
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Planetary-Scale Byzantine Fault Tolerance

Matteo MONTI

Thèse n° 9000

2024

Présentée le 12 janvier 2024

Prof. K. Aberer, président du jury
Prof. R. Guerraoui, directeur de thèse
Prof. L. Alvisi, rapporteur
Prof. R. Van Renesse, rapporteur
Prof. B. Ford, rapporteur

Faculté informatique et communications
Laboratoire de calcul distribué
Programme doctoral en informatique et communications

A Irene.

Preface

This thesis contains selected results of research performed during doctoral studies between

September 2017 and August 2023, supervised by Prof. Rachid Guerraoui, at the Distributed

Computing Laboratory (School of Computer and Communication Sciences) at EPFL in Lau-

sanne, Switzerland. The results presented in this thesis appear in the following works:

• Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Dragos-Adrian Seredin-

schi. “Scalable Byzantine Reliable Broadcast". DISC 2019. (Best Paper Award.)

• Martina Camaioni, Rachid Guerraoui, Matteo Monti, Manuel Vidigueira. “Oracular

Byzantine Reliable Broadcast". DISC 2022.

• Martina Camaioni, Rachid Guerraoui, Matteo Monti, Pierre-Louis Roman, Manuel

Vidigueira, Gauthier Voron. “Chop Chop: Byzantine Atomic Broadcast to the Network

Limit". Under Revise-and-Resubmit for OSDI 2024.

The following additional publications contain work that is not presented in this thesis, but are

also a result of research performed during the same doctoral studies:

• Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Dragos-Adrian Seredin-

schi. “The Consensus Number of a Cryptocurrency". PODC 2019.

• Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej

Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, Athanasios

Xygkis. “Online Payments by Merely Broadcasting Messages". DSN 2020. (Runner-up

for Best Paper Award.)

• Andrei Kucharavy, Matteo Monti, Rachid Guerraoui, Ljiljana Dolamic. “Byzantine-

Resilient Learning Beyond Gradients: Distributing Evolutionary Search." GECCO 2023.

• Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Matteo Monti and Manuel

Vidigueira. “Every Bit Counts in Consensus." DISC 2023. (Best Paper Award.)

• Martina Camaioni, Rachid Guerraoui, Jovan Komatovic, Matteo Monti, Pierre-Louis

Roman, Manuel Vidigueira, Gauthier Voron. “Carbon: Scaling Trusted Payments with

Untrusted Machines." Under review for TDSC 2023.

The following additional publications contain results from prior work in physics, but published

during the same doctoral studies:

i

Preface

• Armando Bazzani, Silvia Vitali, Carlo Emilio Montanari, Matteo Monti, Gastone Castel-

lani. “Sthocastic Properties of Colliding Particles in a Non-Equilibrium Thermal Bath."

Nonlocal and Fractional Operators 2019.

• Silvia Vitali, Carlo Emilio Montanari, Matteo Monti, Gastone Castellani. “Event-Based

Simulation of 2D Particles Gas in a Gradient of Temperature." ICTT 2019.

ii

Abstract

The scale and pervasiveness of the Internet make it a pillar of planetary communication,

industry and economy, as well as a fundamental medium for public discourse and democratic

engagement. In stark contrast with the Internet’s decentralized infrastructure, however, most

hyper-scale online services adopt a centralized architecture, wherein millions or billions of

clients entrust the same service provider with sensitive data to store, process and transmit,

resulting in poor security and a dangerous asymmetry of power between users and system

maintainer. Byzantine distributed computing has long held the promise to advance the

security and transparency of our information infrastructure, replicating services across several,

mutually mistrustful processes so as to uphold security and transparency even if a fraction

of the processes deviate arbitrarily from the algorithm they are assigned. Despite extensive

research, however, real-world replicated systems still fall short of global adoption. This is at

least in part due to the limited scalability of Byzantine algorithms: the cost of replication is

still too high, preventing the rise of Byzantine hyper-scalers.

