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Abstract

Modern power distribution systems are experiencing a large-scale integration of Converter-
Interfaced Distributed Energy Resources (CIDERs). Their presence complicates the
analysis and mitigation of harmonics, whose creation and propagation may be amplified
beyond limits of international standards by the interactions of individual CIDERs through
the grid. To this end, appropriate analysis tools are required in order to model and
quantify harmonic levels as well as to assess the associated harmonic stability, identify
causes of instability, and develop robust controllers. Frequency-domain analysis has been
identified to be a computationally efficient approach for the study of harmonics. However,
many of the existing frequency-domain models are only valid for specific devices, or
neglect the coupling between harmonics.

In order to overcome these limitations, a modular and generic modelling framework for
power grids with a high share of CIDERs is proposed in this thesis. The framework
models a power system as a composition of a grid and a number of resources (including,
but not limited to, CIDERs). The grid components are characterized by compound
electrical parameters, which allow to represent both transposed or non-transposed lines.
The CIDERs are represented by a generic structure that allows to treat both grid-forming
and grid-following CIDERs. In particular, this structure is fully modular w.r.t. different
reference frames (e.g., between the electrical components and the control of a CIDER) as
well as circuit configurations (e.g., between grid and resources). All components of the
system model are represented by Linear Time-Periodic (LTP) models or functions, that
are transformed to frequency domain by means of Fourier transform and Toeplitz theory.

Building on this modelling framework, a Harmonic Power-Flow (HPF) method is pro-
posed. The HPF problem is formulated through the mismatch equations of the nodal
quantities between the hybrid parameters of the grid and the closed-loop responses of
the CIDERs. The system of equations is solved numerically using a Newton-Raphson
algorithm. The results are validated against time-domain simulations in Simulink. The
HPF method has been shown to accurately capture the propagation of harmonics between
AC and DC components of CIDERs, and through entire hybrid AC/DC power systems.

For the purpose of stability assessment, the system model is derived in harmonic domain
as the closed-loop model between the grid and the resources. On the obtained system
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Abstract

model, an eigenvalue analysis is performed using LTP system theory. The Harmonic
Stability Assessment (HSA) is shown to be applicable to individual CIDER models as well
as to an entire power system. Furthermore, it can be used for sensitivity analysis of the
eigenvalue loci w.r.t. control parameter variations. Additionally, the HSA is confirmed to
be effective in identifying a harmonic instability in a small yet realistic example system
operating under standard conditions.

Keywords: Distributed energy resources, power electronic converters, harmonic power-
flow study, harmonic stability assessment, coupling of harmonic frequencies, unbalanced
power grids.
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Zusammenfassung

In modernen Verteilernetzen findet zurzeit in grossem Massstab eine Integration sogenann-
ter Converter-Interfaced Distributed Energy Resources (CIDERs) statt. Ihr Vorkommen
erschwert die Analyse und Dämpfung von Harmonischen (= Oberschwingungen), deren
Entstehung und Ausbreitung durch das Zusammenspiel einzelner CIDERs im Netz derart
verstärkt werden kann, dass die durch internationale Standards vorgeschriebenen Grenz-
werte verletzt werden. Aus diesem Grund werden geeignete Analysewerkzeuge benötigt,
um Harmonische zu modellieren und zu quantifizieren, sowie die damit verbundene har-
monische Stabilität zu bewerten, die Ursachen etwaiger Instabilität zu identifizieren und
robuste Regler zu entwickeln. Die Analyse im Frequenzbereich hat sich als ein hinsichtlich
des Rechenaufwands effizienter Ansatz für derartige Untersuchungen erwiesen. Viele der
vorhandenen Frequenzbereichsmodelle sind jedoch nur für bestimmte Maschinen gültig
oder vernachlässigen die Kopplung zwischen Harmonischen verschiedener Ordnung.

Um diese Einschränkungen zu überwinden, wird in dieser Arbeit ein modularer und
generischer Modellierungsansatz für Stromnetze mit einem hohen Anteil an CIDERs
vorgeschlagen. Der Ansatz modelliert ein Stromnetz als Kombination aus dem Netz und
einer Reihe von Ressourcen (einschliesslich CIDERs, aber nicht beschränkt auf diese).
Die Netzkomponenten werden durch sogenannte elektrische Verbundparameter charakte-
risiert, die es ermöglichen, sowohl transponierte als auch nicht transponierte Leitungen
darzustellen. Die CIDERs werden durch einen generischen Aufbau beschrieben, der es
ermöglicht, sowohl netzbildende als auch netzfolgende CIDERs zu behandeln. Insbeson-
dere ist dieser Aufbau vollständig modular in Bezug auf verschiedene Referenzrahmen
(z.B. zwischen den elektrischen Komponenten und der Regelung einer CIDER) sowie
auf verschiedene Schaltkreiskonfigurationen (z.B. zwischen Netz und Ressourcen). Alle
Komponenten des Systemmodells werden durch lineare zeit-periodische (LTP)-Modelle
oder -Funktionen dargestellt, die mittels Fourier-Transformation und Toeplitz-Theorie
im Frequenzbereich abgebildet werden.

Aufbauend auf diesem Modellierungsansatz wird eine Methode des harmonischen Last-
flusses (HPF) hergeleitet. Das HPF-Problem wird durch die Fehlergleichungen der
Knotengrössen zwischen den Hybridparametern des Netzes und den Antworten des ge-
schlossenen Regelkreises der CIDERs formuliert. Das Gleichungssystem wird numerisch
mit einem Newton-Raphson-Verfahren gelöst. Die Ergebnisse werden anhand von Zeit-
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bereichssimulationen in Simulink validiert. Es wird gezeigt, dass die HPF-Methode die
Ausbreitung von Harmonischen zwischen AC- und DC-Komponenten der CIDERs und
durch ganze hybride AC/DC-Stromnetze präzise erfassen kann.

Zum Zweck der Stabilitätsanalyse wird das Systemmodell im harmonischen Bereich als
ein geschlossener Regelkreis bestehend aus dem Netz und den Ressourcen modelliert.
Für dieses Modell wird eine Eigenwertanalyse unter Verwendung der LTP-Systemtheorie
durchgeführt. Es wird gezeigt, dass die harmonische Stabilitätsanalyse (HSA) sowohl für
einzelne CIDER-Modelle als auch für ein ganzes Stromnetz effektiv durchgeführt werden
kann. Darüber hinaus kann das genannte Modell für die Sensitivitätsanalyse der Lage
der Eigenwerte in Bezug auf Variationen der Regelparameter verwendet werden. Des
Weiteren wird gezeigt, dass die HSA eine harmonische Instabilität in einem kleinen aber
realistischen Beispielsystem, das unter Standardbedingungen betrieben wird, wirksam
identifiziert.

Stichwörter: Verteilte Energiequellen, leistungselektronische Umrichter, harmonische
Lastflussberechnung, Analyse der harmonischen Stabilität, Kopplung zwischen harmoni-
schen Frequenzen, asymmetrische Stromnetze.
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Résumé

Les systèmes modernes de distribution d’énergie connaissent une intégration à grande
échelle de Ressources Énergétiques Distribuées Interfacées par Convertisseur (CIDERs).
Leur présence complique l’analyse et l’atténuation des fréquences harmoniques, dont
la création et la propagation peuvent être amplifiées au-delà des limites des normes
internationales par les interactions des différents CIDERs à travers le réseau. À cet effet,
des outils d’analyse appropriés sont nécessaires pour modéliser et quantifier les niveaux
d’harmoniques, ainsi que pour évaluer la stabilité harmonique du réseau, identifier les
causes d’instabilité et développer des contrôleurs robustes. L’analyse dans le domaine
fréquentiel a été identifiée comme une approche efficace sur le plan computationnel pour
l’étude des harmoniques. Cependant, de nombreux modèles existants ne sont valides que
pour des cas spécifiques, ou négligent le couplage entre les harmoniques.

Afin de surmonter ces limitations, cette thèse propose un cadre de modélisation mo-
dulaire et générique pour les réseaux électriques avec une part élevée de CIDERs. Ce
cadre modélise un système d’alimentation comme une composition d’un réseau et d’un
nombre de ressources (y compris, mais sans s’y limiter, les CIDERs). Les composants
du réseau sont caractérisés par des paramètres électriques composés, qui permettent de
représenter à la fois les lignes torsadées et non torsadées. Les CIDERs sont représentés
par une structure générique qui permet de les traiter soit comme source maitre ou comme
source suivant le reseau. En particulier, cette structure est entièrement modulaire par
rapport aux différents cadres de référence (e.g., entre les composants électriques et le
contrôle d’un CIDER), ainsi qu’aux configurations de circuit (e.g., entre le réseau et les
ressources). Tous les composants du modèle sont représentés par des modèles ou des
fonctions Linéaires Temps-Périodiques (LTP), qui sont transformés dans le domaine
fréquentiel au moyen de la transformation de Fourier et de l’algèbre de Toeplitz.

Sur la base de ce cadre de modélisation, une méthode de Flux de Puissance Harmonique
(HPF) est proposée. Le problème du HPF est formulé à travers les équations de déséqui-
libre des quantités nodales entre les paramètres hybrides du réseau et jes réponses des
CIDERs en boucle fermée. Le système d’équations est résolu numériquement en utilisant
l’algorithme de Newton-Raphson. Les résultats sont validés grâce à des simulations
en temps réel dans Simulink. La méthode HPF permet de capturer avec précision la
propagation des harmoniques entre les composants AC et DC des CIDERs et à travers
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des systèmes d’alimentation hybrides AC/DC entiers.

Afin d’évaluer la stabilité du système entier, son modèle est dérivé dans le domaine
harmonique comme étant le modèle en boucle fermée entre le réseau et les ressources.
Ouis, sur le modèle obtenu, une analyse des valeurs propres est réalisée en utilisant
la théorie des systèmes LTP. L’Évaluation de la Stabilité Harmonique (HSA) s’avère
applicable à des modèles individuels des CIDERs, ainsi qu’au système d’alimentation
entier. De plus, elle peut être utilisée pour une analyse de sensibilité des lieux des valeurs
propres par rapport aux variations des paramètres de contrôle. Finalement, le HSA est
efficace pour identifier une instabilité harmonique dans un système d’exemple réduit mais
réaliste, opérant dans des conditions typiques.

Mots clé : Ressources énergétiques distribuées, convertisseurs de puissance électroniques,
debit de puissance harmonique, évaluation de stabilité harmonique, couplage de fréquences
harmoniques, réseaux électriques déséquilibrés.
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1 Introduction

1.1 Context and Motivation

Power distribution systems are undergoing a large-scale integration of distributed energy
resources, such as renewable generators, energy storage systems, and modern loads.
Typically, these resources are interfaced with the grid via power electronic converters.
The controllability of such Converter-Interfaced Distributed Energy Resources (CIDERs) is
of crucial importance for power-system operation [6]. Moreover, thanks to recent advances
in power-system instrumentation and state estimation (e.g., [7]), real-time situational
awareness is nowadays available for power distributions systems. The deployment of
such automation technology is contributing to the development of Active Distribution
Networks (ADNs), whose power flows can be regulated, mainly by controlling the
CIDERs [8]. However, the presence of large numbers of CIDERs can jeopardize the
stability of the system. Therefore, it is vital to first understand the causes of instabilities,
and then apply this knowledge to design robust controllers.

Recently, several standardization committees have worked on the classification, modelling,
and analysis of stability issues in ADNs (e.g., [9, 10]). The instabilities observed in
such systems are related to the transfer or balance of power in the grid, or interactions
between the resources. Due to the prevalence of CIDERs, converter a.k.a harmonic
stability is of particular importance [9]. In such systems, unstable oscillations at harmonic
frequencies (e.g., [11]) may occur due to interactions between AC/DC converters and
their components, as well as the collective interactions of various CIDERs through the
electrical grid.

For over a century, power system analysis has concentrated on the fundamental frequency
component [12]. However, power systems are inherently complex, nonlinear systems char-
acterized by time-varying signals composed of a continuous spectrum of frequencies [13].
These characteristics, especially in power systems with a high share of CIDERs, lead to
an interaction between frequencies that is utterly neglected in standard power system
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analysis. More specifically, it has been shown that modern power systems reach a so-called
harmonic steady state, as opposed to the sinusoidal steady state that is traditionally
considered. Given the increasing complexity of modern power systems, the traditional
concepts of power system stability are being reconsidered in recent research [9].

1.2 Problem Statement

A power system can be described by a system of nonlinear Differential-Algebraic Equa-
tions (DAEs) [14] of the following form:

ẋ(t) = f(t, x(t), y(t)) (1.1)
0 = g(t, x(t), y(t)) (1.2)

where x(t) is the vector of state variables (i.e., described by differential equations), ẋ(t) is
the derivative of x(t) w.r.t. time, and y(t) is the vector of algebraic variables (i.e., described
by algebraic equations). The functions f(·) and g(·) represent the differential and algebraic
equations, respectively. If the Jacobian of g(·) w.r.t. y is invertible along a solution
trajectory, one can solve (1.2) for y and substitute the result into (1.1), which yields an
expression of the form [14]:

ẋ(t) = f̃(t, x(t)) (1.3)

In this case, it suffices to study the reduced system (1.3) in order to assess the stability
of the original system (1.1)–(1.2).

Definition of Harmonic Stability

For the purposes of this thesis, it is necessary to establish a formal definition of harmonic
stability. To this end, the power system is assumed to be described by a periodic steady
state. That is, all signals are composed of a superposition of sinusoids at the fundamental
frequency and its integer multiples. From the system theoretical point of view, harmonic
stability can be described as the existence of a steady-state solution to the system
equations in form of a harmonic spectrum. Following the derivation given in [15] for the
conventional stability of power systems, the following definition of harmonic stability is
proposed:

Definition 1. Consider a system represented by the a set of dynamic equations as
introduced in (1.3):

ẋ(t) = f̃(t, x(t)) (1.4)
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Such a system is harmonically stable if its steady-state behaviour is described by a periodic
trajectory, i.e.:

∃ T ∈ R s.t. f̃(t + kT, x(t + kT )) = f̃(t, x(t)), |f̃ | <∞, k ∈ N (1.5)

In general, such a periodic trajectory involves multiple harmonics which may interact
with each other. Therefore, in light of the above, models of power systems that accurately
capture the coupling between harmonic frequencies are required. Such models are an
essential foundation for methods that can perform accurate Harmonic Analysis (HA) of
the power system.

Objectives of this Thesis

The objective of this thesis is to develop methods that are capable to accurately capture
the creation and propagation of harmonics in power systems and, ultimately, for the
assessment of harmonic stability as established in Def. 1. Such methods should be based
on a generic and modular modelling framework, which is versatile w.r.t. power system
components. The approach should enable the examination of generic power systems,
expanding the scope of analysis beyond the often rather specific case studies that has
characterized the field thus far.

The challenge in terms of modelling framework is to treat the nonlinearities within
the power system with sufficient accuracy. In practice, the models of the individual
power system components need to be suitably approximated, such that they effectively
represent the harmonic coupling. Furthermore, the coupling between harmonics due to
the interaction of the resources and the electrical grid needs to be taken into account.
Therefore, a modelling framework that can account for the time-varying behaviour of
a generic power system and its components is essential. Notably, such a modelling
framework must be versatile enough to enable both the identification of the harmonic
steady state as well as the assessment of the harmonic stability.

Identification of the Harmonic Steady State

In order to analyse the creation and propagation of harmonics in a power system, steady-
state methods can be employed. The system is assumed to be in periodic steady state,
which allows to decompose the system variables into so-called harmonic phasors by means
of the Fourier analysis. More precisely, a harmonic phasor is described by:

X̂ = colh∈H(Xh) (1.6)

where Xh ∈ C is the complex Fourier coefficient of a time-periodic signal x(t) at the h-th
harmonic of the fundamental frequency f1, with h ∈ H ⊂ Z.
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In [12], it is proposed to separate the nonlinear elements of the system (e.g., power
electronic devices) from the linear ones. In the particular case of CIDERs, nonlinearities
are primarily due to their control schemes (e.g., coordinate transformations or power
reference calculations) and their actuators (e.g., PWM-controlled IGBT bridges). Trans-
forming the linear elements into the harmonic domain is straightforward. The nonlinear
elements can be approximated directly in the harmonic domain providing representations
that account for the coupling between harmonics of different orders. The result is a set
of nonlinear equations, which can be solved iteratively using numerical methods (e.g.,
Newton-Raphson methods).

In Chapter 4 of this thesis, the Harmonic Power-Flow (HPF) study is proposed, which
represents the power system as a combination of the resources (i.e., the CIDERs) on the
one hand, and the electrical grid on the other. In the harmonic domain, the responses of
the CIDERs are derived by approximating their nonlinear subcomponents by suitable
(possibly nonlinear) functions of the harmonic phasors. Then, the response of the
combination of all resources is expressed as:

ŶQ = ĜQ(ÛQ) (1.7)

where ÛQ and ŶQ represent the harmonic phasors of the time-domain inputs and outputs
of the resource models, respectively. By contrast, the grid behaviour is linear within
the typical frequency range considered for HA, allowing it to be represented by a linear
transfer function in the harmonic domain:

ŶG = ĜGÛG (1.8)

where ÛG and ŶG are the harmonic-domain representations (i.e., harmonic phasors) of
the time-domain inputs and outputs of the grid, respectively. In periodic steady state -
much like in sinusoidal steady state - the mismatch equations between the resources and
the grid must equal zero:

∆Ŷ = ŶG − ŶQ = 0 (1.9)

This equation is fundamental to the HPF method and solved using the Newton-Raphson
method.

Assessment of the Harmonic Stability

For the Harmonic Stability Assessment (HSA) of power systems, dynamic methods
are employed. To this end, the system is represented by the original set of differential
equations (recall the system description in Def. 1). In order to assess the system stability,
one could try to find a Lyapunov function w.r.t. the nonlinear system equations [15].
In general, finding such a function is highly complicated. Instead, one can analyse the
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small-signal stability of a system around a certain operating point via Nyquist plots or
eigenvalue analysis [15].

For the HSA in Chapter 5 of this thesis, the system variables are assumed to be described
by exponentially modulated time-periodic signals. Such signals are expressed as Fourier
series of a time-periodic signal modulated by a complex exponential term:

x(t) =
∑
h∈H

Xh exp ((s + jh2πf1)t) (1.10)

where s ∈ C is the Laplace operator. Any nonlinear component of the resources is
linearized in time domain around time-periodic operating trajectories, which results in
Linear Time-Periodic (LTP) state-space models. Recall that the grid is an inherently
linear system in the frequency range considered, and is therefore fully represented by a
Linear Time-Invariant (LTI) state-space model. Without going into the details of the
derivations, both time-domain models can be described in harmonic domain by so-called
Harmonic State-Space (HSS) models:

Σ̂ :


(
s · diag(1) + jΩ̂

)
X̂ = ÂX̂ + B̂Û

Ŷ = ĈX̂ + D̂Û
(1.11)

where Ω̂ is a diagonal matrix composed of the harmonic frequencies. The matrices
in (1.11) have a Toeplitz structure, which represents the coupling between harmonic
frequencies. Note the similarity of (1.11) with the Laplace transformation of an LTI
system.

Through combination of the various components of the power system, the HSS models of
the resources and the grid, Σ̂Q and Σ̂G , respectively, are formulated. Subsequently, the
closed-loop system formed by the resources and the grid is obtained, and the HSS model
of the entire power system Σ̂P is derived from it. This model can be employed for the
HSA through eigenvalue analysis of the system matrix of Σ̂P :(

s · diag(1) + jΩ̂− ÂP
)

V = 0 (1.12)

where V is the matrix of eigenvectors associated to eigenvalues of ÂP . Note the similarity
of (1.12) with the characteristic equation of the standard eigenvalue problem.

The modelling framework developed in this thesis accommodates both the HPF method
and the HSA. In this respect, recall that the framework aims at representing power
systems with a high share of CIDERs, particularly focusing on the precise representation
of any nonlinear components. More precisely, such nonlinear components are treated in
different ways for each of these two applications. For instance, while the HPF method
is by design capable of handling nonlinear functions of the harmonic phasors, the HSA
requires HSS models (i.e., linearized models) of all components. This differentiation
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Representation
of the Resources

Representation
of the Grid

Equations Describing
the Method

HPF
(Chapter 4) ŶQ = ĜQ(ÛQ) ŶG = ĜGÛG

∆Ŷ = ŶG − ŶQ = 0
(Mismatch equations)

HSA
(Chapter 5) Σ̂Q Σ̂G

(
s · diag(1) + jΩ̂ − ÂP

)
V = 0

(Eigenvalue problem)

Figure 1.1: Overview of the methods developed in this thesis.

between the two methods is also illustrated in Fig. 1.1. In this respect, the separate
treatment of the nonlinear elements in the modelling framework ensures that both HPF
and HSA can effectively employ the model, each according to its requirements.

1.3 Contributions of the Thesis

The contributions of this thesis are as follows.

1. A modelling framework for the analysis of power system with a high share of
CIDERs is proposed. Its modular design enables the representation of CIDERs
with generic components and diverse control laws, effectively capturing their time-
varying characteristics and the coupling of harmonic frequencies. The models are
formulated in time domain and transformed into harmonic-domain equivalents by
means of the Fourier transform and Toeplitz theory. The proposed framework is
suitable for modelling both pure AC power systems and hybrid AC/DC systems.
To this end, the generic CIDER model is extended to represent Network-Interfacing
Converters (NICs). The framework is applicable for both HPF study and HSA,
being a powerful foundation for the analysis of generic power systems with a large
amount of CIDERs.

2. A comprehensive library of component models, which facilitates the derivation of
various CIDER models, is developed. This includes a modular representation of
filter and controller stages, as well as matrices accounting for changes in coordinate
frames between different components of the CIDER. Based on this library, models
of common types of CIDERs are derived. These models can be readily integrated
into the previously introduced modelling framework. Their accuracy is validated
through Time-Domain Simulations (TDS) in Simulink.

3. An HPF method is proposed based on the aforementioned modelling framework.
The algorithm is confirmed to be accurate and efficient for the analysis of AC, as
well as hybrid AC/DC power systems. More precisely, the HPF study is shown
to have comparable accuracy as standard measurement devices (i.e., instrument
transformers). The computational performance of the algorithm is assessed through
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comparison of its execution time against the one of the TDS. Furthermore, the
algorithm of the HPF method for AC power systems is shown to be more accurate
than a decoupled HPF, which treats each harmonic separately.

4. A method for the HSA through eigenvalue analysis of the HSS of generic power
systems is developed based on the proposed modelling framework. To this end,
the HSS model of the grid is formulated using the lumped-element models of the
electrical connections as well as the associated incidence matrix. The HSA is shown
to be applicable to individual CIDER models as well as entire power systems. It can
be used for sensitivity analysis of the location of eigenvalues w.r.t. control parameter
variations. In this respect, a classification of the eigenvalues into control-design
variant, control-design invariant and design invariant is proposed, which is based
on the sensitivities of the eigenvalue loci w.r.t. parameter changes. Additionally,
the HSA is demonstrated to be suitable for the analysis of harmonic stability as
defined in Def. 1. By analysing a test system, a case of harmonic instability is
identified through the system eigenvalues and validated with TDS in Simulink.

1.4 Document Outline

The remainder of this thesis is organized as follows.

Chapter 2 introduces the framework for the modelling of power system components
which is both generic and modular. The underlying hypotheses for AC power systems
are introduced and subsequently extended for the analysis of hybrid AC/DC power
systems. The basic representation of the grid by the lumped-element models of the
grid components (e.g., lines and transformers) and the associated incidence matrix is
introduced. In the development of the modelling framework, special attention is given to
the model of the CIDERs. The individual blocks of the CIDER are first described in time
domain and then transformed to harmonic domain by means of the Fourier transform and
Toeplitz theory. Particular focus is put on the reference calculation, which is identified as
a possible source of nonlinearity, and therefore needs to be treated separately. A further
extension of the generic CIDER model is proposed for treating nonlinearities within its
internal structure. Finally, a discussion of the modelling of NICs, which interconnect the
AC and DC subsystems of hybrid AC/DC power systems, is given.

Chapter 3 discusses the derivation of the CIDER models used in this thesis. A detailed
library of components that are typically used in CIDERs is presented - including the
filter and controller stages, transformation matrices accounting for circuit configurations
and changes of reference frames. Subsequently, models of each a typical grid-forming and
grid-following CIDER are derived. First, only the AC-side characteristics are considered.
Subsequently, a more detailed grid-following CIDER that additionally models the DC-
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side characteristics is proposed. The accuracy of all aforementioned models is validated
through TDS with Simulink.

Chapter 4 derives the algorithm of the HPF study for AC and hybrid AC/DC power
systems. First, the HPF problem is formulated for AC power systems using the previously
introduced models of the grid and the resources, and an algorithm for its solution, which
is based on a Newton-Raphson method, is proposed. Second, an extended version
of the algorithm that incorporates the extended generic CIDER model (i.e., the one
with nonlinearities in its internal structure) is introduced. Third, the HPF method is
generalized for the analysis of hybrid AC/DC power systems. All three versions of the
HPF method are thoroughly validated through TDS carried out in Simulink.

Chapter 5 provides the derivation of HSA based on eigenvalue analysis of a generic AC
power system. The HSS model of the grid is derived from the differential equations of
the equivalent branch and shunt elements as well as the associated incidence matrix. The
HSS model of the entire power system is obtained from the closed-loop configuration of
the HSS models of the grid and the resources. A detailed analysis of the eigenvalues of the
proposed CIDER models is given, and followed by the analysis of the system eigenvalues.
Specifically, a case of harmonic instability is identified through the eigenvalues and
validated through TDS.

Finally, the thesis is concluded with a summary of the conducted research and an outlook
on future work.
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2 Modelling Framework for Power
System Components

Summary: This chapter describes the modelling framework which is employed in subse-
quent chapters of this thesis for the HPF study and the HSA of generic power systems.
The power system is represented by the combination of resources (i.e., CIDERs) and the
grid. The distinguishing features of the proposed modelling framework are the following:
(i) it employs a representation of the power system components which is both generic
and modular, and (ii) it explicitly accounts for the coupling between harmonics. The
structure of the generic power system is first introduced, while distinguishing between pure
AC and hybrid AC/DC power systems, and the hypotheses underlying the framework are
then defined. The components of the electrical grid are represented by lumped-element
models, characterised by compound electrical parameters, which allow to represent both
transposed or non-transposed lines. The incidence matrix of the electrical connections is
used to represent any generic configuration of an electrical grid. CIDERs are represented
by LTP systems, which are modular w.r.t. the resource components (i.e., controller and
filter stages as well as reference calculation) and generic w.r.t. the control laws (i.e.,
grid-forming or grid-following). The models of the CIDERs are formulated in time
domain and transformed into harmonic-domain equivalents. The nonlinear elements
of the CIDER (i.e., the reference calculation) are identified and treated separately in
order to allow for a numerically efficient solution of the system equations. The refer-
ence calculation of the CIDER is represented in different ways for the derivation of the
mismatch equations of the power system employed for the HPF and the HSS model of
the power system employed in the HSA, respectively. Moreover, an extension to the
generic CIDER model is proposed, which allows to consider nonlinear elements within
the internal structure of the CIDER (e.g., due to AC/DC conversion). Finally, based on
the generic model of CIDERs, a generic model of NICs is proposed for the purpose of
analysing hybrid AC/DC power systems.
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2.1 State of the Art

In the context of HA, a model that accurately captures the time-varying characteristics
of the power system is required. The presence of harmonics and the inherent nonlinear
behaviour of certain power-system components lead to a coupling between different
frequencies. This phenomenon is not usually accounted for in traditional power system
modelling. However, frequency coupling is important in modern power systems with
high share of CIDERs. To this end, the nonlinear parts of the CIDERs (e.g., due to the
actuator or the controller) need to be modelled with high fidelity.

Therefore, a critical factor to consider when categorizing power system modelling methods
is whether they include the effect of frequency coupling. Fig. 2.1 illustrates of the coupling
of frequencies in a model. A model that ignores frequency coupling simply translates an
input of a given frequency to an output of the same frequency but potentially different
magnitude and phase. In a model that does consider frequency coupling, an input at any
given frequency can result in outputs across a band of frequencies - potentially the entire
spectrum.

Models for HA can be classified into time-domain, frequency-domain, and hybrid (i.e., a
combination of both) models.
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Without frequency coupling:
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Figure 2.1: Exemplary illustration of the frequency-coupling effect of a model. In-
and output signals are represented by their Fourier coefficients (i.e., for the case of a
maximum harmonic order equal to two), the model behaviour w.r.t. coupling of frequencies
is represented by the rectangular blocks. The positive and negative image of the signal is
considered.

2.1.1 Time-Domain Models

In time domain, the grid and the connected resources (including their controllers) are
described by a system of nonlinear DAEs, which is solved by numerical integration (e.g.,
using Runge-Kutta methods).

Electrical circuits can be studied via nodal analysis (i.e., using nodal equations given
by Kirchhoff’s current law) or mesh analysis (i.e., using branch equations given by
Kirchhoff’s voltage law) [20]. Classical nodal analysis is widely used in power-systems
engineering. It relies on two fundamental hypotheses: i) all voltage and current sources
are referenced w.r.t. the ground, and ii) the grid can be represented by a lumped-
element model [21]. For instance, the Electromagnetic Transient Program (EMTP) [22]
employs nodal analysis. If the circuit contains ungrounded voltage or current sources,
the associated branch equations need to be considered, too. For example, the Simulation
Program with Integrated Circuit Emphasis (SPICE) [23] utilizes this method, which is
called Modified Nodal Analysis (MNA) [24]. Some electrical components (e.g., switches or
controlled sources) cannot be described by nodal and branch equations alone, so additional
equations have to be introduced. This universal approach, which is known as Modified
Augmented Nodal Analysis (MANA), is notably implemented by the EMTP-RV [25].

Time-domain models can characterise the behaviour of many components without any
further approximations, and can therefore yield extremely accurate results. In particular,
the utilization of DAEs, facilitates the accurate representation of the nonlinear character-
istics intrinsic to the system components, thereby allowing for a detailed representation
of the frequency coupling. However, this accuracy comes at the cost of computational
intensity, which hinders the analysis of large-scale power systems.

2.1.2 Frequency-Domain Models

Power system operation is often segmented into a sequence of quasi-steady states [12].
Traditionally, these steady states have been considered to be characterized solely by the
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fundamental frequency. However, in the context of HA, it is essential to consider generic
periodic steady states, which include harmonic frequencies.

To decrease the computational complexity of the models, their signal content is limited
to the so-called harmonic phasors. These harmonic phasors are the Fourier coefficients of
the signals at the harmonic frequencies. Such a model is particularly suitable for analyses
that focus on steady states.

Models without Frequency-Coupling Representation

In sinusoidal steady state, the grid and the resources (including their controllers) can be
described using symmetrical components and the Park transform [26], respectively. More
precisely, the resources’ behaviour is transformed into a decoupled rotational reference
frame, resulting in time-invariant transformed signals. This simplification allows for
the model to be linearized around a constant operating point (i.e., the aforementioned
time-invariant signals), transforming it into a LTI model. In principle, the LTI model
can then be examined in the frequency domain to analyse the system behaviour at the
harmonic frequencies. However, this model cannot capture coupling between frequencies,
because it relies on linear transfer functions (recall Fig. 2.1). In both [27] and [28], the
system components are described using impedance models, which are based on LTI
models and are not correctly representing harmonic interactions. Furthermore, this
approach is only capable of analysing symmetrical system components. Asymmetries
(e.g., w.r.t. to the phase conductors) cannot be transformed into time-invariant behaviour
by the Park transform.

Models with Frequency-Coupling Representation

On the other hand, a large variety of models that are capable of representing the frequency
coupling effects have been proposed in the last decades.

Early works in the context of HA treat the system in harmonic steady state, which allows
for the decomposition of the system variables into harmonic phasors. [12] proposes to
separate the nonlinear elements of the system (e.g., power electronic devices) from the
linear ones. Transforming the linear elements into the harmonic domain is straightforward.
Representing the nonlinear elements requires deriving Norton Equivalents (NEs) within
the harmonic domain. The result is a set of nonlinear equations, which can accurately
represent the coupling of harmonics. These equations are then solved iteratively using
numerical methods. This method of representing harmonic interactions was first proposed
in [29] and has been widely adopted in subsequent studies. Works like [12, 30] and [31]
further expand on this method, offering in-depth modelling of CIDERs and other power
system components (e.g., transmission lines and synchronous machines) within the
harmonic domain.
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In the HSS approach, the LTP model of the system is derived via linearization around
time-periodic trajectories. In contrast to the above approach, the system variables are
represented by EMP signals as introduced in (1.10). An EMP signal is the combination
of the Fourier series of a periodic signal modulated by a complex exponential (i.e., a
term including both damped and oscillatory behaviour). Subsequently, the HSS model
is constructed by converting the LTP model to the harmonic domain using Toeplitz
theory. The result is the HSS model that effectively represents the coupling of harmonic
frequencies. This approach was first introduced in [32]. The HSS approach has been a
prominent research topic in the last decades, particularly in the context of modelling power
systems with high share of CIDERs. Several studies have advanced the understanding
of harmonic coupling within the individual CIDERs w.r.t. control interactions [33] and
synchronization effects [34, 35]. Both [36] and [37] analyse grid-connected single-phase
CIDERs, where the grid is approximated by a TE.

Traditionally, engineers and researchers work with models whose structure and parameters
are completely known (i.e., white-box models). In this case, one can perform HA using
analytical methods (e.g., [38]). However, modern power systems are so complex that both
the structure and the parameters of the underlying models may only partially be known
or even unknown (i.e., grey- or black-box models). Therefore, data-driven methods,
which allow to cope with such lack of information, have recently gained attention. For
instance, one can train an artificial neural network to learn the harmonic model of a
CIDER, such as a photovoltaic generator [39] or an electric-vehicle charging station [40].

2.1.3 Hybrid Models

Hybrid models can be differentiated into two different categories. In case of the first
category, the hybrid model is described partly in time domain and partly in frequency
domain. In general, one can treat the strongly nonlinear resources in time domain (i.e.,
employing models with higher accuracy representing the coupling between frequencies in
detail), and the weakly nonlinear ones in frequency domain (e.g., [41, 42]). The harmonic
spectra of the strongly nonlinear elements are derived from time-domain simulations
through Fourier analysis and then utilised in the frequency-domain model. These strongly
nonlinear elements are usually a subset of the loads (e.g.,CIDERs [41], as well as loads
that include saturation effects [42]), while the network and some other loads are linear.
Usually, only a handful of components are analysed in time domain in order to keep the
computational intensity low.

The second category of hybrid model describes the system fully in time domain, but
employs methods and concepts from the frequency domain. Although these models are
formulated in time domain, they use the Fourier coefficients to separate the signals into
harmonic phasors, which is why they are categorised as hybrid models in this context.
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The so-called Extended Harmonic Domain (EHD) approach was developed to account for
the dynamic behaviour of the power system [43]. In particular, the nonlinear equations
are linearized around time-periodic trajectories, resulting in a small-signal LTP model.
Additionally, the system variables are described by so-called dynamic harmonic phasors,
whose Fourier coefficients may change over time. By applying the Toeplitz theory, the
time-periodic system matrices are transformed into time-invariant equivalents in the
EHD. This approach is suitable for TDS in the vicinity of the operating trajectory,
while representing the coupling between frequencies. [44] validates the accuracy of EHD
method for transient simulation scenarios. In a separate study, [45] investigates the
phase-shifting characteristics of the EHD model of a power converter. In particular, the
study reveals that a phase shift at the fundamental frequency affects only the phases of
the harmonics and leaves their magnitudes unchanged.

