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Abstract
Smart contracts have emerged as the most promising foundations for applications of the

blockchain technology. Even though smart contracts are expected to serve as the backbone of

the next-generation web, they have several limitations that hinder their widespread adoption,

namely limited computational functionality, restricted programmability, and lack of data

confidentiality. Moreover, addressing these challenges manually in application-specific ways

requires a lot of developer effort and time due to the monolithic architecture of smart con-

tracts. In this dissertation, we start over with a novel architecture for building and deploying

general-purpose decentralized programs. To this end, we first propose a new architecture that

replaces the monolithic execution model of smart contracts with a modular one to support a

rich set of functionality, which can be easily and permissionlessly extended at any time. Sec-

ond, to support the efficient deterministic execution required by computationally-advanced

smart contracts, we build a deterministic sandbox with floating-point arithmetic support

that brings safe and deterministic execution together with general-purpose programming

without having to sacrifice performance. Finally, we combine threshold cryptography and

the blockchain technology to build a framework that enables mutually distrustful parties

to share their confidential data in a fully auditable, transparent and decentralized manner.

Through prototyping and evaluation using real-world applications, we demonstrate that it is

possible and feasibly-practical to build a decentralized computing platform that can support

general-purpose computations.

Keywords: decentralized computing, smart contracts, deterministic execution, confidentiality,

post-quantum, data-flow graphs, extensibility, modular, blockchain, data sharing.
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Résumé
Les contrats intelligents sont apparus comme les bases les plus prometteuses pour les appli-

cations de la technologie blockchain. Même si les contrats intelligents sont censés servir de

l’épine dorsale du web de nouvelle génération, ils présentent plusieurs limites qui qui em-

pêchent leur adoption à grande échelle, à savoir une fonctionnalité informatique limitée, une

programmabilité restreinte et un manque de confidentialité des données, la programmabilité

restreinte et le manque de confidentialité des données. En outre, De plus, relever ces défis

manuellement en fonction de l’application nécessite beaucoup d’efforts et de temps de la

part des développeurs en raison de la complexité de la programmation. de l’application né-

cessite beaucoup d’efforts et de temps de la part des développeurs en raison de l’architecture

monolithique des contrats intelligents. l’architecture monolithique des contrats intelligents.

Dans cette thèse, nous commençons par avec une nouvelle architecture pour construire et

déployer des programmes décentralisés d’usage général. programmes décentralisés à usage

général. À cette fin, nous proposons d’abord une nouvelle architecture qui remplace le mo-

dèle d’exécution monolithique des contrats intelligents par un modèle modulaire modulaire

pour prendre en charge un ensemble riche de fonctionnalités, qui peuvent être facilement

facilement et sans permission à tout moment. Deuxièmement, pour soutenir l’exécution déter-

ministe efficace déterministe efficace requise par les contrats intelligents avancés sur le plan

informatique, nous construisons un bac à sable déterministe avec support de l’arithmétique

à virgule flottante qui apporte une l’exécution sûre et déterministe avec la programmation

polyvalente sans avoir à sacrifier la performance. Enfin, nous combinons la cryptographie

et la technologie blockchain pour construire un cadre qui permet aux parties qui se mu-

tuellement méfiantes de partager leurs données confidentielles d’une manière totalement

auditable, transparente et décentralisée, transparente et décentralisée. Grâce au prototypage

et à l’évaluation d’applications réelles, nous démontrons qu’il est possible et faisable de

construire une plateforme informatique décentralisée capable de prendre en charge des les

calculs à usage général.

Mots-clés: informatique décentralisée, contrats intelligents, exécution déterministe, confi-

dentialité, post-quantique, graphes de flux de données, extensibilité, modulaire, blockchain,

partage de données.
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1 Introduction

A decentralized system is a type of system in which there is no single central entity that has

complete control over the entire system. Although decentralized systems have been studied

extensively over the past decades [35], [59], [171], [187], [223], their prominence has surged

considerably in the recent years with the emergence of the blockchain technology [159].

Blockchain is a distributed ledger of transactions that is replicated across an open (permission-

less) network of nodes where anyone can participate. Each transaction represents an action

that creates a change in the ledger state upon its execution. Nodes run a distributed consensus

protocol to validate transactions and group them into blocks in a mutually agreed-upon order.

Each node executes the transactions in a block in this order on its own copy of the ledger

to update its ledger state accordingly. This ensures that the copies of the ledger are kept

consistent across the network. Since all the transactions and block contents of a blockchain

are publicly visible, blockchains support features such as transparency and auditability, which

are desirable in a trustless setting. Furthermore, since the blocks are chained to each other via

cryptographic hashes, the state of the ledger is resistant to tampering.

One of the most promising applications of the blockchain technology is smart contracts [192].

A smart contract is a user-defined computer program that runs on top of a blockchain1.

Since the program state is stored on the blockchain, each node in the network independently

executes the program code to make sure that the copies of the ledger are kept consistent.

Through the characteristics and the execution model of the underlying blockchain, smart

contracts create a permissionless platform for automated, transparent, and correct execution

of arbitrary programs with strong integrity guarantees without relying on a single trusted

entity.

The transformative promise of smart contracts is best showcased by the role that they are

expected to play in the evolution of the internet: serving as the backbone for Web 3.0 [121],

[215], the third generation of the World Wide Web. The core principle behind Web 3.0 is

to create a decentralized web where individual users control and operate the services that

1Throughout this thesis, we use the term smart contracts to refer to blockchain-based smart contracts.
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they use instead of a few large technology companies. Anyone can access and participate

in the services without requiring permission from an authorized party and without having

to trust a single entity. Therefore, smart contracts fit perfectly with the Web 3.0 vision as

they enable permissionless innovation in a decentralized setting: users have the freedom to

build and deploy their general-purpose decentralized applications via smart contracts without

restriction or censorship by central authorities.

Unfortunately, smart contracts have several limitations at the architecture level that need to

be addressed before they can achieve widespread adoption and deliver their promise. In this

thesis, we are going to specifically focus on the following three limitations:

Limitation #1: Limited computing functionality

The replicated execution model of smart contract systems such as Ethereum [217], which is

the largest and most popular smart contract platform, requires every node in the network to

store and execute every smart contract. This execution model has two major consequences in

terms of the functional capabilities of smart contracts. First, smart contracts cannot support

computations that have non-deterministic operations or use external (off-chain) data, which

might be non-deterministic. The determinism requirement is essential to ensuring that nodes

obtain the same outcome when they execute the same contract code on the same inputs.

Second, since smart contracts are open to everyone, and both the program state and code are

publicly visible, smart contracts cannot safely operate with/on private data.

Limitation #2: Restricted programmability

In order to ensure the correctness and safety of the smart contracts, smart contract platforms

need to be able to execute arbitrary and potentially malicious or faulty programs across diverse

hardware and software stacks in a deterministic and secure manner. Ethereum achieves this

by using a deterministic sandbox called Ethereum Virtual Machine (EVM) [217], which is a spe-

cialized virtual machine that only supports a restricted instruction set. Additionally, Ethereum

requires smart contracts to be written in domain-specific languages, such as Solidity [107] and

Vyper [207], to further enforce deterministic and safe execution.

Unfortunately EVM and its programming languages considerably restrict the programmability

of smart contracts. The limited instruction set and custom design of EVM prevent smart

contracts from using common operations that are available in general-purpose programming

languages [69], [70] and performing basic cryptographic computations, which are desirable in

the context of smart contracts, in an efficient way [68], [71]. Moreover, the lack of programming

tools and unintuitive semantics of the domain-specific languages increase the difficulty of

programming smart contracts and lead to programming errors [8], [200].

The lack of floating-point arithmetic support is one of the representative examples of the

restricted programmability of Ethereum smart contracts. Since the IEEE standard for floating-
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point arithmetic does not guarantee that the same floating-point operation will produce

the same result on all conforming systems, it is difficult to make floating-point arithmetic

fully deterministic. As a result, existing smart contract platforms either omit floating-point

arithmetic, and instead support fixed-point arithmetic, or only support a small subset of

floating-point operations.

Limitation #3: Data confidentiality

In today’s web, users’ personal data are controlled by centralized companies and platforms,

which can monetize or use personal data without users’ consent [32], [63] or fail to keep the

data safe [93]. One of the main promises of Web 3.0 [121], [215] is to achieve data sovereignty

by giving users the control of their data. The transparency, integrity, and decentralized trust

guarantees of smart contracts make them a good candidate for building decentralized data

storage and sharing platforms. However, since smart contracts build on public blockchains,

they cannot guarantee the confidentiality of sensitive personal data. Furthermore, the public

nature of smart contracts necessitates protecting the long-term confidentiality of sensitive

on-chain data now from the quantum threats of the future.

What makes the matters worse is that, even if there are solutions to some of the above limita-

tions, making changes to smart contract platforms requires a slow and difficult governance

process called hard fork. A hard fork is an upgrade to the underlying protocol software with

the goal of introducing new functionalities, making performance improvements, or fixing

security issues. The problem with hard forks is that they require all nodes in the smart contract

network to agree on the changes and to upgrade to the new version of the protocol software. As

a result, hard forks introduce significant delays to making system upgrades, hence hindering

the evolution smart contracts.

We believe that applying the permissionless innovation principle at the architecture level

can be crucial for the rapid advancement of smart contracts. Based on this idea, we ask the

following question:

Is it possible to support permissionless innovation at the architecture level, namely permis-

sionless extensibility, to enable easy, modular and unrestricted addition of new classes of core

functionality to the system without requiring forklift upgrades?

1.1 Thesis roadmap

In this thesis, we affirmatively answer this question by designing and prototyping a general-

purpose decentralized computing platform, which addresses the limitations of smart contracts

that we have identified above. More specifically, the contributions of this thesis are the

following:

PROTEAN: A Modular and Extensible Framework for General-Purpose Decentralized Com-
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puting

In Chapter 2, we introduce PROTEAN, a permissionlessly-extensible decentralized computing

platform that enables easy and modular addition of different classes of specialized function-

ality without forklifting the whole system. We argue that the root cause of the limitations of

current smart contract systems is their monolithic execution model where consensus and

computing are tightly coupled. Based on this observation, PROTEAN builds on two key ideas:

(1) creating a modular architecture where consensus and computing are separated from each

other, and (2) providing distinct specialized functionality via decentralized functional units

(DFUs), which are standalone distributed systems that operate in isolation from each other.

Since PROTEAN adopts a DFU-centric execution model that requires coordinating multiple

distributed systems as part of executing a smart contract, we propose a workflow-based pro-

gramming model that enables developers to define the data and execution dependencies

between DFUs. We build a prototype of PROTEAN and implement real-world decentralized

applications on top of it to show that PROTEAN can support applications that are not feasible

or possible to implement on existing smart contract systems.

DEJAFLOAT: A Deterministic JVM Sandbox with Floating-point Arithmetic Support

In Chapter 3, we introduce DEJAFLOAT, a deterministic Java Virtual Machine (JVM) based

sandbox that can efficiently provide smart contracts with deterministic floating-point arith-

metic. By combining deterministic and safe execution with a general-purpose programming

language, DEJAFLOAT aims at increasing the programmability of smart contracts, and many

other applications that can benefit from reproducible general-purpose computations. DE-

JAFLOAT combines Java- and JVM-level techniques to eliminate sources of non-determinism

in floating-point arithmetic with minimum performance overhead. We build a prototype

of DEJAFLOAT and evaluate its performance using two computationally-intensive machine

learning applications.

Decentralized Private-Data Sharing with On-chain Secrets

In Chapter 4, we address the problem of storing confidential data on blockchains. By com-

bining threshold cryptography with the blockchain technology, we build on-chain secrets:

a framework that enables mutually distrustful parties to share their confidential data in an

auditable and transparent way. We design and implement two on-chain secrets protocols:

one-time secrets and post-quantum one-time secrets that can protect the confidentiality of

secret data against today’s adversaries and the quantum adversaries of the future, respectively.
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2 PROTEAN: A Modular and Extensible
Framework for General-Purpose De-
centralized Computing

2.1 Introduction

In the previous section, we have introduced the replicated execution model of Ethereum-

style smart contract platforms where every node in the system individually executes every

smart contract in the system. This execution model ensures that the whole network can

agree on the correct execution of the contracts and maintain a consistent view of the contract

states. However, this requires smart contracts to be deterministic so that every node in

the network, who potentially run on different software/hardware stacks, to get the same

result when they execute the same smart contract with the same inputs. Unfortunately, this

requirement severely restricts the functionality that can be supported by the existing smart

contract platforms.

First of all, current smart contracts cannot support computations with non-deterministic data

and operations. As a result, smart contracts cannot support programming constructs and

computations that are commonly used in general-purpose execution environments, such as

threads and other parallel programming constructs, random number generators, any time-

based computation or initializing variables based on the time, and calling an external API that

runs outside of the blockchain.

To enforce deterministic execution of smart contracts, current smart contract platforms

typically rely on domain-specific languages and specialized execution VMs. Even though these

programming environments prevent malicious or buggy programs to cause non-deterministic

executions, they also restrict the programmability of smart contracts as they have limited and

hard to extend instruction sets. These execution environments often sacrifice performance for

deterministic execution and therefore perform poorly. Moreover, programming with domain-

specific languages brings additional burden to programmers due to the additional effort of

learning a new language and the the lack of libraries and development tools.

Finally, enforcing deterministic execution of smart contracts requires all nodes in the network

7



PROTEAN: A Modular and Extensible Framework for General-Purpose Decentralized
Computing

to operate on the same data. Due to this requirement, smart contracts cannot execute on

external data from the real world. Since external data is off-chain, different parts of the

network can potentially see different data, which would violate deterministic execution. For

the same reason, smart contracts cannot safely operate with/on secret data (e.g., cryptographic

computations that rely on secrets). Since the whole network would need to have access to the

secret data to be able to perform the same computation, it would violate the confidentiality of

the secrets.

Based on the above discussion, we come to the conclusion that current smart contract plat-

forms like Ethereum have limitations due to their monolithic architectures: Every node is part

of a single network where consensus and computing are tightly coupled. This tight coupling

does not only limit the computations that can be performed in smart contracts, but also

creates an inflexible system where innovation and development cycles are slow.

We present PROTEAN, a modularly-extensible architecture for general-purpose decentralized

computing. PROTEAN supports permissionless extensibility via decentralized functional units

(DFUs), which are standalone, special-purpose distributed systems that operate independently

from each other. Each DFU supports a unique specialized functionality (e.g., consensus,

arbitrary code execution, randomness generation, verifiable anonymity) that is performed

collectively by its nodes. DFUs can join PROTEAN and offer their services to applications

without any restrictions and disrupting the operation of the other DFUs. Each DFU exposes a

set of opcodes, which represent the specialized computations that can be performed by the

DFU nodes. Developers represent the programmable logic of their smart contracts by creating

a data-flow graph [1], [54], [122], [157] with the opcodes. In this programming model, clients

can execute a contract by simply following the data-flow graph to send requests to DFUs to

execute the opcodes.

One of the major benefits of the DFU-centric execution model of PROTEAN is that it enables

a large set of computations to be used in decentralized applications. In the DFU-centric

execution model, a computation (opcode) is only performed by the nodes of the DFU that

supports it. Once the DFU nodes reach an agreement on the result of the computation, they

generate a publicly-verifiable cryptographic proof that can be used by the other nodes to verify

the correctness of a computation without having to re-perform it. As not all DFUs need to

use replicated execution, but can instead use different techniques such as zero-knowledge

proofs and secure multi-party computation to ensure correctness with no single point of

failure, PROTEAN can support classes of computations that are currently not supported by

smart contracts: non-deterministic computations, complex cryptographic computations that

use secret data, and computations with confidential data.

Contributions. We make the following contributions:

• We present PROTEAN, a modular architecture for general-purpose decentralized com-

puting that enables a richer set of computations and a larger class of decentralized
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applications and achieves high extensibility via permissionless upgradability that en-

ables adding new functionalities without forklifting the whole system.

• We define a programming model that enables developers to define the programmable

logic of their contract in our DFU-centric execution model. Our programming model

combines ideas from data-flow graphs and finite-state machine (FSM) models.

• We present an implementation of PROTEAN and build three decentralized applications

on top of it to demonstrate the range of complex applications that it can support.

• We evaluate the performance of our system and show that PROTEAN can support a richer

set of applications compared to the Ethereum-style smart contracts without incurring

large performance penalties.

2.2 Motivating applications

There is a broad range of applications, such as automated market makers, auctions, games,

insurance, non-fungible tokens, and voting, that have emerged as popular use cases of smart

contracts. In this chapter, we take a closer look at two classes of decentralized applications,

namely decentralized lotteries [49], [149] and electronic voting (e-voting) [147] to get a better

sense of the shortcomings of Ethereum and how PROTEAN addresses them. We choose these

applications as they embody a good mix of functional and performance demands to drive the

development of our architecture and ensure its flexibility.

2.2.1 Decentralized lotteries

A decentralized lottery is a decentralized application that uses a smart contract to ensure

the correctness, fairness, and transparency of the lottery. The smart contract automatically

and transparently executes every step of the lottery process, which involves collecting funds

from the participants, choosing the winner, and transferring the funds to the winner, without

relying on a trusted intermediary.

There are typically two stages in a decentralized lottery. In the first stage, users participate

in the lottery by depositing their funds to the lottery smart contract and purchasing lottery

tickets. The contract keeps track of the participants and holds the a pool of the collected funds.

Once the ticket acquisition period is over, the smart contract typically parses a source of public

randomness, uses the randomness to select the lottery winner, and transfers the collected

funds to winner’s account. In order to guarantee the fairness of the lottery, it is crucial to

have a source of randomness that is unbiasable and unpredictable. However, generating

randomness in Ethereum is a challenging task since it is a deterministic system that inherently

lacks randomness.

To work around this problem, contract developers create their own pseudorandom number

generator implementations. A typical approach for generating randomness in Ethereum

is parsing the randomness from a future block (e.g., its timestamp, nonce or block hash).

9



PROTEAN: A Modular and Extensible Framework for General-Purpose Decentralized
Computing

However, this approach is vulnerable to attacks where a malicious miner can manipulate the

mining process to bias the values of the block variables, and therefore the randomness [8],

[168], [180].

Another approach for generating randomness in smart contracts is using a commit-reveal

protocol. In this approach, each user chooses a secret and shares their commitment to the

secret with other users by storing it to a smart contract. Later, users reveal their secrets and a

random value is calculated by combining the secrets. However, this approach is susceptible to

bias-via-abort attacks where a user can choose not to reveal their secret to bias the randomness

generation to their advantage [190]. Solutions that address the bias-via-abort attacks either

require participants to lock collaterals [5] or take multiple rounds to finish the protocol [149].

Finally, oracles can be used for generating random values off-chain and sending it to the

on-chain contract. Previous oracle solutions required trusting a third party service for the

quality of the randomness. Chainlink’s Verifiable Random Function (VRF) [120] has recently

emerged as a viable solution for providing Ethereum smart contracts with provably fair and

verifiable random numbers without relying on a single trusted entity.

Although there are secure multi-party computation (SMPC) protocols for generating fair

and verifiable randomness [31], [91], [190], it is not possible to run them on Ethereum’s

monolithic execution model as they involve operations that are non-deterministic and/or

use private data. In §2.5.3, we present two decentralized lottery applications. The first lottery

uses an SMPC-based randomness beacon that produces publicly-verifiable, unpredictable,

and unbiasable random numbers. The second lottery relies on threshold cryptography to

implement a commit-reveal protocol that does not require collaterals or multiple rounds to

finish.

2.2.2 Electronic voting (E-voting)

Remote electronic voting (e-voting) has become increasingly popular in the recent years as

it has been used as an alternative to the traditional voting schemes in various countries [87],

[189], [202]. E-voting has the potential to make the voting process more convenient for

voters, which can increase voter turnout, and less costly for the organizers (e.g., governments).

Additionally, it is expected to deliver more reliable results by reducing human errors and

preventing fraud in ballot stations. To reach its potential and see wider deployment, e-voting

systems have to provide strict security guarantees about the voting process, such as secrecy

and integrity of the votes, unlinkability of voter and vote, and verifiability and transparency of

the voting process. Moreover, the voting system should not be controlled by a single entity to

avoid a single point of failure and compromise.

Smart contracts can potentially serve as a platform for building decentralized e-voting sys-

tems that provide the above guarantees. McCorry et al. provide the first implementation of a

decentralized and self-tallying e-voting protocol that runs on Ethereum [147]. Their system is
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Figure 2.1: Architectural diagram of PROTEAN vs. Ethereum

based on the Open Vote Network protocol and provide desirable properties, such as maximum

voter privacy and public verifiability. The downside of their system is that it can only scale

up to 50−60 voters due to the limitations of Ethereum. A follow-up work [175] addresses

the scalability problem of [147] by using an off-chain party to tally the votes. However, this

solution has reduced security guarantees as it requires active participation of users to make

sure that the off-chain party has not violated the correctness of the tallying process. Finally,

Provotum [132] combines well-known cryptographic protocols, such as distributed key gen-

eration and homomorphic encryption, to implement a blockchain-based e-voting system

with end-to-end verifiability. A prototype of Provotum is implemented on Ethereum but

the research paper lacks performance measurements. Therefore, it is difficult to assess how

Provotum compares to other work in terms of scalability. In §2.5.3, we present an e-voting

application that combines threshold cryptography with verifiable shuffles to provide the above

security guarantees and scale up to 1000 voters.

2.3 PROTEAN Architecture

Figure 2.1 shows the architecture of PROTEAN and how it compares to Ethereum.

2.3.1 System goals

PROTEAN has the following primary goals:

1. Permissionless extensibility: New classes of functionalities can be added modularly
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without any restrictions or requiring major upgrades to the system.

2. General-purpose computing: Users can implement and execute arbitrary smart contracts

that use the available functionalities in the system.

3. Decentralization: There is no single point of failure or compromise in the system.

2.3.2 Key Concepts

We describe the three key concepts of PROTEAN’s architecture:

Extensible functionalities via DFUs: PROTEAN is an ecosystem of decentralized functional

units (DFUs), each of which is a standalone and special-purpose distributed system that

supports a specific class of functionality (e.g., threshold cryptography). DFUs operate indepen-

dently from each other and have their own mechanisms for node membership management

and governance processes. A DFU can join PROTEAN in a permissionless manner and start

providing its service to smart contracts without interfering with the rest of the system. There

can be many DFUs that support the same class of functionality using different underlying

protocols (or implementations of the same protocol) with different performance and security

guarantees. Additionally, DFUs can upgrade the underlying protocol to newer versions and

support multiple versions concurrently without sacrificing backward compatibility. As a result,

PROTEAN achieves permissionless extensibility where new classes of functionalities can be

introduced to the system in an easy and modular way by anyone.

Separation of consensus and computing: Ethereum employs a homogeneous execution model

where every node in the network performs the same computational task: reaching consensus

on the order of the transactions and executing them in that order to maintain a consistent

blockchain state. Due to this execution model, every node has to execute every smart contract

in Ethereum, which limits the classes of functionality that can be supported by smart contracts.

PROTEAN separates consensus from computing by employing a heterogeneous execution model

where each DFU executes only the computational tasks of their specialized functionality

in isolation from the rest of the network. Computing DFUs perform their computations on

given external inputs (e.g., contract state, outputs of other computing DFUs, user-owned data)

to produce state changes for the contracts. State DFUs are responsible for maintaining the

contract states by reaching consensus on the correctness of the state changes and committing

them. State DFUs use cryptographic attestations that are produced by the computing DFUs

to verify the correctness of a state change without having to re-execute the computations

that produced it. It is the contract developer’s responsibility to choose the computing DFUs

and the state DFU that will be used by the smart contract based on the requirements of the

contract and the characteristics of the DFUs.

Thanks to this separation, it is possible to introduce new functionality (or upgrade the ex-

isting) without disrupting the operation of the system. For example, if there is a new high-
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performance consensus algorithm, a set of nodes can create a state DFU and deploy it along-

side the existing state DFUs. Similarly, if, for example, there is a new code execution VM

that is more efficient than the existing VMs, it can be deployed in the PROTEAN as a new

computing DFU. This can keep happening for any specialized functionality, without different

DFUs disrupting each other’s operation or breaking anything.

Client-driven contract execution: The heterogeneous execution model of PROTEAN has two

consequences: First, because computing DFUs do not maintain contract state, they need to

retrieve the most recent contract state from the state DFU to be able to correctly execute their

computations. Second, as executing a smart contract involves multiple DFUs, the computation

of a DFU might depend on the output of another DFU’s computation. Therefore, executing

a smart contract requires coordination among different DFUs. PROTEAN relies on clients

for orchestrating the execution of contracts by sending requests to DFUs to invoke their

computations. As clients provide DFUs with the necessary input data, DFUs can simply return

the results of their computations to clients without having to communicate with other DFUs.

In a way, clients serve as the communication conduit between the DFUs. An alternative design

is to have the DFUs orchestrate the execution of contracts. In this design, DFUs would have to

understand the steps of a contract and communicate with each other to be able to correctly

execute the contract. We choose the client-driven execution model over the DFU-driven

model for two reasons: First, it simplifies the design of DFUs as they do not need to be aware

of or keep state about each other. Second, it fits well with our motivating applications (i.e.,

decentralized lottery, e-voting) that require clients to interact with the smart contracts.

