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ABSTRACT
Designing turbocompressors is a complex and challenging

task, as it involves balancing conflicting objectives such as ef-
ficiency, stability, and robustness against manufacturing devia-
tions. This paper proposes an integrated design methodology
for turbocompressors supported on gas bearings, which utilizes
surrogate models and ensemble learning with artificial neural
networks. The proposed approach addresses the limitations of
nominal and separate optimizations by integrating all relevant de-
sign aspects into a single optimization problem. A multi-objective
optimization is carried out, considering four objectives and over
twenty constraints, including robustness against manufacturing
deviations of the radial and axial bearings in terms of stabil-
ity, load capacity, and efficiency, as well as robustness against
performance metric gradients. The proposed methodology maxi-
mizes the compressor’s range in speeds and mass flow, while also
maximizing the signal-to-noise ratio of the isentropic efficiency
over the compressor map. Additionally, the approach maximizes
system efficiency, taking into account component losses and isen-
tropic efficiency of the compressor. To enable rapid and auto-
mated integrated design, the methodology reduces the compres-
sor representation to a fully cylindrical representation. The study
finds that the proposed methodology has the potential to signifi-
cantly enhance the overall performance of turbocompressors in
terms of efficiency, stability, and robustness. The methodology
eliminates the need for sequential and iterative design steps, pro-
viding an optimal starting point for higher representation of the
system with CFD and finite elements study. Furthermore, the
proposed methodology has broad applications, including the op-
timization of other complex and interdependent systems in various
fields. This study highlights the crucial role of a comprehensive

∗Corresponding author: soheyl.massoudi@epfl.ch

and integrated approach to turbocompressor design and provides
a valuable framework for future research in this area.

Keywords: Herringbone grooved journal bearings, gas bear-
ings, micro-turbomachinery, integrated design, robust de-
sign, constrained multi-objective optimization, artificial neu-
ral networks

NOMENCLATURE
Roman letters
𝐴 Bearing front
𝐵 Bearing rear
𝐷 Bearing diameter [m]
�̇� Power [W]
𝑓 Objective function/Performance metric

[context dependent unit]
𝐹 Force [N]
𝐺 Geometry field [context dependent unit]
ℎ𝑔 Groove depth [m]
ℎ𝑟 Ridge clearance [m]
𝐻𝑉 Measure of feasible region [context dependent unit]
𝐼 Moment of inertia [kg m2]
𝑘 Sweep sampling [−]
𝐿 Bearing axial length [m]
𝐿𝐴 Bearing front to center of gravity midplane distance

[m]
𝐿𝐵 Bearing rear to center of gravity midplane distance

[m]
𝑀 Rotor mass [kg]
𝑁 Rotational speed [RPM]
𝑃 Pressure [Pa]
𝑅 Bearing radius [m]
𝑆/𝑁 Signal-to-Noise ratio [−]
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𝑆 Search space
𝑇 Temperature [K]

Greek letters
𝛼 Groove-ridge width ratio [−]
𝛽 Groove angle/Impeller angle [◦]
𝛾 Grooved region ratio [−]
Γ Logarithmic decrement [−]
𝛿 Interference [m]
Δ Variation of a given variable
𝜂 Efficiency [−]
𝜃 Circumferential coordinate/Angular position of

blade [◦]
Λ Compressibility number [−]
𝜇 Viscosity [Pa s]
Π Pressure ratio [−]
𝜌 Density [kg m−3]
𝜎 Stress [N m−2]
𝜏 Electromagnetic shear stress/Torque

[context dependent unit]
Ω Angular velocity [rad s−1]

Superscripts and subscripts
a ambient
,a axial
bend bending
bld blade
cyl cylinder
end sampling end
exp centrifugal expansion
F feasible
g groove
hub hub
i ith element
in inlet
is isentropic
loss losses
nom nominal
p polar
r ridge
rob robust
,r radial
spl splitter
start sampling start
t transverse
w weight
¯ Dimensionless/Mean

Acronyms
CG Center of Gravity
COMP Compressor
EM Electric Motor
GPU Graphics Processing Unit
HGJB Herringbone Grooved Journal Bearing
MAG Magnet
NGT Narrow Groove Theory
NSGA Non dominated Sorting Genetic Algorithm
ROT Rotor
SGTB Spiral Groove Thrust Bearing

1. INTRODUCTION
1.1 Nature of the Issue

The design of gas bearing supported turbocompressors is a
challenging task that requires the optimization of multiple interre-
lated components, including the compressor wheel, the axial and
radial bearings, and the motor. Traditional design approaches typ-
ically involve separate optimizations of individual components,
which can lead to suboptimal designs due to inherent trade-offs
between performance and robustness. Furthermore, optimizing
individual components in isolation may result in infeasible de-
signs, where optimal designs for one component are not compat-
ible with optimal designs for other components.

While integrated design approaches have been proposed for
various types of machines, such as robots, automotive control
actuators, and small-scale turbocompressors, it is still an under-
researched area. Wehner et al. [1] demonstrated the power of
integrated design by using soft lithography, molding, and 3D
printing to create soft analogs of control systems and power
sources for microfluidic-based autonomous robots. Picard and
Schiffmann [2] also applied an integrated design approach to
automotive control actuators, resulting in an optimized solution
with better torque and reduced cost compared to industrial so-
lutions. Schiffmann [3] designed a small-scale turbocompressor
for a single-stage heat-pump using an integrated approach, which
improved the overall system efficiency. However, this approach
did not address the issue of robustness against manufacturing
deviations.

To address this gap, researchers have proposed integrating
robustness considerations into the optimization process for gas
bearing supported turbocompressors [4]. For example, Massoudi
and Schiffmann [5] developed a surrogate model based on an
ensemble of artificial neural networks multi-objective optimiza-
tion framework using the logarithmic decrement as a metric of
stability. They applied this method to derive guidelines for de-
signing robust gas bearing supported rotors, achieving promising
results. However, the authors did not fully integrate the robust-
ness considerations with the integrated design approach for the
entire system. Their approach was limited to the design of the
radial bearings and part of the rotor geometry.

Given the potential benefits of integrated design and the
need for robustness, there is a clear opportunity to merge these
two approaches in the design of gas bearing supported turbocom-
pressors.

1.2 Goals and Objectives
The goals and objectives of this paper are 1) an integrated

design approach of turbocompressor supported on gas bearings
that incorporates surrogate models with ensembles of artificial
neural networks in constrained multi-objective optimization in-
cluding manufacturing deviations, 2) the evaluation of the bene-
fits of such an approach in terms of improved design efficiency,
increased overall performance and robustness of the design, and
3) a practical tool for engineers and researchers in the field.

1.3 Scope of the Paper
The aim of this paper is to capitalize on the work of Massoudi

and Schiffmann [6] by implementing surrogate models for the
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axial dynamics and the compressor. This will allow the integrated
design of a complex system that is a gas bearings supported
turbocompressor, while considering manufacturing deviations by
developing a constrained multi-objective optimization framework
for integrated and robust design.

