2,
(2.3)

where k1 and k2 are the two principal (local) curvatures of the shell surface. We have
numerically computed KH and KG with the function surfature [260] in MATLAB, taking
as input the point-cloud data representation of the undeformed surface that input into
the FEM simulations. We will add the subscripts D and B to denote the corresponding
quantities for dimples and bumps, respectively, i.e., (KHD, KHB) and (KGD, KGB).

In Figure 2.8, we plot the mean curvature, KH, in panels (a) and (b), and the Gaussian
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curvature, KG, in panels (c) and (d), as functions of the polar angle, β. The angular width
of the defect, β◦, defined in Equation (2.1), is represented by the vertical dashed lines.
We restrict our results to the representative case with λ = 2.5 (where the knockdown
factor of bumpy shells is lowest) while varying the defect amplitudes δ = {1, 2, 3, 4, 5}
(see color bar). The left panels (a) and (c) correspond to the dimpled shells, and the
right panels (b) and (d) to the bumpy shells. Qualitatively similar behavior to what we
describe next is found for other values of λ, but a detailed quantitative analysis is beyond
the scope of the present work and unnecessary to the qualitative interpretation that we
will provide.
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Figure 2.8: Curvature profiles of the initial geometry of the imperfect shell as a
function of the polar angle, β. Representative cases are chosen with the dimensionless
geometric parameter of λ = 2.5, and amplitudes in a range of δ ∈ [1, 5] (see color bar).
(a) Mean curvature, KHD, and (c) Gauss curvature, KGD, for a shell with a dimpled
imperfection; i.e., c = −1 in Equation (2.1). (b) Mean curvature, KHB, and (d) Gauss
curvature, KGB, for a shell with a bumpy imperfection; i.e., c = +1 in Equation (2.1).
The vertical dashed line indicates β◦, the defect opening angle corresponding to λ = 2.5.

Hereon, we shall refer to the β < β◦ region as the core of the defect and to the neighboring
region right past the defect, β ≳ β◦, as the rim of the defect. The mean-curvature curves
for dimpled shells, KHD(β) (Figure 2.8a), exhibit a maximum located at the defect rim.
Within the defect core, by construction, the dimples have a minimum mean curvature
that is typically negative and always lower than that of the nominal spherical shell. By
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contrast, for the bumpy shells, all the KHB(β) curves have a minimum located at the
defect rim (Figure 2.8b). At the defect core, the bumps have positive mean curvature,
always greater than that far away in the shell.

Rewording the above observations, it is important to highlight that the minimum of KH

occurs at the core for dimples and at the rim for bumps. Conversely, the maximum of KH

occurs at the rim for dimples and at the core for bumps. As evidenced in Figure 2.6 and
studied extensively in the literature, a depressurized imperfect spherical shell exhibits a
buckling mode with one (or more) inward-inverted cap, whose mean curvature has the
opposite sign of the nominal sphere. It is reasonable to envision that regions of mean
curvature lower (or higher) than that of the nominal sphere will serve as weak (or strong)
spots, respectively. This reasoning, even if speculative, is compatible with the results
in Figure 2.6. For dimples (Figure 2.6A), the post-buckling configuration does indeed
occur at the defect core, where KH is minimum. For bumps (Figure 2.6B-D), the buckling
appears to nucleate at the defect rim, where KH is minimum, and repelled by the defect
core, which appears to have a stiffening effect. Moreover, the fact that KH is always
positive in the considered range of δ may be the source of why the knockdown factor of
bumpy shells is consistently higher than that of dimpled shells.

Regarding the Gaussian curvature data presented in Figure 2.8(c, d), the results are, as
far as we can tell, less insightful. We observe that at the defect core, KG is higher for
the bumpy than the dimpled shells, which may further contribute to the lower buckling
strength of the latter (for the same magnitude of geometric parameters). Otherwise, both
cases display Gaussian curvature profiles that are qualitatively similar. All KG curves
are non-monotonic with a minimum near the defect rim, occurring before (or after) β◦

for dimples (or bumps), respectively. In both cases, this minimum can be negative for
defects with larger amplitudes (δ ≳ 1 for the dimples and δ ≳ 3 for the bumps) but
always positive otherwise. Outside of this region of the minimum neighboring the rim,
KG > 0 in both cases. Overall, we do not see any salient qualitative differences in the
KG between the dimpled and bumpy cases that correlate to the κD > κB reported in
Figure 2.7 and earlier plots.

There are similarities between the geometry of the bumpy shells we considered and
the classical literature for the Cohn-Vossen shape [261]. Shells with non-constant and
sign-changing Gaussian curvature can be a source of an exceptional bending mode on a
surface of revolution [2]. It is possible that this behavior can be related to the different
buckling modes we observed in our bumpy shells, although we have no formal ground
other than reasoning by analogy to support this statement. Future theoretical work will
be necessary to further rationalize the present findings, which point to the importance of
the detailed curvature profiles of doubly curved imperfect shells, with a special spotlight
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on their mean curvature.

2.5 Summary and Outlook

In this Chapter, we used a finite-element simulations approach, which was validated pre-
viously against experiments, to study the buckling strength of imperfect shells containing
either a dimpled or a bumpy imperfection. Whereas dimpled shells have been studied
previously in much detail, bumpy shells have remained largely unexplored. We considered
defects with a standard Gaussian profile (cf. Equation 2.1), enabling direct and detailed
comparisons across the dimpled (c = −1) and bumpy (c = +1) cases. Our results evidence
that the role of bumps in reducing the buckling strength of the spherical shell is less
dramatic than for dimples, at least within the ranges of parameters we explored. The
knockdown-factor sensitivity to the detailed defect geometry is also less prominent in
bumps. Overall, the knockdown factor of a bumpy shell is always greater than that of a
dimpled one, κB > κD, for the same magnitude of geometric parameters. In both cases,
the knockdown factor is not always reduced when the defect is widened.

We attempted to discuss the differences in knockdown factor between dimpled and bumpy
shells under the light of their mean and Gaussian curvature profiles. Our interpretation
suggests that regions of the imperfect shell with minimal mean curvature serve as weak
points for the onset of buckling. These minima occur at the defect core for dimpled
shells and at the defect rim for bumpy shells. For the latter, the core appears to have a
stiffening effect, which repels the post-buckling inverted caps, making the buckling mode
asymmetric and potentially multi-lobed.

We acknowledge that our investigation was mostly descriptive and observational. In the
absence of a formal theoretical framework, it is difficult to devise a predictive rationale for
these observations. Still, we hope that our thorough comparative study will be valuable in
the ongoing revival of shell-buckling studies. A systematic theoretical investigation will be
a much-needed next step in rationalizing the current findings. Additionally, it would be
interesting to consider other imperfection geometries and establish direct relations between
the mean/Gaussian curvature profiles and the resulting critical buckling conditions. Shell
buckling is a highly nonlinear and nontrivial phenomenon, and we believe that specific
case studies like ours are essential to gaining insight and motivating modeling directions.

From a practical viewpoint, our research is aligned with efforts currently underway by
NASA and others interested in large-scale shell structures [99, 44, 262]. These efforts aim
to replace the purely-empirical knockdown factors guidelines in design codes of aerospace
structures with mechanics-based predictive methods that take manufacturing-based data
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on the imperfection distributions as input. Our results demonstrate that different types
of defects, even if characterized by similar geometric parameters, can yield quantitatively
and qualitatively different reductions of buckling strength. For example, the design of
shells containing only bumpy defects can be tackled less conservatively than dimpled
shells.
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3 Probing the Buckling of Spherical
Shells

As elaborated in the Introduction chapter (Section 1.2) The prediction of the critical
buckling conditions of shell structures is plagued by imperfection sensitivity. Non-
destructive testing through point-load probing has been recently proposed to map the
stability landscape of cylindrical shells. However, the counterpart procedure for spherical
shells is still debatable. In this Chapter, we focus on the mechanical response of pressurized
spherical shells containing a single dimple-like defect to a point probe. Combining
experiments, finite element modeling (FEM), and existing results from classic shell theory,
we characterize the nonlinear force-indentation response of imperfect shells at different
pressurization levels. From these curves, we seek to identify the critical buckling pressure
of the shell. In particular, the indentation angle is varied systematically to examine its
effect on the probing efficacy. We find that the critical buckling point can be inferred
non-destructively by tracking the maxima of the indentation force-displacement curves
if the probe is implemented sufficiently close to the defect. When probing further away
from the defect, the test fails to predict the onset of buckling since the deformation due
to indentation remains localized in the vicinity of the probe. Using FEM simulations
and shallow shell theory, we quantify the characteristic length associated with this
localized deformation due to indentation, both in linear and nonlinear regimes. Our
results demonstrate the limiting conditions of applicability for the usage of probing as a
non-destructive technique to assess the stability of spherical shells.

The text and figures in this Chapter are adapted from the published manuscript in
Ref. [258]: Arefeh Abbasi, Dong Yan, and Pedro M. Reis. "Probing the buckling of
pressurized spherical shells." Journal of the Mechanics and Physics of Solids 155,
104545 (2021).

This Chapter is organized as follows. The motivation of this study is presented in
Section 3.1, along with a brief literature review on the non-destructive probing technique.
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Then, we define the problem at hand in Section 3.2. In Section 3.3, we describe the
experimental methodology to fabricate imperfect shells containing a precisely engineered
defect, as well as the experimental protocol followed in the probing tests. Details on the
FEM simulations are provided in Section 3.4. In Section 3.5.1, we report on experiments
and numerical simulations to investigate the response of the fabricated imperfect shell
under pressure loading while simultaneously indenting it at the center of the defect.
Then, in Section 3.5.2, we vary the indentation angle by incrementally moving the
indentation point away from the defect to study its influence on the performance of the
probe and to examine the applicability of this technique in predicting the knockdown
factor of the shell non-destructively. The FEM is validated by comparing numerical
predictions to experimental measurements. In Section 3.5.3, we investigate the localized
deformation of pressurized spherical shells under indentation at different locations. Finally,
in Section 3.5.4, we use classic shallow shell theory and the validated FEM to rationalize
our results. Specifically, we analyze the localized nature of the indentation and characterize
the length scale associated with the indentation neighborhood. Eventually, in Section 3.6,
we summarize our findings and provide a perspective for future work.

3.1 Literature Review and Motivation

Toward developing a general framework to characterize the stability of shells, a novel
non-destructive probing technique has been proposed and successfully applied to axially
compressed cylindrical shells as discussed in detail in the Introduction chapter (Sec-
tion 1.3) [130, 125, 126, 127]. The basis of this approach is to measure the nonlinear
response of the shell to a point probe. The force-displacement relationship measured by
systematically varying the level of axial compression is used to construct the stability
landscape. The area under load-displacement curves gives the energy barrier that must
be overcome by any static or dynamic lateral disturbances to buckle the shell [130, 125,
132]. Virot et al. [127] built an experimental setup to exert a point probe on cylindrical
shells under axial compression. The authors provided experimental evidence that the
hyper-dimensional landscape fully characterizes the stability of perfect and imperfect
cylindrical shells. The complex stability of shells was reduced to a three-dimensional phase
space description that can be analyzed using modern tools from nonlinear dynamics and
dynamical systems. By tracking the ridges of force-displacement curves, the knockdown
factor of cylindrical shells could be extrapolated correctly.

Recently, Abramian et al. [138] applied this probing technique to commercial cylinders
containing a hole and showed that when the location where buckling nucleates is known,
the buckling load of each individual shell can be accurately predicted. Additionally, a
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new numerical solution was recently proposed, where instead of considering the linear
instability of a shell with defects, a finite, nonlinear destabilizing perturbation was imposed
on an otherwise perfect shell [133]. In this study, the elastic response of the shell was
captured by the Donnell–Mushtari–Vlasov (DMV) theory. The fully nonlinear equilibrium
states on the boundary of the unbuckled state’s basin of attraction for an axially loaded
cylindrical shell were identified. It was shown that, for changes in the applied compression,
a single dimple undergoes homoclinic snaking in the circumferential direction until the
circumference is completely filled with a ring of buckles.

In a series of related studies, the non-destructive probing technique was recently applied
to cylindrical thin shells containing local dimple-like imperfections, both computation-
ally [135, 136] and experimentally [137]. The proposed algorithm based on the probe
force-displacement curves was validated on perfect, as well as imperfect, axially loaded
cylindrical shells. More importantly, the influence of background imperfections and the
location of probing relative to the imperfections were considered to examine the robustness
of the technique. The results showed that the probe has to be set close enough to the
dominant defect in the shell to ensure a high-fidelity prediction.

To date, it has remained inconclusive whether the probing technique can serve as an
effective way of assessing the stability of spherical shells in a way that parallels the
successful case of cylindrical shells mentioned above. The response of perfect spherical
shells subjected to external uniform pressure with and without a probing force was recently
investigated by Hutchinson et al. [107, 108] based on a small-strain and moderate-rotation
shell theory formulation, both under prescribed pressure and prescribed volume change.
Thompson et al. [126] addressed the testing of compressed shell structures using the
concept of probing by a controlled lateral displacement to gain quantitative insight into
their buckling behavior and to measure the energy barrier against buckling, providing
design information about a structure’s stiffness and robustness against buckling in terms
of energy and force landscapes.

The first experimental study on probing of imperfect spherical shells was carried out by
Marthelot et al. [102]. They investigated the buckling strength and energy barrier of
shells containing a geometric defect subjected to a simultaneous combination of pressure
loading and a probing force. They showed that the probing strategy applied to the defect
is a successful way to assess the stability of spherical shells. In contrast, by considering a
point load located off-axis from the defect, it was found that the energy barrier measured
from the probe was similar to that of a perfect shell but dramatically jumped down
to zero when buckling occurred. However, these experiments were only conducted in
limiting cases; the probe was either located exactly at the center of the defect or far away
from the defect. Therefore, there is a need to more systematically explore the response
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of the spherical shell loaded by a probe located in between the two extreme locations.
This timely data would indicate the limitations and range of applicability of the probing
technique in the context of identifying the critical buckling conditions and encoding the
characteristics of the stability of spherical shells.

3.2 Problem Definition: Non-Destructive Probing of Spheri-
cal Shells

We have performed a thorough investigation on how the response of an imperfect spherical
shell is affected by the location (angle) of indentation with respect to the location of
the defect. By analyzing the indentation force-displacement curves measured by a probe
positioned at different locations, which are systematically varied, we seek to estimate
the critical point and contrast this value with the direct measurement obtained from the
buckling test. Using shell theory and experimentally validated finite element modeling
(FEM), we then describe how the localized nature of indentation of spherical shells
dominates the performance of probing and obstructs its usage as a non-destructive
technique to predict the buckling conditions of spherical shells.

We consider a thin, elastic, hemispherical shell of radius, R, and constant thickness, h,
containing a geometric defect at its north pole; see the schematic diagram in Figure 3.1(a).
As a representative example of a thin shell, in both experiments and simulation, we will
focus on a value of the radius-to-thickness ratio of R/h = 78, unless otherwise stated
(specifically in Section 3.5.4 where we systematically vary h, and hence, also R/h). The
shell is clamped at its equator. The amplitude of the defect, δ, corresponds to the
maximum radial deviation of the shell from a perfect hemisphere. Defining β as the polar
angle measured from the north pole (where β = 0), the axisymmetric dimple-like defect
extends over the region 0 ≤ β ≤ β◦, with β◦ being its half angular width (i.e., the angular
amplitude).

The shell is first loaded under uniform pressure, which is set at a prescribed value, p◦. The
shell is then indented by a point load applied on its outer surface, along its radial direction,
while imposing the indentation displacement, ξ. This indentation is performed by a rigid
circular indenter of radius a (see schematic in Figure 3.1b). The resulting reaction force
of the indenter is referred to as the probe force, F . Each indentation test is performed at
different pressure levels (p◦) to obtain the corresponding probe force-displacement curves,
F (ξ).

In Figure 3.1(c), we show a sketch of a representative F (ξ) curve at a set pressure level
(the actual data will be presented in Figure 3.7). The probing force first increases with
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Figure 3.1: Definition of the problem. (a) A spherical shell of radius, R, and thickness,
h, contains a dimple-like geometric defect at the north pole. The geometry of the
defect is characterized by its amplitude, δ, and half-angular width, β◦. (b) The shell
is simultaneously depressurized to a preset pressure level p◦ and then indented radially
by a circular rigid indenter of radius, a, inducing a deflection ξ at the contact point I.
The action line of the force, F , is set at an angle θ with respect to the (vertical) axis of
symmetry of the defect. To change the probe angle, the indentation is applied at different
locations (I1, I2, I3,. . . ). (c) Sketch of a typical probe force versus displacement curve,
F (ξ), at the constant preset pressure level of p◦.

probe displacement to a maximum value (Fmax), after which F decreases and eventually
reaches zero when the shell collapses. If the prescribed pressure is increased to a level such
that Fmax = 0, the shell is loaded at the critical point, and the corresponding pressure is
the critical load. From the F (ξ) curves measured before reaching the collapse at Fmax = 0,
and motivated by recent work on cylindrical shells [127, 108, 130, 125, 126], one may
expect that extrapolating the Fmax(p◦) curve to zero would provide access to the critical
buckling pressure of our spherical shells in a non-destructive manner. We also seek to
examine the robustness of this non-destructive technique in testing imperfect spherical
shells. Specifically, we focus on the effect of positioning the probe with respect to the
location of the defect. To do so, we will systematically vary the angle, θ, between the
line of action of the probe force and the axis of symmetry of the defect. We will analyze
the nonlinear force-displacement response of indentation exerted at different positions in
order to attest its ability to predict the critical point without prior knowledge of defect
distribution.

3.3 Experimental Methods

In this section, we first present the rapid prototyping technique that we used to fabricate
shell specimens containing a precisely engineered imperfection. We then calibrate the
thickness and characterize the geometry of defects using optical profilometry. This
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fabrication technique was developed in collaboration with Dong Yan. Finally, we detail
the apparatus and the experimental protocol that was developed to exert indentation on
pressurized imperfect shells.

3.3.1 Fabrication of the Imperfect Shell Specimens

We fabricated imperfect hemispherical shells containing a precisely engineered geometric
defect following a customized coating protocol proposed for the first time in our recent
work [104], which itself was built upon a previously developed coating technique [101, 89],
with some important modifications. Next, we detail the basis of the fabrication protocol.
The protocol contains 2 steps – (I) Fabrication of the mold and (II) Fabrication of the
shell.

(I) Fabrication of the mold: First, we manufactured an elastic mold as the negative
of a rigid hemisphere (stainless steel ball, radius 25.4 mm, TIS-GmbH, Germany) using a
silicone-based vinylpolysiloxane (VPS) polymer (Elite Double 32, Zhermack, Italy), base
to catalyst ratio of 1:1 in weight, fully mixed for 10 s at 2000 rpm (clockwise), and then
degassed hen 10 s at 2200 rpm (counterclockwise) using a centrifugal mixer (ARE-250,
Thinky Corporation, Japan). The liquid VPS was poured into a boxed-shaped container
with the hemisphere placed on its bottom side (Figure 3.2a). A cylindrical pillar (radius
4.41 mm) was 3D-printed and positioned at a distance of ≈ 0.5 mm above the north pole
of the steel ball. As a result, the mold contained a circular thin region of half angular
width 10 ◦ and thickness 0.5mm at the pole. When the VPS was cured, the mold was
detached from the ball and the pillar (Figure 3.2b). Next, we activated the mold surface
utilizing air plasma generated by a plasma cleaner (PDC-002-HPCE, Harrick Plasma)
for 2 minutes and then treated with TMCS (Trimethylchlorosilane, Sigma-Aldrich) in a
vacuum chamber for 1 hour. The purpose of this treatment was to reduce the adhesion
strength between the mold and the MRE so that shell specimens could be easily demolded.

(I) Fabrication of the shell: The shell specimen was then fabricated by coating the
concave inner surface of the mold with the VPS solution (Figure 3.2c and 3.2d). The
polymer mixture was prepared and poured into the mold by waiting for a set time
tw = 210 s upon preparation, thereby raising the viscosity [101] to target the desired value
of the shell thickness (h = 0.327mm); more details in Section 3.3.2. The gravity-driven
viscous flow yielded a thin layer of VPS on the mold by facing the spherical surface down
(Figure 3.2d). To produce a geometric defect in the shell before the polymer was cured,
we applied constant negative pressure to the mold to a set pressure level q = 1.2 kPa by
extracting the air inside using a syringe pump (Figure 3.2e). Under this depressurization,
the soft spot (plate-like thin region) of the mold deformed inwards, and the associated
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Depressurization

(a) (c)

Liquid VPS 32

Mold

q

(b)

Metal Ball
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(d) (e) (f)

Figure 3.2: Schematic diagrams of the experimental protocol employed in the
fabrication of thin hemispherical shells containing a geometric defect. (a) First,
A metal hemisphere (radius R=25.4 mm) and a 3D-printed cylindrical pillar are used to
fabricate a mold. (b) The mold is detached from the metal ball after it is cured. (c) A
negative spherical mold with a thin region at the pole was filled with liquid VPS. (d) The
mold is turned upside-down, leading to the mold then being coated by the gravity-driven
viscous flow of VPS, yielding a thin film on the mold. (e) During the curing of the polymer
solution, the elastic mold was depressurized to deflect the thin region, thus producing a
geometric defect in the shell. (f) Finally, upon curing, the shell was peeled off from the
mold.

deflections eventually produced the axisymmetric dimple-like geometric defect at the pole
upon curing. During this depressurization stage, the bulk regions of the mold (other than
the soft spot) exhibited negligible deformation. Finally, the thin, elastic, imperfect shell
was peeled off from the mold (Figure 3.2f). Using this technique, we were able to vary
the geometry of the defect on demand, namely its amplitude δ and half angular width β◦,
by setting the applied pressure and the width of the thin region of the mold, respectively.
Additional details of the protocol can be found in Ref. [104].

3.3.2 Predicting the Thickness of the Shell Obtained from Fabrication

In this Section, we report the result from the calibration of the thickness and setting the
waiting time for the shell fabrication protocol. As shown by Lee et al. [101], the final
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thickness of the shell is given by

h ∼

√
µ0R

ρgτc
(3.1)

where µ0 and ρ are the viscosity and the density of the polymer solution, respectively, R
is the radius of the mold, and τc is the characteristic curing time. Therefore, the thickness
of the shell can be systematically increased, on-demand, by increasing the waiting time.
To characterize and calibrate the thickness of the shell, h, we fabricated a series of shells
with different values of waiting time while keeping the radius constant. Then, we cut
a narrow strip from the shell along the meridian to measure the thickness of this strip
at five different locations using a microscope (VHX-5000, Keyence Corporation, Japan).
The values for three different specimens with the same waiting time were averaged. In
Figure 3.3, we plot the thickness of the shell, h, as a function of the waiting time, tw. We
observe that the thickness of the shell increased significantly due to the increase in tw,
which is consistent with the previous results in Ref. [101]. Given this calibration for a
desired thickness value, the shell fabrication was done based on the respective tw. The
waiting time chosen and fixed for the following results is 210 s, which gives us a shell with
a thickness of h = 327± 11 µm. The corresponding radius-to-thickness ratio is R/h = 78.

50 100 150 200 250
0.2

0.25

0.3

0.35

0.4

Figure 3.3: Shell thickness calibration. Experimental data for the thickness change of
the elastic shell (R=25.4mm), h, as a function of waiting time, tw. As the waiting time
increases, the thickness of the shell increases due to the change in viscosity.
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3.3.3 Characterization of the Shell Geometry

Following the protocol presented above, we fabricated shell specimens of radius R =

25.4mm and thickness h = 327± 11µm, yielding a radius-to-thickness ratio of R/h = 78.
As stated in Section 3.2, we will fix this value of R/h throughout this Chapter as
representative of a thin shell, except for Section 3.5.4, where h, and hence R/h, will be
varied systematically. Following a procedure developed in our previous study [104], we
characterized the geometry of the fabricated defect through profilometry by measuring
the 3D profile of the shell (outer surface) using an optical profilometer (VR-3200, Keyence
Corporation). The defect profile is represented by the radial deviation of the outer surface
of the shell with respect to a fitted perfect sphere (in the region away from the defect
located at the pole of the shell), wI, which was averaged latitude-wise due to axisymmetry
condition of the shell. The defect geometry can then be described analytically on the
basis of the deformation of the elastic mold during shell fabrication [104]. To ensure
comprehensive coverage, we will now elaborate further on the technique next.

A plate model to describe the generated defect geometry: The fabrication
technique presented in Section 3.3.1 enables us to systematically set the defect geometry.
The angular width of the defect can be set by changing the diameter of the pillar during the
manufacturing of the mold itself. On the other hand, the amplitude of the defect, δ, can
be tuned by varying the level of depressurization of the mold and be described analytically
on the basis of the deformation of the elastic mold during shell fabrication [104]. In order
to provide an analytical description of the defect geometry, we used a simple plate model.
In contrast to the soft spot, the bulk region outside the soft spot exhibits negligible
deformation during pressurization. Moreover, the sphere of this soft spot has a sufficiently
small radius of curvature (compared to the radius of curvature of the shell) that can be
considered almost a flat plate. Therefore, the idea is to simplify the thin circular region of
the mold as a flat plate clamped at its boundary and describe its deflection under uniform
pressure loading by Kirchhoff-Love plate theory [1]. This plate’s deflection under pressure
determines the defect profile. We found that despite the flexible bulk region constraining
the boundary of the thin region, the measured profiles can be represented by the solution
corresponding to a clamped boundary condition (see Figure 3.5). Nevertheless, the width
and amplitude of the defect should be defined by fitting, the details of which will be
described below.

For an isotropic and homogeneous plate under pure bending, the classic Kirchhoff-Love
plate theory yields the following governing equation [1]

∂4wI

∂x4
+ 2

∂4wI

∂x2∂y2
+

∂4wI

∂y4
= 0 (3.2)
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where wI is the out-of-plane displacement of the plate, and x and y are the two in-plane
coordinates. Solving Equation 3.2 for the specific case of a circular plate under uniform
pressure loading and clamped boundary conditions yields the following expression for the
out-of-plane deflection:

wI(r) = − qA4

64D

(
r2

A2
− 1

)2

, (3.3)

where q is the applied pressure, D = Eh3/12
(
1− ν2

)
is the bending rigidity of the plate,

r =
√
x2 + y2 is the distance from the center of the plate, and A is the radius of the

circular plate. In Figure 3.4, the normalized defect amplitude, δ, is plotted as a function
of depressurization (see Figure 3.2e), q, after demolding, which shows a linear function.
The slope of this line is based on Kirchoff-Love plate theoretical prediction (Equation 3.3),
which depends on the bending stiffness of the thin region of the mold. The presence of a
non-zero intercept on the horizontal axis is attributed to the inherent deflection of the
thin region. This deflection could arise from the pre-existing stresses generated in the
mold during the polymer curing process of VPS.

10 15 20 25
0

0.5

1
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2
Experimental data
Linear fit

Figure 3.4: Normalized defect amplitude, δ, as a function of depressurization, q.
The defect amplitude can be easily tuned just by changing the pressure. A linear function
is fitted on the fabrication pressure as a function of the defect amplitude.

We consider that the deflection at the center of the circular plate, w(0) = − qA4

64D , is
equal to the defect amplitude, δ, and r/A is approximately equal to β/β0 based on the
geometry. Finally, the profile of the dimple-like defect (β ≤ β◦), which originates from
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the deformation of the plate-like region in the mold, can then be written as

wI(β)

h
=

δ

h

(
1− β2

β2
◦

)2

. (3.4)

We note that this description is only valid in the region of the defect. Away from the
defect, the shell is spherical: wI(β)/h = 0 for β > β◦.

In Figure 3.5, we present a typical example of a defect profile of the shell specimen that
will be used in the subsequent indentation tests. We have fitted Equation (3.4) to the
experimentally measured profile, taking the amplitude, δ, and half angular width, β◦,
of the defect as fitting parameters, finding excellent agreement between the two (see
Figure 3.5).

(3.4)

Figure 3.5: Characterization of the defect geometry. Two-dimensional profile (solid
line) of the dimple-like defect wI, normalized by shell thickness h, versus meridional angle
β, obtained by averaging the measured 3D defect profile, latitude-wise, using an optical
profilometer (see the inset). The dashed line represents the analytical description of
Equation (3.4). These results correspond to a representative shell containing a defect
that was measured to have a normalized amplitude of δ = 0.4± 0.02 and a half angular
width of β◦ = 11.7◦ ± 0.05◦. The results from a systematic exploration of shells with
other design parameters will be presented later in this Chapter.

For the particular defect taken as a representative example (see Section 3.4), we obtained
δ = δ/h = 0.4± 0.02 and β◦ = 11.7◦ ± 0.05◦ from the fitting procedure. The knockdown
factor for this shell was measured experimentally to be κ = 0.42± 0.01 using a standard
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buckling test [89], in good agreement with the FEM prediction of 0.43. This difference
is due to the uncontrollable imperfections intrinsic to the fabrication technique. Addi-
tional information on our numerical simulations will also be provided in Section 3.4. In
Section 3.5, we will present the results of indentation tests on this shell specimen.

3.3.4 Experimental Apparatus and Protocol for the Probing Technique

In Figure 6.5, we present a photograph of the experimental apparatus used to perform
the probing tests on our imperfect shells, based on earlier experiments developed by
Marthelot et al. [102]. The to-be-tested hemispherical shell was mounted onto an acrylic
plate. The clamped boundary condition at the equator was ensured by the thick band
at the bottom of the shell (approximately 5mm thick) formed by the drainage of the
excess polymer during fabrication. The gap between the rim of the specimen and the
acrylic plate was sealed by VPS polymer poured around the thick band to ensure air
tightness. The acrylic plate was then fixed onto a high-precision multi-angle mount
(Arca-Swiss C1 Cube Geared Head, France), adapted to adjust the position and direction
of indentation. The shell was connected to a syringe pump (NE-1000, New Era Pump
Systems Inc., Farmingdale, NY), which extracted air from inside the shell, through the
pneumatic circuit, at a rate of 0.1mL/min to generate a negative pressure on the shell.
A pressure sensor (MPXV7002, NXP Semiconductors, The Netherlands) monitored the
pressure differential between the inside and the outside of the shell, p◦, at an acquisition
rate of 1Hz. The pneumatic circuit also contained a tank with a large volume of air
(V = 120L), serving as a buffer to ensure prescribed pressure conditions and minimize
spurious variations of pressure during the indentation procedure. The level of fluctuations
of p◦ during the indentation test was kept below 3% for larger pressures (above 30Pa)
and below 15% for lower pressures (below 30Pa).

In each experimental run, we first loaded the shell to a preset pressure level, p◦, using the
syringe pump. Once the desired pressure value was reached, the shell was indented by
a rigid spherical Rockwell C diamond indenter (tip radius a = 200µm, CSM) mounted
onto a universal testing machine (5943, Instron, Norwood, MA). This point-indentation
force was consistently applied in the radial direction (perpendicular to the shell surface),
either at the shell pole (where the defect is located) or at an angle between the direction
of the indentation force and the radial line perpendicularly concentric to the defect. The
latter is defined as the probe angle, θ. The indentation displacement ξ was imposed by
the testing machine (rigid probe) at a constant velocity of 0.06mm/s. The reaction force
of the indenter (indentation force), F , was measured by a load cell (2530-5N, Instron).
During data processing, the zero point of the indentation displacement was set at the
moment of contact between the indenter and the shell, after which the reaction force
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Figure 3.6: Photograph of the experimental apparatus used for the indentation
tests. In each experimental run, the shell was first depressurized to a prescribed pressure
level and then indented under imposed displacement conditions by a universal testing
machine. A high-precision multi-angle mount allowed for the indentation to be performed
at different locations of the shell.

increased continuously.

Following previous studies [108, 102], we non-dimensionalize the indentation deflection as

ξ =
√

1− ν2
ξ

h
. (3.5)

and the probe force as

F =
FR

2πD
, (3.6)

where D = Eh3/12(1− ν2) is the bending modulus of the shell. Moreover, the prescribed
pressure level, p◦, at which the indentation test was performed, is normalized by the
classic buckling pressure, pc from Equation (1.4), as

p =
p◦
pc

. (3.7)

The buckling of thin spherical shells is dominated by the local region near the defect [109],
which, in our study, is located at the north pole, away from the equator. The deformation
caused by indentation is also localized near the indenter set in the vicinity of the north pole,
which will be elaborated in Section 3.5.3. As such, the effect of boundary conditions at the
equator on critical buckling pressure and indentation behavior should be negligible [106].
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We can expect the results presented in this work on hemispherical shells clamped at the
equator should be equally applicable to full spherical shells as buckling is confined to the
vicinity of the pole such that, if the shell is not shallow, the buckling thresholds are not
strongly dependent on the location of the clamping boundary [263].

For the indentation tests, we used the shell fabricated and characterized following the
procedures described in Sections 3.3.1 and 3.3.3, respectively. Prior to indentation, the
shell was preset at prescribed pressure levels, which were varied systematically in the
range 0 ≤ p < pmax/pc (recalling that pmax is the critical buckling pressure measured in a
standard buckling test). From the recorded indentation force-displacement curves, F (ξ),
we attempted to assess the stability of the shell. The results for the case of indentation at
the pole of the shell (θ = 0 ◦) will be provided in Section 3.5.1. Non-axisymmetric cases
will be considered in Section 3.5.2, for indentation tests conducted at the following values
of the probe angle: θ = {5◦, 10◦, 12◦, 15◦, 30◦}.

3.4 Numerical Simulations Using the Finite Element Method

In parallel to the experiments, we performed FEM simulations using the commercial
package Abaqus/Standard. The goal of these simulations was to predict the response of
imperfect spherical shells under simultaneous pressure loading and indentation, as well as
to explore parameters more systematically than those available through experiments.

Toward reducing computational costs, we exploited the symmetry of the system and
only considered one-half of the hemispherical shell (hence, a quarter of the shell), with
symmetric boundary conditions applied on the plane of symmetry. The equator of the
shell was set as a clamped boundary. A geometric defect (with the profile described by
Equation 3.4 and the amplitude and width characterized in Section 3.3.3) was introduced
into the initial shell geometry. The VPS polymer was modeled as an incompressible
Neo-Hookean material, with Young’s modulus of E = 1.26± 0.01MPa measured from
standard tensile tests on dog-bone specimens, and the Poisson’s ratio was assumed to be
ν ≈ 0.5.

The shell was discretized by four-node shell elements S4R with a structured mesh scheme,
with 300 and 600 elements in the meridional and azimuthal directions, respectively. The
element S4R is able to describe the finite membrane strains and arbitrarily large rotations
of shells. A mesh convergence study was also implemented to ensure that the results were
independent of the mesh size. We modeled a rigid indenter discretized by R3D4 rigid
elements to apply the indentation under imposed displacements. A hard and frictionless
contact was assigned between the indenter and the shell. Geometric nonlinearities were
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taken into account throughout the simulations.

The simulations were implemented in two steps:

(i) Depressurising: First, the shell was loaded by a uniform live pressure, p, applied
on its outer surface;

(ii) Indentation: While maintaining the pressure p set in step (i), the indentation
displacement (ξ) was then imposed onto the shell at a probe angle θ. The indentation
force F was computed from equilibrium.

For each pressure level explored, we obtained the probe force-displacement curve and the
full displacement field of the shell.

3.5 Results on Indentation of Pressurized Imperfect Spheri-
cal Shells

We shall start our investigation by reporting, in Section 3.5.1, results on the response of
depressurized spherical shells subjected to an indentation applied at the center of the
dimple-like defect. Upon validating our FEM procedure by contrasting the numerical
results against experiments, in Section 3.5.2, we perform probing measurements and
simulations at different probe angles. From the results, we seek to analyze the effect of
the probe angle on predicting the critical buckling conditions of the shell and examine the
efficacy of indentation as a technique to assess shell stability. Finally, in Sections 3.5.3 and
3.5.4, we study the localized deformation of spherical shells resulting from indentation.
Furthermore, adapting well-established results from classic shallow shell theory, we
quantify the characteristic length of this deformation. The shallow shell equations are
applicable to this case (and to deep shells), as long as the loads and the resulting stresses
are restricted to shallow regions, where the indentation-induced dimple is localized in
the neighborhood of the indenter [108]. Moreover, outside of this region, the stresses and
strains due to indentation and depressurization are sufficiently small compared to those
in the dimple, such that the predictions of shallow shell theory remain relevant.

3.5.1 Probing the Shell at the Center of the Defect

In Figure 3.7, we present a set of experimental results for the response of the probe force
versus the displacement of the indenter applied onto the shell. For now, the indentation
point located at the center of the dimple-like defect (θ = 0 ◦; cases with θ > 0 ◦ will be
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explored in Section 3.5.2). The prescribed depressurization was systematically varied
at 11 values, ranging from p = 0 to p = 0.38. The maximum imposed displacement of
the indentation was ξ̄ = 8. At each value of p, in order to enhance the signal-to-noise
ratio, 6 independent, but otherwise identical, experimental runs were conducted, and the
measured indentation forces were averaged to yield the F (ξ̄) curve presented in Figure 3.7.
The corresponding shaded region is the standard deviation of these 6 measurements.

Figure 3.7: Force-displacement curves for the indentation of the hemispherical
shell. The normalized probe force, F = FR/(2πD), is plotted as a function of the
normalized indentation displacement, ξ =

√
1− ν2ξ/h. The indentation was applied

at the center of the defect (θ = 0◦): experiments (solid lines) and FEM simulations
(dashed lines). The indentation tests were performed at 11 levels of depressurization
(see legend). Each solid line was obtained by averaging the results from 6 independent
experimental runs under identical conditions. The corresponding shaded region associated
with each curve represents the standard deviation of these 6 identical measurements. The
dashed lines are predictions from the FEM simulations associated with the respective
experimental curves, with no fitting parameters; all quantities were measured from the
experiments.

From the results shown in Figure 3.7, as previously described by Marthelot et al. [102],
we notice that, without pressure loading (p=0), the indentation process is always stable
and the probe force increases monotonically with displacement. Each response at lower
values of the pressure loading (p < 0.08) can be divided into the following two distinct
regimes:

1. Small indentations (ξ ≲ h): In this regime, the indentation displacement remains
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smaller than the shell thickness. The force-displacement relationship is linear, as
described by Reissner’s theory for spherical shells under point load indentation [264,
265];

2. Large indentations (ξ ≳ h): In this regime, the indentation displacement is
larger than the shell thickness. The force-displacement relationship is nonlinear, as
first studied by Pogorelov [266].

For intermediate levels of depressurization (0.12 ≤ p ≤ 0.19), the indentation curve is
non-monotonic; the probe force increases initially, reaches a maximum value Fmax, and
then decreases with increasing probe displacement. For levels of depressurization above
p ≥ 0.19, the probe force can eventually reach zero within the indentation displacement
range of the experiments. At this point, the shell becomes unstable (critical buckling
point) and snaps to a collapsed state. The work done by the probe force is equal to the
energy barrier that needs to be overcome to attain the buckled state. Also, it is important
to mention that, compared to a perfect shell [108, 102], the load-carrying capacity and
energy barrier of this imperfect shell are significantly reduced due to the presence of the
dimple-like defect.

Following the computational methodology described in Section 5.4, we have used FEM to
predict the behavior of this shell under indentation, and the obtained force-displacement
curves at different pressure levels are also presented in Figure 3.7, juxtaposed onto the
corresponding experimental curves. Excellent agreement is found between experiments
and simulations, thereby serving as a validation of the FEM. We note that all the
parameters used in the simulations were measured independently from the experiments,
with no fitting parameters. Having validated the FEM against experiments, we will further
explore the indentation problem by performing systematic computations in Sections. 3.5.2
and 3.5.3.

3.5.2 Can We Probe the Buckling of Spherical Shells Using Indentation?

In this section, we will assess the relevance of the non-destructive probing technique to
predict the critical load of pressurized spherical shells, which was originally proposed
and applied on cylindrical shells [136, 137, 127, 133, 130, 108, 125, 126]. We seek to
determine the required proximity of the probe to the defect without the foreknowledge on
the location and size of imperfections. In particular, we will apply the probe at various
locations on the shell by moving the indentation point away from the center of the defect
and quantifying the resulting response, both experimentally and numerically.

In Figure 3.8(a), we present the FEM results for the indentation at θ = 0◦ (from
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Figure 3.7) in the (p, ξ, F ) space. The maximum probe force, Fmax = FmaxR/2πD,
provides a measure of the largest load that the shell can sustain prior to collapse, which
can be tracked at increasing pressure levels (green circles on each curve in Figure 3.8a).
It is anticipated that the characteristics of shell stability, such as the critical load, are
encoded in the variation of Fmax [127]. More precisely, the energy barrier, which measures
the shock-sensitivity of the pressurized shell against disturbances at the pre-buckling state,
is equal to the work done by the probe to reach the unstable post-buckling state ([125]).
Once this work tends to vanish, the shell is loaded close to the buckling capacity. By
sequentially increasing the prescribed pressure until Fmax = 0, the pressure level reached
at this stage corresponds to the critical buckling load of the shell. However, in practice,
we should always ensure that Fmax is larger than zero to avoid the catastrophic collapse
of the tested shell. Therefore, we identify the critical point by numerically extrapolating
the experimental measured Fmax to zero, using a third-order polynomial extrapolation.

(a) (b)

Figure 3.8: 2D and 3D indentation curves. (a) 3D representation of the indentation
curves shown in Figure 3.7, in the (p, ξ, F ) space. The peak values of the probe force,
Fmax, are represented by the circles on each curve. The indentation was performed at
the center of the defect (θ = 0◦). (b) Normalized maximum probe force, Fmax, versus the
prescribed pressure, p, at different probe angles: θ = {0◦, 5◦, 10◦, 12◦, 15◦, 30◦}. The data
points represent the experimental measurements, and the solid lines are the predictions
from the FEM simulations. The knockdown factor of this shell measured through an
independent buckling test is κ = 0.42.

In Figure 3.8(b), we plot Fmax versus p while probing the shell at the center of the defect
(θ = 0◦). The experimental force-displacement signals were filtered and smoothed with a
50-point moving average filter in order to facilitate the definition and extraction of the
maximum probe force. We find that Fmax decreases sharply (by 80%) as p is increased
from 0.1 to 0.43. The extrapolation in the limit of Fmax → 0 indicates that κ = 0.44,
which is in good agreement with the value κ = 0.42 measured from an independent
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experimental buckling test. In this case of indentation at the center of the defect, the
probing serves successfully as a non-destructive technique to estimate the critical buckling
conditions of the spherical shell. We note that, based on the FEM data, we systematically
set an upper limit on the pressure applied for probing, plim, and extrapolated the critical
point from the maximum probe forces obtained below this limit. This allowed us to
determine a threshold plim/pc = 0.36, above which the extrapolated buckling load is
excellent, approaching the measured value with less than 2% relative error. This pressure
threshold is still in the safe region (far from κ = 0.43) to avoid the collapse of the shell
caused by the probe.

To assess the ability of the probing technique when the indentation is exerted at various
locations, we systematically varied the probe angle: θ={5◦, 10◦, 12◦, 15◦, 30◦}. Con-
sequently, the indentation point was moved away from the center of the defect. First,
we indented the shell at θ = 5◦, the results of which are shown in Figure 3.8(b). The
probing force follows a path that only slightly deviates from that of the θ = 0◦ case while
still showing a similar trend and decreasing to zero as the prescribed pressure reaches
the critical load of the shell. In this case, the knockdown factor can still be accurately
inferred.

