Point-Based Computer Graphics

Eurographics 2003 Tutorial T1

Organizers

Markus Gross
ETH Zürich

Hanspeter Pfister
MERL, Cambridge

Presenters

Marc Alexa TU Darmstadt

Carsten Dachsbacher Universität Erlangen-Nürnberg

Markus Gross
ETH Zürich
Mark Pauly
ETH Zürich
Jeroen van Baar
MERL, Cambridge
Matthias Zwicker
ETH Zürich

Contents

Tutorial Schedule ... 2
Presenters and Organizers Contact Information .. 3
References .. 4
Project Pages .. 5

Tutorial Schedule

Introduction (Markus Gross)
Acquisition of Point-Sampled Geometry and Appearance (Jeroen van Baar)
Point-Based Surface Representations (Marc Alexa)
Point-Based Rendering (Matthias Zwicker)
Lunch
Sequential Point Trees (Carsten Dachsbacher)
Efficient Simplification of Point-Sampled Geometry (Mark Pauly)
Spectral Processing of Point-Sampled Geometry (Markus Gross)
Pointshop3D: A Framework for Interactive Editing of Point-Sampled Surfaces
(Markus Gross)
Shape Modeling (Mark Pauly)
Pointshop3D Demo (Mark Pauly)
Discussion (all)

Presenters and Organizers Contact Information

Dr. Markus Gross

Professor
Department of Computer Science
Swiss Federal Institute of Technology (ETH)
CH 8092 Zürich
Switzerland
Phone: +41 16327114
FAX: +41 16321596
grossm@inf.ethz.ch
http://graphics.ethz.ch

Dr. Hanspeter Pfister

Associate Director
MERL - A Mitsubishi Electric Research Lab
201 Broadway
Cambridge, MA 02139
USA
Phone: (617) 621-7566
Fax: (617) 621-7550
pfister@merl.com
http://www.merl.com/people/pfister/

Jeroen van Baar

MERL - A Mitsubishi Electric Research Lab
201 Broadway
Cambridge, MA 02139
USA
Phone: (617) 621-7577
Fax: (617) 621-7550
jeroen@merl.com
http://www.merl.com/people/jeroen/
Matthias Zwicker
Department of Computer Science
Swiss Federal Institute of Technology (ETH)
CH 8092 Zürich
Switzerland
Phone: +41 16327437
FAX: +41 16321596
zwicker@inf.ethz.ch
http://graphics.ethz.ch

Mark Pauly

Department of Computer Science
Swiss Federal Institute of Technology (ETH)
CH 8092 Zürich

Switzerland
Phone: +41 16320906
FAX: +41 16321596
pauly@inf.ethz.ch
http://graphics.ethz.ch
Dr. Marc Stamminger
Universität Erlangen-Nürnberg
Am Weichselgarten 9
91058 Erlangen
Germany
Phone: +49 91318529919
FAX: +49 91318529931
Marc.Stamminger@informatik.uni-erlangen.de

Carsten Dachsbacher

Universität Erlangen-Nürnberg
Am Weichselgarten 9
91058 Erlangen
Germany
Phone: +49 91318529925
FAX: +49 91318529931
dachsbacher@informatik.uni-erlangen.de

Dr. Marc Alexa

Interactive Graphics Systems Group
Technische Universität Darmstadt
Fraunhoferstr. 5
64283 Darmstadt
Germany
Phone: +49 6151155674
FAX: +49 6151155669
alexa@gris.informatik.tu-darmstadt.de
http://www.dgm.informatik.tu-darmstadt.de/staff/alexa/

References

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, C. Silva. Point set surfaces. Proceedings of IEEE Visualization 2001, p. 21-28, San Diego, CA, October 2001.
C. Dachsbacher, C. Vogelsang, M. Stamminger, Sequential point trees. Proceedings of SIGGRAPH 2003, to appear, San Diego, CA, July 2003.
O. Deussen, C. Colditz, M. Stamminger, G. Drettakis, Interactive visualization of complex plant ecosystems. Proceedings of IEEE Visualization 2002, Boston, MA, October 2002.
W. Matusik, H. Pfister, P. Beardsley, A. Ngan, R. Ziegler, L. McMillan, Imagebased 3D photography using opacity hulls. Proceedings of SIGGRAPH 2002, San Antonio, TX, July 2002.
W. Matusik, H. Pfister, A. Ngan, R. Ziegler, L. McMillan, Acquisition and rendering of transparent and refractive objects. Thirteenth Eurographics Workshop on Rendering, Pisa, Italy, June 2002.
M. Pauly, R. Keiser, L. Kobbelt, M. Gross, Shape modelling with point-sampled geometry, to appear, Proceedings of SIGGRAPH 2003, San Diego, CA, July 2003.
M. Pauly, M. Gross, Spectral processing of point-sampled geometry. Proceedings of SIGGRAPH 2001, p. 379-386, Los Angeles, CA, August 2001.
M. Pauly, M. Gross, Efficient Simplification of Point-Sampled Surfaces. IEEE Proceedings of Visualization 2002, Boston, MA, October 2002.
H. Pfister, M. Zwicker, J. van Baar, M. Gross, Surfels - surface elements as rendering primitives. Proceedings of SIGGRAPH 2000, p. 335-342, New Orleans, LS, July 2000.
M. Stamminger, G. Drettakis, Interactive sampling and rendering for complex and procedural geometry, Rendering Techniques 2001, Proceedings of the Eurographics Workshop on Rendering 2001, June 2001.
L. Ren, H. Pfister, M. Zwicker, Object space EWA splatting: a hardware accelerated approach to high quality point rendering. Proceedings of the Eurographics 2002, to appear, Saarbrücken, Germany, September 2002.
M. Zwicker, H. Pfister, J. van Baar, M. Gross, EWA volume splatting.

Proceedings of IEEE Visualization 2001, p. 29-36, San Diego, CA, October 2001.
M. Zwicker, H. Pfister, J. van Baar, M. Gross, Surface splatting. Proceedings of SIGGRAPH 2001, p. 371-378, Los Angeles, CA, August 2001.
M. Zwicker, H. Pfister, J. van Baar, M. Gross, EWA splatting. IEEE Transactions on Visualization and Computer Graphics.
M. Zwicker, M. Pauly, O. Knoll, M. Gross, Pointshop 3D: an interactive system for point-based surface editing. Proceedings of SIGGRAPH 2002, San Antonio, TX, July 2002

Project Pages

- Rendering http://graphics.ethz.ch/surfels
- Acquisition http://www.merl.com/projects/3Dimages/
- Sequential point trees
http://www9.informatik.uni-erlangen.de/Persons/Stamminger/Research
- Modeling, processing, sampling and filtering http://graphics.ethz.ch/points
- Pointshop3D
http://www.pointshop3d.com

Eurographics 2003
Point-Based Computer Graphics

Tutorial T1

Marc Alexa, Carsten Dachsbacher, Markus Gross, Mark Pauly, Hanspeter Pfister, Marc Stamminger, Jeroen Van Baar, Matthias Zwicker

Surf. Reps. for Graphics ECO3

Polynomials -> Triangles ECO3

- Piecewise linear approximations
- Irregular sampling of the surface
- Forget about parameterization
\checkmark Robust evaluation of geometric entities
\checkmark Shape control for smooth shapes
\checkmark Advanced physically-based modeling
\times Require parameterization
\times Discontinuity modeling
\times Topological flexibility
Refine h rather than p !
Point-Based Computer Graphics
Markus Gross 3

Triangles -> Points
EC 63

- From piecewise linear functions to Delta distributions
- Forget about connectivity

Point clouds

- Points are natural representations within 3D acquisition systems
- Meshes provide an articifical enhancement of the acquired point samples
Point-Based Computer Graphics

Markus Gross

\qquad 6

History of Points in Graphics CO_{3}

- Particle systems [Reeves 1983]
- Points as a display primitive [Whitted, Levoy 1985]
- Oriented particles [Szeliski, Tonnesen 1992]
- Particles and implicit surfaces [Witkin, Heckbert 1994]
- Digital Michelangelo [Levoy et al. 2000]
- Image based visual hulls [Matusik 2000]
- Surfels [Pfister et al. 2000]
- QSplat [Rusinkiewicz, Levoy 2000]
- Point set surfaces [Alexa et al. 2001]
- Radial basis functions [Carr et al. 2001]
- Surface splatting [Zwicker et al. 2001]
- Randomized z-buffer [Wand et al. 2001]
- Sampling [Stamminger, Drettakis 2001]
- Opacity hulls [Matusik et al. 2002]
- Pointshop3D [Zwicker, Pauly, Knoll, Gross 2002]...?
I) ...to introduce points as a versatile and powerful graphics primitive
II) ...to present state of the art concepts for acquisition, representation, processing and rendering of point sampled geometry
III) ...to stimulate YOU to help us to further develop Point Based Graphics