To model the compressor, axial dynamics, and rotordynam-
ics of the system, surrogate models are constructed using ensem-
bles of artificial neural networks. These models not only enable
computations to scale on graphics processing units (GPUs) but
also significantly reduce computation time. By leveraging these
models, thousands of turbocompressor designs can be evaluated
in a single optimization pass, even when accounting for manu-
facturing deviations. This approach offers a powerful means of
improving the overall efficiency and reliability of turbocompres-
sors by enabling engineers to consider a much broader range of
design options in a timely and cost-effective manner.

The approach outlined in this paper provides a constrained
multi-objective optimization framework for achieving a robust
and integrated design of gas bearing supported turbocompressors.
In particular, the study focuses on demonstrating the feasibility of
optimal design for a single-stage, electrically-driven heat-pump
compressor that is supported by gas bearings and takes into ac-
count manufacturing deviations. The study aims to accelerate the
design process, eliminate unnecessary iterations in the prelim-
inary design stages, and ultimately deliver a highly performant
and manufacturable solution. The proposed methodology rep-
resents a valuable methodology for engineers and researchers in
the field of turbocompressor design, providing an efficient means
of achieving optimal design objectives while considering critical
manufacturing constraints.

2. THEORY
The electrically-driven compressor unit comprises an im-

peller wheel (COMP), a spiral groove thrust bearing (SGTB) to
carry axial loads, herringbone grooved journal bearings (HGJBs),
and a synchronous permanent magnet electric motor (EM). Figure
1 depicts the unit and its subsystems alongside a compressor map
that illustrates the operating range for a given mass flow, rotational
speed, and target pressure ratio. The goal of the compressor is to
elevate the inlet pressure to an outlet pressure at maximum isen-
tropic efficiency. During startup and speed mapping, the bearings
must remain stable and dissipate minimal energy while providing
sufficient load capacity to balance the weight and axial force of
the compressor under manufacturing deviations. Surrogate mod-
els trained using validated models of the bearings, rotordynamics,
and impeller enable a fully integrated and robust optimization of
the entire unit. Additionally, fast analytical models or 1D finite
element code are utilized to evaluate the losses, load capacities,
structural integrity and bending frequency.

2.1 Models
2.1.1 Axial and Journal Bearings. The performance of the

axial and journal bearings can be modeled using the Reynolds
equation, which is derived from the Navier-Stokes equations un-
der the assumptions of thin-film, laminar flow, and Newtonian
fluid.

FIGURE 1: COMPRESSOR MAP AND SCHEMATIC OF THE TUR-
BOCOMPRESSOR UNIT. THE COMPRESSOR MAP SHOWS THE
RANGE OF OPERATION BETWEEN SURGE AND CHOKE FOR
A SAMPLED MASS FLOW, ROTATIONAL SPEED, AND TAR-
GET PRESSURE RATIO. THE SCHEMATIC ILLUSTRATES THE
MAIN SUBSYSTEMS OF THE ELECTRICALLY DRIVEN COMPRES-
SOR UNIT, INCLUDING THE IMPELLER WHEEL (COMP), SPIRAL
GROOVE THRUST BEARING (SGTB), HERRINGBONE GROOVED
JOURNAL BEARINGS (HGJBS), AND SYNCHRONOUS PERMA-
NENT MAGNET ELECTRIC MOTOR (EM).

The Narrow Groove Theory (NGT) [7] is used to assume that
the grooves in the bearings have infinitesimal width. Ideal gas as-
sumption and isothermal compression eliminate the dependence
on density. The solution to the Reynolds equation is obtained us-
ing perturbation about a concentric position of the bearing, and
the zeroth and first order pressure perturbations are determined
using numerical integration. The direct and cross-coupled stiff-
ness and damping coefficients can then be obtained from these
perturbations. To account for the centrifugal expansion, the radial
bearing clearance is adjusted.

2.1.2 Rotordynamics and Axial Dynamics. The rotor and
bushings are assumed to be rigid. The stiffness and damping of
the gas bearings are functions of the excitation frequency 𝜔ex,
which is often different from the system’s natural frequency 𝜔n.
To compute the stability of the rigid-body rotordynamic system,
the following algorithm is applied for each nominal speed Ω:

Compute the stiffness and damping coefficients of the gas
bearings for a range of discrete excitation frequencies 𝜔ex,i:

𝐾i = 𝐾 (𝜔ex,i), 𝐶i = 𝐶 (𝜔ex,i) (1)

Form the system matrix [𝑀] [𝑞] + [𝐶] [�̇�] + [𝐾] [𝑞] = [0], where
[𝑀] is the mass matrix, [𝐶] is the damping matrix, [𝐾] is the
stiffness matrix and [𝑞] is the vector of displacement. Compute
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the eigenvalues 𝛿i = 𝜆i+ 𝑗𝜔i of the system matrix at each excitation
frequency. Compute the logarithmic decrement Γi as the metric
of stability:

Γi = −𝜆i
2𝜋
𝜔i

(2)

If Γi is positive for all excitation frequencies, the system is stable.
The system can then be excited in four modes: cylindrical forward
(CylF), cylindrical backward (CylB), conical forward (ConF), and
conical backward (ConB). The axial dynamics are computed in a
decoupled fashion by neglecting the tilting motion for sufficiently
long rotors. The system is then treated as a damped point mass
oscillator and solved using a similar spectral approach to the
rotordynamics analysis.

To compute the bending frequency, a 3-layer composite
cylinder model of the rotor is used, which employs 1D finite
elements. In this model, each element (or cylinder) is considered
as an elastic structure with two nodes and four degrees of freedom
per node, which correspond to two displacements and two rota-
tions [8, 9]. The constitutive equation used for the model is based
on the Timoshenko beam theory, while Hermitian polynomials
are employed to prevent shear locking and to avoid an overesti-
mation of the element stiffness [10]. This approach provides an
accurate and efficient way of computing the bending frequency
of the rotor, which is an important parameter for assessing the
structural integrity of the turbocompressor system.

2.1.3 Compressor. The compressor model used in this
study is the Python version [11] of a 1D code developed by
Schiffmann and Favrat [12]. This code is based on a meanline
model, which is augmented with empirical loss models to cap-
ture the effects of fluid flow phenomena. The model is capable
of detecting numerical errors, surge, choke, and other abnormal
operating conditions. The outputs of the model include pressure
ratio, isentropic efficiency, and isentropic enthalpy change for
a given set of geometry and operating conditions. A cut view
of a typical centrifugal compressor and the geometric variables
required for the meanline model are shown in Fig. 2.

2.1.4 Electric Motor. The electric motor chosen for this
turbocompressor is a brushless DC motor (BLDC) controlled
with pulse-width modulation (PWM). Its size is determined using
the electromagnetic shear stress, which is calculated using the
formula:

�̇�EM = 2𝜋𝑅2
MAG𝐿MAG𝜏Ω (3)

Here, 𝑅MAG and 𝐿MAG denote the radius and length of the
magnet, respectively, while 𝜏 represents the airgap shear stress.
This formula helps in calculating the motor power, as described
in [13].

