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Abstract
3D shape acquisition has become a major tool for creating digital 3D surface data in a variety of application
 elds. Despite the steady increase in accuracy, most available scanning techniques cause severe scanning artifacts
such as noise, outliers, holes, or ghost geometry. To apply sophisticated modeling operations on these data sets,
substantial post-processing is usually required. In this paper, we address a variety of scanning artifacts that are
created by common optical scanners and provide a comprehensive set of user-guided tools to process corrupted
data sets. These include an eraser tool, low-pass  lter s for noise removal, a set of outlier detection methods, and
various up-sampling and hole- lling tools. These techniques can be applied early in the content creation pipeline.
Therefore, all our tools are implemented to operate directly on the acquired point cloud. We also emphasize the
need for extensive user control and an ef cient visual feedback loop. The effectiveness of our scan cleaning tools
is demonstrated on various models acquired with commercial laser-range scanners and low-cost structured light
scanners.

Categories and Subject Descriptors(according to ACM CCS): I.3.5. [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

With growing demand for realism in computer graphics and
interactive techniques, we experience a steady increase in
the geometric complexity of digital 3D surface models. Ab
initio design of such shapes thus becomes increasingly time
consuming and expensive. Most designers therefore rely on
3D scanning devices to acquire complex digital models from
real-world objects. Accurate 3D acquisition also plays an
important role in reverse engineering, rapid prototyping, bio-
medicine, architecture, cultural heritage acquisition, or en-
tertainment industry.

This diversity in application fields is reflected in a great
variety of 3D imaging techniques: CT and MRI scanners are
widely used in medical and engineering applications to ac-
quire volumetric representations of real-world objects. Opti-
cal devices, such as laser-range scanners or structured light
scanners, are primarily employed for surface and appearance
acquisition.

This latter class of scanning devices typically produces
a dense set of surface points, where each point samples a
3D position and possible additional attributes such as normal
information, color, or material properties. Depending on the

Figure 1: Typical artifacts of raw scanner data. Top Row:
Holes due to sensor restrictions, noise, outliers. Bottom
Row: Low sampling density due to gracing sensor views,
low sampling density at delicate surface details, and holes
due to critical re ectance properties.

specific acquisition method, a number of scanning artifacts
can occur as illustrated in Figure 1:

• Physical limitations of the sensor lead to noise in the ac-
quired data set. Sample points can also be corrupted by
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quantization or motion artifacts. The latter occur when
the scanned object moves during the acquisition process,
a common problem when scanning humans or animals.

• Multiple reflections and heavy noise can produce off-
surface points (outliers).

• Holes and under-sampling in the model surface occur due
to occlusion, critical reflectance properties, constraints in
the scanning path, or limited sensor resolution.

• Many scanners tend to create ghost geometry when the
scanned object is textured.

The raw point cloud data produced by the scanner thus
needs to be processed before subsequent modeling opera-
tions can be performed. Commercial scanners are usually
equipped with rudimentary scan cleaning software that uses
built-in heuristics for outlier removal and noise reduction.
These are often difficult to control as they are optimized for
the specific scanner configuration.

More sophisticated data processing can only be applied by
exporting the acquired surface model from the proprietary
scanner software, typically in the form of a triangle mesh.
However, if the above mentioned data imperfections have
not been successfully removed from the data set, the mesh-
ing process itself is fragile and can even introduce further
artifacts. We thus argue that post-processing of scanned data
should be performed directly on the acquired point cloud,
before sophisticated surface reconstruction algorithms or ad-
vanced modeling operations are applied.

To this end, we propose a purely point-based scan
cleaning toolbox, consisting of a selection of user-guided
tools that address the different scanning artifacts mentioned
above. These include an eraser tool, low-pass filters for noise
removal, a set of outlier detection methods, and various re-
sampling and hole-filling tools.

Since many scan artifacts are strongly coupled, these tools
should be applied in an interleaved fashion. Identification
of artifacts is difficult and often requires human interpreta-
tion. Therefore, user guidance is a necessary prerequisite to
achieve optimal results. We specifically designed our algo-
rithms to support rapid feedback during an interactive scan
cleaning session. This allows the user to interactively adjust
tool parameters, such as outlier thresholds or filter transfer
functions.