2.3.3 System Overview

A PROTEAN smart contract is a combination of programmable logic and state. The pro-

grammable logic of a smart contract comprises three components: workflows that define

the steps and rules for executing the contract, a finite state machine (FSM) model of the

contract, and the contract code that is written in a general-purpose programming language.

A workflow describes a series of tasks that are executed together as part of a specific, self-

contained process (e.g., vote tallying in the e-voting application). Each task of the workflow

is represented by a transaction that causes a change in the contract state upon its execution.

A transaction comprises a series of operations called opcodes, each of which corresponds to

a specialized computation of a DFU. We are not using the term opcode to mean the same

thing that it would in a traditional instruction set architecture, but rather an analogous but

different thing in the decentralized architecture of PROTEAN. Opcodes serve as a well-defined

API through which a DFU exposes the computations of its specialized functionality to smart

contracts. Contract developers can make use of a functionality in their smart contracts

by simply including the corresponding opcodes in the transactions. From the developer’s

perspective, using an opcode is analogous to using a third-party software service as it acts

as a black box and hides the complexities of its computations. Since there can be many
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DFUs that support the same functionality with different underlying implementations and

security/performance guarantees, it is the developer’s responsibility to choose the appropriate

opcode-DFU combinations based on the requirements of their smart contract.

Transactions are represented as data-flow graphs where the nodes are opcodes and the directed

edges are the data dependencies between opcodes. For example, the edge opi → op j indicates

that the output of the parent opcode opi is used as an input to the child opcode op j . Therefore,

the data-flow graph also serves as an execution dependency graph as it imposes the order in

which the opcodes have to be executed: an opcode can only be executed if all of its parent

opcodes have already been executed. The final opcode of every transaction is for committing

the state changes that are created by the execution of the transaction to the state DFU that

stores the contract state. To execute an opcode, a client simply sends a request with the

necessary inputs to the DFU that exposes the opcode. The DFU nodes collectively execute the

opcode and produce a receipt that contains information about the execution of the opcode

(e.g., input and outputs). The receipt is collectively signed by the DFU nodes and serves as

a cryptographic attestation for other DFUs to verify that the data dependencies are satisfied

without having to re-execute the computations.

Representing smart contracts as FSMs is a common design pattern in Ethereum [45], [146].

In PROTEAN, we adopt the same approach by requiring contract developers to create an

FSM model of their contract to represent its behavior. The FSM states represent the stages

that a contract moves between during its life cycle. A transition between two FSM states is

based on the current state, which transaction is executed, and the output of the transaction.

Consequently, the FSM model of the contract dictates how clients can interact with the

contract: a transaction can be executed if and only if it can trigger a transition from the current

FSM state.

The final component of the programmable logic of a PROTEAN smart contract is the contract

code, which is distinguished from the contract code in Ethereum smart contracts in several

ways. First, the contract code is executed only by the DFUs that support the functionality

of executing and agreeing on the output of arbitrary code. In other words, code execution

is not replicated across the whole network as in Ethereum. Second, the contract code can

be written in general-purpose programming languages (e.g., Go, Java, C/C++, Rust). Finally,

since computing DFUs provide contracts with general-purpose computations, we expect

the contract code to mainly serve as a glue code that performs contract-specific tasks, such

as managing the contract data, performing computations that are not supported by the

DFUs, and formatting data to adapt the inputs and outputs of the opcodes. We note that the

developers still have the freedom to implement all the computations in the contract code

without using the specialized functionalities of the DFUs.
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State model

The state of a contract is stored in a key-value store that builds on top of a blockchain. Each

contract has a logically-separate namespace where both the data and the programmable

logic of the contract are stored publicly and are tied together. A contract’s state can only

be modified by executing the transactions that are defined in the workflows of the contract.

Every transaction ends with an opcode that commits the state changes, which is a set of

key-value pairs, produced by the transaction to the contract state. This opcode is similar to

a put operation in the traditional key-value stores. In §2.3.5, we discuss in detail how DFUs

handle state in PROTEAN.

Security model

Each DFU in PROTEAN defines its own threat model and security assumptions that are consis-

tent with its functionality and the underlying protocol implementation. Our only requirement

is that the state DFUs run a Byzantine fault-tolerant consensus protocol and follow its trust

assumptions. DFUs make this information publicly available when they join PROTEAN and

operate in accordance with their assumptions. It is the developers’ responsibility to use the

publicly-available information about the DFUs to choose the DFUs that they want to deploy

in their contracts, thereby creating its trust base. Therefore, we can think of using a DFU

as using a third-party software in your system. To be able to tolerate a threshold number

of compromised nodes within each DFU, and thereby avoid single points of compromise,

we require DFUs to collectively sign [191] the output of their computations. To this end we

need each DFU to define their signing threshold. Each DFU specifies a signature verification

threshold t , which indicates that if a DFU’s output has at least t different valid signatures on it,

then the verifier can decide that the output is produced correctly. Finally, we assume malicious

and/or unreliable clients and do not trust them for the correct execution of the contracts.

DFU types

Below, we list different classes of DFUs that we have prototyped in PROTEAN. We note that this

is not an exhaustive list as DFUs with arbitrary functionalities can be added to the system.

• State DFUs: These DFUs are responsible for maintaining the contract states. Each state

DFU has three components: (i) a key-value store that stores each contract’s state in a

separate namespace, (ii) a distributed consensus algorithm that can tolerate Byzantine

failures [33], [159] to guarantee that its nodes can agree on the contract states, and (iii) a

blockchain to maintain an immutable log of the state changes of the contracts. Each

contract picks one of the state DFUs in the system for storing its state.

State DFUs do not execute contract-specific code or perform general-purpose com-

putations to compute the state changes for a contract. Instead, they verify that the

states changes, which are produced by transactions, are correct and consistent to decide
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whether they can be committed or not. State DFUs use the cryptographic attestations

that are produced by the computing DFUs to perform the verifications without having

to re-execute the computations.

• Computing DFUs: These DFUs are responsible for performing the computations of

smart contracts. Even though these DFUs can perform computations using replicated

execution as in Ethereum, PROTEAN additionally allows DFUs that can support computa-

tions using different techniques such as secure multi-party computation or specialized

cryptographic protocols whose correct execution can be verified using zero-knowledge

proofs. Unlike state DFUs, computing DFUs do not maintain contract states.

– Code execution DFUs: These DFUs provide an execution environment for contract

code that is written in a general-purpose programming language (e.g., Go, Java,

C/C++, Rust). The execution environment can be implemented on top of a virtual

machine such as Java Virtual Machine (JVM) or WebAssembly (WASM) to support

different programming languages. The execution environment should ideally

enforce deterministic execution of the contract code so that the nodes can agree

on the output of the execution. If the execution environment does not support

deterministic execution and the contract code has non-deterministic operations,

either due to an implementation bug or a malicious developer, the DFU nodes will

not be able to agree on the output of the execution and the contract will not be

able to make progress. However, thanks to the heterogeneous execution model of

PROTEAN, the rest of the system and the other contracts will not be affected.

– Mix-net DFUs: These DFUs implement a mix-net [35] using a verifiable shuffling

protocol. A shuffle operation permutes and re-encrypts a given list of ciphertexts

to produce a new list of ciphertexts. The new ciphertexts decrypt to the same

plaintexts as the original ciphertexts but in a different order. A verifiable shuffle

scheme additionally produces zero-knowledge proofs to prove without revealing

any information about the permutation or the re-encryptions that the shuffle was

performed correctly. Given a list of ciphertexts, a mix-net DFU performs a series of

verifiable shuffles, where each shuffle is performed by one of the DFU nodes, and

guarantees that the final list of ciphertexts cannot be linked to the original list of

ciphertexts as long as at least one honest node have performed a shuffle.

– Threshold decryption DFUs: These DFUs implement a (t ,n)−threshold decryp-

tion scheme [24], [130], [166], [179] where n shares of a collective private key are

distributed among n DFU nodes such that the private key can be recovered only if

a threshold number (t) of nodes combine their private-key shares. Therefore, a

ciphertext that is obtained by encrypting data under the corresponding collective

public key can be decrypted only if t DFU nodes collaborate. Any combination of

less than t shares is not enough to recover the private key, and therefore to decrypt

the ciphertext.

– Randomness DFUs: These DFUs implement a decentralized randomness bea-

con that produces public randomness that is publicly-verifiable, unbiasable, and

unpredictable [31], [91], [190].
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1 {
2 "<wf-name>": {
3 "<txn-name>": {
4 "opcodes": [
5 {
6 "dfu-id": "<dfu-id>",
7 "dfu-version": "<dfu-version>",
8 "name": "<opcode-name>",
9 "inputs": {

10 "<input-name>": {
11 "src": "OPCODE|KEYVALUE|PRECOMMIT|CONST",
12 "src-name": "<src-name>",
13 "idx": <idx>,
14 "value": "<value>"
15 }, ...
16 }
17 }, ...
18 ]
19 }, ...
20 }, ...
21 }

Figure 2.2: JSON schema for the workflow definition

2.3.4 PROTEAN’s programming model

In PROTEAN’s DFU-centric execution model, a smart contract can use many DFUs to perform

its computations, which requires a mechanism to coordinate the execution of smart contracts

across independent networks of nodes. More specifically, programmers need a convenient

way to specify which computations and DFUs that they want to use in their smart contracts

and how they work together to perform a task. This is new challenge that Ethereum did not

have to worry about because the execution of smart contracts take place in a single network.

In this section, we introduce the three components of the programmable logic of a PROTEAN

smart contract, namely workflows, a finite state machine (FSM) model, and the contract code;

and describe how they work together to help with the coordination of DFUs.

Workflows

Smart contract developers write workflow definitions in JSON as shown in Figure 2.2. The

workflows field holds a set of key-value pairs where keys are workflow names (wf_name) and

values are the corresponding workflow definitions. A workflow definition consists of one or

more transaction definitions that are keyed by transaction names (txn_name). Workflow and

transaction names are unique within a smart contract and are specified by the smart contract

developer.
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The opcodes field defines the opcodes that are going to be executed as part of a transaction.

An opcode definition includes the following fields:

• dfu-id: The globally-unique and persistent identifier (ID) of the DFU that exposes the

opcode.

• dfu-version: The version number of the DFU. It is an optional field that defaults to the

latest available version of the DFU.

• name: The name of the opcode as specified by the DFU.

• inputs: The input parameters that are required to execute the opcode.

Going back to our software service analogy from earlier, we can think of the (dfu-id, dfu-

version) pair as the service endpoint and name as the API call to the service. Since all DFU-

related information is publicly available in PROTEAN, both the developers and users of smart

contracts can verify that name is a valid opcode that is supported by dfu-id in version dfu-

version. In §2.3.7, we explain in detail how DFUs can join PROTEAN and publish new versions

of their services. The inputs field is used for expressing the data dependencies of the opcode.

Each field of inputs represents an input parameter that is required to execute the opcode.

Fields are keyed by the parameter name (input_name), which, like opcode names, are specified

by the DFU that exposes the opcode. The src field specifies the data dependency type using

one of the default values: OPCODE, KEYVALUE, PRECOMMIT, and CONST. The remaining fields of

the input parameter definition become required based on the value of src.

An OPCODE dependency specifies that the output of an opcode is required as an input. The

parent opcode is listed at index idx in the opcodes field and has to be in the same transaction

as the child opcode. Since an opcode can have multiple outputs, src_name denotes the name

of the output parameter whose value is going to be used. An opcode can have one or more

OPCODE dependencies and can only be executed after all of its parent opcodes have been

executed.

A KEYVALUE dependency indicates that one or more key-value pairs that are stored in the

contract state are required as an input to the opcode. The key names whose values are going

to be passed to the opcode are listed as a comma-separated string in the value field. Since

it is only the state DFUs that maintain the contract states, other DFUs need be able to verify

the correctness of the provided key-value pairs. Therefore, for each KEYVALUE dependency,

clients need to submit a cryptographic proof that enables DFUs to verify the correctness of the

provided data without having to interact with the state DFUs.

Unlike the OPCODE and KEYVALUE dependencies, the data sources for the remaining depen-

dency types are the clients instead of the DFUs. A PRECOMMIT dependency represents a client-

provided data that needs to be stored to the contract state when the current transaction

commits. The key name under which the client-provided data will be stored is specified in the

value field. Even though the data is defined as a dependency in the current transaction, it is

actually used as an input by an opcode in a subsequent transaction. Therefore, we refer to this

data as pre-committed data: from the subsequent transaction’s perspective, it will be using a
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get_rand exec update_state

State DFU #1
Code execution 

DFU #2
Randomness 

DFU #3

tickets

finalize txn

func_name
CONST KEYVALUE

v1.0.1 v2.4.1 v3.2.0

Figure 2.3: Visual representation of an example workflow

previously-committed data. In §2.3.5, we explain why we need pre-committed data. Finally,

the input for a CONST dependency is hard-coded in the workflow definition in the value field.

Figure 2.3 visually represents an example workflow that finalizes a decentralized lottery. This

workflow consists of a single transaction (finalize) that has three computation steps: (1)

parsing a distributed randomness beacon, (2) executing contract code to pick the winner

using the parsed randomness, and (3) committing the result to the contract state. Each step

corresponds to an opcode, which are represented by colored rectangles, that is executed by a

particular version of a DFU, which are represented by clouds with the same colors as opcodes.

In the workflow definition corresponding to this figure, values of the dfu-id and dfu-version

fields in the first opcode definition (i.e., get_rand) are set to “Randomness DFU #3” and

“v1.0.1”, respectively. The directed arrows represent the data and execution dependencies

between the opcodes. For example, exec can be executed only after get_rand is executed

since the former requires the output of the latter (i.e., the parsed randomness). exec has two

additional data dependencies: “func_name” that specifies the name of the function that is

going to be executed in the contract code, and “tickets” that specifies the key name that stores

the lottery tickets. The corresponding workflow definition has two entries in the inputs fields

that have CONST and OPCODE as the values of the src field, and “func_name” and “tickets” as

the values of the value field, respectively.

FSM model

The FSM model is used for representing contract behavior. At any given time, a contract can be

in one of its finite set of stages1, which dictates how clients can interact with the contract. The

FSM model specifies the set of transactions that are allowed to execute in each stage. Execution

of a transaction triggers a stage transition based on the current stage and the outcome of the

1We use stage to refer to a FSM state to avoid confusion between an FSM state and the contract state.
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1 {
2 "stages": ["<stage>", ...],
3 "initial_stage": "<initial_stage>",
4 "transitions": {
5 "<txn_name>": {
6 "<from>": ["<to>", ...],
7 }, ...
8 }
9 }

Figure 2.4: JSON schema for the FSM model

transaction. Figure 2.4 shows the JSON schema used for defining the FSM model. The schema

contains the following fields:

• stages: The list of stages that the contract can be in at any given time.

• initial_stage: The stage that the contract starts in when it is initialized. It has to

match one of the stage names listed in stages.

• transitions: The set of valid stage transitions. Each field in transitions is keyed

by the name of the transaction (txn_name) that triggers the stage transition upon its

execution. Transaction names have to match the names used in the workflow definitions.

Since a transaction can be executed in multiple stages, the txn_name field contains a key-

value pair for each contract stage in which the transaction can be executed. Executing

txn_name in stage from triggers a transition to one of the stages (to) in the list of valid

next stages based on the outcome of the execution. Note that txn_name is allowed to

execute only in the stages specified by from. All stage names have to match the names

listed in stages.

Our decision of using FSMs to model contracts is due to the natural fit between the character-

istics of our motivating applications and how FSMs work. Our applications consist of a finite

number of stages in which certain actions can be performed. The outcome of the actions

determines the next stage of the application. For instance, the e-voting application begins at

a stage where users can cast their votes without affecting the contract stage. After a certain

amount of time passes, voting is closed and the application advances to a new stage where no

one can cast a vote. In this stage, votes are tallied to reveal the results of the election, which

would not be permitted in the previous voting stage.

We can also observe that the FSM model complements the workflows: workflows specify the

operations that can be performed on the contract, and the FSM model defines when these

operations can be performed and how they affect the life cycle of the contract. In §2.3.6, we

explain how the FSM model is used to ensure the correct execution of the workflows of a

contract.
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Contract code

The final component of the programmable logic of a PROTEAN smart contract is the contract

code. Developers can write their contract code in any general-purpose programming language

that is supported by one of the code execution DFUs in the system. Even though the code

execution DFUs do not run consensus, they still need to be able to get the same output when

they execute the contract code so that they can produce collectively signed receipts. It is up to

the developers to either choose a code execution DFU that enforces deterministic execution

of programs or write their programs carefully to avoid non-determinism.

As we have discussed before, we expect the contract code to mainly serve as a glue code that

ties together the inputs and outputs of the opcodes. Since DFUs operate independently from

each other, they might have incompatible communication protocols, data formats, or APIs.

Contract codes enable DFUs to be able to “talk” to each other by making sure that the correct

data transformations are applied. In addition to the data management tasks, the contract code

is also responsible for preparing the state change of a transaction based on the outputs of the

opcodes and performing contract-specific computations that are not supported by the DFUs

(e.g., XORing a list of random byte arrays in the decentralized lottery).

2.3.5 State management

PROTEAN smart contracts rely on state DFUs to store and manage their states. State DFUs

provide the contracts with a key-value store where each contract has a separate namespace

to store its data. The contract developer deploys the contract to a state DFU instance of

their choosing to make it available to the users. To do so, they send the workflow and FSM

model definitions, and the cryptographic hash of the contract code to the state DFU. The state

DFU creates a key-value namespace for the contract and generates a contract ID (CID) that

uniquely identifies the namespace within the DFU. The CID is generated using the hash of

the definitions and the contract code to cryptographically bind them together. Every contract

namespace has a header that consists of six reserved keys: CID stores the unique ID of the

contract, workflows stores the workflow definitions, fsm stores the FSM model definition,

code_hash stores the hash of the contract code, curr_stage stores the name of the current

FSM stage that the contract is in, and lock stores a binary value that shows if the contract is

locked.

Since computing DFUs do not maintain contract state, they need to be able to verify the

authenticity and integrity of the contract state that the clients provide them. To this end, we

require state DFUs to produce publicly-verifiable state proofs that enable any party to verify

that a given set of key-value pairs belong to a valid contract state. Verification of a state proof

should not require interaction with the state DFU that produced it. Additionally, each state

proof should contain the state version number so that DFUs can detect stale contract state,

which we are going to discuss in the next section. We assume that clients can retrieve key-

value pairs and the associated state proofs from state DFUs without having to use PROTEAN
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transactions.

In contrast, a contract’s state can only be updated by its programmable logic and via an explicit

opcode execution at the end of a transaction. Because of PROTEAN’s DFU-centric and client-

driven execution model, there can be multiple transactions that try to concurrently execute

on the same contract state. To guarantee that transactions can execute safely without leaving

the contract in an inconsistent state, we employ an approach that is based on optimistically

executing transactions against the contract state and resolving conflicts at commit time by

aborting transactions.

In our optimistic approach, a transaction T executes in three phases. In the initialize phase,

T is marked with an identifier that indicates the current version of the relevant contract

state. The state DFU updates the identifier after any change to the key-value pairs in the

contract state. Therefore, we can think of each identifier as a version number that operates

at contract level. State DFU instances can use different methods for generating an identifier

(e.g., monotonically-increasing counter, system clock). In the rest of this chapter, we are going

to assume that state DFUs use Merkle trees [148] to store the contract state and the hash of

the Merkle root is used as the version number. During the execute phase, DFUs execute the

opcodes of T and create the state updates. Finally, in the commit phase, T tries to commit its

state updates to the state DFU. If the current Merkle root hash of the contract state matches the

Merkle root hash observed by T at the initialize phase, T successfully commits. If the hashes

do not match, it means that at least one other transaction T’ has successfully committed and

changed the contract state after T started. In this case, T aborts to avoid any potential conflicts

and retries execution by going back to the initialize phase.

Contract locking: The optimistic approach is a good fit for short-lived workflows with a

single transaction that can be aborted and retried without creating side-effects. However,

there are cases where using the optimistic approach can violate the correctness or safety

of a contract. Consider a workflow that is composed of multiple transactions to divide a

large computational task into subtasks. Transactions of a multi-transaction workflow need

to be executed serially on the contract state to successfully perform the task. However, in

the optimistic approach, execution of a multi-transaction workflow can be interleaved with

transactions from other workflows, which can leave the contract in an incorrect state and

prevent the successful execution of the multi-transaction workflow. Moreover, if a transaction

involves irreversible operations (e.g., decryption, revealing a secret), using the optimistic

approach can undermine the safety of the contract since the effects of these operations cannot

be reverted if the transaction aborts. For example, a malicious client can reveal a secret data

by executing the transaction and then wait until the contract state to change to try to commit

the transaction. Since the transaction will abort, the contract state will not show that the

transaction has executed, even though the malicious client has executed the transaction and

obtained the secret.

PROTEAN supports a contract-level locking primitive that can work together with the optimistic
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transaction execution approach to provide workflows with an alternative concurrency control

mechanism that can be used in the above scenarios where using the optimistic approach

alone is not a viable option. A workflow that uses contract-level locking consist of multiple

transactions and begins its execution by locking the contract state. To do so, it uses a lock

transaction to set the value of the lock key in the header of the contract namespace. Once

the contract is locked, only the transactions that are defined in the locking workflow can be

executed optimistically as described before. The final transaction of the workflow unlocks the

contract state by unsetting the lock key when it commits.

Since we assume a Byzantine setting, there is the risk that a contract remains locked if a

malicious or unreliable client disappears without driving the execution of a locking workflow

to completion. PROTEAN’s client-driven execution model addresses this risk by allowing other

clients to fill in for an unresponsive client to drive the execution of the workflow. To be able to

do so, the new client needs to have access to all the data that will be required by the transactions

in the workflow, including any non-public data that the disappearing client possessed and

was supposed to input to the transactions. To this end, PROTEAN implements a mechanism

that forces clients to pre-commit their inputs to the contract state when they execute the lock

transaction. The contract developer specifies the data that needs to be pre-committed by

using the PRECOMMIT dependency (§2.3.4) in the definition of the lock transaction. Later, when

a client tries to commit the lock transaction, the state DFU verifies that the state updates of

the transaction include the data specified by the PRECOMMIT dependencies. If the verification

is successful, the state DFU atomically commits the data and locks the contract state. In this

way, if the original client disappears, a different client will have access to all the necessary data

to be able to push the workflow through completion until the contract is unlocked again.

An alternative mechanism relies on DFUs for ensuring the liveness of workflow execution. This

approach is based on a garbage collection type process that causes the DFU nodes themselves

to periodically check for any uncompleted workflows. The DFU nodes act temporarily as

“surrogate clients” to get the uncompleted workflows run to completion. In our PROTEAN

prototype, we implement the first approach where clients are responsible for ensuring the

liveness of workflow execution. We leave the implementation of the DFU-based mechanism

as a future work.

2.3.6 Executing workflows

In our client-driven execution model, clients are responsible for orchestrating the execution of

a workflow by communicating with the DFUs. The main challenge that we need to address in

this model is to guarantee the correct and uninterrupted execution of workflows in the face of

malicious and unresponsive clients. Since transactions are the building blocks of workflows,

we are going to discuss in detail the steps involved in executing a transaction. As in §2.3.5, we

break down the life cycle of a transaction to three phases (i.e., initialize-execute-commit) and

describe the challenges involved in each stage and how we address them.
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1 type ExecutionPlan struct {
2 CID []byte
3 StateVersion []byte
4 CodeHash []byte
5 TxnName string
6 Txn Transaction
7 DFUData map[string]DFU
8 DFUID string
9 Sig []byte

10 }

Figure 2.5: PROTEAN execution plan

Initializing a transaction

To execute a transaction, clients first need to create an execution plan. An execution plan

is a cryptographic data structure that is created in accordance with the workflow definition

to serve clients and DFUs as a roadmap during transaction execution. Clients attach the

execution plan to the opcode requests that they send to the DFUs as part of orchestrating the

execution of the transaction. An execution plan contains information, such as the data-flow

graph of the transaction, current state of the contract, and the cryptographic identities of

the DFU nodes, that is necessary for verifying the correct execution of the transaction. Every

code execution DFU that is registered to PROTEAN is required to support the functionality of

generating execution plans. However, clients have to choose one of the code execution DFUs

that is specified in the workflows of the contract. The reason behind this restriction is to make

sure that clients do not use a DFU that is outside of the trust base of the contract.

A code execution DFU generates an execution plan for a given transaction if and only if the

contract is in a state where the transaction can be executed. To this end, the client sends

a request to the code execution DFU with the current header of the contract and the state

proof associated with it. Additionally, the client specifies the name of the transaction that they

want to execute and the name of its workflow. Upon receiving a request, the code execution

DFU first verifies the state proof for the contract header to make sure that it is part of a valid

contract state. Then, it verifies that it is one of the DFUs that is specified in the workflows,

and it is therefore eligible to create the execution plan for this transaction. Finally, using the

FSM model of the contract, it verifies that the transaction can be executed in the current

contract stage. Recall that the contract header contains all the information that is needed (i.e.,

workflows, fsm, and curr_stage) to be able to perform the above verifications.

If all verifications are successful, the code execution DFU creates the execution plan, which

contains the following fields as shown in Figure 2.5:

• CID: The ID of the contract that contains the transaction. It is extracted from the contract

header.
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1 type Receipt struct {
2 EPID []byte
3 Idx int
4 Name string
5 Hash []byte
6 Sig []byte
7 }

Figure 2.6: PROTEAN receipt

• StateVersion: The current version number of the contract state. It is extracted from

the state proof of the contract header.