2.1.5 Losses. To accurately assess the total energy con-
sumption of the system, analytical models are used to estimate
the energy losses in the bearings and electric motor. For the axial
bearing, the energy loss is denoted as �̇�SGTB, while for each radial
bearing, the loss is �̇�HGJB. These losses are computed using a
laminar flow model that has been experimentally validated [14].
The windage losses in the electric motor, denoted �̇�EM,loss, are

estimated by discriminating between laminar and turbulent flow
regimes using the Taylor number.

The energy loss in each radial bearing can be calculated using
the following equation:

�̇�HGJB = 2𝜋𝑅3Ω2
(︃
𝛾r𝛼r
ℎg,r

+ 1 − 𝛾r𝛼r
ℎr,r

)︃
𝜇𝐿 (4)

where 𝑅 is the radius of the bearing, 𝛾r the ratio of grooved length
to bearing length 𝐿, 𝛼𝑟 = 𝑎r/(𝑎r + 𝑏r) the ratio of groove width
(𝑎r) and ridge width (𝑏r), Ω is the rotational speed in rad s−1, and
𝜇 is the dynamic viscosity. ℎg,r is the groove depth and ℎr,r is the
local bearing clearance. Similarly, the energy loss in the axial
bearing can be computed using:

�̇�SGTB = 𝜇
Ω2𝜋

2

[︄(︂
𝑅4

o − 𝑅4
g

)︂ (︄ 𝛼a
ℎg,a

+ 1 − 𝛼a
ℎr,a

)︄
+

(︂
𝑅4

g − 𝑅4
i

)︂ 1
ℎr,a

]︄
(5)

with 𝑅o the outer radius of the thrust bearing, 𝑅i its inner radius
and 𝑅g the radius marking the start of the grooved region. Finally,
the windage losses in the electric motor can be estimated using:

�̇�EM,loss = 𝑐𝑤𝜋𝜌Ω
3𝑅4

EM𝐿EM (6)

Here, 𝑐𝑤 is a coefficient that accounts for laminar or turbulent
flow conditions and 𝜌 is the fluid density. The energy losses in
the bearings and electric motor are important to consider, as they
contribute to the total energy consumption of the system and can
affect its overall performance.

2.1.6 Load capacities. The load capacities of the axial and
journal bearings are calculated by solving the perturbed and un-
perturbed pressure equations and then integrating them over the
bearing domains [15]. These equations take into account the
dynamic effects of the rotor and the lubricant film. By solving
these equations, the maximum loads that the bearings can support
without failure can be determined.

2.1.7 Structures. To ensure structural integrity, a compos-
ite annulus 2D axisymmetric model of the rotor shaft and its
components is used [16]. The model considers the interference
between two cylindrical layers of different materials, the cen-
trifugal forces generated by the high-speed rotation of the shaft,
thermal dilation, and axial stresses transmitted by the impeller
and axial bearing. Additionally, the necessary interference for
torque transmission between the magnet and the shaft, and be-
tween the plug and rotor is considered, as well as the resulting
shear stresses. The model considers two cases: those where inter-
ference occurs between two layers of a shaft segment, and those
with mono-material without interference.

2.2 Surrogate models
The use of surrogate models is crucial in enabling the scaling

of design for system integration and robustness evaluation. How-
ever, the increased evaluation of different subsystems, robustness,
and complete compressor map leads to a considerable rise in
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function evaluations. Consequently, there is a higher number of
optimization objectives, design parameters, and evaluations per
generation. As a result, several hundred million model evalu-
ations per optimization, if not billions, are necessary, which is
impractical and unfeasible without significantly increasing com-
putational resources. To address this challenge, surrogate models
are used to replace the baseline models of the bearings, rotor
and axial dynamics, the load capacities of the bearing, and the
compressor performance prediction. Unlike analytical models for
losses and electric motor power estimation, these models cannot
be reduced to a matrix representation and element-wise compu-
tation. Although the bending frequency is computed using a 1D
finite element code, a surrogate model for this analysis is not nec-
essary because the computation is relatively fast and completes
in a few milliseconds.

Data is sampled from the baseline models, following the
approach proposed by Massoudi and Schiffmann [6]. A combi-
natorial sampling technique is employed to map a broad range
of operating conditions within the gaseous regions of refrigerant
fluids, air, and steam, with the aim of deriving the thermodynamic
properties of fluids, such as viscosity. Two Latin hypercube sam-
plings are then performed on the dimensional and dimensionless
geometries, along with rotational speed and mass flow. The sam-
pled parameters are subsequently converted into dimensionless
groups, which are then utilized to train feed-forward neural net-
works. These networks form the basis of the surrogate models.

Hyperparameter tuning of surrogate models is a critical step
in their development. To optimize the performance of the artificial
neural networks (ANNs) used to model the various outputs, each
ANN is trained via gradient descent within a genetic algorithm
loop [17, 18]. The hyperparameters that govern the training pro-
cess are chosen as decision variables to be optimized as presented
in Table 1. Hyperparameter tuning can be computationally inten-
sive, and we use a genetic algorithm with a total of 5 epochs and
an initial population size of 100 to efficiently search the hyperpa-
rameter space. Two types of ANNs are trained: regressors, which
predict continuous outputs such as the logarithmic decrement of
the isentropic efficiency of the compressor, and classifiers, which
predict categorical variables such as the stability of a given design
or the functioning state of a compressor. The choice of loss func-
tion depends on the type of output being predicted and includes
mean squared error or mean absolute error for regressors, and
categorical cross-entropy for classifiers. Classifiers are trained
with larger batch sizes than regressors.

To increase the accuracy and robustness of the surrogate
model predictions, six different versions of the optimal artificial
neural network (ANN) found via hyperparameter tuning with the
genetic algorithm are trained using varying weight initializations.
These initializations include He Normal, Lecun Normal, Glorot
Uniform, He Uniform, Lecun Uniform, and Glorot Normal [19–
21]. The final prediction is obtained as the average of the predic-
tions from the six neural networks, resulting in an ensemble of
neural networks [22].

2.3 Robustness
Robustness is a critical factor in engineering design, which

can be defined in two ways. Firstly, robustness refers to the maxi-

mum space that a design can occupy without violating constraints
due to manufacturing deviations. Secondly, a robust design can
maintain its performance under manufacturing deviations, indi-
cating its insensitivity to such deviations. These definitions have
been formalized by Massoudi and Schiffmann [5] and are in-
cluded in multi-objective optimization for robust design. In such
optimization, the objectives are to maximize the feasible region
(𝐻𝑉) and maximize the signal-to-noise ratio (𝑆/𝑁), among other
competing objectives.

To estimate the maximum feasible space within manufac-
turing tolerances, a Monte Carlo method can be employed by
randomly sampling points within the tolerances and identifying
those that meet the constraints. The resulting feasible space (𝐻𝑉)
can then be calculated by dividing the number of points that satisfy
the constraints by the total number of sampled points. However,
this method can be computationally expensive when dealing with
high-dimensional design spaces. To increase efficiency, linear
interpolation on a regular sampling grid can be used to gener-
ate additional points within the feasible space, thereby reducing
the number of samples needed for accurate estimation without
sacrificing computational power.

