
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Side-channel analysis of isogeny-based key
encapsulation mechanisms and hash-based digital
signatures

Aymeric GENET

Thèse n° 9214

2024

Présentée le 24 janvier 2024

Prof. O. N. A. Svensson, président du jury
Prof. S. Vaudenay, Prof. A. Lenstra, directeurs de thèse
Dr J.-Ph. Aumasson, rapporteur
Dr C. Costello, rapporteur
Dr M. Stojilović, rapporteuse

Faculté informatique et communications
Laboratoire de sécurité et de cryptographie
Programme doctoral en informatique et communications

What’s a man to do

Lost in a world

Without you

Acknowledgements

Hiding secrets is an art that transcends the domain of cryptography.

We’re now at the end of my PhD, the time has come for me to acknowledge the people who, like

no others, supported me in this crazy journey. First and foremost, without wasting time on

strangers, I would like to thank my thesis director, Prof. Arjen Lenstra, who was daring enough

to believe in me to write a thesis. Arjen, thank you so much for allowing me to always do what I

love all the time and for your never-ending support in every moment of my doctoral studies.

You are the one who constantly guided me on the right path, and I owe you everything that I

know. I consider myself very fortunate to have had you as a director; I will forever cherish

the Thursday lunches and will never forget your help when I had to deal with the administrative

rules of the school that got in the way. Next, to Prof. Serge Vaudenay, my thesis co-director

and one of my greatest sources of inspiration in cryptography, I would like to express

so much gratitude for taking over my supervision. Serge, you are the reason why I wanted to

do a PhD in cryptography after you introduced me to this domain. Despite our disagreements,

I have learned a lot under your direction, and for that, I will be forever grateful. Thank you.

A special thought goes to all my colleagues from LACAL who made my life as a PhD student

full of good memories. Thank you, Benjamin, Dušan, Marguerite, and Novak, your academic

commitment’s a real inspiration. Then, I want to thank Thorsten for the insights you bring to

what I do, as well as Monique, our secretary, for the good talks and the favors you granted me.

I’m also indebted to the people I’ve met during my time in LASEC—home of the most security-

thinking persons. Cheers to Abdullah, Andi, Bénédikt, Daniel, Khashayar, Laurane, Loïs, and

of course our secretary Martine, for the time we spent together and your help in hard times.

You were all the most amazing labmates that anyone could’ve asked for. Obviously, the lineup

wouldn’t be complete without the post-docs: Boris, Hailun, Ritam, and Subhadeep; I won’t for-

get your help through hardship. Finally, I would like to acknowledge Kudelski Group for making

this thesis a possible joint work between academia and industry. Thank you, Benoît and Joël

from management, for allowing such a project. Thank you, Pascal and Stéphane, for tackling

any possible complication. And thank you, Adel, Gerrit, Hervé, Nicolas, Pablo, Roman, the

other Roman, Sylvain, and Thierry for all your support. At last, thank you Karine for providing a

guy like me with your infinite wisdom in cryptography. I owe my thesis to all of you guys.

i

Acknowledgements

I would also like to acknowledge the work of my collaborators, without whom my thesis

just wouldn’t be as good. To Denis, Élise, Juliane, Johannes, Luca, Matthias, Nadia, and Simon, I

wanna express my sincerest gratitude for the excellent teamwork. I then need, of course, to

tell my students a few kind words: Léa, Lucas, Kopiga, Marc, Mathilde, Othman, and Stache;

you were the most diligent in your studies. I enjoyed every moment with you and feel proud of

how each of your projects turned out. In particular, I want to personally thank you, Natacha.

I’m grateful of our collaboration which sparked an entire part of my PhD. All in all, I’m

feeling appreciative of everyone with whom I worked. It was an honor collaborating with you.

Gotta also thank the family. Thank you, Mom, Dad, and Henry, for going out of your way to

make everything as easy as possible. At last, I want to finish with Aurore, my best friend. Aurore,

you were there for me from the start, despite the distance and the fact that you do not always

understand everything I tell you. You are gold to my eyes. I do not deserve a friend like you.

Lausanne, September 19, 2023 M.L.

ii

Abstract
Current cryptographic solutions will become obsolete with the arrival of large-scale universal

quantum computers. To address this threat, the National Institute of Standards and Technology

supervises a post-quantum standardization process which involves evaluating candidates

in a round-based competition-like format. Among these candidates, two notable schemes

were submitted: the isogeny-based key encapsulation mechanism SIKE, and the hash-based

digital signature scheme SPHINCS+. While considerable theoretical cryptanalysis has been

dedicated to these candidates, relatively little attention has been given to the potential risks

associated with their implementation. This thesis aims to address this gap by investigating the

vulnerabilities of SIKE and SPHINCS+ to side-channel analysis.

The first part of the thesis focuses on SIKE in relation to power analysis, where we describe

three side-channel attacks. The first attack involves a horizontal differential power analysis of

the three-point ladder used in the scheme, which recovers the secret scalar used to generate

the secret isogeny within a single trace of power consumption through an extend-and-prune

method. The second attack applies clustering power analysis to identify all the bits of the secret

scalar from a single trace of the three-point ladder by exploiting the leakages of a procedure

that swaps two elliptic curve points depending on the difference between two bits of the

secret scalar. Lastly, the final attack details a zero-value point attack on the secret isogeny

computation, which works by providing a malicious ciphertext that causes many operations,

including the j -invariant calculation, to have a zero result based on the value of a single bit of

the secret scalar. All attacks were experimentally verified with power traces collected from an

STM32F3 running the SIKE implementation recommended for Cortex-M4. Note that while

the work in this thesis was being conducted, an independent attack on SIKE resulted in the

total security break of the scheme. Our work remains of value despite this attack.

The second part of the thesis focuses on the side-channel analysis of the SPHINCS family.

First, we target the seminal SPHINCS-256 scheme through a differential power analysis of its

pseudorandom number generator based on BLAKE-256, and describe an attack that recovers

at least one 32-bit chunk of the signing key. We successfully conducted an experimental

verification of this attack using 10,000 electromagnetic traces collected from a SAM3X8E

running a custom Cortex-M3 SPHINCS-256 implementation. Secondly, we adapt an original

fault attack on the SPHINCS-256 scheme to SPHINCS+ and analyze its impact on the security

of the scheme. This analysis demonstrates that, with high probability, the security of SPHINCS+

significantly drops when a single random bit flip occurs anywhere in the signing process, and

iii

Abstract

that the countermeasures based on caching the intermediate W-OTS+s offer a marginally

greater protection against unintentional faults. Experimental validation of these results was

conducted on an STM32F4 running the reference implementation of SPHINCS+ adapted to

the Cortex-M4 architecture.

The thesis concludes that the current state of SIKE and SPHINCS+ are vulnerable to side-

channel analysis and proposes directions to develop effective countermeasures.

Keywords: Post-Quantum Cryptography, SIKE, SPHINCS-256, SPHINCS+, Differential Power

Analysis, Clustering Power Analysis, Zero-Value Point Attack, Fault Attack, Countermeasures.

iv

Résumé
Les solutions cryptographiques actuelles deviendront obsolètes avec l’arrivée des ordinateurs

quantiques universels de grande envergure. Pour faire face à cette menace, le National Institute

of Standards and Technology1 supervise un concours de standardisation post-quantique, qui

consiste à évaluer des candidats selon un format compétitif à plusieurs rondes. Parmi ces

candidats, deux schémas notables ont été proposés : le mécanisme d’encapsulation de clé à

base d’isogénies SIKE et le schéma de signature numérique à base de hachage SPHINCS+. Bien

que ces candidats aient fait l’objet d’une cryptanalyse théorique considérable, relativement

peu d’attention a été accordée aux risques potentiels liés à la mise en œuvre de ces schémas.

Cette thèse vise à combler cette lacune en examinant les vulnérabilités de SIKE et SPHINCS+ à

l’analyse par canaux cachés.

La première partie de la thèse se concentre sur SIKE en lien avec de l’analyse de consommation,

où nous décrivons trois attaques par canaux cachés. La première attaque implique une analyse

de consommation différentielle horizontale de l’échelle à trois points utilisée dans le schéma

qui permet de récupérer le scalaire secret utilisé pour générer l’isogénie secrète dans une seule

trace de consommation grâce à une méthode d’extension et d’élagage. La deuxième attaque

applique une analyse de consommation en cluster pour identifier tous les bits du scalaire

secret à partir d’une seule trace de l’échelle à trois points, exploitant les fuites d’une procédure

qui échange deux points de courbe elliptique en fonction de la différence entre deux bits

du scalaire secret. Enfin, la dernière attaque détaille une attaque par point de valeur nulle

sur le calcul de l’isogénie secrète, qui fonctionne en fournissant un texte chiffré malveillant

qui provoque de nombreuses opérations, y compris le calcul du j -invariant, à aboutir à un

résultat nul en fonction de la valeur d’un seul bit du scalaire secret. Toutes les attaques ont

été vérifiées expérimentalement avec des traces de consommation récoltées à partir d’un

STM32F3 exécutant l’implémentation recommandée de SIKE pour Cortex-M4. Notez que

pendant la réalisation de ce travail de thèse, une attaque indépendante sur SIKE a abouti à la

rupture totale de la sécurité du schéma. Notre travail reste néanmoins pertinent malgré cette

attaque.

La deuxième partie de la thèse se concentre sur l’analyse par canaux cachés de la famille

SPHINCS. Tout d’abord, nous ciblons le schéma SPHINCS-256 grâce à une analyse de consom-

mation différentielle de son générateur de nombres pseudo-aléatoires basé sur BLAKE-256

et décrivons une attaque qui permet de récupérer au moins un fragment de 32 bits de la

1En français : « Institut national des normes et de la technologie. »

v

Résumé

clé de signature. Nous avons réussi à vérifier expérimentalement cette attaque en utilisant

10’000 traces électromagnétiques récoltées à partir d’un SAM3X8E exécutant une implémen-

tation personnalisée de SPHINCS-256 sur Cortex-M3. Ensuite, nous adaptons une attaque

originale par faute sur le schéma SPHINCS-256 à SPHINCS+ et analysons son impact sur la

sécurité du schéma. Cette analyse démontre que, avec une probabilité élevée, la sécurité de

SPHINCS+ diminue considérablement lorsqu’un seul bit aléatoire est inversé n’importe où

dans le processus de signature et que les contre-mesures basées sur la mise en tampon des

W-OTS+s intermédiaires n’offrent qu’une protection marginalement supérieure contre les

fautes involontaires. La validation expérimentale de ces résultats a été réalisée sur un STM32F4

exécutant l’implémentation de référence de SPHINCS+ adaptée à l’architecture Cortex-M4.

La thèse conclut que l’état actuel de SIKE et SPHINCS+ est vulnérable à l’analyse par canaux

cachés et propose des chemins pour développer des contre-mesures efficaces.

Mots-clés : Cryptographie Post-Quantique, SIKE, SPHINCS-256, SPHINCS+, Analyse De

Consommation Différentielle, Analyse De Consommation En Cluster, Attaque Par Point De

Valeur Nulle, Attaque Par Faute, Contre-mesures.

vi

Contents
Acknowledgements i

Abstract (English/Français) iii

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Side-channel attacks 13

2.1 Power analysis . 13

2.1.1 Traces collection . 15

2.1.2 Traces processing . 17

2.1.3 Traces analysis . 19

2.2 Fault analysis . 25

I Isogeny-based cryptography 27

3 SIKE 29

3.1 Background . 31

3.1.1 Notation . 31

3.1.2 Elliptic curves . 31

3.1.3 Isogenies . 34

3.1.4 Key encapsulation mechanism . 35

3.2 SIDH . 36

3.2.1 Key exchange . 37

3.3 SIKE . 38

3.3.1 Key exchange . 38

3.3.2 The three-point ladder . 40

3.3.3 Strategies . 41

3.3.4 Formulas . 43

vii

Contents

4 Horizontal differential power analysis of SIKE 45

4.1 Attack description . 46

4.1.1 Three-point ladder analysis . 47

4.1.2 Vertical attack . 48

4.1.3 Horizontal attack . 48

4.2 Attack enhancements . 48

4.2.1 Depth search . 49

4.2.2 Increasing verticality . 49

4.3 Experimental verification . 50

4.3.1 Setup . 50

4.3.2 Experiment . 52

4.4 Countermeasures . 55

4.4.1 Recommended countermeasure . 55

4.4.2 Other countermeasures . 56

4.5 Conclusion . 57

5 Clustering power analysis of SIKE 59

5.1 Attack description . 61

5.1.1 Point-swapping procedure analysis . 61

5.1.2 Clustering attack . 62

5.2 Attack enhancements . 62

5.2.1 Enhancing sample selection . 63

5.2.2 Enhancing power samples clustering . 64

5.2.3 Enhancing key verification . 65

5.3 Experimental verification . 66

5.3.1 Setup . 66

5.3.2 Experiment . 68

5.4 Countermeasures . 73

5.4.1 Description . 73

5.4.2 Implementation . 74

5.4.3 Experimental validation . 76

5.4.4 Other countermeasures . 77

5.5 Conclusion . 77

6 Zero-value power analysis of SIKE 79

6.1 Attack description . 81

6.1.1 Isogeny analysis . 82

6.2 Experimental verifications . 88

6.2.1 Setup . 88

6.2.2 Experiment . 89

6.3 Countermeasures . 91

6.3.1 CLN test . 91

6.4 Conclusion . 92

viii

Contents

II Hash-based cryptography 95

7 SPHINCS and SPHINCS+ 97

7.1 Background . 99

7.1.1 Notation . 99

7.1.2 Functions . 99

7.1.3 Treehash . 100

7.1.4 Paths . 101

7.1.5 Digital signature scheme . 102

7.2 One-time signatures . 103

7.2.1 W-OTS+ . 103

7.3 Few-time signatures schemes . 105

7.3.1 HORST . 105

7.3.2 FORS . 107

7.4 Multiple-time signatures . 108

7.4.1 XMSS . 108

7.4.2 Hypertree . 110

7.5 SPHINCS-256 . 112

7.6 SPHINCS+ . 114

8 Differential power analysis of SPHINCS-256 119

8.1 Attack description . 120

8.1.1 SPHINCS-256 pseudorandom function analysis 120

8.2 Experimental verification . 121

8.2.1 Setup . 121

8.2.2 Experiment . 122

8.3 Countermeasures . 123

8.4 Conclusion . 123

9 Fault analysis of SPHINCS+ 125

9.1 Attack description . 127

9.1.1 Signatures collection . 128

9.1.2 Faulty signatures processing . 131

9.1.3 Tree grafting . 134

9.1.4 Path seeking . 135

9.1.5 Universal forgery . 136

9.2 Attack analysis . 138

9.2.1 Fault analysis . 138

9.2.2 Universal forgery analysis: one-fault model 141

9.2.3 Universal forgery analysis: multiple-fault model 142

9.3 Countermeasure analysis . 145

9.3.1 Caching layers . 145

9.3.2 Caching branches . 147

ix

Contents

9.4 Experimental verifications . 152

9.4.1 Setup . 152

9.4.2 Experiment 1: randomized + cached layer 153

9.4.3 Experiment 2: randomized + cached branches 154

9.5 Conclusion . 156

10 Conclusion 159

A Cortex-M4 implementation of SIKE 161

Bibliography 169

Curriculum Vitae

x

List of Figures
2.1 Example of a power trace sampled at a rate of 29.54 MHz for a period of 0.1 ms. 14

2.2 Setups to measure power traces. 15

2.3 Position of an EM microprobe on a SAM3X8E Cortex-M3 microcontroller at

which strong EM radiations could be collected. 18

2.4 A three-level wavelet transform. 19

2.5 Visual representation of a DPA with correlation that reveals a single bit of a secret

value. Correlations between two vectors of Hamming weights and the power

traces are plotted in the bottom. A strong correlation indicates that the bit value

associated to these power traces is 1. 21

2.6 Visual representation of a successful clustering power analysis with k = 4. . . . 23

3.1 Illustration of the addition law on an elliptic curve in the real plane. 33

3.2 Illustration of the SIDH protocol. 37

3.3 Computational structure of ϕ=ϕ6 ◦ · · · ◦ϕ0. 42

3.4 Two different strategies for computing the same isogenies (e = 4). 43

4.1 Example of a depth search with three bits. 49

4.2 Result of the discrete wavelet transform with Daubechies 3 wavelets (‘db3’). . . 53

4.3 Addition of shifted PCC results with 10 segments of a single power trace. Each

step corresponds to a different bit. The blue curve corresponds to a bit hypothe-

sis of zero, while the red curve corresponds to bit hypothesis of one. 55

5.1 Example of one of the n power traces corresponding to swap_points in a single

iteration of the loop (left) along with its Fourier representation (right). 68

5.2 Example of a power sample distributions (ℓ = 0). The threshold (in red) was

found by Algorithm 5.2. 70

5.3 Success rate of the clustering power analysis (thresholding in opaque vs. k-

means in transparent) at each timing locations (left) and frequencies (right)

across different levels of wavelet transforms. 71

5.4 t-test of the countermeasure both in timing and frequency. The horizontal lines

in red show the threshold above which the null hypothesis is rejected. 76

5.5 Power sample distributions at the locations which produced the highest value in

both t-tests. 76

xi

List of Figures

6.1 An example of a 37-isogeny computation with a kernel of wrong order. 87

6.2 Examples of baseline traces corresponding to a single Fp2 multiplication process-

ing zero values in one case, and random (nonzero) values in the other. 90

7.1 Illustration of the chaining pseudorandom function. 100

7.2 Illustration of a Merkle tree. 101

7.3 Binary hash tree where the path from ν (the leaf indexed λ= 5) to r (the root)

consists of the nodes in solid lines, whereas its corresponding authentication

path consists of the nodes highlighted in gray. 102

7.4 Illustration of a W-OTS+ structure with η = 9, ω = 3. The highlighted nodes

correspond to the signature for H (M) = 011 000 101 (c = 001 101). 104

7.5 Illustration of a HORST structure with η= 6, k = 2, x = 2. The highlighted nodes

correspond to the signature for H (M) = 010 101. 105

7.6 Illustration of a FORS structure with η= 6, k = 2, t = 4. The highlighted nodes

correspond to the signature for H (M) = 01 10 00. 107

7.7 Illustration of an XMSS structure with h′ = 3. The signature using the leaf at λ= 2

consists of σW along with the highlighted nodes (i.e., the authentication path). 109

7.8 Illustration of a hypertree structure with h = 6 and d = 3. The signature using the

hyperleaf at λ= 29 consists of (σW
0 ,σW

1 ,σW
2) along with the highlighted nodes

(i.e., the authentication paths) in each tree. 111

7.9 Illustration of a SPHINCS+ structure. 117

8.1 Power traces average and PCC on 16 bits of the targeted values for the addition

and XOR operations (t = 1000). 122

9.1 Examples of a verifiable and non-verifiable but correct faulty XMSS signatures. 129

9.2 Examples of an exploitable and non-exploitable faulty XMSS signatures. 130

9.3 Terminology used throughout the description of the attack. 131

9.4 Identifying W-OTS+ values within non-verifiable signatures. 133

9.5 Markov chain representing the transitions from the cache being empty to any

W-OTS+ being recomputed. The states (others than “Recomp.”) count the

number of cache misses without recomputation. 150

xii

List of Tables
1.1 Algorithms that passed the third round of the NIST post-quantum project. . . . 4

3.1 Notations for Chapters 3—6. 31

3.2 Standard SIKE parameter sets, as submitted in the third round of NIST’s post-

quantum standardization process [Jao+20]. The security levels correspond to

security requirements established by NIST (see [NIS16]). 39

5.1 Statistics on the total number of timing locations which yield the correct key

across the N = 1,000 experiments. 69

5.2 Statistics on the total number of frequencies which yield the correct key across

the N = 1,000 experiments. 69

5.3 Statistics on the total number of timing locations and total number of frequen-

cies which yield the correct key across the N = 10 experiments with the other

instances of SIKE (ℓ= 5). 73

5.4 Runtimes (in cycles) of the SIKEp434 implementation with and without the

countermeasure on an Intel i9-8950HK CPU @ 2.90GHz with Turbo boost turned

off. 75

6.1 Break-point exponents o for all parameter sizes. 88

6.2 Average PCCs between baselines and target traces (N = 1,000). 91

7.1 Notations for Chapters 7—9. 99

7.2 Hash functions involved in SPHINCS-256. 113

7.3 Hash functions involved in SPHINCS+. 115

7.4 Standard SPHINCS+ parameters sets, as submitted in the third round of the NIST

post-quantum standardization process [Hül+20]. 116

9.1 Average complexity of each step of the universal forgery for all SPHINCS+ param-

eters (the ‘f’ instances stand for “fast”, while the ‘s’ instances stand for “small”). 137

9.2 Proportion of verifiable vs. non-verifiable signatures for faulty FORS and (non-

top) XMSS for all SPHINCS+ parameters sets. 140

9.3 Fault analysis results for all SPHINCS+ parameters. 141

9.4 Average numbers of valid signatures to collect the valid signature corresponding

to a single faulty signature for all SPHINCS+ parameters. 142

xiii

List of Tables

9.5 Probability of collision with either only faulty queries (under Mv = 0) or with M f

faulty and Mv valid queries (N = 256). Symmetrical values were omitted. 143

9.6 Maximum load averages with various numbers of faulty signatures M f in differ-

ent layers of N signatures. 144

9.7 Average numbers of valid signatures to cover various layers of N signatures. . . 145

9.8 Analysis of the layer caching countermeasure for all SPHINCS+ parameter sets. 147

9.9 Analysis of the layer caching countermeasure for all SPHINCS+ parameter sets. 147

9.10 Analysis of the branch caching countermeasure for all SPHINCS+ parameter sets.

The numbers b are rounded up to the next integer. 150

9.11 Average number of queries such that a W-OTS+ is recomputed for various cache

sizes Cl and different layers of N signatures. 151

9.12 Analysis of the branch caching countermeasure for all SPHINCS+ parameter sets.

The numbers b are rounded up to the next integer. 151

9.13 Analysis of the collected signatures in N = 5 fault attacks against SPHINCS+-

shake-256s-robust at layer l∗ = 6. 154

9.14 Analysis of the universal forgery in N = 5 fault attacks against SPHINCS+-shake-

256s-robust at layer l∗ = 6. 154

9.15 Analysis of the collected signatures in N = 10 fault attacks against SPHINCS+-

shake-256s-robust at layer l∗ = 7 when 171 branches are cached. 155

9.16 Analysis of the universal forgery in N = 10 fault attacks at layer l∗ = 7 against

SPHINCS+-shake-256s-robust when 171 branches are cached. 156

xiv

1 Introduction

Cryptography is the pluridisciplinary study of techniques that aim to achieve various security

objectives. These objectives notably include confidentiality to prevent unauthorized access

to sensitive information, integrity to ensure that data has not been altered, authenticity to

verify the rightful originating sender of data, and non-repudiation to prevent that sender

from denying the issuance of a message. Such notions are usually accomplished with the

use of cryptographic primitives (i.e., operations) which constitute the building blocks of

larger cryptosystems (also called cryptographic schemes) used by modern applications to

operate securely. For example, a secure digital communication between two parties relies

on cryptographic primitives to ensure that the messages exchanged remain confidential,

maintain their integrity, are authenticated, and sometimes support non-repudiation.

There are two important subdomains of cryptography that study cryptographic primitives:

• Secret-key cryptography studies the primitives that involve a unique (secret) key.

• Public-key cryptography studies the primitives that involve two keys of different types:

– the public key, supposedly available at all time to everyone, and

– the private key, confidentially held by a single party.

A cipher is a typical example of a cryptographic primitive that can be secret- or public-key.

Generally speaking, a cipher describes a technique that protects the confidentiality of a

message by turning it into an unintelligible ciphertext through an encryption process using an

encryption key. The resulting ciphertext can only be turned back into its original form with a

process known as decryption using the corresponding decryption key. The cipher is qualified

as secret-key if the encryption key is the same as the decryption key, and public-key if the

two keys are distinct (in which case, anyone can encrypt messages that only the holder of the

private key can decrypt).

Although secret-key cryptography is the de-facto standard to secure data due to its superior

performance, secret-key primitives require managing a key across authorized parties. Take for

instance a two-party secure communication in which every message exchanged is encrypted

1

Chapter 1. Introduction

with a secret-key cipher. In order for the two parties to encrypt and decrypt messages, the

two parties need to share the same key which must be kept secret from everyone else. Public-

key cryptography overcomes this limitation by enabling the two communicating parties to

securely exchange a common secret key through the use of public-key encryption. In this case,

one party uses the other party’s public key to encrypt a secret key that will then be used with

a secret-key cipher for the remainder of the communication. This process is known as key

encapsulation which, along with the secret-key cipher used, results in a cryptosystem that

allows an efficient and confidential communication between any two parties.

In addition to complementing secret-key cryptography, public-key cryptography enables

the design of many unique cryptosystems. In particular, public-key cryptography allows the

design of digital signature schemes that can establish the rightful issuer of a message; thus

ensuring authenticity, integrity, and non-repudiation all at once. In such schemes, a signing

party digitally signs a message by using their own private key (referred to as the signing key in

this context) to produce a cryptographic value called digital signature that is mathematically

associated to the message. The signature can be verified to correspond to the issued message

using the signing party’s public key through a verification procedure.

As of the writing of this thesis, the most widely used public-key solutions for implementing

key encapsulation mechanisms and digital signature schemes are the Rivest–Shamir–Adleman

(RSA) algorithm and algorithms based on the Diffie–Hellman (DH) protocol. These solutions

are built upon the concept of a trapdoor permutation, which is a function where outputs are

easy to compute given their inputs, but inputs are difficult to recover from their corresponding

outputs unless a certain piece of information (called the trapdoor) is known. Such functions

are based on mathematical problems that are believed to be computationally difficult to

solve. In particular, the trapdoor permutation of RSA relies on the difficulty of factoring large

numbers, while the one in DH-based algorithms relies on a hard discrete logarithm problem1,

such as the elliptic curve discrete logarithm problem. The computational intractability of

these problems ensures that the data protected by these solutions remains secure.

While cryptosystems based on RSA and DH have been used to protect real-world data for

decades, Peter W. Shor has conceived a polynomial-time algorithm that could effectively

defeat both these solutions in [Sho94]. The catch is that Shor’s algorithm can only be executed

on quantum computers; a new type of machine which operates on bits and gates based on

the principles of quantum mechanics. Therefore, in order to use Shor’s algorithm to break

the present instantiations of RSA and DH-based algorithms, a big enough universal quantum

computer (i.e., a quantum computer able to accurately perform arbitrary quantum opera-

tions with a significant number of quantum bits to represent the parameters involved in the

instantiations) needs to be developed. Although a few thousands logical quantum bits would

theoretically be sufficient to break, e.g., RSA-1024, the physical implementation of a quantum

computer with such a large number quantum bits is challenging, as external disturbances

1The discrete logarithm problem in a group G consists of determining an integer m ≥ 1 such that xm = y ,
given x, y ∈G such that y is in the subgroup generated by x (see [Sil86, XI.4] for the use case with elliptic curves).

2

introduce errors in the quantum bits, affecting their accuracy. As a result, additional quantum

bits need to be implemented to correct the errors caused by environmental perturbations,

resulting in the actual requirement of millions of physical quantum bits to achieve the thou-

sands effective quantum bits initially required (see [GE21] for details). At the time of this

thesis however, only a few hundreds2 quantum bits have ever been successfully stabilized

with high fidelity. Still, given the rapid growth of quantum computing in the recent years,

Shor’s algorithm poses a significant threat to current public-key solutions which needs to be

addressed.

Post-quantum cryptographic algorithms. Since the advent of large quantum computers

will make the current public-key cryptosystems obsolete, replacements resistant against

quantum attacks need to be developed. This field of study, called post-quantum3 cryptography,

aims to complement current cryptographic schemes with solutions that can withstand both

classical and quantum attacks. In particular, post-quantum cryptography aims to develop

public-key solutions that are not affected by known quantum attacks, such as Shor’s algorithm.

To anticipate the eventual emergence of quantum computers, the U.S. National Institute of

Standards and Technology (NIST) initiated and supervises a project that seeks to standardize

one or more post-quantum public-key cryptographic schemes. For this purpose, NIST publicly

solicited post-quantum solutions for key encapsulation mechanisms and digital signature

schemes with the aim of identifying potential future standards. The submissions are evaluated

in a round-based competition-like process so that NIST could select the solutions that are

considered the most appropriate.

In 2017, when the process started, 64 eligible algorithms were received, including 45 key

encapsulation mechanisms and 19 digital signature schemes. Among the received candidates,

five main families of cryptosystems could be identified:

• Lattice-based cryptosystems

• Code-based cryptosystems

• Hash-based cryptosystems

• Multivariate-based cryptosystems

• Isogeny-based cryptosystems

Five years later, after three rounds of meticulous analysis, four algorithms were selected

for standardization, while four others advanced to a fourth round of evaluation, as listed

in Table 1.1. Out of the four algorithms selected, three belong to the family of lattice-based

cryptosystems (namely, the CRYSTALS suite, consisting of KYBER and DILITHIUM, and FALCON),

while the fourth one (SPHINCS+) is a hash-based algorithm. This selection demonstrates the

2The current record for the most stabilized quantum bits is held by IBM with their Osprey model that is claimed
to feature 433 physical quantum bits (see [IBM22]).

3Contrary to what their name could imply, post-quantum cryptographic algorithms are not quantum algorithms.
They are conventional algorithms that are expected to run on regular (non-quantum) computers.

3

Chapter 1. Introduction

general confidence in lattice-based cryptosystems due to their long history of cryptanalysis.

Also, compared to the other families, lattice-based cryptosystems offered the best cost and

performance, which encouraged their selection. Among the submissions that advanced to

round 4, three candidates belong to the family of code-based cryptosystems (BIKE, Classic

McEliece, and HQC), while the last one (SIKE) is an isogeny-based algorithm. These candidates

(except for SIKE, which will be discussed later) are still being scrutinized to complement KYBER

in the list of selected algorithms as alternative key encapsulation mechanisms that are not

based on lattices. As NIST was not satisfied with the non-lattice-based digital signature

schemes that were submitted to their process besides SPHINCS+, NIST intends to hold an

additional standardization process for post-quantum digital signatures only (see [NIS22]).

Algorithms Selected Round-4

Key encapsulation • CRYSTALS-KYBER [Sch+22b] • BIKE [Ara+22]
mechanisms • Classic McEliece [Alb+22]

• HQC [Agu+22]
• SIKE [Jao+22]

Digital signature • CRYSTALS-DILITHIUM [Lyu+22]
schemes • FALCON [Pre+22]

• SPHINCS+ [Hül+22]

Table 1.1: Algorithms that passed the third round of the NIST post-quantum project.

The focus of the present thesis revolves around the two outsiders among the selected algo-

rithms and the round-4 submissions; namely SIKE and SPHINCS+.

Supersingular Isogeny Key Encapsulation (SIKE). SIKE is a post-quantum key encapsulation

mechanism based on the difficulty of finding the isogeny (i.e., a particular type of mapping)

between two seemingly-random elliptic curves; a problem that is believed to be computation-

ally hard to solve for both classical and quantum computers. The scheme works by choosing

as the private key a point that generates a confidential isogeny which is then applied to a

publicly known elliptic curve to generate the public key. A secret key is encapsulated by the

function composition of its corresponding secret isogeny on a party’s public key.

SIKE has been submitted to the NIST post-quantum project in 2016 as an improvement over

the Supersingular Isogeny Diffie–Hellman4 (SIDH) protocol which enables two parties to

agree on a shared secret via a non-confidential communication channel. The advantages of

SIKE over its other post-quantum counterparts are its relatively small keys and ciphertexts, its

unique security assumption, and its reliance on well-established elliptic curve procedures.

On the other hand, SIKE is relatively slow compared to other post-quantum schemes and, at

the time of its submission, had not undergone proper scrutiny due to its recent development.

4Despite the name, SIDH does not rely on the hardness of any discrete logarithm problem and is therefore not
affected by Shor’s algorithm.

4

When the work in this thesis was conducted, SIKE was still a viable competitor in the NIST

post-quantum standardization process. Alas, in 2022, a classical attack by Castryck and Decru

in [CD22] completely compromised the security of SIKE, rendering the scheme unsuitable

for any practical application. As a result, the authors of SIKE withdrew their scheme from the

standardization process. The relevance of our work despite this attack will be discussed later.

SPHINCS-256 and SPHINCS+. SPHINCS is a family of hash-based digital signatures. Hash-

based cryptosystems have the particularity of being constructed using only a single primitive

called cryptographic hash function; a function which turns bitstrings of any size into fixed-size

bitstrings in such a way that finding an input that maps to a given output is computationally

infeasible. Such a function is applied to secret values to obtain public values which are

published as part of the public key. The signing key, on the other hand, consists of the secret

values. To sign a message, the signer reveals a specific set of secret values chosen based on the

message being signed, while keeping certain others forever confidential to maintain a desired

level of security.

As the signer needs to keep track of which secret values have been revealed to preserve security,

hash-based digital signature schemes traditionally required to manage an internal state. The

SPHINCS family overcomes this limitation by being stateless, which means that no state

needs to be maintained to ensure its security. This new feature is enabled by the generation

of a virtually infinite number of signatures ensuring that the scheme remains secure with

overwhelming probability. As a result, SPHINCS schemes can act as drop-in replacements

for current digital signature solutions without requiring the additional implementation of a

state machine. The original SPHINCS scheme, called SPHINCS-256, achieves statelessness by

combining many building blocks, such as one-time signature schemes, few-time signature

schemes, and Merkle trees, that may all be constructed with the same hash function.

In 2016, an improvement over SPHINCS-256 called SPHINCS+ was submitted to the NIST post-

quantum project, which incorporates several changes that mainly enhance the performance

of the scheme. Compared to the other candidates in the standardization process, SPHINCS+

offers the smallest keys, offering an advantage of around two orders of magnitude over, e.g.,

CRYSTALS-DILITHIUM and FALCON. However, the signature sizes are the largest among the

competition, requiring about tens of kilobytes for a single signature, in contrast to the few

kilobytes needed by its lattice-based competitors. The signing and verification times are

also considered to be extremely slow, particularly when implemented with one of the hash

functions approved by NIST.

Nevertheless, as opposed to SIKE, SPHINCS+ is still a surviving candidate that is still going to

be standardized by NIST. In fact, NIST considers SPHINCS+ to be a mature enough choice for a

post-quantum digital signature solution, since its security depends only on the cryptographic

soundness of the underlying hash function whose current implementations are believed to be

robust [Gor+22]. As a result, given that SPHINCS+ is soon expected to secure practical data, a

thorough investigation of all aspects of its security is crucial to its real-world deployment.

5

Chapter 1. Introduction

Attacking implementations through side channels. Even though post-quantum algorithms

are designed to resist both classical and quantum attacks, these algorithms are intended to

be deployed on physical devices. These devices are subject to additional vectors of attack,

independently of the algorithm implemented. In particular, side-channel attacks exploit the

information leakages that result from the physical implementations of cryptographic algo-

rithms. These attacks are particularly relevant to embedded devices, such as smartphones,

since these devices are deployed in uncontrolled environments where attackers have physical

access. In this context, the information leakages typically include the electrical power con-

sumption of the device which may be linked to the secret values involved in the implemented

cryptographic algorithm. An additional vector of side-channel information is obtained by

analyzing the behavior of the device when a fault is deliberately injected during the execution

of a cryptographic algorithm, as faulty behavior potentially leads to the inadvertent disclosure

of secret information. As a result, in addition to ensuring the theoretical security of post-

quantum cryptosystems, assessing the security of their implementation in all use-cases is

equally important.

Throughout its post-quantum standardization process, NIST consistently requested side-

channel evaluation of the submitted candidates [Moo19b; Apo20]. Moreover, resistance to side-

channel attacks has been considered to be a crucial factor in the selection of future standards

(see [Gor+22]). The security of implementations when deployed on the ARM Cortex-M4

microcontroller is of particular interest, as NIST recommends this microcontroller architecture

for embedded implementations of the post-quantum candidates [Moo19a; Kan+19].

Consequently, the present thesis directly responds to NIST’s request and evaluates the side-

channel security of Cortex-M4 implementations of SIKE and SPHINCS+, as well as a custom

Cortex-M3 implementation of SPHINCS-256.

Power analysis. A side-channel power analysis consists of deducing secret values, typically

in small portions, using measures of instantaneous power consumption that correspond

to executions of a cryptographic algorithm. As such measurements are proportional to the

number of physical bits that require to be updated, an attacker can use statistical analysis on

the power consumption measurements to gain additional information about the secret values

involved in the algorithm.

A multitude of techniques exist to recover any type of information—including confidential

information—from measurements of power consumption. The most common technique is

differential power analysis [KJJ99; BCO04] which consists of applying statistical techniques to

confirm or refute small hypotheses about a secret value. Other methods leverage machine

learning algorithms in both unsupervised or supervised fashion to further exploit the statis-

tical link between power consumption and the processed values. Typically, unsupervised

algorithms cluster power samples from multiple calls to the same function involving different

secret chunks, enabling the recognition of the chunks with the same value (see [Hey+13;

PC15]), while supervised algorithms profile the power consumption by creating templates

6

that are then compared against a target power measurement to extract the secret values from

their corresponding execution (see [CRR03; BL12]). More sophisticated attacks attempt to

force certain variables to be zero based on small hypothesized secret values, as these values

require low energy to process and can consequently be detected in the power consumption

(see [Gou03; AT03]).

The study of side-channel power analyses against post-quantum algorithms is a growing field

of interest with ongoing developments in attacks and countermeasures. The most extensive

side-channel evaluation of the NIST post-quantum candidates with regard to power analysis

is definitely the work by Ueno et al. in [Uen+22] where most of the round-3 key encapsulation

mechanisms were found to be vulnerable to a systematic power analysis. Lattice-based key

encapsulation mechanisms received the most attention due to their popularity. For exam-

ple, simple power analysis and differential power analysis models against CRYSTALS-KYBER

were developed by Azouaoui et al. in [Azo+22]. Other attacks, based on chosen-ciphertext

key recoveries, can be categorized into three different classes, as noticed by Ravi and Roy

in [RR21]: attacks based on the validation of the decrypted plaintext [D’A+19; Rav+20; Tan+22;

Raj+23], attacks based on the recognition of decryption failures [GJN20], and attacks based on

the recovery of the full decrypted messages [Ngo+21; Bac+22; DNG22; Xu+22]. The round-4

code-based cryptosystems were also subject to many side-channel power analyses. In partic-

ular, HQC was found to be vulnerable to a decryption failure recognition in [GJ20], to error

correction detections in [Sch+20; GLG22a; Sch+22a], to a horizontal differential power analysis

in [GLG22b], and to a timing attack that also applies to BIKE in [GLG22a]. Classic McEliece was

hit with several message-recovery power analyses in [Lah+19; Col+22], as well as key recoveries

first in [GJJ22] through detecting errors in a step of the fast Fourier transform involved in the

scheme, then in [Col+23] through a horizontal differential power analysis. In contrast, at the

time of this thesis, only one work studied hash-based digital signatures in general with respect

to power analysis in [EMY14], where the authors assessed the leakage of a customized Merkle

signature scheme, and only one work discussed the potential risks of a side-channel power

analysis against SIDH in [KAJ17].

Fault analysis. A fault analysis consists of studying the consequences of introducing a fault

during the execution of a cryptosystem. A fault can have various effects, such as skipping

microcontroller instructions which typically enables an attacker to bypass security checks,

or compromising the integrity of stored values in the attacked device which can lead to side-

channel information about secret values. As a result, analyzing the repercussions of deliberate

or accidental faults against a cryptosystem is crucial to the security of its implementation.

As with power analysis, there exists a variety of techniques to deliberately inject faults during

the execution of a cryptographic algorithm. The most common technique, particularly rele-

vant to embedded devices such as the ARM Cortex-M4, involves injecting a glitch in the voltage

or the clock of the device. This approach, known for skipping instructions and corrupting data,

is considered somewhat invasive as it requires breaking open the device to access the device’s

integrated circuit [Bar+12]. On the other hand, a technique known as row-hammer [Kim+14]

7

Chapter 1. Introduction

has demonstrated the ability to remotely inject data-corrupting faults on web server applica-

tions by repeatedly accessing and manipulating data held in RAM, proving the relevance of

fault analyses even in controlled environments.

Similarly to power analysis, fault injection in the context of post-quantum cryptography is an

increasingly important area of research. Similar to the study with the systematic power analysis,

Xagawa et al. in [Xag+21] found that most of the round-3 key encapsulation mechanisms in

the NIST post-quantum standardization process were vulnerable to a systematic fault attack

that skips a security check. Both CRYSTALS-KYBER and CRYSTALS-DILITHIUM were subject to

a fault attack that induces a nonce reuse in [Rav+19b], and to a safe-error attack in [BMR21].

Additional safe-error fault attacks against KYBER were developed in [PP21] and in [HPP21].

DILITHIUM was devastatingly susceptible to a fault attack by Bruiderink and Pessl in [BP18], in

which valid and faulty signatures are exploited to extract the signing key when the scheme is

configured in deterministic mode. The determinism of DILITHIUM was further exploited by

Ravi et al. in [Rav+19a] where the authors show that skipping an addition enables the recovery

of a large part of the signing key. Later, another fault attack named signature correction attack

has been shown to recover the signing key bit by bit in both deterministic and randomized

DILITHIUM in [Isl+22]. FALCON was also found to be vulnerable to fault attacks that retrieve

a significant portion of the signing key by forcing the lattice trapdoor sampler to be zero

in [McC+19]. Among the round-4 code-based key encapsulation mechanisms, only Classic

McEliece has currently been evaluated with respect to fault analysis. In particular, Classic

McEliece was attacked through a message-recovery laser injection in [Cay+21], and through

a key-recovery laser and fault injections in [Pir+22]. The isogeny-based SIKE is prone to a

safe-error fault attack as discovered in [CKM21], and to loop-abort fault injections in [Tas+21;

Bel+21; Bee+22]. SPHINCS-256, the ancestor of SPHINCS+, proved to be critically vulnerable

to a data-corrupting fault injection in [CMP18], which was experimentally verified in [Gen+18].

The same attack was adapted to a custom FPGA implementation of SPHINCS+ in [Ami+20].

Content of the thesis. The present thesis studies side-channel vulnerabilities and counter-

measures on SIKE, SPHINCS-256, and SPHINCS+. These candidates have unconventional

security assumptions that have not yet been as thoroughly analyzed as the other post-quantum

families in this regard, especially in the context of embedded devices. Analyzing these schemes

is important to gain insight into their underlying principles and limitations in order to develop

better cryptosystems. Moreover, since SPHINCS+ is expected to become a future standard

for securing real-world data in the long term, it is crucial for this scheme to provide a level of

security that is consistent with the other candidates.

Even though SIKE has been withdrawn from NIST’s post-quantum process due to the attack

by Castryck and Decru in [CD22], our side-channel analysis of the scheme gives an important

baseline for future isogeny-based implementations. In particular, our work validated the threat

of power analysis against isogeny-based cryptosystems and demonstrated that these schemes

are subject to unique vectors of attack. Most notably, our power analysis of the isogeny

8

computation from Chapter 6 led to the side-channel attack by Campos et al. in [Cam+22]

which still applies to another isogeny-based key exchange protocol called CSIDH that is not

affected by the Castryck–Decru attack. Moreover, our work proposed novel improvements

and optimizations of power analysis techniques which may be useful for future attacks. For

all these reasons, our work still holds relevance and highlights the usefulness of researching

side-channel vulnerabilities even in obsolete cryptosystems.

The current thesis is structured into two parts: the first part covers the isogeny-based key

encapsulation mechanism SIKE, and the second part covers the hash-based digital signature

schemes SPHINCS-256 and SPHINCS+. Chapter 2 serves as an introduction to side-channel

analysis and regroups the various techniques used throughout our work.

Part I. The first part of the thesis is dedicated to the power analysis of SIKE. In Chapter 3, the

scheme is introduced, including its mathematical background and algorithms.

Chapter 4 describes a straightforward horizontal differential power analysis of the ARM Cortex-

M4 implementation of SIKE. In this attack, an adversary records the power consumption

of a single execution of the elliptic curve scalar multiplication involved in SIKE and infers

the computing party’s private key bit by bit, where the value of each bit is confirmed by

computing the Pearson’s correlation coefficient of hypothesized results in the double-and-add

procedure with their corresponding segments of power consumption. Even though the attack

is identical to a horizontal differential power analysis of classical elliptic curve cryptography,

our work describes the very first power analysis of SIKE in ephemeral settings which defeats

many countermeasures that were initially proposed for SIKE in [Zha+20], such as masking

the scalar, or randomly splitting the key. Instead, we suggest randomizing the coordinates

as an effective countermeasure with minimal overhead. The chapter also describes and

demonstrates in practice many novel improvements that make the attack more effective, such

as error-correction techniques based on depth search, and the use of the wavelet transform as

a denoising tool.

Following the analysis conducted in the previous chapter, we now suppose that the ARM

Cortex-M4 implementation of SIKE is protected with coordinate randomization so that attacks

based on differential power analysis are ineffective. In Chapter 5, we show that despite

the countermeasure, ephemeral Cortex-M4 SIKE is still vulnerable to a clustering power

analysis of the point-swapping function calls that are involved in a single execution of the

elliptic curve scalar multiplication. The attack works by clustering all the power samples

that correspond to the point-swapping procedure with the k-means algorithm. Since these

power samples depend on whether two elliptic curve points were swapped or not, which

in turn depend on the difference between two consecutive bits private key, the clustered

samples are expected to exhibit two distinct distributions. A successful clustering therefore

enables the recovery of the computing party’s private-key bits all at once. While the analysis is

once again identical to a clustering power analysis in elliptic curve cryptography, our work

describes various enhancements of the attack, including clustering in the frequency domain,

9

Chapter 1. Introduction

processing the traces with a wavelet transform, using a simpler clustering power analysis

based on thresholding, and using metrics to prioritize certain keys for key validation. Our

attack and the proposed improvements were experimentally verified, and a countermeasure

based on splitting the swapping mask into multiple shares is suggested.

As the previous two chapters suggest, the elliptic curve scalar multiplication offers a large

surface of side-channel leakage and requires all of its components to be protected against

power analysis in order to operate securely in an embedded environment. Supposing the

entire scalar multiplication is secure against power analysis using, in particular, coordinate

randomization, Chapter 6 addresses the power analysis of other operations in SIKE, such as the

isogeny computation. Notably, the chapter describes a zero-value point attack on the isogeny

computation which remains applicable despite the randomization of coordinates. However,

as opposed to the other chapters, this attack applies only to the semi-static settings of SIKE,

and enables the bit-by-bit recovery of the decapsulating party’s private key through chosen

ciphertexts that force certain computations, such as the j -invariant derivation, to process zero

values depending on a single private-key bit. As a result, this attack is enabled by an attacker

able to distinguish between zero and nonzero values in the power consumption, which was

experimentally verified to be possible against the ARM Cortex-M4 implementation of SIKE

using an approach based on collision power analysis. This approach consists of comparing the

power measurements with baselines that correspond to executions of the targeted operation

(i.e., the j -invariant computation) when this operation is respectively processed with zero and

nonzero operands, which can be forced regardless of the decapsulating party’s private key.

Part II. The second part of the thesis focuses on the power and fault analyses of the SPHINCS

family. Chapter 7 introduces both SPHINCS-256 and SPHINCS+, along with their algorithms.

In Chapter 8, the hash function BLAKE-256, used in SPHINCS-256 to hide the secret values, is

attacked through a straightforward differential power analysis. The analysis is performed in

practice on a custom Atmel Cortex-M3 implementation of the scheme by collecting electro-

magnetic radiations emitted by the microcontroller. This work is the first case of a successful

side-channel attack against hash-based digital signatures which were so far considered to be

“naturally resistant to most kinds of side-channel attacks” (see [Hue+18, §1]). In particular,

this is the first attack against an implementation of SPHINCS and shows the importance of

securing the implemented hash function against power analysis for the scheme to be deployed

in an embedded environment. We argue that a simple countermeasure based on shuffling the

operations in the BLAKE-256 hash function makes the attack harder to mount.

While the previous chapter demonstrates a power analysis against a specific implementation

of the underlying hash function involved in SPHINCS-256, Chapter 9 describes a fault attack

on the successor SPHINCS+ that is agnostic of the hash function used. The attack extends the

work by Castelnovi, Martinelli, Prest from [CMP18] and shows, in particular, that any combi-

nation of faulty signatures is enough to attack SPHINCS+. Our work then presents a thorough

analysis of the repercussions of a fault injection in SPHINCS+ in view of finding an adequate

10

countermeasure. However, the work concludes that besides detecting a fault by redundantly

computing the signature multiple times, no satisfactory countermeasure exists to this day,

as even the caching countermeasures that were initially suggested by the present author

in [Gen+18] come short when applied to SPHINCS+; a result that was experimentally verified

on the SPHINCS+ reference implementation adapted to the ARM Cortex-M4 architecture.

At last, the thesis closes in Chapter 10 with a retrospective of the work conducted.

Personal bibliography. The works published during the authorship of this thesis are listed

below in chronological order, along with their respective chapter in the dissertation (if in-

cluded). The publications involved in this dissertation are highlighted in boldface.

[Kan+18] Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane

Krämer, and Johannes Buchmann. “Differential Power Analysis of XMSS

and SPHINCS”. in: COSADE 2018: 9th International Workshop on Con-

structive Side-Channel Analysis and Secure Design. Ed. by Junfeng Fan

and Benedikt Gierlichs. Vol. 10815. Lecture Notes in Computer Science.

Singapore: Springer, Heidelberg, Germany, Apr. 2018, pp. 168–188. DOI:

10.1007/978-3-319-89641-0_10.

Chapter 8

[Gen+18] Aymeric Genêt, Matthias J. Kannwischer, Hervé Pelletier, and Andrew

McLauchlan. “Practical Fault Injection Attacks on SPHINCS”. in: Kangacrypt

2018, Australian Workshop on Offensive Cryptography (2018).

–

[GGK21] Aymeric Genêt, Natacha Linard de Guertechin, and Novak

Kalud̄erović. “Full Key Recovery Side-Channel Attack Against Ephemeral

SIKE on the Cortex-M4”. In: Constructive Side-Channel Analysis and Secure

Design - 12th International Workshop, COSADE 2021, Lugano, Switzerland,

October 25-27, 2021, Proceedings. Ed. by Shivam Bhasin and Fabrizio De San-

tis. Vol. 12910. Lecture Notes in Computer Science. Springer, 2021, pp. 228–

254. URL: https://doi.org/10.1007/978-3-030-89915-8_11.

Chapter 4

[GK22] Aymeric Genêt and Novak Kalud̄erović. “Single-Trace Clustering

Power Analysis of the Point-Swapping Procedure in the Three Point Ladder of

Cortex-M4 SIKE”. in: Constructive Side-Channel Analysis and Secure Design

- 13th International Workshop, COSADE 2022, Leuven, Belgium, April 11-

12, 2022, Proceedings. Ed. by Josep Balasch and Colin O’Flynn. Vol. 13211.

Lecture Notes in Computer Science. Springer, 2022, pp. 164–192. DOI: 10.

1007/978-3-030-99766-3_8. URL: https://doi.org/10.1007/978-3-030-99766-

3_8.

Chapter 5

11

https://doi.org/10.1007/978-3-319-89641-0_10
https://doi.org/10.1007/978-3-030-89915-8_11
https://doi.org/10.1007/978-3-030-99766-3_8
https://doi.org/10.1007/978-3-030-99766-3_8
https://doi.org/10.1007/978-3-030-99766-3_8
https://doi.org/10.1007/978-3-030-99766-3_8

Chapter 1. Introduction

[Feo+22] Luca De Feo, Nadia El Mrabet, Aymeric Genêt, Novak Kalud̄erović,

Natacha Linard de Guertechin, Simon Pontié, and Élise Tasso. “SIKE Chan-

nels”. In: IACR Transactions on Cryptographic Hardware and Embedded

Systems 2022.3 (2022). https://tches.iacr.org/index.php/TCHES/article/view/

9701, pp. 264–289. ISSN: 2569-2925. DOI: 10.46586/tches.v2022.i3.264-289.

Chapter 6

[Gen23] Aymeric Genêt. “On Protecting SPHINCS+ Against Fault Attacks”.

In: IACR Transactions on Cryptographic Hardware and Embedded Systems

2023.2 (2023). https://tches.iacr.org/index.php/TCHES/article/view/10278,

pp. 80–114. ISSN: 2569-2925. DOI: 10.46586/tches.v2023.i2.80-114.

Chapter 9

12

https://tches.iacr.org/index.php/TCHES/article/view/9701
https://tches.iacr.org/index.php/TCHES/article/view/9701
https://doi.org/10.46586/tches.v2022.i3.264-289
https://tches.iacr.org/index.php/TCHES/article/view/10278
https://doi.org/10.46586/tches.v2023.i2.80-114

2 Side-channel attacks

A side channel is a source of information that inadvertently leaks during the implementation

of a cryptographic algorithm. Side channels usually result from physical variables (such

as the execution time of the algorithm) which are sometimes linked with the information

processed by the cryptosystem. In conjunction with the public material of the cryptosystem,

the information measured from side channels can be exploited by attackers to undermine the

security of the cryptographic scheme; resulting in a side-channel attack.

The current thesis considers the power consumption of a cryptographic implementation on a

target device as the side channel of interest. With access to the power supply of a device that

runs cryptographic algorithms, an adversary can typically mount two types of attacks:

• power analyses, which consist of recovering processed information through measure-

ments of the power consumed by the device,

• fault analyses, which consist of deducing information by analyzing the effects of a

disturbance (also known as a glitch) introduced into the power supply of the device.

Moreover, the analyses are considered to be passive when the adversary does not need to

interact with the device, and active otherwise.

This chapter outlines all the side-channel power-based techniques used in our work.

2.1 Power analysis

In a power analysis, the adversary attempts to recover secret information processed by an

electronic device by exploiting its relation with the instantaneous power consumption (i.e.,

the amount of power consumed at any instant of time). Such a relation is (partly) due to the

structure of modern transistors that electronic devices use to physically store and manipulate

bits. As a transistor requires energy to flip its internal state, the current drain is expected to

change according to the bit transition (from 0 to 1, and vice versa) that occurs in a register as a

result of an operation, and to increase in magnitude with the number of bits that are updated.

13

Chapter 2. Side-channel attacks

0 500 1000 1500 2000 2500 3000
Sample [Pt]

0.4

0.3

0.2

0.1

0.0

0.1

0.2
Po

we
r C

on
su

m
pt

io
n

[V
]

Figure 2.1: Example of a power trace sampled at a rate of 29.54 MHz for a period of 0.1 ms.

In the scope of this thesis, we consider two types of power analyses:

• vertical power analyses, which target a fixed secret value across different executions of

the attacked algorithm by collecting multiple power measurements that correspond to

multiple executions of the same operation on, possibly, different data,

• horizontal power analyses, which target an ephemeral secret value using a single power

measurement that corresponds to multiple operations. These operations must be similar

to allow the segmentation of the power measurement into multiple ones to simulate a

vertical power analysis.

A typical power analysis involves three main steps:

1. Collection of power consumption

The adversary collects traces of power consumption that correspond to (supposedly)

known cryptographic operations.

2. Power consumption processing (optional)

The adversary processes the traces of power consumption with signal processing tech-

niques in preparation of secret extraction.

3. Statistical analysis

The adversary applies statistical methods to extract secret information from traces of

power consumption.

14

2.1 Power analysis

2.1.1 Traces collection

To conduct a power analysis, the first step involves collecting samples of instantaneous power

consumption during the relevant operations. One common way to accomplish this is by

“shunting” the cryptographic device, that is, creating a circuit with a resistor of known resis-

tance in series to the voltage collector (or ground) and to the device, as shown in Figure 2.2a.

Then, the voltage drop across the shunt resistor is sampled at a fixed rate (using, e.g., an

oscilloscope), as this difference depends1 on the power consumption of the device.

An alternative method of collecting power samples is to measure the ElectroMagnetic (EM)

field emitted by a device by placing a local near-field probe on the chip of the device, as

shown in Figure 2.2b. According to Ampère’s circuital law, the magnitude of the EM field is

proportional to the variations of the current flowing through the circuitry of a device, which

therefore provides an indirect2 measurement of the power consumption. To identify the best

position, the entire surface is scanned during said operations.

