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Abstract

Recent surging interest in strengthening of High Entropy Alloys (HEAs) with possible chemical ordering
motivates the development of new theory. Here, an existing theory for random alloys that accounts for
solute-dislocation and solute-solute interactions is extended to include strengthening due to short-range
order (SRO). Closed form expressions are presented for the yield strength and energy barrier of dislocation
motion in alloys with SRO based on inputs of atomic misfit volumes, average lattice and elastic constants,
the SRO parameters, and effective pair interactions between solutes. The theory shows both the long-
established athermal strengthening effect of SRO as well as a notable effect of SRO on the misfit volume
strengthening, which can increase or decrease strength. The generalized solute-strengthening theory is the
most comprehensive to date that is applicable to macroscopically homogeneous single-phase alloys using
inputs that can be measured, computed, or estimated.
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1. Introduction

Scientific and technological interest in both dilute solute-strengthened alloys (Al-Mg, Mg-Y, Ni-Al, and
many others) and high-entropy alloys (HEAs), which are essentially high-concentration solute-strengthened
materials, has led to the development of a general theoretical model [1–5] to predict solute strengthening in
random alloys. The theory is based on solute/dislocation interaction energies and shows that strengthening
arises because dislocations become wavy to find local favorable fluctuations in the solute arrangements, and
the dislocations are pinned in these local environments. A combination of stress and thermal activation is
then required for dislocation motion and associated temperature- and strain-rate-dependent plastic flow. The
strengthening theory was recently extended to include the effects of specific solute-solute interactions in
random alloys [6].

Solute-solute interactions also drive the formation of short-range order (SRO) and long-range order (LRO)
(phase separation or precipitation). SRO arises due to a combination of the thermodynamic driving forces of
solute-solute interactions and the kinetics of solute transport. With decreasing temperature, the thermodynamic
driving force increases but solute diffusion decreases. Thus, SRO usually arises in intermediate temperature
domains in between the high-T domain of an essentially random solution and a low-T kinetically-inhibited
domain where equilibrium SRO or LRO cannot be achieved. Operationally, many alloys are heat-treated or
annealed at some temperature Ta and then quenched to low T. For very rapid quenching, the SRO in the alloy
is then determined mainly by Ta. However, for slower cooling, further SRO may form during the time spent
at lower temperatures until temperatures are reached at which kinetics inhibits further SRO. Thus, while SRO
is well-defined thermodynamically at any temperature, the degree of SRO actually arising in real materials is
unclear and dependent on processing.

SRO was extensively studied experimentally and theoretically in binary alloys in the 1950s and 1960s
[7–11]. New analytical tools and the emergence of first-principles calculations have both enabled more
detailed characterization of SRO in binary alloys [12–14] and its possible influences on strength and stacking
fault energy [15–17]. Recent emphasis on HEAs has further driven efforts to determine if SRO exists in
these alloys and, if it exists, its effects on alloy properties such as strength [18–27]. To date, there is no full
theory for alloy strengthening in the presence of SRO. The early theories for strength due to SRO predict zero
strength in the absence of SRO, and so are incomplete.
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In this paper, we derive a general theory for solute-strengthening including SRO. In the limit of no SRO
(random alloys), the theory reverts to the recent theory of Nag et al. [6]. SRO creates two main sources
of additional strengthening, for which we derive analytical expressions. The first strengthening effect is
due to dislocation slip that destroys/reduces SRO. Since SRO is an energetically favorable distribution of
the different constituent species in the alloy, the destruction of SRO by dislocation slip requires additional
energy and hence additional applied stress to drive the dislocation. This creates a temperature-independent
athermal strengthening that was first addressed qualitatively by Fisher [9]. Existing theories of this strength
contribution [10, 11, 23] exist for special/limiting cases; here we derive results for arbitrary alloys and then
present limiting cases to make contact with earlier results. The second strengthening effect is due to changes in
the local solute fluctuations in the presence of SRO, which affects the collective solute/dislocation interaction
energies. The effect of SRO on solute/dislocation interactions caused by solute misfit volumes exists even if
the direct solute-solute interactions (which actually cause the SRO) are neglected. A main derived result is
that this effect of SRO can decrease alloy strength under some circumstances, providing a rigorous basis for a
recent claim of this effect in Ref. [23].

To predict the role of SRO on alloy strength, SRO must be clearly defined. This is done in Section 2
in terms of multi-solute correlation functions, leading to the well-known Warren-Cowley SRO parameters
for pair correlations [7, 28, 29]. Section 3 introduces solute-solute interactions in terms of Effective Pair
Interactions (EPIs) which control chemical ordering and also influence alloy strength in the presence of SRO.
Section 4 then presents the theory for strengthening in the presence of SRO. Subsection 4.1 derives the results
for the athermal average strengthening while Subsection 4.2 derives the strengthening contributions due to
fluctuations. Section 5 furthers simplifies the strengthening theory using a linear elasticity approximation for
the solute/dislocation interaction energies, which leads to analytic results and enables insights into the effects
of SRO. Section 6 summarizes the main outcomes of the present work.

2. Characterizing short-range order

Short-range order (SRO) is a spatially homogeneous state of an alloy. Local clustering of atoms, which
may occur prior to phase segregation or spinodal decomposition is not SRO. Here, we review the definition of
SRO in a multicomponent alloy.

In a spatially homogeneous alloy of N elemental components at compositions cn, the probability of a site
i being occupied by an atom of type n is cn. However, unlike random alloys, alloys with short-range order
(SRO) have correlated site occupations. That is, the joint probability of occupation of sites i and j by atoms
of type n and m is not simply the product cncm for all site pairs (i, j). To proceed formally, we first define a
site occupation variable sn

i as

sn
i =

{
1 if site i has atom type n
0 otherwise

(1)

(2)

where, for all sites i,

∑
n

sn
i = 1 and sn

i sm
i = 0, n ̸= m (3)

(4)
with the latter indicating that any given site can only have one solute.

Next we define P(sn
i = 1,sm

j = 1, . . .) as the probability of an alloy configuration where distinct atomic
sites i, j, . . . are occupied by solute types n,m, . . . respectively. We can then define the multisite correlation
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functions λ
i j...
nm... for distinct sites i, j,k, . . . as

P(sn
i = 1) = ∑

m,p,...
P(sn

i = 1,sm
j = 1,sp

k = 1,sq
l = 1,st

u = 1, . . .) = cn, (5a)

P(sn
i = 1,sm

j = 1) = ∑
p,q,t,...

P(sn
i = 1,sm

j = 1,sp
k = 1,sq

l = 1,st
u = 1, . . .) = λ

i j
nm cncm, (5b)

P(sn
i = 1,sm

j = 1,sp
k = 1) = ∑

q,t,...
P(sn

i = 1,sm
j = 1,sp

k = 1,sq
l = 1,st

u = 1, . . .) = λ
i jk
nmp cncmcp, (5c)

P(sn
i = 1,sm

j = 1,sp
k = 1,sq

l = 1) = ∑
t,...

P(sn
i = 1,sm

j = 1,sp
k = 1,sq

l = 1,st
u = 1, . . .) = λ

i jkl
nmpq cncmcpcq,

(5d)
...

where λ
i j
nm,λ

i jk
nmp,λ

i jkl
nmpt are pair, 3-site, 4-site correlation functions. Henceforth, different site indices will

mean different physical sites unless in summations or specifically noted otherwise. Also repeated indices will
NOT imply Einstein summation in this article. In random alloys, all site occupancies are independent and
so all the correlation functions are equal to 1. Spatial homogeneity dictates that the correlation functions be
invariant under various symmetry operations such as translation, rotation, reflection, etc. This means, for
example, that λ

i j
nm = λ

i j
mn.

Since the correlation functions are normalized probabilities, they obey certain identities and inequalities
that follow from probability theory [30]. For example, the conditional probability P(sn

i = 1
∣∣sm

j = 1) of finding
a type n atom at site i given that site j is occupied by a type m atom can be written as

P(sn
i = 1

∣∣sm
j = 1) = λ

i j
nm cn

P(sm
i = 1

∣∣sn
j = 1) = λ

i j
mn cm

Using λ
i j
nm = λ

i j
mn and noting that the probability must be in the range [0,1] leads to the restrictions

0 ≤ λ
i j
nm ≤ min

(
1
cn
,

1
cm

)
(6)

The pair correlation functions are also not independent. Since the sum of all pair probabilities equals 1, we
have

∑
n

P(sn
i = 1

∣∣sm
j = 1) = 1 =⇒ ∑

n
λ

i j
nm cn = 1 ∀m (7)

The pair correlation functions for solutes of the same type thus can be expressed in terms of the pair correlation
functions of solutes of unlike types as

λ
i j
mm =

1
cm

1− ∑
n

n̸=m

λ
i j
nmcn

 ∀m (8)

Finally, the pair correlations for alloys with SRO are widely characterized by the Warren-Cowley parame-
ters α

i j
nm [7] defined as

α
i j
nm = 1−

P(sn
i = 1

∣∣sm
j = 1)

cn
. (9)

Using Equation 5b, we find

α
i j
nm = 1−

P(sn
i = 1,sm

j = 1)

cncm
= 1−λ

i j
nm (10)

In our analysis below, we will mainly use λ rather than α for convenience, and convert to the use of α only in
final results. Equations 8 can be rewritten in terms of the Warren-Cowley parameters as

α
i j
mm =− 1

cm
∑
n

n̸=m

α
i j
nmcn ∀m. (11)

3



This important sum-rule is often overlooked in the literature, but is useful in reducing analytical results to
clearly-interpretable forms, as we will see below.

The WC SRO parameters are approximately (but not exactly, due to multisite correlations) related to the
underlying solute-solute interactions as

α
i j
nm


> 0 solute-pairs n−m at sites i, j tend to repel
= 1 solute-pairs n−m at sites i, j tend to not interact
< 0 solute-pairs n−m at sites i, j tend to attract

(12)

If solute interactions are large, then this drives phase formation/segregation. So, the WC-SRO parameters
are often small (∼ ±0.2) in reasonably-concentrated alloys over a range of solute interaction energies, as
observed in recent Monte-Carlo simulations [31].

With all of the above definitions of SRO clarified, we assess below how the presence of SRO (αi j,αi jk, . . . ̸=
0) affects alloy strengthening.

3. Solute-solute interactions

We first discuss the solute-solute interactions that create SRO. The total energy of an alloy can be formally
decomposed into multi-body contributions using a cluster expansion. The cluster expansion (CE) involves a
hierarchy of pair, triplet, etc. solute-solute interactions at different pair distances, triplet inner angle, etc. in a
given lattice structure [32–34]. Once a CE is determined by fitting to a set of first-principles reference energies,
SRO can then be modeling using the CE Hamiltonian and Monte Carlo simulations [35, 36]. For accurate
thermodynamic predictions, which is the usual domain of application of the CE method, very high accuracy
in the total energy versus atomic configuration is needed. However, for understanding solute strengthening
contributions from the same solute-solute interactions, the same level of accuracy is not needed. At the same
time, formulating a theory of solute strengthening in the presence of multibody (beyond pair) solute-solute
interactions is daunting. Here, we thus model the total energy of an alloy in terms of pair energies at various
lattice distances.

There are several possible formulations for the relevant solute-solute pair interactions. The simplest
characterization is a description of the system energy in terms of pair potentials Upq(d) between solute types
p and q at all the distances d in the crystal. The potential energy of the alloy for a given atom configuration
(characterized by site occupation variables {sp

i }) is given by

U =
1
2 ∑

i, j
i̸= j

∑
p,q

sp
i sq

jUpq(di j) (13)

where we are summing pair energies of unlike site pairs {i, j}. However, since only changes in energy are
relevant to both SRO and solute strengthening, the expression for total potential energy U can be rearranged
as

U =−1
4 ∑

i, j
i ̸= j

∑
p,q

sp
i sq

jV
e f f
pq (di j)+

1
2 ∑

i
∑
p

sp
i ∑

j
j ̸=i

Upp(di j)

=−1
4 ∑

i, j
i ̸= j

∑
p,q

sp
i sq

jV
e f f
pq (di j)+

1
2 ∑

i
∑
p

sp
i ε

p
i (14)

where the effective pair interaction (EPI) V e f f
pq (di j) between atoms p and q at distance di j is given by

V e f f
pq (di j) =Upp(di j)+Uqq(di j)−2Upq(di j) (15)

Equation 14 also involves single-site energies

ε
p
i = ∑

j
j ̸=i

Upp(di j) (16)

In a perfect crystal, this single-site energy is independent of i and so is just a configuration-independent
constant energy. However, for a crystal containing a stacking fault, where the local atomic structure differs
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from the perfect crystal, the single-site energy will enter into the analysis. Note that the EPIs for like-atom
pairs are zero, so there are only N(N −1)/2 independent EPIs at each distance in an N-component alloy, i.e.
the same as the number of independent WC SRO parameters.

