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Abstract

The Second Dongting Lake (SDTL) Bridge is the longest steel truss girder suspension bridge in China,
which has a main span of 1480 m. To alleviate deterioration issues in the orthotropic steel deck
(OSD), the steel-ultra high performance concrete (UHPC) lightweight composite deck (LWCD) was
proposed for the SDTL Bridge. The LWCD is composed of a 12 mm OSD and a 45-mm UHPC layer,
with the two components connected through headed studs. As the first time of LWCD to be used in the
long-span flexible bridge, the constructional method of casting UHPC was carefully developed.
Considering that the area of the bridge deck is about 65000 m2, the UHPC layer was divided in to 12
zones and the zones were cast step-by-step. Water tanks were deployed on the bridge deck prior to
casting UHPC, and during the casting of each UHPC zone, the corresponding water tanks within the
current zone were removed. By doing so, the deflection and rotation of the truss girder as well as the
tensile stress in UHPC could be controllable. This paper validate the feasibility of the proposed
construction method by Finite-element analysis. The maximum torsion angles of the truss girder in
each construction stage are less than 0.60°. In addition, the strains of UHPC were recorded during
construction to analyse the stress in the UHPC layer. The in-site test indicated that the longitudinal and
transverse strain of the UHPC layer were stabilized at -50 µε ~ 50µε and -20 µε ~ -120 µε after steam
curing respectively, which have no cracking risk. Thus, the studies in this paper reveal that the
proposed constructional method should be suitable in the construction of UHPC on long-span flexible
bridges.

Keywords: bridge, ultra high performance concrete, steel-UHPC lightweight composite deck,
constructional method, shrinkage.

1. Introduction

As an important structural form of steel bridge decks, orthotropic steel decks (OSDs) has been widely
used because of their advantages such as light self-weight, high strength, and constructional
convenience, etc. However, with the increase of service time, the OSD+asphalt pavement deck system
is inclined to premature deterioration (Wolchuk 1990, Jong 2004, Shao and Cao 2018), i.e. fatigue
cracking of the steel deck and frequent damage of the asphalt pavement.

Ultra high performance concrete (UHPC) is a new class of concrete with excellent mechanical
properties and exceptional durability. To address the above issues, the authors proposed a new
composite deck system (Shao et al 2013) for OSD bridges. The new composite deck system is
composed of an OSD and a thin untra high performance concrete (UHPC) layer, with the two
components connected through headed studs. Considering the thin thickness of the UHPC layer
(usually 35~50 mm), the OSD-UHPC composite deck is also referred to as steel-UHPC lightweight
composite deck (LWCD). Extensive researches (Shao and Cao 2018, Shao et al 2013) have shown that
the LWCD can highly improve the local thickness of the OSD and thus reduce the fatigue stress in the
OSD, which can significantly reduce the risk of fatigue cracking of the steel deck. At the same time,
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the LWCD also addressed the frequent damage of the asphalt pavement by replacing expensive asphalt 
pavement with economical concrete pavement. 

The Second Dongting Lake (SDTL) Bridge is the longest steel truss girder suspension bridge in 
China, which has a main span of 1480 m. In 2017, the LWCD has been applied to the SDTL Bridge. 
As the first time of LWCD to be used in the long-span flexible bridge, the constructional method of 
casting UHPC was carefully developed. Considering that the area of the bridge deck is about 65000 
m2, the UHPC layer was divided in to 12 zones and the zones were cast step-by-step. Water tanks were 
deployed on the bridge deck prior to casting UHPC, and during the casting of each UHPC zone, the 
corresponding water tanks within the current zone were replaced by UHPC gradually. By doing so, the 
deflection and rotation of the truss girder as well as the tensile stress in UHPC could be controllable. 

This paper validated the feasibility of the proposed construction method by simulating the 
constructional phase of UHPC casting in global finite-element (FE) analysis. In addition, the strains of 
UHPC were recorded during construction to analyse the stress in the UHPC layer. 