We have integrated our scan cleaning toolbox as a plug-
in into Pointshop3D, an open-source 3D editing tool for
point-sampled surfaces [24, 19]. In combination with a 3D
scanning front end, our plug-in bridges the gap between 3D
acquisition and high-level shape and appearance modeling,
thus providing in a single application a complete point-based
content creation pipeline.

2. Related Work

Noise and outliers can be removed by applying a spatial
depth-pass filter to the 3D point data [17]. Alternatively,

3D Acquisition 3D Content

Geometry
Cleaning

Modelling

Pointshop3D

Figure 2: Our toolbox bridges the gap between 3D acquisi-
tion and higher-level modeling. As a Pointshop3D plugin it
aims at a completely point-based content creation pipeline.

noise can implicitly be handled during a surface reconstruc-
tion stage. [1, 5, 13] yield a smooth surface by approximat-
ing the sample points. However, most automatic surface re-
construction algorithms fail in the presence of severe noise
and outliers.

In the past, various hole-filling techniques have been pro-
posed. These methods mostly use implicit representations
to define the underlying surface. Verdera et al. [22] ex-
tend image inpainting techniques to 3D surfaces by solving
anisotropic partial differential equations defined on the sur-
face. Carr et al. [5] and Ohtake et al. [13] exploit the extrap-
olation properties of radial basis functions to fill regions of
sparse sampling. Davis et al. [6] propose a method that ap-
plies a diffusion operator on the signed distance field of an
incomplete triangle mesh.

Only little has been published on the user-guided clean-
ing of raw scanner output. [4] analyzes requirements of scan
cleaning software and gives a short overview over existing
commercial systems. Those systems usually triangulate the
data at an early stage, before fitting higher-order surface rep-
resentations. However, to the best of our knowledge, a sys-
tem for 3D scan cleaning directly working on the point cloud
data has not been published yet.

3. Overview

The central motivation of our toolbox has been to open up
modeling techniques to be used for the cleaning of raw scan
data. Our modeling tools make extensive use of basic tech-
niques (Section 4), which are well-known in point graphics
community or adapted from triangle based graphics, respec-
tively.

Section 5 suggests a set of tools and discusses the under-
lying design criteria. It is explained how the basic techniques
are extended and combined to realize the different tools. The
integration of the tools in a common user interface is pre-
sented.

Section 6 demonstrates some exemplary steps of the
cleaning procedure. It shows how the single tools interact
when cleaning raw scan data.
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4. Basic Techniques

The presented toolbox internally utilizes a set of basic ge-
ometric modeling techniques. This section describes the
respective techniques and explains their adaption to point
clouds.

4.1. Search Data Structures

Dealing with point clouds, we do not have any explicit con-
nectivity information. This means that all computations are
based on spatial proximity between point samples instead
of geodesic proximity between mesh vertices. In this sec-
tion we present two data structures for fast nearest neighbor
searches and range queries.

A very well known search data structure is thek-d tree
(e.g. [3, 7, 2]). Ak-d tree can be searched efficiently in
O(logn), while it takes timeO(n logn) to build it. There-
fore, and because it is costly to maintain ak-d tree after an
insertion, deletion or displacement of points, it is suitable
for static data only. If the same point is queried more than
once, it might be useful to cache the neighbors. In this case,
a nearest-neighbor graph is built, storing the nearest neigh-
bors for each point.

For querying dynamic data we use a hash data structure
similar to [20]. The coordinates of an arbitrary point in space
are mapped to a cell. If the cell size is chosen smaller or
equal than the maximal query range, all points within this
range can be found by searching the adjacent cells to a query
point, i.e. 27 cells have to be queried. Note that alsok-nearest
neighbor queries can be performed efficiently if a maximal
range can be given. However, while insertion of a point can
be done inO(1), querying takesO(q), whereq is the maxi-
mum number of points in a cell. In practice, with a sufficient
number of cellsq will be small.

4.2. MLS Projection

To compute a smooth surface that approximates a set of scat-
tered data points, Levin [11] introduced a projection operator
based on Moving Least Squares (MLS) optimization. Using
this projection procedure, Alexa et al. [1] presented a high
quality rendering algorithm for point set surfaces. Because
the MLS method is crucial for the following algorithms, we
will briefly review it.