Equation 14 is a cluster expansion derived from pair interatomic potentials. However, the EPIs and site
energies can be obtained by fitting the cluster expansion of Equation 14 to any set of alloy reference energies
obtained by many-body interatomic potentials or first principles at the desired composition [6, 37].

Given a set of EPIs versus interatomic distance, SRO can be computed using Monte Carlo methods.
Describing the system energy with EPIs does not eliminate the possibility of higher order correlations. In
addition, the resulting SRO depends on the accuracy of the EPIs as compared to more detailed cluster
expansions. For given EPIs, the SRO parameters can also be estimated analytically [31] for high temperatures
or small EPIs, where the SRO is moderate.

4. Solute-strengthening in alloys with SRO

In a random or SRO alloy, an initially straight dislocation segment becomes spontaneously wavy to lower
its total energy. Local dislocation segments glide into regions of the alloy where the local arrangement of
solutes interacts favorably (lower energy) with the dislocation. This lowering of the energy due to interactions
with solute fluctuations is offset by the increased line or elastic energy of the wavy dislocation relative to the
straight dislocation. Together, these energetic features establish a characteristic waviness with wavelength
4ζc and amplitude wc. Segments of length ζc then lie in local energy minima, and a combination of stress
and temperature is required to enable thermal activation of these segments over their adjacent unfavorable
high-energy environments at a typical glide distance wc. The goal of solute-strengthening theory is then
to compute the characteristic scales (ζc, wc), the associated energy barrier ∆Eb, and zero-temperature flow
stress τy0. The full temperature- and strain-rate-dependent yield stress τy(ε̇,T ) can then be determined using
standard thermal activation theory.

In the presence of SRO, the shearing of the alloy due to dislocation glide destroys the SRO across the
glide plane. This loss of SRO increases the total energy of the system, and so is an energy cost γSRO per
unit area of glide that must be overcome by the work done by the applied stress. The strengthening of an
alloy with SRO thus has two components, as indicated in Figure 1: the strengthening due to loss of SRO
over the glide plane (athermal strengthening) and the strengthening due to the local waviness caused by the
fluctuations in the solute configuration along the dislocation line (local strengthening).

Excess energy per unit 
slipped area due to
disruption of SRO

Local pinning at 
favourable environments 
of solute fluctuations

Figure 1: Schematic representation of “average” and “local” strengthening in alloys. Average strengthening is related to the stress
required to pay the energy penalty associated with the disruption of SRO due to dislocation glide, denoted as γSRO in the figure. Local
strengthening due to fluctuations is related to the stress required to unpin dislocation segments in a wavy configuration where dislocation
segments move into local favourable solute environments.

The solute-strengthening analysis begins with an analysis of the total energy change ∆Ep(ζ ,w) of a
dislocation line of length ζ as it glides through the alloy over a distance w. There are two contributions to
the energy change. The first is due to the solute-dislocation interaction energy Un

sd(x,y) between a type n
solute at position (x,y,z) relative to a straight dislocation at x = 0,y = 0 parallel to the z-axis (with x the
glide direction and y the slip plane normal). A gliding dislocation line sees different solute environments
relative to its position, and hence a fluctuating potential energy. The individual solute-dislocation interactions
are assumed to be independent of any SRO. For a specific configuration of atoms defined by the occupation
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variables {sn
i }, the potential energy change ∆Esd of a segment of length ζ due to glide of distance w is then

∆Esd = ∑
i

∑
n

sn
i

(
Un

sd(xi −w,yi)−Un
sd(xi,yi)

)
(17)

where i runs over all lattice positions within a slice of alloy of width ζ along the dislocation line direction and
n runs over all solute types of the alloy. We suppress the dependence of ∆Esd on ζ and w for simplicity.

The second contribution to the energy change is due to solute-solute interactions, arising from the change
in solute environments across the slip plane in the slipped area swept by the dislocation line while gliding
by distance w. This contribution is labelled as ∆Ess where again ζ and w dependencies are suppressed. We
discuss the calculation of ∆Ess below, but here we first discuss its inclusion into the general theory. The role
of ∆Ess depends on crystal structure, differing between bcc (with a compact core) and fcc (with a dissociated
or split core) systems (see [6]). For a dislocation with compact core, a segment of length ζ gliding by distance
w leaves behind a fully slipped area of size ζ w (see Figure 2). The associated energy change in this case is
denoted as ∆Ess, f where the subscript f indicates full slip. For a dissociated dislocation with partial separation
distance dp, as in fcc crystals, two cases arise depending on the gliding distance w relative to dp (see Figure
2). If w < dp, a gliding segment repairs a stacking fault of area ζ w behind the trailing partial and creates a
new stacking fault of area ζ w behind the leading partial. We denote these energy changes by ∆Ess,p− and
∆Ess,p+ respectively with the subscript p indicating partial slip. The total energy change due to solute-solute
interaction is then ∆Ess = ∆Ess,p−+∆Ess,p+. On the other hand, if w > dp then the gliding segment repairs a
stacking fault of area ζ dp behind the trailing partial and creates a new stacking fault of area ζ dp behind the
leading partial and also leaves behind a fully slipped region of area ζ (w−dp). The total energy change due
to solute-solute interactions is then ∆Ess = ∆Ess,p−+∆Ess,p++∆Ess, f .

Partially slipped region

Fully slipped region

Dissociated coreCompact core Dissociated core

(a) (b) (c)

- + - +

Figure 2: Schematic of areas swept during dislocation glide by a distance w. (a) bcc crystal (no dissociation); (b) fcc crystal (dissociated
core) with w < dp ; (c) fcc crystal (dissociated core) with w > dp. The + and - sign on the stacking faults signifies the lost and newly
formed fault areas as a result of dislocation glide. (Reproduced from Ref. [6])

Each of the energy contributions ∆Ess,p−, ∆Ess,p+ and ∆Ess, f can be directly calculated using atomistic
simulations or first-principles. Here, we express them in terms of the effective pair interactions V e f f

pq (s) and
site energies ε

p
i (see Equation 14) as

∆Ess, f =−1
2 ∑

k,l
∑
p,q

sp
k sq

l

(
V e f f

pq (d f
kl)−V e f f

pq (dkl)
)

; d f
kl = ||rkl +b|| (18a)

∆Ess,p+ =−1
2 ∑

k,l
∑
p,q

sp
k sq

l

(
V e f f

pq (dp
kl)−V e f f

pq (dkl)
)
+

1
2 ∑

i
∑
p

sp
i ∆ε

p
i ; dp

kl = ||rkl +bp|| (18b)

∆Ess,p− =
1
2 ∑

k,l
∑
p,q

sp
k sq

l

(
V e f f

pq (dp
kl)−V e f f

pq (dkl)
)
− 1

2 ∑
i

∑
p

sp
i ∆ε

p
i ; dp

kl = ||rkl +bp|| (18c)

where sites k are below the slip plane and sites l are above the slip plane, because any pair of sites on the
same side of the slip plane is unaffected by the slip. The sum over i is over all sites, b and bp are the full and
partial Burgers vectors respectively, and rkl is the vector from site k to site l. Finally, ∆ε

p
i is the change in site

energy ε
p
i of atom type p at site i after partial slip by bp due to the change in atomic coordination around

site i. In Equation 18 we have ignored the dislocation displacement field which deviates negligibly from the
displacement jump (b and bp) near the glide plane away from the dislocation core.

The total potential energy change of a segment of length ζ after glide by a distance w is thus

∆Ep(ζ ,w) = ∆Esd(ζ ,w)+∆Ess(ζ ,w) (19)

where we have now made the ζ and w dependencies explicit for clarity. Strengthening, as derived later below,
will depend on both the average energy change ⟨∆Ep⟩ averaged over all possible configurations of solutes
consistent with the SRO and the standard deviation (fluctuations) σ∆Ep in energy.
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4.1. Athermal strengthening due to SRO

In alloys with SRO, slip by a full Burgers vector over a large area Aslip is associated with an average
energy penalty ⟨∆Ep⟩> 0 since the favourable SRO state is disrupted for atom pairs across across the slip
plane. This energy cost must be provided by an additional applied stress, independent of temperature, and
hence this additional applied stress constitutes an athermal strengthening τA. Specifically, the work τAbAslip
by the stress τA acting over Aslip must equal the energy cost ⟨∆Ep⟩. Hence, with ∆Ep ∝ Aslip, the athermal
strengthening is

τA =
1
b
⟨∆Ep⟩
Aslip

= γSRO/b (20)

where γSRO the excess energy per unit area of slip, analogous to an antiphase boundary in the shearing of
ordered phases.

⟨∆Ep⟩ has two contributions: ⟨∆Esd⟩ due to changes in solute-dislocation interactions and ⟨∆Ess, f ⟩
due to changes in solute-solute interactions associated with full slip. However, since < sn

i >= cn and
Un

sd(xi −w,yi)−Un
sd(xi,yi) summed over all sites i is zero, there is no average/non-fluctuating contribution

from solute-dislocation interactions, which is not surprising. The contribution ⟨∆Ess, f ⟩ involves the average
⟨sp

k sq
l ⟩= λ kl

pqcpcq (see equation 5) and so

⟨∆Ess, f ⟩=−1
2 ∑

p,q
cpcq ∑

k,l
λ

kl
pq

(
V e f f

pq (d f
kl)−V e f f

pq (dkl)
)

(21)

After full slip by b, the crystal structure and hence atom pair distances remain unchanged so that the
pair distances dkl before and d f

kl after slip belong to the same set of pair distances. For fcc, we have
dkl/a ∈ {1/

√
2,1,

√
3/2,

√
2, . . .} and for bcc we have dkl/a ∈ {

√
3/2,1,

√
2,

√
11/2, . . .}. To render Equation 21

useful, we define the quantities ndd′ , Nd and Md (where indices d,d′ ∈ {dkl}) as

1. ndd′ the number of pairs across the slip plane (per lattice site on the slip plane) at pair distance d before
slip and at pair distance d′ after slip for d ̸= d′, and set convention ndd′ = 0 for d = d′;

2. Nd the number of pairs across the slip plane (per lattice site on the slip plane) at pair distances ̸= d
before slip and at pair distance d after slip, so Nd = ∑

d′
nd′d ;

3. Md the number of pairs across the slip plane (per lattice site on the slip plane) at pair distance d before
slip and at any pair separation d′ ̸= d after slip, so Md = ∑

d′
ndd′ .

Table 1 tabulates ndd′ for pair distance (d,d′) up to 10 nearest-neighbor distances for full slip in fcc and bcc.
Note that structure factors Θdd′ in Ref. [6] are related to Nd , Md and ndd′ as Θdd′ = (Nd +Md)δdd′ − (nd′d +
ndd′)(1−δdd′).
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Pair distances after slip

d/a
d′/a

0.707 1.0 1.225 1.414 1.581 1.732 1.871 2.0 2.121 2.236

Pa
ir

di
st

an
ce

s
be

fo
re

sl
ip

0.707 - 1 1 0 0 0 0 0 0 0
1.0 1 - 1 0 1 0 0 0 0 0

1.225 1 1 - 2 3 1 1 0 0 0
1.414 0 0 2 - 2 0 2 0 0 0
1.581 0 1 3 2 - 0 3 2 3 1
1.732 0 0 1 0 0 - 4 0 0 0
1.871 0 0 1 2 3 4 - 0 8 4

2.0 0 0 0 0 2 0 0 - 2 0
2.121 0 0 0 0 3 0 8 2 - 7
2.236 0 0 0 0 1 0 4 0 7 -

(a) a/2[11̄0] slip along (111) plane in fcc.