• CodeHash: The cryptographic hash of the contract code. It is extracted from the contract

header.

• TxnName: The name of the transaction.

• Txn: A data structure that stores the information about the transaction, as specified in

the workflow definition.

• DFUData: A collection of key-value pairs where each key is the ID of a DFU (dfu-id)

that is used in the transaction, and the value is a data structure that stores the public

keys of the DFU nodes and the threshold of the DFU. The client uses the information in

the transaction definition (dfu-id and dfu-version) to retrieve the DFU data and the

accompanying proof from the DFU registry. The code execution DFU receives the data

and the proofs from the client as part of the request.

• DFUID: The ID of the code execution DFU that created this execution plan.

• Sig: The collective signature of the code execution DFU over the cryptographic hash of

the execution plan.

To summarize, an execution plan serves multiple purposes. First, it links the transaction exe-

cution to a particular version of the contract state that is identified by CID and StateVersion.

As we have discussed in §2.3.5, state DFUs need this information later to decide whether a

transaction can commit or needs to abort. Second, it specifies the cryptographic hash of the

contract code to prevent a malicious client from executing a different, unauthorized code

that does not belong to the contract. Finally, it securely provides DFUs with data structures

(Txn and DFUData) that are created using the workflow of the transaction. Using these data

structures, DFUs can ensure that the client orchestrates the execution of the transaction

correctly, without deviating from the workflow. The code execution DFU collectively signs the

execution plan (Sig) so that DFUs can verify that it is generated correctly and has not been

tampered with by a malicious client.

Executing a transaction

The responsibility of the client at this stage is to drive the execution of the transaction. To
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do so, they send requests to DFUs to execute the opcodes of the transaction in an order that

is consistent with the data-flow graph of the transaction. The client is also responsible for

providing DFUs with the correct input data that are required for executing the opcodes as

prescribed in the workflow. Since clients can be malicious, DFUs need to be able to check that

the parent opcodes of their opcode have already been executed. Additionally, they need to

be able to verify the authenticity and integrity of the opcode outputs that they receive via the

client.

To address these challenges, DFUs produce an output receipt for each output of their opcode.

The receipt binds the output of the opcode to the ongoing execution of the transaction and is

collectively signed by the DFU nodes. Figure 2.6 shows the data structure that represents an

output receipt:

• EPID: The cryptographic hash of the execution plan (excluding the collective signature).

• Idx: The index of the opcode in the OPCODE list.

• Name: The name of the output parameter.

• Hash: The cryptographic hash of the output.

• Sig: The collective signature of the DFU over the cryptographic hash of the output

receipt.

The client includes the relevant output receipts in their opcode request so that the DFU can

verify that the parent opcodes of its opcode have been executed correctly. The EPID enables

the DFU to verify that the parent opcodes have been executed using the same execution plan.

The Idx and Name enable the DFU to match the output receipt with the OPCODE dependency in

the workflow. The DFU can use the value of Hash to confirm that the client has not tampered

with the output of the parent opcode. Finally, the collective signature (Sig) of the DFU proves

the authenticity and integrity of the output receipt.

Although collectively-signed output receipts ensure that a malicious client cannot execute

opcodes out of order or tamper with the opcode outputs, there is still a type of attack that they

cannot prevent. Consider a transaction where the output of an opcode (opi ) is used as an

input of two opcodes (op j and opk ). If opi produces a different output at every execution, a

malicious client can re-execute opi multiple times to obtain different outputs. The client can

then equivocate by providing op j and opk with different results. To prevent this equivocation

attack, DFUs produce an input receipt for each of their input with an OPCODE dependency.

Input receipts use the same data structure as the output receipts by replacing the value of

Name and Hash fields with the name of the input parameter and the cryptographic hash of the

input data, respectively. State DFUs check the input receipts at the commit phase to detect

any equivocation and abort the transaction if they do so.

Output receipts guarantee that the OPCODE dependencies of an opcode are satisfied correctly.

However, there are three other dependency types (KEYVALUE, PRECOMMIT, and CONST) that

DFUs need to make sure that are correctly satisfied. DFUs can verify that the PRECOMMIT and

OPCODE are satisfied correctly by using only the information in the execution plan (Txn). For
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the KEYVALUE dependencies, DFUs rely on state proofs to verify that clients provide them with

the correct contract state. One potential attack that a malicious client can attempt is to provide

the computing DFUs with stale contract state and state proofs. Since computing DFUs do not

maintain contract state and do not communicate with the state DFUs, they cannot distinguish

between an old state and the current state of the contract as long as the accompanying proofs

are valid. However, DFUs can thwart this attack by confirming that the state version in the

state proofs matches the state version in the execution plan.

To summarize, DFUs perform the following steps before they accept an incoming opcode

request:

1. Compute the cryptographic hash of the received execution plan and verify the collective

signature on it. Use the DFUID in the execution plan to retrieve the public keys and the

threshold information from DFUData.

2. Check that the DFU ID, DFU version, and the opcode name that are specified in Txn

match with this DFU’s.

3. If this is a code execution DFU and the opcode request is for executing the contract

code, confirm that the cryptographic hash of the to-be-executed code matches the value

of CodeHash.

4. Verify that the client has provided the necessary inputs that satisfy the data dependencies

of the opcode. For each input, perform one of the following checks based on the data

dependency type:

(a) OPCODE: Check that the values of Idx and Name in the client-provided output receipt

match the values in Txn. Compute the cryptographic hash of the received data

and confirm that it matches the value of Hash in the receipt. Verify the collective

signature on the receipt.

(b) KEYVALUE: Verify that the CID and version number in the client-provided state

proof match the values in the execution plan. Check that the state proof contains

an inclusion proof for all the key-value pairs that are listed in the definition of the

dependency. Verify the state proof.

(c) PRECOMMIT: Check that the client has provided a value for each key that is listed in

the definition of the dependency.

(d) CONST: Compute the cryptographic hash of the client-provided data and the hard-

coded value in the workflow and confirm that they match.

Committing a transaction

The final opcode of every transaction is for committing the state changes that are created by

the execution of the transaction. To do so, the client sends an opcode request to the state DFU

that maintains the state of the contract to commit the transaction. In their request, the client

includes all the input receipts that are generated during the execution of the transaction so

that the state DFU can verify that the client have not performed an equivocation attack. Since

committing a transaction is performed via an opcode, state DFUs perform the verifications
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that we have described above. However, they also perform additional checks before deciding

whether a transaction can commit or not.

First, as we have described in §2.3.5, the state DFU has to make sure that the contract state,

which the transaction has been executing on, has not changed after the initialization of the

transaction. To do so, the state DFU simply compares the state version information in the

execution plan to the current version of the state. If they do not match, the transaction aborts

without committing its changes to the contract state. In that case, the client can retry the

transaction if the contract is still at a stage where the transaction can be executed. Otherwise,

the client can try to execute the next transaction based on the current stage of the contract.

Second, the state DFU needs to ensure that the client has not performed a equivocation

attack during the transaction execution. The state DFU uses the data-dependency graph of

the transaction and the input receipts to verify that if two opcodes have the same OPCODE

dependency, then they should have received the same data for this dependency. If the state

DFU finds an inconsistency in the input receipts, the transaction aborts. If all the checks are

successful, then the transaction commits its state changes and the contract moves to its next

stage.

2.3.7 DFU management

The core idea of PROTEAN is to create a permissionlessly extensible platform where DFUs can

freely join and offer their specialized functionalities to smart contracts. Therefore, we need a

mechanism that enables DFUs to register to PROTEAN and subsequently manage their services.

To this end, PROTEAN employs a DFU registry that facilitates the registration/deregistration,

management, and discovery of the DFUs. DFUs interact with the registry to join/leave the

system or release a new version of their service. Developers use the information in the registry

to inspect various aspects of a DFU, such as the underlying protocol and its implementation,

security assumptions, API documentation, and which nodes run the DFU, to decide whether

they want to use its services in their smart contracts. Clients fetch DFU information from

the registry so that they can provide the DFUs with this information when they orchestrate

the execution of a contract. The DFU registry maintains a database that builds on top of a

blockchain that uses Byzantine fault-tolerant consensus to handle the requests from DFUs

and store the DFU information. It provides proofs that can be used by any party to verify that

the information of a DFU is stored on-chain.

To register to PROTEAN or release a new version, a DFU sends a request to the registry with a

JSON file, which is shown in Figure 2.7, that contains the following information:

• dfu_id: The unique identifier of the DFU. If the request is for registering for the first

time, the value of this field is null. The ID is the same for all versions of the DFU.

• version_num: The version number of the DFU. For each version, the DFU needs to

provide the following information:

– num_nodes: The number of nodes in this version.
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1 {
2 "dfu-id": "null" | "<dfu_id>",
3 "<version_num>": {
4 "num_nodes": <num_nodes>,
5 "threshold": <threshold>,
6 "node_ids": {
7 "<ipaddr>": "<public_key>", ...
8 },
9 "opcodes": ["<opcode_name>"],

10 "resources": "<resource-address>",
11 }, ...
12 }

Figure 2.7: JSON schema for DFU

– threshold: The verification threshold for the collective signatures of this version.

– node_ids: The IP addresses and the public keys of the participating nodes.

– opcodes: The list of opcodes that are supported in this version.

– resources: The reference to the resources about this version (e.g., source code,

API documentation).

When registering for the first time, the DFU sends a collective signature on the cryptographic

hash of the JSON file. The registry uses the public keys and the threshold in the JSON file

to verify the signature. If everything checks out, registry generates a unique ID for the DFU

and creates a record for the DFU in its database. DFUs use semantic versioning [176] to

manage and communicate the changes in their versions. Therefore, version numbers take

the form MAJOR.MINOR.PATCH, where each element is a non-negative integer. The request for

releasing a new version is collectively signed by both the nodes that are participating in the

new version and the nodes that are participating in the previous version [162]. In addition to

the underlying software, the set of participating nodes and signature verification thresholds

can change across the versions. It is the DFU’s responsibility to remove a version from the

registry if it cannot be supported anymore.

2.4 Security discussion

The permissionlessly-extensibility principle of PROTEAN enables any set of nodes to freely join

our system as DFUs and start providing their services to the smart contracts. The advantage

of this architecture is that we can introduce many specialized functionality to our system in

an easy and modular way. However, since DFUs run specialized computations with a diverse

set of threat and network models, we cannot realistically define a security model that works

for every DFU that can ever join the system. Therefore, as we have discussed earlier, each

DFU in PROTEAN self-declares their threat model and security assumptions (e.g., how many

faulty nodes they can tolerate), and we assume that they operate in accordance with them.
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Therefore, it is the developers’ responsibility to select the DFUs that they want to trust and use

in their smart contracts based on the publicly-available information about the DFUs. In this

way, using the services of a DFU in a smart contract is analogous to using third-party software

in an application.

The publicly-available information about a DFU includes the source code that it runs and

its performance metrics, the description of its threat model, the identities of its nodes, the

detailed description of its membership and governance policies, and any other data that the

DFU chooses to disclose to help developers in their decision making. Developers would use a

combination of the security requirements of their smart contracts and their judgment of which

DFUs are trustworthy based on the publicly-available information about DFUs to choose the

DFUs that they want to trust and use in their smart contracts.

While deciding whether a DFU can be trusted or not is a challenging and subjective task, we

present a few examples of what can influence the decision-making process. For example,

other things being equal, a developer might choose a DFU that runs its service on a trusted

execution environment (e.g., Intel SGX anati2013) over a DFU that does not, since the former

can provide additional confidentiality and integrity guarantees and also enable any party to

cryptographically verify that the DFU is running the correct software. Another example is

related to the membership and governance policies of a DFU. Even though PROTEAN is a per-

missionless system, there is no restriction on how DFUs internally manage their memberships.

Therefore, developers might prefer permissioned DFUs over permissionless DFUs in their

smart contracts. One concrete example of a permissioned system that can potentially serve as

a DFU in PROTEAN is the League of Entropy consortium [62]. It is composed of 16 independent

organizations, which involves companies, research labs, and universities, that collectively run

a verifiable, decentralized randomness beacon. Since the consortium has strict membership

requirements and comprises reputable organizations from different countries, we believe that

systems like League of Entropy would be preferred by smart contract developers in PROTEAN.

Even though the previous examples demonstrate how certain characteristics of a DFU can

make it more trustworthy than the other DFUs, a developer can still choose malicious DFUs to

use in their smart contract. In this scenario, PROTEAN cannot guarantee the correct execution

of the smart contract. Below, we discuss two approaches that we can employ in PROTEAN to

create secure DFUs:

• We can use a bias-resistant sharding protocol that is similar to that of OmniLedger [135]

to sample from a large population of nodes to create DFUs with given security thresholds

(e.g., at most 1/3 of the DFU nodes are malicious). The population can be the nodes of

every DFU that is registered to PROTEAN. Given an adversarial model over the whole

population, we can create state DFUs and code execution DFUs of various sizes that

can tolerate different numbers of malicious nodes. In this way, PROTEAN can create

a trusted computing base that supports distributed consensus and replicated code

execution. We restrict the trusted computing base to state and code execution DFUs

30



2.5 Implementation

since randomly assigning nodes to DFUs that perform more specialized computations

(e.g., cryptographic protocols) would not be feasible because nodes might not have

the adequate resources for performing these specialized computations. Moreover,

providing secure state and code execution DFUs means that PROTEAN can provide the

same functionality that Ethereum does in a secure way. If developers want to use more

specialized DFUs in their smart contracts, they are responsible for choosing the honest

DFUs as we described before.

• In addition to registering to PROTEAN collectively as DFUs, we can also enable nodes

to register individually. Developers can then choose from these nodes to create ad hoc

DFUs that can perform any functionality that they want for their smart contracts. In this

case, it would be the developer’s responsibility to provide the nodes with the software

that they are supposed to execute as part of providing the specialized functionality. The

advantage of this approach over the previous one is that it can enable developers to

create specialized DFUs with the nodes that they trust.

2.5 Implementation

We implemented a prototype of PROTEAN with a specific implementation of each DFU type that

are listed in §2.3.3. Our implementation is in Go [94], [198] and has ~4900 LoC. Additionally, we

implemented the three motivating applications that are described in §2.2. We use Onet [196],

an open-source overlay network library for simulating and deploying distributed protocols, as

the underlying communication layer for DFUs. Onet sets up point-to-point TCP connections

between the DFU nodes and uses Protobuf for data serializing. For cryptographic primitives

and operations, we use Kyber [55], an open-source advanced cryptographic library for Go, and

the Go standard library.

2.5.1 Cryptographic primitives

We use the Boneh-Drijvers-Neven (BDN) multi-signature scheme [25], which is based on the

Boneh-Lynn-Shacham (BLS) signature scheme [26], with a 256-bit Barreto-Naehrig (BN256)

curve for collectively signing the input and output receipts in DFUs. BDN prevents rogue-key

attacks without requiring the parties to prove knowledge of their private keys.

We use the signature aggregation property of BDN that allows many signatures on the same

message to be combined into a single signature (i.e., a multi-signature). This property has two

performance benefits: First, since both the regular and aggregated BDN signatures have the

same size, aggregation reduces the space complexity. Second, since verifying a single BDN

signature and the aggregation of n BDN signatures use the same number of costly pairing

operations, aggregation improves the verification performance.

Clients use the ElGamal encryption system [86] to encrypt their data and Schnorr signa-

tures [173] to sign their inputs. We use the Edwards25519 elliptic curve implementation in
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Kyber for both operations. Finally, we use the SHA-256 cryptographic hash function [160] in

the Go crypto package.

2.5.2 DFU implementations

State DFU: We implement a state DFU on top of a programmable blockchain that runs an

implementation of ByzCoin [134], which is a scalable Byzantine consensus protocol. In the

rest of the thesis, we are going to use ByzCoin to refer to the blockchain. We implement the key-

value store on top of ByzCoin as a global smart contract. The blockchain uses skipchains as its

underlying data structure for storing the blocks. Skipchains combine blockchains with skiplists

to enable traversal of the blockchain both forward and backward in time. Skipchains use

multi-hop links in both directions to efficiently traverse arbitrary distances along the timeline

in a logarithmic number of steps. The multi-hop forward links are created via cryptographic

collective signatures and enable any party to efficiently prove (regardless of where its block is

in the timeline) that a transaction is correctly stored in the blockchain.

Forward links are an integral component of a ByzCoin proof, which has three components:

(1) a Merkle proof that proves the presence or absence of a key, (2) the latest block where

the Merkle tree root that is used in the Merkle proof is stored, and (3) a list of forward links

to prove that the latest block is part of the blockchain. Since any party can use the forward

links to verify the proof without having to follow the blockchain, ByzCoin proofs are a great

fit for PROTEAN ’s architecture where DFUs do not interact with each other. In our prototype,

we build state proofs on top of ByzCoin proofs without making changes to the underlying

blockchain implementation for simplicity purposes. However, our decision of using ByzCoin

as it is comes at a cost: state proof size is proportional to the contract state size since the proof

contains all the key-value pairs. It is necessary to emphasize that this is a limitation of our

prototype implementation and not PROTEAN ’s architecture.

Code execution DFU: We implement a code execution unit that can execute programs written

in Go. Since our execution environment does not enforce deterministic execution, we assume

that the contracts are written carefully to avoid non-deterministic computations.

Mix-net DFU: We implement a mix-net DFU using Neff’s verifiable shuffle protocol [161]. A

common way of building a mix-net using verifiable shuffling is to have a set of servers perform

a shuffle one after another. Each server shuffles the output of the previous shuffle (except

for the first server that shuffles the input ciphertexts) and creates a zero-knowledge proof of

correct shuffling. The output of the mix-net contains the output of each shuffle step, and

assuming that at least one server is honest, the output of the mix-net cannot be linked to its

input.

In our implementation, we modify the above setting to make it compatible with PROTEAN’s
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requirement of DFUs creating and collectively signing output receipts. Our scheme also starts

with the DFU nodes performing shuffles in a sequential order. Assuming that the DFU can

tolerate up to f faulty nodes, the DFU first performs f +1 shuffles. Once these shuffles are done,

nodes verify the output of each shuffle to make sure that there is at least one correct shuffle. If

that is the case, nodes use the output of the mixing process to create the corresponding output

receipt and collectively sign it.

Threshold decryption DFU: Our threshold decryption DFU implementation uses Pedersen’s

distributed key generation (DKG) scheme [166] to create a collective public-private key pair.

Clients encrypt their data with the collective public key of the DFU using a variant of Shoup

and Gennaro’s TDH2 threshold encryption scheme [179] as described by Leuks [145]. For

decrypting a ciphertext, one approach would be to have each node produce their decryption

share and the corresponding non-interactive proof of correct decryption. Then, anyone can

collect these shares and proofs, and if they can verify that at least t shares are decrypted

correctly, they can recover the original plaintext.

We modify the above approach to make sure that it is compatible with PROTEAN. We use a

two-phase protocol, as we do in the mix-net DFU, where in the first phase nodes create their

decryption shares and proofs, and in the second phase, they all verify the same set of shares

and recover the plaintext. In this way, nodes can create an output receipt for the plaintext.

Reconstructing the plaintext at the DFU does not violate the confidentiality of the data, since

in our applications, the recovered plaintexts are stored at the publicly-visible state DFU right

after the decryption. However, it is also possible to implement this DFU such that the nodes

only verify the proofs, and create the output receipt for the set of shares and proofs.

Randomness DFU: We implement a drand-style [62] distributed randomness beacon that

builds on two threshold cryptography primitives: DKG and threshold BLS signatures. As part

of the setup phase, the randomness DFU runs Pedersen’s DKG protocol to create a collective

public-private key pair where every node in the DFU holds a share of the collective private

key. After the setup phase, the randomness DFU operates in rounds, and in every round, it

generates a random number. We implement the chained mode of the drand protocol where

the random number of the current round r builds on the random number created on round

r −1. More specifically, in round r , each node in the DFU uses their private key share to create

a partial BLS signature on H(r ∥ si gr−1) where si gr−1 is the collective BLS signature from

round r −1 and H is a cryptographic hash function. The collective BLS signature is obtained by

combining at least t valid partial BLS signatures and its hash is the random number for round

r . The protocol and the underlying cryptographic primitives guarantee that the generated

randomness is publicly-verifiable, unbiased and unpredictable.
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2.5.3 Applications

In this section, we describe the implementation of our motivating applications ( §2.2) on top

of our PROTEAN prototype. More specifically, we present two variations of a decentralized

lottery and an e-voting application.

Decentralized lottery with a distributed randomness beacon

Our first application is a decentralized lottery that uses a publicly-verifiable, unpredictable

and unbiased randomness beacon to pick a winner. In the rest of the thesis, we are going

to refer to this application as randlotto. We provide the FSM model and workflows for

randlotto in Appendix A.1. The randlotto contract is initially at the lottery_open stage

where participants can enter the lottery by registering themselves with the contract. Later, if

the predefined necessary conditions are met, the contract transitions to the lottery_closed

stage where the lottery is closed for new participants. Finally, the winner is picked by using

the randomness beacon that is provided by the randomness DFU and the contract terminates

by reaching the lottery_finalized stage.

Participants execute the join transaction to enter the lottery. Each participant sends their

public key and a signature over the hash of the public key to the join_randlotto function

of the contract code. If the contract code can verify the signature, it prepares a writeset

to store the public key-signature pair, which represents a ticket, in the contract state. The

participant then contacts the state DFU with the writeset to update the contract state. In

Ethereum-based lotteries, participants enter a lottery by depositing a specific amount of

money to an Ethereum account to buy a lottery ticket. Since our PROTEAN prototype does not

have a payment system, we assume that there is an external system where participants can

make payments and receive a proof of their payment. We replace the verification of the proof

of payment with the verification of the participant’s cryptographic identity.

Any interested party (e.g., the lottery organizer or a lottery participant) can execute the close

transaction once the predefined necessary conditions are met. In our application, we use the

block height of the underlying blockchain in the state DFU to specify a barrier point. More

specifically, the CONST dependency barrier of the exec opcode specifies a future block height

after which the lottery can be closed. The value of barrier is hard-coded in the workflow

definition by the contract developer and is publicly visible so that participants can make sure

that they have enough time to enter the lottery. The close_randlotto function of the contract

code checks that the barrier point is reached by checking the block height information that is

included in the state proof. Based on the outcome of this check, the client can execute the

subsequent update_state opcode to trigger the transition to the lottery_closed stage.

Finally, as with the close transaction, any interested party can execute the finalize trans-

action to pick the winner of the lottery. The get_randomness opcode is executed to get a

random value from the randomness DFU. As we explained before, our implementation of
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the randomness DFU periodically generates random numbers in rounds. The CONST round

dependencies of get_randomness and exec opcodes specify the round number whose ran-

domness will be used. The finalize_randlotto function verifies both the correctness of

the generated randomness and that the randomness is parsed from the correct round. If

everything is correct, finalize_randlotto uses the randomness to pick the winning ticket

and prepares the writeset to update the contract state with the result of the lottery.

Decentralized lottery with threshold decryption

The second decentralized lottery application combines threshold cryptography with a commit-

reveal scheme to generate a random value, which is produced by combining the encrypted

inputs of lottery participants. In the rest of the thesis, we are going to refer to this application

as secretlotto. We provide the FSM model and workflows for secretlotto in Appendix A.2.

The secretlotto contract starts from the lottery_setup stage where the nodes in the thresh-

old decryption DFU create a collective public-private key pair. The stages that are subsequent

to lottery_setup are identical to the stages of randlotto. As we explain below, the main

difference is in the transactions that are used for triggering the stage transitions.

The setup transaction begins with the run_dkg opcode of the threshold decryption DFU.

run_dkg runs the DKG protocol and outputs a collective public key that will be used by the

participants to encrypt their lottery tickets. The output of run_dkg, which is pk, is passed to

the setup_secretlotto function of the contract code, which produces a writeset to store

the collective public key in the contract state.

Participants execute the join transaction to enter the lottery. Each participant picks a random

value and encrypts it with the public key generated by the DKG protocol. The ciphertext

serves as a commitment to the generated random value and is sent to the join_secretlotto

function to be stored in the contract state. As in randlotto, we assume that there is an external

payment system where participants can make payments.

The close transaction works the same way as the close transaction in randlotto, as they

both use block height as the barrier point. However, even though the finalize transaction

performs the same high-level task of picking the lottery winner as in randlotto, it is composed

of different opcodes that perform different computations. The first exec opcode of the finalize

transaction is for executing the prepare_decrypt function that outputs a request message

with the stored ciphertexts. The client forwards the request to execute the decrypt opcode,

which requires the output of exec for its ciphertexts parameter. The output of decrypt is

the plaintext random values that were originally generated by the participants. The second

exec opcode is for executing the finalize_secretlotto function that XORs the plaintext

random values to generate an unbiased and unpredictable random value and uses this value

to select the winning ticket.
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E-voting

The final application is the implementation of an e-voting system that protects the privacy of

the votes and provides unlinkability of voters and their votes. We use the threshold decryption

DFU to store the votes in encrypted format and the mix-net DFU to verifiably shuffle the

encrypted votes so that the plaintext votes cannot be linked to the original encrypted votes. In

the rest of the thesis, we are going to refer to this application as e-voting. We provide the FSM

model and workflows for e-voting in Appendix A.3. The e-voting contract starts from the

election_setup stage where the threshold decryption DFU runs DKG to create a collective

public-private key pair. Once the setup is over, the contract moves to the election_open stage

where clients use the collective public key to encrypt their votes and submit their encrypted

votes to the contract state. After the contract moves to the election_closed stage, the election

can be finalized by shuffling and decrypting the encrypted votes in succession to calculate the

election results. During this process, the contract first moves to the election_shuffled stage

and then to the election_finalized, which is the final stage.

