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Abstract

Recent detail-preserving shape deformation tech-
niques are either based on a combination of mul-
tiresolution decomposition and variational bending
energy minimization, or they manipulate differen-
tial coordinates and solve a Poisson system to ob-
tain the deformed surface. We establish an explicit
connection between the two approaches and dis-
cuss their inherent limitations, such as local self-
intersections for the former and translation insensi-
tivity of the latter. Based on these new insights we
combine both methods into a novel shape editing
technique that does not suffer from previous limi-
tations, while retaining editing flexibility and effi-
ciency.

1 Introduction

Natural and intuitive shape deformations — like the
ones we experience every day in real life — require
a physically plausible simulation of the mechanical
behavior of the surface. Physically accurate sur-
face deformations can be obtained by minimizing
stretching and bending energies of thin shells, mea-
sured as surface integrals of the change of first and
second fundamental forms [20]. Since this non-
linear deformation energy is computationally de-
manding, it usually is simplified in the context of
geometric shape editing systems with the goal of re-
taining as much physical realism as possible, while
allowing for interactive editing performance.

A common approach is to first linearize the shell
energy by replacing fundamental forms by partial
derivatives, and then to apply variational calculus
to derive a corresponding Euler-Lagrange PDE that
characterizes the surface of minimal deformation
energy [6]. Discretizing the resulting bi-Laplacian
PDE using finite differences finally leads to a lin-
ear system whose solution is the deformed surface
[9, 3]. Other conceptually similar methods [8, 4]

fall into this category, but minimize slightly differ-
ent energies. We refer to this class of variational
minimization approaches as VARMIN.

However, intuitive detail preservation inherently
requires some nonlinear computation to ensure that
small-scale geometric details rotate in a natural way
even when the user imposes purely translational
changes on constrained vertices [5] (cf. Fig. 1). As a
result, the VARMIN approach is complemented by a
multiresolution decomposition, which splits the sur-
face S into a smooth low-frequency base surface B
and high-frequency geometric details D = S 	 B.
The details typically are encoded as displacement
vectors parallel to the normal field of B [10]. A
deformation is then applied to the base surface,
B 7→ B′, and the modified fine-scale surface is
reconstructed from B′ and the original normal dis-
placements as S ′ = B′ ⊕D.

One inherent limitation of this approach is that
the difference between S and B must be sufficiently
small, such that S can be represented as a height
field over B. If this criterion cannot be achieved
for a simple two-level hierarchy, more levels S =
S0,S1, . . . ,Sk = B are necessary.

Moreover, since neighboring displacement vec-
tors are not coupled, the resulting displaced surface
may have local self-intersections whenever the cur-
vature of the deformed base surface B′ is too high in
relation to the displacement length. Displacement
volumes [2] avoid these local self-intersections by
representing geometric detailsD by prism elements
of constant volume, but in turn require an expensive
non-linear detail reconstruction.

Motivated by these limitations, many recent de-
formation approaches, which we denote DIFFCO-
ORD, are based on the modification of differen-
tial coordinates and do not require a multiresolu-
tion hierarchy [11, 17, 22, 23, 12]. Instead of ex-
plicitly changing spatial coordinates, these meth-
ods modify gradients or Laplacians of the surface
and solve a Poisson PDE to find the deformed sur-
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Figure 1: The right side of a bumpy plane (a) is lifted. Without a multiresolution decomposition geometric
details are not rotated, yielding an unrealistic deformation (b). A multiresolution deformation using normal
displacements rotates details, but also distorts their shapes (c). Due to translation-insensitivity gradient-
based techniques fail for this kind of deformation (d). Our new method avoids these problems (e).

face which complies with the deformed gradients or
Laplacians, respectively.

These approaches also require a non-linear com-
ponent in order to successfully preserve local sur-
face details. In this case, the non-linear step is the
way in which the differential coordinates are modi-
fied. A typical method uses the gradient of the de-
sired deformation, i.e., its rotation and scale/shear
components, to update the surface gradient field
[22, 23]. However, since a translation does not
cause a change in surface gradients, these tech-
niques fail to yield intuitive results for transla-
tional deformations (cf. Fig. 1d). This translation-
insensitivity is an inherent limitation of most ap-
proaches based on differential coordinates [5].

Another related technique is deformation trans-
fer (DEFTRANS), which employs deformation gra-
dients in order to transfer the deformation of a
source mesh S → S  to a target mesh T , leading to
a similar deformation T → T  [18]. This method is
applied in the MESHIK editing system [19], which
allows complex shape deformations based on a set
of example poses.