Next, we increase the probe angle to θ = 10◦. Initially, with increasing p, the maximum
probe force evolves by following an entirely distinct path from the previous two cases
(θ = 0◦ and θ = 5◦). However, closer to the load-carrying capacity of the shell, the path
rapidly turns and drops to the critical point. Again, in this case, the correct knockdown
factor can be inferred from the probing. However, the extrapolation must be performed
based on the data in the nonlinear vicinity of the critical point, with the eminent risk
of buckling. We highlight that this extrapolation cannot be done from the beginning
of the Fmax(p) path. The sudden change of the maximum force-pressure path and the
sharp decrease in Fmax for larger pressure values in the cases of θ = 10◦ and θ = 12◦

(half angular width of the defect =11.7◦) is presumably due to the nonlinear interaction
between the probe and the edge of the defect.

Further increasing the distance of the probing point from the defect (θ = 15◦ and θ = 30◦),
we observed no visible trace of the defect in the force signal until p approaches the critical
pressure with the sudden collapse of the shell. In these two cases, the buckling point and
the corresponding knockdown factor are unpredictable by tracking the maximum probe
force and extrapolating it in the limit Fmax → 0. The probe for these indentations, away
from the defect, appears to be insensitive to the defect and misrecognizes the imperfect
shell as if it was perfect.

An interesting result, which was also alluded to by Marthelot et al. [102], was observed
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when the indentation was applied at θ = 12◦ and θ = 15◦. There is an unexpected
increase in the maximum indentation force that the shell can sustain, compared to that
at θ = 30◦. In this regime, the probe is set at the edge of the defect, and the coupling
between the localized deformation associated with the dimple-like defect and the probe
force is more complex; the indentation deforms the shell locally in a way that weakens
the influence of the initial imperfection on the response of the shell. This observation
highlights the high degree of nonlinearity in shell mechanics problems.

We highlight that the experimental data and FEM results plotted in Figure 3.8(b), at
different probe angles, are in remarkably good quantitative agreement. In summary, the
results presented above demonstrate some potential limitations in using probing as a
non-destructive technique to assess the stability of imperfect spherical shells since the
probe has to be performed in the near vicinity of the most serious defect in the shell, whose
location would be most likely unknown a priori in any situation of practical relevance.
Indeed, performing such a positionally targeted test would require previous knowledge
of the distribution of imperfections, in which case the behavior of the shell could be
more easily and accurately predicted numerically by taking the full shell geometry into
account [89, 253, 267]. The mechanism underlying these observations stems from the fact
that the deformation due to the probe force is localized in spherical shells, as we study in
detail in the next section. The interaction between the localized probe and the defect is
limited, which affects the detectability of the defect.

3.5.3 Localized Deformation of Pressurized Spherical Shells under
Indentation

Thus far, we provided experimental and numerical evidence that the mechanical response
of pressurized spherical shells under point indentation differs strongly depending on the
location of the probing with respect to the most vulnerable (imperfect) region. In this
section, we will relate this finding to the deformation profiles of the imperfect shells due
to indentation.

In Figure 3.9, we plot the FEM-simulated profile of the imperfect shell tested in Sec-
tions 3.5.1 and 3.5.2, at p = 0.25, before and after imposing an indentation displacement
of ξ = 3. This probing is applied at the following different angles θ = {0◦, 5◦, 15◦, 30◦}.
We find that when the shell is indented at or close to the center of the defect (θ = {0◦, 5◦}),
the localized region of deformation overlaps almost entirely with the dimple-like defect.
Consequently, the defect significantly influences the response of the shell due to the
indentation, thereby ensuring that the critical point can be captured by the probe. By
contrast, when the probing is performed further away from the defect (e.g., θ ≤ 15◦),
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there is little or no overlap between the deformed region and the existing defect, and
the probe misses the detection of the critical buckling point. As a result, for these
cases of indentation away from the defect, the corresponding F̄ (p̄) curves (Figure 3.8b)
show little difference with respect to those of a perfect shell, even if the probed shell is
intrinsically imperfect. In these cases, the lack of interaction between the defect and the
probe precludes access to the stability landscape of the imperfect shell.

θ=15o θ=30o

(a)

(c)

θ=0o θ=5o

(b)

(d)
(d)

Figure 3.9: Deformation profiles of the imperfect shell, pressurized at p = 0.25,
in its initial configuration (ξ = 0, dashed line) and deformed configuration (at ξ = 3,
dotted line), computed through FEM. The indentation is applied at (a) θ = 0◦, (b)
θ = 5◦, (c) θ = 15◦, and (d) θ = 30◦. To aid visualization, the deformation profiles of
the indented imperfect shell are represented by the associated radial displacement from a
perfect spherical shell pressurized at the same level (solid line) and magnified by a factor
of 4. Insets: Zoomed-in profiles at the vicinity of the defect and indentation region.

3.5.4 Characteristic Length of Indentation in Spherical Shells

Having observed that the deformed neighborhood of the indentation plays an important
role in the interaction between the probe and the defect, we proceed by quantifying the
characteristic length scale of the deformation of the indented shells. In this section, we
shall focus exclusively on perfect shells so as to investigate their mechanical response to
indentation independently of any interactions with geometric defects. The experimental
shell specimen used in this section was fabricated without intentionally introducing a
defect so that it is as nearly ‘perfect ’ as they can be in practice. Naturally, there may
still be small-scale imperfections intrinsic to the fabrication procedure (e.g., roughness
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of the otherwise spherical mold or heterogeneities in the polymer mixture). In fact, the
knockdown factor of these nearly perfect shells is κ = 0.91 (instead κ = 1 for a perfect
shell), which, nonetheless, does not affect the findings reported in this section. The FEM
simulations are performed with a truly spherical shell.

We will contrast our experimental and FEM data with classic analytical solutions obtained
by Reissner [264, 265] and [266] a segment of a thin, elastic, spherical shell subjected to a
concentrated point force. Reissner’s solution was obtained from simplified shallow shell
equations (relevant for shells with a height-to-diameter ratio lower than approximately
1/8). Such equations are linearized, but some important nonlinear terms related to
buckling were preserved. These equations are also applicable to deep shells, as long as the
loads and the resulting stresses are restricted to (i.e., localized in) shallow regions. For
completeness, we recall the main features of these seminal results on shell indentation:

1. Linear regime: When ξ/h ≲ 1, Reissner [264, 265] followed the framework of linear
shallow shell theory to propose an analytical solution for the radial displacement:

wReissner(r)

h
=

√
12 (1− ν2)

2π

R

h

F

Eh2
kei
(r
ℓ

)
, (3.8)

where r is the horizontal distance from a point on the shell to the point of application
of the concentrated point force F , kei(·) is the imaginary term of the modified
Bessel-Kelvin function, and the balance between bending and stretching effects
yields the characteristic length scale ℓ = [

√
Rh][12

(
1− ν2

)
]−1/4. Therefore, at the

indentation point (r = 0), the deflection is predicted to be

ξ

h
=

wReissner(0)

h
= −

√
3 (1− ν2)

4

R

h

F

Eh2
, (3.9)

such that the dependence between the indentation force and displacement is linear
(F ∼ ξ).

2. Nonlinear regime: When ξ/h ≳ 1, Pogorelov [266] made use of geometric
arguments and a general variational principle to obtain an analytical solution for
the radial displacement at the indentation point, wPogorelov(0):

ξ

h
=

wPogorelov(0)

h
=

1

9π2c2

(
R

h

)2( F

Eh2

)2

, (3.10)

where c=0.19 is a numerical coefficient. Equation (3.10) indicates a nonlinear
indentation force-displacement relationship of F ∼

√
ξ. Pogorelov developed this

approach to describe the behavior of thin spherical shells under point indentation,
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with considerable changes in shape, based on the assumption that the shell’s middle
surface under such a deformation is close to the isometric mapping of the initial
surface. The shape of the shell in the transition zone between the undeformed and
mirror-reflected parts is determined by minimizing the strain energy in this region
due to the smoothing of the edge between the two parts (computed according to
the linear membrane and bending strains), under appropriate boundary conditions.
The indentation force-displacement relationship of the shell is then obtained from
the minimization of the total potential energy of the system.

In Figure 3.10, we plot experimental and FEM results for the dimensionless indentation
force, F̄ = F/(Eh2), versus the normalized indentation displacement, ξ/h, for a shell
indented at its pole (θ = 0◦), in the absence of pressure loading. Linear (when ξ ≲ h)
and nonlinear (when ξ ≳ h) regimes can be clearly identified in this force-displacement
curve. The transition from the linear to the nonlinear regimes does indeed happen in the
range 0.3≲ ξ/h ≲0.5, consistently with the classic result of ξ < h/3 for the validity of
linear shell theory. However, since the transition is smooth, we prefer to stick with the
less precise statement that the transition between the two regimes happens when the
indentation amplitude is of order h. The results in Figure 3.10 are compatible with the
classic regime of validity for the linear theory of shells (ξ < h/3).

Equation (3.9)
Equation (3.10)

Figure 3.10: Force-displacement curves for a spherical shell indented at its
pole (θ = 0◦): experiments (thin solid curve), FEM simulations (thick solid curve). The
predictions from Reissner’s theory [265], Equation (3.9), and Pogorelov’s theory [266],
Equation (3.10), are represented by the dashed and dash-dotted lines, respectively.
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The classic analytical predictions of Equation (3.9) and Equation (3.10), for the linear and
nonlinear regimes, respectively, are superimposed onto our data. As expected, Reissner’s
solution yields excellent predictions in the linear range, while the nonlinear range is
well described by Pogorelov’s solution, in both cases, without any adjustable fitting
parameters.

Having thoroughly validated our simulations against experiments (see Figures 3.7, 3.8b,
and 3.10), hereon, we shall rely exclusively on the FEM data. We have studied the extent
of deformation due to indentation in the linear and nonlinear regimes, from which we
observed the deformation is concentrated at the indentation point and decays rapidly
away from it. As such, we can focus on the case of indentation at the pole (θ = 0o) and
characterize the neighborhood of indentation by the zero crossing distance rz, which is
defined as the distance from the center of indentation to the first point of w(rz)/R = 0.
This characteristic length quantifies the localized nature of the indentation of spherical
shells.

We study the extent of deformation due to indentation in the linear and nonlinear
regimes of indentation deformation while systematically varying the indentation angle
θ = {0◦, 5◦, 15◦, 30◦}. In Figure 3.11, we plot the radial deflection of the shell, w/R,
resulting from the indentation as a function of the meridional angle, β. The indentation
displacement was increased systematically up to ξ = 2.7h (see the legend of Figure 3.11)
across the linear and into the nonlinear regimes. The localized nature of the deflection
profiles is evident from the data: The deformation is concentrated at the indentation
point and decays rapidly away from it. The spatial extent of the deform region only
changes slightly for the different curves (0 < ξ ≤ 2.7h) but remains independent of the
indentation location (θ = {0◦, 5◦, 15◦, 30◦} in the respective panels of Figure 3.11).

We focus on the case of indentation at the pole (θ = 0◦) and, in Figure 3.12b, plot w/R

as a function of meridional distance r, against Reissner’s solution from Equation (3.8). It
is evident that for displacements smaller than the shell thickness (ξ ≲ h), Equation (3.8)
(dashed lines) is in excellent agreement with the FEM data (solid lines). However,
deviations occur in the nonlinear regime (ξ ≳ h).

In the FEM simulations, we considered shells with different radius-to-thickness ratios
(64 ≤ R/h ≤ 121) and extracted rz from their deflection profiles under various indentation
displacements. We also obtained a theoretical prediction from Reissner’s solution –
Equation (3.8)–by setting wReissner(rz) = 0, which is satisfied only if kei(rz/ℓ) = 0. Then
we numerically determined the first zero-crossing point as

rz =
3.9

[12(1− ν2)]1/4

√
Rh . (3.11)
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(a)

θ=0o θ=5o

θ=15o θ=30o

(b)

(c) (d)

Figure 3.11: FEM-computed normalized radial deflection, w/R, versus merid-
ional angle, β, for a perfect shell with R = 25.4mm and h = 327µm, under different
indentation displacements (values detailed in the legends). The probing is applied at the
following values of the indentation angle: (a) θ = 0◦, (b) θ = 5◦, (c) θ = 15◦, and (d)
θ = 30◦. For these data, no pressure loading is applied.

For incompressible materials (ν = 0.5), we have rz = 2.25
√
Rh. From Equation (3.11), the

characteristic length scale of indentation is predicted to scale as rz ∼
√
Rh, independently

of the indentation displacement, ξ.

In Figure 3.13, we plot rz data obtained by FEM as a function of
√
Rh, contrasted with

Equation (3.11); the line colors refer to the values of the indentation displacement in
FEM (as detailed in the legend). For clarity, the data was split for the linear regime (
0 < ξ ≲ h, Figure 3.13a) and for the nonlinear regime ( ξ ≳ h, Figure 3.13b). In the
linear regime (Figure 3.13a), good agreement is found between FEM and Equation (3.11),
validating the linear dependence of characteristic length, rz ∼

√
Rh, even if there is a

slight systematic vertical shift for the FEM data from Reissner’s theory that increases
with ξ. We anticipate that this discrepancy is most likely due to the simplification of
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R

rr
h
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Shallow Shell Section

ξ
rz

(a) (b)

Figure 3.12: Deformed spherical shell under indentation. (a) Schematic of a
deformed shallow spherical shell of radius R and thickness h under indentation. (b)
Normalized radial deflection, w/R, as a function of meridional distance, r, for a shell of
R/h = 78 at different indentation displacements (as detailed in the legend). The solid
lines correspond to FEM data, while dashed lines are predictions by Reissner’s solution in
Equation (3.8). The zero-crossing distance, rz, is defined as the distance from the center
of indentation to the first point where the deflection crosses zero, w(rz)/R = 0.

linear shallow shells in Reissner’s solution. When ξ ≳ h (Figure 3.13b), the perturbed
region of radius rz grows more significantly with indentation, but the linear scaling

√
Rh

is maintained. Hence, we find that Reissner’s solution is unable to capture our FEM
data in the nonlinear regime. Overall, we find that the measured characteristic length of
indentation is consistent with the scaling rz ∼

√
Rh, with a nearly constant prefactor of

2.25 in the linear regime but an indentation-dependent prefactor in the nonlinear regime.

For the shell tested in our experiments, Equation (3.11) yields a characteristic length
of indentation rz = 6.5mm, corresponding to an angle of θz = 14.8◦. From all the
evidence reported above, we speculate that θz, together with the half angular width of
the defect βo = 11.7◦, dictates the critical indentation angle, above which the probing
test fails to identify the buckling conditions. In future work, it would be valuable to
perform a parametric study to more systematically quantify the dependence of the critical
indentation angle on both the length scale of indentation and the geometry of defects.

3.6 Summary and Outlook

We have investigated the behavior of imperfect spherical shells subjected to a point
indentation, with a focus on the effect of the indentation angle, by combining precision
experiments, finite element modeling, and theoretical analysis. When the indentation is
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(a) (b)
, Equation (3.11) , Equation (3.11)

Figure 3.13: Characteristic length of indentation, rz, as a function of
√
Rh in the

(a) linear (h < ξ < 7h) and (b) nonlinear (ξ ≳ h) regimes. The solid lines correspond to
the theoretical predictions of Equation (3.11), with a slope of 2.25, and colored circles-lines
correspond to the FEM data for different values of the indentation displacement (ξ̄); see
the adjacent color bar.

applied at the center of the defect under imposed displacement conditions, the reaction
force shows a non-monotonic relationship with the displacement at relatively larger pres-
sure levels, which first increases to a peak value and then decreases to zero, accompanied
by the occurrence of buckling. The knockdown factor of the shell is successfully identified
by tracking the peak of the force-displacement curve with increasing prescribed pressure
level and extrapolating to the point of maximum force reaching zero. In this case, indenta-
tion can be used to probe the stability of the shell. However, as the probe is moved away
from the center of the defect above a critical angle, the test fails to identify the buckling
point prior to the collapse of the shell. We find that the localized nature of indentation in
spherical shells limits the interaction between the defect and the probe. The characteristic
length associated with the indentation’s neighborhood scales as rz ∼

√
Rh, in both the

linear and nonlinear regimes.

Our findings demonstrate that point-load probing can only be useful as a local strategy to
assess the stability of spherical shells as long as the indentation is performed in the close
neighborhood of the defect. This limitation comprises broader applications in common
engineering settings, where the distribution and magnitude of the imperfections are
typically unknown. The counterpart evaluation on cylindrical shells [136, 137] through
FEM and experiments also showed that the probing technique over-predicts the buckling
load, once the distance between the probe and the defect reaches a critical value. It would
be interesting to study the characteristic length of the influence region of indentation in
cylindrical shells since, in this Chapter, we have focused solely on spherical shells. As
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we have done in our case of spherical shells, we can also expect that this length should
determine the detectability of the probe in cylindrical shells.

Future work could consider simultaneously setting multiple probes on one shell or imple-
menting probing in sequence along an effective path, although such indentation-probing
approaches would likely be cumbersome. A more viable route to predict the critical
buckling conditions may be the mapping of the full 3D geometry of an imperfect shell
through X-ray micro-computed tomography coupled with FEM simulations using the
measured geometry, as we have recently demonstrated for idealized single-defect imper-
fections [103, 104]. An appropriate and effective protocol is still to be developed for the
non-destructive testing of the critical buckling conditions of imperfect spherical shells in
general engineering scenarios.
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4 Probabilistic Non-Destructive Prob-
ing of Spherical Shells

The buckling capacity of shell structures exhibits a high sensitivity to imperfections,
requiring prior knowledge of defects to predict critical buckling conditions accurately.
A recent innovative method proposes the prediction of buckling capacity in thin shells
through controlled indentation of pre-compressed specimens, providing an estimate of
their resistance to buckling. However, this approach underlines the pivotal role of
probing location, highlighting that accurate determination of buckling capacity depends
on proximity to the most significant defect. Since defect locations are typically unknown
and challenging to identify, this study addresses the issue by extending the probing
technique to predict the buckling behavior of spherical shells with randomly distributed
imperfections. By employing finite element simulations, we conduct a statistical analysis
of these realistically imperfect shells, subjecting them to probing either at a specific
location or at various random locations. Notably, these shells offer a better representation
of practical scenarios than the prior single-defect cases we studied in Chapter 3. With
the use of various extrapolation techniques to project the force-displacement response
during indentation, it becomes evident that the robustness of the technique heavily relies
on the extrapolation method chosen. Consequently, the extrapolated data varies, leading
to different predictions. We recognize that our discoveries, focused on the probabilistic
assessment of stability in shells with random imperfections through a statistical probing
approach, may have limited immediate implications for shaping the design principles of
thin-walled structures.

This Chapter is structured as follows. Section 4.1 presents the motivation behind this
study, accompanied by a review of the literature on shells with a random distribution
of imperfections and their sensitivity to imperfection. Next, in Section 4.2, we define
the problem under consideration. Following this, Section 4.3 outlines the details of
our numerical simulations, which explore the non-destructive testing of imperfect shells
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possessing a distribution of imperfections, with indentation applied either at the pole of
the shell or randomly chosen locations. The outcomes of the probabilistic investigation of
indentation, while indented at the pole of the hemispherical shell with the random variable
sampled from the shell configuration, are discussed in Section 4.4. Moving on to Section 4.5,
we explore the probabilistic indentation technique for a single shell configuration while the
random variable is sampled from the location of the indentation. Finally, in Section 4.6,
we summarize our findings and provide a forward-looking perspective for future research
endeavors.

4.1 Literature Review and Motivation

While considerable progress has been achieved in the theoretical, experimental, and
computational investigations of shells with single defects, understanding shell buckling
in the presence of multiple or distributed imperfections subject to potential defect-
defect interactions remains an ongoing inquiry that holds practical relevance and realism.
Following the studies on the imperfection sensitivity of shell structures (see Chapter 1 for
a detailed review of past work), statistical methodologies were introduced for analyzing
shells characterized by a distribution of imperfections. However, these approaches called
for a probabilistic understanding of geometry and imperfection distribution, which was
challenging to obtain using contemporary tools, thus restricting practical application.
Beyond considering scenarios with only two defects [111, 112], the knockdown factor of
cylindrical and spherical shells with a distribution of imperfections can be predicted via
probabilistic methods. An early study by Amazigo [114] focused on examining cylindrical
shells containing axisymmetric defects. According to their findings, the spectral density
of random imperfections influences the shell’s ability to withstand buckling. Using the
Monte Carlo method, a similar investigation was conducted on the behavior of imperfect
cylindrical shells under axial compression with symmetrical [115] or asymmetrical [116]
defects. It was found that probabilistic methods were superior when evaluating cylindrical
shell design standards to deterministic approaches. Elishakoff [117] examined different
probabilistic methods applicable to shell buckling. Recently, Derveni et al. [118] examined
the realistic case of spherical shells with numerous randomly distributed geometric
imperfections on the surface of the shells. These authors discovered that when the
amplitude of the randomly distributed defects follows a log-normal distribution, the
resulting knockdown factor can be described using a 3-parameter Weibull distribution.
This observation categorizes shell buckling as part of a broader group of statistical
phenomena known as extreme-value statistics [119, 120, 121, 122, 123, 124].

To date, despite previous investigations into the imperfection sensitivity of shell structures
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featuring random boundary and geometric imperfection distributions [118, 114, 268, 269,
270, 271, 272, 273], a suitable and efficient protocol for the non-destructive assessment
of critical buckling conditions in imperfect spherical shells within general engineering
contexts remains unavailable. Additionally, the findings in Chapter 3 demonstrated that
the non-destructive probing method could effectively forecast the buckling capacity of
spherical shell structures without causing damage, provided that probing is performed
at strategically chosen locations. Nevertheless, a key challenge restraining its broader
empirical application in engineering shell structures is the absence of an effective strategy
for establishing the optimal probe location, particularly when faced with an unknown
imperfection distribution.

4.2 Definition of the Problem

In this investigation, we use a statistical framework to analyze the non-destructive probing
technique applied to spherical shells featuring a random distribution of imperfections.
We conduct systematic sampling of random variables in two distinct cases: firstly (Case
I), drawing from the defect distribution, and secondly (Case II), from various indentation
locations. This approach enables a comprehensive design space analysis, including these
stochastic variables. Through this probabilistic examination, we aim to ascertain how
the extrapolated knockdown factor, derived from probing signals and projected towards
the buckling threshold, aligns with the statistically derived realistic knockdown factor for
shell structures with numerous defects. The protocol for generating these spherical shells
with a random distribution of imperfections adhered to the same procedure outlined in
Ref. [118].

We consider a thin elastic and hemispherical shell of radius, R, and thickness h containing
a random distribution of dimpled geometric imperfections (see Figure 4.1). The number
of imperfections exceeds unity (N > 1), and each defect is nominated with the index
i. The boundary condition is assumed to be clamped for the same reason described in
Chapters 2 and 3. Each defect with the index i introduces the radial deviation of wi from
the mid-surface of a spherical shell. Therefore, the generalized form of Equation 2.1 can
be written as

wi(β) = −δie
−(β/β0)

2

, (4.1)

where the variable β represents the local angular distance from the center of the defect in
spherical coordinates. The constants δi and β0 correspond to the amplitude (maximum
outward deviation from the mid-surface) and half-angular width of the ith defect, respec-
tively. As illustrated in Figure 4.1(a), the position of the center of each defect on the
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Figure 4.1: Definition of the problem. (a) This figure presents a two-dimensional
representation of an elastic hemispherical shell featuring a dispersion of dimpled imper-
fections, subject to two distinct probabilistic indentation scenarios. (b) Case I: Different
shell configurations with a defined set of parameter values undergo indentation at a
consistent pole location, denoted as γ = 0. (c) Case II: In this case, a specific shell
characterized by a distribution of imperfections is subjected to indentation at randomly
selected locations, γ.

middle surface of the shell (β = 0) is determined by the radial vector with a unit radial
vector:

eri = sinϕi cos θiex + cosϕiey + sinϕi sinϕiez, (4.2)

where ϕi and θi are the zenith and azimuthal coordinates of the i-th defect. Therefore,
the exact location of the center of each defect on the mid-surface of the shell is defined
by the coordinate (ϕi, θi). As a result, the general description for the radial distance of
the mid-surface of the shell can be written as

rm(ϕ, θ) = R+

N∑
i=1

wi(ϕ, θ). (4.3)

The angular separation between the two neighboring defects with the index i and j, whose
centers are located at eri , and erj , also is defined as

α(i,j) =
∣∣arccos (eri · erj)∣∣ . (4.4)

Our shell is assumed to feature a total of N imperfections distributed randomly across
its surface. These imperfections possess varying defect amplitudes, following a lognormal
distribution as described in [118], and their positions are determined using a random
sequential adsorption algorithm [118]. These designs investigate specific values of the
defect’s angular width, denoted as β0, which consequently affects λ as defined in Equa-
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tion 2.2. Consequently, the probability density function (PDF) for the defect amplitude,
following a lognormal distribution, can be expressed as follows:

f
(
δ̄i
)
=

1

δ̄iσ
√
2π

exp

(
−
(
ln δ̄i − µ

)2
2σ2

)
. (4.5)

Here, µ and σ are related to the average defect amplitude and the degree of dispersion or
spread of these defect amplitudes.

δ̄ = exp

(
µ+

σ2

2

)
, (4.6)

with the standard deviation of

∆δ̄ =
{[
exp

(
σ2
)
− 1
]
exp

(
2µ+ σ2

)}1/2
. (4.7)

The adoption of a lognormal distribution for defect amplitudes implies that when taking
natural logarithms of these defect amplitudes, denoted as ln(δ), the resulting values follow
a normal distribution characterized by a mean µ and a standard deviation σ. Employing
a lognormal Probability Density Function (PDF) to introduce these imperfections confers
several advantages. It ensures that we exclusively deal with positive values for δi,
focusing solely on dimples rather than a mixture of dimples and bumps. Moreover,
lognormal distributions of imperfections find widespread use in the analysis of structural
reliability [274, 275, 276].

The placement of each defect, as defined by Equation 4.2, is conducted randomly across
the shell’s surface utilizing a technique called random sequential adsorption [277, 278,
279]. This method is widely employed in generating isotropic porous structures. In this
context, we modify the technique to the volumetric domain, randomly distributing the
defects on the curved surface of a hemispherical shell. To ensure non-overlapping defects,
a minimum angular separation of αmin is strictly maintained. The process of introducing
defects concludes when the spherical cap, determined by a maximum zenith angle of ϕmax,
can no longer accommodate another defect. We chose a ϕmax of 60 degrees to minimize
potential boundary interference. Within the hemispherical cap, we designate the angular
position of the center of each defect, denoted as (ϕi, θi), as the random variable,

(ϕi, θi) = (arccos (1− xβ (1− cosϕmax)) , 2πxθ) , (4.8)

where xϕ ∈ [0, 1] and xθ ∈ [0, 1] represent two random variables, each indicating the
probability of placing a defect anywhere on the hemisphere cap. This allocation also
adheres to the constraint of maintaining a specific angular separation between defects
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denoted by indices i and j,

α(i,j) ≥ αmin, (4.9)

given that αmin ≥ 2β0 = 2arcsin(l/R)[118], where l represents the opening length of the
defect. The following procedure is followed for each fixed l in the shell design. A new
defect (indexed as i) is randomly positioned on the shell and assessed against Equation4.9,
taking into account all previously existing defects (j = 1, . . . , i− 1). If Equation 4.9 is
satisfied, a subsequent defect (indexed as i+ 1) is introduced through the same process.
However, if Equation 4.9 is not met, the ith defect is removed, and a fresh random
location is chosen until a valid condition is met, up to a maximum limit of 106 attempts.
Upon reaching this threshold, the process of introducing defects concludes, and the final
count of defects denoted as N , is determined.

After creating a shell structure with randomly distributed imperfections, we proceed
to perform an indentation on the shell. The indentation process varies depending on
the specific case under consideration. It involves the use of a rigid spherical indenter
with a radius much smaller than the shell’s radius, denoted as r << R (refer to the
schematic in Figure 4.1a). The positioning of the probe is deliberately adjusted, allowing
for random alterations in the angle, γ, between the line of action of the probe force and
the axis of symmetry of the shell. The shell undergoes a two-step process. Initially,
it is subjected to a uniform pressure load set at a predefined value, denoted as p0.
Subsequently, a point load is applied along the radial direction of the outer surface of the
shell, inducing an indentation with a specified displacement, ξ. The resulting reactive
force from the indenter is referred to as the probe force, denoted as F . Each indentation
test is conducted at varying pressure levels, denoted as p0, to generate the corresponding
probe force-displacement curves, represented as F (ξ)

We will investigate two distinct scenarios denoted as Case I and Case II, as depicted in
Figure 4.1(b) and (c), respectively. The subsequent sections will outline the process and
objectives of each case.

Case I: Defect amplitude and location as random variables, constant indentation location
(γ = 0): In this scenario (as depicted in Figure 4.1b), we generated statistical ensembles
of imperfect shells, all sharing a statistically equivalent configuration defined by a specific
set of parameters

(
δ̄, ∆δ̄, λ, αmin

)
= ({0.2, 0.5, 1, 1.5}1, 0.3, 1, 10◦, 25◦). This requires

producing numerous shell configurations for each set of variables (500 different shell
configurations). Each shell configuration was initially subjected to uniform pressure,
precisely set at a prescribed value p0, as detailed in Chapter 3. Subsequently, it underwent
indentation by a point load applied through a rigid indenter, consistently positioned
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at γ = 0, following the procedure outlined in Chapter 3. Throughout the series of
depressurizations, we recorded the probe force response, denoted as F . Finally, for each
of these configurations, we also recorded the maximum force value, Fmax, as a function of
pressure level, Fmax(p0).

Case II: Single shell configuration with random indentation location (γ): As depicted
in Figure 4.1(c), in this scenario, we draw our random variable from the indentation
location, γ. We focus on a single shell with specific parameter values,

(
δ̄, ∆δ̄, λ, αmin

)
=

(1, 0.3, 1, {10◦, 25◦}). Systematically, we measure the indentation force response, F , at
randomly selected locations while varying the level of depressurization. Finally, we extract
the maximum indentation force, Fmax, in relation to the level of depressurization for
different random indentation locations.

4.3 Finite Element Simulations

We conducted finite element method (FEM) simulations using the commercially available
ABAQUS/Standard software. The shell structure, featuring a random distribution
of imperfections with defect amplitudes sampled from a lognormal distribution, was
generated following the methodology established by Derveni et al.[118]. This approach
was initially validated through experimental work. Given the dispersed nature of the
imperfections across the shell surface, a fully 3D numerical analysis was crucial for this
study. To reduce the computational cost of the study, we utilized S4R shell elements
with reduced integration points, allowing for the incorporation of finite membrane strains.
The hemispherical shell was discretized into four sections, each comprising 150 elements
in both azimuthal and meridional directions, selected after verifying mesh convergence.
The material behavior was emulated using a neo-Hookean model, exhibiting properties
akin to a nearly incompressible solid with a Poisson’s ratio of ν = 0.5. The Young’s
modulus, determined through experimental data, was found to be E = 1.25± 0.01 MPa.
These material properties were derived from standard tensile tests conducted on dog–bone
specimens, in accordance with prior experiments detailed in Ref. [258].

Following the procedure outlined in Chapter 3, we conduct indentation tests for the two
specified cases outlined in the preceding section and detailed below, Case I and II. As a first
step, we establish a mesh scheme covering the entire shell. Subsequently, we displace the
nodes based on the defined design parameters

(
δ̄, ∆δ̄, λ, αmin

)
, generating imperfections

following Equation 4.1. Since the imperfection layout is specified at the mid-surface of
the shell, no adjustments to the reference surface mesh are required. Throughout all
simulations involving dimpled shells, we maintain a uniform nodal thickness for each
node, set at a fixed value of R/h = 110. With the imperfect shell properly configured, we
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proceed with the indentation process for Cases I and II, as elaborated in the following
sections.

• Case I: We analyze 500 unique realizations of shell structures characterized
by the same parameter set,

(
δ̄, ∆δ̄, λ, αmin

)
= ({0.2, 0.5, 1, 1.5}, 0.3, 1, {10◦, 25◦}).

These structures have defects distributed using the random adsorption algorithm,
and their defect amplitude follows a lognormal distribution. Initially, each shell
undergoes uniform live pressure applied on its outer surface, denoted as P = p0/pc.
While maintaining this pressure, we apply an indentation displacement (similar
to Section 3.4) onto the shell at a probe angle of γ = 0. We record the force-
displacement response for each pressure set and extract the maximum force value,
denoted as Fmax = FmaxR/2πD (similar to Section 3.4).

• Case II: In this instance, we focus on a specific shell structure, with the parameter
set of

(
δ̄, ∆δ̄, λ, αmin

)
= (1, 0.3, 1, {10◦, 25◦}). The defect distribution in this single

shell adheres to the same protocol as in Case I. However, in this scenario, the
indentation location is determined randomly, following the algorithm defined for
defect placement. After establishing the indentation locations, the shell undergoes
loading via a uniform live pressure applied on its outer surface, denoted as P .
Subsequently, the force-displacement response is recorded for each pressure setting,
from which the maximum force signal, Fmax(P ), is extracted.

4.4 Case I: The Shell Configuration as the Random Variable

In this section, we address the first research question (Case I ) outlined in Section 4.2,
which involves examining the efficiency of the probing technique in predicting the buckling
behavior and critical conditions of shells containing a significant number of imperfections,
each of which has a specific defect amplitude denoted as δi = δi/h. These amplitudes of
imperfections follow a lognormal distribution, characterized by the probability density
function (PDF) f(δi) in Equation (4.5), with an average magnitude of δ and a standard
deviation of ∆δ. The investigated parameter combinations are: δ = 0.2, 0.5, 1, 1.5 and
∆δ = 0.3. Additionally, we maintain the defect width λ = 1 and set the minimum angular
separation between any two defects as αmin = {10◦, 25◦}. Seeding is confined within a
defined spherical cap region, with a maximum angle ϕmax = 60◦ to mitigate boundary
interference. For each set of design parameters (δ,∆δ, λ, and αmin), we generate 500
statistically equivalent realizations of shell structures, each subjected to 13 levels of
depressurization, and then performed indentation, resulting in a total of 52,000 Finite
Element Method (FEM) simulations. Specifically, for the data illustrated in Figure 4.2,
we produce 500 instances for each shell design to ensure statistical robustness and verify
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the independence of ensemble size.
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Figure 4.2: Probabilistic evaluation of the knockdown factor in a spherical
shell with imperfections. The input Probability Density Function (PDF) of defect
amplitudes sharing the same distribution parameters, λ = 1, δ = 1, and ∆δ = 0.3.
However, the minimum separation angle between defects varies, with (a1) αmin = 10◦ and
(b1) αmin = 25◦. The resulting Probability Density Function and Cumulative Distribution
Function, PDF, (f(k)) and CDF (F (k)) of knockdown factors for shells with αmin = 10◦

are illustrated in (a2) and (a3) respectively. Similarly, (b2) and (b3) depict the PDF,
(f(k)) and, CDF (F (k)) of knockdown factor of shells with αmin = 25◦.

In the first case, illustrated in Figure 4.1(b), we conduct an indentation test on 500
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instances of the shell, all indented at the pole (γ = 0), utilizing the same set of statistical
parameters. These structural defects within the shell are randomly dispersed, with their
defect amplitudes conforming to a lognormal distribution [118]. According to Derveni
et al. [118], the knockdown factor for these 500 shells should exhibit statistics following
a Weibull distribution. To validate this assertion and gain insights into the statistical
characteristics of the real knockdown factor of our shells, we will present and define the
input and output statistics of the system in Case I (see Figure 4.1b) as follows.

In Figure 4.2(a1), we present an illustration showing the input statistics for a de-
sign of shells with numerous defects characterized by parameters (δ,∆δ, λ, αmin) =

(1.0, 0.3, 1, 25◦). The probability density function of the defect amplitudes, as is obvious
from the fit, was sampled from the lognormal distribution (Equation 4.5). We then
performed Finite Element Method (FEM) simulations for a group of 500 statistically
equivalent designs and measured their respective knockdown factors, denoted as k. Fol-
lowing this, we construct the probability density function (PDF) of the output, referred
to as f(k), as shown in Figure 4.2(a2). Our analysis corroborates the assertion made in
the recent study by Derveni et al. [118] that the histogram, derived from the FEM data
of the knockdown factor, can be precisely characterized by a three-parameter Weibull
distribution (depicted by the solid line) as

f(k) =
m

k̂

(
k − kmin

k̂

)m−1

exp

(
−
(
k − kmin

k̂

)m)
. (4.10)

The parameters k̂, m, and kmin refer to the scale, shape, and threshold values, respectively.
The inclusion of kmin as the third parameter is essential to consider the lower limit of
k, which corresponds to the plateau observed in the knockdown factor-defect amplitude,
k(δ), curves [118] (see Figure 1.5). In Figure 4.2(b1), another set of shell configuration
examples with just a different value of the minimum separation of each two defects,
(δ,∆δ, λ, αmin) = (1.0, 0.3, 1, 10◦), is presented, which also leads to Weibull statistics for
the knockdown factor, as shown in Figure 4.2(b2). The representations of the Weibull
distribution in Figure 4.2(a2) and (b2) were generated using three fitting parameters
k̂,m, and kmin. These parameters were determined through the Maximum Likelihood
Estimation technique [118]. With these parameters, we calculated the respective Weibull
cumulative distribution functions (CDFs) as:

F (k) = 1− exp

(
−
(
k − kmin

k̂

)m)
. (4.11)

The Weibull cumulative distribution function (CDF) of the Finite Element Method
(FEM) knockdown factor data, as depicted in Figures 4.2(a3) and (b3), aligns remarkably
well with the CDF fit of the Weibull function. According to these results, we deduce
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that the actual knockdown factor statistics follow a 3-parameter Weibull distribution,
which is derived based on extreme value theory. This assumes that the likelihood of
failure for a single representative component within a structure adheres to a power-law
distribution tail [118]. Consequently, if any component, specifically the weakest link,
experiences a breakdown, it results in the overall failure of the entire system, indicating
that probabilistic shell buckling belongs to extreme-value phenomena.

Given an understanding of the input characteristics of the shell configurations and the
output statistics of the knockdown factor, we aim to establish a connection between the
input and output through the nondestructive indentation test outlined in Chapter 3.
In this Case I, the indentation point is fixed at the pole of the hemispherical shell
structure, denoted as γ = 0, regardless of whether a defect is randomly located at the
pole or not. Simultaneously, the random variable is the shell configuration with different
designs of imperfections. The prescribed depressurization was systematically varied at
13 levels, ranging from P = 0 to P = 0.4. After conducting indentation at each level of
depressurization, in Figure 4.3, we display the maximum force, Fmax = FmaxR/2πD,
plotted versus these pressure levels, P , for the indentation response of 500 realizations of
shells with the statistical parameter set of (δ,∆δ, λ, αmin) = (1.0, 0.3, 1, 10◦) in (a), and
(δ,∆δ, λ, αmin) = (1.0, 0.3, 1, 25◦) in (b). The black dashed line represents the mean of
the maximum price force at each pressure level.

Figure 4.3: Force-displacement response of shells with a random distribution of
imperfections under indentation. The normalized maximum probe force, Fmax =
FmaxR/2πD, versus the prescribed pressure, P , for indentation of 500 shell configurations
at the probe angle of γ = 0 for the minimum angular separation of (a) αmin = 10◦, and
(b) αmin = 25◦. The data points represent the predictions from the FEM simulations.
The dashed line presents the average fit at each pressure level.

From these plots, we first observe that the distribution of the measured maximum
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probing force at lower pressure levels is more scattered and has a wider distribution range.
This arises from the fact that when the shell is less pressurized, it possesses a larger
energy barrier toward buckling, and the defects influence the indentation response. In
contrast, at high-pressure levels close to buckling pressure, the energy barrier toward
buckling is negligible, and even a small perturbation of the shell results in shell buckling
without feeling the defects; hence, a small distribution of maximum indentation force
values is observed. Additionally, the maximum force-pressure relation also exhibits a
nonlinear trend in both cases of Figure 4.3(a) and (b). Comparatively, the maximum
force distribution in Figure 4.3(a) with a larger minimum separation between the defects
of αmin = 10◦ (indicating significant defect-defect interaction) is more scattered than
αmin = 25◦, which shows less defect-defect interactions.

With the maximum indentation force-pressure signals illustrated in Figure 4.3 at hand,
we commence our approach, which involves extrapolation towards zero maximum probing
force, as elaborated in Chapter 3 and depicted in Figure 6.2. This procedure empowers us
to ascertain the critical pressure prediction of spherical shells for various configurations.
Our goal is to address two pivotal research inquiries: What do the statistics of the
predicted knockdown factors extracted from these extrapolation data indicate, and how
do they compare to the actual knockdown factor statistics derived from FEM simulation
of 500 distinct realizations of spherical shells with randomly distributed imperfections?

Prior to delving into the impact of various polynomial extrapolation techniques in
Section 4.4, we employed Gaussian Process Regression (GPR) on the maximum indentation
force-pressure dataset to extrapolate the 500 curves towards zero maximum force. The
GPR model was configured with a Matern kernel, which governs the smoothness of the
predicted function. The loop iterated through different configurations, fitting the GPR
model to each set of data points and generating predictions [280]. This approach provides
a versatile and probabilistic framework for modeling the intricate relationship between
force and pressure. It proves especially invaluable when dealing with complex and noisy
data, enabling the encapsulation of uncertainties in the underlying process and furnishing
reliable predictions, even in regions where data may be sparse or absent [280].

We obtained the 500 extrapolated knockdown factors, denoted as kex, through Gaussian
Process Regression (GPR). As shown in Figure 4.4(a) and (b), we generated the probability
density function (PDF) for these 500 extrapolated knockdown factors, denoted as f(kex),
with the parameter set (δ,∆δ, λ, αmin) = (1, 0.3, 1, 25◦). In Figure 4.4(a), we applied
Maximum Likelihood Estimation (MLE) to fit the extrapolated data with a 3-parameter
Weibull distribution, while in Figure 4.4(b), we employed the Bayesian technique along
with the Markov Chain-Monte Carlo algorithm to fit the Weibull function. Figures 4.4(c)
and (d) depict the cumulative density functions (CDFs) of the extrapolated knockdown
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factors, F (kex), corresponding to the data illustrated in Figures 4.4(a) and (b), respectively.
The symbols represent the extrapolated data points, and the solid lines represent the
fitted Weibull distribution. In Figure 4.4(b), the posterior predictive distribution is also
illustrated, which makes predictions about future observations based on the posterior
distribution of model parameters using the Bayesian approach. Concerning the CDF of
the extrapolated knockdown factor in Figure 4.4(d), the gray-shaded region indicates the
uncertainty associated with the bandwidth of parameters of the Weibull fit, determined
using the Bayesian technique.
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Figure 4.4: Extrapolated knockdown factor statistics. (a) The Probability density
function (PDF) and (c) Cumulative Density Function (CDF) representation of the
extrapolated knockdown factor obtained through Gaussian Process Regression. The solid
lines represent the fitted Weibull function using Maximum Likelihood Estimation. (b)
The PDF, and (d) CDF of the extrapolated knockdown factor through Gaussian Process
Regression. The solid lines represent the fitted Weibull function using the Bayesian
method based on the Markov Chain Monte Carlo algorithm. The data in (a), (b), (c),
and (d) correspond to the variable sets (δ,∆δ, λ, αmin) = (1.0, 0.3, 1, 25◦).