The Dynamic Phasor (DP) method is another modelling technique designed for the
dynamic analysis of the power system, which also addresses the effect of frequency
coupling. Similar to the EHD, the DP decomposes the system variables into harmonic
phasors with time-variant Fourier coefficients [46]. The nonlinear system equations can
either be expressed in terms of these phasors, or - similarly to the EHD - an LTP model
can be derived via small-signal analysis. The first option allows for large-signal TDS with
reduced computational complexity compared to the traditional methods such as EMTP.
DP models have been used for TDS of power systems, as shown in [47, 46] and [48]. In
particular, [48] details the performance of a nonlinear DP model for a converter w.r.t. its
computational complexity based on the number of harmonics considered in the analysis.

2.1.4 Motivation for the Proposed Modelling Framework

As discussed in detail in [9], distribution systems are particularly vulnerable to harmonic
instability due to the prevalence of CIDERs. The thorough understanding of the
generation and propagation of harmonics is a prerequisite for the design of controllers
which are robust against harmonic instability. A suitable modelling framework that
efficiently represents entire power systems including the inherent coupling between
different frequencies is needed. Such a framework has to be computationally efficient and
based on models that are generic (i.e., w.r.t. grid topology and control laws), modular (i.e.,
w.r.t. the components of resources and grid), and accurate (i.e., capture the creation and
propagation of harmonics through the resources and the grid). In terms of computational
burden, harmonic-domain methods seem to be promising as opposed to time-methods1.
As to generality and accuracy, the approaches based on LTP systems theory [43, 49]

1Whether one uses time-domain or harmonic-domain methods for planning purposes depends on the
application and its requirements. Notably, using time-domain methods one is restricted to deterministic
analyses (i.e., a few known contingencies) due to the high simulation times. In contrast, harmonic-
domain approaches can easily be used for stochastic analyses (e.g., Monte-Carlo simulations) due to their
straight-forward parametrization and low simulation times.
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appear promising. However, the existing approaches lack a certain level of modularity
that would allow the analysis of generic power systems.

The goals of generality, modularity, and accuracy, are addressed by the proposed modelling
framework as follows:

• Generality: The resources are represented by generic blocks (i.e., power hardware,
control software, and reference calculation) as introduced in Section 2.4.2.

• Modularity: In addition, the cascaded structure of the power hardware (i.e., filter
stages) and the control software (i.e., controller stages) is taken into account as
depicted in Fig. 2.6.

• Accuracy: The framework is based on LTP systems theory (Section 2.4.1), which
allows to consider the generation and propagation of harmonics (including the
coupling between them).

2.2 Hypotheses of the Modelling Framework

2.2.1 Hypotheses of the AC Power System

First, a purely AC power system composed of the grid and resources is considered. The
grid γ is composed of the nodes N and the connections between them. Further details
concerning the representation of the grid will be discussed in Section 2.3. For the nodes
it is distinguished between the zero-injection nodes Z and the nodes where resources are
connected. The set of the latter is denoted by Z̄.

If there are zero-injection nodes in the grid, a reduction of the system state can be
inferred by means of the Kron reduction [50]. As known, the Kron reduction enables to
reconstruct the state of the original system from the reduced one. In this respect, in the
remainder of this thesis it is assumed that a Kron reduction has been performed and
thus the following relation holds:

Z = ∅ =⇒ N = Z̄ (2.1)

Control Laws of CIDERs and Partition of the Resources

Depending on the operating mode, a CIDER is classified as either grid-forming or
grid-following (e.g., [9]):

Definition 2. A grid-forming CIDER controls the magnitude and frequency of the grid
voltage at its point of connection to the grid.
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Figure 2.2: Overview of the power system structure consisting of the grid and the
resources. The resources are partitioned into grid-forming S and -following R type.

Definition 3. A grid-following CIDER controls the injected current with a specific
phase displacement w.r.t. the fundamental component of the grid voltage at its point of
connection2.

That is, a grid-forming CIDER behaves like a controlled voltage source with finite output
impedance in series (i.e., it is possible to derive a Thévenin Equivalent (TE) circuit), and
a grid-following CIDER like a controlled current source with a finite parallel impedance
(i.e., it is possible to derive a NE circuit). As will be shown shortly, either behaviour
can be represented by the so-called grid response, which characterizes the creation and
propagation of harmonics by the respective resource. In line with these definitions, the
nodes are classified depending on the behaviour of the resources which are connected
to them. That is, the set of all nodes N is partitioned into the disjoint sets S and R,
where grid-forming resources s ∈ S3 and grid-following resources r ∈ R are connected,
respectively:

N = S ∪R, S ∩R = ∅ (2.2)

See also Fig. 2.2 for a graphical interpretation of the above.

For the sake of simplicity, it is assumed that only one resource is connected per node.
Indeed, at one node multiple resources of the same type (i.e., belonging to either S or R)
can be included in the analysis. In case of multiple grid-following resources connected
to the same node, the injected currents can easily be superimposed. As to grid-forming
resources, there is usually only one resource of this type per subnetwork.

2.2.2 Hypotheses of the Hybrid AC/DC Power System

The concepts outlined in Section 2.2.1 can be generalized from purely AC power systems
to hybrid AC/DC power systems. Such hybrid AC/DC power systems are composed of

2This requires a grid-synchronization mechanism which provides knowledge of the fundamental-
frequency phasor of the grid voltage (e.g., a Phase-Locked Loop (PLL)).

3Usually, in power systems there is one grid-forming node (i.e., the slack bus). However, in general
the set of grid-forming resources can compromise several slack buses and/or CIDERs.
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Figure 2.3: Simplified schematic of a CIDER, e.g., a single-port device (Fig. 2.3a), and a
NIC, e.g., a two-port device (Fig. 2.3b).

multiple AC and DC subsystems connected with each other. The AC and DC subsystems
are interconnected through NICs. Each subsystem j consists of the combination of the
grid and resources, as described previously. Thus, it possesses two sets of resources:

N j = Sj ∪Rj , Sj ∩Rj = ∅ (2.3)

In hybrid AC/DC power systems, which consist of multiple subsystems, devices can
be of single- or two-port type. For instance, resources such as CIDERs are single-port
devices, meaning they possess a single input/output terminal associated with one specific
subsystem (see Fig. 2.3a). NICs in hybrid AC/DC power systems on the other hand are
two-port devices, since they interconnect two different subsystems (see Fig. 2.3b). To
this end, the following definition is introduced:

Definition 4. A NIC is a device that interconnects two subsystems and, therefore,
possesses one port per subsystem.

As opposed to a CIDER, a NIC does not contain an energy source or sink. Depending
on the implemented control law of the NIC, the ports exhibit either grid-forming or
grid-following behaviour. More details on the internal structure of the NICs are given
subsequently in Section 2.5.

Following the above reasoning, for each subsystem the sets Rj and Sj are further
subdivided into two disjoint sets:

Rj = Rj
1 ∪R

j
2, Rj

1 ∩R
j
2 = ∅ (2.4)

Sj = Sj
1 ∪ S

j
2 , Sj

1 ∩ S
j
2 = ∅ (2.5)

where Rj
1 and Sj

1 consist of all grid-forming and grid-following resources (e.g., CIDERs),
respectively and Rj

2 and Sj
2 represent the nodes where the NICs are connected. The

node partition of such a generic subsystem j is shown in Fig. 2.4a.

In Fig. 2.4b, the example of a hybrid AC/DC grid consisting of one AC and one DC
subsystem is shown. In this example the control laws of the NICs are such that they
connect RAC

2 and SDC
2 . Hence, the sets SAC

2 and RDC
2 are empty.
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Figure 2.4: Partition of the nodes for a generic subsystem j (Fig. 2.4a) and for a hybrid
AC/DC grid with NICs connecting RAC

2 and SDC
2 (Fig. 2.4b).

Note that this extension of the modelling framework is generic. Meaning it can be applied
to hybrid AC/DC grids with any combination and number of AC and DC subsystems.

Note further that this extension of the framework is only used for the formulation of the
HPF study for hybrid AC/DC grids in Sections 4.3.4 and 4.4.3. In all other parts of this
thesis, the notation introduced in the beginning of this section is employed. Namely, the
nodes of a system solely consist of the two sets of grid-forming and -following nodes, and
all connected resources are single-port devices.

2.3 Model of the Electrical Grid

In this section, the generic representation of the electrical grid is derived. To this end,
one can derive the equivalent circuits of the branches and shunts as lumped-element
models and the incidence matrix, both for three-phase grids. Note that the same theory
can be applied to DC grids with minor modifications4.

2.3.1 Lumped-Element Model

Consider a generic three-phase grid: radial or meshed, including transposed or non-
transposed lines5 with balanced or unbalanced nodal injections6 which is equipped with
a neutral conductor. To this end, the following hypothesis is formulated:

4In the most generic of cases it can be necessary to represent power systems that are composed of
combinations of three-, two- and one-phase subsystems. The theory introduced in this chapter can be
applied in such cases with minor modifications.

5Notably, a line is transposed if the positions of its phase conductors are repeatedly swapped long
the course of the line (i.e., a number of times that is an integer multiple of the number of phases), thus
guaranteeing that its equivalent electrical parameters are circulant [51].

6The nodal injections or absorptions of a three-phase system are balanced if they consist of positive-
sequence components only (i.e., the negative- and homopolar-sequence components are null) [52].
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Figure 2.5: The grid is represented by branch and shunt elements. iℓ(t) and it(t) are the
current flows through the elements associated with the branch ℓ ∈ L and shunt t ∈ T ,
respectively. vn(t) and in(t) are the phase-to-ground voltages and injected currents at
node n ∈ N , respectively.

Hypothesis 1. The neutral conductor is grounded by an effective earthing system (i.e.,
which ensures that the neutral-to-ground voltages are negligible)[53, 54].

Typically, effective earthing systems serve their purpose up to frequencies of a few
kilohertz. Therefore, this hypothesis is reasonable in the context of HA, which typically
considers harmonics up to order 20-25 (i.e., 1.0-1.5 kHz). That is, the phase-to-neutral
voltages are equivalent to phase-to-ground voltages, and fully describe the grid state.

As mentioned before, the branch and shunt elements are represented by a set of lumped-
element models that are linear and passive (i.e., they contain no active elements, such
as voltage or current sources). Let g be the ground, which is common to all lumped
elements and recall that n ∈ N is a node, which comprises the full set of phase terminals
p ∈ P := {A, B, C}. The lumped elements are divided into branch elements ℓ ∈ L ⊆ N ×N
and shunt elements t ∈ T = N × {g} as illustrated in Fig. 2.5.

This representation has two important advantages: i) it is valid irrespective of any
asymmetries in the system w.r.t. the grid components (e.g., due to non-transposition
of lines)7 ,and ii) it is valid irrespective of whether the nodal injections are balanced
or unbalanced [55]. Therefore, the model is particularly suitable for power distribution
systems (i.e., unlike sequence-domain equations), where such asymmetries are common.

2.3.2 Three-Phase Incidence Matrix

The grid topology is described by the branch graph B := (N ,L). As will be shown
shortly, its polyphase incidence matrix is used to obtain the model in combination with
the branch and shunt parameters.

7The representation allows to describe the behaviour of the grid in phase coordinates rather than
sequence components.
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The polyphase incidence matrix AL|N is defined as follows

AL|N :
(
AL|N

)
kn

:=


+ diag(13) if ℓk = (n, ·)
−diag(13) if ℓk = (·, n)

03×3 otherwise
(2.6)

where diag(13) and 03×3 are the identity and null matrix, respectively, of size 3× 3.

Note that, under the assumption that the nodes are ordered as N = [S,R], the incidence
matrix can be expressed in terms of block matrices.

AL|N = [AL|S | AL|R] (2.7)

This representation of the grid is employed both in the HPF study in Section 4.2 and
the HSA in Section 5.2.2. For the HPF study, the hybrid parameters are derived directly
in frequency domain based on the primitive branch and shunt admittance matrices in
combination with the three-phase incidence matrix. For the HSA the LTP state-space
model of the grid is derived from this generic representation employing the three-phase
incidence matrix.

2.4 Generic Model of the Converter-Interfaced Distributed
Energy Resources

This section introduces the generic model of the CIDERs. First, a brief summary of the
theory employed in the context of time-periodic signals is given. In Section 2.4.2 the
time-domain models of the individual components are given, then in Section 2.4.3 the
harmonic-domain model is derived. For illustration purposes, the simplified model of the
grid-forming and -following CIDERs, which considers the AC side only, is introduced
first. Subsequently, it is shown how the derived generic model is extended for more
sophisticated CIDER models that include nonlinearities within their internal structure.

2.4.1 Primer on Time-Periodic Signals

As discussed in Section 2.1.2, HA can be performed by means of LTP systems theory, which
is a generalization of LTI systems theory [32]. Throughout this thesis, all quantities
are assumed to be time-periodic and Exponentially Modulated time-Periodic (EMP)
w.r.t. an underlying period T , which is the inverse of the fundamental frequency f1
(i.e., T = 1

f1
)8. Consider an exponentially modulated time-periodic vector x(t) and a

8Notably, the fundamental frequency does not need to be 50 Hz. In power systems, it is set by
controllers that act on time-scales substantially longer than the controllers of the CIDERs. Thus, the
fundamental frequency used for the HA can be fixed a priori in an independent analysis (i.e., using the

20



2.4 Generic Model of the Converter-Interfaced Distributed Energy Resources

time-periodic matrix A(t). As known from Fourier analysis, any time-periodic signal
(i.e., real- or complex-valued) can be represented by a Fourier series as

x(t) =
∑
h∈H

Xh exp ((s + jh2πf1)t) (2.8)

A(t) =
∑
h∈H

Ah exp (jh2πf1t) (2.9)

where s ∈ C can be seen as the Laplace operator and Xh ∈ C is the complex Fourier
coefficient at the h-th harmonic of the fundamental frequency f1, with h ∈ H ⊂ Z of x(t).
Analogously, Ah ∈ C is the complex Fourier coefficient at the h-th harmonic of A(t).
In case the signal x(t) is real-valued, the positive and negative spectrum are complex
conjugates of each other. By consequence:

Xh = conj(X−h) (2.10)

As known from Fourier analysis, the multiplication of two waveforms in time domain
corresponds to the convolution of their spectra in frequency domain:

A(t)x(t)↔ A(f) ∗X(f) = ÂX̂ (2.11)

where Â is the Toeplitz matrix of the Fourier coefficients Ah, and X̂ the column vector
of the Fourier coefficients Xh [32]

Â : Âmk = Ah, m, k ∈ N, h = m− k ∈ H (2.12)
X̂ = colh∈H(Xh) (2.13)

Unless the associated signals are band-limited, such matrices and vectors are of infinite
size. In practice, only the harmonics up to a certain maximum order hmax are considered9.
Hence, the said Toeplitz matrices and column vectors are of finite size. It is worth noting
that in a Toeplitz matrix, the diagonal elements depict the direct link between identical
frequencies, while the off-diagonal elements account for the coupling between different
harmonics (i.e., similar to the illustration in Fig. 2.1).

2.4.2 Time-Domain Model

Both, grid-forming and grid-following CIDERs have the same generic structure shown in
Fig. 2.6: they consist of power hardware π and control software κ. The power hardware
consists of an actuator α, for instance a full-wave or half-wave bridge, and a filter φ (e.g.,
an L, LC, LCL or higher-order filter). The filter consists of a cascade of filter stages φi,

power balance equations of the system).
9Standards for voltage and power quality typically account for harmonics up to order 20-25 (i.e.,

1.0-1.5 kHz) [3].

21



Chapter 2. Modelling Framework for Power System Components
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Figure 2.6: Schematic diagram of a generic CIDER. The power hardware π consists of
the actuator α and a cascade of filter stages φi (for simplicity, one stage is shown only),
the outermost of which is connected to the grid γ. The control software κ consists of
the reference calculation ρ and cascaded controllers κi, which track the setpoint σ. The
transformations τ represent changes of electrical connection or reference frame.

where i ∈ {1, . . . , I}, whose state variables (i.e., currents through inductors or voltages
across capacitors) can be controlled if desired. Therefore, in general, each filter stage
φi in the power hardware can be coupled with a corresponding controller stage κi in
the control software. Each pair of filter and controller stage forms a control loop, as
illustrated in Fig. 2.6. However, in practice, it may not be necessary to use a controller
stage for each and every filter stage10 (i.e., a CIDER can have fewer controller stages
than filter stages). In such cases, the schematic in Fig. 2.6 can be simplified accordingly.
Internally, each controller stage may comprise several parallel controllers (e.g., for the
mitigation of specific harmonics).

Additionally, the control software contains the reference calculation ρ, which computes
the reference signal for the controller from the external setpoint σ (i.e., voltage magnitude
and frequency for grid-forming CIDERs, active/reactive power for grid-following ones).
These setpoints are provided by system-level controllers (e.g., tertiary controls), which
act on a significantly slower timescale than the resource-level controllers (e.g., primary

10For instance, it is common practice to control only the current through either the grid-side or the
actuator-side inductor of an LCL filter (e.g., [56]).
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and secondary controls). That is, they move the equilibrium by changing the setpoints,
but have no impact on the harmonics (e.g., [57, 58]). Hence, the system-level controllers
can be neglected for the purpose of steady-state analysis.

Observe that power hardware and control software are connected in a circular topology:
one’s outputs are the other’s inputs. The power hardware subsystem is analog and
continuous-time, whereas the control software subsystem is digital and discrete-time.
These subsystems are interfaced via Analog-to-Digital Converters (ADCs) and Digital-
to-Analog Converters (DACs), which are coupled with Low-Pass Filters (LPFs) for
anti-aliasing11 and anti-imaging12, respectively.

In general, the models of the grid, power hardware and the control software can be
formulated in different reference frames. This is represented by the transformations τκ|π
abd τπ|κ in Fig. 2.6. Moreover, the electrical connections of grid and power hardware
may be different (e.g., four-wire lines vs. three-leg or four-leg power converters). This is
captured by the transformations τπ|γ and τγ|π in Fig. 2.6.

For the purpose of HA, the system is assumed to be in periodic steady state. Hence, the
following hypothesis is made:

Hypothesis 2. There exists a steady state in which all time-variant quantities are
periodic with period T . That is, the system behaviour is characterized by the fundamental
frequency f1 and the harmonic frequencies fh of the harmonic orders h ∈ H.

The existence of a steady-state solution, as well as its location in the solution space,
depend on the setpoints imposed by the system-level controllers. In the periodic state,
the components of the CIDER as shown in Fig. 2.6 are described by LTP models.

Power Hardware

As previously mentioned, the power hardware is an analog continuous-time system. It is
represented by the LTP model

ẋπ(t) = Aπ(t)xπ(t) + Bπ(t)uπ(t) + Eπ(t)wπ(t) (2.14)
yπ(t) = Cπ(t)xπ(t) + Dπ(t)uπ(t) + Fπ(t)wπ(t) (2.15)

where xπ(t), uπ(t), yπ(t), and wπ(t) are the state, input, output, and disturbance vector,
respectively, of the power hardware. Accordingly, Aπ(t), Bπ(t), Cπ(t), Dπ(t), Eπ(t),
and Fπ(t) are the system, input, output, feed-through, input disturbance, and output

11Aliasing is the effect of overlapping copies of the frequency spectrum, which are repeated at multiples
of the sampling frequency. It occurs if the sampling frequency of the signal is not at least two times
bigger than any frequency component of the signal (i.e., the Nyquist-Shannon Theorem is not satisfied).

12Imaging is the reverse effect. The sampled signal introduces high-frequency components in the analog
signal, due to repeating spectrum copies of the digital signal at multiples of the sampling frequency.
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disturbance matrix, respectively. The sizes of these vectors and matrices depend on the
reference frame in which the power hardware is modelled13.

This LTP description of the power hardware is generic: for instance, it allows to represent
the behaviour of switching equipment (e.g., [59, 49]). If this is not required, the LTP
equations may be simplified to LTI (i.e., a trivial case of periodic).

External Transform

The transformations linking the grid and the power hardware are described by

τπ|γ : wπ(t) = Tπ|γ(t)wγ(t) (2.16)
τγ|π : yγ(t) = T+

γ|π(t)yπ(t), [T+
γ|π(t)]1,I = Tγ|π(t) (2.17)

where Tπ|γ(t) and Tγ|π(t) are the associated transformation matrices. Only one column
block of T+

γ|π(t) is nonzero, since yγ(t) includes only the block yπ,I(t) of yπ(t) (i.e., since
the connection with the grid is at the outermost filter stage).

Control Software

The control software is a digital discrete-time system. In this respect, the following
hypothesis is made:

Hypothesis 3. The ADCs, DACs, and their LPFs (see Fig. 2.6) are designed such that
an exact reconstruction of the signals is feasible in the frequency band of interest for HPF
studies (i.e., in line with the Nyquist-Shannon sampling theorem).

That is, the effects of sampling and quantization in the ADCs and reconstruction in
the DACs can be neglected14. Therefore, the control software can be represented by an
equivalent continuous-time model. Analogous to (2.14)–(2.15) of the power hardware,
the control software is described by the LTP system

ẋκ(t) = Aκ(t)xκ(t) + Bκ(t)uκ(t) + Eκ(t)wκ(t) (2.18)
yκ(t) = Cκ(t)xκ(t) + Dκ(t)uκ(t) + Fκ(t)wκ(t) (2.19)

The size of the matrices and vectors depends on the frame of reference in which the
control software is modelled15.

13If phase coordinates are used, xπ, yπ ∈ R3I×1 and uπ ∈ R3×1. The sizes of the matrices follow from
(2.14)–(2.15).

14If the sampling time of the controllers can not be chosen high enough to mitigate these effects, one
needs to properly represent the corresponding blocks through their equivalent transfer functions.

15In case direct-quadrature components are used, xκ, uκ ∈ R2I×1 and yκ ∈ R2×1. The sizes of the
matrices follow from (2.18)–(2.19).
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As previously mentioned, in general, each filter stage can be coupled with a controller
stage. Accordingly, each control loop i is associated with a corresponding block in yπ(t)
and uκ(t):

yπ(t) = coli
(
yπ,i(t)

)
(2.20)

uκ(t) = coli
(
uκ,i(t)

)
(2.21)

If some filter stages are not coupled with a controller stage, the associated blocks can
simply be omitted.

Internal Transform

Recall from Fig. 2.6 that the outputs of the power hardware are connected to the inputs
of the control software, and vice versa. Since the influence of the ADCs, DACs, and
LPFs can be neglected according to Hyp. 3, only the transformations remain:

uκ(t) = T+
κ|π(t)yπ(t), T+

κ|π(t) = diagi

(
Tκ|π(t)

)
(2.22)

uπ(t) = Tπ|κ(t)yκ(t) (2.23)
wρ(t) = Tκ|π(t)wπ(t) (2.24)

The Clarke [60] and Park [26] transform are notable examples, which are widely used.
In general, the transformation matrices are rectangular. Notably, it is common to
model the power hardware in phase (ABC) coordinates and the control software in Direct-
Quadrature (DQ) components, respectively. In this case, Tκ|π = TDQ|ABC ∈ R2×3 and
Tπ|κ = TABC|DQ ∈ R3×2. Usually, the reference calculation is defined in the same reference
frame as the control software.

Reference Calculation

The reference calculation is described by the function r(·, ·)

ρ : wκ(t) = r
(
wρ(t), wσ(t)

)
(2.25)

It is important to note that r(·, ·) need not be linear. However, for grid-following CIDERs
(i.e., with PQ control), which compose the majority of resources in power grids, r(·, ·)
is usually nonlinear. For grid-forming CIDERs (i.e., with Vf control), which are the
minority of resources (typically only one), r(·, ·) is usually linear.

One can either treat this nonlinearity in harmonic domain or perform a linearization
of the reference calculation already in time domain (i.e., a small-signal model). The
first approach is introduced in Section 2.4.3, and then used for the derivation of the
CIDER response for the HPF study in Chapter 4. The second approach is employed
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when deriving the harmonic domain state-space model of the CIDER for the HSA in
Chapter 5. The derivations of the small-signal model is shown here below. To this end,
assume the following:
Hypothesis 4. The reference calculation r(·, ·) is at least once differentiable w.r.t. both
wρ(t) and wσ(t) and can be represented by a small-signal model as:

wκ(t) ≈ w̄κ(t) + δρr
(
w̄ρ(t), w̄σ(t)

) (
wρ(t)− w̄ρ(t)

)
+ δσr

(
w̄ρ(t), w̄σ(t)

)
(wσ(t)− w̄σ(t))

(2.26)

where (w̄ρ(t), w̄σ(t)) describes the operating point w.r.t. which the linearization is per-
formed, w̄κ(t) = r

(
w̄ρ(t), w̄σ(t)

)
represents a shift of the origin, and

δρ = δ

δwρ(t) (2.27)

δσ = δ

δwσ(t) (2.28)

It is important to note that, as opposed to conventional linearization techniques in the
context of LTI systems, the operating point (w̄ρ(t), w̄σ(t)) does not need to be constant,
but can exhibit time-periodic behaviour.

Combining the Components

As specified in Fig. 2.6 and (2.14)–(2.15), the grid acts both as a disturbance and an
output from the point of view of the power hardware. Whether the phase-to-ground
voltage v(t) or the injected current i(t) at the point of connection is the disturbance or
output, depends on the operating mode of the CIDER. According to Defs. 2 and 3:

wγ(t) ∼
{

i(t) if CIDER is grid-forming
v(t) if CIDER is grid-following (2.29)

yγ(t) ∼
{

v(t) if CIDER is grid-forming
i(t) if CIDER is grid-following (2.30)

Similarly, as specified in Fig. 2.6 and (2.18)–(2.19), the setpoint is a disturbance from
the point of view of the control software. In view of Defs. 2 and 3:

wσ(t) ∼
{

V, f if CIDER is grid-forming
P, Q if CIDER is grid-following (2.31)

The proposed generic state-space model is obtained by combining the models of the
power hardware, the control software, the transformations, and the reference calculation.
The corresponding block diagram is shown in Fig. 2.7. Note that the proposed model
is fully modular thanks to the transformation linking its blocks. Therefore, each block
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ẋπ = Aπxπ + Bπuπ + Eπwπ
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Figure 2.7: Block diagram of the proposed generic state-space model of CIDERs. Note
the modularity: power hardware π, control software κ, and grid γ are represented by
separate blocks, which are interfaced via coordinate transformations. The reference
calculation r(·, ·) may be either linear (i.e., for Vf control) or nonlinear (i.e., for PQ
control). The other blocks of the model are exactly linear (i.e., LTP systems and LTP
transformations).

can be modelled in a different frame of reference if desired. As previously mentioned,
the grid is typically described in phase coordinates [55] or symmetrical components [52],
and the control software in direct-quadrature-zero components [26] or alpha-beta-gamma
components [60]. The power hardware can be described in any of these reference frames.

As shown in Fig. 2.7, the power hardware and control software form a closed-loop system
via the transformation matrices Tπ|κ(t) and Tκ|π(t). The internal response of the CIDER
describes the behaviour of this closed-loop system:

Definition 5. The internal response of the CIDER describes the relation from wπ(t)
and wκ(t) to yπ(t) and yκ(t). It is derived as the closed-loop system between the power
hardware, control software and the transformation matrices Tπ|κ(t) and Tκ|π(t).

The grid response additionally includes the reference calculation r(·, ·) (i.e., grid-following
or grid-forming control laws) as well as transformations Tκ|π(t) (i.e., a change of coordi-
nates between power hardware and reference calculation) plus Tγ|π(t) and Tπ|γ(t) (i.e.,
change of circuit configuration between grid and power hardware). Note that, as shown
in Fig. 2.7, the grid-side quantities are the grid disturbance wγ(t), the setpoint wσ(t),
and the grid output yγ(t). Accordingly, the grid response is defined as follows.

Definition 6. The grid response of the CIDER describes the relation from wγ(t) and
wσ(t) to yγ(t). It is derived through the combination of the internal response, the
reference calculation r(·, ·) and the grid-side transformations Tπ|γ(t) and Tγ|π(t).
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2.4.3 Harmonic-Domain Model

In this section, the LTP systems and transformations from Section 2.4.2 are formulated in
harmonic domain employing the theory on Toeplitz matrices introduced in Section 2.4.1.
First, the models of the power hardware, control software and the internal transformation
matrices are expressed in harmonic domain. Second, the internal response is derived as
the closed-loop system between power hardware, control software and transformation
matrices. Lastly, it is shown how the reference calculation and external transformations
are represented in harmonic domain.

Open-Loop System

Consider the subsystem composed of the power hardware, control software, and the
transformations that connect them (i.e., the parts related to the internal response as
shown in Fig. 2.7). The time-domain state-space models (2.14)–(2.15) and (2.18)–(2.19)
can be formulated in the harmonic domain.

Ψ̂πX̂π = ÂπX̂π + B̂πÛπ + ÊπŴπ (2.32)
Ŷπ = ĈπX̂π + D̂πÛπ + F̂πŴπ (2.33)

Ψ̂κX̂κ = ÂκX̂κ + B̂κÛκ + ÊκŴκ (2.34)
Ŷκ = ĈκX̂κ + D̂κÛκ + F̂κŴκ (2.35)

where the matrices Ψ̂π and Ψ̂κ are given by

Ψ̂π = s · diag(1π) + j2πf1 diagh∈H(h · 1π) = s · diag(1π) + jΩ̂π (2.36)
Ψ̂κ = s · diag(1κ) + j2πf1 diagh∈H(h · 1κ) = s · diag(1κ) + jΩ̂κ (2.37)

with s ∈ C analogous to the Laplace operator. Notably, this is due to the nature of the
state-space variables. More precisely, as introduced in Section 2.4.1, these variables are
assumed to be exponentially modulated complex signals.

The time-domain transformations (2.22)–(2.23) can analogously be formulated in the
frequency domain as

Ûκ = T̂+
κ|πŶπ (2.38)

Ûπ = T̂π|κŶκ (2.39)

Equations (2.32)–(2.33) and (2.34)–(2.35) can be combined into

Ψ̂X̂ = ÂX̂ + B̂Û + ÊŴ (2.40)
Ŷ = ĈX̂ + D̂Û + F̂Ŵ (2.41)
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where

X̂ = col(X̂π, X̂κ) (2.42)
Â = diag(Âπ, Âκ) (2.43)

The remaining vectors (i.e., Ŷ etc.) and matrices (i.e., B̂ etc.) are defined analogously.
Combining equations (2.38)–(2.39) yields

Û = T̂Ŷ (2.44)

where
T̂ =

[
0 T̂π|κ

T̂+
κ|π 0

]
(2.45)

Internal Response (Closed-Loop System)

One can interpret (2.40)–(2.41) as the open-loop model of the subsystem composed of
power hardware and control software excluding reference calculation, and (2.44) as the
associated feedback control law. In order to obtain the closed-loop model, substitute
(2.44) into (2.40)–(2.41) and solve for X̂ and Ŷ:

Ψ̂X̂ = ÃX̂ + ẼŴ (2.46)
Ŷ = C̃X̂ + F̃Ŵ (2.47)

where the matrices Ã, C̃, Ẽ, and F̃ are given by

Ã = Â + B̂(diag(1)− T̂D̂)−1T̂Ĉ (2.48)
C̃ = (diag(1)− D̂T̂)−1Ĉ (2.49)
Ẽ = Ê + B̂(diag(1)− T̂D̂)−1T̂F̂ (2.50)
F̃ = (diag(1)− D̂T̂)−1F̂ (2.51)

and diag(1) is an identity matrix of suitable size. Naturally, the matrices (2.48)–(2.51)
can only be computed if the inverses of diag(1)− T̂D̂ and diag(1)− D̂T̂ exist. In this
respect, the following hypothesis is made:

Hypothesis 5. The closed-loop model (2.46)–(2.47) does exist, namely diag(1)− T̂D̂
and diag(1)− D̂T̂ are invertible.

Note that, for state-space models that describe electrical circuits, it can be assumed that
there are no short circuits (or bypass connection) between the individual components of
the state-space model. Thus, the direct feed-through matrix D between the input and
output variable equals zero. For the power hardware in (2.35), it means that D̂π is zero.
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Then, diag(1)− T̂D̂ and diag(1)− D̂T̂ simplify to

diag(1)− T̂D̂ =
[
diag(1π) −T̂π|κD̂κ

0 diag(1κ)

]
(2.52)

diag(1)− D̂T̂ =
[

diag(1π) 0
−D̂κT̂κ|π diag(1κ)

]
(2.53)

which are upper and lower block-triangular matrices, respectively. The inverse of upper
and lower block-triangular matrices does exist if the matrices on the diagonal are square
and non-singular [61]. Thus, one can deduce that the inverses of (2.52)– (2.53) do exist,
and so does the closed-loop model of the CIDER.

External Transform

In order to obtain the grid response, the coordinate transformations between grid and
power hardware need to be considered. From (2.16)–(2.17), one obtains:

Ŵπ = T̂π|γŴγ (2.54)
Ŷγ = T̂+

γ|πŶπ (2.55)

Reference Calculation

In order to derive the grid response of the entire CIDER (i.e., from Ŵγ to Ŷγ), the
reference calculation needs to be included via the term Ŵκ. Recall from (2.25), that
the time-domain function r(·, ·) is in general nonlinear. Hence, finding a corresponding
relation in frequency domain may not be straightforward. However, one can assume the
following:

Hypothesis 6. There exists a differentiable function R̂(·, ·) that approximates r(·, ·) in
the harmonic domain:

Ŵκ ≈ R̂(Ŵρ, Ŵσ) (2.56)

It is worth noting that the harmonic-domain function for the reference calculation R̂(·, ·)
can be nonlinear w.r.t. the Fourier coefficients of Ŵρ and Ŵσ. Differentiability of R̂(·, ·)
is needed for the numerical solution of the HPF equations. More precisely, as will be
explained in Section 3.2.5 and Section 4.3 , the Newton-Raphson method requires the
calculation of a Jacobian matrix in each iteration. Naturally, the Jacobian matrix exists
only if the involved functions are differentiable.

For the derivation of the CIDER’s harmonic-domain state-space model, the small-
signal model of the reference calculation introduced in (2.26) needs to be transformed to
harmonic domain, too. Recall that the matrices δρr

(
w̄ρ(t), w̄σ(t)

)
and δσr

(
w̄ρ(t), w̄σ(t)

)
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are described by possibly nonlinear functions of the operating point and need to be
approximated in the harmonic domain. To this end, the following hypothesis has to hold:

Hypothesis 7. There exist matrices R̂ρ and R̂σ that approximate δρr (·, ·) and δσr (·, ·)
of (2.26) in the harmonic domain:

Ŵκ ≈ ˆ̄Wκ + R̂ρ( ˆ̄Wρ, ˆ̄Wσ)
[
Ŵρ − ˆ̄Wρ

]
+ R̂σ( ˆ̄Wρ, ˆ̄Wσ)

[
Ŵσ − ˆ̄Wσ

] (2.57)

given the operating point composed of ˆ̄Wρ and ˆ̄Wσ. The Fourier coefficients of ˆ̄Wκ can
be computed using (2.56).

Keep in mind that the matrices R̂ρ and R̂σ are dependent on the operating point ˆ̄Wρ,
ˆ̄Wσ. For the sake of clarity, this dependency on the operating point is not explicitly

stated for every instance of these matrices in the following derivations.

2.4.4 Grid Response of the CIDER in Harmonic Domain

The closed-loop model in (2.46)–(2.47) in combination with the appropriate representation
of the reference calculation (i.e., (2.57) or (2.56)) and the external transformations in
(2.54)–(2.55) form the grid response of the CIDER. Depending on the application (i.e.,
the HPF study or the HSA), the blocks will be combined to different formulations of the
same model. This section aims at clarifying the differences between the two versions.

Grid Response Employed in the HPF Studies

For the HPF study, all signals (i.e., inputs and disturbances and therefore also outputs)
are assumed to be in periodic steady state. As a consequence, in (2.36)–(2.37) s can be
set to zero, and the closed-loop model in (2.46)–(2.47) simplifies to

jΩ̂X̂ = ÃX̂ + ẼŴ (2.58)
Ŷ = C̃X̂ + F̃Ŵ (2.59)

The grid response of the CIDER is derived as the combination of the internal response
in (2.46)–(2.47) and the possibly nonlinear reference calculation in (2.56), as well as the
external transformations.

