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Abstract: Despite the immense success of neural networks in modeling system dynamics from
data, they often remain physics-agnostic black boxes. In the particular case of physical systems,
they might consequently make physically inconsistent predictions, which makes them unreliable
in practice. In this paper, we leverage the framework of Irreversible port-Hamiltonian Systems
(IPHS), which can describe most multi-physics systems, and rely on Neural Ordinary Differential
Equations (NODEs) to learn their parameters from data. Since IPHS models are consistent with
the first and second principles of thermodynamics by design, so are the proposed Physically
Consistent NODEs (PC-NODEs). Furthermore, the NODE training procedure allows us to
seamlessly incorporate prior knowledge of the system properties in the learned dynamics. We
demonstrate the effectiveness of the proposed method by learning the thermodynamics of a
building from the real-world measurements and the dynamics of a simulated gas-piston system.
Thanks to the modularity and flexibility of the IPHS framework, PC-NODEs can be extended
to learn physically consistent models of multi-physics distributed systems.
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1. INTRODUCTION

In recent years, Neural Networks (NNs) have achieved
impressive performances on a broad range of tasks, includ-
ing time series prediction, where Recurrent NNs (RNNs),
Gated Recurrent Units (GRUs), Long Short-Term Mem-
ory networks (LSTMs), and transformers, often attain
great accuracy (Wang and Yu, 2021). These successes
also motivated researchers to use NNs to identify system
dynamics from data, but such models often suffer from
physical inconsistencies: they can fit data well without
learning the underlying ground truth, making them un-
reliable in practice (Geirhos et al., 2020; Di Natale et al.,
2022). As a countermeasure to the brittleness of NN-based
models, there has been increasing interest in incorporating
prior knowledge – also known as inductive bias – into NNs
to ensure physical consistency, leading to Hamiltonian NNs
(Chen et al., 2019; Greydanus et al., 2019; Finzi et al.,
2020), Lagrangian NNs (Cranmer et al., 2020), or Poisson
NNs (Jin et al., 2022), amongst others. We defer the reader
to Wang and Yu (2021) for a comprehensive survey on
physics-guided deep learning for dynamical systems.

At the same time, higher-level connections between NNs
and dynamical systems have also been studied, showing
that some classes of NNs can be interpreted as discretized
dynamical systems (Haber and Ruthotto, 2017). On the
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other hand, Chen et al. (2018) proposed the framework of
Neural Ordinary Differential Equations (NODEs), where
inputs are transformed through a continuous-time ODE
embedding trainable parameters. In other words, NODEs
learn the parameters of an ODE to fit data, making
them particularly suitable to model complex dynamical
systems (Greydanus et al., 2019; Rubanova et al., 2019).
Furthermore, their interpretation as ODEs allows one to
borrow tools from dynamical system theory to analyze
their properties (Zakwan et al., 2022; Fazlyab et al., 2022;
Galimberti et al., 2021). However, similarly to classical
NNs, NODEs can be physically inconsistent in general.

This paper proposes Physically Consistent NODEs (PC-
NODEs), which leverage the Irreversible port-Hamiltonian
(IPH) modeling framework to describe multi-physics sys-
tems and NODEs to learn their dynamics. Thanks to
the IPH formulation, we can guarantee that PC-NODEs
respect the first and second laws of thermodynamics at all
times and by construction, solving the issue of physically
inconsistent NODEs. Moreover, unlike black-box NNs, PC-
NODEs allow us to embed a priori desired structural
properties of trainable parameters, such as skew-symmetry
and prescribed sparsity patterns, in the learning process.

Our efforts to ground learning schemes in the underlying
physics are conceptually related to the work of Masi et al.
(2021), who ensured that suitable model derivatives are
consistent with the rules of thermodynamics. In another
attempt, Di Natale et al. (2022) introduced Physically
Consistent NNs (PCNNs), where a physics-inspired mod-
ule runs in parallel to a NN to ensure the predictions com-
ply with underlying physical laws. While these methods
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Abstract: Despite the immense success of neural networks in modeling system dynamics from
data, they often remain physics-agnostic black boxes. In the particular case of physical systems,
they might consequently make physically inconsistent predictions, which makes them unreliable
in practice. In this paper, we leverage the framework of Irreversible port-Hamiltonian Systems
(IPHS), which can describe most multi-physics systems, and rely on Neural Ordinary Differential
Equations (NODEs) to learn their parameters from data. Since IPHS models are consistent with
the first and second principles of thermodynamics by design, so are the proposed Physically
Consistent NODEs (PC-NODEs). Furthermore, the NODE training procedure allows us to
seamlessly incorporate prior knowledge of the system properties in the learned dynamics. We
demonstrate the effectiveness of the proposed method by learning the thermodynamics of a
building from the real-world measurements and the dynamics of a simulated gas-piston system.
Thanks to the modularity and flexibility of the IPHS framework, PC-NODEs can be extended
to learn physically consistent models of multi-physics distributed systems.