We have observed that, when employing both Maximum Likelihood Estimation (MLE)
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and Bayesian techniques, the extrapolated data derived from Gaussian Process Regression
(GPR) correlates quite well with the 3-parameter Weibull distribution fit. This agreement
indicates that both methods yield consistent predictions, suggesting that the Weibull
distribution, which was a suitable fit for the actual knockdown factor statistics [118], may
also serve as an appropriate model for the extrapolated knockdown factor obtained through
the indentation technique. Nonetheless, it is imperative to thoroughly investigate the
impact of the extrapolation technique (more details in Section 4.4.1). Further elaboration
on the distinctions in parameters and the level of certainty associated with each technique
(MLE versus Bayesian) will be provided next.

In Table 4.1, we present a comparative analysis of the parameters derived from the
Weibull fit applied to the extrapolated knockdown factor data. This analysis employs
two distinct methodologies: Maximum Likelihood Estimation (MLE) and the Bayesian
approach based on utilizing the Markov Chain Monte Carlo (MCMC) algorithm. Markov
Chain Monte Carlo (MCMC) is a popular statistical tool employed for approximating
numerical integration and sampling from intricate probability distributions. Its application
is particularly valuable in Bayesian statistics and in scenarios where exact solutions are
challenging or unattainable [281]. Through the Bayesian approach, we not only obtain
estimates for the Weibull parameters, denoted as (k̂,m, kmin) = (2.103, 0.1275, 0.333),
but also achieve a comprehensive characterization of parameter uncertainty (refer to
the range of parameters in Table 4.1). This comprehensive assessment provides a more
robust evaluation of model fit compared to the Maximum Likelihood Estimation (MLE)
method, which typically yields singular point estimates, denoted as (k̂,m, kmin) =

(1.771, 0.104, 0.353), without considering the associated uncertainty, but offering simplicity
and is straightforward to implement and interpret.

Parameters MLE Bayesian
Shape, k̂ 1.771 [1.728, 2.477]
Scale, m 0.104 [0.102, 0.153]

Location, kmin 0.353 [0.310, 0.355]
KS-test statistics 0.052 0.080

p-value 0.139 0.059

Table 4.1: Compariosn of MLE versus Bayesian techniques. Comparison between
the parameters of Weibull fit calculated through MLE and Bayesian method and the
results of Kolmogorov-Smirnov (KS) test.

In order to evaluate the goodness-of-fit for both the Bayesian method based on Markov
Chain Monte Carlo (MCMC) and the Maximum Likelihood Estimation (MLE) technique,
The Kolmogorov-Smirnov (KS) test is playing a crucial role. This statistical test [282]
serves as a robust tool to determine the significance of differences between the two
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datasets. Notably, it operates on a non-parametric basis, implying that it makes no
assumptions about the underlying distributions of the data. The KS test accomplishes
this by comparing the empirical Cumulative Distribution Function (CDF) of the observed
data with the theoretical CDF derived from the fitted models. The outcomes of this
test offer crucial insights into how well each method captures the true distribution of
the knockdown factor data. This assessment is pivotal in ensuring that the selected
modeling approach accurately mirrors the observed data, forming a reliable foundation for
making predictions and inferences. The p-values obtained from the KS test, quantitatively
measuring the agreement between empirical and theoretical distributions, affirm that both
methods, with a good estimation, yield comparable results, attesting to their goodness
of fit, strengthening our confidence in the accuracy of the chosen modeling strategies
and their ability to represent the underlying extrapolated data effectively. The results of
this comparison indicate that the extrapolated knockdown factor data, obtained through
GPR with accurate estimation, closely adheres to the Weibull fit using both MLE and
Bayesian method, which has been demonstrated to provide an effective description for
the knockdown factor statistics of spherical shells [118].

After examining the statistics of the extrapolated knockdown factor, now in Figure 4.5,
we overlay the fit of real knockdown factor statistics of the 500 configurations of imper-
fect shells with the extrapolated data and the fitted Weibull function demonstrated in
Figure 4.4. Figure 4.5(a) presents the probability density function for the parameter
set (δ,∆δ, λ, αmin) = (1.0, 0.3, 1, 25◦), and Figure 4.5(b) presents the parameter set of
(δ,∆δ, λ, αmin) = (1.0, 0.3, 1, 10◦). The first observation from the results reveals that
the distribution of the real knockdown factor has a significantly narrower bandwidth
compared to the extrapolated fit bandwidth. This observation arises from the fact that
the uncertainty of the extrapolation results in a large scatter of the extrapolated data.
Secondly, although the mode of the extrapolated fit and the real data fall within the
same range of knockdown factor, approximately 0.45, the magnitude of the PDF at
this specific point—indicating the relative likelihood of observing a random variable
and a measure of how "dense" the probability is around that point—is much larger in
real knockdown factor data compared to the extrapolated fit. This is again a result
of the large scatter of the extrapolated data points. However, with all that said, the
minimum or threshold of the histogram of the extrapolated knockdown factor fit is much
lower than the threshold of the real knockdown factor distribution. , implying that the
extrapolation provides a safe prediction for the design of shells. Upon comparing the
outcomes presented in Figure 4.5(a) and (b), it is evident that the statistical distribution
of the actual knockdown factor for shells with interacting defects (αmin = 10◦) exhibits a
broader range in comparison to the scenario with non-interacting defects (αmin = 25◦).
This discrepancy arises from the intricate nature of defect interactions, leading to a more
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conservative prediction from extrapolation in the non-interacting case.
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Figure 4.5: Extrapolated knockdown factor versus the real knockdown fac-
tor for Case I. The PDF of extrapolated knockdown factor, f(kex) (symbols), the
fitted knockdown factor (solid lines), and the real knockdown factor (solid green line)
are superposed for the variable set of (a) (δ,∆δ, λ, αmin) = (1.0, 0.3, 1, 25◦), and (b)
(δ,∆δ, λ, αmin) = (1.0, 0.3, 1, 10◦).

4.4.1 Effects of Defect Amplitude and Extrapolation Method on Poking
Predictions

Having analyzed the extrapolated knockdown factor statistics and compared them with
the actual knockdown factor data, we now delve into the impact of the average defect
amplitude of the shell, denoted as δ, as well as the extrapolation method. This examination
aims to assess the effectiveness of the poking technique in predicting the knockdown factor
and to offer design guidelines for spherical shells characterized by a random distribution
of imperfections.

To explore the impact of defect amplitude on poking statistics, In Figures 4.6(a)-(d), we
illustrate the relationship between the maximum indentation force (Fmax) and the pressure
level (P ) across 500 different shell realizations for each parameter set with varying average
defect amplitudes defined by (∆δ, λ, δ, αmin) = (0.3, 1, {0.2, 0.5, 1, 1.5}, 25◦), respectively.
Firstly, a consistent nonlinear response of maximum force-pressure is observed across
all levels of defect amplitude. Additionally, all force-pressure signals exhibit a nonlinear
behavior with two sublinear regimes. The first regime occurs at low-pressure levels
(P < 0.1), which differs slightly between different levels of average defect amplitude due
to the fact that the indenter must penetrate deeply into the shell to reach the buckling
point. However, in the second regime, for higher pressure levels (P > 0.1), the maximum

98



Probabilistic Non-Destructive Probing of Spherical Shells Chapter 4

force-pressure signal shows similar results for all defect amplitudes, which indicates that
the indenter cannot distinguish the defect when the shell is highly pressurized and is
close to buckling. Moreover, as the pressure increases, the distribution bandwidth of the
maximum force narrows due to the shell structure approaching the buckling point. It
is noteworthy that the distribution bandwidth of the force is smaller for smaller δ and
widens with increasing defect amplitude.
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Figure 4.6: The effect of average defect amplitude on maximum force-pressure
response. The maximum force, Fmax, as a function of the normalized pressure, P , for
500 shell realizations of (∆δ, λ, αmin) = (0.3, 1, 25◦), for each (a) δ = 0.2, (b) δ = 0.5, (c)
δ = 1, and (d) δ = 1.5. The symbols are the FEM data, and the dashed lines are the
average of the maximum force at each pressure level.

Having noted that the trend in the maximum force-pressure for all defect amplitudes
exhibits a consistent pattern, our objective is to investigate the impact of various extrap-
olation techniques on the extrapolated knockdown factor statistics and their influence on
predicting the real knockdown factor. Furthermore, we seek to determine if the insights
gained from the extrapolation based on GPR in Section 4.4 can be broadened. This
involves investigating how the choice of extrapolation method (various polynomials),
along with the average size of the defects, influences the accuracy of knockdown factor
predictions using poking technique.

Hence, in Figure 4.7, we present the probability density function (PDF) of the extrapolated
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knockdown factor alongside its Weibull fit, juxtaposed with the actual knockdown factor
statistics. These are provided for various defect amplitudes and extrapolation methods.
The fixed parameter set for this series of figures is (∆δ, λ, αmin) = (0.3, 1, 25◦). Specifically,
Figures 4.7(a), (b), (c), and (d) correspond to δ = 0.2, δ = 0.5, δ = 1, and δ = 1.5,
respectively. Furthermore, we employed three distinct polynomial extrapolation methods:
linear, cubic, and quintic polynomials corresponding to panels (1), (2), and (3), respectively.
The symbols represent the extrapolated data, the dashed line denotes the Weibull fit
applied to the extrapolated data, and the solid lines represent the actual knockdown
factor statistics.

In Figure 4.7 (a), we observe that for a small defect amplitude of δ = 0.2, the extrapolated
knockdown factor prediction using the linear polynomial overestimates the knockdown
factor. On the other hand, the cubic polynomial provides accurate predictions for both
the threshold parameter of the Weibull fit and the magnitude of the PDF, although it
slightly underestimates the mode. While successfully predicting the threshold parameter
of the Weibull function with good agreement, the quintic polynomial does not yield a
conservative estimate. For δ = 0.5 (Figure 4.7 b), the linear extrapolation does not
provide a good estimation for all the PDF magnitudes, the threshold, and the mode
of the histogram. In this case, using the cubic and quintic polynomials yields fairly
similar results with a conservative prediction of the threshold. However, the mode and
magnitude of the PDF and the mode prediction are not well estimated. As we increase the
average defect amplitude to δ = 1, we observe that the polynomial extrapolation does not
accurately estimate the real knockdown factor statistics. Although the cubic and quintic
polynomials can give a reasonable estimation of the lower bound and the threshold of the
distribution, as well as a conservative prediction for the mode of the distribution, overall,
the prediction deviates significantly from the real knockdown factor data. For the largest
defect amplitude considered in this study, δ = 1.5, the linear extrapolation does not
provide a reliable prediction due to the fact that the predicted data are scattered and do
not align well with the Weibull fit. Regarding the cubic and quintic extrapolations, again,
they give a conservative prediction for the threshold and the mode of the distribution
compared to the real knockdown factor distribution. Still, the extrapolated data is too
scattered to be fitted with the Weibull distribution perfectly.

It is crucial to note that the accuracy of the extrapolated data and the alignment between
the predictions derived from the poking technique and the actual knockdown factor statis-
tics are highly contingent on the chosen extrapolation method. Upon careful examination
of three different polynomial extrapolation techniques, third-order polynomials yield
results that are more comparable to knockdown factor statistics in practice. Furthermore,
it is worth highlighting that as the parameter δ increases, the alignment between the
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extrapolated data and the real knockdown factor diminishes. Interestingly, for δ = 0.2,
we attain the highest level of agreement. This underscores the significance of this specific
parameter in achieving accurate predictions.
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Figure 4.7: Comparative analysis of extrapolation using different polynomials
for various average defect amplitudes. The probability density function of the
extrapolated knockdown factor, f(kex) is presented for the parameter set (∆δ, λ, αmin) =
(0.3, 1, 25◦) with different average defect amplitudes: (a) δ = 0.2, (b) δ = 0.5, (c) δ = 1,
and (d) δ = 1.5. For each case, extrapolation is performed using three different polynomial
orders: (a1), (b1), (c1), and (d1) represent linear polynomial extrapolation. (a2), (b2),
(c2), and (d2) denote cubic polynomial extrapolation. Finally, (a3), (b3), (c3), and (d3)
correspond to quintic polynomial extrapolation.
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4.5 Case II: the Indentation Location as the Random Vari-
able

In this section, unlike the previous one, we sample the random variable for our probabilistic
non-destructive indentation analysis from the indentation location. As depicted earlier in
Figure 4.1(c), we focus on a specific single configuration of shell structure and conduct
the indentation test at 500 randomly chosen locations of γ. To determine these random
indentation points, we employ the random adsorption algorithm, the same method used
for locating random defects (as detailed in Section 4.4). The parameter set for the
shells under consideration in this section is (δ,∆δ, λ, αmin) = (1, 0.3, 1, {10◦, 25◦}). Our
objective is to gain insights into how the random placement of indentations influences the
effectiveness of the non-destructive probing technique in the design of shell structures.

In Figure 4.8, we present the relation between the maximum force, Fmax, and the pressure
level, P , for the indentation test conducted at 500 different locations with the parameter
set (δ,∆δ, λ, αmin) = (1, 0.3, 1, 25◦), with the real knockdown factor value of k = 0.45.
Each data point represents the maximum force obtained from an indentation at one of
these 500 locations during a series of depressurizations. The symbols denote the Finite
Element Method (FEM) extracted data, while the dashed line represents the average of
the maximum poking forces across all indentation locations at each depressurization level.
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Figure 4.8: Force-displacement response during indentation at random locations
(Case II ). The normalized maximum probe force, Fmax = FmaxR

2πD , is plotted against the
prescribed pressure, P , for indentation at 500 different locations. This analysis pertains
to a specific shell configuration characterized by the parameter set (δ,∆δ, λ, αmin) =
(1, 0.3, 1, 25◦). The symbols represent the Finite Element Method (FEM) data, while the
dashed line represents the mean fit at each pressure level.
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Similar to the previous section, the maximum force-pressure response exhibits non-linear
behavior. At low-pressure levels, the distribution bandwidth of the maximum force is
wider due to the substantial energy barrier the shell faces before reaching the buckling
point. This results in a more pronounced influence of various defects on the probing
force. Additionally, the distribution of the maximum force is reasonably scattered, largely
contingent on whether the indenter is positioned over a defect or not. This discrepancy is
more pronounced at lower pressure levels and is of particular concern.

In this analysis, we extended the 500 different curves from Figure 4.8 towards zero poking
force using Gaussian Process Regression (GPR). This method, which was introduced in
Section 4.4, has demonstrated its effectiveness in providing a conservative prediction of
the parameters for the actual knockdown factor statistics. In Figures 4.9(a) and (b), we
depict the Probability Density Function (PDF) and Cumulative Density Function (CDF)
of the extrapolated data, represented by the symbols, respectively. The extrapolated
data is then fitted with a 3-parameter Weibull distribution using the Bayesian approach,
providing similar results to MLE (see section 4.4). The posterior predictive of the fitted
Weibull function is displayed for the PDF of the extrapolated data in Figures 4.9(a),
and the region of uncertainty is presented for the CDF of the extrapolated data in
Figures 4.9(b). It is evident that, similar to the scenario in Case I, the extrapolated data
conforms well to the 3-parameter Weibull fit, which accurately describes the statistics of
the actual knockdown factor data. However, this was not the case when the data were
extrapolated using polynomials.

In Figure 4.10(a) and (b), we overlay the extrapolated data for two different shells with two
sets of parameters: (δ,∆δ, λ, αmin) = (1, 0.3, 1, 25◦) and (δ,∆δ, λ, αmin) = (1, 0.3, 1, 10◦),
with the actual knockdown factor of the shell structure, respectively. This comparison
allows us to analyze the impact of the random selection of the indentation location and
to compare it with the real knockdown factor data for two distinct shells with varying
minimum defect separation angles. For the shell depicted in Figure 4.10(a), the actual
knockdown factor is k = 0.45, while for the one in Figure 4.10(b), it is k = 0.51, both
indicated by the green dashed line.

Remarkably, in both cases, we observe qualitatively similar results, with the actual
knockdown factor falling within the tail of the distribution. From a practical stand-
point, this observation leads us to conclude that the minimum and threshold values of
the extrapolated knockdown factor distribution are consistently smaller than the real
knockdown factor, kmin < k. This observation provides a conservative estimate for the
design of slender structures. Additionally, the mode of the distribution for the fit of the
extrapolated data, representing the most probable knockdown factor, also tends to be
smaller than the real knockdown factor data in the case of extrapolation. Again, this
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Figure 4.9: The extrapolated knockdown factor statistics for case II. (a) The
Probability Density Function (PDF), and (b) the Cumulative Distribution Function
(CDF) of the extrapolated knockdown factor for a specific single shell with the parameter
set of (δ,∆δ, λ, αmin) = (1, 0.3, 1, 25◦) and a knockdown factor of k = 0.45. The symbols
represent the extrapolated knockdown factor, while the solid line depicts the Weibull
function fitted using the Bayesian method. The blue region is the posterior predictive,
and the gray region is the region of uncertainty of parameters
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Figure 4.10: Extrapolated knockdown factor versus the real knockdown factor.
The extrapolated knockdown factor (symbols), the fitted knockdown factor, and the
real knockdown factor (green dashed line) are superposed for the variable set of (a)
(δ,∆δ, λ, αmin) = (1.0, 0.3, 1, 25◦), and (b) (δ,∆δ, λ, αmin) = (1.0, 0.3, 1, 10◦) for the shell
of Case II. The real knockdown factors for (a) and (b) are 0.45 and 0.51, respectively.

underscores the conservative nature of the prediction from the extrapolated data using
the GPR.

To investigate the mismatch between the projected knockdown factors and the actual
value and comprehend the underlying causes, we examine three distinct extrapolation
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outcomes showcased in Figure 4.11. Our focus zones in on three specific indentation points
delineated in Figure 4.10(a): one featuring an extrapolated value surpassing the expected
value (configuration A), another below the real knockdown factor (configuration B), and
the last hovering close to it (configuration C). Overlaying the maximum force-pressure
curve in these three cases with their extrapolations—yielding κex=0.0.5 (above the
actual κ = 0.45), κex=0.43 (below the actual value), and κex=0.45—reveals a compelling
explanation tied to the indentation location (refer to the inset of Figure 4.10).
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Figure 4.11: Sensitivity of the knockdown factor extrapolation. The maximum
poking force, Fmax as a function of the depressurization level, P , for indentation at a
random location on the shell of Figure 4.10(a). The dashed line represents the extrapola-
tion and the vertical solid line shows the real knockdown factor of this specific shell.

Our investigation unravels a trend: continuing the measurement of maximum force at
elevated depressurization levels via FEM simulations triggers a force reduction, culminating
in zero force at κ = 0.45. This finding underscores that the efficacy of extrapolation
techniques hinges not only on the chosen methodology but also on the selected threshold
for conducting extrapolations, as well as the specific indentation location. For instance,
when indenting at a location devoid of defects (configuration A), the force-pressure
trajectory proceeds without the presence of any defect trace but abruptly descends to
zero at the buckling point. Consequently, the extrapolation tends to present a value
surpassing the actual one, inching closer to the ideal value. Conversely, when indentation
occurs near or at the defect (Configurations B and C), the extrapolation can happen at
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the knockdown factor or below the value, depending upon both the extrapolation type
and its threshold. The highly nonlinear interaction effect between the defects and the
indentation, in addition to these intertwined factors, collectively contribute to a spectrum
of predictions, resulting in variations around the factual value of the knockdown factor.

4.6 Summary and Outlook

In this chapter, we presented preliminary findings regarding the statistical analysis of
buckling in spherical shells with randomly distributed imperfections. To explore the
influence of different random variables (such as defect location and indentation position),
we divided our study into two distinct cases, labeled Case I and Case II. In Case I,
we sampled random variables from the imperfections (including their location and size),
while in Case II, we focused on sampling variables from the indentation location. In both
cases, we conduct indentation using 500 realizations of these random variables.

In Case I, we conducted a comprehensive analysis across various shell parameter sets,
including defect amplitude and minimum separation angle of the defects. Additionally,
we employed different extrapolation techniques, such as Gaussian Process Regression
(GPR) and linear, cubic, and quintic polynomials. These various extrapolation methods
each offered unique predictions for knockdown factor statistics and interpretations of
the results. Our objective was to compare the extrapolated knockdown factor statistics
with real data, which revealed a significant dependency on both the type of extrapolation
method and the defect amplitude. Moving on to Case II, we focused on comparing
extrapolated statistics generated through GPR with the single knockdown factor of the
shell. Our analysis demonstrated that, for varying minimum defect separations, the
threshold and mode parameters are smaller compared to the actual knockdown factor
data.

This chapter provides the information that extrapolating the indentation curves cannot
provide direct implications for the behavior of spherical shells with random imperfections
when subjected to indentation. Our observations highlight the sensitivity of the extrapo-
lation technique in predicting knockdown factors, which is crucial for practical structural
design. Despite our efforts, we discovered that neither Case I nor Case II provided a
sufficiently robust framework for accurately and non-destructively predicting the buckling
capacity of real shell structures. This is primarily due to the significant influence of
various parameters and the uncertainties introduced by the extrapolation technique.

In Chapter 7, we outline several promising avenues for future research. A possible solution
involves harnessing machine learning (ML) tools to forecast buckling capacity. Initially,
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we plan to employ Graph Neural Networks (GNN) to predict critical buckling conditions.
This entails mapping the complete 3D geometry of an imperfect shell, including defect
locations, onto graphs, in conjunction with Finite Element Method (FEM) simulations.
Subsequently, ML algorithms will be employed to train a model that links imperfect
shells with randomly distributed imperfections to predict knockdown factors. Another
prospective area of future research entails utilizing the entire maximum force-pressure
signal leading up to the point of buckling, as determined through FEM simulations. This
signal will form the basis for training a model and linking it to the actual knockdown
factor. It is imperative to note that acquiring complete maximum force-displacement data
will be essential, as extrapolation may present a challenging aspect in ML methodologies.

We anticipate that integrating these ML prediction tools will facilitate the development of
a reliable and efficient protocol for non-destructive testing of critical buckling conditions
in imperfect spherical shells across diverse engineering scenarios. Furthermore, we aspire
that our current and ongoing work will serve as a catalyst for further exploration in this
promising research direction.
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5 Snap Buckling of Bistable Magnetic
Beams

In this Chapter, we investigate the mechanics of bistable, hard-magnetic, elastic beams,
combining experiments, finite element modeling (FEM), and a reduced-order theory.
The beam is made of a hard magneto-rheological elastomer, comprising two segments
with antiparallel magnetization along the centerline, and is set into a bistable curved
configuration by imposing an end-to-end shortening. Reversible snapping is possible
between these two stable states. First, we experimentally characterize the critical field
strength for the onset of snapping at different levels of end-to-end shortening. Second, we
perform 3D FEM simulations using the Riks method to analyze high-order deformation
modes during snapping. Third, we develop a reduced-order centerline-based beam theory
to rationalize the observed magneto-elastic response. The theory and simulations are
validated against experiments with excellent quantitative agreement. Finally, we consider
the case of combined magnetic loading and poking force, examining how the applied field
affects the bistability and quantifying the maximum load-bearing capacity. Our work
provides a set of predictive tools for the rational design of one-dimensional, bistable,
magneto-elastic structural elements.

The text and figures in this Chapter are adapted from the published manuscript in
Ref. [283]: Arefeh Abbasi, Tomohiko G. Sano, Dong Yan, and Pedro M. Reis. "Snap
buckling of bistable beams under combined mechanical and magnetic loading."
Philosophical Transactions of the Royal Society A, 381(2244), 20220029 (2023).

This chapter is organized as follows. The motivation of this study and a brief literature
review on the effect of defect geometry on imperfection sensitivity are presented in
Section 5.1. In Section 5.2, we define the problem at hand. In Section 5.3, we present
the experimental method to fabricate the h-MRE beam specimens and describe the
experimental protocol for snap-buckling tests. The FEM simulations using the Riks
method are detailed in Section 5.4. In Section 5.5, we derive a 1D reduced-order model
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for bistable magnetic beams. Then, in Sections 5.6-5.8, we report the experimental results
and their comparisons with the theoretical and FEM predictions. Finally, our main
contributions and an outlook for future work are summarized and discussed in Section 5.9.

5.1 Literature Review and Motivation

Bistable structures are central in the design of many functional devices [284, 285, 286, 287,
288], whose internal energy comprises two minima, separated by a maximum, representing
the barrier to a fast transition between two stable states. This snap-through instability
can be exploited to cause relatively large displacements, or rotations, with low work
for actuation, offering potential applications in several engineering domains, including
micro-electromechanical systems [241, 289], robotics [290, 24], energy harvesting [291,
292], actuators [293, 294], origami structures [295, 296], and deployment mechanisms [297].
Bistable beams can be classified into two categories [298]: (i) pre-shaped, which do not
possess residual stresses, and (ii) pre-compressed, which are stressed post-production to
exhibit the first buckling-mode configuration [299]. The latter has gained much attention
due to their manufacturability and versatility [300, 294, 301]. Next, we provide an
overview of recent research centered on pre-compressed beams, the type central to our
study.

Many past studies on pre-compressed beams have focused on their snap-through char-
acteristics [299, 241, 242, 289, 302]: the critical load and displacement, and the travel
distance from the first stable state to the new configuration. These features can be set
by design parameters; e.g., the beam geometry, end-to-end shortening [241], actuation
loading and position [303, 304, 305, 306, 307, 308, 309, 310], and boundary conditions [311,
305, 306, 301]. A recently emerging trend in the field of bistable beams is the usage of
active materials with external stimuli to control the stability during snap-through by
inducing local strains from temperature gradients, swelling, or electric/magnetic fields.
For example, electrostatic [312, 313], piezoelectric [314], and magnetic [315, 316] actuation
have all been used to control the bistability.

More specifically, there has been a burgeoning interest in MREs (details in Chapter 1.8),
with a mechanical response that can be tuned under an external magnetic field [154,
155]. Structures made out of MREs offer opportunities for fast, reversible, and remotely
controlled shape-shifting behavior [27, 26, 156, 28, 151, 36, 29, 157, 158, 145]. In
particular, flexible slender structures made of h-MREs are capable of significant shape
changes, driven by the magnetic body torques induced by the interaction between the
intrinsic magnetization of the material and the applied field [34, 151]. The magnetization
profile of h-MRE structures can be designed by the local orientation of the magnetized

110



Snap Buckling of Bistable Magnetic Beams Chapter 5

particles to generate complex 3D-shape transformations and optimize the shape-shifting
modes for specific applications [34, 151, 205, 206, 207, 158, 38].

Owing to the elasticity-magnetism coupling, together with the underlying geometric
nonlinearities, modeling the mechanical behavior of hard-magnetic soft structures is
challenging, but there have been recent advances in this direction. A continuum theory
has been developed [32] for the finite deformation of 3D (bulk) h-MREs through a
nonlinear magneto-mechanical constitutive law. In this framework, the Helmholtz free
energy density includes elastic (neo-Hookean) and magneto-elastic terms. A simulation
framework by the same authors using FEM was also developed. Subsequently, a full-
field 3D continuum model for h-MREs was proposed [219], also incorporating magnetic
dissipation, particle-particle interactions, and the surrounding air effects. They validated
their model by performing microscopic homogenization simulations applied to macroscopic
boundary value problems. Based on the 3D continuum model and using dimensional
reduction, theories for inextensible, hard-magnetic elastica were derived and validated
against experiments under either a uniform magnetic field [158, 34] or a field with constant
gradient [233]. A similar dimensional reduction approach was applied to model the 3D
deformation of hard-magnetic rods under uniform and gradient magnetic fields [234, 231].
Considering the extensibility of the centerline, a geometrically exact beam model under
uniform fields was developed to predict the deformation of cantilever beams [206, 207,
235], albeit finding negligible differences with the inextensible model. A similar strategy
based on dimensional reduction has been employed to capture the behavior of magnetic
thin plates [232], and predict the axisymmetric deformation of pressurized hard magnetic
shells [104]. This 1D shell model was later generalized in a 3D configuration [247].

Even if there have been several studies on modeling the deformation of magneto-active
structures, their instability and, more specifically, the snap-through phenomenon under
magnetic actuation remains an ongoing research topic. Important questions to address
include predicting how bistable systems switch between stable configurations under
a magnetic field and evaluating the contributions of the various buckling modes and
energy levels to this transition, the elastic counterparts of which have been studied
extensively [239, 240, 241, 242]. Additionally, theoretical and computational tools are
needed to predict the critical conditions and snap-through response of magneto-active
structures. Such developments would be valuable for the predictive and rational design of
bistable magneto-elastic systems.
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5.2 Problem Definition: Snap Buckling of Bistable Magnetic
Beams

In this Chapter, we study the snap-through of elastic bistable beams under magnetic
actuation, combining theory, FEM, and experiments. First, we demonstrate that snap-
buckling can be triggered in the presence of an external uniform magnetic field. We
quantify how the critical field strength required for buckling depends on the imposed
end-to-end shortening (setting the pre-buckled configuration), the beam geometry, and
the material and magnetization properties. A centerline-based theory is developed to
rationalize the trade-offs between the various loading and geometric parameters, predicting
the conditions for the onset of snapping. In parallel, we adapt the finite element method
(FEM) for 3D h-MREs proposed in Ref. [32] to make it amenable to Riks (arc-length)
analysis. With this enhancement, it is possible to track the stable and unstable branches
of the load-displacement curve during snapping. We also probe the beam’s load-bearing
capacity when the external loading combines a constant magnetic field and poking force.

We seek to investigate the snap buckling of a bistable magneto-active beam under magnetic
loading, which may also be combined with a poking force. We consider a hard-magnetic,
thin, elastic beam of length L and rectangular cross-section of width b and thickness
h (Figure 5.1a). The beam is made of an isotropic and homogeneous h-MRE material
that has Young’s modulus, E, and Poisson’s ratio, ν. The configuration of the beam
is described using the Cartesian basis vectors (êx, êy, êz), aligned, respectively, to the
length, thickness, and width directions of the originally straight beam (Figure 5.1a). The
beam is parameterized using the arc length coordinate, 0 ≤ s ≤ L, along its centerline.

The left and right halves of the beam are magnetized permanently in opposite directions,
parallel and anti-parallel to êx, respectively, with the absolute residual magnetic flux
density of Br (Figure 5.1a). Given the slenderness of the beam, the residual magnetic
flux density is assumed constant across the cross-section but varies along the arc length
direction as:

Br(s) = −Brsgn

(
s− L

2

)
êx. (5.1)

Having also compared this magnetization profile with the uniform case, Br = −Brêx,
we found that the profile in Equation (5.1) is more effective in inducing snap buckling.
Even if we recognize that the present choice is ad hoc, it works, and it is simple; we
leave a more systematic exploration of other magnetization profiles for future work. The
magnetic loading is exerted on the beam by the application of an external magnetic field,
Ba. Owing to the profile of the residual magnetic flux density vector, Br, with respect to
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Figure 5.1: Definition of the problem. (a) Schematic diagram of the undeformed
configuration of a naturally straight beam of initial length L, thickness h, and width b. The
beam is composed of two segments with antiparallel magnetization, Br, along the centerline
according to Equation (5.1). (b) The beam is first pre-loaded by imposing a dimensional
end-to-end shortening, ∆L, thereby deforming to a curved, bistable configuration, and then
made to snap between the two stable configurations under an applied uniform magnetic
field, Ba, and/or a poking force, P. (c) The beam exhibits two stable equilibrium states;
upon the application of an external magnetic field, the generated torques can switch the
beam between configurations (I) and (II).

the direction of the applied magnetic field, Ba, we will demonstrate that the proposed
configuration can induce snap-through buckling of the beam.

The magnetized beam is naturally straight in its initial configuration, with the two
ends clamped at s = 0 and s = L (Figure 5.1a). To form a buckled (bistable) beam,
we then impose a dimensional end-to-end shortening, ∆L, by translating the end at
s = L (Figure 5.1b), such that the projected length of the beam becomes X = L−∆L.
The (dimensionless) end-to-end shortening is then defined as ϵ = ∆L/L. In the initial
curved configuration set by ϵ with the first-buckling-mode shape, considering w as the
displacement of the beam in the êy direction, the vertical rise of the beam’s mid-span along
êy, is denoted by ξm. Subsequently, the mid-span displacement w(s = L/2) = ξ ̸= ξm

will vary when external loads are applied. The deformed configuration of the beam is
described by the angle, θ(s), between the tangent of the centerline and êx (Figure 5.1b),
with clamped boundaries; θ(0) = θ(L) = 0.
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Once pre-loaded into a curved configuration, the beam can undergo a snap-through
instability by the application of either a poking force, P, or a uniform magnetic field, Ba,
or the combination of the two (Figure 5.1b). Specifically, under an external magnetic
field, a magnetic body torque, T, results from the resistance to rotation of the vector of
the residual magnetic flux density, Br, which tends to align Br with the applied magnetic
field, Ba (Figure 5.1c). Hence, snap-buckling is primarily driven by the magnetic body
torque [32]

T =
1

µ0
Br ×Ba, (5.2)

where µ0 is the vacuum permeability. Snap buckling can occur under a uniform magnetic
field due to the rotation of two halves of the beam in opposite directions. Maximal torque
is generated when the magnetic field and the magnetization direction are perpendicular.
Thus, the magnetization profile proposed in Equation (5.1) lowers the energy barrier
required to reach the second stable state. Experimentally, the simplest and closest layout
to this configuration can be produced by mid-folding the beam during magnetization,
yielding opposite magnetization vectors in each of its halves after unfolding. After
switching from one stable state (Figure 5.2cI) to another (Figure 5.2cII), and removing
the exterior magnetic field, the beam stays in the second stable position. The process
can be reversed by applying a magnetic field with opposite polarity. In the case of
snap buckling under simultaneous mechanical and magnetic loading, the beam is first
loaded under a prescribed value of the uniform magnetic field and then indented by a
concentrated load applied, P = −P êy at its mid-span (Figure 5.1b).

Whereas many previous studies have addressed the critical conditions for the classic
problem of snap buckling of elastic bistable beams [241, 317, 289, 318, 305, 306, 319,
316], in this study, we investigate the conditions for snapping of a bistable, hard-magnetic
beam under the combined influence of the magnetic loading and a poking force.

5.3 Experimental Methods through Snap Buckling Process

This section presents the experimental methodology, first describing the fabrication of
the beam specimens (Section 5.3.1) and, then, detailing the experimental apparatus (Sec-
tion 5.3.4). Finally, we describe the experimental protocols, parameters, and procedures
(Section 5.3.5).
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5.3.1 Fabrication of the Beam Specimens

The beam specimens were fabricated using a casting protocol adopted from our recent
work [233]. The main modification from our previous work is the process we use to
magnetize the specimens, with two symmetric regions of antiparallel magnetization. This
specific magnetization profile was chosen to facilitate snapping under magnetic loading.
For completeness, we provide an overview of the full fabrication protocol.

5.3.2 Preparation of the MRE

The beam specimens were cast with an h-MRE composite, prepared by mixing NdPrFeB
particles (average diameter of 5µm, mass density of ρmag = 7.61 g/cm3, MQFP-15-7-
20065-089, Magnequench) with Vinylpolysiloxane (VPS) polymer (VPS-22, the mass
density of ρvps = 1.16g/cm3, Elite Double, Zhermack). The following three steps were
followed to prepare the initial liquid MRE mixture for the fabrication of beam specimens:

• (i) Mixing: We added the non-magnetized NdPrFeB particles into the liquid
VPS-22 base, with a mass ratio of 2:1. This suspension was mixed using a centrifuge
(ARE-250, Thinky Corporation) for 40 s at 2000 rpm (mixing mode) and then 20 s
at 2200 rpm (defoaming mode).

• (ii) Degassing: We degassed the solution in a vacuum chamber (absolute pressure
below 8 mbar) to eliminate air bubbles trapped during the mixing process.

• (iii) Adding catalyst: The same amount of VPS-22 catalyst to that of the VPS-22
base was added into the mixture obtained during step (ii). After another mixing
step for 20 s at 2000 rpm (mixing mode), followed by 10 s at 2200 rpm (defoaming
mode), the liquid MRE was ready to be used for the fabrication of beam specimens,
which cured in 15–20 mins.

The fraction of NdPrFeB particles in the h-MRE was 50.0% in mass (cv = 13.2% volume
fraction). Upon curing the h-MRE, we measured the Young’s modulus of MRE through
the cantilever tests. We cut off three beams of width 3.36 ± 0.54 mm from a plate
of thickness 2.420 ± 0.012 mm cast using the previously prepared liquid MRE. Three
clamping positions were used in the tests to vary the effective length of each beam
between 36 mm and 50 mm. A camera captured the shape of the cantilever beam as
it deflected under self-weight at each length. The Young’s modulus of the MRE was
then determined by minimizing the difference between the deformed beam shape shown
by Euler’s elastica [2] and that measured in the experiments. The tests on the three
specimens at three different lengths for each specimen resulted in the average Young’s
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modulus of E = 1.16± 0.04MPa. The density of the MRE was ρ = 2.01± 0.05 g/cm3

according to the law of mixtures [320], and the Poisson’s ratio was assumed to be ν ≈ 0.5

(near incompressibility).

5.3.3 Fabrication and Magnetization of Beam Specimens

As shown schematically in Figure 5.2(a), the mold used for the casting of the beam
specimens was a sandwich structure consisting of (i) a front cover plate, (ii) a patterned
plate, and (iii) a back cover plate. The patterned plate was punched with a narrow
channel of dimensions, length, L, and width, w, using the last cutter (Figure 5.2b). The
mixed solution was then injected into a sandwich mold using a syringe through the inlet
(in the front plate) using a syringe (Figure 5.2c) until it filled up the channel and cast a
straight beam. Throughout the fabrication process, the mold was placed vertically so
that air inside the channel could be removed through the outlet. Upon curing, the beam
was then peeled off from the mold.

To achieve the desired magnetization profile, we folded the beam at mid-span (Figure 5.2c)
and placed it inside an impulse magnetizer (IM-K-010020-A, flux density ≈ 4.4 T, Magnet-
Physik Dr. Steingroever GmbH). The magnetization of the embedded particles became
permanently aligned to the direction of the field generated by the magnetizer (Figure 5.2c).
Owing to this folded configuration, after unfolding each half of the beam developed
antiparallel magnetization (Figure 5.2d), with the residual magnetic flux density, Br,
described in Equation (5.1). The saturated particles maintain a remanent flux density
of 0.90 T (reported by the supplier). Assuming a uniform dispersion of the particles in
the polymer matrix, and no re-arrangements during magnetization, the composite can be
considered as a homogeneous continuum solid with a uniform magnetization on each half,
whose magnitude was computed as the volume average of the total magnetic moment of
the individual particles, M = 94.1 kA/m.

After magnetization, two non-magnetic cubes of pure VPS (8×15×15mm3) were mounted
onto each of the beam extremities to set clamped boundary conditions (Figure 5.2d).
Finally, the end-to-end shortening, ϵ = ∆L/L, was imposed on the originally straight
beam using an acrylic sample holder, exciting in the first buckling mode, with bistability,
shown schematically in Figure 5.1.

5.3.4 Experimental Apparatus

With the originally straight beam set in a curved (bistable) configuration, the experiments
involved loading the specimen magnetically, mechanically, or both, using the apparatus
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Figure 5.2: Schematics of the fabrication and magnetization of beam specimens.
(a) The sandwich structure of the mold: (i) a front cover plate, (ii) a patterned thin
sheet, and (iii) a back cover plate. (b) Dimensions of the channel laser-cut in the thin
sheet to cast the beams. (c) Liquid MRE is injected from the bottom inlet to fill up the
mold. (d) The beam was magnetized while folded at the mid-span, s = L/2, inside a
pulse magnetizer, which generates a strong axial magnetic field, H. (e) After unfolding,
the magnetized specimen exhibited the antiparallel residual magnetic flux density of Br

described in Equation (5.1). Two non-magnetic cubic blocks attached to the extremities
ensured clamped boundary conditions.

shown in Figure 5.3(a). Gravitational effects were minimized by placing the beam with
the deflection direction, êy, perpendicular to gravity, −gêz. A digital camera was set
underneath the coils for imaging (Figure 5.3a6).

For the magnetic loading tests, we used a pair of identical coaxial coils (different from the
impulse magnetizer mentioned above), in a Helmholtz configuration, which generated a
steady axial symmetric magnetic flux density, Ba(x, y, z) [104]. The coils were connected
in series and separated axially by a distance equal to the mean radius of each coil
(R = 59.5mm). In this configuration, the current was made to flow through both
coils in the same direction to generate a uniform magnetic field in their central region

117



Chapter 5 Snap Buckling of Bistable Magnetic Beams

(Figure 5.3a),

Ba = Baêy. (5.3)

Each coil was manufactured by winding an aluminum circular spool with an enameled
copper wire (Repelec Moteurs S.A.). The dimensions of the coils were 86mm for the
inner diameter, 152mm for the outer diameter, and 43mm in height. A DC power
supply powered the coils, providing a maximum power of 1.5kW (EA-PSI 9200-25T,
EA-Elektro-Automatik GmbH). The magnitude of the magnetic field, Ba, was varied by
adjusting the current output (0-25A) from the power supplier.

Figure 5.3: Photographs of the experimental apparatus. (a) A magnetic beam is positioned
in between a set of Helmholtz coils (1) and loaded by an indenter (4). This indenter is
attached to a motorized linear actuator (2), and the reaction force is monitored by a force
sensor (3). The force-displacement data is acquired using a LabVIEW data acquisition
card (5), and a camera (6) is used to image the beam profile. The coils are driven by the
current output of a DC power supplier (7). (b) Zoomed view of the pair of Helmholtz
coils. (c) Representative beam specimen positioned inside the coils.

For the mechanical load tests, we indented the beam specimen using a custom-built
apparatus and measured the force-displacement curves. The poking device comprised two
parts: a high-resolution linear actuator (L-220.50DG, PI, Germany) driven by a 1-axis
DC motor controller (C-863 Mercury Servo Controller, PI, Germany, Figure 5.3a2) to
impose the displacement, and a force sensor (LRM200, 5lb, JR S-beam load cell, Futek,
CA, USA, Figure 5.3a3) to measure the reaction force at an acquisition rate of 1 kHz. The
indenter was a plastic (non-magnetic) needle cap (plastic taper tip Luer Lock 20GA×1/4′′

Vita needle, MA), chosen to avoid any magnetic field distortions. This indenter assumed
rigid compared to the beam specimen was attached to the tip of the linear actuator, as
shown in Figure 5.3(a4). The tip of the indenter was glued to the beam at mid-span
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using VPS solution, thereby restraining rotation and translation at the point of contact.
This attachment enabled the acquisition of the complete load-displacement during poking,
including both stable and unstable paths.

5.3.5 Experimental Protocols

To investigate the snap buckling of bistable hard magnetic beams, we performed three sets
of experiments with different loading conditions (i) poking force, (ii) magnetic load, and
(iii) combined mechanical and magnetic load using, respectively, the poking apparatus,
the coils, or both. The corresponding results from these experiments will be presented in
Sections 5.6, 5.7, and 5.8, respectively. Next, we detail the configurations of the fabricated
specimens, the range of parameters explored, and the experimental protocols.

We tested three separate, but otherwise identical, beams (length L = 60.00± 0.10mm,
width b = 8.00±0.04mm, and thickness h = 2.00±0.06mm) to examine the experimental
reproducibility and uncertainty. Throughout the experiments, the slenderness ratio
was kept constant, k = L/h = 30. The end-to-end shortening was varied in the range
0 ≤ ϵ = ∆L/L ≤ 0.6. Next, we describe each of the experimental tests under the different
loading conditions.

