
Systems & Control Letters 167 (2022) 105336

a

b

c

h
0

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Review

A combined Control by Interconnection—Model Predictive Control
design for constrained Port-Hamiltonian systems
T.H. Pham a, N.M.T. Vu c,∗, I. Prodan b, L. Lefèvre b

Laboratory of Signals and Systems (L2S), CNRS, Centrale Supélec, 91190 Gif-sur-Yvette, France
Univ. Grenoble Alpes, Grenoble INP, LCIS, 26000 Valence, France
École Polytechnique Féderale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015, Lausanne, Switzerland

a r t i c l e i n f o

Article history:
Received 29 October 2021
Received in revised form 11 May 2022
Accepted 15 July 2022
Available online 6 August 2022

Keywords:
Constrained Port-Hamiltonian systems
Control by Interconnection
Model Predictive Control
Primal–dual gradient method

a b s t r a c t

This paper proposes a Control by Interconnection design, for a class of constrained Port-Hamiltonian
systems, which is based on an associated Model Predictive Control optimization problem. This
associated optimization problem allows to consider both state and input constraints simultaneously.
Based on the first order Karush–Kuhn–Tucker optimality condition, the primal–dual gradient method is
then used to build a passive feedback controller, derived from the MPC-induced optimization problem.
The resulting passive controller is coupled with the original Port-Hamiltonian system through a
power-preserving interconnection, in order to guarantee both the closed-loop stability and constraints
satisfaction, but not the optimality anymore. Comments on parameters tuning for the proposed control
design, together with validations of the approach through simulations first on a linear LC circuit, then
on a nonlinear Permanent Magnet Synchronous Motor and comparisons with a classical MPC design,
are provided to discuss the effectiveness of the approach.
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ultiphysics systems [1,2]. The approach is based on the modular
ower-preserving interconnection of passive subsystems (and
xternal power supplies). Therefore, a PH system is intrinsically
assive and the Hamiltonian function (energy, entropy, etc.) may
e interpreted as a Lyapunov function to tackle the stability issue.
any control methods from the literature are developed based
n this property [3], e.g. Control by Interconnection (CbI, [4]),
nergy Shaping [5] or Interconnection and Damping Assignment
assivity-Based Control (IDA PBC, [6]).
Recently, various industrial applications which make use of

his formalism have been shown to require constraints han-
ling [7–9]. On the other hand, investigations on the connections
etween feedback and optimal control designs have a long his-
ory [10]. The Inverse problem of optimal control is investigated
or dissipative affine nonlinear system in [11]. More recently,
ptimization-based control designs for PH systems without con-
traints are developed as linear quadratic (LQ) design in [12] or
inear quadratic Gaussian (LQG) control design in [13]. In [7],
n H∞ control law is proposed for a class of switched PH sys-
ems where the input saturation is considered. In [14,8,9], the
uthors investigate the benefits of a passive dynamical controller,
esigned by applying the primal–dual gradient method to finite-
imensional optimization problems. This construction guarantees
he constraint satisfactions of the instantaneous input and the
teady state. Furthermore, an off-line optimal controller for PH
ystems is designed in [15]. In [16], the optimization problem
s solved by a numerical tool equivalent to a Model Predictive
ontrol (MPC) solver which, however, does not take advantage
f the PH formalism. Note that, in all these approaches except
or [16], no prediction of the states is taken into account. There-
ore, they can only deal with input constraints and not with state
onstraints which should be satisfied at all times.
To deal with this issue, a well-known method is the MPC [17].

lthough the theory on linear MPC gained ground over the last
ecades, stability analysis and high computation effort of nonlin-
ar MPC are still challenging. Furthermore, finding a Lyapunov
unction to analyze the stability of the closed loop system is
ne of those popular questions which is relatively simple to
ormulate but not trivial to solve. A possible solution for this issue
s exploiting the passivity property of the closed-loop system
s studied in [18,19], where constraints on the supplied energy
re added to the MPC formulation to facilitate the stability il-
ustration. However, this technique reduces the feasibility region
f the MPC optimization problem, and thus, the controller may
ave no solution. Moreover, MPC solves an optimization prob-
em at each time instant, which requires a suitable optimizer
nd a considerable computational effort. The authors in [20]
roposed an instant-MPC to deal with this drawback by using
he primal–dual gradient method to solve online the MPC op-
imization problem. As a result, the computation time can be
rastically reduced, about hundred times faster. Nevertheless,
n the aforementioned work, the supply rate determination for
he dissipativity condition is not trivial, and the stability is not
enerally guaranteed.
This work aims at a control design methodology for PH sys-

ems with constraints using the advantages of MPC in combi-
ation with the PH formalism. Our work inspires from a result
eveloped in [14,8] where the application of the primal–dual
radient method to a convex optimization problem leads to a pas-
ive dynamical controller. The main contribution of this work is
o propose a Control by Interconnection (CbI) method combined
ith the MPC principles, leading to the following advantages:

• The system state constraints are taken into account. It is
important to note that we do not try to find the exact
MPC law with the same optimization problem, rather we
are concentrating on enforcing state and input constraints
satisfaction for the controlled systems.
2

• The proposed dynamical controller provides the instant con-
trol action without any iterative optimizer as used in MPC.
This significantly reduces the computational effort.

• The stability analysis is facilitated, and the convergence of
the closed-loop system is guaranteed thanks to the passivity
property of the PH formulation.

The paper is organized as follows. In Section 2, we briefly
remind the finite dimensional Port-Controlled Hamiltonian (PCH)
systems definition, the primal–dual gradient method to solve
optimization problems, and the problem formulation with MPC
technique. In Section 3, we propose a dynamical feedback control
design, discuss the closed-loop system stability and comment the
control tuning parameters. Numerical demonstrations are shown
in Section 4. Finally, we conclude the paper with some prospects
for future work in Section 5.

2. Preliminaries

In this section, we briefly recall the definition of finite di-
mensional port-controlled Hamiltonian systems and the passivity
with respect to the Hamiltonian function and the power con-
jugate input–output variables. Then the primal–dual gradient
method for solving finite dimensional convex optimization prob-
lems and the MPC principle to deal with system constraints are
shortly presented.