Keywords: Machine Learning, Neural networks, Multi-physics, Thermodynamics, Data-driven
Modelling, Irreversible port-Hamiltonian systems.

1. INTRODUCTION

In recent years, Neural Networks (NNs) have achieved
impressive performances on a broad range of tasks, includ-
ing time series prediction, where Recurrent NNs (RNNs),
Gated Recurrent Units (GRUs), Long Short-Term Mem-
ory networks (LSTMs), and transformers, often attain
great accuracy (Wang and Yu, 2021). These successes
also motivated researchers to use NNs to identify system
dynamics from data, but such models often suffer from
physical inconsistencies: they can fit data well without
learning the underlying ground truth, making them un-
reliable in practice (Geirhos et al., 2020; Di Natale et al.,
2022). As a countermeasure to the brittleness of NN-based
models, there has been increasing interest in incorporating
prior knowledge – also known as inductive bias – into NNs
to ensure physical consistency, leading to Hamiltonian NNs
(Chen et al., 2019; Greydanus et al., 2019; Finzi et al.,
2020), Lagrangian NNs (Cranmer et al., 2020), or Poisson
NNs (Jin et al., 2022), amongst others. We defer the reader
to Wang and Yu (2021) for a comprehensive survey on
physics-guided deep learning for dynamical systems.

At the same time, higher-level connections between NNs
and dynamical systems have also been studied, showing
that some classes of NNs can be interpreted as discretized
dynamical systems (Haber and Ruthotto, 2017). On the

⋆ This research was supported by the Swiss National Sci-
ence Foundation under the NCCR Automation (grant agreement
51NF40 180545) and in part by the Swiss Data Science Center
(grant no. C20-13). †The authors contributed equally. Corresponding
authors: muhammad.zakwan@epfl.ch, loris.dinatale@empa.ch.

other hand, Chen et al. (2018) proposed the framework of
Neural Ordinary Differential Equations (NODEs), where
inputs are transformed through a continuous-time ODE
embedding trainable parameters. In other words, NODEs
learn the parameters of an ODE to fit data, making
them particularly suitable to model complex dynamical
systems (Greydanus et al., 2019; Rubanova et al., 2019).
Furthermore, their interpretation as ODEs allows one to
borrow tools from dynamical system theory to analyze
their properties (Zakwan et al., 2022; Fazlyab et al., 2022;
Galimberti et al., 2021). However, similarly to classical
NNs, NODEs can be physically inconsistent in general.

This paper proposes Physically Consistent NODEs (PC-
NODEs), which leverage the Irreversible port-Hamiltonian
(IPH) modeling framework to describe multi-physics sys-
tems and NODEs to learn their dynamics. Thanks to
the IPH formulation, we can guarantee that PC-NODEs
respect the first and second laws of thermodynamics at all
times and by construction, solving the issue of physically
inconsistent NODEs. Moreover, unlike black-box NNs, PC-
NODEs allow us to embed a priori desired structural
properties of trainable parameters, such as skew-symmetry
and prescribed sparsity patterns, in the learning process.

Our efforts to ground learning schemes in the underlying
physics are conceptually related to the work of Masi et al.
(2021), who ensured that suitable model derivatives are
consistent with the rules of thermodynamics. In another
attempt, Di Natale et al. (2022) introduced Physically
Consistent NNs (PCNNs), where a physics-inspired mod-
ule runs in parallel to a NN to ensure the predictions com-
ply with underlying physical laws. While these methods

Physically Consistent Neural ODEs for
Learning Multi-Physics Systems ⋆

M. Zakwan† ∗ L. Di Natale† ∗∗,∗ B. Svetozarevic ∗∗ P. Heer ∗∗

C. N. Jones ∗ G. Ferrari Trecate ∗

∗ Laboratoire d’Automatique, EPFL, Lausanne, Switzerland.
∗∗ Urban Energy Systems Laboratory, Empa, Dübendorf, Switzerland.
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were shown to work well in case studies, they are limited
to a few applications. In contrast, PC-NODEs are more
general and applicable to a wide variety of systems.