(i) Snap-through under poking force: In order to capture the stable and unstable portions
of the loading path, poking force, in the absence of a magnetic field, was applied along
êy, with the indenter glued to the beam at mid-span (s = L/2), and at the constant
velocity of 0.02 mm/s to ensured quasi-static conditions. For each level of ϵ, the mid-span
displacement varied in the range 0 ≤ ξ ≤ 2ξm.

(ii) Snap-through under magnetic loading : In a second set of experiments, the beam
specimen was placed within the region of a uniform magnetic field generated by the
Helmholtz coils [233]. Two different protocols were followed to measure (ii.a) the critical
magnetic field for snapping, Ba

cr, and (ii.b) the full load-displacement response, Ba(ξ),
as detailed next. (ii.a) To measure Ba

cr, we gradually increased the magnitude of the
applied magnetic flux density (by increasing the current, I, in the coils; steps of 0.05A
and 10 s) until snap-through occurred. Assuming the snap-through phenomena is nearly
instantaneous, and the waiting time between each two steps is larger than the viscous
relaxation time [22, 321], we neglected dynamic effects and measured the critical snapping
magnetic field at the snapping step. (ii.b) By adopting the above experimental procedure,
we characterized the full bistable response, capturing the stable and unstable paths.
First, prior to magnetic loading, the poking was performed under displacement-control
conditions at the speed of 0.02 mm/s (along êy). The indenter was then stopped at each
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step of 0.2 mm, and the magnetic field was increased from zero, in the −êy direction, to
balance the poking force, until a zero-force was measured by the load cell. Assuming the
equilibrium of the specimen and the quasi-static experimental conditions, the measured
applied magnetic field required for zero force was ensured to lie on the equilibrium curve,
Ba(ξ).

(iii) Snap-through under combined mechanical and magnetic load : In a third set of
experiments, we investigated the effect of magnetic loading on the snap-through response
of the beam under simultaneous poking force. In each experimental run, the beam was
first loaded under a steady magnetic field and then indented following the same protocol
as in (i). We repeated the experiment at eleven different levels of magnetic field strength,
in the range −4.5mT ≤ Ba ≤ 53.4mT, in steps of 6mT, ensuring that Ba

cr ≤ Ba. From
the measured curves of poking force versus displacement, P (ξ), we characterized the
stability of the beam for these combined loading conditions.

5.4 Numerical Simulations Using FEM

In parallel with the experiments, we performed 3D FEM simulations using an existing
user-defined element [32] in the commercial software package ABAQUS/Standard 6.14.
As detailed in Section 5.4.1, we have modified this user element to enable Riks analysis on
hard-magnetic structures. The Riks algorithm allows for the solution of the equilibrium
equation of a structure by prescribing the arc length of its loading path so as to track
both stable and unstable equilibrium states. We use this technique to study the snapping
behavior of our magnetic beam subjected to a uniform magnetic field. The simulation
procedure is, then, detailed in Section 5.4.2.

5.4.1 User Element for Riks Analysis

Our FEM approach is based on an existing continuum theory of ideal hard-magnetic
soft materials [32] with a permanent magnetization independent of external magnetic
fields. As a result, the F-based 3D continuum theory proposed by Zhao et al. [32] will
be the primary framework. In this theory, the effect of an applied magnetic field on a
magnetized, deformable body is considered through a potential (density) as a function of
the deformation gradient (F), the external field flux density (Ba) and the magnetization
of the material (µ0

−1Br):

Ûm = µ0
−1FBr ·Ba . (5.4)
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This magnetic potential is added to the total energy of the system. Under this description,
distributed magnetic torques imposed by the applied field result in an asymmetric part
of the Cauchy stress. The field produced by the magnetic body and the induced self-
interactions are neglected.

As we described in detail in Section 1.5.1 of Chapter 1, the two 3D continuum theories, R-
based and F-based, yield consistent results in scenarios where stretching can be neglected.
This condition aligns with the specific problem addressed in this section: the snap buckling
of bistable magneto-active beams. While immediate stretching following snapping may be
observed, it has been a minor concern due to the absence of a dynamic analysis. However,
a recent study by Stewart et al. [244] has directed the focus towards an examination of the
dynamics and viscoelastic properties associated with the snapping of magnetic bistable
beams. It is important to highlight that a recent study on hard-magnetic plates [232]
proposed a rotation-based (R-based) magnetic potential by replacing the deformation
gradient, F [232], with the rotation tensor. This work was, in turn, motivated by an
equally recent but prior demonstration of the stretch-independence of the magnetization
of bulk h-MREs [219]. Indeed, the subsequent experiments in Ref. [232] showed that the
R-based model is necessary for plates subjected to non-negligible stretching deformation
under an applied field parallel to the initial magnetization.

These latest findings bring into question why, in the present Chapter, we decided not
to use the R-based magnetic potential, choosing the F-based model description instead.
Given the assumption of an inextensible centerline made when developing the beam
model, together with the orthogonality between the field and the initial magnetization
of the configuration considered in this work, the potential in Equation (5.4) is expected
to be appropriate for the current problem, as also justified by the excellent agreement
between our theory, FEM, and experiments. Also, the Kirchhoff assumptions adopted in
the 1D model correct the error from using the potential in Equation (5.4), as pointed
out in Ref. [232], given that inextensibility together with the fact that normals do not
change length, thereby removing any stretching-induced effects from the F-based. As a
final practical justification, the F-based model is significantly simpler mathematically
than the R-based one and, therefore, it is preferable in cases where both yield the same
results. Still, future efforts should be dedicated to developing R-based beam and rod
models for more general cases where stretching of the centerline may be important.

This F-based theory has been previously implemented in the commercial FEM software
package ABAQUS through a user-defined 8-node solid element [32] while assuming that
the elastic behavior of the material is assumed to be neo-Hookean. To capture the
unstable equilibrium path of the snapping beam under magnetic actuation, we had
to adapt this previously developed user element to make it compatible with the Riks
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analysis in ABAQUS. In the Riks analysis, the magnitude of external loads, which
is usually prescribed during a simulation, is considered as an unknown and solved
simultaneously with displacements from equilibrium. Alternatively, the ‘arc length‘ of the
static equilibrium path of a system in the load-displacement space is imposed to control
the progress of the simulation. In order to implement the Riks analysis in the presence
of a uniform magnetic field, we define its magnitude as a loading parameter using the
keyword *DLOAD in ABAQUS rather than a field variable in the previous work [32]. As
such, the field strength can be taken into account as an unknown in the solution domain.
This modification on the original user element allows us to simulate both the stable and
unstable response of the magnetic beam during snapping, the results of which will be
presented in Section 5.7.

5.4.2 Simulation Procedure

We modeled an initially straight clamped-clamped beam as a 3D solid body. Similarly to
the experiments (see Figure 5.2), the beam was composed of two halves with antiparallel
magnetization vectors. The length and width of the beam were the same as the experi-
mental specimens. The beam was discretized by the user-defined elements introduced in
Section 5.4.1, using a structured mesh with 16, 4, and 120 elements seeded, respectively,
in the width, thickness, and length directions. The mesh was deemed to be sufficiently fine
through a convergence study. The material of the beam was assumed to be incompressible
with a shear modulus G = 0.39MPa (paralleling the experiments; see Section 5.3) and a
bulk modulus 100 times larger than G. Given the large deflection of the beam during
snapping, geometric nonlinearities were taken into account throughout the simulations.
We highlight that the simulations employed the material properties characterized in the
experiments (see Section 5.3) with no fitting parameters.

For the simulation protocol, we first imposed an end-to-end shortening, ϵ, to buckle
the beam and reach the preset bistable state. We then studied the snapping of the
beam in three loading cases: (i) poking force, (ii) pure magnetic load, and (iii) combined
mechanical and magnetic loads. Each simulation run involved the following two sequential
steps:

Step (a) – Buckling: First, ϵ was imposed to the straight beam, causing it to buckle into
a curved configuration characterized by the classic sinusoidal Euler mode for a clamped-
clamped beam. In this step, we obtained several post-buckled beam configurations by
varying the end-to-end shortening 0 ≤ ϵ ≤ 0.6; the same range as in the experiments. To
trigger buckling, geometric imperfections with the shape of the first eigenmode and a
maximum amplitude of 0.1h were injected into the initial straight configuration.
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Step (b) – Snapping: For the loading case (i) – (snap-through under poking force) we
indented the beam at mid-span by prescribing the displacement, ξ, which was increased
step-by-step until the beam reached the other stable configuration. The poking force, P ,
was computed as a reaction force from equilibrium. From the load-displacement curve,
P (ξ), we identified the critical load for snapping at different end-to-end shortenings
(Section 5.6). For loading case (ii) – (snap-through under pure magnetic load), we applied
a magnetic field on the entire beam with a Riks step in order to capture the full loading
path during snapping. In the search for the equilibrium state, the strength of the applied
field is set as an unknown, which, along with the displacements of the beam, was solved
under a prescribed arc length increment of the loading path. We computed the critical
field strength, the equilibrium path with stable and unstable branches, and the change
of the strain energy during snapping. For the loading case (iii) – (snap-through under
combined mechanical and magnetic loads), a magnetic field with a given flux density lower
than the critical value to trigger the snapping was first applied on the beam. Under this
constant field, in the next step, we indented the beam by applying a displacement load
at the mid-span to make it snap to the other stable configuration. We computed the
poking force-displacement curve, P (ξ), for different values of the magnetic field. Then, we
extracted the critical poking force under the effect of magnetic load at different end-to-end
shortenings.

5.5 A reduced-Order Model for the Snapping of Magnetic
Beams

We proceed by presenting a centerline-based theory for the problem defined in Section 5.2
(see Figure 5.1b). This theory was developed by Tomohiko G. Sano in collaboration
with the author of this thesis. We consider a thin, inextensible, hard-magnetic, and
doubly-clamped beam, under Kirchhoff assumptions [322]; i.e., normals to the beam
centerline remain normal and unstretched during deformation. Building upon recent
developments for hard-magnetic beams [205, 34, 33, 233, 234], we develop a 1D beam
model through dimensional reduction [2], taking the 3D Helmholtz free energy for ideal
hard-magnetic soft materials from Ref. [32] as a starting point, on top of other classic
ingredients. The elastic (bending) energy of the beam is described by Euler’s elastica [2],
and the work of poking force was addressed in Ref. [318]. Using the principle of virtual
work (PVW), we will show that the derived ordinary differential equation (ODE) for the
bending angle, θ(s), is equivalent to a clamped-clamped elastica under a redefined poking
force applied at mid-span (s = L/2). Hence, the effect of the applied magnetic load on
the snap-through buckling is qualitatively identical to that of a poking force at mid-span.
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Following classic beam kinematics, we define 0 ≤ s ≤ L to be the arc length of the
(inextensible) centerline of a beam, located at r(s) = (x(s), y(s)). We consider a beam
clamped both at s = 0 and s = L, with r(0) = (0, 0) and r(L) = (X, 0). The bending angle,
θ(s), is measured from êx, such that the centerline tangent is t̂ ≡ r′ = (cos θ(s), sin θ(s)),

where (·)′ = d(·)/ds and the corresponding boundary conditions are θ(0) = θ(L) = 0.
The relation between θ(s) and r(s) is obtained by integrating t̂:

r(L) = (x(L), y(L)) =

(∫ L

0
cos θ(s)ds,

∫ L

0
sin θ(s)ds

)
= (X, 0) , (5.5)

which acts as a constraint.

Next, we consider first the external virtual work (EVW) and then the internal virtual
work (IVW), before invoking the PVW to derive the governing equation for θ(s).

A reaction force (Fx, Fy) is applied at s = 0 and the poking force, P = (0, −P ), at
s = L/2. Defining N(s) = (Nx, Ny) as the internal force on the cross section at s, force
balance yields

N(s) = (Nx, Ny) =

(
−Fx,−Fy + PΘ

(
s− L

2

))
, (5.6)

with the Heaviside step function Θ(x) = {sgn(x) + 1}/2 representing the discontinuity
(of magnitude P ) in the Ny component at s = L/2, due to the applied poking force. The
EVW is then computed as

EVW =

∫ L

0

{
−Fx cos θ +

(
−Fy + PΘ

(
s− L

2

))
sin θ

}
ds. (5.7)

The Helmholtz free energy proposed in Ref. [32] for hard-magnetic materials can be
decomposed into an elastic part, associated with mechanical deformation, and a magnetic
part, arising from the interactions between remanent magnetization and the external field.
Based on this decomposition, the total energy of a hard-magnetic beam is the sum of the
elastic energy, U el, and the magnetic potential, Um. Assuming a Hookean constitutive

124



Snap Buckling of Bistable Magnetic Beams Chapter 5

law,

U el =

∫ L

0

EI

2
θ′2ds, (5.8)

where EI is the flexural rigidity of the beam of Young’s modulus, E, and a second moment
of inertia, I = h3b/12.

According to Zhao et al. [32], we now make use of the magnetic potential density Ûm

in Equation (5.4). Focusing on the geometry of our problem (see Figure 5.1b), we set
the applied field to Ba = Baêy, and the magnetization vector M = Br/µ0 exhibiting
the specific profile of Equation (5.1); in the deformed configuration, M is parallel to the
tangent vector t̂ for 0 ≤ s ≤ L/2 (or anti-parallel for L/2 ≤ s ≤ L). The deformation
gradient

◦
F for thin beams has been derived in [34, 33, 233] as:

◦
F =

(
cos θ − sin θ

sin θ cos θ

)
. (5.9)

Hence, the magnetic potential for our beam is

Um = −
∫ L

0
hb

◦
FM ·Bads =

hbBrBa

µ0

∫ L

0
sgn

(
s− L

2

)
sin θ(s)ds. (5.10)

Invoking the PVW, mechanical equilibrium is assured when the EVW is balanced by the
IVW = δU el + δUm yielding

EIθ′′ + Fx sin θ − F̃y cos θ = −1

2

(
P − 2hbBaBr

µ0

)
sgn

(
s− L

2

)
cos θ, (5.11)

with F̃y ≡ Fy − (P/2) and boundary conditions θ(0) = θ(L) = 0. The two unknowns, Fx

and Fy, are the Lagrange multipliers associated with the clamped boundary [2] and can
be determined through Equation (5.5). Note that the term in Equation (5.11) involving
2hbBaBr/µ0 can be interpreted as a second poking force, in addition to P . Therefore, we
can define an effective poking force under the combined mechanical and magnetic loading:

P ∗ ≡ P − 2hbBaBr

µ0
. (5.12)
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Hence, the analysis of snap buckling of the hard-magnetic beam under a uniform magnetic
field is simplified by treating the developed magnetic torques as an effective poking force
acting at mid-span, noting that these two scenarios share similar boundary conditions. A
similar approach was followed in Ref. [33] for the deformation of the tip of an elastica
under magnetic loading. Now, we use Equation (5.12) to rewrite Equation (5.11) as

EIθ′′ + Fx sin θ − F̃y cos θ = −P ∗

2
sgn

(
s− L

2

)
cos θ. (5.13)

This new ODE is equivalent to a clamped-clamped elastica under poking force P ∗ applied
at s = L/2 [241, 318]. Under appropriate boundary conditions, θ(0) = θ(L) = 0, and the
constraint in Equation (5.5), Equation (5.13) defines a boundary value problem that can
be solved numerically to predict the classic N-shape snap-through response of a doubly
clamped beam [241], but now under combined magnetic loading and poking force. We do
so using the solver bvp5c in MATLAB. Note that all the relevant parameters in this model
are characterized experimentally, and there are no fitting parameters. In Sections 5.6–5.8,
we will compare the predictions from this magnetic beam model against FEM simulations
(detailed in Section 5.4) and experiments (detailed in Section 5.3).

5.5.1 Linearized Theory with ϵ ≪ 1 and |θ| ≪ 1

For configurations of the bistable beam with small values of end-to-end shortening (ϵ ≪ 1),
the deformations are small (|θ| ≪ 1) at the onset of snapping. In this limit, with sin θ ≃ θ

and cos θ ≃ 1− (θ2/2), Equation (5.13) simplifies to

θ′′ + F xθ − F̃ y = −P
∗

2
sgn

(
s− 1

2

)
, (5.14)

where we have used the following dimensionless variables: s = s/L, F x ≡ FxL
2/EI,

F̃ y ≡ F̃yL
2/EI, and P

∗ ≡ PL2/EI − (2hbBa/BrL2EIµ0). Expanding Equation (5.5)
with respect to |θ| ≪ 1, the corresponding boundary conditions are∫ 1

0

θ2(s)

2
ds = ϵ, and

∫ 1

0
θ(s)ds = 0. (5.15)

Employing the method of variation of parameters, the solution of Equation (5.14) is

θ(s̄) =
F̃ y

κ2
φ1(s) +

P
∗

κ2
φ2(s), (5.16)

where we have introduced the wave number κ ≡
√
F x and the functions φ1 and φ2,

which are, respectively, symmetric and asymmetric functions with respect to s = 1/2, are
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defined next. The two unknown parameters, κ =
√
F x and F̃ y, are determined using the

boundary conditions in Equation (5.15) to arrive at

κ = 9, and 2ϵ =

(
F̃ y

κ2

)2

c1 +

(
P

∗

κ2

)2

c2, (5.17)

where c1 ≡
∫ 1
0 (φ1(s))

2ds and c2 ≡
∫ 1
0 (φ2(s))

2ds are two positive numerical constants as
follows next.

Here, we discuss a few details of the solution of Equation (5.14) to arrive at Equation (5.16).
The functions, φ1 and φ2, were introduced to solve the linear inhomogeneous ODE with
the method of variation of parameters (Section 5.8) and are written as

φ1(s) ≡ 1−
cos
(
κ
(
s− 1

2

))
cos(κ/2)

, (5.18)

and

φ2(s) ≡
1

2

[
sgn

(
s− 1

2

){
cos

(
κ

(
s− 1

2

))
− 1

}
+ tan

(κ
4

)
sin

(
κ

(
s− 1

2

))]
, (5.19)

where we have used tan(κ/4) = (1 − cos(κ/2))/ sin(κ/2). Note that φ1(s) and φ2(s)

are, respectively, symmetric and asymmetric function with respect to s = 1/2. The two
numerical constants in Equation (5.11), c1 and c2, are computed as

c1 ≡
∫ 1

0
φ2
1(s)ds =

2κ− 3 sinκ+ κ cosκ

κ+ κ cosκ
,

c2 ≡
∫ 1

0
φ2
2(s)ds =

1

8

(
2 +

1

cos2(κ/4)
− 12

κ
tan

(κ
4

))
.

(5.20)

Using Eqs. (5.11), we can now discuss the critical condition for snap buckling. Given that
c1, c2 and ϵ are all positive, F̃ y ceases to exist, and the beam snaps, when (P

∗
/κ2)2c2 ≥ 2ϵ.

Hence, the critical condition for the snap transition is

|P ∗
cr| = κ2

√
2

c2
ϵ = C0

√
ϵ, (5.21)

with the positive constant C0 ≃ 130 [318, 241]. The dimensional version of Equation (5.21),
through Equation (5.12), is∣∣∣∣bhBaBrL2

µ0EI
− PcrL

2

2EI

∣∣∣∣ = C0

√
ϵ. (5.22)
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For reasons that will become clearer in Section 5.8, we recognize the critical load at which
snapping occurs as the maximum load that the beam can support before snap-through,
Pcr = Pmax, and we rewrite Equation (5.22) back in dimensionless form

Pmax = 2(B
a
+ C0

√
ϵ), (5.23)

where Pmax = PmaxL
2/(EI) and the applied magnetic field was nondimensionalized as:

B
a
=

bhL2Ba
crB

r

EIµ0
, (5.24)

characterizing the relative importance of the magnetic load and beam-bending effects.
According to Equation (5.23), under the assumption of ϵ ≪ 1 and when B

a
> 0 (i.e., Ba

and P are in the same direction), the maximum poking force that the clamped-clamped
magnetic beam can support before snapping is expected to depend linearly on the applied
magnetic field B

a, with a slope 2 and an offset 2C0
√
ϵ set by the end-to-end shortening.

This prediction will be tested against experiments and FEM in Figure 5.8 (Section 5.8).
In the absence of a magnetic field (Ba

= 0), we recover the standard result, the critical
poking force for purely elastic snapping [318], with the scaling Pmax ∼

√
ϵ, which will be

tested against experiments and FEM in Figure 5.4 (in Section 5.6).

5.6 Snapping under Poking Force

Next, we focus on the classic bistable response when the beam subjected only to a poking
force (Ba = 0) at mid-span. Even if well-established [318], this case serves as a pre-
validation of the framework against the experiment before introducing magnetic effects in
Section 5.7. In Figure 5.4(a), we present the results for the dimensionless poking force,
P = PL2/EI, versus the dimensionless mid-span displacement, ξ = ξ/L. The initial
buckled configuration was generated with an end-to-end shortening of ϵ = 0.014. Then,
ξ was gradually increased while measuring the poking force. The resulting P (ξ) force-
displacement curve exhibits the classic N-shape representative of bistable mechanisms [241].
Points A and E are the two stable stages. The maximum normalized poking force, Pmax,
occurs at point B. The unstable branch, with negative stiffness, occurs between points
B and D, and plot C is the unstable equilibrium state. Excellent agreement is found
between experiments, FEM, and the solution of Equation (5.13).

In Figure 5.4(b), we plot Pmax, as a function of ϵ, finding a sub-linear dependence. For
small values of the end-to-end shortening (ϵ ≲ 0.1), the observed scaling Pmax ∼

√
ϵ

(dot-dashed line in Figure 5.4b) is consistent with Equation (5.23) when Ba = 0, obtained
from the linearized theory for small deformations. For ϵ ≳ 0.1, the linearized theory no
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Figure 5.4: Snap buckling under poking force (Ba = 0). (a) Normalized poking force,
P , versus the mid-span displacement, ξ, for the end-to-end shortening of ϵ = 0.014.
The maximum of the curve is defined as Pmax. (b) Normalized maximum poking force,
Pmax, versus ϵ. The error bars correspond to the standard deviations of the experimental
measurements for three identical specimens. (Inset) Schematic diagram of the loading
configuration.

longer works, but the nonlinear theory of Equation (5.13) with Ba = 0 (solid line in
Figure 5.4b) is in excellent agreement with the FEM and experiments, through the full
range of explored ϵ. This agreement between the experiments, FEM, and the reduced-order
beam model, even if within a classic setting, serves as a first step in validation.

5.7 Snapping under Magnetic Loading

We proceed by investigating the buckling of the bistable beam under an external magnetic
field, this time with no poking force (P = 0), seeking to quantify how the critical magnetic
field strength, Ba

cr, required for switching between the two stable states, depends on the
end-to-end shortening, ϵ.

In Figure 5.5, making use of the dimensionless magneto-elastic parameter defined in
Equation (5.24), we plot B

a
cr(ϵ) curves obtained as predicted from FEM simulations,

the 1D theory and the experiments. Naturally, increasingly deformed pre-configurations
(increasing ϵ) require a higher value of Ba

cr for snapping. We find a good agreement
between the FEM, the experimental data, and the solution of Equation (5.13). For
small deformations (ϵ ≲ 0.1), the data follows the scaling Ba

cr ∼
√
ϵ, consistently with

Equation (5.23). For higher values of ϵ, the overall Ba
cr(ϵ) curves computed from FEM

are captured by the solutions of Equation (5.13) with P = 0 reasonably well.

The Riks procedure in FEM (cf. Section5.4.2) enables us to capture the unstable equilib-
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Figure 5.5: Snap buckling under magnetic actuation. Normalized critical strength
of the uniform magnetic field required for beam snapping, Ba

cr, as a function of end-
to-end shortening, ϵ. The results were obtained from the nonlinear elastic theory in
Equation (5.13) (solid line), small-deformations theory (dashed line), FEM (dotted line),
and experiments (data points with error bars). The error bars of the experimental data
correspond to the standard deviation of the measurements on three identical specimens.
(Inset) Schematic of the bistable beam under magnetic loading.

rium path during snapping under actuation by a magnetic field between the first to the
second stable configuration. In Figure 5.6(a), we plot the normalized magnetic load, Ba, as
a function of the normalized mid-span displacement of the beam, ξ, for two representative
values of the end-to-end shortening, ϵ = {0.008, 0.014}. The FEM-computed results
(dotted lines) are in quantitative agreement with the experimental data. For ϵ = 0.008, the
B

a
(ξ) curve is non-monotonic, first increasing to a maximum, then decreasing to become

negative until a minimum is reached, to then increase again. The case with ϵ = 0.014 is
more complex; the Riks method captures a force-displacement equilibrium path with a
complex transition between the two stable states, with winding branches and multiple
equilibrium solutions for the same ξ. However, note that some of the winding-branch
segments computed from FEM are not practically relevant; only the solutions with the
lowest energy barrier are experimentally observable.

To gain further insight into the energetics of the load-displacement path discussed above,
focusing on ϵ = 0.014, we now use FEM to compute the total strain energy, U , as a
function of ξ during the snapping process; the results are plotted in Figure 5.6(b). The
points A, B,. . . , and G labeled in the plot correspond to the computed configurations
shown in Figure 5.6(c). During the transition path between the stable states A and G, U
increases with ξ from a minimum (A) to a local maximum (C1) and decreases to another
minimum (G). Hence, the corresponding energy barrier, ∆Us, between this minimum
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Figure 5.6: Bifurcation diagram for the snap-through of the bistable beam under magnetic
actuation. (a) Normalized magnetic field, Ba, versus the normalized mid-span displace-
ment, ξ: FEM simulations and experiments for two beams with ϵ = {0.008, 0.014}. (b)
FEM-computed strain energy, U , versus ξ, for ϵ = 0.014. The beam must overcome the
energy barrier, ∆Us (vertical double-arrow), to switch between the two stable states. (c)
Representative FEM-computed configurations of the beam along the equilibrium solution
path corresponding to the same points in the plots of panels (a) and (b). The color bar
represents the normalized displacement of the beam w.

and the local maximum must be overcome for snap-through. According to the principle
of minimum potential energy, the lowest-energy path is the one observed in practice.
Consequently, the higher energy configurations shown in Figure 5.6(c) for points D, C2,
E, and C3 are not observed experimentally. Indeed, the experimentally observed path in
Figure 5.6(a) is an excellent match with the latest-energy path of Figure 5.6(b), passing
through the points A-B-C1-F-G.

5.8 Snapping under Combined Poking Force and Magnetic
Loading

Finally, we turn to the combined case of simultaneously loading the bistable beams with
mechanical poking and a magnetic field, each of which was tackled individually in the
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previous Sections 5.6 and 5.7. We seek to quantify how magnetic loading modifies the
load-bearing capacity of the bistable beam under poking force and characterize the critical
conditions for snap buckling.

In Figure 5.7(a), we present the normalized poking force, P , versus the beam’s mid-
span displacement, ξ, at different levels of the uniform magnetic field, B

a
êy, varied

systematically in the range −3.9 ≤ B
a ≤ 46.9 (see legend of the plot). We focus on

the representative case with ϵ = 0.014. To track the full equilibrium path, including
its unstable portions, the indenter was glued to the beam at mid-span, as described in
Section 5.3.5. At each value of Ba, the signal-to-noise ratio of the measurements was
enhanced by repeating three independent, but otherwise identical, experimental runs;
their average is reported as the P (ξ) curves of Figure 5.7(a). Throughout, excellent
agreement is found between experiments (solid lines) and the FEM (dotted lines).
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Figure 5.7: Load–displacement curves for the indented magnetic beam (with ϵ = 0.014) in
the presence of a uniform magnetic field. (a) The normalized poking force, P , is plotted
versus the normalized mid-span displacement, ξ, at various levels of prescribed field
strength, Ba. (Inset) Schematic diagram of the bistable beam under combined magnetic
and mechanical loading. (b) The normalized effective poking force, P ∗, as a function of
the normalized mid-span displacement, ξ, for the curves in (a), collapsing on a single
curve. The experiments and FEM simulations are represented by solid lines and dotted
lines, respectively. The shaded region of each curve represents the standard deviation of
three identical measurements.

Under an external magnetic field, the poking force-displacement response of the hard-
magnetic beam can be modified significantly with respect to the purely mechanical
case (Ba

= 0 and results in Section 5.6). When the applied magnetic field is in the
opposite direction of the poking force (Ba

> 0), the generated magnetic torques oppose
the direction of the poking-induced beam rotation. Consequently, as the field strength
is increased, the beam stiffens and becomes more resistant to snap buckling (the local
maximum of P increases). By contrast, when the magnetic load is applied in the same
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direction to the poking (Ba
< 0), snap-through occurs at lower poking forces as the

magnetic torques are in the same direction of the poking-induced rotation.

In Figure 5.7(b), to compare the elastic and magnetic loads, we plot the normalized
effective poking force, P ∗, as a function of the normalized mid-span displacement, ξ, for
the corresponding curves in Figure 5.7(a). We find that the experimental and simulations
data collapse into a single curve, indicating that the effect of magnetic load on the snap
buckling of magnetic beams can be interpreted as a second poking force in addition
to the mechanical load (see Section 5.5). Treatment of the effect of magnetic torques
developed under a uniform magnetic field as an equivalent poking force acting at mid-span
simplifies the calculation of the critical snap buckling load for a hard-magnetic beam
under combined elastic and magnetic loading.

In Figure 5.8(a), we quantify the dimensionless relation between the maximum (critical)
poking force, Pmax, and the magnitude of the prescribed magnetic field B

a, for four values
of the end-to-end shortenings, ϵ = {0.014, 0.053, 0.108, 0.158}. The experimental force-
displacement signals were smoothed with a 50-point moving average filter to facilitate the
extraction of Pmax, the largest load that the beam can sustain prior to snapping. Again,
an excellent agreement is observed between the experiments (data points), FEM (dotted
lines), and the solution of Equation (5.13) (solid lines). We find the robust linear scaling
Pmax ∼ B

a, with a slope of 2. Increasing ϵ results in an increase of the offset at Ba
= 0 of

the linear curves, as dictated by the purely mechanical poking case in Figure 5.4. Hence,
increasing the end-to-end shortening results in a larger poking force required for snapping
under a particular level of field strength, set by the offset of the linear behavior. The
experimental and FEM data are in remarkable agreement with Equation (5.23), indicating
that the largest value of end-to-end shortening explored in these experiments (and FEM
simulations) still lies in the regime of validity, with small deformations (|θ| ≪ 1), of the
linearized theory developed in Section 5.5.1.

In Figure 5.8b, making use of Equation (5.23), we now replot all the data in Figure 5.8a
but with Pmax − 2C0

√
ϵ as a function of 2Ba. The purpose is to remove the effect of

end-to-end shortening and characterize the magneto-elastic effect of the snapping beam.
Again as predicted by the linearized theory, we find a striking collapse of all the data
into a master curve of unit slope, passing through the origin. This collapse indicates that
Equation (5.23), based on a linearized theory and combining the dimensionless groups
of magnetic (bhBaBrL2/µ0EI) and mechanical (PL2/EI) load, serves as a high-fidelity
description of the magneto-elastic behavior of our hard-magnetic bistable beams, with
different end-to-end shortenings (ϵ ≲ 0.1), in the limit of small deformations (θ ≪ 1).
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Figure 5.8: Critical poking force for snap-transition under magnetic actuation. (a)
Normalized maximum poking force, Pmax, versus the prescribed applied magnetic field,
B

a, at different end-to-end shortenings (ϵ = {0.158, 0.108, 0.053, 0.014}): experiments
(data points), theoretical predictions from Equation (5.13) (solid lines), and FEM (dotted
lines). The line slope of 2, is consist of Equation (5.23). (b) Master curve for the
experimental results, FEM simulations, and the theoretical predictions for the data in (a).
The quantity, Pmax − 2C0

√
ϵ in Equation (5.23), is plotted as a function of 2Ba, yielding

a collapse of all the data. The term −2C0
√
ϵ removes the offset due to the end-to-end

shortening.

5.9 Summary and Outlook

In this Chapter, we investigated the snapping behavior of bistable magneto-active beams
under combined mechanical and magnetic actuation, incorporating experiments, FEM,
and a reduced-order model. Considering a pre-compressed bistable beam with different
levels of end-to-end shortening, we characterized the load-displacement response, the
critical poking force, the field strength at the onset of snapping, and the effect of magnetic
loading on snap buckling under poking force. The Riks method was employed in the 3D
FEM simulations to analyze the snap transition. We also developed a beam theory to
rationalize the observed magneto-elastic response. Precision experiments validated the
theory and the FEM simulations.

More specifically, we studied the snap buckling of the beam under three different loading
cases: (i) poking force only, (ii) magnetic field only, and (iii) combined magnetic and
mechanical loading. Case (i), even if classic, served for pre-validation. In case (ii), we
triggered snap buckling under a magnetic field for various end-to-end shortenings by
designing the magnetization profile of the beam. For small deformations, the critical
magnetic field increased with the square root of the end-to-end shortening. The Riks
method was used to explore the equilibrium transition path, finding that increasing
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the end-to-end shortening complicates the instability response, but the experimentally
observable solution corresponds to the lowest energy level. Finally, in case (iii), we
examined how magnetic loading affects the poking-induced snapping of the bistable beam.
The critical poking force for snapping can be adjusted by the magnitude and direction
of the magnetic field. Our magnetic beam model captures these results. In the small
deformation limit, the critical poking force at the onset of snapping is linearly proportional
to the applied magnetic field with a slope and offset that can be predicted. In this limit,
a master curve is uncovered that collapses the experimental and FEM-computed data.

Our study provides insight into the nonlinear magneto-elastic coupling of bistable beams,
which could be extended in several directions for future work. Fundamentally, the
dynamics of multi-stable structures integrated with soft active materials remain relatively
unexplored and deserve further attention. From a practical viewpoint, optimization
and inverse design is an exciting direction: compact actuators could be designed using
bistable beams while minimizing the total energy consumption during actuation. The
magnetization profile chosen in Equation (5.1) may come across as ad hoc, even if we found
that it is more effective in inducing snap buckling compared to uniform magnetization.
Future work should explore other magnetization designs more systematically. Owing to
the complex relationship between the design parameters and snap-through characteristics,
modeling the deformation of bistable beams under other boundary conditions should be
considered.

In closing, we believe that our comprehensive framework is a step forward toward the
predictive design of bistable magneto-elastic beams. We hope that the snapping behavior
and the stiffness-tuning capability of these components will be exploited for a variety
of future applications, including actuators, robotics, MEMS, programmable devices,
metamaterials, and energy harvesting devices.
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6 Snapping of Bistable Magnetic
Shells for Braille Reader Design

In this Chapter, a design concept is introduced for the building block, a dot, of pro-
grammable braille readers utilizing bistable shell buckling, magnetic actuation, and
pneumatic loading. The design process is guided by Finite Element simulations, which are
initially validated through precision experiments conducted on a scaled-up, single-shell
model system. Then, the simulations are leveraged to systematically explore the design
space, adhering to the standardized geometric and physical specifications of braille systems.
The findings demonstrate the feasibility of selecting design parameters that satisfy both
geometric requirements and blocking forces under moderate magnetic fields facilitated
by pneumatic loading to switch between the two stable states. The advantages of the
proposed design include the reversible bistability of the actuators and fast state-switching
via a transient magnetic field. While the study is focused on experimentally validated
numerical simulations, several manufacturing challenges that need to be resolved for
future physical implementations are identified.

The text and figures in this Chapter are adapted from the unpublished manuscript
submitted to the Journal of Advanced Materials Technologies in Ref. [323], which has
just been accepted: Arefeh Abbasi, Tian Chen, Bastien F. G. Aymon, and Pedro M.
Reis. “Leveraging the snap buckling of bistable magnetic shells to design a
refreshable braille dot." arXiv preprint arXiv:2307.10933 (2023).

The structure of this Chapter is as follows. The motivation of this study and a brief
literature review on the state-of-the-art of refreshable braille displays and braille actuators
are presented in Section 6.1. In Section 6.2, we define the braille reader design concept.
We explain the experimental protocol for the experiments in the scaled-up braille system
in Section 6.3. Then, we detail the finite element modeling (FEM) simulation performed
to acquire the result in Section 6.4. In Section 6.5, we validate the FEM simulations
against experiments in the scale-up systems. Following that, in Section 6.6, we provide the
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design of braille dots at the real scale. In Section 6.7, we propose a design improvement
of the braille dots using a pneumatic system. In Section 6.8, we discuss some potential
challenges and limitations expected to be encountered during the real-scale fabrication.
A solenoid coil design for the braille dots at a real scale was proposed in Section 6.9.
Furthermore, in Section 6.10, we summarize our findings and provide a perspective for
future work.

6.1 Literature Review and Motivation

Shallow shells, with their unique structural characteristics, can exhibit bistable behavior,
meaning they possess two stable states [324]. With this ability to maintain stable states
until triggered otherwise, bistable shells have found numerous engineering applications for
switching [325, 24], locking [294], or actuation mechanisms [326, 327]. The fast transition
between these two stable states, also known as snap-through, can be triggered in different
ways, for example, through magnetic loading [246, 245], mechanical loading [283], or fluid
flow [328].

Serving as a motivation for our study, we will consider the bistable behavior of hard-
magnetic shells in the context of the potential application to braille displays [329].
Combining the inherent bistability of shells made of h-MREs with magnetic and mechanical
actuation, our vision is that braille displays could be made refreshable through controlled
state changes. While static embossed paper is the traditional medium for braille, modern
assisting devices, such as refreshable braille displays (RBDs), enable dynamic reading and
writing [329, 330]. RBDs provide access to written content using arrays of morphable
physical dots, whose configuration adjusts dynamically to represent different sequences of
braille symbols in accordance with international braille standards [331, 332, 333, 329].

In recent years, technological advancements have stimulated the development of RBD
devices driven by a variety of actuation mechanisms, including piezoelectrics [334, 335, 336,
337], electromagnetics [338, 339, 340], or thermopneumatics [341]. These devices often
use advanced materials such as electroactive polymers [342, 343, 344, 345], shape memory
alloys [346, 347, 348], or dielectric elastomers [349, 350]. Piezoelectric actuators have been
favored for commercial RBDs due to their fast refresh rates, low power consumption, and
reliability, albeit at a relatively high cost [329, 334, 335]. Electromagnetic linear actuators
tend to have a low ratio between output force and operating velocity, requiring complex
packaging and a considerable force to hold a raised dot [69, 351]. RBD devices utilizing
shape memory alloys require intricate heating and cooling processes, posing practical
implementation challenges [336, 348, 346]. Dielectric elastomers have been gaining
traction for lightweight tactile displays, offering high actuator density and a wide range
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of motion, with performance comparable to previous technologies, but in a more compact
form [349, 350]. However, their required large driving voltages can be impractical for
some applications. Most technological solutions for braille readers cannot offer sufficiently
high-quality performance, especially regarding the balance between fast shape-changing
dynamics and low power consumption [352]. Additionally, the mainstream adoption
of advanced tactile displays is hindered by the lack of compact, large-area actuator
arrays that can stimulate multiple sensory receptors while adhering to high user-safety
standards. Existing solutions tend to be costly and require complex manufacturing
processes. Despite ongoing efforts [353], designing RBD devices that are simple, compact,
low-cost, large-scale, user-friendly, and reliable remains a formidable challenge.

Here, we propose a novel design concept for braille dots, the building block of braille
readers. Our design leverages the buckling and bistability of thin shells fabricated from
hard magneto-rheological elastomers (h-MREs). Inspired by the popular ‘pop it ’ toy [354],
these shells can be reversibly set in a convex or concave state (Figure 6.1a). Each of
these shells (dots) can then be arranged in a 3×2 matrix and programmed, on-demand,
to form a braille symbol. The dots have independent writing and reading phases under
magnetic and mechanical loading, respectively. During writing, a transient external
magnetic field can induce snap-through buckling to transition the shell between its two
stable states: from ON (bump) to OFF (dimple) or vice versa. For reading, shells in
the ON state must sustain a blocking force in reaction to the finger indentation without
snapping to the OFF state. Throughout, our mechanics-based design process is centered
on Finite Element Method (FEM) simulations. We first validate these simulations
against precision experiments on a scaled-up (centimeter-scale) physical model of a braille
dot. Then, we study dots at their actual scale, ensuring adherence to standard braille
specifications [333], with a special focus on their geometry, elastic response, and actuation.
Although the primary driver of actuation is an external magnetic field, it is supplemented
with a transient pneumatic loading to aid in widening the design space. Our numerical
exploration of the design parameters allows us to identify the regions that meet the
various design constraints, making a step toward a new class of programmable braille
displays.

6.2 Problem Definition: Braille Reader Design Concept

Worldwide, 285 million people experience visual impairments, including 39 million living
with blindness [355]. These impairments present challenges in navigating and interacting
with the world, influencing various aspects of daily life, such as access to printed or digital
content. Braille code, a tactile writing system, facilitates these interactions, mapping
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Figure 6.1: Design, fabrication, and operation of a bistable Braille dot. (a)
Geometry: A word is formed by assembling a series of braille cells, each comprising 3× 2
dots. “EPFL" is shown as an example. (b) Fabrication: A bistable shell is fabricated by
sandwiching a circular h-MRE plate between two radially pre-stretched boundary annuli.
This pre-stretch is then released to buckle the plate into a shell. (c) Writing phase: an
external magnetic field, Ba, sets each shell in one of its two stable states, either ON
(bump) or OFF (dimple). (d) Reading phase: an index finger applies an indentation force,
F on each dot.

symbols (e.g., letters, numbers, and punctuation) into arrays of cells, each comprising a
3×2 matrix of dots. Each dot can independently be raised or flat, and words are then
formed by assembling a series of such cells. Braille users typically read by tracing their
fingertips across rows of these cells, whose dimensions are optimized to allow the index
finger pad to cover the entire cell and discern each dot.

The specifications for braille cells and dots are standardized by the World Blind Union [333],
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and the relevant parameters are required to lie within the following ranges: ℓd ∈
[2.3, 2.5]mm for the dot-to-dot spacing, ℓc ∈ [6, 7]mm for the distance between two
distinct cells, and ℓl ∈ [10, 11]mm for the distance between two lines of words. Fur-
thermore, each raised dot must feature a quasi-hemispherical cap with base diameter
D ∈ [1.4, 1.6]mm and height h ∈ [0.4, 0.9]mm [356]. Finally, to sustain the normal
indentation force applied by the index finger during reading, each dot must be able to
withstand a minimum blocking force of F > 50 mN [333].

Our objective is to design a programmable braille dot that adheres to the aforementioned
braille specification. We consider a bistable shell clamped at its base (Figure 6.1a, b). The
analysis is segmented into two phases: “Writing” (Figure 6.1c) and “Reading” (Figure 6.1d).
For writing, the ON-OFF switching is done via magnetic actuation. Concurrently with
this phase, we temporarily depressurize the shell to lower the energy barrier required
for buckling. By contrast, during the reading phase, the shell is pressurized to increase
its rigidity. We seek to identify the key design variables and protocols required for the
fabrication and operation of our system. Next, we describe the geometric considerations
and the two operational phases.

The geometry of our model braille-dot (Figure 6.1a) comprises a shell of diameter
D=1.45mm and height h=0.48mm, in accordance with braille standards. This shell is
fabricated by the buckling of a radially compressed circular plate (thickness t) made
of h-MRE [232] when the in-plane pre-stretch, λ, of two boundary annuli is released
(Figure 6.1b), as detailed in Section 6.3. One first goal of the design is to select appropriate
values of t and λ that, upon buckling of the plate, yield a shell with the target value of h,
satisfying braille requirements.