In this paper, we provide a detailed description
of both gradient-based mesh editing (Section 2) and
deformation transfer (Section 3). Although these
methods were previously thought to be disparate,
we derive an equivalence between them for vol-
umetric tetrahedral meshes in Section 4. Based
on this insight, we develop a surface-based for-
mulation of deformation transfer that is equivalent
to surface-based gradient editing and improves the
performance of deformation transfer compared to
its original formulation (Section 5). Since deforma-
tion transfer is a basic component of MeshIK [19],

the latter method is also improved by our new for-
mulation.

Building on our analysis of previous methods, we
propose a new deformation technique that improves
both the VARMIN and DIFFCOORD approaches,
since it avoids local self-intersections and does not
suffer from translation-insensitivity (cf. Fig. 1e).
This method is surface-based and designed for in-
teractive editing, since the most expensive computa-
tion involves solving sparse linear systems that can
be pre-factored for computational efficiency.

2 Gradient-Based Deformation

Instead of deforming the spatial coordinates of a
surface mesh, gradient-based editing [22] manipu-
lates the mesh gradient field and derives the surface
matching the deformed gradient field by solving a
linear Poisson system.

Consider a triangle mesh M with n vertices
{v1, . . . , vn} and m triangles {t1, . . . , tm}, and its
piecewise linear coordinate function p (·) defined
by barycentric interpolation of vertex coordinates
pi:

p (x) =

n
i=1

φi (x) · pi .

Here, φi (·) are the piecewise linear “hat” ba-
sis functions associated with the vertices, i.e.,
φi (vk) = δik. The gradient of p (·) is

∇p (x) =

n
i=1

∇φi (x) pT
i (1)

and yields a constant 3 × 3 matrix Gj for each tri-
angle tj . The discrete divergence of this piecewise



constant gradient field yields a discrete Laplace op-
erator [21]:

∆p (vi) = (div∇p) (vi)

=
∑

tj∈Ti
area (tj)

(
∇φi|tj

)T

Gj

(2)
where Ti denotes the triangles incident to vi.

The computation of the per-face gradients Gj

can be written with a 3m×n matrix G representing
the gradient operator on the mesh M G1

...
Gm

 = G

 pT
1
...

pT
n

 . (3)

The original gradient field is then manipulated by
applying a local rotation/scaling matrix Sj to each
gradient Gj , which yields G′

j := GjS
T
j . Finally,

computing new vertex positions p′i, such that the
resulting mesh complies with the new gradients G′

j ,
leads to a weighted least-squares problem:

GT DG︸ ︷︷ ︸
∆

 p′1
T

...
p′n

T

 = GT D︸ ︷︷ ︸
div

 G′
1

...
G′

m

 , (4)

where D is a diagonal weighting matrix containing
the triangle areas. In this equation, GT D is the ma-
trix formulation of the divergence operator of (2),
and therefore GT DG is the divergence of the gra-
dient, i.e., the discrete Laplace operator. Hence, the
weighted least-squares problem (4) is a simple Pois-
son equation.

Notice that this derivation is valid both for two-
manifold triangle meshes and volumetric solids rep-
resented by tetrahedra. In the latter case, tj sim-
ply denotes tetrahedra instead of triangles and tri-
angle area is replaced by tetrahedron volume. In
the former case, (2) leads to the standard Laplace
discretization for triangle meshes [14, 13]

∆pi =
∑

vk∈Vi

1

2
(cot αik + cot βik) (pi − pk) , (5)

where Vi denotes the one-ring neighbors of vi, and
αik and βik are the two angles opposite to the edge
(vi, vk). Hence, the matrix GT DG can also be
built directly from the cotangent weights in (5).

3 Deformation Transfer

Sumner and colleagues presented a framework for
transferring deformations from one triangle mesh to

another [18], and extended it for their mesh-based
inverse kinematics technique [19].

For a source mesh given in an original state S
and deformed state S ′, an affine source deformation
q 7→ Sjq + tj is derived for each triangle tj ∈ S.
Its deformation gradient Sj ∈ IR3×3 consists of the
rotational, stretch, and shear parts of the deforma-
tion. Given a target mesh T , the goal is to find new
vertex positions p′i for vi ∈ T such that the tri-
angles’ deformation gradients Tj for T match the
given source deformation gradients Sj for S.