The signal-to-noise ratio (𝑆/𝑁) is another important met-
ric used to measure the decline in performance metrics such as
stability, load capacity, or efficiency across the feasible region
defined by 𝐻𝑉 . In order to optimize the performance metric 𝑓 ,
Equation (7) is used to maximize it, while Equation (8) is used to
minimize it. The terms 𝜇 and𝜎2 represent the mean and variance,
respectively, and since 𝑆/𝑁 is always maximized in optimization,
these two definitions ensure that 𝜇 is either maximized or mini-
mized, while 𝜎2 is minimized. As an optimization objective, we
employ the average (𝑆/𝑁) of the signal-to-noise ratio for stability,
losses, and load capacity of the HGJB and SGTB.

𝑆/𝑁f = 10 · log10

(︄
𝜇2

f

𝜎2
f

)︄
(7)

𝑆/𝑁f = −10 · log10

(︂
𝜇2

f + 𝜎2
f

)︂
(8)

Maximizing the signal-to-noise ratio (𝑆/𝑁) enables the op-
timization of performance metrics while controlling their gradi-
ents. When combined with the maximization of 𝐻𝑉 , it leads to a
large feasible region with minimized gradients of the performance
metrics.

2.4 Constrained Multi-Objective Optimization
Design optimization must consider a range of objectives and

constraints to achieve a feasible and optimal solution. It is insuf-
ficient to optimize subsystems independently, as the interactions
and interdependencies between subsystems must be accounted
for. For the design of an electrically-driven compressor system
supported by gas bearings, this means optimizing all subsystems
simultaneously while meeting system requirements.

Specifically, the electric motor must deliver sufficient power
to drive the impeller to the desired pressure ratio for a given mass
flow rate, while the axial and radial bearings must be designed
to support the impeller wheel’s axial load and lift off the rotor,
respectively. To ensure a stable design, rotordynamics and axial
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TABLE 1: DESCRIPTION OF THE HYPERPARAMETERS SEARCHED FOR THE OPTIMIZATION OF THE FEED-FORWARD NEURAL NETWORKS.

Term Symbol Value

Number of neurons per hidden layer 𝑛 16, 32, 64, 128, 256
Number of hidden layers 𝑙 2, 3, 4
Activation 𝑎 relu, selu, tanh, softplus, softsign

Optimiser 𝑜𝑝𝑡
Adam, Adamax, Adadelta,
Adagrad

Batch size 𝑏𝑠 212, 213, 214, 215/29, 210, 211, 212, 213, 214

Kernel initialiser 𝑘𝑖
Glorot Normal (gn), He Normal (hn), Lecun Normal (ln),
Glorot Uniform (gu), He Uniform (hu), Lecun Uniform (lu)

L2 penalisation 𝛽L2 10−6, 10−5, 10−4, 10−3, 10−2

Learning rate 𝛼lr 0.01, 0.01, 0.1
Decay steps 𝑑𝑠 103, 104, 105

dynamics must be taken into consideration, with the rotor also
satisfying bending frequency requirements to prevent destruction
by resonance. Structural integrity must also be addressed by
imposing constraints on the equivalent von Mises stress. Fur-
thermore, the torque transmission between the rotor shaft and
the magnet, as well as between the plug and the rotor shaft, are
critical considerations.

3. METHODS
3.1 Impeller Wheel Representation

The turbocompressor sections are represented by multi-layer
hollow cylinders to enable fast computation of the mass and mo-
ments of inertia of the entire turbocompressor unit, incorporating
radial and axial bearings, shaft sections, and the electric motor.
However, to accurately represent the impeller and its blades, a
slicing method is required. The hub can be modeled as a stack
of cylinders with varying radii. To extract mass and moments
of inertia, a mapping from the 1D representation to a 3D repre-
sentation of the impeller wheel must be defined. The meridional
geometry of the hub and blades is defined by three ellipses, one
arc of a circle, and the golden ratio 𝜙, as shown in Fig 2. The hub
and blades are parametrized by piecewise functions, presented in
Eq. (10) and Eq. (11), respectively.

Neglecting the impeller blades can lead to significant devia-
tions in the system’s mass (𝑚), polar moment of inertia (𝐼p), and
transverse moment of inertia (𝐼t). As the impeller is rigidly at-
tached at one end of the shaft in the studied rotor configurations,
its contribution to the overall system stability cannot be under-
estimated. To account for this, the impeller and its blades are
modeled as hollow cylinders, while maintaining the mass 𝑚 and
transverse moment of inertia 𝐼t. The inner radius of the cylinders
is set equal to the outer radius of the impeller hub, and their outer
radius 𝑅cyl and density 𝜌cyl are determined by solving a system
of two equations and two unknowns for each cylinder section, as
presented in in Eq. (12) and Eq. (13).

To obtain a representation of the blades as equivalent hol-
low cylinders, rectangular prisms are used to bound the merid-
ional hub and blade geometries. The splitters are accounted for
by doubling the number of blades and spanning the full blade
length, which provides the most conservative approximation as
it increases the transverse moment of inertia of the whole im-

peller. This approximation is particularly relevant for stability
computations. The blades and splitters are assumed to have equal
thickness and are evenly distributed around the circumference of
the hub to obtain the transverse moment of inertia. The moments
of inertia of the rectangular prism about its principal axes are then
transformed using a rotation matrix for each blade and respective
angle 𝜃, as computed in Eq. (14).

The transverse moment of inertia of each blade with respect
to its angular position 𝜃 is computed using the parallel-axis the-
orem and can be found in Eq. (15), with the mass of each blade
calculated using Eq. (16). The number of blades 𝑁bld and the
number of splitters 𝑁spl determine the angular separation Δ𝜃 be-
tween each splitter and blade, which is given in Eq. (17). The
moment of inertia of the 𝑛𝑡ℎ blade or splitter section spanning
around the hub can be computed using Eq. (18). To obtain an
equivalent hollow cylinder section, the total transverse moment
of inertia 𝐼t is calculated by summing the transverse moments of
inertia of each blade and splitter section, and the same procedure
is used for mass. Finally, the outer radius 𝑅cyl and density 𝜌cyl
of each cylinder section are determined by solving the system of
two equations and two unknowns using Eq. (12) and Eq. (13).