Taxonomy

Point-Based Graphics

Point-Based Computer Graphics
Markus Gross 9

Morning Schedule

- Introduction (Markus Gross)
- Acquisition of Point-Sampled Geometry and Apprearance (Jeroen van Baar)
- Point-Based Surface Representations (Marc Alexa)
- Point-Based Rendering (Matthias Zwicker)

Afternoon Schedule ECO_{3}

- Sequential point trees (Carsten Dachsbacher)
- Efficient simplification of point-sampled geometry (Mark Pauly)
- Spectral processing of point-sampled geometry (Markus Gross)
- Pointshop3D: A framework for interactive editing of point-sampled surfaces (Markus Gross)
- Shape modeling (Mark Pauly)
- Pointshop3D demo (Mark Pauly)
- Discussion (all)

Eurographics 2003

Acquisition of Point-Sampled Geometry and Appearance

Jeroen van Baar and Hanspeter Pfister, MERL [jeroen,pfister]@merl.com

Wojciech Matusik, MIT
Addy Ngan, MIT
Paul Beardsley, MERL
Remo Ziegler, MERL
Leonard McMillan, MIT

Image-Based 3D Photography

ECO3

- An image-based 3D scanning system.
- Handles fuzzy, refractive, transparent objects.
- Robust, automatic
- Point-sampled geometry based on the visual hull.
- Objects can be rendered in novel environments.

Point-Based Computer Graphics
Hanspeter Pfister, MERL

The Goal: To Capture Reality

- Fully-automated 3D model creation of real objects.
- Faithful representation of appearance for these objects.

Previous Work

- Active and passive 3D scanners
- Work best for diffuse materials.
- Fuzzy, transparent, and refractive objects are difficult.
- BRDF estimation, inverse rendering
- Image based modeling and rendering
- Reflectance fields [Debevec et al. 00]
- Light Stage system to capture reflectance fields
- Fixed viewpoint, no geometry
- Environment matting [Zongker et al. 99, Chuang et al. 00]
- Capture reflections and refractions
- Fixed viewpoint, no geometry

Acquisition

- For each viewpoint (6 cameras $\times 72$ positions)
- Alpha mattes
- Use multiple backgrounds [Smith and Blinn 96]
- Reflectance images
- Pictures of the object under different
lighting
(4 lights $\times 11$ positions)
- Environment mattes
- Use similar techniques as [Chuang et al. 2000]

Geometry Example

Point-Based Computer Graphics
Hanspeter Pfister, MERL 14

Approximate Geometry

- The approximate visual hull is augmented by radiance data to render concavities, reflections, and transparency.

Surface Light Fields

- A surface light field is a function that assigns a color to each ray originating on a surface. [Wood et al., 2000]

Color Blending

- Blend colors based on angle between virtual camera and stored colors.
- Unstructured Lumigraph Rendering
[Buehler et al., SIGGRAPH 2001]
- View-Dependent Texture Mapping
[Debevec, EGRW 98]

Geometry - Opacity Hull

- Store the opacity of each observation at each point on the visual hull [Matusik et al. SIG2002].

Opacity Hull - Discussion

- View dependent opacity vs. geometry trade-off.
- Sometimes acquiring the geometry is not possible.
- Sometimes representing true geometry would be very inefficient.
- Opacity hull stores the "macro" effect.
- Overview
- Previous Works
- Geometry
> Reflectance
- Refraction \& Transparency

Surface Reflectance Fields

- 6D function: $W\left(P, \omega_{i}, \omega_{r}\right)=W\left(u_{r}, v_{r} ; \theta_{i}, \Phi_{i} ; \theta_{r}, \Phi_{r}\right)$

Surface Reflectance Fields

- Work without accurate geometry
- Surface normals are not necessary
- Capture more than reflectance
- Inter-reflections
- Subsurface scattering
- Refraction
- Dispersion
- Non-uniform material variations
- Simplified version of the BSSRDF

Compression

- Subdivide images into 8×8 pixel blocks.
- Keep blocks containing the object (avg. compression 1:7)
- PCA compression (avg. compression 1:10)

Outline

- Overview
- Previous Works
- Geometry
- Reflectance
> Refraction \& Transparency

Acquisition

CO_{3}

- We separate the hemisphere into high resolution ${ }_{\mathrm{h}}$ and low resolution .

$$
C(x, y)=\int_{\Omega_{h}} W_{h}(\xi) T(\xi) d \xi+\int_{\Omega_{l}} W_{l}\left(\omega_{i}\right) L\left(\omega_{i}\right) d \omega
$$

$C(x, y)=\int_{\Omega_{h}} W_{h}(\xi) T(\xi) d \xi+\int_{\Omega_{l}} W_{l}\left(\omega_{i}\right) L\left(\omega_{i}\right) d \omega$

$\int_{\Omega_{l}} W_{l}\left(\omega_{i}\right) L\left(\omega_{i}\right) d \omega \approx \sum_{i=1}^{n} W_{i} L_{i}$ for n lights

Acquisition

- For each viewpoint (6 cameras $\times 72$ positions)
- Alpha mattes
- Use multiple backgrounds [Smith and Blinn 96]
- Reflectance images $<$ Low resolution
- Pictures of the object under different lighting
(4 lights $\times 11$ positions)
- Environment mattes $<$ High resolution
- Use similar techniques as [Chuang et al. 2000]

High-Resolution Reflectance Field

$$
C(x, y)=\int_{\Omega_{h}} W_{h}(\xi) T(\xi) d \xi+\int_{\Omega_{t}} W_{l}\left(\omega_{i}\right) L\left(\omega_{i}\right) d \omega
$$

- Use techniques of environment matting [Chuang et al., SIGGRAPH 00].

Reproject h

- Project environment mattes onto the new environment.
- Environment mattes acquired was parameterized on plane T (the plasma display).
- We need to project the Gaussians to the new environment map, producing new Gaussians.

Results

- Performance for $6 \times 72=432$ viewpoints
- 337,824 images taken in total !!
- Acquisition (47 hours)
- Alpha mattes - 1 hour
- Environment mattes - 18 hours
- Reflectance images - 28 hours
- Processing
- Opacity hull ~ 30 minutes
- PCA Compression ~ 20 hours (MATLAB, unoptimized)
- Rendering ~ 5 minutes per frame
- Size
- Opacity hull ~ 30-50 MB
- Environment mattes~0.5-2 GB
- Reflectance images ~ Raw 370 GB / Compressed 2-4 GB

Results - Combined

Point-Based Computer Graphics

- Real-time rendering
- Done! [Vlasic et al., I3D 2003]
- Better environment matting
- More than two Gaussians
- Better compression
- MPEG-4 / JPEG 2000

Acknowledgements

- Colleagues:
- MIT: Chris Buehler, Tom Buehler
- MERL: Bill Yerazunis, Darren Leigh, Michael Stern
- Thanks to:
- David Tames, Jennifer Roderick Pfister
- NSF grants CCR-9975859 and EIA-9802220
- Papers available at:
http://www.merl.com/people/pfister/

Eurographics 2003

ECO3

Point-Based Computer Graphics

Marc Alexa, Carsten Dachsbacher, Markus Gross, Mark Pauly, Hanspeter Pfister, Marc Stamminger, Matthias Zwicker

Point-based Surface Reps

CCO

- Marc Alexa
- Discrete Geometric Modeling Group
- Darmstadt University of Technology
- alexa@informatik.tu-darmstadt.de

Motivation

CO_{3}

- Many applications need a definition of surface based on point samples
- Reduction
- Up-sampling
- Interrogation (e.g. ray tracing)
- Desirable surface properties
- Manifold
- Smooth
- Local (efficient computation)

Introduction \& Basics

CCO3

- Terms
- Regular/Irregular, Approximation/Interpolation, Global/Local
- Standard interpolation/approximation techniques
- Triangulation, Voronoi-Interpolation, Least Squares (LS), Radial Basis Functions (RBF), Moving LS
- Problems
- Sharp edges, feature size/noise
- Functional -> Manifold

Overview

CO 3

- Introduction \& Basics
- Fitting Implicit Surfaces
- Projection-based Surfaces

Terms: Regular/Irregular

- Regular (on a grid) or irregular (scattered)
- Neighborhood (topology) is unclear for irregular data

Terms:
Approximation/Interpolation
ECO3

- Noisy data -> Approximation

- Perfect data -> Interpolation

Terms: Global/Local

CCO_{3}

- Global approximation

- Local approximation

- Locality comes at the expense of smoothness

Triangulation

CO 3

- Exploit the topology in a triangulation (e.g. Delaunay) of the data
- Interpolate the data points on the triangles
- Piecewise linear \rightarrow C0
- Piecewise quadratic \rightarrow C1?