2.1. Finite dimensional port-controlled Hamiltonian system

In this work, we consider finite dimensional port-controlled
Hamiltonian (PCH) systems described in the following explicit
input-state-output form:{
ẋ(t) = [Jx (x) − Rx (x)]∇Hx (x) + Gx (x)u(t),
y(t) = G⊤

x (x) ∇Hx (x) ,
(1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and input vectors,
respectively, Jx (x) = −J⊤x (x) ∈ Rn×n is the skew-symmetric
interconnection matrix, Rx (x) = R⊤

x (x) ∈ Rn×n is the symmetric
and positive semi-definite dissipation matrix, Gx (x) ∈ Rn×m is the
full rank input matrix and Hx (x) ∈ R is the non-negative Hamil-
tonian, e.g. the system’s energy. As one of the main properties of
PH systems, the plant (1), with conjugate input u(t) and output
y(t), is passive with respect to the storage function Hx (x), since
dHx (x) /dt ≤ u⊤(t)y(t). We will therefore take into account the
following assumption.

Assumption 1. The Hamiltonian Hx (x) is bounded from below,
strictly convex, and minimized at the origin xe = 0, which is the
equilibrium of the autonomous system corresponding to u(t) = 0.

2.2. Primal–dual gradient method

We recall hereafter the primal–dual gradient method [21]
which is used to solve the following finite-dimensional optimiza-
tion problem:

z∗
= argmin

z
f (z)

s.t. Azz + bz = 0,
g (z) ≤ 0,

(2)

where z ∈ Rnz , f (z) ∈ R, Az ∈ Rnλ×nz , bz ∈ Rnλ , g (z) ∈ Rnµ , and
nz, nλ, nµ ∈ N. From now on, we make use of the conventional
notation g (z) ≤ 0 for inequality constraint. It stands for gi (z) ≤

0, i ∈ I = {1, . . . , nµ}. The following assumption is necessary for
a feasible optimization problem in (2).
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ssumption 2. The cost function f (z) is strictly convex and con-
inuously differentiable; gi (z), ∀i ∈ I , are convex, continuously
ifferentiable and gi (0) < 0. By convexity, we mean that the
anifolds described by f (z) and gi(z) are convex.

Let L (z, λ, µ) ∈ R denote the Lagrangian function associated
ith problem (2), i.e.

(z, λ, µ) = f (z) + λ⊤ (Azz + bz) + µ⊤g (z) , (3)

ith λ ∈ Rnλ and µ ∈ [0, +∞)nµ . For all optimal solutions z∗ of
2), there exist λ∗ and µ∗ satisfying the first-order Karush–Kuhn–
ucker (KKT) conditions [22]:

∇L (z, λ, µ) = 0

⇔

⎧⎨⎩
∇f (z∗) + A⊤

z λ∗
+ ∇g⊤ (z∗) µ∗

= 0,
Azz∗

+ bz = 0,
gi (z∗) ≤ 0, µ∗

i ≥ 0, µ∗

i gi (z∗) = 0, ∀i.

(4)

Based on the previous KKT conditions, the primal–dual gradi-
ent algorithm is described, following [8,14,20], by the dynamical
system:⎧⎨⎩ τz ż(t) = −∇f (z) − A⊤

z λ(t) − ∇g⊤ (z) µ(t),
τλλ̇(t) = Azz(t) + bz,

τµµ̇(t) = [g (z)]+µ ,

(5)

where the ith element of the vector [g (z)]+µ ∈ Rnµ is defined as:

[gi (z)]+µ =

{
gi (z) , if µi > 0,
max {0, gi (z)} , if µi = 0,

(6)

τz ∈ R+
nz×nz , τλ ∈ R+

nλ×nλ and τµ ∈ R+
nµ×nµ are symmetric

positive definite matrices, characterizing the different timescales
appearing in the dynamics.

Proposition 1. The states of the dynamics (5) converge to the set of
equilibrium points.

Proof. See Appendix A. □

Since the equilibrium points of the dynamics (5) are also the
solutions of the KKT equations (4), any numerical integration
method for (5) can be used to solve the optimization problem
(2). Moreover, the autonomous system (5) may be cast as a
closed loop PH system, which simplifies the demonstration of the
convergence of the states to the equilibrium [14].

2.3. Model predictive control

In the following, we briefly recall the general optimization
problem formulation for constrained systems using MPC tech-
nique. We also show how the optimization problem is trans-
formed to fit into the finite dimensional framework studied in
this work.

Let U(t) = {u(·|t) : [t, t + h] → Rm
: τ ↦→ u(τ |t)} and X(t) =

x(·|t) : [t, t + h] → Rn
: τ ↦→ x(τ |t)} denote respectively the

ets of input and state functions for current time τ ∈ [t, t + h]
i.e. over a prediction horizon h), where x(τ |t) and u(τ |t) are
espectively the values of the system states and inputs at the time
nstant τ ∈ [t, t+h] which are predicted at time t . Then consider
he following constrained optimization problem:

U∗(t),X∗(t)
}

= argmin
U(t),X(t)

Vf (x (t + h|t)) +

∫ t+h

t
lxu (x,u) dτ (7a)

s.t. ẋ (τ |t) = [Jx (x) − Rx (x)]∇Hx (x)
+ Gx (x)u (τ |t) , ∀τ ∈ [t, t + h], (7b)

g (x,u) ≤ 0, ∀τ ∈ [t, t + h], (7c)
3

The MPC feedback control at time t , is then defined as uMPC (t) =
∗(t|t) where u∗(t|t) denotes the value of the optimal input tra-
ectory u∗(τ |t) for the current time value τ = t . In (7), the stage
nd final cost functions lxu (x,u) and Vf (x (t + h|t)) penalize the

state error and the control deviation.
Discretization: Note that (7) is an infinite-dimensional op-

imization problem which is not the case of the problem (2)
olved by the primal–dual gradient method described in Sec-
ion 2.2. Therefore it is necessary to approximate (7) by a finite-
imensional optimization problem. In this work, simple
iecewise-constant approximations are used for the state and
ontrol time profiles on the prediction horizon [t, t + h]. Hence,
we will consider x (τ |t) =

∑N
k=1 x (k|t) βk(τ ), u (τ |t) =

∑N
k=1 u

(k|t) βk(τ ), where βk(τ ) are the window functions described as:

βk(τ ) =

{
1, if t + (k − 1)∆t ≤ τ < t + k∆t,
0, else , ∀k ∈ {1, . . . ,N},

(8)

with time step ∆t and N =
h

∆t ∈ N. Existence of the solution of
the MPC formulation defined in (7) also requires that the plant
states x(t) are fully observable [23].