R

Crypto

∆v(t)

(a) Shunted cryptographic device.
Power traces are measures of ∆v(t).

H⃗(t)

Crypto i⃗ (t)

Probe

(b) Probed cryptographic device.
Power traces are measures of ∥H⃗(t)∥.

Figure 2.2: Setups to measure power traces.

Compared to measuring voltage differences through a shunt resistor, collecting EM samples

is a bit more invasive as the attacker needs access to the device chip. However, since the

collection is limited to a local part of circuitry, the EM samples measured are usually more

significantly linked to the cryptographic operations as they do not contain the energy con-

tribution of other non-leaking parts of the circuitry. Despite providing better results, power

analysis with EM samples requires a much faster sampling rate to accurately capture the

electric current variations and, in turn, more sophisticated equipment.

A power trace T = (si ∈R)0≤i<M refers to a collection of M > 0 (instantaneous) power3 samples

of a cryptosystem that were measured at a given sampling rate during a time window. Figure 2.1

illustrates a power trace when the samples are depicted in a graph.

1Assuming the voltage supply is constant, p(t) = v(t)×i (t), and since i (t) = v(t)/R , we have that p(t) = v(t)2/R .
2Actually, p(t) =−dU (t)/d t where U (t) is the total electromagnetic energy within a volume which is related to

the variations of electric fields according to Poynting’s theorem (see [Jac99, §6.8]).
3Due to their relation with energy (see footnotes above), power samples are actually voltage samples of a signal.

15

Chapter 2. Side-channel attacks

Given a power trace T = (si ∈R)0≤i<M , a sample point (also referred to as a sample or timing

location) corresponds to a timing index 0 ≤ i < M in a power trace.

In our experimental verifications, we use the two measurement setups mentioned above: one

based on power consumption, and another on electromagnetic emanations.

2.1.1.1 Power measurement setup (ChipWhisperer)

ChipWhisperer [New21a] is an open-source toolkit which features embedded devices that

are deliberately exposed to power analysis as a means to experimentally analyze algorithms,

attacks, and countermeasures. In particular, ChipWhisperer provides programmable devices

based on ARM Cortex-M4 microcontrollers which are recommended by NIST for evaluating the

implementations of post-quantum candidates [Moo19a]. As our attacks are mostly theoretical,

we therefore took advantage of the convenience of ChipWhisperer to provide proofs of concept.

Still, all of our attacks are applicable with additional efforts of marginal complexity on real-

world devices.

While the ChipWhisperer framework includes standalone tools to directly sample the power

consumption of the target device, we still use a digital oscilloscope to collect power traces.

An oscilloscope is a scientific instrument that enables measuring and visualizing electronic

signals, as well as other features to analyze the captured waveforms. We made this choice

mainly to overcome the limitations of memory of the ChipWhisperer toolkit, but also to avoid

its built-in features, such as the synchronization with the clock of the target device, that would

make the traces collection too unrealistic in some scenario.

Consequently, the full list of equipment used to collect power traces with the ChipWhisperer

framework is the following:

• The ChipWhisperer toolkit [New21a], that includes:

– A (NAE-CW308T-)STM32F3 board which features an ARM Cortex-M4 microcon-

troller as the DUT (Device Under Test).

– A ChipWhisperer-Lite board which is solely used to communicate with the DUT in

serial through USB.

– A ChipWhisperer (NAE-)CW308 UFO board which serves as an intermediary board

that enables the ChipWhisperer-Lite and the DUT to exchange signals.

• A high-definition oscilloscope with at least the following specifications:

– An analog bandwidth of 500 MHz.

– A sampling rate of 250 samples per microsecond (i.e., 250 MS/s).

– A resolution of 10 bits per sample.

– A memory of 50,000 samples per acquisition.

• A general-purpose computer which runs an operating system compatible with the Chip-

Whisperer framework [New21b].

16

2.1 Power analysis

The STM32F3 is plugged into the CW308 UFO, which is itself connected to the ChipWhisperer-

Lite with a 20-pin cable. The oscilloscope measures the power consumption through a passive

probe connected to the SHUNTL4 pin on the CW308 UFO, and whose measurement is triggered

by reacting to the active-high GPIO04/TRIG4 pin also with a passive probe (both probes are

grounded to the GND pins on the CW308 UFO). The computer is simply connected to the

ChipWhisperer-Lite with a USB to micro-USB cable.

2.1.1.2 EM measurement setup (Arduino)

Arduino [Ard05] is an open-source electronics platform that provides both hardware and

software solutions for designing embedded systems. In particular, the company manufactures

embedded boards which are equipped with Cortex-M microcontrollers. Our setup involves the

Arduino Due model because the board offered enough flash memory and RAM to implement

the studied algorithms. Note that the board features a SAM3X8E Cortex-M3 CPU, which is a

generation of microcontrollers prior to the Cortex-M4 that was recommended by NIST, simply

because we conducted our analysis with it before NIST’s recommendation.

Our EM measurement setup, only used in Chapter 8, therefore comprises the following:

• An Arduino Due microcontroller which features an Atmel SAM3X8E Cortex-M3 CPU.

• A local near-field microprobe with a frequency range of 2.5 MHz to 6 GHz.

• A high-definition oscilloscope with at least the following specifications:

– An analog bandwidth of 2.5 GHz.

– A sampling rate of 10 samples per nanosecond (i.e., 10 GS/s).

– A resolution of 8 bits per sample.

– A memory of 25,000 samples per acquisition.

• A general-purpose computer which runs an operating system compatible with the Ar-

duino framework [Ard12].

The near-field microprobe was connected to the oscilloscope and placed at the position shown

in Figure 2.3. This position was found by experimental exploration and likely corresponds to

the position of the Cortex-M3 circuitry due to the strong emissions observed. The Arduino

Due microcontroller was connected to the computer with a USB to micro-USB cable.

2.1.2 Traces processing

Once collected, the power traces can undergo an optional (pre-)processing phase with various

transforms to make the power analysis more effective. For instance, these transforms can

4We refer to the official NAE-CW308 UFO datasheet to find the mentioned pins: http://media.newae.com/
datasheets/NAE-CW308-datasheet.pdf.

17

http://media.newae.com/datasheets/NAE-CW308-datasheet.pdf
http://media.newae.com/datasheets/NAE-CW308-datasheet.pdf

Chapter 2. Side-channel attacks

Figure 2.3: Position of an EM microprobe on a SAM3X8E Cortex-M3 microcontroller at which
strong EM radiations could be collected.

exhibit leakages that were initially not present in the raw data, or make the power traces

cleaner by reducing the noise.

2.1.2.1 Fourier transform

A (discrete) Fourier transform is a decomposition of a (discrete) signal into a representation

that exhibits information about the frequency components of the signal. The representation

is obtained by projecting the signal sx (0 ≤ x < M) onto the (discrete) orthogonal Fourier basis

{e2πi x f /M }0≤ f <M ∈CM (where i =p−1 is the imaginary unit):

ŝ f =
M−1∑
x=0

sx e−2πi x f /M (0 ≤ f < M).

In power analysis, the signal corresponds to the power consumption, and the frequency

coefficients are associated to the samples from operations being performed at fixed inter-

vals. Exploiting the power leakages in the frequency domain is a well-studied process and

is shown to exhibit many advantages, such as the robustness against timing misalignments

(see [Agr+03]).

2.1.2.2 Wavelet transform

A (discrete) wavelet transform is a multi-level filter bank parameterized by a wavelet function

ψ(t) which decomposes a (discrete) signal into frequency bands. As opposed to the Fourier

transform, the wavelet transform gathers information both from the frequency and the timing

contents by iteratively correlating the signal with {1/
p

2yψ((t −2y x)/2y)}(x,y)∈Z2 .

18

2.1 Power analysis

A single step of the filter bank separates an input signal sx (0 ≤ x < M) into two sub-signals of

respectively low and high frequencies:

1) the approximations: ax =
∞∑

k=−∞
sk L2x−k

2) the details: dx =
∞∑

k=−∞
sk H2x−k

where Lx and Hx are respectively low-pass and high-pass filters obtained from the wavelet

function ψ(t) (see [Mal08] for the technical details). The filter bank consists of recursing the

above formulas with ax with new filters derived from different scales to reflect the different

frequency bands at each level of the transform.

An example of a generic three-level wavelet transform is shown on Figure 2.4. Given f the

frequency of sx and ℓ≥ 0, a(ℓ)
x corresponds to the sub-signal of frequencies [0, f /2ℓ+1] and is

re-injected into the filters Hx and Lx to ultimately output a(2)
x , while d (ℓ)

x corresponds to the

sub-signals of frequencies [f /2ℓ+1, f /2ℓ]. Note that d (0)
x , d (1)

x , d (2)
x , and a(2)

x cover the entire

spectrum of [0, f].

Hxsx

Lx

↓ 2

↓ 2

d (0)
x

a(0)
x Hx

Lx

↓ 2

↓ 2

d (1)
x

a(1)
x Hx

Lx

↓ 2

↓ 2

d (2)
x

a(2)
x = ŝx

Figure 2.4: A three-level wavelet transform.

In power analysis, the wavelet transform is recognized to refine the quality of the power traces

acquired (see [CP05; Sou+21]) by running the analysis on either the approximations or the

details alone. This is because the wavelet transform can selectively capture a frequency band

of interest while filtering out irrelevant frequencies, resulting in a cleaner signal than the

original one.

2.1.3 Traces analysis

The last step of power analysis consists of applying statistical techniques to retrieve secret

information using the power traces. These techniques base their effectiveness on the link

between processed information and the power consumption, and serve as decision-making

tools in the process of recovering portions of secret values.

In this section, we describe all the power analysis techniques that will be used to attack the

studied cryptographic algorithms.

19

Chapter 2. Side-channel attacks

2.1.3.1 Differential power analysis

Differential Power Analysis (DPA) is a power analysis technique that aims to deduce fixed

secret information across multiple power measurements through statistical metrics. DPA

relies on a statistical tool called distinguisher to detect the dependency between the power

traces and a small portion of secret data. By repeating the dependency detection across all

portions, the secret data is eventually fully recovered.

Throughout the years, many distinguishers were explored. The original DPA from Kocher et al.

in [KJJ99] uses the difference of means which consists of partitioning the power traces into two

subsets according to a hypothesized portion of the secret data, and computing the differences

of their respective average. Strong differences indicate that the classification is likely correct,

which thus confirms the hypothesis.

Correlation is another measure that is commonly used as a distinguisher in DPA; resulting in

correlation power analysis [BCO04]. In this type of DPA, the link between power consumption

and the processed values is thus quantified with a correlation coefficient. In particular, the

power analysis supposes that the power samples are correlated to the Hamming weights of

the processed values.

In our work, we exclusively use DPA with correlation as distinguisher (i.e., correlation power

analysis).

To assess correlation between the processed values and the power samples, the Pearson’s

Correlation Coefficient (PCC) is computed. Given N > 0 power traces of M > 0 samples

Ti = (s(i)
t)0≤t<M for 0 ≤ i < N , let τ(t) = (s(i)

t)0≤i<N be a vector of power samples synchronized

at a same sample point 0 ≤ t < M , and h ∈NN a vector of the Hamming weight of the processed

values.

PCC(h,τ(t)) = Cov(h,τ(t))p
Var(h)Var(τ(t))

.

The overall attack consists of the following steps:

1. Find an operation in the attacked procedure which involves:

(a) A (small) portion of a secret value which is the same across all measurements.

(b) A known input to the cryptographic algorithm.

In the following, we refer to the result of this operation as the intermediate value.

2. Collect N power traces (consisting of M power samples each) that correspond to the

computation of the intermediate value with the different inputs to the cryptosystem.

3. Take a guess for the portion of the secret value involved in the intermediate value com-

putation.

4. Compute the vector of intermediate values from the known inputs and the secret value

guess, and derive its corresponding vector of Hamming weights h.

20

2.1 Power analysis

5. For each vector of power samples at a same sample point, i.e., τ(t) for each 0 ≤ t < M ,

compute PCC(h,τ).

This results in a vector of PCC at each sample point.

A strong PCC (in absolute value) at any sample point indicates that the guess for the portion of

the secret value is valid, while a weak PCC at every sample point can rule out said guess. The

number of power traces N should be large enough given the signal-to-noise ratio of the power

consumption. Figure 2.5 illustrates the process.

Correlations column-wiseHamming
weights

P
ow

er
tr

ac
es

B
it

gu
es

s
1

B
it

gu
es

s
0

P
C

C
P

C
C

Figure 2.5: Visual representation of a DPA with correlation that reveals a single bit of a secret
value. Correlations between two vectors of Hamming weights and the power traces are plotted
in the bottom. A strong correlation indicates that the bit value associated to these power traces
is 1.

2.1.3.2 Clustering power analysis

Clustering power analysis is a power analysis technique that aims to group together similar

samples of power consumption to deduce secret information. The analysis relies on the

behavior of the power samples that are expected to follow distinct distributions depending on

the value of a small chunk of secret data. As a result, a successful discernment of the power

sample distributions leads to the recovery of all the secret chunks and, thus, of all secret data.

21

Chapter 2. Side-channel attacks

Clustering power analysis relies on an underlying classification algorithm to cluster the power

samples based on their distribution patterns. The original attack from Heyszl et al. [Hey+13]

uses the k-means algorithm [Mac67], which works by partitioning a population5 of N samples

into k sets solely based on the values of the samples. Informally speaking, the algorithm starts

with k groups of means µ j (0 ≤ j < k), and reassigns the samples to the group with the closest

mean. As doing so may change the means of the groups, the process is repeated until stability.

The full procedure is shown in Algorithm 2.1.

Algorithm 2.1 The k-means algorithm.

Input: (si ∈R)0≤i<N : Collection of N samples.
1: Assign each si to a cluster j at random (0 ≤ i < N , 0 ≤ j < k).
2: repeat
3: Compute each µ j as the mean of each cluster (0 ≤ j < k).
4: Assign each si to the cluster j = argmin|si −µ j | (0 ≤ i < N).
5: until no µ j changes (for all 0 ≤ j < k).
6: return the final cluster assignments of all si (0 ≤ i < N).

Once the power samples are properly clustered, all the samples in a same cluster are expected

to correspond to the same chunk value. Consequently, by mapping all the possible chunk

values to each label, we obtain a candidate for the entire secret value that must be validated

with public information (such as an encrypted message). If the validation fails, another

mapping can be explored.

The overall attack consists of the following steps:

1. Find an operation in the attacked procedure which involves only a small portion of a

secret value (which has a known number k of possible values).

2. Collect N power traces (consisting of M power samples each) that correspond to the

operation, each time with a different portion of the secret value.

3. Let τ(t) = (s(i)
t)0≤i<N be a vector of power samples synchronized at a same sample point

0 ≤ t < M , such that each power sample in the vector corresponds to a different secret

portion.

4. Run a clustering algorithm (such as the k-means algorithm) on τ(t) to label each power

sample according to its appropriate cluster.

5. Assign the possible portion values to the labels of the power samples.

6. Combine all the identified portions related to each power sample to obtain a candidate

for the secret value.

If the distributions of power samples are distinct enough given the signal-to-noise ratio of

the power consumption, there should be at least one candidate at one sample point that

corresponds to the secret value. Figure 2.6 illustrates a successful clustering power analysis.

5In the scope of our work, the population is one-dimensional.

22

2.1 Power analysis

P
ow

er
tr

ac
es

D
is

tr
ib

u
ti

o
n

s

µ1 µ2 µ3 µ4

Figure 2.6: Visual representation of a successful clustering power analysis with k = 4.

2.1.3.3 Zero-valued power analysis

Zero-valued power analysis is a power analysis technique that aims to deduce secret informa-

tion by detecting zero values in the power consumption. The analysis relies on the low energy

cost of zero-valued operations whose power consumption is expected to exhibit a discernible

pattern when sampled. Identifying zero values in the power samples can therefore provide

insight into the internal activity of the target device.

In zero-valued power analysis, an adversary leverages the ability to detect zero values in the

power consumption by interacting with the device using special inputs that trigger zero-valued

operations; resulting thus in an active attack. In particular, the adversary will choose a specific

input that causes an operation to process zero operands depending on the value of a small

segment of a fixed secret data. By recognizing the zero operands in the power consumption,

the adversary can therefore confirm hypothesized portions of a secret value.

There exist many ways to distinguish zero values in a power trace. For instance, [Gou01; AT03]

argue that a zero value can be observed by noticing a significant drop of power consumption.

In practice, however, this method requires setting a manual threshold based on observing the

measured samples.

23

Chapter 2. Side-channel attacks

The overall attack consists of the following steps:

1. Find an operation in the attacked procedure which involves an operand that, given a

certain input, can be forced to be zero depending on the value of a small portion of a

fixed secret value.

2. Forge a special input that triggers the zero operand depending on a hypothesized value

for a small portion.

3. Send the forged input to the device, and collect the power trace that corresponds to the

operation.

4. Detect whether the operation was performed with a zero operand or not in the collected

trace (with, e.g., a manual inspection of the power samples).

If the zero operand is detected in the power trace, then the hypothesis that led to the forged

input can be confirmed (and ruled out otherwise). If applicable, repeating the process over all

portions of the secret value recovers the entire secret value.

Collision power analysis.

When the target operation has a known timing and can be forced to process zero and nonzero

values regardless of the secret data, a more efficient approach can be employed based on

collision power analysis [SWP03; MME10]. This technique removes the hassle of detecting

zero values manually. In this case, the values processed in a trace are detected by comparing

the trace against two baselines (i.e., templates). The two baselines correspond to power traces

relating the same execution as the target trace but in which processed values are known to be

zero and nonzero.

In practice, a collision power analysis is typically mounted using Pearson’s Correlation Coeffi-

cient (PCC). This technique correlates a target power trace T = (si ∈R)0≤i<M with a baseline

B (b) = (s(b)
i ∈R)0≤i<M (for b ∈ {0,1}) by computing:

PCC(T,B (b)) = Cov(T,B (b))√
Var(T)Var(B (b))

.

The greater the value of the coefficient, the more correlated the trace is to the baseline. As

a result, a zero value is detected when the corresponding trace has a greater correlation

coefficient with the zero-valued baseline than with the nonzero one.

To implement collision power analysis in the overall attack, the collection of the two baselines

should be added before the first step, so the zero-value detection can be performed with the

PCC between the collected traces and the baselines.

24

2.2 Fault analysis

2.2 Fault analysis

In the context of electronic devices, a fault refers to any kind of disruption that causes the

device to deviate from its intended behavior. In the case of a cryptosystem, these faulty behav-

iors may accidentally reveal sensitive information that compromises the security guarantees

of the cryptographic algorithm. As faulty behaviors may occur naturally or be deliberately in-

duced, studying cryptosystems in presence of errors—commonly known as fault analysis—is

therefore vital.

A common type of faulty behavior with electronic devices is data corruption which typically

occurs due to environmental circumstances (such as electromagnetic disturbances) that

disrupt the data processing or the storage mechanisms of the device. A classic example of

a fault attack that leverages the corruption of data is the attack due to Boneh, DeMillo, and

Lipton in [BDL97] in which a faulty RSA signature along with its message enables the recovery

of the signing key.

Data-corrupting faults come in different kinds. For example, such a fault can be latent in case

the faulty behavior is due to the introduction of a static alteration in the device, or transient in

case the faulty behavior is due to a dynamic hitch caused by external factors. Moreover, the

faulty behavior induced by a data-corrupting fault is characterized by many features, such as:

• The granularity of the data impacted (a single bit vs. whole words).

• The required control (a window of instructions in a procedure vs. a specific operation).

• The required impact (a bit flip vs. an entire value stuck at zero).

These types and characteristics are achieved through different techniques. For instance, over-

heating the device is an example of a low-granularity, low-control, and low-impact transient

fault injection, while shooting with a focused ion beam on the circuitry of the device injects

latent faults that achieve high granularity, high control, and high impact (see [Bar+12]).

Fault injection technique. To conduct a fault analysis, a fault requires to be injected in the

device during the execution of a cryptographic operation. One common way to accomplish

this is by injecting a glitch (using, e.g., a pulse generator) into the power supply of a device.

This technique is known to corrupt the device memory and skip a small number of instructions

without damaging the device [Bar+12]. We qualify the output of a device as faulty when the

derivation of such output is affected by a fault.

In our experimental verifications, we use a setup based on the ChipWhisperer technology to

collect faulty results.

Fault injections setup (ChipWhisperer). In addition to the power analysis capabilities

introduced in Section 2.1.1.1, the ChipWhisperer toolkit also offers low-cost voltage glitching

25

Chapter 2. Side-channel attacks

technology which enables transient fault injections of precise control, but unpredictable

granularity and impact. In particular, the embedded devices featured in the ChipWhisperer

toolkit are also exposed to fault analysis, and the one we use is based on the Cortex-M4 which

is the microcontroller recommended by NIST for evaluating the implementations of post-

quantum candidates [Moo19a]. Since our work is mostly theoretical and does not rely on

a sophisticated fault model, we took advantage of the convenience of the ChipWhisperer

to provide our proof of concept. Still, our attacks are applicable with additional efforts of

marginal complexity on real-world devices.

Our fault framework, exclusively used in Chapter 9, includes:

• A (NAE-CW308T-)STM32F4 board which features an ARM Cortex-M4 microcontroller as

the Device Under Test (DUT).

• The Chipwhisperer-Lite Level 2 starter kit:

– A ChipWhisperer-Lite board which is used both to communicate with the DUT in

serial through USB, and inject faults.

– A ChipWhisperer (NAE-)CW308 UFO board which serves as an intermediary board

that enables the ChipWhisperer-Lite and the DUT to exchange signals.

• A general-purpose computer which runs an operating system compatible with the Chip-

Whisperer framework [New21b].

The STM32F4 is plugged into the CW308 UFO, which is itself connected to the ChipWhisperer-

Lite with a 20-pin cable. The GLITCH6 port of the ChipWhisperer-Lite is connected to the

VOUT6 port of the CW308. The computer is simply connected to the ChipWhisperer-Lite with a

USB to micro-USB cable.

6We refer to the official datasheets to find the mentioned pins. NAE-CW308 UFO: http://media.
newae.com/datasheets/NAE-CW308-datasheet.pdf, ChipWhisperer-Lite: https://media.newae.com/datasheets/
NAE-CW1173_datasheet.pdf.

26

http://media.newae.com/datasheets/NAE-CW308-datasheet.pdf
http://media.newae.com/datasheets/NAE-CW308-datasheet.pdf
https://media.newae.com/datasheets/NAE-CW1173_datasheet.pdf
https://media.newae.com/datasheets/NAE-CW1173_datasheet.pdf

Part IIsogeny-based cryptography

27

3 SIKE

Isogeny-based cryptography is a branch of cryptography in which security is based on the

hardness of computing isogenies between two given elliptic curves. Informally speaking,

an isogeny is a map between two elliptic curves that preserves certain algebraic properties.

Isogeny-based cryptography enables a party to conceal secret information into an elliptic

curve through the application of a secret isogeny to a public elliptic curve, leading thus to

various applications, such as key exchanges, digital signatures, and zero-knowledge proofs.

The most famous isogeny-based cryptosystem is the Supersingular Isogeny Diffie–Hellman

(SIDH) protocol which allows two parties to agree on a common secret key through a non-

confidential communication. In this scheme, the secret parameters consist of the respective

isogenies of the communicating parties (starting from a same preimage curve), while the

public parameters consist of the respective image curves of the two isogenies (in addition

to special points). By applying their own isogeny to the curve they receive, the two parties

obtain a similar elliptic curve which can serve as common secret material in the derivation of

a shared secret key.

One of the main advantages of isogeny-based cryptography is its presumed resistance to

quantum attacks. As a result, an improved version of SIDH called SIKE (which stands for

Supersingular Isogeny Key Encapsulation) was submitted to the NIST post-quantum stan-

dardization process. Compared to the other candidates, SIKE offered relatively small keys

and ciphertexts, and benefited from years of existing research in Elliptic Curve Cryptography

(ECC). However, SIKE had slower runtimes and—because isogeny-based cryptography is a

rather new branch of cryptography—had yet to establish the same level of trust as its other

post-quantum counterparts (in particular, as lattice-based cryptography).

At the time the work reported in this thesis was conducted, SIKE was still a surviving candidate

of the NIST post-quantum standardization process, in which the scheme had advanced to a

fourth round of evaluation. Alas, in 2022, the trust suspicion was confirmed when Castryck

and Decru’s discovery in [CD22] dealt a fatal blow to the SIKE which ended its viability for good.

The analysis uses a result due to Kani [Kan97] as an efficient decision tool to correctly guess

29

Chapter 3. SIKE

the secret isogeny. As a result, SIKE is now considered insecure and should not be used for

any practical purpose. Nevertheless, our work on side-channel analysis could inform future

cryptographic designs, and so still holds relevance.

History. The concept of an isogeny-based cryptosystem was first considered in [Cou06] by

Couveignes. In his note, initially written in 1997, Couveignes describes a key exchange based

on the hardness of finding an isogeny between two elliptic curves as a prime example of a hard

problem that is independent of any discrete logarithm problem. Nine years later, in [RS06], the

same cryptosystem was independently rediscovered by Rostovstev and Stolbunov who present

a basic isogeny-based ElGamal encryption and emphasized its quantum resistance (Stolubnov

generalized this idea in [Sto10]). This property inspired others to develop novel cryptosystems

based on the same mathematical problem, such as an authenticated key agreement [HCH11],

a cryptographic hash function [CLG09], and even a random number generator [DJJ10].

So far, isogeny-based cryptosystems considered mostly a specific type of elliptic curves that is

called ordinary. However, in [CJS14], Childs, Jao, and Soukharev describe a groundbreaking

subexponential quantum attack that can recover the secret isogenies of ordinary curves

by exploiting the bijective relationship between the endomorphism ring and the possible

isogenies. This weakness was addressed by De Feo and Jao in [DJP11] (the work was later

extended with Plût in [DJP14]) who introduced supersingular curves instead of ordinary to

make the endomorphism ring non-commutative. While this modification thwarts the Childs–

Jao–Soukharev quantum attack, the use of supersingular curves made the key agreement

non-commutative as well, which was restored using additional auxiliary points. This, together

with various improvements, resulted in the believed to be quantum-resistant isogeny-based

variant of Diffie–Hellman called SIDH.

Although the use of auxiliary points in conjunction with supersingular curves resulted in

a viable isogeny-based key exchange, this additional information also introduced several

vulnerabilities. Most notably, in [Gal+16], Galbraith et al. describe an active attack in which

forged auxiliary points lead to the recovery of a private-key bit depending on whether the

resulting shared key is still the same between the two parties (which is usually detected

with the subsequent secret communication). This attack can be extended to all the private-

key bits and proves to be difficult to prevent due to the lack of proper public-key validation.

As a response, Jao et al. introduced SIKE [Jao+20] which addresses the above attack by applying

the Fujisaki–Okamoto transform (enhanced by Hofheinz, Hövelmanns, and Kiltz in [HHK17])

to SIDH as a generic way to detect forgeries through re-encryption. SIKE was submitted as a

candidate for a post-quantum key encapsulation mechanism substitute in the post-quantum

standardization process held by NIST and advanced through four rounds of evaluation.

Unfortunately, and as mentioned above, SIKE and SIDH have met their demise due to the

efficient key-recovery attack of Castryck and Decru as described in [CD22] (which was im-

proved shortly after in [Wes22], [Rob22], and [Mai+23]). The attack exploits the information

obtained from the auxiliary points to confirm small hypothesized components of a secret

30

3.1 Background

isogeny, using a theorem due to Kani as described in [Kan97]. As a result of this attack, all

cryptographic isogeny-based schemes that rely on auxiliary points, such as SIDH proofs of

knowledge, which were originally proposed in [DJP14] and made into a digital signature

scheme in [Yoo+17], have become obsolete. However, other isogeny-based cryptosystems

that do not rely on auxiliary points are still surviving. This includes all the key exchanges

based on the original Couveignes–Rostovstev–Stolbunov scheme, such as CSIDH [Cas+18], OS-

IDH [CK20], and CSI-FiSH [BKV19], but also digital signature schemes such as SeaSign [DG19]

(improved in [DPV19]), and SQISign [Feo+20].

3.1 Background

This chapter recalls the basic notions of algebraic geometry to introduce SIKE as well as

the necessary material to understand our analyses. A reader interested in a full overview of

isogeny-based cryptography is advised to read [Feo17], or [Cos19].

3.1.1 Notation

Table 3.1 summarizes the different notations used throughout the following chapters.

Table 3.1: Notations for Chapters 3—6.

Expression Meaning

Fp The finite field of (prime) characteristic p.
K The algebraic closure of the fieldK.
E(K) Elliptic curve defined over the fieldK.
#E Number of points in an elliptic curve E .
XP , YP , ZP Given a point P , the projective coordinates of P .
xP , yP Given a point P , the affine coordinates of P .
u ⊕ v The bitwise eXclusive OR (XOR) of two bitstrings1 u and v .
u & v The bitwise AND of two bitstrings1 u and v .

3.1.2 Elliptic curves

Definition 3.1.1. Let p > 3 be a prime number such that p ≡ 3 (mod 4). We denote by Fp2 the

degree-2 extension of Fp which we define as follows:

Fp2 = Fp [x]/(x2 +1).

All elements of Fp2 can be written as u + i v where u, v ∈ Fp and i =p−1.

Definition 3.1.2 (Elliptic curve). Let p > 3 be a prime number and a,b ∈ Fp2 such that 4a3 +
27b2 ̸= 0. An elliptic curve (in short Weierstraß form) is the set of points in the projective space

1The bitstrings are supposed to have the same length. If not, zero bits are usually appended to the shortest
bitstring to match the length of the longest bitstring.

31

Chapter 3. SIKE

of dimension 2 over Fp2 that satisfies a Weierstraß equation, i.e.:

E = {[X : Y : Z] ∈ F3
p2 : Y 2Z = X 3 +aX Z 2 +bZ 3}.

We define O = [0 : 1 : 0], i.e., the only point on the line Z = 0, and refer to it as the point to

infinity.

The curve can be alternatively defined in the affine plane with affine coordinates defined as

x = X /Z and y = Y /Z (for all points such that Z ̸= 0):

E = {(x, y) ∈ F2
p2 : y2 = x3 +ax +b}∪ {O}.

Definition 3.1.3 (Addition law [Sil86, III.2]). Let E be an elliptic curve. The addition of two

points P,Q ∈ E is defined as follows:

1. Let L be the line through P and Q (if P =Q, then let L be the tangent line to E and P).

2. Let R be the third (or, if P =Q, the other) point of intersection of L with E .

3. Let L′ be the line through R and O.

Then L′ intersects E at R, O, and a third point. We denote that third point by P +Q.

Proposition 3.1.1 (Group structure). An elliptic curve E forms an abelian group structure

under the addition law (3.1.3) and with O as the identity element.

Proof. See [Sil86, III, Prop. 2.2].

Example. An example of an elliptic curve (exceptionally defined over the field of real numbers

instead of Fp2 for visualization purposes) along with its group structure is shown in Figure 3.1.

Definition 3.1.4 (Point negation). Let E be an elliptic curve and P = [X : Y : Z] ∈ E . We define

−P as the point R such that P +R =O, i.e., −P = [X : −Y : Z]. Consequently, given two points

P,Q ∈ E , we have that P −Q = P + (−Q).

Definition 3.1.5 (Scalar multiplication). Let E be an elliptic curve. The multiplication of P ∈ E

by the scalar n ∈N is defined by repeatedly adding P with itself n times, i.e.:

[n]P = P +P +·· ·+P︸ ︷︷ ︸
n times

,

[−n]P = −([n]P).

Definition 3.1.6 (Point order). Let E(Fp2) be an elliptic curve defined over Fp2 and P ∈ E(Fp2).

The order of P , denoted by ord(P), is the smallest q > 0 such that [q]P =O.

Definition 3.1.7 (Generator point). Let E be an elliptic curve and P ∈ E . The subgroup

generated by P is denoted by 〈P〉 = {[k]P : k ∈Z}.

32

3.1 Background

L

L′

P

Q

R

P +Q

x

y

Figure 3.1: Illustration of the addition law on an elliptic curve in the real plane.

Definition 3.1.8 (Torsion subgroup). Let E (Fp2) be an elliptic curve defined over Fp2 and m ∈Z
such that m ≥ 1. The m-torsion subgroup of E is defined as the set of all points in E (Fp2) whose

order divides m, i.e.:

E [m] = {P ∈ E(Fp2) : [m]P =O}.

If E [m] ∼= (Z/(mZ))r , we say that E [m] has rank r .

Definition 3.1.9 (Basis). Let E(Fp2) be an elliptic curve defined over Fp2 and E [m] a torsion

subgroup of rank r for m ∈Zwith m ≥ 1. The points P1, . . . ,Pr ∈ E [m] form a basis of E [m] if the

points are linearly independent, i.e., if [k1]P1+·· ·+ [kr]Pr ̸=O for any 0 ≤ ki < ord(Pi) that are

not all zero (for 1 ≤ i ≤ r). In this case, E [m] = 〈P1, . . . ,Pr 〉 = {[k1]P1+·· ·+[kr]Pr : k1, . . . ,kr ∈Z}.

Theorem 3.1.1 (Torsion subgroups structure). Let E be an elliptic curve defined over a field of

characteristic p > 0 and m ∈Zwith m ̸= 0. The m-torsion subgroups are entirely characterized

and we have:

1. E [m] ∼=Z/(mZ)×Z/(mZ) if p ̸ | m.

2. One of the following is true:

• E [pe] ∼=Z/(peZ) for all e = 1,2,3,

• E [pe] ∼= {O} for all e = 1,2,3,

Proof. See [Sil86, III, Cor. 6.4].

Definition 3.1.10 (Supersingular curve). An elliptic curve E (Fp2) over Fp2 is called supersingular

if E [p] ∼= {O} (and ordinary if E [p] ∼=Z/(pZ)).

Remark 1. There are #E(Fp2) = (p +1)2 points in the supersingular curve E(Fp2).

33

Chapter 3. SIKE

Definition 3.1.11 (Montgomery elliptic curve [Mon87]). Let p > 3 be a prime number,α,β ∈ Fp2

such that β(α2 −4) ̸= 0, and O the point to infinity. A Montgomery elliptic curve (or, simply, a

Montgomery curve) is an elliptic curve over Fp2 that satisfies the following equation:

E = {(x, y) ∈ F2
p2 :βy2 = x3 +αx2 +x}∪ {O}.

In particular, we are interested in Montgomery curves where β= 1.

Remark 2. Montgomery curves allow for compact representation of points, up to sign, by

using only the X and the Z coordinates. In particular, a point P = [XP : YP : ZP] ̸= [0 : 1 : 0]

can be represented by a single field element xs = XP /ZP ∈ Fp2 . The value [XP : ZP] = [x : 1]

uniquely defines {±P }, and we write P = [x : 1].

Remark 3. Let E be a Montgomery curve with β= 1. Given Q, P , and Q −P in E , the coeffi-

cient α of the curve can be recovered from the three points as follows:

α= 1−xQ xP −xQ xQ−P −xP xQ−P

4xQ xP xQ−P
−xQ −xP −xQ−P .

3.1.3 Isogenies

In isogeny-based cryptography, we are interested in morphisms (i.e., maps) between elliptic

curves that preserve both their group structures and their properties as algebraic varieties.

Definition 3.1.12 (Homomorphism). Let G1, G2 be two additively written groups. A homomor-

phism φ : G1 →G2 is a morphism that preserves group structure, i.e., φ(u + v) =φ(u)+φ(v)

for all u, v ∈G1.

Definition 3.1.13 (Isomorphism). Let G1, G2 be two additively written groups. An isomorphism

φ : G1 →G2 is a bijective homomorphism, i.e., for all u1,u2 ∈G1, u1 ̸= u2 impliesφ(u1) ̸=φ(u2),

and for all v ∈G2, there is a u ∈G1 such that φ(u) = v . In this case, we say that G1 is isomorphic

to G2.

Definition 3.1.14 (j -invariant). Let E = {(x, y) ∈ F2
p2 : y2 = x3+ax+b}∪{O} be an elliptic curve.

The j -invariant of E is defined as the following quantity:

j = 1728
4a3

4a3 +27b2 .

Remark 1. All isomorphic curves share the same j -invariant (see [Sil86, III, Prop. 1.4, (b)] for

proof).

Definition 3.1.15 (Kernel). Let φ : G1 →G2 be a homomorphism. The kernel of φ is the set of

preimages in G1 that are mapped to the identity element of G2, i.e., ker(φ) = {u ∈G1 :φ(u) = 0}.

Definition 3.1.16 (Isogeny). Let E1, E2 be two elliptic curves. We define an isogeny ϕ : E1 → E2

as a surjective homomorphism with finite kernel. In this case, we say that E1 is isogenous to E2.

34

3.1 Background

Example. A trivial isogeny in which E1 = E2 = E is the map defined by the scalar multiplication

by m ∈Z (in which case, the kernel is simply the m-torsion of E , which is finite):

ϕ : E → E

P 7→ [m]P.

As we are working only on elliptic curves defined over Fp2 , we consider only separable2 iso-

genies. In our case, this means that every isogeny is uniquely defined by its kernel [Sil86, III,

Prop. 4.12], and that the mapping can be entirely determined with Vélu’s formulas [Vél71].

Definition 3.1.17 (Vélu’s formulas [Feo17]). Let E be an elliptic curve and G a finite subgroup

of E . The separable isogeny ϕ : E → E/G of kernel G can be written as:

ϕ : E → E/G

P 7→ (
xP + ∑

Q∈G\{O}
(xP+Q −xQ), yP + ∑

Q∈G\{O}
(yP+Q − yQ)

)
.

The image curve E/G has equation y2 = x3 +a′x +b′ where
a′ = a −5

∑
Q∈G\{O}

(3xQ +a),

b′ = b −7
∑

Q∈G\{O}
(5x3

Q +3axQ +b).

Definition 3.1.18 (Degree of isogeny). Let ϕ : E1 → E2 be a separable isogeny. We define the

degree of ϕ as the cardinality of its kernel, i.e., deg(ϕ) = #ker(ϕ).

Theorem 3.1.2 (Isogeny composition theorem). Let φ : E1 → E2 and ψ : E1 → E3 be separable

isogenies such that ker(φ) ⊂ ker(ψ). Then, there exists a unique isogeny λ : E2 → E3 satisfying

ψ=λ◦φ.

Proof. See [Sil86, III, Cor. 4.11].

Theorem 3.1.2 states that, given their kernel G , every separable isogeny ϕ : E → E/G can be

computed as a composition of isogenies of smaller degree. Suppose deg(ϕ) = pe1
1 · · ·per

r , the

kernel G can be decomposed as G1×·· ·×Gr ⊆G where #Gi = pei

i (for 1 ≤ i ≤ r), and the overall

isogeny can be obtained by the composition chain of E → E/G1 → (E/G1)/G2 →···→ E/G .

3.1.4 Key encapsulation mechanism

A key encapsulation mechanism enables a party to confidentially communicate a secret key

to another party through an authenticated channel. The construction is asymmetric which

means that the two parties will follow distinct procedures.

2Separable isogenies are isogenies defined over separable field extensions, i.e., extensions for which the roots of
their minimal polynomial are distinct in their algebraic closure (see [Coh02, §7.4] for details).

35

Chapter 3. SIKE

Definition 3.1.19 (Key encapsulation mechanism). A key encapsulation mechanism (KEM)

is a triple of probabilistic algorithms KeyGen(n), Encaps(k, PK), Decaps(c, SK) that achieves

confidentiality of a shared secret key k through public-key encryption.

The algorithms of a key encapsulation mechanism must fulfill the following properties:

• KeyGen(n) generates a random key pair (SK, PK) of security parameter n where:

– SK is a private key used to decrypt secret keys.

– PK is the public key corresponding to SK used to encrypt secret keys.

• Encaps(k, PK) encapsulates a secret key k with the public key PK to produce a ciphertext c

that corresponds to k.

• Decaps(c, SK) decapsulates the secret key k from c with the private key SK (supposing

that c validly corresponds to k).

The security parameter n ensures that there is no probabilistic algorithm that compromises

the confidentiality of the key encapsulation scheme in time polynomial nor subexponential

in n.

Moreover, we say that the KEM is ephemeral if a new key pair is generated for each communi-

cation, and semi-static if the same key pair can be re-used across all communications (and

fully static if both the key pair and the encapsulated key are always the same).

3.2 SIDH

The Supersingular Isogeny-based Diffie–Hellman (SIDH) is a key exchange scheme based

on the Diffie–Hellman protocol and constitutes the building block of the key encapsulation

mechanism in SIKE. The scheme enables two parties (Alice and Bob) to securely agree on

a same secret value without prior common secret information. The security of the scheme

relies on the hardness of finding an isogeny (without its kernel) between two supersingular

isogenous elliptic curves.

In SIDH, Alice and Bob share the image curve of their respective secret isogeny that is generated

by a secret kernel, which is itself generated by a secret generator point of a common public

curve. By applying their respective isogeny to their counterpart’s image curve, Alice and Bob

arrive at a same image curve (up to an isomorphism), as illustrated in Figure 3.2.

36

3.2 SIDH

E

E/〈Ra〉 E/〈Rb〉

E/〈Rb〉 E/〈Ra〉

E/(〈Ra〉+〈Rb〉)

·→ ·/〈Ra〉 ·→ ·/〈Rb〉

·→ ·/〈Ra〉 ·→ ·/〈Rb〉

Figure 3.2: Illustration of the SIDH protocol.

3.2.1 Key exchange

Parameters. Alice and Bob parameterize SIDH with the following:

• ℓa ,ℓb : two (small) prime numbers.

• ea ,eb : two security parameters such that ℓea
a ℓ

eb

b −1 is prime and ℓea
a ≈ ℓeb

b .

• E(Fp2) : a supersingular elliptic curve defined over Fp2 where p = ℓea
a ℓ

eb

b −1.

• Pa ,Qa : a basis for the ℓa-torsion subgroup in E(Fp2).

• Pb ,Qb : a basis for the ℓb-torsion subgroup in E(Fp2).

Usually, we use ℓa = 2 and ℓb = 3. This leads to prime numbers p = 2ea 3eb −1 whose distribu-

tion is dense enough for our applications according to the results of Lagarias and Odlyzko

in [LO77].

Private computation. Both parties conceal their respective private information through an

isogeny with the following steps:

Alice generates her parameters as follows:

1. Choose secret 1 < k(P)
a ,k(Q)

a < 2ea .

2. Ra ← [k(P)
a]Pa + [k(Q)

a]Qa .

3. Let ϕa : E → E/〈Ra〉.
Alice’s private information is k(P)

a ,k(Q)
a .

Bob generates his parameters as follows:

1. Choose secret 1 < k(P)
b ,k(Q)

b < 3eb .

2. Rb ← [k(P)
b]Pb + [k(Q)

b]Qb .

3. Let ϕb : E → E/〈Rb〉.
Bob’s private information is k(P)

b ,k(Q)
b .

Public exchange. Both parties exchange their public information through an authenticated

channel with the following steps:

Alice sends (E/〈Ra〉,ϕa(Pb), ϕa(Qb)). Bob sends (E/〈Rb〉,ϕb(Pa), ϕb(Qa)).

Key agreement. Both parties agree on a common secret through an isogeny composition

with the following steps:

37

Chapter 3. SIKE

Given (E/〈Rb〉,ϕb(Pa), ϕb(Qa)), Alice

computes the common secret as follows:

1. Sa ← [k(P)
a]ϕb(Pa)+ [k(Q)

a]ϕb(Qa).

2. Let ϕ′
a : E/〈Rb〉→ (E/〈Rb〉)/〈Sa〉.

3. Let K be the j -invariant of

(E/〈Rb〉)/〈Sa〉.

Given (E/〈Ra〉,ϕa(Pb), ϕa(Qb)), Bob

computes the common secret as follows:

1. Sb ← [k(P)
b]ϕa(Pb)+ [k(Q)

b]ϕa(Qb).

2. Let ϕ′
b : E/〈Pa〉→ (E/〈Ra〉)/〈Sb〉.

3. Let K be the j -invariant of

(E/〈Ra〉)/〈Sb〉.

The j -invariant is the same for both parties, since the curves (E/〈Rb〉)/〈Sa〉 and (E/〈Ra〉)/〈Sb〉
are necessarily isomorphic to each other. This result arises from ϕ′

a : E → (E/〈Rb〉)/〈Sa〉 (resp.

ϕ′
b : E → (E/〈Ra〉)/〈Sb〉) being identical to ϕ′′

a : E → E/〈Rb ,Ra〉 (resp. ϕ′′
b : E → E/〈Ra ,Rb〉) due

to Theorem 3.1.2 (and since 〈Rb ,Ra〉 = 〈Ra ,Rb〉).

3.3 SIKE

SIKE (Supersingular Isogeny Key Encapsulation) is a KEM which is based on SIDH and the

Fujisaki–Okamoto transform3.

3.3.1 Key exchange

Parameters. SIKE is parameterized with the following:

• η> 0 : a message length.

• p = 2e2 3e3 −1 : a prime number parameterized by e2,e3 > 2 such that 2e2 ≈ 3e3 .

• α ∈ Fp2 : the coefficient of a supersingular Montgomery curve E0(Fp2) (β= 1).

• xQ2 , xP2 , xQ2−P2 : the affine x-coordinates of a basis for the 2-torsion subgroup.

• xQ3 , xP3 , xQ3−P3 : the affine x-coordinates of a basis for the 3-torsion subgroup.

Note that SIKE instantiates SIDH with ℓ2 = 2, ℓ3 = 3, e2,e3, E0(Fp2), P2, Q2, P3, Q3.

Standard SIKE instances are all instantiated with α= 6. The standard parameters for e2, e3,

and η are shown in Table 3.2. The public generator points P2, Q2, and P3, Q3 are obtained with

a deterministic procedure described in [Jao+20] and are therefore fixed for each parameter set

(refer to [Jao+20] for their actual values).

Key generation. A SIKE key pair (SKb , PKb) is generated with the following steps:

1. Pick 1 < SKb < 3e3 uniformly at random.

2. Rb ← Pb + [SKb]Qb .

3. Let ϕb : E0 → Eb be such that ker(ϕb) = 〈Rb〉.
4. Return PKb = (Eb ,ϕb(Pa),ϕb(Qa)).

3The Fujisaki–Okamoto transform adapts a protocol in a way that prevents the two parties from cheating
(see [FO99] for details).

38

3.3 SIKE

Note that PKb is actually encoded as the affine x-coordinates xϕb (Pa), xϕb (Qa), and xϕb (Qa)−ϕb (Pa),

since the coefficient defining Eb can be recovered from these values (see Remark 3).

Instance Security level e2 e3 η

SIKEp434 1 216 137 128
SIKEp503 2 250 159 192
SIKEp610 3 305 192 192
SIKEp751 5 372 239 256

Table 3.2: Standard SIKE parameter sets, as submitted in the third round of NIST’s post-
quantum standardization process [Jao+20]. The security levels correspond to security require-
ments established by NIST (see [NIS16]).

Key encapsulation. Let F : Fp2 → {0,1}η, G : {0,1}η×F3
p2 → {0,1}e2 , and H : {0,1}η×F3

p2 × {0,1}η

be three cryptographic hash functions4. Given a SIKE public key PKb = (Eb ,ϕb(Pa),ϕb(Qa)),

the scheme encapsulates a secret key with the following steps:

1. Pick m ∈ {0,1}η uniformly at random.

2. Let SKa be the conversion of G(m, PKb) into an integer.

3. Ra ← Pa + [SKa]Qa .

4. Let ϕa : E0 → Ea be such that ker(ϕa) = 〈Ra〉.
5. R ′

a ←ϕb(Pa)+ [SKa]ϕb(Qa).

6. Let ϕ′
a : Eb → Eab be such that ker(ϕa) = 〈Ra〉.

7. Let j be the j -invariant of the curve Eab .

8. Return c0 = (Ea ,ϕa(Pb),ϕa(Qb)), and c1 = F (j)⊕m,

and let K = H(m,c0,c1) be the shared secret key.

Note that c0 is actually encoded as the affine x-coordinates xϕb (Pb), xϕb (Qb), and xϕb (Qb)−ϕb (Pb),

since the coefficient defining Ea can be recovered from these values (see Remark 3).

Key decapsulation. Let F : Fp2 → {0,1}η, G : {0,1}η×F3
p2 → {0,1}e2 , and H : {0,1}η×F3

p2 × {0,1}η

be the same cryptographic functions as the ones used during key encapsulation. Given a

ciphertext c0 = (Ea ,ϕa(Pb),ϕa(Qb)) and c1 = F (j)⊕m encrypted with PKb corresponding to

SKb , the scheme decapsulates a secret key with the following steps:

1. Pick s ∈ {0,1}η uniformly at random.

2. R ′
b ←ϕa(Pb)+ [SKb]ϕa(Qb).

3. Let ϕb : Eb → E ′
ab be such that ker(ϕb) = 〈Rb〉.

4. Let j be the j -invariant of the curve Eab .

5. Let m′ = F (j)⊕ c1.

4In practice, F , G , and H are all instantiated with SHAKE256 [NIS15] where all inputs are converted into bits
and concatenated with each other.

39

Chapter 3. SIKE

6. Let SK′
a be the conversion of G(m′, PKb) into an integer.

7. R ′
a ← Pa + [SK′

a]Qa .

8. Let ϕ′′
a : E0 → Ea be such that ker(ϕ′

a) = 〈R ′
a〉.

9. If (E ′
a ,ϕ′(Pb),ϕ′(Qb)) = c0, then

(a) Let K = H(m′,c0,c1) be the shared secret key.

Else

(b) Let K = H(s,c0,c1) be the shared secret key.

Compressed SIKE. Rather than providing the image points for Qa and Pa (resp. Qb and Pb)

in the public elliptic curve Eb (resp. Ea), the key generation (resp. the key encapsulation) can

instead provide elements of Z/(2e2Z)×Z/(2e2Z) (resp. elements of Z/(3e3Z)×Z/(3e3Z)) that

deterministically generate Eb[2e2] (resp. Ea[3e3]). This is because these two representations

are isomorphic due to Theorem 3.1.1 (see [Aza+16, §4.1] for details). This approach saves

around 35% of public key and ciphertext sizes at the cost of slower algorithms. Additional

compression techniques that further reduce the sizes of the public key and ciphertext, and

improve the runtime of the compression algorithms were developed in [Cos+17; Zan+18].

Implementation. In the scope of this thesis, we specifically consider the SIKE implementa-

tion from [Seo+20]. This implementation is the official adaptation to the 32-bit ARM Cortex-M4

of SIKE and is included in the official submission package.

3.3.2 The three-point ladder

The three-point ladder is a procedure which takes three points Q, P , Q −P in an elliptic curve

to efficiently compute the point R = P + [SK]Q where SK is the private key of the computing

party. In SIKE, the three-point ladder is used to compute the generator point of the secret

kernel subgroup.

Algorithm. The three-point ladder algorithm is shown in Algorithm 3.1. The procedure

scans the bits of the private key SK from the least to the most significant bit. For each bit, Q is

either added to P if the bit is one, or to Q −P if the bit is zero. The point Q is always doubled at

the end of each iteration.

Implementation. As SIKE works with Montgomery curves, the implementation of the three-

point ladder considered in this thesis (shown in Listing A.1) takes as input only the affine

x-coordinates of Q, P , and Q−P , which are respectively stored as [x : 1] (see Remark 2) in three

variables: R0, R, and R2. From these coordinates, the α coefficient of the curve is recovered

(see Remark 3). The conditional branching over the bits of SK is done by swapping the point R
with R2 depending on the difference between the current and the previous private bits in the

for-loop, so R0 can always be added to R2.

40

3.3 SIKE

Algorithm 3.1 The three-point ladder.

Input: SK = (b0, . . . ,bn−1) – the bits of the private key.
Input: E – an elliptic curve.
Input: (Q,P,Q −P) – three points in E .
Output: P + [SK]Q.

1: for each bi in SK do
2: if bi = 1 then
3: (Q,P,Q −P) ← xDBLADD(Q,Q −P,P,E). ▷ (Q,P,Q −P) ← ([2]Q,P +Q,Q −P)
4: else
5: (Q,P,Q −P) ← xDBLADD(Q,P,Q −P,E). ▷ (Q,P,Q −P) ← ([2]Q, (Q −P)+Q,P)
6: return P .

Double-and-add procedure. The double-and-add implementation (shown in Listing A.2)

takes as input the points R0, R, and R2 such that R2 = R0−R, along with the curve-defining

coefficient α (A24 in the source code), and computes ([2]R0,R+R0,R2) which is respectively

stored in (R0,R,R2).

Swapping procedure. To perform the conditional swapping of points, a function swap_points
(shown Listing A.6) takes R and R2 as parameters, as well as a mask that expands the value of

the private bit difference on a whole word. Given two consecutive private-key bits bi−1,bi (for

0 ≤ i < n with b−1 = bn = 0), with 32-bit words, such a mask corresponds to:

mask=
{

0x00000000 if bi−1 ⊕bi = 0,

0xFFFFFFFF if bi−1 ⊕bi = 1.

Then, each word of the two elliptic curve points (resp. u and v) is processed according to this

formula:
tmp = mask & (u ⊕ v),

u = tmp⊕u,

v = tmp⊕ v.

Such a procedure is constant in timing and execution (see [CS18] for proof).

3.3.3 Strategies

In order to secretly exchange information, SIKE relies on the derivation of a secret isogeny

defined by the kernel generated by a given secret point of smooth order. Deriving the isogeny

all at once is computationally heavy, as the computations require visiting all the points in the

kernel. Instead, the isogeny derivation can be optimized by composing a chain of isogenies of

smaller degrees.

Let R0 be the secret generator point such that ord(R0) = ℓe . The goal is to obtain ϕ : E0 →
E0/〈R0〉 from the decomposition ofϕ into isogenies of degree ℓ. Such isogenies can be derived

with Vélu’s formulas (see Definition 3.1.17) using (as kernel) the ℓ-torsion of the subgroup

41

Chapter 3. SIKE

generated by the projection of R0 in the preimage curve. The procedure therefore aims to

efficiently compute ℓ-torsions in each intermediate curve so to navigate from E0 to E/〈R0〉
through ℓ-degree isogenies.

In the following, ϕi : Ei → Ei+1 denotes the isogeny of degree ℓ where Ei+1 = Ei /〈[ℓe−i−1]Ri 〉
for 0 ≤ i < e. Each ϕi can be computed only when [ℓe−i−1]Ri is known. Once ϕi is known, the

map can be used to project any point from Ei onto Ei+1 including, in particular, the previous

points obtained in the computations that led to [ℓe−i−1]Ri . As a result, there are many ways to

compute the generator point [ℓe−i−1]Ri in each curve, and so to derive the overall isogeny.

φ6

[ℓ]R0

R0 φ0

[ℓ
]

R1

[ℓ6]R0

[ℓ5]R1

φ1

[ℓ
]

R2

[ℓ5]R0

[ℓ4]R2

φ2

[ℓ
]

R3

[ℓ4]R0

[ℓ3]R3

φ3

[ℓ
]

R4

[ℓ3]R0

[ℓ2]R4

φ4

[ℓ
]

R5

[ℓ2]R0

[ℓ1]R5

φ5

[ℓ
]

R6

Figure 3.3: Computational structure of ϕ=ϕ6 ◦ · · · ◦ϕ0.

Figure 3.3 illustrates all the possible ways of deriving the ℓ-degree isogenies from R0 when

e = 7. In this figure, each vertex corresponds to a point in an elliptic curve, and each arrow

represents an operation. In particular, given a point P on the graph:

• A downwards arrow represents a scalar multiplication by ℓ on P . As a result, each vertical

line 0 ≤ i < e corresponds to operations in Ei , and each vertex on this line corresponds

to points in Ei .

• A rightwards arrow represents the application of ϕi to P (0 ≤ i < e). As a result, each

horizontal line 0 ≤ j < e corresponds to the mapping of the points from E0 to their

counterparts in the different Ei (for 0 ≤ i < e − j).

Note that all extensions of line beyond its endpoint would lead to O. To derive ϕ, the com-

puting party starts from R0 in the upper-left corner and needs to reach R6 in the upper-right

corner. The computing party can move freely downwards and upwards, but can move right-

wards only when the point at the bottom of the current vertical line is reached. The goal is to

walk to the upper-right corner with as few moves as possible.