Pair distances after slip

d′/a
d/a

0.866 1.0 1.414 1.658 1.732 2.0 2.179 2.236 2.449 2.598

Pa
ir

di
st

an
ce

s
be

fo
re

sl
ip

0.866 - 1 1 0 0 0 0 0 0 0
1.0 1 - 0 1 0 0 0 0 0 0

1.414 1 0 - 4 0 0 1 0 0 0
1.658 0 1 4 - 2 2 0 4 1 0
1.732 0 0 0 2 - 0 2 0 0 0

2.0 0 0 0 2 0 - 0 0 0 2
2.179 0 0 1 0 2 0 - 6 6 0
2.236 0 0 0 4 0 0 6 - 0 6
2.449 0 0 0 1 0 0 6 0 - 6
2.598 0 0 0 0 0 2 0 6 6 -

(b) a/2[111] slip along (110) plane in bcc.

Table 1: Structure factors ndd′ for pairs of normalized pair distances (d,d′) for full slip in fcc and bcc crystals respectively.

Due to translational symmetry, there are Na identical terms in the ∑k in Equation 21 where Na = ρGρLAslip
is the total number of atom sites along the slipped area Aslip and ρG and ρL are the atomic line densities along
the glide and dislocation line directions, respectively. The average energy change due to full slip can then be
written as

⟨∆Ess, f ⟩=−1
2

Na ∑
p,q

cpcq ∑
d

V e f f
pq (d)

 ∑
d′

d′ ̸=d

λpq(d′)nd′d −λpq(d)Md

 (22)

Since ndd′ = nd′d for slip by b and Na = ρGρLAslip, we combine Equations 20 and 22 and convert to the
Warren-Cowley SRO parameters to obtain the athermal strengthening τA as

τA =
ρLρG

2b ∑
p,q

cpcq ∑
d

V e f f
pq (d)

 ∑
d′

d′ ̸=d

αpq(d′)nd′d −αpq(d)Md

 (23)

With ρGρL = 2/
√

3b2 for slip on {111} planes in fcc crystals and ρGρL = 3/(2
√

2)b2 for slip on {110}
planes in bcc crystals [6], the temperature-independent (athermal) strengthening τA due to SRO is

τA =



1√
3b3 ∑

d
∑
p,q
p̸=q

cpcqV e f f
pq (d)

 ∑
d′

d′ ̸=d

αpq(d′)ndd′ −αpq(d)Md

 fcc

3
4
√

2b3 ∑
d

∑
p,q
p̸=q

cpcqV e f f
pq (d)

 ∑
d′

d′ ̸=d

αpq(d′)ndd′ −αpq(d)Md

 bcc

(24)
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τA is always positive for physical combinations of solute interactions and the associated SRO, since slip
always disrupts SRO and so always incurs an energy penalty. Eqs. 24 are the first major results of this paper,
expressing the athermal strengthening in an alloy with SRO solely in terms of the EPIs, the Warren-Cowley
SRO parameters, and the alloy concentration and lattice parameter.

In the special case where the atoms in the alloy interact only with their first neighbours at distance d1 and
the Warren-Cowley SRO parameters are also non-zero only for the first neighbours, τA reduces to

τA =


− 2√

3b3 ∑ p,q
p ̸=q

cpcqαpq(d1)V
e f f
pq (d1) for fcc

− 3
2
√

2b3 ∑ p,q
p̸=q

cpcqαpq(d1)V
e f f
pq (d1) for bcc

(25)

Flinn [10] derived this result for fcc binary alloys in terms of EPIs, (but note that Flinn’s EPIs are defined as
−V e f f

pq (d)/2 in the notation used here). Recently Antillon et. al [23] derived the same result for fcc in terms
of binding energies U p,q =−V e f f

pq /2. For the case where atomic interactions and correlations extend only up
to the second nearest neighbours d2, τA is

τA =



1√
3b3 ∑

p,q
p̸=q

cpcq

(
αpq(d1)

(
−2V e f f

pq (d1)+V e f f
pq (d2)

)
+αpq(d2)

(
V e f f

pq (d1)−3V e f f
pq (d2)

))
for fcc

3
4
√

2b3 ∑
p,q
p ̸=q

cpcq

(
αpq(d1)

(
−2V e f f

pq (d1)+V e f f
pq (d2)

)
+αpq(d2)

(
V e f f

pq (d1)−2V e f f
pq (d2)

))
for bcc

(26)

This result was derived by Mohri et. al [11] for fcc alloys.
The average stable stacking fault energy also changes due to SRO. This is analyzed in Appendix A

following a similar derivation path.

4.2. Strengthening due to fluctuations

4.2.1. Recap of basic theory
The low-energy wavy structure of the dislocation is determined by the standard deviation of the potential

energy change σ∆Ep(ζ ,w) [1–5]. Here, w is now the amplitude of waviness around a given average dislocation
line location, independent of the prior total slip of the dislocation. We summarize the main features of the
theory to show how σ∆Ep(ζ ,w) enters in the formulation so that we can subsequently include SRO through
its effects on σ∆Ep(ζ ,w).

The total energy of a long dislocation of length L with waviness scales {ζ ,w} is a combination of the
energy cost of increasing the dislocation length relative to a straight dislocation, which is related to the
dislocation line tension Γ, and the potential energy gain due to pinning at favourable solute environments,

∆Etot(ζ ,w) =
[

Γ

(
w2

2ζ

)
−σ∆Ep(ζ ,w)

](
L

2ζ

)
(27)

The fluctuation in potential energy change σ∆Ep(ζ ,w) can be written as

σ∆Ep(ζ ,w) = (ρLζ )1/2
∆Ẽp(w) (28)

The quantity ρLζ = Nl is the number of atomic sites along the gliding dislocation line segment. The above
total energy is then minimized with respect to ζ and w to yield the characteristic (minimum energy) waviness
scales ζc and wc. ζc is derived as

ζc =

(
4Γ2w4

c

ρL∆Ẽ2
p (wc)

) 1
3

(29)

while wc is the solution of
∂∆Ẽ2

p (w)
∂w

=
∆Ẽ2

p (w)
w

(30)
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The dislocation segments of length ζc reside in low-energy environments and face high-energy environments
at a typical distance wc along the glide plane. The system energy versus dislocation position is approximated
with sinusoidal function [2] and the associated energy barrier faced by the local segments of length ζc is then
derived as

∆Eb = 1.467
(

ρLw2
cΓ∆Ẽ2

p (wc)
) 1

3
(31)

To glide the dislocation at zero temperature requires an applied stress ∆τy0 in addition to the athermal stress
τA that reduces the above barrier to zero and is derived as

∆τy0 =
π

2
∆Eb

bζcwc
= 1.45

(
ρ2

L ∆Ẽ4
p (wc)

Γb3w5
c

) 1
3

(32)

At finite temperatures, the dislocation can move by thermal activation over the energy barrier. An applied
stress reduces the barrier, and at low temperatures and applied stress τ > τA, the barrier is well-represented as

∆E(τ)≈ ∆Eb

(
1− τ − τA

∆τy0

) 3
2

(33)

The rate of motion over the barrier is given by the Arrhenius law for thermal activation, and inversion of that
model then leads to the yield stress as a function of temperature T and strain-rate ε̇ of

τy(T, ε̇) = τA +∆τy0

[
1−
(

kBT
∆Eb

ln
(

ε̇0

ε̇

)) 2
3
]

(34)

where ε̇0 ∼ 104/s is a reference strain rate and and kB is Boltzmann’s constant respectively. The above
single-scale waviness analysis is valid at low T (high strength) while a multi-scale waviness becomes relevant
at higher T (lower strength) [38], but the above result is sufficient for the analysis here.

From the above results, we see that it is the normalized variance ∆Ẽ2
p in the energy fluctuations that is

the key quantity determining the thermally-activated strengthening in the alloy. The strengthening by SRO
then requires the evaluation of ∆Ẽ2

p in the presence of SRO. The variance σ2
∆Ep

(ζ ,w) = (ρLζ )∆Ẽ2
p (w) can be

decomposed as follows [6]

σ
2
∆Ep

=



σ2
∆Esd

+σ2
∆Ess, f

+ cov
(
∆Esd ,∆Ess, f

)
compact core

σ2
∆Esd

+2σ2
∆Ess,p

+ cov(∆Esd ,∆Ess,p+)+ cov(∆Esd ,∆Ess,p−)

+cov(∆Ess,p+,∆Ess,p−) split core, w < dp

σ2
∆Esd

+σ2
∆Ess, f

+2σ2
∆Ess,p

+ cov(∆Esd ,∆Ess,p+)+ cov(∆Esd ,∆Ess,p−)

+cov
(
∆Esd ,∆Ess, f

)
+ cov

(
∆Ess, f ,∆Ess,p+

)
+ cov

(
∆Ess, f ,∆Ess,p−

)
+cov(∆Ess,p+,∆Ess,p−) split core, w > dp

(35)

where σ∆Ess,p+ = σ∆Ess,p− ≡ σ∆Ess,p . The covariance cov(∆Esd ,∆Ess,p+) = ⟨∆Esd∆Ess,p+⟩ since ⟨∆Esd⟩= 0.
Substituting ∆Esd and ∆Ess,p+ from Equations 17 and 18b, we have

cov(∆Esd ,∆Ess,p+) =− 1
2 ∑

i,k,l
∑

n,p,q
⟨sn

i sp
k sq

l ⟩
(

Un
sd(xi −w,yi)−Un

sd(xi,yi)
)(

V e f f
pq (dp

kl)−V e f f
pq (dkl)

)
+

1
2 ∑

i, j
∑
n,p

⟨sn
i sp

j ⟩
(

Un
sd(xi −w,yi)−Un

sd(xi,yi)
)

∆ε
p
j (36)

Similarly, using Equations 17 and 18c, one can deduce

cov(∆Esd ,∆Ess,p−) =
1
2 ∑

i,k,l
∑

n,p,q
⟨sn

i sp
k sq

l ⟩
(

Un
sd(xi −w,yi)−Un

sd(xi,yi)
)(

V e f f
pq (dp

kl)−V e f f
pq (dkl)

)
− 1

2 ∑
i, j

∑
n,p

⟨sn
i sp

j ⟩
(

Un
sd(xi −w,yi)−Un

sd(xi,yi)
)

∆ε
p
j (37)
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From the above expansions of the covariances, it is clear that cov(∆Esd ,∆Ess,p+) =−cov(∆Esd ,∆Ess,p−). In
a similar fashion it can be shown that cov

(
∆Ess, f ,∆Ess,p+

)
=−cov

(
∆Ess, f ,∆Ess,p−

)
. These terms therefore

cancel in Equation 35 and need not be calculated. Furthermore, the quantity cov(∆Ess,p+,∆Ess,p−) = 0 since
the newly created and annihilated stacking faults are separated by |dp −w| (which in all practical cases is
greater than the range of typical EPIs). Considering the above simplifications, we can rewrite Equation 35 as

σ
2
∆Ep

=


σ2

∆Esd
+σ2

∆Ess, f
+ cov

(
∆Esd ,∆Ess, f

)
compact core

σ2
∆Esd

+2σ2
∆Ess,p

split core, w < dp

σ2
∆Esd

+σ2
∆Ess, f

+2σ2
∆Ess,p

+ cov
(
∆Esd ,∆Ess, f

)
split core, w > dp

(38)

The variances are assessed in subsequent sections for alloys with SRO. The covariance cov(∆Esd ,∆Ess, f )
in Equation 38 is negligible compared to the variances and will be ignored henceforth; this is justified in
Appendix C.