The modularity of the IPH framework allows us to char-
acterize many multi-physics systems, including thermody-
namic, mechanical, chemical, or electrical systems (Ramirez
et al., 2013a; Van der Schaft and Jeltsema, 2021). Fur-
thermore, identifying system dynamics in the IPH form
provides several benefits, as one can then design sta-
bilizing controllers and scale to distributed systems via
interconnection with other passive port-Hamiltonian sys-
tems (Ramirez et al., 2013a). To showcase the flexibility
of the proposed PC-NODEs, in this paper, we model
the thermal dynamics of a building from the real-world
measurements and the dynamics of a simulated gas-piston
system.

Organization: Section 2 presents PC-NODEs and describes
the training procedure. In Section 3, we consider the
modeling of two case studies, and the results are illustrated
in Section 4. Finally, Section 5 concludes the paper.

Notations: The p−norm is denoted as || · ||p. A matrix J
is skew-symmetric if J = −J⊤. The Poisson bracket of
Z,G ∈ C∞(Rn) with respect to a skew-symmetric matrix

J is defined as {Z,G}J = ∂Z⊤(x)
∂x J ∂G(x)

∂x .

2. LEARNING IRREVERSIBLE
PORT-HAMILTONIAN DYNAMICS

This section introduces the PC-NODE framework to learn
system dynamics from data while ensuring compatibility
with the first and second laws of thermodynamics.

2.1 Physics-Consistent NODEs

An IPH system (Ramirez et al., 2013a,b) is described as

ẋ = R

(
x,

∂H(x)

∂x
,
∂S(x)

∂x

)
J
∂H(x)

∂x

+W

(
x,

∂H(x)

∂x

)
+ g

(
x,

∂H(x)

∂x

)
u , (1)

where x ∈ Rn is the state, u ∈ Rm the control input, and
the different functions and matrices satisfy 1

(P1) the Hamiltonian function H and the entropy function
S are maps from C∞(Rn) to → R;

(P2) the interconnection matrix J ∈ Rn×n is constant and
skew-symmetric;

(P3) the real function R = R(x, ∂H
∂x ,

∂S
∂x ) is defined as

R

(
x,

∂H

∂x
,
∂S

∂x

)
= γ

(
x,

∂H

∂x

)
{S,H}J , (2)

where γ ⪰ 0 is a nonnegative function of the states
and co-states of the system;

(P4) the two vector fields W and g satisfy W (x, ∂H
∂x ) ∈ Rn

and g(x, ∂H
∂x ) ∈ Rn×m.

We have used the blue color to denote functions that
can be parameterized, e.g. using NNs, and identified from
data as described in Section 2.2. This defines the overall
1 To have concise notation throughout the paper, the dependence
on x and partial derivatives is dropped when it is clear from the
context.

PC-NODE framework. As long as the learned parameters
respect the constraints and properties listed above, the
learned model will obey the first and second laws of
thermodynamics by construction. Indeed, by the skew-
symmetry of J , setting W,u ≡ 0, we have

dH

dt
=

∂H⊤

∂x

(
RJ

∂H

∂x

)
= R×

(
∂H⊤

∂x
J
∂H

∂x

)
= 0 , (3)

which proves the conservation of energy in the system.
Similarly, we can show the irreversible creation of entropy
in the system as follows:

dS

dt
= R

∂S⊤

∂x
J
∂H

∂x
= γ

(
x,

∂H

∂x

)
{S,H}2J ≥ 0 ,

as long as γ ⪰ 0. We defer the reader to Ramirez et al.
(2013b) for more details on these computations.

2.2 Training PC-NODEs

Several NODE training procedures have been proposed in
the literature, such as the adjoint sensitivity method (Chen
et al., 2018) or the auto-differentiation technique (Paszke
et al., 2017). In this work, inspired by Haber and
Ruthotto (2017), we first discretize PC-NODE (1) using
the Forward-Euler (FE) method with sampling period
h > 0, leading to

xi+1 = xi + h

(
RJ

∂H(xi)

∂xi
+W + gui

)
, (4)

where xi and xi+1 represent the current and next state, re-
spectively. In practice, the step-size h is chosen sufficiently
small so as to interpret the states in (4) as a sampled
version of the state x(t) of system (1).

We then assume to have access to a dataset of M sampled
full-state trajectories

D :=

{
(zj0, r

j
0), (z

j
1, r

j
1), · · · (zjL, rjL)

}M

j=1

,

where L is the total number of time steps for each
trajectory of measured states z and inputs r. Finally, we
train system (4) to minimize the following objective

min
R,J,W,g

L∑
i=1

M∑
j=1

ℓ(zji , x
j
i ) . (5)

While we optimize the squared error ℓ(z, x) = ||z − x||22
in this work, this can easily be replaced by other loss
functions.