2. Pilot Project: The SDTL Bridge 

2.1. Brief Introduction of the SDTL Bridge 

The SDTL Bridge is a two-pylon two-span steel truss girder suspension bridge, which has a main span 
of 1480 m — the longest steel truss girder suspension bridge in China. The layout of the SDTL Bridge 
is shown in Figure 1. The steel truss girder has a depth of 9.0 m and a width of 35.4 m. The sag ratio 
of the main cable of the bridge is 1/10. The suspender spacing along the longitudinal direction and 
transverse direction are 16.8-17.6 m and 35.4 m respectively. The OSD of the SDTL Bridge is 12 mm 
thick. Stiffened with 8-mm U-shaped ribs spaced at 600 mm, the OSD is supported on the transverse 
floor beams every 2.8 m. 
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Figure 1. The SDTL Bridge (all dimensions are in millimeters): (a) elevation view; (b) cross section of the steel 
truss girder. 
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The LWCD scheme of the SDTL Bridge is shown in Figure 2. The thickness of the asphalt overlay, 
the UHPC layer, the steel bridge deck are 40 mm, 45 mm, 12 mm respectively. Steel bars with a 
nominal yield strength of 400 MPa are used to reinforce the UHPC layer. Each steel bar has a diameter 
of 10 mm and has central spacings of 37.5 mm in the longitudinal and the transverse directions. The 
steel bridge deck and the UHPC layer are connected through headed studs (13 × 35 mm). The headed 
studs have spacings of 150 mm along both the longitudinal and the transverse directions. 

 

Asphalt layer (40mm)

UHPC layer (45mm)

Stud and steel bars

OSD

 
Figure 2. The LWCD scheme of the SDTL Bridge. 

2.2. Application of LWCD to the Real Bridge 

During the UHPC casting of the SDTL Bridge, the UHPC layer was divided in to 12 zones (Fig. 3) 
and was cast zone-by-zone. The construction phase are corresponding to the casting of each zone of 
UHPC. As a long-span flexible bridge, the SDTL Bridge is sensitive to change of dead load on bridge 
deck. In addition, the UHPC layer was cast asymmetrically during construction. To control the 
deflection and rotation of the truss girder and avoid negative impact on UHPC, the load-balance 
constructional scheme (Figs. 4-6) was used in the casting of UHPC. Prior to casting UHPC, water 
tanks are deployed on the bridge deck and the weight of water tanks is equal to the weight of UHPC to 
be cast on the bridge deck. During the casting of each UHPC zone, the corresponding water tanks 
within the current zone are gradually replaced by the UHPC of same weight. In doing so, loads on the 
bridge deck remain basically unchanged in construction. 

The main construction procedures of UHPC were as follows: (1) headed studs were welded to the 
deck plate; (2) the special-shape steel plate was welded to the deck plate at the bridge center line; (3) 
steel bars were placed; (4) the UHPC layer was cast in-situ; (5) 2-day moisture-retaining curing and 3-
day steam curing with temperature over 80 ℃ were appli       
(procedures 4-5 were repeated for each UHPC zone); (6) after the steam curing of all UHPC zones 
was finished, surface roughening was applied to the UHPC layer. 

 
midspan center of Junshan tower

16
.7

8
16

.7
8

33
.5

6 1 4 2 5 12 3

8 10 6 9 11 7

323.4 319.2

309.6

372.4 267.4
1480 453.6

329.2 322

19.6

1933.6
Yue yang Jun Shan

centerline of
truss girder

 
Figure 3. The casting sequence of the UHPC layer (unit: m) 
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Figure 4. Load-balance constructional scheme used in the casting of 1st - 4th UHPC zones (unit: m) 
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Figure 5. Load-balance constructional scheme used in the casting of 5th - 10th UHPC zones (unit: m) 
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Figure 6. Load-balance constructional scheme used in the casting of 11th - 12th UHPC zones (unit: m) 

3. FE Analysis 

3.1. FE Analysis of the SDTL Bridge 

3.1.1. Global FE Model of the SDTL Bridge 

The global FE model of the SDTL Bridge (Fig. 7) was built in the software Midas Civil (Zhang et al 
2017). Eleven constructional phases (i.e. constructional phases that 2nd-12th UHPC zones just had 
been cast) were simulated. The main cable and suspenders were built by using cable element. The 
concrete bridge tower and the steel truss girder were built by using beam element. The steel bridge 
deck was built by using shell element. The UHPC layer after steam curing was built by using solid 
element. The newly casting UHPC layer was considered as pressure load. The elastic modulus, 
volumetric weight, poisson's ratio of steel bridge deck were 206 GPa, 78.5 kN/m3, 0.3 respectively. 
The elastic modulus, volumetric weight, poisson's ratio of the UHPC layer were 40 GPa, 30.04 kN/m3, 
0.2 respectively. 