Voronoi Interpolation

Voronoi Interpolation

CO 3

- compute Voronoi diagram
- for any point x in space
- add x to Voronoi diagram
- Voronoi cell τ around x intersects original cells τ_{i} of natural neighbors n_{i}
- interpolate

$$
f(x)=\frac{\sum_{i} \lambda_{i}(x) \cdot\left(f_{i}+\nabla f_{i}^{\top} \cdot\left(x-x_{i}\right)\right)}{\sum_{i} \lambda_{i}(x)}
$$

$$
\text { with } \lambda_{i}(x)=\frac{\left|\tau \cap \tau_{i}\right|}{|\tau| \cdot\left\|x-x_{i}\right\|}
$$

Triangulation: Piecewise

 linear
CO 3

- Barycentric interpolation on simplices (triangles)
- given $d+1$ points x_{i} with values f_{i} and a point x inside the simplex defined by x_{i}
- Compute α_{i} from
$x=\Sigma_{i} \alpha_{i} \cdot x_{i}$ and $\Sigma_{i} \alpha_{i}=1$
- Then
$f=\Sigma_{i} \alpha_{i} \cdot f_{i}$

Voronoi Interpolation

ECOB

Properties of Voronoi Interpolation:

- linear Precision
- local
- for $d=1 \rightarrow f(x)$ piecewise cubic
- $f(x) \in C^{1}$ on domain
- $f\left(x, x_{1}, \ldots, x_{n}\right)$ is continuous in x_{i}

Least Squares - Example ECo3

- Primitive is a polynomial

$$
g(x)=\left(1, x, x^{2}, \ldots\right) \cdot \mathbf{c}^{T}
$$

- $\min \sum_{i}\left(p_{i_{y}}-\left(1, p_{i_{x}}, p_{i_{x}}^{2}, \ldots\right) \mathbf{c}^{T}\right)^{2} \Rightarrow$
$0=\sum_{i} 2 p_{i_{x}}^{j}\left(p_{i_{y}}-\left(1, p_{i_{x}}, p_{i_{x}}^{2}, \ldots\right) \mathbf{c}^{T}\right)$
- Linear system of equations

Least Squares

CO3

- Fits a primitive to the data
- Minimizes squared distances between the p_{i} 's and primitive g

$\min _{g} \sum_{i}\left(p_{i_{y}}-g\left(p_{i_{x}}\right)\right)^{2}$

Least Squares - Example ECO3

- Resulting system

$$
\begin{aligned}
& 0=\sum_{i} 2 p_{i_{x}}^{j}\left(p_{i_{y}}-\left(1, p_{i_{x}}, p_{i_{x}}^{2}, \ldots\right) \mathbf{c}^{T}\right) \Leftrightarrow \\
& \left(\begin{array}{cccc}
1 & x & x^{2} & \mathrm{~K} \\
x & x^{2} & x^{3} & \\
x^{2} & x^{3} & x^{4} & \\
\mathrm{M} & & \mathrm{O}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\mathrm{M}
\end{array}\right)=\left(\begin{array}{c}
y \\
y x \\
y x^{2} \\
\mathrm{M}
\end{array}\right)
\end{aligned}
$$

Radial Basis Functions

- Represent interpolant as
- Sum of radial functions r
- Centered at the data points p_{i}

$$
f(x)=\sum_{i} w_{i} r\left(\left\|p_{i}-x\right\|\right)
$$

Radial Basis Functions

CO 3

- Solve $p_{j_{y}}=\sum_{i} w_{i} r\left(\left\|p_{i_{x}}-p_{j_{x}}\right\|\right)$
to compute weights w_{i}
- Linear system of equations

Radial Basis Functions

EC'(3

- Solvability depends on radial function
- Several choices assure solvability
- $r(d)=d^{2} \log d \quad$ (thin plate spline)
- $r(d)=e^{-d^{2} / h^{2}} \quad$ (Gaussian)
- h is a data parameter
- h reflects the feature size or anticipated spacing among points

Function Spaces!

CO_{3}

- Monomial, Lagrange, RBF share the same principle:
- Choose basis of a function space
- Find weight vector for base elements by solving linear system defined by data points
- Compute values as linear combinations
- Properties
- One costly preprocessing step
- Simple evaluation of function in any point

Function Spaces?

ECO3

- Problems

- Many points lead to large linear systems
- Evaluation requires global solutions
- Solutions
- RBF with compact support
- Matrix is sparse
- Still: solution depends on every data point, though drop-off is exponential with distance
- Local approximation approaches

Shepard Interpolation

CCO3

- $f(x)$ is a convex combination of ϕ_{i}, because all $\phi_{i}\left(R^{d}\right) \subseteq[0,1]$ and $\Sigma_{i} \phi_{i}(x) \equiv 1$.
$\rightarrow f(x)$ is contained in the convex hull of data points
- for $p>1 f(p) \in C^{\infty}$ and $\nabla_{\chi} \phi_{i}\left(x_{i}\right)=0$
\rightarrow Data points are saddles
- global interpolation
\rightarrow every $f(x)$ depends on all data points
- Only constant precision, i.e. only constant functions are reproduced exactly

Shepard Interpolation

-C'(0)

- Approach for $R^{d}: f(x)=\Sigma_{i} \phi_{i}(x) f_{i}$
with basis functions $\phi_{i}(x)=\frac{\left\|x-x_{i}\right\|^{-p}}{\sum_{j}\left\|x-x_{j}\right\|^{-p}}$
- define $f\left(x_{i}\right):=f_{i}=\lim _{x \rightarrow \chi_{i}} f(x)$

Shepard Interpolation

ECO3

Localization:

- Set with

for reasonable R_{i} and $v>1$
\rightarrow no constant precision because of possible holes in the data

Spatial subdivisions

- Subdivide parameter domain into overlapping cells τ_{i} with centroids c_{i}

and localize them using the radius of the cell
- Interpolate/approximate data points in each cell by an arbitrary function f_{i}
- The interpolant is given as $f(x)=\Sigma_{i}$ $\mu_{i}(x) \cdot \phi_{i}(x) \cdot f_{i}$

Moving Least Squares

EC'(0)

- Compute a local LS approximation at t
- Weight data points based on distance to t

Moving Least Squares

CCO3

- Typical choices for θ :
- $\theta(d)=d^{-r}$
$\theta(d)=e^{-d^{2} / h^{2}}$
- Note: $\theta_{i}=\theta\left(\left\|t-p_{i_{x}}\right\|\right)$ is fixed
- For each t
- Standard weighted LS problem
- Linear iff corresponding LS is linear

Spatial subdivisions
CCO3

Moving Least Squares

CO 3

- The set
$f(t)=g_{t}(t), g_{t}: \min _{g} \sum_{i}\left(p_{i_{y}}-g\left(p_{i_{x}}\right)\right)^{2} \theta\left(\left\|t-p_{i_{x}}\right\|\right)$ is a smooth curve, iff θ is smooth

Typical Problems

CO_{3}

- Sharp corners/edges

- Noise vs. feature size

Functional -> Manifold

- Standard techniques are applicable if data represents a function
- Manifolds are more general
- No parameter domain
- No knowledge about neighbors, Delaunay triangulation connects non-neighbors

Implicits

- Each orientable n-manifold can be embedded in $n+1$ - space
- Idea: Represent n-manifold as zeroset of a scalar function in $\mathrm{n}+1$ - space
- Inside: $\quad f(\mathbf{x})<0$
- On the manifold: $f(\mathbf{x})=0$
- Outside:
$f(\mathbf{x})>0$