We implement the proposed PC-NODEs using PyTorch,
which allows us to easily propagate the inputs through
the NODE and then rely on automatic BackPropagation
Through Time (BPTT) (Werbos, 1990) to run Gradient
Descent (GD) on the trainable parameters, as sketched
in Fig. 1. However, in general, it does not allow one
to introduce constraints on the parameters directly. In
particular, it cannot not guarantee that either J satisfies
property (P2) or R (P3). Consequently, the next Section
discusses how to ensure that these constraints are satisfied
– despite running unconstrained GD – in the light of
two illustrative examples. While this may seem counter-
intuitive at first, running unconstrained GD while enforc-
ing constraints by construction allows one to leverage the
full strength of automatic GD in PyTorch, which naturally
scales to large systems and long prediction horizons.
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Fig. 1. A pictorial description of the training procedure
of the discretized PC-NODE (4), where the same
parameters are used at each step to propagate the
state forward in time.

Remark 1. Besides modifying the loss function ℓ, one can
also introduce weighted penalty terms in equation (5), e.g.
to promote sparse solutions with ||J ||1.

3. MODEL FORMULATIONS

To demonstrate the variety of systems that can be repre-
sented with IPH dynamics, this section describes how to
model thermal building dynamics and gas-piston systems
and ensure properties (P1)–(P4) are respected.

3.1 Thermal building dynamics

The thermal dynamics of a building can be seen as
N connected thermal zones exchanging energy among
themselves and with the outside, as depicted in Fig. 2. In
this work, we assume that they are additionally impacted
by various heat gains from heating or cooling operations
and solar irradiation. Inspired by the IPH formulation of
heat exchangers (Ramirez et al., 2013a), we model the
entropy S ∈ RN in each zone as follows

Ṡ = J̃(T )
∂H(S)

∂S
+Be(T )Te + [Bs Bh Bc]


Qs

Qh

Qc


, (6)

where T ∈ RN represents the temperature in each zone.
We separated the different inputs u, with Te ∈ R cor-
responding to the ambient temperature, and Qs, Qh,
Qc ∈ RN to solar, heating, and cooling gains for each zone,
respectively. Bs, Bh, and Bc are N ×N diagonal matrices
gathering trainable parameters reflecting the impact of
these gains on the entropy of each zone. Be(T ) ∈ RN

models the heat losses to the outside, with entries

Be(T )i = λie
(Te − Ti)

(TiTe)

for each zone i, where {λie}Ni=1 are the trainable param-

eters. Finally, the skew-symmetric matrix J̃(T ) ∈ RN×N ,
lumping together R and J in this case, is parametrized as

J̃ij(T ) = −J̃ji(T ) =


λij

(Tj−Ti)
(TiTj)

if i is adjacent to j

0 otherwise,

where two zones are adjacent if they share at least a
common wall.

Interestingly, by the definition of entropy, and recalling
that the Hamiltonian H represents the energy of the

system, we have ∂H(S)
∂S = T . Hence, there is no need

to parametrize the partial derivatives of the Hamiltonian
function in this case since they can be computed explicitly
from the state of the system, as shown in Appendix A
(assuming a constant volume for each zone).
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Fig. 2. A pictorial description of the thermal behavior of
a three-zone building, where yellow arrows represent
energy flows.

Proposition 1. (Consistency, and monotonicity). The PC-
NODE (6) is consistent with the first and second laws of
thermodynamics and monotonic with respect to all inputs,
i.e. Te, Qs, Qh, and Qc if the learned parameters satisfy

Bs, Bh, Bc ⪰ 0, and λij , λie ∈ R+, ∀i, j = 1, . . . , N.

Proof. See Appendix B for a sketch of the proof and
Van der Schaft and Jeltsema (2021) for more details. □

Remark 2. The dependence of J̃ on T in (6) violates
property (P2). While state-dependent connection matrices
break the consistency of the system with the first and
second laws of thermodynamics in general (Ramirez et al.,
2013a), we show that PC-NODE (6) remains consistent in
the proof of Proposition 1.

Remark 3. Exploiting the linearity of the PC-NODE (6),
one can show that it is almost equivalent to well-known
Resistance-Capacitance (RC) architectures. The latter
model the energy of each zone instead of their entropy,
but both quantities are linked by definition since dS = dH

T .
Multiplying (6) by the temperature of each zone, one can
hence recover an energy model of the building, but with the
training parameters in Bs(T ), Bh(T ), and Bc(T ) depend-
ing on the corresponding zone temperatures. Since the
latter can be considered as roughly constant (in Kelvin),
this is indeed similar to classical RC models.