Linearization: On the other hand, regarding the linear equality
onstraint in (2), the plant (1) or (7b) also needs to be represented
n a linearized discrete-time form:

(k + 1|t) = Ax (k|t) + Bu (k|t) , (9)

where the matrices A ∈ Rn×n and B ∈ Rn×m are constants and
where x (k|t) and u (k|t) (with k ∈ N) denote respectively the
predicted values of the state and input variables at instant t+k∆t .
This linear discrete-time model is obtained through lineariza-
tion and subsequent structure-preserving time discretization. The
latter is a symplectic Runge–Kutta method defined in order to
preserve the intrinsic geometric interconnection (Dirac) structure
of the original PCH system [24]. In this approach, the local error
of the stored energy is consistent with the numerical integration
scheme [24, Theorem 2]. This discrete scheme is briefly recalled
in Appendix B.

We consider hereafter the recursive construction of a discrete-
time optimal open-loop state and control sequence z(t) ∈

R(m+n)N :
z(t) = [u⊤ (0|t) , u⊤ (1|t) , . . . ,u⊤ (N − 1|t) ,

x⊤ (1|t) , . . . , x⊤ (N|t)]⊤
(10)

at each time instant t over a finite prediction horizon [t, t +

∆t, . . . , t + N∆t], N ∈ Z+. The feedback control law of the plant
is thus the first element of z (t):

u(t) = u (0|t) = Ez(t), (11)

with E = [Im 0] ∈ Rm×(m+n)N . Moreover, the equivalent MPC law
is:

uMPC (t) = Ez∗(t), (12)

where z∗(t) is the optimal solution of the following optimization
problem:

z∗(t) = argmin
z(t)

f (z) (13a)

s.t. Azz(t) + Bzx(t) = 0, (13b)

g (z) ≤ 0. (13c)

The matrices Az ∈ RnN×(m+n)N and Bz ∈ RnN×n are defined as:

Az =

⎡⎢⎢⎣
B 0 . . . 0
0 B . . . 0

...

⏐⏐⏐⏐⏐⏐⏐⏐
−In 0 . . . 0
A −In . . . 0

...

⎤⎥⎥⎦ , (14a)
0 . . . 0 B 0 . . . A −In
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Fig. 1. Dynamic controller coupled to the PH system using CbI.

Bz =

[
A
0

]
, (14b)

where the matrices A and B are defined in (9). The cost function
f (z) now corresponds to the discrete-time form of the cost in
(7a), i.e.:

f (z) = Vf (x (N|t)) + ∆t
N−1∑
k=0

lxu (x (k|t) ,u (k|t)) . (15)

Remark 1. Usually, the cost functions Vf (x (N|t)) and
lxu (x (k|t) ,u (k|t)) are chosen quadratic, i.e., lxu = x⊤Qxx+u⊤Quu
and Vf = x⊤Qf x, where the weight matrices Qx ∈ Rn×n, Qu ∈

Rm×m and Qf ∈ Rn×n are symmetric and positive definite. Hence,
the cost function f (z) in (13a) is also quadratic and positive
definite, i.e., f (z) = z⊤Qzz, where the weight matrix Qz ∈

(m+n)N×(m+n)N has the block-diagonal form:

z = diag
{
Qu, . . . ,Qu,Qx, . . . ,Qx,

Qf

∆t

}
. (16)

emark 2. More linear equality constraints can easily be taken
nto account in the optimization problem (13) by adding more
ows in the matrices Az and Bz .

. Main idea

.1. Controller design

This work focuses on the design of a dynamic feedback control
aw, named CbI-MPC, which on the one hand stabilizes the state
ector x(t) of system (1) to the origin xe = 0 (using CbI tech-
ique [2]), and on the other hand respects inequality constraints
(x,u) ≤ 0, both on the system state and input (using MPC
echnique). The controller dynamics are derived from the primal–
ual gradient method for the MPC optimization problem (13) (see
lso Fig. 1). Note that step reference tracking is a particular case of
his work. However, time-varying reference tracking or economic
PC are excluded. From (5) and (13), the controller dynamics are
erived as:

τz ż(t) = −∇f (z) − A⊤
z λ(t) − ∇g⊤ (z) µ(t),

τλλ̇(t) = Azz(t) + Bzx(t),
τµµ̇(t) = [g (z)]+µ ,

(17)

Unlike the autonomous system (5), the controller dynamics
17) gets the plant information through the state feedback x(t)
hich is defined as the controller input, uc(t) = x(t), and conse-
uently gives a corresponding controller output, named hereafter
c(t) to be determined. To apply the CbI technique, the controller

dynamics (17) must be a passive system where its input u (t) and
c

4

the output yc(t) are power-conjugate variables, i.e., their product
is the supplied power to the controller system. The plant (1)
and the controller (17) is then coupled together using a power-
preserving interconnection, in order to form a passive closed loop
system. A simple form of such interconnection is defined as:{
uc(t) = y(t),
u(t) = −yc(t).