4.2.2. Strengthening from fluctuations due to solute-dislocation interactions
The variance in ∆Esd due to solute-dislocation interactions is σ2

∆Esd
= ⟨∆E2

sd⟩−⟨∆Esd⟩2 = ⟨∆E2
sd⟩ since

⟨∆Esd⟩= 0. Recalling Equation 17, for a given solute configuration we have

∆E2
sd = ∑

i, j,n,m
sn

i sm
j ∆Un

sd,i(w)∆Um
sd, j(w) (39)

where ∆Un
sd,i(w)=Un

sd(xi−w,yi)−Un
sd(xi,yi). Averaging over all solute realizations using ⟨sn

i sm
j ⟩= δi jδnmcn+

(1−δi j)λ
i j
nmcncm, we obtain

σ
2
∆Esd

= ∑
n

cn ∑
i

(
∆Un

sd,i(w)
)2

+∑
i, j
i̸= j

∑
n

cn∆Un
sd,i(w)∑

m
cm∆Um

sd, j(w) λ
i j
nm (40)

The first term is precisely the expression arising in the random alloy because the second term is zero when
λ

i j
nm = 1 since ∑

n
cn∆Un

sd,i(w) = 0 by definition of the average alloy through which the interactions are

determined. The variance can then be rewritten in terms of the Warren-Cowley parameters α
i j
nm as

σ
2
∆Esd

= ∑
n

cn ∑
i

(
∆Un

sd,i(w)
)2

−∑
i, j
i ̸= j

∑
n

cn∆Un
sd,i(w)∑

m
cm∆Um

sd, j(w) α
i j
nm (41)

Furthermore, since ∆Un
sd,i(w) only depends on the x and y coordinates (Equation 39), a single site at any zi is

representative of all Nl = ζ ρL sites at positions (xi,yi) parallel to the dislocation line. We can thus partition
all sites i into subsets [i] = {all sites k such that xk = xi and yk = yi } and factor out Nl to arrive at

∆Ẽ2
p,sd =

σ2
∆Esd

Nl
=

σ2
∆Esd

ζ ρL
= ∑

n
cn ∑

[i]

(
∆Un

sd,i(w)
)2

−∑
[i]

∑
n

cn∆Un
sd,i(w)∑

j
j ̸=i

∑
m

cm∆Um
sd, j(w) α

i j
nm (42)

where ∑
[i]

is a sum over only the projected in-plane sites (xi,yi) in one periodic distance along the dislocation

line direction.
The variance due to solute/dislocation interactions thus consists of the contribution obtained in the random

alloy plus an additional contribution that scales linearly with the SRO parameters and is second-order in the
composition. Importantly, the second term involving SRO can be positive or negative. Thus, SRO can increase
or decrease the alloy strength relative to random alloy counterpart, even though τA is always positive. We will
simplify and discuss this result further in Section 5. The general result of Equation 42, and its implications, is
the second main result of this paper.
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4.2.3. Strengthening from fluctuations due to solute-solute interactions
The variance of ∆Ess, f is given by σ2

∆Ess, f
= ⟨∆E2

ss, f ⟩− ⟨∆Ess, f ⟩2 and similarly for σ2
∆Ess,p

. The mean
⟨∆Ess, f ⟩/Aslip equals γSRO (recall Section 4.1), while ⟨∆Ess,p⟩/Aslip is the stacking fault energy γss f e (see
Appendix A). With atom sites and types below the slip plane denoted by i,k and u, p, respectively, and atom
sites and types above the slip plane denoted by j, l and v,q, respectively, the quantity ∆E2

ss, f follows from
Equation 18a as

∆E2
ss, f =

1
4 ∑

k,l
∑
p,q

sp
k sq

l

(
V e f f

pq (d f
kl)−V e f f

pq (dkl)
)
∑
i, j

∑
u,v

su
i sv

j

(
V e f f

uv (d f
i j)−V e f f

uv (di j)
)

(43)

and the quantity ∆E2
ss,p follows from Equation 18b) as

∆E2
ss,p =

1
4 ∑

k,l
∑
p,q

sp
k sq

l

(
V e f f

pq (dp
kl)−V e f f

pq (dkl)
)
∑
i, j

∑
u,v

su
i sv

j

(
V e f f

uv (dp
i j)−V e f f

uv (di j)
)

−∑
k,l

∑
p,q

sp
k sq

l

(
V e f f

pq (dp
kl)−V e f f

pq (dkl)
)
∑

i
∑
u

su
i ∆ε

u
i

+
1
4 ∑

k
∑
p

sp
k ∆ε

p
k ∑

i
∑
u

su
i ∆ε

u
i (44)

For full slip, averaging ∆E2
ss, f over all statistical realization of the alloy involves the expectation ⟨sp

k sq
l su

i sv
j⟩

which can be expressed, using Equations 1, 3 and 5, as

⟨sp
k sq

l su
i sv

j⟩= δikδupδ jlδvqλ
kl
pqcpcq +δikδup(1−δ jl)λ

k jl
pvqcpcvcq

+(1−δik)δ jlδvqλ
ikl
upqcucpcq +(1−δik)(1−δ jl)λ

i jkl
uvpqcucvcpcq (45)

After considerable algebra, we obtain

⟨∆E2
ss, f ⟩=

1
4 ∑

p,q
cpcq ∑

k,l
λ

kl
pq

(
V e f f

pq (d f
kl)−V e f f

pq (dkl)
)2

+
1
2 ∑

p,v,q
cpcvcq ∑

k, j,l
j ̸=l

λ
k jl
pvq

(
V e f f

pq (d f
kl)−V e f f

pq (dkl)
)(

V e f f
pv (d f

k j)−V e f f
pv (dk j)

)

+
1
4 ∑

u,v,p,q
cucvcpcq ∑

i, j,k,l
i̸=k
j ̸=l

λ
i jkl
uvpq

(
V e f f

pq (d f
kl)−V e f f

pq (dkl)
)(

V e f f
uv (d f

i j)−V e f f
uv (di j)

)
(46)

where the manipulations use the fact that, for Bravais lattices like fcc and bcc, the coordination of lattice sites
on either side of the slip plane is the same. Expressing Equation 46 in terms of the WC SRO parameters, we
have

⟨∆E2
ss, f ⟩= ⟨∆E2

ss, f ⟩random alloy

− 1
4 ∑

p,q
cpcq ∑

k,l
α

kl
pq

(
V e f f

pq (d f
kl)−V e f f

pq (dkl)
)2

− 1
2 ∑

p,v,q
cpcvcq ∑

k, j,l
j ̸=l

α
k jl
pvq

(
V e f f

pq (d f
kl)−V e f f

pq (dkl)
)(

V e f f
pv (d f

k j)−V e f f
pv (dk j)

)

− 1
4 ∑

u,v,p,q
cucvcpcq ∑

i, j,k,l
i ̸=k
j ̸=l

α
i jkl
uvpq

(
V e f f

pq (d f
kl)−V e f f

pq (dkl)
)(

V e f f
uv (d f

i j)−V e f f
uv (di j)

)
(47)

where the last three terms are the additional contributions to the fluctuations due to SRO. Examining the above
result, we see that positive αkl

pq makes the second term in Equation 47 negative, which decreases ⟨∆E2
ss, f ⟩

and contributes to a decrease in the strength relative to the random alloy. As found for the solute-dislocation
contribution, it is thus again possible that SRO decreases alloy strength rather than increasing it. However,
the full result requires information on 3 and 4 particle correlations.
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Comparing Equations 43 and 44 we can see the first term in the latter only differs in dp
kl . Therefore the first

term in ⟨∆E2
ss,p⟩ will have the same form as Equation 47 for ⟨∆E2

ss, f ⟩, with dp
kl instead of d f

kl . After averaging
the other two terms in Equation 44 we obtain ⟨∆E2

ss,p⟩ in terms of WC-SRO parameters as

⟨∆E2
ss,p⟩= ⟨∆E2

ss,p⟩random alloy

− 1
4 ∑

p,q
cpcq ∑

k,l
α

kl
pq

(
V e f f

pq (dp
kl)−V e f f

pq (dkl)
)2

− 1
2 ∑

p,v,q
cpcvcq ∑

k, j,l
j ̸=l

α
k jl
pvq

(
V e f f

pq (dp
kl)−V e f f

pq (dkl)
)(

V e f f
pv (dp

k j)−V e f f
pv (dk j)

)

− 1
4 ∑

u,v,p,q
cucvcpcq ∑

i, j,k,l
i ̸=k
j ̸=l

α
i jkl
uvpq

(
V e f f

pq (dp
kl)−V e f f

pq (dkl)
)(

V e f f
uv (dp

i j)−V e f f
uv (di j)

)

+∑
p,q

cpcq ∑
k,l

α
kl
pq

(
V e f f

pq (dp
kl)−V e f f

pq (dkl)
)

∆ε
p
k

+ ∑
p,v,q

cpcvcq ∑
k, j,l
j ̸=l

α
k jl
pvq

(
V e f f

pq (dp
kl)−V e f f

pq (dkl)
)

∆ε
v
j

− 1
2 ∑

p,q
cpcq ∑

k,l
α

kl
pq∆ε

p
k ∆ε

q
l −

1
2 ∑

v,q
cvcq ∑

j,l
j ̸=l

α
jl

vq∆ε
v
j ∆ε

q
l (48)

As discussed earlier, the important quantities for thermally activated strengthening, the variances σ2
∆Ess, f

and σ2
∆Ess,p

(Equation 38), are given by

σ
2
∆Ess, f

= ⟨∆E2
ss, f ⟩−⟨∆Ess, f ⟩2 = ⟨∆E2

ss, f ⟩− (γSRO Aslip)
2 (Using Equation 20)and (49)

σ
2
∆Ess,p

= ⟨∆E2
ss,p⟩−⟨∆Ess,p⟩2 = ⟨∆E2

ss,p⟩− (γss f e Aslip)
2 (Using Equation A.2) (50)

where γSRO is derived in Section 4.1 for athermal average strengthening and the stacking fault energy γss f e is
derived in Appendix A for the case of SRO.

The third and fourth terms in Equations 47 and 48 and also the sixth term in the latter, involve higher-order
SRO parameters and are not amenable to simplification or clear interpretation. They may tend to be smaller
because they involve three concentrations and multibody correlations, but there are many more terms in the
sums that may compensate for these factors. In the limit of small SRO, the correlation functions can be
reasonably approximated using the superposition principle, which decomposes the multibody correlations
into products of pair correlations (see [39] showing good accuracy for α < 0.2 in many cases). With the
superposition approximation and small SRO, the multibody correlation functions can be expanded to first
order in α as

α
k jl
pvq ≈ α

k j
pv +α

jl
vq +α

kl
pq

α
i jkl
uvpq ≈ α

i j
uv +α

kl
pq +α

jk
vp +α

il
uq +α

jl
vq +α

ik
up. (51)

However, we are not able to find any useful simplifications even in this limit.
The analytic formulation presented above is developed in the same spirit as the previous analysis of

random alloys in Ref. [6]. However the equations are quite unwieldy, owing to the higher-order correlation
functions. In Section 5.2, we have therefore provided an alternative computational route for calculation the
variance quantities that is easy to implement if suitable interatomic potentials or first-principles methods are
available. That computational route also gives more flexibility in terms of considering complex many-body
solute-solute interactions and multiple site correlations, but always at the cost of more computational expense.

5. Reductions to practice

The results in the previous section for the contributions to strengthening due to fluctuations are complete
but unwieldy. Here, we thus introduce the linear elasticity approximation of Varvenne et al. [3] for the
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solute-dislocation interactions and examine the effects of SRO on the solute-dislocation contributions to
strengthening. We then discuss computational strategies to avoid having to analytically evaluate the solute-
solute fluctuation term, and this approach will also yield the energy γSRO that determines the athermal
strengthening.

5.1. Strengthening due to solute-dislocation interactions
We focus on the solute-dislocation interaction effects for two reasons. First, the analysis is tractable

in a fairly general context, as shown below. Second, and more importantly, assuming a random alloy, the
solute-dislocation interactions alone have been successful in predicting the strengthening of many different
HEAs, thus indicating that this contribution is dominant [4, 5]. The most significant effects of SRO are thus
expected to arise through their effects on the (dominant) solute-dislocation interaction contributions. The
additional athermal strengthening that is always created by SRO can also be non-negligible, and perhaps
dominant at high temperatures where solute-dislocation strengthening is greatly reduced. The fluctuations
due to solute-solute interactions likely play a smaller overall role, as shown for a few fcc and bcc random
alloys in the absence of SRO in Refs. [6, 40].