To this end, solve (2.58) for X̂ and substitute the result into (2.59) in order to obtain
the closed-loop transfer function from Ŵ to Ŷ:

Ŷ = ĜŴ, Ĝ = C̃(jΩ̂− Ã)−1Ẽ + F̃ (2.60)
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Ĝ is the closed-loop gain. Note that the existence of the closed-loop model alone (i.e.,
Hyp. 5) does not guarantee the existence of the closed-loop gain. Indeed, in order for this
to be true, the term jΩ̂− Ã needs to be invertible. For the sake of rigour and clarity,
this hypothesis is explicitly given.

Hypothesis 8. The closed-loop transfer function (2.60) exists, i.e., the matrix jΩ̂− Ã
is assumed to be invertible.

Recall (2.42)–(2.43) and write (2.60) in block form:[
Ŷπ

Ŷκ

]
=
[
Ĝππ Ĝπκ

Ĝκπ Ĝκκ

] [
Ŵπ

Ŵκ

]
(2.61)

Recall from Hyp. 6 that the reference calculation can be approximated by a differentiable
function R̂(·, ·). This representation of the reference calculation is restated here for the
sake of clarity:

Ŵκ ≈ R̂(Ŵρ, Ŵσ)

In line with (2.24), one finds that

Ŵρ = T̂κ|πŴπ (2.62)

Through substitution of (2.56) and (2.62) into (2.61), one obtains

Ŷπ(Ŵσ, Ŵπ) = ĜππŴπ + ĜπκR̂(Ŵσ, T̂κ|πŴπ) (2.63)

In order to obtain the closed-loop transfer function w.r.t. the grid quantities Ŵγ and Ŷγ ,
the coordinate transformations between grid and power hardware need to be considered.
Recall the formulation of the external transformations in harmonic domain from (2.54)–
(2.55). For the sake of readability, they are restated here:

Ŵπ = T̂π|γŴγ

Ŷγ = T̂+
γ|πŶπ

Combining (2.63)–(2.55) yields the desired function:

Ŷγ(Ŵγ , Ŵσ) = T̂+
γ|πŶπ(T̂π|γŴγ , Ŵσ) (2.64)

Recall from (2.29)–(2.31) that this generic function can represent a grid-forming or a
grid-following CIDER (i.e., depending on which electrical quantities Ŷγ , Ŵγ , and Ŵσ

actually represent).

Notably, this representation is purely describing the input/output relation of the CIDER
response. In the rest of this thesis, it will be referred to this representation as the
Harmonic-Domain Response (HDR). To this end, the following definition is proposed:
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Definition 7. The HDR of the grid response describes the relation between the grid
disturbance and setpoints Ŵγ and Ŵσ and the grid output Ŷγ of a CIDER.

Ŷγ = Ĝ(Ŵγ , Ŵσ) (2.65)

Partial Derivatives of the Grid Response Employed in the HPF Method

As will be shown shortly, the partial derivative of Ŷγ w.r.t. Ŵγ is needed for the
numerical solution of the HPF problem. Note that Ŷπ(·, ·) in (2.64) and R̂(·, ·) in (2.63)
are differentiable (the former is a linear function, the latter due to Hyp. 6). Hence, the
chain rule can be applied, which yields

∂γŶγ(Ŵγ , Ŵσ) = T̂+
γ|π∂πŶπ(T̂π|γŴγ , Ŵσ)T̂π|γ (2.66)

∂πŶπ(Ŵπ, Ŵσ) = Ĝππ + Ĝπκ∂ρR̂(T̂κ|πŴπ, Ŵσ)T̂κ|π (2.67)

where ∂γ , ∂π, and ∂ρ denote the partial derivatives w.r.t. Ŵγ , Ŵπ, and Ŵρ, respectively:

∂γ = ∂

∂Ŵγ

, ∂π = ∂

∂Ŵπ

, ∂ρ = ∂

∂Ŵρ

(2.68)

Grid Response Employed in the HSA

For the HSA, the grid response of the CIDER is derived as the combination of the
closed-loop model in (2.46)–(2.47) and the small-signal representation of the reference
calculation in (2.57). In this way, the HSS model is capable of capturing also internal
characteristics related to the states of the CIDERs.

To this end, recall the state-space model describing the internal response of the CIDER
in (2.46)–(2.47). Keep in mind that the state, disturbance and output vectors are defined
as the column vectors of the respective quantities from the power hardware and the
control software. In line with these definitions, the model can be rewritten as follows:

Ψ̂X̂ = ÃX̂ + ẼπŴπ + ẼκŴκ (2.69)
Ŷ = C̃X̂ + F̃πŴπ + F̃κŴκ (2.70)

where Ẽπ and Ẽκ represent the columns of Ẽ associated with Ŵπ and Ŵκ, respectively,
and F̃π and F̃κ are defined analogously.

Furthermore, recall the small-signal model of the reference calculation from (2.57) and
rewrite it as:

Ŵκ = R̂oŴo + R̂ρT̂κ|πŴπ + R̂σŴσ (2.71)
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where

R̂o =
[
diag(1) −R̂ρT̂κ|π −R̂σ

]
(2.72)

Ŵo = col( ˆ̄Wκ, ˆ̄Wπ, ˆ̄Wσ) (2.73)

where diag(1) is an identity matrix of suitable size. As stated in Section 2.4.3, the
coefficient matrices R̂o, R̂ρ and R̂σ depend on the operating point Ŵo. For the sake
of clarity, this dependency is not restated for every instance of these matrices in the
subsequent derivations.

Finally, recall the external transformations in harmonic domain from (2.54)–(2.55). From
this, one can extract the grid output Ŷγ from Ŷ as follows:

Ŷγ = T̂+
γ|π

[
diag(1π) 0κ

]
Ŷ (2.74)

where diag(1π) is the identity matrix and 0κ the zero matrix whose sizes are compatible
with Ŷπ and Ŷκ, respectively.

Combining (2.69)–(2.70) with (2.71) and adding the external transformations, leads to a
state-space model describing the grid response of the CIDER.

Definition 8. The HSS model describes the relation of the disturbances Ŵγ and Ŵσ

w.r.t. the grid output Ŷγ with the equations:

Ψ̂X̂ = ÃX̂ + ÊγŴγ + ÊσŴσ + ÊoŴo (2.75)
Ŷγ = ĈγX̂ + F̂γŴγ + F̂σŴσ + F̂oŴo (2.76)

with coefficient matrices

Êγ = ẼπT̂π|γ + ẼκR̂ρT̂κ|πT̂π|γ (2.77)
Êσ = ẼκR̂σ (2.78)
Êo = ẼκR̂o (2.79)

F̂γ = T̂+
γ|π

[
diag(1π) 0κ

] (
F̃πT̂π|γ + F̃κR̂ρT̂κ|πT̂π|γ

)
(2.80)

F̂σ = T̂+
γ|π

[
diag(1π) 0κ

]
F̃κR̂σ (2.81)

F̂o = T̂+
γ|π

[
diag(1π) 0κ

]
F̃κR̂o (2.82)

Ĉγ = T̂+
γ|π

[
diag(1π) 0κ

]
C̃ (2.83)

Recall that the matrices describing the small-signal model of the reference calculation
are functions of the operating point Ŵo. By consequence, the aforestated matrices of
the HSS model dependent on this operating point, too.
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The grid response of such a HSS model is described by the Harmonic Transfer Func-
tion (HTF) w.r.t. the disturbances.

Ŷγ = Ĝγ(Ŵo)Ŵγ + Ĝσ(Ŵo)Ŵσ + Ĝo(Ŵo)Ŵo (2.84)

where

Ĝγ(Ŵo) = Ĉγ(Ψ̂− Ã)−1Êγ(Ŵo) + F̂γ(Ŵo) (2.85)
Ĝσ(Ŵo) = Ĉγ(Ψ̂− Ã)−1Êσ(Ŵo) + F̂σ(Ŵo) (2.86)
Ĝo(Ŵo) = Ĉγ(Ψ̂− Ã)−1Êo(Ŵo) + F̂o(Ŵo) (2.87)

Observe that the dependence of the gain matrices Ĝγ , Ĝσ and Ĝo on the operation point
Ŵo is explicitly stated in the above equation.

2.4.5 Extension of the Modelling Framework for Treating Nonlinearities
within the Internal Response of a CIDER

The generic CIDER model introduced in Fig. 2.6 covers only the AC-side components.
That is, the AC/DC converter and DC side are represented by a controlled AC voltage
source. Since the parts of the model related to the internal response are all linear, they
can be represented by LTP models without further approximations.

If other parts of the CIDER shall be analysed in detail, possibly nonlinear components
need to be included into the CIDER model. Due to the these nonlinearities, it is in general
not possible to find an explicit analytical solution for the internal response, because the
equations describing the closed-loop system cannot be solved analytically. However, one
can locally approximate the internal response through linearization w.r.t. the operating
point and apply the same methodology as before. To this end, the LTP models of the
power hardware and control software are linearized in time domain around a time-periodic
operating point. Thus, the operating point needs to be explicitly considered as a variable
in the linearized version of the open-loop model (2.40)–(2.41).

Suppose that the nonlinearity is located in the power hardware and can be linearized
around the time-periodic operating point yo,π(t). Then, one obtains a model that is
analogous to (2.14)–(2.15), in which yo,π(t) appears as an additional variable:

Aπ : Aπ(t, yo,π(t)) (2.88)

and Bπ etc. analogous. In order to facilitate the formulation of the CIDER model,
a decomposition of the matrices w.r.t. to the dependency on the operating point is
proposed. However, it is not generally guaranteed that such a separation can be achieved.
Therefore, the following hypothesis is formulated:
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Hypothesis 9. The matrices of the extended CIDER model can be separated into a
term Ãπ which is invariant w.r.t. the operating point, and another term Āπ which is a
function of it:

Aπ(t, yo,π(t)) = Ãπ(t) + Āπ(t, yo,π(t)) (2.89)

and Bπ etc. analogous.

By consequence, in case the operating point changes, only the second term needs to be
recalculated.

The same methodology can be employed in case nonlinearities exist in the control software.
Therefore, the operating point that needs to be considered for the generic CIDER model
is given by yo(t) = col(yo,π(t), yo,κ(t)).

Based on the linearized open-loop CIDER model in time domain, one can derive the
open- and closed-loop model both in frequency domain. In doing so, keep in mind that
the associated matrices in time and frequency domain are functions of yo(t) and Ŷo,
respectively. The closed-loop model which characterizes the internal response is of the
form (cf. (2.46)–(2.47))

Ψ̂X̂ = Ã(Ŷo)X̂ + Ẽ(Ŷo)Ŵ (2.90)
Ŷ = C̃(Ŷo)X̂ + F̃(Ŷo)Ŵ (2.91)

Without loss of generality, it is assumed that this operating point is a subset of the
output vector of the internal response (i.e., which includes the states that are typically
associated with the operating point):

yo(t) ⊂ y(t) (2.92)

Note that, when defining the open-loop model of the CIDER, any block of the vectors
x, u, and w can be included in the output equation if needed. Accordingly, there exists a
matrix To such that the operating point is derived as

yo(t) = Toy(t) (2.93)

Respectively, in the harmonic domain

Ŷo = T̂oŶ (2.94)

These derivations will be used in Section 4.3.3 in the formulation of the Newton-Raphson
method for solving the HPF problem and in Section 5.2.1 when deriving the system
state-space model for the HSA.
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Figure 2.8: Overview of the difference between the HDR (Fig. 2.8a) and HTF (Fig. 2.8b)
representation of a CIDER with emphasis on the two different operating points.

Impact of the Extension on the Grid Response

In case of the HDR, the extension of the modelling framework by the operating associated
to the linearization of the internal response results in an additional argument:

Ŷγ = Ĝ(Ŵγ , Ŵσ, Ŷo) (2.95)

The update of the HSS model for the extension of the modelling framework follows
straightforward from the dependency of the matrices of the power hardware and control
software on the operating point. Then, the HTF of the grid response, is given as:

Ŷγ = Ĝγ(Ŷo, Ŵo)Ŵγ + Ĝσ(Ŷo, Ŵo)Ŵσ + Ĝo(Ŷo, Ŵo)Ŵo (2.96)

Recall that Ŵo is the operating point that was used for the linearization of the reference
calculation. Fig. 2.8 gives an illustration of the difference between HDR and HTF, as
well as the different operating points.

2.5 Generic Model of the Network-Interfacing Converters

As mentioned in Section 2.2.2, the NICs are two-port devices interconnecting the AC and
DC subsystems of a power system. Fundamentally, the structure of a NIC is similar to
the one of a CIDER: i.e., it consists of power hardware and control software. However, as
opposed to a CIDER, a NIC has two interfaces rather than one between AC and DC (i.e.,
due to the two-port nature of NICs). Hence, as compared to a CIDER, an additional pair
of the grid disturbance and output needs to be considered. Except from that, the generic
model of the NIC can be derived analogously to the procedure proposed in Section 2.4.
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3 Derivation of the Specific Models
of the CIDERs

Summary: In this chapter, the applicability of the proposed modelling framework to
common types of grid-forming and grid-following CIDERs is presented. More precisely,
a library of component models that constitutes typical elements of the CIDERs is pro-
posed. The representation of the PWM actuator, filter and controller stages, as well as
circuit configurations and transformation matrices between different reference frames are
introduced. The methods used to approximate the nonlinear PQ law, which is used as
reference calculation, is discussed in detail. To this end, two distinct representations of
the reference calculation, which are used for the HDR and for the HSS, respectively, are
derived. Subsequently, the assembly of the specific CIDER models from the aforementioned
components is detailed. More precisely, the models of grid-forming and grid-following
CIDERs considering only the AC-side components, as well as a grid-following CIDER
including the modelling of the DC-side components, are introduced. Incorporating the
DC side and the AC/DC converter into the model introduces nonlinearities that can be
represented by the extended CIDER model introduced in the previous chapter. For each
specific CIDER model, the HDR and HSS model are derived and validated through TDS
within Simulink. In this respect, Key Performance Indicators (KPIs) are introduced to
assess the accuracy of the obtained spectra w.r.t. magnitude and phase discrepancies.
First, the accuracy of the HDR at the operating point is assessed. Furthermore, the
accuracy of the HDR for different approximations in the reference calculation is assessed
for the grid-following CIDER. Finally, an evaluation of both representations (i.e., HDR
and HSS) for deviations from the operating point is performed.
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3.1 State of the Art

3.1.1 Representation of the DC Side of a CIDER

When it comes to the modelling of CIDERs a compromise between modelling depth
(i.e., model accuracy compared to the real world) and computational complexity (i.e.,
execution speed and scalability of the model) has to be found. In the recent past,
the modelling of CIDERs for frequency ranges beyond the power-system fundamental
frequency component has been a prominent research topic [12, 62, 63]. To this end,
different levels of abstraction can be applied w.r.t. the power hardware model [64]. In
reality, CIDERs include both AC components (e.g., the filter stages) as well as DC
components (e.g., the physical source or load). While the AC side is usually considered
in full detail, different levels of abstraction can be applied to model the DC side.

The DC side is typically composed of the following components (see Fig. 3.1a): a DC
source, a DC/DC converter (e.g., a boost converter), a DC-link capacitor connected to
the AC/DC converter (e.g., [65, 66, 6]). However, this detailed model is unnecessarily
complex for many studies. For most purposes, the dynamics of the DC source and the
DC/DC converter can be neglected. In this case, as shown in Fig. 3.1b, the elements are
approximated by a current source, which emulates their aggregated behaviour (e.g., active
power-point tracking). This representation is commonly used for HA of CIDERs [67, 68].
If the DC-link capacitor is sufficiently large (i.e., the DC-link ripples are negligible), the
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Figure 3.1: Different levels of approximations of the power hardware of a CIDER. Detailed
representation Fig. 3.1a, the current-source representation Fig. 3.1b and the voltage-
source representation Fig. 3.1c.

model can be simplified further. Namely, the entire DC side can be represented by a DC
voltage source connected directly to the AC/DC converter (see Fig. 3.1c). This simple
yet often effective model is frequently used for impedance modelling and stability analysis
of CIDERs [69, 70] and power grids [71].

3.1.2 Representation of the Actuator

When modelling the PWM actuator of a CIDER, one can either consider or neglect
the effects of the converter’s switching. While switching frequencies are usually high
for CIDERs in low-voltage distributions grids (i.e., as compared to the frequencies of
interest for HA), they might be lower for medium-voltage applications in order to limit
switching losses for higher power ratings. That is, for the modelling of CIDERs in
low-voltage distribution grids, the effects of switching on the creation and propagation of
harmonics can be neglected. For medium-voltage applications on the other hand, one
might have to consider the switching as a possible source of harmonics (i.e., if the highest
harmonic frequency considered is larger than half the switching frequency), which has to
be reflected in the corresponding model.

Notably, the proposed modelling framework is sufficiently generic and modular to represent
both cases. More precisely, the corresponding models would have to be developed using
Toeplitz and Fourier theory. If the switching needs to be considered in the HA, a Double
Fourier Series (DFS) results from the convolution of the spectra of the switching signals
and the electrical quantities [72]. The calculation of the DFS involves Bessel functions,
whose evaluation is non-trivial. In the recent literature, it has been proposed to use
look-up tables in combination with HSS modelling for this purpose [73]. However, this
approach incurs significant computational burden and compromises the scalability of
the model. If the high-frequency contributions of the switching action (i.e., beyond the
frequency range considered for the HA) can be neglected, average models are sufficient
to represent the AC/DC converters [74, 75].
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Figure 3.2: Schematic diagram of a three-phase two-level power converter, which is
commonly used for CIDERs. The fourth leg is optional: it is required only if the power
converter has to be able to inject or absorb homopolar currents.

3.2 Library of Component Models

In this section, the models of actuators, filters, and controllers are described. Note that,
in order to obtain compact formulas, the time-dependency of the electrical quantities
and signals is not explicitly stated each time.

3.2.1 PWM Actuator

The actuator is the power converter that interfaces the DC side of the CIDER (i.e., a
source or load) with its AC side (i.e., the filter). It consists of an array of switches (i.e.,
power-transistor-type devices), which are controlled so that the output voltage of the
actuator vα follows the reference v∗

α (see Fig. 3.2). The switching signals are typically
generated by a PWM. This modulation creates distortions in the output voltage of
the power converter. Indeed, this is the reason why a filter is needed. In low-voltage
distribution systems, these distortions occur at high frequencies (i.e., several kHz), which
are far beyond the frequency range that is of interest for HA (i.e., up to 1-2 kHz) [3].

Assuming that the switching frequency of the PWM generator is high enough, these
high-frequency components do not need to be considered [74]. Thus, the actuator can be
represented by an average model [75].

Hypothesis 10. In the frequency range of interest for the HPF study, the switching losses
and high-frequency components due to the converter switching are negligible. Therefore,
the converter can be represented by an average model based on the instantaneous power
balance equation between the DC-side power Pδ and the AC-side power Pα.

Pδ(t) = Pα(t) (3.1)
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Figure 3.3: Representation of the actuator by an average model, consisting of a controlled
current source on the DC side and a controlled voltage source on the AC side.

The average model consists of a controlled current source on the DC side and a controlled
voltage source on the AC side [75] (see Fig. 3.3). The AC-side voltage is derived from
the AC-side reference voltage v∗

α,ABC and the DC-side voltage vδ through:

vα,ABC(t) = 1
V ∗

δ
v∗

α,ABC(t)vδ(t) (3.2)

The DC-side current iδ is derived from v∗
α,ABC and the AC-side actuator current iα,ABC:

iδ(t) = 1
V ∗

δ

∑
j=ABC

v∗
α,j(t)iα,j(t) = 1

V ∗
δ

v∗⊤
α,ABC(t)iα,ABC(t) (3.3)

These equations are nonlinear w.r.t. the state-space variables. Therefore, as previously
outlined in Section 2.4.5, the actuator model is linearized around the operating point

yo(t) =

 v̄∗
α,ABC(t)

īα,ABC(t)
v̄δ(t)

 (3.4)

which leads to the following linear representation (i.e., a first-order Taylor expansion of
(3.2) and (3.3) w.r.t. (3.4)):

vα,ABC(t) ≈ 1
V ∗

δ

(
v̄∗

α,ABC(t)vδ(t) + v̄δ(t)v∗
α,ABC(t)− v̄δ(t)v̄∗

α,ABC(t)
)

(3.5)

iδ(t) ≈ 1
V ∗

δ

(
v̄∗⊤

α,ABC(t)iα,ABC(t) + ī⊤α,ABC(t)v∗
α,ABC(t)− ī⊤α,ABC(t)v̄∗

α,ABC(t)
)

(3.6)

For the most basic models of grid-forming and grid-following converters, it is common
practice to model only the AC-side dynamics. That is, the DC side is represented by an
ideal DC voltage source which is equal to the reference vδ(t) = V ∗

δ and (3.2) reduces to

vα,ABC(t) = v∗
α,ABC(t) (3.7)

Notably, this equation corresponds to an ideal converter that precisely implements its
voltage reference.
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Figure 3.4: Equivalent circuits of a filter stage i constructed from inductors (3.4a) or
capacitors (3.4b), respectively. Observe that voltages, currents, and electrical parameters
are expressed in the reference frame of the power hardware π.

3.2.2 Filter Stages

In order to attenuate the high-frequency distortions resulting from the switching in the
actuator, CIDERs are equipped with cascades of filter stages [6]. Each stage consists
of inductors or capacitors (plus parasitic or damping resistors), which filter currents or
voltages, respectively. Notably, the commonly used L-, LC-, and LCL-filters as well as
higher-order filters are built in this way.

Consider any stage i in the cascade of filters. An inductive filter stage is represented
by the equivalent circuit in Fig. 3.4a, which is described by the following differential
equation:

vi−1,π(t)− vi+1,π(t) = Ri,πii,π(t) + Li,π
d

dt
ii,π(t) (3.8)

Ri,π, Li,π ∈ Rdim(π)×dim(π) are the compound electrical parameters of the inductive filter
stage, ii,π ∈ Rdim(π)×1 is the current flowing through it, and vi−1,π, vi+1,π ∈ Rdim(π)×1

are the voltages at the start and end node of the stage, respectively. Again, the sizes of
these vectors and matrices depend on the reference frame in which the power hardware
is modelled. A capacitive filter stage is represented by the equivalent circuit in Fig. 3.4b,
which is described by

ii−1,π(t)− ii+1,π(t) = Gi,πvi,π(t) + Ci,π
d

dt
vi,π(t) (3.9)

Gi,π, Ci,π ∈ Rdim(π)×dim(π) are the compound electrical parameters of the capacitive
filter stage, vi,π ∈ Rdim(π)×1 is the voltage across it, and ii−1,π, ii+1,π ∈ Rdim(π)×1 are the
currents flowing into and out of the stage, respectively.

In practice, the filter stages are built from identical discrete elements (i.e., one element
per phase). Accordingly, the following hypothesis can be made:

44



3.2 Library of Component Models

FF+
i∗
i,κ

+FB

ii,κ

−

+

FT

vi+1,κ

v∗
i−1,κ

(a)

FF+
v∗

i,κ

+FB

vi,κ

−

+

FT

ii+1,κ

i∗
i−1,κ

(b)

Figure 3.5: Block diagrams of a controller stage i associated with an inductive (3.5a)
and capacitive (3.5b) filter stage, respectively. In general, the control law includes
Feed-Back (FB), Feed-Forward (FF), and Feed-Through (FT) terms. Observe that voltages
and currents are expressed in the reference frame of the control software κ.

Hypothesis 11. The compound electrical parameters of the filter stages are diagonal
matrices with equal nonzero entries. That is, an inductive filter stage is characterized by

Ri,π = Ri diag(1π), Li,π = Li diag(1π) (3.10)

and a capacitive filter stage by

Gi,π = Gi diag(1π), Ci,π = Ci diag(1π) (3.11)

where diag(1π) is the identity matrix w.r.t. reference frame of the power hardware. Ri,
Li and Gi, Ci are the parameters of the discrete elements.

3.2.3 Controller Stages

Each filer stage can be coupled with a corresponding controller, which regulates either
the current through or the voltage across the filter element, depending on whether
the filter stage is inductive or capacitive.1 As illustrated in Fig. 3.5, such a controller
generally performs Feed-Back (FB), Feed-Forward (FF), and Feed-Through (FT) control.
More precisely, as shown in Figs. 3.5a and 3.5b, a stage i of the controller calculates the
reference for the next-inner stage i − 1 from the deviation between its own state and
the desired reference (i.e., via FB and FF control), as well as the state of the next-outer
stage i + 1 (i.e., via FT control). In principle, each block of a controller stage could be
composed of multiple subblocks connected in series or in parallel (e.g., for the mitigation
of specific harmonics). In practice, simple Proportional-Integral-Derivative (PID) and
Proportional-Resonant (PR) controllers are commonly used [76].

1As already mentioned in Section 2.4, it is common practice for CIDERs with LCL filter to implement
one instead of two current control loops. Notably, this can easily be represented in the proposed
framework.
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Example of Proportional-Integral Controllers

For the sake of illustration, PI-controllers are considered for FB control, and P-controllers
for FF and FT control:

Hypothesis 12. Each controller stage consists of a PI controller for FB control, and
two P controllers for FF and FT controls.

Let KFB,i, KFF,i, KFT,i ∈ Rdim(κ)×dim(κ) be the proportional gains and TFB,i the integration
time, respectively. The control law for an inductive filter stage is given by (see Fig. 3.5a)

v∗
i−1,κ(t) =

 KFB,i

(
∆ii,κ(t) + 1

TFB,i

∫
∆ii,κ(t) dt

)
+KFT,ivi+1,κ(t) + KFF,ii

∗
i,κ(t)

(3.12)

∆ii,κ(t) := i∗i,κ(t)− ii,κ(t) (3.13)

v∗
i−1,κ, i∗i,κ ∈ Rdim(κ)×1 are the reference voltage at the input of the controller stage and

the reference current at its output, respectively. vi+1,κ, ii,κ ∈ Rdim(κ)×1 are the voltage
at the output of the filter stage and the current through it, respectively, expressed in the
reference frame of the controller. The control law for a capacitive filter stage is analogous
(see Fig. 3.5b):

i∗i−1,κ(t) =

 KFB,i

(
∆vi,κ(t) + 1

TFB,i

∫
∆vi,κ(t) dt

)
+KFT,iii+1,κ(t) + KFF,iv

∗
i,κ(t)

(3.14)

∆vi,κ(t) := v∗
i,κ(t)− vi,κ(t) (3.15)

i∗i−1,κ, v∗
i,κ ∈ Rdim(κ)×1 are the reference current at the input of the controller stage and

the reference voltage at its output, respectively. ii+1,κ, vi,κ ∈ Rdim(κ)×1 are the current at
the output of the filter stage and voltage across it, respectively, expressed in the reference
frame of the controller.

Modelling Assumptions

Typically, the FB and FT controllers treat each coordinate in the reference frame indepen-
dently, and apply equal gains to them. In line with this fact, the following hypothesis is
made:
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Hypothesis 13. The FB and FT gains are diagonal matrices with equal nonzero entries.
That is

KFB,i = KFB,i diag(1κ) (3.16)
KFT,i = KFT,i diag(1κ) (3.17)

where diag(1κ) is the identity matrix w.r.t. the reference frame of the control software.

The FF controllers, by contrast, are obtained by restating the dynamical models of
the filter stages, which are given in the reference frame of the power hardware, in the
reference frame of the control software [77]. To this end, the transformation matrices
Tκ|π ∈ Rdim(κ)×dim(π) and Tπ|κ ∈ Rdim(π)×dim(κ) are substituted into the filter equations
(3.8)–(3.9). For the inductive filter stage, one obtains

vi−1,κ(t)− vi+1,κ(t) = Ri,κii,κ(t) + Li,κ
d

dt
ii,κ(t) (3.18)

where Ri,κ, Li,κ ∈ Rdim(κ)×dim(κ) are given by

Ri,κ = Tκ|π(t)Ri,πTπ|κ(t) + Tκ|π(t)Li,π
d

dt
Tπ|κ(t) (3.19)

Li,κ = Tκ|π(t)Li,πTπ|κ(t) (3.20)

Analogously, for the capacitive filter stage, one finds

ii−1,κ(t)− ii+1,κ(t) = Gi,κvi,κ(t) + Ci,κ
d

dt
vi,κ(t) (3.21)

where Gi,κ, Ci,κ ∈ Rdim(κ)×dim(κ) are given by

Gi,κ = Tκ|π(t)Gi,πTπ|κ(t) + Tκ|π(t)Ci,π
d

dt
Tπ|κ(t) (3.22)

Ci,κ = Tκ|π(t)Ci,πTπ|κ(t) (3.23)

Observe that the expressions for Ri,κ and Gi,κ include terms that result from the temporal
derivatives of ii,π = Tπ|κii,κ and vi,π = Tπ|κvi,κ, respectively. These expressions often
turn out to be time-invariant thanks to the diagonal nature of the matrices in Hyp. 11.
For instance, as will be shown shortly, this is the case in the DQ frame.

Using (3.18) and (3.21), the FF gains can be set in order to achieve zero error in steady-
state (e.g., [77]) via the following additional hypothesis.

Hypothesis 14. The FF gains are set to

KFF,i =
{

Ri,κ for inductive filter stages
Gi,κ for capacitive filter stages

(3.24)
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3.2.4 Circuit Configurations and Reference Frames

Circuit Configurations

Usually, the grid and the power hardware are both modelled in phase coordinates, but
their circuit configuration may not be the same. Recall from Hyp. 1 that the grid
is a four-wire system (i.e., three phase plus one neutral conductor), and the neutral
conductor is effectively ground. In contrast, the power converters can be either four-leg
or three-leg devices (i.e., with or without neutral conductor). If a CIDER with a four-leg
power converter is connected to a four-wire grid, all sequence components (i.e., positive,
negative, and homopolar sequences) of voltage and current can pass in both directions.
This corresponds to

Tπ|γ = Tγ|π = diag(13) (3.25)

By contrast, if a CIDER with a three-leg power converter is connected to a four-wire
grid (as is often the case), homopolar sequences are blocked in both directions. This is
represented by

Tπ|γ = Tγ|π = diag(13)− 1
313×3 (3.26)

Transformation Matrices

It is common practice to implement the control software in DQ components [76]. If the
power hardware is modelled in phase (ABC) coordinates, as previously mentioned, one
obtains

Tκ|π(t) = TT
π|κ(t) (3.27)

Tπ|κ(t) =
√

2
3


cos (θ(t)) − sin (θ(t))

cos
(
θ(t)− 2π

3

)
− sin

(
θ(t)− 2π

3

)
cos

(
θ(t) + 2π

3

)
− sin

(
θ(t) + 2π

3

)
 (3.28)

where θ is a given reference angle2. How the reference angle is obtained, depends on the
type of CIDER. In case of a grid-forming CIDER, the reference angle is set (i.e., to zero
for the slack node). For a grid-following CIDERs, the reference angle is determined by
means of a synchronisation unit. In either case, it is assumed that θ is synchronized with
the fundamental frequency tone.

Hypothesis 15. Irrespective of the type of CIDER, the reference angle θ, w.r.t. which
the DQ frame is defined, is given by

θ(t) = 2πf1t + θ0 (3.29)

where θ0 is a known offset.
2In this context, recall the earlier remark regarding the fact that the transformation matrices are

generally rectangular not quadratic, because some coordinates may be omitted (here: the zero component).
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If this hypothesis holds, the Fourier coefficients of the transformation matrices (3.27)–
(3.28), which are needed for the harmonic-domain model, are described by the following
matrices:

Tπ|κ,+1 =
√

2
3 exp (jθ0)


1
2 − 1

2j
1
2α∗ − 1

2j α∗

1
2α − 1

2j α

 (3.30)

Tπ|κ,−1 = T∗
π|κ,+1 (3.31)

where α = exp
(
j 2π

3

)
. As explained in Section 2.4.1, the Fourier coefficients of time-

periodic matrices appear on the diagonals of the associated Toeplitz matrices in the
harmonic domain. For example, the coefficients of order h = ±1 appear on the first
upper and lower diagonal, respectively. Accordingly, T̂κ|π and T̂π|κ have a block-band
structure, which introduces coupling between the harmonics.

The impact of the transformation on the spectrum of the signal becomes more evident
if the latter is expressed in sequence components. That is, the block-band structure of
the transformation matrix shifts the harmonic orders as follows: The harmonic order
of positive/negative sequences is decremented/incremented by 1, respectively, and the
harmonic order of homopolar sequences remains unchanged [70]. Recall that for the
purpose of HA, the spectrum must be truncated at a given maximum harmonic order.
In view of the aforementioned frequency shift, the maximum harmonic orders for power
hardware and control software should be chosen such that the loss of signal content is
minimized. This goal can be achieved by setting:

hmax,κ = hmax,π + 1 (3.32)

Feed-Forward Gain in the DQ Reference Frame

Having specified the reference frames, the FF gain KFF,i as given in Hyp. 14 can be
evaluated. By substitution of (3.27)–(3.28) and Hyp. 15 into (3.19) and (3.22), one can
show that

Ri,DQ =
[

Ri −2πf1Li

2πf1Li Ri

]
(3.33)

Gi,DQ =
[

Gi −2πf1Ci

2πf1Ci Gi

]
(3.34)

The off-diagonal elements are a.k.a. decoupling terms [78]. Note that, the decoupling
terms result from the temporal derivatives in (3.19) and (3.22). More precisely, due to
the diagonal structure of Ri,ABC and Gi,ABC, the transformed matrices in DQ-components
Ri,DQ and Gi,DQ are time-invariant (as claimed).
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3.2.5 PQ Law – Reference Calculation

In grid-following CIDERs, the reference angle θ needed for the DQ transform is provided
by a synchronization unit, usually a Phase-Locked Loop (PLL). The reference current
i∗γ,DQ is computed in order to track the power setpoint Sσ = Pσ + jQσ at the fundamental
frequency. Without imposing any further conditions on θ, i∗γ,DQ is given by [79]

i∗γ,DQ(t) = 1
v2

γ,D(t) + v2
γ,Q(t)

[
vγ,D(t) −vγ,Q(t)
vγ,Q(t) vγ,D(t)

][
Pσ

Qσ

]
(3.35)

In the vast majority of cases, synchronization units in general, and PLLs in particular,
are designed to lock to the fundamental positive-sequence component of the grid voltage
(e.g., [79]). This working principle leads to the following hypothesis.

Hypothesis 16. The synchronization units of the grid-following CIDERs lock to the
fundamental positive-sequence component of the grid voltage. Therefore, in steady state
it holds that

Vγ,Q,0 = 1
T

∫
vγ,Q(t) dt = 0 (3.36)

For instance, this can be achieved by a closed-loop controller which adjusts θ in order to
regulate vγ,Q to 0 [80].

As required by power quality standards (e.g., [3]), the grid voltages have to be maintained
balanced and sinusoidal within specified limits3. Under these conditions, it reasonable to
assume the following.

Hypothesis 17. The time-variant signal content of vγ,D(t) and vγ,Q(t), as given by ξD(t)
and ξQ(t) below, is low:

vγ,D(t) = Vγ,D,0(1 + ξD(t)), |ξD(t)| ≪ 1 (3.37)
vγ,Q(t) = Vγ,Q,0(1 + ξQ(t)),

∣∣ξQ(t)
∣∣≪ 1 (3.38)

As a consequence of Hyps. 16 and 17, vγ,Q(t) can be neglected w.r.t. vγ,D(t) in (3.35):

i∗γ,DQ(t) ≈

 1
vγ,D(t) 0

0 1
vγ,D(t)

[Pσ

Qσ

]
(3.39)

Nonlinear Approximation of the Reference Calculation

In order to calculate the HDR of the CIDER (i.e., the input/output expression of
the grid response used for the HPF study), the Fourier coefficients of i∗γ,DQ are needed.