(18)

According to (11), (17) and (18), the input uc(t) and the output
yc(t) should respect two following conditions:

uc(t) = x(t), (19)

yc(t) = −Ez(t). (20)

Remark 3. Condition (19) requires a direct construction of the
plant state x(t) from the plant output y(t), which is, in general,
not trivial, for instance in the case of rank(Gx(x)) < n. How-
ever, this issue can be tackled using an additional state observer
defined in such a way that the augmented system, including
the plant and the observer, is also passive (see [25–27] and the
references therein). As a result, the main principle of the pre-
sented CbI-MPC controller design will not be affected. However,
some parameter tuning may need to be adapted according to the
augmented system. This will be discussed with more details in
Section 3.3.

In this work, for the sake of simplicity, such observer is not
considered and thus the following assumption is admitted in
order to derive the state x(t) from the plant output y(t) in
(1).

Assumption 3. There exists an invertible constant matrix M ∈

Rn×n such that:

y(t) = G⊤

x (x) ∇Hx (x) = Mx(t). (21)

This assumption implies that the plant input, output and state
have the same dimension, i.e., m = n.

Similar to Appendix A, the Hamiltonian function Hr (r) of the
controller dynamics (5) is simply chosen as:

Hr (r) =
1
2
r⊤z (t)τ−1

z rz(t) +
1
2
r⊤λ (t)τ

−1
λ rλ(t)

+
1
2
r⊤µ (t)τ−1

µ rµ(t),
(22)

ith the transformed state vector r(t) ∈ R3nN+nµ defined by:

(t) =

[ rz(t)
rλ(t)
rµ(t)

]
=

[
τzz(t)
τλλ(t)
τµµ(t)

]
. (23)

ased on (17)–(18), and (21)–(23), the controller dynamics are
ewritten as:

ṙ(t) = fr (r) +

⎡⎣ 0
Bz

0

⎤⎦M−1uc(t),

yc(t) = M−⊤
[
0 B⊤

z 0
]
∇Hr (r) ,

(24)

ith

r (r) =

⎡⎣ −A⊤
z ∂rλHr (r) − ∇f (z) − ∇

⊤g (z) µ(t)
Az∂rzHr (r)
[g (z)]+µ

⎤⎦ . (25)

It is important to note that the requirement (20) cannot be
respected according to Eqs. (11), (18) and (24). As a result, u(t)
does not satisfy the constraint in (7c) even though z(t) satisfies
the constraint (13c). In order to tackle this issue, we propose in
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t
he following to add an extra term Gz (z, λ) to the input matrix
of the controller dynamics (24) such that:⎧⎪⎪⎨⎪⎪⎩
ṙ(t) = fr (r) +

⎡⎣ Gz (z, λ)

Bz

0

⎤⎦M−1uc(t),

yc(t) = M−⊤
[
G⊤
z (z, λ) B⊤

z 0
]
∇Hr (r) ,

(26)

where Gz (z, λ) ∈ R2nN×n is non-linear and satisfies the following
condition:

−M⊤Ez(t) = G⊤

z (z, λ) z(t) + B⊤

z λ(t). (27)

The matrices M, E and Bz are defined in (21), (11) and (14b),
respectively. The condition (27) implies that the control law given
in (17)–(18) is equal to the first element of z(t) at all time. Note
that with given values of z and λ, (27) is actually a linear equation
of Gz (z, λ) (see discussion in Section 3.3).

Proposition 2. The controller system defined by (25)–(27) is passive.

Proof. From (22), (23) and (26), we have:

Ḣr (r) = ∇
⊤Hr (r) ṙ(t)

= −z⊤(t)∇f (z) − z⊤(t)∇⊤g (z) µ(t)
+ µ⊤(t) [g (z)]+µ + y⊤

c (t)uc(t).
(28)

With derivations similar to those in Appendix A to obtain (A.11),
we obtain:

Ḣr (r) ≤ y⊤

c (t)uc(t), (29)

and thus, the proposition is concluded. □

Remark 4 (Convergence). Assume there exists an equilibrium
r∗ (uc) of (26), which includes the predicted input and state
vectors completely respecting the constraints. Despite the con-
troller’s passivity, the convergence of the controller state r(t) to
r∗ (uc) is not guaranteed. Indeed, using Proposition 1 and the
corresponding proof in Appendix A, the shifted controller state
is defined as r̃(t) = r(t) − r∗ (uc), which leads to the shifted
controller dynamics:

˙̃r(t) = fr (r) − fr
(
r∗ (uc)

)
+

[ Gz (z, λ) − Gz (z∗, λ∗)
0
0

]
M−1uc .

Using the Hamiltonian H̃r
(
r̃
)

defined in (A.4) with the result
proved in (A.11), we derive that:

˙̃Hr
(
r̃
)

≤ z̃⊤(t)
[
Gz (z, λ) − Gz

(
z∗, λ∗

)]
uc .

Since the right-hand side of the previous inequality is not gener-
ally non-positive, the shifted controller dynamics are not proved
passive, and thus, the convergence of the state r(t) to the equilib-
rium r∗ (uc) is not ensured. Nonetheless, in the considered case
study, the equilibrium is the origin and u∗

c = xe = 0. There-
fore the convergence holds. This convergence is also empirically
observed in the numerical example in Section 4.

Remark 5 (Optimality). Since we have modified the optimization
problem (13) by adding G⊤

z (z, λ) in (26), the closed loop solu-
tion is not the optimal solution anymore. Finding backwards the
optimization problem corresponding to the controller dynamics
(26), through the relation using the primal–dual approach, is not
an easy task. However, it is not necessary to solve this problem
since we are mostly interested in constraints satisfaction and not

on the optimality of the solution.

