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ABSTRACT
Data-driven building energy modeling is an emerging solution to
facilitate the implementation of energy-flexible buildings. How-
ever, its black-box nature hinders interpretation, including with
respect to human-building interaction. This drawback may bring
risks to occupants’ satisfaction under aggressive demand-side in-
terventions. A modeling framework that successfully integrates
occupancy inference with data-driven energy prediction can help to
address these challenges without raising cost or privacy concerns.
In this paper, we propose OccuVAE, which incorporates domain
knowledge on human-building interaction into the black box of
data-driven energy prediction, simultaneously inferring occupancy
states fromwhole-building energy data. Its multifaceted capabilities
are enabled by its architecture, consisting of both a Conditional
Variational Autoencoder (CVAE), as well as an interpretable system
sub-metering disaggregation module. We test OccuVAE on a syn-
thetic office building subject to stochastic occupancy schedules and
system operation. We demonstrate OccuVAE outperforms existing
baselines for occupancy level extraction solely based on clustering
energy-metering data (average F1 scores above 0.7 vs. baselines
around 0.5). It also shows robust energy prediction performance
for different prediction horizons while providing insights into sys-
tem sub-metering disaggregation. We also demonstrate that it can
recover occupancy level profiles from real-world energy use data
of an office building, and we highlight necessary future steps to fur-
ther address real-world challenges. This prototype is a critical first
step toward holistic predictive operation leveraging both energy
and occupancy flexibility.
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1 INTRODUCTION
1.1 Background
The increasing penetration of intermittent renewables into the grid
necessitates building energy flexibility and demand-side manage-
ment (DSM), which requires building energy predictive models
that easily scale to large and heterogeneous portfolios of buildings.
In this context, data-driven building energy models are becoming
promising alternatives to conventional physics-based models, due
to abundant energy metering data in individual buildings and ma-
chine learning models’ predictive performance [5]. However, the
“black-box” nature of data-driven models often results in a lack of
interpretability, including with respect to energy-related human-
building interaction. Without explicit consideration of occupants,
model-informed DSM interventions could have negative impacts
on occupants’ experiences such as comfort and satisfaction [9]. Oc-
cupants in office buildings are especially at risk, as the advances of
automation in office buildings may inhibit occupant-centric energy
management, such as when occupants are unable to override system
operation when DSM measures prioritize energy use targets [15].
Therefore, it is an important step to ensure that occupancy informa-
tion is known when analyzing and predicting building operation
in the DSM context.

Information about occupancy in buildings is typically generated
from targeted occupancy sensing systems, such as cameras and
radio frequency identification (RFID) tags, which can help to con-
sider the occupant experience in building management but may
raise costs and privacy issues [16]. An alternative method lever-
ages inverse modeling, which uses indoor environmental sensing
signals, such as CO2 concentration and humidity, to estimate oc-
cupant numbers [4, 7]. While this method offers high accuracy, its
dependency on exhaustive data collection (including building ther-
mal characteristics, system conditions, and occupant counts over a
period of time) significantly hinders its scalability. At the same time,
building-level energy data, which are more commonly available
and fundamental to data-driven energy prediction in DSM, could
also provide insights into occupant dynamics. One related research
area is Non-Intrusive Load Monitoring (NILM), which utilizes data-
driven models to disaggregate load metering data by appliances
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and can therefore offer insights into occupants’ behavioral patterns.
However, NILM methods typically rely on high-frequency load
metering and require labeled datasets of appliance operation signa-
tures [11]. As a result, they may not be suitable for engaging a large
number of buildings that offer low-frequency flexibility through
load shifting or shedding over minutes to hours. Prior studies also
explored unsupervised extraction of occupancy levels and activity
types from energy-metering data via latent variable models, (i.e.,
clustering-based models such as Gaussian Mixture Model (GMM)
[18] and Hidden Markov Model (HMM) [6]). These methods work
effectively in small residential buildings, since the magnitude and
variance of the energy consumption is highly associated with the
presence/absence of the occupants [2]. However, in larger and more
complex buildings, such as office buildings, the interactions between
humans and building systems drastically increase the difficulties in
recovering occupancy status from building-level energy metering,
due to the heterogeneity of occupants’ behavior as well as the influ-
ence of building automation. Therefore, they still require detailed
sub-metering (e.g., desk-level plug load) that is still unavailable in
most of the buildings.