Implicits from point samples

- Function should be zero in data points - $f\left(\mathbf{p}_{i}\right)=0$
- Use standard approximation techniques to find f
- Trivial solution: $f=0$
- Additional constraints
 are needed

Implicits from point samples

- Constraints define inside and outside
- Simple approach (Turk, O'Brien)
- Sprinkle additional information manually
- Make additional information soft constraints

Implicits from point samples

- Use normal information
- Normals could be computed from scan
- Or, normals have to be estimated

Estimating normals

- Normal orientation (Implicits are signed)
- Use inside/outside information from scan
- Normal direction by fitting a tangent
- LS fit to nearest neighbors
- Weighted LS fit
- MLS fit

Estimating normals

EC (0) 3

- The constrained minimization problem

$$
\min _{\|\mathbf{n}\|=1} \sum_{i}\left\langle\mathbf{q}-\mathbf{p}_{i}, \mathbf{n}\right\rangle^{2} \theta_{i}
$$

is solved by the eigenvector corresponding to the smallest eigenvalue of

$$
\left(\begin{array}{lll}
\sum_{i}\left(q_{x}-p_{i_{x}}\right)^{2} \theta_{i} & \sum_{i}\left(q_{x}-p_{i_{y}}\right)^{2} \theta_{i} & \sum_{i}\left(q_{x}-p_{i_{i}}\right)^{2} \theta_{i} \\
\sum_{i}\left(q_{y}-p_{i_{x}}\right)^{2} \theta_{i} & \sum_{i}\left(q_{y}-p_{i_{y}}\right)^{2} \theta_{i} & \sum_{i}\left(q_{y}-p_{i_{i}}\right)^{2} \theta_{i} \\
\sum_{i}\left(q_{z}-p_{i_{x}}\right)^{2} \theta_{i} & \sum_{i}\left(q_{z}-p_{i_{y}}\right)^{2} \theta_{i} & \sum_{i}\left(q_{z}-p_{i^{3}}\right)^{2} \theta_{i}
\end{array}\right)
$$

Implicits from point samples

ECO 3

- Compute non-zero anchors in the distance field
- Compute distances at specific points
- Vertices, mid-points, etc. in a spatial subdivision

Estimating normals

CO_{3}

- General fitting problem $\min _{|\mathbf{n}|=1} \sum_{i}\left\langle\mathbf{q}-\mathbf{p}_{i}, \mathbf{n}\right\rangle^{2} \theta\left(\mathbf{q}, \mathbf{p}_{i}\right)$
- Problem is non-linear because n is constrained to unit sphere

Implicits from point samples

CO_{3}

- Compute non-zero anchors in the distance field
- Use normal information directly as constraints

$$
f\left(\mathbf{p}_{i}+\mathbf{n}_{i}\right)=1
$$

\square $+4^{\circ}$

$$
\stackrel{+1}{+1} \overbrace{+1}^{\infty}
$$

Computing Implicits

COB

- Given N points and normals p_{i}, n_{i} and constraints

$$
f\left(\mathbf{p}_{i}\right)=0, f\left(\mathbf{c}_{i}\right)=d_{i}
$$

- Let $\mathbf{p}_{i+N}=\mathbf{c}_{i}$
- An RBF approximation

$$
f(\mathbf{x})=\sum_{i} w_{i} r\left(\left\|\mathbf{p}_{i}-\mathbf{x}\right\|\right)
$$

leads to a system of linear equations

Computing Implicits

ECO3

- Practical problems: $N>10000$
- Matrix solution becomes difficult
- Two solutions
- Sparse matrices allow iterative solution
- Smaller number of RBFs

Computing Implicits

ECO3

- Smaller number of RBFs
- Greedy approach (Carr et al.)
- Start with random small subset
- Add RBFs where approximation quality is not sufficient

RBF Implicits - Results

- Images courtesy Greg Turk

Computing Implicits

- Sparse matrices $\left(\begin{array}{ll}r(0) & \left.r\left(\left\|p_{0}-p_{1}\right\|\right) r\left(\| p_{0}-p_{2}\right)\right) \Lambda\end{array}\right.$

$$
\left(\begin{array}{ccc}
r\left(\left\|p_{1}-p_{\|}\right\|\right) & r(0) & r\left(\left\|p_{1}-p_{2}\right\|\right) \\
r\left(\left\|p-p_{0}\right\|\right) & r \cdot\left(\left\|p_{2}-p_{1}\right\|\right) & r(0) \\
\mathrm{M} & & 0
\end{array}\right)
$$

- Needed: $d>c \rightarrow r(d)=0, r^{\prime}(c)=0$

- Compactly supported RBFs

Hoppe's approach

- Use linear distance field per point
- Direction is defined by normal
- In every point in space use the distance field of the closest point

Multi-level PuO Implicits

ECO3

- Subdivide cells based on local error

Multi-level PuO Implicits

- Aproximation at arbitrary accuracy

Implicits - Conclusions

ECO3

- Scalar field is underconstrained
- Constraints only define where the field is zero, not where it is non-zero
- Additional constraints are needed
- Signed fields restrict surfaces to be unbounded
- All implicit surfaces define solids

Surface definition

ECO3

- Projection procedure (Levin)
- Local polyonmial approximation
- Inspired by differential geometry
- "Implicit" surface definition
- Infinitely smooth \&
- Manifold surface

Projection

CO_{3}

- Idea: Map space to surface
- Surface is defined as fixpoints of mapping

Surface Definition

CO_{3}

- Constructive definition
- Input point r
- Compute a local reference plane $\mathrm{H}_{\mathrm{r}}=<\mathrm{q}, \mathrm{n}>$
- Compute a local polynomial over the plane G
- Project point $r^{\prime}=G_{r}(0)$
- Estimate normal

Local Reference Plane
 CCO3

- Find plane $H_{r}=\langle\mathbf{q}, \mathbf{n}\rangle+D$

Weight function based on distance to

- $\min _{\mathbf{q}, \mid \boldsymbol{n} \|=1} \sum_{i}\left\langle\mathbf{q}-\mathbf{p}_{i}, \mathbf{n}\right\rangle^{2} \theta\left(\left\|\mathbf{q}-\mathbf{p}_{i}\right\|\right)$
- $\theta(\mathrm{d})=e^{d^{2} / h^{2}}$
- h is feature size/ point spacing
- H_{r} is independent of r 's distance
- Manifold property

Local Reference Plane

-Computing reference plane

- Non-linear optimization problem - Minimize independent variables:
- Over n for fixed distance $\|\mathbf{r}-\mathbf{q}\|$
- Along \mathbf{n} for fixed direction \mathbf{n}
- q changes -> the weights change
- Only iterative solutions possible
q

60

Spatial data structure ECO3

- Regular grid based on support of θ
- Each point influences only 8 cells
- Each cell is an octree
- Distant octree cells are approximated by one point in center of mass

Projecting the Point

- MLS polyonomial over H_{r}
- $\min _{G \in \Pi_{d}} \sum_{i}\left(\left\langle\mathbf{q}-\mathbf{p}_{i}, \mathbf{n}\right\rangle-G\left(\left.\mathbf{p}_{i}\right|_{H_{r}}\right)\right)^{2} \theta\left(\left\|\boldsymbol{q}-\mathbf{p}_{i}\right\|\right)$
- LS problem
- $r^{\prime}=G_{r}(0)$
- Estimate normal

Conclusions

CCO_{3}

- Projection-based surface definition
- Surface is smooth and manifold
- Surface may be bounded
- Representation error mainly depends on point density
- Adjustable feature size h allows to smooth out noise

Point-Based Rendering

ECO3

- Introduction and motivation
- Surface elements
- Rendering
- Antialiasing
- Hardware Acceleration
- Conclusions

Motivation 1

CO3

- Performance of 3D hardware has exploded (e.g., GeForce4: 136 million vertices per second)
- Projected triangles are very small (i.e., cover only a few pixels)
- Overhead for triangle setup increases (initialization of texture filtering, rasterization)
\Rightarrow A simpler, more efficient rendering primitive than triangles?

Motivation 2

- Modern 3D scanning devices (e.g., laser range scanners) acquire huge point clouds
- Generating consistent triangle meshes is time consuming and difficult
\Rightarrow A rendering primitive for direct visualization of point clouds, without the need to generate triangle meshes?