The setup and vote transactions are very similar to the setup and join transactions of the

secretlotto so we are not going to discuss them in detail. Instead, we are going to take a

closer look at the finalize workflow, which contains three transactions: lock, shuffle, and

tally.

The lock transaction both locks the contract state and triggers a stage transition that ends the

voting phase. Similar to the previous applications, e-voting uses block height as the barrier

point. The PRECOMMIT dependency of the exec opcode requires the client, who executes this

transaction, to submit a generator value (h), which is later used by the shuffle transaction.

The code execution DFU adds the generator value to the writeset so that it can be committed

to the contract state at the end of this transaction.

The shuffle transaction begins with executing the prepare_shuffle function of the contract

code to prepare a shuffle request with the encrypted ballots and the pre-committed generator

value. The client sends the request to the mix-net DFU to execute the shuffle opcode. The

final opcodes, namely exec and update_state, process the output of shuffle and prepare the

state change that is going to be committed to the contract state. The final transaction tally is

similar to the finalize transaction of secretlotto in that it is for collectively decrypting a list

of ciphertexts and processing the plaintexts in the contract code (i.e., tally_votes function

of the contract code) to finalize the application.

2.6 Evaluation

In our experiments, we evaluate the performance of PROTEAN to answer the following ques-

tions:

1. What is the overhead of verifying the data dependencies and generating the output
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receipts at DFUs?

2. What is the overhead of the modifications made to the Neff shuffle and threshold

decryption protocols to make them compatible with PROTEAN?

3. Can PROTEAN run general-purpose decentralized applications with acceptable perfor-

mance and level of decentralization?

The first two questions are important questions to answer to understand the overhead due to

PROTEAN’s modular and DFU-centric execution model where execution of a smart contract

takes place across multiple DFUs. More specifically, the first question helps us understand the

overhead of the techniques that we employ to be able to correctly and securely coordinate the

execution of smart contracts across DFUs. The second question also aims at understanding

the consequences of PROTEAN’s execution model. However, this time, we want to quantify

the cost of adapting the specialized protocols of the two DFUs that we implement in our

prototype to make them compatible with PROTEAN’s execution model. Finally, the final

question tries to answer the question of whether PROTEAN is a feasibly-practical architecture

where decentralized applications can be deployed.

2.6.1 Experimental setup

We run our experiments on a Ubuntu 20.04 VM instance that is equipped with 16 vCPU (Intel

Xeon Silver 4216 CPU @ 2.10GHz) and 64GB RAM. We use Mininet to simulate a realistic

network where the link delay is 100ms and the link bandwidth is 100Mbps.

2.6.2 Microbenchmarks

These experiments evaluate the two core tasks that are performed by every DFU as part of

executing an opcode: verifying the data dependencies and generating the output receipts.

We choose to measure the overhead of these tasks since they are essential to coordinating

the execution of smart contracts across DFUs. For the first experiment, we only consider the

overhead of verifying the KEYVALUE and OPCODE dependencies since verifying the PRECOMMIT

and CONST dependencies is trivial and creates negligible overhead. For both experiments, we

consider DFUs, both the verifying DFU and the source DFU of the data, with 19 nodes and

a collective signature threshold of 13. We choose these values since they are the maximum

values for any DFU that we use in our applications.

Figure 2.8a shows the latency results of verifying KEYVALUE dependencies. Each DFU node

verifies the state proof associated with each KEYVALUE dependency. This task involves verifying

the inclusion proofs for the input key-value pairs and the collective signatures of the forward

links. We vary the number of dependencies and the number of blocks in the blockchain. The

maximum values for both parameters are selected to match the maximum values from the

applications. Our results show the advantage of using multi-hop forward links in state proofs.

Even though the difference between the maximum and minimum number of blocks is 100×,
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Figure 2.8: Latency of verifying KEYVALUE and OPCODE dependencies

the difference between their verification latencies does not exceed 2×. This is because the

multi-hop links enable traversing the blockchain in a logarithmic number of steps. For the

same reason, we can observe that there are three levels in the latency values that correspond

to block numbers [10, 50], [100, 200] and [500, 1000]. In the first two levels, latencies are

especially close to each other since the corresponding state proofs are comparable in size and

the number of forward links.

Figure 2.8b shows the latency results of verifying OPCODE dependencies. Each DFU node

verifies the collective signature over the output receipt for each OPCODE dependency. To this

end, nodes compute the hash of the input data and the hash of the output receipt for each

dependency. We vary the number of dependencies and the size of each input data. Our choice

of data sizes, which range between 8KB and 4MB, is representative of the opcode outputs

that we observe in our applications. Our results show that for smaller data sizes (i.e., 8KB

and 64KB), verifying OPCODE dependencies is faster than verifying KEYVALUE dependencies for

the same number of dependencies. In this experiment, the number of signatures that needs
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Figure 2.9: Latency of generating output receipts

to be verified equals the number of dependencies, which is at most four. However, in the

previous experiment, there are more signatures to verify for every number of dependencies-

block number pair, and hence more computational overhead. For larger data sizes (i.e., 512KB

and 4MB), we observe the opposite scenario as verifying OPCODE dependencies is slower

than verifying KEYVALUE dependencies for the same number of dependencies. For example,

for a data size of 4MB, we observe an order of magnitude slowdown for each number of

dependencies compared to the previous experiment. The reason behind these results is that

for larger data sizes, transmission delay dominates the latency and the overhead of signature

verification becomes negligible.

Figure 2.9 shows the latency results of generating output receipts. Each DFU node individually

prepares an output receipt for each output data they have collectively produced and signs

the output receipt. Therefore, the main computational tasks are computing hashes and

producing cryptographic signatures. We vary the number of output receipts and the size

of the output data. We compare the results to the previous experiment since they use the

same parameters. For smaller data sizes, where the transmission delay does not dominate

latency, we observe that signing is marginally faster than signature verification. DFUs use

aggregated BDN signatures to collectively sign the output receipts. Therefore, it is expected

that producing a BDN signature is faster than verifying an aggregate BDN signature. Like

the previous experiment, for larger data sizes, transmission delay dominates the latency and

therefore we do not observe the same pattern consistently.

2.6.3 Modified Neff shuffle and threshold decryption protocols

In this experiment, we quantify the performance penalty caused by our modifications to the

Neff shuffle and threshold decryption protocols to make them compatible with PROTEAN. We

implement the standard and PROTEAN-style protocols as they are described in §2.5.2. We set
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Figure 2.10: Execution latencies for the Neff shuffle and threshold decryption protocols using
their standard and modified implementations

the number of nodes in the mix-net DFU and threshold decryption DFU to 13 and 19, and

their collective signature thresholds to 7 and 10. We send a single request that contains a list

of ciphertexts to the DFUs. We vary the number of ciphertexts from 10 to 1000. We report the

average latency results over 10 experiment runs.

Figures 2.10a and 2.10b show the results for the Neff shuffle and the threshold decryption

protocol implementations, respectively. Our modification to the Neff shuffle protocol results in

up to 2.44× slowdown when there are 1000 ciphertexts. For the threshold decryption protocol,

the slowdown goes up to 2.1× for the same number of ciphertexts. These results are expected

as our modifications add a second phase to both protocols that requires coordination between

a threshold number of the DFU nodes.

2.6.4 Application experiments

In this experiment, we evaluate PROTEAN ’s performance using the three motivating appli-

cations, namely randlotto, secretlotto and e-voting, that we described in §2.5.3. We

simulate different workloads by varying the number of participants in the applications be-

tween 10 and 1000. Assuming n denotes the number of nodes in a DFU and t denotes its

collective signature threshold, we use the following (n, t ) pairs in our experiment: (19,13) for

the state DFU, (13,7) for the code execution DFU, (19,10) for the randomness DFU, (13,7) for

the mix-net DFU, and (19,10) for the threshold decryption DFU.

An important consideration in generating the workloads is the scheduling of participants’

transactions. Since participants can execute the join and vote transactions without having to

lock the contract state, if there are multiple participants who read the same contract state and

try to concurrently execute their transactions, only one client is going to be able to successfully

commit their transaction. The remaining concurrent participants will fail at transaction
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Figure 2.11: Execution times of randlotto transactions

commit and have to re-execute their transaction. In our experiment, we assume a constant

retry rate of 0.1, which means that 10% of the participants will fail to commit their transactions

at the first try and will be able to successfully commit upon re-execution. Our choice of a

conservative retry rate is motivated by a common characteristic of our applications: There is

a long period of time (e.g., many hours, days) where the application is open for participants’

inputs (i.e., tickets or ballots). Therefore, we assume that it is likely to have a small number of

concurrent participants.

Figures 2.11-2.13 show the execution latencies of the transactions of randlotto, secretlotto

and e-voting. For the join and vote transactions, we report the statistics (i.e., avg, min, max,

std) by combining the measurements from all experiment runs. Therefore, for these transac-

tions, the number of data points equals to the x-axis value times the number of experiment

runs, which is 10. For other transactions, we report the average results over 10 runs. We make

the following observations based on our experiment results:

41



PROTEAN: A Modular and Extensible Framework for General-Purpose Decentralized
Computing

10 20 50 100 200 500 1000
Number of participants

0

5

10

15

La
te

nc
y 

(s
)

setup transaction

(a) setup transaction

10 20 50 100 200 500 1000
Number of participants

0

5

10

15

20

25

30

35

40

La
te

nc
y 

(s
)

join transaction

stddev
min/max

(b) join transaction

10 20 50 100 200 500 1000
Number of participants

0

5

10

15

La
te

nc
y 

(s
)

close transaction

(c) close transaction

10 20 50 100 200 500 1000
Number of participants

0

10

20

30

40

50

60

La
te

nc
y 

(s
)

finalize transaction

(d) finalize transaction

Figure 2.12: Execution times of secretlotto transactions

1. join and vote transactions (Figures 2.11a, 2.12b, 2.13b) have similar average latencies as

they are composed of the same opcodes, namely exec and update_state. Moreover, the

executed application code in these transactions both have low computational overheads.

The average latencies increase as the number of participants increases due to higher

computation load and network overhead caused by a longer blockchain and a bigger

contract state. For the same reason, we see an increase in both the maximum latency

and standard deviation values as the number of participants grows.

2. secretlotto and e-voting use setup transactions (Figures 2.12a and 2.13a) to run the

DKG protocol at the threshold decryption DFU to create a collective public key. Both

transactions contain the same three opcodes and the computations in these opcodes

are independent of the number of participants and the size of the contract state. For

example, execution time of the DKG protocol depends on the number of nodes in the

threshold decryption DFU, which is the same for both applications. Therefore, we
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observe similar latencies for these transactions. Similarly, close and lock transactions

(Figures 2.11b, 2.12c, 2.13c) exhibit comparable latencies as they contain the same

opcodes whose execution latencies do not depend on the number of participants. That

being said, since the size of the on-chain data increases with the number of participants,

and therefore the state proofs become larger, we see a small increase in the execution

times of these transactions when more participants are involved.

3. shuffle and tally transactions of e-voting (Figure 2.13d and 2.13e), and finalize

transaction of secretlotto (Figure 2.12d) are the most computationally-intensive trans-

actions as they are 3−6× slower than the other transactions for the maximum number of

participants. These results are due to the two computationally-intensive computations,

namely the Neff shuffle in shuffle, and threshold decryption in tally and finalize,

and are consistent with our findings in §2.6.3.

Additionally, we can observe the impact of state proof sizes by comparing Figure 2.11c

and Figure 2.13e. As we mentioned in §2.5.2, a state proof includes all the key-value

pairs stored in a contract. The additional storage overhead due to the shuffled ballots

and shuffle proofs in e-voting causes larger state proofs, which increases the network

load. Therefore, even though tally and finalize transactions are composed of the

same opcodes that contain lightweight computations, tally is 1.3× slower than finalize

for 1000 participants.

Batching optimization

In our evaluation of the applications, we assume that the number of clients that try to con-

currently execute the join and vote transactions are low, which reduces the number of

transaction aborts and retries. In this experiment, we consider an optimization that can

increase the throughput of join and vote transactions. We assume that a client who wants

to participate in one of these applications submits their input to a proxy client instead of

executing the join or vote transaction. The proxy batches the inputs from many participants

and commits them to the contract state in a single transaction. In this way, we can avoid

aborts due to concurrent transactions and achieve a higher throughput.

Figures 2.14-2.16 show the execution latencies for our applications with batched join and

vote transactions. We assume a fixed batch size of 10. We note that all the transactions except

for vote and join are executed once as in the previous experiment. Our results show improved

execution latencies for join and vote transactions. These results are expected since there are

no aborts and retries due to concurrent clients.

2.7 Related work

Privacy-preserving smart contracts: A long line of work improves the privacy of data and

computations on smart contracts by performing computations off-chain and verifying the

proofs on-chain. Unfortunately, these solutions are either domain-specific and do not gener-
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alize to all decentralized applications [15], [29], have limited expressiveness [27], [186], relies

on a trusted party for a privacy or security guarantee [38], [129], [137], or have significant

performance overheads [185], [220].

Oracle networks: Oracles try to address a particular shortcoming of smart contracts: reliably

and securely accessing to data about the real-world. TownCrier [221] is one of the earliest

examples of oracle solutions for smart contracts. However, since it builds on top of trusted

hardware, it is essentially relies on a trusted party. Deco [222] solves the problem of proving the

authenticity of data that is accessed via TLS came from a particular website. Finally, Chainlink

is an exciting system that have certain architectural similarities with PROTEAN. Chainlink

uses Decentralized Oracle Networks (DONs) that offer off-chain computing resources to

smart contract. Chainlink’s VRF solves the problem of parsing verifiable, unpredictable,

and unbiasable randomness in Ethereum smart contracts without relying on a trusted party.

Chainlink’s OCR protocol can also be used for providing smart contracts with a rich set of

computations.

Extensible blockchains: Aspen [90] introduces service-oriented sharding builds on a multi-

blockchain structure where each blockchain exposes a different service and stores only the

transactions that belong to its service. In addition to high scalability, Aspen also achieves

extensibility by enabling users to introduce new services without disrupting the operation

of others. However, Aspen does not support smart contracts. Hyperledger [4] is a modular

and extensible smart contract platform for building distributed applications. The core idea

of Hyperledger is separating transaction execution and validation from consensus, which

is similar to PROTEAN’s separating of consensus from computing. Hyperledger uses multi-

version concurrency control (MVCC) to concurrently execute transactions. However, it is not

clear how Hyperledger handles aborted transactions that involve irreversible operations.

Data-flow graphs: Using data-flow graphs for performing tasks is a common pattern in many

systems. Dryad [122] and CIEL [157] provide distributed execution engines for executing data-

parallel tasks using data-flow graphs. in-toto [201] is a framework that ensures the integrity

of software supply chains. Developers prepare layouts to declare the steps that needs to be

performed in the supply chain and how different steps interact with or depend on each other.

Layouts define data-flow graphs that resemble the transactions in PROTEAN. When a step is

performed, the entity who performed that step produces a cryptographically signed statement

to prove that the step is performed, which is similar to our output receipts.

2.8 Conclusion

We have presented PROTEAN, a permissionlessly-extensible framework for general-purpose

decentralized computing. PROTEAN can support a richer set of functionality compared to
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current smart contract platforms (e.g., Ethereum) thanks to its permissionless design that

enables easy and modular addition of specialized functionality via special-purpose standalone

distributed systems called decentralized functional units (DFUs). We introduce a workflow-

based programming model with cryptographically-secured data structures to define and

coordinate the execution steps of smart contracts across multiple DFUs. The evaluation

of our prototype using two classes of real-world decentralized applications has shown that

PROTEAN can support applications that are currently not possible or feasible to implement

with Ethereum-style contracts without incurring large performance penalties.
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Figure 2.13: Execution times of e-voting transactions
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Figure 2.14: Execution times of randlotto transactions with batching
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Figure 2.15: Execution times of secretlotto transactions with batching

48



2.8 Conclusion

10 20 50 100 200 500 1000
Number of participants

0

5

10

15
La

te
nc

y 
(s

)
setup transaction

(a) setup transaction

10 20 50 100 200 500 1000
Number of participants

0

5

10

15

La
te

nc
y 

(s
)

vote transaction

stddev
min/max

(b) vote transaction

10 20 50 100 200 500 1000
Number of participants

0

5

10

15

La
te

nc
y 

(s
)

lock transaction

(c) lock transaction

10 20 50 100 200 500 1000
Number of participants

0
10
20
30
40
50
60
70
80
90

100
110
120

La
te

nc
y 

(s
)

shuffle transaction

(d) shuffle transaction

10 20 50 100 200 500 1000
Number of participants

0

10

20

30

40

50

60

70

80

90

La
te

nc
y 

(s
)

tally transaction

(e) tally transaction

Figure 2.16: Execution times of e-voting transactions with batching
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3 DEJAFLOAT: A Deterministic JVM
Sandbox with Floating-point Arith-
metic Support

This work is part of a larger collaborative determinism project that other PhD students and

research engineers from the DEDIS lab participated in as well. This thesis chapter focuses

primarily on my contributions to that project.

3.1 Introduction

Deterministic execution guarantees that, given the same input, a program produces the same

output across different executions. The ability to deterministically execute software simplifies

program debugging [89], [206], testing [18], [48] and program analysis [41]. Additionally,

enforcing deterministic execution of untrusted programs is essential for the correctness and

security of fault-tolerant systems [34], [44], [143], prevention of timing channel attacks [10],

[84], [218], and intrusion analysis [65].

More recently, smart contracts have emerged as one of the most prominent systems that have

strict determinism requirements due to the underlying consensus protocols. To be able to

reach consensus on the state of smart contracts, each node in the network have to obtain

the same output upon executing the same smart contract function with the same inputs.

Non-deterministic execution of smart contracts can break consensus as nodes can fail to agree

on the same program state, thereby violating the consistency and safety of the system.

Deterministic code execution is required not only by Ethereum-style smart contract platforms

where consensus and computing are tightly coupled, but also by our novel smart contract

platform PROTEAN, which separates consensus from computing. Even though PROTEAN can

support specialized computations via DFUs that use different techniques such as secure multi-

party computation or zero-knowledge proofs to guarantee the correctness of a computation,

it still requires DFUs (i.e., code execution DFUs) that support replicated code execution to be

able to run application-specific programs.
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One of the most challenging sources of non-determinism in programs is floating-point arith-

metic. The IEEE 754 standard [105] specifies formats and methods for floating-point arithmetic

and has become the de-facto standard for many hardware and software systems. However, the

standard does not specify every aspect of floating-point arithmetic, and therefore it allows

for different conforming implementations [95], [105]. For instance, IEEE 754 specifies a set of

valid bit-patterns of “not a number” (NaN) values but it is up to the hardware architecture to

decide which particular bit pattern is used. Additionally, propagation of NaN payloads are also

left to the implementations [83]. Transcendental functions and extended-precision formats

are other well-known reasons why programs can produce different results on conforming

systems [95], [151].

Systems that require determinism for correctness and security often forgo floating-point

arithmetic altogether or only support a limited subset of the operations. In the context of

smart contracts, Ethereum, which is the largest smart contract platform, uses a deterministic

runtime environment called Ethereum Virtual Machine (EVM) that does not have native

floating-point support. A WebAssembly (WASM) [99], [210] based execution engine called

Ethereum WASM (eWASM) [77] is designed to replace EVM to improve the performance,

scalability, and programmability of smart contracts. Even though WASM has floating-point

support, it is not deterministic due to NaN payloads [163], [211]. Therefore, eWASM disables

floating-point support in the interest of full determinism. Other popular smart contract

platforms such as EOSIO [106], Solana [164], and Algorand VM [195] support either fixed-point

arithmetic or a limited set of floating-point operations via software libraries.

We present DEJAFLOAT, a Java Virtual Machine (JVM) based sandbox that enforces determin-

istic execution of untrusted Java programs. By providing a restricted runtime environment,

DEJAFLOAT guarantees that programs can only have deterministic executions in the sandbox.

As part of the sandbox, DEJAFLOAT deterministically supports floating-point arithmetic with

minimum performance penalty. We address the following challenges to build DEJAFLOAT: (1)

identifying the deterministic methods and classes in the Java standard libraries, (2) eliminating

the sources of non-determinism from floating-point operations (e.g., NaN payloads, tran-

scendental functions, extended precision formats) with minimum performance overhead, (3)

securing the sandbox against malicious or buggy programs that can have infinite executions

or finite executions with high resource consumption.

We address the first challenge by carefully reading the specifications and source codes of the

Java standard libraries to determine classes and methods that are deterministic. We create a

deterministically-safe subset of the Java standard libraries and restrict the programs in our

sandbox to use only these libraries. We make the floating-point operations deterministic by:

(1) canonicalizing NaNs at escape points where their bit patterns can become visible, (2) using

libraries that produce correctly-rounded results for transcendental functions, and (3) relying

on Java’s strict floating-point semantics to avoid precision errors due to extended precision

formats. We address the final challenge by limiting the number of Java bytecode instructions

that can be executed as part of a program in our sandbox.
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We implemented a prototype of DEJAFLOAT and evaluated its performance using a combina-

tion of microbenchmarks and prototyped applications. Our microbenchmarks show that the

overhead of canonicalizing NaNs is almost negligible thanks to the strong type system of Java.

To demonstrate the performance benefit due to the strong type system of Java, we implement

NaN canonicalization in WASM, which has an untyped linear memory model, and compare

its performance to our prototype. Our experiment results show that canonicalizing NaNs in

WASM can result in up to a 1.5× slowdown. We evaluate the cost of enforcing deterministic

transcendental functions in DEJAFLOAT using two machine learning applications, namely im-

age classification and recommendation system. Our results show that enforcing determinism

via correctly-rounded floating-point arithmetic libraries can cause a 2× slowdown compared

to Java math libraries. However, we show that pure Java libraries can be a feasible alternative

for applications that prefer performance over correctness without sacrificing deterministic

execution. Finally, we show that by using a JVM bytecode instrumentation technique, we can

efficiently bound the execution of untrusted programs to protect our sandbox from malicious

programs.

Our contributions are the following:

• The design and implementation of DEJAFLOAT, a JVM-based sandbox that can enforce

deterministic execution of untrusted Java programs and support deterministic floating-

point operations.

• An experimental evaluation of DEJAFLOAT’s performance using two real-world machine

learning applications that rely heavily on floating-point arithmetic.

3.2 Background and motivation

3.2.1 The IEEE 754 standard

The IEEE 754 standard [105] is the most widely-used standard for implementing floating-

point arithmetic in software and hardware systems (e.g., programming languages, compilers,

microprocessors). The standard specifies a floating-point number by four parameters: a base

(b), a sign (s), an exponent (e), and a significand (m). The significand, which is also called

the mantissa, is a digit string in base-b with length p. The length of the significand is called

the precision and it determines the number of significant digits that can be represented in a

format.

The standard defines five basic formats for representing floating-point numbers in binary

and decimal bases using different bit lengths for their encodings. An encoding consists of

three fields: the sign bit, the exponent field, and the trailing significand field. Bit lengths of the

exponent and trailing significant field depend on the format of the representation. We focus

on the two most common binary formats for representing floating-point numbers: 32-bit

single precision (binary32) and 64-bit double precision (binary64). These formats have 24 and

53 bits of precision, respectively.
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Since it is not possible to exactly represent all real numbers as floating-point numbers, they

need to be rounded so that they can be represented in a valid format. IEEE 754 defines five

rounding modes that determine how the rounded result is calculated. The default mode is

rounding to the nearest floating-point value. Finally, the IEEE 754 standard requires the results

of the five basic arithmetic operations (i.e., addition, subtraction, multiplication, division,

and square root) to be correctly rounded. A function is correctly rounded for a given rounding

mode if it produces the same rounded result that would be obtained by rounding the result

of the same function computed with infinite precision. An implication of correct rounding

is that there is a bound on the maximum rounding error, which is commonly measured by

unit in the last place (ulp). The original definition of ulp by Kahan defines ulp(x) as “the gap

between the two floating-point numbers nearest x, even if x is one of them” [128]. Based on this

definition, in the rounding to the nearest mode, a correctly rounded result is within 0.5 ulp of

the exact result. Correctly rounded operations are deterministic by default since there is only

one possible correctly rounded result.

3.2.2 Why is floating-point arithmetic non-deterministic?

Unfortunately, there are situations in which the IEEE 754 standard does not guarantee that

the same floating-point operation produces the same result across all compliant implemen-

tations [95], [151]. In the case of smart contract systems, which is our main motivating

application with strict determinism requirements, getting different results on different sys-

tems can cause security vulnerabilities by breaking consensus: All the nodes running on one

architecture might decide that one block is correct, and another set of nodes running on

another architecture might decide that another block is correct. In this section, we discuss

three main sources of non-determinism in IEEE 754 floating-point arithmetic:

Transcendental functions. A transcendental function is a non-algebraic functions that does

not satisfy a polynomial equation. The most common transcendental functions are expo-

nential, logarithmic and trigonometric functions. Since transcendental functions cannot be

exactly computed in a finite number of steps, they are instead approximated. To avoid results

with poor accuracy, it would be ideal to use the correctly-rounded implementations of these

functions.