3.2 Gas Piston system

Consider a typical gas piston system, as depicted in Fig. 3,
where the piston is subject to friction, influenced by an
external force F (t) = u, and its elasticity is modeled
by a spring. We define the state of the system as x =
[S, V, q, p]⊤, where S is entropy and V the volume of the
gas, and q, p are the position and momentum of the
piston, respectively. Inspired by Ramirez et al. (2013b),
the system can be described by the following nonlinear
IPH dynamics

ẋ =


R


x,

∂S

∂x
,
∂H(x)

∂x


J0 + J1


∂H(x)

∂x
+Gu , (7)

J0 =




0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0


 , J1 =



0 0 0 0
0 0 0 α
0 0 0 β
0 −α −β 0


 ,

∂H(x)

∂x
= [T,−P,Kq, v]

⊤
, G = [0, 0, 0, 1]

⊤
,

where R(x, ∂S
∂x ,

∂H(x)
∂x ) = µv

T , T is the temperature and P
the pressure of the gas, K the spring constant, and v = p

m
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of the discretized PC-NODE (4), where the same
parameters are used at each step to propagate the
state forward in time.

Remark 1. Besides modifying the loss function ℓ, one can
also introduce weighted penalty terms in equation (5), e.g.
to promote sparse solutions with ||J ||1.

3. MODEL FORMULATIONS

To demonstrate the variety of systems that can be repre-
sented with IPH dynamics, this section describes how to
model thermal building dynamics and gas-piston systems
and ensure properties (P1)–(P4) are respected.

3.1 Thermal building dynamics

The thermal dynamics of a building can be seen as
N connected thermal zones exchanging energy among
themselves and with the outside, as depicted in Fig. 2. In
this work, we assume that they are additionally impacted
by various heat gains from heating or cooling operations
and solar irradiation. Inspired by the IPH formulation of
heat exchangers (Ramirez et al., 2013a), we model the
entropy S ∈ RN in each zone as follows

Ṡ = J̃(T )
∂H(S)

∂S
+Be(T )Te + [Bs Bh Bc]


Qs

Qh

Qc


, (6)

where T ∈ RN represents the temperature in each zone.
We separated the different inputs u, with Te ∈ R cor-
responding to the ambient temperature, and Qs, Qh,
Qc ∈ RN to solar, heating, and cooling gains for each zone,
respectively. Bs, Bh, and Bc are N ×N diagonal matrices
gathering trainable parameters reflecting the impact of
these gains on the entropy of each zone. Be(T ) ∈ RN

models the heat losses to the outside, with entries

Be(T )i = λie
(Te − Ti)

(TiTe)

for each zone i, where {λie}Ni=1 are the trainable param-

eters. Finally, the skew-symmetric matrix J̃(T ) ∈ RN×N ,
lumping together R and J in this case, is parametrized as

J̃ij(T ) = −J̃ji(T ) =


λij

(Tj−Ti)
(TiTj)

if i is adjacent to j

0 otherwise,

where two zones are adjacent if they share at least a
common wall.

Interestingly, by the definition of entropy, and recalling
that the Hamiltonian H represents the energy of the

system, we have ∂H(S)
∂S = T . Hence, there is no need

to parametrize the partial derivatives of the Hamiltonian
function in this case since they can be computed explicitly
from the state of the system, as shown in Appendix A
(assuming a constant volume for each zone).
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Proposition 1. (Consistency, and monotonicity). The PC-
NODE (6) is consistent with the first and second laws of
thermodynamics and monotonic with respect to all inputs,
i.e. Te, Qs, Qh, and Qc if the learned parameters satisfy

Bs, Bh, Bc ⪰ 0, and λij , λie ∈ R+, ∀i, j = 1, . . . , N.

Proof. See Appendix B for a sketch of the proof and
Van der Schaft and Jeltsema (2021) for more details. □

Remark 2. The dependence of J̃ on T in (6) violates
property (P2). While state-dependent connection matrices
break the consistency of the system with the first and
second laws of thermodynamics in general (Ramirez et al.,
2013a), we show that PC-NODE (6) remains consistent in
the proof of Proposition 1.

Remark 3. Exploiting the linearity of the PC-NODE (6),
one can show that it is almost equivalent to well-known
Resistance-Capacitance (RC) architectures. The latter
model the energy of each zone instead of their entropy,
but both quantities are linked by definition since dS = dH

T .
Multiplying (6) by the temperature of each zone, one can
hence recover an energy model of the building, but with the
training parameters in Bs(T ), Bh(T ), and Bc(T ) depend-
ing on the corresponding zone temperatures. Since the
latter can be considered as roughly constant (in Kelvin),
this is indeed similar to classical RC models.