For the writing phase (Figure 6.1c), we will characterize the snap buckling of the shells
under loading by a uniform magnetic field, Ba

c , to switch between their two stable
states. We assume that each dot, which would eventually form the 3×2 cell, can be
actuated independently. For the present study, we restrict our focus to the operation of
a single dot. The goal of this design phase is to identify the critical magnetic field, Ba

c ,
required for snapping under the limitation set by upper-bound of the linear regime of
the B-H hysteresis curve for the h-MRE material [32] (additional details are provided
in Section 6.3). Subsequently, we aim to determine the corresponding geometric and
fabrication parameters, t, and λ, that yield the desired snap-buckling characteristics.

For the reading phase (Figure 6.1d), the braille dots must be designed such that the
user can tactilely discern the dots without altering their state. The challenge lies in
ensuring that a dot in the ON state can sustain the indentation force mentioned above
(F ≥ 50mN) without snapping to the OFF state, thereby inadvertently erasing the
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braille pattern. This design phase targets the determination of optimal geometric and
fabrication parameters for the dot, specifically its thickness t and pre-stretch λ, to meet
this requirement.

The constraints associated with the fabrication protocol and the ensuing dot geometry,
coupled with the requirements for the reading and writing phases, underscore the intricacies
involved with designing our braille dot. We aim to identify the feasible design parameter
space of the system (specifically, t and λ) that satisfies the constraints on h, F , and Ba

c .
This design exploration will be performed solely using FEM simulations, which will be
initially validated against experiments in a scaled-up system.

6.3 Experiments with the Scaled-up System

In this Section, we detail the fabrication protocol, geometric characterization, and testing
(writing and reading phases) for the experiments on our scaled-up model system. The data
obtained from these experiments serve to validate the FEM simulations in Section 6.5.

Fabrication: We have followed an established experimental procedure to prepare the
h-MRE material used to fabricate our specimens [233, 283, 232]. First, we mixed
Vinylpolysiloxane (VPS-32, Elite Double, Zhermack) with NdPrFeB particles (MQFP-
15-7-20065-089, Magnequench), with volume fraction cv=18.7%. Then, an automated
film applicator (ZAA 2300, Zehntner) spread the VPS-NdPrFeB mixture into a thin film,
which, upon curing, yielded a thin elastic plate. By modulating the gap height of the
film applicator, we fabricated 10 plates with thicknesses in the range t=[0.180, 1.080]mm,
measured using an optical microscope (VHX-950F, Keyence). Post-curing, we cut eight
circular plates (Figure 6.2a) with diameters in the range Dp=[25, 60]mm, in increments
of 5 mm.

Magnetization: Various steps are involved in the magnetization of the magnetic plate, as
illustrated in the schematic diagrams in Figure 6.2(a)-(d). The cut circular h-MRE plate
of diameter Dp from the fabricated plate (Figure 6.2a) does not possess any magnetic
properties. Therefore, to magnetize the plate, we folded it symmetrically into a semicircle
along x-axis (Figure 6.2b) and then into a quarter-circle along y-axis (Figure 6.2c). Third,
we placed the folded quarter-circle plate in the impulse magnetizer (IM-K-010020-A, flux
density ≈ 4.4T, Magnet-Physik Dr. Steingroever GmbH) at an angle of α = 45◦ with
respect to the positive y axis, aligned with the edge of the quarter circle (Figure 6.2d).
The magnetizer generates a magnetic field of strength B, inducing a permanent magnetic
dipole in the NdPrFeB particles. Assuming a uniform particle dispersion within the
polymer matrix, the magnetization magnitude computed from the volume average of
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the total magnetic moment of the individual particles is M = µ0
−1Br =134.4 kAm−1,

where Br is the residual magnetic flux density and µ0 the relative permeability of air.
After unfolding, the magnetization pattern of the circular plate is four-fold symmetric
(Figure 6.2e). In each of the plate’s four quarters, k = {1, 2, 3, 4}, the magnetization is
expected to be M ≈ M n̂k, pointing along the unit vector:

n̂k = − cos (α+ (k − 1)π/2) êx − sin (α+ (k − 1)π/2) êy, (6.1)

where α = 45◦ is the orientation of the folded plate in the magnetizer (see Figure 6.2d).

Empirically, we found that our chosen magnetization profile is more effective in inducing
snap buckling than simpler patterns (e.g., uniform magnetization parallel or perpendicular
to the plate mid-surface). Our choice aligns with the anti-symmetric profile selected in
recent snap-buckling studies of h-MRE beams [283, 243]. We also acknowledge that our
choice of the magnetization profile is motivated by fabrication simplicity. However, we
recognize the need to conduct a more systematic exploration of other profiles [357] in
future research.

Having fabricated and magnetized the plates, we proceeded to produce shallow shells
through radial compression of the said plates. First, we fabricated two VPS-32 annuli
to act as the clamped boundary of the shell, each with inner and outer diameters of
D = Dp/2 and 2D = Dp, respectively (Figure 6.2f). Next, we stretched these annuli using
two rigid cylinders of diameter D+λD (Figure 6.2g), resulting in the radial pre-stretch of
λ = ∆D/D (Figure 6.2g). The plate was then sandwiched and bonded between the annuli
using the same VPS material. After curing, the cylinders were removed, thereby relaxing
the pre-stretched. Consequently, the plate buckled out-of-plane due to the in-plane (x-y)
radial compression, yielding a shell, the braille dot (Figure 6.2h). The height, h, of
this newly formed shell was measured using an optical profilometer (VR-3200, Keyence
Corporation).

For the writing experiments (Figure 6.2i), the sample designated for testing was placed
within the region of the uniform magnetic field produced by a set of Helmholtz coils [104,
233, 283]. The sample was clamped between two acrylic (rigid) plates. Gravitational effects
were minimized by orienting the shell’s snapping direction (along ±ẑ) perpendicularly to
gravity (-gŷ). We determined the critical magnetic field Ba

c needed for snap-buckling,
thereby writing the desired state of the braille dot. To do so, we gradually increased the
magnetic flux density by increasing the current I in the coils, in increments of 0.05 A over
20 s intervals, until snap-through occurred [283].

For the reading experiments, we used the apparatus shown in Figure 6.2(j). The specimen
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Figure 6.2: Fabrication and experimental apparatus for the scaled-up model. (a)
A circular magnetic plate (diameter of Dp) is first (b) folded along the x-axis and then (c)
along the y-axis to form a quarter-circle shape. (d) The folded plate is inserted into the
pulse magnetizer at an angle α = 45◦. The magnetizer generates a strong axial magnetic
field, B, which induces a magnetic moment, m. (e) The circular h-MRE plate was
magnetized while folded, yielding the magnetization profile described by Equation (6.1).
(f) Two VPS annuli serve to constrain the plate boundary. (g) Cylinders pre-stretched
the annuli, which sandwich the h-MRE plate. (h) Upon release of the pre-stretch, the
plate buckles to form a shell. (i) Photograph of the apparatus for the writing experiments.
The shell is placed between two Helmholtz coils and loaded by a uniform magnetic field
along ẑ. (j) Photograph of the apparatus for the reading experiments; a plate indents the
shell, and the blocking force F is measured.
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was mounted on an acrylic plate containing a hole to equalize the in-out differential
pressure. The shell equator was clamped using its thick boundary annuli and mounted
onto an acrylic plate using silicone glue. For the intender, we used a rigid acrylic disk of
diameter Dind = 0.8D, smaller than the inner diameter (D) of the thick annular boundary
to prevent contact with the perimeter during indentation. The indentation displacement
was imposed at a constant velocity, 0.06mms−1. The reaction force, f , exerted on the
indenter was measured by a load cell (2530-5N, Instron). We define the blocking force, F ,
as the maximum of f , beyond which the shell undergoes snap-through buckling, altering
the state of the dot.

6.4 Finite Element Modeling Simulations

We conducted the FEM simulations using the commercial package ABAQUS/Standard,
undertaking two distinct series of simulations with the same protocol but different
parameters. First, we worked with the same parameters as the scaled-up model system
described in Section 6.3. The objective was to validate the FEM simulations against
experiments. For the second series of simulations, we shifted to the realistic dimensions
of the braille dots, which will be discussed in Section 6.6. In this case, the plate thickness
was varied in the range t=[0.025, 0.325]mm (increments of 0.025 mm), and the fabrication
pre-stretch of the magnetic plate in the range λ = [0.05− 0.2] (increments of 0.025).

The initially flat, circular magnetic plate was modeled as a three-dimensional solid body.
Geometric nonlinearities were accounted for throughout the analysis. Similarly to the
experiments, the plate was segmented into four quadrants, each with a magnetization
oriented along nk (cf Section 6.3, Equation (6.1) and Figure 6.2e). The magnetic plate
was discretized using the user-defined 8-node brick element proposed by Zhao et al. [32]
for the modeling of hard-magnetic deformable solids under a uniform magnetic field. We
conducted a convergence study to determine the appropriate level of mesh discretization,
resulting in 6 elements in the thickness direction, 60 elements along the diameter, and 200
elements circumstantially. Mechanical loads, both contact (indentation) and distributed
(pressure), were applied via a dummy mesh of C3D8R solid elements sharing the same
nodes as the user elements. The material was assumed to be an incompressible (ν ≈ 0.5)
Neo-Hookean solid with a bulk modulus 100 times higher than its shear modulus (G = E/3)
and a Young’s modulus of E = 1.76 MPa.

In both the scaled-up and real-scale simulations, we explored various combinations of the
parameters (t, D, λ) to investigate (1) geometry of the fabricated dot (Figure 6.1b), (2)
writing phase (Figure 6.1c), and (3) reading phase (Figure 6.1d), as specified next.

145



Chapter 6 Snapping of Bistable Magnetic Shells for Braille Reader Design

(1) Geometry: To account for the possible emergence of higher-order modes during plate
buckling, we simulated the entire magnetized plate without any symmetry assumptions
(cf. Section 6.3). In order to break the symmetry on the x− y plane and induce buckling,
a small out-of-plane displacement (0.01t) was applied as an initial perturbation. Then, we
specified the Dirichlet boundary condition on each boundary node and applied compression
by imposing radially inward-directed displacements toward the center of the plate, a
process that led to the formation of the shell. The extent of compression was set through
λ.

(2) Writing: For the writing-phase simulations, having set the dot geometry in step
(1), we subjected the raised dot (ON state) to a uniform external magnetic field, Ba =

1T. The field was applied with a slight misalignment of 1◦ about the -ẑ direction to
trigger asymmetrical buckling modes, thus providing a closer approximation of actual
experimental conditions. The magnitude of the magnetic field was then increased linearly
in the range of [0, 1] T. The magnetic field magnitude, Ba

c , needed to snap the dot to
the second stable state, was determined from the magnetic-field increment at which the
displacement of the shell pole exhibited a sudden jump.

(3) Reading: For the reading-phase simulations, the indentation was simulated using a
rigid circular plate indenter that exerted controlled displacements and discretized using
rigid elements. The contact between the indenter and the shell was assumed to be hard
and frictionless, thereby preventing surface penetration and sliding. To quantify the
mechanical force needed to induce snapping, the dots were subjected to a downward
indentation load (along −ẑ) until reversal occurred, and the blocking (maximum) force,
F , was recorded.

(4) Pneumatic loading: When simulating the real-scale braille dots, we also considered
a constant pneumatic load, as will be discussed in Section 6.7. This pressure loading
served to widen the design space by stiffening the dot against snapping during the reading
phase (indentation) and reducing the energy barrier during the writing phase. For each
dot geometry, we first measured the critical pressure, Pcr, required to snap the shell on
its own, following the same procedure used to measure the critical magnetic field for
snapping [104, 258]. A constant positive (or negative) pressure difference, within the
range |∆P | ∈ [0, Pcr) (in increments of 1 kPa) was applied normally to the surface of the
shell before initiating the reading (or writing) simulation steps, respectively. Steps (2)
and (3) described above were repeated under this constant pneumatic loading. Finally,
the blocking force, F , and the critical magnetic field amplitude, Ba

c , were recorded for
each pair of parameters (∆P, t). For these simulations, we set the fabrication pre-stretch
to λ = 0.15.
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6.5 Validation of the FEM Simulations Against Experiments

We first validate the FEM simulations (technical details are provided in Section 6.4)
against experiments (see Section 6.3) on the scaled-up model system, considering the
results from the geometry characterization of the fabricated shells, as well as from the
reading and writing experiments.

During sample fabrication, the buckling of the plate, which yields a shell, may produce
undesirable wrinkling patterns [358]. To act as braille dots, ideal shells should be smooth
(i.e., free of these wrinkles). Toward identifying the design space for these ideal shells,
Figure 6.3(a) presents a phase diagram of the thickness-diameter parameter space (t, D)
for representative shells fabricated with a pre-stretch of λ = 0.1 (see Section 6.3, and 6.4).
There is excellent agreement between experiments (crosses) and FEM (circles), serving
as a first step in validating the simulations. Wrinkling is observed for higher values of
the slenderness ratio D/t. For the chosen pre-stretch (λ = 0.1), the empirical phase
boundary between ideal and wrinkled shells is t ≈ 0.02D (dashed line). First, focusing
on the geometry characterization, Figure 6.3(b) plots the normalized height, h/t, of the
smooth shells (blue region in Figure 6.3a) versus D/t. The FEM simulations (lines) and
experimental data (symbols) are obtained with a fabrication pre-stretch of λ = 0.1 and
thickness in the range t ∈ [0.18, 1.08]mm (see Section 6.3). The data collapses onto a
single curve, with excellent agreement between experiments and FEM, thereby validating
the FEM for the shell fabrication. Moreover, the inset of Figure 6.3(b) shows that the
relation between h/t and D/t is a power-law with an exponent of ≈ 2/3 [359, 1].

Toward validating the writing-phase simulations, in Figure 6.3(c), we plot the normalized
magnetic field required for snapping, Ba

cB
r/(Eµ0), as a function of D/t, where E is

Young’s modulus, µ0 is relative permeability of air, and Br is the residual magnetic flux
density. Naturally, increasingly slender shells require a lower magnetic field for snapping,
and the data collapse into a single curve, exhibiting a power law with an exponent ≈ −1.
This scaling originates from the balance between magnetic and elastic energies investigated
in our previous work [104, 247], which suggests Ba

cB
r/(Eµ0) ∼ (D/t)−1; a prediction in

agreement with our present data (inset of Figure 6.3c).

In Figure 6.3(d), we present the results for the reading, plotting the normalized blocking
force, FD/(Et3) (required to snap the shell), as a function of D/t. Again the experiments
(symbols) are in excellent agreement with the FEM (lines). The data is consistent
with a power law with exponent ≈ 1.5, which can be rationalized using well-established
results for the indentation of a spherical shell by a flat plate, causing mirror buckling
(to produce an inverted cap) of the shell [77, 266, 2, 360]. Balancing the stretching and
bending energies of the shell, the dimensionless indentation force is expected to scale as
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Figure 6.3: Validation of FEM simulations against the scaled-up experiments.
(a) Phase diagram in the (t, D) parameter space. The experiments and simulations
correspond to the cross and circle symbols, respectively. The smooth and wrinkled shells
are represented by the blue and red symbols, respectively; the empirical phase boundary
between the two is represented by the dashed line. The normalized (b) shell height, h/t,
(c) critical magnetic field, Ba

cB
r/(Eµ0), and (d) blocking force, FD/(Et3) are plotted

as functions of the normalized base diameter of the shell, D/t, for 10 different values of
thickness, t. The error bars of the experimental data represent the standard deviation
of 6 independent measurements on the same specimen. The different values of t are
color-coded (see adjacent color bar). The solid lines and data symbols correspond to FEM
and experiments, respectively. The insets show the log-log plots of the data. Throughout,
the fabrication pre-stretch is λ = 0.1.

FD/(Et3) ∼ (D/t)3/2, a prediction that is consistent in our data (inset of Figure 6.3d).

For completeness, we present the dimensional version of the data presented in Figure 6.3
for the geometry characterization (Figure 6.4a,d), and both the writing (Figure 6.4b,e)
and reading (Figure 6.4c,f) operational phases of the scaled-up dots. In Figure 6.4(a, b, c),
we plot the height h, the magnetic snapping load Ba

c , and the maximum indentation force,
F as a function of the thickness t, respectively. In Figure 6.4(d, e, f), we plot the h, Ba

c ,
F as a function of the diameter of the dot D, respectively. The diameter and thickness
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are color-coded in Figure 6.4(a, b, c), and Figure 6.4(d, e, f), respectively.
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Figure 6.4: FEM versus experiments data (dimensional): (a) Dot height, h, (b)
magnetic field, Ba

c , and (c) indentation force, F , as a function of the thickness, t, for
the diameter range of D∈[12.5, 30]mm in increments of 2.5mm. (d) Dot height, h, (e)
magnetic field, Ba

c , and (f) indentation force, F , as a function of the diameter, D, for the
thickness range of t = {0.18, 0.25, 0.29, 0.35, 0.44, 0.56, 0.66, 0.77, 0.93, 1.08}mm. The
solid lines represent the FEM results, and the symbols correspond to the experimental
data. The error bars of the experimental data correspond to the standard deviation of
different measurements on the same specimen.

Figure 6.4(a) and (d) show the height of the dot as a function of thickness t and D,
respectively. Increasing the thickness and diameter results in an increase in the dot height.
When the diameter increases for a specific thickness value, the change in height becomes
more significant compared to the increase in thickness. The FEM and experimental
results are in good agreement, thus verifying the FEM framework for geometry.

In Figure 6.4(b), and (e), we plot the critical magnetic field for snapping, Ba
c , as a function

of t, and D, respectively. We observed that as the thickness of the dot increases, so does
the magnetic snapping load. However, increasing the diameter for each thickness has
the opposite effect, as it leads to a decrease in the snapping load, which becomes more
dominant in larger thicknesses. This is due to the fact that the slenderness ratio D/t

decreases. The FEM and experimental data match in this operational phase of the design
as well.

In Figure 6.4(c) and (f), which correspond to the reading phase, we plot the indentation
force, F , is plotted as a function of t, and D, respectively. We find that increasing the
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thickness has a significant impact on the increase in force, F . However, increasing the
diameter only results in a slight increase in force. This is opposite to the relationship
between D, t, and height. Again, the FEM and experiments are in excellent agreement.

Overall, we found excellent agreement between the experiments and the FEM simulations
of the scaled-up model system for the shell-fabrication protocol and their geometric
characterization, as well as for the reading and writing phases.

6.6 Design of Braille Dots at the Real Scale

We shift our attention from the scaled-up model system to investigate the design of the
real-scale braille dots. Leveraging the FEM simulations validated above and following
the protocol details in Section 6.4, we explore the design space for braille dots and
determine their optimal fabrication and operational conditions. Each dot must conform
to the specifications laid out in Section 6.6. Our objective is to determine the optimal
ranges for the key geometrical parameters (thickness, t, and fabrication pre-stretch, λ)
that simultaneously meet the acceptable design constraints for dot height (obtained
from fabrication) and meet feasible operational conditions for the writing phase (critical
magnetic field for actuation), and reading phase (blocking force). Finally, we will identify
the intersecting region of these three design sub-spaces.

First, we characterize the geometry of the dots obtained from the fabrication step of the
simulations. In Figure 6.5(a), we plot the dot height, h, versus thickness, t, for different
levels of λ. The color map represents the various levels of λ, whose range is specified in
Section 6.4. The resulting h(t) curves exhibit a non-monotonic trend, with overall values
(including the maximum of the curves) that increase with λ. This non-monotonic behavior
arises because, for either very thick or thin plates, the pre-stretch release (compression)
leads to planar (radial) contraction rather than increasing the out-of-plane deformation of
the buckled plate (shell). The horizontal dashed line represents the minimum dot height,
h ≥ 0.48mm, required by braille specifications. Thus, to satisfy this requirement, we find
that the feasible range for the fabrication pre-stretch is λ ≥ 0.15, and the viable thickness
range is t ∈ [0.05, 0.325]mm.

Next, we consider the writing phase, which enables the braille dot (magnetic shell) to
switch between its two stable stages. In Figure 6.5(b), we plot the critical amplitude of the
magnetic field, Ba

c , required to snap the dot as a function of t, for different fabrication pre-
stretches. We observe that, Ba

c increases with λ (and thus for taller dots; cf. Figure 6.5a),
also with a non-monotonic dependence on t. To prevent the demagnetization of the shell
due to high magnetic fields [32], we established the upper limit Ba

c ≤500 mT, represented
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Figure 6.5: Design of the real-scale braille dot. The (a) dot height, h, (b) critical
magnetic field, Ba

c , and (c) blocking force, F , are all plotted versus thickness, t, at different
levels of pre-stretching, λ=[0.05, 0.2] (increments of 0.05). The horizontal dashed lines
represent the design constraints of the corresponding quantities. (d) The phase diagram
in the (Ba

c , F ) parameter space, with the desired shaded region. (e) The phase diagram
in the (t, λ) parameter space for the geometry step and reading and writing phases, with
the feasible design space indicated by the rectangle region. All results were obtained from
FEM simulations.

by the horizontal dashed line in Figure 6.5b). Consequently, for actuation within this
magnetic-field limit, the allowed parameters are in the ranges t ∈ [0.025, 0.325]mm, and
λ ∈ [0.05, 0.175].

Finally, we turn our attention to the reading phase. In Figure 6.5(c), we plot the blocking
force, F , as a function of t, using the same ranges of the other parameters which are
specified in Section 6.4. Increasing λ leads to an overall increase of the F (t) curves, much
like the writing phase, which is also non-monotonic. Combining these results with the
h(t) data in Figure 6.5(a) implies that taller dots require a higher indentation force for
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inversion, presumably due to their geometry-induced rigidity [41, 361]. According to
braille specifications, the blocking force of the dot must be at least F ≥ 50mN (horizontal
dashed line in Figure 6.5c), which is limited by the potential snapping of the shell due to
the touch by a fingertip. Under this constraint, we determine that the ranges of feasible
parameters for this reading phase are t ∈ [0.075, 0.325]mm, and λ ≥ 0.125.

Combining the above results for the viable ranges of the parameter space (t, λ) dictated
by the geometry characterization, writing, and reading phases, we present the intersection
of these three design phases in Figure 6.5(d). At each level of λ (colored symbols), we
plot Ba

c as a function of F for all the thickness values. An overall correlation emerges
between Ba

c and F . In the plot, the design constraints on Ba
c and F mentioned above

are represented by the shaded region, which only intersects with a few of the explored
designs (λ ≥ 0.125). The design constraints require a sufficiently high blocking force
while ensuring a sufficiently low magnetic field, a trade-off that is challenging to achieve
in our system.

In Figure 6.5(e), we present an alternative version of the overlap of all of the design
constraints explored above, now in the final target design parameter space (t, λ). Each
separate shaded/textured region relates to the individual viable bounds obtained above for
the geometric characterization, writing, and reading phases. Meeting all the constraints
and ensuring braille standards requires an overlap of these three regions; i.e., the domain
enclosed by the dashed rectangle with t ∈ [0.1, 0.325]mm and λ ∈ [0.15, 0.175].

6.7 Design Improvement Using a Pneumatic System

The feasible design space identified from the results in the previous section is rather
limited, making a flexible fabrication process challenging. The design requires the shell
to be able to snap during the writing phase yet remain resistant to snapping during the
reading phase. To address these conflicting limitations without altering the geometry, we
propose the incorporation of an additional pneumatic loading system. This pneumatic
component modulates the energy barrier for buckling in both the reading and writing
phases; the pressure difference, ∆P , between the inside and outside of the dot is positive
for the reading phase and negative for the writing phase. The implementation details
of this pneumatic loading in the FEM simulations are provided in Section 6.4. Hereon,
we focus on shells fabricated with a pre-stretch of λ = 0.15, which was deemed practical
from the parameter exploration presented above.

For the writing phase, the dot is depressurized to reduce the critical magnetic field Ba
c

required for snapping, thereby facilitating the switching of the dot. In Figure 6.6(a), we
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plot Ba
c versus ∆P , for different values of t. The results show that applying pneumatic

loading substantially reduces the magnetic field Ba
c . The Ba

c (∆P ) curves are linear,
with a slope that varies with t. For example, depending on t, a dot depressurized by
∆P ≲ −60 kPa can lower the critical magnetic field for snapping by as much as 50%,
compared to the zero-pressure case. The horizontal dashed line represents the maximum
acceptable magnetic field.
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Figure 6.6: Improved design of real-scale braille dots with pneumatic system.
(a) Blocking force, F , and (b) magnetic field, Ba

c , plotted as a function of the pressure
difference, ∆P . The thickness was varied in the range t = [0.075− 0.3]mm (in increments
of 0.025mm) for a specific pre-stretch λ = 0.15. The horizontal dashed lines represent
the limiting bounds imposed by the braille standards. (c) The phase diagram in the (Ba

c ,
F ) parameter space with the desired regions of viable parameters (shaded region), for
different levels of pressure difference, 0 < |∆P | < 120 kPa. All results were obtained from
FEM simulations.

For the reading phase, in contrast to the writing phase, the dot is pressurized to enhance
the blocking force, F , and better resist indentation. The dot is first pressurized and then
loaded at its pole. In Figure 6.6(b), we present the dependence of the blocking force F on
the applied ∆P for different thickness values, t (see adjacent color bar). In the explored
range of parameters, the F (∆P ) response is linear, as expected from previous work [41,
361], and no buckling occurs. For example, the resistance of the dot to indentation force
can be increased by up to 100% (at t = 0.2mm) compared to the zero-pressure case. We
find that all curves are now well above the 50mN limit imposed by braille standards.

Finally, in Figure 6.6(c), we combine data from both phases with pneumatic loading
(Figure 6.6a and 6.6b) and plot Ba

c versus F . The shaded region indicates the viable
range of parameter space; with a pneumatic load of |∆P | ≥ 40 kPa, we achieve successful
reading and writing operations across the full thickness range. The limit values of |∆P |
could be further tuned by varying the fabrication pre-stretch λ, but we leave a more
systematic exploration for future work. Our results demonstrate that by using this
additional pneumatic component, the design space of the system is significantly expanded
compared to the zero-pressure case explored in Section 6.6.
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6.8 Expected Challenges to Fabricate at-Scale Braille Dots

The focus of the present mechanics-based study is on proposing a design concept for
a switchable braille dot and exploring its feasible parameter space using predictive
computational tools. Still, in this section, we discuss some potential challenges and
limitations expected to be encountered during the miniaturization and fabrication of
at-scale dots for actual implementation in concrete applications.

Scaling down the proposed design concept, especially in terms of fabrication, should
introduce a distinct set of challenges than those encountered in our model centimeter-
scale experiments, whose purpose was to validate the FEM simulations. These expected
challenges include the details of the actual fabrication processes, material properties, and
actuation mechanisms within smaller dimensions. In terms of fabrication, achieving the
level of precision desired for the dot fabrication, based on the release of stretch in the
pre-stretched plate, may be difficult to implement at the sub-millimeter scale, and the
miniaturized components may require specialized manufacturing processes. Furthermore,
given that the size of the magnetic particle we used in the fabrication of the MRE material
was ≈ 5µm, achieving at-scale dots with homogeneous thickness may require the usage of
magnetic nanoparticles.

In addition, generating the required magnetic field and enabling actuation of the braille
dot at the real scale will call for the development of custom-designed electromagnetic coils.
Even if, in practice, we believe that this will be a non-trivial task, in the next section, we
demonstrate that, in principle, it is feasible. Specifically, we have performed simulations
using COMSOL of the magnetic field generated by an electromagnet (solenoid) under the
design constraints imposed by the actual scale of a braille dot. Our results show that it
is reasonable to expect to generate magnetic fields of the magnitude of Bmax ≈ 200mT,
which is within the range required for the operation of the braille dot (cf. Figure 6.6).
Actual practical implementations of our proposed design will likely have to tackle other
concrete, practical challenges, including the potential heterogeneity of the magnetic field,
that go beyond the scope of the present study.

6.9 Designing a Solenoid for a Braille Reader

In this section, we propose a solenoid design to generate the magnetic field during the
Writing phase and optimize the magnetic field in the volume beneath each braille dot. We
first specify the wiring of the solenoid, which determines the multi-turn solenoid density
of the current. Next, we calculate the diameter of the electromagnet and the dimensions
of the conducting section, which forms the solenoid core.
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In Fig. 6.7(a), we show the schematic of a solenoid with a ferromagnetic core and the
cross-sectional view of the coil outside. The cylindrical core has a diameter of di and a
length of L. The coil has a diameter of do after winding N turns with wire of diameter ρ.
The current I passes through the coil to generate the magnetic field.

Ferromagnetic core
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Figure 6.7: Solenoid design (a) Schematic diagram of a ferromagnetic-cored solenoid,
composed of a multi-turn coil and a cylindrical ferromagnetic core with a diameter of
di and a length of L. The core is wound with N turns of copper wire with a diameter
of ρ, resulting in a solenoid with an outer diameter of do. (Inset) The wiring compacity
is represented as a face-centered cubic in 2D. (b) The computed field displays the
vector(arrow) and magnitude (color code) of the magnetic flux density Ba

c generated by
the solenoid under a current of I= 0.182 A. Due to its symmetry, the field is depicted in
the x–z plane (y=0).

To optimize the intensity and model the wiring geometry, the core is uniformly wired with
a triangular lattice circle arrangement [362, 363]. Circle packing density is defined as the
ratio of the cross-sectional area taken up the wires to the available space. The theoretical
maximum packing density for the lattice arrangement of the wires, as shown in the inset
of Fig. 6.7, is equal to Λ = π/

√
12, and the optimal number of turns is calculated as [362,
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363]

Nopt =
(do − di)LΛ

s
(6.2)

where s = πρ2 is the cross-section area of a wire.

We consider the outer diameter of the solenoid, do, to be the limiting design factor due
to the miniature size of the braille dots and the necessary dot-dot distancing. Therefore,
we set do = 2.5 mm at the beginning of our design process. Additionally, we limited
the thickness of the device by setting the solenoid’s length to L = 10 mm. The inner
diameter of the solenoid, di, was also determined to be 1 mm to provide sufficient space
for winding the ferromagnetic core. Finally, the trade-off between the wire cross-section
and the maximum current capacity of the wire, as defined by the American Wire Gauge
(AWG) [364] table, determines the maximum magnetic field that can be generated.
For this proposal design, we considered AWG 29 wire, which has a maximum current
capacity of I = 0.182 A. To simulate the Solenoid core in COMSOL, we used a built-in
Mumetal material (an iron alloy with high relative permeability) due to its high relative
permeability.

In Figure 6.7(b), we present a simulation of the magnetic flux generated by the solenoid
while taking into account the design parameters mentioned earlier. These simulations
were conducted using the magnetic field interface of COMSOL, based on Ampere’s Law.
The electromagnet functions as a magnetic dipole, and the amplitude of its flux is directly
controlled by the current intensity. The polarity of the magnetic field is indicated by the
direction of the red arrow, which represents the direction of the induced magnetic dipole.
According to the Ampere theorem, the analytical expression for the maximum magnetic
flux on the axis [363, 362] can be written as

Bmax = µ0
j(do − di)

2
(

L√
L2 + (do+di)2

4

) (6.3)

where j = ΛI/s is the current density. According to the FEM simulations, the maximum
magnetic field of Bmax = 213 mT was generated with the current limit level of I = 0.182

A, which gives us a good range of magnetic field for the required range specified in
Section 6.7. There is still room for optimization of the proposed design, which is beyond
the scope of the current manuscript. The advantage of this electromagnet over the
permanent magnet is that the magnetic field can be rapidly switched over a wide range
of values by controlling the electric current I.
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6.10 Summary and Outlook

We have proposed a new design concept for a reversibly switchable braille dot as a building
block for refreshable braille displays. The proposed mechanism uses bistable magnetic
shells that can be snapped on-demand under an external magnetic field (writing phase)
while resisting buckling due to the indentation by a fingertip (reading phase). An additional
pressure-loading component expands the available design space without modifying the
dot geometry. First, we performed experiments on a scaled-up model system to validate
FEM simulations. These simulations were then leveraged to systematically explore the
design space at realistic scales while meeting braille standards (geometry and tactile
sensitivity) with reasonable magnetic field strengths and temporary pneumatic loading.
Our design boasts several advantages over existing solutions, including bistability for
self-stabilization, as well as fast state-switching and pattern refreshment. This switching
can be triggered by a transient magnetic field rather than a continuous energy input.
Finally, a constant pneumatic input for the whole actuator enables the tuning of the
power input of the system.

While our design introduces promising advances, it is not without potential limitations.
Its complexity calls for advanced manufacturing and assembly techniques. Miniaturized
solenoids to generate the required magnetic field under each dot would need to be
developed. Furthermore, incorporating a hybrid magnetic and pneumatic system could
pose challenges in terms of size and power, particularly for portable or battery-operated
devices. Despite these potential obstacles, we anticipate that future research and physical
implementation of this concept could make it possible to build a new class of compact,
user-friendly, and cost-effective braille readers.
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7 Conclusion and Perspectives

In this final chapter, we begin by presenting a summary of our main findings in Section 7.1.
In Section 7.2, we outline several areas of ongoing research that build up from the research
methods and results established in the present thesis, particularly those discussed in
Chapter 4. Lastly, in Section 7.3, we highlight potential directions for future research.

7.1 Summary of Findings

In this thesis, we have studied a series of research problems on the mechanics of slender
structures. Throughout, we combined experimental and numerical methods. As a starting
point for the research, we revisited the mechanics of thin spherical shells toward identifying
the key factors contributing to their imperfections-sensitive buckling instabilities. We
also investigated a non-destructive method to anticipate the stability landscape of shell
structures and critical loading conditions. We considered both simplified scenarios
with a single defect and more realistic situations with a large distribution of random
imperfections. In parallel to our study on the mechanics of shells, we also investigated
magneto-active structures, focusing on bistable beams and shells made from magneto-
rheological elastomers (MREs). The mechanical behavior of these slender magnetic
structures was investigated through a combination of experimental, numerical, and
analytical methods to gain insight into their response to various mechanical and magnetic
loading conditions. Specifically, we examined the various deformation modes and (snap)
buckling of slender magnetic beams and shells. Furthermore, we exploited the knowledge
of the instability of slender structures combined with active MREs under magnetic field
actuation for potential applications; we proposed the guidelines for designing a novel class
of braille readers. In this final project, we followed a perspective of harvesting mechanical
instabilities of shell structures as opportunities for functionality instead of the first route
for failure.
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In Chapter 1, in the first part, we introduced the motivation of the thesis and presented a
literature review of the state-of-the-art theoretical, numerical, and experimental analysis of
shell structures. First, we presented examples of shell structures found in nature and used
in engineering, with length scales ranging from microns to several hundred meters. Then,
we highlighted the importance of the imperfection sensitivity of shell buckling, causing
the actual measurement of the buckling pressure to be lower than the classic theoretical
predictions for the imperfection-free counterparts. We also presented an overview of the
existing literature on the non-destructive probing technique for spherical and cylindrical
shells. In practice, the imperfections are often unidentified and can be difficult to detect,
which begs for an alternative approach to assessing the stability of shells and categorizing
defects without destroying the structure. We saw that although, to date, there has been
considerable research on the non-destructive testing of cylindrical shells, it has remained
inconclusive whether probing techniques can serve as an effective way of assessing the
stability of spherical shells in a way that parallels some reported successes for cylindrical
shells. In the second part, we reviewed the literature on magneto-active structures made
of magneto-rheological elastomers (MREs). We considered and compared several models
of structures made of MREs. Further, we discussed the dimensional reduction from the
3D constitutive description of MREs to derive structural theories for beams, rods, plates,
and shells and how these models can be used to design functionality in magneto-active
slender structural elements. From all of this existing body of literature, we identified the
timely and relevant research niche for our work to provide much-needed physical insight
into the buckling instabilities of elastic and magneto-elastic beams and shell structures.

In Chapter 2, we used finite-element simulations to compare the buckling strength of
imperfect shells containing either a dimpled or a bumpy imperfection. We considered
defects with a standard Gaussian profile, enabling direct and detailed comparisons across
two cases. Our results evidence that the role of bumps in reducing the buckling strength
of the spherical shell is less dramatic than for dimples within the ranges of parameters
we explored. The sensitivity of the knockdown factor to the detailed defect geometry is
also less prominent in bumps. Overall, the knockdown factor of a bumpy shell is always
greater than that of a dimpled one for the same magnitude of geometric parameters.
In both cases, the knockdown factor is not always reduced when the defect is widened.
We discussed the differences in knockdown factor between dimpled and bumpy shells
using their mean and Gaussian curvature profiles. Our interpretation suggests that
regions of the imperfect shell with minimal mean curvature serve as weak points for the
onset of buckling. These minima occur at the defect core for dimpled shells and at the
defect rim for bumpy shells. For the latter, the core appears to have a stiffening effect,
which repels the post-buckling inverted caps, making the buckling mode asymmetric and
potentially multi-lobed. Our results demonstrate that different types of defects, even if
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characterized by similar geometric parameters can yield quantitatively and qualitatively
different reductions of buckling strength.

In Chapter 3, we investigated the behavior of imperfect spherical shells subjected to a
point indentation, with a focus on the effect of the indentation angle. We showed that
when the indentation is applied at the center of the defect under imposed displacement
conditions, the knockdown factor of the shell can be successfully identified by tracking
the peak of the force-displacement curve with increasing prescribed pressure level and
extrapolating to the point of maximum force reaching zero. In this case, the indentation
can be used to probe the stability of the shell non-destructively. However, as the probe is
moved away from the center of the defect beyond a critical angle, the probing test fails to
identify the buckling point prior to the collapse of the shell. We found that the localized
nature of indentation in spherical shells limits the interaction between the defect and the
probe. The characteristic length is associated with the indentation’s neighborhood in
both the linear and nonlinear regimes. Our findings demonstrate that point-load probing
can only be useful as a local strategy to assess the stability of spherical shells as long as
the indentation is performed in the close neighborhood of the defect.

In Chapter 4, we presented preliminary findings from our ongoing research on a proba-
bilistic investigation of the non-destructive poking method. We studied spherical shells
with randomly distributed imperfections, where the size of defects was chosen based on a
lognormal distribution. We explored two different scenarios: one involving the random
selection of the defect size and shell configuration and the other randomizing the location
of the indentation. In both cases, we analyzed statistics related to the knockdown factor
obtained through extrapolation and compared it with actual knockdown factor data. We
also looked into how the extrapolation method, defect size, and minimum separation angle
between defects influenced the results. Our observations highlighted that the accuracy of
the extrapolated results and the ability to predict the actual knockdown factor depended
strongly on the chosen extrapolation technique. This is primarily due to the significant
influence of various shell parameters and the uncertainties introduced by the extrapolation
technique. At the end of this chapter, we also provided recommendations for further
exploration of these results.

In Chapter 5, we turned to magneto-active systems, starting with an investigation of
the snapping behavior of bistable magneto-elastic beams under combined mechanical and
magnetic actuation. The study combined experiments, a reduced-order theoretical model,
and FEM simulations. We considered a pre-compressed (clamped-clamped) bistable
beam with different levels of end-to-end shortening. We started by characterizing the
beam’s load-displacement response, the critical poking force, the field strength at the
onset of snapping, and the effect of magnetic loading on snap buckling under the poking
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force. The Riks method was employed in the FEM simulations to analyze the snap
transition. We also developed a beam theory to rationalize the observed magneto-elastic
response. Precision experiments validated the theory and the FEM simulations. We
studied the snap buckling of the beam under three different loading cases: poking force
only, magnetic field only, and combined magnetic and mechanical loading. The first case
served as a pre-validation of the FEM simulations. In the second case, we triggered
snap buckling under a magnetic field for various end-to-end shortenings by designing the
magnetization profile of the beam. For small deformations, we found that the critical
magnetic field increased with the square root of the end-to-end shortening. The Riks
method was used to explore the equilibrium transition path, finding that increasing
the end-to-end shortening complicates the instability response, but the experimentally
observable solution corresponds to the lowest energy level. Finally, in the third case,
we examined how magnetic loading affects the poking-induced snapping of the bistable
beam. The critical poking force for snapping could be adjusted by the magnitude and
direction of the magnetic field, and our magnetic beam model captured these results. In
the small deformation limit, the critical poking force at the onset of snapping was linearly
proportional to the applied magnetic field with a slope and offset that we were able to
predict. In this limit, a master curve was uncovered that collapses the experimental and
FEM-computed data. Our study offers insight into the nonlinear magneto-elastic coupling
of bistable beams, providing a predictive design approach by exploiting snapping behavior
and stiffness-tuning capability.

In Chapter 6, we combined the mechanics of shells with magneto-elastic actuation
explored in the preceding chapters to propose a new design concept for a reversibly
switchable braille dot as a building block for refreshable braille displays. The proposed
mechanism utilized bistable magnetic shells that could be snapped on-demand under an
external magnetic field (writing phase) while resisting buckling due to the indentation
by a fingertip (reading phase). An additional pressure-loading component was applied
to expand the available design space without modifying the dot geometry. First, we
performed experiments on a scaled-up model system to validate FEM simulations. These
simulations were then leveraged to systematically explore the design space at realistic
scales while meeting braille standards (geometry and tactile sensitivity) with reasonable
magnetic field strengths and temporary pneumatic loading. Our design boasted several
advantages over existing solutions, including bistability for self-stabilization, as well as fast
state-switching and pattern refreshment. This switching could be triggered by a transient
magnetic field rather than a continuous energy input. Finally, a constant pneumatic input
for the whole actuator enabled the tuning of the power input of the system. While our
design introduces promising advances, it is not without potential limitations.
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7.2 Opportunities for Future Work

In the following, we provide an overview of ongoing collaborative research efforts related
to the main topics of this thesis. Then, we highlight possible extensions of the present
research, which the author is starting to explore in collaboration with other colleagues.
Finally, we identify some possible directions for future work that the current research has
opened up and are yet to be pursued.

Programming the buckling capacity: The study reported in Ref. [112] (see Ap-
pendixA) was performed in collaboration with the author of this thesis. In this project, we
analyzed the impact of defect-defect interactions on the buckling behavior of pressurized
hemispherical shells containing two dimpled imperfections. We found that, at a specific
defect separation determined by the critical buckling wavelength, the knockdown factor
of the shell with two defects reached its maximum level when compared to the case
of shells with a single defect. These results have sparked further interest in leveraging
defect-defect interactions to design spherical shells with programmable buckling capacity.
By strategically arranging the defects on the shell in a packing scheme that maintains
equal spacing, matching the critical buckling wavelength across the shell surface, we
hypothesize that the shell’s buckling capacity could be augmented. Additionally, the
knockdown factor could be fine-tuned by tailoring the design of the imperfections.