We call a strategy a correct walk from R0 to Re−1 in a graph as the one shown in Figure 3.3. The

walk is correct if the computing party follows the rules described above (see [DJP14, §4.2.2] for

42

3.3 SIKE

formal details). If followed correctly, a strategy can then be encoded as the set of the visited

vertices.

Example. Figure 3.4 shows two concrete examples of a strategy:

(a) A straightforward strategy which simply aims to unlock φi by multiplying Ri by ℓe−i−1,

and then project Ri onto Ei+1 to repeat the process (for all 0 ≤ i < e).

(b) An optimized strategy which projects [ℓ2]R0 onto E1 with ϕ0 to obtain [ℓ2]R1, so [ℓ]R1

does not need to be visited.

Notice that the graph in Figure 3.4a possesses one more edge than the graph in Figure 3.4b,

and would thus require one more operation to execute. On the other hand, Figure 3.4b needs

to save [ℓ2]R0 when deriving [ℓ3]R0.

R0

[ℓ3]R0

R1

[ℓ2]R1

R2

[ℓ]R2

R3φ0 φ1 φ2

(a) Straightforward strategy.

R0

[ℓ3]R0

R1

[ℓ2]R1

R2

[ℓ]R2

R3φ0 φ1 φ2

(b) Optimized strategy.

Figure 3.4: Two different strategies for computing the same isogenies (e = 4).

Further optimizations can be considered if, for instance, the computational complexity of the

scalar multiplication is lower than the computational complexity of the isogeny application

(see [DJP14] for details). In SIKE, optimal strategies are determined once and fixed for each

parameter set.

3.3.4 Formulas

As SIKE works with Montgomery curves, certain operations can be performed more efficiently

than on a regular elliptic curve. In this section, we give the formulas (as described in [Jao+20])

for these operations.

Let E be a Montgomery curve defined over Fp2 by α ∈ Fp2 (β = 1). We denote by [A : C] (for

C ̸= 0) the projective representation of α= A/C .

Moreover, given [A : C], we define the additional representations:

• [A+
24 : A−

24] = [A+2C : A−2C] (for A+
24 ̸= A−

24) which representsα= 2(A+
24+A−

24)/(A+
24−A−

24).

• [A+
24 : C24] = [A+2C : 4C] (for C24 ̸= 0) which represents α= (4A+

24 −2C24)/2C24.

43

Chapter 3. SIKE

Point doubling. Given a point P = [X : Z] ∈ E defined by [A+
24 : C24], the doubling operation

is in practice computed as follows:

[2]P = [(C24(X 2 −Z 2)2 : 4X Z (C24(X −Z)2 +4A+
24X Z)].

Point tripling. Given a point P = [X : Z] ∈ E defined by [A+
24 : A−

24], the tripling operation is

in practice computed as follows:

[3]P = [X (A+
24(X +Z)4 − A−

24(X −Z)4 −2(X 2 −Z 2)(A+
24(X +Z)2 − A−

24(X −Z)2))2 :

Z (A+
24(X +Z)4 − A−

24(X −Z)4 +2(X 2 −Z 2)(A+
24(X +Z)2 − A−

24(X −Z)2))2]

Point addition. Given three points Q = [XQ : ZQ], P = [XP : ZP], and Q −P = [XQ−P : ZQ−P]

in E , the addition of Q with P is in practice computed as follows:

Q +P = [ZQ−P (XP XQ −ZP ZQ)2 : XQ−P (XP ZQ −XQ ZP)2].

2-isogeny computation. Given the generator point R2 = [X2 : Z2] ∈ E such that #〈R2〉 = 2,

the isogeny ϕ defined by ker(ϕ) = 〈R2〉 is computed as follows:

ϕ : E → E ′ defined by [A+
24 : C24] = [Z 2

2 −X 2
2 : Z 2

2]

[X : Z] 7→ [X (X X2 −Z Z2) : Z (X Z2 −Z X2)].

3-isogeny computation. Given the generator point R3 = [X3 : Z3] ∈ E such that #〈R3〉 = 3,

the isogeny ϕ defined by ker(ϕ) = 〈R3〉 is computed as follows:

ϕ : E → E ′ defined by [A+
24 : C24] =

[(3X3 −Z3)3(X3 +Z3) : (3X3 +Z3)3(X3 −Z3)].

[X : Z] 7→ [X (X X3 −Z Z3)2 : Z (X Z3 −Z X3)2].

4-isogeny computation. Given the generator point R4 = [X4 : Z4] ∈ E such that #〈R4〉 = 4,

the isogeny ϕ defined by ker(ϕ) = 〈R4〉 is computed as follows:

ϕ : E → E ′ defined by [A+
24 : C24] = [X 4

4 : Z 4
4]

[X : Z] 7→ [X (X X4 −Z Z4)2(X X 4
4 +X Z 2

4 −2Z X4Z4) :

Z (X Z4 −Z X4)2(Z X 2
4 +Z Z 2

4 −2X X4Z4)].

j -invariant. When E is a Montgomery curve defined by [A : C] or α= A/C , the j -invariant

can be computed as follows:

j = 256
(A2 −3C 2)3

C 4(A2 −4C 2)
= 256

(α2 −3)3

α2 −4
.

44

4 Horizontal differential power analysis
of SIKE

The content of this chapter is based on the work:

[GGK21] Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kalud̄erović. “Full

Key Recovery Side-Channel Attack Against Ephemeral SIKE on the Cortex-M4”.

In: Constructive Side-Channel Analysis and Secure Design - 12th International

Workshop, COSADE 2021, Lugano, Switzerland, October 25-27, 2021, Proceedings.

Ed. by Shivam Bhasin and Fabrizio De Santis. Vol. 12910. Lecture Notes in

Computer Science. Springer, 2021, pp. 228–254. URL: https://doi.org/10.1007/

978-3-030-89915-8_11

Context. Ever since the second round of their post-quantum standardization process, NIST

has repeatedly called for side-channel assessment of the post-quantum candidates [Moo19b;

Apo20]. This call was reiterated by the SIKE team who made a public solicitation for cryptanal-

ysis in this regard [Jao19]. In particular, SIKE was lacking evaluation for power analysis at the

time, as only one article—by Koziel, Azarderakhsh, and Jao in [KAJ17]—analyzed leakages of

supersingular isogeny protocols through power consumption, in which three refined power

analysis based on zero-value points on SIDH are presented without practical experiment.

The current chapter directly responds to this need and proposes the first practical power

analysis of ephemeral SIKE. Our work complements the first practical side-channel attack on

SIKE of [Zha+20] which was published concurrently with our own research. In their study, the

authors fully describe a vertical DPA on the three-point ladder of the SIKE key decapsulation

procedure, and discuss potential countermeasures. However, since the authors rely on the

fact that the private key is fixed across the measurements, their attack is applicable only to

the semi-static settings of the SIKE protocol. Our attack extends their results by proposing a

horizontal DPA on SIKE in ephemeral settings.

45

https://doi.org/10.1007/978-3-030-89915-8_11
https://doi.org/10.1007/978-3-030-89915-8_11

Chapter 4. Horizontal differential power analysis of SIKE

Given that SIKE is now theoretically broken, our analysis has become obsolete. Nevertheless,

as our work exploits the power leakages of the elliptic curve scalar multiplication involved in

the protocol to recover the private key of one party, the attack complements the previous work

that targets the same operation but in the context of ECC, such as [Cla+10], [PZS17], [APS19],

and [Bat+23]. In fact, our attack is equivalent to the work mentioned above but applied to the

scalar multiplication that is used in SIKE (i.e., the three-point ladder).

Results. The main contribution of this chapter is a full private key extraction through a power

analysis of SIKE with only a single trace; breaking thus confidentiality in a passive setting

(note that our work was conducted and published prior to the disclosure of the theoretical

attack against SIKE by Castryck and Decru [CD22]). Particularly, we target the three-point

ladder with a straightforward vertical attack (i.e., with multiple traces and a fixed secret) and

show how to extend it to the case of a horizontal attack (i.e., with a single trace and a secret

which can therefore be ephemeral). This attack can be applied at any stage of the protocol:

key generation, key encapsulation, and key decapsulation.

Our attack is geared towards the recommended implementation of SIKE for the ARM Cortex-

M4 [Seo+20]; a low-power and low-cost embedded microcontroller1 which is recommended by

NIST for post-quantum cryptography evaluation due to its widespread use [Moo19a; Kan+19].

In particular, our analysis leverages the leakage model of the microcontroller by incorporating

the leakage assessment of the architecture presented by Le Corre et al. in [CGD17].

Finally, we argue how our horizontal power analysis defeats many countermeasures that were

mentioned in the power analysis of SIKE as presented in [Zha+20]; namely, starting with a

random isomorphic curve, masking the scalar, splitting the key randomly, and using a window-

based scalar multiplication. We recommend the well-known projective point coordinate

randomization, which counters our attack with a negligible performance overhead (of course,

this does not prevent the attack by Castryck and Decru [CD22]).

Outline. The chapter is structured as follows: the horizontal differential power analysis is

presented in Section 4.1, which is followed by further enhancements to improve the efficiency

of the attack in Section 4.2. The experimental verification of the attack and improvements

are explained in Section 4.3. Then, in Section 4.4, a countermeasure is recommended while

several others are discussed, so the chapter concludes with Section 4.5.

4.1 Attack description

In this section, we explain how to exploit the link between power consumption and pro-

cessed data in order to recover private key bits. The attack is tailored to the code Cortex-M4

implementation of SIKE by [Seo+20].

1See [ARM10] for the specifications of the ARM Cortex-M4.

46

4.1 Attack description

4.1.1 Three-point ladder analysis

The main point of attack is the three-point ladder (shown in Algorithm 3.1), as the procedure

involves a single bit of the computing party’s private key in each iteration of the for loop. The

goal is to measure the power consumption of the xDBLADD operation and to deduce if the

subroutine was executed with or without the swap_points at step 7. We may assume that we

know the private key up to bit i −1 by induction. We also know the starting points Q,P,Q −P

since these points are public. Therefore, we may obtain the two possible inputs for xDBLADD,

and we know how they relate to the value of the i th bit of the private key. The two inputs and

their Hamming weights are computed and the power trace of a specific set of instructions

within xDBLADD is correlated with the Hamming weights. Thanks to differential power analysis,

this allows us to distinguish when the i th bit is zero or one.

4.1.1.1 Double-and-add

Despite the involvement of a (random) bit of the private key, xDBLADD is a deterministic

subroutine. The inputs and outputs of each subprocedure in xDBLADD depend only on the

original inputs of the subroutine. As a result, an educated guess on the original inputs allows

us to infer the results of all the operations involved in xDBLADD.

In the Cortex-M4 implementation of SIKE, the subroutine consists of 7 multiplications and

4 squarings of Fp2 elements, as well as multiple field additions, subtractions, and modular

reductions. Each Fp2 multiplication and each squaring contains two multi-precision additions

of Fp elements, referred to as “mp_addfast”. This multi-precision addition is the operation

on which our attack is focused. In total, there are 11×2 = 22 mp_addfast functions, out of

which only 10 have inputs which differ in case of a swap_points at step 6 of the three-point

ladder. The code of xDBLADD, the squaring, and the multiplication functions can be found

in Appendix A (respectively in Listing A.2, Listing A.4, and Listing A.3).

4.1.1.2 Multi-precision addition

In the Cortex-M4 implementation of SIKE, the mp_addfast is written in assembly. The func-

tion computes the addition of two Fp elements. Depending on the size of p, each field element

is saved in an array of n ∈ {14,16,20,24} 32-bit words. Each mp_addfast executes 2n load

instructions (LDMIA), n store instructions (STMIA), and n additions (ADDS, ADCS). These in-

structions are executed in batches of four consecutive additions, due to the limited number

of available registers on the Cortex-M4. The code of the mp_addfast function can be found

in Listing A.5.

47

Chapter 4. Horizontal differential power analysis of SIKE

4.1.2 Vertical attack

In a vertical attack against SIKE, we measure multiple executions of the three-point ladder

in which Bob’s private key is fixed, but the client public key inputs are different. From these

traces, we concentrate only on a single mp_addfast instruction per xDBLADD, i.e., per bit

of the private key. Within the mp_addfast, we can decide to focus even further on the first

addition instruction. We can thus compute the two possible outputs of the first ADDS depend-

ing on the (timing-constant) swap_points, for each public key, and then correlate the two

vectors of Hamming weights of these outputs with the power traces using the DPA procedure

from Section 2.1.3.1. This process can be repeated for each bit of Bob’s private key, as the

correctness of each guess depends on the correctness of previous ones, resulting thus in an

extend-and-prune attack.

4.1.3 Horizontal attack

In the horizontal attack scenario, we are restrained to only one power trace for a single

execution of the three-point ladder. The same approach as in the vertical attack cannot be

used because there would not be enough data to obtain strong correlations. We can work

out this issue and re-obtain “verticality” by combining the power traces of all 10 mp_addfast
functions within each xDBLADD. This way, we obtain 10 power traces with which we can

correlate pairs of inputs—similarly as in a vertical attack with 10 power traces.

We can further improve this attack. A multi-precision addition takes two Fp elements as input

and gives one as output. Each one of the 2n input words of 32 bits is loaded once and then

used in the addition instruction, and the n output words of 32 bits are stored. In total, there

are 3n words which pass through the pipeline registers and whose Hamming distance from

the previous word in the pipeline are related to the power consumption.

For each of the 3n words, we compute the PCC between the 10 power traces and the 10 pairs

of Hamming weights of 32-bit words accounting for the two guesses of the current bit of

the private key. For each word, a spike in the correlation is expected at a different position

depending on the instruction which uses this particular word. The locations of spikes can be

deduced from the shape of the power traces. Once the 3n pairs of correlations are computed,

we can add them up such that the locations of the expected spikes are aligned. We expect to

end up with two correlations for each guess of the private-key bit, with a clear spike in the

correlation plot of the correctly guessed value.

4.2 Attack enhancements

In presence of noise in power measurement, the private key guesses may be erroneous. A single

wrong guess of a bit of the private key leads to completely inconclusive results, because the

following guesses depend on the correctness of the previous bits. Therefore, it is of particular

48

4.2 Attack enhancements

importance that no erroneous guesses are made in the process of key extraction. We propose

two measures to approach this problem.

4.2.1 Depth search

When the guess of a single bit gives inconclusive results, we can proceed by making four

guesses for the next two bits in hope of finding a correlation coefficient with a notable spike.

In particular we can make a guess for k consecutive bits, obtaining in total 2k different

combinations. For each combination we compute a PCC for each of the k bits. In total there

are 2(2k −1) correlation coefficients, not counting repetitions. We then add up all the PCCs for

each k-bit combination and we guess the current SK bit to be the trailing bit of the combination

with the strongest correlation. Figure 4.1 illustrates this process on real data.

Selecting the k-bit block that exhibits the strongest sum of PCCs may lead to the correct

guess, but this process may still be susceptible to the same inconclusive results as initially

encountered. In contrast, when there are strong correlations at the kth bit, the first bit is

extremely likely to be correct.

Figure 4.1: Example of a depth search with three bits.

4.2.2 Increasing verticality

We can increase verticality (i.e., the amount of power traces in the horizontal settings) by

computing correlations for bits in windows of k. If, for one bit, 10 mp_addfast functions can

be measured from a single xDBLADD, then, for k bits, there will be k ×10 traces of mp_addfast
functions from the k consecutive xDBLADD functions. In total, 2k hypotheses need to be made

(one per bit), and 2k correlation coefficients are computed for 10k power traces.

49

Chapter 4. Horizontal differential power analysis of SIKE

Finally, rather than performing the attack on contiguous windows of k bits, we select only

one bit of Bob’s private key to be the trailing bit of the k-bit combination with the strongest

correlation. This way, we can re-run the process starting from the bit right afterwards as a way

to correct errors due to the potential proximity of strong correlations. This process resembles

the error-correction procedure introduced in [Dug+16].

Also, we mention that other operations, such as fpmul_mont and fpsub, can be measured

and combined to increase verticality. While these are dissimilar operations and may leak infor-

mation differently than mp_addfast, they may still add information to the overall selection of

Bob’s private bits.

4.3 Experimental verification

In order to validate the horizontal attack described in Section 4.1, we reproduced the key recov-

ery on a programmable board which runs an adapted version of Cortex-M4 implementation

of SIKE from [Seo+20].

4.3.1 Setup

Hardware. We performed our experiments on an STM32F3 as DUT with the ChipWhisperer

framework that was described in Section 2.1.1. The oscilloscope was configured with the

following settings:

• A bandwidth of 500 MHz.

• A sampling rate of 250 samples per µs.

• A resolution of 8 bits per sample.

• A memory of 50,000 samples per acquisition.

Software. The attacked implementation is the official SIKE implementation adapted for

(32-bit) ARM Cortex-M4 microcontrollers [Seo+20], which is part of the official submission

package and is constant in timing. We attacked SIKE instantiated with a prime of 434 bits (i.e.,

SIKEp434); a choice that we elaborate in this section.

In our experiment, we wrote a small piece of software that interfaces the serial communica-

tion from the ChipWhisperer framework to the SIKE library. The code allows the computer

to program the DUT remotely through USB and simulate the key exchange while power

consumption is measured.

Concretely, the software uses ChipWhisperer’s SimpleSerial protocol [New17] to program

different commands to which the DUT reacts. The computer uses these commands to com-

municate data to the DUT by serially transmitting, first, the byte of the command in ASCII,

50

4.3 Experimental verification

then, the data of length specified for the command. When the procedure corresponding to

the command ends, the DUT responds with the letter z followed by a code returned by the

procedure, which concludes the protocol exchange. Two custom commands were introduced

in the scope of this experiment:

• The command k which sets Bob’s private key used in the three-point ladder.

• The command p which sends Alice’s public key and executes the three-point ladder

procedure of SIKE.

We made additional modifications in the SIKE implementation to ease the collection and the

pre-processing of the traces. Note that these adjustments were made for efficiency purpose

and are by no means necessary for our attack to work. In other words, we emphasize that the

attack can be mounted on the original implementation of SIKE presented in [Seo+20] without

any difficulty.

The list of adjustments are the following:

• A GPIO pin (PA122, a.k.a., the trigger) is toggled when the double-and-add operation of

the three-point ladder enters into an mp_addfast procedure that depends on the swap.

• An idle delay of about 1 millisecond was introduced in between each mp_addfast call,

and of about 1 second after each loop iteration of the three-point ladder.

Limitations of the software. While the introduction of a trigger GPIO and multiple delays

results in an unrealistic attack scenario, we emphasize on the fact that the attack is still possible

on an unmodified SIKE implementation. The process of segmenting the power traces, as

well as the correlation and Hamming weights computations can be done offline, after the

power traces have been sampled. In a plain attack, as opposed to our experiment, the traces

acquisition will be synchronized on serial communication. Then, the targeted operations need

to be identified within the full resulting power trace (e.g., using cross-correlation techniques,

as in [Dug+16]), so the sub-power traces corresponding to the attacked instructions can be

manually segmented and carefully aligned to perform the DPA. This process is not the main

focus of our study and was therefore duly skipped.

Other SIKE instances. As described in Section 3.3, the original SIKE submission offers

various levels of security with four different parameters sets; each of which with a prime

of unique size (i.e., a p with a bit-length of 434, 503, 610, and 751, see Table 3.2). While

instantiating SIKE with a larger prime offers stronger security guarantees against theoretical

cryptanalysis, larger instances present a wider attack surface in a single-trace power analysis.

This property was also observed by Bos et al. in [Bos+19], and is due to the increased number

2We refer to the official NAE-CW308 UFO datasheet to find the mentioned pins: http://media.newae.com/
datasheets/NAE-CW308-datasheet.pdf

51

http://media.newae.com/datasheets/NAE-CW308-datasheet.pdf
http://media.newae.com/datasheets/NAE-CW308-datasheet.pdf

Chapter 4. Horizontal differential power analysis of SIKE

of instructions executed which, therefore, yield more power measurements. As a result, our

attacked instance (SIKEp434) is expected to be the hardest to attack with a single trace.

Also, the compressed instances of SIKE are prone to the same horizontal attack, because the

starting points of the three-point ladder are deterministically obtained from the compressed

public key.

4.3.2 Experiment

4.3.2.1 Traces collection

Our experiment simulated a portion of the SIKE key exchange between Alice (the computer)

and Bob (the DUT); namely, the key decapsulation procedure. Our attack scenario can be

summarized with the following steps:

1. On the computer, generate Bob’s key pair at random, and send Bob’s private key to the

DUT (with the command k).

2. Given Bob’s public key, generate Alice’s key pair at random.

3. Send a public key to the DUT (with the command p) during which the oscilloscope

measures the power consumption of:

• only the second mp_addfast call involved in steps 6 and 8,

• and both mp_addfast calls involved in steps 16, 17, 18, and 19,

of the xDBLADD procedure (see Appendix A) as used in the three-point ladder.

Once triggered, the oscilloscope was configured to sample the power consumption at a rate

of 250 MS/s during a period of 20 µs. As a result, a power trace for a single execution of

mp_addfast includes 5,000 power samples.

This attack scenario was repeated a total of 460 times to obtain at most 1 million traces. Each

of these experiments includes the power traces of the 10 mp_addfast calls from the loop

iterations for all the 217 bits of Bob’s private key. Hence, 460×10×217 = 998,200 different

power traces were acquired during that experiment.

For reference, Figure 4.2 (top) shows the average power consumption of an mp_addfast
execution captured by our oscilloscope.

Traces polishing. Because our initial results turned out to be inconclusive due to a serious

level of noise in the acquisition (see top of Figure 4.2), we processed the collected power traces

with a denoising technique, in the hope that such a processing would increase the success

rate of our DPA.

In our case, we applied a wavelet denoising compression, as described in Section 2.1.2.2, to

obtain cleaner power traces. Best results were experimentally obtained when Daubechies

52

4.3 Experimental verification

Figure 4.2: Result of the discrete wavelet transform with Daubechies 3 wavelets (‘db3’).

3 wavelets (‘db3’) were used recursively three times to reduce the number of samples from

5,000 to 623 (by keeping the approximations). The average of the resulting traces is shown in

Figure 4.2.

The denoised traces and public data are made accessible at:

https://github.com/nKolja/SIKE-HPA-2021.

4.3.2.2 Horizontal DPA procedure

Using the denoised power traces, we performed a horizontal DPA on each iteration of the loop

in the three-point ladder. Each time, a single bit of Bob’s private key is attacked. This process

can then be repeated across all the bits of the key.

Since a single bit is hypothesized at each step of the horizontal attack, there are only two

hypotheses to consider:

• The points P and Q −P were swapped (the bit is different from the previous bit).

• The points P and Q −P were left un-swapped (the bit is the same as the previous bit).

A strong correlation between the power traces for one loop iteration and the values corre-

sponding to one of the two hypotheses indicates the correctness of the hypothesized bit. As

the attack moves forward, a successful recovery of the first bits allows the recovery of the next

ones. Therefore, a full-key recovery can be incrementally mounted in an extend-and-prune

manner.

53

https://github.com/nKolja/SIKE-HPA-2021

Chapter 4. Horizontal differential power analysis of SIKE

Power traces segmentation. Due to the ephemeral settings of the protocol, we have access

to only a single trace per loop iteration involving a single bit of Bob’s private key. Therefore, in

order to apply a classical DPA as described in Section 2.1.3.1, we need to obtain verticality, i.e.,

find a way to obtain a certain amount of multiple different power samples which are linked

to a same portion of the private key. In our case study, we segmented the power trace that

corresponds to an iteration of the three-point ladder into 10 different power traces, each of

which corresponding to an mp_addfast execution, for which, given either hypothesis, the full

input and output (and thus, relevant Hamming distances information) are known. As a result,

our horizontal DPA will amount to a vertical DPA with 10 power traces and 2 hypotheses.

DPA enhancements. To further improve the success of our attack, we have inspected the

targeted function for which the power traces were collected. Particularly, the power traces

correspond to the mp_addfast function which adds two input Fp elements and returns a

single Fp element (see Listing A.5). Because, in our experiment, p is 434-bit long, each element

is saved as an array of ⌈434/32⌉ = 14 words of 32 bits. This results in exactly 14 addition

instructions, hence 14 leakage points, in a single mp_addfast power trace.

Moreover, we considered the leakage model from a Cortex-M4 microcontroller as explained

in [CGD18]. Because the power consumption leaks in the Hamming distance between the

pipeline registers, we actually obtain three leakage points on a power trace per instruction:

(1) the Hamming distance between the first inputs of the current and the previous instruc-

tion,

(2) the Hamming distance between the second inputs of the current and the previous

instruction, and

(3) the Hamming distance between the output of the current and the previous instruction.

This results in an additional segmentation of 3×14 = 42 points of leakage. For each point

of leakage, a PCC is computed with the 10 mp_addfast power traces and the 10 Hamming

distances.

We expect each of these PCCs to produce a spike at a different point in time in the correlation

plot which we try to recover. The location of the spike corresponds to the position at which

the associated 32-bit word is processed by a pipeline register. Each of these leakage points is

constant throughout the mp_addfast executions and the three-point ladder loop (assuming

the power traces are properly aligned, which can be automated using basic peak alignment

methods). These positions can even be identified by analysing the spike structure of the power

trace (using, e.g., cross-correlation techniques).

Finally, the 42 PCCs at each point of leakage are added together to produce a larger spike. This

consists of aligning all correlation plots on their leakage points and adding them together. We

expect the difference of added correlation coefficients to be large enough to correctly validate

the private bit.

54

4.4 Countermeasures

4.3.2.3 Results

Among the 460 trials, our experimental results returned a resounding success rate of 100%

in recovering the full key. None of the improvements described in Section 4.2.1 were even

required. An example of the corresponding DPA is shown in Figure 4.3 where six bits are shown

to be successfully recovered. All the code used to derive our results is shared on:

https://github.com/nKolja/SIKE-HPA-2021.

Figure 4.3: Addition of shifted PCC results with 10 segments of a single power trace. Each step
corresponds to a different bit. The blue curve corresponds to a bit hypothesis of zero, while
the red curve corresponds to bit hypothesis of one.

4.3.2.4 Discussion

This proof of concept shows that, even in ephemeral settings, the official ARM implementation

of SIKE is vulnerable to classical power analysis techniques.

4.4 Countermeasures

The attack arises as a consequence of the three-point ladder being a deterministic function

with predictable inputs. Each value going through the pipeline registers can be reduced to

only two cases. These inputs depend on the public triple xQ , xP , xQ−P (which define Q = [xQ :

1],P = [xP : 1], Q −P = [xQ−P : 1]), the bits of Bob’s private key up to the step at which the

instruction in question is being executed (which we may assume to be known by induction),

and the two possibilities for the current bit of the private key.

4.4.1 Recommended countermeasure

A simple and low-cost countermeasure, which was also mentioned in [Fan+10; Cor99; Zha+20],

consists of randomizing the coordinates that define the starting points, i.e., generate three

55

https://github.com/nKolja/SIKE-HPA-2021

Chapter 4. Horizontal differential power analysis of SIKE

random non-zero field elements rQ ,rP ,rQ−P and set
Q = [xQ rQ : rQ],

P = [xP rP : rP],

Q −P = [xQ−P rQ−P : rQ−P].

The increase in complexity comes from generating three random F∗
p2 elements and three field

multiplications. This is negligible with respect to the overall cost of the three-point ladder.

The execution of the protocol is still correct because the points Q,P,Q −P are not changed,

but the input of xDBLADD, seen as three pairs of Fp2 elements is now randomized. Since the

values rQ ,rP ,rQ−P are secret, we cannot predict the loaded and stored values in the pipeline

registers, and thus cannot apply the same attack anymore.

Point randomization is in general still vulnerable to refined power analysis, as shown in [Fan+10;

KAJ17]. Such power analysis constitutes in finding a point P such that one of its coordinates is

0, so that randomization would not change this coordinate. Feeding P to the attacked device

would lead to some of the coordinates being known in the computation of the ladder. However,

the only points that have a zero in the X or Z coordinates are [0 : 1 : 0] (i.e, the point at infinity)

and [0 : 0 : 1], a point of order 2. Neither of these points can be a part of a public key or an

input of the three-point ladder, so they can be avoided by a simple sanity check.

4.4.2 Other countermeasures

In addition to the randomized projective coordinates described above, the authors of [Zha+20]

proposed a series of countermeasures (based on [Fan+10; JT01]) against DPA on SIKE that we

aim to evaluate in the case of a horizontal attack. We will argue that these countermeasures

are either too expensive, or do not offer additional protection against horizontal attacks. We

also comment on atomic elliptic curve algorithms.

1. Masking the base point Q

The starting point Q is masked with a random point R in order to obtain Q ←Q +R . The

final point P + [SK](Q +R) of the three-point ladder is then adjusted by subtracting [SK]R .

Masking the base point prevents both a vertical and a horizontal attacks but cannot

be done without leaving the Montgomery representation. As a result, such a counter-

measure requires at least a square root computation over the field Fp2 , which is very

expensive.

2. Random isomorphic elliptic curve

The point Q is mapped to a random elliptic curve E ′ where the scalar multiplication is

computed. The result is then mapped back to the original curve E in order to obtain

[SK]Q which is then added to P .

Such a countermeasure is unfortunately limiting, since the number of curves of iso-

morphic to E is low, and finding a non-trivial isomorphism is not trivial. In particular,

mapping Q to an isomorphic elliptic curve does not provide enough security against a

horizontal attack due to the possibility of testing all isomorphic curves.

56

4.5 Conclusion

3. Masking the scalar SK

The private key SK is masked with a random value r by setting SK ← SK+ r ·ord(Q).

If the masking is different at each execution and big enough, the vertical attack can

be conceivably prevented with this countermeasure. However, the horizontal attack is

simply extended by r ·ord(Q) bits and recovers a value congruent to the actual SK (mod

ord(Q)). Besides, the execution of the three-point ladder would be a factor of log(r)

slower.

4. Random key splitting

The private key SK is divided randomly as SK = SK1 + SK2. Then two three-point ladders

are computed in order to obtain (P + [SK1]Q)+ [SK2]Q.

While splitting SK differently across executions produces measurements of dissimilar

operations in a vertical attack, this countermeasure is not effective against a horizontal

attack, as both shares can be independently recovered.

5. Window-based countermeasure

Instead of making a binary choice for swapping at each step of the three-point ladder, a

3-bit window is used, and two additions and three doublings are computed per window.

While a window-based method increases the complexity of a vertical attack, such a

countermeasure is ineffective in the settings of a horizontal attack, as the number of

guesses per DPA iteration simply increases from 21 to 23. Besides, similarly as with the

base point masking, this countermeasure is not cost-efficient, as the new ladder will

require to leave the Montgomery representation, requiring at least one computation of a

square root over Fp2 .

6. Atomic three-point ladder

The authors of [CCJ03] propose atomic algorithms for preventing simple side-channel

analysis. An atomic algorithm consists of a sequence of instructions that are indistin-

guishable from a side-channel point of view.

At the first look, the three-point ladder might seem to be atomic, however the assumption

in [CCJ03] that modular operations are side-channel equivalent fails in the Cortex-M4

environment. While we are not able to distinguish a single pair of modular additions

with two different inputs, we are able to distinguish 10 tuples of modular additions with

two different 10-tuples of inputs, which breaks indistinguishability.

4.5 Conclusion

The chapter describes a DPA on SIKE in ephemeral settings that recovers Bob’s entire private

key using a single power trace of the three-point ladder in the key decapsulation procedure.

The attack was experimentally verified on an STM32F3 which features a Cortex-M4 micro-

controller in the context of the ChipWhisperer framework. A countermeasure based on point

randomization is finally suggested.

57

Chapter 4. Horizontal differential power analysis of SIKE

The impact of this attack on the security of SIKE is critical when the reference implementation

is adapted in an unprotected manner to a Cortex-M4 microcontroller. This is especially

important, because of the exceptionally leaky nature of such microcontrollers, thanks to the

findings of [CGD18]. Due to the simplicity of the DPA, countermeasures are required to be

deployed when the reference implementation of SIKE is used in an embedded environment.

We emphasize on the fact that the three-point ladder attacked in the key decapsulation is not

the only point of attack of the SIKE protocol and that each use of the three-point ladder (even

in the key generation, and key encapsulation) requires to be protected when exposed to power

analyses.

However, in the context of SIKE, these considerations are now irrelevant. The attack developed

by Castryck and Decru [CD22] has rendered all side-channel attacks against SIKE obsolete

as their work enables the recovery of private keys using only public information. Still, the

methods introduced in this chapter show an optimization of a well-known attack against

an elliptic curve scalar multiplication variant that is not widely recognized. Furthermore,

we presented and validated enhancements to the attack, such as the depth search which is

novel in itself, and re-explored previously known results, such as the efficiency of the Wavelet

transform in DPA.

58

5 Clustering power analysis of SIKE

The content of this chapter is based on the work:

[GK22] Aymeric Genêt and Novak Kalud̄erović. “Single-Trace Clustering Power Analysis

of the Point-Swapping Procedure in the Three Point Ladder of Cortex-M4 SIKE”.

in: Constructive Side-Channel Analysis and Secure Design - 13th International

Workshop, COSADE 2022, Leuven, Belgium, April 11-12, 2022, Proceedings. Ed.

by Josep Balasch and Colin O’Flynn. Vol. 13211. Lecture Notes in Computer

Science. Springer, 2022, pp. 164–192. DOI: 10.1007/978-3-030-99766-3_8. URL:

https://doi.org/10.1007/978-3-030-99766-3_8

Context. In the previous chapter, we have described a single-trace differential power analysis

of SIKE that targets arithmetic operations in the elliptic curve scalar multiplication. This attack,

while very powerful, is subject to certain limitations: the analysis relies on the knowledge of

the leakage model of the device, an important number of power segments corresponding to

the execution of the same instruction needs to be properly partitioned to obtain significant

results, and the attack is thwarted if the operations in the three-point ladder are protected

against power analysis using, e.g., coordinate randomization (as recommended in Section 4.4).

This chapter presents another single-trace attack on ephemeral SIKE that is effective even

when the scheme is hardened with coordinate randomization. This attack—known as clus-

tering power analysis—works by combining samples of power consumption that correspond

to the same operation, and that are then categorized into two (or, sometimes, more) classes.

A correct classification leads to the recovery of secret information, such as the private key. In

particular, the attack targets the point-swapping procedure in the three-point ladder of the key

exchange, as the function swaps multiple values only when two consecutive private bits are

different, resulting in power samples that are thus expected to follow two distinct distributions

(i.e., the values were swapped or not).

59

https://doi.org/10.1007/978-3-030-99766-3_8
https://doi.org/10.1007/978-3-030-99766-3_8

Chapter 5. Clustering power analysis of SIKE

The first instance of such an attack was published by Heyszl et al. in [Hey+13], in which the

authors used the k-means clustering algorithm on electromagnetic samples collected from

multiple probes to recover the private-key bits of an elliptic curve scalar multiplication. Perin et

al. extended this approach to a single-probe attack in [Per+14] by combining the classification

of multiple private-key bits in a fully-unsupervised process which was experimentally verified

on a protected implementation of RSA. The attack was then further improved by Specht et al.

in [Spe+15] by pre-processing the traces with a principal component analysis and by using

expectation-maximization as a clustering algorithm. Then, Perin and Chmielewski proposed a

semi-parametric framework that uses non-profiled learning both as a leakage assessment tool

and as a private-key bits recovery tool in [PC15]. A practical unsupervised attack against ECC

was mounted on the protected library ofµNaCl in [NC17]. Recently, several other libraries were

attacked with clustering power analysis on smartphones with low-cost equipment in [Ala+21].

Independent studies which also investigated clustering power analysis but on different parts

of the Montgomery ladder obtained similar results in [SH17] and [Shi+19]. Finally, in [Per+21],

Perin et al. established the current state of the art in clustering power analysis by using deep

learning methods on the traces and the output clusters to predict and correct wrong labelings.

As mentioned in the previous chapter, SIKE is no longer considered secure due to the recent

attack by Castryck and Decru [CD22]. Nonetheless, our work still represents a significant

improvement in clustering power analysis with respect to the approaches against ECC as

described above. For instance, when compared to the work by Nascimento and Chmielewski

from [NC17], our attack is shown to successfully extract the key without, in particular, requiring

leakage assessment. We also bring many novel improvements, such as clustering in the

frequency domain, using the wavelet transform as a denoising tool, and clustering with

a simpler method than the k-means clustering algorithm. Still, the other approaches are

expected to fully work on the same target.

Results. The chapter exhibits the following contributions:

• A practical single-trace side-channel power analysis attack on the recommended im-

plementation of SIKE for the ARM Cortex-M4 [Seo+20] is described in detail. The most

important feature of the attack is that a single execution of the key exchange is sufficient,

and that only samples from the power domain of the microcontroller are necessary. More

specifically, neither electromagnetic sampling, nor profiling, nor previous knowledge

of the target device is required. The key recovery is completely non-supervised (i.e., no

template is ever built) and can be performed without the need for public keys (which are

still required to verify whether the key was successfully extracted).

• Clustering the samples is shown to be also possible in the frequency domain, i.e., by first

processing the power traces with a Fourier transform. As a result, the attack becomes

tolerant to cases where traces are slightly misaligned due to, e.g., bad segmentation.

• Alternatively, the clustering power analysis can be improved by processing the traces

with a wavelet transform to compress the power traces by filtering out high frequencies.

60

5.1 Attack description

Such a transform is shown to be relevant in practice because the compression reduces

the number of timing locations to visit.

• A clustering method based on thresholding the distribution of sorted power samples

is shown to be sufficient to successfully recover the key. This result shows that the

clustering algorithm does not require to be sophisticated, and can be far less complex

than the methods proposed so far.

• Finally, a countermeasure based on splitting the masking value into multiple random

shares during the swapping procedure is shown to effectively protect against the attack

described in the chapter.

Outline. The clustering power analysis is presented in Section 5.1, which is followed by

further enhancements to improve the efficiency of the attack in Section 5.2. The experimental

verification of the attack and improvements are explained in Section 5.3. Then, in Section 5.4,

the suggested countermeasure is described and validated so that the chapter concludes with

Section 5.5.

5.1 Attack description

In this chapter, we explain how to the attack which recovers a party’s private key by classifying

the power samples (in Volts) of a single execution of the three-point ladder in SIKE when

such procedure is reinforced with randomized coordinates. The attack is tailored to the code

Cortex-M4 implementation of SIKE by [Seo+20].

5.1.1 Point-swapping procedure analysis

The attack targets the three-point ladder of n bits as described in Section 3.3.2. As a result, the

attack can be applied at every stage of the protocol. For the sake of simplicity, the chapter

assumes that the attack targets the three-point ladder invoked in the key decapsulation.

The attack assumes a passive adversary able to monitor the messages exchanged in the SIKE

protocol, and the power consumption of the attacked device.

In the first stage of the attack, the power consumption of the entire three-point ladder is

measured with a fixed and fast enough sampling rate. The power samples are then segmented

into multiple power traces synchronized at the beginning of each step of the three-point ladder.

Moreover, only the segments corresponding to the execution of the swap_points functions

are considered, each of them ultimately consisting of M samples (typically, a few thousands).

Because swap_points masks values with either 0x00000000 or 0xFFFFFFFF depending on

the difference between two consecutive secret bits, the attack attempts to distinguish for each

iteration whether the swap occurred or not by gathering the samples at a same location in

61

Chapter 5. Clustering power analysis of SIKE

Algorithm 5.1 Clustering power analysis against SIKE.

Input: {si }0≤i<n : Collection of all the power samples at a same t .
1: Run the k-means clustering on {si }0≤i<n (with k = 2).
2: Let sk−1 = 0.

3: Let li =
{

0 if si ∈ first cluster,
1 if si ∈ second cluster,

(i ≤ 0 < n).

4: Let ski = li ⊕ ski−1 (i ≤ 0 < n).
5: return sk = (sk0, sk1, sk2, . . . , skn−2, skn−1).

all iterations and clustering them with k-means. Since a difference of bits can only be zero

(identical) or one (different), only two clusters are considered (i.e., k = 2). The private key can

be entirely reconstructed from the labels at the end of the clustering.

5.1.2 Clustering attack

We adapt the clustering power analysis as described in Section 2.1.3.2 to the analysis of the

swap_points function. Given the n segmented power traces Ti of M power samples each,

the procedure consists of three steps:

1. Select a sample location 0 ≤ t < M in the power traces.

2. Cluster with k-means the n power samples at location t throughout the traces Ti (for

0 ≤ i < n), and reconstruct the key from the labels.

3. Verify the key obtained.

The second step of the attack is detailed in Algorithm 5.1. The samples si must all correspond

to the samples at a same point throughout the n segmented power traces. Since the k-

means algorithm considers samples from a single timing location in the power traces, the

procedure can be repeated with all different positions until a returned key (or its bitwise

inverse) successfully decrypts a ciphertext. As a result, the overall attack has a complexity of

precisely M executions of k-means and key tryouts.

Unlike the approach in the previous chapter, the rigidity required by the clustering makes

the attack a hit or miss: either all bits are sequentially retrieved, or none of the bits can be

confirmed for sure.

5.2 Attack enhancements

In a full attack as described in Section 5.1, the adversary needs to pass through all sample loca-

tions in the traces and use k-means to recover a deterministic key candidate that eventually

needs to be verified. Adopting a better strategy for any of these steps can lead to both faster

and more successful results.

62

5.2 Attack enhancements

This section lists enhancements to speed up the eventual recovery of the key. These can

sometimes be combined to improve even further the overall attack.

5.2.1 Enhancing sample selection

The original attack exploits the raw power consumption which requires visiting all sample

locations. Applying a transform to the power consumption before the clustering step can

reduce the number of samples and therefore speed up the attack. Moreover, relating the power

consumption to a different domain can exhibit leakage points which may lead to improved

results.

5.2.1.1 Fourier transform

Since the power trace captures the operations that periodically swap words in a regular for-

loop, some of the frequency coefficients are also expected to follow two distinct distributions.

As a result, processing the power consumption with a Fourier transform (as described in

Section 2.1.2.1) prior to running the clustering algorithm is expected to give a similar success

rate.

Clustering in the Fourier domain exhibits many advantages over clustering in the time domain:

• Due to the Hermitian symmetry (ŝ f = ŝ∗− f), the upper half of the coefficients is identical

to the lower half. Accordingly, the number of locations visited by the clustering algorithm

can be halved. Moreover, this number can be reduced by only considering a range of

reasonable frequencies (such as all the frequencies below the clock speed of the targeted

device).

• As the Fourier analysis treats the frequency components of the signal, the processed

signal is tolerant to timing misalignments. Such misalignments are particularly common

when monitoring the power consumption for a long time, or when segmenting a long

power trace.

• The frequencies of interest (i.e., frequencies at which the information leakage is signif-

icant) are expected to be unique to a single device and can therefore be re-used in a

subsequent analysis of the same device (resulting in an educated but still unsupervised

attack).

5.2.1.2 Wavelet transform

As power traces may contain frequencies that do not contribute to the leakage of information,

applying a wavelet transform (as described in Section 2.1.2.2) to the power samples may

filter out insignificant frequencies while preserving the important ones. Such a processing is

expected to result in a signal that is more susceptible to clustering power analysis.

63

Chapter 5. Clustering power analysis of SIKE

In our attack, two advantages of the wavelet transform are mainly capitalized upon:

• The wavelet transform downsamples the signal at each level while keeping the lower

frequency bands. This process halves the length of a power trace each time and therefore

results in fewer timing locations to check in the attack.

• By filtering out higher frequencies, the wavelet transform acts as a post-processing de-

noiser. Cleaner signals are therefore expected to be output, which anticipates better

results.

5.2.1.3 Other transforms

In addition to the Fourier and the wavelet transforms, other transforms that compress the

power traces can reduce their number of samples. For instance, principal component anal-

ysis [Boh+03] is a technique that reduces the dimensionality of the power traces. Such a

transform was also reported to obtain better results in [Spe+15] by selecting the significant

principal components.

5.2.2 Enhancing power samples clustering

Since the overall attack needs to run a clustering algorithm several times, an algorithm that

clusters the power samples more efficiently leads to faster results.

5.2.2.1 Thresholding

While the k-means algorithm (as described in Section 2.1.3.2) already involves low-complexity

computations, the clustering algorithm does not need to be generic and can therefore be

tailored to a one-dimensional two-population problem. In particular, the analysis expects two

distributions of similar density but shifted mean, which can therefore be separated with an

appropriate middle point.

Many solutions exist to find a suitable middle point, such as computing the overall mean of all

the samples, or finding the biggest gap between two neighboring power samples. Algorithm 5.2

proposes a clustering which calculates the literal middle point of the distribution by finding

the maximum and minimum. Such a solution runs in O(n), but can be tweaked to present

other advantages that are described in the next subsection.

Algorithm 5.2 Thresholding clustering algorithm.

Input: {si ∈R}0≤i<n : Set of n samples at a same time t .
1: Compute d = (min({si }0≤i<n)+max({si }0≤i<n))/2.

2: Let li =
{

0 if si < d ,
1 otherwise,

(0 ≤ i < n).

3: return (li)0≤i<n .

64

5.2 Attack enhancements

5.2.2.2 Other clustering methods

In a noisy environment, rigid clustering methods such as k-means, thresholding, and even

expectation-maximization (as used in [Spe+15]) are inadequate due to the two clusters over-

lapping with each other. Relaxed clustering techniques, such as fuzzy c-means [Dun73], have

been reported to successfully overcome these limitations in [NC17; Per+14].

5.2.3 Enhancing key verification

The attack achieves a better performance by reducing the number of key candidates to verify,

or by correcting plausible clustering mistakes that could arise due to, for example, samples

being too close to the middle point between the two distributions.

5.2.3.1 Majority rule

As noted by [Per+14], a same labeling re-occurring throughout many different locations is

likely to be correct. Two majority rules are therefore proposed:

1. A vertical majority in which a candidate key occurring multiple times across the timing

locations is verified in priority.

2. A horizontal majority in which individual key bits are labeled given their majority

throughout the clusterings at all timing locations.

In a horizontal majority rule, a threshold can be selected to filter all the bits for which the

clusterings give the same results, while the remaining bits can simply be guessed.

5.2.3.2 Educated thresholding

In the clustering power analysis against the three-point ladder of SIKE, two observations can

be made:

1. A clustering is successful only when the two sub-distributions are distinct.

2. The number of swaps must always be even.

The first observation stems from the fact that two samples of identical value should always be

assigned to the same cluster. Hence, a successful clustering can only be found by splitting the

overall distribution between two sample values.

The second observation is due to the fact that the three-point ladder requires the points to

always be “unswapped” at the end of the procedure. This means that the sizes of the two

clusters are always even which can therefore be used to validate the key found.

65

Chapter 5. Clustering power analysis of SIKE

As a result, one can design a thresholding algorithm similar to Algorithm 5.2 that first sorts the

power samples and then separates the distribution in two, each call at a different threshold

starting from a middle point. The threshold can move depending on the distance between

the current threshold and the two cluster centers (similarly as in k-means). By iteratively

calling such an algorithm, the labels that are more likely to be erroneous can be marked

and subsequently flipped in a way that makes sure that the Hamming weight of the labeling

bitstring is even. The computational complexity of this new method is O(n logn) (owing to

the sorting of the sample data).

5.2.3.3 Other post-processing

In case the sample location is known to correspond to a leakage point but the environment

is too noisy to perfectly separate the clusters in two (see [NC17; Per+14] for context), meth-

ods based on deep learning can still successfully extract the key, as reported by Perin et al.

in [Per+21].

5.3 Experimental verification

This section reports a proof of concept for the clustering power analysis described in Sec-

tion 5.1, in addition to an evaluation of the efficiency of the enhancements proposed in

Section 5.2.

5.3.1 Setup

Hardware. Our experimental verification was performed on an STM32F3 as DUT as part of

the ChipWhisperer framework described in Section 2.1.1. We program the oscilloscope with

the following settings:

• A bandwidth of 20 MHz.

• A sampling rate of 250 samples per µs.

• A resolution of 10 bits per samples.

• A memory of 25,000 samples per acquisition.

Moreover, we measure the power consumption through a 20dB Low-Noise Amplifier (LNA).

Note also that the sampling rate was intentionally made high to showcase the efficiency of the

preprocessing transforms.

Software. The software considered is the SIKE implementation for Cortex-M4 of [Seo+20]

which needs to be used in a certain way that enables power trace collection. In particular, the

program that runs on the DUT waits for the laptop to send the three byte-encoded elliptic

66

5.3 Experimental verification

curve points (i.e., the ciphertext) through a serial communication with the ChipWhisperer-Lite.

Such a transfer prepares the DUT to run the three-point ladder with a pre-programmed private

key which can be triggered anytime.

Coordinate randomization. As the three-point ladder from [Seo+20] does not originally

offer protections against power analysis, coordinate randomization was only simulated. In

this simulation, three multiplicative field elements are pseudorandomly generated from a

pre-programmed seed at the beginning of each iteration. Since only a cheap pseudorandom

number generator was required, ChaCha8 [Ber08b] was chosen for this purpose. The X and Z

coordinates of the three points are replaced by the product (in Fp2) of their respective value

and the pseudorandomly generated elements (one for each point).

Note that while this simulation sufficiently protects the three-point ladder from correlation

attacks based on the values of the elliptic points (see, e.g., [Zha+20; GGK21]), the resulting

code is not claimed to be secure in a real-life scenario. This implementation is evidently not

what was considered by the attack, and the overhead was therefore not measured.

Further modifications. Since the acquisition of power traces is not the main focus of the

chapter, the software was further modified to make the experiment easier. Particularly, the

software allows an iteration-by-iteration execution of the three-point ladder which toggles a

GPIO pin at the beginning of the swap_points function. When switched on, the GPIO notifies

the oscilloscope to start the collection of power measurements.

Though these modifications create an unrealistic attack scenario, the experiment is still

practical on unmodified software but requires additional effort of marginal complexity. In a

real-world scenario, the adversary first requires to observe the power consumption of the target

device by measuring the current through a shunt resistor in series between the microcontroller

and the ground (or the voltage collector). The collection of power samples can then be

synchronized on communication which requires an oscilloscope with a buffer of a few hundred

million samples to capture the consumption of the entire three-point ladder. Finally, the parts

which correspond to swap_points need to be identified in the collected trace, and then

carefully segmented. A reader interested in this process is advised to read [Dug+16].

Source code. The final software on which power traces were acquired can be found here:

https://github.com/AymericGenet/SIKE-clusterswap-2021.

67

https://github.com/AymericGenet/SIKE-clusterswap-2021

Chapter 5. Clustering power analysis of SIKE

5.3.2 Experiment

5.3.2.1 Traces collection

To collect experimental power traces corresponding to swap_points executions, a simulation

of an ephemeral SIKE key exchange was conducted:

(1) Program the DUT with a random key and seed.

(2) Generate and send three valid points Q, P , and Q −P .

(3) Repeat the following n times:

(a) Make the DUT execute the next loop iteration.

(b) Save the power trace from the oscilloscope.

The above was repeated 1,000 times (each time with a different key and seed) for SIKEp434

(hence n = 218). An example of a power trace along with its frequency components for

SIKEp434 is shown in Figure 5.1. Note that most of the frequency components are zero due to

the limiting analog bandwidth of the oscilloscope (20 MHz).

Figure 5.1: Example of one of the n power traces corresponding to swap_points in a single
iteration of the loop (left) along with its Fourier representation (right).

5.3.2.2 Clustering power analysis procedure

In the next step of the experiment, the n collected traces of each experiment are exploited to

attempt a key recovery as explained in Section 5.1 (cf. Algorithm 5.1).

(1) Process (for 0 ≤ i < n):

(a) Ti with an ℓ-level wavelet transform (T̂i of length M̂ = M/2ℓ),

(b) T̂i with a Fourier transform (F̂i).

(2) Run the attack on both T̂i and F̂i :

(a) Go to the next sample location 0 ≤ t < M̂ (resp. 0 ≤ f < M̂/2).

(b) Run clustering on {T̂i [t]}0≤i<n (resp. on {F̂i [f]}0≤i<n).

(c) Record the sk t returned for time t (resp. sk f).

The above was repeated with 0 ≤ ℓ< 8 levels of wavelet with a Symlet wavelet of filter length

8 (i.e., sym4) to further show the efficiency of the processing transforms. The success rate is

calculated through all the timing positions and frequencies over the 1,000 sets of measured

traces by comparing the recovered key with the correct key.

68

5.3 Experimental verification

5.3.2.3 Results

Out of the 1,000 experiments, across all the levels 0 ≤ ℓ< 8, the correct key is always found in

the set of recovered keys sk t or sk f . Table 5.1 and Table 5.2 report various metrics about how

often the correct key appears in the two sets of recovered keys. The independent success rates

of each timing position and frequency are reported in Figure 5.3. Finally, examples of samples

distributions successfully clustered is shown in Figure 5.2 both in timing and frequency.

Table 5.1: Statistics on the total number of timing locations which yield the correct key across
the N = 1,000 experiments.

k-means Thresholding
ℓ min. max. E(#t) SD(#t) min. max. E(#t) SD(#t) M̂

0 154 341 251.704 30.056 115 289 196.668 29.366 25000
1 72 172 125.611 15.153 58 144 97.923 14.764 12503
2 37 85 62.329 7.646 28 71 48.469 7.582 6255
3 15 44 29.425 4.171 11 36 22.958 3.971 3131
4 8 27 15.494 2.723 5 21 12.127 2.502 1569
5 6 21 13.445 2.371 4 18 10.531 2.195 788
6 2 12 6.036 1.615 1 9 4.033 1.408 397
7 0 5 1.645 0.941 0 5 0.853 0.878 202

Table 5.2: Statistics on the total number of frequencies which yield the correct key across the
N = 1,000 experiments.

k-means Thresholding
ℓ min. max. E(# f) SD(# f) min. max. E(# f) SD(# f) M̂/2

0 18 29 23.625 1.774 17 28 21.965 1.659 12500
1 16 26 20.704 1.630 15 24 19.382 1.584 6251
2 18 27 21.900 1.460 16 27 20.901 1.515 3127
3 15 30 22.641 2.288 13 26 19.993 2.239 1565
4 11 20 15.001 1.429 9 18 13.815 1.488 784
5 6 11 8.611 0.908 5 10 8.063 0.895 394
6 3 7 4.467 0.791 2 7 4.162 0.749 198
7 2 6 4.023 0.800 2 7 3.777 0.747 101

5.3.2.4 Discussion

The above experiment proves that the recommended Cortex-M4 implementation of SIKE

from [Seo+20] is vulnerable to low-effort power analyses, even in the case when the imple-

mentation is protected with coordinate randomization. As a result, the main objective of the

experiment is achieved.

The rest of the discussion focuses on the efficiency of the improvements.

69

Chapter 5. Clustering power analysis of SIKE

Wavelet efficiency. Contrary to expectations, processing the power traces with the wavelet

transform does not improve the success rate (cf. Figure 5.3). While the wavelet transform fea-

tures noise filtering, information is still lost during the operation as the convolution involved

in the transform combines significant power samples with insignificant ones. Nevertheless,

the quality of the compression is fitting as the correct key still occurs on average more than

once throughout the timing locations, even after several levels of filtering. Therefore, the

number of samples to visit can be reduced by a significant factor (up to 26 according to our

experiments) using this transform.

(a) t = 1943 (b) f = 0.92 [MHz]

Figure 5.2: Example of a power sample distributions (ℓ= 0). The threshold (in red) was found
by Algorithm 5.2.

As the power trace corresponds to the execution of the swap_points function, the sample

locations reported in Figure 5.3 correspond to specific instructions of the attacked implemen-

tation (shown in Listing A.7). In particular, the very first spike in the figure correspond to the

mask computation which expands a secret bit. The regular spikes in the middle correspond to

the swap formula performed on each of the 32-bit words of the points. Finally, the last two

spikes at the end of the graph correspond to exiting the function. These spikes show all the

aspects of the implementation that need protection.

Note that the choice of the wavelet function (sym4) was guided by an experimental exploration

and that similar results are expected by using a different family or a different filter length.

Fourier efficiency. The Fourier analysis shows remarkable efficiency across all levels of

wavelet transforms. Performing a clustering power analysis with frequency components rather

than power samples is shown to have a resounding success rate across all experiments. Fur-

thermore, such a success rate is kept throughout the wavelet levels, as the leakage happens at

low frequencies which are preserved by the wavelet transform. The most notable observation

to make is that clustering in the frequency domain is successful even at the last wavelet level

where the same analysis in timing is shown to be inefficient. This proves that even though

clustering power samples independently happens to be ineffective, their combination in the

frequency domain may be sufficient to perform a successful analysis.