3.2 Gas Piston system

Consider a typical gas piston system, as depicted in Fig. 3,
where the piston is subject to friction, influenced by an
external force F (t) = u, and its elasticity is modeled
by a spring. We define the state of the system as x =
[S, V, q, p]⊤, where S is entropy and V the volume of the
gas, and q, p are the position and momentum of the
piston, respectively. Inspired by Ramirez et al. (2013b),
the system can be described by the following nonlinear
IPH dynamics

ẋ =


R


x,

∂S

∂x
,
∂H(x)

∂x


J0 + J1


∂H(x)

∂x
+Gu , (7)

J0 =




0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0


 , J1 =



0 0 0 0
0 0 0 α
0 0 0 β
0 −α −β 0


 ,

∂H(x)

∂x
= [T,−P,Kq, v]

⊤
, G = [0, 0, 0, 1]

⊤
,

where R(x, ∂S
∂x ,

∂H(x)
∂x ) = µv

T , T is the temperature and P
the pressure of the gas, K the spring constant, and v = p

m
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Fig. 3. Sketch of the gas piston system.

represents the speed of the piston with massm and friction
coefficient µ.

Since the entropy is a state of the system, ∂S
∂x = [1, 0, 0, 0]⊤,

which implies that property (P2) becomes

R

(
x,

∂S

∂x
,
∂H(x)

∂x

)
= γ

(
x,

∂H(x)

∂x

)
∂S

∂x

⊤
J0

∂H(x)

∂x

= γ

(
x,

∂H(x)

∂x

)
∂H(x)

∂p
. (8)

The function R is thus well-defined and can be derived
from γ and H. To showcase the flexibility of the proposed
PC-NODEs, we assume the Hamiltonian to be unknown
and parametrize it as a single-layer NN with the form

H(x; θ) = log [cosh(Kx+ b)]
⊤
1n , (9)

where 1n represents a column vector with n elements equal
to 1, and θ = {K, b}. Such an architecture is chosen for
its elegance because it allows us to compute the required
partial derivatives in closed form(Galimberti et al., 2021)

∂H(x; θ)

∂x
= K⊤ tanh(Kx+ b) . (10)

We parametrize γ as a single layer NN γ : R8 →
R+, where positivity is obtained by feeding the output
through a sigmoid function, which is sufficient to ensure
property (P2). Finally, we assume the sparsity pattern
of J1 to be known, but not its parameters {α, β}, to
demonstrate how prior knowledge might be incorporated
into the learning process 2 .

Remark 4. Although PC-NODE (7) is slightly different
from the generic representation in (1), the key system
properties are still conserved. Indeed, one can always de-
compose the product between R and J in a sum of prod-
ucts without violating the first and second laws of thermo-
dynamics as long as each term respects condition (2) and
the skew-symmetry of J . See the proof of Proposition 1
for more details.

Remark 5. As we assume no thermal exchanges between
the gas and the ambient air, according to the second law
of thermodynamics, the gas entropy can never decrease.

4. APPLICATIONS AND RESULTS

This section presents the results obtained by fitting the
two PC-NODEs described in the previous Section on real-
world measurements for building thermal dynamics, and
on simulated data for the gas piston system 3 .

4.1 Building thermal dynamics

For the first application, we aim to identify the temper-
ature dynamics of a residential apartment in NEST, a
2 In the true system, α is the area of the piston and β = 1.
3 The code and data can be found on https://gitlab.

nccr-automation.ch/loris.dinatale/pc-node.
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Fig. 4. MAE of the ARX model and PC-NODE over the
prediction horizon averaged over the three zones and
the validation time series.

vertically integrated district in Duebendorf, Switzerland
(Empa, 2021). It is composed of two bedrooms separated
by a living room, as sketched in Fig. 2, where we neglected
the impact of the two small bathrooms and processed
the data similarly to Di Natale et al. (2022), including
the computation of solar gains from horizontal irradiation
measurements. Overall, three years of measurements of the
temperature and solar gains in each zone, the respective
heating and cooling powers, and the ambient temperature
are available. The dataset has a sampling time of 15min
and was split into a training and a validation set containing
time series of measurements truncated after three days, i.e.
288 steps, to alleviate the computational burden.

To investigate the performance of the learned model, we
analyze its accuracy over more than 750 sequences of
three days of validation data. Averaged over the three
zones and all the time series, the Mean Absolute Error
(MAE) propagation over the 72 h horizon is depicted in
Fig. 4, where the absolute error is computed as ||Tk −
T (k)||1 for Tk the model prediction and T (k) the measured
temperature at each time step k. Since PC-NODE (6) is
linear, we also plot the performance of a classical linear
ARX model with 12 lag terms for reference, where the
number of lags was tuned empirically and the parameters
fitted to the data through least squares identification,
similarly to Merema et al. (2022), for example.