This thesis attempts to overcome this limitation, contributing planetary-scale implemen-

tations for two classes of distributed abstractions: Reliable Broadcast, which has correct

processes agree on messages issued by individual sources, and Consensus, which provides

agreement on values contributed by multiple independent sources. The two classes of ab-

straction differ in power and requirements: Consensus is more powerful, enabling universal

distributed computation, but Reliable Broadcast can be implemented without any assumption

on network timeliness, a better fit for the public Internet’s large latency spikes.

First, we scale the number of servers that can take part in Reliable Broadcast. We present

Contagion, the first probabilistic Reliable Broadcast protocol to achieve logarithmic per-

process computation and communication complexity, enabling scalability to a practically

unlimited number of servers. At the core of Contagion are samples, a probabilistic alternative

to Byzantine quorums foregoing intersection guarantees for statistical representativeness.

Contagion’s security evaluation is among the main technical contributions of this thesis,

providing the first formal analysis of a probabilistic protocol in the Byzantine setting.

Second, we scale the number of clients that can concurrently submit messages to a Reli-

able Broadcast system. We present Draft, the first implementation of Reliable Broadcast to

asymptotically amortize (whenever a set of commonplace conditions are met) all signature

and communication overhead resulting from Byzantine fault tolerance, matching the com-

plexity of a trusted, centralized solution. Draft’s efficiency is enabled by brokers, a novel

iii

Abstract

layer of untrusted processes we introduce between clients and servers to enhance system

performance.

Finally, we scale the number of clients a Consensus-class system can handle. We do so with

Chop Chop, the first system to introduce brokers to the Atomic Broadcast abstraction. When

geo-deployed on 64 medium-sized servers, Chop Chop processes 43,600,000 messages per

second, two orders of magnitude more than state-of-the-art alternatives. Even at maximum

load, Chop Chop’s performance is close to line-rate, putting 92% of server bandwidth towards

transmitting application messages, negating nearly all cost resulting from Byzantine fault

tolerance.

Keywords. Distributed systems, Byzantine fault tolerance, scalability, planetary scale, repli-

cation, reliable broadcast, consensus, randomized algorithms, broker-enhanced computation,

oracularity, efficiency.

iv

Résumé

L’ampleur et l’omniprésence d’Internet en font un pilier de la communication, de l’industrie et

de l’économie à l’échelle planétaire, ainsi qu’un support fondamental pour le discours public

et l’engagement démocratique. Cependant, contrairement à l’infrastructure décentralisée

d’Internet, la plupart des services en ligne à grande échelle adoptent une architecture centrali-

sée, dans laquelle des millions ou des milliards de clients confient au même fournisseur de

service des données sensibles à stocker, à traiter et à transmettre, ce qui entraîne une sécurité

médiocre et une dangereuse asymétrie de pouvoir entre les utilisateurs et le responsable du

système. Le calcul distribuée Byzantin promet depuis longtemps de faire progresser la sécurité

et la transparence de notre infrastructure d’information, en répliquant les services à travers

plusieurs ordinateurs qui se méfient les uns des autres, de manière à maintenir la sécurité et

la transparence même si une fraction des ordinateurs dévient arbitrairement de l’algorithme

qui leur est assigné. Malgré des recherches approfondies, les systèmes répliqués n’ont pas

encore été adoptés en pratique à l’échelle mondiale. Cela est dû, au moins en partie, a la

capacité limitée pour des algorithmes Byzantins de passer à l’échelle : le coût de la réplication

est encore trop élevé, ce qui empêche l’apparition d’hyper-scalers Byzantins.

Cette thèse tente de surmonter cette limitation par des implémentations, utilisables à l’échelle

planétaire, pour deux classes d’abstractions distribuées : le Reliable Broadcast, qui permet aux

processus corrects de se mettre d’accord sur des messages émis par des sources individuelles,

et le Consensus, qui permet de se mettre d’accord sur des valeurs fournies par de multiples

sources indépendantes. Les deux catégories d’abstractions diffèrent en termes de puissance et

d’exigences : le Consensus est plus puissant et permet un calcul distribué universel, mais le

Reliable Broadcast peut être mis en œuvre sans aucune hypothèse sur la latence du réseau, ce

qui est mieux adapté aux importants pics de latence de l’Internet public.