5

3.2. Closed-loop system

Based on the previously designed controller, the closed-loop
system is defined by coupling the plant (1) and the controller dy-
namics (26) through the power-preserving interconnection (18).
The resulting closed loop system reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣ ẋ(t)
ṙz(t)
ṙλ(t)

⎤⎦ = [J (x, z, λ) − R (x)]

⎡⎣ ∂xH (x, r)
∂rzH (x, r)
∂rλH (x, r)

⎤⎦
+

⎡⎣ 0
−∇f (z) − ∇

⊤g (z) µ(t)
0

⎤⎦ ,

ṙµ(t) = [g (z)]+µ ,

(30)

where rz(t) ∈ R2nN , rλ(t) ∈ RnN , rµ(t) ∈ Rnµ and r(t) ∈ R3nN+nµ

are defined in (23); J (x, z, λ), R (x) ∈ R(n+3nN)×(n+3nN) and the
closed loop Hamiltonian H (x, r) are defined as follows:

J =

⎡⎣ Jx −GxM−TG⊤
z −GxM−TB⊤

z
GzM−1G⊤

x 0 −A⊤
z

BzM−1G⊤
x Az 0

⎤⎦ , (31a)

R = blockdiag {Rx (x) , 0, 0} , (31b)

H = Hx (x) + Hr (r) (31c)

with the Hamiltonians Hx (x) and Hr (r) given in (1) and (22).
Note that the term −∇f (z) −∇

⊤g (z) µ(t) contributes to the
dissipation of the closed-loop system. The stability and the con-
vergence of the closed-loop system are proved in the following
proposition.

Proposition 3. The closed-loop system (30)–(31):

(i) is dissipative, and
(ii) converges to the origin if ker

(
A⊤
z

)
= {0}.

Proof.

i. Since the plant (1) and the controller system (26) are
passive, and the interconnection (18) is power-preserving,
the closed-loop system dissipative, i.e., Ḣ (x, r) ≤ 0 [2].

ii. Consequently, according to the LaSalle’s invariance princi-
ple, the states vector of the closed-loop system (30) con-
verges to the largest invariant set M such that

M =
{
(x, r) |Ḣ (x, r) = 0

}
.

In this largest invariant subset, we may conclude:(
rz(t), rµ(t)

)
= 0, ∀ (x, z, λ, µ) ∈ M, (32)

⇒rλ(t) = 0, (33)

⇒∇Hx (x) = 0 ⇔ x(t) = 0, (34)

(32) thanks to Assumption 2, (6), (28) and (A.10)
(33) thanks to (27), (30)–(31) and ker

(
A⊤
z

)
= {0}

(34) thanks to Assumption 3, (14b) and (30)–(31)

Finally, we obtain (x(t), r(t)) −→
t→∞

0 which concludes the
proposition. □

3.3. Parameter tuning and discussions

The efficiency of the proposed controller depends on the
discrete-time system model (9), the prediction step ∆t , the pre-
diction horizon N , the cost function f (z) in (13a), the non-linear
matrix Gz (z, λ) in (27), the timescales matrices

(
τz, τλ, τµ

)
and
the initial controller states (z(0), λ(0), µ(0)).
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• It is worth noting that we are dealing with continuous sys-
tems for both the plant and the controller. The discrete-time
scheme (9) with respect to the time step ∆t is only used
to define the finite-dimensional MPC optimization problem
(13). Choosing the appropriate time-discretization scheme
for the constrained optimal control is a hard question which
will not be rigorously discussed in this work. However,
different methods developed for PH systems should be used
to preserve intrinsic system properties, e.g., the power-
preserving structure and the energy conservation, as men-
tioned in Appendix B or discussed in [24].

• The choices of the prediction horizon N and the cost func-
tion f (z) in (13a) are not specific features of the proposed
controller. They are key challenges for MPC designs. It is
indeed not trivial to select these parameters in order to
obtain a feasible optimization problem. In practice, the ‘‘tri-
als and errors’’ approach is adopted the most frequently,
combined with the extensive use of numerical simulations.
When the MPC optimization problem is not feasible, no spe-
cific parameters tuning direction can be determined, since
the MPC solution does not exist. One of the advantages of
the proposed CbI-MPC method is precisely that the closed-
loop system behavior may be obtained with an arbitrary
parameter choice, thanks to the constraint relaxation (gra-
dient method). This provides a guideline to adjust these
tuning parameters which will be shown during the control
implementation in the next section.

• The timescales matrices
(
τz, τλ, τµ

)
are chosen with respect

to the time constant of the controlled system. If the time
scales are too high, the controller dynamics are much slower
than the plant dynamics. Therefore, the constraints may be
seriously violated. On the contrary, if they are small enough,
the controller dynamics, in theory, rapidly converge to the
instantaneous equilibrium corresponding to the input uc(t).
Hence, the constraints on the predicted plant dynamics,
input and output are respected before the control action ap-
plication. This implies that the constraints are better taken
into account. Moreover, if the timescales are small enough,
Gc (z, λ) ≃ 0, the control law is then directly defined in (11)
and the controller states (z(t), λ(t), µ(t)) quickly converge
to the optimum values (z∗(t), λ∗(t), µ∗(t)) given in (4). In
that case, the control law will converge to the conven-
tional MPC law given in (12). However, in practice, small
time scales will increase the computational time which may
exceed the time limit, e.g. in real time applications. The com-
promise between performance and rapidity thus depends on
each application.

• The matrix Gz (z, λ), which must be computed at each time
step, is a solution of the n linear equations (27). This ma-
trix has 2nN × n elements and therefore many degrees of
freedom exist for its choice. The detailed analysis of the in-
fluences of these choices on the control performance, which
is quite complicated due the nonlinearity, is beyond the
scope of this paper and left for future research. To the best of
our knowledge, in CbI technique, the input matrix is usually
chosen constant due to the fact that no input constraints are
considered so far. This work hence confirms the flexibility of
the CbI method, which can be further developed for more
applications in the future.

• The influence of the initial controller states (z(0), λ(0), µ(0))
on the system stability is less important than the previous
tunable parameters. z(0) just needs to satisfy the constraints
in the optimization problem (13), and µ(0) must not be
negative. However, bad choices of these parameters may
lead to an invalid Gz (z, λ) in the condition (27). A possible
solution is to choose the initial controller states r(0) at the
equilibrium r∗ (uc) of the controller dynamics (26) where
u = x(0).
c

6

Fig. 2. Simple LC circuit with 2 control signal vi(t) and io(t).