On the other hand, despite unavailable granular sub-metering,
office-space energy consumption that is mainly driven by occupant
behavior is metered separately from central plants in mechanical
rooms (e.g., boilers and chillers) in most cases [12]. Prior studies
have also identified pervasive operational patterns in each type
of occupant-driven systems (e.g., lighting, miscellaneous electric
loads (MEL)) [19] and quantitatively link the occupancy level to the
energy consumption by simple functions [14]. This prior knowl-
edge on human-building interactions can therefore be integrated
into the data-driven energy modeling framework, especially the
latent variable models that take into account underlying occupancy
status. This will enable the disaggregation of system-level energy
consumption from lumped building energy metering and ultimately
produce underlying occupancy levels.

It is important to note that inferring occupancy level from whole-
building office-space energy metering is a challenging task since
such high-level energy metering cannot reflect all the variations
in occupancy. For example, multiple occupants taking short trips
away from the building may only lead to a slight drop in total
energy consumption. Additionally, the quantitative relationships
between occupancy levels and building system energy consump-
tion in prior studies are empirical and simplified, which leads to
errors when recovering both building system properties and un-
derlying occupancy levels. Despite the potential for compromised
accuracy in occupancy level inference, we believe this approach
integrates valuable foundational insights into occupants’ schedules
into the data-driven building energy prediction workflow without
raising costs and privacy issues due to additional occupancy sensing
systems.

1.2 Main contributions
In this work, we propose OccuVAE, which enables unsupervised
occupancy level estimation in the data-driven workflow of building
energy prediction, given users’ prior knowledge or assumptions on
system operation modes. Its multi-faceted capability is enabled by
two key design choices:

(1) A core Conditional Variational Autoencoder (CVAE) [17], a
deep unsupervised latent variable model that can effectively
generate high-fidelity complex data and simultaneously ex-
tract underlying influencing factors. Thus, it fundamentally
enables inference of underlying occupancy levels during
energy prediction.

(2) An interpretable load disaggregation network module in-
spired by recent advances in data-driven building energy
modeling, which enforces consistency to prior knowledge
on occupant-driven energy use in the model architecture [3],
so the elements in the neural network explicitly associate to
occupancy level, system capacities, etc.

Specifically, the proposed model provides original contributions
by enabling:

• An augmented data-driven building energy prediction
pipeline with unsupervised occupancy level detection.
The model requires only commonly available whole-building
energy metering in commercial buildings and is able to disag-
gregate system-level energy consumption from the lumped
metering data to retrieve occupancy-level information.

• An interpretablemodeling framework for human-building
interaction in commercial buildings through the intro-
duction of prior knowledge. This allows for customized
definitions of the relationship between occupancy level and
system energy consumption. The identified function param-
eters also reveal system properties (i.e., installed capacities).

• An informative and interactive component for occupant-
centric building management.While we do not fully ex-
plore this capability in this initial work, it is a coremotivation
for the design of our model. In future work, it will enable
probabilistic estimation of the occupancy level that helps
quantify the risks of aggressive DSM measures affecting oc-
cupants’ well-being. It will also allow for manual adjustment
of the occupancy level profile when exploring the impacts
of organizational schedule changes on energy consumption.

In this paper, we first explain the overall model architecture.
Then, using a simulated case of a small office building subject to
stochastic occupancy schedules and multiple occupant-centric op-
eration strategies, while metered at the whole-building level. We
benchmark its performance of energy prediction and occupancy
level detection against other commonly used data-driven baselines.
We also showcase the effectiveness of its occupancy level extrac-
tion capabilities from energy metering data of a real-world office
building, as well as demonstrate necessary future steps to further
address practical challenges.

2 MODEL OVERVIEW
OccuVAE follows an Encoder-Decoder structure with a latent space
in the middle (Fig. 1). There are two pipelines in OccuVAE, rep-
resenting two functionalities: (1). Predicting occupancy level and
energy use for a future date (blue path in Fig. 1) based on historical
energy metering data and easily-accessible future information such
as site weather forecasting. (2). Inferring real-time occupancy level
(red path in Fig. 1) from energy metering data at the current time.
The inference pipeline is an autoencoder (AE) aiming to reconstruct
identical input data during the training of the full model. Ideally, a
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model with minimized prediction and reconstruction error is capa-
ble of both generating target variables (i.e., load metering in our
case) and extracting representative underlying factors (i.e., occu-
pancy levels). A key design choice in OccuVAE was to design the
entire model as a CVAE and introduce an interpretable system sub-
metering disaggregation module into the decoder, which enabled
us to model the occupancy level as a latent random variable and
decouple it from other influencing factors of energy use profiles.