Tout d’abord, nous augmentons le nombre de serveurs pouvant participer aux Reliable Broad-

cast. Nous présentons Contagion, le premier protocole probabiliste de Reliable Broadcast

dont la complexité de calcul et de communication par processus est logarithmique, ce qui

permet de l’étendre à un nombre pratiquement illimité de serveurs. Au cœur de Contagion se

trouvent les échantillons, une alternative probabiliste aux quorums Byzantins qui renoncent

aux garanties d’intersection pour la représentativité statistique. L’évaluation de la sécurité de

Contagion est l’une des principales contributions techniques de cette thèse, car elle fournit la

première analyse formelle d’un protocole probabiliste dans le cadre Byzantin.

Ensuite, nous augmentons le nombre de clients qui peuvent simultanément soumettre des

v

Résumé

messages à un système de Reliable Broadcast. Nous présentons Draft, la première implé-

mentation de Reliable Broadcast à amortir asymptotiquement, chaque fois qu’une série de

conditions communes sont satisfaites, l’intergralité du surcoût des signatures et des commu-

nications résultant de la tolérance aux pannes Byzantines, et ainsi atteindre la complexité

d’une solution centralisée et fiable. L’efficacité de Draft est rendue possible par les brokers, une

nouvelle classe de processus ne nécessitant pas de garantie de fiabilité que nous introduisons

entre les clients et les serveurs pour améliorer les performances du système.

Enfin, nous augmentons le nombre de clients qu’un système de type Consensus peut gérer.

Nous le faisons avec Chop Chop, le premier système à introduire des brokers dans l’abstraction

Atomic Broadcast. Lorsqu’il est géodéployé sur 64 serveurs de taille moyenne, Chop Chop

traite 43 600 000 messages par seconde, soit deux ordres de grandeur de plus que l’état de

l’art. Même à la charge maximale, les performances de Chop Chop sont proches du line-rate,

consacrant 92% de la bande passante du serveur à la transmission des messages d’application,

ce qui annule la quasi-totalité des coûts résultant de la tolérance aux pannes Byzantines.