3.2 Design Rules
To enable the optimization process for the entire turbocom-

pressor unit, it is necessary to establish design rules. The first rule
concerns the positioning of the five subsystems in a single-stage
electrically driven turbocompressor for heat pump applications
with gas bearings, namely the compressor (C), axial bearing (S),
radial bearings A and B, and electric motor (E). As there are five
subsystems, there are 5! = 120 permutations. However, as radial
bearings A and B are identical, they are insensitive to permuta-
tion. To minimize axial deviation of the impeller due to thermal
expansion of the rotor shaft during operation, the spiral groove
thrust bearing is placed next to the impeller. Therefore, the im-
peller wheel can only be located at one of the two free ends of
the rotor shaft, followed directly by the axial bearing. Any other
placement of the impeller would impose difficult constraints in
assembly, manufacturing, aerodynamic performance, and placing
of the volute. This leaves only two permitted permutations for
consideration in the optimization: ’CSABE’ or ’CSAEB’, where
the electric motor is either at the other free end or placed be-
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FIGURE 2: SCHEMATIC REPRESENTATION OF THE IMPELLER WHEEL TRANSFORMATION TO A 2-LAYER CYLINDER MODEL. THE MERID-
IONAL GEOMETRY OF THE HUB AND BLADES ARE DEFINED BY THREE ELLIPSES, ONE ARC OF A CIRCLE, AND THE GOLDEN RATIO φ.
THE HUB AND BLADE GEOMETRIES ARE PARAMETRIZED USING PIECEWISE FUNCTIONS. THE TRANSFORMATION FROM THE IMPELLER
TO THE FULL 2-LAYER CYLINDER REPRESENTATION IS PERFORMED USING THE FUNCTIONS DEFINED IN THE ANNEX.

tween the radial bearings to bring the center of gravity between
both bearings. After eliminating the permutations resulting from
pure symmetry, this study focuses on the ’CSABE’ layout, with
the compressor on the left end and the electric motor on the
right end, as shown in Fig. 3. The optimization process involves
various geometrical variables, and the front and unrolled views
of the SGTB and HGJB are presented. The impeller wheel is
made of metal, such as stainless steel or aluminum, while the
plug connecting the impeller and the rotor is made of inconel, a
Nickel-based alloy. The rotor shaft, which can be hollow, has the
same outer radius 𝑅ROT throughout its length, including the radial
bearings. The magnet, made of neodymium or samarium-cobalt,
is inserted into the shaft by interference. The type of metal, hard
metal or magnet used is also an optimization decision variable.

3.3 Constrained Multi-Objective Optimization Setup
The optimization process employed in this study utilized

the Non-dominated Sorting Genetic Algorithm III (NSGA-III)
[23, 24], which is a widely used evolutionary algorithm for multi-
objective optimization. The algorithm was implemented using
Python [25]. To enhance the efficiency of the optimization pro-
cess, an adaptive-operator selection procedure was utilized. This
procedure adapts the selection of genetic operators to the prob-
lem’s characteristics, as proposed by Vrugt and Robinson [26]
and Hádka and Reed [27]. Additionally, to guide the optimiza-
tion process, a set of uniformly sampled reference directions was
used, which was proposed by Das and Dennis [28]. The opti-
mization process was run for 50 generations.

The optimization process focuses on four key objectives, as
outlined in Table 2. Firstly, the objective is to maximize the
geometric mean of the feasible regions, represented by 𝐻𝑉 , for
both the radial bearings and the axial bearing. This objective ac-
counts for manufacturing deviations. Secondly, the objective is
to maximize 𝐻𝑉COMP, which ensures the attainment of the largest

compressor maps. To further evaluate the performance, the mean
signal-to-noise ratio of the radial bearings (𝑆/𝑁HGJB) is computed
by considering the average of the signal-to-noise ratios associ-
ated with load capacity, logarithmic decrement (stability), and
losses. Similarly, the mean signal-to-noise ratio of the axial bear-
ing (𝑆/𝑁SGTB) is determined. Additionally, the signal-to-noise
ratio of the isentropic efficiency of the compressor (𝑆/𝑁𝜂is,COMP) is
considered. The third objective aims to maximize the harmonic
mean of 𝑆/𝑁HGJB, 𝑆/𝑁SGTB, and 𝑆/𝑁𝜂is,COMP , which provides an
overall assessment of the signal-to-noise ratios with respect to
manufacturing deviations and the range of operating conditions.
Lastly, the overall efficiency of the machine, denoted as 𝜂tot, is
maximized. 𝜂tot is defined as the ratio of the isentropic power
work of the compressor (�̇�is,COMP) to the sum of its mechanical
power work (�̇�COMP = �̇�is,COMP/𝜂is,COMP), losses in the two ra-
dial bearings (�̇�HGJB), losses in the axial bearing (�̇�SGTB), and
windage loss of the electric motor (�̇�EM,loss). These four objec-
tives collectively drive the optimization process and contribute to
enhancing the performance and efficiency of the turbocompressor
system.

𝜂tot =
�̇�is,COMP

�̇�is,COMP
𝜂is,COMP

+ 2�̇�HGJB + �̇�SGTB + �̇�EM,loss

(9)

TABLE 2: OBJECTIVES OF THE MULTI-OBJECTIVE OPTIMIZATION

Term Symbol Objective type Unit

Objectives
Geometric mean of bearings feasible regions 𝐻𝑉 Maximize µm
Feasible region compressor 𝐻𝑉COMP Maximize RPM kg s−1

Harmonic mean of the signal-to-noise ratios 𝑆/𝑁 Maximize −
System efficiency 𝜂tot Maximize −

The optimization problem incorporates several constraints
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FIGURE 3: THE COMPLETE TURBOCOMPRESSOR UNIT WITH ALL GEOMETRIC VARIABLES USED IN OPTIMIZATION, INCLUDING LENGTHS
AND RADII, AND MATERIALS SPECIFIED. THE SCHEMATIC DIAGRAMS OF THE SPIRAL GROOVE THRUST BEARINGS (SGTB) AND HERRIGN-
BONE GROOVED JOURNAL BEARINGS (HGJBS) ARE SHOWN WITH THEIR RESPECTIVE VARIABLES. THE LAYOUT OF THE SUBSYSTEMS
FOLLOWS THE ’CSABE’ PERMUTATION.

to ensure the feasibility and reliability of the designed turbocom-
pressor system, as summarized in Table 3. First, a load capacity
condition is enforced to ensure rotor lift-off with a safety margin
of 20% at a rotor speed of 10,000 rpm. The radial expansion is
limited to a maximum of 2 micrometers to allow for designs with
low nominal bearing clearance, while ensuring mechanical sta-
bility. A position constraint is also imposed on the radial bearings
relative to the center of gravity (CG) of the system, requiring that
their dot product be negative to ensure they are located on oppo-
site sides of the CG. Additionally, stable designs are chosen with a
safety margin of 0.1 on the logarithmic decrement of the rotordy-
namics of the radial bearings (ΓHGJB) and the driven dynamics of
the axial bearing (ΓSGTB). The compressibility numbers (ΛHGJB
and Λ𝑆𝐺𝑇𝐵) must remain below 60 and 120, respectively, to en-
sure that the optimization stays within the range of the training
data used in the surrogate models. To account for manufactur-
ing deviations in bearings, at least 30% of the sampled region
must satisfy the constraints. A minimum sampling rate of 1%