The stiffness at the bottom of bridge towers was defined as the stiffness of pile foundations. As for 
the end of truss girder near Yueyang bridge tower, its vertical displacement was the same as that of the 
crossbeam of Yueyang tower, and it only beared transverse compressive stress from the tower column. 
Other boundary conditions of the global model are illustrated in Figure 7. 
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Figure 7. Global FE Model of the SDTL Bridge 

3.1.2. Loads 

Self-weight and construction loads were considered in the FE analysis. The construction loads 
contained: the weight of water tanks, the weight of construction vehicles, the weight of construction 
machines. The load of water tanks was exerted on the bridge deck by means of pressure load (Fig. 4-
6). Construction vehicles consisted of a concrete mixer truck of 300 kN, a pump truck of 300 kN. 
Construction machines consisted of a casting machine of 160 kN, a leveling machine of 110 kN, two 
construction platforms of 120 kN. The UHPC layer on the SDTL Bridge was cast along the direction 
from Yueyang to Junshan in the casting of each UHPC zone and constructional phases that 2nd-12th 
UHPC zone just had been cast were simulated. Thus, loads of construction vehicles and construction 
machines were exerted on truss girder in the manner shown in Figure 8. 
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Figure 8. Loads of construction vehicles and construction machines: schematic drawing (unit: m) 

3.2. Calculation Results and Discussion 

Based on the FE analysis result, this paper validated the feasibility of the proposed construction 
method in terms of vertical deflection of truss girder, rotation of truss girder and the stress in the 
UHPC layer. 

3.2.1. Vertical Deflection of Truss Girder 

The vertical deflections (lineshapes) of truss girder in constructional phases 2-12 are shown in Figure 
9. The maximum vertical deflection differences of truss girder between two adjacent constructional 
phases are shown in Figure 10. The aforementioned vertical deflection of truss girder, is calculated 
based on the height of truss girder to be opened to traffic, i.e. if the height of truss girder in one 
constructional phase is equal to the height of truss girder to be opened to traffic, the vertical deflection 
of truss girder in this constructional phase is 0. The following conclusions were obtained from Figures 
9-10: 

(1) The lineshapes of truss girder in phases 2-10 were higher than that of the bridge to be opened to 
traffic. This result could be explained by that the less the load on the truss girder, the higher the 
lineshape. In addition, the farther the truss girder was away from the bridge tower (abutment), the 
higher the truss girder in phases 2-10. 
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(2) The maximum vertical deflection difference of truss girder between two adjacent phases was 
very small. As for phases 2-10, 11-12, their maximum vertical deflection difference between two 
adjacent constructional phases were 20 cm~39 cm, 5 cm respectively. This result could be explained 
by that the load on the truss girder remained basically unchanged during construction because of using 
the load-balance constructional scheme. 

(3) Because of using special load-balance constructional scheme, the lineshape of truss girder in 
phases 11-12 was different with that of truss girder in phases 2-10. As for the lineshape of in phases 
11-12: ① the lineshapes on left side of Junshan tower was changed from upward arch to downward 
deflection, and reached their maximum vertical deflection of 154cm (phase 11) and 155 cm (phase 12) 
at 403.2 m away from Junshan tower. ② the upward arch of lineshapes on right side of Yueyang 
tower increased obviously and reached their maximum vertical deflection of 270 cm (phase 11) and 
273cm (phase 12) at 436.8 m away from Yueyang tower. 
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Figure 9. Vertical deflection of truss girder Figure 10. The maximum vertical deflection 
differences between two adjacent phases 

3.2.2. Torsion of Truss Girder 

The vertical deflection at the suspension point (the connection point of bridge deck and the suspender) 
was obtained from FE analysis. Based on this, the torsion angle of truss girder in different 
constructional phases (the height difference of two suspension points at same transverse section) was 
calculated and shown in Figure 11. According to Figure 11, the proposed constructional method 
avoided eccentric load basically and thus, its torsion angles were very small in each constructional 
phase. The maximum torsion angles in phases 2-12 (except phase 4) were only 0.02°~ 0.38°, while the 
maximum torsion angle in phase 4 was only 0.60°. 
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Figure 11. Torsion angle of truss girder 
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3.2.3. Maximum Tensile Stress of UHPC 

In constructional phases 2-12, the maximum longitudinal and transverse tensile stress in the UHPC 
layer were within the range of 1.72 MPa ~ 2.67 MPa and 0 MPa ~ 0.44 MPa respectively (Fig. 12). 
According to the research of Shao et al (2013), tensile stress of the UHPC layer is up to 42.7 MPa 
before tiny cracks appear, which is much greater than the FE analysis result. Thus, the UHPC layer 
should has no cracking risk during construction. 
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Figure 12. The maximum longitudinal and transverse tensile stress in the UHPC layer 

4. In-site experimental test 

During construction, 10 transverse sections were selected in 12 UHPC zones (Fig. 13). Prior to casting 
UHPC, two strain gauges along transverse or longitudinal direction were installed in each UHPC 
transverse section, which were respectively 2.1 m, 2.55 m away from the boundary of UHPC zone in 
transverse direction.  