5.1.1. Elasticity approximation
The solute-dislocation interaction energies Un

sd can rarely be computed by direct atomistic simulations.
First-principles calculations are feasible only for dilute binary alloys. Calculations for HEAs describable by
EAM interatomic potentials can take advantage of the ability to create a dislocation in the “average alloy"
[41] into which the constituent solute atoms can be introduced to compute the Un

sd . However, EAM potentials
are rarely quantitative for real alloys, and so serve mainly as model systems. Due to these various limitations,
Varvenne et al. proposed to estimate the Un

sd using linear elasticity as

Un
sd,i =−p(xi,yi)∆Vn (52)

where p(xi,yi) is the pressure at atomic site i due to the dislocation line at the origin and ∆Vn is the misfit
volume of a type-n solute in the alloy. Denoting the change in pressure at site i after dislocation glide by w as
∆pi(w) = p(xi −w,yi)− p(xi,yi), the variance for the solute-dislocation interaction term in Equation 42 can
be rewritten as

∆Ẽ2
p,sd =

(
∑
n

cn∆V 2
n

)(
∑
[i]

∆p2
i (w)

)
−∑

n,m
cncm∆Vn∆Vm ∑

[i]
∑

j
j ̸=i

∆pi(w)∆p j(w) α
i j
nm (53)

It has been demonstrated in the context of random alloys that elastic anisotropy has small influence on
alloy strength and is best-captured by using the Voigt-averaged elastic constants [42]. Therefore, following
the analysis of Varvenne et al. [3], for an elastically isotropic alloy with (Voigt-averaged) shear modulus µ

and Poisson’s ratio ν , the dependence of ∆pi(w) on the elastic constants can be factored out. The variance in
energy change due to solute-dislocation interaction is then reduced to the form

∆Ẽ2
p,sd(w) =

(
µ · 1+ν

1−ν

)2
[
∑
n

cn∆V 2
n A(w)

+ ∑
n,m>n

cncm (∆Vn −∆Vm)
2

(
12 B(w) αnm(1st NN)+6 C(w) αnm(2nd NN)

+24 D(w) αnm(3rd NN)+12 E(w) αnm(4th NN)+ . . .

)]
for FCC alloys (54a)

∆Ẽ2
p,sd(w) =

(
µ · 1+ν

1−ν

)2
[
∑
n

cn∆V 2
n A(w)

+ ∑
n,m>n

cncm (∆Vn −∆Vm)
2

(
8 B(w) αnm(1st NN)+6 C(w) αnm(2nd NN)

+12 D(w) αnm(3rd NN)+24 E(w) αnm(4th NN)+ . . .

)]
for BCC alloys (54b)
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where the coefficients A(w),B(w), . . . are all positive (see Figure 3 below) functions of the glide distance w
and depend on the spatial distribution of the pressure field. The coefficients are derived in Appendix B, with
their analytic forms presented in Equations A.10 and A.11 for fcc and bcc alloys respectively.

Antillon et al. [23] developed a related expression that accounts only for first-neighbor SRO and that also
neglects spatial correlations in the pressure field that eliminate possible changes in wc due to SRO. Within
those limits, the form of Eqs. 19–20 in Ref. [23] agrees with our derived theory but the numerical prefactor is
incorrect. Eqs. 19–20 in Ref. [23] appear different than our equations above because Antillon et al. did not
take advantage of the sum rule of our Equation 11. Application of the sum rule reveals that SRO strengthening
only depends on differences in misfit volumes, as can be understood physically. Unfortunately, the form in
Antillon et al. then led them to incorrectly state that if either ∆Vn or ∆Vm is zero then the SRO contribution to
strengthening from the nm pair is zero.

For the special case of a binary alloy with concentrations c and (1−c), misfit volumes ∆V and −c∆V/(1−
c) respectively (since ∑

n
cn∆Vn = 0), and WC-SRO parameters α , Equation 53 simplifies, for an fcc alloy, to

∆Ẽ2
p,sd(w) =

c
(1− c)

∆V 2
(

µ · 1+ν

1−ν

)2
[

A(w)+12 B(w) α(1st NN)+6 C(w) α(2nd NN)+24 D(w) α(3rd NN)

+12 E(w) α(4th NN)+ . . .
]

(55)

and similarly for a bcc alloy. The apparent divergence in the limit c → 1 does not exist because ∆V → 0 in this
limit. This limit is the dilute limit of the second element, and so a clearer analytic (and again non-diverging)
result would emerge if ∆V is taken as the misfit of the second element in the matrix of the first element.
Alternatively, if Vegard’s law is used to express the misfit volumes in terms of the two atomic volumes Va1
and Va2 [43], the prefactor can be written as c(1− c)(Va1 −Va2)

2 that is easily seen to become zero for both
c → 1 and c → 0.

There are several insights that can be made from the above results. First, the fluctuating energy must be
minimized with respect to w to obtain wc. Changes to wc then affect the energy barrier and zero-T flow stress
in Equations 31, 32, even if the other quantities do not change. In addition, the contributions to the barrier
and flow stress from solute-solute interactions also scale linearly with wc in the absence of SRO, as shown in
Ref. [6]. Hence, even in the presence of SRO, we can expect that solute-solute contributions can be changed
if wc differs from the value in the random alloy. We will analyze the first issue further below, but in general
changes to wc can increase or decrease strength.

More importantly, relative to the random alloy, the fluctuations, and hence strength, can decrease if the
combination of SRO parameters, misfit volumes, and concentrations in the second term of Equation 54a or
54b is negative. Because the misfit strengthening can be large and dominant in many HEAs, the alloy strength
can be decreased due to SRO even if there is always a positive athermal strengthening. This is a critical
rigorous result emerging from our analysis, which had previously been noted by Antillon et al. [23] based on
their approximate analysis and limited simulations.

A reduction in strength due to SRO is predicted particularly in alloys where solute pairs (n,m) are attracted
to one another at some distance d (αnm(d)< 0) and have large and opposite-signed misfit volumes so that
|∆Vn −∆Vm| is large (see Equations 54a and 54b). Since long-range ordering in many alloys is correlated
with atomic size mismatch [44], this situation (attractive, opposite-signed misfit pairs) may be common. This
suggests a lowering of strength due to fluctuations that would offset to some degree the positive athermal
strengthening, leading to reduced overall effects of SRO on strength. In the limit of formation of a perfectly
ordered intermetallic, the fluctuations become zero - the random alloy strengthening is entirely lost - and the
strengthening is then only the athermal strengthening related to the shearing energy (anti-phase boundary
energy) of the ordered structure. Our results also show that SRO between solute pairs (n,m) with similar
misfit volumes have a much smaller effect on strengthening, whether positive or negative, because they have
similar interactions with the dislocation pressure field. Making such pairs more or less spatially correlated
thus has much smaller effect on the overall strengthening as compared to pairs with opposite-signed misfits.

To further progress toward practical applications and analytic results, the pressure field generated by a
dislocation can be modeled by representing the dislocation core structure as a continuous distribution of
Burgers vector along the glide plane. Previous work has shown that the Burgers vector distribution can be
reasonably characterized in fcc alloys as two Gaussian functions, one for each partial, each with width σ

and separated by the partial dissociation distance dp. Bcc alloys have compact dislocation core, and limited
atomistic studies of edge dislocation cores suggest that they can be characterized by a single Gaussian function
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with core spreading of σ = 1.333b. With such a parameterization of the core structure in terms of (σ , dp),
the coefficients A,B,C,D, . . . can be computed as a function of the parameters σ , dp, and w. In fcc alloys,
it emerges that the coefficients are independent of dp for dp > 9b, which is a common regime for many fcc
HEAs studied to date (all of which have rather low stable stacking fault energies).

Figure 3a shows the coefficients A(w),B(w), ... for fcc crystals as functions of w for σ = 1.5b,2b at
dp(= 15b) that covers a range of alloys [6, 42]. All the coefficients have a similar general behavior versus w.
The A(w) coefficient is that for the random alloy, and is identical to the quantity g2

iso obtained previously Refs.
[6, 42]. For both values of σ , the B(w) coefficient is similar in form but slightly smaller than A (but with a
prefactor of 12 equal to the number of first neighbors), while the C,D,E coefficients are all nearly identical.
For larger w (not shown), the coefficients are non-monotonic and hence there can be additional solutions for
wc that are relevant at higher temperatures [4, 45] but here we focus on the range of w relevant for the low
temperature domain that typically includes room temperature.

Figure 3b shows the coefficients A(w),B(w), ... versus w for edge dislocations in bcc alloys with core
spreading of σ = 1.333b, characteristic of the non-dissociated edge core in bcc. All the coefficients including
the random term A(w) are 30–40% larger than for fcc, so bcc alloys are intrinsically stronger than fcc. Most
important for SRO are the magnitudes of the SRO-related coefficients B, C, D,...relative to A, and these are
roughly similar between fcc and bcc so that SRO has roughly similar effects in fcc and bcc alloys.
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(a) FCC edge dislocation with widely separated Shockley partials

(b) BCC edge dislocation a/2⟨111⟩/{110} with compact core

Figure 3: Coefficients A,B,C,D,E appearing in Equations 54a and 54b as a function of glide distance w, for edge dislocation in (a) fcc
and (b) bcc alloys. Results are presented for two different Shockley partial core widths σ = 1.5b,2.0b for fcc alloys with largely separated
Shockley partials dp > 10b. For bcc alloys with compact full dislocation core, results are presented for core width σ = 1.3333b.

5.1.2. Approximate analytic results
As mentioned above, the final theory predictions require minimization of the total energy with respect

to w to obtain wc, which reduces to the solution of
∂∆Ẽ2

p (w)
∂w =

∆Ẽ2
p (w)
w (Eq. 30). For small SRO, the random

alloy value of wc can be used directly. In general, for a given SRO, the functions A(w), B(w), . . . shown in
Figures 3a, 3b can be used to execute the minimization numerically. Here, we can make analytic progress for
small to moderate SRO as follows. Using Equation 54a for multicomponent fcc alloys in Equation 30 and
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manipulating, one can deduce that wc must satisfy(
A′(w)− A(w)

w

)
β0 +12

(
B′(w)− B(w)

w

)
β1 +6

(
C′(w)− C(w)

w

)
β2

+24

(
D′(w)− D(w)

w

)
β3 +12

(
E ′(w)− E(w)

w

)
β4 = 0 (56)

where A′(w) = dA/dw etc. and β0 = ∑n cn∆V 2
n and βi = ∑n,m>n cncm (∆Vn −∆Vm)

2
αnm(ith NN). Note that

in the binary limit, β0 = c∆V 2/(1− c) and βi/β0 = α(ith NN). For bcc alloys, the fcc coordinations of 12, 6,
24, 12 should be replaced by 8, 6, 12, 24 respectively.

Now let wA
c be the solution to A′(wA

c )−A(wA
c )/wA

c = 0, which is the random alloy value (wA
c /b = 4.5,5.5

for fcc edge dislocations with σ/b = 1.5,2.0 and wA
c /b = 4.333 for bcc edge dislocations with σ/b = 1.333).

We then expand the coefficients A,B,C, ... to second order in w around wA
c as

Ā(w)≈ A(wA
c )+A′(wA

c )(w−wA
c )+ 1/2A′′(wA

c )(w−wA
c )

2

B̄(w)≈ B(wA
c )+B′(wA

c )(w−wA
c )+ 1/2B′′(wA

c )(w−wA
c )

2

... (57)

and use these expansions in Equation 56. Using the relation A′(wA
c )−A(wA

c )/wA
c = 0, we can then solve for

wc as

wc ≈ wA
c

(
1−

12
(

B′(wA
c )−B(wA

c )/wA
c

)
β1 +6

(
C′(wA

c )−C(wA
c )/wA

c

)
β2 + . . .

1/2 wA
c

(
A′′(wA

c ) β0 +12 B′′(wA
c ) β1 +6 C′′(wA

c ) β2 + . . .
) ) 1

2

FCC alloys (58a)

wc ≈ wA
c

(
1−

8
(

B′(wA
c )−B(wA

c )/wA
c

)
β1 +6

(
C′(wA

c )−C(wA
c )/wA

c

)
β2 + . . .

1/2 wA
c

(
A′′(wA

c ) β0 +8 B′′(wA
c ) β1 +6 C′′(wA

c ) β2 + . . .
) ) 1

2

BCC alloys (58b)

The computed values for wA
c ,A

′′(wA
c ),B(w

A
c ),B

′(wA
c ),B

′′(wA
c ) etc. are shown in Table 2 for fcc and bcc edge

dislocations. wc can thus be computed for any specified SRO and misfit parameters. Using the values from
the Table, fcc edge dislocations with σ/b = 1.5 have

wc

wA
c
≈

(
1+

0.03355 β1 +0.02459 β2 +0.09338 β3 +0.04758 β4 + . . .