Predicted Occupancy 
Level

Real-time Occupancy 
Level

Weather 
Forecast

Energy 
Metering

Posteriori Latent 
Distribution

Real-time

Decoder

Sub-metering 
Disaggregation 
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Target
encoder

Condition
encoder

Predicted Energy 
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Figure 1: OccuVAE architecture. The prediction pipeline is in
blue, while the real-time inference pipeline in red (dashed
lines and light-color components only for training)

2.1 Design of CVAE
Here, we introduce the intuition behind the CVAE architecture. As
an advanced deep unsupervised latent model, VAE endows a prob-
ability distribution into the latent space in a basic AE and learns a
representative latent random variable 𝑧 by reconstructing observed
target𝑌 . This is denoted as the inference process. CVAE [17] further
considers a conditional generation process, which generates 𝑌 with
only input condition 𝑋 using an additional condition encoder. We
chose CVAE as the model architecture because it is well-suited to
our task from two main aspects: (1) The conditional generation pro-
cess enables the prediction capability of our model (the prediction
pipeline in Fig. 1), where 𝑌 is the observed total energy metering
data, and 𝑋 corresponds to predictive features such as historical en-
ergy metering and site weather forecasting. (2) The latent random
variable 𝑧 representing observed energy metering 𝑌 may reflect
underlying occupancy levels, which need to be both predicted given
𝑋 and inferred given actual 𝑌 . In our model, we use a categorical
latent distribution representing several discrete occupancy levels
like other clustering models. CVAE ensures that the training of
prediction is guided by the original inference process that "sees"
actual 𝑌 , guaranteeing stable training and fast convergence. This
can be better explained with the loss function of CVAE (Eq. 1):

LCVAE = 𝛼 (log𝑝𝜃 (Y | z) + 𝐷𝐾𝐿 (𝑞𝜙,𝑖𝑛𝑓 𝑒𝑟 (z | Y)∥𝑝𝜙,𝑝𝑟𝑒𝑑 (z | X))︸                                                                ︷︷                                                                ︸
Inference loss

+ (1 − 𝛼) (log𝑝𝜃 (Y | z) + 𝐷𝐾𝐿 (𝑝𝜙,𝑝𝑟𝑒𝑑 (z | X))∥𝑝 (z))︸                                                   ︷︷                                                   ︸
Prediction loss

(1)

The total loss of CVAE is a weighted combination of prediction
loss and inference loss. The log-likelihood terms stand for maxi-
mizing the likelihood of predicted and reconstructed 𝑌 . The Kull-
back–Leibler Divergence term (𝐷𝐾𝐿) in inference loss enforces the
approximation of the predicted latent distribution 𝑝𝜙,𝑝𝑟𝑒𝑑 (z | Y)
(denoted as conditional prior) and the inferred latent distribution
𝑞𝜙,𝑝𝑟𝑒𝑑 (z | X) (denoted as posterior). This enables 𝑞𝜙,𝑝𝑟𝑒𝑑 (z | X)
to implicitly supervise the predicted 𝑝𝜙,𝑝𝑟𝑒𝑑 (z | Y). There is an-
other 𝐷𝐾𝐿 term in prediction loss that enforces 𝑝𝜙,𝑝𝑟𝑒𝑑 (z | Y) to
approximate a given standard distribution 𝑝 (z) as the total prior
of 𝑧 (e.g., uniform distribution in the case of a categorical latent
space). In office buildings, zero-occupancy hours usually dominate
other occupied levels. We therefore only calculate𝐷𝐾𝐿 for non-zero
occupancy levels.