3By contrast, the grid currents may be subject to unbalances and harmonics.
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Unfortunately, the exact expressions that relate the Fourier coefficients of the reciprocal
v−1

γ,D and those of vγ,D are complicated [81], and their evaluation is computationally
intensive. However, taking advantage of Hyp. 17, a Taylor expansion can be employed.
In this respect, the following approximations are made:

Hypothesis 18. For the calculation of the reference current in the grid-following CIDERs,
the reciprocal of the grid voltage can be approximated by a Taylor series of order n:

1
vγ,D(t) ≈

1
Vγ,D,0

∑
n

(−1)nξn
D (t) (3.40)

where the Fourier series of ξD(t) is described by

ξD(t) =
∑
h̸=0

Vγ,D,h

Vγ,D,0
exp (jh2πf1t) (3.41)

Employing this Taylor expansion, one can approximate the matrix in (3.39) by Ψ(n)(t)

Ψ(n)(t) = 1
Vγ,D,0

∑
n

(−1)nΞn
D (t) (3.42)

where

ΞD(t) = diag(12)ξD(t) (3.43)

Transforming (3.42) to the harmonic domain gives

Ψ̂(n) = 1
Vγ,D,0

∑
n

(−1)nΞ̂n
D (3.44)

where diag(1) is a matrix of suitable size, composed of ones, and Ξ̂D describes the Toeplitz
matrix built from the Fourier coefficients of ΞD(t).

For a first-order Taylor expansion one obtains

Ψ̂(1) = 1
Vγ,D,0

(
diag(1)− Ξ̂D

)
(3.45)

Analogously for the second-order expansion:

Ψ̂(2) = 1
Vγ,D,0

(
diag(1)− Ξ̂D + Ξ̂2

D

)
(3.46)

As stated in Section 2.4.3 the second order expansion of the reference calculation is
employed when deriving the HDR of the resource. Expansions of higher order can easily
be obtained using (3.44) with suitable n. For the sake of conciseness, the impact of the
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order of the expansion on the CIDER’s grid response is provided in the validation section
of this chapter (see Section 3.4.2).

Note that the approximation of the PQ control law (3.39) is a nonlinear function of the
Fourier coefficients of the grid voltage.

Partial Derivatives for the Numerical Solution of the HPF Problem

For the numerical solution of the HPF problem the derivative of the reference calculation
w.r.t. the grid voltage is needed, to built the Jacobian matrix4. To this end, considering
the first order expansion of the reference calculation suffices to obtain good convergence
behaviour, as will be shown in Section 4.4.2. In order to derive the partial derivatives
of the grid current reference the Fourier coefficients of Ψ̂(1) are explicitly derived as a
function of the grid voltage:

Ψ̂(1)
h = diag(12)


1

Vγ,D,0
h = 0

−
Vγ,D,h

V 2
γ,D,0

otherwise
(3.47)

In this respect, the partial derivatives of Ψ̂(1) w.r.t. V̂γ,D are obtained as

δΨ̂(1)
0

δV̂γ,D,h

= 12


− 1

V 2
γ,D,0

h = 0

0 otherwise
(3.48)

and

δΨ̂(1)
k

δV̂γ,D,h

= 12


2

Vγ,D,h

V 3
γ,D,0

h = 0

− 1
V 2

γ,D,0
otherwise

(3.49)

where k ∈ H, k ̸= 0. Thus,

δÎ∗
γ,DQ

δV̂γ,D
= δΨ̂(1)

δV̂γ,D
Ŝ (3.50)

δÎ∗
γ,DQ

δV̂γ,ABC
=

δÎ∗
γ,DQ

δV̂γ,D
T̂κ|πT̂π|γ (3.51)

where Ŝ describes the column vector composed of the Fourier coefficients of the power
setpoints.

4The Jacobian matrix is the matrix of the first-order derivatives of the system equations, that is used
to update the solution estimate in each step of the Newton-Raphson algorithm.
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Small-Signal Model of the Reference Calculation

For the representation of the reference calculation within the HSS model of the CIDER,
the format introduced in (2.57) is employed. To this end, one needs to derive the
coefficients R̂ρ and R̂σ originating from the Taylor expansion in time domain, as well as
the shift of the origin ˆ̄Wκ. The coefficients for the small-signal model of (3.39) for the
operating point w̄ρ(t) and a general power setpoint w̄σ(t) are given by

w̄κ(t) = 1
w̄ρ(t)w̄σ(t) (3.52)

Rρ(t) = −
(

1
w̄ρ(t)

)2

w̄σ(t) (3.53)

Rσ(t) = 1
w̄ρ(t) (3.54)

From this, the harmonic-domain quantities Ŵκ, R̂ρ, and R̂σ are derived by means of
the Teoplitz theory. It is worth noting that, as before, the reciprocal of w̄ρ(t) can be
approximated by a nth-order Taylor expansion as stated in Hyp. 18.

In general, one would expect that the nonlinear approximation of the reference calculation
performs better than the small-signal model. However, if both models are evaluated at
the operating point (i.e., with zero deviation from it), they will yield the same results.

3.3 Library of Resource Models

In this section, the components introduced in Section 3.2 are combined to formulate the
models of the different types of CIDERs. First, the simplified models of a grid-forming
and -following CIDER is presented. The description “simplified” refers to the fact that
they are represented by AC-side characteristics only. In these cases, the CIDERs can
be modelled using the first version of the generic CIDER model in Section 2.4, where
the nonlinearities of the model are limited to inside the reference calculation. Second, a
grid-following CIDER that models the DC-side characteristics is introduced. To this end,
the extension of the generic CIDER model proposed in Section 2.4.5 is employed.

3.3.1 Grid-Forming CIDER – Considering Only AC-Side Characteris-
tics

Fig. 3.6 shows the schematic diagram of a typical grid-forming CIDER. Its power hardware
consists of a PWM actuator, modelled by an ideal AC voltage source (see Section 3.2.1)
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Figure 3.6: Schematic diagram of a grid-forming CIDER with an LC filter.

and an LC filter5, and its control software of a two-stage PI controller. The actuator is
assumed to be a four-leg power converter which can inject or absorb homopolar currents6.
This feature is of crucial importance for islanded operation, during which the grid-forming
CIDER takes the role of the slack.

Power Hardware

The state of the power hardware is given by the inductor current iα,ABC ∈ R3×1 and the
capacitor voltage vφ,ABC ∈ R3×1. The input and disturbance are the actuator voltage
vα,ABC ∈ R3×1 and grid current iγ,ABC ∈ R3×1, respectively. The output includes both
state and disturbance. That is

xπ(t) =
[

iα,ABC(t)
vφ,ABC(t)

]
∈ R6×1 (3.55)

uπ(t) = vα,ABC(t) ∈ R3×1 (3.56)
wπ(t) = iγ,ABC(t) ∈ R3×1 (3.57)

yπ(t) =
[

xπ(t)
wπ(t)

]
∈ R9×1 (3.58)

5If a grid-forming CIDER is equipped with an LCL filter, the output seen at the point of connection
is the current through the grid-side inductor, and the disturbance is the nodal voltage (cf. (2.29) and
(2.30)). As a consequence, such a CIDER would belong to the set R.

6Note that, while four-leg power converters are not common, it does make sense to use them for
grid-forming CIDERs (of which there are only a few in any case), because the power system has no ability
to absorb homopolar sequences otherwise.
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The time-domain state-space model of the power hardware is obtained by combining the
differential equations (3.8) and (3.9) of the filter stages. This yields

Aπ(t) =
[
−L−1

α Rα −L−1
α

C−1
φ −C−1

φ Gφ

]
(3.59)

Bπ(t) =
[

L−1
α

03×3

]
(3.60)

Eπ(t) =
[

03×3
−C−1

φ

]
(3.61)

Cπ(t) =
[
diag(16)

03×6

]
(3.62)

Dπ(t) = 09×3 (3.63)

Fπ(t) =
[

06×3
diag(13)

]
(3.64)

The sizes of these matrices follow directly from (3.55)–(3.58). Note that these matrices
are time-invariant, which means that only the Fourier coefficient for h = 0 is nonzero.
For instance:

Aπ(t) = Aπ,0 (3.65)

The same holds for the other matrices of the state-space model. Accordingly, the power
hardware is an LTI system, which is a particular case of an LTP system.

Control Software

Recall from Hyp. 12 that each controller stage consists of one PI controller (i.e., for FB
control) and two P controllers (i.e., for FF and FT control). Since the control software
is composed of PI controllers, its state is given by the temporal integrals of the errors
w.r.t. the inductor current ∆iα,DQ ∈ R2×1 and the capacitor voltage ∆vφ,DQ ∈ R2×1. Its
input and output are defined by the interconnection with the power hardware as shown
in Fig. 3.6. The disturbance is the reference voltage v∗

φ,DQ ∈ R2×1 of the outer controller
stage. Accordingly

xκ(t) =
∫ [∆iα,DQ(t)

∆vφ,DQ(t)

]
dt ∈ R4×1 (3.66)

uκ(t) =

 iα,DQ(t)
vφ,DQ(t)
iγ,DQ(t)

 ∈ R6×1 (3.67)

wκ(t) = v∗
φ,DQ(t) ∈ R2×1 (3.68)

yκ(t) = vα,DQ(t) ∈ R2×1 (3.69)
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The time-domain state-space model of the control software is found by combining the
differential equations (3.12) and (3.14) of the controller stages. This gives the following
matrices. For the sake of readability the following substitution has been employed,
(KFF + KFB) = KFFB.

Aκ(t) =

02×2
KFB,φ

TFB,φ

02×2 02×2

 (3.70)

Bκ(t) =
[
−diag(12) −KFB,φ KFT,φ

02×2 −diag(12) 02×2

]
(3.71)

Eκ(t) =
[

KFFB,φ

diag(12)

]
(3.72)

Cκ(t) =
[KFB,α

TFB,α
KFFB,α

KFB,φ

TFB,φ

]
(3.73)

Dκ(t) =
[
−KFB,α KFT,α −KFFB,αKFB,φ KFFB,αKFT,φ

]
(3.74)

Fκ(t) = KFFB,αKFFB,φ (3.75)

The sizes of these matrices follow directly from (3.66)–(3.69). Evidently, the control
software is an LTI system, too. Indeed, this is one of the reasons for the popularity of
the DQ frame since its invention almost a century ago [26].

Reference Calculation

In grid-forming CIDERs, the reference angle θ is computed from the frequency setpoint
fσ through integration over time

θ(t) = 2π

∫
fσ dt = 2πfσt (3.76)

Hence, in line with Hyp. 15, the following hypothesis is made.

Hypothesis 19. In steady state, the frequency setpoints of all grid-forming CIDERs are
equal to the fundamental frequency:

fσ = f1 (3.77)

Indeed, if the grid-forming CIDERs attempted to impose incompatible frequencies on
the power system, no steady-state equilibrium could exist. The reference voltage v∗

φ,DQ is
calculated from the voltage setpoint Vσ as follows:

Hypothesis 20. The reference voltage for the grid-forming CIDERs is calculated as

v∗
φ,DQ(t) =

√
3
2

[
Vσ

0

]
(3.78)

where Vσ is the setpoint for the peak voltage.
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Figure 3.7: Schematic diagram of a grid-following CIDER with an LCL filter.

3.3.2 Grid-Following CIDER – Considering Only AC-Side Characteris-
tics

Fig. 3.7 shows the schematic diagram of a typical grid-following CIDER. Its power
hardware consists of a PWM actuator, modelled as an ideal AC voltage source (see
Section 3.2.1) and an LCL filter, and its control software of a three-stage PI controller.
The actuator is a three-leg power converter, which is commonly used for grid-following
CIDERs.

Power Hardware

The state of the power hardware is described by the inductor currents iα,ABC ∈ R3×1 and
iγ,ABC ∈ R3×1 and the capacitor voltage vφ,ABC ∈ R3×1. The input is the actuator voltage
vα,ABC ∈ R3×1 and the disturbance is the grid voltage vγ,ABC ∈ R3×1. The output consists
of the state and the disturbance. Formally

xπ(t) =

 iα,ABC(t)
vφ,ABC(t)
iγ,ABC(t)

 ∈ R9×1 (3.79)

uπ(t) = vα,ABC(t) ∈ R3×1 (3.80)
wπ(t) = vγ,ABC(t) ∈ R3×1 (3.81)

yπ(t) =
[

xπ(t)
wπ(t)

]
∈ R12×1 (3.82)
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The matrices of the state-space model are obtained as

Aπ(t) =

−L−1
α Rα −L−1

α 03×3
C−1

φ −C−1
φ Gφ −C−1

φ

03×3 L−1
γ −L−1

γ Rγ

 (3.83)

Bπ(t) =
[

L−1
α

06×3

]
(3.84)

Eπ(t) =
[

06×3
−L−1

φ

]
(3.85)

Cπ(t) =
[
diag(19)

03×9

]
(3.86)

Dπ(t) = 012×3 (3.87)

Fπ(t) =
[

09×3
diag(13)

]
(3.88)

Their sizes follow straightforward from (3.79)–(3.82). Note that these matrices are
time-invariant as in the grid-forming case.

Control Software

Analogously, the state-space variables of the control software are given by

xκ(t) =
∫ ∆iα,DQ(t)

∆vφ,DQ(t)
∆iγ,DQ(t)

 dt ∈ R6×1 (3.89)

uκ(t) =


iα,DQ(t)
vφ,DQ(t)
iγ,DQ(t)
vγ,DQ(t)

 ∈ R8×1 (3.90)

wκ(t) = i∗γ,DQ(t) ∈ R2×1 (3.91)
yκ(t) = vα,DQ(t) ∈ R2×1 (3.92)

The matrices of the state-space model are obtained as follows. As before, for the sake of
readability the following substitution has been employed, (KFF + KFB) = KFFB.

Aκ(t) =


02×2

KFB,φ

TFB,φ
KFFB,φ

KFB,γ

TFB,γ

02×2 02×2
KFB,γ

TFB,γ

02×2 02×2 02×2

 (3.93)
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Bκ(t) =

−diag(12) −KFB,φ KFT,φ −KFFB,φKFB,γ KFFB,φKFT,γ

02×2 −diag(12) −KFB,γ KFT,γ

02×2 02×2 −diag(12) 02×2

 (3.94)

Eκ(t) =

KFFB,φKFFB,γ

KFFB,γ

diag(12)

 (3.95)

Cκ(t) =
[KFB,α

TFB,α
KFFB,α

KFB,φ

TFB,φ
KFFB,αKFFB,φ

KFB,γ

TFB,γ

]
(3.96)

Dκ(t) =
[
−KFB,α KFT,α −KFFB,αKFB,φ (Dκ)3 KFFB,αKFFB,φKFB,γ

]
(3.97)

(Dκ)3 = KFFB,α + KFT,φ −KFFB,φKFB,γ (3.98)
Fκ(t) =

∏
i∈{α,φ,γ}

{
KFFB,i

}
(3.99)

Their sizes follow straightforward from (3.89)–(3.92). Note that these matrices are also
time-invariant.

Reference Calculation

The reference calculation of this CIDER is a PQ law, which is in general a nonlinear
function. Section 3.2.5 shows how this function can be approximated in order to fit into
the modelling framework.

3.3.3 Grid-Following CIDER – Including DC-Side Characteristics

In this section, the detailed model of a grid-following CIDER including the DC-side
dynamics is developed. Specifically, a CIDER with DC-voltage control is considered.
To this end, the DC side is represented by the controlled current-source model as was
introduced in Section 3.1. The precise structure of the CIDER is shown in Fig. 3.8. The
power hardware consists of an LCL filter on the AC side, plus a current source and a link
capacitor on the DC side. The control software is composed of a cascade of controllers.
For the sake of illustration, PI controllers are considered. Note that the measurements
and control signals, that are exchanged between the power hardware and control software,
pass through coordinate transformations. In this particular case, the Park transform
is employed. The reference calculation computes the current setpoint for the control
software based on the power setpoint and the voltage at the point of connection.

Power Hardware

Assuming that the CIDER exhibits constant-power behaviour, the DC equivalent can be
described by a controlled current source [82].
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Figure 3.8: Overview of the grid-following CIDER including DC-side dynamics. The
power hardware is connected through measurements and coordinate transformations (i.e.,
in case of AC signals) to the control software.

Hypothesis 21. The DC equivalent current iϵ is computed in order to track the power
setpoint P ∗ using the DC-side voltage vδ:

iϵ(t) = P ∗

vδ(t) (3.100)

In general, it can be assumed that the DC-side voltage control loop of the CIDER is
designed to track its reference with zero error (e.g., a well-tuned PI controller [83]).
Namely, in steady-state its DC component Vδ,0 follows the reference V ∗

δ .

Hypothesis 22. The DC-voltage control tracks the DC-voltage reference in the DC
component without steady-state error. That is,:

Vδ,0 = V ∗
δ (3.101)

Typically, the DC-voltage harmonics are negligible when compared to the DC compo-
nent [65]. The following assumption is made.

Hypothesis 23. The time-variant signal content of vδ(t), as given by ξ(t) below, is low.

vδ(t) = Vδ,0(1 + ξ(t)), |ξ(t)| ≪ 1 (3.102)
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As a consequence of Hyp. 22 and Hyp. 23, (3.100) can be approximated using a first
order Taylor series around the DC voltage reference V ∗

δ .

iϵ(t) ≈
P ∗

V ∗
δ
− P ∗

V ∗
δ

2 (vδ(t)− V ∗
δ ) (3.103)

= 2P ∗

V ∗
δ
− P ∗

V ∗
δ

2 vδ(t) (3.104)

Note that this approximation of the DC equivalent current is in line with the theory
developed in Section 2.4.2 and Section 2.4.3.

The AC/DC converter is represented by an average model, which was explained in detail
in Section 3.2.1. The operating point considered in this context is given by

yo(t) =

 v̄∗
α,ABC(t)

īα,ABC(t)
v̄δ(t)

 (3.105)

The time-domain state-space model of the power hardware is obtained by combining the
differential equations (3.8) and (3.9) of the filter stages. Notably, the filter equations for
DC-link capacitor follow directly from (3.8) and (3.9) by setting the dimension of the
vectors to 1 (i.e., a single wire rather than three phases).

To obtain the state-space model of the power hardware, the equations of the AC and the
DC filter stages are combined with the linearized actuator model and the current of the
DC equivalent. More precisely, one needs to insert (3.5) and (3.6) as well as (3.104) into
the equations of the filter stages and, then, derive the corresponding state-space model.

Thus, the state of the combined power hardware is given by the inductor currents iα,ABC

and iγ,ABC and the capacitor voltage vφ,ABC on the AC side and the capacitor voltage vδ

on the DC side. The input is the actuator voltage reference v∗
α,ABC. The disturbances are

the grid voltage vγ,ABC, the average DC-side equivalent current described by P
∗

V
∗

δ
and the

operating point of the actuator voltage reference v̄∗
α,ABC. The output includes the state

and the grid voltage as well as the DC-side equivalent current iϵ. Namely,

xπ(t) =


iα,ABC(t)

vφ,ABC(t)
iγ,ABC(t)

vδ(t)

 (3.106)

uπ(t) = v∗
α,ABC(t) (3.107)

wπ(t) =


vγ,ABC(t)

P
∗

V
∗

δ

v̄∗
α,ABC(t)

 (3.108)
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yπ(t) =

 xπ(t)
vγ,ABC(t)

iϵ(t)

 (3.109)

As one can see from (3.5) and (3.6) the third term is bilinear w.r.t. the components of
the operating point (i.e., v̄δv̄∗

α,ABC and ī⊤α,ABCv̄∗
α,ABC). In order to put this in the form of

an LTP system, one of the quantities (i.e., the voltage reference v̄∗
α,ABC) is added to the

disturbance vector, while v̄δ and īα,ABC enter the matrices. Similarly, the first term of
(3.104) (i.e., P

∗

V
∗

δ
) is defined as a disturbance to the state-space model.

Recall that the matrices can be separated in two terms: one which is invariant w.r.t. the
operating point and one which depends on it.

Aπ(t) = Ãπ(t) + Āπ(t, yo(t)) (3.110)

Each of these matrices can be described by its Fourier coefficients as in (2.9). The
matrices that are invariant w.r.t. the operating point are given by

Ãπ,0 =


−L−1

α Rα −L−1
α 03×3 03×1

C−1
φ −C−1

φ Gφ −C−1
φ 03×1

03×3 L−1
γ −L−1

γ Rγ 03×1
01×3 01×3 01×3 −C−1

δ Gδ − C−1
δ

P
∗

V
∗

δ
2

 (3.111)

B̃π,0 = 010×3 (3.112)

Ẽπ,0 =

 06×3 06×1 06×3
−L−1

γ 03×1 03×3
01×3 −2C−1

δ 01×3

 (3.113)

C̃π,0 =


diag(19) 09×1
01×9 1
03×9 03×1
01×9 − P

∗

V
∗

δ
2

 (3.114)

D̃π,0 = 014×3 (3.115)

F̃π,0 =

 010×3 010×1 010×3
diag(13) 03×1 03×3
01×3 2 01×3

 (3.116)

and all other Fourier coefficients equal to zero. The matrices that are a function of the
operating point are given by

Āπ,h =


03×3 03×6

1
V

∗
δ

L−1
α V̄∗

α,ABC,h

06×3 06×6 06×1
− 1

V
∗

δ
C−1

δ V̄∗⊤
α,ABC,h 01×6 0

 (3.117)
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B̄π,h =


1

V
∗

δ
L−1

α V̄δ,h

06×3
− 1

V
∗

δ
C−1

δ Ī⊤
α,ABC,h

 (3.118)

Ēπ,h =


03×4 − 1

V
∗

δ
L−1

α V̄δ,h

03×4 03×3
03×4 03×3
01×4

1
V

∗
δ

C−1
δ Ī⊤

α,ABC,h

 (3.119)

C̄π,h = 014×10 (3.120)
D̄π,h = 014×3 (3.121)
F̄π,h = 014×7 (3.122)

Note that, as opposed to the CIDER models which include only the AC-side components,
the above-stated matrices possess Fourier coefficients at harmonic frequencies that are
non-zero. This characteristic introduces additional coupling between harmonics.

Control Software

The state-space model of the control software is obtained employing the theory described
in Section 3.3.2. The DC-side controller provides the reference for the DC current i∗

δ ,
which is used for the grid current reference in the D-component i∗

γ,D. Namely,

i∗
γ,D(t) = i∗

δ(t) (3.123)

This is a direct consequence of the assumed power conversion laws in Hyp. 10 (i.e.,
neglecting losses on the AC side).

The generic description of a controller stage that corresponds to a filter stage of the
power hardware was given in Section 3.2.3. The description of the DC-side controller
stage follows directly from this generic case by setting the dimension to 1.

Combining (3.123) with the equations of the controller stages from the AC and DC side
leads to the state-space model of the control software. As can be seen from Fig. 3.8 the
control software is composed of PI controllers. By consequence, its state is given by the
temporal integrals of the errors w.r.t. the inductor currents ∆iα,DQ and ∆iγ,DQ, and the
capacitor voltage ∆vφ,DQ. The input and output vectors are defined by the interconnection
with the power hardware as shown in Fig. 3.8. The disturbance is the Q-component of
the grid reference current i∗

γ,Q and the DC-voltage reference V ∗
δ . Accordingly

xκ(t) :=
∫ 

∆iα,DQ(t)
∆vφ,DQ(t)
∆iγ,DQ(t)

∆vδ(t)

 dt =


xκ,1(t)
xκ,2(t)
xκ,3(t)
xκ,4(t)

 (3.124)
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uκ(t) :=



iα,DQ(t)
vφ,DQ(t)
iγ,DQ(t)

vδ(t)
vγ,DQ(t)

iϵ(t)


=



uκ,1(t)
uκ,2(t)
uκ,3(t)
uκ,4(t)
uκ,5(t)
uκ,6(t)


(3.125)

wκ(t) :=
[

i∗
γ,Q(t)
V ∗

δ

]
=
[

wκ,1(t)
wκ,2(t)

]
(3.126)

yκ(t) := v∗
α,DQ(t) (3.127)

As opposed to the power hardware, the state-space model of the control software is
described purely by constant parameters, since no linearization needs to be performed.
Therefore, all matrices can be directly described by (3.128)–(3.141). For the sake of
readability the following substitutions have been employed, (KFF + KFB) = KFFB and
similarly (KFF + KFB) = KFFB.

Ãκ,0 =



02×2
KFB,φ

TFB,φ
KFFB,φ

KFB,γ

TFB,γ
KFFB,φKFFB,γe1

KFB,δ

TFB,δ

02×2 02×2
KFB,γ

TFB,γ
KFFB,γe1

KFB,δ

TFB,δ

01×2 01×2 01×2
KFB,δ

TFB,δ

01×2 01×2 01×2 0
01×2 01×2 01×2 0


(3.128)

B̃κ,0 =


−diag(12) −KFB,φ (B̃κ,0)13 (B̃κ,0)14 KFFB,φKFT,γ (B̃κ,0)16

02×2 −diag(12) −KFB,γ (B̃κ,0)24 KFT,γ KFFB,γe1KFT,δ

01×2 01×2 −e⊤
1 −KFB,δ 01×2 KFT,δ

01×2 01×2 −e⊤
2 0 01×2 0

01×2 01×2 01×2 −1 01×2 0

 (3.129)

(B̃κ,0)13 = KFT,φ−KFFB,φKFB,γ (3.130)
(B̃κ,0)14 = −KFFB,φKFFB,γe1KFB,δ (3.131)
(B̃κ,0)16 = KFFB,φKFFB,γe1KFT,δ (3.132)
(B̃κ,0)24 = −KFFB,γe1KFB,δ (3.133)

Ẽκ,0 =


KFFB,φKFFB,γe2 KFFB,φKFFB,γe1KFFB,δ

KFFB,γe2 KFFB,γe1KFFB,δ

0 KFFB,δ

1 0
0 1

 (3.134)

C̃κ,0 =
[ KFB,α

TFB,α
KFFB,α

KFB,φ

TFB,φ
KFFB,αKFFB,φ

KFB,γ

TFB,γ
KFFB,αKFFB,φKFFB,γe1

KFB,δ

TFB,δ

]
(3.135)

D̃κ,0 =
[
−KFB,α (D̃κ,0)2 (D̃κ,0)3 (D̃κ,0)4 KFFB,αKFFB,φKFT,γ (D̃κ,0)6

]
(3.136)
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(D̃κ,0)2 = KFT,α−KFFB,αKFB,φ (3.137)
(D̃κ,0)3 = KFFB,α

(
KFT,φ−KFFB,φKFB,γ

)
(3.138)

(D̃κ,0)4 = −KFFB,αKFFB,φKFFB,γe1KFB,δ (3.139)
(D̃κ,0)6 = KFFB,αKFFB,φKFFB,γe1KFT,δ (3.140)

F̃κ,0 =
[

KFFB,αKFFB,φKFFB,γe2 KFFB,αKFFB,φKFFB,γe1KFFB,δ

]
(3.141)

Reference Calculation

In Fig. 3.8, the calculation of the Q-component of the grid reference current i∗
γ,Q(t) is

performed using the reactive power setpoint Q∗ and the D-component of the grid voltage.

i∗
γ,Q(t) = Q∗

vγ,D(t) (3.142)

In Section 3.2.5, it is described in detail how this reference calculation is approximated
in order to be incorporated into the modelling framework.

3.3.4 Network-Interfacing Converters

For the analysis of hybrid AC/DC grids, the NICs that interconnect AC and DC
subsystems need to be represented in detail. Recall the definition Def. 4 of NIC introduced
in Section 2.2.2. As opposed to the CIDERs, that are single-port resources, a NIC is a
two-port device, meaning it possesses one terminal on the AC and one on the DC side.
The structure of a NIC is similar to the one of a CIDER introduced in Section 3.3.3.
Like a CIDER, a NIC consists of power hardware and control software. As opposed to
a CIDER, a NIC, being a two-port device, possesses two degrees of freedom w.r.t. its
controlled quantities. Therefore, a NIC can regulate two electrical quantities at its ports,
with the remaining two adjusting in response.

Power Hardware

The generic power hardware of a NIC is modelled by the structure in Fig. 3.9. It consists
of an LCL filter on the AC side and a DC-link capacitor on the DC side. Note that, as
compared to the CIDER in [18], a NIC has an additionally interface to the DC subsystem.
Hence, the terminals of a NIC are characterized by the AC current iAC and voltage
vAC , plus the DC current iDC and voltage vDC . The development of the time-domain
state-space model of the power hardware including the DC-link capacitor is explained in
detail in Section 3.3.3.
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Figure 3.9: Simplified representation of the power hardware of a NIC.

Control Software and Reference Calculation

Two different types of control laws are considered for the NICs: regulation of either i) the
DC-voltage and reactive power or ii) the active and reactive power injected on the AC
side. In this thesis, these two types of resources are referred to as VDCQ-controlled NIC
and PQ-controlled NIC, respectively. The time-domain state-space model of the control
software and approximations of the reference calculation of a VDCQ-controlled NIC are
shown in detail in Section 3.3.3. The control software and approximations of the reference
calculation of a PQ-controlled NIC are analogous to the one of the grid-following CIDER
proposed in Section 3.3.2. Further details on the derivations can be found in the respective
sections.

Due to the similarity of the models of NICs and CIDERs, the individual grid responses
of the NICs will not be validated in detail. Instead, in Section 4.4.3 it is shown, that the
HPF algorithm employing these models has a good accuracy.

3.4 Validation of the Proposed Models

This section provides the validation of the grid responses of the proposed CIDERs,
for both the HDR and HTF (i.e., the HSS used in the HSA). First, the methodology
and KPIs, as well as the test setup are introduced. In order to assess the accuracy of
the CIDER models, they are compared to TDS. The detailed models of the CIDERs
are connected to a TE that injects the harmonics. Additionally, a detailed analysis of
the needed order of the Taylor expansion in the context of the reference calculation is
conducted.

3.4.1 Methodology and Key Performance Indicators

Test Setup

For the validation of the proposed CIDER models, the test setup shown in Fig. 3.10 is
used. It consists of two parts: a TE that represents the grid, and a detailed model of
the CIDER under investigation. The TE impedance is characterized by typical short-
circuit parameters of a power distribution grid, which are given in Table 3.1. The TE
voltage source injects harmonics, whose levels are given in Table 3.2. These levels are
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CIDER
(detailed model)VTE

ZTE

Figure 3.10: Test setup for the validation of the individual CIDER models. The resource
is represented by a detailed state-space model (see Section 3.3), and the power system
by a TE (see Tables 3.1 and 3.2).

Table 3.1: Short-Circuit Parameters of the Thévenin Equivalent for the Resource Valida-
tion

Parameter Resource Description
Validation

Vn 230 V-RMS Nominal voltage
Ssc 267 kW Short-circuit power
|Zsc| 195 mΩ Short-circuit impedance

Rsc/Xsc 6.207 Resistance-to-reactance ratio

set according to the limits specified in the standard BS-EN-50160:2000 [3]7. In line with
this standard, harmonics up to order 25 (i.e., 1.25 kHz) are considered for HA. Note
that, a TE voltage source with the maximum permissible distortion at each harmonic
frequency corresponds to a stressed grid. This condition is deemed most suitable for the
validation of the CIDER models, because it poses a challenge to the modelling framework.
Moreover, it is crucial that the results are reliable when the system is under stress.

The exemplary parameters for the grid-forming and grid-following CIDER are listed in
Tables 3.3 to 3.5, respectively. The filter parameters were derived following the design
rules proposed in [84]. The setpoints are Vσ = 253 V-RMS and fσ = 50 Hz for the
grid-forming CIDER, and Pσ = −50 kW and Qσ = −16.4 kVAr for the grid-following
one. For the grid-following CIDER including the DC-side characteristics, the same PQ

setpoints are chosen, and additionally the DC voltage reference is set to V ∗
δ = 900 V.

The control parameters of the CIDERs are tuned by investigating the eigenvalue loci
obtained through the HSA that will be introduced in Chapter 58. In this particular
case, the goal of the tuning was not to achieve optimal performance but to facilitate a
meaningful case study.

The CIDER models discussed in Section 3.3 were implemented in Matlab, and compared
against TDS with averaged models of the CIDERs in Simulink (recall Hyp. 10). The

7Note that the standard does not specify the angles of the harmonics.
8In practice, the PI controllers of CIDERs are tuned employing techniques like the symmetrical and/or

magnitude optimum [85, 79], or pole placement [84].
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Table 3.2: Harmonic Voltages of the Thévenin Equivalent (see [3]).

h |VTE,h| ∠VTE,h

1 1.0 p.u. 0 rad
5 6.0 % π/8 rad
7 5.0 % π/12 rad
11 3.5 % π/16 rad
13 3.0 % π/8 rad
17 2.0% π/12 rad
19 1.5 % π/16 rad
23 1.5 % π/16 rad

Table 3.3: Parameters of the Grid-Forming Resource (Rated Power 40 kVA)

Filter stage L/C R/G KFB TFB KFT

Inductor (α) 0.49 mH 1.53 mΩ 4 8E-4 1
Capacitor (φ) 60.2 µF 0 S 1.5 1E-3 0

solver used for the TDS is a fixed-step discrete solver with a sampling time of Ts = 5µs.
The TDS are stopped once steady-state is reached, and the spectra are calculated using
the Discrete Fourier Transform (DFT) on a time window composed by the last 5 periods
of the fundamental frequency of the obtained signals. All analyses are performed in
normalized units w.r.t. the base power Pb = 50 kW and the base voltage Vb = 230 V-RMS.

Test Procedure

To assess the accuracy of the CIDER models, two different tests are performed based on
the test setups in Fig. 3.10. The first aims at validating the HDR of the CIDERs for no
deviations from the operating point, while the second compares the performance of the
HDR and HSS for small deviations from the operating point.

For the first test setup, the HDR is computed by taking the grid disturbance Ŵγ and
the operating point Ŷo from the TDS. Then, the output of the HDR is compared to the
corresponding measurement from the TDS. See Fig. 3.11a for an illustration of the test.
As it was mentioned in Section 3.2.5, for no deviations from the operating point, one
does not expect difference between the HDR and HSS. Therefore, the accuracy of the
grid response in the operating point is assessed solely based on the HDR and TDS. In
order to validate the chosen order in the Taylor expansion of the reference calculation
for the grid-following CIDERs, a detailed analysis is performed. To this end, the errors
between TDS and HDR for orders from n = 1 . . . 6 are assessed.

To test the accuracy of the HDR and HSS for deviations of the inputs from the operating
point, the test shown in Fig. 3.11b is conducted. To this end, one simulation of the
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Table 3.4: Parameters of the Grid-Following Resource (Rated Power 60 kVA)

Filter stage L/C R/G KFB TFB KFT

Actuator-side inductor (α) 325 µH 1.02 mΩ 5 5E-4 1
Capacitor (φ) 90.3 µF 0 S 1 8E-4 0
Grid-side inductor (γ) 325 µH 1.02 mΩ 1 1E-3 1

Table 3.5: Parameters of the Grid-Following Resource Including the DC Side (Rated
Power 60 kVA)

Filter stage L/C R/G KFB TFB KFT

DC-Link Capacitor (δ) 310 µF 0 S 10 1E-2 0
Actuator-side inductor (α) 325 µH 1.02 mΩ 2.5 5E-4 1
Capacitor (φ) 90.3 µF 0 S 0.8 1E-3 0
Grid-side inductor (γ) 325 µH 1.02 mΩ 0.5 5E-3 1

TDS with an initial grid disturbance Ŵ0
γ is performed to determine the operating point.

Subsequently, the grid disturbance is randomly perturbed for N = 100 separate instances.
For each instance i, a perturbation ∆Ŵi

γ is added to the initial grid disturbance,
while the operating points Ŵo and Ŷo are kept constant (i.e., from the initial TDS).
The perturbation ∆Ŵi

γ is derived as a combination of random positive, negative and
homopolar sequences in each harmonic. More precisely, the magnitude of the positive
sequence component is changed randomly between ±10% of the initial value, while the
bound for the phase deviation is set to 20 mrad. The perturbation of the positive sequence
harmonic components is set through their full range, namely they change from zero up to
the percentages given in Table 3.2. Their phase perturbations are set to random values
between 0 and 2π. For the negative and homopolar sequences the bounds are derived as
2% of the ones introduced above. In this case, all phase perturbations, also the ones of
the fundamental component, are set to uniformly distributed random values between 0
and 2π. For each such perturbation i, the accuracy of the HDR and HSS is assessed by
comparing their responses to the exact response from the TDS.
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Figure 3.11: Overview of the tests for the validation of the CIDERs: 3.11a shows the
test for the accuracy of the HDR in the operating point, and 3.11b shows the test for the
validity of the HDR and HSS in case of deviations from the operating point.