Using machine-learning tools to predict the buckling capacity of shell struc-
tures: In Chapters 1 and 2, we delved into the challenge of predicting the critical buckling
conditions of imperfect shells, a longstanding problem in the mechanics community. Over
the years, researchers have persistently sought to establish definitive correlations between
defect geometries, knockdown factors, and buckling capacities, employing theoretical,
numerical, and experimental methodologies in the field of mechanics. With the recent
resurgence of machine-learning (ML) tools and data-driven techniques, we anticipate that
the task of predicting the buckling capacity of shell structures based on their geome-
try could be made more streamlined and efficient. While data acquired through FEM
modeling may prove cumbersome in certain instances, we propose leveraging the Graph
Neural Network (GNN) algorithm to study shell buckling. This approach enables us to
simulate a range of scenarios, from single defect instances to those with multiple defects
distributed randomly across the shell; each represented as a graph. Subsequently, we
aim to establish a model that predicts the relationship between the test predictions (the
anticipated outcomes) and the test ground truth (the actual data derived from the FEM
simulations). In our pursuit, we have harnessed a substantial volume of data, including
approximately 10,000 simulations of knockdown factors for shells containing one, two, and
multiple random defects. We allocate 90% for the training of our model and reserve the
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remaining 10% for proof testing. This research plan is presently underway in collaboration
with the group of Prof. Miguel Bessa (Brown University).

Combing the non-destructive technique with machine learning tools: Following
our investigations into the non-destructive probing technique for spherical shells containing
either a single defect (cf. Chapter 3) or a random distribution of defects (cf. Chapter 4),
we have concluded that the predictions for the onset of buckling are significantly influenced
by the location of the indentation and the chosen extrapolation method. Therefore, these
predictions are rather unreliable. To address this issue, we propose the utilization of ML
techniques to effectively train the data for non-destructive prediction of the knockdown
factor. We expect that this approach should enable us to make accurate estimates even
beyond the range of the observed data. It is worth noting that extrapolation in ML
methods poses a challenge, as these models are inherently constrained by the data on
which they have been trained. These ML techniques may struggle to project accurately
into regions of the feature space that significantly deviate from their training set. To
overcome this limitation, we advocate for training our model using the complete set of
maximum force-pressure signals up until the buckling point. This comprehensive dataset
should empower our model to provide reliable predictions based on the indentation of
shell structures. We are currently executing this research plan, also in collaboration with
the group of Prof. Miguel Bessa (Brown University).

The effect of defect removal on the buckling of spherical shells with multiple
imperfections: Building upon the groundwork laid by Derveni et al. [118] in their study
of the probabilistic buckling of spherical shells with a range of imperfections, our current
endeavor, led by Fani Derveni, Florian Choquart, Dong Yan, in collaboration with the
author of this thesis, aims to systematically eliminate defects in order of severity within a
spherical shell characterized by a distribution of imperfections. Our goal is to quantify
how the knockdown factor is affected by this removal process and subsequently compare
these findings with those of the classical hypothesis. Additionally, we seek to reevaluate
and provide a rational interpretation of the seminal experiments conducted by Carlson et
al. [88], which noted an increase in knockdown factors with the progressive elimination of
severe defects.

7.3 Final Remarks

The study of the mechanics of slender structures has a rich and long history, from
the foundational works of Euler, Bernoulli, Kirchhoff, con Kármán, and many other
giants in the field. The recent decades have witnessed a resurgence of interest in this
field across engineering and physics disciplines. Slender structures, characterized by
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significantly smaller dimensions in one direction, exhibit distinct mechanical behaviors
that are rooted in nonlinear geometries, encompassing diverse phenomena, including
deformation, instability, and response to external loads. Notably, buckling, a sudden and
catastrophic failure due to compressive loads, is a critical focus influenced by geometry,
imperfections, material properties, and boundary conditions. Hence, comprehending
these factors is essential for designing and optimizing performance and reliability, from
nano-scale devices to large-scale engineering structures.

Within the vast and challenging umbrella of the research problematics described above,
the work performed through this thesis has focused on studying the instabilities in elastic
and magneto-elastic beams and shells, spanning from the buckling of imperfect shells to
the computational design of a programmable Braille reader. Through rigorous analyses
and experiments, we deepened our understanding of structural instabilities and proposed
their practical applications in assistive technology. This research sought to connect
fundamental concepts in mechanics with applied engineering, providing a basis for future
work in functional structures and assistive technologies for the visually impaired. As
we conclude this journey, it is our hope that these findings will inspire and spark future
research efforts that will further bridge the gap between the foundations of mechanics
and innovative engineering applications.

165





A Appendix: Defect-Defect Interac-
tions in Spherical Shells

This appendix comprises the manuscript authored by Fani Derveni, in collaboration with
the author of this thesis as cited in Ref.[112]: Fani Derveni, Arefeh Abbasi, and Pedro
M. Reis. "Defect-Defect Interactions in the Buckling of Imperfect Spherical
Shells." Journal of Applied Mechanics, 1-10 (2023). However, for the sake of brevity
and to prevent redundancy, the introduction of the paper has been omitted (refer to
Chapter 1, Section 1.2 for the relevant literature review).

We perform finite element simulations to study the impact of defect-defect interactions
on the pressure-induced buckling of thin, elastic, spherical shells containing two dimpled
imperfections. Throughout, we quantify the critical buckling pressure of these shells
using their knockdown factor. We examine cases featuring either identical or different
geometric defects and systematically explore the parameter space, including the angular
separation between the defects, their widths and amplitudes, and the radius-to-thickness
ratio of the shell. As the angular separation between the defects is increased, the buckling
strength initially decreases, then increases before reaching a plateau. Our primary finding
is that the onset of defect-defect interactions, as quantified by a characteristic length
scale associated with the onset of the plateau, is set by the critical buckling wavelength
reported in the classic shell-buckling literature. Beyond this threshold, within the plateau
regime, the buckling behavior of the shell is dictated by the largest defect.

This Appendix is organized as follows. First, in Section A.1, we define the problem at
hand and outline the research questions. Next, in Section A.2, we describe the FEM
simulations employed in our study. In Section A.3, we present a first set of results on the
influence of the radius-to-thickness ratio on the buckling behavior of shells containing two
defects. More detailed results for shells with identical defects are provided in Section A.4
and with different defects in Section A.5. Finally, in Section A.6, we summarize the
conclusions of our study and offer suggestions for future research directions.
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A.1 Problem Definition

We aim to study the buckling of imperfect hemispherical shells containing two dimpled
defects. The geometric properties of these two imperfections can be either identical or
different. Methodologically, we conduct FEM simulations, which have been previously
validated thoroughly against experiments [118]. First, we focus on how the angular
separation between the two defects affects the knockdown factor, characterizing how the
interaction regime is impacted by the width and amplitude of the imperfections. Then,
we compare the threshold of the defect-defect separation for the onset of interactions to
the theoretical prediction of the full wavelength of the classic critical buckling wavelength
for a spherical shell [113]. Our main finding is that the arc length associated with the
defect-defect interaction threshold depends directly on the radius-to-thickness ratio of
the shell, scaling linearly with this critical buckling wavelength.

We consider a thin, elastic, and hemispherical shell of radius, R, and thickness, h, as
illustrated in Figure A.1(a,b). The shell is clamped at the equator and contains two
geometric imperfections. In their undeformed configuration, each defect is shaped as a
Gaussian dimple, with the following radial deviation from the perfect spherical geometry:

ẘi(α) = −δie
−(α/αi)

2
, (A.1)

where the indices i = {1, 2} represent each of the two defects, α is the local angular
distance corresponding to each defect (measured from their centers), αi is the half-
angular width of the ith defect, and δi is its amplitude (maximum radial deviation of
the mid-surface of the shell). The global angular (zenith) coordinate, β, is defined from
the pole (β = 0), where the first defect (i = 1) is always located. The other defect
is at β2. Following conventional practice in shell-buckling studies [84, 257], the defect
amplitude of each defect is normalized as δi = δi/h, while the width is normalized as
λi = [12(1− ν2)]1/4 (R/h)1/2 αi. Here, ν is the Poisson’s ratio of the material. The shell
thickness, h, is kept constant throughout so that we focus only on geometric imperfections,
unlike previous work on through-thickness defects [253] or elasto-plastic dents [256].

First, we will analyze shells containing two identical defects: λ = λ1 = λ2 and δ = δ1 = δ2.
Subsequently, we will consider the scenario of two different defects; λ1 ̸= λ2 and/or
δ1 ̸= δ2. Since the i = 1 defect is always positioned at the shell pole (β = 0) and the
i = 2 defect is at β2, the angular separation (center-to-center) between the two defects
is φ(1,2) = β2. To facilitate the discussion on defect-defect interactions later in this
Appendix, it is important to define an alternative angular separation:

φ∗
(1,2) = φ(1,2) −m

α1 + α2√
2

, (A.2)
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Figure A.1: Reference geometry of the imperfect hemispherical shell with two
dimpled defects. (a) 2D schematic, defining all relevant geometric quantities. (b)
3D representation; the shade (see colorbar) represents the radial deviation ẘ from a
perfect sphere. (c,e) Geometric profiles of identical-defect shells for (c) fixed δ = 1.5,
φ(1,2) = 14◦ and varying λi, and (e) fixed δ = 1.5, λi = 1.0 and varying φ(1,2). (d,f)
Radial deflection, ẘ, versus zenith angle, β, for (d) constant φ(1,2) = 14◦ between (dI)
identical defects with various λi or (dII) different defects with various λ2. (f) Similar
data, with constant λi = 1, for (fI) identical defects with various φ(1,2) or (fII) different
defects with various φ(1,2). The representative cases for identical defects (dI, fI) have
δi = 1.5, and the different-defects cases (dII,fII) have δ1 = 1, δ2 = 1.5 and λ1 = 1. For
clarity, all profiles are offset in panels (c,d) by 1 mm, in (e) by 2 mm, and in (f) by
5.5 mm downwards. Also, the ẘ profiles in panels (d) are shown with an amplification
factor of 10.
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where m = {1, 2, 3} is an integer. The different values of m correspond to successively
excluding wider portions from the core of the defects when considering their angular
separation. A more comprehensive discussion on this point will be provided in Section A.4.
Finally, recalling Equation (A.1), the combined profile of a shell with two dimples is

ẘ(β, θ) = ẘ1(0, 0) + ẘ2(φ(1,2), θ2), (A.3)

where β and θ are the global zenith and azimuthal spherical (polar) coordinates, respec-
tively.

Figures A.1(c-f) depict representative examples of the mid-surface profile of a shell with
R/h = 100. These profiles are visualized within the great plane that intersects the
shell and passes through the centers of the two imperfections. Note that, given the
localized (dimpled) profile in Equation (A.3), the shells are not axisymmetric, and the
profiles shown in Figure A.1 are solely for illustration purposes. Figures A.1(c,e) show the
Cartesian profiles in the y-x great plane; for clarity, all profiles are offset vertically (see
caption for details). As an alternative representation, the ẘ(β) curves in Figures A.1(d,f)
correspond to the radial deviation from a perfect hemisphere as a function of the global
zenith angle, β ∈ [−60, 60]◦. These limiting angles are chosen as the maximum location
of the defects to avoid interactions with the equator boundary [118]. When their widths,
λi, are too large (Figures A.1c,d) or when their angular separation, φ(1,2), is too small
(Figures A.1e,f), the two defects can merge to form a single defect.

Following a similar approach as in previous studies [89, 102, 253, 258, 118], we depressurize
the clamped hemispherical shell until buckling occurs. Given the actual critical buckling
pressure of the imperfect shell, pmax, the knockdown factor is defined as κ = pmax/pc,
where pc is the classic prediction for the respective perfect shell geometry [82, 89]. Our
goal is to characterize how κ for a shell with the two-defect geometry specified above
depends on the following geometric parameters: δi, λi, φ(1,2), and R/h. We will give
particular attention to identifying the regimes where the interactions between the two
defects induce non-trivial changes in κ.

Our main contribution will be the definition of a threshold arc length for the separation
between the two defects, beyond which their interactions become negligible. We will
consider two versions of this separation-arclength threshold: lp = Rφp(1,2), defined from
center-to-center of the defect, and l∗p = Rφ∗

p(1,2), adjusted to account for edge effects of
the defects using φ∗

(1,2) introduced in Equation (A.2). We provide evidence that this
latter arclength, with m = 1, is set by

l∗p ≈ lc = 2π[12(1− ν2)]−1/4
√
Rh, (A.4)
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where lc, computed in the seminal work by Hutchinson [113], is the theoretical critical
buckling wavelength for a spherical shell. More technically, lc is the full wavelength of
the axisymmetric bifurcation mode at the equator of the shell.

In the previous work of Derveni et al. [118], we presented preliminary evidence for the
result in Equation (A.4), but only with a single value of R/h = 110. Hence, we were unable
to fully test Equation (A.4). In the present study, we will change this radius-to-thickness
ratio within the range R/h ∈ [100, 500] to examine how l∗p relates to lc. Furthermore, in
Ref. [118], we reported evidence for the potential interactions between nearby defects
and how they can lead to stronger or weaker shells in comparison to single-defect shells.
However, the data in that study were limited to a few specific cases. In the present work,
we will explore the various geometric parameters of the system systematically and seek
to characterize how defect-defect interactions impact κ for spherical shells containing two
imperfections.

A.2 Methodology: FEM Simulations

We performed full 3D simulations using the Finite Element Method (FEM) with the
commercial software ABAQUS/Standard. In our prior work [118, 110], we validated this
approach against precision experiments similar to the multi-defects geometry considered
here. Each quarter of the hemispherical shell is discretized in the meridional and azimuthal
using four-noded S4R shell elements: a total of 67500 elements for shells with R/h ≤ 300

and 187500 elements for shells with R/h ≥ 400. This level of discretization was deemed
suitable after conducting a thorough mesh-convergence analysis. To set the initial geometry
of the imperfect shell, we initiated with a perfect hemispherical mesh. Subsequently, we
introduced nodal displacements according to the desired profiles of the two imperfections,
following Equation (A.3), with varying values for the geometric parameters (δi, λi, φ(1,2)).
The shell thickness remained constant throughout the simulations.

The shells were subject to uniform live pressure on their outer surface, while their equator
was set as a clamped boundary. We employed a Riks (static) solver with the following
parameters for the shells with R/h ≤ 300: an initial arc length increment of 0.1, a
minimum increment of 10−5, and a maximum increment of 0.5. For the thinnest shells
with R/h ≥ 400, the corresponding parameters of the Riks solver were 0.002, 10−10, and
0.2, respectively. Geometric nonlinearities were considered throughout the analysis.

The hemispherical shells were modeled using the material properties of vinylpolysiloxane
(VPS-32, Elite Double 32, Zhermack) as a neo-Hookean and incompressible solid; the
material had a Poisson’s ratio of ν ≈ 0.5 and Young’s modulus of E = 1.26MPa. These
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material properties were chosen to match those of previous shell-buckling experiments [89,
102, 253, 258, 118] used to validate our FEM-simulation approach. The geometric
parameters of the two-defect imperfect shells were varied in the following ranges: δi ∈
[0.5, 3], λi ∈ [0.25, 5], R/h ∈ [100, 500] (constant R = 25.4mm, varying h) and φ(1,2) ∈
[1, 60]◦.

A.3 Hypothesis for the Defect-Defect Interaction Regime

We start our investigation by quantifying how the knockdown factor, κ, of the two-defects
shells depends on the radius-to-thickness ratio, R/h. Throughout, we will focus on
numerical experiments conducted using the FEM simulation approach described in the
preceding section.

In Figure A.2, we plot κ versus the defect-defect angular separation, φ(1,2), for shells
comprising either (a) two identical or (b) two different defects, at several values of R/h.
For now, we set the amplitudes and widths of the defects as follows. For the case of
identical defects (Figure A.2a), we fixed δ = 1.5 and λ = 1. For the case of different
defects (Figure A.2b), we fixed δ1 = 1, δ2 = 1.5 and λ1 = λ2 = 1. All curves are
non-monotonic as a function of φ(1,2): κ first decreases, reaching a minimum (κmin), then
increases to a maximum (κmax), and subsequently decreases to a constant plateau value
(κp). As suggested in Ref. [118], this non-monotonic behavior at small values of φ(1,2)

arises from defect-defect interactions. By contrast, in the plateau region at large values of
φ(1,2), the largest defect dominates. Note that the horizontal dashed lines in Figure A.2
correspond to κ values for a single-defect shell with (δ, λ) = (1.5, 1) and R/h = 100,
aligning with the plateaus of all the two-defects curves. The identical-defects shells
(Figure A.2a) exhibit higher values of κmax than the different-defects shells (Figure A.2b),
suggesting that defect-defect interactions are less pronounced in the latter case.

To help visualize the buckling process, the insets of Figure A.2 offer representative
snapshots of the greater-plane (2D) profiles obtained from the FEM simulations for
shells with R/h = 100 and various defect-defect angular separations. Near κmin (e.g.,
φ(1,2) = 8◦), the two defects are almost superimposed, resulting in a reduced knockdown
factor (cf. Equation A.3). For intermediate separations (e.g., φ(1,2) = 14◦), near κmax,
the region between the two defects acts as a constraint for buckling, leading to higher
values of κ. When the two defects are sufficiently far apart (e.g., φ(1,2) = 29◦), in the
plateau region, the largest defect dominates the buckling.

All the plotted data sets in Figure A.2, with varying R/h values, exhibit the aforementioned
non-monotonic behavior of κ(φ(1,2)). However, as R/h increases, the interaction regions
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Figure A.2: Knockdown factor versus angular separation. Knockdown factor, κ, as
a function of angular separation, φ(1,2), for (a) identical and (b) different defects. The
respective values of λi and δi are provided in the legend of each plot. Shells with varying
radius-to-thickness ratios, R/h, are considered, as indicated in the top legend (common
to both panels). Insets: Greater-plane profiles of imperfect shells with R/h = 100 and
different values of φ(1,2) in their original configurations (dotted lines) and at the onset
of buckling (solid lines). The radial deviation of the latter is amplified by a factor of 3
for visualization purposes. The horizontal dashed lines correspond to the κ values of a
single-defect shell with R/h = 100 and (δ, λ) = (1.5, 1).

(before the plateau is reached) progressively shift to lower values of φ(1,2). This observation
highlights the influence of the radius and thickness of the shell on the defect-defect
interactions. We hypothesize that the threshold angular separation, below which defects
interact and above which the plateau begins, is directly related to

√
Rh; the characteristic

length scale associated with the balance between bending and stretching effects [258].
Consequently, we anticipate that the onset of the plateau in the κ(φ(1,2)) curves is directly
related to the critical buckling wavelength, lc ∼

√
Rh, as expressed in Equation (A.4).

The results in the next section will confirm this hypothesis.

A.4 Interactions between Two Identical Defects

In this section, we focus solely on imperfect shells with two identical defects. The angular
separation between their centers, φ(1,2), can be recast as the defect-defect separation arc
length, l = Rφ(1,2). Our objective is to quantify the dependence of the FEM-computed
knockdown factor, κ, for these shells on l, R/h, δ, and λ.

In Figure A.3, we present κ(l) curves for a shell with R/h = 100: in panel (a) for
fixed widths (λ = 1) while varying their amplitudes (δ ∈ [0.5, 3]), and, in (b), for fixed
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defect amplitudes (δ = 1.5) while varying their widths (λ ∈ [0.25, 5]). In both plots, the
vertical lines represent the critical buckling wavelength for a spherical shell, lc, provided in
Equation (A.4) [113], for this shell with R/h = 100. Note that lc does not depend on any
of the defect parameters. Figure A.3(a) and Figure A.3(b) both exhibit non-monotonic
κ(l), indicative of defect-defect interactions, which consistently occur for l ≲ lc (shaded
region). For l ≳ lc, all curves reach a plateau. Naturally, the specific values of κmin, κmax,
and κp depend on the actual defect geometry, as extensively investigated in previous
studies for single-defect [89, 105, 110] and many-defects[118] scenarios.
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Figure A.3: Knockdown factor versus separation arc length. Knockdown factor, κ,
for a shell with R/h = 100 as a function of the defect-defect arclength, l, for identical
defects. Panel (a): fixed λ = 1, varying δ ∈ [0.5, 3]. Panel (b): fixed δ = 1.5, varying
λ ∈ [0.25, 5]. Different markers and a color bar distinguish the various parameter values.
The vertical dotted line presents the theoretical, critical buckling wavelength, lc (cf.
Equation A.4), for R/h = 100.

We now select some data from Figure A.3(a), for λ = 1 and δ = {0.5, 1.0, 1.5}, and from
Figure A.3(b), for δ = 1.5 and λ = {0.5, 1.0, 3.0}, and present them in Figure A.4(a)
and (b) as a function of the normalized arc length l/lc. Additional simulation data for
R/h = 200 and 500 are included. The shaded regions indicate small angular separations
where the two defects overlap (cf. the corresponding 2D profiles in Figure A.1). It is
remarkable that all the κ(l/lc) data collapse, with the emergence of their plateaus past
l/lc ≳ 1.

The aforementioned observation regarding the onset of the plateau underscores the
importance of the critical buckling wavelength, lc, in setting the threshold arc length
separation for the defect-defect interaction regime. This finding represents an important
step in confirming the hypothesis laid out in Section A.3. To quantify this threshold, we
consider the maximum (κmax) and plateau (κp) values of the κ(l) curves in Figures A.3
and A.4. The threshold separation is defined as the arc length corresponding to the 10%
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Figure A.4: Knockdown factor versus normalized arc length. Knockdown factor,
κ, as a function of l/lc, the defect-defect arc length normalized by the critical buckling
wavelength defined in Equation (A.4). (a) Constant λ = 1, varying δ. (b) Constant
δ = 1.5, varying λ. The different markers refer to various radius-to-thickness ratios, R/h.
The shaded areas indicate the regions where the defects overlap, resulting in a single
larger defect.

cut-off: 0.1(κmax−κp). An uncertainty of ±0.05(κmax−κp) is assigned to each threshold
value to account for the non-sharp onset of the plateau, consistently with the percentual
definitions used in previous work [105]. As mentioned in Section A.1, there are two
possible definitions for the defects separation arc length, lp or l∗p, depending on whether
we consider the center-to-center (ϕ(1,2)) or the adjusted (ϕ∗

(1,2)) angular separations,
respectively. The latter excludes a portion from the core of the defects and was defined in
Equation (A.2). Schematics illustrating these two definitions are provided in Figure A.5
(top).

At this point, it is important to revisit the Gaussian shape (cf. Equation A.1) of the
dimpled imperfections we are considering. Note that, at the local angular coordinate of
each defect α = mαi, its deviation from the perfect sphere is ẘi = −δi e

−m. Also, αi/
√
2

can be interpreted as the standard deviation of this Gaussian shape, ẘi(α). Therefore, l∗p
can be seen as excluding some portion of the core of each defect. Taking the values m = 1,
2, or 3 corresponds to excluding 68.3%, 95.6%, and 99.7% of the defect, respectively
[365]. The choice of m determines the extent to which the core of the defect is excluded,
with m = 3 effectively considering the edge-to-edge separation between defects. It is
important to note that at α = αi/

√
2, there is an inflection point in Equation (A.2) and

ẘ′′
i (αi/

√
2) = 0.

We have measured lp or l∗p as functions of lc, for shells with R/h ∈ [100, 500} and two
identical defects with (δ, λ) = (1.5, 1.0). It is worth noting that the different values of

175



Chapter A Appendix: Defect-Defect Interactions in Spherical Shells

φ(1,2)φ(1,2)

*

lp lp
*

0 5 10 15
0

5

10

15

δ = δ1 = δ2 = 1.5
λ = λ1 = λ2 = 1.0

Figure A.5: Threshold arc length versus the critical buckling wavelength.
Threshold arc length separations for the interaction regime, lp and l∗p, versus the critical
buckling wavelength, lc, for identical defects with δ = 1.5 and λ = 1. Both lp = Rφ(1,2)

(squares) and l∗p = Rφ∗
(1,2) (circles for m = 1, pentagrams for m = 2, and diamonds for

m = 3) threshold definitions are examined, as illustrated in the 2D schematics (top).
The threshold values, lp and l∗p are computed as described in the text. The error bars
represent ±0.05|κmax − κp|. The solid line represents lp = l∗p = lc.

R/h yield different values of lc according to Equation (A.4); specifically, lc increases as
R/h decreases. The results shown in Figure A.5 confirm the hypothesis presented in
Section A.3: there is a clear linear scaling between lp or l∗p with varying m values (cf.
Equation A.2) and lc. What is more, when using the l∗p definition with m = 1, the data
lie on the line l∗p = lc. This remarkable result demonstrates that the threshold separation
for defect-defect interactions is set by the critical buckling wavelength of the shell at the
inflection point in the Gaussian profile, ẘ(αi). Hence, for the remainder of our study, we
will adopt the definition of l∗p with m = 1.

Having examined the specific geometry for an imperfect shell with (δ, λ) = (1.5, 1.0)

(albeit with different R/h), we now explore the geometric parameter space more sys-
tematically. In Figure A.6(a), we plot l∗p/lc as a function of δ (with fixed λ = 1.0), and
in Figure A.6(b) λ (with fixed δ = 1.5), for different R/h values (see legend). Overall,
the data consistently align closely with l∗p/lc = 1 (horizontal dashed line), especially
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when δ ≥ 1 (Figure A.6a) and λ ≤ 2.5 (Figure A.6b). In Figure A.6(a), l∗p/lc remains
approximately constant for all δ ∈ [0.5, 3] and all R/h ∈ [100, 500]. As also highlighted in
Figure A.3(a), the l∗p/lc data lie almost on top of the dashed line, deviating by at most
20% within the entire range of δ that we explored. More quantitatively, in Figure A.6(b),
for shells with λ ≤ 2.5, the FEM-measured l∗p is in excellent agreement with the analytical
result for lc, within a 16% difference. For wider defects with λ ≥ 2.5, l∗p deviates by up
to ≈ 50% from lc. Note that in these shells with wide defects (large λ values), the two
defects tend to be nearly juxtaposed, as seen in the profiles in Figure A.1(c) and (d), as
well as the shaded region in Figure A.6b (for shells with R/h = 100). We attribute the
larger deviations of l∗p/lc from unity for shells with wide defects to their overlap, which
leads to a distorted, imperfect shell geometry.

(a)

(b)

 = 1 = 2 = 1.0R/h=100
R/h=200

R/h=500
R/h=400
R/h=300

0 1 2 3
0

0.5

1

1.5

2

2.5
(b)

Figure A.6: Normalized length scale versus defect geometry Normalized threshold
defect-defect arclength, l∗p/lc, versus (a) normalized amplitude, δ, and (b) normalized
width, λ, for various values of R/h ∈ [100, 500]. In panel (a), λ = 1 is kept fixed, and in
panel (b), δ = 1.5 is fixed. Each marker represents a different value of R/h ∈ [100, 500],
and the horizontal dashed lines correspond to l∗p = lc. The shaded area in panel (b)
highlights the region where defects tend to overlap, forming a single larger defect.

A.5 Interactions between Two Different Defects

In the previous section, we examined shells with two identical defects. Now, we shift our
focus to the case of different defects (δ1 ̸= δ2 or λ1 ̸= λ2). We will fix the geometry of the
i = 1 defect at the pole with (λ1, δ1) = (1.0, 1.0), and vary the width (λ2) and amplitude
(δ2) of the second defect.

In Figure A.7(a), we plot the knockdown factor, κ, as a function of defect-defect arc length
separation, l, for shells with fixed R/h = 100 and λ2 = 1.0, while varying δ2 ∈ [0.5, 3].
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Figure A.7: Knockdown factor, κ, versus arc length, l, for shells with R/h = 100.
(a) Fixed λ1 = λ2 = 1, δ1 = 1 and varying δ2 ∈ [0.5, 3]. (b) Fixed δ1 = 1, δ2 = 1.5,
λ1 = 1 and varying λ2 ∈ [0.25, 5]. Normalized arclength, l∗p/lc, versus (c) δ2, and (d) λ2

for R/h ∈ [100, 500]. Different markers and colors are used to represent different (a) δ2,
(b) λ2, and (c,d) R/h. The vertical dashed lines in panels (a,b) refer to the theoretical
prediction of lc for shells with R/h = 100, while the horizontal dashed lines in panels
(c,d) represent l∗p = lc. The shaded region in panel (d) indicates the region where defects
overlap, forming a single larger defect (shown for R/h = 100, as a representative example).

These κ(l) curves are similar to those for the identical-defects case discussed in Section A.4:
κ initially decreases to κmin, then increases κmax, before settling to a plateau (κp). The
exact values of κmin, κmax, and κp are slightly influenced by the amplitude of the i = 2

defect, particularly for δ2 = {0.5, 1.0}, but not for δ2 > 1.0, consistent with the known
sensitivity of shell buckling to imperfections [89].

In Figure A.7(b), we present κ(l) curves for shells with a fixed R/h = 100 and δ2 = 1.5,
while varying λ2 ∈ [0.25, 5]. The response of these shells is qualitatively different from the
behavior described in the previous paragraph, exhibiting three distinct regimes. In the
first, when λ2 ≤ 1, the κ(l) curves show the same minimum-maximum-plateau dependence
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described above and in Section A.4. Since λ2 > λ1, the plateau is dictated by the largest
(i = 2) defect. In the second regime, for 1.5 ≤ λ2 ≤ 3, the κ(l) curves shift, as a whole,
to lower values. While a clear minimum is still observed, the maximum becomes less
prominent, tending towards κmax → κp. In this regime, the buckling is still dictated by
the largest i = 2 defect. In the third regime, for λ ≥ 3.5, the κ(l) curves shift upwards.

In Figure A.7(a,b), the vertical dotted lines represent the critical buckling wavelength,
lc, defined in Equation (A.4), with R/h = 100. Similarly to the case of identical defects,
we observe that the region (shaded) of interaction for these shells with two different
defects lies within l < lc. As in Section A.4, we also compute the normalized threshold for
defect-defect interactions (onset of the plateau of the κ(l) curves), l∗p/lc, for the present
case of different defects. These results are presented in Figure A.7(c,d).

In Figure A.7(c), when fixing δ1, λ1, and λ2 , we observe that l∗p/lc ≈ 1 (within 17%)
across the whole range of δ2. This finding reinforces that δ is not critical in determining
the onset of defect interactions, consistently with the identical-defects case (Figure A.6a).
The behavior becomes less straightforward when varying λ2 while fixing δ1, λ1, and
δ2, (see Figure A.7d). Here, l∗p/lc remains near unity for λ2 ≤ 3, with a deviation of
around 22% for λ2 ∈ [0.25, 1] and 28% for λ2 ∈ [1.5, 3]. However, when λ2 ≥ 3.5, l∗p/lc
progressively drops below unity, reaching approximately 0.4. Recalling the profiles in
Figure A.1(d), we note that the edges of the narrow i = 1 defect overlap with the wider
i = 2 defect for larger values of λ2. Thus, the shell geometry deviates substantially from
a perfect sphere, and the critical buckling wavelength in Equation (A.4) no longer sets
the edge of the interaction region. This complex behavior, arising from the increasing
overlap of the defects and the nontrivial shell geometries, falls beyond the scope of the
present work and warrants further investigation.

Note that, in Figure A.7(c,d), while l∗p/lc remains close to unity for intermediate values
of λ2, the thinnest shells with R/h = 500 exhibit notable discrepancies compared to the
R/h = {100, 200} shells (the results for these two are almost overlapping). We have
conducted comprehensive mesh-convergence tests, and it appears that the discrepancies
are not due to the discretization. Instead, we attribute these deviations to the higher
fluctuations observed in the measured κ(l) curves, especially in the plateau region, which
in turn affects the measurement of l∗p using the 10% criterion introduced in Section A.4.

A.6 Summary and Outlook

Using experimentally validated FEM simulations, we investigated the effect of defect-
defect interactions on the buckling of pressurized hemispherical shells containing two
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dimpled imperfections. We examined cases of identical and different defects, varying their
geometric parameters (amplitude, δi, and width, λi) and their relative separation. We
measured the knockdown factor (the normalized critical buckling pressure), κ, for these
imperfect shells as a function of the angular separation, φ(1,2), between their two defects.
We then used φ(1,2) to define an arc length separation l = Rφ(1,2). Our findings revealed
significant defect-defect interactions when the two defects are in close proximity, leading
to non-monotonic behavior in κ(l), below a threshold in l. We modified the definition
of this interaction threshold, denoted as l∗p, which corresponds to the inflection point of
the Gaussian profile. Beyond l∗p, the κ(l) curves reached a plateau, indicating diminished
interactions and the dominance of the largest defect in dictating the knockdown factor.

The main contribution of our study lies in establishing that the onset of defect-defect
interactions is determined by the critical buckling wavelength [113], as l∗p ≈ lc (cf.
Equation A.4). This result is valid for defects with λi < 3, regardless of whether they
are identical or different. However, for wider defects, the dimples tend to overlap, and
the shell geometry becomes increasingly distorted. The defect amplitude, δi, plays a
negligible role in setting l∗p. It is important to note that lc depends only on the radius, R,
and thickness, h, of the shell (other than the Poisson ratio, which was fixed to ν = 0.5

throughout our study).

We hope that our results will stimulate further interest in harnessing defect-defect
interactions to enhance the buckling response of spherical shells or inspire the development
of novel functional mechanisms derived from these interactions.

180



Bibliography

[1] SP Timoshenko and JM Gere. Theory of Elastic Stability McGraw-Hill, 1961.
Dover reprint of 2nd edition, 2009.

[2] Basile Audoly and Yves Pomeau. Elasticity and geometry: from hair curls to the
non-linear response of shells. Oxford University Press, 2010.

[3] Gemma Ibarz, Lars Dähne, Edwin Donath, and Helmut Möhwald. “Smart micro-
and nanocontainers for storage, transport, and release”. Advanced Materials 13.17
(2001), pp. 1324–1327.

[4] K Tsuji. “Microencapsulation of pesticides and their improved handling safety”.
Journal of microencapsulation 18.2 (2001), pp. 137–147.

[5] Mary Ann Augustin and Yacine Hemar. “Nano-and micro-structured assemblies for
encapsulation of food ingredients”. Chemical society reviews 38.4 (2009), pp. 902–
912.

[6] P. Terndrup Pedersen and J. Juncher Jensen. “Buckling behaviour of imperfect
spherical shells subjected to different load conditions”. Thin-Walled Structures.
Buckling Strength of Imperfection-sensitive Shells 23.1 (1995), pp. 41–55.

[7] James Marston Fitch and Daniel P Branch. “Primitive architecture and climate”.
Scientific American 203.6 (1960), pp. 134–145.

[8] William A Nash. Hydrostatically Loaded Structures: The Structural Mechanics,
Analysis and Design of Powered Submersibles. Elsevier, 1995.

[9] Edward N Brown, CA Friehe, and DH Lenschow. “The use of pressure fluctuations
on the nose of an aircraft for measuring air motion”. Journal of Applied Meteorology
and Climatology 22.1 (1983), pp. 171–180.

[10] Pedro M Reis, Fabian Brau, and Pascal Damman. “The mechanics of slender
structures”. Nature Physics 14.12 (2018), pp. 1150–1151.

[11] Warner Tjardus Koiter. “Over de stabiliteit van het elastisch evenwicht”. Ph.D.
thesis, Delft University of Technology, Delft, The Netherlands (1945).

181



Chapter A BIBLIOGRAPHY

[12] Walter Wunderlich and Ursula Albertin. “Buckling behaviour of imperfect spherical
shells”. International Journal of Non-Linear Mechanics 37.4-5 (2002), pp. 589–604.

[13] url: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://condivisionext.
rfi.it/Documenti%20condivisi/La%20Stabilit%C3%A0%20del%20binario%20-
%2012%20ottobre%202017/Godart%20TEG-LTR.pdf.

[14] url: https://www.istockphoto.com/de/fotos/dead-leaves-on-white.

[15] url: https://www.pinterest.ch/pin/179862578850383598/.

[16] Eduard Ventsel and Theodor Krauthammer. Thin Plates and Shells: Theory,
Analysis, and Applications. CRC Press, 2001.

[17] Chris R Calladine. Theory of shell structures. Cambridge university press, 1983.

[18] Junuthula Narasimha Reddy. Theory and analysis of elastic plates and shells. CRC
press, 1999.

[19] Weihua Li, Kosta Kostidis, Xianzhou Zhang, and Yang Zhou. “Development of
a force sensor working with MR elastomers”. 2009 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics. Singapore: IEEE, 2009, pp. 233–
238.

[20] Luis Dorfmann and Ray W. Ogden. Nonlinear Theory of Electroelastic and Mag-
netoelastic Interactions. Springer US, 2014.

[21] Pedro M. Reis. “A Perspective on the Revival of Structural (In)Stability With
Novel Opportunities for Function: From Buckliphobia to Buckliphilia”. Journal of
Applied Mechanics 82.11 (2015).

[22] Michael Gomez, Derek E Moulton, and Dominic Vella. “Critical slowing down in
purely elastic ‘snap-through’ instabilities”. Nature Physics 13.2 (2017), pp. 142–145.

[23] Michael Gomez, Derek E Moulton, and Dominic Vella. “Passive control of viscous
flow via elastic snap-through”. Physical review letters 119.14 (2017), p. 144502.

[24] Philipp Rothemund, Alar Ainla, Lee Belding, Daniel J Preston, Sarah Kurihara,
Zhigang Suo, and George M Whitesides. “A soft, bistable valve for autonomous
control of soft actuators”. Science Robotics 3.16 (2018), eaar7986.

[25] Johannes TB Overvelde, Tamara Kloek, Jonas JA D’haen, and Katia Bertoldi.
“Amplifying the response of soft actuators by harnessing snap-through instabilities”.
Proceedings of the National Academy of Sciences 112.35 (2015), pp. 10863–10868.

[26] Yancheng Li, Jianchun Li, Weihua Li, and Haiping Du. “A state-of-the-art review
on magnetorheological elastomer devices”. Smart materials and structures 23.12
(2014), p. 123001.

182

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://condivisionext.rfi.it/Documenti%20condivisi/La%20Stabilit%C3%A0%20del%20binario%20-%2012%20ottobre%202017/Godart%20TEG-LTR.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://condivisionext.rfi.it/Documenti%20condivisi/La%20Stabilit%C3%A0%20del%20binario%20-%2012%20ottobre%202017/Godart%20TEG-LTR.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://condivisionext.rfi.it/Documenti%20condivisi/La%20Stabilit%C3%A0%20del%20binario%20-%2012%20ottobre%202017/Godart%20TEG-LTR.pdf
https://www.istockphoto.com/de/fotos/dead-leaves-on-white
https://www.pinterest.ch/pin/179862578850383598/


BIBLIOGRAPHY Chapter A

[27] Bonnie L Gray. “A review of magnetic composite polymers applied to microfluidic
devices”. Journal of The Electrochemical Society 161.2 (2014), B3173.

[28] Lindsey Hines, Kirstin Petersen, Guo Zhan Lum, and Metin Sitti. “Soft actuators
for small-scale robotics”. Advanced materials 29.13 (2017), p. 1603483.

[29] Shuai Wu, Wenqi Hu, Qiji Ze, Metin Sitti, and Ruike Zhao. “Multifunctional mag-
netic soft composites: A review”. Multifunctional materials 3.4 (2020), p. 042003.

[30] Seppe Terryn, Jakob Langenbach, Ellen Roels, Joost Brancart, Camille Bakkali-
Hassani, Quentin-Arthur Poutrel, Antonia Georgopoulou, Thomas George Thu-
ruthel, Ali Safaei, Pasquale Ferrentino, et al. “A review on self-healing polymers
for soft robotics”. Materials Today 47 (2021), pp. 187–205.

[31] Zhongyi Nie, Jean Won Kwak, Mengdi Han, and John A Rogers. “Mechanically
Active Materials and Devices for Bio-Interfaced Pressure Sensors—A Review”.
Advanced Materials (2022), p. 2205609.

[32] Ruike Zhao, Yoonho Kim, Shawn A Chester, Pradeep Sharma, and Xuanhe Zhao.
“Mechanics of hard-magnetic soft materials”. Journal of the Mechanics and Physics
of Solids 124 (2019), pp. 244–263.

[33] Liu Wang, Yoonho Kim, Chuan Fei Guo, and Xuanhe Zhao. “Hard-magnetic
elastica”. Journal of the Mechanics and Physics of Solids 142 (2020), p. 104045.

[34] Guo Zhan Lum, Zhou Ye, Xiaoguang Dong, Hamid Marvi, Onder Erin, Wenqi Hu,
and Metin Sitti. “Shape-programmable magnetic soft matter”. Proceedings of the
National Academy of Sciences 113.41 (2016), E6007–E6015.

[35] A. Dorfmann and R. W. Ogden. “Magnetoelastic modelling of elastomers”. Euro-
pean Journal of Mechanics-A/Solids 22 (2003), pp. 497–507.

[36] Wenqi Hu, Guo Zhan Lum, Massimo Mastrangeli, and Metin Sitti. “Small-scale
soft-bodied robot with multimodal locomotion”. Nature 554.7690 (2018), pp. 81–85.

[37] Hongri Gu, Quentin Boehler, Haoyang Cui, Eleonora Secchi, Giovanni Savorana,
Carmela De Marco, Simone Gervasoni, Quentin Peyron, Tian-Yun Huang, Salvador
Pane, Ann M. Hirt, Daniel Ahmed, and Bradley J. Nelson. “Magnetic cilia car-
pets with programmable metachronal waves”. Nature Communications 11 (2020),
p. 2637.

[38] Yunus Alapan, Alp C Karacakol, Seyda N Guzelhan, Irem Isik, and Metin Sitti.
“Reprogrammable shape morphing of magnetic soft machines”. Science advances
6.38 (2020), eabc6414.

[39] Yoonho Kim, German A. Parada, Shengduo Liu, and Xuanhe Zhao. “Ferromagnetic
soft continuum robots”. Science Robotics 4.33 (2019), eaax7329.

183



Chapter A BIBLIOGRAPHY

[40] Olek C Zienkiewicz and Robert L Taylor. The finite element method for solid and
structural mechanics. Elsevier, 2005.

[41] A. Lazarus, H. C. B. Florijn, and P. M. Reis. “Geometry-Induced Rigidity in
Nonspherical Pressurized Elastic Shells”. Physical Review Letters 109 (14 2012),
p. 144301.

[42] Miroslava Nadkova Petrova and Dobrina Zheleva-Martins. “Shells as a Univer-
sal Structural Type in Nature and Design”. Structural Shells [Working Title].
IntechOpen, 2022.

[43] Eleni Katifori, Silas Alben, Enrique Cerda, David R. Nelson, and Dumais Jacques.
“Foldable structures and the natural design of pollen grains”. Proceedings of the
National Academy of Sciences USA 107.17 (2010), pp. 7635–7639.

[44] Mark Hilburger. “Developing the next generation shell buckling design factors
and technologies”. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures
Conference 14th AIAA. 2012, p. 1686.

[45] url: https://news.utk.edu/2019/02/12/nature-prefers-asymmetrical-pollen-
grains-study-finds/.

[46] url: https://www.pinterest.ch/pin/art-design--724938871251632024/.

[47] url: https://commons.wikimedia.org/wiki/File:T%C3%A9lviec_Crane_Profil_
Droit.jpg.

[48] url: https://www.irishtimes.com/business/retail-and-services/galway-egg-firm-
entitled-to-injunction-against-competitor-1.3766727.

[49] url: https://materialdistrict.com/article/coconut-world-coconut-day/.

[50] url: https://www.beiberia.com/top-5-best-beaches-of-portugal/.

[51] url: https : / / pharmaceuticalmanufacturer .media / pharmaceutical - industry -
insights/the-hard-line/.

[52] url: https://www.usaeop.com/blog/ceramics-what-creates-the-basis-for-our-
daily-objects/.

[53] url: https://www.actionnews5.com/2019/04/19/breakdown-science-behind-how-
airplanes-fly-sky/.