4 million pts. [Levoy et al. 2000]

Points as Rendering Primitives

- Point clouds instead of triangle meshes [Levoy and Whitted 1985]
- 2 D vector versus pixel graphics

Point-Based Surface
 Representation
 ECO3

- Points are samples of the surface
- The point cloud describes:
- 3D geometry of the surface
- Surface reflectance properties (e.g., diffuse color, etc.)
- There is no additional information, such as
- connectivity (i.e., explicit neighborhood information between points)
- texture maps, bump maps, etc.

Surface Elements - Surfels

- Each point corresponds to a surface element, or surfel, describing the surface in a small neighborhood
- Basic surfels:

BasicSurfel \{ position; color;
\}

Surfels

CO 3

- How to represent the surface between the points?

- Surfels need to interpolate the surface between the points
- A certain surface area is associated with each surfel

Surfels

COS

- Surfels can be extended by storing additional attributes
- This allows for higher quality rendering or advanced shading effects

Surfels

ECO3

Model Acquisition

:CO3

- 3D scanning of physical objects
- See Pfister, acquisition
- Direct rendering of acquired point clouds
- No mesh reconstruction necessary

[Matusik et al. 2002]
- Processing and editing of point-sampled geometry
- Efficient rendering of complex models
- Dynamic sampling of procedural objects and animated scenes (see Stamminger, dynamic sampling)

[Stamminger et al. 2001]

Point Rendering Pipeline

- Simple, pure forward mapping pipeline
- Surfels carry all information through the pipeline (,,surfel stream")
- No texture look-ups
- Framebuffer stores RGB, alpha, and Z

Point Rendering Pipeline

CCO

- Perspective projection of each point in the point cloud
- Analogous to projection of triangle vertices
- homogeneous matrix-vector product
- perspective division

Point Rendering Pipeline

Point Rendering Pipeline
 ECO3

- Visibility and image reconstruction is tightly coupled
- Discard points that are occluded from the current viewpoint
- Reconstruct continuous surfaces from projected points (antialiasing)

Quad Rendering Primitive

CO

- Rasterize a colored quad centered at the projected point, use z-buffering
- The quad side length is h, where $h=2$ * r * s
- The scaling factor s given by perspective projection and viewport transformation
- Hardware implementation: OpenGL GL_POINTS

Projected Disc Rendering Primitive

- Project surfel discs from object to screen space
- Projecting discs results in ellipses in screen space
- Ellipses adapt to the surface orientation screen space

Discussion

CO3

- Quad and projected disc primitive
- Simple, efficient
- Hardware support
- Low image quality
- Suitable for preview renderers (e.g. Qsplat [Rusinkiewicz et al. 2000])
- Problem: no blending of primitives

Extended Z-Buffering

CCO3

```
DepthTest (x,y)
    if (abs(splat z - z(x,y)) < threshold) {
        c(x,y) = c(x,y) + splat color
        w(x,y) = w(x,y) + splat w(x,y)
    } else if (splat z<z(x,y)) {
        z(x,y) = splat z
        c(x,y) = splat color
        w(x,y) = splat w(x,y)
    }
}
```

High Quality Splatting
CCO3

- High quality splatting requires careful analysis of aliasing issues
- Review of signal processing theory
- Application to point rendering
- Surface splatting [Zwicker et al. 2001]

Aliasing in Computer Graphics

- Aliasing = Sampling of continuous functions below the Nyquist frequency
- To avoid aliasing, sampling rate must be twice as high as the maximum frequency in the signal
- Aliasing effects:
- Loss of detail
- Moire patterns, jagged edges
- Disintegration of objects or patterns
- Aliasing in Computer Graphics
- Texture Mapping
- Scan conversion of geometry

Aliasing in Computer Graphics
 CO_{3}

- Aliasing: high frequencies in the input signal appear as low frequencies in the reconstructed signal

Occurrence of Aliasing

Spatial Domain Frequency Domain

Antialiasing

ECOB

- Prefiltering
- Band-limit the continuous signal before sampling
- Eliminates all aliasing (with an ideal low-pass filter)
- Closed form solution not available in general
- Supersampling
- Raise sampling rate
- Reduces, but does not eliminate all aliasing artifacts (in practice, many signals have infinite frequencies)
- Simple implementation (hardware)

Resampling

ECO3

- Resampling in the context of surface rendering
- Discrete input function = surface texture (discrete 2D function)
- Warping = projecting surfaces to the image plane (2D to 2D projective mapping)

Resampling Filters

CO 3

2D Reconstruction Kernels

CO_{3}

- 2D reconstruction kernels are given by surfel discs with alpha masks
- Warping is equivalent to projecting the kernel from object to screen space

Resampling Filters

- A resampling filter is a convolution of a warped reconstruction filter and a low-pass
filter
screen space
"no information falls
warped reconstruction kernel
inbetween the pixel

resampling filte

low-pass filter (determined by pixel grid) ("blurred reconstruction kernel")
resampling filter

Gaussian Resampling Filters

CO_{3}

- Gaussians are closed under linear warping and convolution
- With Gaussian reconstruction kernels and low-pass filters, the resampling filter is a Gaussian, too
- Efficient rendering algorithms (surface splatting [Zwicker et al. 2001])

Mathematical Formulation

CO_{3}

$c(x, y)=\sum_{k} c_{k} r_{k}\left(m^{-1}(x, y)\right) \otimes h(x, y)$
Gaussian Gaussian
reconstruction kernel low-pass filter

screen space
screen space

```
for each point P {
    project P to screen space;
    shade P;
    determine resampling kernel G;
        splat G;
    }
for each pixel {
        normalize;
    }
```


Surface Splatting Performance

- Software implementation
- 500000 splats/sec on 866 MHz PIII
- 1000000 splats/sec on 2 GHz P4
- Hardware implementation [Ren et al. 2002]
- Uses texture mapping and vertex shaders
- 3000000 splats/sec on GeForce4 Ti 4400

Results

- High quality reconstruction and filtering

Hardware Implementation

CO_{3}

- Based on the object space formulation of EWA filtering
- Implemented using textured triangles
- All calculations are performed in the programmable hardware (extensive use of vertex shaders)
- Presented at EG 2002 ([Ren et al. 2002])

Conclusions

ECO3

- Points are an efficient rendering primitive for highly complex surfaces
- Points allow the direct visualization of real world data acquired with 3D scanning devices
- High performance, low quality point rendering is supported by 3D hardware (tens of millions points per second)
- High quality point rendering with anisotropic texture filtering is available
- 3 million points per second with hardware support
- 1 million points per second in software
- Antialiasing technique has been extended to volume rendering

Applications

[CO3

- Direct visualization of point clouds
- Real-time 3D reconstruction and rendering for virtual reality applications
- Hybrid point and polygon rendering systems
- Rendering animated scenes
- Interactive display of huge meshes
- On the fly sampling and rendering of procedural objects

Future Work

COB

- Dedicated rendering hardware
- Efficient approximations of exact EWA splatting
- Rendering architecture for on the fly sampling and rendering

Acknowledgments

CO 3

- Hanspeter Pfister, Jeroen van Baar (MERL, Cambridge MA)
- Markus Gross, Mark Pauly, CGL
- Liu Ren
/p./graphics.ethz.ch/surfels http://graphics.ethz.ch/pointshop3d

References

CCO

- [Levoy and Whitted 1985] The use of points as a display primitive, technical report, University of North Carolina at Chapel Hill, 1985
- [Heckbert 1986] Fundamentals of texture mapping and image warping, Master's Thesis, 1986
- [Grossman and Dally 1998] Point sample rendering, Eurographics workshop on rendering, 1998
- [Levoy et al. 2000] The digital Michelangelo project, SIGGRAPH 2000
- [Rusinkiewicz et al. 2000] Qsplat, SIGGRAPH 2000
- [Pfister et al. 2000] Surfels: Surface elements as rendering primitives, SIGGRAPH 2000
- [Zwicker et al. 2001] Surface splatting, SIGGRAPH 2001
- [Zwicker et al. 2002] EWA Splatting, to appear, IEEE TVCG 2002
- [Ren et al. 2002] Object space EWA splatting: A hardware accelerated approach to high quality point rendering, Eurographics 2002

Eurographics 2003

ECO3

Point-Based Computer Graphics

Marc Alexa, Carsten Dachsbacher, Markus Gross, Mark Pauly, Hanspeter Pfister, Marc Stamminger, Matthias Zwicker

Introduction

CO_{3}

- point rendering
- how adapt point densities?
- for a given viewing position, how can we get n points that suffice for that viewer?
- how render the points?
- given n points, how can we render an image from them ?