Besides, regarding Remark 3, the proposed controller design
an also be extended to general systems where m ̸= n. By adding
an appropriate observer, e.g. PH structure-preserving observer,
we can guarantee the passivity property of the plant-observer
augmented system. Similar ideas of such observer design are
presented in [26,25]. However, the output of these augmented
systems is the difference between the plant output y and the
stimated output ŷ which cannot be directly used by the pro-
osed CbI-MPC controller. In an ongoing work, we define new
bserver conjugate input–output pairs so-that the estimated state

ˆ can be easily extracted from the observer outputs while the
ugmented system remains passive. The proposed observer will
acilitate state-feedback controller design. In particular, controller
aws based on CbI technique will take charge of stabilizing the
losed loop system, as well as ensuring the convergence of the
bserver.
In order to illustrate the effectiveness of the proposed CbI-MPC

ethod, we will compare in the next section the performances of
ifferent control methods through a qualitative evaluation with
our criteria: computational effort, input constraint considera-
ion, state constraint consideration and stability illustration (see
able 1).

. Numerical examples

In the following we validate the proposed method over electri-
al systems which is in the PH system class defined Section 2.1.
ore precisely, the first example is a linear LC circuit, and the
econd one is a nonlinear Permanent magnet Synchronous Motor
PMSM).

.1. LC circuit

An LC circuit with two control inputs is described in Fig. 2.
sual Kirchoff’s balance equations may be written in the form of
he following PH system:

φ̇(t)
q̇(t)

]
= JQ

[
φ(t)
q(t)

]
+

[
vi(t)
io(t)

]
, (35)

where φ(t) ∈ R is the magnetic flux of the inductance L, q(t) ∈

R is the electric charge of the capacitance C , and the matrices

J,Q ∈ R2×2 are given as: J =

[
0 −1
1 0

]
, Q = diag

{
1
L
,
1
C

}
.

Since the CbI-MPC controller of Section 3.2 has been designed to
stabilize the PH system state around the origin, a change of state
variables is considered for (35), i.e. it shifts the desired (reference)
equilibrium value of the state to the origin. Therefore, the shifted
state vector x(t) ∈ R2, the corresponding input vector u(t) ∈ R2

and Hamiltonian function Hx (x) are given as:

x(t) =
[
φ(t) + Li∗o q(t) − Cv∗

i

]⊤
,

u(t) =
[
vi(t) − v∗

i io(t) − i∗o
]⊤

,

Hx (x) =
1
2
x⊤(t)Qx(t).

ystem dynamics (35) then read:

ẋ(t) = J∇Hx (x) + u(t), (36)
y(t) = ∇Hx (x) ,
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Table 1
Qualitative comparison of different control methods.
Criteria MPC [17] Instant MPC [20] Optimal CbI [14] CbI-MPC

Computational effort High Medium Low Medium
Input constraint consideration Yes Yes Yes Yes
State constraint consideration Yes Yes No Yes
Stability illustration Hard Hard Easy Easy
Fig. 3. DC-DC buck converter [28].

Table 2
Parameter values of LC system.
Description Notation Value Unit

System

Inductance L 1 [H]
Capacitance C 1 [F]
State and input dim. n 2

Controller

Prediction time step ∆t 0.5 [s]
Prediction horizon N 10
Weight matrix Qz I40
Time scale matrices τz 0.01 × I40

τλ 0.01 × I20
τµ 0.01 × I80

Simulation

Simulation duration 5 [s]
Initial state x(0) 0.8 × 12

The following constraints of the state and input will be consid-
ered: xmin ≤ x(t) ≤ xmax, umin ≤ u(t) ≤ umax.

emark 6. The LC circuit can be considered as a simplified buck
C-DC converter described in Fig. 3 where L, C , Vdc , r and S1, S2, S3

denote, respectively, the inductance, the capacitance, the input
DC voltage, the resistance load and the ideal switches [28]. Usu-
ally, the switches are alternatively switched at high frequency by
using the Pulse Width Modulation technique. For simplicity, we
can consider a slower timescale where the input voltage is repre-
sented by the continuous average value vi(t). Moreover, according
to the studied example Fig. 3, the passive load is replaced by an
active current source io(t).

Simulation results. In the following simulations, the results are
obtained using both the MPC and the CbI-MPC laws. The sim-
ulations are implemented using MATLAB 2017b, and the MPC
optimization problem is solved using the quadprog function. The
values of the plant, controller and simulation parameters are
given in Table 2. Furthermore, we simply use the mid-point
discretization method to determine the constant matrices A and
B in (9): A = [2I2 − ∆tJQ]−1 [2I2 + ∆tJQ] ,

B = [2I2 − ∆tJQ]−1 2∆tI2.
The cost function f (z) defined in (13a) is chosen quadratic as

presented in Remark 1, i.e., f (z) = z⊤(t)Qzz(t).
Three simulation scenarios are considered as presented in

Table 3: small limits of inputs, small limits of inputs and states,
and critical (even smaller) limits of inputs and states, respectively.
In all cases, the controller equilibrium when uc(t) = x(0) is
chosen as the initial conditions for the controller dynamics as
mentioned in Section 3.3.
7

Table 3
Simulation scenarios.
Description Scenario 1 Scenario 2 Scenario 3

u⊤
max [1 1] [1 1] [0.35 0.35]

u⊤

min −[0.7 0.4] −[0.7 0.4] −[0.7 0.4]
x⊤
max [1 1] [1 1] [1 1]

x⊤

min −[1 1] −[0.1 0.2] −[0.1 0.2]

Fig. 4. The profiles of the input and state vectors in Scenario 1.

In Scenario 1 (Fig. 4), small limits of inputs are considered.
Profiles of the input and output variables with the MPC and CbI-
MPC laws are described by the green dashed and blue continuous
lines, respectively. The results illustrate the input constraint con-
sideration in the CbI-MPC controller as well as the stability and
the convergence to the references. Note that, since a relaxation is
used to deal with the constraints, the constraints are not always
respected. To improve the constraint satisfaction, we can reduce
the time scale τz, τλ, τµ as discussed in Section 3.3.

In Scenario 2 (Fig. 5), small limits of both inputs and states are
considered. Comparing to Fig. 4, we can see that, besides the input
constraint which is satisfied, the state constraint is also taken into
account by the proposed controller.