2.2 System sub-metering disaggregation
CVAE defines a principled latent space representing energy meter-
ing, which we hypothesize is related to occupancy levels. However,
interactions between occupants and energy-intensive building sys-
tems are complex, which makes it difficult to draw a direct con-
nection. To help make the link between the latent space and occu-
pancy, we leverage prior work which has distilled these interactions
into interpretable equations [14, 19]. In OccuVAE, we incorporate
prior knowledge on energy-intensive human-building interaction
through the following equation represented by one (bi-)linear layer
in a neural network:

𝐸𝑠𝑢𝑏−𝑚𝑒𝑡𝑒𝑟 (𝑡) = 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 · 𝑧𝑜𝑐𝑐 (𝑡) · Φ𝑒𝑙,𝑒𝑛𝑣 (𝑐 (𝑡)) + 𝑃𝑏𝑎𝑠𝑒 (2)

Where 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 denotes the occupant-driven dynamic part and
𝑃𝑏𝑎𝑠𝑒 an optional constant part in the total installed capacity for
each type of system. As the main parameters to be fitted, their ini-
tialization can be based on reference values in standards or knowl-
edge of the target building. This layer has the following inputs:
(1). 𝑧𝑜𝑐𝑐 (𝑡) refers to the time-varying occupancy level in a broad
sense, which can be transformed from the latent occupancy level
distribution (e.g., lighting roughly links to binarized occupancy,
while MELs vary almost proportionally to a continuous occupancy
rate within [0, 1]). By assigning a possible occupancy rate for each
occupancy level, we can also calculate continuous expectation in
[0, 1] for the discrete distributions. This is a critical step to intro-
duce prior knowledge of how occupants interact with different
types of systems. By doing so, we are able to get more insights
into the human-building systems (i.e., extracting continuous occu-
pancy rates and even recovering sub-metering information from
lumped metering). (2). Φ𝑒𝑙,𝑒𝑛𝑣 (𝑐 (𝑡)) is an optional input (only for
the bi-linear case), which denotes a possible discounting factor as a
function of varying outdoor conditions 𝑐 (𝑡) indicating potential pas-
sive strategies. This function can also be defined simply and fitted.
For example, for daylighting, a linear layer with sigmoid activation
can be fitted to solar irradiance, which indicates that only irradi-
ance within a certain range reduces lighting energy. Finally, the
decoder in Fig. 1 also contains a residual prediction module, which
is a normal neural network capturing residual energy uses that
are unable to be explicitly defined by the interpretable equations
within the sub-metering disaggregation module.
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3 PERFORMANCE BENCHMARKING
3.1 Synthetic office building operation data
To evaluate the performance of OccuVAE, we simulate synthetic
operation data for a small office building based in San Francisco,
which is subject to stochastic occupants’ schedules as well as asso-
ciated interactions with energy systems (following the workflow
in [8]). We simulate the building’s energy use for one year with
hourly timesteps to obtain the synthetic building operation data.
To match our problem statement, we aggregate energy use to the
building level. Table 1 gives an overview of the synthetic building
and the operation dataset.

Figure 2: Exemplary weekly profiles of occupant counts and
office-space energy use by systems in the synthetic building

Fig. 2 shows a typical weekly variation of occupants’ counts
and office-space energy use by systems. The profiles of occupant
counts are stochastic, yet a slightly higher peak on Wednesday and
Friday can usually be observed as meetings gather more people on
these two days. As shown in the plot, MELs are proportionate with
occupant counts given the direct link in the simulation setup. We
note that it is common for MELs to be considered the best indicator
of occupancy levels [19]. However, it is challenging to disaggregate
this type of energy use from lumped energy metering dominated
by lighting energy use. The lighting system is under DLR operation
and therefore raises energy use in low-light hours, even though
the occupancy level is usually quite low then. Finally, although we
assume the terminal devices of HVAC (fan-coil units in this case)
are also metered in the lumped energy metering, their magnitude is
rather negligible in the total energy, as the most energy-consuming
elements in HVAC systems such as chillers and air-handling units
are metered separately.

3.2 Performance benchmarking setup
3.2.1 Configuration of OccuVAE. Following the procedure described
above, we implement OccuVAE, which is composed only of multi-
layer perceptrons (MLPs) without special consideration of temporal
dependency. Our goal is to disaggregate MELs and lighting (with or
without DLR) following the setups explained in Section 2.2, while
leaving energy used by HVAC terminals for the residual prediction
module, as their magnitudes are usually quite small. To approxi-
mate the continuous occupancy rate sweeping through [0, 1], we
found a four-class categorical distribution is sufficient (correspond-
ing to four equally-spaced occupancy rates, namely {0, 1/3, 2/3, 1}).
During training, for each hourly time step, the model does recon-
struction and prediction at the same time, and occupancy levels
are predicted and inferred without supervision, as explained in

Section 2.1. We use the following input conditions: weather data
of outdoor temperature and GHI, auxiliary time index variables
(e.g., day of the week, hour of the day, etc.), and lagged targets (i.e.,
historical energy data lagged by hours or days, to enable processing
of sequential data). Prediction horizons longer than one hour are
also achievable by feeding back its previous prediction.