There may be many reasons why low frequencies leak most of the information in the current

case. The frequencies of interest are suspected to be subharmonics of the clock speed. For

instance, the spikes at 0.92 MHz likely correspond to the pattern of eight instructions in the

70

5.3 Experimental verification

(a) ℓ= 0 (b) ℓ= 0

(c) ℓ= 1 (d) ℓ= 1

(e) ℓ= 2 (f) ℓ= 2

(g) ℓ= 3 (h) ℓ= 3

Figure 5.3: Success rate of the clustering power analysis (thresholding in opaque vs. k-means
in transparent) at each timing locations (left) and frequencies (right) across different levels of
wavelet transforms.

swap_points function (see Listing A.7). The same can be said for the spikes at 0.73 MHz and

0.74 MHz, as such frequencies also happen to be a tenth of the clock speed. These frequencies,

as well as the other significant ones, may also be due to the consumption of sub-systems in

the hardware (e.g., memory) that function at different paces.

Thresholding efficiency. In addition to demonstrating the efficiency of the pre-processing

phase, the experiments show that the thresholding proposed in Algorithm 5.2 is almost as suc-

cessful as k-means. While k-means still obtains better results (cf. Figure 5.3), our experiment

with k-means took 29 hours to be performed, while the same analysis with thresholding took

only 6.5 hours.

71

Chapter 5. Clustering power analysis of SIKE

(i) ℓ= 4 (j) ℓ= 4

(k) ℓ= 5 (l) ℓ= 5

(m) ℓ= 6 (n) ℓ= 6

(o) ℓ= 7 (p) ℓ= 7

Figure 5.3 (cont.): Success rate of the clustering power analysis (thresholding in opaque vs.
k-means in transparent) at each timing locations (left) and frequencies (right) across different
levels of wavelet transforms.

Majority rule efficiency. The extremely high occurrence of the correct key in Table 5.1 and

Table 5.2 confirms that the vertical majority rule explained in Section 5.2 helps validating the

key. In all experiments, the most recorded candidate was always observed to be the correct

key. As a result, the correct key is expected to be recovered within the first try-outs as the other

candidates were all observed to be either random or close to the correct key.

Other SIKE instances. Note that the success of the clustering is closely connected to the

relatively big number of samples available. As more samples are obtained, the distinction

between the two clusters becomes easier. However, depending on the noise, additional

samples may undermine the success of the overall clustering.

72

5.4 Countermeasures

Still, similar results (if not better) have been obtained by running the same experiment with

the bigger instances of SIKE. The experiments were executed with fewer runs, a fixed wavelet

level, and only using the thresholding algorithm. The results are reported in Table 5.3 and

prove that the attack is not limited to SIKEp434.

Table 5.3: Statistics on the total number of timing locations and total number of frequencies
which yield the correct key across the N = 10 experiments with the other instances of SIKE
(ℓ= 5).

Timing Frequency
p n min. max. E(#t) SD(#t) min. max. E(# f) SD(# f)

503 252 8 14 10.5 2.5 9 11 9.7 0.7
610 304 16 31 22.1 5.3 10 14 11.7 1.3
751 378 17 25 22.2 2.7 9 13 10.6 1.5

5.4 Countermeasures

Protecting the point-swapping procedure against clustering power analysis is not obvious, as

the attack defeats classical countermeasures of [Cor99] which include coordinate randomiza-

tion, exponent randomization, point blinding, and even shuffling the for-loop. Moreover, due

to the recent study which relies on deep learning [Per+21], even the tiniest bias in the power

consumption may lead to a full recovery.

To make the task of protecting against the attack even more challenging, the target CPU of the

Cortex-M4 is known to be hard to protect (see [Bat+23]). As the Cortex-M4 appears to leak in

the Hamming distance of the two consecutive values in the pipeline registers (see [CGD18]),

the countermeasures need not only to consider the Hamming weight of the processed values,

but also the Hamming distance between the values used by two consecutive instructions.

In this section, a countermeasure based on thresholding the swapping mask is suggested.

5.4.1 Description

The proposed countermeasure revises the original swapping procedure from Section 3.3.2 in

the following sense; instead of computing the value mask & (u ⊕ v) all at once, the idea is to

split this quantity into two shares and add each share separately in a two-stage process (to

both u and v). Such a procedure avoids computing values of extreme Hamming distances.

To this end, the swapping mask is replaced by two 32-bit masks: m1 and m2 such that their

bitwise “xor” is equal to mask. In other words, given two consecutive private-key bits SKi−1,

73

Chapter 5. Clustering power analysis of SIKE

and SKi (for 0 ≤ i < n with SK−1 = SKn = 0):

m1⊕m2=
{

0x00000000 if SKi−1 ⊕ SKi = 0,

0xFFFFFFFF if SKi−1 ⊕ SKi = 1.

Given the two masks m1 and m2, the new procedure works as follows:

tmp1 = m1 & (u ⊕ v),

tmp2 = m2 & (u ⊕ v),

u = (tmp1⊕u)⊕tmp2,

v = (tmp1⊕ v)⊕tmp2.

Because of the property of m1⊕m2, the above procedure swaps u and v in the same sense as

the swapping procedure described in Section 3.3.2.

5.4.2 Implementation

The results from Section 5.3 provide insight on the critical points of the procedure that require

particular care. Mainly three leaking points were identified:

1. The generation of the masks.

2. The instructions used to perform the swapping operation.

3. Exiting the function.

The third point can be avoided by incorporating the procedure into the code without calling a

function, so only the first two points are addressed.

5.4.2.1 Masks generation

Let swap refer to the secret difference of private-key bits (i.e., swap = SKi−1 ⊕ SKi). The sug-

gested countermeasure involves generating two random masks m1 and m2 that are either equal

or bit-wise complement depending on swap. To achieve this, given a random m1, the second

mask m2 is derived with the following formula: m2= (1−2 ·swap)(m1+swap). This makes m2
become the bitwise complement of m1 through the representation of negative numbers in the

CPU with the two’s complement (i.e., m2=−(m1+1) if swap= 1).

Performance. Safely generating these two quantities for each bit processed requires sam-

pling additional randomness. In particular, the multiplication of (m1+swap) by (1−2 ·swap)

is computed as u1(m1+swap)−u2(m1+swap) where u1 −u2 = 1−2 ·swap. In total the mask

generation requires at least 8 bytes of entropy (29 bits of which are effective) and introduces

an overhead of at least 12 additional instructions when compared to the original mask compu-

tation. The code is given in Listing A.8.

74

5.4 Countermeasures

5.4.2.2 The swapping operation

Because of the Cortex-M4 leakage model, the order of the operations and of the operands

play a critical role in the countermeasure. Particular care has to be taken with store and load

instructions, as the power consumption of these procedures leaks sensitive values. As a result,

given the two masks m1 and m2 generated as before, the implementation of the countermeasure

must follow a special order given in Listing A.9.

Performance. As opposed to the original pattern of 8 instructions, such a solution requires

14 instructions per iteration and doubles the numbers of loads and stores which introduces

further delay.

5.4.2.3 Benchmarks

We compare the runtimes of our countermeasure against the runtimes of the unprotected

version of SIKE. About 62% of the overhead stems from acquiring randomness for mask

generation. As we generate a new mask for each swap (so for each word), we use a cheap pseu-

dorandom number generator to limit the impact on performance; namely, the Tiny Mersenne

Twister pseudorandom number generator [SM11] seeded with a 64-bit value obtained from a

source of true randomness.

The protected swap_points is about 5.7 times slower than the unprotected swap. Within the

three-point ladder function, the overhead adds up to about 70,000 additional cycles which

takes up to 5% of the total computing time of the three-point ladder. When considered as

a part of a full execution of SIKE, the overhead due to protecting the swap boils down from

about 1% in the key generation and decapsulation to 0.7% in the encapsulation procedure,

which is negligible.

Table 5.4: Runtimes (in cycles) of the SIKEp434 implementation with and without the counter-
measure on an Intel i9-8950HK CPU @ 2.90GHz with Turbo boost turned off.

Operation unprotected protected

Mask generation 1 251
Swapping operation 71 148

Three-point ladder 1,172,432 1,241,721

Key generation 6,083,645 6,153,241
Encapsulation 9,893,673 9,962,113
Decapsulation 10,625,881 10,747,176

75

Chapter 5. Clustering power analysis of SIKE

5.4.3 Experimental validation

The proposed countermeasure was validated by conducting Welch’s t-test [SM16]. Such a test

gives a degree of confidence that two classes of power samples are statistically indistinguish-

able. In the present case, the two classes respectively correspond to whether the points were

swapped during the collection of the power traces, or not.

The t values are computed with the following formula:

t = µ0 −µ1√
σ2

0/n0 +σ2
1/n1

where µ0, µ1 correspond to the means of the two classes, σ2
0, σ2

1 to their variances, and n0, n1

to their cardinalities (here, n0,n1 ≈ 1000). A threshold of 4.5 for the t values is set to reject

the null hypothesis (see [Din+17]). In other words, a t value greater than the threshold gives

evidence that the two distributions are not indistinguishable.

Figure 5.4: t-test of the countermeasure both in timing and frequency. The horizontal lines in
red show the threshold above which the null hypothesis is rejected.

(a) t = 101 (b) f = 0.98 [MHz]

Figure 5.5: Power sample distributions at the locations which produced the highest value in
both t-tests.

The results are shown in Figure 5.4. Even though significantly large t values appear in the plots,

the attack is still unsuccessful when re-run against the countermeasure as the histograms

corresponding to the power samples from the two classes overlap with each other at all points

in time and frequency. Figure 5.5 illustrates this by showing the histograms at the highest peaks

76

5.5 Conclusion

of the t-test plots from Figure 5.4. As one can notice, both histograms exhibit a significant

variance, which prevents the attack to fully1 recover the private key. The histograms at all

other points showed a similar overlapping.

While such a discrepancy of distributions prevents a successful clustering with the techniques

described in this chapter, more sophisticated attacks (such as [Per+14; Per+21]) may still

prevail. These attacks may therefore require additional efforts to withstand.

5.4.4 Other countermeasures

In addition to the countermeasure proposed, other techniques are likely to prevent a clustering

power analysis of the swapping procedure. Desynchronizing the clock of the target device

results in unaligned power traces with different random frequencies, so the attack is expected

to be unsuccessful in neither domains. Such a countermeasure might be implemented by

interleaving dummy nop instructions with the actual instructions of the regular swap_points
function. Alternatively, swapping pointer addresses rather than values may be effective in the

power domain but is shown to succumb to the same attack using electromagnetic radiations

in [NC17].

5.5 Conclusion

The chapter described a plain clustering power analysis able to recover the entire private key

in a single execution of the three-point ladder in the implementation of SIKE for Cortex-M4.

While the attack by Castryck and Decru in [CD22] made our analysis no more pertinent for

attacking SIKE, the chapter still demonstrated that, in clustering power analysis, processing

the traces with a wavelet transform efficiently reduces the number of timing locations to visit,

and that clustering frequency components may succeed even where clustering power samples

is inefficient.

While the attack has been experimentally shown to be always successful, the reader must

keep in mind that the experiment was performed using the ChipWhisperer framework on a

chip that was deliberately made vulnerable to power analysis. However, the countermeasure

described completely thwarts the attack even on such a vulnerable chip. If the countermeasure

is safe under such defenseless circumstances, then the implementation can be assumed to be

safe in a more realistic scenario.

As future work, the experiment could be repeated with a different clock speed to evaluate the

evolution of the frequency components. Other improvements using, e.g., multiple samples

of a single iteration in a multivariate clustering analysis may also be investigated. Also, the

proposed countermeasure requires to be evaluated against other side-channel attacks and

improved both in performance and security.

1The extent to which private-key bits can still be recovered is left as future work.

77

6 Zero-value power analysis of SIKE

The content of this chapter is based on the work:

[Feo+22] Luca De Feo, Nadia El Mrabet, Aymeric Genêt, Novak Kalud̄erović, Natacha

Linard de Guertechin, Simon Pontié, and Élise Tasso. “SIKE Channels”. In: IACR

Transactions on Cryptographic Hardware and Embedded Systems 2022.3 (2022).

https://tches.iacr.org/index.php/TCHES/article/view/9701, pp. 264–289. ISSN:

2569-2925. DOI: 10.46586/tches.v2022.i3.264-289

Context. In the previous chapters, we presented two different ways of attacking the three-

point ladder in SIKE through side-channel power analysis. While these attacks show that the

elliptic curve scalar multiplication is a crucial operation to protect against power analysis,

other components, such as the secret isogeny computation, may also be vulnerable to power

analysis. Yet, to this day, no study of the power leakages of the secret isogeny computation has

been conducted. As a result, the extent to which SIKE is vulnerable to power analysis without

targeting the three-point ladder is unclear.

This chapter addresses this inquiry and shows a power analysis of the secret isogeny com-

putation in SIKE, which therefore applies even when the three-point ladder is completely

secure against power analysis. The attack is an instance of a ZVP attack, similar to the one

from Akishita and Takagi in [AT03], that aims to distinguish the computation of zero values

(from nonzero values) through power consumption due to their low energy cost. The idea

relies on Goubin’s refined power analysis from [Gou03] and consists of using special inputs

that cause the device to perform operations with zero operands depending on the value of a

bit of a static private key. Confirming or refuting the presence of a certain value being zero

with power analysis therefore leads to the recovery of the private-key bit involved. Taking into

account the recovered bit, this analysis can usually be repeated for all remaining bits of the

private key.

79

https://tches.iacr.org/index.php/TCHES/article/view/9701
https://doi.org/10.46586/tches.v2022.i3.264-289

Chapter 6. Zero-value power analysis of SIKE

As opposed to the ZVP attacks against SIKE presented by Koziel, Azarderakhsh, and Jao

in [KAJ17] which still targets the three-point ladder, our attack is a special case of ZVP that

targets the secret isogeny computation. In fact, our analysis shows that special torsion points

cause an exception in the computation of the secret isogeny, resembling thus the exceptional

procedure attack by Takagi and Izu in [IT03], forcing all subsequent computations to be zero.

In particular, the computation of the j -invariant results in a zero value. Our attack therefore

captures the power consumption of the j -invariant derivation when these special torsion

points are provided, and attempts to detect if the power traces exhibit zero-valued compu-

tations within or not. As j -invariants can also be forced to be zero or nonzero regardless

of the private key, we decided to distinguish the nature of j -invariants by comparing their

power traces to baselines (i.e., templates when j = 0, and when j ̸= 0) that can therefore

be collected before starting the attack, in a similar fashion as the online template attack by

Batina et al. from [Bat+19]. Moreover, we decided to compare the target power traces with

the baselines using collision power analysis, as initially envisioned by Walter in [Wal01] and

further improved by others in [FV03] and [Dan+16].

The same attack was simultaneously discovered by Wang et al. in [Wan+22] when the authors

uncovered Hertzbleed; a physical weakness of the x86 processors in which the dynamic

frequency scaling depends on the data being processed. In particular, when the data is zero,

the processing of the x86 becomes faster than when the data is nonzero. This vulnerability

enables a timing side channel which was showcased on SIKE using the attack of this chapter,

as special torsion points cause an avalanche of zero-valued computations, leading thus to a

practical static private key recovery with a timing attack. A month later, in [Adj+22], Adj et al.

described a fault attack that forces zero values in the isogeny computation which, if effective,

recovers a private-key bit.

Once again, as the attack by Castryck and Decru [CD22] defeats the security of SIKE, our

analysis is outdated. Regardless, our work represents a pioneering contribution to the side-

channel evaluation of secret isogeny derivations. As a result, Campos et al. conducted another

power analysis of the isogeny computation in [Cam+22], which involves a similar key-recovery

attack by detecting zero values (as well as values equal to six) in the curve coefficient. As their

analysis applies also to all state-of-the-art CSIDH-based implementations, their work is still

currently relevant. Also, we showed a novel way of recognizing zero-valued operations through

collision power analysis using baselines.

Results. We introduce and confirm in the lab a ZVP attack against the official (uncom-

pressed) SIKE implementation for Cortex-M4 [Seo+20] in semi-static settings and hardened

with coordinate randomization. The attack consists of recovering the private key in an extend-

and-prune fashion with special inputs that force intermediate values to be zero depending on

a single secret bit. Although the possibility of this threat had been postulated previously, to

the best of our knowledge, this is the first complete description of such attacks.

80

6.1 Attack description

The attack targets the isogeny evaluation part of SIKE, which appears to have much greater

side-channel leakage than the three-point ladder, permitting key recovery with as few as one

trace per bit. In particular, we analyze the behavior of 3- and 4-isogeny evaluation formulas

on invalid points, which appears to be novel in itself. We then show that our attack is easily,

though not so cheaply, countered by partially validating ciphertexts.

Outline. Section 6.1 introduces our attack in an abstract way, while Section 6.2 reports

on their experimental realization. Finally, Section 6.3 discusses the countermeasure, so the

chapter can close with Section 6.4.

6.1 Attack description

We provide an attack based on forcing the computing party to evaluate some rational function

on an elliptic curve point which has 0 as one of the coordinates, also called “zero-value point”.

These points are O = [1 : 0], T = [0 : 1] and the undefined point [0 : 0]. The attacking party

creates a malicious public key in the key encapsulation procedure, made of three points

(Q,P,Q −P) which are used by the target during Decaps. The attack forces the computation

of such points during the isogeny computation. Our final goal is to see where and how such

points can occur, and to force a computing party to compute such points based on a secret

bit of their private key. The attack is done adaptively in an extend-and-prune manner, that is,

we perform the attack in multiple steps; at each step we recover one bit of the private key by

assuming that we know the previous parts.

Preliminaries

We write Eα(Fp2) a supersingular Montgomery curve that is uniquely defined by a coefficient

α ∈ Fp2 (as β= 1). In Section 3.3.4, we further defined [A : C] (where C ̸= 0) as the projective

representation of α such that α= A/C . Recall that we further defined the following notation:

• [A+
24 : A−

24] = [A+2C : A−2C] (for A+
24 ̸= A−

24) which representsα= 2(A+
24+A−

24)/(A+
24−A−

24).

• [A+
24 : C24] = [A+2C : 4C] (for C24 ̸= 0) which represents α= (4A+

24 −2C24)/C24.

Considering invalid internal states caused by malicious ciphertexts, an elliptic curve repre-

sented in SIKE may thus fall into one of the following categories:

The undefined curve, represented by [A+
24 : C24] = [A+

24 : A−
24] = [0 : 0]. This does not represent

any algebraic object.

The degenerate curve, represented by C24 = 0 and A+
24 = A−

24 ̸= 0. This is not, properly speak-

ing, a curve.

The singular curves with α = ±2, corresponding to A+
24 = C24 ̸= 0 and A−

24 = 0, or to A−
24 =

C24 ̸= 0 and A+
24 = 0. These are not elliptic curves, because they exhibit a singularity in

(∓1,0) and behave often as exceptional points in formulas.

81

Chapter 6. Zero-value power analysis of SIKE

Elliptic curves, for any valueα ̸= ±2. These further subdivide into ordinary and supersingular

curves. Of the p2 −2 possible values for α, only ≈ p/2 yield a supersingular curve.

The points of the curve Eα are the projective solutions of the equation of a Montgomery curve

(see Definition 3.1.11). SIKE drops the information on the y-coordinate, and represents the

points as pairs [X : Z], with X and Z not both zero. We shall make a slight abuse of language by

calling [X : Z] a point, given that it may correspond to up to two solutions of the Montgomery

curve equation. Considering invalid internal states, an elliptic point in SIKE may be one of

The undefined point [0 : 0]. This does not correspond to any algebraic point.

The point at infinity O = [X : 0] with X ̸= 0, the identity of the elliptic group law.

The distinguished point T = [0 : Z], with Z ̸= 0, of order 2. Assuming the curve is well defined,

[2]T =O.

The special 4-torsion points [X : ±X], with X ̸= 0. Assuming the curve is well defined [2]P =
T for any such point.

An ordinary point [X : Z] not belonging to any of the above. Assuming the curve is well

defined, such a point is on the curve if X /Z +α+ Z /X is a square in Fp2 . Its algebraic

properties, such as its group order, depend on all of X , Z and α.

Finally, we write the private key as SK = SK020 + SK121 + . . . and we denote SK<k = SK020 +
SK121 +·· ·+ SKk−12k−1.

6.1.1 Isogeny analysis

Our goal is to manipulate the isogeny kernel generating point R of the target party so that it

becomes incompatible with isogeny formulas. This leads either to computation of undefined

points [0 : 0] (which propagate indefinitely) or to (heuristically) random computations. The

two cases can be easily distinguished through power consumption.

We assume that the computing party derives an isogeny of degree 3e3 . The argumentation can

be adapted to 2e2 -isogenies, or more generally to any set of SIKE parameters, as is shown in

full generality in the conjoint work of [Feo+22], or in [Kal22, §5.3].

The isogeny algorithm uses a hard-coded strategy, and attempts to compute a 3e3 -isogeny

independently of the actual order of the kernel point R. The malicious public key points

(Q,P,Q −P), as well as the kernel point R, will be elements of the 2e2 -torsion subgroup E [2e2]

(as opposed to E [3e3] which is expected by the algorithm). Actually, we will show that there is

an exponent o > 0 which satisfies so-called leakage properties:

L1 If ord(R)
∣∣ 2o−1 then the isogeny eventually computes undefined points [0 : 0].

L2 If 2o
∣∣ ord(R) then the isogeny computes random values.

82

6.1 Attack description

Algorithm 6.1 Malicious public key generation

Input: Eα – A supersingular elliptic curve.
Input: SK<k – Known part of private key (k being the index of the bit being guessed).
Input: e ′ – An exponent s.t. 0 < e ′ ≤ e2, 0 ≤ k ≤ e2 −e ′.
Output: Malicious public key PK

j
k = (Q,P,Q −P).

1: Let Q2,P2 be two generator points of Eα[2e2].
2: Suppose that [2e2−1]Q2 ̸= T .
3: S ← [2e2−(e ′−1)]P2.
4: Q ← [2e2−(k+e ′)]Q2.
5: P ← S − [SK<k]Q.
6: return PK

j
k = (Q,P,Q −P).

The exponent o depends on the isogeny degree, the tree-traversal strategy, and the order of

the target party’s point (all being public parameters), and can therefore be precomputed for

any set of SIKE parameters.

In this section, we first show how an adversary can control the order of a point in such a way

that it depends on the value of a private key bit. Then we show that there exists an exponent o

which satisfies the leakage properties (L1, L2).

6.1.1.1 Computing the kernel point

The goal of the attack is to force the target party to compute a point of order 2o−1+SKk , SKk

being the value of the private key bit that we are trying to guess, and o the exponent satisfying

leakage properties (L1, L2). We show in Algorithm 6.1 how we can create for any e ′ > 0 a public

key PK
j
k such that the targets’ party kernel point is of order 2e ′−1+SKk .

The kernel generating point R obtained from the public key shown in Algorithm 6.1 satisfies

the order constraint as is proved in the following lemma.

Lemma 1. The kernel generator point R = P + [SK]Q generated from the public key PK
j
k of

Algorithm 6.1 satisfies

ord(R) =
2e ′−1 if SKk = 0,

2e ′
if SKk ̸= 0.

Proof. Following from Algorithm 6.1, we have ord(S) = 2e ′−1 and ord(Q) = 2k+e ′
. Denote with

Q ′ = [2k]Q, a point of order 2e ′
. It follows that

P + [SK]Q = S + [SK− SK<k]Q = S + [SKk]Q ′+ [SKk+12]Q ′+ . . . = S + [SKk]Q ′+Q ′′

where Q ′′ is a point of order dividing 2e ′−1 and independent from S, by construction. Therefore,

if SKk = 0 then R = S +Q ′′ is of order 2e ′−1 because S is of said order, and S and Q ′′ are

83

Chapter 6. Zero-value power analysis of SIKE

independent. On the other side, if SKk ̸= 0 then R is of order 2e ′
because it is the sum of [SKk]Q ′

of order 2e ′
, with S +Q ′′ of order 2e ′−1.

6.1.1.2 Computing the isogeny

In this subsection we will prove the existence of the exponent o which satisfies the leakage

properties (L1, L2).

The 3e3 -isogeny is computed by means of a hard-coded sequence of sub-algorithms which

include point tripling, 3-isogeny computation, 3-isogeny evaluation, and saving and loading a

point. The order in which these steps are executed is encoded in a strategy as explained in

Section 3.3.3.

The kernel point provided to the isogeny is of incompatible order, which leads to irregular

behaviors. During the execution of the 3e3 -isogeny, geometric structure will be lost, and we

will essentially work with random points on random elliptic curves. We show when irregular

behavior starts, and what types of unexpected behavior can happen.

The 3-isogeny in SIKE satisfies the following properties:

P0 If the kernel point is of incorrect order, then the image point (resp. curve) is arbitrary

and does not share any known geometric relation with the preimage point (resp. curve).

P1 For any point R = [X : Z] we have R +T = [Z : X].

P2 If the image of [X : Z] is [U : V], then the image of [Z : X] is [V : U].

P3 If the input point is equal to the kernel point, then the output is O.

P4 If the kernel point is [X : Z] and the input is [Z : X], then the output point is T .

P5 The image of O is O.

P6 The image of T is T .

Property P0 is not proven and is based on heuristics. Given our experiments and the current

understanding of elliptic curve isogenies, there is no evidence to the contrary. The other

statements follow from the way the isogenies were constructed (see Section 3.3.4, or [Ren18]).

Additional “degenerate” properties are given in the following list:

P7 If the kernel point of the 3-isogeny is O or T , the image curve is degenerate.

P8 On the degenerate curve, the tripling/image of both O and T is [0 : 0].

P9 If the kernel point of the 3-isogeny is T , the tripling/image of both O and T is [0 : 0].

At this point the analysis of the isogeny computation boils down to analyzing the computations

done on the public curve Eα recovered from PK
j
k (i.e., the first curve in the tree traversal). On

this curve, the kernel point R is repeatedly tripled, and some intermediate results are saved as

Ri = [3i]R for i ∈ I where I is a set of indices determined by the strategy. These points are then

evaluated with the isogeny of kernel 〈[3e3−1]R〉. The process is shown in Algorithm 6.2.

84

6.1 Attack description

Algorithm 6.2 First vertical branch of the tree-traversal.

Input: Kernel point R, starting curve Eα, set of indices I .
Output: Image curve computed by the first 3-isogeny E ′.
Output: Images of points evaluated by the first 3-isogeny {φ[3e3−1]R ([3i]R)}i∈I .

for i = 0 to e3 −2 do
if i ∈ I then

Ri = R
R = [3]R

E ′ = curve Eα/〈R〉
for i ∈ I do

Ri =φR (Ri)
return (E ′, {Ri }i∈I)

Due to the fact that point R is of incompatible order, the image curve E ′ is an arbitrary,

generally non-supersingular curve. From this point onward, the points and the curves are

arbitrary. The only deterministic “structure” that the points can carry is that some of them

may have projectively equivalent coordinates. There are three cases to consider.

(i) There is a pair of saved points with equivalent coordinates. Assume that Ra and Rb

have projectively equivalent coordinates and a < b ∈ I . As the points are equivalent,

their images through consecutive 3-isogenies will stay equivalent until we compute the

isogeny generated by some image of Rb . This isogeny will send Ra to O (Property P3).

The point O is fixed by point tripling and isogenies (Property P5). At a certain point an

isogeny of kernel 〈O〉 is computed, whose image curve is the degenerate curve (Property

P7). The images of O are O (Property P5). The first next tripling will be a tripling of O on

the degenerate curve whose output is the undefined point [0 : 0] (Property P8). From this

point onward all values will be 0, and the final j -invariant will be computed as 0/0. An

example of such computation is given in Figure 6.1.

(ii) There is a pair of saved points with flipped coordinates. Assume Ra = [x : z] and

Rb = [z : x] and a < b ∈ I . The property of Ra ,Rb having flipped coordinates is preserved

(Property P2) until the image of Rb is used to compute an isogeny. This isogeny will send

the image of Ra to T (Property P4). The point T is fixed by point tripling and isogenies

(Property P6). Eventually an isogeny of kernel 〈T 〉 is computed, whose image curve is

the degenerate curve (Property P7). The first next image of T or O under the isogeny of

kernel 〈T 〉 is the undefined point [0 : 0] (Property P9). From that point onward all values

will be 0, and the final j -invariant will be computed as 0/0.

(iii) There are no points with equivalent nor flipped coordinates. The points and curves

became arbitrary after computing the first 3-isogeny (Property P0). From this point

onward we have different arbitrary values which propagate. The final curve and its

j -invariant are random.

Note that Case (i) is equivalent to the existence of a < b ∈ I such that [3a]R =±[3b]R, while

Case (ii) is equivalent to [3a]R =±[3b]R +T . In Case (iii), such a < b ∈ I simply do not exist.

These properties are characterized by the order of point R as shown in the following lemma.

85

Chapter 6. Zero-value power analysis of SIKE

Lemma 2. For each set of SIKE parameters, let R be a point in the 2e2 -torsion. Furthermore

assume that T ̸∈ 〈R〉. Then there is an integer o > 0 such that:

1. ord(R)
∣∣ 2o−1 if and only if Case (i) applies,

2. 2o
∣∣ ord(R) if and only if Case (iii) applies.

If T ∈ 〈R〉, then the following is true for the same exponent o:

1. ord(R)
∣∣ 2o if and only if Case (i) or Case (ii) apply,

2. 2o+1
∣∣ ord(R) if and only if Case (iii) applies.

Proof. The statement from Case (i) can alternatively be expressed as: “there are a < b ∈ I such

that Ra =±Rb , that is, [3a]R =±[3b]R”. This reduces to a modular equivalence, more precisely

3a ∓3b ≡ 0 (mod 2r), where we define r to be such that ord(R) = 2r .

This equation is certainly satisfied for r = 0, for all a,b ∈ I . Furthermore, an equality modulo

2r for some a,b reduces to an equality modulo 2r ′
for all r ′ ≤ r . Therefore it is only left to prove

that the equation is not satisfied for some r ≤ e, for all a,b ∈ I . This is proven by observing

SIKE parameters, in particular by observing the strategies. We call the smallest such exponent

o the break-point exponent (see Table 6.1).

The statement from Case (ii) can alternatively be expressed as: “there exist values a < b ∈ I

such that Ra =±Rb +T ”. If R and T are independent, this cannot happen. Therefore, the first

part of the lemma is proven.

If R and T are dependent, we must have [2r−1]R = T . Thus, Case (ii) reduces to 3a∓3b−2r−1 ≡ 0

(mod 2r). This equation is equivalent to the following two equations:{
3a ∓3b ≡ 0 (mod 2r−1),

3a ∓3b ̸≡ 0 (mod 2r).

By the definition of the break-point exponent, 3a∓3b ≡ 0 (mod 2o−1) and 3a∓3b ̸≡ 0 (mod 2o),

therefore 3a∓3b−2o ≡ 0 (mod 2o+1) for some a and b. On the other hand, 3a∓3b ̸≡ 0 (mod 2o)

for all a and b implies 3a ∓3b −2o ̸≡ 0 (mod 2o+1) for all a and b.

A visual explanation of the isogeny attack. In Figure 6.1, we can see a 37-isogeny computa-

tion with a kernel of incompatible order.

• With black we denote regular points and supersingular elliptic curves.

• With blue we denote arbitrary points, isogenies whose image is random, and arbitrary

(non-supersingular) elliptic curves.

• With cyan we denote the point O, isogenies whose image is O, triplings of O and degen-

erate elliptic curves.

86

6.1 Attack description

• With red we denote the isogeny (tripling) which first creates the undefined point [0 : 0],

and undefined elliptic curves.

• With open circles we denote undefined points [0 : 0].

• With dashed lines we denote isogenies which send points to the undefined point.

Figure 6.1: An example of a 37-isogeny computation with a kernel of wrong order.

[30]R

[31]R

[33]R

[34]R

[36]R

[32]R

[35]R

E0 E1 E2 E3 E4 E5 E6 E7

Assume that [32]R and [35]R are equivalent.
On the first curve E0 the point R is tripled 6
times, and [30]R, [32]R and [35]R are saved. A
3-isogeny is computed from [36]R, and the
saved points are evaluated. The images of
[32]R and [35]R are still equivalent. Another
3-isogeny is computed from the image of
the scalar-multiplication function [35] which
sends the image of [32]R to O, which is then
tripled on the next curve. The next isogeny
(of kernel 〈O〉) has for codomain the degen-
erate curve. The first tripling of O on the de-
generate curve outputs the undefined point
[0 : 0]. From this point onward all the outputs
are [0 : 0].

6.1.1.3 Attack sketch

Using Lemma 2, two different outcomes of the isogeny computation can be forced depending

on the value of a secret bit: the party either computes only zero values from a certain point

in the tree traversal and onward, or completely random values. When zero values can be

distinguished from random ones with a side channel, such a behavior enables an adaptive

bit-by-bit key recovery.

We propose to perform the zero-value distinction on the subroutine responsible of the subfield

inversion within the j -invariant computation. This is because the j -invariant computation

occurs at one of the last steps of the key exchange, making it a conveniently identifiable target,

and because the subfield inversion is usually computed as a−1 = ap−2; a noticeable sequence

of ≥ 200 similar field operations. This scenario is illustrated in Algorithm 6.3.

6.1.1.4 Other SIKE instances

The attack was analyzed in the case of the target computing an isogeny of degree 3e3 . In

the general case, the isogeny is of degree ℓe I
I and the cardinality of the curve is of degree

ℓ
2e I
I ℓ

2e J

J . The private key is extracted in base-ℓJ digits per turn, sk = sk0ℓ
0
J + sk1ℓ

1
J + . . . and

the point R has an order of a power of ℓJ . The exponent o can be found with the same

procedure as in Lemma 2, where (3,e3,2,e2) is swapped with (ℓI ,e I ,ℓJ ,e J). In particular, the

87

Chapter 6. Zero-value power analysis of SIKE

Algorithm 6.3 Attack scenario relating to the isogeny computation.

Input: o – The break point as found in Lemma 2.
Output: The private key SK.

1: for k = 0 to e2 −o do
2: Assume we know SK<k =∑k−1

i=0 SKi 2i .

3: Generate PK
j
k with (k, sk<k ,o) as in Algorithm 6.1.

4: Send PK
j
k to the target.

5: Detect exponentiation with side-channel analysis:
6: if computation of 0p−2 is detected then
7: SKk = 1,
8: else
9: SKk = 0.

10: Perform an exhaustive search on the remaining bits of the private key.
11: return SK

case with T can never happen unless ℓJ = 2. We report the values for o for both parties and all

parameter sets in Table 6.1. Attacks on all SIKE parameter sets are provided in [Feo+22], and

also included on our GitHub page: https://github.com/nKolja/SIKE-zero-value-attacks. The

work by Kalud̄erović [Kal22] also provides illustrations.

Table 6.1: Break-point exponents o for all parameter sizes.

Instances SIKEp434 SIKEp503 SIKEp610 SIKEp751

2e2 -isogeny 3 4 2 5
3e3 -isogeny 9 7 7 8

6.2 Experimental verifications

In this section, we verify the correctness of the attack in practice.

6.2.1 Setup

Hardware. The experimental evaluation of the attack was performed on an STM32F3 as the

DUT, using the ChipWhisperer framework as described in Section 2.1.1. The clock speed of

the DUT was set to 44 MHz, and the oscilloscope was programmed with:

• A bandwidth of 200 MHz.

• A sampling rate of 250 samples per µs.

• A resolution of 10 bits per samples.

• A memory of 25,000 samples per acquisition.

Moreoever, we measure the power consumption through a 20dB Low-Noise Amplifier (LNA).

88

https://github.com/nKolja/SIKE-zero-value-attacks

6.2 Experimental verifications

Software. The attacked software calls the functions of the recommended implementation

of SIKEp434 for 32-bit Cortex-M4 microcontrollers with input ciphertexts received from the

computer. This software enables the acquisition of power consumption of specific operations

during the execution of the SIKE key decapsulation.

In the target software code the host computer sends a ciphertext to the target, and the target

computes the shared secret with the decapsulation procedure using a static private key. The

target device runs a custom version of ChipWhisperer’s simpleserial library, like the one in

Section 4.3.

Moreover, the scalar multiplication of the library is protected with coordinate randomization.

As the original library does not offer such a countermeasure, coordinates are randomized

after computing the coefficient of the received curve, and before the Montgomery three-point

ladder, as in Section 5.3. A random representation of the points (Q,P,Q −P) is generated from

the received affine coordinates (xQ , xP , xQ−P). This countermeasure consumes 6× log2(p)

random bits to generate three random Z coordinates and requires three Fp2 multiplications.

Finally, the code is further modified to allow a GPIO to trigger the side-channel trace collection

of the oscilloscope. When toggled, the GPIO notifies the oscilloscope to start the capture

of the power consumption of the DUT. The purpose of this modification is to make the

collection of traces more convenient. Note, however, that the attack is still applicable without

a trigger and that the synchronization of traces can be performed using, e.g., cross-correlation

techniques [Dug+16].

6.2.2 Experiment

The following experiment describes a proof of concept for the attack on the j -invariant

computation as described in Section 6.1.1 using power analysis.

6.2.2.1 Traces collection

In the experiment, only the power consumption of the first field multiplication (i.e., fpmul_mont
in the source code, shown in Listing A.10) from the modular inversion involved in the com-

putation of the j -invariant is measured. As a myriad of zero-valued operations are executed

when the j -invariant is undefined (i.e., [0 : 0]), it would be superfluous to capture the entire

computation of j and compare every operation involved. Still, this specific multiplication was

selected because the same function is called a total of 93 times during the modular inversion

(with all zeros when the j -invariant is undefined). Accordingly, in case the leakage of one

field multiplication alone is not enough to correctly detect the presence of zero values, a

single trace including all the calls to the field multiplication can be segmented into multiple

sub-power traces to boost the accuracy of the comparison (even though doing so turned out

to be unnecessary in our experiment).

89

Chapter 6. Zero-value power analysis of SIKE

6.2.2.2 ZVP procedure

The experiment followed the approach with the two baselines as described in Section 2.1.3.3.

Let Eα be a random curve, Q2,P2 generators of Eα[2e2] with [2e2−1]Q ̸= T , and let n correspond

to the number of bits in a private key (i.e., n = 218 for SIKEp434) and o to the order corre-

sponding to the breaking point between zero or nonzero j -invariants (i.e., o = 9 for SIKEp434).

The steps taken by each single experiment are the following:

1. Set up a fixed random private key SK on the DUT.

2. Capture the baselines B(0), B(∗) for the two categories—zero and random:

(a) Send Q(0) = [2e2−(o−1)]Q2, P (0) = [2e2−(o−1)]P2, P (0) −Q(0) to capture B(0) ∈Rm .

(b) Send Q(∗) = [2e2−(o+1)]Q2, P (∗) = [2e2−(o+1)]P2, P (∗) −Q(∗) to capture B(∗) ∈Rm .

3. For all recoverable bits 0 ≤ i < n −o (starting with SK′ = 0):

(a) Send Qi = [2e2−(i+o)]Q2, Pi = [2e2−(o−1)]P2 − [SK′]Qi , Pi −Qi .

(b) Capture Tri ∈Rm .

(c) If ρ(Tri ,B(∗)) > ρ(Tri ,B(0)) then SK′ = SK′+2i .

4. Return SK′.

An example for the two baselines which both consist of m = 4,960 samples is shown in

Figure 6.2.

(a) Zero-valued baseline B(0). (b) Random-valued baseline B(∗).

Figure 6.2: Examples of baseline traces corresponding to a single Fp2 multiplication processing
zero values in one case, and random (nonzero) values in the other.

6.2.2.3 Results

Across N = 1,000 experiments, the first n −o = 208 private-key bits were always successfully

extracted through collision power analysis with baselines. Table 6.2 shows the average corre-

lation coefficients when a target trace is compared against the two baselines. This outcome

shows that the recommended implementation of SIKE for Cortex-M4 is vulnerable to the

zero-value attack on the j -invariant computation as described in Section 6.1.1.

90

6.3 Countermeasures

Table 6.2: Average PCCs between baselines and target traces (N = 1,000).

Target
Baseline j = [0 : 0] j ̸= [0 : 0]

j = [0 : 0] 0.9975 0.3915
j ̸= [0 : 0] 0.3916 0.9909

6.2.2.4 Discussion

Given the significant correlations for a single field multiplication, the results give strong

evidence that zero values can be easily detected by comparing the power consumption of an

operation with a baseline.

6.3 Countermeasures

Scalar randomization is a classic countermeasure against zero-value attacks in ECC [Cor99]. It

could be adapted to protect the three-point ladder in SIKE, but would be useless against the

isogeny computation attack. We propose instead a countermeasure that protects SIKE against

both.

6.3.1 CLN test

Our attack relies on ciphertexts containing maliciously generated point triplets (Q,P,R) which

are not the legitimate images (φ(Q3),φ(P3),φ(Q3 −P3)) of the public 3e3 -torsion basis under

an isogeny of degree 2e2 . As we already mentioned, before the attack by Castryck and De-

cru [CD22] was discovered, validating SIKE ciphertexts was a problem believed to be as hard as

breaking SIKE itself, thus we could not hope to completely rule out side-channel attacks using

malicious ciphertexts. Nevertheless our malicious ciphertexts deviate from the legitimate

format in a detectable way, letting us design an effective countermeasure.

Indeed, the attack on the isogeny computation uses points of order 2n instead of 3e3 . To

counter it, it is enough to check that Eα is a supersingular curve, that P and Q are both

of order 3e3 , and that they generate Eα[3e3], i.e., that1 [3e3−1]P ̸= [±3e3−1]Q. Note that by

construction we automatically have that R =Q −P . We shall name this the CLN test, after the

names of its first proponents [CLN16].

The original test in [CLN16] did not verify that Eα is supersingular, however this can be done at

little extra cost. First, we check that α defines an elliptic curve by excluding the undefined, the

degenerate, and the singular cases described in the Preliminaries. Then, we check that Q and

P generate Eα[3e3], which proves that #Eα(Fp2) = 32e3 D for some integer D . This nearly implies

1Equivalent conditions are that R is also of order 3e3 , or that the Weil pairing e3e3 (Q,P) has multiplicative
order 3e3 .

91

Chapter 6. Zero-value power analysis of SIKE

Eα is supersingular; by Hasse’s bound, (p−1)2 ≤ 32e3 D ≤ (p+1)2 hence 22e2−4p/32e3 ≤ D ≤ 22e2 .

Because 32e3 ≈ p, only a few choices are possible for D, the largest one corresponding to a

supersingular curve. It is then enough to find some power 2d
∣∣ D such that 2d > 4p/32e3 , then,

dividing all sides by 2d , we conclude that the curve is supersingular.

For all SIKE proposed parameters, except the NIST IV parameter SIKEp610, it turns out that

4p/32e3 < 2. But any Montgomery curve has order divisible by 4 (see [CS18]), thus we are done.

For SIKEp610, 2(p −2)/32e3 < 8; checking that A+2 and A−2 are both squares in Fp2 ensures

that 8
∣∣ D (see [CS18, Table 1]), proving that Eα is supersingular.

Remark 1. Swapping the roles of 2 and 3, analogous checks would also work for verifying

public keys. However, 4p/22e2 tends to be quite large for SIKE instances: as much as ≈ 447.6 for

SIKEp751. It is thus not realistic to look for simple algebraic conditions that would guarantee

the existence of points of small order 3n . Instead, one may take random points on Eα, and

multiply them by a cofactor until a point of sufficiently large order 3n is found. Alternatively,

one may be just content with testing that 22e2 |#Eα(Fp2): although this does not guarantee that

the curve is supersingular, it is believed to be computationally hard to find ordinary curves

with such a large fixed factor in their order.

This also applies to compressed SIKE, where the roles of the 2e2 - and 3e3 -torsion are swapped.

The entangled basis generation procedure of [Zan+18] guarantees2 that 22e2
∣∣ #Eα(Fp2), and

ciphertext decompression ensures that (Q,P) generates Eα[2e2]. Implementations may then

choose between relying on a computational assumption ensuring that Eα is supersingular, or

doing a little extra work to find a point of appropriate order 3n on Eα. At any rate, our attack

does not apply to compressed SIKE because of this.

We added the countermeasure to the SIKEp434 implementation described in Section 6.2.1 and

tested it on an STM32F4-DISCOVERY clocked at 168 MHz. Without the CLN countermeasure,

95,899 k-cycles are needed for the decapsulation, and with it, 108,273 k-cycles are needed.

There is thus a performance hit of around 12.9%.

6.4 Conclusion

We described a zero-value attack against SIKE on the isogeny computation. The attack is

based on special-point inputs that enable an adaptive bit-by-bit key recovery. We analyzed

it in theory, but also verified it experimentally on the recommended SIKE implementation

for Cortex-M4 with power analysis using collision power analysis. At last, we argued that the

Costello–Longa–Naehrig test which verifies the order of the points is sufficient to stop ZVP

attacks.

Even though our attack has been outdated by the recent key recovery due to Castryck and

Decru [CD22], we have exhibited the first power analysis of the isogeny computation, which is

2The proof therein requires that A2−4 is a square in Fp2 , thus an implementation of compressed SIKE expecting
malicious ciphertexts should check this condition before generating the basis.

92

6.4 Conclusion

expected to lead to countless similar attacks, such as the one by Campos et al. in [Cam+22]

that is still applicable to CSIDH. Moreover, we explored a new scenario in which collision

power analysis with baselines is used to mount a zero-valued power analysis, which could

have applications beyond this particular attack.

93

Part IIHash-based cryptography

95

7 SPHINCS and SPHINCS+

Hash-based cryptography defines cryptographic schemes whose security is solely based on the

properties of (cryptographic) hash functions. Informally speaking, a hash function transforms

a bitstring input of any size into a fixed-size bitstring output, known as a hash, in such a way

that computing the hash from any input is easy but recovering the original input from the

hash is hard. This property gives rise to a variety of hash-based cryptosystems that notably

includes digital signatures and zero-knowledge proofs.

Hash-based digital signature schemes are of particular interest because they provide a unique

security assumption to public-key cryptography which is often deemed conservative, as

hash functions have been thoroughly analyzed over the past three decades and are therefore

considered well understood. In such schemes, the signer generates a public key by hashing

secret values with a public hash function, and then signs a message by revealing only a

subset of the secret values depending on the message being signed. A verifier checks the

correctness of the signature by hashing the revealed values and verifying that the resulting

hashes correspond to the public key.

There exist three main categories of hash-based digital signature schemes:

• One-Time Signature (OTS) schemes, where any signing key should be used at most once,

• Multiple-Time Signature (MTS) schemes, which combine multiple OTS key pairs to

provide a limited number of signatures (after which the scheme simply stops working),

• Few-Time Signature (FTS) schemes, in which the security of one key pair slowly deterio-

rates with the number of uses (and gets compromised if used too many times).

Moreover, a hash-based digital signature scheme is considered stateful if the signer is required

to keep track of the signatures used, and stateless otherwise.

History. The first hash-based digital signature scheme dates back to 1979 where Leslie

Lamport developed the Lamport–Diffie One-Time Signature (LD-OTS) scheme [Lam79] in

97

Chapter 7. SPHINCS and SPHINCS+

which the signer commits to two secret values per bit to be signed, and reveals only one of

them for each bit of the message. In 1989, Ralph Merkle creates the Merkle Signature Scheme

(MSS) [Mer90] which combines multiple key pairs of one-time signatures with a binary hash

tree to create a stateful MTS. In the same publication, Merkle introduces the Winternitz One-

Time Signature (W-OTS) scheme which improves the LD-OTS by enabling multiple bits to

be signed at once with a single value, which was later improved into W-OTS+ by Hülsing

in [Hül13] to provide shorter signatures with the same security guarantees. Later, Adrian Perrig

introduces the Bins-and-Balls (BiBa) one-time signatures [Per01] which involves finding two

secret values from a list of secret values that hash into a same value. This idea was further

developed by Leonid and Nathan Reyzin in their Hash to Obtain a Random Subset (HORS)

scheme [RR02]. HORS is the first FTS scheme and works as follows: the signer reveals per

signature a small number of secret values from a large list of pre-hashed secret values, allowing

thus more than one message to be signed without significantly compromising security.

MSS has known many improvements to make the scheme practical for real-world applications,

including notably the eXtended Merkle Signature Scheme (XMSS), introduced by Buchmann,

Dahmen, and Hülsing in [BDH11], that provably enables forward security with only a pseudo-

random function, and a second-preimage resistant function. Two years later, XMSS was itself

improved into Multi Tree XMSS (abbreviated XMSSMT) by Hülsing, Rausch, and Buchmann

to enable a virtually unlimited number of signatures by creating a hypertree of XMSS; an

idea borrowed from the Coronado MSS (CMSS) by Coronado García et al. [Buc+06]. In 2015,

Bernstein et al. develop SPHINCS [Ber+15]; the first practical stateless hash-based digital

signatures built upon XMSSMT . The scheme involves multiple improvements over classical

MSS, including Oded Goldreich’s approach [Gol01] that makes MSS stateless by replacing each

node in the hash tree by key pairs of one-time signatures, an enhanced MSS that requires

only a hash function resistant to second-preimage attacks, and an extra layer of HORST—an

improved version of HORS.

In 2017, Hülsing et al. submit SPHINCS+ [Hül+20] as an improvement over SPHINCS to the

NIST post-quantum standardization process. Compared to SPHINCS, SPHINCS+ features

stronger security guarantees (especially against multi-target attacks), lower memory require-

ments, faster signing and verification, and more flexibility in terms of public key and signature

sizes, thanks to the following changes:

• The replacement of HORST by a novel FTS scheme named Forest Of Random Subset

(FORS) which, overall, performs better than HORST in the context of SPHINCS.

• The introduction of a verifiable index that changes the way a path is chosen in the

hypertree.

• The use of keyed hash functions that the authors refer to as tweakable hash functions.

• The replacement of the W-OTS+ public-key compression with a tree-less hash function.

• Two new instantiations: robust and simple, which offer a trade-off between security

models and speed.

98

7.1 Background

7.1 Background

7.1.1 Notation

Table 7.1 summarizes the different notations used throughout the following chapters.

Table 7.1: Notations for Chapters 7—9.

Expression Meaning

B The set of bytes (i.e., B∼= {0,1, . . . ,255}).
x||y The concatenation of two bitstrings x and y .
x ⊕ y The bitwise eXclusive OR (XOR) of two bitstrings1 x and y .
x ≪ n The bitwise left rotation of n bits in the bitstring x.
U (S) A uniform random variable defined on set S.

7.1.2 Functions

Hash-based digital signatures rely on functions which look like random. Pseudorandomness

is an essential concept in cryptography that has many applications. For instance, a pseudo-

random number generator is a deterministic algorithm that, when fed a (secret) input seed,

outputs a sequence of generated numbers that is indistinguishable2 from a sequence of truly

random numbers. Similarly, a pseudorandom function is a mapping of byte strings, depending

on a key, that is indistinguishable2 from a truly random mapping. These notions are formally

defined in [Gol04]. As the analyses in the current thesis do not rely on these formal notions,

we will call pseudorandom function a function which makes “random-looking” outputs.

A fundamental property of pseudorandom functions is their one-way property, that is, there

does not exist any probabilistic algorithm that can be expected to recover the input of a (public)

pseudorandom function in polynomial time given their output (see [GGM84] for proof). This

property enables the commitment of secret values to be secure.

With this interpretation in mind, we define the following pseudorandom functions:

• F :Bn →Bn refers to a size-preserving pseudorandom function,

• H :B2n →Bn refers to a compression pseudorandom function, and

• Tl :Bln →Bn refers to an l -compression pseudorandom function (where l > 2).

• Gl :Bn →Bl n refers to a pseudorandom number generator (where l > 0).

Definition 7.1.1 (Chaining pseudorandom function). Given a size-preserving pseudoran-

dom function F : Bn → Bn , a chaining pseudorandom function C i :N×Bn → Bn consists of

1The bitstrings are supposed to have the same length. If not, zero bits are usually appended to the shortest
bitstring to match the length of the longest bitstring.

2Two objects are said to be indistinguishable from each other if there does not exist any probabilistic algorithm
that can be expected to tell them apart (see [Gol04, §3.2] for details).

99

Chapter 7. SPHINCS and SPHINCS+

recursively applying F a specified number of times i ≥ 0 starting with an initial input x ∈Bn :

C i (x) =
{

C i−1(F (x)) if i > 0,

x else (i = 0).

Given a chain-length W > 0, the sequence (C k (x))0≤k<W is referred to as a pseudorandom

chain (or, simply, a chain). The position of an element y ∈ (C k (x))0≤k<W is the number i ≥ 0

such that C i (x) = y .

Figure 7.1 illustrates a pseudorandom chain of length W = 8. In the figure, the position of the

rightmost element y is 7, as y =C 7(x).

x yF F F F F F F

Figure 7.1: Illustration of the chaining pseudorandom function.

Remark 1. All chaining pseudorandom functions satisfy C i+ j (x) =C j (C i (x)) =C i (C j (x)).

Definition 7.1.2 (Cryptographic hash function [MvV97]). A cryptographic hash function is an

easy-to-compute function H : {0,1}∗ →Bn which maps bit strings of arbitrary finite length to

byte strings of fixed length n and fulfills the following properties:

1. first preimage resistance: for essentially all pre-specified outputs, it is computationally

infeasible to find any input which hashes to that output, i.e., to find any preimage x ′

such that H (x ′) = y when given any y for which a corresponding input is not known.

2. second preimage resistance: it is computationally infeasible to find any second input

which has the same output as any specified input, i.e., given x, to find a 2nd-preimage

x ′ ̸= x such that H (x) =H (x ′).

3. collision resistance: it is computationally infeasible to find any two distinct inputs x, x ′

which hash to the same output, i.e., such that H (x) =H (x ′).

7.1.3 Treehash

A binary hash tree (also known as a Merkle tree) is a structure of hash nodes in which an

initial number of hash leaves are combined two at a time using a pseudorandom compression

function. This process continues until a single value—referred to as the tree root—is reached.

The hash nodes are organized in such a way that the root is on the top and the leaves at the

bottom. A level refers to the distance of a row of nodes from the deepest leaves. A binary hash

tree with a power-of-two number of hash leaves m > 0 will therefore have a total of log2(m)

levels, known as the height of the tree. Figure 7.2 illustrates the terminology.

The process of combining nodes two at a time in a binary hash tree is called the treehash

process. Algorithm 7.1 provides the specific steps for calculating the tree root for an initial

100

7.1 Background

root

leaves

h
ei

gh
tlevel = 2

Figure 7.2: Illustration of a Merkle tree.

number of leaves that may not necessarily be a power of two. In this regard, if the number of

nodes at a certain level is odd, the right-most node does not have a neighbor to be compressed

with and must be moved to the next level. This algorithm is memory-efficient because the

nodes are computed in place.

7.1.4 Paths

A path in a hash tree refers to the nodes encountered while traversing the tree from a specific

leaf to the root. Concretely, given a leaf index 0 ≤ λ< m, the nodes that consitute the path

starting from λ are the nodes (N0, . . . , N⌈log2(m)⌉−1) such that N j = L⌊λ/2 j ⌋ at every level 0 ≤ j <
⌈log2(m)⌉ of the hash tree (i.e., at every iteration of the while-loop in Algorithm 7.1).

Algorithm 7.1 The treehash compression algorithm.

Input: (L0, . . . ,Lm−1) ∈ (Bn)m – A number m > 1 of leaves.
Input: H :B2n →Bn – A compression pseudorandom function.
Output: The root of the binary tree r ∈Bn .

1: while m > 1 do
2: for i = 0 to ⌊m/2⌋−1 do
3: Li ← H(L2i ,L2i+1).
4: if m mod 2 = 1 then ▷ If there is a node without a neighbor.
5: L⌊m/2⌋ ← Lm−1.
6: m ←⌈m/2⌉.
7: return L0.