0.0132 β0 +0.0841 β1 +0.01056 β2 +0.0593 β3 +0.0354 β4 + . . .

) 1
2

(59)

and similarly for the bcc edge dislocations with σ/b = 1.3333

wc

wA
c
≈

(
1+

0.083 β1 +0.072 β2 +0.1932 β3 +0.36257 β4 + . . .

0.0417 β0 +0.16584 β1 +0.089 β2 +0.047 β3 +0.029474 β4 + . . .

) 1
2

(60)

With the approximate coefficients Ā, B̄, . . . from Equation 57 evaluated at wc, the energy fluctuation quantity
∆Ẽ2

p,sd(wc) is approximated as

∆Ẽ2
p,sd(wc)≈

(
µ · 1+ν

1−ν

)2
(

β0 Ā(wc)+12 β1 B̄(wc)+6 β2 C̄(wc)+24 β3 D̄(wc)+12 β4Ē(wc)+ . . .

)
FCC alloys

(61a)

∆Ẽ2
p,sd(wc)≈

(
µ · 1+ν

1−ν

)2
(

β0 Ā(wc)+8 β1 B̄(wc)+6 β2 C̄(wc)+12 β3 D̄(wc)+24 β4Ē(wc)+ . . .

)
BCC alloys

(61b)

The above results provide analytic formulae for the solute-dislocation strengthening in the presence of SRO
within the elasticity approximation that involves the solute misfit volumes. These analytic results fully
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quantify the interplay in strengthening between solute misfit volumes and SRO in a general multicomponent
alloy.

NN(wA
c ) NN′(wA

c ) b NN′′(wA
c ) b2

σ/b 1.5 (fcc) 2.0 (fcc) 1.33 (bcc) 1.5 (fcc) 2.0 (fcc) 1.33 (bcc) 1.5 (fcc) 2.0 (fcc) 1.33 (bcc)

NN

A 0.1008 0.0889 0.337 0.02276 0.017 0.07688 -0.0059 -0.0037 -0.0192

B 0.07 0.0661 0.2323 0.01835 0.014 0.064 -0.0031 -0.0023 -0.00957

C 0.0433 0.04534 0.2041 0.01372 0.011 0.0591 -0.00078 -0.001 -0.006857

D 0.0464 0.04761 0.1493 0.0142 0.0113 0.05056 -0.0011 -0.00116 -0.0018

E 0.0485 0.04947 0.1345 0.01475 0.0116 0.04615 -0.0013 -0.0013 -0.000567

Table 2: Coefficients A,B,C,D,E and their first and second derivatives evaluated at wA
c for (a) fcc edge dislocations with partial separation

dp = 15b and partial core spread σ/b = 1.5,2.0 and (b) bcc edge dislocations with compact core of width σ = 1.3333b. wA
c = 4.5b,5.5b

for σ = 1.5b,2.0b in fcc and wA
c = 4.3333b for σ = 1.33b in bcc.

Figure 4 presents the percent changes in ∆Eb and τy0 relative to the random alloy for fcc edge dislocations
with σ = 1.5b in multicomponent alloys as function of two normalized SRO parameters β1/β0 and β/β0 =

(β2 +4β3 +2β4)/β0 (recalling β0 = ∑n cn∆V 2
n and βi = ∑n,m>n cncm (∆Vn −∆Vm)

2
αnm). The latter quantity

combines SRO contributions for all neighbors beyond first neighbors and can be used because the coefficients
C,D,E are essentially identical (see Figure 3a, Table 2). With this notation, ∆Ẽ2

p,sd(wc) takes the following
form

∆Ẽ2
p,sd(wc)≈

(
µ · 1+ν

1−ν

)2

β0

[
A(wc)+12 B(wc)

β1

β0
+6 C(wc)

β

β0

]
(62)

where the random alloy corresponds to β1 = 0,β = 0. Jumps in the curves correspond to the discrete changes
in wc by b/2 (Figure 5). Predictions using the (smooth) wc and ∆Ẽ2

p,sd(wc) as calculated from Equations 58a
and 62 with approximate coefficients Ā, B̄ and C̄ are shown as dashed lines in Figure 4.

Moderate SRO has a noticeable effect on both the energy barrier ∆Eb and the 0K flow stress ∆τy0.
For first-neighbor SRO only, the energy barrier and strength can vary by ±25 − 30% over the range
β1/β0 ± 0.06. Similarly, in the absence of first-neighbor SRO, the energy barrier and strength can vary
by ±20% and ±10% respectively over the range β/β0 ±0.10. Often, however, first and second neighbors
can have opposite-sign SRO parameters, leading to some cancellation. For instance, for the combination
β1/β0 =−0.06, β/β0 =+0.10, the barrier and strength are reduced by only about 10% and 15%, respec-
tively. Similar cancellations arise for β1/β0 = +0.06, β/β0 = −0.10. In general, it unlikely that both
β1/β0 and β/β0 have the same sign, and hence there is likely some tendency for cancellation. The ap-
proximate analytic estimates using Equations 58a and 61a are seen to be reasonably accurate, with only
notable deviations in ∆τy0 for negative values of β1/β0 < −0.025 and β/β0 = −0.1. Changes in wc are
shown in Figure 5 and are small but not negligible relative to the random alloy value of wc = 4.5b. Negative
values of SRO reduce wc and, since ∆τy0 ∝ w−5/3

c and ∆Eb ∝ w2/3
c (Equations 32, 31), increase the zero-T

strength but reduced the barrier but we nonetheless find decreases in zero-T strength even with reduced wc.
Figure 4 serves as a design guideline for all multicomponent fcc alloys with SRO pair correlations extending up to
4thNN and is a major practical result of our analysis.

As an example application, we consider the NiCoCr alloy as studied by Du et al. [46]. They used
a machine-learned interatomic potential and calculated the WC-SRO parameters via a hybrid Monte
Carlo/molecular dynamics simulation. Using the computed SRO parameters at T = 1000 K, around where
SRO is reported to develop experimentally [27], along with the experimentally-derived solute misfit volumes
for Ni, Co, and Cr [47], yields β1/β0 = −0.0557 and β̄/β0 = 0.1064. These then correspond to changes
in ∆Eb and ∆τy0 of −6.63% and −12.82% respectively, as indicated by the star points in Figures 4 and 5
and with wc = 4.5b unchanged from the random-alloy value. With the random alloy strength and barrier
computed by Yin et al. [47] of τy0 = 124.5 MPa and ∆Eb = 1.29 eV, the room-temperature critically-resolved
shear stress (CRSS) is predicted to be reduced from 64 MPa to 54 MPa. This reduction will be offset by some
positive τA, but τA depends strongly on the interatomic potential, and first-principles calculations in the mag-
netic Co-Cr-Fe-Mn-Ni Cantor alloy family are challenging [47, 48]. Hence the potentials derived from first
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principles are not necessarily quantitatively valid, and we use them here only to obtain some likely-reasonable
SRO parameters. With that caveat, our prediction that SRO reduces the dominant solute/dislocation or misfit
contribution to strengthening along with the some positive τA may rationalize recent experimental results
showing that SRO has essentially no effect on CRSS in NiCoCr samples annealed in temperature range of 673
– 973 K [27]. Note that this is an example of the application of the theory and is not a validation of the theory.

(Du et al.)

(a) Percent change in the energy barrier

(Du et al.)

(b) Percent change in T=0K yield strength

Figure 4: Percent change in critical solid solution hardening quantities in fcc alloys relative to the random alloy as function of two SRO
parameters β1/β0 and β/β0 = (β2 +4β3 +2β4)/β0. Dashed lines show approximate estimates using Equations 59 and 62 with values
from Table 2. Predictions for NiCoCr using WC-SRO parameters from Ref. [46] and misfit volumes from Ref. [47] are marked with a
black star.

(Du et al.)

Figure 5: Change in characteristic dislocation roughening amplitude wc in fcc alloys relative to the random alloy value of 4.5b, as
function of β1/β0 and β/β0. Dashed lines are approximate estimates using Equations 59 with values from Table 2.

Equation 54b for bcc alloys, can be expressed along the same lines as Equation 62 above. To reduce the
complexity, we note that the bcc coefficients are approximately B ≈ 1.15C and D ≈ 1.1E for w/b < 7, which
is within the range of wc values for moderate SRO. This gives us

∆Ẽ2
p,sd(wc)≈

(
µ · 1+ν

1−ν

)2

β0

[
A(wc)+6 C(wc)

β 1
β0

+12 D(wc)
β 2
β0

]
(63)

in terms of two other dimensionless SRO parameters β 1 = 1.5 β1 +β2 and β 2 = β3 +1.8 β4,
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(a) Percent change in the energy barrier (b) Percent change in T=0K yield strength

Figure 6: Percent change in critical solid solution hardening quantities in bcc alloys relative to a random alloy as function of two SRO
parameters β 1/β0 = (1.5 β1 +β2)/β0 and β 2/β0 = (β3 +1.8 β4)/β0. Dashed lines are approximate estimates using Equations 60 and
63 with values from Table 2.

In bcc alloys, moderate SRO has considerable effects of ±20% on the energy barrier ∆Eb and over ±12%
on the 0K flow stress τy0 over the range β 1/β0 ±0.1. The approximate analytic estimates (Equations 58b and
61b) are reasonably accurate for the energy barrier but show larger deviations for the strength, with jumps
in the full results corresponding to changes in the discrete (increments of b/3) value of wc (Figure 7). As
for fcc alloys, changes in wc due to SRO are small but not negligible relative to the random alloy value of
wc = 4.3333b and are reported in Figure 7.

Figure 7: Change in characteristic dislocation roughening amplitude wc in bcc alloys with respect to the random alloy value of 4.3333b,
as function of combined quantities β 1/β0 and β 2/β0. Dashed lines are for approximate estimates using Equations 60 with values from
Table 2.

Forthcoming work by Xin and Curtin [49] will explicitly demonstrate the negative and positive effects of
SRO on strength in a model bcc alloy using carefully-designed atomistic simulations. This will constitute
quantitative validation of the present theory.

5.2. Strengthening due to solute-solute interactions
In Section 4.1, we have derived a general expression for the athermal strengthening τA (Equation 24) due

to solute-solute interactions in terms of alloy concentration, EPIs, and WC-SRO parameters, for any fcc or bcc
alloy. Although this is the most general expression of τA derived to date, atomic interactions in concentrated
alloys can be many-body, i.e. extend beyond just pair interactions. In such cases, although a cluster expansion
(CE) model or multi-body interatomic potential can be used to capture the solute interactions among atoms in
the crystal, we have no analytical expression for τA. For the thermally activated strengthening contribution,
our derived results for σ2

∆Ess, f
and σ2

∆Ess,p
in Section 4.2.3 are also quite complicated and not easily simplified

nor easily generalized to multi-body interactions.
If a CE or interatomic potential or, at much higher cost, first-principles density function theory (DFT) is

available, however, strengthening due to solute-solute interactions with and without SRO can be computed.
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First, the relevant equilibrium SRO in an alloy is modeled using Monte-Carlo simulations along with the
CE/interatomic potential/DFT. Starting from the resulting atomistic realization of the alloy, with or without
SRO, the energy change per unit area due to full slip by a Burgers vector can be computed by shifting one-half
of the crystal by b relative to the other half, across the desired glide plane, and dividing by the slipped area of
the sample. Averaging over many realizations with the same SRO, or over a very large area, gives precisely
the quantity γSRO needed to compute the athermal strengthening. In the absence of SRO, the result will
be γSRO = 0. Furthermore, the statistical distribution of energy changes per unit area measured across the
many realizations can be used to compute the fluctuating energy due to solute-solute interactions in the alloy,
again with or without SRO. The standard deviation σs−s of the distribution of energy changes calculated in
a simulation cell with Nslip atoms on (one side of) the slip plane is converted into the fluctuation energy as
σ∆Ess, f = σs−s/

√
Nslip. This approach has recently been used to compute σ∆Ess, f in the binary AuNi alloy

using first-principles density functional theory [40]. Repeating the exact analysis detailed above for partial
slip in fcc yields the average stacking fault energy (see Appendix A) and its standard deviation σ∆Ess,p .