Introduction

CCO_{3}

- how render the points?
- project point to pixel, set pixel color
- hardware solution (Radeon 9700 Pro)
- ~80 mio. points per second
- no hole filling
- software solution
- ~8 mio. points per second
- hole filling
- hardware != software

Introduction

CO_{3}

- even with hardware:
- for (int $i=0$; $i<N$; $i++$) renderPointwithNormalAndColor
(x[i],y[i], z[i], nx[i], ny[i], nz[i],...);
$\rightarrow 10$ mio points per second
- for (int i = 0; i < N; i++)
renderPoint (x[i],y[i],z[i]);
$\rightarrow 20$ mio points per second
- float $\mathrm{p} p=\{\ldots$ \}
renderpoints (p);
$\rightarrow 80$ mio points per second
- \rightarrow best performance with sequential processing of large chunks!

Introduction

ECO3
Hierarchical Processing

CO 3

- Q-Splat
- Rusinkiewicz et al., Siggraph 2000
- hierarchical point rendering based on Bounding Sphere Hierarchy
\rightarrow precomputed point lists
\rightarrow render continuous segments only

Hierarchical Processing

CO_{3}

- Q-Splat recursive rendering render (Node n) \{
// compute screen size of node
$\mathrm{s}=\mathrm{n} . \mathrm{R} / \mathrm{distanceToCamera}(\mathrm{n})$;
// screen size too big?
if ($s>$ threshold)
$/ / \rightarrow$ render children
foral1 children c
render (c) ;
else
// else draw node renderpoint(n.xyz);
\}

Sequential Point Trees

CCO3

- store with node $\mathrm{d}_{\text {min }}=\mathrm{n} . \mathrm{R} / 1$ Pixel
- render (Node n) \{
// node too close?
if (distanceToCamera(n) < n.dmin)
$/ / \rightarrow$ render children
forall children c
render (c) ;
else
// else draw node
renderPoint ($n . x y z$);
\}

Sequential Point Trees

ECO3

- node n is rendered if:
- n is not too close and
- parent is not rendered
- or
- distToCam(n) < n.dmin
- distToCam(n.parent) \geq n.parent.dmin
- parent is too close, but node is far enough

Sequential Point Trees

EC'(0)

- assume
- distToCam(n) \approx distToCam(n.parent)
- store with n
- n.dmax = n.parent.dmin
- then a node is rendered if
- n.dmin $\leq \operatorname{distToCam}(n)$ < n.dmax

Sequential Point Trees

ECO3

- sequential version
- foreach tree node n
if (n.dmin < distToCam(n) \&\&
distToCam(n) < n.dmax) renderPoint(n);
- how enumerate nodes?

Sequential Point Trees

ECO3

- compute lower bound $\mathrm{d}_{\mathrm{bmin}}$ on distToCam(n) with bounding volume
- all elements with $\mathrm{d}_{\text {max }}<\mathrm{d}_{\text {bmin }}$ can be skipped
- only prefix must be considered

Sequential Point Trees

- culling by GPU necessary, because d is not constant over object

Sequential Point Trees

- CPU does per frame:
- compute $\mathrm{d}_{\text {bmin }}$
- search last node $i_{\text {max }}$ with $\mathrm{d}_{\text {max }}>\mathrm{d}_{\text {bmin }}$
- send first $i_{\text {max }}$ points to GPU
- GPU then does for every node n
- compute d = distToCam(n)
- if $n . d_{\text {min }} \leq d \leq n . d_{\text {max }}$
- render node

Sequential Point Trees

CO 3

- Result
- culling by GPU: only 10-40\%
- on a $2,4 \mathrm{GHz}$ Pentium with Radeon 9700 :
- CPU-Load < 20\% (usually much less)
- > 50 Mio points after culling

Sequential Point Trees

CO_{3}

- example

Sequential Point Trees

ECO3

- perpendicular, tangential, texture error
- scale with $1 /($ view distance)
- fits into sequential point trees

Sequential Point Trees

CO_{3}

- combine with polygonal rendering
- for every triangle
- compute $\mathrm{d}_{\text {max }}$ (longest side $/ \mathrm{d}_{\max }=\boldsymbol{\varepsilon}$)
- remove all points from triangle with smaller $\mathrm{d}_{\max }$
- sort triangles for $\mathrm{d}_{\max }$
- during rendering
- for every object, compute upper bound $d_{\text {bmax }}$ on distance
- send triangles with $\mathrm{d}_{\max }<\mathrm{d}_{\text {bax }}$ to GPU
- on the GPU (vertex program)
- test $\mathrm{d}<\mathrm{d}_{\text {max }}$
- cull by alpha-test

Sequential Point Trees

- pros
- very simple!
- CPU-load low
- most work moved to GPU
- GPU runs at maximum efficiency
- cons
- no view frustum culling
- currently: bad splatting support by GPU

Introduction

CCO_{3}

- Point-based models are often sampled very densely
- Many applications require coarser approximations, e.g. for efficient
- Storage
- Transmission
- Processing
- Rendering
\Rightarrow We need simplification methods for reducing the complexity of point-based surfaces

Local Surface Analysis

CO_{3}

- Cloud of point samples describes underlying (manifold) surface
- We need:
- Mechanisms for locally approximating the surface \Rightarrow MLS approach
- Fast estimation of tangent plane and curvature \Rightarrow principal component analysis of local neighborhood

Overview

CO_{3}

- Introduction
- Local surface analysis
- Simplification methods
- Error measurement
- Comparison

Neighborhood

- No explicit connectivity between samples (as with triangle meshes)
- Replace geodesic proximity with spatial proximity (requires sufficiently high sampling density!)
- Compute neighborhood according to Euclidean distance

Neighborhood

CCO_{3}

- Improvement: Angle criterion (Linsen)

- Project points onto tangent plane
- Sort neighbors according to angle
- Include more points if angle between subsequent points is above some threshold

Covariance Analysis

CO3

- Covariance matrix of local neighborhood N :

$$
\mathbf{C}=\left[\begin{array}{c}
\mathbf{p}_{i_{i}}-\overline{\mathbf{p}} \\
\Lambda \\
\mathbf{p}_{i_{n}}-\overline{\mathbf{p}}
\end{array}\right]^{T} \cdot\left[\begin{array}{c}
\mathbf{p}_{i_{i}}-\overline{\mathbf{p}} \\
\Lambda \\
\mathbf{p}_{i_{n}}-\overline{\mathbf{p}}
\end{array}\right], \quad i_{j} \in N
$$

- with centroid $\overline{\mathbf{p}}=\frac{1}{|N|} \sum_{i \in N} \mathbf{p}_{i}$

Neighborhood

- K-nearest neighbors

- Can be quickly computed using spatial datastructures (e.g. kd-tree, octree, bsp-tree)
- Requires isotropic point distribution
- Local Delaunay triangulation (Floater)

- Project points into tangent plane
- Compute local Voronoi diagram

Covariance Analysis

CO 3

- Consider the eigenproblem:

$$
\mathbf{C} \cdot \mathbf{v}_{l}=\lambda_{l} \cdot \mathbf{v}_{l}, \quad l \in\{0,1,2\}
$$

- C is a 3×3, positive semi-definite matrix
\Rightarrow All eigenvalues are real-valued
\Rightarrow The eigenvector with smallest eigenvalue defines the least-squares plane through the points in the neighborhood, i.e. approximates the surface normal

Hierarchical Clustering
 ECO3

- Top-down approach using binary space partition:
- Split the point cloud if:
- Size is larger than user-specified maximum or
- Surface variation is above maximum threshold
- Split plane defined by centroid and axis of greatest variation (= eigenvector of covariance matrix with largest associated eigenvector)
- Leaf nodes of the tree correspond to clusters
- Replace clusters by centroid

Surface Simplification

CO

- Hierarchical clustering
- Iterative simplification
- Particle simulation

Iterative Simplification

ECO3

- 2D example

-

.