[54] url: https://www.futurethink.com.sg/leadershipstylequestionnaire/can-learn-
1986-challenger-disaster-2/.

[55] url: https://www.digitimes.com/news/a20230103VL206/gps-satellite-south-
korea.html.

184

https://news.utk.edu/2019/02/12/nature-prefers-asymmetrical-pollen-grains-study-finds/
https://news.utk.edu/2019/02/12/nature-prefers-asymmetrical-pollen-grains-study-finds/
https://www.pinterest.ch/pin/art-design--724938871251632024/
https://commons.wikimedia.org/wiki/File:T%C3%A9lviec_Crane_Profil_Droit.jpg
https://commons.wikimedia.org/wiki/File:T%C3%A9lviec_Crane_Profil_Droit.jpg
https://www.irishtimes.com/business/retail-and-services/galway-egg-firm-entitled-to-injunction-against-competitor-1.3766727
https://www.irishtimes.com/business/retail-and-services/galway-egg-firm-entitled-to-injunction-against-competitor-1.3766727
https://materialdistrict.com/article/coconut-world-coconut-day/
https://www.beiberia.com/top-5-best-beaches-of-portugal/
https://pharmaceuticalmanufacturer.media/pharmaceutical-industry-insights/the-hard-line/
https://pharmaceuticalmanufacturer.media/pharmaceutical-industry-insights/the-hard-line/
https://www.usaeop.com/blog/ceramics-what-creates-the-basis-for-our-daily-objects/
https://www.usaeop.com/blog/ceramics-what-creates-the-basis-for-our-daily-objects/
https://www.actionnews5.com/2019/04/19/breakdown-science-behind-how-airplanes-fly-sky/
https://www.actionnews5.com/2019/04/19/breakdown-science-behind-how-airplanes-fly-sky/
https://www.futurethink.com.sg/leadershipstylequestionnaire/can-learn-1986-challenger-disaster-2/
https://www.futurethink.com.sg/leadershipstylequestionnaire/can-learn-1986-challenger-disaster-2/
https://www.digitimes.com/news/a20230103VL206/gps-satellite-south-korea.html
https://www.digitimes.com/news/a20230103VL206/gps-satellite-south-korea.html


BIBLIOGRAPHY Chapter A

[56] Florent Savine, François-Xavier Irisarri, Cédric Julien, Angela Vincenti, and Yan-
nick Guerin. “A component-based method for the optimization of stiffener layout
on large cylindrical rib-stiffened shell structures”. Structural and Multidisciplinary
Optimization 64.4 (2021), pp. 1843–1861.

[57] Davide Ferretto, Oscar Gori, Roberta Fusaro, and Nicole Viola. “Integrated Flight
Control System Characterization Approach for Civil High-Speed Vehicles in Con-
ceptual Design”. Aerospace 10.6 (2023), p. 495.

[58] João Paulo Eguea, Gabriel Pereira Gouveia da Silva, and Fernando Martini
Catalano. “Fuel efficiency improvement on a business jet using a camber morphing
winglet concept”. Aerospace Science and Technology 96 (2020), p. 105542.

[59] Michael Nemeth, James Starnes Jr, Michael Nemeth, and James Starnes Jr.
“The NASA monographs on shell stability design recommendations-A review and
suggested improvements”. 38th Structures, Structural Dynamics, and Materials
Conference. 1997, p. 1302.

[60] Joshua P Davis, John P Mayberry, and Jay P Penn. “On-orbit servicing: Inspec-
tion repair refuel upgrade and assembly of satellites in space”. The Aerospace
Corporation, report (2019), p. 25.

[61] Robert Millard Jones. Buckling of bars, plates, and shells. Bull Ridge Corporation,
2006.

[62] Russell C Hibbeler and Gary Nolan. Structural analysis. Prentice Hall Upper
Saddle Riverˆ eNew Jersey New Jersey, 1997.

[63] Eric W Weisstein. “Solid of revolution”. https://mathworld. wolfram. com/ (2006).

[64] Earl William Swokowski. Calculus with analytic geometry. Taylor & Francis, 1979.

[65] Robert Merton. “A History Of Mechanical Inventions By Abbott Payson Usher”
(1935).

[66] Allison Lee Palmer. Leonardo da Vinci: A reference guide to his life and works.
Rowman & Littlefield, 2018.

[67] Morris H Shamos. Great experiments in physics: firsthand accounts from Galileo
to Einstein. Courier Corporation, 1987.

[68] JE Marquina, ML Marquina, V Marquina, and JJ Hernández-Gómez. “Leonhard
Euler and the mechanics of rigid bodies”. European Journal of Physics 38.1 (2016),
p. 015001.

[69] Dimitar N Karastoyanov, Lyubka A Doukovska, and Vassia K Atanassova. “Elec-
tromagnetic linear micro drives for Braille screen: characteristics, control and
optimization”. Proc. of the Third International Conference on Telecommunications
and Remote Sensing-ICTRS’. Vol. 14. 2014, pp. 88–93.

185



Chapter A BIBLIOGRAPHY

[70] Carl Friedrich Gauss. Theoria combinationis observationum erroribus minimis
obnoxiae. Vol. 3. Dieterich, 1828.

[71] Augustus Edward Hough Love. “XVI. The small free vibrations and deformation of
a thin elastic shell”. Philosophical Transactions of the Royal Society of London.(A.)
179 (1888), pp. 491–546.

[72] Raymond David Mindlin and Jiashi Yang. An introduction to the mathematical
theory of vibrations of elastic plates. World Scientific, 2006.

[73] GJ Hutchins and AI Soler. “Approximate elasticity solution for moderately thick
shells of revolution” (1973).

[74] Eric Reissner. “On axisymmetrical deformations of thin shells of revolution”.
Proceedings of Symposia in Applied Mathematics. Vol. 3. 1. 1950, pp. 27–52.

[75] J Lyell Sanders Jr. “Nonlinear theories for thin shells”. Quarterly of Applied
Mathematics 21.1 (1963), pp. 21–36.

[76] Bernard Budiansky. “On the best first-order linear shell theory”. The Prager
Anniversary Volume-Progress in Applied Mechanics (1963).

[77] Lev Davidovich Landau, Evgenij M Lifšic, Evegnii Mikhailovich Lifshitz, Arnold
Markovich Kosevich, and Lev Petrovich Pitaevskii. Theory of elasticity: volume 7.
Vol. 7. Elsevier, 1986.

[78] C. D. Babcock. “Shell stability”. Journal of Applied Mechanics 50.4b (1983),
pp. 935–940.

[79] L. A. Samuelson and S. Eggwertz. Shell Stability Handbook. London: Elsevier
Applied Science, 1992.

[80] I. Elishakoff. Resolution of the Twentieth Century Conundrum in Elastic Stability.
Singapore: World Scientific Publishing, 2014.

[81] Sujit S. Datta, Alireza Abbaspourrad, Esther Amstad, Jing Fan, Shin-Hyun
Kim, Mark Romanowsky, Ho Cheung Shum, Bingjie Sun, Andrew S. Utada, and
Maike Windbergs. “25th anniversary article: Double emulsion templated solid
microcapsules: Mechanics and controlled release”. Advanced Materials 26.14 (2014),
pp. 2205–2218.

[82] R. Zoelly. “Ueber ein knickungsproblem an der kugelschale”. Ph.D. thesis, ETH
Zürich, Zürich, Switzerland (1915).

[83] H.-S. Tsien. “A theory for the buckling of thin shells”. Journal of the Aeronautical
Sciences 9.10 (1942), pp. 373–384.

[84] A. Kaplan and Y. C. Fung. A nonlinear theory of bending and buckling of thin
elastic shallow spherical shells. Technical Note 3212. Washington, DC: National
Advisory Committee for Aeronautics, 1954.

186



BIBLIOGRAPHY Chapter A

[85] R. H. Homewood, A. C. Brine, and Aldie E. Johnson. “Experimental investigation
of the buckling instability of monocoque shells”. Experimental Mechanics 1.3
(1961), pp. 88–96.

[86] L. Seaman. “The nature of buckling in thin spherical shells”. Ph.D. thesis. Cam-
bridge, MA: Massachusetts Institute of Technology, 1962.

[87] M. A. Krenzke and T. J. Kiernan. “Elastic stability of near-perfect shallow spherical
shells”. AIAA Journal 1.12 (1963), pp. 2855–2857.

[88] R. L. Carlson, R. L. Sendelbeck, and N. J. Hoff. “Experimental studies of the
buckling of complete spherical shells”. Experimental Mechanics 7.7 (1967), pp. 281–
288.

[89] Anna Lee, Francisco López Jiménez, Joel Marthelot, John W Hutchinson, and
Pedro M Reis. “The geometric role of precisely engineered imperfections on the
critical buckling load of spherical elastic shells”. Journal of Applied Mechanics
83.11 (2016), p. 111005.

[90] J. W. Hutchinson, D. B. Muggeridge, and R. C. Tennyson. “Effect of a local
axisymmetric imperfection on the buckling behavior of a circular cylindrical shell
under axial compression”. AIAA Journal 9.1 (1971), pp. 48–52.

[91] B. Budiansky and J. W. Hutchinson. “Buckling of circular cylindrical shells
under axial compression”. Contributions to the Theory of Aircraft Structures. The
Netherlands: Delft University Press, 1972, pp. 239–259.

[92] Th. von Kármán and H.-S. Tsien. “The buckling of spherical shells by external
pressure”. Journal of the Aeronautical Sciences 7.2 (1939), pp. 43–50.

[93] Th von Karman. “The influence of curvature on the buckling characteristics of
structures”. Journal of the Aeronautical Sciences 7.7 (1940), pp. 276–289.

[94] Theodore von Karman. “The buckling of thin cylindrical shells under axial com-
pression”. Journal of the Aeronautical Sciences 8.8 (1941), pp. 303–312.

[95] P. P. Bijlaard and R. H. Gallagher. “Elastic instability of a cylindrical shell
under arbitrary circumferential variation of axial stress”. Journal of the Aerospace
Sciences 27.11 (1960), pp. 854–858.

[96] Bo O Almroth. “Influence of edge conditions on the stability of axially compressed
cylindrical shells.” AIAA Journal 4.1 (1966), pp. 134–140.

[97] Shigeo Kobayashi. “The influence of the boundary conditions on the buckling load
of cylindrical shells under axial compression”. The Journal of the Japan Society of
Aeronautical Engineering 16.170 (1968), pp. 74–82.

187



Chapter A BIBLIOGRAPHY

[98] W. L. Chen. “Effect of geometrical imperfection on the elastic buckling of thin
shallow spherical shells”. Ph.D. thesis. Cambridge, MA: Massachusetts Institute of
Technology, 1959.

[99] Mark W Hilburger, Michael P Nemeth, and James H Starnes Jr. “Shell buckling
design criteria based on manufacturing imperfection signatures”. AIAA J. 44.3
(2006), pp. 654–663.

[100] JMT Thompson. “Making of thin metal shells for model stress analysis”. Journal
of Mechanical Engineering Science 2.2 (1960), pp. 105–108.

[101] A. Lee, P.-T. Brun, J. Marthelot, G. Balestra, F. Gallaire, and P. M. Reis. “Fabri-
cation of slender elastic shells by the coating of curved surfaces”. Nature Commu-
nications 7 (2016), p. 11155.

[102] Joel Marthelot, Francisco López Jiménez, Anna Lee, John W. Hutchinson, and
Pedro M. Reis. “Buckling of a Pressurized Hemispherical Shell Subjected to a
Probing Force”. Journal of Applied Mechanics 84.12 (2017), p. 121005.

[103] Anna Lee, Dong Yan, Matteo Pezzulla, Douglas P Holmes, and Pedro M Reis.
“Evolution of critical buckling conditions in imperfect bilayer shells through residual
swelling”. Soft Matter 15.30 (2019), pp. 6134–6144.

[104] Dong Yan, Matteo Pezzulla, Lilian Cruveiller, Arefeh Abbasi, and Pedro M Reis.
“Magneto-active elastic shells with tunable buckling strength”. Nature communica-
tions 12.1 (2021), p. 2831.

[105] Francisco López Jiménez, Joel Marthelot, Anna Lee, John W. Hutchinson, and
Pedro M. Reis. “Technical brief: knockdown factor for the buckling of spherical
shells containing large-amplitude geometric defects”. Journal of Applied Mechanics
84 (2017), p. 034501.

[106] John W. Hutchinson. “Buckling of spherical shells revisited”. Proceeding of the
Royal Society A: Mathematical, Physical and Engineering Sciences 472.2195 (2016),
p. 20160577.

[107] Hutchinson John W. and Thompson J. Michael T. “Nonlinear buckling behaviour
of spherical shells: barriers and symmetry-breaking dimples”. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences
375.2093 (2017), p. 20160154.

[108] John W. Hutchinson and J. Michael T. Thompson. “Nonlinear buckling interaction
for spherical shells subject to pressure and probing forces”. Journal of Applied
Mechanics 84.6 (2017), p. 061001.

188



BIBLIOGRAPHY Chapter A

[109] John W. Hutchinson and J. Michael T Thompson. “Imperfections and energy
barriers in shell buckling”. Int. J. Solids Struct. Special Issue Dedicated to the
Memory of George Simitses 148-149 (2018), pp. 157–168.

[110] Arefeh Abbasi, Fani Derveni, and Pedro M. Reis. “Comparing the Buckling Strength
of Spherical Shells With Dimpled Versus Bumpy Defects”. Journal of Applied
Mechanics 90.6 (2023), p. 061008.

[111] Luc Wullschleger. “Numerical investigation of the buckling behaviour of axially
compressed circular cylinders having parametric initial dimple imperfections”.
PhD thesis. ETH Zurich, 2006.

[112] Fani Derveni, Arefeh Abbasi, and Pedro Reis. “Defect-Defect Interactions in the
Buckling of Imperfect Spherical Shells”. Journal of Applied Mechanics (2023),
pp. 1–10.

[113] J. W. Hutchinson. “Imperfection Sensitivity of Externally Pressurized Spherical
Shells”. Journal of Applied Mechanics 34 (1967), pp. 49–55.

[114] John C Amazigo. “Buckling under axial compression of long cylindrical shells
with random axisymmetric imperfections”. Quarterly of Applied Mathematics 26.4
(1969), pp. 537–566.

[115] Isaac Elishakoff and Johann Arbocz. “Reliability of axially compressed cylindrical
shells with random axisymmetric imperfections”. International Journal of Solids
and Structures 18.7 (1982), pp. 563–585.

[116] Isaac Elishakoff and Johann Arbocz. “Reliability of axially compressed cylindrical
shells with general nonsymmetric imperfections” (1985).

[117] Isaac Elishakoff. “Probabilistic resolution of the twentieth century conundrum in
elastic stability”. Thin-Walled Structures 59 (2012), pp. 35–57.

[118] Fani Derveni, William Gueissaz, Dong Yan, and Pedro M Reis. “Probabilistic
buckling of imperfect hemispherical shells containing a distribution of defects”.
Philosophical Transactions of the Royal Society A 381.2244 (2023), p. 20220298.

[119] Ronald Aylmer Fisher and Leonard Henry Caleb Tippett. “Limiting forms of the
frequency distribution of the largest or smallest member of a sample”. Mathematical
proceedings of the Cambridge philosophical society. Vol. 24. 2. 1928, pp. 180–190.

[120] Waloddi Weibull. “The phenomenon of rupture in solids”. IVA Handlingar 153
(1939).

[121] Waloddi Weibull. “A statistical distribution function of wide applicability”. Journal
of Applied Mechanics (1951).

[122] A. De S. Jayatilaka and K. Trustrum. “Statistical approach to brittle fracture”.
Journal of Materials Science 12.7 (1977), pp. 1426–1430.

189



Chapter A BIBLIOGRAPHY

[123] Zdeněk P Bažant, Jia-Liang Le, and Martin Z Bazant. “Scaling of strength and
lifetime probability distributions of quasibrittle structures based on atomistic
fracture mechanics”. Proceedings of the National Academy of Sciences 106.28
(2009), pp. 11484–11489.

[124] Jia-Liang Le, Roberto Ballarini, and Zhiren Zhu. “Modeling of probabilistic failure
of polycrystalline silicon MEMS structures”. Journal of the American Ceramic
Society 98.6 (2015), pp. 1685–1697.

[125] J. Michael T. Thompson and Jan Sieber. “Shock-sensitivity in shell-like structures:
with simulations of spherical shell buckling”. International Journal of Bifurcation
and Chaos 26.2 (2016), p. 1630003.

[126] J Michael T Thompson, John W Hutchinson, and Jan Sieber. “Probing shells
against buckling: a nondestructive technique for laboratory testing”. International
Journal of Bifurcation and Chaos 27.14 (2017), p. 1730048.

[127] Emmanuel Virot, Tobias Kreilos, Tobias M. Schneider, and Shmuel M. Rubinstein.
“Stability landscape of shell buckling”. Physical Review Letters 119.22 (2017),
p. 224101.

[128] Maria Esslinger and Bodo Geier. Calculated post-buckling loads as lower limit
of experimental axial buckling loads of circular cylinders. German Research and
Testing Institute for Aerospace, 1972.

[129] Jiřı Horák, Gabriel J Lord, and Mark A Peletier. “Cylinder buckling: the mountain
pass as an organizing center”. SIAM Journal on Applied Mathematics 66.5 (2006),
pp. 1793–1824.

[130] J. Michael T. Thompson. “Advances in shell buckling: theory and experiments”.
International Journal of Bifurcation and Chaos 25.1 (2015), p. 1530001.

[131] J Michael T Thompson and Jan Sieber. “Shock-sensitivity in shell-like structures:
with simulations of spherical shell buckling”. International Journal of Bifurcation
and Chaos 26.02 (2016), p. 1630003.

[132] Lorenz Baumgarten and Jan Kierfeld. “Shallow shell theory of the buckling energy
barrier: From the Pogorelov state to softening and imperfection sensitivity close
to the buckling pressure”. Physical Review E 99 (2019), p. 022803.

[133] Tobias Kreilos and Tobias M. Schneider. “Fully localized post-buckling states of
cylindrical shells under axial compression”. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 473.2205 (2017), p. 20170177.

[134] Don O Brush, Bo O Almroth, and JW Hutchinson. “Buckling of bars, plates, and
shells” (1975).

190



BIBLIOGRAPHY Chapter A

[135] Haigui Fan. “Critical buckling load prediction of axially compressed cylindrical shell
based on non-destructive probing method”. Thin-Walled Structures 139 (2019),
pp. 91–104.

[136] Kshitij Kumar Yadav and Simos Gerasimidis. “A nondestructive method to find the
buckling capacity for thin shells”. Proceedings of the Annual Stability Conference.
Proceedings of the Annual Stability Conference. Atlanta, GA: Structural Stability
Research Council, 2020.

[137] Kshitij Kumar Yadav, Nicholas L. Cuccia, Emmanuel Virot, Shmuel M. Rubinstein,
and Simos Gerasimidis. “A Nondestructive Technique for the Evaluation of Thin
Cylindrical Shells’ Axial Buckling Capacity”. Journal of Applied Mechanics 88.5
(2021), p. 051003.

[138] Anaïs Abramian, Emmanuel Virot, Emilio Lozano, Shmuel M. Rubinstein, and
Tobias M. Schneider. “Nondestructive Prediction of the Buckling Load of Imperfect
Shells”. Physical Review Letters 125.22 (2020), p. 225504.

[139] Suhas Ankalkhope and Sandeep Jose. “Non-destructive prediction of buckling load
of axially compressed cylindrical shells using Least Resistance Path to Probing”.
Thin-Walled Structures 170 (2022), p. 108497.

[140] Rainer MJ Groh and Alberto Pirrera. “Spatial chaos as a governing factor for im-
perfection sensitivity in shell buckling”. Physical Review E 100.3 (2019), p. 032205.

[141] Jiajia Shen, RMJ Groh, Mark Schenk, and Alberto Pirrera. “Experimental path-
following of equilibria using Newton’s method. Part II: applications and outlook”.
International Journal of Solids and Structures 213 (2021), pp. 25–40.

[142] Nicholas L Cuccia, Kshitij Kumar Yadav, Marec Serlin, Emmanuel Virot, Simos
Gerasimidis, and Shmuel M Rubinstein. “Hitting the mark: probing at the initiation
site allows for accurate prediction of a thin shell’s buckling load”. Philosophical
Transactions of the Royal Society A 381.2244 (2023), p. 20220036.

[143] Hamid Souri, Hritwick Banerjee, Ardian Jusufi, Norbert Radacsi, Adam A Stokes,
Inkyu Park, Metin Sitti, and Morteza Amjadi. “Wearable and stretchable strain
sensors: materials, sensing mechanisms, and applications”. Advanced Intelligent
Systems 2.8 (2020), p. 2000039.

[144] Tingting Ye, Jiacheng Wang, Yiding Jiao, Luhe Li, Er He, Lie Wang, Yiran Li,
Yanjing Yun, Dan Li, Jiang Lu, et al. “A tissue-like soft all-hydrogel battery”.
Advanced Materials 34.4 (2022), p. 2105120.

[145] Yoonho Kim and Xuanhe Zhao. “Magnetic soft materials and robots”. Chemical
reviews 122.5 (2022), pp. 5317–5364.

191



Chapter A BIBLIOGRAPHY

[146] Yuchen Wang, Jiaqi Liu, and Shu Yang. “Multi-functional liquid crystal elastomer
composites”. Applied Physics Reviews 9.1 (2022), p. 011301.

[147] Andreas Lendlein, Hongyan Jiang, Oliver Jünger, and Robert Langer. “Light-
induced shape-memory polymers”. Nature 434.7035 (2005), pp. 879–882.

[148] Timothy F Scott, Andrew D Schneider, Wayne D Cook, and Christopher N
Bowman. “Photoinduced plasticity in cross-linked polymers”. Science 308.5728
(2005), pp. 1615–1617.

[149] Marc Behl and Andreas Lendlein. “Shape-memory polymers”. Materials today 10.4
(2007), pp. 20–28.

[150] Yiping Liu, Ken Gall, Martin L Dunn, Alan R Greenberg, and Julie Diani. “Ther-
momechanics of shape memory polymers: uniaxial experiments and constitutive
modeling”. International Journal of Plasticity 22.2 (2006), pp. 279–313.

[151] Yoonho Kim, Hyunwoo Yuk, Ruike Zhao, Shawn A Chester, and Xuanhe Zhao.
“Printing ferromagnetic domains for untethered fast-transforming soft materials”.
Nature 558.7709 (2018), pp. 274–279.

[152] Alan Wineman and Je-Hong Min. “Time dependent scission and cross-linking in an
elastomeric cylinder undergoing circular shear and heat conduction”. International
Journal of Non-Linear Mechanics 38.7 (2003), pp. 969–983.

[153] Dana R Rottach, John G Curro, Joanne Budzien, Gary S Grest, Carsten Svaneborg,
and Ralf Everaers. “Molecular dynamics simulations of polymer networks undergo-
ing sequential cross-linking and scission reactions”. Macromolecules 40.1 (2007),
pp. 131–139.

[154] J David Carlson and Mark R Jolly. “MR fluid, foam and elastomer devices”.
mechatronics 10.4-5 (2000), pp. 555–569.

[155] Kostas Danas, SV Kankanala, and Nicolas Triantafyllidis. “Experiments and
modeling of iron-particle-filled magnetorheological elastomers”. Journal of the
Mechanics and Physics of Solids 60.1 (2012), pp. 120–138.

[156] Ioan Bica, Eugen M Anitas, Madalin Bunoiu, Boris Vatzulik, and Iulius Juganaru.
“Hybrid magnetorheological elastomer: Influence of magnetic field and compression
pressure on its electrical conductivity”. Journal of Industrial and Engineering
Chemistry 20.6 (2014), pp. 3994–3999.

[157] Tian Chen, Mark Pauly, and Pedro M Reis. “A reprogrammable mechanical
metamaterial with stable memory”. Nature 589.7842 (2021), pp. 386–390.

[158] Liu Wang, Dongchang Zheng, Pablo Harker, Aman B Patel, Chuan Fei Guo,
and Xuanhe Zhao. “Evolutionary design of magnetic soft continuum robots”.
Proceedings of the National Academy of Sciences 118.21 (2021), e2021922118.

192



BIBLIOGRAPHY Chapter A

[159] Ziyu Ren, Wenqi Hu, Xiaoguang Dong, and Metin Sitti. “Multi-functional soft-
bodied jellyfish-like swimming”. Nature Communications 10.1 (2019), p. 2703.

[160] Sandhya Rani Goudu, Immihan Ceren Yasa, Xinghao Hu, Hakan Ceylan, Wenqi
Hu, and Metin Sitti. “Biodegradable untethered magnetic hydrogel Milli-Grippers”.
Advanced Functional Materials 30.50 (2020), p. 2004975.

[161] Holger Böse, Raman Rabindranath, and Johannes Ehrlich. “Soft magnetorheologi-
cal elastomers as new actuators for valves”. Journal of Intelligent Material Systems
and Structures 23.9 (2012), pp. 989–994.

[162] Hen-Wei Huang, Mahmut Selman Sakar, Andrew J Petruska, Salvador Pané,
and Bradley J Nelson. “Soft micromachines with programmable motility and
morphology”. Nature communications 7.1 (2016), p. 12263.

[163] Jiachen Zhang and Eric Diller. “Untethered miniature soft robots: Modeling and
design of a millimeter-scale swimming magnetic sheet”. Soft robotics 5.6 (2018),
pp. 761–776.

[164] Eric Diller, Jiang Zhuang, Guo Zhan Lum, Matthew R Edwards, and Metin Sitti.
“Continuously distributed magnetization profile for millimeter-scale elastomeric
undulatory swimming”. Applied Physics Letters 104.17 (2014).

[165] T Xu, J Zhang, M Salehizadeh, O Onaizah, and E Diller. Millimeter-scale flexible
robots with programmable three-dimensional magnetization and motions. Sci. Robot.
4, eaav4494. 2019.

[166] Yu Huang, Jian Zhao, and Shutian Liu. “Design optimization of segment-reinforced
bistable mechanisms exhibiting adjustable snapping behavior”. Sensors and Actua-
tors A: Physical 252 (2016), pp. 7–15.

[167] Laliphat Manamanchaiyaporn, Tiantian Xu, and Xinyu Wu. “Magnetic Soft Robot
With the Triangular Head–Tail Morphology Inspired By Lateral Undulation”.
IEEE/ASME Transactions on Mechatronics 25.6 (2020), pp. 2688–2699.

[168] Xuanhe Zhao and Yoonho Kim. Soft microbots programmed by nanomagnets. 2019.

[169] Jizhai Cui, Tian-Yun Huang, Zhaochu Luo, Paolo Testa, Hongri Gu, Xiang-Zhong
Chen, Bradley J Nelson, and Laura J Heyderman. “Nanomagnetic encoding of
shape-morphing micromachines”. Nature 575.7781 (2019), pp. 164–168.

[170] Brett Cowan and Paris R Von Lockette. “Fabrication, characterization, and heuris-
tic trade space exploration of magnetically actuated Miura-Ori origami structures”.
Smart Materials and Structures 26.4 (2017), p. 045015.

[171] Larissa S Novelino, Qiji Ze, Shuai Wu, Glaucio H Paulino, and Ruike Zhao.
“Untethered control of functional origami microrobots with distributed actuation”.
Proceedings of the National Academy of Sciences 117.39 (2020), pp. 24096–24101.

193



Chapter A BIBLIOGRAPHY

[172] S. Macrae Montgomery, Shuai Wu, Xiao Kuang, Connor D. Armstrong, Cole
Zemelka, Qiji Ze, Rundong Zhang, Ruike Zhao, and H. Jerry Qi. “Magneto-
mechanical metamaterials with widely tunable mechanical properties and acoustic
bandgaps”. Advanced Functional Materials 31 (2021), p. 2005319.

[173] S Macrae Montgomery, Shuai Wu, Xiao Kuang, Connor D Armstrong, Cole Zemelka,
Qiji Ze, Rundong Zhang, Ruike Zhao, and H Jerry Qi. “Magneto-mechanical meta-
materials with widely tunable mechanical properties and acoustic bandgaps”.
Advanced Functional Materials 31.3 (2021), p. 2005319.

[174] Yucai Lin, Ziying Hu, Miaoxin Zhang, Ting Xu, Shile Feng, Lei Jiang, and Yong-
mei Zheng. “Magnetically Induced Low Adhesive Direction of Nano/Micropillar
Arrays for Microdroplet Transport”. Advanced Functional Materials 28.49 (2018),
p. 1800163.

[175] Zhengzhi Wang, Kun Wang, Deshan Liang, Linhai Yan, Ke Ni, Houbing Huang, Bei
Li, Zhiwei Guo, Junsheng Wang, Xingqiao Ma, et al. “Hybrid magnetic micropillar
arrays for programmable actuation”. Advanced Materials 32.25 (2020), p. 2001879.

[176] Dirk-M Drotlef, Peter Blümler, Periklis Papadopoulos, and Aránzazu Del Campo.
“Magnetically actuated micropatterns for switchable wettability”. ACS applied
materials and interfaces 6.11 (2014), pp. 8702–8707.

[177] Zining Yang, Jun Kyu Park, and Seok Kim. “Magnetically responsive elastomer–
silicon hybrid surfaces for fluid and light manipulation”. Small 14.2 (2018), p. 1702839.

[178] Jisoo Jeon, Jeong Eun Park, Sei Jin Park, Sukyoung Won, Hangbo Zhao, Sanha
Kim, Bong Sup Shim, Augustine Urbas, A John Hart, Zahyun Ku, et al. “Shape-
programmed fabrication and actuation of magnetically active micropost arrays”.
ACS applied materials and interfaces 12.14 (2020), pp. 17113–17120.

[179] Shaojun Jiang, Yanlei Hu, Hao Wu, Yachao Zhang, Yiyuan Zhang, Yulong Wang,
Yinghui Zhang, Wulin Zhu, Jiawen Li, Dong Wu, et al. “Multifunctional Janus
microplates arrays actuated by magnetic fields for water/light switches and bio-
inspired assimilatory coloration”. Advanced Materials 31.15 (2019), p. 1807507.

[180] Yangying Zhu, Dion S Antao, Rong Xiao, and Evelyn N Wang. “Real-time manip-
ulation with magnetically tunable structures”. Advanced Materials 26.37 (2014),
pp. 6442–6446.

[181] Xiaoguang Dong, Guo Zhan Lum, Wenqi Hu, Rongjing Zhang, Ziyu Ren, Patrick R
Onck, and Metin Sitti. “Bioinspired cilia arrays with programmable nonreciprocal
motion and metachronal coordination”. Science advances 6.45 (2020), eabc9323.

194



BIBLIOGRAPHY Chapter A

[182] SN Khaderi, JMJ Den Toonder, and PR Onck. “Microfluidic propulsion by the
metachronal beating of magnetic artificial cilia: a numerical analysis”. Journal of
fluid mechanics 688 (2011), pp. 44–65.

[183] Zhijie Qi, Mingxing Zhou, Ya Li, Zhiqiang Xia, Wenxing Huo, and Xian Huang.
“Reconfigurable flexible electronics driven by origami magnetic membranes”. Ad-
vanced Materials Technologies 6.4 (2021), p. 2001124.

[184] Takumi Kawasetsu, Takato Horii, Hisashi Ishihara, and Minoru Asada. “Mexican-
hat-like response in a flexible tactile sensor using a magnetorheological elastomer”.
Sensors 18.2 (2018), p. 587.

[185] Youcan Yan, Zhe Hu, Zhengbao Yang, Wenzhen Yuan, Chaoyang Song, Jia Pan,
and Yajing Shen. “Soft magnetic skin for super-resolution tactile sensing with force
self-decoupling”. Science Robotics 6.51 (2021), eabc8801.

[186] Yuanzhao Wu, Yiwei Liu, and Youlin Zhou. “Qikui Man, Chao Hu, Waqas Asghar,
Fali Li, Zhe Yu, Jie Shang, Gang Liu, Meiyong Liao, and Run-Wei Li. A skin-
inspired tactile sensor for smart prosthetics”. Science Robotics 3.9 (2018).

[187] Tess Hellebrekers, Oliver Kroemer, and Carmel Majidi. “Soft magnetic skin for con-
tinuous deformation sensing”. Advanced Intelligent Systems 1.4 (2019), p. 1900025.

[188] Sungwoong Jeon, Sangwon Kim, Shinwon Ha, Seungmin Lee, Eunhee Kim, So
Yeun Kim, Sun Hwa Park, Jung Ho Jeon, Sung Won Kim, Cheil Moon, Bradley
J. Nelson, Jin-young Kim, Seong-Woon Yu, and Hongsoo Choi. “Magnetically
actuated microrobots as a platform for stem cell transplantation”. Science Robotics
4.30 (2019), eaav4317.

[189] Xuanhe Zhao, Jaeyun Kim, Christine A Cezar, Nathaniel Huebsch, Kangwon Lee,
Kamal Bouhadir, and David J Mooney. “Active scaffolds for on-demand drug
and cell delivery”. Proceedings of the National Academy of Sciences 108.1 (2011),
pp. 67–72.

[190] Christine A Cezar, Stephen M Kennedy, Manav Mehta, James C Weaver, Luo Gu,
Herman Vandenburgh, and David J Mooney. “Biphasic ferrogels for triggered drug
and cell delivery”. Advanced healthcare materials 3.11 (2014), pp. 1869–1876.

[191] Xinyue Liu, Yueying Yang, Maria Eugenia Inda, Shaoting Lin, Jingjing Wu, Yoonho
Kim, Xiaoyu Chen, Dacheng Ma, Timothy K Lu, and Xuanhe Zhao. “Magnetic
living hydrogels for intestinal localization, retention, and diagnosis”. Advanced
functional materials 31.27 (2021), p. 2010918.

195



Chapter A BIBLIOGRAPHY

[192] Yoonho Kim, Emily Genevriere, Pablo Harker, Jaehun Choe, Marcin Balicki,
Robert W Regenhardt, Justin E Vranic, Adam A Dmytriw, Aman B Patel, and
Xuanhe Zhao. “Telerobotic neurovascular interventions with magnetic manipula-
tion”. Science Robotics 7.65 (2022), eabg9907.

[193] Terunobu Miyazaki and Hanmin Jin. The physics of ferromagnetism. Vol. 158.
Springer Science & Business Media, 2012.

[194] JM Ginder, SM Clark, WF Schlotter, and ME Nichols. “Magnetostrictive phenom-
ena in magnetorheological elastomers”. International Journal of Modern Physics B
16.17n18 (2002), pp. 2412–2418.

[195] Zvi Rigbi and Leif Jilken. “The response of an elastomer filled with soft ferrite to
mechanical and magnetic influences”. Journal of magnetism and magnetic materials
37.3 (1983), pp. 267–276.

[196] John M Ginder, Mark E Nichols, Larry D Elie, and Janice L Tardiff. “Magnetorhe-
ological elastomers: properties and applications”. Smart Structures and Materials
1999: Smart Materials Technologies. Vol. 3675. International Society for Optics
and Photonics. 1999, pp. 131–138.

[197] K. Danas, S. V. Kankanala, and N. Triantafyllidis. “Experiments and modeling of
iron-particle-filled magnetorheological elastomers”. Journal of the Mechanics and
Physics of Solids 60.1 (Jan. 1, 2012), pp. 120–138.

[198] John M. Ginder, William F. Schlotter, and Mark E. Nichols. “Magnetorheological
elastomers in tunable vibration absorbers”. Proc. SPIE 4331, Smart Structures
and Materials 2001: Damping and Isolation. Newport Beach, CA, United States:
Society of Photo-Optical Instrumentation Engineers, 2001, pp. 103–110.

[199] Hua-xia Deng, Xing-long Gong, and Lian-hua Wang. “Development of an adaptive
tuned vibration absorber with magnetorheological elastomer”. Smart Materials
and Structures 15.5 (2006), N111–N116.

[200] Hyun Kee Kim, Hye Shin Kim, and Young-Keun Kim. “Stiffness control of magne-
torheological gels for adaptive tunable vibration absorber”. Smart Materials and
Structures 26.1 (2017), p. 015016.

[201] Jonathan J. Nagel, George Mikhail, Hongseok Noh, and Jeonghoi Koo. “Mag-
netically actuated micropumps using an Fe-PDMS composite membrane”. Smart
Structures and Materials 2006: Smart Electronics, MEMS, BioMEMS, and Nan-
otechnology. Ed. by Vijay K. Varadan. Vol. 6172. International Society for Optics
and Photonics. SPIE, 2006, pp. 288–296.

196



BIBLIOGRAPHY Chapter A

[202] Shi-Yang Tang, Xuchun Zhang, Shuaishuai Sun, Dan Yuan, Qianbin Zhao, Sheng
Yan, Lei Deng, Guolin Yun, Jun Zhang, Shiwu Zhang, and Weihua Li. “Ver-
satile Microfluidic Platforms Enabled by Novel Magnetorheological Elastomer
Microactuators”. Advanced Functional Materials 28.8 (2018), p. 1705484.

[203] Tao Hu, Shouhu Xuan, Li Ding, and Xinglong Gong. “Stretchable and magneto-
sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced
magnetorheological elastomer”. Materials & Design 156 (2018), pp. 528–537.

[204] Shunta Kashima, Fumikazu Miyasaka, and Katsuhiro Hirata. “Novel Soft Actuator
Using Magnetorheological Elastomer”. IEEE Transactions on Magnetics 48.4 (2012),
pp. 1649–1652.

[205] Jacopo Ciambella and Giuseppe Tomassetti. “A form-finding strategy for magneto-
elastic actuators”. International Journal of Non-Linear Mechanics 119 (2020),
p. 103297.

[206] Wei Chen, Zhi Yan, and Lin Wang. “Complex transformations of hard-magnetic
soft beams by designing residual magnetic flux density”. Soft matter 16.27 (2020),
pp. 6379–6388.

[207] Wei Chen, Zhi Yan, and Lin Wang. “On mechanics of functionally graded hard-
magnetic soft beams”. International Journal of Engineering Science 157 (2020),
p. 103391.

[208] Lucio Pancaldi, Pietro Dirix, Adele Fanelli, Augusto Martins Lima, Nikolaos
Stergiopulos, Pascal John Mosimann, Diego Ghezzi, and Mahmut Selman Sakar.
“Flow driven robotic navigation of microengineered endovascular probes”. Nature
Communications 11 (2020), p. 6356.

[209] Clifford Truesdell and Richard Toupin. The classical field theories. Springer, 1960.

[210] William Fuller Brown. Magnetoelastic interactions. Vol. 9. Springer, 1966.

[211] Pao Yih-Hsing and Yeh Chau-Shioung. “A linear theory for soft ferromagnetic
elastic solids”. International Journal of Engineering Science 11.4 (1973), pp. 415–
436.

[212] Y-H Pao. “Electromagnetic forces in deformable continua”. In: Mechanics today.
Volume 4.(A78-35706 14-70) New York 4 (1978), pp. 209–305.

[213] Mark R. Jolly, J. David Carlson, Beth C. Muñoz, and Todd A. Bullions. “The
magnetoviscoelastic response of elastomer composites consisting of ferrous particles
embedded in a polymer matrix”. Journal of Intelligent Material Systems and
Structures 7.6 (1996), pp. 613–622.

[214] A Dorfmann and RW1064 Ogden. “Nonlinear magnetoelastic deformations of
elastomers”. Acta Mechanica 167 (2004), pp. 13–28.

197



Chapter A BIBLIOGRAPHY

[215] A Dorfmann and RW21853031071 Ogden. “Some problems in nonlinear magnetoe-
lasticity”. Zeitschrift für angewandte Mathematik und Physik ZAMP 56 (2005),
pp. 718–745.

[216] SV Kankanala and N20998281115 Triantafyllidis. “On finitely strained magne-
torheological elastomers”. Journal of the Mechanics and Physics of Solids 52.12
(2004), pp. 2869–2908.

[217] Dipayan Mukherjee, Laurence Bodelot, and Kostas Danas. “Microstructurally-
guided explicit continuum models for isotropic magnetorheological elastomers
with iron particles”. International Journal of Non-Linear Mechanics 120 (2020),
p. 103380.

[218] M Rambausek, D Mukherjee, and Kostas Danas. “A computational framework for
magnetically hard and soft viscoelastic magnetorheological elastomers”. Computer
Methods in Applied Mechanics and Engineering 391 (2022), p. 114500.

[219] Dipayan Mukherjee, Matthias Rambausek, and Kostas Danas. “An explicit dis-
sipative model for isotropic hard magnetorheological elastomers”. Journal of the
Mechanics and Physics of Solids 151 (2021), p. 104361.

[220] Jean-Pierre Voropaieff, Laurence Bodelot, Kostas Danas, and Nicolas Triantafyllidis.
“Modeling and Identification of the constitutive behavior of magneto-rheological
elastomers”. 2017.

[221] G. Bertotti. Hysteresis in Magnetism: For Physicists, Materials Scientists, and
Engineers. Electromagnetism. Elsevier Science, 1998.

[222] Xiao Kuang, Shuai Wu, Qiji Ze, Liang Yue, Yi Jin, S Macrae Montgomery,
Fengyuan Yang, H Jerry Qi, and Ruike Zhao. “Magnetic dynamic polymers
for modular assembling and reconfigurable morphing architectures”. Advanced
materials 33.30 (2021), p. 2102113.

[223] Daniel Garcia-Gonzalez. “Magneto-visco-hyperelasticity for hard-magnetic soft
materials: theory and numerical applications”. Smart Materials and Structures
28.8 (2019), p. 085020.

[224] Rundong Zhang, Shuai Wu, Qiji Ze, and Ruike Zhao. “Micromechanics Study on
Actuation Efficiency of Hard-Magnetic Soft Active Materials”. Journal of Applied
Mechanics 87 (2020), p. 091008.

[225] Dipayan Mukherjee, Laurence Bodelot, and Kostas Danas. “Microstructurally-
guided explicit continuum models for isotropic magnetorheological elastomers with
iron particles”. International Journal of Non-Linear Mechanics (Dec. 12, 2019),
p. 103380.

198



BIBLIOGRAPHY Chapter A

[226] Daniel Garcia-Gonzalez and Mokarram Hossain. “Microstructural modelling of
hard-magnetic soft materials: Dipole–dipole interactions versus Zeeman effect”.
Extreme Mechanics Letters 48 (2021), p. 101382.

[227] M. V. Vaganov, D. Yu. Borin, S. Odenbach, and Yu. L. Raikher. “Effect of local
elasticity of the matrix on magnetization loops of hybrid magnetic elastomers”.
Journal of Magnetism and Magnetic Materials. The selected papers of Seventh
Moscow International Symposium on Magnetism (MISM-2017) 459 (2018), pp. 92–
97.

[228] M. V. Vaganov, D. Yu. Borin, S. Odenbach, and Yu. L. Raikher. “Training effect in
magnetoactive elastomers due to undermagnetization of magnetically hard filler”.
Physica B: Condensed Matter 578 (2020), p. 411866.

[229] M Schümann, D Yu Borin, J Morich, and S Odenbach. “Reversible and non-
reversible motion of NdFeB-particles in magnetorheological elastomers”. Journal
of Intelligent Material Systems and Structures 32 (2021), pp. 3–15.

[230] E. Psarra, L. Bodelot, and K. Danas. “Wrinkling to crinkling transitions and
curvature localization in a magnetoelastic film bonded to a non-magnetic substrate”.
Journal of Mechanics and Physics of Solids 133 (2019), p. 103734.