3.2.2 Baselines: Occupancy level extraction. We benchmark Oc-
cuVAE on both real-time inference and day-ahead prediction of
occupancy levels. We select two clustering-based baselines: GMM
and Input/Output HMM (IOHMM). GMM directly clusters hourly
energy data with a mixture of Gaussian distributions, and it only
handles real-time inference. IOHMM, a variant of HMM, models
sequential dependencies of latent states and therefore handles both
real-time inference and day-ahead prediction. It also accounts for ex-
ternal input variables (we consider weather conditions in this case)
impacting the target energy metering. Further details of IOHMM
can be found in [1]. For experiments, we used the open-source
implementation of IOHMM in [13]. Unlike our model, the baselines
do not infer continuous occupancy rates and are limited to three
occupancy levels. We therefore use K-means clustering on the oc-
cupant counts to discretize actual continuous occupancy rates and
that from OccuVAE to three levels in order to enable comparison,
but note the strength of our model to infer continuous rates. We use
the F1 Score to assess the models’ performance on each occupancy
level.

3.2.3 Baselines: Energy Prediction. We benchmark OccuVAE on
both one-hour-ahead and day-ahead prediction, measured by Root
Mean Square Error (RMSE). We select two widely-used baselines:
Light Gradient Boosting Machine (LightGBM) and Long Short-
Term Memory (LSTM). Both baselines are also trained for one-
hour-ahead prediction with the same input conditions as that for
OccuVAE. The only difference is that LSTM directly looks back to
the sequential historical energy data instead of relying on lagged
targets. To obtain day-ahead prediction, we also simply feedback
on the one-hour-ahead prediction recursively for both baselines.
In practice, there are better alternative setups for both LightGBM
and LSTM to avoid error propagation in multi-step prediction, but
here we only consider the day-ahead prediction as an empirical
evaluation of robustness compared to our model, when similar
training setup and features are provided to all the models.

It is also necessary to note that although our design for occu-
pancy level extraction and system energy-use disaggregation is
intended to produce more understanding of underlying human-
building interaction, it may not guarantee better performance com-
pared to "black-box" baselines of data-driven energy prediction. It is
possible that the interpretable components may even constrain the
solution space of model architecture optimization and end up with
compromised prediction capability. Nevertheless, comparing the ad-
vantages and disadvantages of our model against other established
baselines will help us understand how to address the compromised
prediction performance in future works.

We also demonstrate OccuVAE’s unique capability to recover dy-
namic sub-meter load capacity to further provide empirical insights
into its advantages and drawbacks.
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Table 1: Building condition summary and dataset overview for the synthetic building

Building condition and system operation
Location San Francisco, California, USA
Area 564 m2

Occupants

Two occupant groups:
- Regular group: 9 am-6 pm (variation: 20 mins)
- Flexible group: 11 am-4 pm (variation: 60 mins)
Events: meeting on Wed. and Fri., most likely 60 mins

Lighting On/off control in each room, switch on when at least one occupant,
together with daylight-responsive (DLR) diming in daylit area

Equipment (MELs) Proportionally-changed energy use with occupant counts
HVAC Normally-distributed stochastic room temperature setpoints
Dataset overview

Accessible energy metering
Lumped metering occupant-driven end-use systems in office space,
including lighting, MELs, HVAC terminal units (Fan-coil units in this case),
separated from the metering of centralized systems (chillers, air handling units)

Site weather data Outdoor air temperature and global horizontal irradiance (GHI) from the weather file
Temporal granularity Hourly

Data Split Periods
• Training period: 01/01-01/07
• Validation period: 01/07-01/08
• Testing period: 01/08-31/12

Table 2: Summary of performance benchmarking

Occupancy Level Extraction (F1 Score) Energy Prediction (RMSE)
Models Day-ahead Prediction Real-time Inference Models Day-ahead Hour-ahead

Low Med. High Avg. Low Med. High Avg.
OccuVAE 0.96 0.44 0.74 0.71 0.97 0.48 0.76 0.73 OccuVAE 0.79 0.48
IOHMM 0.82 0 0.55 0.46 0.94 0 0.55 0.50 LightGBM 1.61 0.43
GMM - 0.95 0.01 0.62 0.52 LSTM 0.80 0.49