Key Performance Indicators

In order to assess the accuracy and performance of the proposed models, suitable KPIs
have to be defined. The accuracy is quantified by the errors of the harmonic phasors
obtained using the CIDER models w.r.t. the DFT spectra of the time-domain signals.
Let Xh denote the Fourier coefficient of a polyphase electrical quantity (i.e., voltage or
current). The KPIs are defined as follows:

eabs(Xh) := max
p

∣∣∣∣Xh,p,HP F

∣∣− ∣∣Xh,p,T DS

∣∣∣∣ (3.143)

earg(Xh) := max
p

∣∣∠Xh,p,HP F − ∠Xh,p,T DS

∣∣ (3.144)

So, eabs(Xh) and earg(Xh) are the maximum absolute errors in magnitude and phase,
respectively, over all phases p ∈ P.

3.4.2 Results and Discussion

This section gives a discussion on the accuracy of the individual CIDER models. First,
the HDR of the CIDERs introduced in Section 3.3 is validated against the TDS. Second,
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Figure 3.12: Results of the validation on the individual grid-forming CIDER. The plots
on the left-hand side show the spectra (i.e., for phase A), and the ones on the right-hand
side the error.

the accuracy of the HDR and HSS approach for deviations from the operating point is
assessed by comparison with the results from the TDS.

Validation of the HDR

The result for the HDR of the previously proposed CIDER models are shown in Figs. 3.12
to 3.14, respectively. For the sake of simplicity, only the controlled quantities are shown.
That is, the output voltage of the grid-forming CIDER, and the output current of the
grid-following CIDER. For the CIDER that includes the DC-side characteristics, the
output current and the DC voltage are shown.

The spectra on the left-hand sides of Figs. 3.12 to 3.14 show that the Fourier coefficients
obtained using HDR and TDS are congruent both in magnitude and phase. This is
confirmed by the error plots on the right-hand sides of the figures. The maximum
errors are eabs(Vγ,23) = 1.50E-4 p.u. and earg(Vγ,23) = 20.93 mrad for the grid-forming
resource, and eabs(Iγ,7) = 6.71E-4 p.u. and earg(Iγ,13) = 11.86 mrad for the grid-
following one. The highest errors w.r.t. the CIDER including the DC-side characteristics
are eabs(Iγ,1) = 3.02E-4 p.u. and earg(Iγ,11) = 6.42 mrad for the grid current and
eabs(Vδ,18) = 2.17E-6 p.u. and earg(Vδ,24) = 35.89 mrad for the DC-link voltage.
Notably, since the applied TE voltage does not include unbalances, the DC-link voltage in
Fig. 3.14b exhibits only even harmonics. The observed errors are very low, i.e., lower than
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Figure 3.13: Results of the validation on the individual grid-following CIDER. The plots
on the left-hand side show the spectra (i.e., for phase A), and the ones on the right-hand
side the error.

the accuracy of standard measurement devices (i.e., compared to a 0.5 class instrument
transformer, as defined in the standards [4, 86, 5], and shortly discussed in Appendix A.1).
Therefore, they can be considered as negligible in practice.

Fig. 3.15 shows the errors of the grid response of the two grid-following CIDERs employing
different orders in the Taylor expansion of the reference calculation. The plots confirm
the choice of n = 2, since the errors reduce significantly between the first and second order
expansion, especially in the fundamental component. For higher orders no significant
improvement is observed.

Accuracy of HDR and HSS for Deviations from the Operating Point

Fig. 3.16 shows the validation of the accuracy of the HDR and HSS for deviations from
the operating point for the two grid-following CIDERs9. For both CIDERs and for
both HDR and HSS, the errors are slightly higher for deviations from the operating
point as opposed to the errors in Fig. 3.13 and Fig. 3.14. Notably, errors are now also
present at the triplen harmonics. This is due to the fact that the perturbation of the
grid disturbance includes all sequences at the specified harmonics.

9For the grid response of the grid-forming CIDER no linearizations were conducted, and hence, there
is no need for this analysis in that case.
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(a)

(b)

Figure 3.14: Results of the validation on the individual grid-following CIDER including
the DC-side modelling. The grid current (3.14a) and DC-side voltage (3.14b) are shown.
The plots on the left-hand side show the spectra (i.e., for phase A in case of the grid
current), and the ones on the right-hand side the error defined through the KPIs.
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(a)

(b)

Figure 3.15: Impact of the order of Taylor expansion in the reference calculation on the
accuracy of the HDR for the grid-following CIDER (3.15a) and the grid-following CIDER
considering the DC-side characteristics (3.15b). The plots show the error in magnitude
and phase on the top and bottom defined through the KPIs.
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Table 3.6: Statistics of the applied grid disturbances for obtaining the results in Fig. 3.16
for N = 100 samples.

THD(w0
γ) min(THD) max(THD) µ(THD)

Case in Fig. 3.16a 11.33 7.88 17.16 12.82
Case in Fig. 3.16b 10.66 8.11 17.57 12.28

Fig. 3.16a shows the boxplot of the grid-following CIDER that models only the AC side.
As expected, since the nonlinear approximation of the reference calculation performs
better than the small-signal model, the errors of the HDR are smaller then the once of
the HSS. Note that, as compared to the performance of the HDR in Fig. 3.13, the errors
of the HDR shown here are bigger in some cases. Recall, the assumption behind the
linearization of the reference calculation, namely, that the harmonics are small compared
to the fundamental component (i.e., Hyp. 18). Thus, the more the grid disturbance is
distorted, the more the linearization gets inaccurate.

Table 3.6 gives the statistics of the Total Harmonic Distortion (THD) of the applied grid
disturbances, where THD(w0

γ) is the THD of the initially applied grid disturbance (i.e.,
the one that was used for the validation of the HDR in Fig. 3.13 and Fig. 3.14). As can
be seen from Table 3.6, in average the applied disturbance for this validation exhibits a
higher THD, than for the cases shown in Fig. 3.13 and Fig. 3.1410 . Notably, despite the
assumed THD being larger than what is usually permitted, the approximation is very
accurate.

For the grid-following CIDER that models the DC side, the results are shown in Fig. 3.16b.
Again, as expected, the HDR performs better than the HSS. Additionally, the same
observations regarding the accuracy of the reference calculation can be made. In summary,
the errors at all harmonics are below the accuracy of standard measurement devices,
except from some outliers at the angles of the harmonics.

10The formally maximum allowable THD is set at 8% in [3].
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HDR
HSS

(a)

HDR
HSS
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Figure 3.16: Accuracy of the HDR and HSS the grid-following CIDERs considering only
AC-side (3.16a) and considering DC-side characteristics (3.16b) for random deviations
from the operating point. The solution for no deviation from the operating point is
included as the first sample (and additionally as the violet point centered between the
two boxes at each harmonic). The box plots show 25 and 75 percentile, outliers exceed
1.5-times the interquartile range.
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Summary: In this chapter the HPF method for power systems with high share of CIDERs
is introduced and validated. The HPF problem is formulated by combining the nodal
equations of the grid with the HDR of the CIDERs, and solved using the Newton-Raphson
method. The nodal equations of the grid are expressed using the hybrid parameters, which
are derived from the admittance matrix. The HDRs of the CIDERs are derived from
the generic models presented in the previous chapters (i.e., Chapters 2 and 3), which
allows to treat both grid-forming and grid-following control laws. In order to address the
extension of the generic CIDER model which can handle nonlinearities, an extension of
the solution algorithm that explicitly accounts for the required operating point is proposed.
First, the HPF methods for AC power systems are applied to a modified version of the
CIGRÉ low-voltage benchmark microgrid. The method’s accuracy and computational
efficiency for both versions, i.e., the original formulation and the one that can handle the
nonlinearities, are confirmed via TDS of the CIGRÉ low-voltage benchmark microgrid.
Additionally, the HPF method is compared to a decoupled HPF study (i.e., one that solves
the system equations independently at each harmonic frequency). A further extension to
the solution algorithm for the HPF study of hybrid AC/DC power systems is proposed.
To this end, the model of the NICs and the resulting coupling between the AC and DC
subsystems is included in the mismatch equations and the associated Jacobian matrix.
The extended HPF method is applied to a typical hybrid AC/DC grid, and its accuracy is
validated through detailed TDS with Simulink.
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4.1 State of the Art

HA that aims to obtain the harmonic steady state can be performed using different
techniques. The most detailed and accurate analysis tools are the models used for TDS
followed by a determination of the frequency spectrum. Recall from Section 2.1.1 that
for time-domain analysis all components of the power system are described by a system
of DAEs, and solved by numerical integration. The harmonic spectra are then calculated
from the obtained waveforms via the DFT or similar techniques once they have reasonably
settled to steady state. This approach is very accurate, yet also computational intensive.

Since for HPF analysis only the steady-state solutions (i.e., the periodic waveforms that
remain after all transients have died out) are of interest, the analysis can be performed
directly in the frequency domain. Namely, the DAEs from time domain can be restated as
algebraic equations in the frequency domain using the Fourier transform. The unknowns
of these so-called HPF equations are the harmonic phasors.

4.1.1 Methods without Frequency-Coupling Representation

In specific cases, the harmonic voltages and currents can be approximated by known linear
functions of the respective fundamental tones alone (e.g., using a complex factor which
expresses the harmonic distortion and phase shift of the harmonic w.r.t. the fundamental).
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Under these circumstances, one can first calculate the fundamental voltages and currents
in a standard power-flow study, and then infer the harmonic ones (i.e., via the said
functions). This technique is called Direct Harmonic Analysis (DHA) [12]. In [87], such
a decoupled HPF has been employed for the study of large power systems with multiple
nonlinear loads.

4.1.2 Methods with Frequency-Coupling Representation

In general, the HPF equations are nonlinear, and hence have to be solved iteratively
(e.g., using the Newton-Raphson method). This approach is called Iterative Harmonic
Analysis (IHA) [12] or HPF study [88]. Moreover, this method can be generalized to
include interharmonics [89].

Various works have studied how standard approaches for power-flow analysis can be
extended to HPF study. In [90], the nodal equations are solved using the Newton-
Raphson method. In [91], the branch equations are used instead. Other researchers
use double-iterate methods for IHA. In [92], a standard power-flow study is performed
at the master-level, and then refined through IHA at the slave-level. Notably, these
subproblems are formulated in different reference frames, namely phase coordinates [55]
and symmetrical components [52], respectively. In [93], the master instead performs a
sophisticated AC/DC power-flow study. If the structure and parameters of the underlying
models are only partially known or even unknown, one can employ data-driven methods.
In [94], a recursive least-squares estimator is employed for data-driven HPF studies.

4.1.3 Motivation for the Proposed Method

Most existing HPF methods have an important shortcoming/disadvantage: they do
not adequately represent the detailed resource and grid behaviour (e.g., in the case of
CIDERs). In particular, they neglect the representation of the frequency coupling within
the CIDERs. Moreover, although many studies have performed detailed HA of individual
CIDERs (recall Section 2.1.2), they often ignore the propagation and interaction of
harmonics through the electrical grid.

The HPF method proposed in this chapter employs the modelling framework presented
in Chapter 2, incl. the detailed models of the CIDERs introduced in Chapter 3, in order
to overcome the shortcomings of existing approaches. That is, the generality, modularity,
and accuracy of the underlying models enable the HPF study of systems with arbitrary
topology (i.e., radial or meshed), line configuration (i.e., transposed or untransposed),
as well as CIDER architecture (i.e., cascaded filters and controllers, grid-following or
-forming control).
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4.2 Representation of the Electrical Grid for the HPF
Study

This section introduces the representation of the grid used for the formulation of the HPF
problem. More precisely, the derivation of the compound hybrid matrix of a three-phase
grid based on its lumped-element model is presented. Notably, the same methodology
applies (i.e., with the necessary modifications w.r.t. vector and matrix sizes) to DC
subsystems in the context of the HPF method for hybrid AC/DC power systems as will
be introduced Section 4.3.4.

Recall the lumped-element model of the grid introduced in Fig. 2.5. Based on this
representation, the following hypotheses are made w.r.t. the properties of the grid model:

Hypothesis 24. Since the lumped elements of the grid model are linear and passive, its
circuit equations can be formulated independently at any given frequency f using com-
pound electrical parameters (i.e., compound impedance matrices or compound admittance
matrices). Each branch element ℓ is described by an impedance-type equation

Vm(f)−Vn(f) = Zℓ(f)Iℓ(f), ∀ℓ = (m, n) ∈ L (4.1)

where Zℓ ∈ C3×3 is the compound impedance of the branch element, Iℓ ∈ C3×1 is the
current flowing through it, and Vm, Vn ∈ C3×1 are the phase-to-ground voltages at its
start and end node, respectively. Each shunt element t is described by an admittance-type
equation

It(f) = Yt(f)Vn(f), ∀t = (n, g) ∈ T (4.2)

where Yt ∈ C3×3 is the compound admittance of the shunt element, and It ∈ C3×1 the
current flowing through it.

The advantage of formulating the grid equations in harmonic domain is that frequency-
dependent phenomenons can easily be incorporated into the model. The example of
frequency-dependent line parameters is given in Appendix A.3.

In general, (4.1)–(4.2) do not correspond to an LTI system (i.e., linearity w.r.t. frequency
does not guarantee time-invariance). More precisely, the grid model is LTI if and only if
it consists of frequency-independent resistor, inductor, and capacitor elements1 (e.g., [95]).
Yet, the generic form of (4.1)–(4.2) does allow to treat frequency-dependent parameters
if needed2.

Moreover, note that (4.1)–(4.2) describe the behaviour of the grid in phase coordinates.
It is important to note that these equations are valid irrespective of any asymmetries

1For instance, the grid model is LTI if Zℓ(f) = Rℓ + j2πfLℓ (∀ℓ ∈ L) and Yt(f) = Gt + j2πfCt

(∀t ∈ T ) for constant Rℓ, Lℓ, Gt, and Ct.
2E.g., Zℓ(f) = Rℓ(f) + j2πfLℓ(f) and Yt(f) = Gt(f) + j2πfCt(f).
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Figure 4.1: The grid is represented by branch elements with compound impedance Zℓ and
shunt elements with compound admittance Yt. Iℓ and It are the current flows through
the branch and shunt elements, respectively. Vn and In are the phase-to-ground voltages
and injected currents, respectively.

in the system w.r.t. the grid components (e.g., due to non-transposition of lines) or the
nodal injections/absorptions (e.g., due to unbalances of generation/load) [55]. Therefore,
these phase-domain equations are particularly suitable for power distribution systems
(i.e., unlike sequence-domain equations), where such asymmetries are common.

Note that the term “compound electrical parameters” refers to polyphase impedance
or admittance matrices, which take into account the electromagnetic coupling between
different phases (e.g., [51]). These compound electrical parameters are assumed to have
the following properties:

Hypothesis 25. The compound branch impedance matrices Zℓ are symmetric, invertible,
and lossy at all frequencies:

Zℓ(f) :


Zℓ(f) = (Zℓ(f))T

∃Yℓ(f) = (Zℓ(f))−1

ℜ{Zℓ(f)} ⪰ 0
(4.3)

The compound shunt admittance matrices Yt are symmetric, invertible, and lossy at all
frequencies if they are nonzero:

if Yt(f) ̸= 0 :


Yt(f) = (Yt(f))T

∃Zt(f) = (Yt(f))−1

ℜ{Yt(f)} ⪰ 0
(4.4)

These properties follow from fundamental laws of physics (e.g., Maxwell’s equations), and
hold for a broad variety of grid components. For instance, the electrical parameters of lines,
conventional transformers, and series or shunt compensators satisfy these properties [96].
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Notably, the symmetry property holds for both transposed and non-transposed lines3.
Only a few types of grid components, such as phase-shifting transformers, exhibit different
characteristics (i.e., the symmetry property does not hold).

Observe that Hyp. 25 refers to the exact parameters of the grid components. In case the
exact parameters are not known, they have to be inferred from measurements via system
identification (e.g., least-squares regression). The obtained estimated parameters may
violate the properties in Hyp. 25, unless corresponding constraints are imposed on the
solution of the system-identification problem [97].

4.2.1 Compound Admittance Matrix

The primitive compound admittance matrices YL and YT associated with the branches
and shunts, respectively, are defined as (e.g., see [98])

YL(f) := diagℓ∈L(Yℓ(f)) ∈ C3|L|×3|L| (4.5)

YT (f) := diagt∈T (Yt(f)) ∈ C3|N |×3|N | (4.6)

Let V and I be the vectors of all phase-to-ground voltages and nodal injected currents,
respectively:

V(f) := coln∈N (Vn(f)) ∈ C3|N |×1 (4.7)

I(f) := coln∈N (In(f)) ∈ C3|N |×1 (4.8)

The compound nodal admittance matrix Y ∈ C3|N |×3|N |, which links I to V, is calculated
using the polyphase incidence matrix defined in Section 2.3.2 as follows:

I(f) = Y(f)V(f), Y(f) = AT
L|N YL(f)AL|N + YT (f) (4.9)

4.2.2 Compound Hybrid Matrix

Recall from Section 2.2.1, the partition of all nodes N into S andR, i.e., with grid-forming
and grid-following CIDERs, respectively. Note that this implies |N | = |S|+ |R|).

As proven in [96], the following Lemma holds:

Lemma 1. Suppose that Hyps. 24 and 25 hold, the branch graph B is weakly connected,
and the compound branch impedances Zℓ(f) are strictly lossy (i.e., ℜ{Zℓ(f)} ≻ 0 ∀ℓ ∈ L).

3The compound electrical parameters of a transposed line are symmetric and circulant (e.g., [51]). The
symmetry property is given by physics, whereas the circulancy property is enforced through construction
(i.e., the transposition of the conductors). The compound electrical parameters of non-transposed lines
are only symmetric.
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Given the aforementioned partitioning of the nodes, the associated block form of the nodal
admittance equations (4.9)[

IS(f)
IR(f)

]
=
[

YS×S(f) YS×R(f)
YR×S(f) YR×R(f)

] [
VS(f)
VR(f)

]
(4.10)

can be reformulated into the nodal hybrid equations[
VS(f)
IR(f)

]
=
[

HS×S(f) HS×R(f)
HR×S(f) HR×R(f)

] [
IS(f)

VR(f)

]
(4.11)

The blocks of the compound hybrid matrix H are given by

HS×S(f) = Y−1
S×S(f) ∈ C3|S|×3|S| (4.12)

HS×R(f) = −Y−1
S×S(f)YS×R(f) ∈ C3|S|×3|R| (4.13)

HR×S(f) = YR×S(f)Y−1
S×S(f) ∈ C3|R|×3|S| (4.14)

HR×R(f) = Y(f)/YR×R(f) ∈ C3|R|×3|R| (4.15)

where Y/YR×R is the Schur complement of Y w.r.t. YR×R.

Observe that (4.11) holds for any arbitrary frequency f (i.e., as stated in Hyp. 24 and
25). Now, consider the special case of harmonic frequencies fh, which are defined by the
harmonic orders h ∈ H w.r.t. a given fundamental frequency f1:

fh := h · f1, h ∈ H ⊂ Z (4.16)

Due to the assumed linearity of the grid components (Hyp. 24), the hybrid nodal
equations (4.11) can be formulated independently at each of the harmonic frequencies
fh. Combining the equations for the individual harmonic frequencies yields a system of
equations for the entire harmonic spectrum[

V̂S
ÎR

]
=
[

ĤS×S ĤS×R
ĤR×S ĤR×R

] [
ÎS

V̂R

]
(4.17)

where

V̂S := colh∈H(VS(fh)) ∈ C3|H||S|×1 (4.18)

ĤS×S := diagh∈H(HS×S(fh)) ∈ C3|H||S|×3|H||S| (4.19)

The remaining blocks of V̂, Î, and Ĥ are defined analogously.
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4.3 Algorithm for Harmonic Power-Flow Studies

This section introduces the HPF algorithm starting from the mathematical formulation
of the problem, for the most simplified version of the modelling framework (i.e., no
nonlinearities are modelled within the internal response of the CIDERs). First, the
mismatch equations between the nodal quantities from point of view of the grid and
the resources are stated and then solved via a Newton-Raphson method. To this end,
the Jacobian matrix used in the numerical solution of the HPF problem is introduced.
Subsequently, the algorithm is extended in order to account for the linearized CIDER
models. Finally, an extension of the HPF method that is capable of analysing hybrid
AC/DC grids is presented. To this end, the presence of NICs is included in the solution
algorithm.

4.3.1 Mathematical Formulation of the Problem for AC Power Systems

In this subsection, pure AC power systems are considered. That is, the resources of the
system consist - for now - only of CIDERs but not NICs. Recall from Section 2.2.1, the
structure of an AC power system that is composed of the grid and the resources. The
HPF problem is obtained by formulating the mismatch equations between the models of
the CIDERs (i.e., the resources) and the grid. As stated in Section 2.2.1, the nodes are
partitioned into the nodes S and R, which are the points of connection of grid-forming
and grid-following CIDERs, respectively.If there are any zero-injection nodes (i.e., without
resources), they can be eliminated via Kron reduction [96].

From point of view of the grid, the nodal equations are given by the hybrid parameters
(4.17):

V̂S(ÎS , V̂R) = ĤS×S ÎS + ĤS×RV̂R (4.20)
ÎR(ÎS , V̂R) = ĤR×S ÎS + ĤR×RV̂R (4.21)

From point of view of the CIDERs, these nodal equations are established via their grid
response (2.64). Recalling the definitions of the setpoint disturbance wσ (2.31), grid
disturbance wγ (2.29), and grid output yγ (2.30), one finds

∀s ∈ S : V̂s(Îs, Vσ,s, fσ,s) = Ŷγ,s(T̂π|γ Îs, Vσ,s, fσ,s) (4.22)
∀r ∈ R : Îr(V̂r, Sσ,r) = Ŷγ,r(T̂π|γV̂r, Sσ,r) (4.23)

Note that (4.22) and (4.23) are in accordance with Defs. 2 and 3 (i.e., grid-forming
and grid-following behaviour). Moreover, observe that functions of the form (4.22) or
(4.23) can also be used to represent sources of harmonics other than CIDERs, such as
conventional generators or loads. The sole difference is that the corresponding functions
have to be derived from another suitable model or through system identification. Please
see Appendix A.2 for further details on this matter.
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4.3 Algorithm for Harmonic Power-Flow Studies

Algorithm 1 Newton-Raphson solution of the HPF problem.
1: procedure HPF(∆V̂S(·, ·, ·), ∆ÎR(·, ·, ·), Vσ, fσ, Sσ )
2: # Initialization
3: ÎS ← 0
4: V̂R ← flat_start()
5: while max(|∆V̂S |, |∆ÎR|) ⩾ ϵ do
6: # Residuals
7: ∆V̂S ← ∆V̂S(ÎS , V̂R, Vσ, fσ)
8: ∆ÎR ← ∆ÎR(ÎS , V̂R, Sσ)
9: # Jacobian matrix

10: ĴS×S ← ∂S∆V̂S(ÎS , V̂R, Vσ, fσ)
11: ĴS×R ← ∂R∆V̂S(ÎS , V̂R, Vσ, fσ)
12: ĴR×S ← ∂S∆ÎR(ÎS , V̂R, Sσ)
13: ĴR×R ← ∂R∆ÎR(ÎS , V̂R, Sσ)
14: # Newton-Raphson iteration

15:

[
∆ÎS

∆V̂R

]
←
[

ĴS×S ĴS×R
ĴR×S ĴR×R

]−1 [∆V̂S
∆ÎR

]

16:

[
ÎS

V̂R

]
←
[

ÎS
V̂R

]
−
[

∆ÎS
∆V̂R

]
17: end while
18: end procedure

The mismatches between (4.20)–(4.21) and (4.22)–(4.23) must be zero in equilibrium (by
definition):

∆V̂S(ÎS , V̂R, Vσ, fσ) = 0 (4.24)
∆ÎR(ÎS , V̂R, Sσ) = 0 (4.25)

where Vσ, fσ, and Sσ are column vectors built of Vσ,s, fσ,s (s ∈ S) and Sσ,r (r ∈ R),
respectively. In contrast to existing formulations (e.g., [99, 88, 100]), the so-called
mismatch equations (4.24)–(4.25) are in hybrid rather than admittance form. This
reflects the grid-forming and grid-following behaviour.

4.3.2 Numerical Solution via the Newton-Raphson Method

The HPF problem is solved numerically via the Newton-Raphson method as described in
Algorithm 1. For the solution of the Newton-Raphson algorithm, the Jacobian matrix Ĵ
is employed. In the context of the HPF algorithm, the Jacobian matrix describes the
partial derivatives of the mismatch equations in (4.24)–(4.25) w.r.t. to the unknowns of
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the HPF problem. This is described in block form as:

Ĵ =
[
∂S∆V̂S ∂R∆V̂S
∂S∆ÎR ∂R∆ÎR

]
(4.26)

where

∂S = ∂

∂ÎS
, ∂R = ∂

∂V̂R
(4.27)

Since the mismatch equations in (4.24)–(4.25) are expressed as the difference of two
terms, the same applies to the Jacobian matrix:

Ĵ = ĴRSC − ĴGRD (4.28)

Note that, ĴRSC describes the partial derivatives of the resources’ grid responses in
(4.22)–(4.23) w.r.t. to the unknowns of the HPF problem. On the other hand, ĴGRD

reflects the partial derivatives of the hybrid equations in (4.20)–(4.21) w.r.t. to the
unknowns of the HPF problem.

The Jacobian matrix has to be recomputed in each iteration of the Newton-Raphson
method (as usual). In the proposed formulation of the HPF problem, most terms in
the Jacobian matrix are constant, which reduces the computational intensity. First,
the partial derivatives of the grid model (4.20)–(4.21), which is linear, are the hybrid
parameters. Consequently, the entries of ĴGRD are describes by:

∂SV̂S(ÎS , V̂R, Vσ, fσ) = ĤS×S (4.29)
∂RV̂S(ÎS , V̂R, Vσ, fσ) = ĤS×R (4.30)

∂S ÎR(ÎS , V̂R, Sσ) = ĤR×S (4.31)
∂RÎR(ÎS , V̂R, Sσ) = ĤR×R (4.32)

which only need to be updated if the electrical parameters or the topology of the grid
change. Second, ĴRSC is described by the partial derivatives of the CIDER models
(4.22)–(4.23), which are given by

∂sV̂s(Îs, Vσ,s, fσ,s) = ∂γŶγ,s(T̂π|γ Îs, Vσ,s, fσ,s) (4.33)
∂r Îr(V̂r, Sσ,r) = ∂γŶγ,r(T̂π|γ Îr, Sσ,r) (4.34)

with

∂s = ∂

∂Îs

, ∂r = ∂

∂V̂r

(4.35)
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4.3 Algorithm for Harmonic Power-Flow Studies

Recall from Section 2.4 that the reference calculation is the only block in the CIDER
model which may be nonlinear. Hence, only the partial derivatives associated with
resources for which the function R̂(·, ·) in (2.56) is actually nonlinear have to be updated
in each iteration. The partial derivatives of the other resources need to be calculated
only once.

It is important to note that, in contrast to many existing IHA methods (see Section 4.1),
Algorithm 1 is single-iterative rather than double-iterative (i.e., the algorithm requires
one single loop rather than two nested ones). This is thanks to the use of the closed-loop
functions in (4.22)–(4.23), which allow to incorporate the CIDER behaviour directly into
the nodal mismatch equations. As a result, a single-iterative calculation at the system
level suffices to solve the HPF problem4.

In general, the HPF problem may have multiple equilibrium points – like any nonlinear
problem. To which of these points the HPF method will converge depends on the
initialization of the algorithm. Notably, one or several of such solutions may not be
physically meaningful (i.e., analogous to solutions of the power-flow equations which lie
on the lower portion of the well-known nose curve [101]). Hence, the choice of the initial
point affects which solution the numerical solver converges to, and whether this solution
is physically meaningful. Without any prior information (e.g., the solution of another
HPF study for a similar operating point), the initial point can be chosen as follows:

• The injected currents of the nodes with grid-forming CIDERs are initialized with 0.

• The phase-to-ground voltages of the nodes with grid-following CIDERs are initialized
with a “flat profile”, namely: (i) the fundamental voltage is set to a pure positive
sequence with magnitude 1 p.u. and phase equal to 0 rad, and (ii) the harmonic
voltages are set to 0.

As will be discussed shortly, the proposed method is robust w.r.t. the choice of the initial
point (i.e., it converges reliably even if the initial point lies far from the final solution).
The described procedure is preferred solely for its simplicity.

4.3.3 Extension of the Algorithm for AC Power Systems to Treat
Nonlinearities within the Internal Response of the CIDER

When treating CIDERs that were subject to linearizations, as introduced in Section 2.4.5,
the considered grid responses need ot be updated. More specifically, from the point
of view of the CIDERs, the nodal equations are now described by grid responses, that

4The standard approach is a double-iterative calculation with nested loops: one loop each at system
and resource level, respectively.
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include the dependency on the operating pint due to linearizations:

s ∈ S : V̂s(Îs, Vσ,s, fσ,s, Ŷo,s) = Ŷγ,s(Îs, Vσ,s, fσ,s, Ŷo,s) (4.36)
r ∈ R : Îr(V̂r, Sσ,r, Ŷo,r) = Ŷγ,r(V̂r, Sσ,r, Ŷo,r) (4.37)

As before, grid-forming CIDERs take voltage and frequency as setpoints (i.e., Vσ,s

and fσ,s), and grid-following CIDERs active and reactive power setpoints (i.e., Sσ,r =
Pσ,r + jQσ,r). Note that (4.36) and (4.37) are in accordance with Defs. 2 and 3 (i.e.,
grid-forming and grid-following behaviour).

By consequence, the mismatch equations, which must be zero in equilibrium, are now
formulated between (4.20)–(4.21) and (4.36)–(4.37). Hence, they are updated including
the dependence on the operating point as:

∆V̂S(ÎS , V̂R, Vσ, fσ, Ŷo,S) = 0 (4.38)
∆ÎR(ÎS , V̂R, Sσ, Ŷo,R) = 0 (4.39)

where Vσ, fσ, and Sσ are column vectors built of the setpoints Vσ,s, fσ,s (s ∈ S) and
Sσ,r (r ∈ R), respectively. As for the first version of mismatch equations, it can be solved
by means of a Newton-Raphson method.

As known from numerical analysis, the Newton-Raphson method requires the calculation
(and inversion) of the Jacobian matrix Ĵ, which is computationally intensive. In the
original HPF framework proposed in Section 4.3.2, most blocks of the Jacobian matrix
are constant, because the grid equations (4.20)–(4.21) are exactly linear, and the CIDER
responses (4.22)–(4.23) are linear except for the reference calculation. In the extended
formulation (4.24)–(4.25) of the HPF problem, the operating points Ŷo,S and Ŷo,R of
the CIDERs appear as additional unknowns. Therefore, the entire Jacobian matrix has
to be recalculated in each iteration of the Newton-Raphson method. In doing so, the fact
that the operating points are a subset of the internal responses – as postulated in (2.94)
– needs to be taken into account. As a result, one obtains the extended Newton-Raphson
algorithm which is shown in Algorithm 2. The differences w.r.t. to the original method
are highlighted in blue.

Like the unknowns related to the grid (i.e., V̂S and ÎR), the operating points of the
CIDERs (i.e., Ŷo,S and Ŷo,R) need to be initialized at the start (see Lines 3 and 4, and
Lines 5 and 6 of Algorithm 2, respectively), and then updated during each iteration. For
the initialization, one can make an “educated guess” based on the fact that the operating
points are AC and DC quantities. In this respect, two different approaches are used:

• First, AC quantities are initialized assuming balanced, sinusoidal conditions (i.e., a
positive sequence at the fundamental tone) and nominal values (e.g., magnitude
1 p.u. and angle 0 rad for voltages) or setpoints. This is known as “flat start”.
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Algorithm 2 Newton-Raphson solution of the Extended HPF problem.
1: procedure HPF(∆V̂S(·, ·, ·), ∆ÎR(·, ·, ·), Vσ, fσ, Sσ )
2: # Initialization
3: ÎS ← 0
4: V̂R ← flat_start()
5: Ŷo,S ← initialize_operating_point()
6: Ŷo,R ← initialize_operating_point()
7: while max(|∆V̂S |, |∆ÎR|) ⩾ ϵ do
8: # Residuals
9: ∆V̂S ← ∆V̂S(ÎS , V̂R, Vσ, fσ, Ŷo,S)

10: ∆ÎR ← ∆ÎR(ÎS , V̂R, Sσ, Ŷo,R)
11: # Jacobian matrix
12: ĴS×S ← ∂S∆V̂S(ÎS , V̂R, Vσ, fσ, Ŷo,S)
13: ĴS×R ← ∂R∆V̂S(ÎS , V̂R, Vσ, fσ, Ŷo,S)
14: ĴR×S ← ∂S∆ÎR(ÎS , V̂R, Sσ, Ŷo,R)
15: ĴR×R ← ∂R∆ÎR(ÎS , V̂R, Sσ, Ŷo,R)
16: # Newton-Raphson iteration

17:

[
∆ÎS

∆V̂R

]
←
[

ĴS×S ĴS×R
ĴR×S ĴR×R

]−1 [∆V̂S
∆ÎR

]

18:

[
ÎS

V̂R

]
←
[

ÎS
V̂R

]
−
[

∆ÎS
∆V̂R

]
19: # Update
20: Ŷo,s ← T̂o,sŶs ∀s ∈ S
21: Ŷo,r ← T̂o,rŶr ∀r ∈ R
22: end while
23: end procedure

• Second, DC quantities are initialized assuming ideal steady-state conditions (i.e.,
constant values) and using nominal values or setpoints. For the update, (2.94) is
used: that is, the operating points are retrieved via the output equations of the
CIDER (see Lines 20 and 21 of Algorithm 2).

4.3.4 Extension of the Algorithm for Hybrid AC/DC Power Systems

The HPF method proposed in Section 4.3.3 describes AC power systems by two sets
of nodal equations. Namely, the nodal quantities are expressed from the point of view
of the grid and the CIDERs, respectively. When analysing hybrid AC/DC grids, the
additional presence of NICs at the interface between the AC and DC subsystems has
to be represented in the algorithm. To this end, recall from Section 2.2.2 the partition
of the nodes of each subsystem into the sets Sj and Rj . The unknowns of the HPF
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problem are the nodal injected currents at the nodes Sj and the nodal phase-to-ground
voltages at the nodes Rj (i.e., the quantities that are not regulated by the respective
type of resource). The nodal equations of a hybrid AC/DC grid are then obtained as the
combination of the nodal equations of all subsystems.

Recall from Section 2.2.2 that in the context of the analysis of hybrid AC/DC grid, the
resources are partitioned into CIDERs (i.e.,single-port resources) and NICs (i.e.,two-port
resources). The grid responses of these two types of resources are introduced in the
following.

Grid Response of the CIDERs

As stated in Section 2.4.2, the grid response of a CIDER (i.e., a single-port device)
defines either the voltage in function of the current or vice versa, as was introduced in
(4.36)–(4.37). For the sake of readability, it is stated explicitly for a specific subsystem j

as follows:

s ∈ Sj
1 : V̂j

s = Ŷs(Îj
s, Ŵσ,s, Ŷo,s) (4.40)

r ∈ Rj
1 : Îj

r = Ŷr(V̂j
r, Ŵσ,r, Ŷo,r) (4.41)

where V̂j
s and Îj

s are the column vectors of the Fourier coefficients of the terminal voltages
vj

s(t) and currents ijs(t), respectively, of the grid-forming resources. Similarly, V̂j
r and Îj

r

represent the column vectors of the terminal voltages and currents of the grid-following
resources. The inputs Ŵσ,s and Ŷo,s represent the setpoints and the operating points,
respectively, of the CIDERs. The latter is needed in case a linearization was performed
in the derivation of the CIDER model, as previously presented in Section 2.4.5 and
Section 4.3.3. It is worth noting that this representation of the grid response is generic
(e.g., it also applies to passive loads) and that it is valid irrespective of the type of grid it
is connected to (i.e., AC or DC).