Since a triangle with original vertex positions
(p1,p2,p3) and (unknown) deformed positions
(p′1,p

′
2,p

′
3) does not fully define a linear mapping

T, Sumner et al. [18] add a fourth point p4 (respec-
tively p′4), thereby turning the triangle into a tetra-
hedron. This extension yields

T =
(
p′1 − p′4,p′2 − p′4,p′3 − p′4

)
·

(p1 − p4,p2 − p4,p3 − p4)−1︸ ︷︷ ︸
=:V−1=(a,b,c)T

,

(6)
which maps the initial tetrahedron’s orientation to
the new configuration, i.e.,

T (pi − p4) =
(
p′i − p′4

)
, i ∈ {1, 2, 3} . (7)

In this formulation, the deformation gradient T is
linear in the positions p′i. Letting a, b, and c denote
the rows of V−1 gives

TT = (a,b, c,−a− b− c) ·
(
p′1,p′2,p′3,p′4

)T
.

(8)

Let us denote with ñ the number of vertices n
plus the additional fourth vertices for each triangle,
i.e., ñ = n + m ≈ 3n. Then a global 3m × ñ
matrix G̃ can be composed from equations (8) for
each triangle, such that the m deformation gradients
are computed by TT

1
...

TT
m

 = G̃

 p′1
T

...
p′ñ

T

 . (9)

Finally, the new vertex positions p′i satisfying the
given per-triangle deformations Sj in the least
squares sense are given by

G̃T G̃

 p′1
T

...
p′ñ

T

 = G̃T

 ST
1
...

ST
m

 . (10)



4 Equivalence for Tetrahedral Meshes

In this section we show that the matrix G̃ of (9) and
(10) actually corresponds to the matrix G for the
gradient operator of tetrahedral meshes in (3).

Consider a tetrahedron with vertices
(p1,p2,p3,p4). In order to compute the
gradient of a linear function within the tetra-
hedron, we need the basis functions’ gradients
(∇φ1,∇φ2,∇φ3,∇φ4) as defined in (1). The
gradient∇φi must be perpendicular to the opposite
face (pj ,pk,pl) of the tetrahedron, and its length
has to be 1/h with h being the height of pi above
the opposite face. The first condition requires
∇φT

i (pj − pl) = 0 and ∇φT
i (pk − pl) = 0,

and the latter condition simplifies to (with
pij := pi − pj)

∇φT
i pij = cos

(
6
(
∇φT

i ,pij

))
‖pij‖

∥∥∇φT
i

∥∥
= h · 1

h
= 1.

These three conditions fully define the gradient
∇φi. With analogous conditions for the other gra-
dients, we get the linear system(

(p1 − p4)
T

(p2 − p4)
T

(p3 − p4)
T

)
(∇φ1, . . . ,∇φ4) =

(
1 0 0 −1
0 1 0 −1
0 0 1 −1

)
.

(11)

Notice that the matrix on the left hand side of (11)
is the transpose of V from (6). As a consequence,
computing the gradients ∇φi as (combinations of)
columns of V−T as in (11) is equivalent to choos-
ing rows of V−1 as in (8):

(∇φ1, . . . ,∇φ4) = V−T ·

(
1 0 0 −1
0 1 0 −1
0 0 1 −1

)
= (a,b, c,−a− b− c) .

With this (8) becomes

TT = (∇φ1, . . . ,∇φ4) ·
(
p′1,p′2,p′3,p′4

)T
, (12)

such that the (transposed) deformation gradient T
equals the gradient of the (deformed) coordinate
function p′ (·) within that tetrahedron.

Since the matrix G̃ is composed from the per-
triangle equations (8) or (12), respectively, it equals
the matrix G from (4) in the case of a volumetric
tetrahedral mesh. Including the weighting matrix
D of (4) to (10) thus turns the deformation trans-
fer formulation into a volumetric Poisson problem,
with tetrahedra constructed by adding a fourth point
to each triangle of the mesh.

5 Equivalence for Triangle Meshes

The motivation for adding a fourth vertex to each
triangle is to get an expression for deformation gra-
dients Tj that is linear in the unknown vertex po-
sitions p′i. Even though these additional points are
unknowns in the linear system (10), they are dis-
carded after solving this system. In this section,
we show that the additional points are not required
for solving the deformation transfer problem, which
thus decreases the size of the linear system (10)
from ñ× ñ to n× n, i.e., by a factor of 3.

As shown in the last section, the “volumetric”
formulation of deformation transfer is equivalent
to a volumetric Poisson problem. Hence, a natu-
ral surface-based formulation should be equivalent
to the surface-based Poisson approach as described
in Section 2. Surface-based deformation gradients
Tj as in (8) or (12) should therefore equal the per-
triangle gradients G′

j of (4) for the piecewise linear
coordinate function p′ (·) of the mesh.