Figure 3: Performance demonstration: (a) Averaged daily occupancy rate real-time inference (with hourly one-standard-error).
(b) Exemplary week of day-ahead occupancy rate prediction (ranges of discrete occupancy levels labeled). (c) Identified sub-
meter load capacity. (d) Exemplary week of day-ahead energy prediction (with zoom-in for peak-demand hours)
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3.3 Results of performance benchmarking
3.3.1 Occupancy Level Extraction. As shown in Table 2, for both
day-ahead prediction and real-time inference, OccuVAE attains av-
erage F1 scores above 0.7, with both baselines near 0.5. Additionally,
observing Fig. 3.(a), OccuVAE captures the distribution of actual
peak occupancy rates very well. We believe this is partly enabled
by the sub-metering disaggregation module that recovers MELs
from the total energy metering (as shown in Fig. 3.(c)). Without
the explicit sub-metering disaggregation framework, the baselines
infer very high occupancy levels during all occupied hours, likely
as a result of lighting energy. OccuVAE more accurately models the
ramping-up and -down times, but we note that OccuVAE presents
a mismatch with the ground truth during the afternoon medium
occupancy hours, when energy levels are higher as occupancy has
dropped (as Fig. 3.(d) shows). This is likely due to the DLR operation,
with daylight being less abundant in the late afternoon, resulting
in increased energy consumption. We note that in terms of sub-
metering disaggregation, OccuVAE shows the largest mismatch
with DLR-lighting (Fig. 3.(c)). This suggests the DLR mechanism
is oversimplified in the current model and could be improved in
future studies.

3.3.2 Energy Prediction. As shown in Table 2, all the models per-
form similarly on one-hour-ahead prediction. Their performances
are compromised inevitably in day-ahead prediction due to poten-
tial error propagation caused by the recursive feedback prediction,
especially for LightGBM. As Fig. 3.(d) shows, without special design
for multi-step prediction, LightGBM struggles and fails to distin-
guish non-working days, while OccuVAE and LSTM remain robust.
However, looking closely at peak demand hours from Fig. 3.(d), we
see OccuVAE struggling to capture detailed patterns in energy use.
Aside from the challenges with modeling DLR mentioned above,
this mismatch may also reflect potential conflicts between the sub-
metering disaggregationmodule that is constrained by interpretable
functions linking occupancy level and energy use and the residual
prediction module that only aims for accurate prediction. We expect
to address this issue in future work by offering special attention to
peak-demand hours and introducing additional regularization on
module parameters.

4 REAL-WORLD CASE STUDY
We also present the initial results of unsupervised occupancy level
prediction and detection on a real-world office space operation
dataset. The target building is Building 59 of the Lawrence Berkeley
National Laboratory (LBNL-Bldg 59) [10]. This dataset contains
system-level energy metering, occupant counting, HVAC operation,
as well as indoor and outdoor environmental conditions. Data was
collected over three consecutive years (2018-2020) and witnessed
several periods of unusual events, from evacuation during wild-
fire to lockdown due to COVID-19. For this initial work, we use
an interval under stable operating conditions (05/2018 – 02/2019),
and we empirically demonstrate our model’s capability as well as
shortcomings in occupancy level prediction and detection.

Table 3 gives an overview of the building and system conditions.
All the information is drawn from the dataset curation report [10],
which is also a typical source in practice to obtain prior knowl-
edge of system operation patterns for subsequent modeling. The

Figure 4: Examplary weekly profiles of occupant counts and
office-space energy use by systems in the LBNL-Bldg 59

end-use systems in office space and the centralized HVAC systems
are connected to two separate switchboards and metering systems
in LBNL-Bldg 59. Although sub-metering by systems is also pro-
vided, here we follow the general assumption that only aggregated
building-level energy metering is available. Fig. 4 shows a typical
weekly variation of occupants’ counts and office-space energy use
by systems. Compared to the synthetic building in section 3.1, the
lighting energy consumption is no longer dominating. It also shows
a more stable pattern as it is controlled by occupancy sensors and is
not subject to daylight conditions. TheMELs are a larger proportion
of overall load compared to the synthetic building. Additionally,
unlike the synthetic case, MELs do not follow occupant counts
exactly and vary more smoothly, particularly during midday lunch
hours.