Grid Response of the Network-Interfacing Converters

The grid response of a NIC is described by two pairs of electrical quantities (i.e., voltages
and currents at both ports). It is important to note that a NIC cannot exhibit grid-
forming and grid-following behaviour arbitrarily at each port, as the corresponding circuit
equations cannot be overdetermined. To be more precise, one cannot simultaneously
control the voltages or currents at both ports. By consequence, if one port exhibits
grid-forming behaviour, the other must exhibit grid-following behaviour.

Typically, NICs perform grid-forming control on the DC side and grid-following control on
the AC side5. Thus, a NIC can be seen as a branch m = (r, s) between two nodes r ∈ RAC

2

5In theory, it is possible to perform grid-forming control on the AC side and grid-following control on
the DC side. In practice, this configuration is not employed to the best of the authors’ knowledge.
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and s ∈ SDC
2 (i.e., M ⊆ RAC

2 × SDC
2 ). The grid response of a NIC m = (r, s) ∈ M is

described by

[ÎAC
r , V̂DC

s ] = Ŷm(V̂AC
r , ÎDC

s , Ŵσ,m, Ŷo,m) (4.42)

As for the case of CIDERs, Ŵσ,m and Ŷo,m denote the setpoint and operating point,
respectively.

Mismatch Equations

The nodal equations for each subsystem j seen from the grid are formulated using hybrid
parameters as introduced in Section 4.2:

V̂j
S = Ĥj

S×S Îj
S + Ĥj

S×RV̂j
R (4.43)

Îj
R = Ĥj

R×S Îj
S + Ĥj

R×RV̂j
R (4.44)

where Ĥj
S×S , Ĥj

S×R, Ĥj
R×S and Ĥj

R×R are the blocks of the hybrid matrix Ĥj associated
with Sj and Rj . Îj

S and V̂j
R are the column vectors of all nodal injected currents at the

nodes Sj and all nodal phase-to-ground voltages at the nodes Rj , respectively.

The HPF problem is given by the mismatch equations between the hybrid parameters in
(4.43)–(4.44) and the grid responses of the CIDERs (4.40)–(4.41) and NICs (4.42). At
the equilibrium, these mismatches must be zero. Thus, at the nodes where CIDERs are
connected:

∆V̂j
S1

(Îj
S , V̂j

R, Ŵj
σ,S1

, Ŷj
o,S1

) = 0 (4.45)

∆Îj
R1

(Îj
S , V̂j

R, Ŵj
σ,R1

, Ŷj
o,R1

) = 0 (4.46)

Notably, this formulation corresponds to the one introduced in Section 4.3.3. At the
nodes where NICs are connected, the argument of the mismatch equations has to be
expanded to account for the quantity of the second terminal of the NICs. Thus,

∆V̂DC
S2

(ÎDC
S , V̂DC

R , V̂AC
R2

, ŴDC
σ,S2

, ŶDC
o,S2

) = 0 (4.47)
∆ÎAC

R2
(ÎAC

S , V̂AC
R , ÎDC

S2
, ŴAC

σ,R2
, ŶAC

o,R2
) = 0 (4.48)

where V̂AC
R2

and ÎDC
S2

represent the coupling between the two subsystems. The combined
system of these equations can be solved using the Newton-Raphson algorithm. To this
end, the Jacobian matrix of the equations is required.
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Jacobian Matrix

Recall from (4.28) the derivation of the Jacobian matrix Ĵ as the difference between the
Jacobian matrices of the nodal equations associated with the resources ĴRSC and the
grid ĴGRD, respectively.

For the hybrid AC/DC power system, ĴGRD is composed of the partial derivatives of
the grid equations in (4.43)–(4.44) w.r.t. Îj

S and V̂j
R, respectively. More precisely, it is

composed of the hybrid parameters of the AC and DC subsystem:

ĴGRD =



ĤAC
S×S ĤAC

S×R 0 0

ĤAC
R×S ĤAC

R×R 0 0

0 0 ĤDC
S×S ĤDC

S×R

0 0 ĤDC
R×S ĤDC

R×R


(4.49)

Notably, this matrix has a block-diagonal structure, and exhibits no coupling between
AC and DC quantities.

ĴRSC is composed of the partial derivatives of the grid responses in (4.40)–(4.41) and
(4.42) w.r.t. Îj

S and V̂j
R, respectively. The following notation is introduced for the sake

of conciseness:

∂j
Sk

= ∂

∂Îj
Sk

, ∂j
Rk

= ∂

∂V̂j
Rk

(4.50)

ĴRSC is described as follows:

ĴRSC =

∂AC
S1

V̂AC
S1

0 0 0 0 0

0 ∂AC
R1

ÎAC
R1

0 0 0 0

0 0 ∂AC
R2

ÎAC
R2

0 ∂DC
S2

ÎAC
R2

0

0 0 0 ∂DC
S1

V̂DC
S1

0 0

0 0 ∂AC
R2

V̂DC
S2

0 ∂DC
R2

V̂DC
S2

0

0 0 0 0 0 ∂DC
R1

ÎDC
R1





SAC RAC SDC RDC

SAC

RAC

SDC

RDC

(4.51)

At the nodes where CIDERs are connected, the corresponding blocks of the Jacobian
matrix exhibit a diagonal structure, since a resource influences only the quantity at its
point of connection. These terms associated with the AC and DC single-port resources
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Table 4.1: Acronyms used in the legends of the plots in the validation section.

Acronym Full Name Section/Algorithm
HPF Harmonic Power-Flow Section 4.3.2/Algorithm 1

HPF-DC Harmonic Power-Flow including the
DC characteristics of CIDERs

Section 4.3.3/Algorithm 2

Dec-HPF Decoupled Harmonic Power-Flow Appendix A.4

are highlighted in blue and orange, respectively, in (4.51). At nodes where NICs are
connected, off-diagonal terms appear in the Jacobian matrix. They describe the coupling
between the AC and DC port of the NICs, respectively, as well as between the AC and
DC subsystems. These terms are highlighted in green in (4.51).

Details on the derivation of the partial derivatives in (4.49) and (4.51) can be found in
Section 2.4.4.

Using the aforestated expression for the mismatch equations and the Jacobian matrix,
the HPF problem can be solved by means of the Newton-Raphson algorithm as described
in Section 4.3.3.

4.4 Validation of the Proposed Method

In this section, the three different versions of the HPF algorithm are validated through
TDS with Simulink6. Additionally, their accuracy w.r.t. other methods and their timing
performance, as well as sensitivity to the initial point are assessed. To avoid confusions,
the acronyms of the methods used in the legends of figures are summarized in Table 4.1.

4.4.1 Harmonic Power-Flow Study of AC Power Systems

This section validates the first version of the HPF algorithm that employs the simplified
CIDER model and is introduced in Algorithm 1. First, the setup of the test system is
characterized. Second, the methodology and KPIs are given. Finally, the results include
a detailed analysis of the scalability and timing performance of the method, as well as
its validation against TDS.

Test System Setup

The proposed HPF method is applied to the test system shown in Fig. 4.2, which
is adapted from the CIGRÉ low-voltage benchmark microgrid [1]. That is, the HPF

6The implementation of the HPF method and its validation through the example systems discussed in
this section are open source and can be found on GitHub.
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Figure 4.2: Schematic diagram of the test system, which is based on the CIGRÉ low-
voltage benchmark microgrid [1] (in black) and extended by unbalanced impedance loads
(in grey). For the cable parameters see Table 4.3. The set of grid-following resources
are composed of constant impedance loads (Z) and constant power loads (P/Q), their
parameters are given in Table 4.4.

problem is formulated for the complete system model, and solved numerically using the
Newton-Raphson method.

The test system is characterized as follows. The substation is located in node N1. Its
short-circuit parameters, which include both the substation transformer and the upstream
grid, are listed in Table 3.1. The TE voltage source injects harmonics, whose levels
are given in Table 3.2 and set according to the limits specified in the standard BS-EN-
50160:2000 [3]7. The lines are built from underground cables, whose sequence parameters
are given in Table 4.3. Note that, while the proposed HPF method can treat frequency-
dependent cable parameters (see Section 4.2), the parameters of the benchmark microgrid
are considered to be frequency-independent. A preliminary analysis was conducted with
EMTP-RV in order to confirm that this approximation does hold well on the frequency
range under consideration (i.e., ⩽1.25 kHz). For further details, please see Appendix A.3.
Five CIDERs are connected to the ends of the side feeders (i.e., in nodes N11 and N15-18):
one grid-forming and four grid-following ones. Their parameters are the same as for
the resource validation, see Tables 3.3 and 3.4. Additionally, unbalanced wye-connected
constant-impedance loads, are connected at nodes N19-22. The unbalance of a load is
expressed by phase weights, which indicate the distribution of the load among the phases.
The setpoints and parameters of the CIDERs and loads are given in Table 4.4. Notably,
the load unbalance is set such that the resulting voltage unbalance does not exceed the
limits specified in [3] (i.e., |V1,−| ⩽ 2% · |V1,+|).

7Recall from Section 3.1.2 and Section 3.2.1 that the PWM actuator of the CIDERs is represented
by average as opposed to switching models. Therefore, the CIDERs do only propagate but not create
harmonics.
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Table 4.2: Short-Circuit Parameters of the Thévenin Equivalent for the Benchmark Grid.

Parameter System Description
Validation

Vn 230 V-RMS Nominal voltage
Ssc 3.85 MW Short-circuit power
|Zsc| 13.7 mΩ Short-circuit impedance

Rsc/Xsc 0.271 Resistance-to-reactance ratio

Table 4.3: Sequence Parameters of the Lines in the Test System.

ID R+/R− R0 L+/L− L0 C+/C− C0
UG1 0.162 Ω 0.529 Ω 0.262 mH 1.185 mH 637 nF 388 nF
UG3 0.822 Ω 1.794 Ω 0.270 mH 3.895 mH 637 nF 388 nF

Methodology

The validation of this first version of the HPF algorithm is three-fold: (i) the dependency
of the algorithm’s convergence w.r.t. the initialization, (ii) the accuracy of the HPF
method compared to the TDS, and (iii) the timing performance scalability properties of
the algorithm are assessed.

As stated in Section 4.3.2, the solution of the HPF algorithm is dependent on the choice
of the initial point. In order to assess the convergence behaviour of this first version of
the proposed HPF method, the initial spectra of voltages and currents are varied. More
precisely, the initial spectra are obtained as a superposition of random positive, negative,
and homopolar sequences at each frequency (i.e., fundamental and harmonics), whose
magnitudes and phases are uniformly distributed in the intervals [0, 2] p.u. and [0, 2π] rad,
respectively.

The accuracy of the HPF method is assessed by means of the same KPIs used for the
individual resources: the magnitude and phase errors of the HPF results w.r.t. DFT
spectra of time-domain waveforms.

A detailed performance analysis of the HPF study is conducted. To this end, the method’s
performance is quantified by the mean and standard deviation of the execution time of
the HPF study through N = 50 simulations and compared to the execution time of the
TDS (incl. the Fourier analysis). Moreover, a scalability analysis w.r.t. the numbers
of CIDERs and w.r.t. the considered harmonic order in the HPF is performed. In the
first case, the grid-following CIDERs at nodes N15-17 are consecutively replaced by
wye-connected, balanced impedance loads, whose nominal power is equal to the setpoint
of the associated CIDER. In the second case, the timing analysis for the HPF is repeated
while increasing the considered maximum harmonic order hmax consecutively from 11
to 25. It is important to note that the TDS takes some time to reach the steady state.
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Table 4.4: Parameters of the CIDERs and Loads in the Test System for the HPF proposed
in Section 4.3.2.

Node Load/Generator S/|V| pf/f Type Phase weights
N11 Load 15.0 kVar 0.95 P/Q [0.33 0.33 0.33]
N15 Load 52.0 kVar 0.95 P/Q [0.33 0.33 0.33]
N16 Load 55.0 kVar 0.95 P/Q [0.33 0.33 0.33]
N17 Load 35.0 kVar 0.95 P/Q [0.33 0.33 0.33]
N18 - 230 V-RMS 50 Hz V/f -
N19 Load 51.2 kVar 0.95 Z [0.31 0.50 0.19]
N20 Load 50.4 kVar 0.95 Z [0.45 0.23 0.32]
N21 Load 61.5 kVar 0.95 Z [0.24 0.39 0.37]
N22 Load 61.9 kVar 0.95 Z [0.31 0.56 0.13]

Table 4.5: Ratio of Sequence Voltages and Currents at the Nodes with Resources for the
Spectra Obtained using the HPF Method.

Node |V1,N|
|V1,P|

|V1,H|
|V1,P|

|I1,N|
|I1,P|

|I1,H|
|I1,P|

N01 0.26 % 0.19 % 12.45 % 9.25 %
N11 0.44 % 0.79 % 0.35 % 0.00 %
N15 1.64 % 3.79 % 1.08 % 0.00 %
N16 0.50 % 0.88 % 0.34 % 0.00 %
N17 0.43 % 0.68 % 0.30 % 0.00 %
N18 0.39 % 0.47 % 1.19 % 3.19 %
N19 1.36 % 3.19 % 26.22 % 24.44 %
N20 0.34 % 0.91 % 19.65 % 18.81 %
N21 0.47 % 0.61 % 13.17 % 13.40 %
N22 1.94 % 4.60 % 37.12 % 34.34 %

The settling time of this transient analysis strongly depends on the initialization of the
simulation. In order to ensure a fair comparison between the HPF and the TDS, the
execution time of the latter is measured only for 5 periods in steady state (i.e., the
window length required for the DFT) plus the Fourier analysis (i.e., the DFT). Note well
that this corresponds to the minimum amount of simulation time which would have to
be done even if the initialization of the TDS were perfect.

Results and Discussion

Table 4.5 gives the voltage and current sequence components of the nodes where resources
are connected. Indeed the passive impedance loads at N19-22 introduce significant
unbalances in the nodal phase-to-ground voltages and injected currents.

96



4.4 Validation of the Proposed Method

The convergence of the method appears to be robust w.r.t. a random choice of the
initial point (i.e., sequence components whose magnitudes and phases are uniformly
distributed in the intervals [0, 10] p.u. and [0, 2π] rad, respectively). In fact, the method
always converged to the same solution irrespective of its initial value. That is, neither
divergence of the algorithm nor multiplicity of solutions have been observed. Naturally,
this empirical evidence does not provide a general guarantee. Nevertheless, the fact that
the convergence is not affected even by substantial variations of the initial point speaks
for the robustness of the proposed method8.

Fig. 4.3 shows the maximum absolute errors over all nodes and phases, separately for
grid-forming and grid-following CIDERs. The highest errors w.r.t. voltage magnitude
and phase are eabs(V7) = 1.2E-4 p.u. and earg(V25) = 13.18 mrad, respectively. The
highest errors w.r.t. current magnitude and phase are eabs(I7) = 5.81E-4 p.u. and
earg(I13) = 22.51 mrad, respectively. Observe that the magnitude errors of the current
harmonics are higher than those of the voltage harmonics, which is likely due to the
Taylor approximation in the reference calculation of the grid-following CIDERs (i.e.,
Hyp. 18). Moreover, note that the phase error becomes slightly larger as the harmonic
order increases. Nevertheless, the error levels are generally very low. Indeed, as it was
the case in the resource validation, the magnitude and phase errors are lower than the
accuracy of standard measurement equipment.

All simulations are run on the same laptop computer, namely a MacBook Pro 2019
with a 2.4 GHz Intel Core i9 CPU and 32 GB 2400 MHz DDR3 RAM. As shown in
Table 4.6, the mean of the execution time of the HPF method lies between 1.75-6.52 sec
with standard deviations from 0.03-0.1 sec depending on the number of CIDERs that are
connected. By comparison, the execution time of the TDS excluding initial transients
is around 28.33-33.39 sec, out of which ca. 0.6 sec are needed for the Fourier analysis
(i.e., the DFT). Clearly, the HPF method is faster than the TDS, while yielding accurate
results. The computational complexity of the HPF method in function of the maximum
harmonic order is illustrated in the upper subplot of Fig. 4.4. Note that the execution
time increases almost linearly, but a non-dominant higher-order component is clearly
visible (i.e., as expected based on the involved matrix operations). The non-deterministic
component of Texc,HP F (i.e., the variation around the mean value) is illustrated in the
lower subplot of Fig. 4.4. Observe that any deviation is small compared to the actual
value of Texc,HP F .

8Ongoing research efforts are focusing on this particular characteristic to provide more detailed
insights.
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Figure 4.3: Results of the validation on the benchmark system. The plots show the
maximum absolute errors over all nodes and phases, for voltages (left column) and
currents (right column), in magnitude (top row) and phase (bottom row).

Table 4.6: Timing Performance (for N = 50 Simulations of the HPF)

No. of Following CIDERs 1 2 3 4
Texc,T DS 28.33 sec 30.36 sec 31.28 sec 33.39 sec
µ(Texc,HP F ) 1.75 sec 3.97 sec 5.30 sec 6.52 sec
σ(Texc,HP F ) 0.03 sec 0.07 sec 0.08 sec 0.10 sec

4.4.2 Harmonic Power-Flow Study of AC Power Systems with Nonlin-
earities within the Internal Response of the CIDER

This section validates the second version of the HPF algorithm that includes linearizations
of the CIDER model, and is introduced in Algorithm 2. The same setup of the test
system as in Section 4.4.1 is used. Thus, in the following only the changes as compared
to the setup in Section 4.4.1 are pointed out. As before, the extended version of the HPF
algorithm that includes the detailed characteristics of the CIDER’s DC sides is validated
against TDS with Simulink. Additionally, it is compared to the previous version of the
algorithm in Section 4.3.2 and to a classical decoupled HPF.

Test System Setup

The extension of the HPF algorithm that includes the DC side of the CIDERs is validated
on the same test system as introduced in Section 4.4.1. The sole difference are the
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Figure 4.4: Mean and distribution of the timing performance of HPF for maximum
numbers of CIDERs and with varying hmax for N = 50 simulations. The box-and-whisker
plot visualizes 25 and 75 percentile of the sample, the whisker length is 1.5-times the
interquartile range.

CIDERs that are connected. More specifically, five grid-following CIDERs, which include
the modelling of the DC-side characteristics are connected at nodes N11, and N15-
N18. The parameters of the grid-following CIDERs that take into account the DC-side
characteristics are identical to the ones used in the individual resource validation (i.e.,
they are given in Table 3.5). Recall that in the test system, unbalances are introduced
into the grid through the unbalanced wye-connected constant-impedance loads at nodes
N19-N22. As before the amount of unbalance is expressed by phase weights, that describe
the distribution of the load over the phases. All setpoints and phase weights of the
CIDERs and loads for this case of the test system are given in Table 4.7.

Methodology

The validation of the HPF algorithm is three-fold: (i) the accuracy of the extended HPF
method is validated against the results from Simulink (TDS), (ii) the extended HPF
method that includes the DC side of the CIDERs, and the one that excludes it (i.e.,
using the models of the CIDERs introduced in Sections 3.3.1 and 3.3.2), are compared,
(iii) the extended HPF method is compared with a classical decoupled HPF. For the
decoupled HPF, the resources are represented by independent and superposed harmonic
current sources and the system equations are solved independently at each harmonic
frequency (see Appendix A.4 for more details).

In both cases the Newton-Raphson algorithm is initialized as described in Section 4.3.2.
That is, initial values of AC and DC quantities are based on balanced, sinusoidal conditions
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Table 4.7: Parameters of the CIDERs and Loads in the Test System for the HPF proposed
in Section 4.3.3.

Node Load/Generator S pf Type Phase weights
N11 Generator 15.8 kVar 0.95 P/Q [0.33 0.33 0.33]
N15 Generator 52.0 kVar 0.95 P/Q [0.33 0.33 0.33]
N16 Generator 55.0 kVar 0.95 P/Q [0.33 0.33 0.33]
N17 Generator 35.0 kVar 0.95 P/Q [0.33 0.33 0.33]
N18 Generator 47.0 kVar 0.95 P/Q [0.33 0.33 0.33]
N19 Load 51.2 kVar 0.95 Z [0.31 0.50 0.19]
N20 Load 50.4 kVar 0.95 Z [0.45 0.23 0.32]
N21 Load 61.5 kVar 0.95 Z [0.24 0.39 0.37]
N22 Load 61.9 kVar 0.95 Z [0.31 0.56 0.13]

and nominal values or setpoints. In order to assess the robustness of the convergence,
this initial point is distorted with random positive, negative and homopolar sequence
components. The magnitudes and phases are chosen from uniform distributions within
± 20% and [0, 2π), respectively.

The accuracy of the result is assessed using the same KPIs as for the validation of the
individual resource model. Additionally, the computation time of the HPF method is
compared against the execution time of the TDS. Notably, the initial transients of the
TDS are not taken into account in this context. Hence, it is computed as the sum of
the simulation time for 5 periods of fundamental frequency and the time needed for the
Fourier analysis. In order to compare the two versions of the HPF method (i.e., the one
including and excluding the DC side of the CIDERs) the THD of the nodal voltages
and injected currents are analysed. To reduce the amount of data to be displayed, the
maximum THD over all phases is used.

Results and Discussion

The accuracy of the HPF method including the DC-side characteristics compared to
the TDS is shown in Fig. 4.5. The highest errors at every harmonic frequency and over
all nodes and phases are shown for the set of all grid-following CIDERs and the set of
passive impedance loads. Notably, the errors for the third set (i.e., the zero-injection
nodes) can be inferred directly from the hybrid parameters of the grid and the other
nodal quantities (i.e., as a linear superposition). Accordingly, if high errors between HPF
and TDS were to be observed at a zero-injection node, the origin of this issue would
be at nodes with CIDERs, where these problems would be expected to be even more
prominent. The maximum errors in Fig. 4.3 occur in the set of grid-following CIDERs.
More precisely, the maximum errors regarding the voltage in magnitude and angle are
eabs(V19) = 5.97E-4 p.u. and earg(V25) = 16.49 mrad, respectively. In terms of errors
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Figure 4.5: Results of the validation on the benchmark system for the extension of the
solution algorithm. The grid-following CIDERs (PQ) and the constant impedance loads
(Z) are analysed. The plots show the maximum absolute errors over all nodes and phases,
for voltages (left column) and currents (right column), in magnitude (top row) and phase
(bottom row).

w.r.t. current magnitude and angle the highest values are eabs(I11) = 7.88E-4 p.u. and
earg(I19) = 39.89 mrad, respectively. Notably, the observed errors are very low, i.e.,
lower than the accuracy of standard measurement devices (i.e., compared to a 0.5 class
instrument transformer, as defined in the standards [4, 86, 5] (for a brief summary, see
Appendix A.1). Therefore, the extended HPF method is regarded as precise and will be
used as a benchmark in the subsequent analyses of this section.

All simulations are run on the same laptop computer as in Section 4.4.1, namely a
MacBook Pro 2019 with a 2.4 GHz Intel Core i9 CPU and 32 GB 2400 MHz DDR4
RAM. The HPF method takes 9 iterations and 16.7 sec, while the TDS takes 52.3 sec,
out of which 0.5 sec are used for the DFT. The TDS takes roughly three times as long as
the HPF. Note that the implementation of the HPF was not done with a strong focus on
numerical optimization.

In order to assess the impact of the DC-side modelling on the propagation of harmonics,
analyses on the benchmark system were conducted using models of the CIDERs that
either in- or exclude the DC side. The obtained results are shown in Fig. 4.6, where the
comparison is done at three nodes throughout the system. The spectra differ significantly
between the two versions, particular high differences are visible in the angles of the
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Table 4.8: Maximum THD at nodes with resources for the HPF method including and
excluding the DC side of CIDERs.

THDmax(Vγ) THDmax(Iγ)
Node HPF HPF-DC HPF HPF-DC
N01 9.70 9.39 93.68 146.45
N11 9.83 9.31 17.19 20.62
N15 9.77 9.05 5.24 8.07
N16 9.92 9.20 5.21 7.99
N17 10.10 9.28 8.90 10.97
N18 10.11 9.26 6.65 8.95
N19 9.96 9.34 4.05 3.77
N20 10.12 9.36 5.11 4.70
N21 9.78 9.37 4.07 3.88
N22 9.96 9.30 4.06 3.75

currents. Similar observations can be drawn from Table 4.8, where the maximum THD
in voltages and currents show significant differences between the two methods. One can
conclude that the inclusion of the DC side into the CIDER modelling does have a strong
impact on the harmonic propagation through the system.

Lastly, the proposed extended HPF framework is benchmarked w.r.t. a classical decoupled
HPF. In the classical decoupled HPF the CIDERs are represented by independent and
superposed harmonic current sources. The complex ratios of the harmonic currents (see
(A.3) in the Appendix A.4) are derived beforehand for a CIDER operating at rated power.
For this purpose, the CIDER is connected directly to the TE of the system validation
(similarly to the setup shown in Fig. 3.10). Fig. 4.7 shows the comparison between the
proposed HPF method and the classical decoupled HPF method. More precisely, the
spectra of voltages and currents for three nodes throughout the system are presented.
The spectra show non-negligible differences in both magnitude and phase. One can
conclude that the proposed HPF is more accurate than the classical decoupled version.

In conclusion, the HPF method that includes the DC side of the CIDERs clearly considers
phenomena that the original HPF cannot capture (see Fig. 4.6). More precisely, the
extended method provides improved accuracy in terms of the harmonic magnitudes and
phase angles. However, the extended HPF method also demands more computational
effort, as evidenced in terms of convergence time, i.e., 16.7 sec for the extended HPF and
6.5 sec for the original method for comparable problem size (the 22 bus system with five
CIDERs). Therefore, one must make a choice between the benefit of increased accuracy
and the drawback of additional computation time.
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(a)

(b)

Figure 4.6: Comparison of the HPF study including (i.e., HPF-DC) and excluding the
DC side of the CIDERs at three nodes throughout the benchmark system. The voltages
for Phase A of these nodes are given in (4.6a) and the currents in (4.6b).
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(a)

(b)

Figure 4.7: Comparison of the HPF study with the decoupled HPF study at three nodes
throughout the benchmark system. The voltages for Phase A of these nodes are given in
4.7a and the currents in 4.7b.
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Table 4.9: Parameters of the Network-Interfacing Converters.

AC Node DC Node P Q VDC Type
N15 N19 - 9.9 kVAr 900 V VDC/Q
N16 N20 30.0 kW 9.9 kVAr - P/Q
N17 N21 -25.0 kW 8.2 kVAr - P/Q
N18 N22 30.0 kW 9.9 kVAr - P/Q

4.4.3 Harmonic Power-Flow Study of Hybrid AC/DC Systems

This section presents the results of the HPF method for hybrid AC/DC grids proposed
in Section 4.3.4. To this end, the setup of the hybrid AC/DC test system is introduced,
and subsequently the spectrum of the AC and DC quantities are validated against the
ones from Simulink (TDS),

Test System Setup

The HPF algorithm for hybrid AC/DC grids is validated on an extension of the benchmark
AC microgrid proposed in [2]. More specifically, the benchmark system is extended by
a DC grid following the example of [102]. As depicted in Fig. 4.8 the AC and DC
subsystems are interfaced through NICs at the nodes N15-18 on the AC side and N19-22
on the DC side. Their specifications are given in Table 4.9. The AC subsystem is
composed of a feeding substation at node N1, seven grid-following CIDERs at nodes
N5, N9, N11 and N13 and two passive loads at nodes N3 and N14. The DC subsystem
consists of three current sources at nodes N23 and N25-26, and a passive load at node
N24. The references of the resources are given in Table 4.10. The feeding substation of
the AC subsystem is modelled as a TE described by parameters depicted in Table 4.11.
As for the other test systems, the TE injects harmonics with levels shown in Table 3.2
based on [3]. The line parameters of the AC and DC subsystems are given in Table 4.12.

Methodology

The validation of the HPF algorithm is performed through TDS in Simulink. To this
end, the system in Fig. 4.2 is replicated using the models of the CIDERs in Section 3.3.
The Matlab code of the HPF method is updated to account for hybrid AC/DC grids.
For the TDS, a DFT over 5 periods of the fundamental frequency in steady state is
performed. All signals are normalized w.r.t. the base power Pb = 50 kW and base voltage
Vb = 230 V-RMS.
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Figure 4.8: Schematic diagram of the test system, which is based on the CIGRÉ low-
voltage benchmark microgrid [2] (blue box) and interfaced through NICs (green box) to
the DC subsystem (red box), parameters given in Table 4.9. The resources are composed
of constant impedance loads (Z), constant power loads (P/Q), and constant current
sources (I), parameters given in Table 4.10.

Results and Discussion

In Fig. 4.9 the accuracy of the HPF algorithm for hybrid AC/DC grids is compared to
the TDS in Simulink. The highest errors at every harmonic frequency and over all nodes
and phases for nodal voltages and injected currents are shown for the two subsystems
independently. In Fig. 4.9a the errors are shown for the set of all CIDERs and NICs,
as well as the passive impedance loads. For the DC subsystem, the set of grid-forming
(i.e., including the DC quantities of the NICs) and grid-following nodes is shown. The
maximum errors regarding the voltages and currents occur in both subsystems in the
nodes where the NICs are connected. More precisely, the maximum errors in magnitude
and phase for the voltages are eabs(V13) = 1.34E-4 p.u. and earg(V19) = 12.23 mrad
in the AC subsystem and eabs(V6) = 1.03E-4 p.u. and earg(V6) = 11.26 mrad in the
DC subsystem, respectively. The maximum errors w.r.t. current magnitude and angle
are eabs(I1) = 2.75E-4 p.u. and earg(I25) = 28.45 mrad in the AC subsystem and
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Table 4.10: Parameters of the Grid-Following Resources, with the constant-power (P/Q),
the constant-impedance (Z), and the constant-current (I) behaviour.

Node P Q Type
N05 -20.0 kW -5.0 kVAr P/Q
N09-1 4.7 kW 1.5 kVAr P/Q
N09-2 2.0 kW 0.0 kVAr P/Q
N11-1 10.7 kW 3.5 kVAr P/Q
N11-2 8.7 kW 2.9 kVAr P/Q
N13-1 10.0 kW 3.3 kVAr P/Q
N13-2 -10.0 kW 0.1 kVAr P/Q
N03 -20.0 kW 0.0 kVAr Z
N14 -15.0 kW -0.3 kVAr Z
N23 5.0 kW - I
N25 10.0 kW - I
N26 5.0 kW - I
N24 -8.0 kW - Z

Table 4.11: Short-Circuit Parameters of the Thévenin Equivalent
for the hybrid AC/DC Grid.

Parameter Value Description
Vn 230 V-RMS Nominal voltage
Ssc 630 kW Short-circuit power
|Zsc| 16.3 mΩ Short-circuit impedance

Rsc/Xsc 0.125 Resistance-to-reactance ratio

eabs(I0) = 2.39E-4 p.u. and earg(I18) = 151.63 mrad in the DC subsystem, respectively.
The obtained errors for both subsystems are lower than the accuracy of standard
measurement equipment (i.e., they are unobservable in practice). Thus, the accuracy of
the HPF method for hybrid AC/DC grids is validated.

A second extension of the HPF method for hybrid AC/DC power systems has been
proposed above. Like the first extension, this version can account for elements that
previous versions overlooked. However, the added elements also result in a higher
complexity of the algorithm, and inherently longer convergence times.
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(a)

(b)

Figure 4.9: Results of the validation of the AC (Fig. 4.9a) and DC subsystem (Fig. 4.9b).
The grid-following CIDERs (RAC

1 ) and the AC side of the NICs (RAC
2 ), as well as the

DC-side resources (RDC
1 ) and the DC side of the NICs (SDC

2 ) are shown. The plots show
the maximum absolute errors over all nodes and phases, for voltages (left column) and
currents (right column), in magnitude (top row) and phase (bottom row).
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Table 4.12: AC (+/− /0) and DC Parameters of the Lines.

ID R+/−/0 or R L+/−/0 or L C+/−/0 or C

AC-T1 3.30 Ω/km 0.45 mH/km 150 nF/km
AC-T2 1.21 Ω/km 0.42 mH/km 230 nF/km
AC-T3 0.78 Ω/km 0.40 mH/km 210 nF/km
AC-T4 0.55 Ω/km 0.39 mH/km 260 nF/km
AC-T5 0.27 Ω/km 0.38 mH/km 320 nF/km
DC-T1 0.08 Ω/km 0.28 mH/km 292 nF/km
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5 Harmonic Stability Assessment

Summary: In this chapter, the HSS model of a generic power system is proposed and
employed it in the context of HSA through eigenvalue analysis. More precisely, the HSS
model is formulated by combining the HSS models of the resources and the grid in closed-
loop configuration. The HSS model of the resources is the combination of all HSS models of
the individual resources as introduced in Chapter 2. The HSS model of the grid is derived
from the dynamic equations of the individual branch and shunt elements in time domain
and subsequently transformed to harmonic domain by means of Toeplitz theory. The
system matrix of the HSS models on power system level or resource level can be further
interpreted through eigenvalue analysis. Furthermore, one can perform a sensitivity
analysis to determine how changes in model parameters affect the locations of eigenvalues.
Based on this sensitivity analysis, a classification of eigenvalues into control-design
variant, control-design invariant, and design invariant eigenvalues is proposed. First, the
HSA of the open-loop CIDER models from Chapter 3 is performed. More precisely, an
in-depth analysis of the classification of the eigenvalues into the aforementioned categories,
the impact of the maximum harmonic order on the locations of the eigenvalues, and the
sensitivity of the eigenvalues w.r.t. to specific control parameters is provided. Second, the
HSA is performed for a small but representative example system. The analysis of the
system eigenvalues w.r.t. classification of the eigenvalues and comparison to the open-loop
components is performed. Finally, a harmonic instability is observed through the LTP
system eigenvalues and validated through TDS in Simulink. It is also shown that this
instability cannot be observed with a conventional stability criterion (i.e., the eigenvalues
of the corresponding LTI system).
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Chapter 5. Harmonic Stability Assessment

5.1 State of the Art

Recently, the assessment of Harmonic Stability has seen a growing interest in the research
community. The ability to evaluate this specific type of instability, arising from the
presence of harmonics as well as the interaction between them (i.e., coupling between
different frequencies), largely depends on the characteristics of the adopted models.
Hence, the following literature review is separated into HSA based on approaches that
either represent or do not represent the frequency coupling. Additionally, the same
types of models as introduced in Section 2.1 will be explored in the following. Detailed
discussions on this topic can be found in [49, 63].

Assuming that the system behaviour can be described by a linear or linearized model,
the stability can be determined from the corresponding matrices either via eigenvalue
analysis or using Nyquist techniques. In the case of LTI models, the required matrices
are readily available for the corresponding techniques. Regarding the DP approaches,
both linear or nonlinear models may be formulated. The linear models can directly be
employed for the HSA, whereas for the nonlinear ones, a linearized model must first be
derived (e.g., through small-signal analysis). Lastly, the system matrix of the HSS model
can directly be employed for the HSA. Notably, EHD models are in general derived for
dynamic power system simulations and usually not used for HSA.

5.1.1 Studies without Representation of Frequency Coupling

Some works studying harmonic instabilities employ impedance-based analysis methods,
where the stability is determined through the Nyquist criterion from point of view of a
specific resource. Therefore, these approaches may be referred to as point-of-connection-
based methods. More precisely, the resources and the remainder of the system are
represented by Norton and Thévenin Equivalents [103]. Naturally, these equivalents have
to be recomputed upon any change in the parameters of the power system components
or the topology of the power system itself.