The UHPC strain was monitored during construction. According to the monitoring data, the strain 
development of UHPC performed well during construction: (1) The shrinkage of UHPC was basically 
completed during curing and had no obvious growth trend after steam curing. (2) After steam curing 
of each UHPC zone, the UHPC strain returned to around 0 µε, and then the longitudinal and transverse 
strain of UHPC fluctuated within the range of -50 µε~50 µε and -10 µε~-130 µε respectively, which 
had no cracking risk (Shao et al 2013). 

The UHPC strain was monitored again 23 days after the steam curing of all UHPC zones. 
According to the material property test of each UHPC zone, the average elastic modulus of UHPC was 
48.5 GPa. Based on the monitored strain and average elastic modulus of UHPC, the UHPC stress was 
calculated (Fig. 14). According to Figure 14, 23 days after the steam curing of all UHPC zones, the 
longitudinal strain (stress) and transverse strain (stress) of UHPC were within the range of -65.98 µε ~ 
41.06 µε (-3.20 MPa ~ 1.99 MPa), -94.52 µε ~ -41.90 µε (-4.58 MPa ~ -2.03 MPa) respectively, 
which had no cracking risk (Shao et al 2013). 
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Figure 13. The installation of strain gauges 
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Figure 14. The UHPC strain 23 days after the steam curing of all UHPC 

5. Conclusions 

This paper presents a case study for the constructional method of UHPC on steel deck of long span 
suspension bridge and in-site experimental test. According to this study, the following conclusions can 
be drawn: 

(1) According to FE analysis and in-site test, the proposed constructional method is suitable for the 
construction of UHPC on long-span flexible bridges. During construction, the lineshape changes and 
torsion of truss girder were small, and the UHPC layer had no cracking risk. 

(2) The shrinkage of UHPC was basically completed during curing and had no obvious growth 
trend after steam curing. After steam curing of each UHPC zone, the UHPC strain returned to around 
0 µε, and then the longitudinal and transverse strain of UHPC fluctuated within the range of -50 µε~50 
µε and -10 µε~-130 µε respectively, which had no cracking risk. 

(3) Twenty-three days after the steam curing of all UHPC, the longitudinal strain (stress) and 
transverse strain (stress) of UHPC were within the range of -65.98 µε ~ 41.06 µε (-3.20 MPa ~1.99 
MPa), -94.52 µε ~ -41.90 µε (-4.58 MPa ~ -2.03 MPa) respectively, which had no cracking risk. 
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	Keywords: Bridge engineering;Vehicle-bridge coupling vibration; Continuous rigid frame bridge; Numerical simulation; Impact factor.
	Introduction

	The prestressed concrete continuous rigid frame bridge not only has the advantages of strong integrity and smooth driving of the continuous beam bridge, but also has the advantages of no support and convenient construction of the T-shaped rigid frame ...
	Compared with the static load of vehicles, the internal force of the bridge structure will increase under the moving vehicle load. In order to consider the effect of the increase of internal force, the impact factor is introduced into the bridge desig...
	The current general specifications for the design of highway bridges and culverts in China (General Specifications for Design of Highway Bridges and Culverts. JTG D60-2015) defines the impact factor (IM) as a function of the fundamental frequency of t...
	(1)
	Where is the fundamental frequency of bridge structure; is the impact factor.
	Under this background, combined with the vehicle-bridge coupling vibration analysis system developed by the research group, the numerical simulation method is used to calculate and analyse the impact factor of a prestressed concrete continuous rigid f...
	(2)
	Where and denote the maximum static effect valueand the maximum dynamic effect value,respectively, and which is calculated according to the same cross-section and effect.Where  denotes different cross-section,including the two sections at 0.4L of the ...
	When scholars use the numerical simulation method to calculate the impact factor, they often use a single row of vehicles to load, but different scholars have different choices on the number of transverse loading vehicles and loading position(Wang, L....
	Numerical simulation