Similar to Section 4, the basis functions’ gra-
dients ∇φi within a triangle (pi,pj ,pk) have to
be perpendicular to the opposite edge (pj ,pk) and
their length must be one over the distance to this
edge. In addition to these two constraints, the gra-
dients have to lie within the triangle and thus must
be perpendicular to the triangle’s normal n, leading
to the linear system(

(p1 − p3)
T

(p2 − p3)
T

nT

)
(∇φ1, . . . ,∇φ3) =

(
1 0 −1
0 1 −1
0 0 0

)
.

Using this system to compute∇φi from the original
points then turns (12) into

TT = (∇φ1,∇φ2,∇φ3) ·
(
p′1,p′2,p′3

)T
, (13)

which is still linear in the unknown positions p′i,
but does not require an additional point per triangle.
Similar to (7), this surface-based deformation gradi-
ent transforms the tangent directions, but it simply
discards the normal component:

T (pi − p2) =
(
p′i − p′2

)
i ∈ {1, 2}

Tn = 0.

Composing the matrix G̃ of (10) from the
surface-based deformation gradients (13) then leads
to the standard gradient matrix G of (3), and by
including the diagonal weighting matrix D of tri-
angle areas, the deformation transfer problem (10)



Volumetric Surface
Example Triangles Factorization Backsubst. Factorization Backsubst.
Thorn 87,038 19.001 0.228 3.282 0.161
Bumps 80,000 9.718 0.172 3.510 0.135
Cylinder 9,900 0.437 0.021 0.151 0.015

Table 1: Timing statistics for the two versions of deformation transfer. The volumetric approach with an
added fourth vertex per triangle is compared with the surface-based deformation transfer with no extra
vertex. All timing data is measured in seconds.

turns into a standard Poisson problem (4) for trian-
gle meshes:

GT DG︸ ︷︷ ︸
∆

 p′1
T

...
p′n

T

 = GT D︸ ︷︷ ︸
div

 ST
1
...

ST
m

 (14)

However, while the matrices of (14) and (4) are
identical, the right-hand sides differ: Deformation
transfer uses div

(
ST

j

)
, whereas gradient-based ap-

proaches use div
(
GjS

T
j

)
. Notice that p (·) corre-

sponds to the identity on the original mesh, such
that its gradients Gj are the identity within tj’s
(tangent) plane (Gjt = t), but discard the nor-
mal component (Gjn = 0). Hence, GjS

T
j and ST

j

differ only in the normal component, which corre-
sponds to the orthogonal complement of the image
of the gradient matrix G of (3). As a consequence,
both right-hand sides lead to the same least squares
results [7].

Notice that only the target deformation gradi-
ents Tj are computed using the formulation (13),
since for them a linear expression in the p′i is re-
quired. The source deformation gradients Sj , are
either computed using the fourth points as in (6),
or by employing normal vectors. If we denote by
qi, q′i, and n, n′ the vertex positions and normal
of a triangle tj in S or S ′, respectively, the source
deformation gradient can be computed as

Sj =
(
q′1 − q′3,q′2 − q′3,n′

)
·

(q1 − q3,q2 − q3,n)−1 .
(15)

Compared to the original approach [18], our new
surface-based formulation reduces the dimension of
the matrix GT DG from ñ to n, and the average
number of non-zeros in this sparse matrix from 23n
to 7n. This reduction by a factor of 3 allows our
method to handle larger models and, since the com-
putational complexity of sparse solvers is linear in
the number of non-zeros [1], it also improves the
performance of deformation transfer (see Table 1).

6 Deformation Transfer for Detail-
Preserving Mesh Editing

As discussed in Section 1, VARMIN and DIFF-
COORD suffer from inherent limitations, such as lo-
cal self-intersections for VARMIN and translation
insensitivity for DIFFCOORD. In this section we
use the new insight gained from the equivalence be-
tween deformation transfer and gradient-based edit-
ing to derive a new method that overcomes these
limitations.

We propose to improve the VARMIN approach
by replacing the normal displacement step by a de-
formation transfer process. After changing the base
surface from B to B′ we compute the corresponding
deformation gradients Sj for each triangle tj ∈ B.
Using the surface-based formulation of Section 5,
we transfer the deformation B 7→ B′ to the fine-
scale surface S, which yields the desired result S ′.
The following paragraphs and Fig. 2 describe our
multiresolution framework step by step.

Base Surface Computation Implementing the
detail reconstruction operator as a deformation
transfer process removes the restriction for S to
be a height field over B, therefore allowing sim-
ple two-level hierarchies even for complex geome-
tries (cf. Fig. 3). For instance, we can compute
the base surface B by removing all high frequen-
cies from the user-defined deformable region. This
can be achieved by minimizing the thin-plate en-
ergy, which only requires to solve a bi-Laplacian
system ∆2(qi) = 0 with boundary constraints [3].