As can be readily seen, thanks to the underlying physics
captured by the Hamiltonian framework, the PC-NODE is
able to fit the data significantly better, especially over long
horizons. Indeed, it seems to be less prone to compounding
errors: it improves the accuracy by 38.9% compared to the
ARX on average over the entire prediction horizon, but
this proportion rises to 55.8% at the end of the 72 h-long
horizon.

In order to provide a visual comparison of the behavior of
both models, we plot their temperature predictions over a
sampled 72 h-long trajectory in August 2021 in Fig. 5. This
figure hints that the ARX model is more sensitive to the
various external gains, having a tendency to overestimate
their impact. This can for example be observed towards the
end of the horizon in Fig. 5, just before noon: when the
sun rises, increasing the temperature of the building, the
ARX cannot accurately capture this behavior, contrary
to the PC-NODE. While only one sampled trajectory is
presented in this paper for the sake of brevity, these effects
generally hold across the validation dataset and explain
the better performance of the PC-NODE.
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Fig. 5. August 18–20, 2021: Temperature predictions of the
PC-NODE and ARX model on a sampled validation
trajectory, compared to the true measurements.

4.2 Gas piston system

For the second application, we generated a synthetic
dataset of 10′000 samples from system (7) using the
odeint framework from scipy. The parameters are pro-
vided in Appendix C and the gas temperature has been
computed as presented in Appendix A. To generate the
training data, we then added Gaussian noise on each
dimension d of the state, with ϵd ∼ N (0, 0.2σxd

), where
σxd

corresponds to the standard deviation of the dth
dimension of x. Similarly to the previous application, the
data was split into chunks of 250 steps to alleviate the
computational burden. It was additionally normalized to
ease the training of the NNs used in PC-NODE (7).

Despite not having access to the true Hamiltonian function
and learning it as an NN from data, and even in the
presence of white noise, PC-NODE (7) can accurately
recover the position of the system, as pictured in Fig. 6
(bottom) for two sampled trajectories. However, a vanilla
NODE, i.e. ẋ = fθ(x) (Chen et al., 2018), where fθ is a
NN with two hidden layers of 32 neurons each, is also able
to fit this data very well. On the other hand, the evolution
of the entropy is more challenging to capture, as pictured
on the top of Fig. 6, where we removed the noisy data for
clarity. In that case, the PC-NODE clearly outperforms
the vanilla NODE. Remarkably, the NODE sometimes
predicts a decrease in entropy, which is inconsistent with
the underlying physics (Remark 5) and does not happen
with the PC-NODE.

5. CONCLUDING REMARKS

This work proposed PC-NODEs, NODEs endowed with
IPH dynamics, to identify multi-physics systems from
data. PC-NODEs are consistent with the first and sec-
ond laws of thermodynamics by construction if simple
conditions are respected, which allows one to rely on
automatic BPTT to identify their parameters. Leveraging
prior knowledge of these systems, the proposed framework
demonstrated promising performance on both a thermal
building modeling and a gas piston case study.

We believe these results can pave the way for large-scale
distributed data-driven models with physical consistency
guarantees.
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Fig. 5. August 18–20, 2021: Temperature predictions of the
PC-NODE and ARX model on a sampled validation
trajectory, compared to the true measurements.

4.2 Gas piston system

For the second application, we generated a synthetic
dataset of 10′000 samples from system (7) using the
odeint framework from scipy. The parameters are pro-
vided in Appendix C and the gas temperature has been
computed as presented in Appendix A. To generate the
training data, we then added Gaussian noise on each
dimension d of the state, with ϵd ∼ N (0, 0.2σxd

), where
σxd

corresponds to the standard deviation of the dth
dimension of x. Similarly to the previous application, the
data was split into chunks of 250 steps to alleviate the
computational burden. It was additionally normalized to
ease the training of the NNs used in PC-NODE (7).

Despite not having access to the true Hamiltonian function
and learning it as an NN from data, and even in the
presence of white noise, PC-NODE (7) can accurately
recover the position of the system, as pictured in Fig. 6
(bottom) for two sampled trajectories. However, a vanilla
NODE, i.e. ẋ = fθ(x) (Chen et al., 2018), where fθ is a
NN with two hidden layers of 32 neurons each, is also able
to fit this data very well. On the other hand, the evolution
of the entropy is more challenging to capture, as pictured
on the top of Fig. 6, where we removed the noisy data for
clarity. In that case, the PC-NODE clearly outperforms
the vanilla NODE. Remarkably, the NODE sometimes
predicts a decrease in entropy, which is inconsistent with
the underlying physics (Remark 5) and does not happen
with the PC-NODE.