is set for the compressor map to ensure feasible designs. Con-
straints are also applied to the excitation frequency to ensure that
the cylindrical forward excitation frequency is greater than the
backward mode frequency for most points, and that it increases
monotonically at a decreasing rate. The optimization process
avoids designs that exhibit a specific type of Pareto optimum in
which the cylindrical forward excitation frequency suddenly col-
lapses to a subsynchronous mode. The center of gravity should
not coincide with the bearings, and this is ensured by enforcing
constraints on the distances of the CG from each radial bearing
midplane (𝐿A > 0.5 and 𝐿B > 0.5). Furthermore, constraints
are applied on the equivalent von Mises stress to guarantee the
structural integrity of the turbocompressor components, includ-
ing the magnet, plug, and rotor. The electric motor must provide
sufficient power to compensate for all losses and drive the com-
pressor, while ensuring that interference between the magnet and
shaft and between the plug and shaft provide enough friction to
transmit torque. The von Mises stress must remain below half
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the yield strength, taking into account various operating condi-
tions. A similar safety factor is applied to the radial and axial
bearings. Finally, the maximum pressure ratio observed in the
compressor map is bounded to be at least 4, and a lower boundary
of 0.1 is set on the compressor isentropic efficiency to ensure ad-
equate performance. In order to mitigate the risk of rotor failure
resulting from resonance, a conservative approach is taken by
setting the maximum rotational speed to 83% of the bending fre-
quency. This precautionary measure provides a significant safety
margin, considering the small clearance observed at high speeds.
By adhering to this limitation, the system ensures the integrity
and durability of the rotor under operating conditions prone to
resonance-induced catastrophic failures.

TABLE 3: CONSTRAINTS OF THE MULTI-OBJECTIVE OPTIMIZA-
TION

Description Constraint Unit

Lift force 𝐹HGJB, 10 kRPM > 1.20 · 𝐹W N
Centrifugal growth Δℎr,r,exp < 2 · 10−6 m
CG between bearings GA · GB < 0 m2

HGJB stability ΓHGJB > 0.1 −
SGTB stability ΓSGTB > 0.1 −
HGJB compressibility number ΛHGJB < 60 −
SGTB compressibility number ΛSGTB < 120 −
HGJB feasible region 𝐻𝑉HGJB > 0.3 −
SGTB feasible region 𝐻𝑉SGTB > 0.3 −
Compressor feasible region 𝐻𝑉COMP > 0.01 −
Cylindrical excitation modes Ωex,cyl_F > Ωex,cyl_B RPM
Cylindrical forward concavity 𝜕2Ωex,cylF

𝜕𝑁 2 < 0 RPM−1

Cylindrical forward growth 𝜕Ωex,cylF
𝜕𝑁

> 0 −
CG away from bearing A 𝐿A > 0.5 −
CG away from bearing B 𝐿B > 0.5 −
Plug-rotor interference 𝛿PLUG > 0 m
Plug torque transmission ratio 𝑆𝜏,PLUG > 1 −
Plug von Mises safety factor 𝑆𝜎VM ,PLUG > 2 −
Magnet-rotor interference 𝛿MAG > 0 m
Magnet torque transmission ratio 𝑆𝜏,MAG > 1 −
Magnet von Mises safety factor 𝑆𝜎𝑉𝑀 ,MAG > 2 −
SGTB von Mises safety factor 𝑆𝜎𝑉𝑀 ,SGTB > 2 −
HGJB von Mises safety factor 𝑆𝜎𝑉𝑀 ,HGJB > 2 −
SGTB axial force 𝐹SGTB > 𝐹COMP N
Electric motor power �̇�EM > �̇�losses + �̇�COMP W
Turbocompressor rotor length 𝑁end < 1.20 · 60 · 𝑓bend RPM
Compressor isentropic efficiency 𝜂is,comp > 0.1 −
Compressor pressure ratio max(Π) > 4 −

The decision variables for the multi-objective optimization
are listed in Tab. 4 along with their respective ranges. The im-
peller wheel variables, which determine the wheel’s character-
istics, are open for optimization. Wheels with a maximum tip
radius of 𝑟4 = 35 mm are permitted. The inlet blade angles 𝛽2
and 𝛽2s are fixed, and the number of splitter blades is set equal
to the number of blades. The operating conditions are also fixed
at an inlet pressure of 2.51 bar and an inlet temperature of 300 K
using R134a refrigerant. These conditions are applied to the
bearings while considering the fluid viscosity. The two HGJBs
are identical, so only one HGJB’s geometry is optimized. The
geometry of the SGTB is also used as an input to the optimizer.
The rotor geometry is bounded by the inner radius 𝑟ROT and the

outer radius 𝑅ROT. The pockets that hold the plug and magnet
have radii 𝑅PLUG and 𝑅MAG with respective interference 𝛿PLUG
and 𝛿MAG. Lengths and radii are defined as ratios with respect to
𝑅ROT. Materials are defined as float values between 0 and 1 and
are mapped to integers to select all different types of metals for
the compressor, hard metal for the rotor, and magnet. To ensure
robustness of the bearings, the optimizer selects the feasible range
for the deviations of local bearing clearance and groove depth,
within which the largest possible deviations are chosen subject
to constraints ensuring functional and operational requirements.
The sampling method is fixed as a linspace, with the boundaries
of the linspace changing with the selected deviation range. The
choice of deviation range balances the need for robustness with
the need for sufficient sampling to detect feasible regions in the
design. Seven points are used to sweep each variable for manu-
facturing deviations. Due to the compressor map’s consideration,
a sampling of 13 points is made for the rotational speed, and 13
points are swept for the mass flow.

4. RESULTS
The results of the multi-objective optimization are presented

in the form of pairplots, as depicted in Figure 4. The solution
with the largest geometric mean of the bearings feasible regions
(𝐻𝑉) is indicated by a red dot on the scatter plots. The opti-
mization process involved a search of 1716 nominal designs over
500 generations, resulting in a total of 1.2 billions samples. The
optimization was completed within approximately 1 day using a
desktop computer equipped with a 12-core AMD Ryzen 3900X
CPU and a Nvidia RTX 3090 GPU.

The pairplots shown in Fig. 4 illustrate the trade-off between
robustness against manufacturing deviations (𝐻𝑉) and robust-
ness against variance in the performance metric (𝑆/𝑁) which are
negatively correlated. The diagonal of the pairplots displays the
distribution of each objective over the range covered. On average,
the geometric mean of the feasible region of the radial and axial
bearings is of 20 µm2. 𝐻𝑉 and 𝐻𝑉COMP are negatively correlated
to global efficiency (𝜂tot), highlighting the trade-offs involved in
achieving robustness and an efficient design.