Scenario 3 (Fig. 6) shows a clear advantage of the proposed
CbI-MPC method with respect to the MPC method and the op-
timal CbI method developed in [14] (see Appendix C for the
definition of the corresponding controller). Here, with this critical
umax value, the MPC optimization problem is not feasible. The
optimal CbI controller successfully keeps the inputs between
their limits. However this CbI controller does not handle state
constraints, which are completely violated in this approach.

4.2. Three-phase permanent magnet synchronous motor

The second example considers the nonlinear dynamics of a 3-

phase Permanent Magnet Synchronous Motor (PMSM) which is
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Fig. 5. The profiles of the input and state vectors in Scenario 2.

Fig. 6. The profiles of the input and state vectors in Scenario 3.

escribed using the PH formulation as follows:⎡⎣ φ̇d(t)
φ̇q(t)
ṗ(t)

⎤⎦ =

([ 0 0 φq(t)
0 0 −φd(t) − Φ

−φq(t) φd(t) + Φ 0

]
−

−

[ R 0 0
0 R 0
0 0 0

])
∇H(x) +

[
vd(t)
vq(t)
ld(t)

]
(37)

here x(t) =
[
φd(t) φq(t) p(t)

]⊤; H(x) =
1
2
x⊤(t)Qx(t); φd, φq are

the stator magnetic fluxes; p is the mechanical momentum; R is
he phase resistance; Φ is the constant rotor magnetic flux, and
d(t), vq(t), ld(t) are the voltages and load.
Since we only focus on the error dynamics, the system op-

ration is studied at a fixed reference state and input, xref ,uref ,
here the PMSM dynamics is discretized using the mid-point
ethod (see the previous example). Then, the error dynamics has

he state vector denoted by x̄(t) = x(t)−x and the input vector
ref

8

Table 4
Parameter values of PMSM system.
Description Notation Value Unit

PMSM

Stator inductance L 10 [mH]
Stator resistance R 0.1 [�]
Rotor magnetic flux Φ 0.05 [Wb]
Mechanical inertia Jm 0.1 [kg·m2]
State and input dim. n 3

Controller

Prediction time step ∆t 0.5 [s]
Prediction horizon N 10
Weight matrix Qz I60
Time scale matrices τz 0.01 × I60

τλ 0.01 × I30
τµ 0.01 × I120

Simulation

Simulation duration 3 [s]
Initial state x(0) [−0.01

−0.0035
−0.1]

Reference state xref [0.005
0.005
0.3]

Reference input uref [0.035
0.215
0.025]

Fig. 7. The profiles of the input ū(t) and state vectors x̄(t) of the nonlinear
PMSM.

ū(t) = u(t) − uref . The parameter values of the PMSM model,
controller and simulation settings are given in Table 4.

Simulation results. In Fig. 7, all the inputs reach their extremi-
ties, and the states constraints are kept in checked. This hence
demonstrates the efficiency of the proposed method applied for
a nonlinear system such as the PMSM.

5. Conclusion

This paper presents a novel control design to deal with sys-
tem constraints using a Port–Hamiltonian formulation based on
Model Predictive Control (MPC). The state and input constraints
are firstly taken into account by formulating a MPC-type opti-
mization problem. Then, an open dynamical controller system
is constructed based on the primal–dual gradient method with
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n additional nonlinear input. The controlled system and the
ontroller are finally coupled together using the Control by Inter-
onnection technique. The proposed control method deals with
oth state and input constraints while explicitly admitting the
amiltonian as a Lyapunov function for the closed-loop system.
oreover, a guideline to tune different controller parameters is
resented. It is important to note that the proposed controller
s designed in order to guarantee both the closed-loop stability
nd constraints satisfaction, but not the optimality anymore. The
ffectiveness of the control design is illustrated in simulation
hrough a qualitative comparison with different control methods.
s future work, we aim at extending the proposed CbI-MPC
ethod to more general systems where the input matrix is not
ecessarily invertible. This can be realized by replacing the plant
ith the passive augmented system which includes the plant and
n appropriate observer.
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ppendix A. Primal–dual gradient convergence proof

This section recalls the results in [14] to prove 1. Let Ω denote
he set of equilibrium points of the dynamics (5), and Ωµ denote
he following set:

Ωµ = {(z, λ, µ) | {µ ≥ 0, g (z) = 0}
or {µ = 0, g (z) < 0}} (A.1)

rom (4), we can see that Ω ⊂ Ωµ. Consider an equilibrium
oint (z∗, λ∗, µ∗) ∈ Ω . The state deviations

(
z̃(t), λ̃(t), µ̃(t)

)
are

efined as:

z̃(t), λ̃(t), µ̃(t)
)

= (z(t), λ(t), µ(t)) −
(
z∗, λ∗, µ∗

)
. (A.2)

From (5) and (A.2), the deviation dynamics are derived as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
τz

˙̃z
τλ

˙̃
λ

]
=

[
0 −A⊤

z

Az 0

][
z̃
λ̃

]
+[

∇f (z∗) − ∇f (z) + ∇g⊤ (z) µ − ∇g⊤ (z∗) µ∗

0

]
,

τµ
˙̃µ = [g (z)]+µ .

(A.3)

The corresponding shifted Hamiltonian with respect to the equi-
librium point is chosen as:

H̃r
(
z̃, λ̃, µ̃

)
=

1
2
z̃⊤(t)τz z̃(t) +

1
2
λ̃⊤(t)τλλ̃(t)

+
1
2
µ̃⊤(t)τµµ̃(t).