Given a path in a hash tree starting from 0 ≤λ< m, an authentication path refers to the list of

neighboring nodes in the given path that are involved in the computation of the root. Authen-

tication paths are usually derived while treehashing (i.e., during Algorithm 7.1). Concretely,

given a leaf index 0 ≤λ< m, the nodes that constitute the authentication path from λ are the

nodes (A0, . . . , A⌈log2(m)⌉−1) such that A j = L⌊λ/2 j ⌋⊕1 at every level 0 ≤ j < ⌈log2(m)⌉ of the hash

tree (i.e., at every iteration of the while-loop in Algorithm 7.1).

101

Chapter 7. SPHINCS and SPHINCS+

Along with a given leaf at known index, an authentication path enables the recomputation

of the tree root with minimal information. Such a recomputation is achieved by recursively

compressing the leaf with the next node in the authentication path. The binary representation

of the leaf index dictates whether the nodes are on the left or right in the path to the root.

Algorithm 7.2 describes the steps to recompute a root from a leaf and its authentication path.

Algorithm 7.2 The root recomputation with authentication path algorithm.

Input: L ∈Bn – A leaf in a binary tree of index 0 ≤λ< 2h .
Input: (A0, . . . , Ah−1) ∈ (Bn)h – An authentication path.
Input: H :B2n →Bn – A compression pseudorandom function.
Output: The root of the binary tree r ∈Bn .

1: for i = 0 to h −1 do
2: if ⌊λ/2i ⌋ mod 2 = 0 then ▷ If the current node is on the left of its neighbor.
3: L ← H(L, Ai).
4: else
5: L ← H(Ai ,L).
6: return L.

An example of a path and authentication path is shown on Figure 7.3. Notice that r can be

recomputed using only ν and (A0, A1, A2).

r

A2

A1

A0 ν

λ= 5
= 1012

Figure 7.3: Binary hash tree where the path from ν (the leaf indexed λ = 5) to r (the root)
consists of the nodes in solid lines, whereas its corresponding authentication path consists of
the nodes highlighted in gray.

7.1.5 Digital signature scheme

Definition 7.1.3 (Digital signature scheme). A digital signature scheme is a triple of probabilis-

tic algorithms KeyGen(n), Sign(M , SK), Verify(M ,σ, PK) that achieves integrity, authenticity,

and non-repudiation.

102

7.2 One-time signatures

The algorithms of a digital signature scheme must fulfill the following properties:

• KeyGen(n) generates a random key pair (SK, PK) of security parameter n where:

– SK is a signing key; a private key used to sign messages.

– PK is the public key corresponding to SK used to verify signatures.

• Sign(M , SK) signs a message M with the signing key SK to produce a digital signature σ

that corresponds to M .

• Verify(M ,σ, PK) verifies that the digital signature σ corresponds to the message M

under the public key PK.

The security parameter n ensures that there is no probabilistic algorithm that compromises

any of the security guarantees of the digital signature scheme (integrity, authenticity, and

non-repudiation) in time polynomial nor subexponential in n.

7.2 One-time signatures

Hash-based One-Time Signatures (OTS) schemes describe digital signature schemes in which

the security guarantees only hold when the signing key is used only one time; i.e., to sign a

single message. Such schemes rely on pseudorandom functions to commit to secret values

which are revealed as part of the signature depending on the bit values of the message to sign.

7.2.1 W-OTS+

W-OTS+ (Winternitz One-Time Signatures) [Hül13] is an OTS scheme which commits to secret

elements by using a chaining pseudorandom function. A W-OTS+ signature consists of chain

elements at positions that depend on the bit values of the message to sign. Since, in a chain,

the elements at lower positions lead to the elements at higher positions, the scheme involves

signing an inverted checksum of the message to prevent the forgery of a valid signature using

the elements at higher positions derived from the signature elements. Figure 7.4 illustrates

a W-OTS+ signature in a W-OTS+ structure. In SPHINCS and SPHINCS+, W-OTS+ is used to

authenticate public keys of various hash-based schemes.

Parameters. A W-OTS+ instance is parameterized with:

• n : number of bytes of security.

• η : number of bits in a message digest.

• ω : a (short) window of bits signed at a time.

• C i :N×Bn →Bn : a chaining pseudorandom function.

• Gl :Bn →Bl n : a pseudorandom number generator.

• H : {0,1}∗ → {0,1}η : a cryptographic hash function.

103

Chapter 7. SPHINCS and SPHINCS+

s0 σ0 p0

s1 p1

s2 σ2 p2

s3 σ3 p3

s4 σ4 p4

ℓ
1

ℓ
2

W8

Figure 7.4: Illustration of a W-OTS+ structure with η = 9, ω = 3. The highlighted nodes
correspond to the signature for H (M) = 011 000 101 (c = 001 101).

Furthermore, given the above parameters, let the following quantities be defined:

• W = 2ω : the length of the pseudorandom chains.

• ℓ1 = ⌈η/ω⌉ : the number of chunks in a message digest (see below).

• ℓ2 =
⌊

log2((W −1)ℓ1)/ω
⌋+1 : the number of chunks in a checksum (see below).

• ℓ= ℓ1 +ℓ2 : the total number of elements in a W-OTS+ signature.

Key generation. Given a secret seed SK ∈Bn , a W-OTS+ key pair is generated as follows:

SKW ←Gℓ(SK) = (s0, . . . , sℓ−1),

PKW ← (p0, . . . , pℓ−1), where pi =C W −1(si) (0 ≤ i < ℓ).

Signing procedure. Given a W-OTS+ signing key SKW , the scheme signs a message M ∈ {0,1}∗

with the following steps:

1. Split D =H (M) into chunks (b0, . . . ,bℓ1−1) of ω bits.

2. c ←∑ℓ1−1
i=0 (W −1−bi).

3. Split c into chunks (bℓ1 , . . . ,bℓ1+ℓ2−1) of ω bits.

4. σi ←C bi (si) for i = 0 to ℓ−1.

5. Return σW = (σ0, . . . ,σℓ−1).

Public key extraction. Given a W-OTS+ signature σW corresponding to a known message

M ∈ {0,1}∗, the W-OTS+ public key PKW can be extracted with the following steps:

1. Split D =H (M) into chunks (b0, . . . ,bℓ1−1) of ω bits.

2. c ←∑ℓ1−1
i=0 (W −1−bi).

104

7.3 Few-time signatures schemes

3. Split c into chunks (bℓ1 , . . . ,bℓ1+ℓ2−1) of ω bits.

4. pi ←C W −bi−1(σi) for i = 0 to ℓ−1.

5. Return PK′ = (p0, . . . , pℓ−1).

Verification procedure. Given a W-OTS+ public key PKW , a W-OTS+ signature σW , and

a message M ∈ {0,1}∗, the signature can be verified to correspond to the message with the

following steps:

1. Extract the public key PK′ using M and σW .

2. Return True if PK′ = PKW , False otherwise.

7.3 Few-time signatures schemes

Hash-based Few-Time Signatures (FTS) schemes describe digital signature schemes in which

the security guarantees slowly decline with the number of times the signing key is used; i.e., to

sign only a few message. This is achieved in a similar fashion as with OTS schemes, but usually

by committing to more secret values than with an OTS, so that revealing many of them does

not immediately break the system.

7.3.1 HORST

HORST (Hash to Obtain Random Subset with Trees) [Ber+15] is an FTS scheme that involves 2τ

secret values (one per τ-bit chunk) that are compressed with a hash tree. A HORST signature

then consists of the secret values at indexes that correspond to the value of the bit chunks in

the messages to sign, along with their authentication paths. In SPHINCS, HORST is used to

sign the digest of the message. Figure 7.5 illustrates a HORST signature in a HORST structure.

Because the probability is high that the authentication paths contain several duplicate nodes,

all nodes at a fixed level x > 0 are given; the choice for x depends on implementation efficiency

considerations.

PKH

s0 s1 s2 s3 s4 s5 s6 s7

Figure 7.5: Illustration of a HORST structure with η= 6, k = 2, x = 2. The highlighted nodes
correspond to the signature for H (M) = 010 101.

105

Chapter 7. SPHINCS and SPHINCS+

Parameters. A HORST instance is parameterized with:

• n : number of bytes of security.

• η : number of bits in a message digest.

• k : the number of blocks in a message (see below).

• x : cut-off height for full authentication path derivation.

• F :Bn →Bn : a size-preserving pseudorandom function.

• Gl :Bn →Bln : a pseudorandom number generator.

• H :B2n →Bn : a compression pseudorandom function.

• H : {0,1}∗ → {0,1}η : a cryptographic hash function.

Furthermore, given the above parameters, let the following quantities be defined:

• τ= ⌈η/k⌉ : number of bits in one block.

• t = 2τ : the total number of secret leaves.

Key generation. Given a secret seed SK ∈Bn , a HORST key pair is generated as follows:

SKH ← Gt (SK) = (s0, . . . , st−1),

PKH ← treehash(F (s0), . . . ,F (st−1)).

Signing procedure. Given a HORST signing key SKH , the scheme signs a message M ∈ {0,1}∗

with the following steps:

1. Split D =H (M) into chunks (b0, . . . ,bk−1) of τ bits.

2. For all chunk indices i ranging from 0 to k −1:

(a) Let σi = sbi .

(b) Let authi = (Ai
0, . . . , Ai

x−1) be the authentication path from F (sbi) until level x −1.

3. Let Ni be all the tree nodes at level x (i.e., for 0 ≤ i < 2τ−x).

4. Return σH = ((σ0,auth0), . . . , (σk−1,authk−1), (N0, . . . , N2τ−x−1)).

Public key extraction. Given a HORST signature σH = ((σ0,auth0), . . . , (σk−1,authk−1),

(N0, . . . , N2τ−x−1)), the HORST public key PKH can be extracted with the following steps:

1. Let PK′ = treehash(N0, . . . , N2τ−x).

2. Return PK′.

Verification procedure. Given a HORST public key PKH , a HORST signature σH , and a

message M ∈ {0,1}∗, the signature can be verified to correspond to the message with the

following steps:

1. Split D =H (M) into chunks (b0, . . . ,bk−1) of τ bits.

106

7.3 Few-time signatures schemes

2. For all chunk indices i = 0 to k −1:

(a) Recompute N ′
si /2x from F (si) and authi .

(b) Ensure that N ′
si /2x = Nsi /2x or return False otherwise.

3. Extract the public key PK′ using σH .

4. Return True if PK′ = PKH , False otherwise.

7.3.2 FORS

FORS (Forest of Random Subsets) is a few-time signature scheme introduced in SPHINCS+ as

an enhancement over HORST. Rather than all bit chunks in a message sharing a same tree,

FORS features unique trees per chunk index; making thus a forest. In SPHINCS+, FORS is used

to sign the digest of the message. Figure 7.6 illustrates a FORS signature in a FORS structure.

PKF

s0
0 s0

1 s0
2 s0

3 s1
0 s1

1 s1
2 s1

3 s2
0 s2

1 s2
2 s2

3

Figure 7.6: Illustration of a FORS structure with η = 6, k = 2, t = 4. The highlighted nodes
correspond to the signature for H (M) = 01 10 00.

Parameters. A FORS instance requires the following parameters:

• n : number of bytes of security.

• η : number of bits in a message digest.

• k : number of trees.

• t = 2a : number of leaves in a tree (of height a).

• F :Bn →Bn : a size-preserving pseudorandom function.

• Gl :Bn →Bln : a pseudorandom number generator.

• H :B2n →Bn : a compression pseudorandom function.

• Tk :Bkn →Bn : a k-compression pseudorandom function.

• H : {0,1}∗ → {0,1}η : a cryptographic hash function.

Note that η= ka.

Key generation. A FORS key pair consists of the k sub-key pairs (SKF
i , PKF

i) for each FORS

tree (0 ≤ i < k). Given a secret seed SK ∈Bn , the FORS key pair is therefore generated with the

107

Chapter 7. SPHINCS and SPHINCS+

following steps:

1. Let SKF ←Gkt (SK) = (s0, . . . , skt−1).

2. Split SKF into k subsets of t elements SKF
i = (si

0, . . . , si
t−1) (0 ≤ i < k).

3. Let PKF
i ← treehash(F (si

0), . . . ,F (si
t−1)) for 0 ≤ i < k.

4. Let PKF ← Tk (PKF
0 , . . . , PKF

t−1).

5. Return (SKF , PKF).

Signing procedure. Given a FORS signing key SKF = (SKF
0 , . . . , SKF

k−1) where SKF
i = (si

0, . . . , si
t−1),

the scheme signs a message M ∈ {0,1}∗ with the following steps:

1. Split D =H (M) into chunks (b0, . . . ,bk−1) of a bits.

2. In each FORS tree 0 ≤ i < k, compute authi as the authentication path starting from

F (si
bi

), the leaf indexed at bi .

3. Return σF = ((s0
b0

,auth0), . . . , (sk−1
bk−1

,authk−1)).

Public key extraction. GivenσF = ((s0
b0

,auth0), . . . , (sk−1
bk−1

,authk−1)) corresponding to a known

message M ∈ {0,1}∗, the FORS public key PKF can be extracted with the following steps:

1. Split D =H (M) into chunks (b0, . . . ,bk−1) of a bits.

2. In each FORS tree 0 ≤ i < k, recompute the public keys PKF
i from F (si) and authi .

3. Return PK′ = Tk (PKF
0 , . . . , PKF

k−1).

Verification procedure. Given a FORS public key PKF , a FORS signature σF , and a message

M ∈ {0,1}∗, the signature can be verified to correspond to the message with the following steps:

1. Extract the public key PK′ using M and σF .

2. Return True if PK′ = PKF , False otherwise.

7.4 Multiple-time signatures

Hash-based Multiple-Time Signatures (MTS) schemes describe digital signature schemes in

which a single key pair is able to sign a fixed number of times only; i.e., to sign multiple (but

not infinitely many) messages. A typical MTS will combine multiple OTS key pairs with a hash

tree, so that it suffices to publish the root of the hash tree as a public key, while the signing key

consists of all the signing keys for all the OTS key pairs.

7.4.1 XMSS

An XMSS (eXtended Merkle Signature Scheme) is a multiple-time signature scheme which

combines multiple W-OTS+s in a hash tree. As a standalone scheme, XMSS signs a message

108

7.4 Multiple-time signatures

with a W-OTS+ key pair at the leaves of the tree that was not used before, making the scheme

thus stateful. An XMSS signature consists of the W-OTS+ signature of the message, along with

the authentication path from the leaf used, as illustrated in Figure 7.7. SPHINCS and SPHINCS+

use a large tree of XMSSs to authenticate the layer of FTS (as well as an unpredictable path in

the tree to avoid statefulness).

PKX

PKW
0 PKW

1 PKW
2 PKW

3 PKW
4 PKW

5 PKW
6 PKW

7

W-OTS+

MSKW
2

σW

Figure 7.7: Illustration of an XMSS structure with h′ = 3. The signature using the leaf at λ= 2
consists of σW along with the highlighted nodes (i.e., the authentication path).

Parameters. An XMSS instance requires the following parameters:

• n : number of bytes of security.

• h′ : height of the tree.

• H :B2n →Bn : a compression pseudorandom function.

• Tℓ :Bℓn →Bn : an ℓ-compression pseudorandom function (ℓ as in Section 7.2.1).

• η,ω,C i ,Gl ,H : W-OTS+ parameters (see Section 7.2.1).

Key generation. Given a secret seed SK ∈ Bn , the key generation starts by generating 2h′

W-OTS+ key pairs (SKW
i , PKW

i) (for 0 ≤ i < 2h′
). Thus, an overall XMSS key pair consists of:

SKX ← (SKW
0 , . . . , SKW

2h′−1
),

PKX ← treehash(Tℓ(PKW
1), . . . ,Tℓ(PKW

2h′−1
)).

Signing procedure. Given an XMSS signing key SKX , the scheme signs a message M ∈ {0,1}∗

at leaf index 0 ≤λ< 2h′
with the following steps:

1. Use SKW
λ

to produce σW
λ

; the W-OTS+ signature of M .

2. Compute the authentication path authλ from the leaf index λ.

3. Return σX = (σW
λ

,authλ).

109

Chapter 7. SPHINCS and SPHINCS+

Note that each leaf index can be used to sign at most one message (thus stateful).

Public key extraction. Given σX = (σW
λ

,authλ) bound to a known message M ∈ {0,1}∗ at

leaf index 0 ≤λ≤ 2h′ −1, the XMSS public key can be extracted with the following steps:

1. Extract the W-OTS+ public key PKW
λ

from σW
λ

using M .

2. Recompute the XMSS public key PKX from Tℓ(PKW
λ

) and authλ.

3. Return PKX .

Verification procedure. Given an XMSS public key PKX , an XMSS signature σX , and a

message M , the signature can be verified to correspond to the message with the following

steps:

1. Extract the public key PK′ using M and σX .

2. Return True if PK′ = PKX , False otherwise.

7.4.2 Hypertree

In the context of SPHINCS or SPHINCS+, a hypertree (also known as CMSS or XMSSMT (Multi

Tree XMSS)) consists of a tree of XMSS key pairs in which the XMSSs higher in the tree sign the

lower XMSSs. As a standalone scheme, a hypertree signs a message with a W-OTS+ key pair

that was not used before in one of the XMSS at the leaves of the hypertree, making the scheme

thus stateful. A hypertree signature therefore consists of all the XMSS signatures in the path

from the leaf used to the top of the hypertree, as illustrated in Figure 7.8. In SPHINCS and

SPHINCS+, a hypertree is used to authenticate the layer of FTS (as well as an unpredictable

path in the tree to avoid statefulness).

Parameters. A hypertree instance requires the following parameters:

• n : number of bytes of security.

• h : total height of the hypertree.

• d : number of layers in the hypertree.

• H ,Tℓ : XMSS parameters (see Section 7.4.1).

• η,ω,C i ,Gl ,H : W-OTS+ parameters (see Section 7.2.1).

Note that the hypertree instantiates XMSS with h′ = h/d .

Addressing scheme. The hypertree requires an addressing scheme to distinguish the XMSSs

in the hypertree so that their signing key can be generated from a single secret seed. Concretely,

all the XMSSs in the hypertree have a unique address that consists of the index of the layer

0 ≤ l < d , and the index of the tree 0 ≤ τl < 2(d−1−l)h/d depending on the position of the XMSS

110

7.4 Multiple-time signatures

PKHT

PKW
2,1

W-OTS+ σW
2

PKW
1,3

W-OTS+ σW
1

PKW
0,0

W-OTS+ σW
0

M

Figure 7.8: Illustration of a hypertree structure with h = 6 and d = 3. The signature using
the hyperleaf at λ = 29 consists of (σW

0 ,σW
1 ,σW

2) along with the highlighted nodes (i.e., the
authentication paths) in each tree.

in the hypertree.

Due to their structure, the addresses of the XMSSs higher in the hypertree can be entirely

derived from the address of the subtree lower in the hypertree. Let τl be the tree index of an

XMSS at layer 0 ≤ l < d −1. Such an XMSS is signed with the XMSS at tree index τl+1 and leaf

index λl+1 derived as follows:{
τl+1 = the h −h′(l +1) most significant bits of τl ,

λl+1 = the h′ least significant bits of τl .

All addresses involved in the above XMSSs are reconstructed from these indices.

111

Chapter 7. SPHINCS and SPHINCS+

Key generation. Given a secret seed SK ∈Bn , the public key of the hypertree consists of the

public key of the top-most XMSS PKX
d−1 at layer d −1 and tree index τd−1 = 0:

SKHT ← SK,

PKHT ← PKX
d−1.

Signing procedure. Given a hypertree signing key SKHT , the scheme signs a message M ∈
{0,1}∗ at hyperleaf index 0 ≤λ< 2h with the following procedure:

1. For all layer indices i ranging from 0 to d :

(a) Derive τi , λi from τi−1 (starting with τ−1 =λ).

(b) Generate the XMSS key pair (SKX
i , PKX

i) with SKHT at the address corresponding

to τi .

(c) Sign M with SKX
i using λi as leaf index to produce σi and update M with PKX

i .

2. Return σHT = (σ0, . . . ,σd−1).

Note that each hyperleaf index should be used to sign at most one message (thus stateful).

Public key extraction. Given a hypertree signature σHT = (σX
0 , . . . ,σX

d−1) which corresponds

to a known message M ∈ {0,1}∗ at hyperleaf index 0 ≤λ< 2h , the hypertree public key can be

extracted with the following steps:

1. For all layer indices i ranging from 0 to d :

(a) Derive τi , λi from τi−1 (starting with τ−1 =λ).

(b) Extract the XMSS public key PKX
i from σX

i using M at the address corresponding to

τi and using the λi as leaf index.

(c) Update M with PKX
i .

2. Return the last M computed, i.e, PKX
d−1.

Verification procedure. Given a hypertree public key PKHT , a hypertree signature σHT , and

a message M ∈ {0,1}∗, the signature can be verified to correspond to the message with the

following steps:

1. Extract the public key PK′ using M and σHT .

2. Return True if PK′ = PKHT , False otherwise.

7.5 SPHINCS-256

SPHINCS-256 is the standard instantiation of the SPHINCS signature scheme. The scheme

combines a hypertree with a bottom layer of HORST key pairs.

112

7.5 SPHINCS-256

Hash functions. Table 7.2 lists all the hash functions involved in SPHINCS-256. The scheme

relies on the cryptographic hash functions BLAKE-256 and BLAKE-512 [Aum+14], as well

as ChaCha12κ(x)i (i.e., the stream cipher ChaCha12 [Ber08a] called i > 0 times with κ ∈ Bn

as the key, and x ∈ {0,1}64 as the nonce). The function πChaCha refers to the permutation

involved in ChaCha12, while Chop(x, i) truncates a bitstring x down to the bit length of i > 0.

The constant C corresponds to the string "expand 32-byte state to 64-byte state!"
encoded in ASCII. Note that in SPHINCS-256, the outputs of most hash function calls are

XORed with a public bitmask to obtain a unique hash function family per user and, thus,

mitigate multi-target attacks.

Function Input Implementation Output

F M1 ∈Bn Chop(πChaCha(M1||C),256) y ∈Bn

Fα (A,K) ∈Bα×Bn BLAKE-256(K ||A) y ∈Bn

F (M ,K) ∈B∗×Bn BLAKE-512(K ||M) y ∈Bn

H (M1, M2) ∈Bn ×Bn Chop(πChaCha(πChaCha(M1||C)⊕
y ∈Bn

πChaCha12(M2||0256)),256)
Gl SEED ∈Bn ChaCha12SEED(0)l (s0, . . . , sl−1) ∈Bln

H (R, M) ∈Bn ×B∗ BLAKE-256(R||M) D ∈Bm

Table 7.2: Hash functions involved in SPHINCS-256.

SPHINCS-256 implements the ℓ-compression function Tℓ in W-OTS+ by treehashing3 the ℓ in-

put values, while the chaining pseudorandom function C i is simply obtained by consecutively

applying F .

The addressing scheme of SPHINCS-256 is simply implemented by concatenating the layer

index with the tree index and the leaf index, where these indices are represented in binary:

A(l ,τ,λ) = (l ||τ||λ),

with l ∈ {0,1}4, τ ∈ {0,1}55, and λ ∈ {0,1}5, resulting thus in an address of α= 8 bytes.

Parameters. SPHINCS-256 is parameterized with the following:

• n = 32 : number of bytes of security.

• m = 64 : number of bytes of the digest.

• α = 8 : number of bytes in an address.

• k = 32 : number of elements in a HORST signature.

• t = 216 : number of leaves in a HORST tree.

• W = 2ω = 24 : W-OTS+ parameters.

• h′ = h/d = 60/12 : hypertree parameters.

3This process is referred to as an L-tree compression in the original submission.

113

Chapter 7. SPHINCS and SPHINCS+

Key generation. The SPHINCS-256 signing key consists of two secret seeds SK1 ∼U (Bn) and

SK2 ∼U (Bn):

• SK1 is used to derive the key pairs of all the hash-based instances involved in the scheme.

• SK2 is used to deterministically choose a starting HORST in an unpredictable way.

The SPHINCS-256 public key PK1 consists of the public key of the hypertree, as well as a public

bitmask PK2 that is uniformly generated to make all the hash function calls unique per user.

Signing procedure. Given a SPHINCS-256 signing key (SK1, SK2), the scheme signs a message

M ∈ {0,1}∗ with the following procedure:

1. Generate (R1,R2) = F (M , SK2).

2. Compute D =H (M ,R1).

3. Let τ be the first (d −1)h′ bits of R2, and λ the next h′, so that A = (d ||τ||λ).

4. Generate the HORST signing key SKH = Fα(A, SK1) and let PKH be its public key.

5. Sign D with SKH to produce σH = ((σ0,auth0), . . . , (σk−1,authk−1), (N0, . . . , N2τ−x−1)).

6. Sign PKH with the hypertree starting at tree index τ and leaf index λ to produce σHT =
(σX

0 , . . . ,σX
d−1).

7. Return Σ= (τ,λ,R1,σH ,σHT).

Verification procedure. Given a SPHINCS-256 public key PK1 and the public bitmasks,

the scheme verifies that a SPHINCS-256 signature Σ= (τ,λ,R1,σH ,σHT) corresponds to the

message M ∈ {0,1}∗ with the following procedure:

1. Compute D =H (M ,R1).

2. Extract PKH , the public key of the HORST at A = (d ||τ||λ), from D and σH .

3. Extract PKHT , the public key of the hypertree at tree index τ and leaf index λ, from PKH

and σHT = (σX
0 , . . . ,σX

d−1).

4. Return True if PKHT = PK1, False otherwise.

7.6 SPHINCS+

SPHINCS+ is a stateless signature scheme which combines FORSs with a hypertree. SPHINCS+

signs the digest of a message with a FORS chosen at random for which the key pair is authenti-

cated by the hypertree. Figure 7.9 illustrates the SPHINCS+ structure.

Hash functions. In the original submission of SPHINCS+, different4 hash functions are used

depending on the operation. Table 7.3 summarizes all the hash functions and pseudorandom

4Even though the functions are listed separately, all the hash functions involved in SPHINCS+ are instantiable
from a single cryptographic hash function such as SHA2-256.

114

7.6 SPHINCS+

functions involved in SPHINCS+. Given a SPHINCS+ signing key SK1, SK2, and public key PK1,

PK2, the parameters column includes public and secret seeds (resp., PK1, PK2, and SK2) that

make hash function calls unique per key pair, and contextual information (i.e., ADRS, R, opt)

that makes hash function calls unique per use. These are sometimes considered implicitly

given in the notation.

Function Parameters Input Output

Tl (PK2,ADRS) ∈Bn ×Bα (x1, . . . , xl) ∈Bln y ∈Bn

F (PK2,ADRS) ∈Bn ×Bα x ∈Bn y ∈Bn

H (PK2,ADRS) ∈Bn ×Bα (xL, xR) ∈B2n y ∈Bn

PRF (PK2,ADRS) ∈Bn ×Bα SK1 ∈Bn s ∈Bn

PRFmsg (SK2,opt) ∈B2n M ∈B∗ R ∈Bn

Hmsg (PK1,R) ∈B2n M ∈B∗ (md,ADRS) ∈Bm

Table 7.3: Hash functions involved in SPHINCS+.

The addressing scheme of SPHINCS+ is extended to uniquely address all hash function calls

(rather than only XMSSs). Concretely, an address in SPHINCS+ represents each hash structure

by a unique bytestring (of size α= 32) which is composed of different fields, including notably

the tree index that is used to uniquely address every tree involved in the scheme (FORS or

XMSS), the leaf index to uniquely address the leaves, and also the hash index which, in the

context of W-OTS+, refers to the position of the element in the chain.

In SPHINCS+, the sequences of pseudorandomly generated numbers are obtained with PRF:

Gl (PK2,ADRS)(x) := (PRF(PK2,ADRS(0))(x), . . . ,PRF(PK2,ADRS(l−1))(x)),

where ADRS(i) is the initial address of the hash structure where the field corresponding to the

index of the secret value has been updated to i .

Finally, the chaining pseudorandom function in SPHINCS+ is defined as follows:

Ci (PK2,ADRS)(x) := (F (PK2,ADRSi−1) ◦ · · · ◦ F (PK2,ADRS0))(x),

where ADRSi is the initial address of the hash structure where the field corresponding to the

hash index has been updated to i .

Parameters. SPHINCS+ is parameterized with the following:

• n : number of bytes of security.

• k, t = 2a : FORS parameters.

• W = 2ω : W-OTS+ parameters.

• h′ = h/d : hypertree parameters.

The number of bytes in the digest is m = ⌊(ka +7)/8⌋+⌊(h −h′+7)/8⌋+⌊(h′+7)/8⌋.

115

Chapter 7. SPHINCS and SPHINCS+

Instance n k t W h d h′ m

SPHINCS+-128s 16 10 215 24 64 8 8 27
SPHINCS+-128f 16 30 29 24 60 20 3 43
SPHINCS+-192s 24 14 216 24 64 8 8 36
SPHINCS+-192f 24 33 28 24 66 22 3 42
SPHINCS+-256s 32 22 214 24 64 8 8 47
SPHINCS+-256f 32 30 210 24 68 17 7 47

Table 7.4: Standard SPHINCS+ parameters sets, as submitted in the third round of the NIST
post-quantum standardization process [Hül+20].

Key generation. The SPHINCS+ signing key consists of two secret seeds SK1 ∼ U (Bn) and

SK2 ∼U (Bn):

• SK1 is used to derive the key pairs of all the hash-based instances involved in the scheme.

• SK2 is used to deterministically choose a starting FORS in an unpredictable way.

The SPHINCS+ public key PK1 consists of the public key of the hypertree as well as a public

seed PK2 that makes hash function calls unique per user.

Signing procedure. Given a SPHINCS+ signing key (SK1, SK2), the scheme signs a message

M ∈ {0,1}∗ with the following procedure:

1. Generate R = PRFmsg(SK2,opt)(M) where opt ∈ Bn is uniformly drawn at random to

enable randomized signing.

2. Compute (md,ADRS) = Hmsg(PK1,R)(M).

3. Sign md with the FORS at ADRS using SK1 to produce σF , and let PKF be the FORS public

key.

4. Sign PKF with the hypertree to produce σHT = (σX
0 , . . . ,σX

d−1).

5. Return Σ= (R,σF ,σHT).

In the above, R is not simply replaced by a uniform number to mitigate bad randomness [Hül+20].

Verification procedure. Given a SPHINCS+ public key PK1, the scheme verifies that a

SPHINCS+ signature Σ = (R,σF ,σHT) corresponds to the message M ∈ {0,1}∗ with the fol-

lowing procedure:

1. Compute (md,ADRS) = Hmsg(PK1,R)(M).

2. Extract PKF , the public key of the FORS at ADRS, from md and σF .

3. Extract PKHT , the public key of the hypertree at the leaf index given by ADRS, from PKF

and σHT = (σX
0 , . . . ,σX

d−1).

4. Return true if PKHT = PK1, false otherwise.

116

7.6 SPHINCS+

PK1

PKW
2,2

W-OTS+ σW
2

PKW
1,1

W-OTS+ σW
1

PKW
0,2

W-OTS+ σW
0

PKF

s0
3 s1

1 s2
2

Figure 7.9: Illustration of a SPHINCS+ structure.

117

8 Differential power analysis of
SPHINCS-256

The content of this chapter is based on the work:

[Kan+18] Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane Krämer, and Jo-

hannes Buchmann. “Differential Power Analysis of XMSS and SPHINCS”. in:

COSADE 2018: 9th International Workshop on Constructive Side-Channel Anal-

ysis and Secure Design. Ed. by Junfeng Fan and Benedikt Gierlichs. Vol. 10815.

Lecture Notes in Computer Science. Singapore: Springer, Heidelberg, Germany,

Apr. 2018, pp. 168–188. DOI: 10.1007/978-3-319-89641-0_10

Context. During the second half of the 2010s, the IETF (Internet Engineering Task Force)

devoted significant efforts towards the standardization of the stateful XMSS, resulting in

the publication of RFC 8391 (Request For Comments) in [Hue+18]. In the RFC, hash-based

digital signatures are claimed to be “naturally resistant to most kinds of side-channel at-

tacks” [Hue+18, §1] as an argument in favor of their adoption. While the claim especially

refers to timing attacks, no systematic study of the side-channel resistance of hash-based

cryptography was conducted at the time. Consequently, a deeper look into the resistance of

side-channel weaknesses of hash-based cryptography was desirable.

In 2017, Kannwischer addressed the conjectured resistance of XMSS against side-channel

attacks in [Kan17] and, in particular, describes a theoretical DPA of an XMSS implementation

based on a SHA2-256 pseudorandom number generator. The attack would enable the recovery

of the signing key, resulting thus in a total security break, but does not apply to the parameters

described in the RFC. Independently, in [Gen17], the present author uncovered a similar

vulnerability in one of the pseudorandom function of SPHINCS-256 (based on BLAKE-256)

but did not manage to provide any practical attack.

119

https://doi.org/10.1007/978-3-319-89641-0_10

Chapter 8. Differential power analysis of SPHINCS-256

The current chapter is built upon the two above studies and extends the power analysis

of [Gen17] with the methodology of [Kan17] to mount a full-fledged side-channel attack

against SPHINCS-256 that is applicable within the standard parameters.

Results. In this chapter, we analyze the side-channel resistance of SPHINCS-256 with a

focus on DPA resistance. We present a novel DPA vulnerability of the BLAKE-256-based

pseudorandom function used within SPHINCS-256 (see Section 7.5). The attack is practical

for the actual parameters of SPHINCS-256.

Outline. We describe in Section 8.1 a DPA on a BLAKE-256-based pseudorandom number

generator which applies to SPHINCS-256, analyze its impact, and discuss implications for

implementers. We present a countermeasure in Section 8.3, then conclude in Section 8.4.

8.1 Attack description

As detailed in Section 7.5, SPHINCS-256 relies on XMSSMT , HORST, and a stateless way of

addressing hash-based instances within the scheme. Since the HORST hash tree construction

does not leak anything about its secret key, we can assume this component to be side-channel

resistant. Moreover, XMSSMT can also be assumed secure by the analysis by [Kan+18]. This

leaves us only with the stateless way of computing the pseudorandom number generator

seeds, which we now analyze.

8.1.1 SPHINCS-256 pseudorandom function analysis

In SPHINCS-256, the W-OTS+ and HORST secret seeds are generated with BLAKE-256(SK1 || A)

where SK1 ∈ {0,1}256 is the SPHINCS-256 secret key, A ∈ {0,1}64 the address of the key pair,

and BLAKE-256 the hash function [Aum+14]. Recovering SK1 would therefore result in a

universal forgery as an adversary with access to SK1 could follow the signing procedure with

an arbitrary message and uniform (R1,R2), and still produce a valid signature. We now present

a 6-DPA attack (as described in Section 2.1.3.1) on the BLAKE hash function in the context of

SPHINCS-256 that recovers one 32-bit chunk of the secret key SK1.

DPA. The BLAKE-256 compression procedure takes 12 similar rounds during which the

input is mixed. The goal is to subsequently recover intermediate values at certain points in

the procedure, to eventually recover one secret chunk. As these values are mixed with variable

values early in the procedure, the DPA focuses on the first two rounds. Within SPHINCS-256,

the first round is summarized in Algorithm 8.1. Here, the values vi for 0 ≤ i < 15 are initialized

with known constant values. A general mixing subroutine Mix involved in these steps is shown

in Algorithm 8.2. Here, Mi ∈ {0,1}32 for 0 ≤ i < 15 is a chunk of the input padded with a

constant and known padding. The function σz (i) is a permutation that depends on the round

0 ≤ z < 12. Again, the values of Ci for 0 ≤ i < 15 are given constants.

120

8.2 Experimental verification

Algorithm 8.1 Round z = 0 of BLAKE-256 compression algorithm [Aum+14].

Input: (s0, . . . , s7) — secret key SK1 split into 8 chunks of 32 bits each
Input: (a0, a1) — address A split into two chunks of 32 bits each

1: Mix(v0, v4, v8, v12; s0, s1)
2: Mix(v1, v5, v9, v13; s2, s3)
3: Mix(v2, v6, v10, v14; s4, s5)
4: Mix(v3, v7, v11, v15; s6, s7)

5: Mix(v0, v5, v10, v15; a0, a1)
6: Mix(v1, v6, v11, v12; 0x80000000,0x00000000)
7: Mix(v2, v7, v8, v13; 0x00000000,0x00000001)
8: Mix(v3, v4, v9, v14; 0x00000000,0x00000140)

Algorithm 8.2 Mix procedure involved in Algorithm 8.1.

Input: (va , vb , vc , vd) — intermediate values of 32 bits each
Input: (Mσz (e), Mσz (e+1)) — hash function input chunks of 32 bits each

1: va ← (va + vb)+ (Mσz (e) ⊕Cσz (e+1))
2: vd ← (vd ⊕ va)≪ 16
3: vc ← vc + vd

4: vb ← (vb ⊕ vc)≪ 12

5: va ← (va + vb)+ (Mσz (e+1) ⊕Cσz (e))
6: vd ← (vd ⊕ va)≪ 8
7: vc ← vc + vd

8: vb ← (vb ⊕ vc)≪ 7

In Algorithm 8.1, line 5 involves v0, v5, v10, and v15, which all respectively depend on two

constant chunks of SK1, and the address. When the Mix procedure is unrolled, the operation

v0 ← (v0 + v5)+ (a0 ⊕C9) at line 1 involves (v0 + v5), and (a0 ⊕C9): the first half of the address

A masked with a constant. By targeting this addition, we can recover (v0 + v5) with a first DPA.

Once recovered, the following values for v5, v10, and v15 can be consecutively recovered with

additional DPA. Since the rest of the Mix procedure does not involve any other unknown value,

and since these values are not mixed again during round 0, they are, therefore, all known at

the beginning of round 1.

In round 1 of the BLAKE-256 compression algorithm, Mix(v1, v5, v9, v13; s4, s5) is called. Line 1

in Algorithm 8.2 for this call involves v5 which has been recovered from before, and v1 which

can be recovered with a fifth DPA. Finally, a sixth DPA on (v1 + v5)+ (s4 ⊕C5) can recover s4,

which consists of one chunk of 32 bits of the secret key SK1.

8.2 Experimental verification

In this section, we mount the attack described in Section 8.1 on a custom microcontroller.

8.2.1 Setup

The poewr analysis was performed on the Arduino Due framework detailed in Section 2.1.1

through electromagnetic emanations. The attack considers the BLAKE-256 reference imple-

mentation [Aum+14] with an additional assumption: the addition of (va + vb) at lines 1 and 4

in Algorithm 8.2 is performed before the rest. This makes the recovery of va or vb alone harder,

but should not affect our results. We provide the code that was used for evaluating the attack

at [Kan+17].

121

Chapter 8. Differential power analysis of SPHINCS-256

8.2.2 Experiment

To confirm the practicality of the attack, we performed the first two DPA of our attack on real

traces.

Traces collection. We collected t = 1000 different traces of the two targeted operations,

where the secret key SK1 was fixed and the addresses A were drawn uniformly at random.

This many traces can be obtained by signing around 175 different messages, as BLAKE-256 is

called on 7 different layers with a different a0 for each signature. Figure 8.1 shows the average

electromagnetic emanation of the two targeted operations next to each other. We use the HW

leakage model.

Results. We evaluated the relation between the power traces and the guesses on, first,

(v0+v5), and, then, on v15, using Pearson’s correlation coefficient with a partial DPA on 16 bits,

as explained in Section 8.1. Results for both the addition and the XOR operation are shown

in Figure 8.1. The upper plots show the PCC of 216 guesses on the most significant bits of the

targeted value, while the lower plots show the power traces average. It was observed that the

correct values were those with the highest correlation coefficient in absolute value with v0+v5

(for the addition) and with v15 (for the XOR), respectively. Similar results were found with the

16 least significant bits, which confirms that the overall attack can be successfully mounted,

as the other DPAs target the same kind of operations.

Figure 8.1: Power traces average and PCC on 16 bits of the targeted values for the addition and
XOR operations (t = 1000).

122

8.3 Countermeasures

Conclusion. The described attack recovers s4, the fifth 32-bit chunk of SK1. This proof of

concept demonstrates that the stateless construction of SPHINCS-256 is vulnerable to DPA.

Recovering this chunk is expected to lead to the recovery of other chunks. Still, a full-fledged

attack that recovers the entire signing key SK1 needs yet to be mounted.

8.3 Countermeasures

In order to mitigate the effect of this attack, we suggest hiding the order of the Mix procedures.

During a BLAKE-256 round, the first four calls—as well as the next four—do not depend

on each other. Their order can thus be rearranged randomly. This forces an attacker to

synchronize the collected traces, making the DPA more complex.

8.4 Conclusion

In this chapter, we analyzed the side-channel resistance of SPHINCS-256, with a focus on

DPA resistance. We presented a novel DPA attack on the BLAKE-256-based pseudorandom

function used within SPHINCS-256 which is shown to be practical for the actual parameters of

SPHINCS-256. Future work could examine the efficiency of the proposed countermeasure.

123

9 Fault analysis of SPHINCS+

The content of this chapter is based on the work:

[Gen23] Aymeric Genêt. “On Protecting SPHINCS+ Against Fault Attacks”. In: IACR

Transactions on Cryptographic Hardware and Embedded Systems 2023.2 (2023).

https://tches.iacr.org/index.php/TCHES/article/view/10278, pp. 80–114. ISSN:

2569-2925. DOI: 10.46586/tches.v2023.i2.80-114

Context. In the previous chapter, SPHINCS has been demonstrated to be vulnerable to a

DPA that recovers the signing key by analyzing the power consumption of the operations in

the BLAKE-256 function. While this result may extend to SPHINCS+, the attack is specific to

the actual implementation of the underlying hash function and requires a path of attack as

the one studied in the previous chapter. As a result, the attack cannot be applied if, say, the

hash function used is unknown or if no such path can be identified in the implementation of

the function.

In this chapter, we present a side-channel attack against SPHINCS+ that works regardless

of the hash function used. The attack was originally described against SPHINCS in 2018

by Castelnovi, Martinelli, and Prest in [CMP18] and experimentally verified by Genêt et al.

in [Gen+18] and works by faulting (as described in Section 2.2) the construction of any non-top

subtree. The attack enables the forgery of a valid signature for any chosen message once both

a valid and a faulty signature of the same arbitrary message were collected. In 2020, Amiet et al.

mounted the same attack on a custom hardware implementation of SPHINCS+ in [Ami+20].

Even though the attack critically impacts the security of the scheme, an effective countermea-

sure has not been discovered yet. In the work of [CMP18] by Castelnovi, Martinelli, and Prest,

the authors failed to find a specific countermeasure and recommend classical redundancy

instead. The work by Mozaffari Kermani, Azarderakhsh, and Aghaie in [KAA17] proposes

specific error-detection mechanisms in hash function implementations which therefore do

125

https://tches.iacr.org/index.php/TCHES/article/view/10278
https://doi.org/10.46586/tches.v2023.i2.80-114

Chapter 9. Fault analysis of SPHINCS+

not entirely cover the SPHINCS+ signing procedure, as well as a generic countermeasure based

on recomputing hash trees with swapped nodes (i.e., also redundancy). In [Gen+18], Genêt et

al. show that caching the one-time signatures of the hash trees in stateful hash-based signature

schemes effectively protects against similar fault-based forgeries. This countermeasure pre-

vents the recomputation of one-time signatures by storing the signatures of the hash trees that

can still provide new signatures. However, the authors assert that the same countermeasure

applied to stateless schemes is ineffective but do not provide any evidence for the claim. As a

result, the extent to which SPHINCS+ can be protected against fault attacks with this technique

is unclear.

This chapter works in the direction of finding an effective countermeasure by analyzing the

current algorithms that aim to prevent fault-based forgeries. Currently, the official specifica-

tions of SPHINCS+ [Hül+20] present two mechanisms that address fault attacks: randomizing

the signing procedure, and including the public key in the signing procedure so the resulting

signatures can be verified. The chapter therefore analyzes fault injections against SPHINCS+

in presence of these two mechanisms.

Results. Specifically, the contributions are the following:

• First, the paper starts by expanding the universal forgery with fault injections of Castel-

novi, Martinelli, and Prest from [CMP18] to SPHINCS+ when any types of faulty signatures

are obtained. While the core of the attack is identical, the paper particularly shows that

the attack is still applicable even if the adversary has collected two non-verifiable faulty

signatures of the same W-OTS+ keypair.

• Considering the extension, the paper presents a deep analysis of the universal forgery

with a particular attention to the faulty signature collection. The analysis shows that for

all parameter sets the number of queries required to circumvent the first mechanism is

on average within the limit of 264 signatures established by NIST, and that the probability

is very high that a random faulty signature is still verifiable, defeating thus the second

mechanism.

• The paper then revisits the countermeasures based on caching the W-OTS+ signatures in

between the intermediate subtrees as suggested in previous work (see [AE17; Gen+18])

and shows that such countermeasures are ineffective, as an active adversary can always

work around the caching system with a tolerable query complexity, and as a random

fault still leads to an exploitable faulty signature with a marginally lower probability

than without the countermeasure. This analysis is then experimentally verified on the

SPHINCS+ reference implementation using the ChipWhisperer framework.

As a consequence of the above points, the paper concludes that SPHINCS+ is extremely

sensitive to any kinds of faults, and that no other current solution apart from redundancy

effectively protects SPHINCS+ against fault attack. Therefore, all real-world deployments of

SPHINCS+ are recommended to implement redundancy checks to mitigate the risk. Lastly,

126

9.1 Attack description

all source code used to derive each result in the paper is made available at https://www.

github.com/AymericGenet/SPHINCSplus-FA. The repository notably features a SPHINCS+

implementation entirely developed in Python, as well as tools to mount the fault attack in

practice.

Outline. The chapter is structured as follows: Section 9.1 describes the fault attack on

SPHINCS+ which is analyzed in Section 9.2. Countermeasures are discussed and analyzed in

Section 9.3. Finally, the chapter reports experimental results of the countermeasures analyses

in Section 9.4, and concludes with a discussion in Section 9.5.

9.1 Attack description

In their original attack in [CMP18], Castelnovi, Martinelli, and Prest present a fault attack

that forces a W-OTS+ key pair to sign a corrupted message by injecting a fault during the

construction of any non-top subtree. Along with the valid (i.e., non-faulted) signature of

the subtree, the resulting W-OTS+ faulty signature is used to compromise the corresponding

W-OTS+ key pair under a two-message attack and provide a valid signature for another subtree

for which the secrets are known. This process—similar to a tree grafting—enables the forgery

of an overall signature for any message.

This section conducts a fault analysis (as described in Section 2.2) of SPHINCS+ and expands

the attack from [CMP18] to any combination of valid and faulty signatures obtained.

Attack preliminaries

Target. In the following, we consider a target device which runs any instance of SPHINCS+

with a fixed and unknown signing key, but a known public key. Furthermore, such instance is

supposed hardened with randomized signing (as described in Section 7.6) using a source of

true randomness.

Adversarial model. The threat model considers an adversary who has access to a number of

valid and faulty signatures (along with their messages) produced by the target device. The goal

of the adversary is to forge a SPHINCS+ signature that verifies any chosen message under the

target device’s public key.

Fault characteristics. The faulty signatures consist of outputs from the target device when

a single unconstrained corruption of one-to-many bits occurs in any value involved in the

entire SPHINCS+ signing procedure. Such an outcome can happen due to the accidental or

intentional effect of, e.g., the target device overheating [Bar+12], voltage disturbances [Bar+12],

or row-hammer [Kim+14]. The typical use cases where the fault model is relevant include

all scenarios in which a large number of signatures may be queried, such as with embedded

devices, or TLS.

127

https://www.github.com/AymericGenet/SPHINCSplus-FA
https://www.github.com/AymericGenet/SPHINCSplus-FA

Chapter 9. Fault analysis of SPHINCS+

Due to their significant cost compared to other instructions, the fault is further assumed

to occur in a hash function call. Moreover, such a fault is supposed to cause the output of

the hash function to completely deviate from its intended value and be uniformly drawn at

random in the co-domain of the hash function. This is aligned with the avalanche property

of cryptographic hash functions in which a single bit flip early in the procedure causes an

extremely different output. Besides, even if a bit flip occurs in the output of a hash function,

such a bit flip will propagate in subsequent hash function calls and eventually cause uniform

outputs (unless, of course, the fault hits the output of the very last hash function call of the

hash structure).

9.1.1 Signatures collection

In a first phase, the adversary requires to collect both valid and faulty SPHINCS+ signatures

from the target device.

Verifiability. Distinguishing between valid and faulty signatures is not straightforward,

as faulty signatures can still verify their message under the right public key. Instead, we

differentiate two types of signatures:

1. Verifiable signatures: signatures that still verify their associated message under the public

key of the device.

These signatures generally correspond to valid signatures, but can also correspond to

faulty signatures for which a fault occurred during the derivation of any node in an

authentication path. This property enables the correct rederivation of all the subtree

roots that were involved in the signature, as well as a necessarily valid top part.

2. Non-verifiable signatures: signatures that do not verify their associated message under

the public key of the device.

While these signatures are necessarily faulty, there are two further distinctions of non-

verifiable signatures that can be made:

• Non-verifiable but correct: all W-OTS+ signatures still correspond to actual W-OTS+

values at correct addresses.

This type of signatures is obtained when a fault occurs on the path from the leaf to

the root of a subtree. No subtree root can be recovered for sure from this kind of

signature (unless the layer index at which the fault occurred is known).

• Non-verifiable and incorrect: the W-OTS+ signatures do not correspond to W-OTS+

values.

This type of signatures is typically obtained when the entire output is corrupted; an

outcome that commonly occurs when faulting a device. These signatures do not

divulge any information and need to be discarded.

128

9.1 Attack description

Figure 9.1 shows two examples of a faulty XMSS signature: a verifiable one, and a non-verifiable

but correct one:

• In the left subfigure, the fault (�) hits the computation of a node in the authentication

path, leading thus to a faulty but known authentication path node A′
1.

• In the right subfigure, the fault (�) hits the computation of a node in the path from the

leaf used to the root, leading thus to a faulty but unknown path node.

In both case, the computation of the root has deviated from its intended value. However, in the

case of the verifiable signature, the root can be recomputed from the (faulty) authentication

path and the W-OTS+ public key, while the root is unrecoverable in the case of the non-

verifiable but correct signature, as the faulty computation was performed internally (and, thus,

not exposed through the signature).

...

W-OTS+ σW

r ′

PKW

�

A′
1

A0

(a) Verifiable signature.

...

W-OTS+ σW

r ′

PKW

�A1

A0

(b) Non-verifiable signature.

Figure 9.1: Examples of a verifiable and non-verifiable but correct faulty XMSS signatures.

Fault exploitability. In addition to the above nomenclature, a faulty signature is said to be

exploitable when the resulting signature contains a faulty W-OTS+ signature which discloses

unintentional secret values of the associated W-OTS+ key pair. Such an outcome occurs only

when a fault hits any non-top subtree (including the ones in FORS).

Figure 9.2 shows two examples of a faulty XMSS signature: an exploitable one, and a non-

exploitable one:

• In the left subfigure, the fault (�) hits an XMSS for which the root is signed by a W-OTS+

in another XMSS.

• In the right subfigure, the fault (�) hits the top XMSS layer for which the root is not signed.

In the case of the exploitable signature, the W-OTS+ key pair is used to sign a faulty message

(i.e., the faulty root of the XMSS). However, in the case of the non-exploitable signature, even

though the fault has hit an XMSS, no W-OTS+ key pair is used to sign the faulty result.

129

Chapter 9. Fault analysis of SPHINCS+

PK

PKW
1,2

W-OTS+ σ̂1

PKW
0,1

�

(a) Exploitable signature.

PK′

PKW
1,2

W-OTS+ σ1

PKW
0,1

�

(b) Non-exploitable signature.

Figure 9.2: Examples of an exploitable and non-exploitable faulty XMSS signatures.

An exploitable signature alone is not sufficient to compromise a W-OTS+ key pair. At least one

more signature of the same W-OTS+ (such as the valid one) is needed as well. In this case, the

secret values in both signatures can be used to forge the signature for a counterfeit XMSS (or

FORS). As a result, the next step of the attack aims to determine the compromised W-OTS+s

by identifying the different signatures that correspond to a same key pair.

Compromised W-OTS+ identification. Once valid and faulty SPHINCS+ signatures {Σi : 0 ≤
i < N } have been collected, the W-OTS+ signatures in the SPHINCS+ signatures need to be

arranged by layer and address:

1. Derive the ADRS of each W-OTS+ signature in all Σi (0 ≤ i < N) from the hypertree leaf

index obtained in (_,ADRS) = Hmsg(R)(msg) (see Section 7.4.2).

2. Map all the W-OTS+ signatures in Σi to their respective layer and ADRS.

If two or more different W-OTS+ signatures are mapped to a same ADRS at the end of the

arrangement, then the corresponding W-OTS+ key pair is said to be compromised. In this

case, such collection of W-OTS+ signatures is referred to as the faulty W-OTS+ signatures

and are denoted by (σ̂(i))M
i=0, while their respective full SPHINCS+ signatures are denoted by

(Σ̂(i) : σ̂(i) ∈ Σ̂(i))M
i=0. We denote their layer index1 by l∗ ∈ {0, . . . ,d}, and denote their address by

ADRS∗. Finally, we refer to all layers below (resp. above) the faulted layer as the bottom part

(resp. as the top part) of the hypertree, as illustrated in Figure 9.3.

1Note that l∗ = 0 means that the fault has hit the FORS layer, and that l∗ = d means that the fault has hit the top
XMSS which does not lead to an exploitable signature.

130

9.1 Attack description

...

W σl∗+1

XMSS

W (σ̂(i)
l∗)M

i=1

XMSS

W σl∗−1

...

Compromised subtree

Compromised W-OTS+ Faulty W-OTS+ signatures

Faulted layer−1 ≤ l∗−1 < d −1

Top part

Bottom part

Figure 9.3: Terminology used throughout the description of the attack.

9.1.2 Faulty signatures processing

The next step processes the faulty SPHINCS+ signatures identified in the previous section to

extract the information that enables the universal forgery.

Secret values identification. As the elements in a W-OTS+ signature correspond to secret

values associated to chunks of ω bits (see Section 7.2.1), the following process aims to identify

the value of the chunks that are associated to each element.

Such a process depends on the types of signatures obtained:

• Case 1: At least one verifiable signature is available.

Given a verifiable signature, the correct public key of the compromised W-OTS+ can be

extracted from the SPHINCS+ signature (see Section 7.2.1). Note that the integrity of the

extracted public key must be preserved even when its corresponding subtree was faulted,

as the signature verifies the extracted key under the correct SPHINCS+ public key.

The extracted W-OTS+ public key can then be used to identify all the secret values in

the other signatures, including the non-verifiable (but valid) ones. Strictly speaking,

given the W-OTS+ public key PKW = (p1, . . . , pℓ) and any type of W-OTS+ signature σ̂W =
(σ̂1, . . . , σ̂ℓ), the secret values are identified with the following exhaustive search:

1. Create the next ω-bit chunk bi corresponding to σ̂i (1 ≤ i ≤ ℓ).

2. Check that the value is correct with CW −1−bi (PK2,ADRS∗(bi))(σ̂i) = pi .

If no value leads to the W-OTS+ public key element, then the σ̂W is incorrect.

Complexity. Extracting the public key of the compromised W-OTS+ is equivalent to

running a truncated SPHINCS+ verification procedure with l∗ layers (see Section 7.6),

which therefore amounts to an average number of hash function calls of:

2+k(a +1)+ l∗(ℓ(W −1)/2+1+h′).

131

Chapter 9. Fault analysis of SPHINCS+

Now, suppose that the ω-bit chunks (b̂(i)
1 , . . . , b̂(i)

ℓ
) that correspond to the W-OTS+ signa-

ture (σ̂(i)
1 , . . . , σ̂(i)

ℓ
) are uniformly distributed. For 1 ≤ j ≤ ℓ, finding the value of the chunk

b̂(i)
j that corresponds to σ̂ j requires W −1−x applications of F for a hypothesized initial

position 0 ≤ x ≤ W −1 until the resulting value equals pi . As each value occurs with

probability 1/W , the average number of hash function calls is:

W −1∑
x=0

(
1

W

)
(W −1−x) = (W −1)/2.

As there are ℓ blocks in each σ̂W , the overall number of hash function calls for this case

is ℓ(W −1)/2.

• Case 2: Only non-verifiable signatures are available.

Since none of the subtree roots can be recovered for sure, the adversary cannot extract

the compromised W-OTS+ public key from the non-verifiable signatures. However, the

adversary can determine the positions of each W-OTS+ value by using one value as a

reference for the other.