We also recall that Ref. [6] showed that the characteristic dislocation waviness amplitude wc is independent
of σ2

∆Ess,p
for w < dp (partialseparation). This is the situation for many fcc complex concentration alloys

with low stacking fault energies and thus with dp > 6b and then wc < dp. This result then allows for the
computations of wc and ∆Ẽ2

p,sd(wc) as shown in section 5.1 followed by the addition of σ∆Ess,p according to
Equation 38. This feature greatly simplifies the incorporation of the solute-solute fluctuation contribution into
the solute-strengthening theory [40].

6. Conclusion

A theory of solute strengthening for random alloys has been extended to incorporate the effects of short-
range ordering (SRO) that can exist in alloys. The degree of SRO depends on alloy chemical interactions,
solute kinetics, and time-temperature processing conditions and is not addressed here. The theory is developed
in the framework of the widely-used Warren-Cowley SRO parameters and in terms of effective pair interactions
(EPIs) to describe the solute-solute interactions.

In the presence of SRO, there is an athermal strengthening due to the energy cost in shearing of an SRO
structure. This strengthening contribution has been well-recognized in the literature. The present work
extends the results to arbitrary multicomponent fcc and bcc alloys within the framework of EPIs.

More interestingly, the atomic correlations implied by any SRO in the alloy affect the fluctuations in
the solute-dislocation interaction energy parameter (∆Ẽ2

p ) that controls strengthening in the random alloy.
This change in alloy strength is independent of any energetic description such as EPIs (although the SRO is
due to the solute-solute interactions). The full theory has been reduced to simpler forms using the elasticity
approximation and solute misfit volumes to estimate the individual solute/dislocation interaction energies that
combine to give ∆Ẽ2

p . This rigorous analysis reveals that this SRO contribution to strengthening can either
increase or decrease the alloy strength. The possibility of a decreased strength due to SRO arises primarily
when the SRO parameters are negative (attraction of unlike solutes) and the differences in misfit volumes of
the unlike pairs are large. The theory predicts changes in the energy barrier and T=0K strength of 10–30% for
fcc alloys, either positive or negative, for moderate levels of SRO. For bcc alloys, the energy barriers changes
of 10–35% are similar while changes in 0K yield stress are smaller (< 10%). Analytic results are provided to
facilitate application of this solute/dislocation strengthening theory in terms of alloy elastic constants, solute
misfit volumes, and SRO parameters; no knowledge of solute-solute interactions is required.

Since the strength of many HEAs to date can be reasonably captured by the solute/dislocation interaction
contribution, the effects of SRO on strength due to the solute/dislocation contribution may be comparable to,
or larger than, those due to the athermal strengthening. If the SRO effects are negative (decreasing strength),
then they will offset the positive athermal strengthening. This may lead to a lower net strengthening of
the alloy relative to the random alloy and even, possibly, overall reduced strengthening. We have applied
the analysis here to a model NiCoCr system and have shown a reduction in misfit strengthening at room
temperature of 15%, which may offset the positive τA and rationalize recent experiments that show limited, if
any, strengthening due to SRO [26, 27].

Another contribution to the strengthening, with or without SRO, arises due to fluctuations in the solute-
solute interaction energy parameter. While general analytic results are derived, they are complex and not
easily applied. We have suggested various computational approaches to estimate these contributions to the
strength changes of the alloy.

The parameter-free strengthening theory presented in this work is, to our knowledge, the only complete
theory for multicomponent alloys possessing SRO. Importantly, the theory properly reduces to the random
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alloy theory when there is zero SRO, and so provides a continuous picture of alloy strengthening versus
SRO. As with any theory, approximations have been made in the derivation, and so the theory is not exact.
However, the theory does not introduce any ad-hoc parameters and so is broadly applicable. The theory is
limited mainly by the ability to estimate the underlying material parameters that enter the theory. The theory
can thus be used to interpret/rationalize experimental data, guide alloy design toward systems with SRO
characteristics that will improve alloy properties, or help assess whether pursuing the creation/control of SRO
would lead to notable improvements in alloy performance.
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Appendix
A. Stable stacking fault energy γss f e in alloys with SRO

The stable stacking fault energy γss f e in an fcc crystal is the excess energy per unit area due to slip by a
Shockley partial Burgers vector. This is precisely the quantity ⟨∆Ess,p+⟩/As. Therefore, using Equation 18b,
we can simplify ⟨∆Ess,p+⟩ as

⟨∆Ess,p+⟩=−1
2 ∑

p,q
cpcq ∑

k,l
yk<0
yl>0

λ
kl
pq

(
V e f f

pq (d f
kl)−V e f f

pq (dkl)
)
+

1
2 ∑

p
cp ∑

i
∆ε

p
i (A.1)

The first term in the above equation has the same form as the right-hand side in Equation 21 for ⟨∆Ess, f ⟩. So
it will have the form of Equation 22 after factoring out Na and expressing the sum over sites j as a sum over
discrete pair distances d and d′. However, the pair distances d and d′ across the partially-slipped crystal differ
from the bulk crystal, and hence ndd′ is also different, as given in Table 1. The number of atoms on slip plane
Na can also be factored out of the second term in Equation A.1 and the sum over i replaced by a sum over
distances dz from the slip plane, which in the case of fcc are positive integer multiples of 1/

√
3. Therefore

we can express the stacking fault energy as

γss f e =
⟨∆Ess,p+⟩

As
=

ρLρG

2 ∑
p,q

cpcq ∑
d

V e f f
pq (d)

 ∑
d′

d′ ̸=d

αpq(d′)nd′d −αpq(d)Md


− ρLρG

2 ∑
p,q

cpcq ∑
d

V e f f
pq (d)(Nd −Md)+ρLρG ∑

p
cp ∑

dz

∆ε
p(dz) (A.2)

The last two terms in Equation A.2 corresponds to the stacking fault in the random alloy, so the change in
γss f e is

(
∆γss f e

)
SRO =

ρLρG

2 ∑
p,q

cpcq ∑
d

V e f f
pq (d)

 ∑
d′

d′ ̸=d

αpq(d′)nd′d −αpq(d)Md

 (A.3)

The γss f e thus has the exact same form as γSRO (Equation 26) but is different in detail because the sums include
non-fcc distances arising in the stacking fault and their corresponding non-fcc EPIs, and hence different
values for the ndd′ and Md .

Pair distances after slip

d/a
d′/a

0.707 1.0 1.155 1.225 1.354 1.414 1.581 1.683 1.732 1.7795

Pa
ir

di
st

an
ce

s
be

fo
re

sl
ip

0.707 - 1 0 0 0 0 0 0 0 0
1.0 1 - 0 2 0 0 0 0 0 0

1.155 0 0 - 0 0 0 0 0 0 0
1.225 0 2 2 - 4 0 2 0 0 0
1.354 0 0 0 0 - 0 0 0 0 0
1.414 0 0 0 0 4 - 0 2 0 0
1.581 0 0 0 2 4 0 - 4 2 0
1.683 0 0 0 0 0 0 0 - 0 0
1.732 0 0 0 0 0 0 2 0 - 3

1.7795 0 0 0 0 0 0 0 0 0 -

Table 3: Structure factors ndd′ for pairs of normalized pair distances (d,d′) for a/6[211] partial slip along (11̄1̄) plane in fcc.

B. Derivation of the different coefficients A,B,C,D, . . . in ∆Ẽ2
p,sd (Equation 54)

In this section we will be basically simplifying Equation 53 to end up with Equation 54 with the coefficients
A,B,C,D, . . . .
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∆Ẽ2
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Using Equation 11,
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Replacing ∑
n,m<n

with ∑
m,n>m

(equivalent way of summing lower-triangular elements),

=

(
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Swapping dummy indices n and m in the third and fifth terms,

=
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Grouping last three terms,

=

(
∑
n

cn∆V 2
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)(
∑
[i]

∆p2
i (w)

)
+ ∑

n,m>n
cncm (∆Vn −∆Vm)

2
∑
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∑
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j ̸=i

∆pi(w)∆p j(w) α
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nm (A.4)
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To proceed further, we will introduce the notation ∆pi(w|a,b), which is basically writing ∆p j(w) for any
site j in terms of another site i as follows

∆pi(w|a,b) = ∆p j(w) = p(xi +a−w,yi +b)− p(xi +a,yi +b) (A.5)
where (a,b) = (x j − xi,y j − yi) for sites (i, j)

Obviously, by the above definition ∆pi(w|0,0) = ∆pi(w).

Lemma B.1. Auto-correlation of the pressure differences ∆pi(w|a,b) satisfies the following identities for any
a and w which are integer multiples of 1/(2

√
2) in fcc and 1/(2

√
3) in bcc, and for any b which is an integer

multiple of 1/
√

3 in fcc and 1/
√

2 in bcc1,

∑
[i]

∆pi (w|0,0) ∆pi (w|a,b) = ∑
[i]

∆pi (w|0,0) ∆pi (w|−a,−b) = ∑
[i]

∆pi (w|0,0) ∆pi (w|−a,b) = ∑
[i]

∆pi (w|0,0) ∆pi (w|a,−b)

(A.6)

The identities between 1st and 2nd terms and between 3rd and 4th terms follows from the well-known
symmetric property of autocorrelation functions where reversing the sense of the correlating vector leaves the
autocorrelation function unchanged. The identity between 1st and 3rd terms, on the other hand, follows from
the fact that the pressure field p(x,y) is symmetric along the glide direction x, even for elastically anisotropic
solids. Proof of Lemma B.1 is provided at the end of this section.

The notation of ∆pi (w|a,b) will allow us to reformulate Equation A.4 by replacing summation of explicit
neighbour sites j with summations over neighbour distances, which we will be simplifying further using
Lemma B.1.

First we recall that α
i j
nm depends on intersite distance

∥∥ri j
∥∥ where ∆pi(w) depends on only the x- and y-

coordinates. Therefore, it is possible that two sites i and j at the same neighbour distance
∥∥ri j

∥∥ might have
different (x j −xi,y j −yi) and vice versa. Table 4 tabulates the (x j −xi,y j −yi) of sites j in the neighbourhood
of any reference site i up to 4 nearest neighbours (NNs) in fcc and bcc and also enlists the corresponding NN
shells to which the sites belong.

1the distances are in terms of lattice parameter
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(x j ,y j)− (xi,yi)/a f cc nth NN
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Table 4: First column tabulates the (x j − xi,y j − yi) of sites j in the neighbourhood of any reference site i up to 4 nearest neighbours
(NNs) in (a) fcc and (b) bcc. The second column enumerates the NN distances which corresponds to the corresponding (x j − xi,y j − yi)
value enlisted in column 1. For example, the second row in 4a implies there are two 1st NN sites which have (x j −xi,y j −yi) = (1/2

√
2,0)

and another two 1st NN sites which have (x j − xi,y j − yi) = (−1/2
√

2,0). a f cc and abcc are fcc and bcc lattice parameters respectively.

We will now simplify Equation A.4 for fcc, using values from Table 4a and the notation ∆pi(w|a,b) from
Equation A.5. Doing so, ∆Ẽ2

p,sd can be expressed for fcc alloys with SRO extending up to 4th NN as follows,
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(A.7)

where we have introduced a new operator ± to group equivalent auto-correlation terms and is defined as
follows,

∆pi (w|±a,0) = ∆pi (w|a,0)+∆pi (w|−a,0) ∀a ̸= 0
∆pi (w|0,±b) = ∆pi (w|0,b)+∆pi (w|0,−b) ∀b ̸= 0

∆pi (w|±a,±b) = ∆pi (w|a,b)+∆pi (w|a,−b)+∆pi (w|−a,b)+∆pi (w|−a,−b) ∀a,b ̸= 0 (A.8)

The operator ± has the following properties derived from Lemma B.1.