Particle Simulation

ECO3

- Resample surface by distributing particles on the surface
- Particles move on surface according to inter-particle repelling forces
- Particle relaxation terminates when equilibrium is reached (requires damping)
- Can also be used for up-sampling!

Iterative Simplification

CCO_{3}

Point-Based Computer Graphics

Particle Simulation

CO_{3}

- Initialization
- Randomly spread particles
- Repulsion
- Linear repulsion force $F_{i}(\mathbf{p})=k\left(r-\left\|\mathbf{p}-\mathbf{p}_{i}\right\|\right) \cdot\left(\mathbf{p}-\mathbf{p}_{i}\right)$
\Rightarrow only need to consider neighborhood of radius r
- Projection
- Keep particles on surface by projecting onto tangent plane of closest point
- Apply full MLS projection at end of simulation

Particle Simulation

ECO3

- 2D example
- Initialization
- randomly spread particles

- Repulsion
- linear repulsion force

$$
F_{i}(\mathbf{p})=k\left(r-\left\|\mathbf{p}-\mathbf{p}_{i}\right\|\right) \cdot\left(\mathbf{p}-\mathbf{p}_{i}\right)
$$

- Projection
- project particles onto surface

Measuring Error

CO_{3}

- Measure the distance between two point-sampled surfaces using a sampling approach
- Maximum error: $\Delta_{\max }\left(S, S^{\prime}\right)=\max _{\mathbf{q} \in Q} d\left(\mathbf{q}, S^{\prime}\right)$
\Rightarrow Two-sided Hausdorff distance
- Mean error: $\Delta_{\text {avg }}\left(S, S^{\prime}\right)=\frac{1}{|Q|} \sum_{\mathbf{q} \in Q} d\left(\mathbf{q}, S^{\prime}\right)$
\Rightarrow Area-weighted integral of point-to-surface distances
- Q is an up-sampled version of the point cloud that describes the surface S

Measuring Error

- $C^{\prime}(0)$

- $d\left(\mathbf{q}, S^{\prime}\right)$ measures the distance of point \mathbf{q} to surface S^{\prime} using the MLS projection operator with linear basis functions

Comparison

EC(0) 3

- Error estimate for Michelangelo's David simplified from $2,000,000$ points to 5,000 points

Comparison

[CO3

- Execution time as a function of input model size (reduction to 1\%)

Comparison

ECO3

- Summary

	Efficiency	Surface Error	Control	Implementation
Hierarchical Clustering	+	-	-	+
Iterative Simplification	-	+	\circ	0
Particle Simulation	\circ	+	+	-

Comparison

$=c^{\prime}(3) 3$

- Execution time as a function of target model size (input: dragon, 535,545 points)

Point-Based Computer Graphics Mark Pauly 50

Point-based vs. Mesh Simplification

\Rightarrow point-based simplification saves an expensive surface reconstruction on the dense point cloud!

References

CO_{3}

- Pauly, Gross: Efficient Simplification of Pointsampled Surfaces, IEEE Visualization 2002
- Shaffer, Garland: Efficient Adaptive Simplification of Massive Meshes, IEEE Visualization 2001
- Garland, Heckbert: Surface Simplification using Quadric Error Metrics, SIGGRAPH 1997
- Turk: Re-Tiling Polygonal Surfaces, SIGGRAPH 1992
- Alexa et al. Point Set Surfaces, IEEE Visualization 2001

Eurographics 2003
Spectral Processing of Point-
Sampled Geometry
Markus Gross

Introduction

ECO3

- Idea: Extend the Fourier transform to manifold geometry

\Rightarrow Spectral representation of point-based objects
\Rightarrow Powerful methods for digital geometry processing

Fourier Transform

- 1D example:

- Benefits:
- Sound concept of frequency
- Extensive theory
- Fast algorithms

Overview

- Introduction
- Fourier transform
- Spectral processing pipeline
- Applications
- Spectral filtering
- Adaptive subsampling
- Summary

Introduction

CO_{3}

- Applications:
- Spectral filtering:
- Noise removal
- Microstructure analysis
- Enhancement
- Adaptive resampling:
- Complexity reduction
- Continuous LOD
- Requirements:
- Fourier transform defined on Euclidean domain \Rightarrow we need a global parameterization
- Basis functions are eigenfunctions of Laplacian operator
\Rightarrow requires regular sampling pattern so that basis functions can be expressed in analytical form (fast evaluation)
- Limitations:
- Basis functions are globally defined \Rightarrow Lack of local control
- Split model into patches that:
- are parameterized over the unit-square \Rightarrow mapping must be continuous and should minimize distortion
- are re-sampled onto a regular grid \Rightarrow adjust sampling rate to minimize information loss
- provide sufficient granularity for intended application (local analysis)
\Rightarrow process each patch individually and blend processed patches

Patch Layout Creation

CO_{3}

Clustering \Rightarrow Optimization

Samples
\Rightarrow Clusters
$\Rightarrow \quad$ Patches

Patch Layout Creation

Patch Resampling

- Patches are irregularly sampled: onto base plane
- Bound normal cone to control distortion of mapping using smallest enclosing sphere

Spectral Analysis

- 2D discrete Fourier transform (DFT)
\Rightarrow Direct manipulation of spectral coefficients
- Filtering as convolution:

$$
F(x \otimes y)=F(x) \cdot F(y)
$$

\Rightarrow Convolution: $\mathrm{O}\left(\mathrm{N}^{2}\right) \Rightarrow$ multiplication: $\mathrm{O}(\mathrm{N})$

- Inverse Fourier transform
\Leftrightarrow Filtered patch surface

Spectral Filters

- Microstructure analysis and enhancement

Summary

ECO3

- Versatile spectral decomposition of pointbased models
- Effective filtering
- Adaptive resampling
- Efficient processing of large point-sampled models

Reference

EC'(0)

- Pauly, Gross: Spectral Processing of Point-sampled Geometry, SIGGRAPH 2001

Eurographics 2003

An Interactive System for Point-based Surface Editing

Overview

- Introduction
- Pointshop3D System Components
- Point Cloud Parameterization
- Resampling Scheme
- Editing Operators
- Summary

Parameterization

COB

- Constrained minimum distortion parameterization of point clouds
$\mathbf{u} \in[0,1]^{2} \Rightarrow X(\mathbf{u})=\left[\begin{array}{l}x(\mathbf{u}) \\ y(\mathbf{u}) \\ z(\mathbf{u})\end{array}\right]=\mathbf{x} \in P \subset R^{3}$
- Point cloud parameterization Φ
- brings surface and brush into common reference frame
- Dynamic resampling Ψ
- creates one-to-one correspondence of surface and brush samples
- Editing operator Ω
- combines surface and brush samples

Parameterization

CO 3

- Measuring distortion
$\gamma(\mathbf{u})=\int_{\theta}\left(\frac{\partial^{2}}{\partial r^{2}} X_{\mathbf{u}}(\theta, r)\right)^{2} d \theta$

- Integrates squared curvature using local polar re-parameterization

$$
X_{\mathbf{u}}(\theta, r)=X\left(\mathbf{u}+r\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]\right)
$$

Parameterization

CO_{3}

- Find mapping X that minimizes objective function:
brush points
surface points
$C(X)=\sum_{j \in M}\left(X\left(\mathbf{p}_{j}\right)-\mathbf{x}_{j}\right)^{2}+\varepsilon \int \gamma(\mathbf{u}) d \mathbf{u}$
distortion

Parameterization

CO

- Discrete formulation:

$$
\widetilde{C}(U)=\sum_{j \in M}\left(\mathbf{p}_{j}-\mathbf{u}_{j}\right)^{2}+\varepsilon \sum_{i=1}^{n} \sum_{j \in N_{i}}\left(\frac{\partial U\left(\mathbf{x}_{i}\right)}{\partial \mathbf{v}_{j}}-\frac{\partial U\left(\mathbf{x}_{i}\right)}{\partial \widetilde{\mathbf{v}}_{j}}\right)^{2}
$$

- Approximation: mapping is piecewise linear

Parameterization

Parameterization

EC(0) 3

- Multigrid solver for efficient computation of resulting sparse linear least squares problem

$$
\widetilde{C}(U)=\sum_{j}\left(\mathbf{b}_{j}-\sum_{i=1}^{n} a_{j, i} \mathbf{u}_{i}\right)^{2}=\|\mathbf{b}-A \mathbf{u}\|^{2}
$$