However, correct rounding of transcendental functions is difficult because of the Table Maker’s

Dilemma [128], which is the fact that there is no way to know how much precision is required

for the computation to obtain the correctly-rounded result and that the computation can take

an arbitrarily long time. Therefore, IEEE 754 only recommends and does not require correct

rounding of transcendental functions so that conforming systems can support implementa-

tions with lower accuracy but better performance. As a result, IEEE 754 compliant systems

support transcendental functions via different software libraries or hardware implementations,

which causes getting different results on different systems [53], [95].
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NaNs. Not a Number (NaN) is a special floating-point value that is used for representing the

result of an invalid arithmetic operation, such as 0/0 or (+∞)− (+∞). There are two kinds of

NaNs: a signaling NaN (sNaN) raises an exception as a result of an invalid operation and a

quiet NaN (qNaN) that propagates through operations without raising any exception.

The IEEE 754 standard specifies the encoding of NaNs as binary bit strings as follows: all bits

in the exponent field are ones, the significand field contains at least one non-zero bit, and the

sign bit can either be a zero or one. The first bit of the significand field of a qNaN (sNaN) is a

one (zero).

Since there are many different bit strings that can be a valid encoding of a NaN, NaNs are a

source of non-determinism in floating-point arithmetic. For example, implementations might

not give guarantees about the value of the sign bit [108]. Another source of non-determinism

is due to the propagation of NaN payloads. The standard specifies that an operation with

one NaN input should output a NaN with the same payload as the input NaN. However, if the

operation has multiple NaN inputs, then the output NaN can have the same payload as any

one of the input NaNs. Therefore, different implementations can have different behaviors in

propagating NaNs [83], [109].

Extended precision. IEEE 754 specifies extended precision formats that extend the basic

formats to support greater precision and range. For example, the double-extended format

has at least 64 precision bits, which is 11 bits more than the double-precision format. The

motivation behind supporting extended precision is to perform intermediate computations

with higher precision so that premature overflows/underflows can be avoided and final results

can be computed with higher accuracy [95].

The downside of using extended precision is that it can lead to non-deterministic behaviors.

For instance, the x87 floating-point unit (FPU) of Intel uses 80-bit registers (64-bit precision)

to perform floating-point operations in the double-extended format. When the value in an

x87 register has to be stored in memory, it is rounded down to single- or double-precision

format. However, it is up to the compiler to decide whether temporary values of intermediate

computations will be stored in the registers or spilled to memory. Therefore, a computation

can produce different results on the same hardware architecture depending on the compiler

version, options, and optimizations [46], [52], [219].

Use of extended precision can also cause non-determinism due to double rounding [151],

[155], which is rounding a floating-value twice in a decreasing level of precision. For example,

in x87, the result of a floating-point operation is first rounded down to 80-bits, then to 64-bits

to be stored in a double-precision variable. In contrast, in a system that does not support

extended precision, there is only single rounding to the precision of the variable. Since double

rounding may affect the final result, the same operation can produce different results across

different hardware architectures.
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3.2.3 Motivating applications

Smart contracts

One of the most prominent applications that has strict deterministic execution requirements

is smart contracts. A smart contract is an arbitrary user-defined program that is stored and

automatically executed on top of a blockchain network. Blockchain nodes (miners) run a

distributed consensus algorithm to execute the smart contract. To reach consensus, each

miner individually executes the contract code and computes the output of the execution. If a

quorum of miners obtain the same output, then the contract state is successfully updated by

the miners based on the result of the execution. Therefore, execution of smart contracts has to

be deterministic across all miners, which can potentially run on different software/hardware

stacks, to guarantee the correctness of smart contracts.

An important consideration in enforcing deterministic program execution is addressing

floating-point non-determinism. Ethereum Virtual Machine (EVM) [217], which is Ethereum’s

execution environment, does not natively support floating-point arithmetic. In the future,

Ethereum is planning to transition from EVM to a deterministic subset of WebAssembly

(WASM) called Ethereum WASM (eWASM) [77]. Since WASM does not address non-determinism

due to NaNs, the design of eWASM leaves out floating-point arithmetic support.

Other smart contract platforms such as EOSIO and Solana take a different approach than

Ethereum. EOS VM is a WASM engine that uses a software implementation of IEEE 754 to

deterministically support a small subset of floating-point operations [106]. Solana supports

floating-point operations via LLVM’s float built-ins, which is also implemented in software,

and also fixed-point operations [164]. Unfortunately fixed-point arithmetic has less precision

than floating-point arithmetic.

Reproducible scientific computing

Reproducibility is one of the major tenets of scientific computing [167], [225]. However,

non-deterministic floating-point arithmetic represents a major challenge in achieving repro-

ducibility in scientific computing applications, such as climate modeling and simulation,

long-term simulations of the solar system, and dynamical systems [6], [13], [39], [156]. Re-

producibility has also become a major concern for machine learning (ML) applications [37],

[144], [158]. ML algorithms are widely deployed for making automated decisions in various

domains, such as education, healthcare, and employment. Since the decisions made by these

algorithms can have significant sociological and economical consequences, it is essential that

the algorithms are transparent and accountable [47].

Even though reproducibility of scientific computations is a desirable property, there are

certain cases where bit-for-bit reproducibility might be undesirable or provide a stronger

guarantee than what we want. For example, if a simulation is numerically unstable, then

the output might be meaningless because it is mostly the result of many-times-amplified
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roundoff errors throughout the calculation without carrying any “real” information. Bit-

for-bit reproducibility would obscure the results of numerically-unstable calculations, since

re-running the unstable computation would produce the exact same meaningless result.

However, with inexact reproduction (e.g., allowing different seeds for random numbers the

computation might use, different schedules for parallel computations that might affect the

result, etc.), the instability might become apparent more immediately because each run of the

calculation would return a wildly different result, as opposed to “almost the same” results.

Despite this limitation, however, bit-for-bit reproducibility is still a very useful tool to support

scientific reproducibility. In particular, it gives users control over when we want “exact repro-

duction” and when we want to explore semantically-equivalent (but potentially numerically

distinct) variations. For example, if the relevant calculation incorporates randomness in any

way, like many do, then we can use bit-for-bit reproducibility with the same random seed

when we want exact reproduction of a prior calculation. But when we want to test numerical

stability or otherwise explore similar-but-not-exactly-identical runs, we can simply re-run the

calculation several times with different seeds.

An efficient runtime environment with deterministic floating-point arithmetic can provide

control over when to reproduce identically and when to inject variation into calculations. The

particular run with any particular seed and input set is precisely reproducible, but we can

get as many different variations as we might want for exploring the numerical result space.

This can facilitate the verification, testing, and debugging of scientific computing applications.

Furthermore, being able to reproduce the results of decision-making algorithms can enable

auditing these algorithms and bring transparency to the decision-making processes.

Decentralized ML

A deterministic sandbox that can provide smart contracts with deterministic and efficient

floating-point arithmetic support can improve the accountability and trustworthiness of

machine learning (ML) applications. For example, a third party service can train an ML model

on participants’ aggregated input data within our sandbox. Later, any participant who wants

to verify that the model was correctly trained by re-running the training phase in the sandbox.

Therefore, our deterministic sandbox can bring accountability to ML training. Similarly,

participants can verify that the output of a particular query on the trained model is correct by

re-running the prediction stage, thereby ensuring the trustworthiness of the predictions. As a

result, many decentralized finance (DeFi) applications, such as automated market-making,

lending protocols, and asset management [81], [112], [170], [224], can benefit from running

predictive ML models on smart contracts. Additionally, combining smart contracts and ML

algorithms can create decentralized and collaborative AI marketplaces [101], [102], [224] that

can collect large amounts of data from various sources and achieve better models thanks to

the incentivized participation of many contributors.
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3.3 Overview

3.3.1 Challenges

We first discuss the challenges involved in building a deterministic sandbox that can run

untrusted general-purpose programs:

How to enforce deterministic execution: The first challenge is determining the techniques

that we want to employ enforce deterministic execution of programs in our sandbox. System-

level techniques can enforce deterministic native execution of programs written in different

programming languages at runtime. For instance, these techniques can be used for enforcing

the deterministic execution of multithreaded programs [9], [17], [56], [57] or preventing tim-

ing attacks [139], [218]. The downside of these approaches is that they can have significant

runtime costs. Language-level techniques trade off the generality of the system-level tech-

niques for avoiding runtime overheads [82], [165]. These techniques are based on restricting

the primitives and features of a particular programming language so that it does not allow

non-deterministic executions. These approaches are lightweight due to statically enforcing

determinism, but they only work for a particular language. A final approach, virtual instruction

set architecture (ISA)-level techniques, operates above the hardware instruction architecture

sets (e.g., x86, ARM) and below the programming languages [17], [20]. For example, they can

enforce determinism at the instruction level in architectures such as JVM [140], WASM [99],

[210], LLVM IR [142], or EVM [217]. These techniques can generalize better than language-level

techniques without incurring the high overheads of the system-level techniques.

Supporting deterministic floating-point arithmetic: The second challenge is to provide

programs with deterministic floating-point arithmetic support in our sandbox. As we have

discussed in the previous section, there are different ways in which floating-point operations

can exhibit non-deterministic behavior. The challenge is to prevent programs from observing

these behaviors without restricting the operations that can be used by the programs and

without incurring high performance overhead. More specifically, we need to make sure that

the bit patterns of NaNs become observable in a controlled manner so that the platform-

dependency of NaN values do not affect the programs. Additionally, we need to guarantee that

transcendental functions produce reproducible results within our sandbox independent of

the platform on which our sandbox runs. Finally, we need to eliminate non-determinism due

to extended precision by enforcing all computations to be rounded to the single or double

precision.

Limiting program execution costs: The third challenge is to protect the sandbox from mali-

cious or buggy programs that execute infinitely or that execute in a finite amount of time but

include lengthy or computationally-intensive operations. If there is no mechanism to limit

the execution time or resource usage of a smart contract in a deterministic way, a program
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can cause a denial-of-service (DoS) attack by using up the resources of a sandbox and prevent

it from servicing other programs. Ethereum solves this problem by charging a fee for every in-

struction that is executed in a smart contract. Each EVM opcode has a fixed and deterministic

fee, which is referred to as gas. The user has to pay enough gas fee to cover the computational

cost of executing a transaction. If the user does not specify enough gas for their transaction,

EVM halts the execution when it runs out of gas. We need a similar mechanism that enables

defining halting conditions in a deterministic and flexible manner. Moreover, this mechanism

should introduce as little runtime overhead as possible.

Supporting applications with different requirements: Our sandbox is designed to enforce

deterministic execution of untrusted programs and to operate in malicious settings, both of

which are exemplified by our main motivating use case of smart contracts. However, as we

have discussed in the previous section, there are many other applications that can benefit

from our sandbox. Since these applications can have different computational requirements

and security assumptions than smart contracts, our sandbox should have the flexibility to

cater the needs of different applications. For example, if a ML application needs to access

a source of randomness in our sandbox, it should be able to do so at its own risk. In this

scenario, our sandbox cannot guarantee that the consecutive executions of this program will

produce the same results if the programmer has not written the application code carefully

(e.g., forgetting to fix the seed of the random number generator).

3.3.2 System goals

DEJAFLOAT aims at achieving the following goals:

1. Deterministic execution: The sandbox enforces the deterministic execution of untrusted

Java programs across all underlying software/hardware stacks and implementations of

DEJAFLOAT.

2. Limiting program execution costs: The sandbox deterministically prevents a program

from executing infinitely. To do so, the sandbox enables measuring the duration of

program execution and limiting it to a specific deterministic execution quota.

3. Efficient general-purpose computation: The sandbox should support commonly-used

programming constructs and primitive types to make sure that a wide variety of applica-

tions can be run in the sandbox.

3.3.3 Design rationale: Java and JVM

Before we dive into the details of DEJAFLOAT’s architecture, we first discuss our decision to

build a deterministic sandbox on top of Java and JVM. While doing so, we focus on the features

of Java and JVM that help us addressing the challenges and achieving the system goals that we

have presented above.
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First, building our sandbox on top of Java and JVM enables us to use both language- and

virtual ISA-level techniques to enforce determinism, thereby striking a good balance between

performance and flexibility. Since Java is a mature and well-defined language [97], [140], it

simplifies identifying the well-known sources of non-determinism in its language constructs

and standard libraries. We demonstrate how this information helps us building a static checker

to eliminate non-determinism without introducing runtime overheads (§3.4.1). While the

static checker is a good start, since it operates only at the source-code level and before the

program execution, we cannot rely solely on it to achieve our system goals. Therefore, we also

use JVM-level bytecode instrumentation to efficiently limit the execution cost of a program

(§3.4.3) and to enforce programs to use deterministic floating-point operations in a way that

is transparent to the programmers (§3.4.2). Second, both Java and JVM have desirable features

that facilitate deterministic support of floating-point arithmetic due to their primary design

goals of portability and safety [67], [98]. We make use of these features to efficiently eliminate

non-determinism due to NaNs and extended precision (§3.4.2). Finally, since Java is one of the

most popular programming languages, there is a large ecosystem of libraries and development

tools that are available to the developers and can be supported by our sandbox. We utilize this

ecosystem for addressing non-determinism due to transcendental functions (§3.4.2).

We have also explored WASM as an alternative to Java/JVM for the purposes of building a

deterministic sandbox. Since WASM is designed for serving as a compilation target for various

programming languages, it can support a diverse set of languages (e.g., C/C++, Rust) that

JVM cannot readily support. However, WASM has a flat memory model where programs load

and store values from/to an untyped array of bytes. This is in contrast with Java/JVM that is

strongly typed at the bytecode level, which is a useful property for enforcing deterministic

execution. In §3.4.2, we discuss how the strong typing of Java/JVM enables us to efficiently

eliminate non-determinism due to NaNs. In §3.6.2, we experimentally evaluate the overhead

of eliminating NaN non-determinism in both Java/JVM and WASM to demonstrate the benefit

of strong typing of Java/JVM.

3.4 DEJAFLOAT Architecture

In this section, we describe how DEJAFLOAT combines static analysis and JVM bytecode

instrumentation to create a deterministic sandbox with floating-point arithmetic support.

3.4.1 A static checker for language-level determinism

We build a static checker that inspects the source code of a Java program to confirm that it

only uses whitelisted Java classes and methods that are known to behave deterministically.

We curate a whitelist of Java classes and methods by manually sifting through API documen-

tations, source code, and the Java language and JVM specifications. Since the Java runtime

environment comes with hundreds of classes and thousands of methods, the search space

is prohibitively large to manually check every package and class. Therefore, our whitelist is
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limited to the classes and methods that are defined in java.lang, which contains the classes

that are fundamental to Java, and java.util, which provides widely-used utility classes that

make programmers’ life easier. Although we try to whitelist as many classes and methods as

possible, we still try to keep our list minimalistic to avoid false positives.

Our static checker parses the source code of the Java program to build an Abstract Syntax

Tree (AST)1. Then, it traverses the AST to collect various information about the source code:

class instance creations, method and constructor invocations, field variable accesses, variable

declaration statements, return statements, type casting operations, and import statements.

Using this information, the checker generates a list of all the Java classes and methods that are

used in the code. By comparing this list to our curated whitelist, the checker decides whether

the code is safe to run or not.

Some classes are inherently non-deterministic due to the computations that they perform.

java.util.Random, java.util.Timer, and java.lang.Thread are a few examples of such

classes, as they involve random number generation, time-sensitive operations, and multi-

threaded execution, respectively. Therefore, we can easily exclude these classes from our

whitelist. Some classes are not fundamentally non-deterministic but they contain operations

that exhibit non-deterministic behavior. java.util.HashSet and java.util.HashMap are

two well-known examples of these classes. Most of the fundamental operations of these

classes (e.g., adding/removing elements, checking for element membership) are deterministic.

However, since neither of them makes any guarantees about the iteration order of their ele-

ments, we exclude these classes from our whitelist. Luckily, java.util provides alternative

hash set and hash map implementations, namely LinkedHashSet and LinkedHashMap, that

are backed by linked lists, and therefore have deterministic iteration orders. We support both

of these classes in our sandbox.

The hashCode and toString methods of the Object class are fundamental constructs of

Java that present an interesting non-determinism challenge. Since every class in Java is a

descendant of the Object class, these methods are automatically inherited by all Java programs.

However, the Object class implementations of these methods are not guaranteed to return

the same value across different executions since hashCode uses the memory address of the

object in its calculations and toString uses hashCode. Therefore, if a program wants to use

these functions in our sandbox, it should override them. Our static checker uses the AST of

the program to verify that these functions are overridden and reject a program if they are not.

Exception and error handling is another point of consideration in building our sand-

box. We allow programs to define variables that belong to the java.lang.Exception and

java.lang.Error classes for more accurate error handling. However, we disallow all the

methods that are in these classes since the information about exceptions and errors (e.g., the

stack trace) can be different across executions.

1We use an existing third-party Java library [66] for parsing Java source code and building the AST.

61



DEJAFLOAT: A Deterministic JVM Sandbox with Floating-point Arithmetic Support

Finally, we discuss how the static checker handles the classes that contain methods for per-

forming arithmetic operations, namely java.lang.Math and java.lang.StrictMath. As we

discuss in detail in the next section, we cannot rely on these classes to support deterministic

floating-point arithmetic in our sandbox. However, we do not blacklist these classes for two

reasons. First, these classes contain methods that operate on non-floating-point types as

well, which does not violate our determinism guarantees. Second, since we can use bytecode

rewriting techniques to efficiently replace calls to the methods of these classes, we can make

this process transparent to the programmers.

3.4.2 Deterministic floating-point arithmetic

In this section, we discuss how DEJAFLOAT eliminates non-determinism due to NaNs, tran-

scendental functions, and extended precision to deterministically support floating-point

arithmetic.

NaNs

As we have discussed earlier, IEEE 754 allows many distinct bit patterns for representing a

NaN and does not specify exactly how NaN payloads should propagate. Therefore, the same

floating-point operation can produce NaNs with different bit patterns on different hardware

implementations of IEEE 754, thereby causing non-determinism. One solution to eliminate

NaN-based non-determinism is to canonicalize NaNs by replacing their bit patterns with a

fixed well-known bit pattern. Consequently, all NaNs can be represented by a single bit pattern

to avoid the NaN-specific behavior of the underlying hardware architectures.

Java does not distinguish between NaN values, as it treats all float and double NaNs as if they

are represented by a single canonical value [97]. In fact, Java internally collapses NaNs into a

canonical value in certain floating-point operations (e.g., comparing two float/double values).

That being said, neither the Java nor the JVM specification mandates that all floating-point

operations have to collapse NaNs to a canonical value. Furthermore, Java standard library pro-

vides methods, namely, Float.intBitsToFloat [124] and Double.longBitsToDouble [123],

that allow programmers to create NaNs using different valid bit patterns. However, Java does

not guarantee that these functions are going to return a NaN that encodes the exact bit pattern

as the provided bit pattern, because the underlying hardware implementation can change the

NaN bit patterns during execution (e.g., converting an sNaN to a qNaN).

We have explored three approaches for canonicalizing NaNs:

• Canonicalize after every operation: The most naive approach is canonicalizing after

every floating-point operation. However, performing a NaN check after every operation

(and replacing its value when necessary) would add significant runtime overhead to

program execution.

• Canonicalize on memory store: Instead of canonicalizing NaNs after every floating-
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point operation, a more efficient approach is to canonicalize on every store operation

that writes the value of a floating-point type to the memory. Unlike the previous ap-

proach, this does not require canonicalizing the results of intermediate computations

that are stored in registers, and therefore has less overhead. We would need to imple-

ment this approach in WASM due to its flat memory model where a floating-point value

that is stored to memory can later be reinterpreted as a different type when loaded from

memory, which means its bit pattern can be observed. By canonicalizing NaNs before

memory stores, we can ensure that the observed bit pattern is deterministic.

• Canonicalize on type conversion: JVM’s strongly-typed memory provides an important

opportunity for a smarter and more efficient approach for canonicalizing NaNs. Since a

float/double type cannot be assigned to a variable or a memory location of a different

type without an explicit conversion, we do not need to canonicalize when storing to a

floating-point typed memory. Instead, we only need to canonicalize at a smaller set of

operations that explicitly externalize the bit pattern of a floating-point value by changing

its type. In our sandbox, we implement this approach to minimize the performance

overhead due to NaN canonicalization.

There are two operations in Java that can externalize the bit pattern of a floating-point value

by explicitly changing its type. First, Java standard library provides two sets of methods that

return the bit representation of a given floating-point number: Float.floatToRawIntBits &

Double.doubleToRawLongBits and Float.floatToIntBits & Double.doubleToLongBits.

The first set of methods preserves the NaN bit patterns, and therefore can produce different

results across different architectures. However, the second set of methods collapses all NaN

values to a canonical NaN value, and is therefore deterministic. Our sandbox replaces the

method calls in the first set with their deterministic alternatives by rewriting the bytecode of

the user programs to change the method calls. Second, the narrowing type-casting operation

that can be used to convert a float/double type to another primitive type, such as an int, long,

or byte. This operation is also safe to use with NaNs since the JVM specification guarantees

that the result of converting a float/double type with a NaN value to an int or long is always a

0.

The final operation that can externalize NaN bit patterns is a more subtle one, since, unlike the

previous operations, it does not involve a type change. The copySign function in java.Math

takes two floating-point arguments and returns the first argument with the sign of the second

argument. Based on what we have discussed in the previous paragraph, this operations should

be safe to use since the returned value is still a floating-point type. However, since the sign bit

of a NaN is non-deterministic, the resulting floating-point can have different values depending

on the underlying hardware architecture. To address this problem, our sandbox replaces calls

to copySign with calls to a deterministic variant of it that is implemented in our sandbox. Our

method checks if the second argument is a NaN and, if it is, replaces it with the same constant

positive value.
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Transcendental functions

The most recent IEEE 754 standard recommends, but does not require, that the results of the

transcendental functions are correctly rounded. This is because producing correctly-rounded

results for these functions could impose a performance penalty on the systems due to the

Table Maker’s Dilemma [128]: the problem of knowing how accurately a function needs to be

approximated so that rounding the approximated result gives the same result as rounding the

exact value of the function. Since it might require an arbitrarily large number of approximation

steps to ensure that the obtained result is correctly rounded, most systems trade off correctness

for performance by approximating these functions with a larger error than that required by

correct rounding. For instance, given the term unit in the last place (ulp) [128], [154], which

defines the distance between two consecutive floating-point numbers and is used commonly

for measuring rounding error, a correctly rounded result is within 0.5 ulp of the exact result.

However, most hardware and software implementations of IEEE 754 produce results that are

between 0.5 and 1 ulp of the exact result to achieve better performance. Consequently, the

result of the same transcendental function can vary across IEEE 754 conforming systems.

Existing approaches in Java: The Java standard library has two classes that contain meth-

ods for performing arithmetic operations: Math and StrictMath. The reason behind Java’s

design decision of providing two classes with the same arithmetic operations is to enable

programmers to choose between performance and reproducibility.

Methods in the Math class can be implemented by platform-specific native libraries or hard-

ware instructions to deliver high performance at the cost of reproducibility. For the transcen-

dental functions, the Math class allows for implementations to return results with errors as

large as 1 or 2 ulps. Since these functions are not required to be correctly rounded, or even

rounded in the same way across different Math implementations, different implementations

of the same Math function can return different results.

The StrictMath class guarantees reproducibility and portability of floating-point opera-

tions across different platforms by sacrificing performance. The floating-point operations

in StrictMath are based on fdlibm [78], which is a C library that supports IEEE 754 floating-

point arithmetic. fdlibm does not implement transcendental functions with correct rounding

but it can still guarantee reproducible results since it is written in pure C, and is therefore

platform-independent.

Even though StrictMath provides strict reproducibility of the floating-point operations, in-

cluding transcendental functions, there are several reasons why our sandbox does not rely

on it to support deterministic floating-point arithmetic. At the moment, Java uses version

5.3 of fdlibm as the de facto library that underlies StrictMath. However, there is no explicit

requirement in the Java language or JVM specifications for how StrictMath should be im-

plemented. Therefore, a later version of StrictMath can potentially round transcendental

functions in a different way than that of fdlibm 5.3, thereby creating non-determinism across
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different versions of otherwise the same Java/JVM implementation. Similarly, even a change

in the underlying version of the fdlibm can potentially cause unreproducible floating-point

arithmetic results across different Java versions. Moreover, the Java language or JVM specifica-

tion cannot realistically prescribe that all future StrictMath implementations must compute

their transcendental functions in exactly the same way as the particular version of a particular

library does (e.g., fdlibm 5.3), since it could eliminate the possibility of future improvements

to how the transcendental functions are calculated.

Given that, even with StrictMath, we cannot rely on Java’s native libraries for deterministically

supporting floating-point arithmetic, we explore the following two solutions:

Solution #1: We use a library that supports correctly-rounded transcendental functions.

More specifically, we use the MPFR library [85], [197], which is a C library that supports

multiple-precision floating-point computations with correct rounding, in the prototype of

our sandbox. Since the correctly-rounded result of a computation is independent of how it

is computed, using a correctly-rounded library guarantees determinism. The limitation of

this approach is that correct rounding can incur a high performance penalty. Therefore, using

correctly-rounded floating-point operations can be infeasible for computationally-intensive

applications.