[231] Tomohiko G Sano. “Reduced theory for hard magnetic rods with dipole–dipole
interactions”. Journal of Physics A: Mathematical and Theoretical 55 (10 2022),
p. 104002.

[232] Dong Yan, Bastien FG Aymon, and Pedro M Reis. “A reduced-order, rotation-
based model for thin hard-magnetic plates”. Journal of the Mechanics and Physics
of Solids 170 (2023), p. 105095.

[233] Dong Yan, Arefeh Abbasi, and Pedro M Reis. “A comprehensive framework for
hard-magnetic beams: reduced-order theory, 3D simulations, and experiments”.
International Journal of Solids and Structures (2021), p. 111319.

[234] Tomohiko G. Sano, Matteo Pezzulla, and Pedro M. Reis. “A Kirchhoff-like theory for
hard magnetic rods under geometrically nonlinear deformation in three dimensions”.
Journal of the Mechanics and Physics of Solids 160 (2022), p. 104739.

[235] Wei Chen and Lin Wang. “Theoretical modeling and exact solution for extreme
bending deformation of hard-magnetic soft beams”. Journal of Applied Mechanics
87.4 (2020), p. 041002.

[236] Wei Chen, Lin Wang, Zhi Yan, and Bo Luo. “Three-dimensional large-deformation
model of hard-magnetic soft beams”. Composite Structures 266 (2021), p. 113822.

[237] Amir Mehdi Dehrouyeh-Semnani. “On bifurcation behavior of hard magnetic soft
cantilevers”. International Journal of Non-Linear Mechanics 134 (2021), p. 103746.

199



Chapter A BIBLIOGRAPHY

[238] Riccardo Durastanti, Lorenzo Giacomelli, and Giuseppe Tomassetti. “Shape pro-
gramming of a magnetic elastica”. Mathematical Models and Methods in Applied
Sciences 31.04 (2021), pp. 675–710.

[239] AB Pippard. “The elastic arch and its modes of instability”. European Journal of
Physics 11.6 (1990), p. 359.

[240] P Patricio, M Adda-Bedia, and M Ben Amar. “An elastica problem: instabilities
of an elastic arch”. Physica D: Nonlinear Phenomena 124.1-3 (1998), pp. 285–295.

[241] Mattias Vangbo and Ylva Bäcklund. “A lateral symmetrically bistable buckled
beam”. Journal of Micromechanics and Microengineering 8.1 (1998), p. 29.

[242] Mattias Vangbo. “An analytical analysis of a compressed bistable buckled beam”.
Sensors and Actuators A: Physical 69.3 (1998), pp. 212–216.

[243] Kai Tan, Lingling Chen, Shengyou Yang, and Qian Deng. “Dynamic snap-through
instability and damped oscillation of a flat arch of hard magneto-active elastomers”.
International Journal of Mechanical Sciences 230 (2022), p. 107523.

[244] Eric M. Stewart and Lallit Anand. “Magneto-viscoelasticity of hard-magnetic
soft-elastomers: Application to modeling the dynamic snap-through behavior of a
bistable arch”. Journal of the Mechanics and Physics of Solids 179 (2023), p. 105366.

[245] Keith A Seffen and Stefano Vidoli. “Eversion of bistable shells under magnetic
actuation: a model of nonlinear shapes”. Smart Materials and Structures 25.6
(2016), p. 065010.

[246] EG Loukaides, SK Smoukov, and KA Seffen. “Magnetic actuation and transition
shapes of a bistable spherical cap”. International Journal of Smart and Nano
Materials 5.4 (2014), pp. 270–282.

[247] Matteo Pezzulla, Dong Yan, and Pedro M Reis. “A geometrically exact model for
thin magneto-elastic shells”. Journal of the Mechanics and Physics of Solids 166
(2022), p. 104916.

[248] W. T. Koiter. “The nonlinear buckling behavior of a complete spherical shell under
uniform external pressure, Parts I, II, III & IV”. Proceedings of the Koninklijke
Nederlandse Akedemie van Wetenschappen Series B-Physical Sciences B72 (1969),
pp. 40–123.

[249] F.I. Niordson. Shell Theory. North-Holland Series in Applied Mathematics and
Mechanics. Elsevier Science, Amsterdam, 1985. isbn: 9780444599094.

[250] Th Von Karman and Hsue-Shen Tsien. “The buckling of spherical shells by external
pressure”. Journal of the Aeronautical Sciences 7.2 (1939), pp. 43–50.

200



BIBLIOGRAPHY Chapter A

[251] Th Von Karman, Louis G Dunn, and Hsue-Shen Tsien. “The influence of curvature
on the buckling characteristics of structures”. J. Aeronaut. Sci. 7.7 (1940), pp. 276–
289.

[252] JW Hutchinson, WT Koiter, et al. “Postbuckling theory”. Applied Mechanics
Reviews 23.12 (1970), pp. 1353–1366.

[253] Dong Yan, Matteo Pezzulla, and Pedro M Reis. “Buckling of pressurized spherical
shells containing a through-thickness defect”. Journal of Mechanics and Physics of
Solids 138 (2020), p. 103923.

[254] S. Gerasimidis, E. Virot, J. W. Hutchinson, and S. M. Rubinstein. “On Establishing
Buckling Knockdowns for Imperfection-Sensitive Shell Structures”. Journal of
Applied Mechanics 85.9 (2018), p. 091010.

[255] Jayson Paulose and David R Nelson. “Buckling pathways in spherical shells with
soft spots”. Soft Matter 9.34 (2013), pp. 8227–8245.

[256] Simos Gerasimidis and JW Hutchinson. “Dent imperfections in shell buckling: The
role of geometry, residual stress, and plasticity”. Journal of Applied Mechanics
88.3 (2021).

[257] Tatsuzo Koga and Nicholas J Hoff. “The axisymmetric buckling of initially imperfect
complete spherical shells”. International Journal of Solids and Structures 5.7 (1969),
pp. 679–697.

[258] Arefeh Abbasi, Dong Yan, and Pedro M Reis. “Probing the buckling of pressurized
spherical shells”. Journal of the Mechanics and Physics of Solids 155 (2021),
p. 104545.

[259] Eduard Riks. “An incremental approach to the solution of snapping and buckling
problems”. International Journal of Solids and Structures 15.7 (1979), pp. 529–551.

[260] Daniel Claxton. “Surface Curvature, MATLAB Central File Exchange. Retrieved
December 9, 2022” (2022). www.mathworks.com/matlabcentral/fileexchange/
11168-surface-curvature.

[261] S. Cohn-Vossen. “Unstarre geschlossene Flachen”. Mathematische Annalen 102
(1929), p. 10.

[262] Saullo GP Castro, Rolf Zimmermann, Mariano A Arbelo, Regina Khakimova, Mark
W Hilburger, and Richard Degenhardt. “Geometric imperfections and lower-bound
methods used to calculate knock-down factors for axially compressed composite
cylindrical shells”. Thin-Walled Struct. 74 (2014), pp. 118–132.

[263] Jan Sieber, John W Hutchinson, and J Michael T Thompson. “Buckling thresholds
for pre-loaded spherical shells subject to localized blasts”. Journal of Applied
Mechanics 87.3 (2020).

201



Chapter A BIBLIOGRAPHY

[264] Eric Reissner. “Stresses and Small Displacements of Shallow Spherical Shells. I”.
Journal of Mathematics and Physics 25.1-4 (1946), pp. 279–300.

[265] Eric Reissner. “Stresses and Small Displacements of Shallow Spherical Shells. II”.
Journal of Mathematics and Physics 25.1-4 (1946), pp. 80–85.

[266] Alekse_ Vasil_evich Pogorelov. Bendings of Surfaces and Stability of Shells (Trans-
lations of Mathematical Monographs). Vol. 72. American Mathematical Society,
1988.

[267] Matteo Pezzulla and Pedro M. Reis. “A weak form implementation of nonlinear
axisymmetric shell equations with examples”. Journal of Applied Mechanics 84.3
(2019), p. 034501.

[268] CA Schenk and GI1173 Schuëller. “Buckling analysis of cylindrical shells with
cutouts including random boundary and geometric imperfections”. Computer
methods in applied mechanics and engineering 196.35-36 (2007), pp. 3424–3434.

[269] Vissarion Papadopoulos and Manolis Papadrakakis. “The effect of material and
thickness variability on the buckling load of shells with random initial imperfec-
tions”. Computer Methods in Applied Mechanics and Engineering 194.12-16 (2005),
pp. 1405–1426.

[270] Christian A Schenk and Gerhart I Schuëller. “Buckling analysis of cylindrical
shells with random geometric imperfections”. International journal of non-linear
mechanics 38.7 (2003), pp. 1119–1132.

[271] MK Chryssanthopoulos and Carlo Poggi. “Stochastic imperfection modelling in
shell buckling studies”. Thin-walled structures 23.1-4 (1995), pp. 179–200.

[272] Vissarion Papadopoulos and Pavlos Iglesis. “The effect of non-uniformity of axial
loading on the buckling behaviour of shells with random imperfections”. Interna-
tional Journal of Solids and Structures 44.18-19 (2007), pp. 6299–6317.

[273] Zhixin Xiong, Zhiquan Huang, and Xiaochuan Yu. “Application of random geomet-
ric imperfection method to nonlinear buckling analysis of spherical shell”. Journal
of Marine Science and Technology 27.1 (2019), p. 4.

[274] S Surendran, Tiku T Tanyimboh, and Massoud Tabesh. “Peaking demand factor-
based reliability analysis of water distribution systems”. Advances in Engineering
Software 36.11-12 (2005), pp. 789–796.

[275] Ying Min Low. “A new distribution for fitting four moments and its applications
to reliability analysis”. Structural Safety 42 (2013), pp. 12–25.

[276] Jia-Liang Le and Zdeněk P Bažant. “Failure probability of concrete specimens of
uncertain mean strength in large database”. Journal of Engineering Mechanics
146.6 (2020), p. 04020039.

202



BIBLIOGRAPHY Chapter A

[277] Oscar Lopez-Pamies, Taha Goudarzi, and Kostas Danas. “The nonlinear elastic
response of suspensions of rigid inclusions in rubber: II—a simple explicit approxi-
mation for finite-concentration suspensions”. Journal of the Mechanics and Physics
of Solids 61.1 (2013), pp. 19–37.

[278] Bhavesh Shrimali, Victor Lefèvre, and Oscar Lopez-Pamies. “A simple explicit
homogenization solution for the macroscopic elastic response of isotropic porous
elastomers”. Journal of the Mechanics and Physics of Solids 122 (2019), pp. 364–
380.

[279] Victor Lefèvre and Oscar Lopez-Pamies. “Nonlinear electroelastic deformations of
dielectric elastomer composites: II—Non-Gaussian elastic dielectrics”. Journal of
the Mechanics and Physics of Solids 99 (2017), pp. 438–470.

[280] url: https://scikit-learn.org/stable/modules/gaussian_process.html.

[281] A.M. Johansen. “Markov Chain Monte Carlo”. International Encyclopedia of
Education (Third Edition). Ed. by Penelope Peterson, Eva Baker, and Barry
McGaw. Third Edition. Oxford: Elsevier, 2010, pp. 245–252.

[282] Michael A Stephens. “EDF statistics for goodness of fit and some comparisons”.
Journal of the American statistical Association 69.347 (1974), pp. 730–737.

[283] Arefeh Abbasi, Tomohiko G Sano, Dong Yan, and Pedro M Reis. “Snap buckling of
bistable beams under combined mechanical and magnetic loading”. Philosophical
Transactions of the Royal Society A 381.2244 (2023), p. 20220029.

[284] Yunteng Cao, Masoud Derakhshani, Yuhui Fang, Guoliang Huang, and Changyong
Cao. “Bistable structures for advanced functional systems”. Advanced Functional
Materials 31.45 (2021), p. 2106231.

[285] Kon-Well Wang and Ryan L Harne. Harnessing bistable structural dynamics: for
vibration control, energy harvesting and sensing. John Wiley & Sons, 2017.

[286] Anirban Ghosh, Gertjan Koster, and Guus Rijnders. “Multistability in bistable
ferroelectric materials toward adaptive applications”. Advanced functional materials
26.31 (2016), pp. 5748–5756.

[287] Ryan L Harne and KW Wang. “A review of the recent research on vibration energy
harvesting via bistable systems”. Smart materials and structures 22.2 (2013),
p. 023001.

[288] Xianbo Sun, Yahui Zhang, and David Kennedy. “On stochastic dynamic analysis
and assessment of bistable structures”. Nonlinear Dynamics 95.4 (2019), pp. 3205–
3218.

[289] M. Taher A. Saif. “On a tunable bistable MEMS-theory and experiment”. Journal
of microelectromechanical systems 9.2 (2000), pp. 157–170.

203

https://scikit-learn.org/stable/modules/gaussian_process.html


Chapter A BIBLIOGRAPHY

[290] Tian Chen, Osama R. Bilal, Kristina Shea, and Chiara Daraio. “Harnessing
bistability for directional propulsion of soft, untethered robots”. Proceedings of
the National Academy of Sciences 115.22 (2018), pp. 5698–5702.

[291] Samuel C. Stanton, Clark C. McGehee, and Brian P. Mann. “Nonlinear dynamics
for broadband energy harvesting: Investigation of a bistable piezoelectric inertial
generator”. Physica D: Nonlinear Phenomena 239.10 (2010), pp. 640–653.

[292] Dan J. Clingman and Jack Thiesen. “The development of two broadband vibra-
tion energy harvesters (BVEH) with adaptive conversion electronics”. Industrial
and Commercial Applications of Smart Structures Technologies 2017. Vol. 10166.
International Society for Optics and Photonics, 2017, pp. 68–86.

[293] Adrienne Crivaro, Robert Sheridan, Mary Frecker, Timothy W. Simpson, and Paris
Von Lockette. “Bistable compliant mechanism using magneto active elastomer
actuation”. Journal of Intelligent Material Systems and Structures 27.15 (2016),
pp. 2049–2061.

[294] Xue Hou, Yin Liu, Guangchao Wan, Zhe Xu, Chunsheng Wen, Hui Yu, John
XJ Zhang, Jianbao Li, and Zi Chen. “Magneto-sensitive bistable soft actuators:
Experiments, simulations, and applications”. Applied Physics Letters 113.22 (2018),
p. 221902.

[295] Benjamin Treml, Andrew Gillman, Philip Buskohl, and Richard Vaia. “Origami
mechanologic”. Proceedings of the National Academy of Sciences 115.27 (2018),
pp. 6916–6921.

[296] Jakob A. Faber, Andres F. Arrieta, and André R. Studart. “Bioinspired spring
origami”. Science 359.6382 (2018), pp. 1386–1391.

[297] Tian Chen, Jochen Mueller, and Kristina Shea. “Integrated design and simulation
of tunable, multi-state structures fabricated monolithically with multi-material
3D printing”. Scientific reports 7.1 (2017).

[298] X Liu, F Lamarque, E Doré, and P Pouille. “Multistable wireless micro-actuator
based on antagonistic pre-shaped double beams”. Smart Materials and Structures
24.7 (2015), p. 075028.

[299] Weileun Fang and JA Wickert. “Post buckling of micromachined beams”. Journal
of Micromechanics and Microengineering 4.3 (1994), p. 116.

[300] Jin-Han Jeon, Tai-Hong Cheng, and Il-Kwon Oh. “Snap-through dynamics of
buckled IPMC actuator”. Sensors and Actuators A: Physical 158.2 (2010), pp. 300–
305.

204



BIBLIOGRAPHY Chapter A

[301] Jonathon Cleary and Hai-Jun Su. “Modeling and experimental validation of
actuating a bistable buckled beam via moment input”. Journal of Applied Mechanics
82.5 (2015), p. 051005.

[302] Wenzhong Yan, Yunchen Yu, and Ankur Mehta. “Analytical modeling for rapid
design of bistable buckled beams”. Theoretical and Applied Mechanics Letters 9.4
(2019), pp. 264–272.

[303] Jian Zhao, Jianyuan Jia, Xiaoping He, and Hongxi Wang. “Post-buckling and
snap-through behavior of inclined slender beams”. Journal of Applied Mechanics
75.4 (2008), p. 041020.

[304] Paul Cazottes, Amâncio Fernandes, Joël Pouget, and Moustapha Hafez. “Bistable
buckled beam: modeling of actuating force and experimental validations”. Journal
of Mechanical Design 131.10 (2009), pp. 1001001–1001011.

[305] B Camescasse, A Fernandes, and Jean Pouget. “Bistable buckled beam: Elastica
modeling and analysis of static actuation”. International Journal of Solids and
Structures 50.19 (2013), pp. 2881–2893.

[306] B Camescasse, A Fernandes, and Jean Pouget. “Bistable buckled beam and force
actuation: Experimental validations”. International Journal of Solids and Structures
51.9 (2014), pp. 1750–1757.

[307] PS Harvey Jr and LN Virgin. “Coexisting equilibria and stability of a shallow arch:
Unilateral displacement-control experiments and theory”. International Journal of
Solids and Structures 54 (2015), pp. 1–11.

[308] Alessandro Cazzolli and Francesco Dal Corso. “Snapping of elastic strips with
controlled ends”. International Journal of Solids and Structures 162 (2019), pp. 285–
303.

[309] Yingchao Zhang, Yang Jiao, Jian Wu, Yinji Ma, and Xue Feng. “Configurations evo-
lution of a buckled ribbon in response to out-of-plane loading”. Extreme Mechanics
Letters 34 (2020), p. 100604.

[310] Guangchao Wan, Yin Liu, Zhe Xu, Congran Jin, Lin Dong, Xiaomin Han, John XJ
Zhang, and Zi Chen. “Tunable bistability of a clamped elastic beam”. Extreme
Mechanics Letters 34 (2020), p. 100603.

[311] Raymond H Plaut. “Snap-through of arches and buckled beams under unilateral
displacement control”. International Journal of Solids and Structures 63 (2015),
pp. 109–113.

[312] Slava Krylov, Bojan R Ilic, and Stella Lulinsky. “Bistability of curved microbeams
actuated by fringing electrostatic fields”. Nonlinear Dynamics 66.3 (2011), pp. 403–
426.

205



Chapter A BIBLIOGRAPHY

[313] Lior Medina, Rivka Gilat, and Slava Krylov. “Bistability criterion for electrostati-
cally actuated initially curved micro plates”. International Journal of Engineering
Science 130 (2018), pp. 75–92.

[314] Corrado Maurini, Joel Pouget, and Stefano Vidoli. “Distributed piezoelectric
actuation of a bistable buckled beam”. European Journal of Mechanics-A/Solids
26.5 (2007), pp. 837–853.

[315] Vivek Ramachandran, Michael D Bartlett, James Wissman, and Carmel Majidi.
“Elastic instabilities of a ferroelastomer beam for soft reconfigurable electronics”.
Extreme Mechanics Letters 9 (2016), pp. 282–290.

[316] A Amor, A Fernandes, and J Pouget. “Snap-through of elastic bistable beam under
contactless magnetic actuation”. International Journal of Non-Linear Mechanics
119 (2020), p. 103358.

[317] K. Das and R. C. Batra. “Pull-in and snap-through instabilities in transient
deformations of microelectromechanical systems”. Journal of Micromechanics and
Microengineering 19.3 (2009), p. 035008.

[318] A Pandey, D E Moulton, D Vella, and D P Holmes. “Dynamics of snapping beams
and jumping poppers”. Europhysics Letters 105.2 (2014), p. 24001.

[319] Tomohiko G Sano and Hirofumi Wada. “Snap-buckling in asymmetrically con-
strained elastic strips”. Physical Review E 97.1 (2018), p. 013002.

[320] Mark Alger. Polymer Science Dictionary. Springer Science & Business Media, 1996.
isbn: 978-0-412-60870-4.

[321] Michael Gomez, Derek E Moulton, and Dominic Vella. “Dynamics of viscoelastic
snap-through”. Journal of the Mechanics and Physics of Solids 124 (2019), pp. 781–
813.

[322] Oliver M O’Reilly. “Kirchhoff’s rod theory”. Modeling Nonlinear Problems in the
Mechanics of Strings and Rods. Springer, 2017, pp. 187–268.

[323] Arefeh Abbasi, Tian Chen, Bastien FG Aymon, and Pedro M Reis. “Designing a
braille reader using the snap buckling of bistable magnetic shells”. arXiv preprint
arXiv:2307.10933 (2023).

[324] Matteo Taffetani, Xin Jiang, Douglas P Holmes, and Dominic Vella. “Static
bistability of spherical caps”. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 474.2213 (2018), p. 20170910.

[325] M Taher A Saif. “On a tunable bistable MEMS-theory and experiment”. Journal
of microelectromechanical systems 9.2 (2000), pp. 157–170.

[326] Ryan L Harne and Kon-Well Wang. Harnessing bistable structural dynamics: for
vibration control, energy harvesting and sensing. John Wiley & Sons, 2017.

206



BIBLIOGRAPHY Chapter A

[327] Tian Chen, Osama R Bilal, Kristina Shea, and Chiara Daraio. “Harnessing bista-
bility for directional propulsion of soft, untethered robots”. Proceedings of the
National Academy of Sciences 115.22 (2018), pp. 5698–5702.

[328] Gaetano Arena, Rainer MJ Groh, Alex Brinkmeyer, Raf Theunissen, Paul M. Weaver,
and Alberto Pirrera. “Adaptive compliant structures for flow regulation”. Proceed-
ings of the Royal Society A: Mathematical, Physical and Engineering Sciences
473.2204 (2017), p. 20170334.

[329] Daniele Leonardis, Loconsole Claudio, and Antonio Frisoli. “A survey on innovative
refreshable braille display technologies”. International Conference on Applied
Human Factors and Ergonomics. Springer. 2017, pp. 488–498.

[330] Javier Jiménez, Jesús Olea, Jesús Torres, Inmaculada Alonso, Dirk Harder, and
Konstanze Fischer. “Biography of louis braille and invention of the braille alphabet”.
Survey of Ophthalmology 54.1 (2009), pp. 142–149.

[331] Jun Su Lee and Stepan Lucyszyn. “A micromachined refreshable Braille cell”.
Journal of Microelectromechanical Systems 14.4 (2005), pp. 673–682.

[332] Xiaosong Wu, Haihong Zhu, Seong-Hyok Kim, and Mark G Allen. “A portable
pneumatically-actuated refreshable braille cell”. TRANSDUCERS 2007-2007 In-
ternational Solid-State Sensors, Actuators and Microsystems Conference. IEEE.
2007, pp. 1409–1412.

[333] Noel H Runyan and Federico Carpi. “Seeking the ‘holy Braille’display: might
electromechanically active polymers be the solution?” Expert Review of Medical
Devices 8.5 (2011), pp. 529–532.

[334] Pruittikorn Smithmaitrie. “Analysis and design of piezoelectric braille display”.
Rehabilitation Engineering. IntechOpen, 2009.

[335] Pruittikorn Smithmaitrie, Jinda Kanjantoe, and Pichaya Tandayya. “Touching
force response of the piezoelectric Braille cell”. Proceedings of the 1st international
convention on Rehabilitation engineering & assistive technology: in conjunction
with 1st Tan Tock Seng Hospital Neurorehabilitation Meeting. 2007, pp. 174–178.

[336] Ramiro Velazquez, Edwige E Pissaloux, Moustapha Hafez, and Jérôme Szewczyk.
“Tactile rendering with shape-memory-alloy pin-matrix”. IEEE Transactions on
Instrumentation and Measurement 57.5 (2008), pp. 1051–1057.

[337] Hermes Hernandez, Enrique Preza, and Ramiro Velazquez. “Characterization of a
piezoelectric ultrasonic linear motor for Braille displays”. 2009 Electronics, Robotics
and Automotive Mechanics Conference (CERMA). IEEE. 2009, pp. 402–407.

[338] Stanislav Simeonov and Neli Simeonova. “Graphical interface for visually impaired
people based on bi-stable solenoids”. arXiv preprint arXiv:1401.5289 (2014).

207



Chapter A BIBLIOGRAPHY

[339] Gemma Carolina Bettelani, Giuseppe Averta, Manuel Giuseppe Catalano, Barbara
Leporini, and Matteo Bianchi. “Design and validation of the readable device:
a single-cell electromagnetic refreshable braille display”. IEEE Transactions on
Haptics 13.1 (2020), pp. 239–245.

[340] Iosko Balabozov, Ivan Yatchev, and Krastyo Hinov. “Computer modeling and
experimental verification of dynamic characteristics of permanent magnet lin-
ear actuator for braille screen”. 2014 International Conference on Applied and
Theoretical Electricity (ICATE). IEEE. 2014, pp. 1–4.

[341] Fernando Vidal-Verdú, Manuel J Madueno, and Rafael Navas. “Thermopneu-
matic actuator for tactile displays and smart actuation circuitry”. Smart Sensors,
Actuators, and MEMS II. Vol. 5836. SPIE. 2005, pp. 484–492.

[342] P Chakraborti, HA Karahan Toprakci, P Yang, N Di Spigna, P Franzon, and
T Ghosh. “A compact dielectric elastomer tubular actuator for refreshable Braille
displays”. Sensors and Actuators A: Physical 179 (2012), pp. 151–157.

[343] Zhi Ren, Xiaofan Niu, Dustin Chen, Wei Hu, and Qibing Pei. “A new bistable
electroactive polymer for prolonged cycle lifetime of refreshable Braille displays”.
Electroactive Polymer Actuators and Devices (EAPAD) 2014. Vol. 9056. SPIE.
2014, pp. 511–519.

[344] Gabriele Frediani, James Busfield, and Federico Carpi. “Enabling portable multiple-
line refreshable Braille displays with electroactive elastomers”. Medical Engineering
& Physics 60 (2018), pp. 86–93.

[345] Yu Qiu, Zhiyun Lu, and Qibing Pei. “Refreshable tactile display based on a bistable
electroactive polymer and a stretchable serpentine Joule heating electrode”. ACS
Applied Materials & Interfaces 10.29 (2018), pp. 24807–24815.

[346] W Makishi, K Iwami, Y Haga, and M Esashi. “Batch fabrication of SMA actuated
pin display for blind aid”. Technical Digest of the Sensor Symposium. Vol. 18. 2001,
pp. 137–142.

[347] R Velázquez, EE Pissaloux, M Hafez, and J Szewczyk. “Toward low-cost highly
portable tactile displays with shape memory alloys”. Applied Bionics and Biome-
chanics 4.2 (2007), pp. 57–70.

[348] Nadine Besse, Samuel Rosset, Juan Jose Zarate, and Herbert Shea. “Flexible active
skin: large reconfigurable arrays of individually addressed shape memory polymer
actuators”. Advanced Materials Technologies 2.10 (2017), p. 1700102.

[349] Ig Mo Koo, Kwangmok Jung, Ja Choon Koo, Jae-Do Nam, Young Kwan Lee, and
Hyouk Ryeol Choi. “Development of soft-actuator-based wearable tactile display”.
IEEE Transactions on Robotics 24.3 (2008), pp. 549–558.

208



BIBLIOGRAPHY Chapter A

[350] Marc Matysek, Peter Lotz, Thomas Winterstein, and Helmut F Schlaak. “Dielectric
elastomer actuators for tactile displays”. World Haptics 2009-Third Joint Euro-
Haptics conference and Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems. IEEE. 2009, pp. 290–295.

[351] Ivan Yatchev, Krastio Hinov, Iosko Balabozov, and Kristina Krasteva. “Static force
characteristics of electromagnetic actuators for Braille screen”. Facta Universitatis-
Series: Electronics and Energetics 24.2 (2011), pp. 157–167.

[352] H Hawkeye King, Regina Donlin, and Blake Hannaford. “Perceptual thresholds for
single vs. multi-finger haptic interaction”. 2010 IEEE Haptics Symposium. IEEE.
2010, pp. 95–99.

[353] Hiroki Ishizuka and Norihisa Miki. “MEMS-based tactile displays”. Displays 37
(2015), pp. 25–32.

[354] Haley Velasco. How Pop Its, the TikTok Sensation, Became the Toy of the Pan-
demic. 2021.

[355] Donatella Pascolini and Silvio Paolo Mariotti. “Global estimates of visual impair-
ment: 2010”. British Journal of Ophthalmology 96.5 (2012), pp. 614–618.

[356] Robert Norton, John Brown, Michael Katzmann, and Karen Keninger. “Braille
Book and Pamphlets; Specification 800:2014”. Library of Congress, USA (1994).

[357] Zhi Zhao and Xiaojia Shelly Zhang. “Topology optimization of hard-magnetic soft
materials”. Journal of the Mechanics and Physics of Solids 158 (2022), p. 104628.

[358] Benny Davidovitch, Robert D Schroll, Dominic Vella, Mokhtar Adda-Bedia, and
Enrique A Cerda. “Prototypical model for tensional wrinkling in thin sheets”.
Proceedings of the National Academy of Sciences 108.45 (2011), pp. 18227–18232.

[359] Stephen Timoshenko, Sergius Woinowsky-Krieger, et al. Theory of plates and
shells. Vol. 2. McGraw-hill New York, 1959.

[360] Ashkan Vaziri. “Mechanics of highly deformed elastic shells”. Thin-Walled Struc-
tures 47.6-7 (2009), pp. 692–700.

[361] Dominic Vella, Amin Ajdari, Ashkan Vaziri, and Arezki Boudaoud. “Indentation
of Ellipsoidal and Cylindrical Elastic Shells”. Phys. Rev. Lett. 109 (14 2012),
p. 144302.

[362] Paul H Schimpf. “A detailed explanation of solenoid force”. International Journal
on Recent Trends in Engineering & Technology 8.2 (2013), p. 7.

[363] Hugo Salmon. “Mobile magnetic microrobots control and study in microfluidic
environment: New tools for biomedical applications”. PhD thesis. Paris 11, 2014.

209



Chapter A BIBLIOGRAPHY

[364] Wikipedia. American Wire Gauge. 2023. url: https://en.wikipedia.org/wiki/
American_wire_gauge.

[365] William Feller. “An introduction to probability theory and its applications”. 81
(1968), 174–182, Vol. 81, John Wiley & Sons.

210

https://en.wikipedia.org/wiki/American_wire_gauge
https://en.wikipedia.org/wiki/American_wire_gauge


Arefeh Abbasi 
  Curriculum Vitae

Address: Ecole Polytechnique Fédérale de Lausanne   Phone: +41 (21) 69-38 249 

  EPFL STI IGM FLEXLAB, MED 0 1526  Email: arefeh.abbasi@epfl.ch 

Station 9, 1015 Lausanne, Switzerland    

Google Scholar ID: https://scholar.google.com/citations?user=4orB1OAAAAAJ&hl=en 

I am a Ph.D. student in mechanical engineering at EPFL. I conduct research utilizing experimental, numerical, and 

analytical methods to investigate the mechanics of structures in coupled multi-physical fields and to provide 

insights for functional design. My current research involves aspects of mechanical (in)stability of slender structures 

and magneto-active materials and structures. My interdisciplinary work spans across solid mechanics, soft 

materials, and multi-physics coupling, and I am keenly interested in leveraging the principles of mechanics and 
materials to inform the design of devices across the length scales. As a postdoc researcher, I am eager to 
develop my knowledge and skills further and pursue a rewarding career in academia.

Education 

Ph.D. in Mechanics , Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland  2019–Present 

Supervisor: Prof. Pedro M. Reis 

Topic: Probing the mechanics of slender structures: from buckling to functionality 

MS in Mechanical Engineering, Shiraz University of Technology, Iran                                                       2014–2017 

Supervisor: Prof. Jafar Rouzegar 

Topic: Finite element formulation for static and dynamic analysis of composite plates integrated with piezoelectric layers 

using refined plate theory 

BS in Mechanical Engineering, Shiraz University, Iran       2010–2014 

Topic: Investigating various techniques for measuring residual stresses 

Research projects 

❖ Shell Buckling: We revisited the mechanics of thin spherical shells by identifying the key factors

contributing to their buckling instability and rationalizing their imperfection sensitivity using numerical

and experimental methods [6, 8]. We investigated a non-destructive method to anticipate shell structures'

stability landscape and critical loading conditions, considering both simplified scenarios with a single defect

[4] and more realistic situations with random imperfection distributions [10]. Finally, we harvested the

mechanical instabilities of shell structures as opportunities for functionality instead of the first route for

failure [9].

❖ Soft Magnetic Materials: Our research was centered on the mechanics of magneto-active structures

produced from magneto-rheological elastomers (MREs). The mechanical behavior of slender magnetic

structures was investigated through a combination of experimental, numerical, and analytical methods to

gain insight into their response to various loading conditions. Specifically, we examined the various modes

of deformation [5] and (snap) buckling [7, 9] of slender magnetic structures, as well as the mechanics of

magnetic shells with adjustable buckling properties [3]. Furthermore, we exploited the knowledge of the

instability of slender structures combined with active MREs under magnetic field actuation for potential

applications; we proposed the guidelines for designing a novel class of braille reader [9].

❖ Smart Composite Structures: We performed the static (bending) and dynamic (free and forced vibration)

analyses of laminated [2] and FGM [1] composite plates integrated with piezoelectric layers. In our

investigation, finite element formulation and plate theory were combined to improve the performance of

smart structures.



Publications 

[10] Abbasi, A., Lin, Y. L., Derveni, F., and Reis, P. M., ‘’Probing of the buckling statistics of spherical shells with 
a distribution of imperfections,’’ In preparation.

[9] Abbasi, A., Chen, T., Aymon, F. G., and Reis, P. M., ‘’Leveraging the snap buckling of bistable magnetic 
shells to design a refreshable braille dot,’’ Advanced Materials Technologies, Accepted (2023).

[8] Derveni, F., Abbasi, A., and Reis, P. M., ‘’Defect-Defect Interactions in the Buckling of Imperfect Spherical 
Shells,’’ Journal of Applied Mechanics, 1-10 (2023).

[7] Abbasi, A., Sano, T. G., Yan, D., and Reis, P. M., ‘‘Snap buckling of bistable beams under combined 
mechanical and magnetic loading,’’ Philosophical Transactions of the Royal Society A, 381(2244), 20220029 (2023).

[6] Abbasi, A., Derveni, F., and Reis, P. M., ‘‘Comparing the buckling strength of spherical shells with dimpled 
versus bumpy defects,’’ Journal of Applied Mechanics, 90(6), 061008 (2023).

[5] Yan, D., Abbasi, A., and Reis, P. M., ‘‘A comprehensive framework for hard-magnetic beams: Reduced-order 
theory, 3D simulations, and experiments,’’ International Journal of Solids and Structures, 257, 111319 (2022).

[4] Abbasi, A., Yan, D., and Reis, P. M., ’’Probing the buckling of pressurized spherical shells,’’ Journal of the 
Mechanics and Physics of Solids, 155, 104545 (2021).

[3] Yan, D., Pezzulla, M., Cruveiller, L., Abbasi, A., and Reis, P. M., ‘‘Magneto-active elastic shells with tunable 
buckling strength,’’ Nature communications, 12(1), 2831 (2021).

[2] Rouzegar, J., and Abbasi, A., ’’A refined finite element method for bending analysis of laminated plates 
integrated with piezoelectric fiber-reinforced composite actuators,’’ Acta Mechanica Sinica, 34, 689-705 (2018).

[1] Rouzegar, J., and Abbasi, A., ‘’A refined finite element method for bending of smart functionally graded 
plates,’’ Thin-walled structures, 120, 386-396 (2017).

Presentations and outreach 

• American Physical Society (APS) March Meeting, Las Vegas, USA  2023 

Probing of the buckling of spherical shells with a distribution of imperfections

• 11th European Solid Mechanics Conference (ESMC), Galway, Ireland     2022 

Snap buckling of magneto-active shallow shells for Braille readers

• Flexible Structures Laboratory Invited Virtual Lab Tour, South China University of Technology–China, Tel

Aviv University–Israel, CU Boulder–USA, UIUC–USA, Brown University–USA, University of Houston–USA,

Postech–South Korea, Swiss Mech Seminar–Switzerland, Freiburg University–Germany                         2021-2022

Mechanics of magneto-active structures; one of the FleXLab team presenters

• Presentation of the Flexible Structures Laboratory’s research activities, EPFL, Switzerland         2020, 2022 

Journees des Gymnasiens (High school students’ open days)

• Mechanics Gathering Seminar, EPFL, Switzerland  2021 

Snap buckling of bistable beams under combined mechanical and magnetic loading

• American Physical Society (APS) March Meeting, Virtual  2021 

Snap buckling of active bistable beams under magnetic actuation

• Society of Engineering Sciences (SES), Virtual technical meeting   2020 

Probing the buckling of spherical shells

• American Physical Society (APS) March Meeting, Virtual meeting  2020 

Probing the buckling of spherical shells



Teaching and Supervision 

❖ Introduction to Structural Mechanics (1st year undergrad)  Springs 2020, 2021, 2022, 2023 
Professor: Pedro M. Reis (ref. EPFL—ME-104)

60 hours of exercise preparation and session, Exam preparation

❖ Mechanics of Slender Structures (Master’s degree)  Falls 2019, 2020, 2021 

Professor: Pedro M. Reis (ref. EPFL—ME-411)

30 hours of exercise preparation and session, Exam preparation

❖ Mechanics of Structures (2nd year undergrad)  Falls 2022 

Professor: Alain Prenleloup (ref. EPFL—ME-232)

30 hours of exercise session

❖ Mechanics of Materials Laboratory (3nd year undergrad)  Spring 2014 

(ref. Shiraz University)

15 hours of Experiments demonstrations

❖ Co-Supervision of Master research internship —Manon Thbaut (EPFL)  Spring 2022 

Topic: Isotropic hard magnetorheological elastomers with bending-twisting-coupled actuation

❖ Supervision of student research project—Bastien Aymon (EPFL)  Fall and Spring 2021 

Topic: Design and fabrication of a bistable magnetic shell as an actuator

Academic Honors 

❖ Swiss Government Excellence Scholarship, Grant no. 2019.0619  2019-2022 

Issued by Federal Commission for Scholarships for Foreign Students (FCS)

❖ Ranked 3rd based on overall GPA  2017 

Shiraz University of Technology

❖ German Academic Exchange Service (DAAD) Scholarship    2015 

German-Iranian-Jordanian cooperation, CICTI, Furtwangen University, Germany

❖ Ranked among top 4%  2014 

Nationwide university entrance exam, Shiraz University of Technology

❖ Ranked among top 0.3%  2010 

National University Entrance Exam, Shiraz University

Summer Schools 

• Electro- and Magneto Mechanics of soft Solids: Experiments, Modeling, and Instability, CISM Summer

School, Udine, Italy  Summer 2022 

• Soft Solids and Complex Fluids, UMass Amherst, USA, Virtual  Summer 2021 

Skills 

➢ Programming Language: Matlab, Python, HTML

➢ Engineering Software: ABAQUS, ANSYS, Catia V5, Solid Works, AutoCAD, COMSOL, LabView, Rhino

➢ Experimental Skills: Mechanical testing, Rapid prototyping, 3D printing, Electro-magnetic experiments and

coils designing, Polymer synthesis, Fast imaging techniques, X-Ray tomography, Laser cutting, Milling,

Lathing

➢ Languages: Farsi (Persian)-Native speaker, English-Fluent, French-B1, German-A1



Community Involvement 

• Organizer of Weekly Group Meeting       2020-present 

• Website Manager (https://www.epfl.ch/labs/flexlab/)  2022-present 

Journal Reviewing 

• Journal of Applied Mechanics

• Nature Communications

• International Journal of Solids and Structures

• Thin-Walled Structures

Professional Membership 

• American Physical Society (APS)     2020-present 

• Society of Engineering sciences (SES)  2020-present 

References 

• Prof. Pedro M. Reis (FleXLab, Ecole polytechnique fédérale de Lausanne, Switzerland)

pedro.reis@epfl.ch

• Prof. Tian Chen (Architected Intelligent Matter Laboratory, University of Houston, USA)

tianchen@uh.edu

• Prof. Jafar Rouzegar (Shiraz University of Technology, Iran)

rouzegar@sutech.ac.ir


	Acknowledgements
	Abstract (English/Français/Deutsch)
	Introduction
	Shells Structures and Their Application
	Shell Buckling and the Imperfection Sensitivity
	Non-Destructive Probing Technique for Shell Structures
	Magneto-Rheological Elastomers and Their Applications
	Modeling of Magneto-Rheological Elastomers
	Does the Stretching of MREs Affect the Magnetization?
	Slender Magneto-Active Structures and Dimensional Reduction

	Research Niche and Overall Goal of the Thesis
	Outline of the Thesis

	Buckling of Spherical Shells with Dimpled and Bumpy Defects
	Literature Review and Motivation
	Finite Element Simulations
	Knockdown Factor of Bumpy versus Dimpled Shells
	Why are Bumpy Shells Stronger than Dimpled Shells?
	Summary and Outlook

	Probing the Buckling of Spherical Shells
	Literature Review and Motivation
	Problem Definition: Non-Destructive Probing of Spherical Shells
	Experimental Methods
	Fabrication of the Imperfect Shell Specimens
	Predicting the Thickness of the Shell Obtained from Fabrication
	Characterization of the Shell Geometry
	Experimental Apparatus and Protocol for the Probing Technique

	Numerical Simulations Using the Finite Element Method
	Results on Indentation of Pressurized Imperfect Spherical Shells
	Probing the Shell at the Center of the Defect
	Can We Probe the Buckling of Spherical Shells Using Indentation?
	Localized Deformation of Pressurized Spherical Shells under Indentation
	Characteristic Length of Indentation in Spherical Shells

	Summary and Outlook

	Probabilistic Non-Destructive Probing of Spherical Shells
	Literature Review and Motivation
	Definition of the Problem
	Finite Element Simulations
	Case I: The Shell Configuration as the Random Variable
	Effects of Defect Amplitude and Extrapolation Method on Poking Predictions

	Case II: the Indentation Location as the Random Variable
	Summary and Outlook

	Snap Buckling of Bistable Magnetic Beams
	Literature Review and Motivation
	Problem Definition: Snap Buckling of Bistable Magnetic Beams
	Experimental Methods through Snap Buckling Process
	Fabrication of the Beam Specimens
	Preparation of the MRE
	Fabrication and Magnetization of Beam Specimens
	Experimental Apparatus
	Experimental Protocols

	Numerical Simulations Using FEM
	User Element for Riks Analysis
	Simulation Procedure

	A reduced-Order Model for the Snapping of Magnetic Beams
	Linearized Theory with 1 and || 1

	Snapping under Poking Force
	Snapping under Magnetic Loading
	Snapping under Combined Poking Force and Magnetic Loading
	Summary and Outlook

	Snapping of Bistable Magnetic Shells for Braille Reader Design
	Literature Review and Motivation
	Problem Definition: Braille Reader Design Concept
	Experiments with the Scaled-up System
	Finite Element Modeling Simulations
	Validation of the FEM Simulations Against Experiments
	Design of Braille Dots at the Real Scale
	Design Improvement Using a Pneumatic System
	Expected Challenges to Fabricate at-Scale Braille Dots
	Designing a Solenoid for a Braille Reader
	Summary and Outlook

	Conclusion and Perspectives
	Summary of Findings
	Opportunities for Future Work
	Final Remarks

	Appendix: Defect-Defect Interactions in Spherical Shells
	Problem Definition
	Methodology: FEM Simulations
	Hypothesis for the Defect-Defect Interaction Regime
	Interactions between Two Identical Defects
	Interactions between Two Different Defects
	Summary and Outlook

	Bibliography
	Curriculum Vitae