5. CONCLUDING REMARKS

This work proposed PC-NODEs, NODEs endowed with
IPH dynamics, to identify multi-physics systems from
data. PC-NODEs are consistent with the first and sec-
ond laws of thermodynamics by construction if simple
conditions are respected, which allows one to rely on
automatic BPTT to identify their parameters. Leveraging
prior knowledge of these systems, the proposed framework
demonstrated promising performance on both a thermal
building modeling and a gas piston case study.

We believe these results can pave the way for large-scale
distributed data-driven models with physical consistency
guarantees.
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Appendix A. TEMPERATURE COMPUTATION

By definition, the energy of a mass m of air can be
described as E(T ) = mc(T )T , where c is the specific heat
capacity of air and T is temperature. Assuming we deal
with an ideal gas, we also know that PV = nRT . This
allows us to rewrite the time derivative of entropy, by
definition satisfying

dS

dt
=

1

T

dE

dt
+

P

T

dV

dt

=
1

T

d

dt
(mc(T )T ) +

nRT

V T

d

dt
V .

Since the temperature does not change abruptly, we can
assume a constant heat capacity c(T ) ≈ c and obtain

dS

dt
≈ mc

dT
dt

T
+ nR

dV
dt

V
= mc

d lnT

dt
+ nR

d lnV

dt
. (A.1)

Integrating (A.1) on both sides from an initial time ti to
a final time tf , we get

∫ tf

ti

dS

dt
dt = mc

∫ tf

ti

d lnT

dt
dt+ nR

∫ tf

ti

d lnV

dt
dt,

leading to

S(tf )− S(ti) = mc ln
T (tf )

T (ti)
+ nR ln

V (tf )

V (ti)

= ln

[(
T (tf )

T (ti)

)mc (
V (tf )

V (ti)

)nR
]
.

We can thus compute the final temperatures as

T (tf ) =

[
exp

(
S(tf )− S(ti)

mc

)(
V (tf )

V (ti)

)−nR
mc

]
T (ti) .

Appendix B. PROOF OF PROPOSITION 1

Let us define E = {(i, j)| Zones i and j are adjacent}, the
set of connections between the thermal zones, and consider
the following decomposition of J̃(T ):

J̃(T ) =
∑
k∈E

Rk(T )Jk ,

where Rk : RN → R, Rk(T ) = λij
(Tj−Ti)
(TiTj)

and Jk is

an N × N constant skew-symmetric matrix with zeroes
everywhere, except (Jk)ij = −(Jk)ji = 1, for k = (i, j).

Then, for Te, Qs, Qh, Qc ≡ 0, we have:

dH

dt
=

∂H(S)

∂S

⊤
Ṡ =

∂H(S)

∂S

⊤
[∑
k∈E

Rk(T )Jk

]
∂H(S)

∂S

=
∑
k∈E

[
∂H(S)

∂S

⊤
Rk(T )Jk

∂H(S)

∂S

]
= 0 ,

since each term of the sum is zero, as in equation (3),
because each Jk is now constant and each Rk(T ) satisfies
condition (P2). This proves the required conservation of
energy of the system.

In order to verify the irreversible creation of total entropy
St of the system, we note that for Te, Qs, Qh, Qc ≡ 0:

Rk(T ) =

(
λij

TiTj

)
{St, H}Jk

,

as in the case of two heat exchangers (Ramirez et al.,
2013a). Since the total entropy is the sum of the entropy
in each zone d, we get

Ṡt =

n∑
d=1

(Ṡ)d =

n∑
d=1

([∑
k∈E

RkJk

]
∂H(S)

∂S

)

d

=
∑
k∈E

Rk

n∑
d=1

(
Jk

∂H

∂S

)

d

=
∑
k∈E

Rk

(
1⊤
nJk

∂H

∂S

)

=
∑
k∈E

Rk

(
∂St

∂S

⊤
Jk

∂H

∂S

)
=

∑
k∈E

λij

TiTj
{St, H}2Jk

≥ 0 ,

since ∂St

∂S = 1n by definition, and the inequality holds if all
{λij}(i,j)∈E are positive since temperatures are positive.

Finally, if all the input matrices Be, Bs, Bh, and Bc are
positive definite, monotonicity follows from the fact that
PC-NODE (6) is affine in input by construction. □

Appendix C. GAS PISTON PARAMETERS

The gas piston system was simulated from T (0) = 290K,
x(0) = [0, 0.001, 0.3, 0]⊤, with m = 5kg, area α =
0.033m2, β = 1, µ = 1, and K = 10Nm−1, and the
sampling time h = 0.01 s.