In [28], an instability characterized by high harmonic distortion is identified using an
impedance-based stability criterion. For this examination, a test system including five
CIDERs connected in parallel is considered. The study shows that, if one of the five
CIDERs is disconnected, the harmonic distortion in the system is significantly increased.
This observation is further confirmed through the Nyquist plots of the system. In [27] the
stability of a power system with several CIDERs is studied. The individual components
(i.e., CIDERs and lines of the grid) are represented by impedances and employed to
derive Nyquist plots.

However, these techniques cannot represent the coupling between distinct harmonics in
the system (recall Fig. 2.1), since they rely on LTI system theory. Therefore, while these
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stability criteria may be able to identify instabilities caused by an individual harmonic,
they would fail to detect an instability arising from the interaction of multiple harmonics
(i.e., coupling).

5.1.2 Studies with Representation of Frequency Coupling

In the HSA of models capturing frequency coupling, two modelling techniques are
distinguished: DP and HSS models. Literature on the HSS approach frequently uses
both Nyquist and eigenvalue techniques, whereas the DP approach predominantly utilizes
eigenvalue analysis.

In [104] a nonlinear model derived through the DP methodology for the HSA of a
power system is proposed. From the DP model, the small-signal model is obtained
through linearization around a harmonic operating point, and an eigenvalue analysis
is performed. A power system including three CIDERs is analysed in detail. More
specifically, it is shown how, upon a parameter change, the harmonic components of the
active power become unstable, while the fundamental component remains in steady state.
The instability is also observed in the eigenvalues. In another study, the eigenvalues
derived from an HSS model and a DP model for an individual three-phase CIDER are
compared [48]. It is demonstrated that the eigenvalues from both methodologies coincide
for the analysed CIDER, which suggests to that both approaches are equally effective in
representing the coupling between harmonics and the corresponding stability margins.

The majority of HSA research employs LTP models to represent the components of power
systems. In this case, the HSS model, generated using the Toeplitz matrices of the LTP
system, serves as the foundation for the HSA.

In [105], a generalization of the Nyquist criterion to HSS models, which is similar to the
generalized Nyquist criterion for LTI Multi-Input Multi-Output (MIMO) systems, was
first proposed. In [106], the equivalent harmonic impedances of a single-phase system,
comprising two CIDERs, are identified through small-signal current injections. The
harmonic impedances are then used to derive the Nyquist plot of the system. In [107],
the Nyquist plots for a single-phase grid-connected CIDER are derived. To this end, the
equivalent impedance of the CIDER and the grid are obtained from the corresponding
HSS models.

Many studies use the eigenvalues of the HSS model or poles of the corresponding HTF
for stability assessment. The theory behind this is was first detailed in [32].Current
research often aims at understanding the causes of harmonic instability by investigating
individual CIDERs. [34] provides an in-depth analysis of stability margins in grid-
following CIDERs with different synchronization techniques and control approaches. The
effects of parameter variations on the stability margin are identified through eigenvalue
analysis and validated in power-hardware-in-the-loop experiments. In [35] a detailed
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study of the HSA of a specific synchronization technique used in CIDERs, i.e., the
so-called multiple second-order generalized integrator is proposed. Both [36] and [37]
examine the stability of a single-phase CIDER connected to the grid, with the grid
modelled as a TE. In [36], the instability is observed by means of the poles of the HTF,
and validated through TDS and experiments. [37] examines the stability of the system
through its eigenvalues and confirms the findings through TDS.

When conducting an eigenvalue analysis for the HSS system, additional insights can be
gained from the associated eigenvectors. Specifically, each entry in an eigenvector is
associated with a particular eigenvalue and quantifies its impact on the respective states.
For LTI systems, this type of investigation is known as participation factor analysis or
modal analysis [108]. In [109] a generalization of the participation factor analysis from
LTI to LTP systems (i.e., to HSS models) is proposed. A detailed analysis in this respect
is performed for the example of a grid-following CIDER.

5.1.3 Motivation for the Proposed Method

To summarize, DP and HSS methodologies appear to be most promising for HSA due
to their capability of representing the frequency-coupling effects inherent to CIDERs.
By contrast, other approaches fall short in capturing this phenomenon. However, under
certain conditions, harmonic instabilities, which involve only a single harmonic (e.g., due
to a resonance), might still be captured by such approaches.

W.r.t. modularity and ease of representation, HSS models appear to be particularly
promising. However, a potential drawback of HSS models is its inherent large number of
state variables, making it challenging to scale. A potential solution is mentioned by [62]:
selecting only certain harmonic frequencies (through an appropriate method) in order to
reduce the size of the model. The core idea is to prioritize and incorporate only a subset
of harmonics which is dominant in the system.

Extensive research has been performed on the HSA of single CIDERs or on small systems
as examples. Yet no approach has been proposed, that is capable of analysing generic
power systems while taking into account the interactions of different CIDERs through the
grid. Addressing this research gap, the modelling framework which has been proposed in
Chapter 2, and further validated in Chapter 4, is adapted for the HSA in this chapter.

5.2 Harmonic State-Space Model of a Power System

In this section, the HSS model of the entire power system is derived. More specifically, the
HSS models of the resources and the grid are combined into the HSS model of the power
system. First, the HSS models of individual CIDERs is recalled. Second, it is shown
how the lumped-element model of the grid, which was introduced in Section 2.3, can be
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described by a time-domain state-space model, which is then transformed to the HSS
model of the grid. The HSS model of the individual CIDER is combined to form the HSS
model of all resources, similar to the derivations in Section 2.4.3. Through combination
of the HSS models of the resources and the grid, the open-loop HSS model of the
power system is derived. Subsequently, the closed-loop model is calculated following the
electrical interconnection between the resources and the grid. Note that the derivations
of the HSS model of the system follows the same procedure as the derivations of the
CIDERs closed-loop model in Section 2.4.3.

5.2.1 Harmonic State-Space Model of the Resources

Let q ∈ Q be an generic CIDER (i.e., irrespective of the governing control law). Recalling
the general form of a CIDER’s HSS as stated in (2.75)–(2.76), the CIDER q is modelled
by the following equations:

Ψ̂qX̂q = Âq X̂q + Êq,γŴq,γ + Êq,σŴq,σ + Êq,oŴq,o (5.1)
Ŷq,γ = Ĉq,γX̂q + F̂q,γŴq,γ + F̂q,σŴq,σ + F̂q,oŴq,o (5.2)

Recall from Chapter 2 that the matrices of the HSS of an individual CIDER are a
function of the operating points Ŵq,o and Ŷq,o. For the sake of clarity, this dependency
is not specifically stated in the following.

5.2.2 Harmonic State-Space Model of the Electrical Grid

In this section, a state-space model of the grid is derived, based on the grid topology
given by all nodes as well as the branches and shunts of the line connecting them. To
this end, recall the definitions of the lumped-element model as well as the definitions of
the nodes, branches and shunts introduced in Section 2.3. In general, the state-space
variables of the grid are given by i) the three-phase currents of the branch inductors and
ii) the three-phase voltages of the shunt capacitors1.

Branches

The equation describing the dynamics of a branch ℓ ∈ L connecting the nodes m and
n ∈ N is given by

Lℓ
d

dt
iℓ(t) = −Rℓiℓ(t) + vn(t)− vm(t) (5.3)

1Within typical frequency ranges used in HA (i.e., f < 10 kHz) the lumped-element models of lines
and transformers are such that the branches are inductive and shunts capacitive.
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Recall the polyphase incidence matrix AL|N introduced in (2.6). With that, the system
of equations for all branches in L follows as

d

dt
iL(t) = −L−1

L RLiL(t) + L−1
L AL|N vN (t) (5.4)

with the branch currents and nodal voltages

iL(t) = colℓ∈L(iℓ(t)) (5.5)
vN (t) = coln∈N (vn(t)) (5.6)

and

LL = diagℓ∈L(Lℓ) (5.7)
RL = diagℓ∈L(Rℓ) (5.8)

Recall from (2.7), the separation of the incidence matrix into the grid-forming and
grid-following quantities, AL|S and AL|R , respectively. Applying this to (5.4) yields

d

dt
iL(t) = −L−1

L RLiL(t) + L−1
L AL|SvS(t) + L−1

L AL|RvR(t) (5.9)

with

vS(t) = coln∈S(vn(t)) (5.10)
vR(t) = coln∈R(vn(t)) (5.11)

Shunts

In general, the shunt capacitors define the state-space variables associated with the nodes
(i.e., the capacitor voltages). The shunt capacitors to be considered can be i) due to
the line parameters or ii) due to the filter elements of the connected resource (i.e. the
capacitance of the grid-forming resource). In the latter case, the derivation of the dynamic
equations differs slightly. To this end, the shunts are separated into two sets depending
on which type of resource is connected at the corresponding node, i.e., grid-forming or
grid-following resources.

At the nodes where grid-forming resources are connected, the resource controls the
nodal voltage vs over its output capacitor Cs

2. A representation of this is shown in
Fig. 5.1a. Since the shunt capacitor Cts

is usually small compared to Cs it is neglected
at grid-forming nodes. w.r.t. the latter, which allows for simplifications3. For the sake of

2Recall from Section 3.3.1 that a grid-forming converter with an LCL filter would belong to the set R.
This case is not considered here.

3This is usually true for low-voltage distribution grids. In case the shunt capacitors are not negligible
compared to the output capacitor of the resource, the sum of all shunts can be combined in the resource’s
output capacitor.
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Rℓ Lℓ

iℓ

ℓ = (n, s) ∈ L

n ∈ N

Cts
vs

is

Cs vn

s ∈ S

Resource Grid

(other branches)

(a)

Rℓ Lℓ

iℓ

ℓ = (n, r) ∈ L

n ∈ N

Ctr

Lr

ir

vr vn

r ∈ R

Resource Grid

(other branches)

(b)

Figure 5.1: Lumped-element model of the grid shown at nodes with a grid-forming
resource (5.1a) and a grid-following resource (5.1b). The electrical quantity controlled by
the resource is highlighted in red.

conciseness, this hypothesis is specifically stated here:

Hypothesis 26. The shunt capacitor Cts
of a line connected to a grid-forming resource

is small compared to Cs.

The equation describing a node s ∈ S ⊂ N connected to the branches Ls, where Ls

describes the set of branches connected to node s, is given by

is(t) = −
∑

ℓ∈Ls

iℓ(t) (5.12)

For all nodes s ∈ S the equation can be written compactly as

iS(t) = AS|LiL(t) (5.13)

where AS|L = A⊤
L|S .

At the nodes where grid-following resources are connected, the resource controls the
current flowing through its grid-side filter inductance Lr and being injected into the
grid (Fig. 5.1b). The equations describing a node r ∈ R ⊂ N connected to branches Lr,
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where Lr describes the set of branches connected to node r, is given by

Ctr

d

dt
vr(t) = −ir(t) +

∑
ℓ∈Lr

iℓ(t) (5.14)

which can be written for all nodes r ∈ R as

d

dt
vR(t) = C−1

T AR|LiL(t)−C−1
T iR(t) (5.15)

where AR|L = A⊤
L|R.

Combined State-Space Model of the Grid

In line with the previous explanations: i) the grid state is given by the branch currents
and shunt voltages ii) the grid disturbances are the voltages and currents regulated by
the grid-forming and grid-following resources, respectively iii) the grid outputs are the
corresponding non-regulated quantities. Formally:

xG(t) =
[

iL(t)
vR(t)

]
(5.16)

wG(t) =
[
vS(t)
iR(t)

]
(5.17)

yG(t) =
[

iS(t)
vR(t)

]
(5.18)

It follows

ẋG(t) = AG(t)xG(t) + EG(t)wG(t) (5.19)
yG(t) = CG(t)xG(t) + FG(t)wG(t) (5.20)

with the matrices

AG(t) = AG,0 =
[
−L−1

L RL L−1
L AL|R

−C−1
T AR|L 0

]
(5.21)

EG(t) = EG,0 =
[
L−1

L AL|S 0
0 C−1

T

]
(5.22)

CG(t) = CG,0 =
[
AS|L 0

0 I

]
(5.23)

FG(t) = FG,0 = 0 (5.24)
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5.2.3 Open-Loop Model of the Power System

Combined Harmonic State-Space Model of all Resources

In order to derive the HSS of the entire system, one needs to combine the HSS of the
individual CIDERs in (5.1)–(5.2) to the model of all resources.

Ψ̂QX̂Q = ÂQ X̂Q + ÊQ,γŴQ,γ + ÊQ,σŴQ,σ + ÊQ,oŴQ,o (5.25)
ŶQ,γ = ĈQ,γX̂Q + F̂Q,γŴQ,γ + F̂Q,σŴQ,σ + F̂Q,oŴQ,o (5.26)

where

X̂Q = colq∈Q(X̂q) (5.27)
ÂQ = diagq∈Q(Âq) (5.28)

The remaining vectors (i.e., Ŷq etc.) and matrices (i.e., Êq etc.) are defined analogously.
Without loss of generality, one can assume that the resources Q are ordered as Q = (S,R).
Such that,

ŴQ,γ = col(ÎS , V̂R) (5.29)
ŶQ,γ = col(V̂S , ÎR) (5.30)

Harmonic State-Space Model of the Electrical Grid

Transforming (5.19)–(5.20) to harmonic domain employing the Toeplitz transform yields
the HSS model of the grid:

Ψ̂GX̂G = ÂGX̂G + ẼGW̃G (5.31)
ỸG = C̃GX̂G + F̃GW̃G (5.32)

with

W̃G = colh∈H(WG,h)), and wG(t) = col(iS(t), vR(t)) (5.33)
ỸG = colh∈H(YG,h)), and yG(t) = col(vS(t), iR(t)) (5.34)

where WG,h and YG,h describe the Fourier coefficients of wG(t) and yG(t) at the harmonic
h ∈ H, respectively.

Combination of the Grid and Resources

As will be shown shortly, the HSS model of the grid is combined with the HSS model of
all resources (see Fig. 5.2). As can be seen in Fig. 5.2, the grid disturbance of the HSS
model of all resources is the output of the HSS of the grid, and vice versa.
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Ψ̂QX̂Q = ÃQ X̂Q + ÊQ,γŴQ,γ + ÊQ,σŴQ,σ + ÊQ,oŴQ,o

ŶQ,γ = ĈQ,γX̂Q + F̂Q,γŴQ,γ + F̂Q,σŴQ,σ + F̂Q,oŴQ,o

Resources Q

Ψ̂GX̂G = ÂGX̂G + ÊGŴG

ŶG = ĈGX̂G + F̂GŴG

Grid G
ŶQ = ŴGŶG = ŴQ,γ

ŴQ,o

ŴQ,σ

Figure 5.2: Block diagram of the power system.

Recall the structure of the disturbance and output of the HSS model of all resources
from (5.29)–(5.30). The disturbance and output vectors are the combination of the
harmonic-domain vector of all grid-forming currents or voltages and all grid-following
voltages or currents, for the disturbance or output vectors, respectively. For the sake of
illustration, this is specifically shown for ŴQ,γ :

ÎS = cols∈S(Îs), where Îs = colh∈H(Is,h) (5.35)
V̂R = colr∈R(V̂r), where V̂r = colh∈H(Vr,h) (5.36)

where Is,h and Vr,h describe the Fourier coefficients of is(t) and vr(t) at the harmonic
h ∈ H, respectively. Note that the Fourier coefficients which constitute ŴQ,γ and ŶQ,γ

are grouped per node (i.e., the different harmonics associated with a given node form a
block). By contrast, W̃G and ỸG are grouped per harmonic order (i.e., the different nodal
phasors associated with a given harmonic order form a block). Notably, the quantities
grouped w.r.t. the harmonic order are denoted by W̃ and Ỹ, while quantities grouped
w.r.t. the nodes are denoted by Ŵ and Ŷ.

In order to combine the two models, the ordering of the vectors w.r.t. nodes and harmonics
must be compatible. In the formulations (5.25)–(5.26) and (5.42)–(5.43), this is not the
case. That is, the former is composed of blocks grouped by node, and the latter of blocks
grouped by harmonic. To this end, a permutation matrix, which performs a permutation
from the grouping w.r.t. to the harmonics to the grouping w.r.t. the nodes, and vice versa,
is introduced. Recall that the union of all nodes is defined by N , and the harmonics are
described by H.

P̂N |H :
(
P̂N |H

)
ij

:=



diag(13) ∀n ∈ N , ∀h ∈ H :
i = (n− 1)|H|+ h + (hmax + 1),
j = (h + hmax)|N |+ n,

03×3 otherwise.

(5.37)
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Then, the regrouped versions of the disturbance and output vector of the HSS model of
the grid are given by:

ŴG = P̂N |HW̃G (5.38)
ŶG = P̂N |HỸG (5.39)

as well as P̂H|N = P̂⊤
N |H, which results in:

ŴG = col(V̂S , ÎR) (5.40)
ŶG = col(ÎS , V̂R) (5.41)

With this, the HSS model of the grid is rewritten as:

Ψ̂GX̂G = ÂGX̂G + ÊGŴG (5.42)
ŶG = ĈGX̂G + F̂GŴG (5.43)

with

ÊG = ẼGP̂H|N (5.44)
ĈG = P̂N |HC̃G (5.45)
F̂G = P̂N |HF̃GP̂H|N (5.46)

To calculate the open-loop model of the system, the HSS model of the resources (5.25)–
(5.26) and the HSS model of the grid (5.42)–(5.43) are combined into

Ψ̂PX̂P = ÂPX̂P + ÊP,γŴP,γ + ÊP,σŴQ,σ + ÊP,oŴQ,o (5.47)
ŶP = ĈPX̂P + F̂P,γŴP,γ + F̂P,σŴQ,σ + F̂P,oŴQ,o (5.48)

where

X̂P = col(X̂Q, X̂G) (5.49)
ŴP,γ = col(ŴQ,γ , ŴG) (5.50)

ŶP = col(ŶQ,γ , ŶG) (5.51)

as well as for the matrices

ÂP = diag(ÂQ, ÂG) (5.52)
ÊP,γ = diag(ÊQ,γ , ÊG) (5.53)

and Ψ̂P , ĈP , and F̂P,γ are built analogously.
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The matrices, associated with ŴQ,σ and ŴQ,o are constructed as follows

ÊP,σ = col(ÊQ,σ, 0) (5.54)
ÊP,o = col(ÊQ,o, 0) (5.55)

and analogously for F̂P,σ and F̂P,o.

5.2.4 Closed-Loop Model of the Power System

From (5.29)–(5.30) and (5.40)–(5.41), one can write the interconnection between the
resources and the grid as:

ŴP,γ = ĴPŶP (5.56)

where

ĴP =
[

0 diag(1)
diag(1) 0

]
(5.57)

One can interpret (5.47)–(5.48) as the open-loop model of the power system, and (5.56) as
the associated feedback control law. In order to obtain the closed-loop model, substitute
(5.56) into (5.47)–(5.48) and solve for X̂P and ŶP :

Ψ̂PX̂P = ÃPX̂P + ẼP,σŴQ,σ + ẼP,oŴQ,o (5.58)
ŶP = C̃PX̂P + F̃P,σŴQ,σ + F̃P,oŴQ,o (5.59)

where the matrices ÃP , ẼP,σ, ẼP,o, C̃P , F̃P,σ, and F̃P,o are given by

ÃP = ÂP + ÊP,γ(diag(1)− ĴPF̂P,γ)−1ĴPĈP (5.60)
ẼP,σ = ÊP,σ + ÊP,γ(diag(1)− ĴPF̂P,γ)−1ĴPF̂P,σ (5.61)
ẼP,o = ÊP,o + ÊP,γ(diag(1)− ĴPF̂P,γ)−1ĴPF̂P,o (5.62)
C̃P = (diag(1)− F̂P,γĴP)−1ĈP (5.63)

F̃P,σ = (diag(1)− F̂P,γĴP)−1F̂P,σ (5.64)
F̃P,o = (diag(1)− F̂P,γĴP)−1F̂P,o (5.65)

The matrices (5.60)–(5.65) can only be computed if the inverses of diag(1) − ĴPF̂P,γ

and diag(1) − F̂P,γĴP exist. There is no general guarantee for this. However, recall
from (5.24) that F̂G = 0. Thus, following the same argumentation as in Section 2.4.3,
diag(1)− ĴPF̂P,γ and diag(1)− F̂P,γĴP are upper- and lower-blocktriangular matrices,
and therefore their inverses exist.
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Finally, by solving (5.58) for X̂P and substituting the result into (5.59), the HTF of the
system w.r.t. the disturbances is obtained as:

ŶP = ĜP,σŴQ,σ + ĜP,oŴQ,o (5.66)

where

ĜP,σ = C̃P(Ψ̂P − ÃP)−1ẼP,σ + F̃P,σ (5.67)
ĜP,o = C̃P(Ψ̂P − ÃP)−1ẼP,o + F̃P,o (5.68)

Recall from Section 5.2.1 that the matrices of the HSS of an individual CIDER are a
function of their operating point. Thus, the matrices of the HSS and the HTF of the
system are also dependent on the operating point of all CIDERs, denoted by ŴQ,o and
ŶQ,o. For the sake of clarity, this dependency is not stated explicitly.

5.3 Operators for the Harmonic Stability Assessment

This section gives a summary of the theory employed for the HSA of the individual
resources in Section 5.4 and the entire power system in Section 5.5. First, the eigenvalue
problem of a HSS model and the associated eigenvectors are introduced. Second, the
concept of sensitivity analysis w.r.t. eigenvalue locations is given, as well as a discussion
of different types of eigenvalues.

Eigenvalues and Eigenvectors

Consider a generic HSS model:

Ψ̂X̂ = ÂX̂ + ÊŴ (5.69)
Ŷ = ĈX̂ + F̂Ŵ (5.70)

and its HTF w.r.t. the disturbance Ŵ.

Ĝ = Ĉ(Ψ̂− Â)−1Ê + F̂ (5.71)

The harmonic stability of this HSS model is determined through the poles of its HTF.
More precisely, the poles of the system are the locations in the complex s-plane, where
the HTF is not analytical, i.e., its value is infinite [32]. Recall the composition of the
matrix Ψ̂ of a HSS model (as it was introduced in (2.37)):

Ψ̂ = s · diag(1) + jΩ̂ (5.72)

123



Chapter 5. Harmonic Stability Assessment

As a consequence, the poles of the HTF are described by the eigenvalue problem associated
with the matrix Â− jΩ̂: (

s · diag(1)− (Â− jΩ̂)
)

V = 0 (5.73)

where V is a matrix composed of the eigenvectors. More precisely, each eigenvalue of
the system matrix has an associated eigenvector. One can analyse these vectors to
understand the impact of a certain eigenvalue (also called mode) on a specific state
variable, and vice versa. As already mentioned in Section 5.1, numerous tools exist for
this kind of analyses in the context of LTI systems, i.e., participation factor analysis or
modal analysis [108]. Generalizations of the theory concerning participation factors in
the context of LTP systems are proposed in [109].

Sensitivity Analysis

It is common practice to assess the sensitivity of the location of the eigenvalues w.r.t. changes
in the control parameters of the system. To this end, the control parameters are varied,
and the resulting changes of the locations of the eigenvalues assessed. In this way, one
can trace the so-called eigenvalue loci of the system. Naturally, not all eigenvalues of the
system are affected by those changes of the control parameters. Some only change their
location when the physical parameters of the system are varied, others do not change
their location at all.

Eigenvalue Classification and Spurious Eigenvalues

In this thesis, three different types of eigenvalues are defined based on their impact
on the system. To this end, the following naming is proposed: (i) the Control-Design
Invariant (CDI), (ii) the Control-Design Variant (CDV) and (iii) the Design Invariant
(DI) eigenvalues. To this end, the following definitions are introduced:

Definition 9. A CDI eigenvalue is an eigenvalue whose location remains fixed upon
changing the parameters of the controllers.

Definition 10. The location of a CDV eigenvalue can be changed by modifying one or
several of the parameters of the control system.

Definition 11. A DI eigenvalue is an eigenvalue whose location remains fixed regardless
of any parameter adjustments in the system.

As will be explained shortly in Section 5.4.1, DI eigenvalues of the CIDER models occur
due to the changes of the reference frame between power hardware (in this case: phase
coordinates) and the control software (in this case: direct/quadrature components).
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In a recent paper [106], which analyses eigenvalues of LTP systems, the concept of
’spurious’ eigenvalues is mentioned. Recall that, when transforming LTP models into
HSS models, Toeplitz matrices of infinite size would need to be used (i.e., in order to
cover the entire, infinite spectrum). In practice, those infinite Toeplitz matrices need
to be truncated at a given maximum harmonic order. Naturally, the truncation may
introduce artefacts into the model, especially for the harmonics close to the boundaries
of the model representation. Therefore, eigenvalues, representing effects close to the
maximum harmonic order might not be representative of the real system behaviour. It
is important to note that any tractable (i.e., finite) HSS model inherently suffers from
this effect due to the applied truncation. For the case of the individual CIDERs, the DI
eigenvalues are one kind of the spurious eigenvalues. The details of this analysis will be
shown in Section 5.4.1. When combining several HSS models (i.e., through closed-loop
analysis), it becomes increasingly complex to discern which eigenvalues are genuine and
which are spurious. This challenge arises mainly because the mapping of the eigenvalues
from an open-loop HSS model to its closed-loop version is not straightforward in general.

5.4 Harmonic Stability Assessment of the Resources

This section gives an overview on the HSA of the individual CIDERs. The CIDERs
being studied are the same as the ones introduced and analysed in Chapter 3. These
include both the grid-forming and grid-following CIDERs that only model the AC-side
characteristics (i.e., Section 3.3.1 and Section 3.3.2, respectively), and the grid-following
CIDER that includes also the DC-side modelling (i.e., Section 3.3.3). In the context
of the HSA, several studies are conducted. First, the eigenvalues are classified into DI,
CDI and CDV eigenvalues. Second, the impact of the maximum harmonic order on the
eigenvalues of the CIDERs is analysed. Last, the sensitivity of the eigenvalue locations
w.r.t. to the controller parameters (i.e., feedback gains) are assessed for a particular
CIDER.

For the HSA of the individual CIDERs, the same parameters as given in Section 3.4 are
used. Employing the HSS model of the CIDERs, the eigenvalues of system matrix Ãq as
defined in (5.1) are evaluated. Recall that the system matrix of the individual CIDERs
is derived using the models introduced in Section 3.3, and possibly is a function of the
operating point Ŷo. For the HSA of the individual CIDER, if the derivation of the HSS
model requires an operating point, it is taken from the spectra of the TDS conducted in
Section 3.4. Note that the system matrix includes only the characteristics of the internal
response of the CIDER, i.e., the matrices of the reference calculation do not enter the
system matrix of the individual CIDERs.
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5.4.1 Classification of the LTP eigenvalues

Methodology

As was introduced in Section 5.3, the eigenvalues of a resource, which consists of a plant
and its associated controller, can be classified depending on their sensitivity w.r.t. the
model parameters. Recall the definitions of the eigenvalues as DI, CDI and CDV. In
order to determine these sets, the eigenvalues are first computed for an initial set of
parameters. Subsequently, a subset of the parameters is varied and the eigenvalues are
recomputed.

More precisely, for the determination of the DI eigenvalues, all parameters of the CIDER
are varied, and the eigenvalues are recomputed. If an eigenvalue remains unchanged,
it is classified as DI. Similarly, for the determination of the CDI and CDV eigenvalues,
all parameters of the control software of a CIDER are varied and the locations of the
new eigenvalues are compared to the initial set. In this case, the eigenvalues that remain
unchanged are the CDI eigenvalues, and the ones that move are the CDV eigenvalues.

In order to perform such a comparison, the sets of eigenvalues calculated for each variation
must be ordered identically. Unfortunately, state-of-the-art implementation, such as
the eig() function of Matlab, do not ensure this. Therefore, the correct sorting must
be found using a Linear Assignment Problem (LAP). The LAP, given two sample sets,
assigns pairs of samples, such that the total cost of assignment is minimized. To this
end, the cost of assignment is described by a cost function. In the context of sorting two
sets of eigenvalues, the aim is to minimize the total distance between pairs of eigenvalues.
Let Λ and Λ̃ be the two sets of eigenvalues to be sorted identically, and the cost function
of assignment

C : Λ× Λ̃→ R (5.74)

Notably, the cost function C can be described by a matrix C:

C : (C)ij = |λi − λ̃j | (5.75)

Then, in order to solve the LAP, find a bijection f : Λ −→ Λ̃, such that∑
λ∈Λ

C[λ,f(λ)] (5.76)

is minimized [110]. In general, there is no guarantee that minimizing this total distance
will result in the correct sorting of the eigenvalues. In particular, if the trajectories of two
sets of eigenvalues intersect each other, pairs of eigenvalues may be associated wrongly in
the vicinity of the intersection point. In such situations, one can either include additional
information about the characteristics of the eigenvalues (e.g., the eigenvectors) into the
cost matrix or reduce the step size of the applied parameter change.
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Results and Discussion

Fig. 5.3 shows the classification of the LTP eigenvalues for the grid-forming CIDER that
was introduced in Section 3.3.1. For the sake of illustration, the analysis is performed for
hmax = 1. Notably, the generalisation to higher orders of hmax is straightforward (i.e.,
the patterns of eigenvectors w.r.t. the eigenvalues are analogous).

The left-hand side subfigure of Fig. 5.3a shows the DI, CDI and CDV eigenvalues. In the
plot, the grid consists of two distinct sets of lines, i) lines representing consistent damping
factors across their length, and ii) lines indicating a constant natural frequency. Notably,
the line that represents the critical damping factor of ξ = 0.4 is distinctly highlighted.

The right-hand side subfigure of Fig. 5.3a illustrates the magnitude of the entries of the
eigenvector matrix V in logarithmic scale. The entries that exceed a threshold value
of 1E-8 p.u. in magnitude are additionally highlighted in the same colour used for the
classification of the eigenvalue. Note that rows (x-axis) and columns (y-axis) of the
eigenvector matrix correspond to the states and eigenvalues, respectively, of the CIDER
model. Recall from Section 2.4.3, that the harmonic-domain state vector of a CIDER
is built from the state vector of the power hardware and the control software. Hence,
the y-axis is partitioned into the states that correspond to the power hardware and the
control software, respectively (i.e., dark grey line). Furthermore, note the (sub)partition
of the y-axis w.r.t. to the harmonic orders of the states (i.e., the dotted light grey lines).
In this respect, recall that the control software of the CIDERs is represented by hmax + 1
harmonics.

To comprehend the influence of the eigenvalues on the system, and understand their
physical meaning, a more detailed interpretation of the eigenvectors is performed. To this
end, the entries of the eigenvectors in Fig. 5.3b are grouped by triplets (ABC coordinates)
for the part associated with the power hardware and pairs (DQ components) for the part
associated with the control software. Then, the triplets transformed to sequence domain
are depicted in the figure, as positive (P), negative (N) and homopolar (H) sequences.
For the pairs of entries in the part associated to the control software, an equivalent
positive sequence (P’) is defined by the scenario in which the Q component lags behind
the D component by ninety degrees. In contrast, an equivalent negative sequence (N’)
describes the situation where the Q component leads the D component by ninety degrees
[70]. Additionally, the theoretical mapping of harmonic sequence components for a
transformation from ABC coordinates (i.e., the power hardware) to DQ(Z) components
(i.e., the control software) [70] is illustrated in Fig. 5.3c. Note the different maximum
harmonic orders considered for the two coordinate frames (i.e., hmax,ABC = 1 for the ABC
coordinates and hmax,DQZ = hmax,ABC + 1 = 2 for the DQZ components). I the following,
the detailed analysis of the eigenvalues is first discussed for the CDV, then for the CDI
and finally for the DI eigenvalues.
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Figure 5.3: Classification of the eigenvalues of the grid-forming CIDER. Fig. 5.3a:
Eigenvalues on the left-hand side and eigenvector matrix V on the right-hand side.
Fig. 5.3b: Representation of the entries of V by triplets (ABC) and pairs (DQ) in the
sequence domain. Fig. 5.3c: Mapping of the harmonic sequences for a transformation
from ABC coordinates to DQZ components and vice versa.
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The grid-forming CIDER in Fig. 5.3a possesses four sets of CDV eigenvalues. Each of
these sets is composed of three complex conjugate eigenvalues, i.e., one per harmonic
order. The corresponding eigenvectors on the right-hand side of Fig. 5.3a have nonzero
entries (in green) for both parts of the state vector (i.e., these eigenvalues influence states
both in the power hardware and control software). By inspection of the eigenvector
in the highlighted area denoted by I in Fig. 5.3b, one observes that the entries in the
part associated with the power hardware correspond to ABC-triplets of positive sequence
components. Those entries are located at h = 1 in the part associated with the power
hardware, and at h = 0 in the part associated with the control software. Similarly, in the
highlighted area denoted with II the entries of the eigenvector associated with the power
hardware correspond to ABC-triplets of negative sequence components. Those entries
occur at h = 1 for the part associated with the power hardware, and at h = 2 in the
parts associated with the control software. These observations fit with the theoretical
mapping of harmonic sequence components for a transformation from ABC coordinates to
DQ(Z) components in Fig. 5.3c. The harmonic order is decremented for positive-sequence
components and incremented for negative-sequence components.

Only one set of CDI occurs in the eigenvalue graph in Fig. 5.3a. As can be seen from the
eigenvector matrix, the corresponding eigenvectors have nonzero entries (in yellow) only
in the part of the state vector associated with the power hardware. This is due to the fact
that the CDI eigenvalues can not be moved by changing the control parameters (i.e., as by
definition). A deeper understanding of this fact can be obtained by inspection of Fig. 5.3b.
The nonzero entries of the eigenvectors associated with the CDI eigenvalues exhibit values
corresponding to a homopolar sequence component. Recall that for the CIDER models
introduced in Section 3.3, the power hardware is modelled in ABC coordinates and the
control software in DQ components (i.e., the Z component is not represented in the
controller). Thus, a homopolar sequence originating from the power hardware is not
mapped to the control software. Hence, the invariance of those eigenvalues w.r.t. the
control design.

Finally, one pair of DI eigenvalues is observed in Fig. 5.3a with real part equal to zero.
The eigenvectors of the DI eigenvalues are solely nonzero (in blue) in the part of the
state vector associated with the control software. In particular, note that these entries
correspond to the innermost controller stages (see (3.66)). As illustrated by the right-
hand side of Fig. 5.3c, positive sequences at h = −hmax and h = −(hmax + 1), as well as
negative sequences at h = hmax and h = hmax + 1 are cut off during the DQ(Z)-to-ABC
transformation. By consequence, such eigenvalues can neither be properly controlled nor
analysed if they arise. This explains why the associated eigenvalues are DI.

In line with the remarks regarding spurious eigenvalues in Section 5.3, the above observa-
tions underline the fact that the DI eigenvalues are artefacts of the model rather than
genuine eigenvalues of the system. Therefore, although the DI eigenvalues possess real
parts equal to zero, they do not pose a problem in terms of the HSA. That is, although

129



Chapter 5. Harmonic Stability Assessment

they are borderline (un)stable and invariant w.r.t. parameter changes, their origin is clear
and their influence is marginal. Naturally, this reasoning is only valid if the maximum
harmonic order hmax chosen for the HSA is high enough to cover all relevant phenomena.
The topic of the choice of hmax and its influence on the eigenvalues of the resource is
discussed in the next section.

The second CIDER that is analysed in this chapter is the grid-following CIDER consid-
ering only the AC-side characteristics (as introduced in Section 3.3.2). The classification
of its eigenvalues is shown in Fig. 5.4a. As opposed to the grid-forming CIDER, this
grid-following CIDER exhibits an additional set of CDI, CDV and DI eigenvalues due
to the additional filter stage (i.e., LCL versus LC filter). The eigenvectors of the DI
eigenvalues have entries that are larger than 1E-8 at the states of the two innermost
controller stages. Nevertheless, in comparison the values corresponding to the states
of the innermost controller stage are by several orders of magnitude higher in absolute
value.