Solution #2: An alternative approach is using a floating-point arithmetic library that does not

implement correctly-rounded transcendental functions but is written in pure Java. The results

of these functions are not going to be correctly rounded but since we run the library within our

sandbox, it will at least behave identically and deterministically across all DEJAFLOAT sandbox

implementations and underlying platforms. This approach provides better performance

compared to the previous approach by sacrificing the accuracy of the computed functions.

In both approaches, our sandbox rewrites the Java class files of user programs to replace

calls to transcendental functions of the Math and StrictMath classes with their deterministic

counterparts that are provided by our sandbox. As a result, we eliminate non-determinism

due to transcendental functions within the boundaries of our sandbox in a truly platform- and

software-independent way. In §3.6, we compare MPFR to a pure Java floating-point arithmetic

library without correct rounding support to quantify the performance benefits of using the

latter.

Extended precision

Java’s handling of the platform-specific extended precision format is one of the reasons why we

consider it to be a good fit for building DEJAFLOAT. Originally, Java required strict evaluation

of floating-point expressions, which means that the results of all floating-point computations

(including the intermediate computations) are required to be values that can be represented
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using the IEEE single- or double-precision format. As a result, Java guaranteed that floating-

point computations would not produce different results due to the extended precision support

of the underlying hardware. Between Java 1.2 and 16, Java allowed intermediate computations

to use, by default, the extended precision formats, since enforcing strict semantics caused

performance degradation. Therefore, programs had to explicitly use the strictfp modifier to

achieve strict floating-point semantics. However, starting with Java 17, strict floating-point

semantics is once again the default behavior in Java [51]. Therefore, we build our sandbox on

top of Java 17. Note that if Java did not restore the strict floating-point semantics, our static

checker could use the AST of the user program to make sure that the strictfp keyword was

used.

3.4.3 Limiting program execution costs

To protect DEJAFLOAT from infinite and finite but computationally-costly program executions,

the sandbox enforces a limit on the program execution based on the number of executed JVM

bytecode instructions. The sandbox internally keeps a counter of the number of executed JVM

instructions and if the counter goes above a pre-defined and fixed threshold value, it halts the

execution of the program. To this end, we rewrite the Java class file of the program to insert

our instrumentation code, which maintains the counter and reports it back to the sandbox at

runtime.

A naive approach for counting the executed bytecode instructions is to increment the counter

by one after every instruction. While this approach is simple and gives an accurate count, it

requires executing four additional instructions due to our instrumentation for every instruc-

tion in the original class file. A more efficient approach is identifying the basic blocks in the

program and incrementing the counter at the beginning of each basic block to execute fewer

instrumentation instructions. A basic block is a sequence of instructions that has a single

entry point at the beginning and a single exit point at the end. The instructions within a block

are executed one after another, without branching out to another part of the program.

To implement the basic-block based approach, we first need to parse the class file to identify

the basic blocks. Each block starts with a leader instruction so identifying the basic blocks

is equivalent to identifying the leader instructions. A leader instruction has to satisfy one of

the following: (1) it is the first instruction in the program, (2) it is the target of branch/jump

instruction, (3) it is the instruction that immediately comes after a branch/jump instruction.

Once we identify the basic blocks, we count the number of instructions in each basic block

and increment the counter by that count once at the beginning of each basic block. As a

result, this approach reduces the instrumentation overhead since it executes four additional

instructions for each basic block, as opposed to each instruction.
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3.5 Implementation

We implement a prototype of DEJAFLOAT on top of Java SE 17, which is the latest long-term

support version. The static checker uses the Eclipse Java development tools [66](Eclipse JDT

v3.30.0) to parse Java source files and create ASTs. For modifying the Java classes (i.e., bytecode

rewriting), we use the ASM library v9.4 [7]. Our prototype uses MPFR v4.1.0 with GMP v6.2.1.

To be able to call MPFR functions from Java, we use an open-source library [153] that provides

Java bindings to MPFR. We modify the library to make it compatible with MPFR v4.1.0 and to

support a larger set of floating-point operations. For the pure Java floating-point arithmetic

library, we use an open-source project called MicroFloat [43]. Although MicroFloat does not

support correctly-rounded transcendental functions, because we run it within the determin-

istic sandbox, it will behave identically across all DEJAFLOAT sandbox implementations and

underlying platforms to produce the same not-correctly-rounded results.

To better quantify how DEJAFLOAT benefits from the strong type system of Java in the context

of NaN canonicalization, we implement and evaluate the performance of NaN canonical-

ization in WASM. To this end, we use wasm-opt, which is one of the tools in the Binaryen

toolkit [212] for WASM. wasm-opt is normally used for applying wasm-to-wasm transforma-

tions for optimizing a WASM binary. However, we use its wasm-to-wasm transformation

capability to insert NaN canonicalization routines before memory store operations. We use

the WASI SDK v16.0 toolchain [213] to compile C files to WASM and Wasmer v3.3.0 [209] as

our WASM runtime.

3.6 Evaluation

In this section, we experimentally evaluate the performance of DEJAFLOAT to answer the

following questions:

1. What is the overhead due to NaN canonicalization?

2. What is the performance cost of supporting transcendental functions with correct

rounding in computationally-intensive applications?

3. What is the runtime overhead of our instrumentation for counting the number of exe-

cuted JVM instructions?

3.6.1 Experimental setup

We run our experiments on a Ubuntu 20.04 VM instance that is equipped with 16 vCPU (Intel

Xeon Silver 4216 CPU @ 2.10GHz) and 64GB RAM. In all of our experiments, we use 64-bit

double precision floating-point values. We collect our measurements after running many

iterations of the measured code to warm up the JVM.

67



DEJAFLOAT: A Deterministic JVM Sandbox with Floating-point Arithmetic Support

100 200 500 1000 2000
Matrix dimension

0.001

0.01

0.1

1

10

100

La
te

nc
y 

(s
)

NaN rate = 0%

w/o canon
canon

100 200 500 1000 2000
Matrix dimension

0.001

0.01

0.1

1

10

100

La
te

nc
y 

(s
)

NaN rate = 1%

w/o canon
canon

100 200 500 1000 2000
Matrix dimension

0.001

0.01

0.1

1

10

100

La
te

nc
y 

(s
)

NaN rate = 10%

w/o canon
canon

100 200 500 1000 2000
Matrix dimension

0.001

0.01

0.1

1

10

100

La
te

nc
y 

(s
)

NaN rate = 100%

w/o canon
canon

Figure 3.1: Execution times of the Java matrix multiplication program with and without NaN
canonicalization

3.6.2 Microbenchmarks

NaN canonicalization microbenchmarks

In this experiment, we measure the overhead of NaN canonicalization. To demonstrate how

DEJAFLOAT benefits from the strong typing of Java, we implement NaN canonicalization in

WASM and measure its overhead for comparison. For evaluation, we use a program that

first performs matrix multiplication and then converts the resulting matrix to an array of

bytes so that we can force the externalization of floating-point bit patterns, and therefore the

canonicalization routine. We choose matrix multiplication as our benchmarking program

since it is a common computation in scientific computing and machine learning algorithms.

Figure 3.1 shows the execution times of the matrix multiplication program in our sandbox for

varying matrix dimensions and percentage of NaN values in the matrices (i.e., the NaN rate).

Since we use square matrices, the x-axis values indicate both the row and column counts. Our

results show that there is no discernible runtime overhead due to NaN canonicalization in Java.

Thanks to Java’s strong type system, our sandbox does not need to run the canonicalization

routine during the matrix multiplication. Therefore, the difference between canonicalizing

and not canonicalizing is the Java library function that is used to externalize the bit patterns

of the double values, namely doubleToLongBits and doubleToRawLongBits. However, both
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Figure 3.2: Execution times of the C matrix multiplication with and without NaN canonicaliza-
tion in WASM
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Figure 3.3: Relative slowdown in matrix multiplication (NaN rate = 0%) due to NaN canonical-
ization in Java and WASM.

methods are marked as intrinsic methods, which means that JVM can replace these methods

with hand-crafted assembly code, with hand-crafted compiler IR, or with the combination of
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Transcendental function

ln pow exp sin cos tan

Math 70 66 72 76 56 62
StrictMath 109 148 90 86 70 80
MPFR 2919 4947 2220 2525 2117 3580
MicroFloat 877 3055 746 484 488 993

Table 3.1: Execution times (ns) of various transcendental functions

both. Therefore, we expect these method calls to execute efficiently. Finally, when creating the

input matrices, we put at least one NaN value in each row of the matrix if the NaN percentage

value is not zero. As a result, each row-column multiplication produces a NaN, and therefore

the output matrix consists of only NaNs. To sum up, our results show that implementing NaN

canonicalization in our sandbox brings virtually no overhead to the execution of programs.

Figure 3.2 shows the execution times of the same program that is written in C and compiled to

WASM. We report the results for three settings: base, which corresponds to no canonicalization,

canon (memstore), which corresponds to canonicalizing at memory store operations, and

canon (all), which corresponds to canonicalizing at every floating-point operation. Our results

show that for large matrix dimensions (i.e., 1000× 1000 and 2000× 2000), canonicalizing

at each memory store operation results in a 1.2− 1.4× slowdown. The naive approach of

canonicalizing after every floating-point operation adds a significant runtime overhead, as,

for large matrix sizes, it incurs a 2.3−3× slowdown. These results verify the performance

gains of our sandbox due to its use of a strongly-typed language. For an easier side-by-side

comparison of the overhead of NaN canonicalization in Java and WASM, Figure 3.3 represents

the slowdown in matrix multiplication due to NaN canonicalization. We only present the

slowdown for the scenario where neither matrix contains a NaN value since we expect this

to be the common case. For WASM, we use the latency of canonicalizing at memory stores

(memstore). This figure further clarifies how Java outperforms WASM in NaN canonicalization.

Math library microbenchmarks

Before we evaluate the performance of the libraries using real applications, we first run a

microbenchmark to measure the execution times of common transcendental functions. We

report our findings in Table 3.1. We note that pow computes x y where both x and y are double

values between 0 and 1, and exp computes ex where x is a double value between 0 and 1. Our

results show the price we pay for computing transcendental functions with correct rounding:

MPFR is 40−75× slower than Java’s Math library. We observe that trading off correct rounding

for performance by switching to a pure Java library can reduce the performance overhead:

MicroFloat is 10−15× slower than Math for all operations except for pow. We also note that the

difference between the two math libraries of Java is marginal.
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Total time (s)

Math 20.4
StrictMath 20.7
MPFR 302
MicroFloat 22.5

Table 3.2: Total time to run user-based collaborative filtering with 5-fold cross-validation using
the MovieLens 100K dataset

Sigmoid Tanh ReLU & Softmax

bs = 1 bs = 32 bs = 1 bs = 32 bs = 1 bs = 32

Math 25.2 24.9 25.8 24.9 24.8 23.7
StrictMath 26 28.9 26.6 24.8 24.8 23.4
MPFR 47.1 46.2 72 67.4 31.9 34.4
MicroFloat 29.9 28 39.6 36.1 26 24.5

(a) Time to train a model using a single epoch

Sigmoid Tanh ReLU & Softmax

Math 0.79 0.84 0.78
StrictMath 0.79 0.84 0.78
MPFR 3.34 3.69 1.10
MicroFloat 1.39 1.8 0.84

(b) Time to run the test set

Table 3.3: Neural network model training and testing with MNIST

3.6.3 Machine learning algorithms with deterministic transcendental functions

In these experiments, we evaluate the runtime overhead due to supporting deterministic

transcendental functions in our sandbox. To this end, we implement two machine learning

algorithms in Java: a user-based collaborative filtering algorithm that is used in recommen-

dation systems and a multilayer perceptron, which is a fully-connected multi-layer neural

network, that is used in image classification. We compare the performance of MPFR with

Java’s Math and StrictMath libraries, and with the MicroFloat library.

User-based collaborative filtering

In this experiment, we implement the user-based collaborative filtering algorithm using the

Pearson correlation coefficient function. This algorithm is used in recommendation systems

to provide users with recommendations based on their past activities and choices. More

specifically, the algorithm finds users who have shown similar interests to a target user in the
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Sigmoid Tanh ReLU & Softmax

bs = 1 bs = 32 bs = 1 bs = 32 bs = 1 bs = 32

Math 28.9 28.2 26.6 29.1 30.9 28
StrictMath 28.8 28.4 29.4 29.1 33.1 28.1
MPFR 58.1 57.7 91.7 92.6 32.2 32.6
MicroFloat 32.8 34.1 38.3 45 29.8 29.2

(a) Time to train a model using a single epoch

Sigmoid Tanh ReLU & Softmax

Math 1.34 1.33 1.33
StrictMath 1.36 1.37 1.32
MPFR 5.72 6.37 1.52
MicroFloat 2.27 1.86 1.34

(b) Time to run the test set

Table 3.4: Neural network model training and testing with CIFAR-10

past and use the ratings that they had given to an item to predict whether the target user would

also like that item or not. The enforced deterministic execution capability of our sandbox

can improve the reproducibility of recommendation systems, which in turn can improve the

trust of users in the systems, user retention and engagement [72], [138]; and can help with the

advancement of recommender systems research [73].

To evaluate our implementation, we use the popular MovieLens 100K dataset that contains

100,000 ratings from 1000 users on 1700 movies. We use the script in the dataset to create

five training and test sets, which are created by performing a 80%/20% split on the data, to

perform 5-fold cross validation. Table 3.2 shows the total execution times for running user-

based collaborative filtering with 5-fold cross-validation. All the libraries except for MPFR

take around 20 seconds while it takes MPFR around 300 seconds. The dramatic difference

between the results is due to our naive use of the pow function for calculating squares in the

Pearson correlation function. Java libraries have special checks to immediately the compute

and return the square of a given value, which is not the case with MPFR. Considering that each

fold involves around 10−11 million square functions, these results are expected. Note that

we have confirmed that when we replace the pow functions with multiplications, all libraries

perform the same.

Image classification with multilayer perceptrons

Image classification is one of the most popular machine learning applications and represents

one of the use cases that can benefit from the capabilities of our sandbox. Being able to

deterministically run an image classification task within a smart contract context can improve
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the transparency and accountability of the process since any party can verify the trained

model. Additionally, combining smart contracts with a popular machine learning application

such as image classification, can create decentralized AI marketplaces that can collect large

amounts of data from various sources and achieve better models.

In this experiment, we implement a neural network for classifying images. We use two popular

datasets for our evaluation: the MNIST database, which is a database of handwritten digits

with 60,000 training images and 10,000 test images, and the CIFAR-10 dataset, which consists

of 60,000 32×32 color images in 10 classes, with 6000 images per class. There are 50,000

training images and 10,000 testing images. We use stochastic gradient descent (SGD) as the

underlying optimization function. We also implement SGD with mini batching. The difference

between these is that the former calculates the gradient to update the weights of the network

after every training example, whereas the latter calculates the mean gradient over a batch of

training examples and updates the weights once for each batch. Our neural network consists

of an input layer, a hidden layer, and an output layer. The number of nodes in each layer is

784, 64, and 10 for the MNIST runs, and 512, 128, and 10 for the CIFAR-10 runs. We use three

different activation functions in our neural network: sigmoid, tanh, and ReLU with softmax.

In the last case, we use ReLU in the hidden layers and softmax in the output layer.

Tables 3.3 and 3.4 show the training and testing times for the MNIST and CIFAR-10 datasets.

We report the latency of running a single epoch when training our model. A pass over the

whole dataset is called an epoch. We train a model using both SGD (bs = 1) and SGD with mini

batching (bs = 32) where we set the batch size to 32. Our results show that MPFR is roughly

2× slower than the Java libraries when the activation function is sigmoid, and 3−3.5× slower

when the activation function is tanh. For ReLU and softmax, the performance of the libraries

are similar since it contains fewer transcendental functions due to the use of ReLU in the

hidden layer. Our results also show that MicroFloat performs much better than MPFR as it is

at most 1.55× slower than the Java libraries.

As we have demonstrated with the two machine learning applications, transcendental func-

tions are one of the main sources of arithmetic operations for some applications. Our results

show that using a correctly-rounded library like MPFR can be a significant source of slow-

down for these applications. The alternative approach of using a pure Java library can be a

better fit for these applications when performance is more important than the accuracy of the

transcendental functions.

JVM bytecode instruction counting

In our final experiment, we evaluate the runtime overhead of counting the number of exe-

cuted JVM bytecode instructions in our sandbox. We implement and evaluate both the per

instruction and basic-block based instruction counting schemes.

We first measure the execution time of a simple Java program that recursively adds the numbers
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No instrumentation Instruction Basic block
39 ms 64 ms 49 ms

Table 3.5: Execution times of a simple Java program with instrumentation for counting the
number of executed JVM bytecode instructions

between 0 and n. We set n to 1000 and measure 10,000 runs. Table 3.5 shows the execution

times with no instrumentation, per instruction counting, and basic-block based counting.

Our results show the performance gain due to the basic-block based approach. We also run a

Java program that performs a simple zero-knowledge proof verification of correct encryption

as explained in [133]. We measure the time it takes to perform 10,000 proof verifications.

Since the program consists mostly of function calls to a third-party library, and since we do

not count the number of bytecodes executed in external libraries, the three schemes perform

virtually the same, as they all take around 7.65−7.66 seconds to finish. To summarize, our

experiment results show that instruction counting can be done practically in our sandbox

when it is done at the basic block level.

3.7 Related work

Spoto [182] identifies some of the non-deterministic library and operations in Java and pro-

poses a technique that enforces runtime determinism constraints of the Java library. Their

work relies on manual analysis to identify deterministic parts of the Java library and uses anno-

tations to specify run-time conditions. However, this work does not discuss non-determinism

due to floating-point arithmetic. Like Spoto’s work, we use a manual whitelisting approach

to make sure DEJAFLOAT does not allow programs to use non-deterministic methods and

classes from the Java standard library. However, since this approach requires manual effort,

and is therefore time consuming and prone to errors, using static analysis techniques can

considerably increase the efficiency and accuracy of the whitelisting process. For example,

proving that Java programs written in a functionally pure subset of Java [82] or checking the

purity of programs [165] are techniques that fit perfectly with what we are trying to achieve in

DEJAFLOAT.

One of the main things that DEJAFLOAT does not support is multithreaded programming

due to its non-deterministic nature. We intentionally leave out multithreaded programming

support in DEJAFLOAT to simplify its design. That being said, prior work has shown how to

enforce deterministic execution of multithreaded programs that are written both in Java [23],

[40], [136] and other general-purpose programming languages such as C/C++ [17], [20], [141].

Deterministic instruction counting has been employed in different contexts: CoreDet [17],

DMP [56], Determinator [11], and dOS [19] use it for supporting deterministic parallelism;

Deterland [218] and TDR [36] use it for protection against timing attacks; and Binder and

Hulaas use it as a reliable and reproducible way of profiling applications that run in Java [21],
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[22].

Finally, Corda’s DJVM [60] is a system that shares with DEJAFLOAT as it is a deterministic JVM

sandbox that ensures deterministic execution of Corda smart contracts. Corda only allows

explicitly-whitelisted runtime APIs to be called from the programs. Corda does acknowledge

non-determinism due to floating-point arithmetic as they rewrite class files to apply the

strictfp keyword to all methods. However, DJVM does not discuss how (or if) they handle

non-determinism due to NaNs and transcendental functions.

3.8 Conclusion

We have presented DEJAFLOAT, an efficient JVM-based deterministic sandbox that can provide

smart contracts with deterministic float-point arithmetic support. To enforce deterministic

execution of smart contracts, we manually create a deterministically-safe subset of the Java

standard library classes and methods, and restrict the programs to use only these whitelisted

classes and methods within our sandbox. We eliminate the main sources of non-determinism

in floating-point arithmetic, namely NaNs, transcendental functions, and extended precision,

with minimum performance overhead by combining techniques that operate at the Java

language and JVM level. We evaluated the performance of our DEJAFLOAT prototype using

a combination of microbenchmarks and prototyped computationally-intensive machine

learning applications. Our evaluation has demonstrated that our sandbox can efficiently

support deterministic floating-point arithmetic.
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4 Decentralized Private-Data Sharing
with On-chain Secrets

4.1 Data confidentiality in blockchains

Blockchain is an emerging technology that enables mutually distrustful parties to securely

exchange data and assets without relying on a single trusted party. Blockchains are expected

to drive the digital transformation in various application domains, such as healthcare [92],

[100], finance [193], [204], [214], identity management [104], [181], and supply chain [115],

due to their strong integrity, transparency, and availability guarantees by design. However,

despite these desirable properties, blockchains have an important shortcoming: they cannot

guarantee confidentiality of data as all blockchain data is public and replicated across the

nodes of the blockchain network. Lack of data confidentiality is one of the major roadblocks

that prevent blockchains from delivering on their transformative promises.

Confidentiality-preserving blockchains can enable auditable and transparent management

of private data in a secure manner without relying on a centralized entity. Today, centralized

big-tech companies store and control users’ data on the internet. However, the current state of

affairs is problematic as these companies have repeatedly compromised the privacy of users

due to security breaches and sharing users’ data for profit without their consent [32], [58], [63],

[93], [152], [208]. The recent data protection laws, such as General Data Protection Regulation

(GDPR) [76] and the California Consumer Privacy Act (CCPA) [110], further emphasize the

increasing need for data sovereignty and protecting the security and privacy of personal data.

Decentralized data-sharing can enable users to have complete control over who can access

their personal data and how it can be used, thereby balancing the tension between extracting

value from personal data and the security and privacy concerns of the users [111], [119], [127],

[188]. Existing solutions fail to achieve full decentralization as they rely on a trusted entity for

the availability and security of the shared data [12], [64], [226].

Improving the confidentiality of blockchains can also address the pervasive issue of frontrun-

ning [50], [74], [199] in public blockchains. In a frontrunning attack, an adversary gains unfair

financial advantage over other entities by obtaining early access to sensitive information. In

the case of decentralized applications that are built on top of blockchains, some examples

77



Decentralized Private-Data Sharing with On-chain Secrets

of sensitive information can be bid amounts (auctions) or the contents of buy/sell orders

(trading). What makes frontrunning attacks possible is that the contents of blockchain trans-

actions are transparent and in plaintext: an attacker can monitor the contents of transactions

in the network before they are finalized and create their transactions accordingly to maximize

their advantage. Privacy-preserving blockchains can mitigate frontrunning attacks by keeping

sensitive on-chain data secret so that an attacker cannot gain advantage by observing the

blockchain. Existing solutions for mitigating frontrunning attacks impose latency and traffic

overhead as they are based on multi-round commit-reveal schemes [28], [149], rely on a

trusted party [16], [183], or are domain-specific [42].

We introduce on-chain secrets, a secure decentralized data-management framework that

enables auditable and fair access to confidential data without relying on a single trusted

party. Building a framework with the above properties requires on-chain secrets to address

two challenges. The first challenge is to ensure that confidential data is only revealed to

authorized readers that are specified by the data owner. Data accesses have to be recorded in

an immutable log to verify that access control is enforced correctly and to enforce auditability

and accountability of data accesses. The second challenge is to ensure that confidential data

becomes available to all users at the same time. On-chain secrets addresses these challenges by

employing decentralized committees to combine threshold cryptography and the blockchain

technology. Threshold cryptography enables a committee of nodes to collectively and securely

store confidential data without having a single point of failure or compromise. The blockchain

manages accesses to confidential data by enforcing access control policies and maintains

an immutable log of data accesses for auditability. Additionally, the blockchain ensures fair

access to data by simultaneously releasing it to all authorized parties at the same time based

on the rules defined in the access control policy.

We propose two protocols for building on-chain secrets, namely one-time secrets (OTS) and

post-quantum one-time secrets (PQ-OTS), that employ different threshold cryptography

primitives and have different security guarantees. OTS relies on a publicly-verifiable secret

sharing (PVSS) scheme to encrypt data for an ad hoc set of trustees. PQ-OTS replaces PVSS

with Shamir’s secret sharing (SSS) to support long-term confidentiality of encrypted data

against a quantum adversary. We implemented a prototype of on-chain secrets using both

protocols to evaluate its performance. Our experiments show that on-chain secrets can scale

up to 128 trustees with both protocols to provide a high level of decentralization. Furthermore,

we use two real-world applications to evaluate the performance of on-chain secrets under

realistic workloads. First, we compare on-chain secrets to a state-of-the-art semi-centralized

system using a confidential-document sharing application. On-chain secrets incurs a 18−26%

slowdown in execution time compared to the semi-centralized system, which is an acceptable

overhead for achieving full decentralization. Second, we compare on-chain secrets to a state-

of-the-art zero-collateral decentralized lottery. The on-chain secrets lotteries are 15−25%

faster than the state-of-the-art solution as they require fewer rounds to run the lottery.

On-chain secrets was originally introduced as one of the two components of the CALYPSO
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architecture [133]. The other component is a decentralized access-control system called SIAM

that enables on-chain secrets to be used with dynamic access-control policies and identities.

More specifically, SIAM enables data owners to change the access control policies (e.g., grant

or revoke access) even after they share the data using on-chain secrets. Furthermore, it enables

users to update their identities (e.g., add or delete public keys) without losing access to data

that is already shared with them. In this thesis, we present on-chain secrets a standalone

framework without SIAM. Therefore, we assume that the access control policies are static (e.g.,

list of public keys) and cannot be changed after data is shared with on-chain secrets.