(A.4)

irstly, we admit the following inequalities [14]:

˜
⊤ [g (z)]+µ ≤ µ̃⊤g (z) , from (6), (A.1), (A.5)

g (z) ≤ g
(
z∗
)
+ z̃⊤

∇
⊤g (z) , g (z) is convex, (A.6)

g (z) ≥ g
(
z∗
)
+ z̃⊤

∇
⊤g
(
z∗
)
, g (z) is convex, (A.7)

µ̃⊤g
(
z∗
)

≤ 0, from (4), (6). (A.8)

rom (A.2)–(A.4), we obtain:
˙̃Hr
(
z̃, λ̃, µ̃

)
= −z̃⊤ [∇f (z) − ∇f (z∗)]

− z̃⊤
[
∇

⊤g (z) − ∇
⊤g (z∗)

]
µ∗

⊤ ⊤ ⊤ +

(A.9)

− z̃ ∇z g (z) µ̃ + µ̃ [g (z)]µ .

9

e also have the following inequalities:

−z̃⊤ [∇f (z) − ∇f (z∗)] ≤ 0, from Assumption 2,
−z̃⊤

[
∇

⊤g (z) − ∇
⊤g (z∗)

]
µ∗

≤ 0, from (A.1),
−z̃⊤

∇
⊤
z g (z) µ̃ + µ̃⊤ [g (z)]+µ ≤ 0, from (A.5)–(A.8).

(A.10)

From (A.9) and (A.10), we obtain:

˙̃Hr
(
z̃, λ̃, µ̃

)
≤ 0, ∀(z̃, λ̃, µ̃). (A.11)

Let M =
{(

z̃, λ̃, µ̃
)}

denote the largest invariant set of the system
A.3) such that ˙̃Hr

(
z̃, λ̃, µ̃

)
= 0, ∀

(
z̃, λ̃, µ̃

)
∈ M. From As-

umption 2, (A.9) and (A.10), we derive that ∀
(
z̃(t), λ̃(t), µ̃(t)

)
∈

M, z̃(t) = 0, or z(t) = z∗. Let Mr denote the set of (z, λ, µ) such
hat

(
z̃, λ̃, µ̃

)
∈ M. From (A.4) and (A.11), by LaSalle’s invariance

rinciple we may conclude that
(
z̃, λ̃, µ̃

)
converges to M, i.e.,(

z̃(t), λ̃(t), µ̃(t)
)

−→
t→∞

M,

or (z(t), λ(t), µ(t)) −→
t→∞

Mr .
(A.12)

hen (z, λ, µ) ∈ Mr , we consider the dynamics of µ(t) in (5),
that is: µ̇(t) = [g (z∗)]+µ . If g (z∗) = 0 and µ(t) ≥ 0, µ̇(t) = 0.
If g (z∗) < 0 and µ(t) = 0, µ̇(t) = 0. If g (z∗) < 0 and
µ(t) > 0, µ̇(t) = g (z∗) < 0. Therefore, it is easy to see that
when g (z∗) < 0, µ(t) −→

t→∞
0, e.g.,(

z∗, λ(t), µ(t)
)

−→
t→∞

Ωµ ∩ M. (A.13)

When (z, λ, µ) ∈
(
Ωµ ∩ M

)
, ż(t) = 0, λ̇(t) = 0 and µ̇(t) = 0, and

thus,

(z(t), λ(t), µ(t)) ∈ Ω. (A.14)

From (A.12)–(A.14), we conclude that:

(z(t), λ(t), µ(t)) −→
t→∞

Ω.

Appendix B. Discrete-time Port–Hamiltonian system

This section briefly recalls a definition of discrete-time port–
Hamiltonian systems based on the symplectic integration pre-
sented in [24]. Using the collocation method, we define s ∈ N
collocation points

{
tk1, . . . , t

k
s

}
over a time step [k∆t, (k + 1) ∆t]

such that:

k∆t < tki < tki+1 < (k + 1) ∆t, with i ∈ {1, . . . , s − 1} .

Let xki ∈ Rn, uk
i R

m represent the state and input vectors at
the collocation point tki with i ∈ {1, . . . , s}. According to [24], the
discrete-time state x (k + 1|t) of the port–Hamiltonian system (1)
is determined as:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xki = x (k|t) − ∆t
s∑

j=1
aij
[
J
(
xkj
)
− R

(
xkj
)]

∇Hx
(
xkj
)

+ aijG
(
xkj
)
uk
j ,

x (k + 1|t) = x (k|t) − ∆t
s∑

j=1
bj
[
J
(
xkj
)
− R

(
xkj
)]

∇Hx
(
xkj
)

+ bjG
(
xkj
)
uk
j ,

(B.1)

where aij, bj ∈ R are constants computed from the collocation
functions and points, and i, j ∈ {1, . . . , s}. The system (B.1) is

n×n n×m
linear if there exist constant matrices A ∈ R and B ∈ R
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s⎧⎪⎪⎨⎪⎪⎩
A

p
o

s

f
m
c
c
(

w
a⎧⎪⎨⎪⎩
N
d

R

uch that:

Ax(k|t) = x (k|t) − ∆t
s∑

j=1
bj
[
J
(
xkj
)
− R

(
xkj
)]

∇Hx
(
xkj
)

Bu(k|t) = ∆t
s∑

j=1
bjG

(
xkj
)
uk
j

(B.2)

ppendix C. Optimal control by interconnection

This subsection recalls the optimal CbI method previously
resented in [14]. The control design is based on the following
ptimization problem:

min
u

f (u) (C.1a)

.t. [Jx − Rx]∇Hx + Gxu = 0, (C.1b)

g (u) ≤ 0, (C.1c)

where u is the input of the controlled system. The cost function
(u) ∈ R is a convex function, derived from f (z) in the opti-
ization problem (13) with Qx = 0 and Qf = 0. The equality
onstraint (C.1b) is the equilibrium condition, and the inequality
onstraint (C.1c) considers the same limits of the input u as in
13c), and g(0) ≤ 0, as presented in Assumption 2.

Using primal–dual gradient method presented in Section 2.2
ith additional conjugate input and output, the controller is given
s:

τuu̇(t) = −∇f (u) − G⊤
x λ(t) − ∇g⊤ (u) µ(t),

τλλ̇(t) = [Jx − Rx]∇Hx + Gxu(t),
τµµ̇(t) = [g (u)]+µ ,

yc(t) = u(t).

(C.2)

ote that this control considers the input constraint but cannot
eal with the state constraint.
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