Let P be an unstructured set of sample points. The MLS
projection takes a pointx in space and projects it onto a poly-
nomial that locally approximates the underlying surface in
the vicinity ofx. This polynomial is computed by first fitting
a reference planeH using weighted least squares optimiza-
tion. The reference plane provides a local parameterization
of the sample points, which is used in a second least squares
fit to compute a bivariate polynomial approximation.

Both, the computation of the reference plane and the poly-
nomial use a radially symmetric Gaussian weight function

ωi = e−‖xr−pi‖
2/h2

, wherexr is the projected point ofx
ontoH andh is a scaling factor. Sinceωi drops quickly with
increasing distance, the least squares optimization is typi-
cally applied in a local neighborhood around the point of
interest. The scaling factorh can either be a global constant
or proportional to local sample spacing, estimate from ak-
neighborhood as described in [16]. More details on the MLS
method can be found in [11] and [1].

4.3. Point Relaxation

In [21], Turk uses particle simulation for resampling polyg-
onal surfaces. Pauly et al. [16] adapted this method to point-
sampled surfaces.

To achieve a uniform distribution of the particles, we let
neighbored particles repel each other. Every particlep exerts
a forcef i(p) on its neighbored particlespi. The summation
of all forces that act on a particle gives the resulting force.
Finally, the new positions of the particles are computed by
explicit Euler integration.

We use the same repulsion forcef as in [21, 16]:

f i(p) = k(r−‖p−pi‖)
pi−p
‖pi−p‖ , (1)

wherek is a force constant andr is the repulsion radius. For
finding the nearest neighbors within the radiusr we use the
hash data structure described in Section 4.1.

After each iteration, the particles are projected back onto
the surface by applying the MLS projection described above.
In our case, the particle simulation is performed locally for
a selected region. To ensure that the selected surfels keep
within this region, we compute for each selected surfel itsn
nearest neighbors and add the neighbors which are not se-
lected to a list. While these surfels repel the selected surfels,
their positions are fixed.

5. Tools

We built a set of tools allowing for interactive control of the
presented techniques. The toolbox was designed to allow the
removal of typical scan artifacts, as depicted in Figure 1. In
order to support an efficient scan cleaning process, we pur-
sued three design goals:

Predictability In order to allow a rapid workflow, it is im-
portant that each tool’s effect is predictable under most cir-
cumstances. That is, if the user chooses a tool for a certain
purpose, the outcome should meet the user’s expectations.

Controllability The range of application must be well-
controllable. Where possible, each tool should provide a set
of parameters to tune its behaviour.

Intuitive Handling The tools should rest upon intuitive
editing metaphors. Any parameters should correspond to
meaningful traits.
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Figure 3: The toolbox contains tools of different complexity.
Higher complexity goes with less interaction.

Following those criteria, we wanted to make the tools as
powerful as possible. However, making a tool powerful usu-
ally implies the use of higher-level automatisms which are
likely to fail when applied to raw scanner data. This would
contradict predictability. Increasing the number of parame-
ters to make the outcome more controllable would lead to an
unintuitive handling.

We finally decided for a set of tools differing in complex-
ity (see Figure 3). Simpler, more robust, tools allow for di-
rect editing, especially in the presence of severe scanning
artifacts. More complex and powerful tools can be applied
at a later point in the scan cleaning process, when a certain
sampling quality has already been achieved.

In order to address controllability, all tools provide an ex-
haustive set of parameters that can be set using the user in-
terface. Each tool comes with a set of reasonable default pa-
rameters.

Most of the tools utilize a volumetric selection tool as a
common interface, allowing a consistent intuitive handling.
In the remainder of this section we describe the common
selection mechanism and the set of basic tools.

5.1. Volumetric Selection

For most of the tools it makes sense to apply them locally.
Consequently, they are defined to work on a set of selected
surfels.

Pointshop3D provides a selection mechanism. However,
the Pointshop3D selection tool requires a well-sampled sur-
face and can not, e.g., select scattered points, as they fre-
quently appear in real-world scans. We developed a volumet-
ric brush to facilitate the selection of surfels in areas where

no properly sampled surface exists. The brush, box shaped
or ellipsoidal, can freely be moved in space, or alternatively
follows the object surface (see Figure 4). By resizing and ro-
tating the brush, its shape can be adapted to the local object
geometry.

The brush is designed to follow the object surface even in
poorly sampled regions. This is achieved by analyzing the
depth values of all surfels visible around the mouse pointer.
The brush’s depth is set to a robust mean of the different
depth values.