To summarize, our contributions in this chapter are the following:

• The design of on-chain secrets, a secure decentralized data-management framework

that enables auditable and fair access to confidential data without relying on a single

trusted entity.

• The design and implementation of two on-chain secrets protocols: one-time secrets

(OTS) and post-quantum one-time secrets (PQ-OTS). OTS is a PVSS-based protocol that

enables users to share their secret data with an ad hoc set of trustees without requiring

a setup phase. PQ-OTS enhances OTS to guarantee long-term confidentiality of secret

data against quantum adversaries.

• An experimental evaluation of OTS and PQ-OTS using two real-world applications,

namely a confidential-document sharing application and a zero-collateral decentralized

lottery, under both synthetic and realistic workloads. For both applications, we compare

on-chain secrets against the state-of-the-art solutions.

4.2 Motivating applications

Auditable data-sharing: Sharing private user-data among different entities is a desirable

capability in various application domains, such as scientific research, business processes, and

governance. Sharing medical records among hospitals and researchers is critical for medical

research to improve the diagnosis and treatment of diseases [103], [172]. Companies collect

and use customer data for making informed business decisions [118], [125], thereby improving

the quality of their services and products. Finally, government and intelligence agencies

occasionally require access to personal information held by third parties for effective law

enforcement [96], [174], [203]. Centralized solutions to private-data sharing are convenient

and easy to implement but require trusting a single entity for ensuring data confidentiality

and auditability of data accesses.

On-chain secrets provides a secure platform for auditable private data-sharing without relying

on a single trusted party. On-chain secrets enables data owners to control who can access

their data, to monitor accesses to their data, and to verify that the access control rules are

enforced correctly. By improving the security and transparency of the private-data sharing

process, on-chain secrets can strengthen users’ trust in the process and motivate them to

share their sensitive medical data for research purposes [127]. A secure decentralized data-
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sharing platform like on-chain secrets can be used for building data markets where users

can monetize their data by sharing it with companies. Finally, on-chain secrets can improve

the accountability of lawful data-access requests by maintaining a transparent and publicly-

verifiable log of data accesses.

Frontrunning prevention: As public blockchains are permissionless and open to everyone,

they are susceptible to attacks from malicious users. One of the most common types of attacks

is frontrunning where an attacker exploits early access to sensitive information to gain unfair

advantage over honest users. These attacks are possible because blockchain transactions

are in plaintext and publicly visible. Decentralized applications such as exchanges, crypto

collectibles, and gambling games have been affected by frontrunning attacks in the past [75].

On-chain secrets can address the frontrunning problem in these applications by hiding the

user inputs until a barrier point (e.g., block height, timestamp) that is specified in the access

control policy. After the barrier point is reached, on-chain secrets atomically reveals the

inputs to all authorized parties at the same time, thereby preventing a malicious user to obtain

premature access to the sensitive data. In this way, on-chain secrets can bring fairness to

decentralized applications.

4.3 System overview

4.3.1 Challenges

To better understand the challenges in building a decentralized system for auditable private-

data sharing, let us consider an application where Wendy operates a paid service that provides

investment advice for the stock market (i.e., buy/sell stocks) and Ron wants to purchase this

service. Since Wendy and Ron are mutually distrustful, they might act dishonestly to exploit

the system. For example, Wendy might take the money without disclosing the private data

(i.e., investment advice) to Ron or Ron might lie about not having received the private data

despite making the payment.

A strawman solution can be built using a trusted custodian. Wendy sends the private data

and the list of public keys of users who can access this data to the custodian. The custodian

generates a proof that it has stored the data and Wendy stores this proof on Bitcoin so that it is

publicly and immutably logged. Later, Ron makes the payment to Wendy on Bitcoin and takes

the proof of payment to the custodian. Once the custodian verifies the proof of payment and

that Ron is authorized to access the data, it releases the data encrypted under Ron’s public key

and stores a proof on Bitcoin to publicly record that Ron has accessed the data.

The strawman solution provides auditability because both Wendy’s and Ron’s actions are

publicly logged on Bitcoin. Furthermore, the custodian protects the confidentiality of data

by enforcing the access-control rules defined by Wendy to prevent unauthorized accesses to
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data. However, the strawman solution has a significant drawback as the trusted custodian

is a single point of failure and compromise. If the custodian crashes, there is no guarantee

that Ron can access the data, even if he has already made the payment. Moreover, if the

custodian is malicious or compromised, it can secretly release the data to Ron without a record

of payment and without recording the access on Bitcoin. Therefore, we need auditability and

data confidentiality in a fully decentralized setting that does not have a single point of failure

or compromise. Even if the custodian is honest, this solution can cause frontrunning attacks.

Since the custodian releases the data on a first-come-first-serve basis, a user who can get their

payment accepted in the Bitcoin network faster can obtain early access to the investment

advice. As a result, this user can gain unfair financial advantage in the stock market in our

example application. Therefore, we require fair access to data where all users get access at the

same time.

4.3.2 System goals

On-chain secrets aims at achieving the following goals:

1. Confidentiality: Secret data that is stored on the blockchain is only revealed to autho-

rized users. Unauthorized users cannot learn anything about the secret data.

2. Auditability: Data accesses are immutably recorded on the blockchain and are third-

party verifiable.

3. Fair access: Users are guaranteed to get access to decrypted data if and only if they

have recorded a valid access request on the blockchain. If there is a barrier point, all

authorized users simultaneously get access to data after the barrier point is reached.

4. Decentralization: There is no single point of failure or compromise.

4.3.3 System model

Writers are data owners who share their secret data on the blockchain. They send the encrypted

secret data and its access control policy in a write transaction to the blockchain. Readers are

data consumers who access the data that is shared by writers. They send a read transaction

to the blockchain to obtain access to data. The access-control blockchain is responsible for

logging write and read transactions, and authorizing accesses to data by enforcing access

control policies. The secret-management committee is responsible for managing and revealing

the secret data. The nodes of the secret-management committee are called trustees. We use

Wendy and Ron to refer to a generic writer and reader, respectively.

The access-control blockchain can be implemented in different ways as long as it satisfies the

following requirements: it has to build on Byzantine-fault-tolerant (BFT) consensus and it has

to support program execution on top of the consensus algorithm. For example, a set of trusted

nodes that maintains a programmable blockchain using BFT consensus in a permissioned

setting or an access-control smart contract that runs on top of a permissionless smart contract
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platform (e.g., Etheruem) are two alternative ways of implementing the access-control block-

chain. The secret-management committee can be setup in different ways depending on the

specific on-chain secrets protocol implementation. In OTS and PQ-OTS, it is set up ad hoc on

a per-secret-data basis. It is also possible to set up the committee using a pre-determined set

of trustees that persists over a longer period of time [133]. The secret-management committee

does not maintain a blockchain and does not require running consensus for data access

requests. For architectural clarity, we assume that the access-control blockchain and the

secret-management committee are deployed on different sets of nodes. However, in practice,

they can also be deployed on the same set of nodes.

4.3.4 Threat model

In OTS (§4.4), we make the standard cryptographic assumptions that secure symmetric-key

and public-key algorithms, cryptographic hash functions, and signature schemes exist. We as-

sume that the adversary is computationally bounded and that there is a cyclic group where the

decisional Diffie-Hellman assumption holds. In PQ-OTS (§4.5), we assume a stronger adver-

sary that is computationally unbounded and only rely on the existence of secure cryptographic

hash functions and symmetric-key algorithms.

We use nAC B and nSMC to denote the number of nodes that run the access-control blockchain

and the number of trustees in the secret-management committee, out of which f AC B and

fSMC can behave maliciously, respectively. For the access-control blockchain, we assume that

the security assumptions of the underlying consensus algorithm holds, e.g., nAC B = 3 f AC B +1

for classic BFT consensus or nAC B = 2 f AC B +1 for Nakamoto-style consensus. For the secret-

management committee, we set the secret-recovery threshold to t = fSMC +1 and require

nSMC ≥ 2 fSMC +1 and nSMC ≥ 3 fSMC +1 for OTS and PQ-OTS, respectively. It is also possible

to choose higher t values to achieve stronger security guarantees. However, this can have a

negative impact on availability and performance. Finally, we assume that Wendy and Ron are

mutually distrustful as we describe in §4.3.1.

4.3.5 Architecture overview

Figure 4.1 shows the architecture of on-chain secrets and how different entities interact with

each other as part of a data-sharing workflow. We assume that Wendy symmetrically encrypts

her data under a key k, which is the secret that is shared on-chain. Wendy sends the encrypted

secret and an access control policy in a write transaction (txw) to the access-control blockchain.

The access control policy specifies the rules for accessing the secret, such as the identities

of authorized readers and a barrier point definition. In this thesis, we assume that both the

identities of authorized readers and the access control rules are static (e.g., policy = public key

(pk) of Ron). However, on-chain secrets can be extended to support dynamic access-control

and identity management [133].
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Figure 4.1: The high-level architecture of on-chain secrets

Wendy can store the ciphertext of the symmetrically-encrypted data on the blockchain or on a

decentralized file-sharing network (e.g., IPFS) for high availability. Alternatively, Wendy can

also hold on to the ciphertext and serve it to Ron herself. In all cases, before requesting access

to a secret, Ron should make sure to obtain the relevant ciphertext and to verify that there is

already a txw for it on the blockchain. Once the access-control blockchain verifies and logs txw,

Ron can fetch it from the blockchain and send a read transaction (txr) to the access-control

blockchain. txr contains a pointer to txw and a cryptographic proof of Ron’s identity. The

access-control blockchain verifies that txw is already logged and Ron’s identity is listed as an

authorized reader in the access control policy, as specified in txw. If Ron is authorized to access

the secret, the access-control blockchain logs txr.

The logged txr serves a publicly-verifiable proof that Ron has requested access to the secret.

It also guarantees that Ron is going to receive the decrypted secret. Ron sends the logged

txw and txr in a request (reqshare) to the secret-management committee to recover the secret.

Each secret-management trustee verifies that txw and txr are logged on the blockchain and

the barrier point (if specified) is reached. Then, each trustee decrypts their share of the secret

and sends it back (respshare) to Ron. Finally, Ron polls the shares, recovers the symmetric key

k, and decrypts the data that Wendy shared with him.

4.4 One-time secrets (OTS)

In this section, we introduce one-time secrets (OTS), an on-chain secrets implementation that

is based on a publicly-verifiable secret sharing (PVSS). As with other secret-sharing schemes,

PVSS enables a dealer to share a secret s among n trustees such that any subset of t trustees

can combine their shares to reconstruct s, but any subset of t−1 trustees cannot learn anything
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about s. The additional property of PVSS is that it enables any party (i.e., not only the trustees)

to verify the correctness of the distributed shares.

In OTS, Wendy runs PVSS with a distinct secret-management committee on a per-secret basis.

Wendy only needs the public keys of the trustees to set up the secret-management committee.

Trustees do not need to coordinate with or know about each other. After choosing a set of

secret-management trustees, Wendy runs PVSS to create the encrypted shares of a secret for

each trustee by using their public keys. She uses the shared secret as the symmetric key k to

encrypt the data that she wants to share with Ron. Binding k to the PVSS shares guarantees

that recovering k requires a threshold of trustees to reveal their decrypted shares. It also

guarantees that those who have not participated in PVSS (e.g., Ron and the access-control

blockchain) can also verify that Wendy has distributed the shares correctly. Finally, Wendy

sends the encrypted shares, the non-interactive zero-knowledge (NIZK) proofs of consistent

encryption and the access control policy in txw to the access-control blockchain to share the

secret with Ron. Upon logging a valid txr on the blockchain, Ron sends the encrypted shares

and a proof that his txr is logged on-chain to each secret-management trustee to obtain the

decrypted shares. Once Ron receives a threshold number of valid decrypted shares, he can

reconstruct the symmetric key and open the secret message.

4.4.1 OTS subprotocols

Before diving into the details of the OTS subprotocols (Figure 4.2), we first introduce the

notation that we are going to use in this section. Let G be a multiplicatively written cyclic

group of prime order q with generator G where the decisional Diffie-Hellman assumption

holds. Each trustee i has a private key xi and a corresponding public key yi =Gxi . Similarly,

we use (yW , xW ) and (yR , xR ) to denote Wendy and Ron’s public-private key pairs, respectively.

We use the angle brackets (〈〉) to denote a list of elements. For example, we use 〈yi 〉 to show

the list of the trustee public keys.

Write subprotocol

Wendy prepares a write transaction (txw) as follows:

1. Computes h = H(policy) to map the access control policy to a group element h ∈G to

be used as the base point when generating the PVSS polynomial commitments. This

prevents replay attacks as we describe in §4.4.3.

2. Chooses a secret sharing polynomial s(x) =∑t−1
j=0 a j x j of degree t −1. The secret to be

shared is S =G s(0).

3. For each trustee i , computes the encrypted share ŝi = y s(i )
i of the shared secret S and

creates the corresponding NIZK proof of consistent encryption πŝi , which proves that

the share is encrypted correctly. Creates the polynomial commitments c j = ha j , for

0 ≤ j ≤ t −1.
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Figure 4.2: One-time secrets subprotocols: (1) Write, (2) Read, (3) Share retrieval, (4) Secret
reconstruction

4. Computes H(S) and uses it as the symmetric key k to encrypt the secret message m

as c = enck (m). Computes the hash of the ciphertext Hc = H(c), which can be used to

check the integrity of the ciphertext. Sets policy = yR to designate Ron as the intended

reader of the secret message m.

5. Finally, prepares and signs txw = [〈ŝi 〉 ,〈c j 〉 ,〈πŝi 〉 , Hc ,〈yi 〉 ,policy]sigW
and sends it to the

access-control blockchain.

πŝi proves that the corresponding encrypted share ŝi is consistent. More specifically, it is a

proof of knowledge of the unique s(i ) that satisfies:

Ai = hs(i ), ŝi = y s(i )
i

where Ai =∏t−1
j=0 c j

i j
. In order to generate πŝi , Wendy picks at random wi ∈Zq and computes:

a1i = hwi , a2i = y wi

i ,

Ci = H(Ai , ŝi , a1i , a2i ),ri = wi − s(i )Ci

where Ci is the challenge and ri is the response. Each proof πŝi consists of Ci and ri , and it

proves that logh Ai = logyi
ŝi .

Before logging txw, the access-control blockchain ensures that it contains valid encrypted

shares as follows:
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1. Derives the PVSS base point h = H(policy).

2. Computes Ai =∏t−1
j=0 c j

i j
using the polynomial commitments c j , 0 ≤ j < t .

3. Computes a′
1i = hri ACi

i and a′
2i = y ri

i ŝi
Ci

4. Checks that H(Ai , ŝi , a′
1i , a′

2i ) matches the challenge Ci .

5. If all shares are valid, logs txw on the blockchain.

Read subprotocol

After txw has been logged, Ron needs to log a read transaction (txr) on the access-control

blockchain before he can request the secret. To do so, Ron performs the following steps:

1. Retrieves the ciphertext c and block bw , which stores txw, from the access-control

blockchain.

2. Checks that H(c) matches Hc in txw to verify that ciphertext c has not been altered.

3. Computes Hw = H(txw) to uniquely identify the txw that he wants to read.

4. Prepares and signs txr = [Hw]sigR
, and sends it to the access-control blockchain.

To log the read transaction on the blockchain, the access-control blockchain performs the

following steps:

1. Retrieves txw using Hw. Verifies the signature sigR on txr against the public key (i.e., yR )

recorded in policy.

2. If the signature is valid, it means that Ron is authorized to access the secret. In that case,

logs txr on the blockchain.

Share retrieval subprotocol

After txr has been logged, Ron can run the share retrieval subprotocol with the secret-man-

agement committee to obtain the shares of the encryption key k. To do so, Ron initiates the

protocol as follows:

1. Creates and signs a share-retrieval request reqshare = [txw, txr,πtxr ]sigR
, where πtxr proves

that txr has been logged on the blockchain.

2. Sends reqshare to each secret-management trustee to retrieve the decrypted shares.

Upon receiving reqshare, each secret-management trustee executes the following steps:

1. Uses yR in txw to verify the signature on reqshare.

2. Using πtxr verifies that txr has been logged on the blockchain.

3. Computes the decrypted share si = (ŝi )x−1
i and creates the corresponding NIZK proof of

consistent decryption πsi , which proves that the share is decrypted correctly. The proof

shows the knowledge of the unique value that satisfies logG xi = logsi
ŝi .

4. Encrypts the decrypted share si using yR to obtain ri = encyR (si ). This guarantees that

only Ron can retrieve the decrypted share.
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5. Creates and signs the share-retrieval response respshare = [ri ,πsi ]sigi
, and sends it back

to Ron or publishes it publicly.

Secret reconstruction subprotocol

To decrypt the secret message m, Ron needs to recover the secret key k by reconstructing S as

follows:

1. Decrypts each si = decyR (ri ) and verifies it against πsi .

2. If there are at least t valid shares, uses Lagrange interpolation to reconstruct S.

3. Recovers k by computing H(S) and uses it to decrypt c to obtain m.

4.4.2 Advantages and shortcomings

OTS has several advantages due to the simplicity of its design. First, it does not require trustees

to run a setup phase to create a secret-management committee. In fact, trustees do not even

need to coordinate with or be aware of each other. Wendy can create a secret-management

committee simply by running PVSS using the public keys of the trustees that she wants to have

in the committee. Second, there is no setup phase for the secret-management committee,

Wendy can easily set up distinct secret-management committees with different committee

sizes and security thresholds on a per-secret basis. Finally, secret-management trustees do

not need to store any protocol state except for their private-public key-pairs.

OTS also has certain shortcomings. First, dealing the PVSS shares has a high computational

cost: Wendy needs to evaluate the secret sharing polynomial at n points, create n encrypted

shares and NIZK proofs, and t polynomial commitments. Therefore, as the number of trustees

increase, the client-side overhead of OTS increases as well. Second, the size of txw increases

linearly with the secret-management committee size. This is due to the trustees not storing

any protocol state. As a result, txw has to contain the encrypted shares, the NIZK proofs and

the polynomial commitments. Finally, since the encrypted shares are bound to the public

keys of the trustees, the secret-management committee cannot be changed without creating

new shares.

4.4.3 Revisiting the system goals

We explain how OTS achieves the system goals listed in §4.3.2.

Confidentiality: Secret data that is stored on the blockchain is only revealed to authorized users.

Unauthorized users cannot learn anything about the secret data.

Wendy uses a symmetric key k to encrypt the data that she wants to share with Ron. She

runs PVSS among the secret-management trustees and uses the generated shared secret as

k. Since the PVSS shares are encrypted under the public keys of the trustees, they do not
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leak any information about k. After logging a txr on the blockchain, Ron can send a valid

reqshare to the secret-management committee. Since there are at least t honest trustees in the

secret-management committee, Ron can collect enough decrypted shares to recover k and

decrypt the data. Since there can be at most fSMC malicious trustees and the secret recovery

threshold is set to t = fSMC +1, a malicious reader cannot obtain enough decrypt shares to

recover the secret without logging a txr on the blockchain. Furthermore, a malicious reader

cannot access another user’s secret data through a replay attack where they copy the encrypted

shares from a txw to a new txw
′ with a modified access control policy. This replay attack is

prevented by binding the access control policy to the base point that is used for the PVSS

encryption-consistency proofs.

Auditability: Data accesses are immutably recorded on the blockchain and are third-party

verifiable.

Assuming that the access-control blockchain builds on top of BFT consensus, all valid txw and

txr are logged on the blockchain. Anyone can use the public blockchain data and inclusion

proofs to verify that the transactions are logged on the blockchain.

Fair access: Users are guaranteed to get access to decrypted secret data if and only if they have

recorded a valid access request on the blockchain. If there is a barrier point, all authorized users

simultaneously get access to data after the barrier point is reached.

Shares of the secret data are stored in encrypted format on the blockchain. Since the PVSS

recovery threshold is t = fSMC + 1, Ron cannot obtain enough decrypted shares from the

malicious trustees to recover the secret without the proof that he has already logged a txr on

the blockchain. Similarly, since there are at least t honest nodes in the secret-management

committee, if Ron has the proof that he has logged a txr, these nodes are going to follow the

protocol and reveal their shares to him.

Decentralization: There is no single point of failure or compromise.

OTS does not rely on a single trusted party. The access-control blockchain builds on top of

BFT consensus to tolerate a threshold number of malicious nodes. The secret-management

committee uses PVSS to tolerate up to t −1 malicious nodes.

4.5 Post-quantum one-time secrets (PQ-OTS)

When describing the threat model for OTS in §4.3.4, we make the assumptions that the

adversary is computationally bounded and there is a cyclic group Gwhere the decisional Diffie-

Hellman assumption holds. These assumptions are essential to the security of one-time secrets

since the security of PVSS depends on them. In addition, these are realistic assumptions con-

sidering the computational capabilities of today’s adversaries: it is computationally infeasible

to solve the discrete logarithm problem using traditional computers. Therefore, we can rely

on PVSS, and thus OTS, to securely store private data in on-chain secrets.
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Figure 4.3: Post-quantum one-time secrets subprotocols: (1) Write, (2) Read, (3) Share retrieval,
(4) Secret reconstruction

However, there is no guarantee that the cryptographic primitives that we build on today

will be secure in the future as well. Given the recent advances in quantum computing,

computationally-unbounded adversaries who have access to strong quantum computers

can break our currently-secure cryptographic primitives in the future. For example, Shor’s

algorithm [178] shows that the discrete logarithm problem can be solved efficiently on a quan-

tum computer, thereby breaking the security of many widely-used cryptographic schemes.

In the case of PVSS, an attacker can recover the shared secret by using Shor’s algorithm to

compute the coefficients of the secret-sharing polynomial from the polynomial commitments,

thereby breaking the security of PVSS.

A large international community has already acknowledged the security threats posed by

quantum computing [92], [126]. Researchers have been supporting the development and

prototyping of quantum-safe cryptography protocols [113], [184], [205]. Governments have

also been supporting the transition to post-quantum cryptography [79], [116], [117] and

identifying the requirements for quantum-resistant security systems [80], [114]. One example

of how governments have already started considering the quantum risks when building

electronic systems is the e-voting system in Switzerland, which is known to trade off public

verifiability of the voting process for protecting the long-term confidentiality of the encrypted

ballots.

The above examples show that we need to design our systems to be secure against the threat
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of quantum computers. To this end, we present post-quantum one-time secrets (PQ-OTS),

a quantum-safe version of OTS that guarantees the long-term confidentiality of the private

data. The key idea behind PQ-OTS is to replace PVSS with the information-theoretically secure

Shamir’s Secret Sharing (SSS) algorithm to share the secret data. Even though SSS protects the

confidentiality of the shares against quantum attacks, unlike PVSS, it does not prevent Wendy

from distributing bad secret shares as SSS does not provide a way of verifying the correctness

of the distributed shares.

We address this problem by requiring the secret-management trustees to verify the correctness

of the secret shares before Wendy publicly commits to them. To do so, Wendy prepares a

commitment for each secret share and requests trustees to verify the consistency of their share

against its commitment. Assuming a secret-recovery threshold of t = fSMC +1, we require at

least 2 fSMC +1 trustees to verify the consistency of the shares and require the secret-manage-

ment committee to consist of at least nSMC = 3 fSMC +1 trustees. These thresholds guarantee

that at least t honest trustees have verified the shares, which is necessary for reconstructing

the secret. Consequently, if Ron fails to decrypt the message using the recovered secret at the

end of the protocol, he can hold Wendy accountable for not sharing a valid txw.

4.5.1 PQ-OTS subprotocols

Before we describe the subprotocols of PQ-OTS (Figure 4.3), we revisit our security assump-

tions since we are now operating in a post-quantum world. For PQ-OTS, we assume that

the communication channels are quantum safe. We further assume that the quantum-safe

versions of basic cryptographic primitives (e.g., digital signatures) are deployed. In terms of

notation, we use yi to denote the public key of trustee i , which is not computed as yi =Gxi

this time.

Write subprotocol

Wendy prepares a write transaction (txw) as follows:

1. Chooses a secret sharing polynomial s(x) =∑t−1
j=0 a j x j of degree t −1. The secret to be

shared is S = s(0).

2. For each trustee i , generates a commitment comi = H(s(i ) ∥ ri ), where ri is a random

value.

3. Computes H(S) and uses it as the symmetric key k to encrypt the secret message m

as c = enck (m). Computes the hash of the ciphertext Hc = H(c), which can be used to

check the integrity of the ciphertext. Sets policy to designate Ron as the intended reader

of the secret message m.

4. Prepares and signs txw = [〈comi 〉 , Hc ,〈yi 〉 ,policy]sigW
.

5. Sends the share s(i ), random value ri and txw to each trustee i .

Each trustee i computes H(s(i ) ∥ ri ) and compares it against comi , which is stored in txw. If
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they match, the trustee stores s(i ), and sends their signature over txw to Wendy. Once Wendy

receives the signatures, she sends txw and the signatures to the access-control blockchain.

Finally, the access-control blockchain logs txw if it can verify that at least 2 fSMC +1 trustees

have signed txw.

Read, share retrieval, and secret reconstruction subprotocol

The remaining subprotocols work the same way as those in OTS except the trustees do not

create NIZK proofs of consistent decryption, which means Ron does not have to verify any

NIZK proofs. If Ron cannot decrypt m after reconstructing the shared secret and recovering

k, it means that Wendy misbehaved. In this case, Ron can publicly reveal the output of each

subprotocol to prove that Wendy misbehaved.