In other words, given a pair of different W-OTS+ signatures, i.e., (σ̂(0), σ̂(1)) where σ̂(0) =
(σ̂(0)

1 , . . . , σ̂(0)
ℓ

) and σ̂(1) = (σ̂(1)
1 , . . . , σ̂(1)

ℓ
), consider the two values σ̂(0)

i , σ̂(1)
i at a same index

1 ≤ i ≤ ℓ. There are two possibilities:

– σ̂(0)
i ̸= σ̂(1)

i : in this case, if both signatures are correct, then there must exist positions

0 ≤ u < v <W such that

Cv (PK2,ADRS∗(u))(σ̂(0)
i) = σ̂(1)

i , or Cv (PK2,ADRS∗(u))(σ̂(1)
i) = σ̂(0)

i .

The above property enables confirming guesses on u and v , which directly leads to

the i th ω-bit chunk of both roots, since the hash applications use different addresses

at each step of the chaining pseudorandom function. As a result, the values are

extracted as follows:

1. Create the next ω-bit chunks u, v respectively corresponding to σ̂(0)
i , σ̂(1)

i (1 ≤
i ≤ ℓ).

2. Check that the values are correct with Cv (PK2,ADRS∗(u))(σ̂(0)
i) = σ̂(1)

i or

Cv (PK2,ADRS∗(u))(σ̂(1)
i) = σ̂(0)

i .

If no such u and v exist, then at least one of the signatures is incorrect.

Complexity. Supposing that all chunks are uniformly distributed, the probability

that b̂(0)
j and b̂(1)

j take different values is 1/(W (W −1)). Since, for a fixed u, the

exhaustive search on v can apply F on the previous hash result, the average number

of hash calls is:
W (W −1)∑

x=1

(
1

W (W −1)

)
x = W (W −1)+1

2
.

132

9.1 Attack description

– σ̂(0)
i = σ̂(1)

i : in this case, if both signatures are correct, then the two values must

correspond to the same ω-bit chunk, but of unknown position in the chaining

pseudorandom function. Another signature with a different value at index i is

required to identify the value of the chunks.

If there are still chunks of unknown positions at the end of the secret values iden-

tification, such positions can be retrieved while extracting the top part of the

SPHINCS+ signature (see below).

An illustration for the two possibilities for σ̂(0)
i , σ̂(1)

i in a chaining pseudorandom function

is shown in Figure 9.4.

. . .

σ(0)
i σ(1)

i

. . .
FADRS(u)

i
FADRS(v)

i

(a) Different positions in C.

. . .

σ(0)
i =σ(1)

i

. . .
FADRS(u)

i
FADRS(v)

i

(b) Same (unknown) position in C.

Figure 9.4: Identifying W-OTS+ values within non-verifiable signatures.

The above process is applied to all faulty W-OTS+ signatures in order to retrieve as many secret

values as possible to forge a signature for a variety of different ω-bit chunks.

Note that since the values at lower positions in the chaining function enable the recomputation

of values at higher positions, it suffices to keep track of the values at the lowest positions only.

As a result, in the following, we refer to the lowest positions learnt by the secret extraction as

the most secret elements which are denoted by (θ̃1, . . . , θ̃ℓ) and are respectively associated to

the ω-bit chunks of (b̃1, . . . , b̃ℓ).

Top part extraction. Extracting a valid top part is required so that the verification of the

forged SPHINCS+ signature leads to the target device’s public key.

The extraction considers the case in which multiple top parts are available due to our fault

model. Under these circumstances, all the top parts available need to be tried out starting

from the compromised W-OTS+ public key until one leads to the target device’s public key.

Let (σX (i)
l∗+1, . . . ,σX (i)

d−1) be the top part of the SPHINCS+ signature Σ̂i (0 ≤ i < M), and PK1

be the SPHINCS+ public key, and suppose that the compromised W-OTS+ public key PKW =
(p1, . . . , pℓ) has been successfully extracted (see above):

1. Extract the hypertree public key PKHT from Tℓ(PK2,ADRS∗)(PKW) and the XMSS signa-

tures (σX (i)
l∗+1, . . . ,σX (i)

d−1) (see Section 7.4.2).

2. Check that PKHT = PK1.

In case there were still ω-bit chunks of unknown values at the end of the secrets extraction,

such chunks may be identified during this part by guessing all of the unknown chunks at once,

133

Chapter 9. Fault analysis of SPHINCS+

deriving the corresponding W-OTS+ public key, and trying this public key with the above steps.

Such a process both confirms the values of the unknown chunks, and extracts a valid top part

of the signature.

Complexity. Verifying that a selected top part is valid requires a truncated SPHINCS+ verifica-

tion procedure starting from the compromised W-OTS+. Along with all the top parts available,

there may be chunks that need to be exhaustively searched in case no verifiable signature was

available (see above). Supposing that the blocks are uniformly distributed, the probability

that, for a fixed index 1 ≤ j ≤ ℓ, all W-OTS+ elements σ̂(i)
j are the same is 1/W M−1. Therefore,

on average, the number of chunks of unknown value is:

E(Non-id. chunks) = ℓ/W M .

Given PKW = (p1, . . . , pℓ), each trial requires one application of Tℓ and the recomputation of

the root of the XMSS right above the faulted layer, as well as the full public key extraction of

(d −1)− l∗ XMSS public keys. Therefore, the average number of hash function calls is:

1+h′+ (d − l∗−1)(ℓ(W −1)/2+1+h′).

9.1.3 Tree grafting

Once the most secret values of a compromised W-OTS+ key pair were successfully extracted

from the faulty signatures, the adversary aims to graft a subtree (or a forest) to the extracted

top part, i.e., find another XMSS (or FORS) for which a valid W-OTS+ signature can be forged

in order to spoof the compromised instance at its own address.

During this step, the adversary attempts to sign the root of a forged FORS or XMSS with the

W-OTS+ secret values at disposal. Let (θ̃1, . . . , θ̃ℓ) be the most secret W-OTS+ values extracted

which correspond to the ω-bit chunks (b̃1, . . . , b̃ℓ), the grafting procedure repeats the following

until successful:

1. Draw SK′ ∈Bn uniformly at random.

2. If l∗ = 0, create a FORS of public key r ′ with SK′ at ADRS∗ (see Section 7.3.2),

else, create an XMSS of public key r ′ with SK′ at ADRS∗ (see Section 7.4.1).

3. Split r ′ and its checksum into chunks (r ′
1, . . . ,r ′

ℓ
) of ω bits.

4. Check that r ′
i ≤ bi for all 1 ≤ i ≤ ℓ.

Once found, the secret key of the grafted subtree is SK′ and its signature is:

σ′X
l∗ = (Cr ′

1−b̃1
(PK2,ADRS∗(b̃1))(θ̃1), . . . ,Cr ′

ℓ
−b̃ℓ

(PK2,ADRS∗(b̃ℓ))(θ̃ℓ)).

134

9.1 Attack description

Complexity. The tree grafting depends on the layer hit:

• In case a FORS needs to be forged (l∗ = 0), the public key derivation amounts to k gener-

ations of FORS trees, each of them requiring a treehash procedure of height log2(t) = a,

in addition to a final application of Tk with all the FORS tree roots:

k

(
t +

a∑
i=0

2i−1

)
+1 = k(3t −1)+1.

• In case an XMSS needs to be forged (1 ≤ l∗ ≤ d −1), the public key derivation amounts

to 2h′
W-OTS+ public keys generations and a treehash procedure of height h′:

2h′
(ℓ+ℓ(W −1)+1)+

h′∑
i=1

2i−1 = 2h′
(ℓW +2)−1.

The probability that one attempt is successful is given by an extension of the work of Bruin-

derink and Hülsing in [BH17]. Given M > 1 different W-OTS+ signatures, supposing that the

chunks (b1, . . . ,bℓ) are uniformly2 distributed, each chunk x occurs with probability 1/W and

enables the forgery of all chunks from x to W −1. Thus, the overall probability that the root of

a forged XMSS can be signed is:

P(Grafting) ≤ 1

W ℓ

(
W −1∑
x=0

(
1−

(
W −1−x

W

)M))ℓ

≤ 1

W ℓ

(
W −

W −1∑
x=0

xM

W M

)ℓ

≤ 1

W ℓ

(
W − 1

W M

(
(W −1)M+1

M +1
+O (

W M)))ℓ

≤ 1

W ℓ

((
M

M +1

)
W +O(1)

)ℓ

≤
(
1−

(
1

M +1

)
W

)ℓ
+O(1) ≈ e−ℓ/(M+1).

9.1.4 Path seeking

The SPHINCS+ signing procedure follows a path in the hypertree depending on the message

and a value R. As a result, the adversary requires to find an adequate value R that makes the

forged signature visit the compromised subtree.

2We call attention to the fact that the uniform hypothesis of the blocks (bℓ1+1, . . . ,bℓ1+ℓ2
) is not rigorous as

these blocks are actually sums of uniform random variables. However, simulations in [CMP18; Gen+18] show that
such a discrepancy is tolerable for our use cases.

135

Chapter 9. Fault analysis of SPHINCS+

Straightforwardly, given the message msg’ to be maliciously signed, the value R is brute-forced

until the corresponding tree index at layer l∗ is the same as the grafted subtree:

1. Draw R ′ ∈Bn uniformly at random.

2. Check that the hypertree leaf index in (_,ADRS) = Hmsg(PK1,R ′)(msg’) leads to the tree

index of the grafted subtree (see Section 7.4.2).

While a single grafted subtree allows the adversary to forge valid SPHINCS+ signatures for

as many messages as desired, note that path seeking depends on the message and therefore

needs to be repeated for each new message.

Complexity. Finding R ′ is equivalent to an exhaustive search of n bytes such that the h −h′l∗

most significant bits of the tree index give the index of the grafted subtree (see Section 7.4.2).

Each trial requires only a single hash function application, and its probability of success is

simply 2−(h−h′l∗). Consequently, the adversary requires 2h−h′l∗ hash function calls on average

to find an appropriate value for R ′.

9.1.5 Universal forgery

Piecing everything together, the adversary uses the grafted subtree and the value R ′ to forge a

bottom part of the signature, then plugs the extracted top part onto the forged part to craft a

valid signature for the malicious message (selected in Section 9.1.4). The procedure goes as

follows:

1. Generate arbitrary key pairs to forge (σ′F ,σ′X
0 , . . . ,σ′X

l∗−1), i.e., all the signatures in the

layers below the grafted subtree (see Section 7.3.2 and Section 7.4.2).

2. Sign σ′X
l∗−1 with the grafted XMSS at address ADRS∗ using SK′ (see Section 7.4.1).

3. Copy the top part for the rest of the signatures.

The final signature that verifies msg′ under the device’s public key is therefore:

Σ′ = (R ′
↑

sought
Section 9.1.4

, σ′F , σ′X
0 , . . . , σ′X

l∗−1︸ ︷︷ ︸
forged

Section 9.1.5

, σ′X
l∗
↑

grafted
Section 9.1.3

, σX
l∗+1, . . . , σX

d−1︸ ︷︷ ︸
extracted

Section 9.1.2

).

The average computational complexity of each step in the universal forgery is shown in

Table 9.1 for all SPHINCS+ parameters sets. These numbers suggest that the fault attack is

feasible in all scenarios, although the number of required hashes varies significantly depending

on the specific layer targeted by the attack. However, even though the reported numbers seem

high, the overall number of required hashes can still be attainable in practice3. This result

is especially important as the fault attack can therefore be successful even if the fault is

uncontrolled. The latter will be analyzed in the next section.

3For reference, for SHA2-256, an Nvidia RTX 3090 is reported to perform 236.95 hashes per second (see [Onl22]).
The actual performance may vary since, in our use cases, the results of previous hash function calls need to be
used as inputs for the next ones.

136

9.1
A

ttack
d

escrip
tio

n

Processing (Section 9.1.2) Path seeking (Section 9.1.4)
Case 1 Case 2 E(Non-id. chunks) (hashes)

(hashes) (hashes) M = 2 3 4 l∗ = 0 1 . . . d−1

128s 28.04 212.04 2.12 0.14 0.01 264 256 . . . 28

128f 28.04 212.04 2.12 0.14 0.01 260 257 . . . 23

192s 28.58 212.59 3.19 0.20 0.01 264 256 . . . 28

192f 28.58 212.59 3.19 0.20 0.01 266 263 . . . 23

256s 28.97 212.98 4.19 0.26 0.01 264 256 . . . 28

256f 28.97 212.98 4.19 0.26 0.01 268 264 . . . 24

Grafting (Section 9.1.3)
FORS (hashes) XMSS (hashes)

M = 2 4 8 16 32 2 4 8 16 32

128s 238.11 229.32 224.25 221.59 220.36 235.34 226.55 221.48 218.81 217.58

128f 233.70 224.90 219.84 217.17 215.94 230.34 221.55 216.48 213.81 212.58

192s 247.92 235.11 227.72 223.84 222.05 244.21 231.39 224.01 220.12 218.33

192f 241.16 228.34 220.96 217.07 215.28 239.21 226.39 219.01 215.12 213.33

256s 254.90 238.06 228.36 223.26 220.91 252.92 236.09 226.39 221.28 218.93

256f 251.35 234.51 224.81 219.71 217.35 248.92 232.09 222.39 217.28 214.93

Table 9.1: Average complexity of each step of the universal forgery for all SPHINCS+ parameters (the ‘f’ instances
stand for “fast”, while the ‘s’ instances stand for “small”).

137

Chapter 9. Fault analysis of SPHINCS+

9.2 Attack analysis

This section analyzes the fault attack described in Section 9.1.

9.2.1 Fault analysis

Since our fault model considers that faults only affect the results of hash functions, the

following counts the number of hash function calls in the entire SPHINCS+ signing procedure

to determine the proportion of calls that, when faulted, lead to an exploitable or a verifiable

faulty signature.

1. Path derivation: R = PRFmsg(SK2,opt)(msg).

• Total hash function calls: 1.

• Fault exploitability: No.

• Signature verifiability: The resulting signature is verifiable (even valid), as R is

anyway included in the signature and the result of a random selection.

2. Digest and initial address: (md,ADRS) = Hmsg(PK1,R)(msg).

• Total hash function calls: 1.

• Fault exploitability: No.

• Signature verifiability: The resulting signature is non-verifiable and incorrect, as an

improper FORS is used to sign an improper digest.

3. FORS signature (i.e., l∗ = 0).

• Total hash function calls: #TotalF = k(3t −1)+1.

• Fault exploitability: Yes.

• Signature verifiability: The verifiability of the resulting signature depends on the

location of the fault in the subtrees:

– A verifiable signature is obtained when a fault hits any value involved in an

authentication path of a FORS tree. Each authentication path requires the

derivation of t −1 secret values, as well as 2a−i − 1 nodes in level 0 ≤ i ≤ a

of a tree. As there are k trees, this amounts to a total number of verifiable

signatures of:

#VerifF = k

(
(t −1)+

a∑
i=0

(2a−i −1)

)
= k(3t −a −3).

– A non-verifiable but correct signature is obtained when a fault hits any value on

the path from a leaf to the root of a FORS tree. The values in a path consist of

the secret leaf derivation, in addition to a single node in all levels of a tree, and

the computation of the FORS public key. As there are k trees of t = 2a leaves,

138

9.2 Attack analysis

this amounts to a total number of non-verifiable but correct signatures of:

#Non-verifF = k

(
1+

a∑
i=0

1

)
+1 = k(a +2)+1.

4. XMSS signature at a non-top layer (i.e., 1 ≤ l∗ < d).

• Total hash function calls: #TotalX = 2h′
(ℓW +2)−1.

• Fault exploitability: Yes.

• Signature verifiability: The verifiability of the resulting signature depends on the

location of the fault in the subtree:

– A verifiable signature is obtained when a fault hits any value involved in the

authentication path of a non-top XMSS. Such an authentication path starts

with the derivation of 2h′ −1 W-OTS+ public keys, as well as the computation

of 2h′−i −1 nodes at each level 1 ≤ i ≤ h′ of the subtree. Every W-OTS+ public

key requires the derivation of ℓ secret values; each of them chained W − 1

times with the chaining pseudorandom function, so that all the results can be

compressed with Tℓ. This amounts to a total number of verifiable signatures

of:
#VerifX = (2h′ −1)(ℓ+ℓ(W −1)+1)+∑h′

i=1(2h′−i −1)

= (2h′ −1)(ℓW +1)+2h′ −h′−1.

– A non-verifiable but correct signature is obtained when a fault hits any value

on the path from a leaf to the root of a non-top XMSS. The values in a path

consist of a single W-OTS+ public key, in addition to a single node in all levels

of a tree. As above, the W-OTS+ public key requires the derivation of ℓ secret

values; each of them chained W −1 times with the chaining pseudorandom

function, so that all the results can be compressed with Tℓ. Since there are h′

levels, this amounts to a total number of non-verifiable but correct signatures

of:

#Non-verifX = ℓW +1+
h′∑

i=1
1 = ℓW +1+h′.

5. XMSS signature at the top layer (i.e., l∗ = d).

• Total hash function calls: #TotalX = 2h′
(ℓW +2)−1.

• Fault exploitability: No.

• Signature verifiability: The resulting signature is non-verifiable but correct, as the

reconstruction of this XMSS does not lead to the SPHINCS+ public key. All the

W-OTS+ signatures involved are valid, however no valid top part can be extracted.

Summing up the hash function calls of all the components above, the grand total of hash

function calls in a single SPHINCS+ signature is therefore given by:

#Total = 1+1+#TotalF +d ·#TotalX = 3+k(3t −1)+d(2h′
(ℓW +2)−1).

139

Chapter 9. Fault analysis of SPHINCS+

Table 9.2 computes the total numbers of possible verifiable and non-verifiable faulty signatures

for both FORS and non-top XMSS in all SPHINCS+ parameters sets. This table shows that a

random fault is much likelier to give a verifiable signature rather than a non-verifiable one,

and so that verifying the signature is not effective in detecting faulty signatures.

FORS (l∗ = 0) XMSS (1 ≤ l∗ < d)
Verif. Non-verif. Verif. Non-verif.

Total Ratio Total Ratio Total Ratio Total Ratio

128s 982,860 0.9998 171 0.0002 143,302 0.9960 569 0.0040
128f 45,720 0.9928 331 0.0072 3,931 0.8745 564 0.1255
192s 2,752,246 0.9999 253 0.0001 208,582 0.9961 825 0.0039
192f 24,981 0.9869 331 0.0131 5,723 0.8747 820 0.1253
256s 1,080,970 0.9997 353 0.0003 273,862 0.9961 1,081 0.0039
256f 91,770 0.9961 361 0.0039 16,106 0.9373 1,077 0.0627

Table 9.2: Proportion of verifiable vs. non-verifiable signatures for faulty FORS and (non-top)
XMSS for all SPHINCS+ parameters sets.

Suppose that a fault can hit any hash function call uniformly at random. The above enumera-

tions lead to the following probabilities:

Fault exploitability. The probability that the faulty signature is exploitable is given by the

proportion of faulty signature outcomes that leads to an exploitable signature:

P(Expl.) = #TotalF + (d −1) ·#TotalX

#Total
= k(3t −1)+1+ (d −1)(2h′

(ℓW +2)−1)

3+k(3t −1)+d(2h′(ℓW +2)−1)
.

Fault verifiability. Similarly, the probability that the faulty signature is verifiable is given by

the proportion of the faulty signature outcomes that leads to a verifiable signature:

P(Verif.) = 1+#VerifF + (d −1) ·#VerifX

#Total

= 1+k(3t −a −3)+ (d −1)((2h′ −1)(ℓW +1)+2h′ −h′−1)

3+k(3t −1)+d(2h′(ℓW +2)−1)
.

Layer hit. Let L = l∗ denote the event that a fault has affected σX
l∗ (i.e., that a hash function

call in the layer l∗−1 is hit by a fault). The probability that L = l∗ is therefore given by the total

number of hash function calls at layer l∗−1:

140

9.2 Attack analysis

P(L = l∗) =

#TotalF

#Total
= k(3t −1)+1

3+k(3t −1)+d(2h′(ℓW +2)−1)
if l∗ = 0,

#TotalX

#Total
= 2h′

(ℓW +2)−1

3+k(3t −1)+d(2h′(ℓW +2)−1)
if 1 ≤ l∗ ≤ d .

Table 9.3 computes the above probabilities given all SPHINCS+ parameters sets. This table

shows that the probability that a random fault leads to a signature that is both exploitable and

verifiable is high.

P(Expl.) P(Verif.) P(L = l∗)
l∗ = 0 1 . . . d −1 d

128s 0.9326 0.9306 0.4607 0.0674 . . . 0.0674 0.0674
128f 0.9669 0.8857 0.3387 0.0331 . . . 0.0331 0.0331
192s 0.9527 0.9513 0.6216 0.0473 . . . 0.0473 0.0473
192f 0.9613 0.8576 0.1495 0.0387 . . . 0.0387 0.0387
256s 0.9162 0.9138 0.3296 0.0838 . . . 0.0838 0.0838
256f 0.9553 0.9095 0.2398 0.0447 . . . 0.0447 0.0447

Table 9.3: Fault analysis results for all SPHINCS+ parameters.

9.2.2 Universal forgery analysis: one-fault model

This section analyzes the use case where the adversary has access to many valid signatures (i.e.,

Mv > 1) but only a single faulty one (i.e., M f = 1) which is supposed exploitable and which

corresponds to layer 0 ≤ l∗ < d . Let N = 2h−h′l∗ be the total number of W-OTS+ key pairs on

layer l∗.

Collecting the corresponding valid signature. The probability that the valid signature

corresponding to the same key pair as the faulty signature is included in the collected Mv

signatures is simply given by:

P(W-OTS+ break) = 1−
(
1− 1

N

)Mv

.

Alternatively, the expected number of valid queries to obtain the corresponding valid signature

is given by a geometric random variable with probability 1/N :

E(Mv) = N .

Table 9.4 computes the expected numbers of valid queries to obtain in order to mount the

universal forgery for each SPHINCS+ parameters set. The average number of queries required

to mount the forgery is in most cases lower than NIST’s security definition for digital signatures

141

Chapter 9. Fault analysis of SPHINCS+

which limits the number of queries to 264 (see [NIS16]).

E(Mv)
l∗ = 0 1 . . . d −1 d

128s 264 256 . . . 28 –
128f 260 257 . . . 23 –
192s 264 256 . . . 28 –
192f 266 263 . . . 23 –
256s 264 256 . . . 28 –
256f 268 264 . . . 24 –

Table 9.4: Average numbers of valid signatures to collect the valid signature corresponding to
a single faulty signature for all SPHINCS+ parameters.

9.2.3 Universal forgery analysis: multiple-fault model

This section analyzes the use case where the adversary has access to multiple valid and faulty

signatures (i.e., Mv > 1, M f > 1) which are all supposed to be exploitable, different, and which

all correspond to the same layer 0 ≤ l∗ < d . Let N = 2h−h′l∗ be the total number of W-OTS+ key

pairs on layer l∗. Also, let
{a

b

}
denote the Stirling number of the second kind which counts the

number of ways to partition a objects into b non-empty subsets.

Faulty signatures collision. As the universal forgery can be mounted with only faulty signa-

tures, the probability that two faulty signatures correspond to the same W-OTS+ key pair is an

instance of the birthday paradox [FGT92]:

P(W-OTS+ break) = 1− N !

N M f (N −M f)!
.

Pair of valid and faulty signatures. Combining the faulty signatures with the valid ones,

the probability that a faulty signature corresponds to the same W-OTS+ key pair as a valid

signature is an instance of the occupancy problem with two types of balls [NS88]:

P(W-OTS+ break) = 1− 1

N Mv+M f

Mv∑
tv=1

M f∑
t f =1

{
Mv

tv

}{
M f

t f

}
N !

(N − tv − t f)!
.

Table 9.5 computes the above probabilities with N = 256 (i.e., when l∗ = d −1 for the 128s,

192s, and 256s parameters sets of SPHINCS+, or l∗ = d −2 for SPHINCS+-256f). This table

shows that the randomness plays in the favor of the adversary, as only very few faulty queries

are required to break a W-OTS+. This number drops even lower when combined with very few

valid queries.

142

9.2 Attack analysis

M f \Mv 0 4 8 16 32 64

4 0.0233 0.0607 0.1177 0.2215 0.3939 0.6325
8 0.1046 0.2215 0.3939 0.6325 0.8647
16 0.3803 0.6325 0.8647 0.9815
32 0.8676 0.9815 0.9996
64 0.9997 1.0000

Table 9.5: Probability of collision with either only faulty queries (under Mv = 0) or with M f

faulty and Mv valid queries (N = 256). Symmetrical values were omitted.

Increasing the numbers of faulty signatures. While a single pair of different W-OTS+ signa-

tures corresponding to a same key pair is enough to mount the universal forgery, the grafting

step becomes easier the more faulty W-OTS+ signatures are obtained for a same key pair (see

Section 9.1.3). In order to study this, notice that collecting M f faulty signatures from N key

pairs can be modeled as a multinomial distribution with uniform probabilities (i.e., pk = 1/N

for 1 ≤ k ≤ N).

The probability that at least one W-OTS+ key pair has been reused c times is an instance of the

maximal frequency in a multinomial distribution. Let sk determine the accumulated number

of W-OTS+ signatures counting from the first W-OTS+ key pair to the kth key pair (so s0 = 0

and sN = M f). Then, from the analysis by Corrado in [Cor11], the transition probability from

sk−1 to sk is given by:

P(sk | sk−1) =
(

M f − sk−1

sk − sk−1

)
πk

sk−sk−1 (1−πk)M f −sk ,

where πk = pk /(
∑N

i=k pk) = (1/N)/(
∑N

i=k 1/N) = 1/(N −k +1).

Given the above probabilities, the stochastic matrix that determines the transitions from sk−1

to sk is defined as follows:

Qk =

P(0 | 0) P(1 | 0) . . . P(M f | 0)

0 P(1 | 1) . . . P(M f | 1)
...

. . .
...

0 . . . 1

 for 1 ≤ k ≤ N −1,

QN =
(

1 1 . . . 1
)⊤

.

Let Q̄k be the result of culling the transition probabilities that assign more than c signatures to

a key pair (i.e., by setting P(sk − sk−1 >C) = 0 for the relevant sk , sk−1) and let Q̄(1)
1 be the first

row of Q̄1.

143

Chapter 9. Fault analysis of SPHINCS+

The probability that the maximum load is no more than c is given by the transition from s1 to

sn which is determined by the following product of stochastic matrices:

P(Max. load ≤ c | M f) = Q̄(1)
1 × Q̄2 ×·· ·× Q̄N .

Alternatively, the expected maximum load given M f faulty signatures is:

E(Max. load | M f) =
M f −1∑

c=0
P(Max. load > c | M f).

Combining this result with the valid signatures, notice that the maximum load is increased by

one by collecting the valid signature of the W-OTS+ for which the maximum load is reached. As

such an event can be modeled as a Bernoulli random variable with probability 1− (1−1/N)Mv ,

we ultimately have:

E(Max. load | Mv , M f) = E(Max. load | M f)+
(
1−

(
N −1

N

)Mv
)

.

Table 9.6 computes the maximum load averages with M f signatures for the N that correspond

to the few first top layers of the SPHINCS+ parameters sets, as increasing the number of

signatures is especially relevant when targeting such layers.

N \M f 64 128 256 512 1,024

23 12.23 21.90 40.26 75.60 144.31
24 7.88 13.35 23.43 42.36 78.50
26 3.96 5.97 9.37 15.33 26.10
28 2.46 3.38 4.77 6.99 10.69
29 2.12 2.74 3.68 5.16 7.48

Table 9.6: Maximum load averages with various numbers of faulty signatures M f in different
layers of N signatures.

Layer coverage. The probability that the collected valid signatures cover the entire layer—in

which case, all valid signatures are known—is an instance of the coupon collector’s prob-

lem [FGT92]:

P(Layer is covered) = N !

N Mv

{
Mv −1

N −1

}
.

Alternatively, the expected number of valid queries to cover the entire layer is given by:

E(Mv to cover layer) = N
N∑

i=1

1

i
, which is Θ(N log N).

144

9.3 Countermeasure analysis

Table 9.7 computes the expected numbers of queries required to cover the few first top layers

of the SPHINCS+ parameters sets, as obtaining all valid signatures is especially relevant when

targeting such layers.

N 23 24 26 28 29 212 216

E(Mv) 24.44 25.76 28.25 210.61 211.77 215.15 219.54

Table 9.7: Average numbers of valid signatures to cover various layers of N signatures.

9.3 Countermeasure analysis

In order to prevent faulty signatures from being collected, the W-OTS+ signatures computed

throughout a SPHINCS+ signing procedure can be cached (i.e., stored in memory, sometimes

temporarily, and then retransmitted without recomputation when requested). Such a process

not only prevents accidental faulty recomputations of a W-OTS+ signature, but also improves

the performances of the SPHINCS+ signature generation. Notice also that the valid W-OTS+

signatures are leakage-agnostic, so the cache can therefore be shared with verifiers (in a

read-only fashion).

In this section, we consider two different strategies of caching W-OTS+s: caching layers and

caching branches.

9.3.1 Caching layers

This strategy, originally proposed in Gravity-SPHINCS [AE17], consists of caching all the

W-OTS+ within one or more layers (starting from the top layer). Since the cache is not updated

with new signature requests, the cache is static and can therefore be added to the public key.

Algorithms. Let c be the number of layers for which all W-OTS+ signatures and public keys

are cached. The countermeasure consists of replacing the key generation algorithm and the

signing procedure algorithm of the hypertree and XMSS by the following:

• The new key generation procedure consists of discovering all the XMSSs from layers

d −1−c to d −1 and storing all the W-OTS+ signatures and public keys on the way to the

top XMSS. The secret and public keys are the same.

This strategy increases the complexity of the key generation by a factor of
∑c

i=0 2h′i =
(2ch′+h′ −1)/(2h′ −1).

• The new signing procedure derives the XMSS signatures for the cached layers by using

the W-OTS+ signatures and public keys from the cache. An n-byte digest msg at hyperleaf

index 1 ≤λ≤ 2h is therefore signed as follows:

145

Chapter 9. Fault analysis of SPHINCS+

1. For 0 ≤ i < d − c:

(a) Derive τi , λi from τi−1 (starting with τ−1 =λ).

(b) Generate the XMSS key pair (SKX
i , PKX

i) at the address corresponding to τi .

(c) Sign r with SKX using λi as leaf index to produce σi and update r with PKX
i .

2. For d − c ≤ i < d :

(a) Derive τi , λi from τi−1 (starting with τ−1 =λ).

(b) Read σW
i from the cache at tree index τi and leaf index λi .

(c) Compute the XMSS authentication path authi starting from the leaf λi and

using, as leaves, the cached W-OTS+ public keys at tree index τi .

(d) Let σi = (σW
i ,authi).

3. Return σHT = (σ0, . . . ,σd−1).

This strategy saves a total of c ×2h′
(ℓW +1) hash function calls in the signing procedure.

Analysis. While the algorithm prevents faulting c W-OTS+ signatures, the new algorithm fea-

tures a reduced total number of hash function calls which therefore impacts the proportion of

vulnerable hash function calls, hence the chance that a random fault produces an exploitable

faulty signature.

In a cached XMSS, the total number of hash function calls is: #TotalX̃ = 2h′−1 −1. This leads to

a new grand total of hash function calls in the SPHINCS+ signing procedure:

#Total = 2+#TotalF + (d − c) ·#TotalX + c ·#TotalX̃

= 3+k(3t −1)+ (d − c)(2h′
(ℓW +2)−1)+ c(2h′ −1).

As a result, since a fault in an XMSS below a cached layer is not exploitable anymore, the

proportion of hash function calls that lead to an exploitable faulty signature is:

P(Expl.) = #TotalF + (d − c −1) ·#TotalX

#Total

= 1+k(3t −1)+ (d − c −1)(2h′
(ℓW +2)−1)

3+k(3t −1)+ (d − c)(2h′(ℓW +2)−1)+ c(2h′ −1)

where 0 < c < d (P(Expl.) = 0 if c = d).

Table 9.8 shows how the probability that a single random fault is exploitable decreases with c

for all SPHINCS+ parameter sets. This table shows that the probability that a random fault gives

an exploitable faulty signature stays fairly high, especially for the fast variants of SPHINCS+.

In terms of memory, let C denote the total number of W-OTS+ signatures cached. We therefore

obtain:

C =
c∑

i=1
2h′i = 2h′

(2ch′ −1)/(2h′ −1).

146

9.3 Countermeasure analysis

P(Expl.)
c = 1 2 3 4 . . . d −1 d

128s 0.8972 0.8591 0.8179 0.7733 . . . 0.6141 0.0000
128f 0.9505 0.9335 0.9158 0.8975 . . . 0.5076 0.0000
192s 0.9287 0.9034 0.8767 0.8486 . . . 0.7539 0.0000
192f 0.9420 0.9218 0.9007 0.8787 . . . 0.2625 0.0000
256s 0.8711 0.8216 0.7670 0.7066 . . . 0.4784 0.0000
256f 0.9327 0.9090 0.8840 0.8578 . . . 0.3864 0.0000

Table 9.8: Analysis of the layer caching countermeasure for all SPHINCS+ parameter sets.

As a W-OTS+ signature consists of ℓ elements of n bytes and since a W-OTS+ public key consists

of a single element of n bytes, caching c layers requires C (ℓ+1)n bytes in total. Table 9.9

shows how the cost of caching layers evolves with c for all SPHINCS+ parameter sets. This

table demonstrates that the memory requirements for this countermeasure blow up very early

and that only the first few top layers can be cached in practice.

Memory (bytes)
c = 1 2 3 4 . . . d

128s 1.43×105 3.68×107 9.43×109 2.41×1012 . . . 1.04×1022

128f 4.48×103 4.03×104 3.27×105 2.62×106 . . . 7.38×1020

192s 3.13×105 8.05×107 2.06×1010 5.28×1012 . . . 2.27×1022

192f 9.79×103 8.81×104 7.15×105 5.73×106 . . . 1.03×1023

256s 5.49×105 1.41×108 3.61×1010 9.24×1012 . . . 3.97×1022

256f 3.43×104 5.83×105 9.36×106 1.50×108 . . . 6.75×1023

Table 9.9: Analysis of the layer caching countermeasure for all SPHINCS+ parameter sets.

9.3.2 Caching branches

This strategy consists of caching all the W-OTS+ signatures and public keys in a path during

a signing procedure. The cache is dynamic and may require to be updated for each new

signature.

As reported in [Gen+18], this strategy completely prevents similar fault-based universal forg-

eries in stateful hash-based signature schemes (such as XMSSMT [HRB13]). This is because

the subtrees involved in stateful schemes provide only a limited number of signatures whose

availability is remembered by the signer. Thus, once computed, the signature of a subtree can

be retained as long as the subtree is involved in new signatures, at which point it is replaced

by the next subtree in line. This prevents faulty recomputations of the signatures by caching

only one W-OTS+ per layer. This section shows that applying the same idea to SPHINCS+ is

ineffective, even when multiple W-OTS+s per layer are cached.

147

Chapter 9. Fault analysis of SPHINCS+

Algorithms. The countermeasure consists of adding a cache of size Cl to each layer 0 ≤ l < d

of XMSSs, where Cl ≤ 2h′l denotes the number of W-OTS+ signatures and public keys that can

be stored in the cache at layer l . The new XMSS signing procedure therefore signs an n-byte

digest msg at leaf index 1 ≤λ≤ 2h′
as follows:

1. Check if the W-OTS+ signature at leaf index λ is in the cache:

• On cache hit, read the signature σW
λ

and PKW
λ

from the cache.

• On cache miss:

(a) If the cache is full, evict the least recent signature.

(b) Use SKX
λ

to produce PKW
λ

and σW
λ

; the W-OTS+ signature of msg.

(c) Put σW
λ

and PKW
λ

in the cache.

2. Compute the authentication path authλ starting from PKW
λ

(using cached W-OTS+ public

keys when accessible).

3. Return σX = (σW
λ

,authλ).

When all caches are filled, this strategy saves an average of
∑d−1

l=0 2h′
(ℓW +1)(Cl /2h−h′l) hash

function calls in the XMSS signing procedure. We assume that all caches are empty at the

device startup.

Analysis. As not all branches of the hypertree can realistically be cached, in order for the

countermeasure to be effective, we suppose that we cache only a significant ratio of a layer.

We furthermore focus on the significantly cached layer, as the layers above are necessarily all

cached while the layers below are only marginally covered.

A faulty signature is exploitable if the fault hits a layer for which the corresponding W-OTS+

signature is uncached. As the cache is dynamically filled, the probability of a cache miss

depends on the number of distinct signatures visited after M queries to the signing procedure.

Let Dl denote the number of distinct visited W-OTS+ signatures in layer 0 ≤ l < d after M

queries, and N = 2h−h′l the total number of W-OTS+ signatures in such layer. Then, the

distribution of Dl is an instance of the occupancy problem [Fel68]:

P(Dl = i) = N !αi ,M

(N − i)!N M
, where αi ,M = 1

i !

i∑
k=1

(−1)i−k

(
i

k

)
kM (1 ≤ i ≤ N).

Now, suppose that a total of Dl ≤ 2h−h′l signatures are cached at each layer 0 ≤ l < d (after

a certain number M of queries). Then, as before, the probability that a fault leads to an

exploitable faulty W-OTS+ signature is derived by counting the number of vulnerable hash

function calls in the procedure. However, in this case, the totals of hash function calls in

all layers behave as random variables which depend on the cache status of each XMSS. So,

148

9.3 Countermeasure analysis

instead of deriving the exact totals, we evaluate the following heuristic:

P(Expl.) = E(#Expl.)

E(#Total)

where E(#Expl.) denotes the average number of hash function calls that lead to an exploitable

faulty signature when faulted, and E(#Total) the average total number of hash function calls in

a SPHINCS+ signing procedure.

Starting with the average total of hash function calls, notice that only the XMSS signing

procedure was changed. Supposing that the cache is uniformly filled, we obtain:

E(#Total) = 2+#TotalF +
d−1∑
l=0

E
(
#TotalX̃l

)
= 2+#TotalF +

d−1∑
l=0

(
2h′ −1+

2h′∑
i=1
P(Cache miss at layer l)(ℓW +1)

)
= 2+#TotalF +

d−1∑
l=0

(
2h′ −1+2h′

(
1− Dl

2h−h′l

)
(ℓW +1)

)
.

The average total of vulnerable hash function calls is determined by the average total number

of hash function calls in each layer of the SPHINCS+ structure. At each layer, such a number

now depends on the number of W-OTS+ cached on the layer, as well as the number of W-OTS+

cached on the layer above. Again, supposing that the cache is uniformly distributed, we obtain:

E(#Expl.) = E
(
#Expl.F̃

)
+

d−2∑
l=0

E
(
#Expl.X̃

)
= P(Cache miss at layer 0) ·#TotalF +

d−2∑
l=0

P(Cache miss at layer l +1) ·E
(
#TotalX̃

)
=

(
1− D2h

2h

)
(3+k(3t −1))+

d−2∑
l=0

(
1− Dl+1

2h−h′(l+1)

)(
2h′ −1+2h′

(
1− Dl

2h−h′l

)
(ℓW +1)

)
.

Table 9.10 shows how the probability that a random fault is exploitable decreases with b

for all SPHINCS+ parameter sets supposing that all the caches are filled to capacity (i.e.,

Dl = min(b,2h−h′l), so after a sufficiently large number of queries M were made). As with

caching layers, since the total number of hash function calls in the entire signing procedure de-

creases with the number of vulnerable hash function calls, the proportion of exploitable faulty

signatures stays fairly high, especially for the fast variants of SPHINCS+. Note however that

such a countermeasure still leaves fewer hash function calls vulnerable than an unprotected

SPHINCS+.

149

Chapter 9. Fault analysis of SPHINCS+

P(Expl.)
b = (2/3)2h′

(2/3)22h′
(2/3)23h′

(2/3)24h′
. . . (2/3)2dh′

128s 0.9292 0.9238 0.9174 0.9098 . . . 0.3172
128f 0.9647 0.9634 0.9620 0.9605 . . . 0.3219
192s 0.9511 0.9485 0.9457 0.9425 . . . 0.3249
192f 0.9585 0.9568 0.9549 0.9528 . . . 0.3052
256s 0.9111 0.9023 0.8917 0.8785 . . . 0.3068
256f 0.9530 0.9507 0.9481 0.9453 . . . 0.3130

Table 9.10: Analysis of the branch caching countermeasure for all SPHINCS+ parameter sets.
The numbers b are rounded up to the next integer.

Since the universal forgery requires at least two recomputations of the same W-OTS+ signature,

we study the number of queries before a W-OTS+ signature needs to be recomputed (i.e., two

cache misses for a same W-OTS+). We solve this problem with a Markov chain (see, e.g., [GS97]

for a reference on the methodology) as shown in Figure 9.5. The corresponding transition

matrix P = (
pi , j

)
is defined as follows (for 0 ≤ i , j ≤ N +2):

pi , j =

min(i ,Cl)/N if j = i ̸= N +1,

(N − i)/N if j = i +1,

(i −Cl)/N if j = N +1 and i >Cl ,

1 if j = i = N +1,

0 otherwise.

0 1 2 . . . Cl Cl +1 . . . N

Re-comp.

1
N−1

N
N−2

N
N−Cl

N
N−Cl−1

N

1
N N−Cl

N

1/N 2/N Cl /NCl /N Cl /N

1

Figure 9.5: Markov chain representing the transitions from the cache being empty to any
W-OTS+ being recomputed. The states (others than “Recomp.”) count the number of cache
misses without recomputation.

The fundamental matrix that counts the average number of discrete steps spent in each state

is computed as follows:

N = (I−Q)−1,

where I is the (N +1)× (N +1) identity matrix, and Q is the (N +1)× (N +1) submatrix of

P without the last column and row. As we start with the cache being empty, the expected

150

9.3 Countermeasure analysis

number of queries M before a W-OTS+ is recomputed is given by summing the first row of the

fundamental matrix:

E(M to recomp.) =
N∑

j=0
N0, j .

Table 9.11 computes the expected numbers of queries required so that any W-OTS+ gets

recomputed for few first layers of all the SPHINCS+ parameter sets, given various cache sizes.

This table shows that the recomputation of a W-OTS+ signature can be triggered with very few

queries.

N \Cl (1/2)N (2/3)N (3/4)N N −1

23 23.53 24.30 24.30 24.89

24 24.26 24.85 25.07 26.13

26 25.89 26.49 26.78 28.52

28 27.69 28.31 28.63 210.83

29 28.63 29.26 29.58 211.97

Table 9.11: Average number of queries such that a W-OTS+ is recomputed for various cache
sizes Cl and different layers of N signatures.

In terms of memory, let C denote the total number of W-OTS+ signatures cached when b

branches are fully cached. As Cl ≤ 2h′l , we have that:

C =
d−1∑
l=0

min(b,2h−h′l).

As with caching layers, a W-OTS+ signature consists of ℓ elements of n bytes and a W-OTS+

public key consists of a single element of n bytes, so caching b layers requires C (ℓ+1)n bytes

in total. Table 9.12 shows the cost of caching various numbers of branches for all SPHINCS+

parameter sets. The memory requirements for this countermeasure blow up very early, so

only the first few top layers are expected to be covered in practice.

Memory (bytes)
b = (2/3)2h′

(2/3)22h′
(2/3)23h′

(2/3)24h′
. . . (2/3)2dh′

128s 8.14×105 1.82×108 4.00×1010 8.53×1012 . . . 7.36×1021

128f 7.14×104 4.91×105 3.71×106 2.80×107 . . . 5.55×1020

192s 1.74×106 3.90×108 8.56×1010 1.83×1013 . . . 1.58×1022

192f 1.68×105 1.16×106 8.81×106 6.69×107 . . . 7.62×1022

256s 3.02×106 6.77×108 1.49×1011 3.17×1013 . . . 2.74×1022

256f 4.13×105 6.08×106 9.12×107 1.36×109 . . . 4.79×1023

Table 9.12: Analysis of the branch caching countermeasure for all SPHINCS+ parameter sets.
The numbers b are rounded up to the next integer.

151

Chapter 9. Fault analysis of SPHINCS+

9.4 Experimental verifications

The following section aims to experimentally verify the fault attack as described in Section 9.1,

the analysis of the fault attack from Section 9.2, and the analysis of the caching countermea-

sures from Section 9.3.

9.4.1 Setup

Hardware. As the fault attack does not require sophisticated glitching technology, our

proof of concept uses the ChipWhisperer framework to perform experiments, as described

in Section 2.2. In our analysis, the DUT (STM32F4) is configured to run at its maximal clock

frequency (i.e., 180 MHz).

Software. We attack the reference implementation of SPHINCS+ from [Flu+22] which was

slightly adapted to run on the Cortex-M4 of the DUT. The instance attacked, which is claimed

to achieve the maximal theoretical security guarantees, is sphincs-shake-256s-robust.

The hash function SHAKE was instantiated with a portable software implementation.

For practicality purposes, the software was further modified to limit the signing procedure to

the computation of a single layer. As a result, the software would use the W-OTS+ keypair of

an XMSS at a fixed layer 0 < l∗ < d to sign the XMSS root at layer l∗−1 addressed by a given

index. The output signature consists of the W-OTS+ signature along with the authentication

path in the XMSS of layer l∗−1.

The laptop communicates with the DUT through UART and the protocol is implemented

using ChipWhisperer’s simpleserial library. The DUT can be commanded to:

• Program the SPHINCS+ secret and public seeds SK1 and PK2.

• Given an address, compute the W-OTS+ signature and the authentication path of the

XMSS at layer l∗−1.

• Retrieve the bytes of the last W-OTS+ signature and authentication path computed.

See https://www.github.com/AymericGenet/SPHINCSplus-FA for the source code.

Fault injection. To collect faulty signatures, the ChipWhisperer is used to inject a glitch in

the system clock of the DUT. We do not synchronize the glitch injection with a trigger signal

as we do not require to hit a precise instruction to collect exploitable signatures. Instead, the

glitch is manually injected after a (progressive) delay that follows the communication with the

DUT.

The glitch characteristics were explored experimentally to favor faulty signatures. Using a

width of 20 samples and a clock offset of −4 samples, we report ≈ 1/3 of output signatures to

be faulty (so ≈ 2/3 of valid outputs).

152

https://www.github.com/AymericGenet/SPHINCSplus-FA

9.4 Experimental verifications

9.4.2 Experiment 1: randomized + cached layer

In the first experiment, we simulate the layer caching countermeasure (see Section 9.3) by

pretending that all the W-OTS+ signatures on the last layer are cached. In practice, such a

cache would amount to 0.55 MB of ROM. The experiment therefore aims to show the feasibility

of an attack on the second last layer (i.e., l∗ = d −2 = 6).

The experiment protocol to query a signature goes as follows:

1. The laptop sends to the DUT three bytes that correspond to the XMSS address at layer

l∗−1, i.e.:

• τl∗−1 = the first two bytes sent.

• λl∗−1 = the last byte sent.

2. The DUT computes:

(a) The authentication path of the XMSS at layer l∗−1 and tree index τl∗−1, starting

from the leaf index λl∗−1.

(b) The root r of the XMSS at layer l∗−1 and tree index τl∗−1.

(c) The W-OTS+ signature of r , using the W-OTS+ key pair from the XMSS at layer l∗,

tree index τl∗ , and leaf index λl∗ , where:

• τl∗ = the first byte of τl∗−1.

• λl∗ = the last byte of τl∗−1.

3. The laptop then retrieves the W-OTS+ signature and authentication path.

The DUT takes around 79 seconds to compute a single XMSS authentication path and W-OTS+

signature, during which the clock glitch is blindly injected. We conduct N = 5 trials where a

single trial consists of repeating the above with a fixed SPHINCS+ secret seed to collect 1,024

potentially faulty signatures.

Results. The faulty signature collection is successful across all trials, as a W-OTS+ is always

found to be compromised at the end of the collection. Table 9.13 reports the types of signatures

collected during the trials which were identified by recomputing the correct W-OTS+ signature

and authentication path from the programmed secret seed.

Table 9.14 reports the results related to the universal forgery. Given the analysis from Sec-

tion 9.2 and using M f ≈ (1/3)1024 and Mv ≈ (2/3)1024, we have that a W-OTS+ signature is

compromised with a probability of 0.5877 using only faulty signatures, and of 0.9714 using

both valid and faulty signatures. The maximum load is expected to be 1.59+0.01. On average,

the probability that the grafting step is successful with two different W-OTS+ signatures is

2−34.85. All these numbers correspond to the ones obtained in practice.

153

Chapter 9. Fault analysis of SPHINCS+

Signatures Faulty signatures Non-verif. signatures

Valid Faulty Verif.
Non-
verif.

Correct Incorrect

Mean 660.4 363.6 269.6 94 1.8 92.2
SD 14.8762 14.8762 14.8257 11.2694 1.3038 10.1094
Min. 639 346 257 83 1 82
Max. 678 385 295 113 4 109

Table 9.13: Analysis of the collected signatures in N = 5 fault attacks against SPHINCS+-shake-
256s-robust at layer l∗ = 6.

Compromised
W-OTS+s

Maximum
load

Best
P(grafting)

Mean 2.2 2 2−35.7388

SD 1.7889 0 2−35.5089

Min. 1 2 2−47.0379

Max. 5 2 2−34.2432

Table 9.14: Analysis of the universal forgery in N = 5 fault attacks against SPHINCS+-shake-
256s-robust at layer l∗ = 6.

Conclusion. The experiment has demonstrated that despite the fact that the layer presents

216 signatures, as few as 210 signature queries with a fault probability of ≈ 1/3 are enough to

compromise at least one W-OTS+ and, therefore, mount a SPHINCS+ universal forgery.

9.4.3 Experiment 2: randomized + cached branches

In the second experiment, we simulate the branch caching countermeasure (see Section 9.3) by

implementing an internal cache of C addresses for which we pretend that the corresponding

W-OTS+ are transmitted without recomputation. When requesting a W-OTS+ at a certain

address, the computation is triggered only if the given address was not previously cached.

The experiment aims to show that an attack is possible even when a significant portion of the

layer is cached. For practicality purposes, we target the last layer (i.e., l∗ = d −1 = 7) and use a

cache of size C = 171 to cover two thirds of the 2h′ = 256 possible addresses. In theory, such a

cache would amount to 2.93 MB of RAM.

At the beginning of the experiment, the DUT’s cache is empty. The experiment protocol to

query a signature goes as follows:

1. The laptop sends to the DUT two bytes that correspond to the XMSS address at layer

l∗−1, i.e.:

• τl∗−1 = the first byte sent.

• λl∗−1 = the last byte sent.

154

9.4 Experimental verifications

2. If τl∗−1 is in the DUT’s cache, then the DUT computes nothing and the protocol stops

here.

3. Else, if τl∗−1 is not cached, then the DUT saves τl∗−1 in the cache (after evicting the least

recent address cached if the cache is full), and computes:

(a) The authentication path of the XMSS at layer l∗−1 at tree index τl∗−1, starting from

the leaf index λl∗−1.

(b) The root r of the XMSS at layer l∗−1 and tree index τl∗−1.

(c) The W-OTS+ signature of r , using the W-OTS+ key pair from the XMSS at layer l∗,

tree index τl∗ , and leaf index λl∗ , where:

• τl∗ = 0.

• λl∗ = τl∗−1.

4. The laptop then retrieves the W-OTS+ signature and authentication path.

On a cache miss, the DUT takes around 79 seconds to compute a single XMSS authentication

path and W-OTS+ signature, during which the clock glitch is blindly injected. The glitch is

not injected on a cache hit. We conduct a total of N = 10 trials where a single trial consists

of repeating the above with a fixed SPHINCS+ secret seed to collect 512 potentially faulty

signatures.

Results. The faulty signature collection is successful across all trials, as a W-OTS+ is always

found to be compromised at the end of the collection. Table 9.15 reports the types of signatures

collected during the trials which were identified by recomputing the correct W-OTS+ signature

and authentication path using the programmed secret seed.

Signatures Faulty signatures Non-verif. signatures

Valid Faulty Verif.
Non-
verif.

Correct Incorrect

Mean 419.3 92.7 76.4 16.3 0.2 16.1
SD 7.4841 7.4841 5.1251 4.7854 0.42 4.7714
Min. 409 81 67 9 0 9
Max. 431 103 84 25 1 25

Table 9.15: Analysis of the collected signatures in N = 10 fault attacks against SPHINCS+-shake-
256s-robust at layer l∗ = 7 when 171 branches are cached.

Table 9.16 reports the results related to the universal forgery. Given the analysis from Sec-

tion 9.3, the number of queries before a W-OTS+ is recomputed is 318.09. Using a probability of

successful fault injection of 1/3, a W-OTS+ is successfully compromised upon recomputation

with a probability of 1− (1−1/3)2 = 0.5555. This number corresponds to the ones obtained in

practice.

155

Chapter 9. Fault analysis of SPHINCS+

Queries
before first

recomp.

Compromised
W-OTS+s

Maximum
load

Best
P(grafting)

Mean 318.6 14.1 2 2−30.4274

SD 25.3693 3.7253 0 2−30.3094

Min. 284 7 2 2−35.7972

Max. 374 20 2 2−28.8953

Table 9.16: Analysis of the universal forgery in N = 10 fault attacks at layer l∗ = 7 against
SPHINCS+-shake-256s-robust when 171 branches are cached.

Conclusion. The experiment has demonstrated that despite the fact that two thirds of the

attacked layer are cached, as few as 29 signature queries with a fault probability of ≈ 1/3 are

enough to compromise at least one W-OTS+ and, thus, mount a SPHINCS+ universal forgery.

9.5 Conclusion

In this chapter, a refined fault attack against SPHINCS+ that is less restrictive than the original

attack from Castelnovi, Martinelli, and Prest in [CMP18] has been presented. The complexity

of the attack in terms of required queries, hashes, and success probability has also been

scrupulously analyzed. Finally, the effectiveness of countermeasures based on caching both

layers and branches has been shown to be underwhelming; a result which was experimentally

verified.

The main takeaway of the current analysis is that SPHINCS+ is extremely fragile against

faults. As Section 9.2 shows, a single unconstrained corruption of almost any computation

has a catastrophic impact on the security guarantees of all SPHINCS+ parameters sets. This

amounts to millions of hash function calls that need to be carried out faultlessly in order to

sign a single message; a number that is not considering other subroutines (such as, e.g., the

checksum in W-OTS+) which are at least equally vulnerable.

While the other post-quantum signature algorithms selected by NIST in 2022 are also sus-

ceptible to fault attacks, this vulnerability makes SPHINCS+ the most sensitive candidate to

faults. For example, Bruinderink and Pessl have demonstrated in [BP18] that the lattice-based

signature scheme CRYSTALS-Dilithium is also vulnerable to a universal forgery using an equiv-

alent fault model. However, the attack on CRYSTALS-Dilithium can only be mounted when

an adversary obtains the valid and faulty signatures of the same message, while SPHINCS+

is vulnerable even when the device signs different and uncontrolled messages. Additionally,

while the authors of [BP18] suggest that verifying signatures or randomization can serve as

effective countermeasures against differential fault attacks on CRYSTALS-Dilithium, both of

these approaches have been shown to be ineffective when applied to SPHINCS+. The cur-

rent attacks against FALCON—another lattice-based signature scheme chosen by NIST—only

156

9.5 Conclusion

work when these faults result in an early abort and zeroing of values, which requires a higher

precision and more capabilities than the fault model considered in this paper (see [McC+19]).

Such a fragility needs to be taken seriously, as faults are reported to naturally happen in

conventional hardware such as, e.g., in DRAM. For instance, Schroeder, Pinheiro, and Weber

have reported 25,000 to 70,000 errors in DRAM per billion device hours per MBit in Google’s

2009 fleet [SPW11]. As a result, with long enough deployments of SPHINCS+ on standard

computers, the fault attack is eventually going to affect real-world users.

As ordinary hardware cannot be fully trusted to protect against faults, and since faults can

also be maliciously injected, a proper countermeasure that entirely prevents the fault attack is

preferable. However, the problem is not obvious to solve, as the universal forgery exploits the

fact that the signing procedure recomputes one-time signatures; a core feature of the SPHINCS

family that makes the scheme practical and stateless. Yet, as long as one-time signatures are

being recomputed on the fly, the risk of reusing a one-time key pair to sign an unexpected

message will always be present (which, in practice, is accomplished with a fault injection).