The turbocompressor that was selected for the study is pre-
sented in Figure 5, whereby its axial and radial dimensions are
expressed in millimeters. The figure displays the turbocompres-
sor map and response surfaces in the form of contour plots for
the axial dynamics (ΓSGTB) and rotordynamics (ΓHGJB) against
manufacturing deviations, with white lines indicating evaluations
conducted using baseline models to monitor the accuracy of the
surrogate models in predicting system dynamics. Notably, the
rotordynamics is predicted accurately, with slight overprediction
observed for the axial dynamics. The study findings indicate that
local bearing clearance and groove depth deviations, of ±5 µm
and ±1.5 µm, can be safely achieved respectively for the axial
bearing and radial bearings. The optimized turbocompressor ro-
tor has a mass of 412 g and midplane bearing distances to the
center of gravity of 𝐿𝐴 = 28.8 mm and 𝐿𝐵 = 22.1 mm. The
length-to-diameter aspect ratio of the HGJB is of 𝐿𝑜𝐷 = 1.4.
The impeller wheel is composed of aluminum, while the magnet
and rotor are made of neodymium and tungsten carbide, respec-
tively. Finally, the study results reveal that a pressure ratio of 4

9

COPYRIG
HT ASME



10

20

30

40
H

V[
m

2 ]

2800

3000

3200

3400

H
V C

O
M

P[
R

PM
kg

/s
]

75

50

25

0

25

S/
N

[
]

0 20 40
HV[ m2]

0.7

0.71

0.72

0.73

0.74

0.75

to
t[

]

2500 3000 3500
HVCOMP[RPMkg/s]

100 50 0 50
S/N[ ]

0.7 0.75
tot[ ]

FIGURE 4: PARETO FRONT OF FOUR OBJECTIVES FROM TURBOCOMPRESSOR OPTIMIZATION PRESENTED AS PAIRPLOTS WITH SE-
LECTED SOLUTION (RED DOT) FOR LARGEST GEOMETRIC MEAN OF THE FEASIBLE REGION OF THE BEARINGS (HV ). DIAGONAL SHOWS
OBJECTIVE DISTRIBUTION.

is reached for 𝑁end = 162 737 RPM which is much lower than the
bending frequency of 𝑁bend = 216 532 RPM. The compressor can
operate with an isentropic efficiency higher than 0.8 over a large
portion of the compressor map, for speeds ranging from 50 kRPM
to 163 kRPM, for a consumed compressor power ranging from
300 W to 3000 W.

5. DISCUSSION

The competition between robustness metric 𝐻𝑉 and 𝑆/𝑁
are consistent with those reported in previous studies. Massoudi
and Schiffmann [6] also found that increasing the feasible region
leads to a trade-off between robustness with respect to constraints
and robustness with respect to signal-to-noise ratio. The larger
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FIGURE 5: THE SELECTED TURBOCOMPRESSOR DESIGN WITH MIDPLANE BEARING DISTANCES OF LA = 28.8 mm AND LB = 22.1 mm,
HGJB LENGTH TO DIAMETER ASPECT RATIO OF 1.4 AND A MASS OF 412 g.

the feasible region, the more difficult indeed to maintain a given
performance metric constant.

The selected solution, aiming to maximize the feasible re-
gion of the bearings, demonstrates a radial bearing length-to-
diameter aspect ratio (𝐿𝑜𝐷) close to 1.4. Notably, the midplane
distances from the bearings to the center of gravity, although not
entirely equal, are found to be in close proximity. The observed
discrepancy can be attributed to the selection of aluminum as

the impeller material. Although this choice reduces the overall
weight of the turbocompressor, the inclusion of the necessary
magnet on the opposite end of the shaft shifts the center of grav-
ity towards the right. In order to address this, an extension in the
shaft length could potentially shift the center of gravity towards
the left. However, such a modification would inevitably result
in a decrease in bending frequency. These findings align with
Massoudi and Schiffmann’s recent study on the robustness of gas
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TABLE 4: DESCRIPTION OF THE PARAMETERS FOR THE MULTI-
OBJECTIVE OPTIMIZATION

Term Symbol Range/Value Unit

Impeller Variables
Tip radius 𝑟4 7 · 10−3 − 35 · 10−3 m
Inducer hub radius ratio 𝑟2h/𝑟4 0.1 − 0.3 −
Inlet shroud radius ratio 𝑟2s/𝑟2h 1.2 − 2.3 −
Inducer inlet radius ratio 𝑟1/𝑟2s 1.05 − 1.3 −
Diffuser exit radius ratio 𝑟5/𝑟4 1.05 − 1.5 −
Tip width ratio 𝑏4/𝑟4 0.015 − 0.3 −
Tip clearance ratio 𝑒tip/𝑏4 0.01 − 0.015 −
Backface clearance ratio 𝑒back/𝑟4 0.001 − 0.15 −
Inducer length ratio 𝐿ind/𝑟4 1.05 − 4 −
Exit blade angle 𝛽4 −45 − 0 ◦

Blade thickness 𝑒bld 0.1 − 0.5 · 10−3 m
Number of blades 𝑁bld 5 – 11 −
HGJB Variables
Groove width ratio 𝛼r 0.32–0.68 −
Groove angle 𝛽r -167.5 – -122.5 ◦

Grooved land region ratio 𝛾r 0.52 – 0.97 −
Groove depth ℎg,r 2.5 · 10−6 − 28.5 · 10−6 m
Local bearing clearance ℎr,r 2.5 · 10−6 − 28.5 · 10−6 m
ℎ𝑔,𝑟 deviations Δℎg,r 1 · 10−6 − 10 · 10−6 m
ℎ𝑟 ,𝑟 deviations Δℎr,r 1 · 10−6 − 10 · 10−6 m
SGTB Variables
Groove width ratio 𝛼a 0.32–0.68 −
Groove angle 𝛽a -167.5 – -122.5 ◦

Grooved land region ratio 𝛾a 0.1 – 0.9 −
Groove depth ℎg,a 2.5 · 10−6 − 28.5 · 10−6 m
Local bearing clearance ℎr,a 2.5 · 10−6 − 28.5 · 10−6 m
ℎg,a deviations Δℎg,a 1 · 10−6 − 10 · 10−6 m
ℎr,a deviations Δℎr,a 1 · 10−6 − 10 · 10−6 m
Rotor Variables
Rotor outer radius 𝑅ROT 5 · 10−3 − 30 · 10−3 m
Rotor inner radius ratio 𝑟ROT/𝑅ROT 0 − 0.95 · 10−3 −
Plug radius ratio 𝑅PLUG/𝑅ROT 0.3 − 0.95 −
SGTB radius ratio 𝑅o/𝑅ROT 1.15 − 10 −
Magnet radius ratio 𝑅MAG/𝑅ROT 0.3 − 0.95 −
Segment 1 length ratio 𝐿N1/𝑅ROT 0.3 − 12 −
Segment 2 length ratio 𝐿N2/𝑅ROT 0.3 − 12 −
Segment 3 length ratio 𝐿N3/𝑅ROT 0.3 − 12 −
Segment 4 length ratio 𝐿N4/𝑅ROT 0.3 − 12 −
SGTB length ratio 𝐿SGTB/𝑅o 2/7 − 5/9 −
HGJB length ratio 𝐿HGJB/𝑅ROT 1 − 4 −
Magnet length ratio 𝐿MAG/𝑅ROT 1 − 12 −
Nominal rotor-plug interference 𝛿PLUG 1 · 10−6 − 100 · 10−6 m
Nominal rotor-magnet interference 𝛿MAG 1 · 10−6 − 100 · 10−6 m
Material Variables
Impeller wheel material 𝑀𝑎𝑡COMP 0 − 1
Rotor material 𝑀𝑎𝑡ROT 0 − 1
Magnet material 𝑀𝑎𝑡MAG 0 − 1
Operating Variables
Maximum rotor speed 𝑁end 1.5 · 105 − 5 · 105 RPM
Dependent parameters
HGJB radius 𝑅HGJB 𝑅ROT m
Front plug length 𝐿PLUG,ft 1/3 · 𝑅ROT m
Number of splitter blades 𝑁splits 𝑁bld −
Fixed parameters
Startup rotor speed 𝑁start 2 · 104 RPM
Robustness sampling unit 𝑘rob 7 −
Speed sampling sweep 𝑘𝑁 13 −
Mass flow sweep 𝑘�̇� 13 −
Fluid R134a
Compressor inlet pressure 𝑃in 2.51 · 105 Pa
Compressor inlet temperature 𝑇in 300 K
Mass flow lower bound �̇�start 10 g s−1