- Directional derivatives as extension of divided differences based on k-nearest neighbors

Reconstruction

COO
Reconstruction
COO

reconstruction with linear fitting functions

weight functions in parameter space

Reconstruction

CO

- Reconstruction with linear fitting functions is equivalent to surface splatting!
\Rightarrow we can use the surface splatting renderer to reconstruct our surface function (see chapter on rendering)
- This provides:
- Fast evaluation
- Anti-aliasing (Band-limit the weight functions before sampling using Gaussian low-pass filter)
- Distortions of splats due to parameterization can be computed efficiently using local affine mappings

Editing Operators

- Painting

- Texture, material properties, transparency

Markus Gross $\quad 17$

Sampling

$=\mathrm{CO}$

- Three sampling strategies:
- Resample the brush, i.e., sample at the original surface points
- Resample the surface, i.e., sample at the brush points
- Adaptive resampling, i.e., sample at surface or brush points depending on the respective sampling density

Editing Operators

- Filtering
- Scalar attributes, geometry

Summary

CO 3

- Pointshop3D provides sophisticated editing operations on point-sampled surfaces
\Rightarrow points are a versatile and powerful modeling primitive
- Limitation: only works on "clean" models
- sufficiently high sampling density
- no outliers
- little noise
\Rightarrow requires model cleaning (integrated or as preprocess)

Reference

ECOB

- Zwicker, Pauly, Knoll, Gross: Pointshop3D: An interactive system for Point-based Surface Editing, SIGGRAPH 2002
- check out:
www.pointshop3D.com

Motivation

CO_{3}

- 3D content creation pipeline

Point-Based Computer Graphics

Motivation

$\mathrm{C}^{\prime}(0)$

- Surface representations
- Implicit surfaces
- Level sets
- Radial basis functions \longrightarrow Hybrid Representation
- Algebraic surfaces
- Parametric surfaces
- Polygonal meshes
- Subdivision surfaces
- Nurbs

Motivation

CO_{3}

Interactive Modeling

- Interactive design and editing of point-sampled models
- Shape Modeling
- Boolean operations
- Free-form deformation
- Appearance Modeling
- Painting \& texturing
- Embossing \& engraving

Boolean Operations

CO 3

- Easily performed on implicit representations
- Requires simple computations on the distance function
- Difficult for parametric surfaces
- Requires surface-surface intersection
- Topological complexity of resulting surface depends on geometric complexity of input models

Boolean Operations

CO 3

- Create new shapes by combining existing models using union, intersection, or difference operations
- Powerful and flexible editing paradigm mostly used in industrial design applications (CAD/CAM)

EC'(0)

- Point-Sampled Geometry
- Classification
- Inside-outside test using signed distance function induced by MLS projection
- Sampling
- Compute exact intersection of two MLS surfaces to sample the intersection curve
- Rendering
- Accurate depiction of sharp corners and creases using point-based rendering

- Classification:

- given a smooth, closed surface S and point p. Is p inside or outside of the volume V bounded by S ?
1.find closest point q on S

Boolean Operations

- Classification:
- given a smooth, closed surface S and point p. Is p inside or outside of the volume V bounded by S ?

1. find closest point q on S
2. $d=(p-q) \cdot n$ defines signed distance of p to S

Boolean Operations

CO_{3}

- Classification:
- given a smooth, closed surface S and point p. Is p inside or outside of the volume V bounded by S ?
1.find closest point q on S

2. $d=(p-q) \cdot n$ defines signed distance of p to S
3. classify p as

- inside V, if $d<0$
- outside V, if $d>0$

CCO3

- Classification:
- represent smooth surface S by point cloud P
1.find closest point q in P

Boolean Operations
ECO3

- Classification:
- apply full MLS projection for points close to the surface

Boolean Operations

Boolean Operations

- Newton scheme:
1.identify pairs of closest points

Boolean Operations

Boolean Operations

CO_{3}

- Newton scheme:

1. identify pairs of closest points
2. compute closest point on intersection of tangent spaces

.

Boolean Operations

- Newton scheme:

1. identify pairs of closest points
2. compute closest point on intersection of tangent spaces
3. re-project point on both surfaces
4. iterate

Boolean Operations

- Rendering sharp creases
- represent points on intersection curve with two surfels that mutually clip each other

Boolean Operations

- Boolean operations can create intricate shapes with complex topology

$A-B$

Mark Pauly

Boolean Operations

- Singularities lead to numerical instabilities (intersection of almost parallel planes)

Boolean Operations ECO3

- Sharp creases can be blended using oriented particles (Szeliski, Tonnesen)

Free-form Deformation

- How to define the deformation field?
\Rightarrow Painting metaphor
- How to detect and handle selfintersections?
\Rightarrow Point-based collision detection, boolean union, particle-based blending
- How the handle strong distortions?
\Rightarrow Dynamic re-sampling

Free-form Deformation

- Smooth deformation field $\mathrm{F}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ that warps 3D space
- Can be applied directly to point samples

Free-form Deformation

ECOB

- Intuitive editing paradigm using painting metaphor
- Define rigid surface part (zero-region) and handle (one-region) using interactive painting tool
- Displace handle using combination of translation and rotation
- Create smooth blend towards zero-region

Free-form Deformation
 EC(0)3

- Definition of deformation field:
- Continuous scale parameter t_{x}
- $t_{\mathrm{x}}=\beta\left(d_{0} /\left(d_{0}+d_{1}\right)\right)$
- d_{0} : distance of x to zero-region
- d_{1} : distance of x to one-region
- Blending function
- $\beta:[0,1] \rightarrow[0,1]$
- $\beta \in C^{0}, \beta(0)=0, \beta(1)=1$
- $\mathrm{t}_{\mathrm{x}}=0$ if x in zero-region
- $\mathrm{t}_{\mathrm{x}}=1$ if x in one-region

Collision Detection

CCO3

- Deformations can lead to selfintersections
- Apply boolean inside/outside classification to detect collisions
- Restricted to collisions between deformable region and zero-region to ensure efficient computations

Free-form Deformation

- Translation for three different blending functions

Free-form Deformation

ECO3

- Embossing effect

SNGGRAPM

SHGGRAFI
deformed surface

Collision Detection

CO_{3}

- Exploiting temporal coherence

Dynamic Sampling

CO_{3}

1. Measure local surface stretch from first fundamental form
2. Split samples that exceed stretch threshold
3. Regularize distribution by relaxation
4. Interpolate scalar attributes

Free-form Deformation
ECOB

- Interactive modeling session with dynamic sampling

Results

CO_{3}

- 3D shape modeling functionality has been integrated into Pointshop3D to create a complete system for point-based shape and appearance modeling
- Boolean operations
- Free-form deformation
- Painting \& texturing
- Sculpting
- Filtering
- Etc.

Results

CCO_{3}

- Modeling with synthetic and scanned data
- Combination of free-form deformation with collision detection, boolean operations particle-based blending, embossing and texturing

- Ab-initio design of an Octopus
- Free-form deformation with dynamic sampling from 69,706 to 295,222 points

Results

CO_{3}

- Boolean operations on scanned data
- Irregular sampling pattern, low resolution models

Results

CO_{3}

- Interactive modeling with scanned data
- noise removal, free-form deformation, cut-andpaste editing, interactive texture mapping

Conclusion

CO_{3}

- Points are a versatile shape modeling primitive
- Combines advantages of implicit and parametric surfaces
- Integrates boolean operations and freeform deformation
- Dynamic restructuring
- Time and space efficient implementations

Conclusion

- Pauly: Point Primitives for Interactive Modeling and Processing of 3D Geometry, PhD Thesis, ETH Zurich, 2003
- Complete and versatile point-based 3D shape and appearance modeling system
- Directly applicable to scanned data
- Suitable for low-cost 3D content creation and rapid proto-typing sampled Geometry, SIGGRAPH 03
- Pauly, Kobbelt, Gross: Multiresolution Modeling with Pointsampled Geometry, ETH Technical Report, 2002
- Zwicker, Pauly, Knoll, Gross: Pointshop3D: An Interactive System for Point-based Surface Editing, SIGGRAPH 02
- Adams, Dutre: Boolean Operations on Surfel-Bounded Solids, SIGGRAPH 03
- Szeliski, Tonnesen: Surface Modeling with Oriented Particle Systems, SIGGRAPH 92
- www.pointshop3d.com