While this problem is solved in stateful schemes such as XMSSMT by caching the relevant

W-OTS+s, Section 9.3 shows that the same countermeasure fails to properly protect SPHINCS+.

Since the threat of a fault can never be completely eliminated, the current best solution to

protect the signature scheme against accidental and intentional faults is through redundancy;

an observation that is shared by others (see [CMP18; Ami+20]). Redundancy consists of

recomputing a same signature multiple times (ideally, with different implementations (but

the same random realizations)) and abort the procedure in case a mismatch in the signatures

is detected. Even though parallelizable, this solution at least doubles the signing time which

strikes a huge blow to the performance of the scheme which was already lacking in the original

submission. Specially protected implementations on the hardware level, as recommended in

the SPHINCS+ specifications [Hül+20], may also offer an adequate protection against faults

but would require fault-protection mechanisms not only in the hash function implementation,

but also in the other subroutines of the scheme, as well as in the device memory.

In conclusion, the results of this paper urge all real-world deployments of SPHINCS+ to come

with redundancy checks, even if the use case is not prone to faults (such as, e.g., with firmware

updates). Unless an adversary can query the signature for any message, randomized signing

may be disabled as such measure is not a reliable way to prevent the fault attack. Verification,

on the other hand, is still recommended as non-verifiability (even though unlikely) implies

the occurrence of a fault.

Future work. The results of this chapter call for novel countermeasures that make SPHINCS+

inherently resistant to fault attacks. As argued above, such a solution should avoid the ac-

cidental or intentional recomputation of one-time signatures which will likely necessitate

a new way of performing hash-based signatures. For instance, an ambitious reader might

come up with a solution that changes the one-time signatures in SPHINCS+ by one-message

157

Chapter 9. Fault analysis of SPHINCS+

signatures which, if such a primitive makes sense, might even lead to an entirely new scheme.

Other solutions that, for instance, make faulty signatures always non-verifiable would also be

a desirable step forward, so a signing device could at least block bad signatures by running the

verification procedure on the produced signatures.

Aside from researching countermeasures that make the scheme resistant to faults, investigat-

ing countermeasures that make the scheme resilient to faults could be of equal interest. A

fault-resilient countermeasure does not prevent faulty signatures from being collected but

from being exploited by hindering at least one step of the universal forgery. While preventing

secret extraction or tree grafting would be difficult to achieve without significantly impacting

the signing procedure performance (e.g., by replacing the one-time signatures by few-time

signatures), a countermeasure that makes path seeking hard to find may reveal to be effective.

Such a direction is left as an open problem.

At last, regarding the offensive side of the attack, as the current work is limited to faulting the

hash functions, deriving similar attacks by faulting other subroutines of the scheme may lead

to equally critical forgeries. Also, tampering with the control flow of a SPHINCS+ software to

force one-time signatures to sign unexpected messages would be an interesting direction to

consider. Finally, differential fault attacks to recover secret values is yet another breach to

explore.

158

10 Conclusion

In this thesis, we investigated the side-channel vulnerabilities of the cryptosystem SIKE, as well

as the SPHINCS family. Specifically, we explored the susceptibility of SIKE to power analysis

and identified a horizontal DPA and a clustering power analysis targeting the scalar multipli-

cation involved in the scheme, in addition to a ZVP attack against the isogeny computation.

All attacks were successfully executed on the official implementation of SIKE for the Cortex-

M4 microcontroller. Additionally, we derived a vertical DPA of the PRNG in SPHINCS-256

which was experimentally verified on a custom Cortex-M3 implementation of the scheme,

and analyzed the impact of a random fault injection against SPHINCS+ regardless of the

implementation.

Although SIKE is no longer considered secure as a result of the attack by Castryck and Decru

in [CD22], our findings lay the groundwork for the development of future isogeny-based

standards. In particular, our ZVP attack has made a significant contribution to the side-

channel analysis of isogeny computations, as the attack has been shown to extend to the

surviving isogeny-based key encapsulation mechanism CSIDH in [Cam+22]. Additionally, as

NIST plans to standardize SPHINCS+, our analyses of SPHINCS-256 and SPHINCS+ have direct

implications for real-world implementations of these schemes, particularly in embedded

environments. Most notably, our fault analysis of SPHINCS+ has highlighted the importance of

implementing redundancy checks to prevent the derivation of faulty signatures, as generating

any kind of faulty signatures has been shown to critically impact the security of the scheme.

While the attacks presented in this thesis exploit side-channel leakages to be executed, thus

requiring special capabilities to be mounted in practice, side-channel attacks are widely ac-

knowledged for posing existing threats to real-world devices. These attacks are especially

relevant in the current stage of NIST’s post-quantum standardization process, as the finalists

are soon expected to be implemented for actual security purposes. Besides, we have demon-

strated the applicability of our attacks to actual devices on an experimental setup based on

the ChipWhisperer. Although our setup can be considered unrealistic in certain cases (due to,

e.g., the addition of trigger signals, or software-induced delays), our verification represents

a crucial initial step towards mounting actual attacks on real-world devices. As attacks only

159

Chapter 10. Conclusion

get better, our findings will directly impact users of these cryptosystems, particularly when

these schemes will transition to official standards, as is the case with SPHINCS+. Also, note

that even though certain attacks were tailored to exploit specific implementation details (such

as in our clustering power analysis), others are applicable regardless of the implementation

(such as the fault analysis), and our methodology can always be extended to similar targets.

While our work has provided a comprehensive exploration of side-channel analysis against

isogeny-based and hash-based cryptosystems, there remain open questions which offer av-

enues for future research. Firstly, it would be interesting to explore whether the counter-

measures proposed in our work can be defeated by new attacks. Procedures such as the

elliptic curve scalar multiplication are challenging to fully protect, given the large surface

for side-channel leakage that these operations offer. Consequently, new attacks continue

to be discovered despite state-of-the-art countermeasures (see, e.g., the work by Perin et

al. in [Per+21]), highlighting the constant relevance of their study. Secondly, it would be

valuable to explore alternative attack vectors against secret isogeny derivations and examine

the feasibility of input validation to prevent all forms of side-channel chosen-text attacks in

isogeny-based schemes. Last but not least, the question of whether the SPHINCS family can

ever be effectively protected against fault attacks remains unsolved. Considering the impact

of a single fault on the security of the scheme, it would be preferable to revise the scheme to

mitigate the potential of such attacks, making this direction an ideal focus for future research.

In the end, this thesis has explored a mere fraction of the vulnerabilities within the expansive

realm of side-channel analysis against post-quantum cryptosystems, opening the door to

countless future explorations. As the world becomes increasingly interconnected, the impor-

tance of security and privacy becomes progressively more apparent, which demonstrates the

significance of research and development in cryptanalysis. As the landscape of cryptography

continues to evolve to address new threats, such as the ones posed by quantum computers,

unique vectors of attack emerge and require attention. This never-ending pursuit of knowledge

is therefore an essential process to ensure the security of digital systems to protect individuals,

organizations, and societies from emerging threats and, in consequence, to contribute to a

better future for humanity.

160

A Cortex-M4 implementation of SIKE

The following appendix shows the attacked source code of the library by [Seo+20].

1 static void LADDER3PT(point_proj_t R0, point_proj_t R, point_proj_t R2,
2 const digit_t* m, const f2elm_t A24)
3 {
4 digit_t mask;
5 int i, bit, swap, prevbit = 0;
6

7 // Main loop
8 for (i = 0; i < NBITS; i++) {
9 bit = (m[i >> LOG2RADIX] >> (i & (RADIX-1))) & 1;

10 swap = bit ^ prevbit;
11 prevbit = bit;
12 mask = 0 - (digit_t)swap;
13

14 swap_points(R, R2, mask);
15 xDBLADD(R0, R2, R->X, R->Z, A24);
16 }
17 swap = 0 ^ prevbit;
18 mask = 0 - (digit_t)swap;
19 swap_points(R, R2, mask);
20 }

Listing A.1: Source code of the LADDER3PT function (from [Seo+20]).

1 void xDBLADD(point_proj_t Q, point_proj_t P, point_proj_t QP, const f2elm_t A24) {
2 f2elm_t t0, t1, t2;
3

4 fp2add(Q->X, Q->Z, t0);
5 fp2sub(Q->X, Q->Z, t1);
6 fp2sqr_mont(t0, Q->X);
7 fp2sub(P->X, P->Z, t2);
8 fp2correction(t2);
9 fp2add(P->X, P->Z, P->X);

10 fp2mul_mont(t0, t2, t0);

161

Appendix A. Cortex-M4 implementation of SIKE

11 fp2sqr_mont(t1, Q->Z);
12 fp2mul_mont(t1, P->X, t1);
13 fp2sub(Q->X, Q->Z, t2);
14 fp2mul_mont(Q->X, Q->Z, Q->X);
15 fp2mul_mont(t2, A24, P->X);
16 fp2sub(t0, t1, P->Z);
17 fp2add(P->X, Q->Z, Q->Z);
18 fp2add(t0, t1, P->X);
19 fp2mul_mont(Q->Z, t2, Q->Z);
20 fp2sqr_mont(P->Z, P->Z);
21 fp2sqr_mont(P->X, P->X);
22 fp2mul_mont(P->Z, QP->X, P->Z);
23 fp2mul_mont(P->X, QP->Z, P->X);
24 }

Listing A.2: Source code of the xDBLADD function (from [Seo+20]).

1 void fp2mul_mont(const f2elm_t a, const f2elm_t b, f2elm_t c) {
2 felm_t t1, t2;
3 dfelm_t tt1, tt2, tt3;
4 digit_t mask;
5 unsigned int i;
6

7 mp_addfast(a[0], a[1], t1);
8 mp_addfast(b[0], b[1], t2);
9

10 fpmul_mont(a[0], b[0], c[0]);
11 fpmul_mont(a[1], b[1], tt2);
12 fpmul_mont(t1, t2, c[1]);
13

14 fpsub(c[1],c[0],c[1]);
15 fpsub(c[1],tt2,c[1]);
16

17 fpsub(c[0],tt2,c[0]);
18 }

Listing A.3: Source code of the fp2sqr_mont function (from [Seo+20]).

1 void fp2sqr_mont(const f2elm_t a, f2elm_t c) {
2 felm_t t1, t2, t3;
3

4 mp_addfast(a[0], a[1], t1);
5 fpsub(a[0], a[1], t2);
6 mp_addfast(a[0], a[0], t3);
7 fpmul_mont(t1, t2, c[0]);
8 fpmul_mont(t3, a[1], c[1]);
9 }

Listing A.4: Source code of the fp2mul_mont function (from [Seo+20]).

162

1 void __attribute__ ((noinline, naked)) mp_addfast(const digit_t* a, const digit_t* b,
digit_t* c) {

2 asm(
3 "push {r4-r9,lr} \n\t"
4 "mov r14, r2 \n\t"
5

6 "ldmia r0!, {r2-r5} \n\t"
7 "ldmia r1!, {r6-r9} \n\t"
8

9 "adds r2, r2, r6 \n\t"
10 "adcs r3, r3, r7 \n\t"
11 "adcs r4, r4, r8 \n\t"
12 "adcs r5, r5, r9 \n\t"
13

14 "stmia r14!, {r2-r5} \n\t"
15

16 "ldmia r0!, {r2-r5} \n\t"
17 "ldmia r1!, {r6-r9} \n\t"
18

19 "adcs r2, r2, r6 \n\t"
20 "adcs r3, r3, r7 \n\t"
21 "adcs r4, r4, r8 \n\t"
22 "adcs r5, r5, r9 \n\t"
23

24 "stmia r14!, {r2-r5} \n\t"
25

26 "ldmia r0!, {r2-r5} \n\t"
27 "ldmia r1!, {r6-r9} \n\t"
28

29 "adcs r2, r2, r6 \n\t"
30 "adcs r3, r3, r7 \n\t"
31 "adcs r4, r4, r8 \n\t"
32 "adcs r5, r5, r9 \n\t"
33

34 "stmia r14!, {r2-r5} \n\t"
35

36 "ldmia r0!, {r2-r3} \n\t"
37 "ldmia r1!, {r6-r7} \n\t"
38

39 "adcs r2, r2, r6 \n\t"
40 "adcs r3, r3, r7 \n\t"
41

42 "stmia r14!, {r2-r3} \n\t"
43

44 "pop {r4-r9,pc} \n\t"
45 : : :
46);
47 }

Listing A.5: Source code of the mp_addfast function (from [Seo+20]).

163

Appendix A. Cortex-M4 implementation of SIKE

1 static void swap_points(point_proj_t P, point_proj_t Q, const digit_t mask) {
2 digit_t temp;
3 unsigned int i;
4

5 for (i = 0; i < NWORDS_FIELD; i++) {
6 temp = mask & (P->X[0][i] ^ Q->X[0][i]);
7 P->X[0][i] = temp ^ P->X[0][i];
8 Q->X[0][i] = temp ^ Q->X[0][i];
9 temp = mask & (P->X[1][i] ^ Q->X[1][i]);

10 P->X[1][i] = temp ^ P->X[1][i];
11 Q->X[1][i] = temp ^ Q->X[1][i];
12 temp = mask & (P->Z[0][i] ^ Q->Z[0][i]);
13 P->Z[0][i] = temp ^ P->Z[0][i];
14 Q->Z[0][i] = temp ^ Q->Z[0][i];
15 temp = mask & (P->Z[1][i] ^ Q->Z[1][i]);
16 P->Z[1][i] = temp ^ P->Z[1][i];
17 Q->Z[1][i] = temp ^ Q->Z[1][i];
18 }
19 }

Listing A.6: Source code of the swap_points function (from [Seo+20]).

1 rsb r8, r6, #0 /* mask = (0 - swap) */
2 add.w r2, r4, #92 /* P->X */
3 add.w r3, r4, #540 /* Q->X */
4 mov.w ip, #0 /* i = 0 */
5 <loop>:
6 ldr r7, [r2, #0]
7 ldr r1, [r3, #0]
8 eor.w r0, r7, r1 /* mask & (P->X[0][i] ^ Q->X[0][i]) */
9 and.w r0, r0, r8

10 eors r7, r0 /* P->X[0][i] = temp ^ P->X[0][i] */
11 eors r1, r0 /* Q->X[0][i] = temp ^ Q->X[0][i] */
12 str.w r7, [r2], #4
13 str.w r1, [r3], #4
14

15 ... /* repeat above (with different offsets) */
16

17 add.w ip, ip, #1 /* i++ */
18 cmp.w ip, #14 /* i < NWORDS_FIELD */
19 bne.n <loop>

Listing A.7: Assembly instructions of the compiled swap_points function (i.e., Listing A.6).

1 and.w %[u1], %[u1], #0xFFFFFFFD /* u1 = randombytes(4) & 0xFFFFFFFD */
2 and.w %[m1], %[u2], #0xFFFFFFFE /* m1 = randombytes(4) & 0xFFFFFFFE */
3 add.w %[u2], %[u1], %[swap] /* u2 = u1 + swap */
4 add.w %[m2], %[m1], %[swap] /* r = m1 + swap */
5 add.w %[u1], %[u1], #1 /* u1 = u1 + 1 */
6 mul.w %[u1], %[u1], %[m2] /* u1 = u1*r */
7 add.w %[u2], %[u2], %[swap] /* u2 = u2 + swap */

164

8 mul.w %[u2], %[u2], %[m2] /* u2 = u2*r */
9 sub.w %[m2], %[u1], %[u2] /* m2 = u1 - u2 */

Listing A.8: Assembly instructions of the secure masks generation.

1 ldr.w %[a], [%[R]] /* a = R[i] */
2 ldr.w %[b], [%[R2]] /* b = R2[i] */
3 eor.w %[tmp1], %[a], %[b] /* tmp1 = a ^ b */
4 and.w %[tmp1], %[m1] /* tmp1 = tmp1 & m1 */
5 eor.w %[b], %[b], %[tmp1] /* a = a ^ tmp1 */
6 eor.w %[a], %[a], %[tmp1] /* b = b ^ tmp1 */
7 eor.w %[tmp2], %[a], %[b] /* tmp2 = a ^ b */
8 str.w %[b], [%[R2]] /* R2[i] = b */
9 and.w %[tmp2], %[m2] /* tmp2 = tmp2 & m2 */

10 str.w %[a], [%[R]] /* R[i] = a */
11 eor.w %[b], %[b], %[tmp2] /* b = b ^ tmp2 */
12 eor.w %[a], %[a], %[tmp2] /* a = a ^ tmp2 */
13 str.w %[a], [%[R]], #4 /* R[i] = a */
14 str.w %[b], [%[R2]], #4 /* R2[i] = b */
15

16 ... /* repeat above */

Listing A.9: Assembly instructions of the secure swapping.

1 void __attribute__ ((naked)) fpmul_mont(const felm_t ma, const felm_t mb, felm_t mc)
2 { // Multiprecision multiplication, c = a*b mod p.
3 //dfelm_t temp = {0};
4 asm volatile(\
5 STRFY(P_MUL_PROLOG)
6 "SUB SP, #4*28 \n\t"
7

8 //ROUND#1
9 STRFY(P_LOAD2(R0, P_OP_A0, P_OP_A1, 12))

10 STRFY(P_LOAD(R1, P_OP_B0, P_OP_B1, P_OP_B2, P_OP_B3, 0))
11 STRFY(P_MUL_TOP(SP, 12))
12

13 //ROUND#2
14 STRFY(P_LOAD(R0, P_OP_A0, P_OP_A1, P_OP_A2, P_OP_A3, 8))
15 STRFY(P_MUL_FRONT(SP, 8))
16 "LDR R0, [SP, #4 * 29] \n\t"
17 STRFY(P_MUL_MID_OP_B_SHORT(SP, 12, R0, 4))
18 "LDR R0, [SP, #4 * 28] \n\t"
19 STRFY(P_MUL_MID_OP_A_SHORT(SP, 14, R0, 12))
20 STRFY(P_MUL_BACK2(SP, 16))
21

22 //ROUND#3
23 "LDR R0, [SP, #4 * 28] \n\t"// OP_A
24 "LDR R1, [SP, #4 * 29] \n\t"// OP_B
25 STRFY(P_LOAD(R0, P_OP_A0, P_OP_A1, P_OP_A2, P_OP_A3, 4))
26 STRFY(P_LOAD2(R1, P_OP_B0, P_OP_B1, 0))
27 STRFY(P_MUL_FRONT(SP, 4))
28 "LDR R0, [SP, #4 * 29] \n\t"

165

Appendix A. Cortex-M4 implementation of SIKE

29 STRFY(P_MUL_MID_OP_B(SP, 8, R0, 4))
30 STRFY(P_MUL_MID_OP_B_SHORT(SP, 12, R0, 8))
31 "LDR R0, [SP, #4 * 28] \n\t"
32 STRFY(P_MUL_MID_OP_A_SHORT(SP, 14, R0, 8))
33 STRFY(P_MUL_MID_OP_A2(SP, 16, R0, 10))
34 STRFY(P_MUL_BACK2(SP, 20))
35

36 //ROUND#4
37 "LDR R0, [SP, #4 * 28] \n\t"// OP_A
38 "LDR R1, [SP, #4 * 29] \n\t"// OP_B
39 STRFY(P_LOAD(R0, P_OP_A0, P_OP_A1, P_OP_A2, P_OP_A3, 0))
40 STRFY(P_LOAD(R1, P_OP_B0, P_OP_B1, P_OP_B2, P_OP_B3, 0))
41 STRFY(P_MUL_FRONT(SP, 0))
42 "LDR R0, [SP, #4 * 29] \n\t"
43 STRFY(P_MUL_MID_OP_B(SP, 4, R0, 4))
44 STRFY(P_MUL_MID_OP_B(SP, 8, R0, 8))
45 STRFY(P_MUL_MID_OP_B_SHORT(SP, 12, R0, 12))
46 "LDR R0, [SP, #4 * 28] \n\t"
47 STRFY(P_MUL_MID_OP_A_SHORT(SP, 14, R0, 4))
48 STRFY(P_MUL_MID_OP_A2(SP, 16, R0, 6))
49 STRFY(P_MUL_MID_OP_A2(SP, 20, R0, 10))
50 STRFY(P_MUL_BACK2(SP, 24))
51

52 //TEST
53 "MOV R1, #0 \n\t"//CARRY
54 "ADDS R1, R1, R1 \n\t"
55 "LDR R0, [SP, #4 * 30] \n\t"//RESULT POINTER
56

57 //ROUND#1
58 STRFY(P_LOAD_M)
59 STRFY(P_LOAD_Q(SP, P_OP_Q0, P_OP_Q1, P_OP_Q2, P_OP_Q3, 0))
60 STRFY(P_RED_FRONT(SP, SP, 6, 6))
61 STRFY(P_RED_MID(SP, 10))
62

63 //ROUND#2
64 STRFY(P_LOAD_M)
65 STRFY(P_LOAD_Q(SP, P_OP_Q0, P_OP_Q1, P_OP_Q2, P_OP_Q3, 4))
66 STRFY(P_RED_FRONT(SP, SP, 10, 10))
67 STRFY(P_RED_MID(SP, 14))
68

69 //ROUND#3
70 STRFY(P_LOAD_M)
71 STRFY(P_LOAD_Q(SP, P_OP_Q0, P_OP_Q1, P_OP_Q2, P_OP_Q3, 8))
72 "LDR R0, [SP, #4 * 30] \n\t"// RESULT
73 STRFY(P_RED_FRONT(R0, SP, 0, 14))
74 //STRFY(RED_MID2(R0, SP, 4, 18))
75 STRFY(P_RED_MID(SP, 18))
76

77 //ROUND#4
78 STRFY(P_LOAD_M2)
79 STRFY(P_LOAD_Q2(SP, P_OP_Q0, P_OP_Q1, 12))
80 "LDR R0, [SP, #4 * 30] \n\t"// RESULT

166

81 STRFY(P_RED_FRONT2(R0, SP, 4, 18))
82 STRFY(P_RED_MID3(R0, SP, 6, 20))
83

84 "ADD SP, #4*31 \n\t"
85 STRFY(P_MUL_EPILOG)
86 :
87 :
88 : "cc", "memory"
89);
90 }

Listing A.10: Source code of the fpmul_mont function (from [Seo+20]).

167

Bibliography

[Adj+22] Gora Adj, Jesús-Javier Chi-Domínguez, Víctor Mateu, and Francisco Rodríguez-

Henríquez. “Faulty isogenies: a new kind of leakage”. In: CoRR abs/2202.04896

(2022). arXiv: 2202.04896. URL: https://arxiv.org/abs/2202.04896.

[AE17] Jean-Phillippe Aumasson and Guillaume Endignoux. Gravity-SPHINCS. Tech. rep.

available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-

1-submissions. National Institute of Standards and Technology, 2017.

[Agr+03] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. “The

EM Side-Channel(s)”. In: Cryptographic Hardware and Embedded Systems – CHES 2002.

Ed. by Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar. Vol. 2523. Lecture

Notes in Computer Science. Redwood Shores, CA, USA: Springer, Heidelberg,

Germany, Aug. 2003, pp. 29–45. DOI: 10.1007/3-540-36400-5_4.

[Agu+22] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,

Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor,

Jurjen Bos, Arnaud Dion, Jerome Lacan, Jean-Marc Robert, and Pascal Veron.

HQC. Tech. rep. available at https://csrc.nist .gov/Projects/post- quantum-

cryptography/round-4-submissions. National Institute of Standards and Tech-

nology, 2022.

[Ala+21] Monjur Alam, Baki Yilmaz, Frank Werner, Niels Samwel, Alenka Zajic, Daniel

Genkin, Yuval Yarom, and Milos Prvulovic. “Nonce@Once: A Single-Trace EM

Side Channel Attack on Several Constant-Time Elliptic Curve Implementations

in Mobile Platforms”. In: 6th IEEE European Symposium on Security and Privacy,

EuroS&P 2021, September 6-10, 2021. IEEE, 2021. URL: https://cs.adelaide.edu.

au/~yval/pdfs/AlamYWSZGYP21.pdf.

[Alb+22] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja

Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen,

Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nico-

las Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang.

Classic McEliece. Tech. rep. available at https://csrc.nist.gov/projects/post-

quantum-cryptography/round-4-submissions. National Institute of Standards

and Technology, 2022.

169

https://arxiv.org/abs/2202.04896
https://arxiv.org/abs/2202.04896
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/3-540-36400-5_4
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://cs.adelaide.edu.au/~yval/pdfs/AlamYWSZGYP21.pdf
https://cs.adelaide.edu.au/~yval/pdfs/AlamYWSZGYP21.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions

Bibliography

[Ami+20] Dorian Amiet, Lukas Leuenberger, Andreas Curiger, and Paul Zbinden. “FPGA-

based SPHINCS+ Implementations: Mind the Glitch”. In: 23rd Euromicro Con-

ference on Digital System Design, DSD 2020, Kranj, Slovenia, August 26-28, 2020.

IEEE, 2020, pp. 229–237. DOI: 10.1109/DSD51259.2020.00046. URL: https://doi.

org/10.1109/DSD51259.2020.00046.

[Apo20] Daniel Apon. Passing the final checkpoint! NIST PQC 3rd round begins. Aug. 2020.

URL: https://www.scribd.com/document/474476570/PQC-Overview-Aug-2020-

NIST (visited on 09/01/2022).

[APS19] Melissa Azouaoui, Romain Poussier, and François-Xavier Standaert. “Fast Side-

Channel Security Evaluation of ECC Implementations - Shortcut Formulas for

Horizontal Side-Channel Attacks Against ECSM with the Montgomery Ladder”.

In: COSADE 2019: 10th International Workshop on Constructive Side-Channel

Analysis and Secure Design. Ed. by Ilia Polian and Marc Stöttinger. Vol. 11421.

Lecture Notes in Computer Science. Darmstadt, Germany: Springer, Heidelberg,

Germany, Apr. 2019, pp. 25–42. DOI: 10.1007/978-3-030-16350-1_3.

[Ara+22] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-

Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu, Carlos

Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-

Pierre Tillich, Gilles Zémor, Valentin Vasseur, Santosh Ghosh, and Jan Richter-

Brokmann. BIKE. Tech. rep. available at https://csrc.nist.gov/Projects/post-

quantum-cryptography/round-4-submissions. National Institute of Standards

and Technology, 2022.

[Ard05] Arduino. Arduino - Home. 2005. URL: https : / / www. arduino. cc/ (visited on

09/01/2022).

[Ard12] Arduino. Due | Arduino Documentations. 2012. URL: https://docs.arduino.cc/

hardware/due (visited on 09/01/2022).

[ARM10] ARM. Cortex-M4 Specifications. 2010. URL: https://developer.arm.com/Processors/

Cortex-M4 (visited on 09/01/2022).

[AT03] Toru Akishita and Tsuyoshi Takagi. “Zero-Value Point Attacks on Elliptic Curve

Cryptosystem”. In: ISC 2003: 6th International Conference on Information Security.

Ed. by Colin Boyd and Wenbo Mao. Vol. 2851. Lecture Notes in Computer Science.

Bristol, UK: Springer, Heidelberg, Germany, Oct. 2003, pp. 218–233.

[Aum+14] Jean-Philippe Aumasson, Willi Meier, Raphael C.-W. Phan, and Luca Henzen.

The Hash Function BLAKE. Information Security and Cryptography. Springer,

Heidelberg, Germany, 2014. ISBN: 978-3-662-44757-4. DOI: 10.1007/978-3-662-

44757-4.

[Aza+16] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christopher

Leonardi. “Key Compression for Isogeny-Based Cryptosystems”. In: Proceedings

of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, Asi-

aPKC@AsiaCCS, Xi’an, China, May 30 - June 03, 2016. Ed. by Keita Emura, Goichiro

170

https://doi.org/10.1109/DSD51259.2020.00046
https://doi.org/10.1109/DSD51259.2020.00046
https://doi.org/10.1109/DSD51259.2020.00046
https://www.scribd.com/document/474476570/PQC-Overview-Aug-2020-NIST
https://www.scribd.com/document/474476570/PQC-Overview-Aug-2020-NIST
https://doi.org/10.1007/978-3-030-16350-1_3
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://www.arduino.cc/
https://docs.arduino.cc/hardware/due
https://docs.arduino.cc/hardware/due
https://developer.arm.com/Processors/Cortex-M4
https://developer.arm.com/Processors/Cortex-M4
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-44757-4

Bibliography

Hanaoka, and Rui Zhang. ACM, 2016, pp. 1–10. DOI: 10.1145/2898420.2898421.

URL: https://doi.org/10.1145/2898420.2898421.

[Azo+22] Melissa Azouaoui, Olivier Bronchain, Clément Hoffmann, Yulia Kuzovkova, To-

bias Schneider, and François-Xavier Standaert. “Systematic Study of Decryption

and Re-encryption Leakage: The Case of Kyber”. In: Constructive Side-Channel

Analysis and Secure Design - 13th International Workshop, COSADE 2022, Leuven,

Belgium, April 11-12, 2022, Proceedings. Ed. by Josep Balasch and Colin O’Flynn.

Vol. 13211. Lecture Notes in Computer Science. Springer, 2022, pp. 236–256. DOI:

10.1007/978-3-030-99766-3_11. URL: https://doi.org/10.1007/978-3-030-99766-

3_11.

[Bac+22] Linus Backlund, Kalle Ngo, Joel Gärtner, and Elena Dubrova. Secret Key Recovery

Attacks on Masked and Shuffled Implementations of CRYSTALS-Kyber and Saber.

Cryptology ePrint Archive, Paper 2022/1692. https://eprint.iacr.org/2022/1692.

2022.

[Bar+12] Alessandro Barenghi, Guido Marco Bertoni, Luca Breveglieri, Mauro Pellicioli, and

Gerardo Pelosi. “Injection Technologies for Fault Attacks on Microprocessors”. In:

Fault Analysis in Cryptography. Ed. by Marc Joye and Michael Tunstall. Informa-

tion Security and Cryptography. Springer, 2012, pp. 275–293. DOI: 10.1007/978-3-

642-29656-7_16. URL: https://doi.org/10.1007/978-3-642-29656-7_16.

[Bat+19] Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe,

and Michael Tunstall. “Online template attacks”. In: Journal of Cryptographic

Engineering 9.1 (Apr. 2019), pp. 21–36. DOI: 10.1007/s13389-017-0171-8.

[Bat+23] Lejla Batina, Łukasz Chmielewski, Björn Haase, Niels Samwel, and Peter Schwabe.

“SoK: SCA-secure ECC in software - mission impossible?” In: IACR Transactions

on Cryptographic Hardware and Embedded Systems 2023.1 (2023). https://tches.

iacr.org/index.php/TCHES/article/view/9701, pp. 557–589. ISSN: 2569-2925. DOI:

10.46586/tches.v2023.i1.557-589.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation Power Analysis

with a Leakage Model”. In: Cryptographic Hardware and Embedded Systems –

CHES 2004. Ed. by Marc Joye and Jean-Jacques Quisquater. Vol. 3156. Lecture

Notes in Computer Science. Cambridge, Massachusetts, USA: Springer, Heidel-

berg, Germany, Aug. 2004, pp. 16–29. DOI: 10.1007/978-3-540-28632-5_2.

[BDH11] Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. “XMSS - A Practical

Forward Secure Signature Scheme Based on Minimal Security Assumptions”.

In: Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011.

Ed. by Bo-Yin Yang. Tapei, Taiwan: Springer, Heidelberg, Germany, Nov. 2011,

pp. 117–129. DOI: 10.1007/978-3-642-25405-5_8.

171

https://doi.org/10.1145/2898420.2898421
https://doi.org/10.1145/2898420.2898421
https://doi.org/10.1007/978-3-030-99766-3_11
https://doi.org/10.1007/978-3-030-99766-3_11
https://doi.org/10.1007/978-3-030-99766-3_11
https://eprint.iacr.org/2022/1692
https://doi.org/10.1007/978-3-642-29656-7_16
https://doi.org/10.1007/978-3-642-29656-7_16
https://doi.org/10.1007/978-3-642-29656-7_16
https://doi.org/10.1007/s13389-017-0171-8
https://tches.iacr.org/index.php/TCHES/article/view/9701
https://tches.iacr.org/index.php/TCHES/article/view/9701
https://doi.org/10.46586/tches.v2023.i1.557-589
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-642-25405-5_8

Bibliography

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Importance of

Checking Cryptographic Protocols for Faults (Extended Abstract)”. In: Advances

in Cryptology – EUROCRYPT’97. Ed. by Walter Fumy. Vol. 1233. Lecture Notes

in Computer Science. Konstanz, Germany: Springer, Heidelberg, Germany, May

1997, pp. 37–51. DOI: 10.1007/3-540-69053-0_4.

[Bee+22] Piyush Beegala, Debapriya Basu Roy, Prasanna Ravi, Shivam Bhasin, Anupam

Chattopadhyay, and Debdeep Mukhopadhyay. “Efficient Loop Abort Fault Attacks

on Supersingular Isogeny based Key Exchange (SIKE)”. In: IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems,

DFT 2022, Austin, TX, USA, October 19-21, 2022. Ed. by Luca Cassano, Sreejit

Chakravarty, and Alberto Bosio. IEEE, 2022, pp. 1–6. DOI: 10.1109/DFT56152.2022.

9962359. URL: https://doi.org/10.1109/DFT56152.2022.9962359.

[Bel+21] Davide Bellizia, Nadia El Mrabet, Apostolos P. Fournaris, Simon Pontié, Francesco

Regazzoni, François-Xavier Standaert, Élise Tasso, and Emanuele Valea. “Post-

Quantum Cryptography: Challenges and Opportunities for Robust and Secure

HW Design”. In: 36th IEEE International Symposium on Defect and Fault Tolerance

in VLSI and Nanotechnology Systems, DFT 2021, Athens, Greece, October 6-8, 2021.

Ed. by Luigi Dilillo, Luca Cassano, and Athanasios Papadimitriou. IEEE, 2021,

pp. 1–6. DOI: 10.1109/DFT52944.2021.9568301. URL: https://doi.org/10.1109/

DFT52944.2021.9568301.

[Ber08a] Daniel J. Bernstein. “ChaCha, a variant of Salsa20”. In: (2008). URL: https://cr.yp.

to/chacha/chacha-20080120.pdf.

[Ber08b] Daniel J. Bernstein. The ChaCha family of stream ciphers. 2008. URL: https://cr.yp.

to/chacha.html (visited on 09/01/2022).

[Ber+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Nieder-

hagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko

Wilcox-O’Hearn. “SPHINCS: Practical Stateless Hash-Based Signatures”. In: Ad-

vances in Cryptology – EUROCRYPT 2015, Part I. Ed. by Elisabeth Oswald and

Marc Fischlin. Vol. 9056. Lecture Notes in Computer Science. Sofia, Bulgaria:

Springer, Heidelberg, Germany, Apr. 2015, pp. 368–397. DOI: 10.1007/978-3-662-

46800-5_15.

[BH17] Leon Groot Bruinderink and Andreas Hülsing. ““Oops, I Did It Again” - Security

of One-Time Signatures Under Two-Message Attacks”. In: SAC 2017: 24th Annual

International Workshop on Selected Areas in Cryptography. Ed. by Carlisle Adams

and Jan Camenisch. Vol. 10719. Lecture Notes in Computer Science. Ottawa, ON,

Canada: Springer, Heidelberg, Germany, Aug. 2017, pp. 299–322. DOI: 10.1007/978-

3-319-72565-9_15.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. “CSI-FiSh: Efficient

Isogeny Based Signatures Through Class Group Computations”. In: Advances in

Cryptology – ASIACRYPT 2019, Part I. Ed. by Steven D. Galbraith and Shiho Moriai.

172

https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1109/DFT56152.2022.9962359
https://doi.org/10.1109/DFT56152.2022.9962359
https://doi.org/10.1109/DFT56152.2022.9962359
https://doi.org/10.1109/DFT52944.2021.9568301
https://doi.org/10.1109/DFT52944.2021.9568301
https://doi.org/10.1109/DFT52944.2021.9568301
https://cr.yp.to/chacha/chacha-20080120.pdf
https://cr.yp.to/chacha/chacha-20080120.pdf
https://cr.yp.to/chacha.html
https://cr.yp.to/chacha.html
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-319-72565-9_15
https://doi.org/10.1007/978-3-319-72565-9_15

Bibliography

Vol. 11921. Lecture Notes in Computer Science. Kobe, Japan: Springer, Heidelberg,

Germany, Dec. 2019, pp. 227–247. DOI: 10.1007/978-3-030-34578-5_9.

[BL12] Timo Bartkewitz and Kerstin Lemke-Rust. “Efficient Template Attacks Based on

Probabilistic Multi-class Support Vector Machines”. In: Smart Card Research

and Advanced Applications - 11th International Conference, CARDIS 2012, Graz,

Austria, November 28-30, 2012, Revised Selected Papers. Ed. by Stefan Mangard.

Vol. 7771. Lecture Notes in Computer Science. Springer, 2012, pp. 263–276. DOI:

10.1007/978-3-642-37288-9_18. URL: https://doi.org/10.1007/978-3-642-37288-

9_18.

[BMR21] Luk Bettale, Simon Montoya, and Guénaël Renault. “Safe-Error Analysis of Post-

Quantum Cryptography Mechanisms - Short Paper-”. In: 18th Workshop on Fault

Detection and Tolerance in Cryptography, FDTC 2021, Milan, Italy, September

17, 2021. IEEE, 2021, pp. 39–44. DOI: 10 . 1109 / FDTC53659 . 2021 . 00015. URL:

https://doi.org/10.1109/FDTC53659.2021.00015.

[Boh+03] Lilian Bohy, Michael Neve, David Samyde, and Jean-Jacques Quisquater. “Prin-

cipal and Independent Component Analysis for Crypto-systems with Hardware

Unmasked Units”. In: Proceedings of e-Smart 2003. 2003.

[Bos+19] Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and Martijn

Stam. “Assessing the Feasibility of Single Trace Power Analysis of Frodo”. In: SAC

2018: 25th Annual International Workshop on Selected Areas in Cryptography. Ed.

by Carlos Cid and Michael J. Jacobson Jr: vol. 11349. Lecture Notes in Computer

Science. Calgary, AB, Canada: Springer, Heidelberg, Germany, Aug. 2019, pp. 216–

234. DOI: 10.1007/978-3-030-10970-7_10.

[BP18] Leon Groot Bruinderink and Peter Pessl. “Differential Fault Attacks on Determin-

istic Lattice Signatures”. In: IACR Transactions on Cryptographic Hardware and

Embedded Systems 2018.3 (2018). https://tches.iacr.org/index.php/TCHES/

article/view/7267, pp. 21–43. ISSN: 2569-2925. DOI: 10.13154/tches.v2018.i3.21-

43.

[Buc+06] Johannes Buchmann, Luis Carlos Coronado García, Erik Dahmen, Martin Döring,

and Elena Klintsevich. “CMSS - An Improved Merkle Signature Scheme”. In:

Progress in Cryptology - INDOCRYPT 2006: 7th International Conference in Cryp-

tology in India. Ed. by Rana Barua and Tanja Lange. Vol. 4329. Lecture Notes

in Computer Science. Kolkata, India: Springer, Heidelberg, Germany, Dec. 2006,

pp. 349–363.

[Cam+22] Fabio Campos, Michael Meyer, Krijn Reijnders, and Marc Stöttinger. Patient

Zero and Patient Six: Zero-Value and Correlation Attacks on CSIDH and SIKE.

Cryptology ePrint Archive, Report 2022/904. https://eprint.iacr.org/2022/904.

2022.

173

https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-642-37288-9_18
https://doi.org/10.1007/978-3-642-37288-9_18
https://doi.org/10.1007/978-3-642-37288-9_18
https://doi.org/10.1109/FDTC53659.2021.00015
https://doi.org/10.1109/FDTC53659.2021.00015
https://doi.org/10.1007/978-3-030-10970-7_10
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://doi.org/10.13154/tches.v2018.i3.21-43
https://doi.org/10.13154/tches.v2018.i3.21-43
https://eprint.iacr.org/2022/904

Bibliography

[Cas+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.

“CSIDH: An Efficient Post-Quantum Commutative Group Action”. In: Advances in

Cryptology – ASIACRYPT 2018, Part III. Ed. by Thomas Peyrin and Steven Galbraith.

Vol. 11274. Lecture Notes in Computer Science. Brisbane, Queensland, Australia:

Springer, Heidelberg, Germany, Dec. 2018, pp. 395–427. DOI: 10.1007/978-3-030-

03332-3_15.

[Cay+21] Pierre-Louis Cayrel, Brice Colombier, Vlad-Florin Dragoi, Alexandre Menu, and

Lilian Bossuet. “Message-Recovery Laser Fault Injection Attack on the Classic

McEliece Cryptosystem”. In: Advances in Cryptology – EUROCRYPT 2021, Part II.

Ed. by Anne Canteaut and François-Xavier Standaert. Vol. 12697. Lecture Notes in

Computer Science. Zagreb, Croatia: Springer, Heidelberg, Germany, Oct. 2021,

pp. 438–467. DOI: 10.1007/978-3-030-77886-6_15.

[CCJ03] Benoît Chevallier-Mames, Mathieu Ciet, and Marc Joye. Low-Cost Solutions for

Preventing Simple Side-Channel Analysis: Side-Channel Atomicity. Cryptology

ePrint Archive, Report 2003/237. https://eprint.iacr.org/2003/237. 2003.

[CD22] Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH

(preliminary version). Cryptology ePrint Archive, Report 2022/975. https://eprint.

iacr.org/2022/975. 2022.

[CGD17] Yann Le Corre, Johann Großschädl, and Daniel Dinu. Micro-Architectural Power

Simulator for Leakage Assessment of Cryptographic Software on ARM Cortex-M3

Processors. Cryptology ePrint Archive, Report 2017/1253. https://eprint.iacr.org/

2017/1253. 2017.

[CGD18] Yann Le Corre, Johann Großschädl, and Daniel Dinu. “Micro-architectural Power

Simulator for Leakage Assessment of Cryptographic Software on ARM Cortex-M3

Processors”. In: COSADE 2018: 9th International Workshop on Constructive Side-

Channel Analysis and Secure Design. Ed. by Junfeng Fan and Benedikt Gierlichs.

Vol. 10815. Lecture Notes in Computer Science. Singapore: Springer, Heidelberg,

Germany, Apr. 2018, pp. 82–98. DOI: 10.1007/978-3-319-89641-0_5.

[CJS14] Andrew Childs, David Jao, and Vladimir Soukharev. “Constructing elliptic curve

isogenies in quantum subexponential time”. In: Journal of Mathematical Cryptol-

ogy 8.1 (2014), pp. 1–29.

[CK20] Leonardo Colò and David Kohel. Orienting supersingular isogeny graphs. Cryptol-

ogy ePrint Archive, Report 2020/985. https://eprint.iacr.org/2020/985. 2020.

[CKM21] Fabio Campos, Juliane Krämer, and Marcel Müller. “Safe-Error Attacks on SIKE

and CSIDH”. In: Security, Privacy, and Applied Cryptography Engineering - 11th

International Conference, SPACE 2021, Kolkata, India, December 10-13, 2021,

Proceedings. Ed. by Lejla Batina, Stjepan Picek, and Mainack Mondal. Vol. 13162.

Lecture Notes in Computer Science. Springer, 2021, pp. 104–125. DOI: 10.1007/

978-3-030-95085-9_6. URL: https://doi.org/10.1007/978-3-030-95085-9_6.

174

https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-77886-6_15
https://eprint.iacr.org/2003/237
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2017/1253
https://eprint.iacr.org/2017/1253
https://doi.org/10.1007/978-3-319-89641-0_5
https://eprint.iacr.org/2020/985
https://doi.org/10.1007/978-3-030-95085-9_6
https://doi.org/10.1007/978-3-030-95085-9_6
https://doi.org/10.1007/978-3-030-95085-9_6

Bibliography

[Cla+10] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylene Roussellet, and Vin-

cent Verneuil. Horizontal Correlation Analysis on Exponentiation. Cryptology

ePrint Archive, Report 2010/394. https://eprint.iacr.org/2010/394. 2010.

[CLG09] Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. “Cryptographic Hash

Functions from Expander Graphs”. In: J. Cryptol. 22.1 (2009), pp. 93–113. DOI:

10.1007/s00145-007-9002-x. URL: https://doi.org/10.1007/s00145-007-9002-x.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. “Efficient Algorithms for Su-

persingular Isogeny Diffie-Hellman”. In: Advances in Cryptology – CRYPTO 2016,

Part I. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9814. Lecture Notes in

Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.

2016, pp. 572–601. DOI: 10.1007/978-3-662-53018-4_21.

[CMP18] Laurent Castelnovi, Ange Martinelli, and Thomas Prest. “Grafting Trees: A Fault

Attack Against the SPHINCS Framework”. In: Post-Quantum Cryptography - 9th

International Conference, PQCrypto 2018. Ed. by Tanja Lange and Rainer Stein-

wandt. Fort Lauderdale, Florida, United States: Springer, Heidelberg, Germany,

Apr. 2018, pp. 165–184. DOI: 10.1007/978-3-319-79063-3_8.

[Coh02] Paul Moritz Cohn. Basic algebra: groups, rings and fields. Springer Science &

Business Media, 2002.

[Col+22] Brice Colombier, Vlad-Florin Drăgoi, Pierre-Louis Cayrel, and Vincent Grosso.

“Profiled Side-Channel Attack on Cryptosystems Based on the Binary Syndrome

Decoding Problem”. In: IEEE Transactions on Information Forensics and Security

17 (2022), pp. 3407–3420. DOI: 10.1109/TIFS.2022.3198277.

[Col+23] Brice Colombier, Vincent Grosso, Pierre-Louis Cayrel, and Vlad-Florin Drăgoi.

Horizontal Correlation Attack on Classic McEliece. Cryptology ePrint Archive,

Paper 2023/546. https://eprint.iacr.org/2023/546. 2023. URL: https://eprint.iacr.

org/2023/546.

[Cor11] Charles J. Corrado. “The exact distribution of the maximum, minimum and the

range of Multinomial/Dirichlet and Multivariate Hypergeometric frequencies”.

In: Stat. Comput. 21.3 (2011), pp. 349–359. DOI: 10.1007/s11222-010-9174-3. URL:

https://doi.org/10.1007/s11222-010-9174-3.

[Cor99] Jean-Sébastien Coron. “Resistance against Differential Power Analysis for Ellip-

tic Curve Cryptosystems”. In: Cryptographic Hardware and Embedded Systems

– CHES’99. Ed. by Çetin Kaya Koç and Christof Paar. Vol. 1717. Lecture Notes in

Computer Science. Worcester, Massachusetts, USA: Springer, Heidelberg, Ger-

many, Aug. 1999, pp. 292–302. DOI: 10.1007/3-540-48059-5_25.

[Cos+17] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David

Urbanik. “Efficient Compression of SIDH Public Keys”. In: Advances in Cryptology

– EUROCRYPT 2017, Part I. Ed. by Jean-Sébastien Coron and Jesper Buus Nielsen.

Vol. 10210. Lecture Notes in Computer Science. Paris, France: Springer, Heidel-

berg, Germany, Apr. 2017, pp. 679–706. DOI: 10.1007/978-3-319-56620-7_24.

175

https://eprint.iacr.org/2010/394
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-319-79063-3_8
https://doi.org/10.1109/TIFS.2022.3198277
https://eprint.iacr.org/2023/546
https://eprint.iacr.org/2023/546
https://eprint.iacr.org/2023/546
https://doi.org/10.1007/s11222-010-9174-3
https://doi.org/10.1007/s11222-010-9174-3
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/978-3-319-56620-7_24

Bibliography

[Cos19] Craig Costello. “Supersingular Isogeny Key Exchange for Beginners”. In: SAC 2019:

26th Annual International Workshop on Selected Areas in Cryptography. Ed. by

Kenneth G. Paterson and Douglas Stebila. Vol. 11959. Lecture Notes in Computer

Science. Waterloo, ON, Canada: Springer, Heidelberg, Germany, Aug. 2019, pp. 21–

50. DOI: 10.1007/978-3-030-38471-5_2.

[Cou06] Jean-Marc Couveignes. Hard Homogeneous Spaces. Cryptology ePrint Archive,

Report 2006/291. https://eprint.iacr.org/2006/291. 2006.

[CP05] Xavier Charvet and Hervé Pelletier. “Improving the DPA attack using Wavelet

transform”. In: NIST Physical Security Testing Workshop 46 (2005).

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template Attacks”. In: Crypto-

graphic Hardware and Embedded Systems – CHES 2002. Ed. by Burton S. Kaliski Jr.,

Çetin Kaya Koç, and Christof Paar. Vol. 2523. Lecture Notes in Computer Science.

Redwood Shores, CA, USA: Springer, Heidelberg, Germany, Aug. 2003, pp. 13–28.

DOI: 10.1007/3-540-36400-5_3.

[CS18] Craig Costello and Benjamin Smith. “Montgomery curves and their arithmetic -

The case of large characteristic fields”. In: Journal of Cryptographic Engineering

8.3 (Sept. 2018), pp. 227–240. DOI: 10.1007/s13389-017-0157-6.

[D’A+19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede.

“Timing Attacks on Error Correcting Codes in Post-Quantum Schemes”. In: Pro-

ceedings of ACM Workshop on Theory of Implementation Security, TIS@CCS 2019,

London, UK, November 11, 2019. Ed. by Begül Bilgin, Svetla Petkova-Nikova, and

Vincent Rijmen. ACM, 2019, pp. 2–9. DOI: 10.1145/3338467.3358948. URL: https:

//doi.org/10.1145/3338467.3358948.

[Dan+16] Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica, and David

Naccache. “Improving the Big Mac Attack on Elliptic Curve Cryptography”. In: The

New Codebreakers: Essays Dedicated to David Kahn on the Occasion of His 85th

Birthday. Ed. by Peter Y. A. Ryan, David Naccache, and Jean-Jacques Quisquater.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 374–386. ISBN: 978-3-662-

49301-4. DOI: 10.1007/978-3-662-49301-4_23. URL: https://doi.org/10.1007/978-

3-662-49301-4_23.

[DG19] Luca De Feo and Steven D. Galbraith. “SeaSign: Compact Isogeny Signatures from

Class Group Actions”. In: Advances in Cryptology – EUROCRYPT 2019, Part III. Ed.

by Yuval Ishai and Vincent Rijmen. Vol. 11478. Lecture Notes in Computer Science.

Darmstadt, Germany: Springer, Heidelberg, Germany, May 2019, pp. 759–789.

DOI: 10.1007/978-3-030-17659-4_26.

[Din+17] A. Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert, and

Yunsi Fei. “Towards Sound and Optimal Leakage Detection Procedure”. In: Smart

Card Research and Advanced Applications - 16th International Conference, CARDIS

2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected Papers. Ed. by

Thomas Eisenbarth and Yannick Teglia. Vol. 10728. Lecture Notes in Computer

176

https://doi.org/10.1007/978-3-030-38471-5_2
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1007/978-3-662-49301-4_23
https://doi.org/10.1007/978-3-662-49301-4_23
https://doi.org/10.1007/978-3-662-49301-4_23
https://doi.org/10.1007/978-3-030-17659-4_26

Bibliography

Science. Springer, 2017, pp. 105–122. DOI: 10.1007/978-3-319-75208-2_7. URL:

https://doi.org/10.1007/978-3-319-75208-2_7.

[DJJ10] He Debiao, Chen Jianhua, and Hu Jin. A Random Number Generator Based on

Isogenies Operations. Cryptology ePrint Archive, Report 2010/094. https://eprint.

iacr.org/2010/094. 2010.

[DJP11] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosys-

tems from supersingular elliptic curve isogenies. Cryptology ePrint Archive, Report

2011/506. https://eprint.iacr.org/2011/506. 2011.

[DJP14] Luca De Feo, David Jao, and Jérôme Plût. “Towards quantum-resistant cryptosys-

tems from supersingular elliptic curve isogenies”. In: J. Math. Cryptol. 8.3 (2014),

pp. 209–247. DOI: 10.1515/jmc-2012-0015. URL: https://doi.org/10.1515/jmc-

2012-0015.

[DNG22] Elena Dubrova, Kalle Ngo, and Joel Gärtner. Breaking a Fifth-Order Masked Im-

plementation of CRYSTALS-Kyber by Copy-Paste. Cryptology ePrint Archive, Paper

2022/1713. https://eprint.iacr.org/2022/1713. 2022.

[DPV19] Thomas Decru, Lorenz Panny, and Frederik Vercauteren. “Faster SeaSign Signa-

tures Through Improved Rejection Sampling”. In: Post-Quantum Cryptography -

10th International Conference, PQCrypto 2019. Ed. by Jintai Ding and Rainer Stein-

wandt. Chongqing, China: Springer, Heidelberg, Germany, May 2019, pp. 271–285.

DOI: 10.1007/978-3-030-25510-7_15.

[Dug+16] Margaux Dugardin, Louiza Papachristodoulou, Zakaria Najm, Lejla Batina, Jean-

Luc Danger, and Sylvain Guilley. “Dismantling Real-World ECC with Horizontal

and Vertical Template Attacks”. In: COSADE 2016: 7th International Workshop

on Constructive Side-Channel Analysis and Secure Design. Ed. by François-Xavier

Standaert and Elisabeth Oswald. Vol. 9689. Lecture Notes in Computer Science.

Graz, Austria: Springer, Heidelberg, Germany, Apr. 2016, pp. 88–108. DOI: 10.1007/

978-3-319-43283-0_6.

[Dun73] Joseph C. Dunn. “A Fuzzy Relative of the ISODATA Process and Its Use in De-

tecting Compact Well-Separated Clusters”. In: Journal of Cybernetics 3.3 (1973),

pp. 32–57. DOI: 10.1080/01969727308546046. eprint: https://doi.org/10.1080/

01969727308546046. URL: https://doi.org/10.1080/01969727308546046.

[EMY14] Thomas Eisenbarth, Ingo von Maurich, and Xin Ye. “Faster Hash-Based Signa-

tures with Bounded Leakage”. In: SAC 2013: 20th Annual International Workshop

on Selected Areas in Cryptography. Ed. by Tanja Lange, Kristin Lauter, and Petr

Lisonek. Vol. 8282. Lecture Notes in Computer Science. Burnaby, BC, Canada:

Springer, Heidelberg, Germany, Aug. 2014, pp. 223–243. DOI: 10.1007/978-3-662-

43414-7_12.

177

https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/978-3-319-75208-2_7
https://eprint.iacr.org/2010/094
https://eprint.iacr.org/2010/094
https://eprint.iacr.org/2011/506
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://eprint.iacr.org/2022/1713
https://doi.org/10.1007/978-3-030-25510-7_15
https://doi.org/10.1007/978-3-319-43283-0_6
https://doi.org/10.1007/978-3-319-43283-0_6
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1007/978-3-662-43414-7_12
https://doi.org/10.1007/978-3-662-43414-7_12

Bibliography

[Fan+10] Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel, and Ingrid

Verbauwhede. “State-of-the-art of Secure ECC Implementations: A Survey on

Known Side-channel Attacks and Countermeasures”. In: HOST 2010, Proceedings

of the 2010 IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), 13-14 June 2010, Anaheim Convention Center, California, USA. Ed.

by Jim Plusquellic and Ken Mai. IEEE Computer Society, 2010, pp. 76–87. DOI:

10.1109/HST.2010.5513110. URL: https://doi.org/10.1109/HST.2010.5513110.

[Fel68] William Feller. An introduction to probability theory and its applications. 3rd.

1968.

[Feo17] Luca De Feo. “Mathematics of Isogeny Based Cryptography”. In: CoRR abs/1711.04062

(2017). arXiv: 1711.04062. URL: http://arxiv.org/abs/1711.04062.

[Feo+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin

Wesolowski. “SQISign: Compact Post-quantum Signatures from Quaternions

and Isogenies”. In: Advances in Cryptology – ASIACRYPT 2020, Part I. Ed. by Shiho

Moriai and Huaxiong Wang. Vol. 12491. Lecture Notes in Computer Science. Dae-

jeon, South Korea: Springer, Heidelberg, Germany, Dec. 2020, pp. 64–93. DOI:

10.1007/978-3-030-64837-4_3.