Mass flow upper bound �̇�end 50 g s−1

Compressor inlet blade angle at hub 𝛽2 −56 ◦

Compressor inlet blade angle at shroud 𝛽2s −60 ◦

bearing supported rotors [5]. Their research suggests that a sym-
metrical design, or a design with a large 𝐿𝑜𝐷, offers enhanced
robustness against manufacturing deviations in radial bearings.
In the pursuit of higher system efficiency, this optimization has

led to a reduction in 𝐿𝑜𝐷 to minimize losses through a shorter
bearing length.

The maximization of compressor isentropic efficiency is an
integral aspect of optimizing the overall efficiency, denoted as
𝜂tot. Notably, the isentropic efficiency exhibits a consistently high
value, reaching 0.8 across a significant portion of the compres-
sor map. This observation aligns with Schiffmann and Favrat’s
comprehensive study on optimal compressor designs for both
single and multiple operating points [12]. Their study sug-
gests that the best efficiency is achieved at the nominal speed
of 𝑁nom = 130 kRPM for a first stage pressure ratio of Π = 2.4.
In accordance with their findings, the operating point selected for
this study corresponds to their A2 operating point.

6. CONCLUSION
This study has introduced an automated framework for the

integrated design of gas bearings supported turbocompressors
while considering manufacturing deviations. This was made
possible by the use of constrained multi-objective optimization
and surrogate models made of ensembles of feed-forward neural
networks. This allowed us to bypass the traditional sequential
approach, integrating the optimization of all subsystems in one
loop. The results clearly indicate the gain in computational time
for such an approach and clearly demonstrate its strength com-
pared to a traditional integrated nominal optimization. To the
best of our knowledge, it is the first time the design of such a
system has been done by considering both the integration and the
robustness.

Future work will focus on the variation of the selection of dif-
ferent rotor layouts and subsystems configurations. Furthermore,
this methodology can be extended to other fields in engineering
that require the integration of multiple subsystems and consider-
ation of robustness against manufacturing deviations. The pre-
sented framework highlights the importance of a comprehensive
and integrated approach to system design and provides a valuable
foundation for future research in this area.
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APPENDIX A. IMPELLER WHEEL CONVERSION TO CYLINDERS
A.1 Hub and blade parametrizations with piecewise functions

𝑓hub (𝑧) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√︂
𝑟2
2h − (𝑧 − 𝑟2h)2 0 ≤ 𝑧 ≤ 𝑟2h

𝑟4 −
√︁
𝑑2 − (𝑑2/𝑐2) · (𝑧 − 𝑟2h)2 𝑟2h ≤ 𝑧 ≤ 𝑟2h + 𝑐

𝑟4 𝑟2h + 𝑐 ≤ 𝑧 ≤ 𝑟2h + 𝑐 + 𝑏6

𝑟4 −
√︂
𝑓 2 − ( 𝑓 2/𝑒2) · (𝑧 − 𝐿imp)2 𝑟2ℎ + 𝑐 + 𝑏6 ≤ 𝑧 ≤ 𝐿imp

(10)

𝑓bld (𝑧) =
{︄
𝑟4 −

√︁
𝑏2 − (𝑏2/𝑎2) · (𝑧 − 𝑟2h)2 𝑟2h ≤ 𝑧 ≤ 𝑟2h + 𝑐 − 𝑏4

𝑟4 𝑟2h + 𝑐 − 𝑏4 ≤ 𝑧 ≤ 𝑟2h + 𝑐
(11)

with

𝑎 : = 𝑟4/𝜙 − 𝑏4
𝑏 : = 𝑟4 − 𝑟2s
𝑐 : = 𝑟4/𝜙
𝑑 : = 𝑟4 − 𝑟2h
𝑒 : = 𝑟4/𝜙2 − 𝑏6
𝑓 : = 𝑟4 − 𝑅ROT
𝑏6 : 𝑏6 = 𝑏4/𝜙
𝐿𝑖𝑚𝑝 : 𝑟2h + 𝑐 + 𝑏6 + 𝑒
𝜙 : 1.618

A.2 Conservation of mass and transverse moment of inertia

𝜌cyl,i · 𝜋 · (𝑅2
cyl,i − 𝑅

2
hub,i) · 𝐿i = 𝑚bld,i (12)

𝑚bld,i

12
· (3 · (𝑅2

cyl,i + 𝑅
2
hub,i) + 𝐿

2
i ) = 𝐼t,bld,i (13)

A.3 Inertia tensor of one blade

I =
⎡⎢⎢⎢⎢⎣
𝐼1 cos2 𝜃 + 𝐼2 sin2 𝜃 (𝐼2 − 𝐼1) sin 𝜃 cos 𝜃 0
(𝐼2 − 𝐼1) sin 𝜃 cos 𝜃 𝐼1 sin2 𝜃 + 𝐼2 cos2 𝜃 0

0 0 𝐼3

⎤⎥⎥⎥⎥⎦ (14)

A.4 Transverse moment or inertia and mass of one blade

𝐼t,i (𝜃) = 𝐼2 sin2 𝜃 + 𝐼1 cos2 𝜃 + 𝑚bld,i

(︃
𝑅hub,i +

𝑅bld,i

2

)︃2
cos2 𝜃 (15)

𝑚bld,i = 𝜌imp · (𝑒bld · (𝑅bld,i − 𝑅hub,i) · 𝐿i) (16)

A.5 Angular separation between a blade and a splitter

Δ𝜃 =
2𝜋

(𝑁bld + 𝑁spl)
(17)

A.6 Transverse moment of inertia of nth blade/splitter

𝐼t,i (𝑛) = 𝐼2 sin2 (𝑛Δ𝜃) + 𝐼1 cos2 (𝑛Δ𝜃) + 𝑚bld,i

(︃
𝑅hub,i +

𝑅bld,i

2

)︃2
cos2 (𝑛Δ𝜃) (18)
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