4.5.2 Discussion

We finish our discussion on PQ-OTS by briefly discussing its advantages, shortcomings, and

success in achieving the system goals. PQ-OTS has the same advantages as OTS in terms of

the ad hoc setup of the secret-management committee. One advantage of PQ-OTS over OTS

is that it reduces the computational load on Wendy since SSS does not require generating

NIZK proofs and polynomial commitments. However, PQ-OTS requires an additional round

trip in the write subprotocol since Wendy needs to collect the signatures of trustees on txw.

Finally, PQ-OTS achieves all of our system goals assuming that the underlying cryptographic

primitives and the communication channels are quantum safe. Otherwise, PQ-OTS cannot

guarantee the confidentiality of secrets.

4.6 Implementation

We implemented a prototype of on-chain secrets with OTS and PQ-OTS as the underlying

protocols in ~1100 and ~1350 LoC, respectively, in Go. Additionally, we implemented two

real-world applications, namely a clearance-enforcing document sharing application and a

zero-collateral decentralized lottery, on top of on-chain secrets to evaluate its performance.

We build the access-control blockchain on top of the ByzCoin blockchain [30]. We use Ky-

ber [55] and the Go standard library for all the cryptographic primitives and operations. More

specifically, we use Kyber’s implementation of the Edwards25519 curve for elliptic-curve cryp-

tography operations, and implementation of the PVSS and SSS protocols. We use the SHA-256

and AES-256 implementations in the Go crypto package. Finally, we use Onet [196] for creating

an overlay network between the trustees and deploying our protocols.

In the document-sharing application, user A shares a confidential document with user B.

To do so, A uses the shared secret from PVSS/SSS to generate a symmetric key, encrypts the

document with the symmetric key, and sends a txw, which specifies B as an authorized reader,
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to the access-control blockchain. B receives the encrypted document from A, sends a txr to

the access-control blockchain, retrieves the decrypted shares from the secret-management

committee, and recovers the symmetric key to decrypt the document. For comparison, we

implement the same application on top of a state-of-the-art semi-centralized system [226]

that uses a blockchain to enforce access control policies and a trusted server to entrust the

data.

In the zero-collateral decentralized lottery, we implement a commitment-based approach

where participants’ inputs are used to generate an unpredictable random value that deter-

mines the winner of the lottery. We assume that there is a smart contract that collects the

bids and inputs from the users and decides on the winner. Each participant encrypts their

random input, creates a txw, and logs it on the blockchain by following the same steps as in

the document-sharing application. After a predefined barrier point is reached, the lottery

closes for new inputs. At this point, any authorized user can send txrs to the blockchain and

retrieve the decrypted shares and their proofs. Finally, the smart contract can recover the

original random inputs of the participants and XOR them to generate a random value, which is

used for selecting the winner. For comparison, we implement a state-of-the-art zero-collateral

lottery by Miller and Bentov [149] on top of the ByzCoin blockchain.

4.7 Evaluation

In our experiments, we evaluate the performance of on-chain secrets with OTS and PQ-OTS

protocols to answer the following questions:

1. Can on-chain secrets scale to large numbers of trustees to achieve high levels of decen-

tralization without sacrificing performance?

2. Can on-chain secrets achieve comparable performance to a semi-centralized system

that trades off decentralization for performance?

3. Can on-chain secrets improve on the state-of-the-art approaches that implement popu-

lar decentralized applications such as lotteries?

4.7.1 Experimental setup

We run our experiments on a Ubuntu 20.04 VM instance that is equipped with 16 vCPU (Intel

Xeon Silver 4216 CPU @ 2.10GHz) and 64GB RAM. We use Mininet to simulate a realistic

network where the link delay is 100ms and the link bandwidth is 100Mbps. We assume that

the same set of nodes run both the access-control blockchain and the secret-management

committee. Unless stated otherwise, we use a committee size of 16.
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Figure 4.4: Latency of on-chain secrets protocols for varying committee sizes

4.7.2 Level of decentralization vs. performance

In this experiment, we measure the total latency of OTS and PQ-OTS protocols for varying

numbers of trustees to evaluate the impact of committee sizes on the performance. We

report the latencies of the four subprotocols, namely write, read, share retrieval and secret

reconstruction, separately. We further break down the total latency of a subprotocol into

its client-side and committee-side components when possible. We assume that all trustees
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belong to both the access-control blockchain and the secret-management committee.

Figure 4.4a shows the results for OTS. We observe that the client-side latency of preparing a txw

increases with the number of trustees and reaches to 1.5 s for a committee size of 128. These

results are due to the computationally-heavy PVSS operations, such as creating the encrypted

shares, the NIZK proofs, and the polynomial commitments, as we mention in §4.4.2. The client-

side latency of secret reconstruction is at most ~0.2 s and is almost an order of magnitude less

than the latency of preparing a txw for a committee size of 128. The difference is due to the

fewer elliptic-curve cryptography operations required at secret reconstruction. Finally, we

observe that the access-control blockchain performance scales well with the committee size,

as it takes 2.7× and 2.4× more time to log a txw and txr, respectively, when the committee size

increases by 8×. Moreover, it takes the access-control blockchain 1.1−1.35× longer to log a

txw than a txr. This is because the access-control blockchain has to verify the encrypted PVSS

shares against the NIZK proofs before logging the txw.

Figure 4.4b shows the results for PQ-OTS. We observe that the client-side latency of preparing

a txw is significantly smaller (~85−450×) than that of OTS because PQ-OTS uses SSS and

hash-based commitments, which have a lower setup cost than PVSS. We also observe that

the additional step in PQ-OTS (Confirm write) where the writer collects signatures from the

secret-management committee trustees before posting the txw takes between 0.5 and 1 s.

Additionally, logging a txw is up to 26% faster compared to OTS. Therefore, we observe that the

total write latency of PQ-OTS is smaller than that of OTS. The secret reconstruction and share

retrieval subprotocols are also faster in PQ-OTS. Share retrieval is faster in PQ-OTS because the

secret-management committee trustees do not generate NIZK proofs of consistent decryption.

Secret construction is faster because the client does not verify NIZK proofs of decryption. As a

result, the decryption phase in PQ-OTS is up to ~10% faster than OTS.

Our experiment results demonstrate the latency overhead of OTS and PQ-OTS due to their

use of threshold cryptography. We argue that these overheads are acceptable since the total

latency is dominated by the block time, which is in the order of seconds or minutes in the

existing blockchain systems. Moreover, our results also show that both protocols can scale

with the number of trustees to achieve high degrees of decentralization.

4.7.3 On-chain secrets vs. a semi-centralized system

We use the clearance-enforcing document sharing application to compare on-chain secrets to

a state-of-the-art semi-centralized system. We define two workflows for this application: write

and read. The write workflow consists of the write transaction protocol. The read workflow

consists of the read transaction, share retrieval, and secret reconstruction protocols. As in

on-chain secrets, the blockchain is used for logging the access requests and enforcing the

access control policies. The difference in the semi-centralized system is that confidential data

is encrypted under the public key of a single trusted server instead of a collective key managed

by a committee of nodes.
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Figure 4.5: Average write and read workflow latencies under different loads in clearance-
enforcing document sharing

In our first experiment, we use a synthetic workload where users concurrently and inde-

pendently execute the write and read workflows as fast as they can. We vary the number

of concurrent users in the workload from 4 to 192 and report the average of user-observed

latencies computed over five experiment runs. Since we cannot get healthy measurements

when we set the number of concurrent users to 256, we reduce the step size after 128 to collect

more data points.

Figure 4.5a shows the average latencies for the write workflow. OTS and PQ-OTS perform

comparably to the semi-centralized (SC) system when there are up to 16 concurrent users. The

performance gap between the on-chain secrets protocols and the semi-centralized widens as

we increase the total load in the system. OTS is 74% slower than the semi-centralized system

for 32 users. It takes PQ-OTS a higher load to reach the same level of slowdown as it is 70%

slower than the semi-centralized system for 64 users. For the maximum load of 192 users,

OTS takes 112 s and it is 2.2× and 5× slower than PQ-OTS and the semi-centralized system,

respectively.

Figure 4.5b shows the average latencies for the read workflow. Once again, both on-chain

secrets protocols have comparable performance to the semi-centralized system up to 16

users. However, the performance gap between the on-chain secrets protocols and the semi-

centralized system is larger for read workflows. OTS and PQ-OTS are 77% and 114% slower

than the semi-centralized system for 32 and 64 users, respectively. For the maximum load

of 192 users, OTS takes 263 s and it is 2.1× and 10.1× slower than PQ-OTS and the semi-

centralized system, respectively. The performance gap between the on-chain secrets protocols

and the semi-centralized system is larger for the read workflow due to the share retrieval

protocol run by the secret-management committee, which is replaced by a trusted server in

the semi-centralized system.

Although the above results do not look good for the on-chain secrets protocols under heavy

loads, we claim that our experimental setup has a significantly negative impact on the per-

95



Decentralized Private-Data Sharing with On-chain Secrets

Write Read
Workflow type

0
1
2
3
4
5
6
7

La
te

nc
y 

(s
)

SC
OTS
PQ-OTS

Figure 4.6: Average write and read workflow latencies for the replayed real-world data trace in
clearance-enforcing document sharing

formance of on-chain secrets. We use a single physical machine to both deploy the trustees

and simulate the network communication via Mininet. Therefore, as we increase the number

of users in the system, the CPU becomes a bottleneck as clients, trustees and Mininet com-

petes for CPU resources. Compared to on-chain secrets, the semi-centralized system requires

less system resources since it employs fewer trustees and requires less network communica-

tion. Therefore, the semi-centralized system is impacted by the experimental setup less than

on-chain secrets does.

In our second experiment, we evaluate the performance of the clearance-enforcing document

sharing application using a data trace from a real-world deployment. We obtained the data

trace from a contractor of the Ministry of Defense of a European country using on-chain

secrets with a permissioned BFT blockchain. The data trace is collected from the company’s

testbed over a period of 15 days and includes 1821 txw and 1470 txr. The average, minimum,

and maximum number of transactions per block are 2.62, 1, and 7, respectively. We replay the

trace on on-chain secrets and the semi-centralized system by treating each block as a discrete

event. We concurrently execute all the transactions in a block and wait for all of them to finish

before we move on to the next block. We execute the write and read workflows for txw and txr,

respectively.

Figure 4.6 shows the average latencies of txw and txr. We observe that both OTS and PQ-OTS

have comparable performance to the semi-centralized system. PQ-OTS takes 22% and 18%

longer than the semi-centralized system to execute the write and read workflows, respectively.
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Figure 4.7: Lottery execution times using the Fire Lotto workload

OTS performs slightly worse than PQ-OTS as it takes 26% and 21% longer than the semi-

centralized system for the write and read workflows, respectively. We highlight that these

results are consistent with the results of the previous experiment at low system loads, which is

expected considering the characteristics of the replayed data trace.

4.7.4 A decentralized lottery application with on-chain secrets

In our final experiment, we demonstrate how on-chain secrets can improve the performance

of decentralized lotteries, which is a popular class of decentralized applications. To this end,

we compare our lottery implementations based on on-chain secrets to a state-of-the-art lottery

by Miller and Bentov [149] that does not require any collateral from the participants.

Miller and Bentov’s protocol is based on a binary-tree tournament structure and requires

O(log N ) rounds, where N is the number of participants. At each round, participants compete

against each other in pairs by running a commit-reveal protocol. The winner of each pair

advances to the next round where they run the commit-reveal protocol again, in pairs. The

process continues until there is only one participant left, who becomes the winner of the

lottery. In comparison, our on-chain secrets lotteries use a commit-reveal protocol that runs

in one round. The round begins with all participants sending their encrypted commitments to

on-chain secrets and ends with all commitments getting decrypted and revealed at the same
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time.

We evaluate both a simple and an optimized implementation of the on-chain secrets lotteries.

In the simple implementation, we send a separate decryption request to the secret-manage-

ment committee for each commitment one after the other. In the optimized implementation,

we send a single batch request that returns all decrypted commitments. We use a real-world

trace based on Fire Lotto [194], which is an Ethereum-based decentralized lottery platform, to

evaluate the performance of the lottery implementations. We collect transactions sent to the

Fire Lotto smart contract on Ethereum over a period of 15 days, where each day is a separate

run of the lottery. The average, minimum, and maximum number of transactions per day are

83.4, 61, and 142, respectively.

Figure 4.7 shows the total execution time of the daily lottery runs for each day in our trace.

We only report the latency of the reveal phase, where the commitments are opened and the

winner is picked, since the commitment phase lasts for hours and participants can send in

their commitments whenever they want during that period. The simple OTS- and PQ-OTS-

based lotteries are 15% and 25% faster than the tournament lottery on average, respectively.

On-chain secrets lotteries have an additional overhead due to decrypting the commitments,

but the tournament lottery is slower due to having O(log N ) times more interaction with the

blockchain, which has a higher overhead. Batching the decryption requests further improves

the performance as the OTS- and PQ-OTS-based lotteries are 32% and 38% faster than the

tournament lottery on average, respectively.

4.8 Related work

Previous work has proposed approaches for confidential sharing of sensitive user-data using

blockchains. Zyskind et al. [226] proposes a system that enables users to selectively share

their personal data with third-party services. They use the blockchain as an access-control

manager and store encrypted data off-chain. Their system has a stronger security assumption

as it assumes an honest-but-curious reader, unlike on-chain secrets where readers can act

maliciously. Enigma [227] improves on [226] by using secure multi-party computation to

split sensitive data among a group of nodes. Other systems [12], [64] use blockchains for

auditable and transparent sharing of electronic medical records. Both systems fail to achieve

full decentralization as they use a centralized off-chain component to store the sensitive

data, even though they rely on the blockchain for managing data accesses and permissions.

Finally, Droplet [177] is a decentralized access control system that supports sharing and

management of streaming time-series data. Droplet uses an encryption-based access control

mechanism where a data stream is divided into chunks based on time segments and each

chunk is encrypted with a distinct key that is generated for that time segment. Droplet’s

authorization service builds on a blockchain to maintain the access control state and check

the access permissions without a trusted entity.

One of the earliest works in the area of decentralized life-cycle management is Vanish [88],
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which addresses the problem of irreversibly and automatically revoking access to all copies

of a shared data without relying on a trusted party. Vanish encrypts data using a random

encryption key; uses Shamir secret sharing to create shares of the key; and distributes the

shares of the key to random nodes in a distributed hash table (DHT). Vanish relies on the

DHT’s property of periodically discarding old data to ensure that the distributed key shares

will disappear from the DHT over time and the data will vanish as there will not be enough

shares to recover the encryption key. Shortly after Vanish was published, researchers presented

feasible attacks against Vanish where an adversary can recover encryption keys long after

their supposed removal from the DHT [216]. We can build a Vanish-like system where users

can revoke access to their shared data by combining on-chain secrets with a decentralized

access-control system as described in CALYPSO [133].

Finally, researchers have proposed solutions that encrypt transactions to mitigate frontrunning

attacks. FairBlock [150] employs identity-based encryption (IBE) to create an encryption

key for each block height. Users encrypt their transactions to a future block using the key

corresponding to the height of the future block. FairBlock replaces the trusted third party

with a committee of nodes to avoid a single point of failure or compromise. Ferveo [14] uses

threshold cryptography to make sure that the transaction contents remain encrypted until the

transaction is finalized in a block. Other solutions [61], [131] use time-lock puzzles [169] to

guarantee that transactions can only be decrypted in the future after a certain amount of time

has passed.

4.9 Conclusion

We have presented on-chain secrets, a secure decentralized data-management framework

that enables auditable and fair access to confidential data without relying on a trusted entity.

on-chain secrets uses threshold cryptography to store confidential data using a committee of

trustees, and the blockchain technology to manage accesses to confidential data by enforcing

access control policies in a transparent and auditable manner. We design and implement

two on-chain secrets protocols, OTS and PQ-OTS, to guarantee the confidentiality of secret

data against today’s adversaries and the quantum adversaries of the future, respectively. We

evaluate our prototype of on-chain secrets using real-world applications under both synthetic

and realistic workloads. Our results demonstrate that on-chain secrets can improve the

security and fairness of decentralized applications while achieving acceptable performance

without sacrificing decentralization.
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5 Conclusion

In this dissertation, we have presented systems to improve the functional richness of smart

contracts. To this end, we have proposed both a novel grand-vision architecture idea in

PROTEAN, and standalone systems in DEJAFLOAT and on-chain secrets to address specific

technical challenges in the current smart contract systems. We have built prototypes of

the proposed systems and evaluated their performance using real-world applications. Our

experimental evaluation has shown that our systems are feasibly practical and can address the

functional limitations of the existing smart contract systems. Moreover, we believe that the

architectural vision of PROTEAN has the potential to accelerate innovation in the decentralized

computing domain.

That being said, we think that there is still a lot of room for interesting future work. One of

the important limitations of PROTEAN is its handling of concurrent transactions. It would be

interesting to see how we can combine concurrency control techniques from the database

systems (e.g., multi-version concurrency control, deterministic databases) with the security

requirements of smart contracts to build high-performance systems. Another important

future work for PROTEAN is to create a domain-specific language for defining workflows in

an expressive and programmer-friendly way. Another venue for future research is building

on our experience with building a deterministic JVM sandbox to create a language-neutral

deterministic sandbox for multiple general-purpose programming languages. Since this would

require creating deterministic language profiles for several languages, it would be interesting

to investigate how techniques from programming languages can be utilized to improve the

efficiency and correctness of the deterministic sandbox.
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A Workflows and FSM models of the
PROTEAN applications
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A.1.2 Workflows

{

"join":{

"txns":{

"join":{

"opcodes":[

{

"name":"exec",

"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"join_randlotto"

},

"readset":{
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"src":"KEYVALUE",

"value":"tickets,curr_stage"

}

}

},

{

"name":"update_state",

"dfu_id":"state_dfu",

"inputs":{

"ws":{

"src":"OPCODE",

"src_name":"writeset",

"idx":0

}

}

}

]

}

}

},

"close":{

"txns":{

"close":{

"opcodes":[

{

"name":"exec",

"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"close_randlotto"

},

"barrier":{

"src":"CONST",

"value":100

},

"readset":{

"src":"KEYVALUE",

"value":"curr_stage"

}

}

},
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{

"name":"update_state",

"dfu_id":"state_dfu",

"inputs":{

"ws":{

"src":"OPCODE",

"src_name":"writeset",

"idx":0

}

}

}

]

}

}

},

"finalize":{

"txns":{

"finalize":{

"opcodes":[

{

"name":"get_randomness",

"dfu_id":"rand_dfu",

"inputs":{

"round":{

"src":"CONST",

"value":10

}

}

},

{

"name":"exec",

"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"finalize_randlotto"

},

"round":{

"src":"CONST",

"value":10

},

"readset":{
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"src":"KEYVALUE",

"value":"tickets,curr_stage"

},

"randomness":{

"src":"OPCODE",

"src_name":"randomness",

"idx":0

}

}

},

{

"name":"update_state",

"dfu_id":"state_dfu",

"inputs":{

"ws":{

"src":"OPCODE",

"src_name":"writeset",

"idx":1

}

}

}

]

}

}

}

}

A.2 secretlotto

A.2.1 FSM model
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A.2 secretlotto

A.2.2 Workflows

{

"setup":{

"txns":{

"setup":{

"opcodes":[

{

"name":"run_dkg",

"dfu_id":"threshold_dfu"

},

{

"name":"exec",

"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"setup_secretlotto"

},

"pk":{

"src":"OPCODE",

"src_name":"pk",

"idx":0

},

"readset":{

"src":"KEYVALUE",

"value":"curr_stage"

}

}

},

{

"name":"update_state",

"dfu_id":"state_dfu",

"inputs":{

"ws":{

"src":"OPCODE",

"src_name":"writeset",

"idx":1

}

}

}

]
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}

}

},

"join":{

"txns":{

"join":{

"opcodes":[

{

"name":"exec",

"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"join_secretlotto"

},

"readset":{

"src":"KEYVALUE",

"value":"enc_tickets,curr_stage"

}

}

},

{

"name":"update_state",

"dfu_id":"state_dfu",

"inputs":{

"ws":{

"src":"OPCODE",

"src_name":"writeset",

"idx":0

}

}

}

]

}

}

},

"close":{

"txns":{

"close":{

"opcodes":[

{

"name":"exec",
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"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"close_secretlotto"

},

"barrier":{

"src":"CONST",

"value":100

},

"readset":{

"src":"KEYVALUE",

"value":"curr_stage"

}

}

},

{

"name":"update_state",

"dfu_id":"state_dfu",

"inputs":{

"ws":{

"src":"OPCODE",

"src_name":"writeset",

"idx":0

}

}

}

]

}

}

},

"finalize":{

"txns":{

"finalize":{

"opcodes":[

{

"name":"exec",

"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"prepare_decrypt"
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},

"readset":{

"src":"KEYVALUE",

"value":"enc_tickets"

}

}

},

{

"name":"decrypt",

"dfu_id":"threshold_dfu",

"inputs":{

"ciphertexts":{

"src":"OPCODE",

"src_name":"ciphertexts",

"idx":0

}

}

},

{

"name":"exec",

"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"finalize_secretlotto"

},

"readset":{

"src":"KEYVALUE",

"value":"curr_stage"

},

"plaintexts":{

"src":"OPCODE",

"src_name":"plaintexts",

"idx":1

}

}

},

{

"name":"update_state",

"dfu_id":"state_dfu",

"inputs":{

"ws":{
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"src":"OPCODE",

"src_name":"writeset",

"idx":2

}

}

}

]

}

}

}

}

A.3 e-voting

A.3.1 FSM model

lottery_

open

lottery_

closed

lottery_

finalized

join

close finalize

lottery_

setup

lottery_

open

lottery_

closed

lottery_

finalized

setup

join

close finalize

election_
setup

setup

vote

lock shuffle tallyelection_
open

election_
closed

election_
shuffled

election_
finalized

A.3.2 Workflows

{

"setup":{

"txns":{

"setup":{

"opcodes":[

{

"name":"run_dkg",

"dfu_id":"threshold_dfu"

},

{

"name":"exec",

"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",
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"value":"setup_election"

},

"pk":{

"src":"OPCODE",

"src_name":"pk",

"idx":0

},

"readset":{

"src":"KEYVALUE",

"value":"curr_stage"

}

}

},

{

"name":"update_state",

"dfu_id":"state_dfu",

"inputs":{

"ws":{

"src":"OPCODE",

"src_name":"writeset",

"idx":1

}

}

}

]

}

}

},

"vote":{

"txns":{

"vote":{

"opcodes":[

{

"name":"exec",

"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"vote"

},

"readset":{

"src":"KEYVALUE",
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"value":"enc_ballots,curr_stage"

}

}

},

{

"name":"update_state",

"dfu_id":"state_dfu",

"inputs":{

"ws":{

"src":"OPCODE",

"src_name":"writeset",

"idx":0

}

}

}

]

}

}

},

"finalize":{

"txns":{

"lock":{

"opcodes":[

{

"name":"exec",

"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"lock"

},

"barrier":{

"src":"CONST",

"value":100

},

"readset":{

"src":"KEYVALUE",

"value":"lock,curr_stage"

},

"h":{

"src":"PRECOMMIT",

"value":"h"
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}

}

},

{

"name":"update_state",

"dfu_id":"state_dfu",

"inputs":{

"ws":{

"src":"OPCODE",

"src_name":"writeset",

"idx":0

}

}

}

]

},

"shuffle":{

"opcodes":[

{

"name":"exec",

"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"prepare_shuffle"

},

"readset":{

"src":"KEYVALUE",

"value":"enc_ballots,h"

}

}

},

{

"name":"shuffle",

"dfu_id":"mixnet_dfu",

"inputs":{

"pairs":{

"src":"OPCODE",

"src_name":"pairs",

"idx":0

},

"h":{
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"src":"OPCODE",

"src_name":"h",

"idx":0

}

}

},

{

"name":"exec",

"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"prepare_proofs"

},

"readset":{

"src":"KEYVALUE",

"value":"curr_stage"

},

"proofs":{

"src":"OPCODE",

"src_name":"proofs",

"idx":1

}

}

},

{

"name":"update_state",

"dfu_id":"state_dfu",

"inputs":{

"ws":{

"src":"OPCODE",

"src_name":"writeset",

"idx":2

}

}

}

]

},

"tally":{

"opcodes":[

{

"name":"exec",
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"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"prepare_decrypt_votes"

},

"readset":{

"src":"KEYVALUE",

"value":"proofs"

}

}

},

{

"name":"decrypt",

"dfu_id":"threshold_dfu",

"inputs":{

"ciphertexts":{

"src":"OPCODE",

"src_name":"ciphertexts",

"idx":0

}

}

},

{

"name":"exec",

"dfu_id":"exec_dfu",

"inputs":{

"fnname":{

"src":"CONST",

"value":"tally_votes"

},

"readset":{

"src":"KEYVALUE",

"value":"curr_stage"

},

"plaintexts":{

"src":"OPCODE",

"src_name":"plaintexts",

"idx":1

},

"candidate_count":{

"src":"CONST",
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"value":10

}

}

},

{

"name":"update_state",

"dfu_id":"state_dfu",

"inputs":{

"ws":{

"src":"OPCODE",

"src_name":"writeset",

"idx":2

}

}

}

]

}

}

}

}
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