[Feo+22] Luca De Feo, Nadia El Mrabet, Aymeric Genêt, Novak Kalud̄erović, Natacha Linard

de Guertechin, Simon Pontié, and Élise Tasso. “SIKE Channels”. In: IACR Trans-

actions on Cryptographic Hardware and Embedded Systems 2022.3 (2022). https:

/ / tches. iacr. org / index . php / TCHES / article / view / 9701, pp. 264–289. ISSN:

2569-2925. DOI: 10.46586/tches.v2022.i3.264-289.

[FGT92] Philippe Flajolet, Danièle Gardy, and Loÿs Thimonier. “Birthday Paradox, Coupon

Collectors, Caching Algorithms and Self-Organizing Search”. In: Discret. Appl.

Math. 39.3 (1992), pp. 207–229. DOI: 10 . 1016 / 0166 - 218X(92) 90177 - C. URL:

https://doi.org/10.1016/0166-218X(92)90177-C.

[Flu+22] Scott Fluhrer, Stefan Kölbl, Ruben Niederhagen, Joost Rijnevald, Peter Schwabe,

Bas Westerbaan, and Thom Wiggers. The SPHINCS+ reference code, accompanying

the submission to NIST’s Post-Quantum Cryptography project. 2022. URL: https:

//github.com/sphincs/sphincsplus.git.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric and

Symmetric Encryption Schemes”. In: Advances in Cryptology – CRYPTO’99. Ed. by

Michael J. Wiener. Vol. 1666. Lecture Notes in Computer Science. Santa Barbara,

CA, USA: Springer, Heidelberg, Germany, Aug. 1999, pp. 537–554. DOI: 10.1007/3-

540-48405-1_34.

[FV03] Pierre-Alain Fouque and Frédéric Valette. “The Doubling Attack - Why Upwards

Is Better than Downwards”. In: Cryptographic Hardware and Embedded Systems –

CHES 2003. Ed. by Colin D. Walter, Çetin Kaya Koç, and Christof Paar. Vol. 2779.

Lecture Notes in Computer Science. Cologne, Germany: Springer, Heidelberg,

Germany, Sept. 2003, pp. 269–280. DOI: 10.1007/978-3-540-45238-6_22.

178

https://doi.org/10.1109/HST.2010.5513110
https://doi.org/10.1109/HST.2010.5513110
https://arxiv.org/abs/1711.04062
http://arxiv.org/abs/1711.04062
https://doi.org/10.1007/978-3-030-64837-4_3
https://tches.iacr.org/index.php/TCHES/article/view/9701
https://tches.iacr.org/index.php/TCHES/article/view/9701
https://doi.org/10.46586/tches.v2022.i3.264-289
https://doi.org/10.1016/0166-218X(92)90177-C
https://doi.org/10.1016/0166-218X(92)90177-C
https://github.com/sphincs/sphincsplus.git
https://github.com/sphincs/sphincsplus.git
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-540-45238-6_22

Bibliography

[Gal+16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. “On the Se-

curity of Supersingular Isogeny Cryptosystems”. In: Advances in Cryptology –

ASIACRYPT 2016, Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031.

Lecture Notes in Computer Science. Hanoi, Vietnam: Springer, Heidelberg, Ger-

many, Dec. 2016, pp. 63–91. DOI: 10.1007/978-3-662-53887-6_3.

[GE21] Craig Gidney and Martin Ekerå. “How to factor 2048 bit RSA integers in 8 hours

using 20 million noisy qubits”. In: Quantum 5 (Apr. 2021), p. 433. DOI: 10.22331/q-

2021-04-15-433. URL: https://doi.org/10.22331%2Fq-2021-04-15-433.

[Gen17] Aymeric Genêt. “Hardware Attacks against Hash-based Cryptographic Algorithms”.

MA thesis. EPFL, 2017.

[Gen+18] Aymeric Genêt, Matthias J. Kannwischer, Hervé Pelletier, and Andrew McLauchlan.

“Practical Fault Injection Attacks on SPHINCS”. In: Kangacrypt 2018, Australian

Workshop on Offensive Cryptography (2018).

[Gen23] Aymeric Genêt. “On Protecting SPHINCS+ Against Fault Attacks”. In: IACR Trans-

actions on Cryptographic Hardware and Embedded Systems 2023.2 (2023). https:

/ / tches. iacr. org / index . php / TCHES / article / view / 10278, pp. 80–114. ISSN:

2569-2925. DOI: 10.46586/tches.v2023.i2.80-114.

[GGK21] Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kalud̄erović. “Full Key

Recovery Side-Channel Attack Against Ephemeral SIKE on the Cortex-M4”. In:

Constructive Side-Channel Analysis and Secure Design - 12th International Work-

shop, COSADE 2021, Lugano, Switzerland, October 25-27, 2021, Proceedings. Ed. by

Shivam Bhasin and Fabrizio De Santis. Vol. 12910. Lecture Notes in Computer

Science. Springer, 2021, pp. 228–254. URL: https://doi.org/10.1007/978-3-030-

89915-8_11.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to Construct Random

Functions (Extended Abstract)”. In: 25th Annual Symposium on Foundations

of Computer Science, West Palm Beach, Florida, USA, 24-26 October 1984. IEEE

Computer Society, 1984, pp. 464–479. DOI: 10.1109/SFCS.1984.715949. URL:

https://doi.org/10.1109/SFCS.1984.715949.

[GJ20] Qian Guo and Thomas Johansson. “A New Decryption Failure Attack Against

HQC”. In: Advances in Cryptology – ASIACRYPT 2020, Part I. Ed. by Shiho Moriai

and Huaxiong Wang. Vol. 12491. Lecture Notes in Computer Science. Daejeon,

South Korea: Springer, Heidelberg, Germany, Dec. 2020, pp. 353–382. DOI: 10.

1007/978-3-030-64837-4_12.

[GJJ22] Qian Guo, Andreas Johansson, and Thomas Johansson. “A Key-Recovery Side-

Channel Attack on Classic McEliece Implementations”. In: IACR Transactions on

Cryptographic Hardware and Embedded Systems 2022.4 (2022), pp. 800–827. DOI:

10.46586/tches.v2022.i4.800-827.

179

https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331%2Fq-2021-04-15-433
https://tches.iacr.org/index.php/TCHES/article/view/10278
https://tches.iacr.org/index.php/TCHES/article/view/10278
https://doi.org/10.46586/tches.v2023.i2.80-114
https://doi.org/10.1007/978-3-030-89915-8_11
https://doi.org/10.1007/978-3-030-89915-8_11
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1007/978-3-030-64837-4_12
https://doi.org/10.1007/978-3-030-64837-4_12
https://doi.org/10.46586/tches.v2022.i4.800-827

Bibliography

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. “A Key-Recovery Timing

Attack on Post-quantum Primitives Using the Fujisaki-Okamoto Transformation

and Its Application on FrodoKEM”. In: Advances in Cryptology – CRYPTO 2020,

Part II. Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12171. Lecture

Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Ger-

many, Aug. 2020, pp. 359–386. DOI: 10.1007/978-3-030-56880-1_13.

[GK22] Aymeric Genêt and Novak Kalud̄erović. “Single-Trace Clustering Power Analysis

of the Point-Swapping Procedure in the Three Point Ladder of Cortex-M4 SIKE”.

In: Constructive Side-Channel Analysis and Secure Design - 13th International

Workshop, COSADE 2022, Leuven, Belgium, April 11-12, 2022, Proceedings. Ed. by

Josep Balasch and Colin O’Flynn. Vol. 13211. Lecture Notes in Computer Science.

Springer, 2022, pp. 164–192. DOI: 10.1007/978- 3- 030- 99766- 3_8. URL: https:

//doi.org/10.1007/978-3-030-99766-3_8.

[GLG22a] Guillaume Goy, Antoine Loiseau, and Philippe Gaborit. “A New Key Recovery

Side-Channel Attack on HQC with Chosen Ciphertext”. In: Post-Quantum Cryp-

tography - 13th International Workshop, PQCrypto 2022, Virtual Event, Septem-

ber 28-30, 2022, Proceedings. Ed. by Jung Hee Cheon and Thomas Johansson.

Vol. 13512. Lecture Notes in Computer Science. Springer, 2022, pp. 353–371. DOI:

10.1007/978-3-031-17234-2_17. URL: https://doi.org/10.1007/978-3-031-17234-

2_17.

[GLG22b] Guillaume Goy, Antoine Loiseau, and Philippe Gaborit. Estimating the Strength

of Horizontal Correlation Attacks in the Hamming Weight Leakage Model: A Side-

Channel Analysis on HQC KEM. https://www.wcc2022.uni-rostock.de/storages/

uni-rostock/Tagungen/WCC2022/Papers/WCC_2022_paper_48.pdf. 2022.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Vol. 1. Cambridge, UK:

Cambridge University Press, 2001, pp. xix + 372. ISBN: 0-521-79172-3 (hardback).

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Vol. 2. Cam-

bridge, UK: Cambridge University Press, 2004. ISBN: ISBN 0-521-83084-2 (hard-

back).

[Gor+22] Alagic Gorjan, Apon Daniel, Cooper David, Dang Quynh, Dang Thinh, Kelsey

John, Lichtinger Jacob, Miller Carl, Moody Dustin, Peralta Rene, Perlner Ray,

Robinson Angela, and Smith-Tone Daniel. “Status report on the third round of the

NIST post-quantum cryptography standardization process”. In: US Department

of Commerce, NIST (2022). DOI: 0.6028/NIST.IR.8413. URL: https://doi.org/10.

6028/NIST.IR.8413.

[Gou01] Louis Goubin. “A Sound Method for Switching between Boolean and Arithmetic

Masking”. In: Cryptographic Hardware and Embedded Systems – CHES 2001. Ed.

by Çetin Kaya Koç, David Naccache, and Christof Paar. Vol. 2162. Lecture Notes

in Computer Science. Paris, France: Springer, Heidelberg, Germany, May 2001,

pp. 3–15. DOI: 10.1007/3-540-44709-1_2.

180

https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-99766-3_8
https://doi.org/10.1007/978-3-030-99766-3_8
https://doi.org/10.1007/978-3-030-99766-3_8
https://doi.org/10.1007/978-3-031-17234-2_17
https://doi.org/10.1007/978-3-031-17234-2_17
https://doi.org/10.1007/978-3-031-17234-2_17
https://www.wcc2022.uni-rostock.de/storages/uni-rostock/Tagungen/WCC2022/Papers/WCC_2022_paper_48.pdf
https://www.wcc2022.uni-rostock.de/storages/uni-rostock/Tagungen/WCC2022/Papers/WCC_2022_paper_48.pdf
https://doi.org/0.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.1007/3-540-44709-1_2

Bibliography

[Gou03] Louis Goubin. “A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems”.

In: PKC 2003: 6th International Workshop on Theory and Practice in Public Key

Cryptography. Ed. by Yvo Desmedt. Vol. 2567. Lecture Notes in Computer Science.

Miami, FL, USA: Springer, Heidelberg, Germany, Jan. 2003, pp. 199–210. DOI:

10.1007/3-540-36288-6_15.

[GS97] Charles Miller Grinstead and James Laurie Snell. Introduction to probability.

American Mathematical Soc., 1997.

[HCH11] Debiao He, Jianhua Chen, and Jin Hu. “An authenticated key agreement protocol

using isogenies between elliptic curves”. In: International Journal of Computers

Communications & Control 6.2 (2011), pp. 258–265.

[Hey+13] Johann Heyszl, Andreas Ibing, Stefan Mangard, Fabrizio De Santis, and Georg Sigl.

“Clustering Algorithms for Non-profiled Single-Execution Attacks on Exponentia-

tions”. In: Smart Card Research and Advanced Applications - 12th International

Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Se-

lected Papers. Ed. by Aurélien Francillon and Pankaj Rohatgi. Vol. 8419. Lecture

Notes in Computer Science. Springer, 2013, pp. 79–93. URL: https://doi.org/10.

1007/978-3-319-08302-5_6.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modular Analysis of the

Fujisaki-Okamoto Transformation”. In: TCC 2017: 15th Theory of Cryptography

Conference, Part I. Ed. by Yael Kalai and Leonid Reyzin. Vol. 10677. Lecture Notes

in Computer Science. Baltimore, MD, USA: Springer, Heidelberg, Germany, Nov.

2017, pp. 341–371. DOI: 10.1007/978-3-319-70500-2_12.

[HPP21] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. “Fault-Enabled Chosen-

Ciphertext Attacks on Kyber”. In: Progress in Cryptology - INDOCRYPT 2021 -

22nd International Conference on Cryptology in India, Jaipur, India, December

12-15, 2021, Proceedings. Ed. by Avishek Adhikari, Ralf Küsters, and Bart Preneel.

Vol. 13143. Lecture Notes in Computer Science. Springer, 2021, pp. 311–334. DOI:

10.1007/978-3-030-92518-5_15. URL: https://doi.org/10.1007/978-3-030-92518-

5_15.

[HRB13] Andreas Hülsing, Lea Rausch, and Johannes Buchmann. “Optimal Parameters

for XMSSMT ”. In: Security Engineering and Intelligence Informatics - CD-ARES

2013 Workshops: MoCrySEn and SeCIHD, Regensburg, Germany, September 2-6,

2013. Proceedings. Ed. by Alfredo Cuzzocrea, Christian Kittl, Dimitris E. Simos,

Edgar R. Weippl, and Lida Xu. Vol. 8128. Lecture Notes in Computer Science.

Springer, 2013, pp. 194–208. DOI: 10.1007/978-3-642-40588-4_14. URL: https:

//doi.org/10.1007/978-3-642-40588-4_14.

[Hue+18] Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz

Mohaisen. XMSS: eXtended Merkle Signature Scheme. RFC 8391. May 2018. DOI:

10.17487/RFC8391. URL: https://www.rfc-editor.org/info/rfc8391.

181

https://doi.org/10.1007/3-540-36288-6_15
https://doi.org/10.1007/978-3-319-08302-5_6
https://doi.org/10.1007/978-3-319-08302-5_6
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.17487/RFC8391
https://www.rfc-editor.org/info/rfc8391

Bibliography

[Hül13] Andreas Hülsing. “W-OTS+ - Shorter Signatures for Hash-Based Signature Schemes”.

In: AFRICACRYPT 13: 6th International Conference on Cryptology in Africa. Ed. by

Amr Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien. Vol. 7918. Lecture

Notes in Computer Science. Cairo, Egypt: Springer, Heidelberg, Germany, June

2013, pp. 173–188. DOI: 10.1007/978-3-642-38553-7_10.

[Hül+20] Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,

Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kölbl, Tanja Lange,

Martin M Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger,

Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas Westerbaan, and

Ward Beullens. SPHINCS+. Tech. rep. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-3-submissions. National Institute of Stan-

dards and Technology, 2020.

[Hül+22] Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,

Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja Lange,

Martin M Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger,

Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas Westerbaan, and

Ward Beullens. SPHINCS+. Tech. rep. available at https://csrc.nist.gov/Projects/

post-quantum-cryptography/selected-algorithms-2022. National Institute of

Standards and Technology, 2022.

[IBM22] IBM. IBM Quantum Computing | Roadmap. 2022. URL: https://www.ibm.com/

quantum/roadmap (visited on 09/01/2022).

[Isl+22] Saad Islam, Koksal Mus, Richa Singh, Patrick Schaumont, and Berk Sunar. “Signa-

ture Correction Attack on Dilithium Signature Scheme”. In: 7th IEEE European

Symposium on Security and Privacy, EuroS&P 2022, Genoa, Italy, June 6-10, 2022.

IEEE, 2022, pp. 647–663. DOI: 10.1109/EuroSP53844.2022.00046. URL: https:

//doi.org/10.1109/EuroSP53844.2022.00046.

[IT03] Tetsuya Izu and Tsuyoshi Takagi. “Exceptional Procedure Attack on Elliptic Curve

Cryptosystems”. In: PKC 2003: 6th International Workshop on Theory and Practice

in Public Key Cryptography. Ed. by Yvo Desmedt. Vol. 2567. Lecture Notes in

Computer Science. Miami, FL, USA: Springer, Heidelberg, Germany, Jan. 2003,

pp. 224–239. DOI: 10.1007/3-540-36288-6_17.

[Jac99] John David Jackson. Classical electrodynamics. 1999.

[Jao19] David Jao. SIKE: Supersingular Isogeny Key Encapsulation. Aug. 2019. URL: https:

//csrc.nist.gov/Presentations/2019/sike- round- 2- presentation (visited on

09/01/2022).

[Jao+20] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,

Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael

Naehrig, Joost Renes, Vladimir Soukharev, David Urbanik, Geovandro Pereira,

Koray Karabina, and Aaron Hutchinson. SIKE. Tech. rep. available at https://csrc.

182

https://doi.org/10.1007/978-3-642-38553-7_10
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://www.ibm.com/quantum/roadmap
https://www.ibm.com/quantum/roadmap
https://doi.org/10.1109/EuroSP53844.2022.00046
https://doi.org/10.1109/EuroSP53844.2022.00046
https://doi.org/10.1109/EuroSP53844.2022.00046
https://doi.org/10.1007/3-540-36288-6_17
https://csrc.nist.gov/Presentations/2019/sike-round-2-presentation
https://csrc.nist.gov/Presentations/2019/sike-round-2-presentation
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

Bibliography

nist.gov/projects/post-quantum-cryptography/round-3-submissions. National

Institute of Standards and Technology, 2020.

[Jao+22] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,

Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael

Naehrig, Joost Renes, Vladimir Soukharev, David Urbanik, Geovandro Pereira,

Koray Karabina, and Aaron Hutchinson. SIKE. Tech. rep. available at https://csrc.

nist.gov/Projects/post-quantum-cryptography/round-4-submissions. National

Institute of Standards and Technology, 2022.

[JT01] Marc Joye and Christophe Tymen. “Protections against Differential Analysis for

Elliptic Curve Cryptography”. In: Cryptographic Hardware and Embedded Systems

– CHES 2001. Ed. by Çetin Kaya Koç, David Naccache, and Christof Paar. Vol. 2162.

Lecture Notes in Computer Science. Paris, France: Springer, Heidelberg, Germany,

May 2001, pp. 377–390. DOI: 10.1007/3-540-44709-1_31.

[KAA17] Mehran Mozaffari Kermani, Reza Azarderakhsh, and Anita Aghaie. “Fault Detec-

tion Architectures for Post-Quantum Cryptographic Stateless Hash-Based Secure

Signatures Benchmarked on ASIC”. In: ACM Trans. Embed. Comput. Syst. 16.2

(2017), 59:1–59:19. DOI: 10.1145/2930664. URL: https://doi.org/10.1145/2930664.

[KAJ17] Brian Koziel, Reza Azarderakhsh, and David Jao. “Side-Channel Attacks on Quantum-

Resistant Supersingular Isogeny Diffie-Hellman”. In: SAC 2017: 24th Annual In-

ternational Workshop on Selected Areas in Cryptography. Ed. by Carlisle Adams

and Jan Camenisch. Vol. 10719. Lecture Notes in Computer Science. Ottawa, ON,

Canada: Springer, Heidelberg, Germany, Aug. 2017, pp. 64–81. DOI: 10.1007/978-

3-319-72565-9_4.

[Kal22] Novak Kalud̄erović. “Attacks On Some Post-quantum Cryptographic Protocols:

The Case Of The Legendre PRF And SIKE”. PhD thesis. EPFL, 2022.

[Kan17] Matthias J. Kannwischer. “Physical Attack Vulnerability of Hash-Based Signature

Schemes”. MA thesis. TU Darmstadt, 2017.

[Kan+17] Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane Krämer, and Jo-

hannes Buchmann. GitHub repositories for DPA code of SHA-256 PRNG and

BLAKE-256 PRF. 2017. URL: https://github.com/hbs-sca (visited on 09/01/2022).

[Kan+18] Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane Krämer, and Jo-

hannes Buchmann. “Differential Power Analysis of XMSS and SPHINCS”. In:

COSADE 2018: 9th International Workshop on Constructive Side-Channel Analysis

and Secure Design. Ed. by Junfeng Fan and Benedikt Gierlichs. Vol. 10815. Lecture

Notes in Computer Science. Singapore: Springer, Heidelberg, Germany, Apr. 2018,

pp. 168–188. DOI: 10.1007/978-3-319-89641-0_10.

[Kan+19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. “pqm4:

Testing and Benchmarking NIST PQC on ARM Cortex-M4”. In: Second PQC Stan-

dardization Conference, NIST (2019). URL: https://csrc.nist.gov/CSRC/media/

183

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/3-540-44709-1_31
https://doi.org/10.1145/2930664
https://doi.org/10.1145/2930664
https://doi.org/10.1007/978-3-319-72565-9_4
https://doi.org/10.1007/978-3-319-72565-9_4
https://github.com/hbs-sca
https://doi.org/10.1007/978-3-319-89641-0_10
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf

Bibliography

Events / Second - PQC - Standardization - Conference / documents / accepted -

papers/kannwischer-pqm4.pdf.

[Kan97] Ernst Kani. “The number of curves of genus two with elliptic differentials”. In:

Journal für die reine und angewandte Mathematik 485 (1997), pp. 93–121. DOI:

10.1515/crll.1997.485.93. URL: https://doi.org/10.1515/crll.1997.485.93.

[Kim+14] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee,

Chris Wilkerson, Konrad Lai, and Onur Mutlu. “Flipping bits in memory with-

out accessing them: An experimental study of DRAM disturbance errors”. In:

ACM/IEEE 41st International Symposium on Computer Architecture, ISCA 2014,

Minneapolis, MN, USA, June 14-18, 2014. IEEE Computer Society, 2014, pp. 361–

372. DOI: 10.1109/ISCA.2014.6853210. URL: https://doi.org/10.1109/ISCA.2014.

6853210.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”.

In: Advances in Cryptology – CRYPTO’99. Ed. by Michael J. Wiener. Vol. 1666.

Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,

Germany, Aug. 1999, pp. 388–397. DOI: 10.1007/3-540-48405-1_25.

[Lah+19] Norman Lahr, Ruben Niederhagen, Richard Petri, and Simona Samardjiska. Side

Channel Information Set Decoding. Cryptology ePrint Archive, Report 2019/1459.

https://eprint.iacr.org/2019/1459. 2019.

[Lam79] Leslie Lamport. Constructing Digital Signatures from a One-way Function. Tech-

nical Report SRI-CSL-98. SRI International Computer Science Laboratory, Oct.

1979.

[LO77] Jeffrey C Lagarias and Andrew M Odlyzko. “Effective versions of the Chebotarev

density theorem”. In: Algebraic number fields: L-functions and Galois properties

(Proc. Sympos., Univ. Durham, Durham, 1975). Vol. 7. 1977, pp. 409–464.

[Lyu+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,

Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech. rep.

available at https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-

algorithms-2022. National Institute of Standards and Technology, 2022.

[Mac67] James MacQueen. “Some methods for classification and analysis of multivariate

observations”. In: Proceedings of the fifth Berkeley symposium on mathematical

statistics and probability. Vol. 1. 14. Oakland, CA, USA. 1967, pp. 281–297.

[Mai+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin

Wesolowski. “A Direct Key Recovery Attack on SIDH”. In: TBD. Ed. by TBD.

Vol. TBD. Lecture Notes in Computer Science. TBD: TBD, Apr. 2023, pp. 534–

546. DOI: 10.1007/978-3-031-xxxxx-x.

[Mal08] Stéphane Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse

Way. 3rd. USA: Academic Press, Inc., 2008. ISBN: 0123743702.

184

https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1007/3-540-48405-1_25
https://eprint.iacr.org/2019/1459
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-031-xxxxx-x

Bibliography

[McC+19] Sarah McCarthy, James Howe, Neil Smyth, Séamus Brannigan, and Máire O’Neill.

“BEARZ Attack FALCON: Implementation Attacks with Countermeasures on the

FALCON Signature Scheme”. In: Proceedings of the 16th International Joint Con-

ference on e-Business and Telecommunications, ICETE 2019 - Volume 2: SECRYPT,

Prague, Czech Republic, July 26-28, 2019. Ed. by Mohammad S. Obaidat and

Pierangela Samarati. SciTePress, 2019, pp. 61–71. DOI: 10.5220/0007834800610071.

URL: https://doi.org/10.5220/0007834800610071.

[Mer90] Ralph C. Merkle. “A Certified Digital Signature”. In: Advances in Cryptology –

CRYPTO’89. Ed. by Gilles Brassard. Vol. 435. Lecture Notes in Computer Science.

Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 1990, pp. 218–238.

DOI: 10.1007/0-387-34805-0_21.

[MME10] Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. “Correlation-Enhanced

Power Analysis Collision Attack”. In: Cryptographic Hardware and Embedded

Systems – CHES 2010. Ed. by Stefan Mangard and François-Xavier Standaert.

Vol. 6225. Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer,

Heidelberg, Germany, Aug. 2010, pp. 125–139. DOI: 10.1007/978-3-642-15031-9_9.

[Mon87] Peter Montgomery. “Speeding the Pollard and elliptic curve methods of factoriza-

tion”. In: Mathematics of Computation 48 (1987), pp. 243–264.

[Moo19a] Dustin Moody. Round 2 of the NIST PQC "Competition" - What was NIST Think-

ing? May 2019. URL: https://csrc.nist.gov/presentations/2019/round-2-of-the-

nist-pqc-competition-what-was-nist (visited on 09/01/2022).

[Moo19b] Dustin Moody. The 2nd Round of the NIST PQC Standardization Process-Opening

Remarks at PQC 2019. Aug. 2019. URL: https://csrc.nist.gov/Presentations/2019/

the-2nd-round-of-the-nist-pqc-standardization-proc (visited on 09/01/2022).

[MvV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. The CRC Press series on discrete mathematics and its

applications. 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA: CRC

Press, 1997, pp. xxviii + 780. ISBN: 0-8493-8523-7.

[NC17] Erick Nascimento and Łukasz Chmielewski. “Applying Horizontal Clustering Side-

Channel Attacks on Embedded ECC Implementations”. In: Smart Card Research

and Advanced Applications - 16th International Conference, CARDIS 2017, Lugano,

Switzerland, November 13-15, 2017, Revised Selected Papers. Ed. by Thomas Eisen-

barth and Yannick Teglia. Vol. 10728. Lecture Notes in Computer Science. Springer,

2017, pp. 213–231. URL: https://doi.org/10.1007/978-3-319-75208-2_13.

[New17] NewAE Technology Inc. SimpleSerial - ChipWhisperer Wiki. 2017. URL: https:

//wiki.newae.com/SimpleSerial (visited on 09/01/2022).

[New21a] NewAE Technology Inc. CHIPWHIPERER | NewAE Technology. 2021. URL: https:

//www.newae.com/chipwhisperer (visited on 09/01/2022).

185

https://doi.org/10.5220/0007834800610071
https://doi.org/10.5220/0007834800610071
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-642-15031-9_9
https://csrc.nist.gov/presentations/2019/round-2-of-the-nist-pqc-competition-what-was-nist
https://csrc.nist.gov/presentations/2019/round-2-of-the-nist-pqc-competition-what-was-nist
https://csrc.nist.gov/Presentations/2019/the-2nd-round-of-the-nist-pqc-standardization-proc
https://csrc.nist.gov/Presentations/2019/the-2nd-round-of-the-nist-pqc-standardization-proc
https://doi.org/10.1007/978-3-319-75208-2_13
https://wiki.newae.com/SimpleSerial
https://wiki.newae.com/SimpleSerial
https://www.newae.com/chipwhisperer
https://www.newae.com/chipwhisperer

Bibliography

[New21b] NewAE Technology Inc. GitHub - newaetech/chipwhisperer: ChipWhisperer - the

complete open-source toolchain for side-channel power analysis and glitching

attacks. 2021. URL: https://github.com/newaetech/chipwhisperer (visited on

09/01/2022).

[Ngo+21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. “A Side-Channel

Attack on a Masked IND-CCA Secure Saber KEM Implementation”. In: IACR

Transactions on Cryptographic Hardware and Embedded Systems 2021.4 (2021).

https://tches.iacr.org/index.php/TCHES/article/view/9079, pp. 676–707. ISSN:

2569-2925. DOI: 10.46586/tches.v2021.i4.676-707.

[NIS15] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-

tions. Federal Information Processing Standards (FIPS) Publication 202. Aug. 2015.

DOI: 10.6028/NIST.FIPS.202.

[NIS16] NIST. Submission Requirements and Evaluation Criteria for the Post-Quantum

Cryptography Standardization Process. Dec. 2016. URL: https://csrc.nist.gov/

CSRC/media/Projects/Post- Quantum- Cryptography/documents/call- for-

proposals-final-dec-2016.pdf.

[NIS22] NIST. Post-Quantum Cryptography: Digital Signature Schemes | CSRC. Aug. 2022.

URL: https://csrc.nist.gov/projects/pqc-dig-sig (visited on 09/01/2022).

[NS88] Kazuo Nishimura and Masaaki Sibuya. “Occupancy with two types of balls”. In:

Annals of the Institute of Statistical Mathematics 40 (1988), pp. 77–91.

[Onl22] Online Hash Crack. Benchmark Hashcat RTX 3090. 2022. URL: https : / / www.

onlinehashcrack.com/tools-benchmark-hashcat-nvidia-rtx-3090.php (visited

on 09/01/2022).

[PC15] Guilherme Perin and Łukasz Chmielewski. “A Semi-Parametric Approach for

Side-Channel Attacks on Protected RSA Implementations”. In: Smart Card Re-

search and Advanced Applications - 14th International Conference, CARDIS 2015,

Bochum, Germany, November 4-6, 2015. Revised Selected Papers. Ed. by Naofumi

Homma and Marcel Medwed. Vol. 9514. Lecture Notes in Computer Science.

Springer, 2015, pp. 34–53. URL: https://doi.org/10.1007/978-3-319-31271-2_3.

[Per01] Adrian Perrig. “The BiBa One-Time Signature and Broadcast Authentication Pro-

tocol”. In: ACM CCS 2001: 8th Conference on Computer and Communications

Security. Ed. by Michael K. Reiter and Pierangela Samarati. Philadelphia, PA, USA:

ACM Press, Nov. 2001, pp. 28–37. DOI: 10.1145/501983.501988.

[Per+14] Guilherme Perin, Laurent Imbert, Lionel Torres, and Philippe Maurine. “Attacking

Randomized Exponentiations Using Unsupervised Learning”. In: COSADE 2014:

5th International Workshop on Constructive Side-Channel Analysis and Secure

Design. Ed. by Emmanuel Prouff. Vol. 8622. Lecture Notes in Computer Science.

Paris, France: Springer, Heidelberg, Germany, Apr. 2014, pp. 144–160. DOI: 10.

1007/978-3-319-10175-0_11.

186

https://github.com/newaetech/chipwhisperer
https://tches.iacr.org/index.php/TCHES/article/view/9079
https://doi.org/10.46586/tches.v2021.i4.676-707
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/projects/pqc-dig-sig
https://www.onlinehashcrack.com/tools-benchmark-hashcat-nvidia-rtx-3090.php
https://www.onlinehashcrack.com/tools-benchmark-hashcat-nvidia-rtx-3090.php
https://doi.org/10.1007/978-3-319-31271-2_3
https://doi.org/10.1145/501983.501988
https://doi.org/10.1007/978-3-319-10175-0_11
https://doi.org/10.1007/978-3-319-10175-0_11

Bibliography

[Per+21] Guilherme Perin, Łukasz Chmielewski, Lejla Batina, and Stjepan Picek. “Keep it

Unsupervised: Horizontal Attacks Meet Deep Learning”. In: IACR Transactions

on Cryptographic Hardware and Embedded Systems 2021.1 (2021). https://tches.

iacr.org/index.php/TCHES/article/view/8737, pp. 343–372. ISSN: 2569-2925. DOI:

10.46586/tches.v2021.i1.343-372.

[Pir+22] Sabine Pircher, Johannes Geier, Julian Danner, Daniel Mueller-Gritschneder,

and Antonia Wachter-Zeh. “Key-Recovery Fault Injection Attack on the Classic

McEliece KEM”. In: Code-Based Cryptography - 10th International Workshop,

CBCrypto 2022, Trondheim, Norway, May 29-30, 2022, Revised Selected Papers. Ed.

by Jean-Christophe Deneuville. Vol. 13839. Lecture Notes in Computer Science.

Springer, 2022, pp. 37–61. DOI: 10.1007/978- 3- 031- 29689- 5_3. URL: https:

//doi.org/10.1007/978-3-031-29689-5_3.

[PP21] Peter Pessl and Lukas Prokop. “Fault Attacks on CCA-secure Lattice KEMs”. In:

IACR Transactions on Cryptographic Hardware and Embedded Systems 2021.2

(2021). https://tches.iacr.org/index.php/TCHES/article/view/8787, pp. 37–60.

ISSN: 2569-2925. DOI: 10.46586/tches.v2021.i2.37-60.

[Pre+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-

shevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and

Zhenfei Zhang. FALCON. Tech. rep. available at https://csrc.nist.gov/Projects/

post-quantum-cryptography/selected-algorithms-2022. National Institute of

Standards and Technology, 2022.

[PZS17] Romain Poussier, Yuanyuan Zhou, and François-Xavier Standaert. “A Systematic

Approach to the Side-Channel Analysis of ECC Implementations with Worst-

Case Horizontal Attacks”. In: Cryptographic Hardware and Embedded Systems –

CHES 2017. Ed. by Wieland Fischer and Naofumi Homma. Vol. 10529. Lecture

Notes in Computer Science. Taipei, Taiwan: Springer, Heidelberg, Germany, Sept.

2017, pp. 534–554. DOI: 10.1007/978-3-319-66787-4_26.

[Raj+23] Gokulnath Rajendran, Prasanna Ravi, Jan-Pieter D’Anvers, Shivam Bhasin, and

Anupam Chattopadhyay. “Pushing the Limits of Generic Side-Channel Attacks

on LWE-based KEMs - Parallel PC Oracle Attacks on Kyber KEM and Beyond”.

In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2023.2

(2023). https://tches.iacr.org/index.php/TCHES/article/view/10289, pp. 418–446.

ISSN: 2569-2925. DOI: 10.46586/tches.v2023.i2.418-446.

[Rav+19a] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay,

and Shivam Bhasin. “Exploiting Determinism in Lattice-based Signatures: Practi-

cal Fault Attacks on pqm4 Implementations of NIST Candidates”. In: ASIACCS

19: 14th ACM Symposium on Information, Computer and Communications Secu-

rity. Ed. by Steven D. Galbraith, Giovanni Russello, Willy Susilo, Dieter Gollmann,

Engin Kirda, and Zhenkai Liang. Auckland, New Zealand: ACM Press, July 2019,

pp. 427–440. DOI: 10.1145/3321705.3329821.

187

https://tches.iacr.org/index.php/TCHES/article/view/8737
https://tches.iacr.org/index.php/TCHES/article/view/8737
https://doi.org/10.46586/tches.v2021.i1.343-372
https://doi.org/10.1007/978-3-031-29689-5_3
https://doi.org/10.1007/978-3-031-29689-5_3
https://doi.org/10.1007/978-3-031-29689-5_3
https://tches.iacr.org/index.php/TCHES/article/view/8787
https://doi.org/10.46586/tches.v2021.i2.37-60
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-319-66787-4_26
https://tches.iacr.org/index.php/TCHES/article/view/10289
https://doi.org/10.46586/tches.v2023.i2.418-446
https://doi.org/10.1145/3321705.3329821

Bibliography

[Rav+19b] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay,

and Debdeep Mukhopadhyay. “Number “Not Used” Once - Practical Fault Attack

on pqm4 Implementations of NIST Candidates”. In: COSADE 2019: 10th Interna-

tional Workshop on Constructive Side-Channel Analysis and Secure Design. Ed. by

Ilia Polian and Marc Stöttinger. Vol. 11421. Lecture Notes in Computer Science.

Darmstadt, Germany: Springer, Heidelberg, Germany, Apr. 2019, pp. 232–250. DOI:

10.1007/978-3-030-16350-1_13.

[Rav+20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.

“Generic Side-channel attacks on CCA-secure lattice-based PKE and KEMs”. In:

IACR Transactions on Cryptographic Hardware and Embedded Systems 2020.3

(2020). https://tches.iacr.org/index.php/TCHES/article/view/8592, pp. 307–335.

ISSN: 2569-2925. DOI: 10.13154/tches.v2020.i3.307-335.

[Ren18] Joost Renes. “Computing Isogenies Between Montgomery Curves Using the Ac-

tion of (0, 0)”. In: Post-Quantum Cryptography - 9th International Conference,

PQCrypto 2018. Ed. by Tanja Lange and Rainer Steinwandt. Fort Lauderdale,

Florida, United States: Springer, Heidelberg, Germany, Apr. 2018, pp. 229–247.

DOI: 10.1007/978-3-319-79063-3_11.

[Rob22] Damien Robert. Breaking SIDH in polynomial time. Cryptology ePrint Archive,

Report 2022/1038. https://eprint.iacr.org/2022/1038. 2022.

[RR02] Leonid Reyzin and Natan Reyzin. “Better than BiBa: Short One-Time Signatures

with Fast Signing and Verifying”. In: Information Security and Privacy, 7th Aus-

tralian Conference, ACISP 2002, Melbourne, Australia, July 3-5, 2002, Proceedings.

Ed. by Lynn Margaret Batten and Jennifer Seberry. Vol. 2384. Lecture Notes in

Computer Science. Springer, 2002, pp. 144–153. DOI: 10.1007/3-540-45450-0_11.

URL: https://doi.org/10.1007/3-540-45450-0_11.

[RR21] Prasanna Ravi and Sujoy Sinha Roy. Side-Channel Analysis of Lattice-based PQC

Candidates. Mar. 2021. URL: https://csrc.nist.gov/CSRC/media/Projects/post-

quantum-cryptography/documents/round-3/seminars/mar-2021-ravi-sujoy-

presentation.pdf (visited on 09/01/2022).

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based On

Isogenies. Cryptology ePrint Archive, Report 2006/145. https://eprint.iacr.org/

2006/145. 2006.

[Sch+20] Thomas Schamberger, Julian Renner, Georg Sigl, and Antonia Wachter-Zeh. “A

Power Side-Channel Attack on the CCA2-Secure HQC KEM”. In: Smart Card

Research and Advanced Applications - 19th International Conference, CARDIS

2020, Virtual Event, November 18-19, 2020, Revised Selected Papers. Ed. by Pierre-

Yvan Liardet and Nele Mentens. Vol. 12609. Lecture Notes in Computer Science.

Springer, 2020, pp. 119–134. DOI: 10.1007/978-3-030-68487-7_8. URL: https:

//doi.org/10.1007/978-3-030-68487-7_8.

188

https://doi.org/10.1007/978-3-030-16350-1_13
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://doi.org/10.13154/tches.v2020.i3.307-335
https://doi.org/10.1007/978-3-319-79063-3_11
https://eprint.iacr.org/2022/1038
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1007/3-540-45450-0_11
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/seminars/mar-2021-ravi-sujoy-presentation.pdf
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/seminars/mar-2021-ravi-sujoy-presentation.pdf
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/seminars/mar-2021-ravi-sujoy-presentation.pdf
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://doi.org/10.1007/978-3-030-68487-7_8
https://doi.org/10.1007/978-3-030-68487-7_8
https://doi.org/10.1007/978-3-030-68487-7_8

Bibliography

[Sch+22a] Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh, and

Georg Sigl. “A Power Side-Channel Attack on the Reed-Muller Reed-Solomon

Version of the HQC Cryptosystem”. In: Post-Quantum Cryptography - 13th Inter-

national Workshop, PQCrypto 2022, Virtual Event, September 28-30, 2022, Pro-

ceedings. Ed. by Jung Hee Cheon and Thomas Johansson. Vol. 13512. Lecture

Notes in Computer Science. Springer, 2022, pp. 327–352. DOI: 10.1007/978-3-031-

17234-2_16. URL: https://doi.org/10.1007/978-3-031-17234-2_16.

[Sch+22b] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lep-

oint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and

Jintai Ding. CRYSTALS-KYBER. Tech. rep. available at https : / / csrc . nist . gov /

Projects / post - quantum - cryptography / selected - algorithms - 2022. National

Institute of Standards and Technology, 2022.

[Seo+20] Hwajeong Seo, Mila Anastasova, Amir Jalali, and Reza Azarderakhsh. Supersin-

gular Isogeny Key Encapsulation (SIKE) Round 2 on ARM Cortex-M4. Cryptology

ePrint Archive, Report 2020/410. https://eprint.iacr.org/2020/410. 2020.

[SH17] Bo-Yeon Sim and Dong-Guk Han. “Key Bit-Dependent Attack on Protected PKC

Using a Single Trace”. In: Information Security Practice and Experience - 13th

International Conference, ISPEC 2017, Melbourne, VIC, Australia, December 13-

15, 2017, Proceedings. Ed. by Joseph K. Liu and Pierangela Samarati. Vol. 10701.

Lecture Notes in Computer Science. Springer, 2017, pp. 168–185. URL: https :

//doi.org/10.1007/978-3-319-72359-4_10.

[Shi+19] Fanyu Shi, Jizeng Wei, Dazhi Sun, and Guo Wei. “A Systematic Approach to Hor-

izontal Clustering Analysis on Embedded RSA Implementation”. In: 25th IEEE

International Conference on Parallel and Distributed Systems, ICPADS 2019, Tian-

jin, China, December 4-6, 2019. IEEE, 2019, pp. 901–906. URL: https://doi.org/10.

1109/ICPADS47876.2019.00132.

[Sho94] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and

Factoring”. In: 35th Annual Symposium on Foundations of Computer Science.

Santa Fe, NM, USA: IEEE Computer Society Press, Nov. 1994, pp. 124–134. DOI:

10.1109/SFCS.1994.365700.

[Sil86] Joseph H. Silverman. The arithmetic of elliptic curves. Vol. 106. Graduate texts

in mathematics. Department of Mathematics, Brown University, 151 Thayer St.,

Providence, RI 02912, USA: Springer, Heidelberg, Germany, 1986, pp. xvii+513.

ISBN: 978-3-540-96203-8.

[SM11] Mutsuo Saito and Makoto Matsumoto. Tiny Mersenne Twister pseudo-random

number generator. 2011. URL: https://github.com/MersenneTwister-Lab/TinyMT

(visited on 09/01/2022).

[SM16] Tobias Schneider and Amir Moradi. “Leakage assessment methodology - Ex-

tended version”. In: Journal of Cryptographic Engineering 6.2 (June 2016), pp. 85–

99. DOI: 10.1007/s13389-016-0120-y.

189

https://doi.org/10.1007/978-3-031-17234-2_16
https://doi.org/10.1007/978-3-031-17234-2_16
https://doi.org/10.1007/978-3-031-17234-2_16
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2020/410
https://doi.org/10.1007/978-3-319-72359-4_10
https://doi.org/10.1007/978-3-319-72359-4_10
https://doi.org/10.1109/ICPADS47876.2019.00132
https://doi.org/10.1109/ICPADS47876.2019.00132
https://doi.org/10.1109/SFCS.1994.365700
https://github.com/MersenneTwister-Lab/TinyMT
https://doi.org/10.1007/s13389-016-0120-y

Bibliography

[Sou+21] Youssef Souissi, M. Abdelaziz El Aabid, Nicolas Debande, Sylvain Guilley, and

Jean-Luc Danger. “Novel Applications of Wavelet Transforms based Side-Channel

Analysis”. In: Non-Invasive Attack Testing Workshop. Nov. 2021.

[Spe+15] Robert Specht, Johann Heyszl, Martin Kleinsteuber, and Georg Sigl. “Improving

Non-profiled Attacks on Exponentiations Based on Clustering and Extracting

Leakage from Multi-channel High-Resolution EM Measurements”. In: COSADE

2015: 6th International Workshop on Constructive Side-Channel Analysis and

Secure Design. Ed. by Stefan Mangard and Axel Y. Poschmann: vol. 9064. Lecture

Notes in Computer Science. Berlin, Germany: Springer, Heidelberg, Germany,

Apr. 2015, pp. 3–19. DOI: 10.1007/978-3-319-21476-4_1.

[SPW11] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. “DRAM errors in

the wild: a large-scale field study”. In: Commun. ACM 54.2 (2011), pp. 100–107.

DOI: 10.1145/1897816.1897844. URL: https://doi.org/10.1145/1897816.1897844.

[Sto10] Anton Stolbunov. “Constructing public-key cryptographic schemes based on

class group action on a set of isogenous elliptic curves”. In: Adv. Math. Commun.

4.2 (2010), pp. 215–235. DOI: 10.3934/amc.2010.4.215. URL: https://doi.org/10.

3934/amc.2010.4.215.

[SWP03] Kai Schramm, Thomas J. Wollinger, and Christof Paar. “A New Class of Collision

Attacks and Its Application to DES”. In: Fast Software Encryption – FSE 2003. Ed. by

Thomas Johansson. Vol. 2887. Lecture Notes in Computer Science. Lund, Sweden:

Springer, Heidelberg, Germany, Feb. 2003, pp. 206–222. DOI: 10.1007/978-3-540-

39887-5_16.

[Tan+22] Yutaro Tanaka, Rei Ueno, Keita Xagawa, Akira Ito, Junko Takahashi, and Nao-

fumi Homma. Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-

Quantum KEMs. Cryptology ePrint Archive, Report 2022/940. https://eprint.iacr.

org/2022/940. 2022.

[Tas+21] Élise Tasso, Luca De Feo, Nadia El Mrabet, and Simon Pontié. “Resistance of

Isogeny-Based Cryptographic Implementations to a Fault Attack”. In: Construc-

tive Side-Channel Analysis and Secure Design - 12th International Workshop,

COSADE 2021, Lugano, Switzerland, October 25-27, 2021, Proceedings. Ed. by

Shivam Bhasin and Fabrizio De Santis. Vol. 12910. Lecture Notes in Computer

Science. Springer, 2021, pp. 255–276. DOI: 10.1007/978-3-030-89915-8_12. URL:

https://doi.org/10.1007/978-3-030-89915-8_12.

[Uen+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and Nao-

fumi Homma. “Curse of Re-encryption: A Generic Power/EM Analysis on Post-

Quantum KEMs”. In: IACR Transactions on Cryptographic Hardware and Embed-

ded Systems 2022.1 (2022), pp. 296–322. DOI: 10.46586/tches.v2022.i1.296-322.

[Vél71] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: Comptes-Rendus de l’Académie

des Sciences, Série I 273 (July 1971), pp. 238–241.

190

https://doi.org/10.1007/978-3-319-21476-4_1
https://doi.org/10.1145/1897816.1897844
https://doi.org/10.1145/1897816.1897844
https://doi.org/10.3934/amc.2010.4.215
https://doi.org/10.3934/amc.2010.4.215
https://doi.org/10.3934/amc.2010.4.215
https://doi.org/10.1007/978-3-540-39887-5_16
https://doi.org/10.1007/978-3-540-39887-5_16
https://eprint.iacr.org/2022/940
https://eprint.iacr.org/2022/940
https://doi.org/10.1007/978-3-030-89915-8_12
https://doi.org/10.1007/978-3-030-89915-8_12
https://doi.org/10.46586/tches.v2022.i1.296-322

Bibliography

[Wal01] Colin D. Walter. “Sliding Windows Succumbs to Big Mac Attack”. In: Cryptographic

Hardware and Embedded Systems – CHES 2001. Ed. by Çetin Kaya Koç, David

Naccache, and Christof Paar. Vol. 2162. Lecture Notes in Computer Science. Paris,

France: Springer, Heidelberg, Germany, May 2001, pp. 286–299. DOI: 10.1007/3-

540-44709-1_24.

[Wan+22] Yingchen Wang, Riccardo Paccagnella, Elizabeth He, Hovav Shacham, Christo-

pher W. Fletcher, and David Kohlbrenner. “Hertzbleed: Turning Power Side-

Channel Attacks Into Remote Timing Attacks on x86”. In: Proceedings of the

USENIX Security Symposium (USENIX). 2022.

[Wes22] Benjamin Wesolowski. Understanding and improving the Castryck-Decru attack

on SIDH. https://bweso.com/papers.php. 2022.

[Xag+21] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma. “Fault-

Injection Attacks Against NIST’s Post-Quantum Cryptography Round 3 KEM

Candidates”. In: Advances in Cryptology – ASIACRYPT 2021, Part II. Ed. by Mehdi

Tibouchi and Huaxiong Wang. Vol. 13091. Lecture Notes in Computer Science.

Singapore: Springer, Heidelberg, Germany, 2021, pp. 33–61. DOI: 10.1007/978-3-

030-92075-3_2.

[Xu+22] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David F. Oswald, Wang Yao, and

Zhiming Zheng. “Magnifying Side-Channel Leakage of Lattice-Based Cryptosys-

tems With Chosen Ciphertexts: The Case Study of Kyber”. In: IEEE Trans. Com-

puters 71.9 (2022), pp. 2163–2176. DOI: 10.1109/TC.2021.3122997. URL: https:

//doi.org/10.1109/TC.2021.3122997.

[Yoo+17] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir Soukharev.

“A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies”.

In: FC 2017: 21st International Conference on Financial Cryptography and Data

Security. Ed. by Aggelos Kiayias. Vol. 10322. Lecture Notes in Computer Science.

Sliema, Malta: Springer, Heidelberg, Germany, Apr. 2017, pp. 163–181.

[Zan+18] Gustavo Zanon, Marcos A. Simplício Jr., Geovandro C. C. F. Pereira, Javad Doliskani,

and Paulo S. L. M. Barreto. “Faster Isogeny-Based Compressed Key Agreement”.

In: Post-Quantum Cryptography - 9th International Conference, PQCrypto 2018.

Ed. by Tanja Lange and Rainer Steinwandt. Fort Lauderdale, Florida, United States:

Springer, Heidelberg, Germany, Apr. 2018, pp. 248–268. DOI: 10.1007/978-3-319-

79063-3_12.

[Zha+20] Fan Zhang, Bolin Yang, Xiaofei Dong, Sylvain Guilley, Zhe Liu, Wei He, Fangguo

Zhang, and Kui Ren. “Side-Channel Analysis and Countermeasure Design on

ARM-Based Quantum-Resistant SIKE”. In: IEEE Trans. Computers 69.11 (2020),

pp. 1681–1693. DOI: 10.1109/TC.2020.3020407. URL: https://doi.org/10.1109/TC.

2020.3020407.

191

https://doi.org/10.1007/3-540-44709-1_24
https://doi.org/10.1007/3-540-44709-1_24
https://bweso.com/papers.php
https://doi.org/10.1007/978-3-030-92075-3_2
https://doi.org/10.1007/978-3-030-92075-3_2
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1007/978-3-319-79063-3_12
https://doi.org/10.1007/978-3-319-79063-3_12
https://doi.org/10.1109/TC.2020.3020407
https://doi.org/10.1109/TC.2020.3020407
https://doi.org/10.1109/TC.2020.3020407

Aymeric Genêt
o +41 78 840 47 16 | � aymeric.genet@alumni.epfl.ch | æ aymericgenet | � Lausanne, VD, CH

PhD in cryptography, expert in post-quantum cryptography and side-channel attacks, excellent programming skills

EDUCATION

École Polytechnique Fédérale de Lausanne (EPFL) 2017 – 2023
Doctor of Science, Computer and Communication Systems
Title: Side-channel analysis of isogeny-based key encapsulation mechanisms and hash-based digital signatures.
Supervised by both Prof. Arjen K. Lenstra in the Laboratory for Cryptologic Algorithms (LACAL) and Prof. Serge
Vaudenay in the Security and Cryptography Laboratory (LASEC).

École Polytechnique Fédérale de Lausanne (EPFL) 2014 – 2017
Master’s Degree, Communication Systems

École Polytechnique Fédérale de Lausanne (EPFL) 2011 – 2014
Bachelor’s Degree, Communication Systems

EXPERIENCE

Nagra Kudelski Group Cheseaux-sur-Lausanne, VD, CH
Senior Security Engineer Oct. 2022 – Present

Security audit of embedded source code, blockchain architectures, cryptographic solutions in proprietary IP, and
hardware implementations (AES, 3DES, ECC, and RSA).

Security Engineer Sep. 2017 – Oct. 2022
Security audit of embedded source code and hardware implementations (AES, 3DES, ECC, and RSA).

Master Thesis Feb. 2017 – Sep. 2017
Conducted research on side-channel and fault attacks against hash-based cryptography.

Student Internship Aug. 2016 – Feb. 2017
Developed a tool to mount lattice attacks against classical digital signature schemes.

École Polytechnique Fédérale de Lausanne (EPFL) Ecublens, VD, CH
Teaching Assistant Sep. 2017 – Feb. 2020

Provided leading assistance to the 1st-year class Advanced Information, Computation, and Communication I.

Summer Internship Jul. 2015 – Aug. 2015
Enhanced an implementation in C of the Schoof–Elkies–Atkin algorithm (point counting on elliptic curves).

Student Assistant Feb. 2013 – Feb. 2016
Provided assistance to 1st-year classes including Introduction to OOP, IT Project, and Discrete Structures.

NOTABLE PUBLICATIONS

On Protecting SPHINCS+ Against Fault Attacks CHES 2023

SIKE Channels - Zero-Value Side-Channel Attacks on SIKE CHES 2022

SKILLS
Languages : Python, Sagemath, C, Scala, Rust, Java, C#, C++, Bash, LATEX, Matlab

	Acknowledgements
	Abstract (English/Français)
	Contents
	List of Figures
	List of Tables
	Introduction
	Side-channel attacks
	Power analysis
	Traces collection
	Power measurement setup (ChipWhisperer)
	EM measurement setup (Arduino)

	Traces processing
	Fourier transform
	Wavelet transform

	Traces analysis
	Differential power analysis
	Clustering power analysis
	Zero-valued power analysis

	Fault analysis

	I Isogeny-based cryptography
	SIKE
	Background
	Notation
	Elliptic curves
	Isogenies
	Key encapsulation mechanism

	SIDH
	Key exchange

	SIKE
	Key exchange
	The three-point ladder
	Strategies
	Formulas

	Horizontal differential power analysis of SIKE
	Attack description
	Three-point ladder analysis
	Double-and-add
	Multi-precision addition

	Vertical attack
	Horizontal attack

	Attack enhancements
	Depth search
	Increasing verticality

	Experimental verification
	Setup
	Experiment
	Traces collection
	Horizontal DPA procedure
	Results
	Discussion

	Countermeasures
	Recommended countermeasure
	Other countermeasures

	Conclusion

	Clustering power analysis of SIKE
	Attack description
	Point-swapping procedure analysis
	Clustering attack

	Attack enhancements
	Enhancing sample selection
	Fourier transform
	Wavelet transform
	Other transforms

	Enhancing power samples clustering
	Thresholding
	Other clustering methods

	Enhancing key verification
	Majority rule
	Educated thresholding
	Other post-processing

	Experimental verification
	Setup
	Experiment
	Traces collection
	Clustering power analysis procedure
	Results
	Discussion

	Countermeasures
	Description
	Implementation
	Masks generation
	The swapping operation
	Benchmarks

	Experimental validation
	Other countermeasures

	Conclusion

	Zero-value power analysis of SIKE
	Attack description
	Isogeny analysis
	Computing the kernel point
	Computing the isogeny
	Attack sketch
	Other SIKE instances

	Experimental verifications
	Setup
	Experiment
	Traces collection
	ZVP procedure
	Results
	Discussion

	Countermeasures
	CLN test

	Conclusion

	II Hash-based cryptography
	SPHINCS and SPHINCS+
	Background
	Notation
	Functions
	Treehash
	Paths
	Digital signature scheme

	One-time signatures
	W-OTS+

	Few-time signatures schemes
	HORST
	FORS

	Multiple-time signatures
	XMSS
	Hypertree

	SPHINCS-256
	SPHINCS+

	Differential power analysis of SPHINCS-256
	Attack description
	SPHINCS-256 pseudorandom function analysis

	Experimental verification
	Setup
	Experiment

	Countermeasures
	Conclusion

	Fault analysis of SPHINCS+
	Attack description
	Signatures collection
	Faulty signatures processing
	Tree grafting
	Path seeking
	Universal forgery

	Attack analysis
	Fault analysis
	Universal forgery analysis: one-fault model
	Universal forgery analysis: multiple-fault model

	Countermeasure analysis
	Caching layers
	Caching branches

	Experimental verifications
	Setup
	Experiment 1: randomized + cached layer
	Experiment 2: randomized + cached branches

	Conclusion

	Conclusion
	Cortex-M4 implementation of SIKE
	Bibliography
	Curriculum Vitae