Base Surface Deformation A base surface defor-
mationB 7→ B′ of minimal (linearized) bending en-
ergy can be computed by solving the bi-Laplacian
system ∆2(δqi) = 0 for a smooth displacement
field δqi := q′i−qi. However, any other technique
for deforming B to B′ can be applied as well.



S S
′

B
′B

∆2(qi) = 0

Sj = (q′

1 − q′

3,q
′

2 − q′

3,n
′) · (q1 − q3,q2 − q3,n)−1

∆2(δqi) = 0 ∆(p′

i) = div
(

ST
j

)

Figure 2: Schematic of our multiresolution deformation pipeline based on deformation transfer.

Deformation Transfer From B and B′ we ex-
tract the source deformation gradients Sj as in (15).
Depending on the application, only the rotational
component of Sj can be kept by discarding scaling
and shearing components based on a polar decom-
position [16], which then better preserves surface
area. To transfer the deformation B 7→ B′ to the
fine-scale surface S we solve the Poisson system
∆(p′i) = div(ST

j ) as in (14).

Since the Laplacian matrix for the deformation
transfer as well as the bi-Laplacian matrix for the
base surface deformation only depend on the initial
vertex positions pi ∈ S and qi ∈ B, and hence
does not change during deformation, we can pre-
factor these matrices and perform efficient back-
substitutions in each frame [1]. Even higher effi-
ciency can be achieved by employing the precom-
puted basis functions of [3] for the deformation of
the base surface.

Employing deformation transfer as a multires-
olution representation not only enables a simple
two-level decomposition, it moreover avoids local
self-intersections much better than normal displace-
ments. Local self-intersections would cause high
local errors in the resulting gradient field, which
are highly unlikely, since the least squares solution
of (14) distributes the errors evenly over the whole
mesh. Fig. 4 shows a comparison with normal
displacements and the non-linear displacement vol-
umes of [2]. Note that while displacement volumes
better preserve global volume, computation time is
orders of magnitude higher than for our method.
Fig. 5 illustrates how normal displacements distort
local details, whereas our technique leads to more
intuitive results.

Because deformation transfer is equivalent to
gradient-based Poisson editing, our new approach
can also be considered as an improvement of the

latter. Instead of heuristically propagating user-
specified deformation gradients (rotations and scal-
ings) over the mesh — which was shown in [5] to
fail for translations — now the change of the base
surface B is used to infer per-triangle rotations.

Since the base surface deformation B 7→ B′ is
derived by minimizing global bending energies, an
optimally smooth deformation is used to derive the
deformation gradients. In comparison to the heuris-
tic propagation of local rotations this yields a higher
deformation quality. Moreover, while rotations are
handled equally well in both methods (cf. Fig. 5),
the main benefit of our approach over DIFFCOORD

is the more intuitive surface behavior under trans-
lational deformations (cf. Fig. 1e). Similar to the
Poisson methods, our detail transfer technique re-
quires the solution of the same kind of linear sys-
tem, i.e., both approaches are roughly equivalent in
terms of computational complexity.

Compared to recent non-linear approaches [15,
5], our method is less suited for large-scale defor-
mations. Due to our linear formulation, large de-
formations need to be split up into a sequence of
smaller ones to obtain physically plausible results.
However, this drawback is partly compensated by
faster computations as compared to [5].

7 Conclusion

We have presented a thorough analysis of gradient-
based deformations and deformation transfer, show-
ing their equivalence for both surface and volume
meshes. This insight leads to performance improve-
ments for methods based on deformation transfer.
In addition it allows the formulation of a new mesh
editing method that combines the advantages of
differential coordinates and explicit multiresolution
decomposition.



Figure 3: This thorny model (left) cannot be represented as a height field over the base surface, which is
why the deformation based on normal displacements fails (center). Our new approach employs deformation
transfer for the multiresolution reconstruction and therefore overcomes this limitation (right).

Figure 4: A cylinder is bent by explicitly deforming its base surface, which is a cylinder of half the radius.
Normal displacements immediately lead to local self-intersections (left), whereas our new technique effec-
tively avoids them (center). Compared to the non-linear displacement volumes [2] our linear method does
not (try to) preserve volume.

Figure 5: A concave bending of the bumpy plane of Fig. 1. Normal displacements unnaturally change the
local details (left), whereas gradient-based editing (center) and our technique (right) preserve them.
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