All tools that support the volumetric selection can be ap-
plied to the set of selected surfels. Alternatively, they are
simultaneously applied to all points within the volumetric
brush during navigation.

5.2. Eraser

The most primitive tool simply removes all selected points,
or points within the volumetric brush, respectively. Despite
its simplicity, theeraser is one of the most frequently em-
ployed tools.

5.3. Outlier Removal

Erroneous points outside the object surface are outliers that
have to be removed. However, it is hard to specify a general
criterion to detect outliers, if the real object surface is un-
known. Noise further complicates the detection of outliers.
In many cases, the scan quality has to be judged by the user
in order to tell a noisy surface point from an outlier.

We developed an interactive tool for outlier removal incor-
porating the user into the outlier detection. The tool provides
three outlier classification heuristics that have to be weighted
by the user to obtain an appropriate classification (see Fig-
ure 5). Outliers are finally removed by applying a threshold
to the resulting outlier classification.

(a) (b)

Figure 4: The volumetric brush. (a) A box shaped selec-
tor, following the object surface. (b) An ellipsoidal selector,
freely positioned in space.
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Figure 5: Outlier classi cation. The three classi er s can
be weighted using the depicted sliders. Probable outliers,
scheduled for removal according to the resulting classi ca-
tion and a given threshold, are rendered in red.

The threshold can be chosen manually. Alternatively, it
is automatically set to discard a certain percentage of the
points. Outlier classification can be confined to the volumet-
ric brush.

We now present the three underlying outlier criteria. All
criteria deliver an estimatorχ(p) ∈ [0,1] assigning the like-
lihood for a point samplep to be an outlier. To prevent any
bias from an intermediate surface representation, all criteria
are based only on analysis ofp’s k nearest neighborsNp.

The respective properties of the proposed criteria will be
discussed in Section 6.

5.3.1. Plane Fit Criterion

An intuitive criterion is the point’s deviation from a manifold
approximating its neighbors. Theplane  t criterion consid-
ers a planeH that minimizes the squared distances top’s
neighbors:

min
H

∑
q∈Np

dist(p,H)2 (2)

(see Figure 6). Letd be the distance ofp to H, and d̄ the
mean distance of points fromNp to H. We define the plane
fit criterion as

χpl(p) =
d

d + d̄
. (3)

d

p

H

Figure 6: The plane  t criterion compares p’s distance d
to a least squares plane H with the average distance of its
neighbors to H. p’s k-neighbors are denoted in blue.

p

S

rd

Figure 7: The miniball criterion. A miniball S approximates
the cluster of p’s neighbors. The criterion compares p’s dis-
tance to S with the diameter of the sphere.

Normalization byd̄ relatesd to possible noise and surface
deviations.

Instead ofH, it would be possible to use higher-order
approximations ofNp. We chose the plane-fit criterion to
achieve a maximum of robustness.

5.3.2. Miniball Criterion

A point comparatively distant to the cluster built by itsk
nearest neighbors is likely to be an outlier. This observation
leads to the following criterion.

For each pointp consider the smallest enclosing sphereS
aroundNp [23] (see Figure 7).S can be seen as an approxi-
mation of thek-nearest-neighbor cluster. Comparingp’s dis-
tanced to the center ofS with the sphere’s diameter yields a
measure forp’s likelihood to be an outlier. Consequently we
define theminiball criterion as

χmb(p) =
d

d +2r/
√

k
. (4)

Normalization by
√

k compensates for the diameter’s in-
crease with increasing number ofk-neighbors at the object
surface.

5.3.3. Nearest-Neighbor Reciprocity Criterion

This criterion is based on the following observation: Po-
tential outliers draw theirk-nearest neighbors from a larger
vicinity than points in a well-sampled environment. In
particular, a “valid” point sampleq may be in thek-
neighborhood of an outlier, but the outlier will most likely
not be part ofq’s k-neighborhood.

This relationship can be expressed by means of a directed
graphG of k-neighbor relationships (see Figure 8). Outliers
are assumed to have a high number of uni-directional ex-
itant edges, i.e., asymmetric neighbor relationships. Con-
sequently the criterion considers the ratio between uni-
directional and bi-directional exitant edges inG.