	2.1 Vehicle analyticalmodels
	The vehicle analytical models adopt a 9-degree-of-freedom spatial three-axis vehicle model composed of mass, spring and damping, in which the parameters of each component selects the parameters of three-axis self-unloading lorry commonly used in bridg...
	Figure 2.Finite element model for bridge.
	Figure 1. Illustration of vehicle analytical models.
	2.2 Project overview
	The project is a continuous rigid frame bridge in Shaanxi Province. The box girder adopts C55 grade concrete and the bridge pier adoptsC50 grade concrete.The total length of the bridge is 570m, and the span layout is 75m+140m×3+75m. The plane of the b...
	2.3 Road surface roughness
	Road surface roughness are one of the important excitation sources of vehicle-bridge coupling vibration system. Based on the statistical analysis of numerous of measured data of actual road surface roughness, scholars regard the road surface roughness...
	/
	Figure 3.Three levels of road surface condition.

	2.4Numerical calculation methods of vehicle-bridge coupling vibration
	The finite element models of vehicle and bridge are established respectively in ANSYS environment, and the two are coupled according to the mechanical equilibrium and geometric coordination contact conditions between vehicles and bridge, and then the ...
	(3)
	Where  , and  are vehicle mass, damping and stiffness matrix, respectively; denotes gravity load vector; denotes instantaneous coupling load vector at the contact point between the wheel and bridge deck.
	(4)
	Where  and  denote vertical displacement and velocity of a wheel node at moment,  respectively; and denotevertical displacement and velocity of the corresponding bridge node directly under the wheel at time, respectively; denotes the data of road surf...
	Calculation and analysis of impact factor

	3.1Vehicle loading modes
	In order to minimize the influence ofthe number of transversely loaded vehicles and the loading position on the final IM value when calculating the impact factor by single-row vehicle loading, this paper considers the transverse single-vehicle and mul...
	Table 1.Calculation cases for impact factor.

	Figure 5. IMs under different conditions
	Figure 4.Parameters of lanes and cross-sections.
	The analysis of the data in Table 2 shows that with the increase of the number of transversely loadingvehicles, the corresponding maximum IM value decreases. This is because the increase in the static effect caused by the increase number of transverse...
	In the process of bridge design,engineers often take the maximum impact factor value within a reasonable range to ensure the safety of the bridge structure under vehicle load. We can see from Table 2 that although the maximum value of the impact facto...
	Table 2.Impact factor under different calculation cases.
	(The unit of vehicle speed is km/h.)

	3.2Vehiclespeedandroad surface roughness
	The vehicle speed and the road surface roughness have an influence on the dynamic response of the bridge under the moving vehicle load, and the road surface roughnessare one of the important excitation sources in the vehicle-bridge coupling vibration ...
	It can be seen from Figure 5 that the impact factor increases with the increase of vehicle speed and decreases after vehicle speed reaches a certain value, which is basically consistent with the results of most literature. Compared with the impact fac...
	3.3 Bridge pier height
	The real bridge in this paper is a four-pier and five-span continuous rigid frame bridge, the maximum pier height is 150m and the minimum pier height is 84m. For the long-span prestressed continuous rigid frame bridge, the high piers increase the flex...
	It can be seen from Table 4 that with the decrease of bridge pier height, the fundamental frequency of the bridge structure increases, and the corresponding impact factor also increases. Under the condition of vehicle speed of 70km/h and B level RSC, ...
	Table 3. Impact factor and fundamental frequency under different arrangement of bridge pier height.
	Conclusions

	In this paper, based on the vehicle-bridge coupled vibration analysis system developed by the research group, the impact factor of a prestressed concrete continuous rigid frame bridge is calculated and analysed.The effects of factors such as transvers...
	(1) When using numerical simulation methods tocalculate the impact factor, the impact factor changes with the variation of the number of transversely loaded vehicles and the loading position, and the maximum impact factor of single-vehicle loading is ...
	(2) The vehicle speed and the road surface roughness have a certain influence on the dynamic impact factor caused by vehicle load. Under the same conditions, when the speed increases, the impact factor also increases, but when the vehicle speed increa...
	(3) For the prestressed continuous rigid frame bridge with high piers, the height of the pier has a certain influence on its dynamic performanceunder moving vehicle load. When the height of the pier decreases, the fundamental frequency of the bridge s...
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