∑
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28



Therefore, number of auto-correlation terms on RHS in Equation A.7 reduces from 33 to 12 and we have
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(A.10)

The nearest neighbour coordination numbers can be factored out from the coefficients of αAB at the
respective pair distances in Equation A.10. In the case of elastically isotropic alloy, the elastic constant
dependence of ∆pi(w) can also be factored out as µ(1+ν)/(1−ν) and the resultant coefficients of αAB at
different pair distances are then renamed with alphabets A,B,C,D,E, . . . as in Equation 54, each of which
only depends on the dislocation roughening amplitude w (The colors in Equation A.10 follows the same
convention used to designate the different coefficients of αAB in Figure 3).

Now, simplifying Equation A.4 for bcc, using values from Table 4b and Equation A.9, we have ∆Ẽ2
p,sd for

bcc alloys with SRO extending up to 4th NN as follows

∆Ẽ2
p,sd =

(
∑
n

cn∆V 2
n

)(
∑
[i]

∆p2
i (w)

)
+ ∑
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cncm (∆Vn −∆Vm)

2

[

+2 ∑
[i]

∆pi (w|0,0)

(
∆pi
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2
√

3
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√

3
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w
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2
√

3
,
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2
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+2 ∑
[i]

∆pi (w|0,0)

(
2 ∆pi

(
w
∣∣∣5abcc

2
√

3
,

abcc√
2

)
+∆pi

(
w
∣∣∣5abcc

2
√

3
,0
)
+2 ∆pi

(
w
∣∣∣3abcc

2
√

3
,
√

2abcc

)

+4 ∆pi

(
w
∣∣∣3abcc

2
√

3
,

abcc√
2

)
+2 ∆pi

(
w
∣∣∣ abcc

2
√

3
,
√

2abcc

)
+∆pi

(
w
∣∣∣ abcc

2
√

3
,0
))

αnm(4th NN)

]
(A.11)

For the plots in Figure 3, the pressure field p(xi,yi) is calculated using superposition of isotropic elastic
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Volterra solution of pressure due to a discretized smeared out dislocation core, parameterized by double-
Gaussian function for fcc [3, 42] and a unimodal Gaussian function for bcc.

For the special case of a binary alloy with concentrations c and (1− c) and misfit volumes ∆V and
−c∆V/(1− c) respectively, the Equation A.10 simplified to 55. The composition/misfit-volume dependent
factor with A(w) simplifies to c

(1−c)∆V 2 as follows,

∑
n

cn∆V 2
n = c∆V 2 +

c2

1− c
∆V 2 =

c
(1− c)

∆V 2 (A.12)

The composition/misfit-volume/correlation dependent factor with B(w),C(w), . . . also simplifies to c
(1−c)∆V 2α(nthNN)

as follows

∑
n,m>n

cncm (∆Vn −∆Vm)
2

αnm(nthNN) = c(1− c)
(

∆V +
c

1− c
∆V
)2

α(nthNN)

=
c

1− c
∆V 2

α(nthNN) (A.13)

So in the binary case, the concentration/misfit-volume dependence can be decoupled from the pair
correlations, however this is not possible for the multicomponent alloys. Nevertheless, the neighbour-
dependent coefficients A,B,C, . . . remains the same and Equation 54 can be exactly evaluated with the
knowledge of alloy composition, misfit volumes and the Warren-Cowley SRO parameters.

Proof of Lemma B.1. Expanding the auto-correlation function ∑
[i]

∆pi (w|0,0) ∆pi (w|a,b) as follows,

∑
[i]

∆pi (w|0,0) ∆pi (w|a,b) = ∑
[i]

(
p(xi −w,yi)− p(xi,yi)

)(
p(xi +a−w,yi +b)− p(xi +a,yi +b)

)
= ∑

[i]
p(xi,yi)p(xi +a,yi +b)−∑

[i]
p(xi,yi)p(xi +a−w,yi +b)

−∑
[i]

p(xi −w,yi)p(xi +a,yi +b)+∑
[i]

p(xi −w,yi)p(xi +a−w,yi +b) (A.14)

one can easily verify that the first and last sums in the RHS are the same by replacing xi −w with xi in the last
term; basically using the property that auto-correlation is invariant to translation. Therefore we have

∑
[i]

∆pi (w|0,0) ∆pi (w|a,b) = 2∑
[i]

p(xi,yi)p(xi +a,yi +b)−∑
[i]

p(xi,yi)p(xi +a−w,yi +b)

−∑
[i]

p(xi −w,yi)p(xi +a,yi +b) (A.15)

To show ∑
[i]

∆pi (w|0,0) ∆pi (w|a,b) = ∑
[i]

∆pi (w|0,0) ∆pi (w|−a,−b), we replace xi with xi −a and yi with

yi −b in all three auto-correlation terms in the RHS of Equation A.15 and thereby obtain

∑
[i]

∆pi (w|0,0) ∆pi (w|a,b) = 2∑
[i]

p(xi −a,yi −b)p(xi,yi)−∑
[i]

p(xi −a,yi −b)p(xi −w,yi)

−∑
[i]

p(xi −a−w,yi −b)p(xi,yi)

= ∑
[i]

∆pi (w|0,0) ∆pi (w|−a,−b) Hence proved. (A.16)

Identity ∑
[i]

∆pi (w|0,0) ∆pi (w|−a,b) = ∑
[i]

∆pi (w|0,0) ∆pi (w|a,−b) follows naturally from Equation A.16

for (−a,b) in place of (a,b).
To show ∑[i] ∆pi (w|0,0) ∆pi (w|a,b) =∑[i] ∆pi (w|0,0) ∆pi (w|−a,b) we will use the symmetry property

of edge dislocation pressure field along the glide direction, that is, p(xi,yi) = p(−xi,yi), in Equation A.15
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and obtain

∑
[i]

∆pi (w|0,0) ∆pi (w|a,b) = 2∑
[i]

p(−xi,yi)p(−xi −a,yi +b)−∑
[i]

p(−xi,yi)p(−xi −a+w,yi +b)

−∑
[i]

p(−xi +w,yi)p(−xi −a,yi +b)

Since all sites from −∞ to +∞ are summed over, one can replace −xi with xi

= 2∑
[i]

p(xi,yi)p(xi −a,yi +b)−∑
[i]

p(xi,yi)p(xi −a+w,yi +b)

−∑
[i]

p(xi +w,yi)p(xi −a,yi +b)

Replacing xi with xi −w in the last two auto-correlation terms

= 2∑
[i]

p(xi,yi)p(xi −a,yi +b)−∑
[i]

p(xi −w,yi)p(xi −a,yi +b)

−∑
[i]

p(xi,yi)p(xi −a−w,yi +b)

= ∑
[i]

∆pi (w|0,0) ∆pi (w|−a,b) Hence proved. (A.17)

Note the above derivation could have also been carried out using the anti-symmetric property of edge
dislocation pressure field along the slip plane normal, that is, p(xi,yi) =−p(xi,−yi).

A few caveats to note in the proof of Lemma B.1:

1. Since we have an atomistic system with atoms arranged on fcc or bcc lattice, the pressure field is
defined only at the lattice sites (we are ignoring in our analysis the dislocation displacement field).
Therefore, keeping in mind the discreteness of our problem, we have the caveat in Lemma B.1 that a
and w must be integer multiples of 1/(2

√
2) in fcc and 1/(2

√
3) in bcc, and b must an integer multiple

of 1/
√

3 in fcc and 1/
√

2 in bcc.
2. The use of the symmetric property of the pressure field in the proof of Equation A.17 requires the

mean dislocation position to be at the origin in between two {110} planes in fcc or between two {111}
planes in bcc, considering the discreteness of the lattice. If the dislocation is off the origin in the glide
direction by ±1/(4

√
2) in fcc or ±1/(4

√
3) in bcc, then strictly speaking the symmetry is not satisfied;

however the associated error is negligible and exact dislocation position is not well-defined anyway.

C. Covariances cov(∆Esd ,∆Ess, f ) in Equation 38

This section justifies why the covariance cov(∆Esd ,∆Ess, f ) is negligible compared to the variances σ2
∆Esd

and σ2
∆Ess, f

.

First we would simplify cov
(
∆Esd ,∆Ess, f

)
as follows

cov
(
∆Esd ,∆Ess, f

)
= ⟨∆Esd ∆Ess, f ⟩−⟨∆Esd⟩⟨∆Ess, f ⟩

Since ⟨∆Esd⟩= 0, cov
(
∆Esd ,∆Ess, f

)
= ⟨∆Esd ∆Ess, f ⟩ (A.18)
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Combining Equations 17 and 18a with Equation A.18, we get

cov
(
∆Esd ,∆Ess, f

)
=−1

2

〈
∑

i
∑
n

sn
i

(
Un

sd(xi −w,yi)−Un
sd(xi,yi)

)
︸ ︷︷ ︸

∆Un
sd,i(w)

∑
k,l

∑
p,q

sp
k sq

l

(
V e f f

pq (d f
kl)−V e f f

pq (dkl)
)〉

with k,k′ being discrete sites below the glide plane and l, l′ discrete sites above the glide plane,

=−1
2 ∑

k,l
∑
p,q

〈(
sp

k

)2 sq
l

〉
∆U p

sd,k(w)
(

V e f f
pq (d f

kl)−V e f f
pq (dkl)

)
− 1

2 ∑
k,l

∑
p,q

〈
sp

k

(
sq

l

)2
〉

∆Uq
sd,l(w)

(
V e f f

pq (d f
kl)−V e f f

pq (dkl)
)

− 1
2 ∑

k′,k,l
∑

p′,p,q

〈
sp′

k′ s
p
k sq

l

〉
∆U p′

sd,k′(w)
(

V e f f
pq (d f

kl)−V e f f
pq (dkl)

)
− 1

2 ∑
k,l,l′

∑
p,q,q′

〈
sp

k sq
l sq′

l′

〉
∆Uq′

sd,l′(w)
(

V e f f
pq (d f

kl)−V e f f
pq (dkl)

)〉
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〈(
sp

k

)2 sq
l

〉
=
〈

sp
k sq

l

〉
=−1

2 ∑
k,l

∑
p,q

〈
sp

k sq
l

〉
∆U p

sd,k(w)
(

V e f f
pq (d f

kl)−V e f f
pq (dkl)

)
− 1

2 ∑
k,l

∑
p,q

〈
sp

k sq
l

〉
∆Uq

sd,l(w)
(

V e f f
pq (d f

kl)−V e f f
pq (dkl)

)
− 1

2 ∑
k′,k,l

∑
p′,p,q

〈
sp′

k′ s
p
k sq

l

〉
∆U p′

sd,k′(w)
(

V e f f
pq (d f

kl)−V e f f
pq (dkl)

)
− 1

2 ∑
k,l,l′

∑
p,q,q′

〈
sp

k sq
l sq′

l′

〉
∆Uq′

sd,l′(w)
(

V e f f
pq (d f

kl)−V e f f
pq (dkl)

)〉
(A.19)

Since Un
sd(x,y)=Un

sd(x,−y) due to anti-symmetry of pressure field across the glide plane, cov
(
∆Esd ,∆Ess, f

)
will be zero if atomic positions satisfy reflection symmetry across the glide plane. And the above conclusion
holds for any homogeneous alloy, irrespective of the level of SRO. This also implies that cov

(
∆Esd ,∆Ess, f

)
=

0 if the stacking sequence of atomic planes along glide plane normal is of −AAAA− type, which is neither
the case for fcc nor bcc. Referring to the Figure 2(a) in the middle of the green patch near w/2, where the
crystallites on either sides of the glide plane are almost fully slipped, the stacking of planes along glide plane
normal is close to bulk stacking — therefore, cov

(
∆Esd ,∆Ess, f

)
̸= 0. However away from the dislocation core,

the dislocation pressure field is negligible near the glide plane making the product ∆Esd ·∆Ess, f negligible,
and so is the covariance.

On the other hand near the dislocation core, solute-dislocation interaction is the highest. However for
edge dislocations due to missing half planes, atomic planes on either sides of the glide plane readjust their
position along the glide direction such that reflection symmetry across the glide plane is partially realized
near the dislocation core. This in turn reduces cov

(
∆Esd ,∆Ess, f

)
in line with the premise we stated above.

Therefore, overall we think the covariance cov(∆Esd ,∆Ess, f ) is negligible compared to the variances
σ2

∆Esd
and σ2

∆Ess, f
, irrespective of the level of SRO in a homogeneous alloy.
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