We define the uni-directional neighbors asNuni(p) =
{q | q ∈ Np, p /∈ Nq}, while the bi-directional neighbors
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Figure 8: Nearest-neighbor graph. Depicted are the
5-nearest-neighbor relations for p and its 5-neighbors
q0, . . . ,q4. Note that only q2 shares a reciprocal neighbor
relationship with p.

build a setNbi(p) = {q | q ∈ Np, p ∈ Nq}. The classifier is
expressed as follows:

χbi(p) =
‖Nuni(p)‖

‖Nbi(p)‖+‖Nuni(p)‖ =
‖Nuni(p)‖

k
. (5)

5.3.4. Classification

The final outlier classification is computed using weights
w1, . . . ,w3, ∑i wi = 1, interactively defined by the user:

χ(p) = w1χpl(p)+w2χmb(p)+w3χbi(p) . (6)

As all outlier criteria are based on thek-nearest-neighbor
graph, it is computed once and cached during the computa-
tion of χ.

Depending on the scanning technique, outliers may oc-
cur in small clusters. In this case,χpl and χmb tend to fail
to detect the clustered outliers correctly. In order to make
them suitable for clustered outliers, a maximum cluster size
l can be defined by the user. Subsequently, allk-nearest-
neighbor queries will discard the firstl neighbors, returning
the(l +1)st to(l +k)th neighbor instead. This effectively in-
creases the robustness against clustered outliers while main-
taining the basic functionality of the outlier criteria.

5.4. MLS Smoother

Smoothing is an elementary editing operation. It can be
used for noise reduction, to smooth-out high-frequency de-
tails, such as small artifacts like spikes and ripples, or
to soften creases created during the editing process. Var-
ious smoothing operators have been proposed, partly with
feature-preserving properties.

Given the unpredictable quality of input data, we decided
against locally adapting filters, as they still tend to amplify

(a) (b) (c)

Figure 9: The MLS smoother tool. (a) Fine surface details.
(b) Smoothing with α = 0.8. (c) Detail enhancement for α =
−0.75.

scanning artifacts. We implemented a simple, more robust,
filter based on MLS projection, leaving the treatment of fea-
tures to the user’s control by confining the operation to the
volumetric brush selection.

TheMLS smoother tool works by shifting point positions
towards the corresponding MLS surface. For each pointp, its
MLS projectionp′ is computed. A user-adjustable blending
parameterα defines how farp is to be moved towards its
“smoothed” positionp′. The point is finally set to

psmoothed= (1−α)p+αp′ . (7)

An associated normal is filtered analogously, blending the
original normal with the normal of the MLS surface. Param-
eterization of the MLS kernel function, as described in Sec-
tion 4.2, allows the user to adjust the depth-pass characteris-
tic of the MLS projection.

An additional user parameterD allows to attenuate the
tool’s effect towards the selection border. Within distance
D to the border,α is weighted by a blending polynomial
to vanish at the border. A point’s distance to the border is
defined as the distance to its nearest neighbor outside the
selection.

α is usually set to values within[0,1], corresponding to
strong, or no smoothing, respectively (see Figure 9(b)). Al-
ternatively, following the concept of USM filtering [10], one
may setα to negative values, corresponding to a detail (and
noise) enhancement (see Figure 9(c)). This is a useful fea-
ture, however, for larger absolute values ofα, surface self-
penetration can occur.

5.5. Point Relaxation

Scanned models may contain regions of uneven point distri-
bution. While some editing operations may change the point
distribution directly, raw scan data will be unevenly sampled
wherever point samples are missing due to scanning arti-
facts. Merging of depth-maps also produces an uneven point
distribution. However, a uniform distribution of the surfels
is often required to guarantee a hole-free rendering of the
surface.

To achieve an even distribution of the surfels we employ a
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particle simulation as described in Section 4.3. The attributes
of the relaxed surfels, such as the color, are interpolated from
the attributes of thek-nearest original surfel neighbors.

The particle simulation can also be used to close small
holes, as the repelling force will distribute the surfels over
uncovered areas.

5.6. MLS Spray Can

Complementary to the eraser, theMLS spray can tool was
introduced in order to fill small holes in the geometry. It ran-
domly creates points inside the brush volume and projects
them onto the MLS surface in the brush’s vicinity.