In this case study, we sub-sample the raw data to hourly granu-
larity and use the identical configuration of OccuVAE as explained
in section 3.2.1, except that we remove the lighting component
driven by DLR from the load disaggregation module according to
the building system condition. As shown in Fig. 5(a) and (b), the
general patterns in the daily variation of the occupancy level as
well as the peak hours and peak occupancy rates were identified in
real-time inference. However, the moderate variation of MELs does
lead to an overestimated occupancy rate profile, especially during
lunchtime. It can also be observed that the inferred occupancy rate
profile shows less variation, both hourly (Fig. 5a) and daily (Fig.
5b). This shortcoming also hinders the performance of occupancy
rate prediction. As explained in section 2.1, the prediction pipeline
is “supervised” by the inference pipeline. Although the predicted
profiles are able to follow the inferred profiles, they are not consis-
tent with the actual salient daily variation and end up with similar
prediction results each day.

The case study on LBNL-Bldg 59 demonstrates the fundamental
challenge that there can exist systematic error when extracting
occupancy level from building-level energy metering, given the
simplified relationships between energy and occupancy embedded
in prior knowledge. Future improvements in the model may mini-
mize this systematic error. An interesting direction of future work
could be calibrating the extracted occupancy level through other
data sources (e.g., surveys of working preferences). Still, the case
study demonstrates that some level of human behavior information
can be recovered in a privacy preserving manner at the whole-
building level, and which could be used in future work focused on
human-centric building operation in DSM scenarios.
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Table 3: Building condition summary and dataset overview for LBNL-Bldg 59

Building condition and system operation
Location Berkeley, California, USA
Office-space area Around 1600 m2 (two office floors of the south-wing building)
Lighting On/off control by occupancy sensors in each lighting zone
Equipment (MELs) Plug-in by occupants
Dataset overview

Accessible energy metering Lumped metering occupant-driven end-use systems in office space, including lighting and MELs,
separated from metering of centralized systems (heap pumps and root-top air units)

Site weather data Outdoor air temperature and GHI from the site weather measurements
Temporal granularity Sub-sampled to hourly

Data Split Periods
• Training period: 05/2018-11/2018
• Validation period: 11/2018-12/2018
• Testing period: 12/2018-02/2019

Figure 5: Performance demonstration on LBNL-Bldg 59: (a) Averaged daily occupancy rate real-time inference (with hourly
one-standard-error). (b) Exemplary week of day-ahead occupancy rate prediction and real-time inference (ranges of discrete
occupancy levels labeled, obtained from clustering on actual occupant counts).

5 DISCUSSION AND CONCULUSION
In this paper, we proposed OccuVAE, which leverages domain
knowledge on human-system interaction alongside a novel CVAE-
based system architecture. This approach enabled the integration
of occupancy inference with data-driven energy prediction at the
building level, performing well compared to the baselines in oc-
cupancy inference, occupancy prediction, and energy prediction
while maintaining interpretability. OccuVAE also recovers system
sub-metering information from lumped energy-metering, though
further tests are required to benchmark this feature with real build-
ing data.

This integrated framework could be used as a tool in the context
of occupant-centric system operation at the building level. For ex-
ample, when the load aggregator or the building system operator
plans DSM actions of HVAC operation, such as temperature setback
or pre-heating, it can offer probabilistic prediction of the occupancy
level that helps quantify the risks of affecting occupants’ comfort.
Most importantly, this prototype is a critical first step toward holis-
tic and integrated occupant-centric management of energy systems
alongside human and organizational systems. For example, this
work could serve as a tool that allows manual adjustment of the
occupancy level profile, therefore revealing additional energy flex-
ibility opportunities when occupancy-flexible arrangements are
considered (e.g., hybrid working or shared office).

While this work is preliminary, we expect to address shortcom-
ings in future work—including better representation of interactions

among human, building, and outdoor environments in the sub-
metering disaggregation modules, as well as how to address its
conflicts with the residual prediction modules. We plan to extend
this modeling framework so the extracted occupancy level can be
further calibrated through other data sources (e.g., surveys of work-
ing preferences). We also plan to further benchmark OccuVAE’s
performance on more real-world building data. In the end, Occu-
VAE is a step toward human-centric building analysis and operation
as our buildings and grids undergo rapid change.
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