Finally, Fig. 5.4b depicts the eigenvalue classification of the third CIDER, i.e., the grid-
following CIDER including the DC-side characteristics (as introduced in Section 3.3.3).
As compared to the grid-following CIDER in Fig. 5.4a, eigenvalues associated with the
additional states corresponding to the filter and controller stages of the DC side are
present. At the same time, an additional set of DI eigenvalues occurs due to the controller
stage associated with the DC side.

5.4.2 Impact of the Maximum Harmonic Order

Methodology

The impact of the maximum harmonic order on the location of the eigenvalues is assessed.
To this end, the eigenvalues of the system matrix are computed for different values of
hmax.

Additionally, the eigenvalues of the LTP models are compared to the ones of the corre-
sponding LTI model. In general, when modelling CIDERs with LTI models, all parts of
the CIDER need to be represented in the same frame of reference (e.g, DQ components).
By consequence, the transformation matrices between the power hardware and control
software simplify to identity, and the CIDER can be characterised by an LTI model. As
to the LTP models, the operating point for deriving the LTI models is taken from the
spectra of the TDS in Section 3.4.

To assess how much the eigenvalues move for different maximum harmonic orders, the
following metric is introduced. Let λi,LT I be an eigenvalue of the LTI system, where
i = 1 . . . nLT I , with nLT I being the size of the LTI system matrix. Next, find the nLT I

eigenvalues of the LTP system for a given hmax, that are located closest to the eigenvalues
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Figure 5.4: Classification of the eigenvalues of the grid-following CIDER considering only
AC-side characteristics (Fig. 5.4a) and the grid-following CIDER including the DC-side
characteristics (Fig. 5.4b). The eigenvalues are shown on the left-hand side and the
matrix of the eigenvectors V on the right-hand side.

of the LTI system. Denote these nLT I eigenvalues of the LTP model with maximum
harmonic order hmax by λ

hmax
i,LT P , where i = 1 . . . nLT I . Note that λ

hmax
i,LT P is a subset of all

eigenvalues of the LTP model, since in general the size of the system matrix nLT P > nLT I .
Define the distance between λi,LT I and λ

hmax
i,LT P as:

di(hmax) = |λi,LT I − λ
hmax
i,LT P | (5.77)

Finally, the metric for similarity between the LTI system and the LTP system for a given
hmax, is defined as follows:

d(hmax) = max
i

(di(hmax)) (5.78)

131



Chapter 5. Harmonic Stability Assessment

In other words, it is the maximum of the distances between the set of all LTI eigenvalues
and the subset of the LTP eigenvalues for a given hmax. Notably, d(hmax) is i) a measure
of similarity between the LTP and LTI model and ii) an indicator for the maximum
harmonic order required to represent all relevant phenomena of the system. With regard
to the latter, one needs to chose hmax large enough so that d(hmax) reaches a stable
value.

Results and Discussion

Fig. 5.5 shows the eigenvalues of the three CIDERs for maximum harmonic orders equal
to 1, 7, 13 and 25, as well as for the LTI model. One can clearly see that the sets of
eigenvalues are clustered in lines with similar real part, one of which is displayed in
detail in the zoomed-in excerpts of Fig. 5.5a–Fig. 5.5c. More precisely, each state in
time-domain corresponds to one cluster of eigenvalues in the harmonic domain. When
increasing the maximum harmonic order, the number of eigenvalues in such a cluster
increases too. This is what one would expect, corresponding to the increase in size of the
system matrix.

For the CIDERs which only consider AC-side characteristics (i.e., Fig. 5.5a and Fig. 5.5b),
increasing the maximum harmonic order does not affect the location of the eigenvalues.
Additionally, the locations of the LTI and LTP eigenvalues coincide for both CIDERs.
For the grid-following CIDER that models the DC side, shown in Fig. 5.5c, the location
of the eigenvalues changes when increasing the maximum harmonic order.

The observations made above are also confirmed by Fig. 5.6, which shows the maximum
distance between the LTI and LTP eigenvalues for a given maximum harmonic order
d(hmax) as defined in (5.78). For the two CIDERs which only model the AC-side
characteristics d(hmax) is constant at zero. This indicates that there are no time-varying
phenomena present in the LTP model, which would be missed by the LTI model. However,
for the grid-following CIDER which includes the DC-side characteristics, d(hmax) in
Fig. 5.6 increases with hmax. For a hmax up to four, the difference between the LTI
and the LTP eigenvalues is close to zero. When increasing hmax further the difference
increases. The changes in Fig. 5.6 can be explained by the entries of the operating point.
In fact, the grid-following CIDER that models the DC side includes a linearization of the
internal response w.r.t. a time-periodic operating point. When increasing hmax, more
and more of the time-periodic entries are considered in the derivation of the system
matrix. Hence, whenever a new nonzero entry of the operating point is considered, the
location of the eigenvalues changes. For the case of the grid-following CIDER with DC
side, d(hmax) saturates around a maximum harmonic order of hmax = 7. This indicates
that the dominant aspects of the nonlinear CIDER behaviour are effectively captured
by these low-order harmonics. This analysis clearly demonstrates the difference in how
CIDERs are represented by LTI models compared to LTP models.
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Figure 5.5: Analysis of the impact of the maximum harmonic order on the location of
the LTP eigenvalues for the grid-forming CIDER (Fig. 5.5a), the grid-following CIDER
(Fig. 5.5b) and the grid-following CIDER that models the DC side (Fig. 5.5c)
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Figure 5.6: Analysis of the impact of hmax on the location of the LTP eigenvalues for
the three CIDERs. The CIDERs being analysed are the grid-forming and grid-following
CIDERs that only model the AC-side characteristics (i.e., Section 3.3.1 and Section 3.3.2,
respectively), and the grid-following CIDER that includes the DC-side modelling (i.e.,
Section 3.3.3). The plot shows the maximum distance between the LTI and the LTP
eigenvalues for increasing hmax.

5.4.3 Sensitivity Analysis of the Eigenvalues w.r.t. to the Control
Parameters

Methodology

In order to determine the sensitivity of the eigenvalues w.r.t. certain controller parameters,
it suffices to vary only these parameters individually (i.e., as opposed to the previous
analysis where several or all parameters are varied simultaneously). Then, the eigenvalues
of the original and modified system are sorted employing the LAP, following the same
principles as described in Section 5.4.1. This procedure is repeated for several incremental
changes of the control parameter under investigation. In this way, one can trace the
eigenvalue loci in the s-plane.

As a trade-off between complexity of the proposed CIDERs and conciseness of the results,
the case of the grid-following CIDER, which only models the AC-side characteristics that
was introduced in Section 3.3.2, is shown in detail. To this end, the sensitivity of the
eigenvalues w.r.t. to the change of the controller feedback gains KFB for the three stages
of the CIDER are analysed. The controller gains are incrementally increased by a factor
of 0.01 from their initial values given in Table 3.4 for N = 70 iterations. For cascaded
control schemes, the inner loops usually respond faster than the outer ones (i.e., their
time constants TFB are smaller). For this reason, the time constants of the controller
stages cannot be tuned independently from each other and therefore not analysed in
detail in this case study.

The sensitivities of the eigenvalues w.r.t. control parameters are useful in the context
of parameter-tuning problems. More precisely, one can select the optimal locations of
the eigenvalues (i.e., w.r.t. a given objective function) while ensuring that the system
is stable. In this thesis, it is shown how to obtain the sensitivities and perform a
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preliminary analysis of the resource and system behaviour w.r.t. to changes of selected
control parameters. The optimal tuning of the parameters remains for future work.

Results and Discussion

Fig. 5.7 shows the eigenvalue loci of the grid-following CIDER, which models only the
AC-side characteristics. To simplify the discussion, the eigenvalues are order into areas I
to IV. Fig. 5.7a shows the eigenvalue locus w.r.t. feedback gain of the outer-most controller
stage. It becomes obvious that increasing KFB,γ leads to a shift of the eigenvalues in
area I, away from the imaginary axis (see also the zoomed portion of the figure). On the
other hand, increasing KFB,γ also moves the eigenvalue pairs in area II and III closer to
the imaginary axis, thereby decreasing the stability margin of the resource. Similarly,
increasing KFB,φ in Fig. 5.7b leads to an analogous shift of the eigenvalues in area I.
The eigenvalues in area II move away from the imaginary axis, while keeping a similar
damping factor. The change of tuning of KFB,α of the inner-most controller stage leads
to a very low sensitivity of the eigenvalues in area I in Fig. 5.7c (i.e., they do almost not
change). The eigenvalues in area II-IV on the other hand, are significantly moved in
direction of the negative real axis. In conclusion, in order to obtain a better tuning of
the CIDER it seems to be most beneficial to increase KFB,α of the inner-most controller
stage. As can be seen from Fig. 5.7c, by increasing the gain up to 10, the eigenvalues of
area II can be moved into the area of damping factors bigger than 0.4.
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Figure 5.7: Sensitivity curves w.r.t. the feedback gain KFB of the controller stage as-
sociated with the grid-side inductance (Fig. 5.7a), the controller stage associated with
the capacitance (Fig. 5.7b) and the controller stage associated with the actuator-side
inductance (Fig. 5.7c) of the grid-following CIDER, which models only the AC-side
characteristics. The maximum harmonic order considered for this analysis is hmax = 5.
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CIDER CIDERSubstation

Figure 5.8: Schematic diagram of the test system used for the HSA. Its line lengths and
cable parameters are based on the CIGRÉ low-voltage benchmark microgrid [1]. All
cables are of type UG1 - for their parameters see Table 4.3.

5.5 Harmonic Stability Assessment of a Power System

This section discusses the HSA of an entire power system. First, the test system is
introduced and the considered steady-state operating point is characterized by means of a
HPF study. Then, similar to the HSA of the individual CIDERs, the system eigenvalues
are classified as CDV, CDI or DI and a brief discussion w.r.t. to the eigenvectors is
provided. Next, both a general and a detailed discussion on the system eigenvalues is
provided. More precisely, a comparison to the eigenvalues of the open-loop resources
and grid, as well as to the LTI eigenvalues is performed. Finally, a case of harmonic
instability is identified using the loci of the system eigenvalues and validated through
TDS with Simulink.

5.5.1 Test System Setup

The proposed HSA is applied to the test system shown in Fig. 5.8. Notably, for the
ease of understanding, i.e., a reasonable number of eigenvalues, a small-scale example
system is chosen. The parameters are taken from the CIGRÉ low-voltage benchmark
microgrid [1]. The HSS is derived for the complete system model, and used to assess the
system’s eigenvalues.

The test system is characterized as follows. The substation is located in node N01. Its
short-circuit parameters, are listed in Table 3.1. Recall from Section 3.4 that, the TE
voltage source injects harmonics, whose levels are given in Table 3.2 and set according
to the limits specified in the standard BS-EN-50160:2000 [3]. All lines are built from
underground cables of type UG1, whose sequence parameters are given in Table 4.3.
Two grid-following CIDERs, of which only the AC-side characteristics are modelled, are
connected at nodes N04 and N05. Their parameters are the same as for the resource
validation, see Table 3.4. In line with the analysis in Section 5.4.3, the parameters of one
of the CIDERs are retuned in order to achieve better overall damping. More precisely,
the feedback gain of the inner-most controller stage KFB,α for the CIDER at N04 is
increased to 16. The setpoints for both grid-following CIDERs are set to Pσ = −50 kW
and Qσ = −16.4 kVAr.

In order to derive the HSS of the system, the harmonic operating point of the system
is derived through the HPF introduced in Section 4.3. Notably, the operating points
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Figure 5.9: Results of the HPF for a system with harmonic distortion (HPF-h), the HPF
for a system with zero harmonic distortion (HPF-0) and a conventional power-flow (PF)
at the fundamental frequency. The figure shows the magnitudes of the nodal quantities
for phase A, at the three nodes, where resources are connected.

needed for the system under consideration are the harmonic phasors of the nodal voltages
at the nodes where the grid-following CIDERs are connected. As previously explained in
Section 3.2.5, the nodal voltages are used in the linearization of the reference calculation
of the grid-following CIDERs. Throughout this section, the eigenvalues obtained from the
HSS model will be compared to the ones obtained from a classical LTI state-space model.
Analogously to the LTP model, the LTI model requires the nodal voltages at nodes, where
the grid-following CIDERs are connected, for the linearization of the reference calculation.
In order to derive the nodal voltages for the LTI case, a conventional power-flow at the
fundamental frequency is conducted. The operating points which have been obtained for
the described cases are displayed in Fig. 5.9. Is it worth noting that the fundamental
component of the nodal voltages is close to 1 p.u. in magnitude, which means that the
system is only lightly loaded.

5.5.2 Classification of the System Eigenvalues

Methodology

For the classification of the LTP eigenvalues as DI, CDI and CDV, the same analysis as
introduced in Section 5.4.1 is performed. Namely, in order to obtain the DI eigenvalues,
all parameters of the system are varied simultaneously. The DI eigenvalues are those that
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Figure 5.10: Classification of the closed-loop system eigenvalues into DI, CDI and CDV
(Fig. 5.10a), and visualization of the eigenvector matrix associated with the eigenvalues
(Fig. 5.10b).
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remain unchanged upon the variation of the parameters. For the derivation of the CDI
eigenvalues, all control parameters (i.e., of the two CIDERs) are varied. Additionally, a
brief analysis of the associated eigenvectors is performed. To improve the understanding
of the composition of the eigenvector matrix, the composition of the system state vector
is recalled. For the ease of understanding, the maximum harmonic order for this analysis
is set to hmax = 1.

This is a preliminary analysis, to understand the characteristics of the system eigenvalues,
and which ones are sensitive to the control parameters of the CIDERs. As mentioned in
Section 5.3, more detailed studies, such as participation factor or modal analyses can be
performed.

Results and Discussion

In Fig. 5.10 the classification of the closed-loop system eigenvalues is given. Fig. 5.10a
shows the overview of all system eigenvalues and their classification as DI, CDI and
CDV. On the right-hand side, a zoom-in on the eigenvalues which are located close to the
imaginary axis is shown. Fig. 5.10b represents the matrix of the eigenvectors obtained
from the eigenvalue decomposition of the closed-loop system. As for the classification
of the eigenvalues for the individual CIDERs, the magnitude of each entry is shown on
a logarithmic scale. Additionally, the entries that exceed a threshold value of 1E-5 are
highlighted using the same colour as the associated classification (e.g., if the eigenvalue
associated with the eigenvector is CDV, the corresponding entries of V are also highlighted
in green). The matrix of the eigenvectors relates the eigenvalues with the states of the
system. Therefore the entries on the horizontal dimension correspond to the eigenvalues
and the vertical dimension is associated with the states of the system. The composition
of the system state vector is recalled on the y-axis in Fig. 5.10b. Namely, the upper and
lower part of the system state consist of the states of the resources (i.e., the TE and the
two grid-following CIDERs), and of the grid, respectively.

Similar to the classification of the individual resources in Section 5.4.1, the CDI eigenvalues
of the system are associated with the homopolar sequences of the grid and power hardware
of the resources. In the eigenvector plots, there is no connection between the homopolar
sequences associated with the grid and the states of the CIDERs and vice versa (i.e.,
either block of the eigenvector is entirely zero). This is due to the circuit configuration
of the grid-following CIDERs, which does not allow homopolar sequences to pass from or
into the power hardware. The DI eigenvalues are the same as for the classification of the
individual CIDER in Fig. 5.4a, namely one set of DI per controller stage of each CIDER.
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5.5.3 Detailed Analysis of the System Eigenvalues

Methodology

For the detailed analysis of the system eigenvalues, a maximum harmonic order of
hmax = 25 is considered. The aim of this analysis is to give a general understanding of
the different groups of eigenvalues being analysed. Due to the large amount of eigenvalues,
as well as their wide distribution, a separation into two sets of eigenvalues is introduced,
i.e., one each associated with the grid and the resources, respectively. The set of system
eigenvalues associated with the grid is briefly discussed in the following. To this end,
they are compared to their open-loop equivalents (i.e., the eigenvalues of the open-loop
grid model).

Subsequently, a more detailed discussion of the set of eigenvalues associated with the
resources is given. First, they are compared to the eigenvalues of the TE and the two
CIDERs (i.e., the open-loop resource models). Second, the impact of the harmonics on
the system eigenvalues is analysed. To this end, the eigenvalues of a system that includes
harmonics as in Table 3.2 is compared to one without harmonic distortion. Notably, for
the two analyses different operating points (i.e., computed through the HPF with and
without harmonic distortion) need to be considered when deriving the HSS model of the
system. Third, the two sets of system eigenvalues are compared to the ones obtained by
an LTI system model. Notably, LTI models are entirely represented in DQ components,
in order to circumvent the consideration of the time-periodic transformation matrices.
Thus, the difference between LTP and LTI is the modelling of the power hardware in
ABC coordinates and DQ components, respectively, as well as the specific consideration of
the transformation blocks in the LTP model.

The comparison of the eigenvalues obtained from the system with harmonic distortion, the
system without harmonic distortion, and the LTI model, allows to understand whether
(i) an observed instability occurs due to harmonic distortion, and whether (ii) it can be
detected by the conventional stability criteria (i.e., by the eigenvalues of the LTI system).

Results and Discussion

Fig. 5.11 shows the comparison of the eigenvalues of the closed-loop system with those of
the open-loop components. To this end the eigenvalues are divided into two sets. The
first set includes the eigenvalues located closer to the imaginary axis (i.e., Fig. 5.11a).
The second set comprises the eigenvalues, that are located closer to the real axis (i.e.,
Fig. 5.11b). As will be shown shortly, the two sets of eigenvalues can be associated with
the grid and the resources, respectively. Both subfigures in Fig. 5.11 give the overview of
all eigenvalues on the left-hand side and a zoomed portion of interest on the right-hand
side.
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Figure 5.11: Division of the system eigenvalues into the two sets associated with the grid
(Fig. 5.11a) and with the resources (Fig. 5.11b), respectively. The left-hand side of both
figures show the entire region containing all eigenvalues, while the right-hand side figures
show a zoom on the regions of interest. Additionally, the eigenvalues of the open-loop
grid and resource models are shown in (Fig. 5.11a) and (Fig. 5.11b), respectively.

Additionally to the closed-loop eigenvalues of the system, Fig. 5.11a displays the eigen-
values of the grid state-space model (i.e., the open-loop model). One can see that the
eigenvalues of the system (i.e., the closed-loop model) are slightly shifted w.r.t. those
of the grid (i.e., the open-loop model). Notably, most of the eigenvalues in Fig. 5.11a
have fairly large imaginary parts (i.e, they occur at high frequencies). These eigenvalues
are related to the shunt capacitances of the lines, which are are extremely small (see
Table 4.3). By consequence, their shunt admittance becomes important only at very
high frequencies (i.e., since Y = jωC). In low-voltage distribution systems, the line
capacitances are usually negligible [1], even though they have to be considered in the
derivation of the HSS model of the grid. This is due to the fact that the nodal voltages,
which are state variables of the system model, are associated with these elements.
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Figure 5.12: Detailed view of the system eigenvalues associated with the resources.
Additionally, the eigenvalues of the open-loop resource models are shown (i.e., PQ1/2
and TE). Note the indication showing how this set of eigenvalues of PQ2 change their
location for the system model.

Fig. 5.11b shows the portion of the system eigenvalues that are associated with the
resources of the system. For this reason, the eigenvalues of the two grid-following resources
at node N04 and N05 and the TE at node N01 are depicted too. In order to analyse the
characteristics of this set of eigenvalues in detail, further analyses are performed in the
following. For the sake of clarity, all subsequent figures directly show the zoom on these
eigenvalues.

In Fig. 5.12, the system eigenvalues associated with the resources and the eigenvalues of
the open-loop resource models (i.e., the TE and the two grid-following resources) are
shown. Notably, the eigenvalues of the closed-loop system significantly change their
locations compared to those of the open-loop models. In particular, the sets of eigenvalues
related to the CIDER at N05 (see indications in Fig. 5.12), which have low damping,
further reduce their damping factors.

Fig. 5.13 illustrates the impact of harmonic distortion in a system on the location of the
eigenvalues. The figure compares the eigenvalues of the system with harmonic distortion
to the eigenvalues of a system with purely sinusoidal waveforms. One can clearly observe
how the set of LTP eigenvalues with low damping factor becomes more dispersed for
the system with harmonic distortion. This is due to the nonlinearity of the reference
calculation of the CIDER, which causes coupling between different frequencies (i.e.,
non-zero off-diagonal elements of the system matrix). Since the reference calculation
is not part of the internal response of the CIDERs, this effect can only be seen once
the closed-loop system is calculated. This is further underlined by the fact that the
associated open-loop components in Fig. 5.12 do not show this dispersion.
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Figure 5.13: Detailed view of the system eigenvalues associated with the resources.
Comparison of the system eigenvalues obtained with the HSS model considering a
system with zero harmonic distortion to one with harmonic distortion. Additionally, the
eigenvalues of the LTI model are shown.

In Fig. 5.13, the real parts of the eigenvalues of the LTP system without harmonics
match with those of the LTI system. This is according to expectations, since the LTI and
LTP models of the CIDERs are equivalent in the absence of harmonic distortion. For
the sake of clarity, the eigenvalues of the LTI system are used subsequently to represent
an LTP system without harmonic distortion.

5.5.4 Sensitivity Analysis and Harmonic Instability

Methodology

A sensitivity analysis of the system eigenvalues w.r.t. to KFB,α of the CIDER at N05 is
performed. The goal of this analysis is to find a case of harmonic instability. Namely,
an instability that occurs only if harmonic distortion is present in the system. To this
end, the controller gain is incrementally reduced by 1% of its previous value for N = 18
iterations. Recall from Fig. 5.7c, that an increase of KFB,α yields better damping of the
individual grid-following CIDER. Based on the eigenvalue loci, the stability boundary
obtained from the LTP and LTI system eigenvalues are compared.

Finally, the same test is performed through TDS with Simulink. The model components
are reused from the Simulink models employed for the validations in Chapter 3 and
Chapter 4. More precisely, two simulations are conducted in Simulink. In both simulations,
the feedback gain KFB,α of the CIDER at N05 is decreased repeatedly over time. The time
between two changes is chosen long enough such that the system reaches a new steady
state, before changing the parameter again. The difference between the two simulations
are the background harmonics injected at the substation. In the first scenario, the TE
does not inject any harmonics, thus the approximate LTI model is expected to yield
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Figure 5.14: Sensitivity analysis of the system eigenvalues for the LTP and LTI models
w.r.t. the controller gain Kα,FB of the grid-following CIDER at N05. Fig. 5.14a and
Fig. 5.14b show the system eigenvalues associated with the grid and the resources,
respectively. The maximum harmonic order of this analysis is hmax = 25.

accurate stability boundaries. Conversely, in the second scenario, harmonics are injected
as specified in Table 3.2. In this case, the more accurate LTP model should outperform
the LTI model in terms of HSA.

Results and Discussion

Fig. 5.14 shows the sensitivity of the system eigenvalues w.r.t. the controller gain Kα,FB

of the grid-following CIDER at N05. Fig. 5.14a depicts a zoom on the eigenvalue loci
associated with the grid. As can be seen, the sensitivities of these eigenvalues are
virtually negligible (i.e., the eigenvalues do not move significantly when changing the
control parameter).
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Fig. 5.14b shows the eigenvalue loci associated with the resources. More precisely, the
curves obtained from the LTP and LTI analysis are compared. One can observe that
the eigenvalues of the LTP model cross the imaginary axis earlier than the ones of the
LTI model. Thus, there exists a gain, which only leads to instability in case harmonic
distortion is present in the system. Furthermore, it is not possible to observe this
instability with conventional stability criteria (i.e., the eigenvalues of the LTI model).

Fig. 5.15 shows the validation of the observed stability boundary in Fig. 5.14b through
TDS in Simulink. In Fig. 5.15b, the system is excited with a pure fundamental component
at the substations, while in Fig. 5.15a, the usual harmonic distortion is injected at the
TE. Both subfigures show the nodal voltage and the injected active power at node N05 of
the test system. The last subplot in the subfigures shows how the controller gain Kα,FB

is decreased gradually until the system becomes unstable. As can be seen in Fig. 5.15a,
the system becomes unstable earlier in the presence of harmonics. (i.e., as compared to
purely sinusoidal behaviour at the substation as illustrated Fig. 5.15b). This confirms
the observations, made in Fig. 5.14, and shows a case of harmonic instability, that can
not be observed with conventional stability criteria. That is, an instability of this type
can only be detected by the LTP model but not by the LTI model.
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(a)

(b)

Figure 5.15: Validation of the observed instability through TDS in Simulink. Fig. 5.15a
gives the stability boundary for the test system if harmonics are present in the system
(i.e., a “harmonic instability” in line with the definition in Section 1.2), and Fig. 5.15b
shows the case without harmonic injection at the substation (i.e., purely sinusoidal
behaviour). Each figure shows the nodal voltage of phase A (i.e., vγ,A) and the injected
power P at node N05, in the first and second plot of the figure, respectively. The last
plot in both figures depicts the decrease of the controller gain Kα,FB of the grid-following
CIDER at N05 as the system becomes unstable.
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6 Conclusion

This thesis developed and validated methods for the HA of power systems with a high
share of CIDERs. Specifically, a suitable modelling framework was proposed in Chapter 2
(along with a library of component models detailed in Chapter 3), and subsequently
employed for HPF studies and for the HSA in Chapter 4 and Chapter 5, respectively. Both
methods were demonstrated to be accurate and applicable to typical power systems. In
particular, it was shown that the coupling between harmonic frequencies in power systems
with numerous CIDERs has a considerable impact on the propagation of harmonics (i.e.,
Chapter 4), as well as instabilities that occur due to them (i.e., Chapter 5).

An important objective of the presented research was to achieve generality w.r.t. the
structure of CIDERs and their control laws, as well as modularity w.r.t. their specific
components. To this end, the modelling framework in Chapter 2 was proposed, which
is based on LTP systems theory. The component models were first formulated in time
domain, and then transformed to harmonic domain by means of the Fourier and Toeplitz
theory. Moreover, extensions of the modelling framework which account for nonlinearities
within the internal structure of the CIDER, and enable the modelling of hybrid AC/DC
power systems were proposed. For the latter, the model of the NICs was introduced as a
variation of the CIDER model. This modelling framework presents a powerful foundation
for the analysis of power systems, due to the modularity and generality of the underlying
models, as well as accuracy w.r.t. to the coupling between harmonic frequencies.

In Chapter 3, the applicability of the proposed modelling framework to typical grid-
forming and grid-following CIDERs was demonstrated. The models of common types
of CIDERs as well as a library of frequently used CIDER components were presented.
More precisely, the models of grid-forming and grid-following CIDERs that only model
the AC-side characteristics, as well as, a grid-following CIDER including the modelling
of the DC-side characteristics were proposed. It was demonstrated that these models
can accurately represent the interaction among harmonics in a single CIDER, as shown
by comparing their harmonic domain grid responses with TDS conducted in Simulink.

149



Chapter 6. Conclusion

In Chapter 4, a HPF method for the analysis of propagation of harmonics within large
power systems with numerous CIDERs was proposed. The HPF problem was formulated
by combining the hybrid nodal equations of the grid with the HDR of the CIDERs,
and solved using the Newton-Raphson method. First, the case of purely AC power
systems was considered, and then extended for treating the CIDER model including the
DC side, and finally fully generalized for the analysis of hybrid AC/DC power systems.
All formulations of HPF method were shown to yield accurate results when analysing
benchmark grids, i.e., a modified version of the CIGRÉ low-voltage benchmark microgrid
and a typical hybrid AC/DC grid. The extended methods provide improved accuracy
at the cost of increase computational burden. By consequence, a compromise has to
be made between the benefit of increased accuracy and the drawback of additional
computation time. The implementation of the tree types of the HPF method and its
validation through example systems are open source and can be found on this GitHub.

In Chapter 5, the HSS model of a generic power system was introduced and employed in
the context of HSA through eigenvalue analysis. The HSS model of the power system
is obtained by combining the HSS models of the resources and the grid in closed-loop
configuration. The applicability of the HSA to both individual CIDERs as well as entire
power systems was demonstrated. Based on the sensitivity of the eigenvalues to parameter
changes, a classification into control-design variant, control-design invariant and design
invariant eigenvalues was proposed. An in-depth analysis of the classification of the
eigenvalues, the impact of the maximum harmonic order on the eigenvalue loci, and the
sensitivity of the eigenvalues w.r.t. to specific control parameters was performed. Finally,
the HSA was demonstrated to accurately detect harmonic instability in a test system, as
identified through the system eigenvalues and confirmed with TDS in Simulink.

The proposed research can potentially support grid operators, device manufacturer, and
standardization committees in tackling the challenges arising from the prevalence of
harmonics in modern power systems. Grid operators can benefit from the strengths of
the HPF models and methods for analysing the existing systems and optimizing their
future design. Device manufactures can exploit the insights gained from the HSA in
order to evaluate the control schemes of CIDERs and tune the associated parameters
such that robustness w.r.t. harmonic distortion is achieved. Finally, standardization
committees can leverage both of the aforementioned tools in order to revise the metrics
and operational boundaries for modern power systems.
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Future Work

Building on the research presented in this thesis, the following topics are suggested for
further investigation:

• The library of CIDER models could be expanded further. Specifically, additional
components of the CIDER that introduce further nonlinearities could be investigated.
In collaboration with the Chair of Power Electronics at Kiel University, the impact
of grid synchronization on the propagation of harmonics was examined by employing
the proposed HPF method [111]. Additional topics to explore include different
types of controllers (e.g., PR), controllers that are not following the cascaded
structure, more types of actuators including modular multi-level converters, and
other types of CIDERs (e.g., grid-forming CIDERs including in-depth models of
the DC side and synchronverters).

• The convergence behaviour of the initial version of the HPF algorithm proposed in
Section 4.3.2 merits a detailed examination. In a ongoing research collaboration
between the Distributed Electrical Systems Laboratory at EPFL and the Electrical
Engineering and Information Technology Department at the University of Naples
Federico II, a fixed-point formulation of the algorithm has been developed in order
to study the convergence behaviour. This formulation is being studied with respect
to explicit sufficient conditions that ensure the existence and uniqueness of the
solution of the HPF problem.

• The computational performance of the proposed HPF and HSA methods needs
to be better investigated for large, complex systems. While both the modelling
framework and the solution method are capable to handle large, complex systems,
their performance may scale poorly due to the size of the matrices involved. In
order to alleviate this issue, different strategies could be employed, such as model-
order reductions, use of more efficient programming languages (e.g., C++) and/or
numerical libraries (e.g., LAPACK/BLAS), parallelization of the calculation in
software and hardware (e.g., multi-core/machine setup).

• In the context of the eigenvector analysis, the subject of participation factors
for the HSA based on LTP models has been discussed briefly. Performing a
more comprehensive analysis in this regard would be beneficial for gaining a clearer
understanding of the significance of individual eigenvalues associated to the different
harmonic frequencies.

• Moreover, the sensitivity analysis of the eigenvalues could be employed to perform
parameter tuning for individual CIDERs or the entire system (i.e., including a
system-level controller). Such a parameter-tuning problem would aim at tuning
the controllers robustly w.r.t. to harmonic distortions and instability.
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• Finally, ongoing research efforts aim at including the effect of communication delays
into the HA. The primary goal of this work is to investigate the stability of systems
where the system-level control is prone to communication delays. In principle, such
delays can readily be incorporated in the proposed framework. More precisely, any
time delay affecting a particular variable translates to different phase shifts in the
harmonic phasors of this quantity. Preliminary analyses of this phenomenon have
already been carried out using a testbench that comprises a real-time simulator
from OPAL-RT and a communication network emulator from Paket Storm, but
further work is required.
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A Appendix

A.1 Measurement Accuracy of Instrument Transformers

The accuracy of instrument transformers, is defined by several standards [5, 4, 86]. For
the measurements of harmonics, it is referred to commonly used 0.5 class instrument
transformers, whose accuracies are given in Table A.1. The values are defined in
percentage of the rated voltage magnitude.

Table A.1: Accuracy requirements for instrument transformers for voltage measurements
including harmonics [4, 5].

h e(|V |) e(arg (V ))
1 0.5 % 6 mrad

2-4 5 % 87.3 mrad
5-6 10 % 174.5 mrad
7-9 20 % 349.1 mrad

10-13 20 % 349.1 mrad
above 13 20-100 % -

A.2 Modelling of Sources of Harmonics other than CIDERs

Naturally, harmonics may originate from sources which are not CIDERs, such as conven-
tional resources or upstream and downstream power grids (i.e., “background” harmonics).
Indeed, the proposed approach can accommodate such sources of harmonics which are
not converter-interfaced. Namely – much like CIDERs – they can be represented by
transfer functions in the harmonic domain. In this respect, the sole prerequisite is that
such transfer functions can somehow be obtained – i.e., either from a suitable model or
via system identification.
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Figure A.1: Comparison of line branch admittances of the π-section equivalents with
and without frequency-dependence of the cable parameters. For illustration, the element
(1, 1) of the compound admittance matrices of the cable types (i.e., UG1 and UG3) is
shown. The curves labelled with the suffix “fd” correspond to the cable models with
frequency-dependent parameters.

For instance, a harmonic TE or NE can be used. Let m ∈ N be a node at which a
non-CIDER source of harmonics is located. If a TE is used, the injected current is given
by

Îm = Ẑ−1
TE,m(V̂m − V̂TE,m) (A.1)

where V̂TE and ẐTE are the harmonic voltage source and harmonic impedance, respec-
tively, of the TE. If a NE is used instead, the injected current is given by

Îm = ÎNE,m − ŶNE,mV̂m (A.2)

where ÎNE and ŶTE are the harmonic current source and harmonic admittance, re-
spectively, of the NE. In these cases, the generation of harmonics is represented by
the equivalent voltage or current sources, and the coupling between harmonics by the
equivalent impedances or admittances (i.e., by the off-diagonal blocks of these matrices).

A.3 Frequency-Dependent Line Parameters

A.3.1 Impact on the Branch Admittance of the Line Model

The CIGRÉ report [1], in which the benchmark microgrid is specified, does not provide
any information on the frequency dependency of the cable parameters. Therefore, the
cable parameters were calculated using EMTP-RV based on the available data on cable
material and geometry. The behaviour of the branch admittances as function of frequency
is shown in Figure A.1. For illustration, the element (1, 1) of the compound admittance
matrices are shown. As one can see, whether or not the frequency dependency of the
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parameters is considered has virtually no impact on the magnitude of the line admittance.
In the phase, there is a slight difference between the two models at higher frequencies.

A.3.2 Impact on the Results of the Harmonic Power-Flow Study

In order to assess the impact on the results of the HPF study, analyses were conducted
on the benchmark system using either the line model with frequency-invariant or -
dependent parameters. The obtained results are shown in Figure A.2. For illustration,
the comparison is done at three nodes throughout the benchmark system. The results are
compared at three nodes throughout the system. As one can see, the spectra obtained
using the different line models are congruent. This is in line with the previously discussed
analyses made in EMTP-RV.

A.4 Decoupled Harmonic Power Flow

In the decoupled HPF, the CIDERs are represented by harmonic current sources. The
harmonic content of these current sources is determined a priori through appropriate sim-
ulations or measurements. More precisely, the harmonic current phasors are characterized
by a complex ratio w.r.t. the fundamental current phasor:

αh = Ih

I1
∈ C (A.3)

For the HPF analysis, a power flow study is first performed at the fundamental frequency.
Then, the harmonic currents are inferred from the calculated fundamental currents and
the available harmonic ratios. The system equations are solved independently at each
harmonic frequency using the hybrid parameters of the grid. For further details please
refer to [87].
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(a)

(b)

Figure A.2: Impact of the frequency-dependent parameters on the results of the HPF
study. The results are compared at three nodes throughout the benchmark system. The
voltages for Phase A are given in A.2a and the currents in A.2b. The results labelled
with the suffix “fd” correspond to the line models with frequency-dependent parameters.
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