A projected pointp is added to the surface whenever the
surrounding splat coverage is below a certain threshold. The
local coverage is estimated by determining the ratio between
the average distancēd of p to its k-neighbors and the mean
splat radius ¯r of its neighbors.p is added if

r̄

d̄
< 1 . (8)

Consequently, the MLS spray relies on valid splat radii.
When importing a model, we initially compute splat radii
using a local surface analysis as proposed in [15], based on
a Voronoi diagram of the point cloud.

If a new point is added to the surface, its normal is adopted
from the MLS surface. All other surfel attributes, e.g. color
and reflectance properties, are determined by interpolating
attributes from neighboring surfels.

Application of the spray can tool may result in a roughly
uniform point distribution (see Figure 12). Eventually, the
point distribution has to be relaxed using the point relaxation
tool (see Section 5.5).

5.7. Automatic Hole Filling

While the MLS spray can tool introduced above is very ef-
fective for filling small holes, it still remains a tedious pro-
cess to create a complete watertight model when larger and
more complex holes occur in the acquired point cloud. This
is frequently the case, however, as line-of-sight constraints,
difficult surface reflectance properties, or extensive noise-
and outlier removal, can lead to a highly incomplete repre-
sentation of the model surface (see also Figure 17). As pre-
sented in Section 2, many automatic hole filling algorithms
exist.

5.7.1. Volumetric Diffusion

We extend the volumetric diffusion method by Davis et
al. [6] to point-sampled models by replacing the distance
field estimation of [6] by an MLS projection step as pro-
posed in [18]. The distance field is computed on a regular
3D grid that encloses the model surface (see Figure 10). At
each grid point we compute the signed distance to the MLS

Figure 10: Volumetric diffusion. Slices of the distance vol-
ume reveal the narrow band.

surface defined by the given input point set. To efficiently
represent this volumetric grid we use an octree data struc-
ture similar to [8]. This method makes use of binary location
codes to address octree cells, allowing for fast point location
and efficient neighborhood queries.

We further reduce memory and computation costs by only
representing the distance field in a narrow band around the
surface, similar to level set methods [14]. We detect holes in
the distance field using the classification method of [6]. Dis-
tance values on the boundary of holes can then be extrapo-
lated by applying an iterative convolution operator until all
holes of a user-specified size are filled. More details on this
diffusion process can be found in [6].

To convert the distance field back to an explicit point-
sampled representation we either apply a contouring method
similar to marching cubes [12], or use a particle simulation
as described in Section 4.3. In the latter case, the MLS pro-
jection that keeps the particles on the surface is replaced
a projection based on gradient decent that moves particles
to the zero set of the signed distance field. Normals of the
newly generated points can also be directly estimated from
the distance field gradient.

The user interface supports a fine-tuning of the algorithm
(see Figure 11). Though, using the default parameters the
automatic hole filling tool is robust and easy to use.

6. Results

The toolbox has extensively been used by half a dozen peo-
ple to clean various models acquired with different scan-
ning technologies. We cleaned models acquired with a
CyberWareR© laser range scanner, a single-shot structured
light scanner by 3Q Technologies Ltd., and a phase-shift
structured light scanner that allowed us to change various
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Figure 11: The user interface of the automatic hole  lling
tool allows to  ne-tune the algorithm. The volumetric repre-
sentation can be previewed before surface reconstruction.

(a) (b) (c)

Figure 14: Selective noise removal using the MLS smoother.
(a)Noisy input surface. (b) Smoothing of a sub-set of surfels,
excluding high-frequency details. (c) Subsequently, global
smoothing of the model.

scanning parameters. In this section we present some exem-
plary situations during the model cleaning process.

Our general experience is that the simpler, more interac-
tive tools are typically used at the beginning of the cleaning
process, whereas the more complex, semi-automatic tools
are applied towards the end of the procedure.

It turned out that the simpler tools are often used in com-
binations to achieve a desired effect. Figure 12 shows how
the MLS spray can tool and point relaxation are used to man-
ually fill a hole in a surface.

A similar combination can be used to remove undesired
bumps from a surface. Figure 13 shows how the eraser, the
MLS spray, point relaxation, and the MLS smoother work
together to remove a bump from a surface.

In combination with the selection tool, the MLS smoother
can also be used to smooth selected surface parts while pre-
serving details, see Figure 14.

When applying the outlier removal the three different el-
ementary outlier criteria showed to be differently suited de-
pending on the situation (see Figure 15). The plane fit crite-

(a) (b) (c) (d)

Figure 15: Three different outlier classi er s. Potential out-
liers marked in red. (a) Raw scanned geometry. (b) Classi -
cation using the miniball criterion. (c) Plane- t criterion. (d)
k-nearest-neighbor graph criterion. All criteria were thresh-
olded to classify 7% of the surfels as outliers.

rion is best suited to detect outliers in a noisy reconstruction
of a smooth surface. It produces poor results around small
features and creases, as the orientation of the fitted plane
becomes instable. The miniball criterion proved to be more
robust, even around high-frequency details, but in contrast
to the plane fit criterion it shows a poor outlier detection for
points that hover close to a smooth surface.

In comparison with the previous two, the criterion based
on nearest-neighbor reciprocity shows the most robust out-
lier classification. It is equally sensitive around smooth and
detailed regions. However, it consistently yields erroneous
outlier classifications around manifold borders (see Fig-
ure 16).

Obviously, each criterion is advantageous in different sit-
uations. The outlier removal tool allows to confine the out-
lier detection to certain ar-
eas for the model and to
weight the criteria accord-
ing to the local situation.

In order to test the ro-
bustness of the automatic
hole filling tool, we used a
structured light scanner to
scan a furry toy reindeer
(see Figure 17). Fur is
one of the most difficult
materials to be scanned
with optical methods.
Consequently, the scan
shows severe noise and a

Figure 16: The nearest-neighbor
outlier criterion performs poor
around manifold borders.

lot of outliers. Outlier removal leads to a very sparse object
reconstruction. However, as shown in Figure 17, the hole
filling tool is still capable of producing a water-tight model.
Only above the top of the model, the volumetric diffusion
had to be constrained in order to get a closed surface.

Figure 18 shows an application of the automatic hole fill-
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(a) (b) (c) (d) (e) (f)

Figure 12: Manual hole  lling using the MLS spray can tool. (a) A poor scan of a computer mouse, containing a hole in the
surface. (b,c) Gradually  lling the hole using the MLS spray can. (d) Point relaxation improves the point distribution. (e,f)
Versions of (c) and (d) with reduced splat radii to reveal the point distribution.

(a) (b) (c) (d) (e)

Figure 13: Removal of an undesired bump. (a) Close-up of the original data. (b) The eraser is used to stamp out a hole. (c)
Using the MLS spray can, the hole is  lled. (d) Point relaxation redistributes points. (e) Locally applying the MLS smoother,
attenuating its strength towards the border of the hole. Note the smooth transition of the novel surface to the noisy surrounding.

Figure 17: Robustness of the volumetric diffusion tool. Left:
The furred object surface produces severe noise and outliers.
Center:After the outlier removal, only little object points are
left. Right: The volumetric diffusion tool still reconstructs a
water-tight model.

ing tool to a scan with largely varying sampling density. The
model has been scanned by INSIGHT [9] at the British Mu-
seum, London.

7. Conclusion

We presented a cleaning toolkit for the post-processing of
raw scanner data. It is entirely based on point-based mod-
eling techniques, which are given at hand in the form of
simple, interactively controllable, tools. We introduced the

(a) (b)

Figure 18: Egyptian sculpture scanned at the British Mu-
seum. (a) Input scan with varying sampling density. (b) Ap-
plication of the volumetric diffusion tool.

underlying techniques and discussed the design principles
leading to the presented set of tools.

The tools include an eraser tool, low-pass filters, and var-
ious re-sampling and hole-filling tools. We proposed three
different outlier criteria that were incorporated in an outlier
detection tool. We presented an adaption of the volumetric
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diffusion algorithm to point-sampled data, using it to build
an automatic hole-filling tool.

We evaluated the toolbox, cleaning various objects ac-
quired with different scanner technologies. It proved to be
versatile and well-adaptable, as the tools could interactively
be re-combined depending on the situation. Most operations
are robust against sampling artifacts and do not impose any
topological constraints on the data. Future experiences will
show whether the toolbox has to be extended. Possible ex-
tensions may be additional filter tools, or the integration of
texture synthesis into the MLS spray can. As a Pointshop3D
plugin the toolbox rounds off a point-based work flow for
the processing of scanned 3D surface data.
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