vi

Contents

Preface i

Abstract (English / Français) iii

Introduction 1

I Scalable Byzantine Reliable Broadcast 9

1 Overview 11

1.1 Introduction . 11

1.1.1 Probabilistic Byzantine Reliable Broadcast 12

1.1.2 Probability Analysis . 13

1.1.3 Security and Complexity Evaluation . 14

1.2 Related Work . 16

1.3 Model . 17

2 Murmur 19

2.1 Interface . 19

2.2 Algorithm . 20

2.3 No duplication, integrity and validity . 20

2.4 Totality . 22

3 Sieve 27

3.1 Interface . 27

3.2 Algorithm . 28

3.3 No duplication and integrity . 30

3.4 Total validity . 31

3.5 Preliminary lemmas . 32

3.6 Simplified Sieve . 38

3.6.1 Consistency-only broadcast . 38

3.6.2 Byzantine oracle . 39

3.6.3 Algorithm . 39

3.7 Adversarial execution . 44

3.7.1 Model (Sieve) . 44

vii

Contents

3.7.2 Model (Simplified Sieve) . 45

3.7.3 Network scheduling . 45

3.7.4 Interfaces . 46

3.8 Simplified adversarial power . 48

3.8.1 Preliminary definitions . 48

3.8.2 Consistency of Simplified Sieve . 50

3.9 Two-phase adversaries . 58

3.10 Consistency . 66

3.10.1 Two-phase adversaries . 67

3.10.2 Random variables . 68

3.10.3 Byzantine population, correct echoes, delivery 70

3.10.4 Second phase . 72

3.10.5 First phase . 78

3.11 Decorators . 82

3.11.1 Auto-echo adversary . 82

3.11.2 Process-sequential adversary . 88

3.11.3 Sequential adversary . 97

3.11.4 Non-redundant adversary . 108

3.11.5 Sample-blind adversary . 114

3.11.6 Byzantine-counting adversary . 127

3.11.7 Single-response adversary . 133

3.11.8 Two-phase adversary . 139

4 Contagion 147

4.1 Interface . 147

4.2 Algorithm . 148

4.3 No duplication and integrity . 150

4.4 Validity . 151

4.5 Adversarial execution . 152

4.5.1 Model . 152

4.6 Epidemic processes . 153

4.7 Threshold contagion (overview) . 157

4.8 Preliminary lemmas . 159

4.9 Consistency . 161

4.10 Totality . 163

4.10.1 Minimal operations . 163

4.10.2 Delivery probability . 164

4.10.3 C-step Threshold Contagion . 165

4.11 Threshold Contagion . 167

4.11.1 Epidemic processes . 168

4.11.2 Threshold Contagion . 169

4.11.3 Rules . 169

viii

Contents

4.11.4 Random variables . 172

4.11.5 Goal . 172

4.11.6 Sample space . 173

4.11.7 Random variables as sample functions . 178

4.11.8 Contagion step . 182

4.11.9 Final infection size . 190

II Oracular Byzantine Reliable Broadcast 193

5 Overview 195

5.1 Introduction . 195

5.2 Related Work . 201

5.3 Model & background . 203

5.3.1 Model . 203

5.3.2 Background . 204

6 Draft 205

6.1 Interface . 205

6.2 Algorithm . 206

6.2.1 Protocol & correctness overview . 206

6.2.2 Complexity overview . 212

6.2.3 Pseudocode (Client) . 214

6.2.4 Pseudocode (Broker) . 216

6.2.5 Pseudocode (Server) . 221

6.3 Correctness . 227

6.3.1 No duplication . 227

6.3.2 Consistency . 227

6.3.3 Totality . 232

6.3.4 Integrity . 234

6.3.5 Validity . 236

6.4 Complexity . 252

6.4.1 Auxiliary results . 252

6.4.2 Batching limit . 260

6.4.3 Protocol analysis . 261

7 Dibs 267

7.1 Interface . 267

7.2 Algorithm . 269

7.2.1 Pseudocode (Client) . 269

7.2.2 Pseudocode (Server) . 271

7.3 Correctness . 272

7.3.1 Correctness . 272

7.3.2 Signup integrity . 275

ix

Contents

7.3.3 Signup validity . 275

7.3.4 Self-knowledge . 277

7.3.5 Transferability . 278

7.3.6 Density . 279

III Byzantine Atomic Broadcast to the Network Limit 281

8 Chop Chop 283

8.1 Overview . 283

8.2 Atomic Broadcast . 286

8.2.1 Cost of Atomic Broadcast . 286

8.2.2 Existing Mitigations . 287

8.3 Distilled Batches . 288

8.3.1 Distillation at a Glance . 289

8.3.2 Distillation Microbenchmark . 290

8.4 Chop Chop . 291

8.4.1 Architecture and Model . 292

8.4.2 Distillation Phase . 293

8.4.3 Submission Phase . 296

8.4.4 Correctness . 297

8.5 Implementation Details . 299

8.5.1 Broker . 299

8.5.2 Server . 300

8.6 Evaluation . 301

8.6.1 Baselines . 301

8.6.2 Setup . 302

8.6.3 RQ1 – Load Handling . 305

8.6.4 RQ2 – Distillation Benefits . 306

8.6.5 RQ3 – Number of Servers . 308

8.6.6 RQ4 – Overall Efficiency . 309

8.6.7 RQ5 – Chop Chop Under Failures . 309

8.6.8 RQ6 – Application Use Cases . 310

8.7 Related Work . 310

Conclusions 313

Bibliography 315

x

Introduction

A word of motivation

The Internet was designed with decentralization in mind, as a way to maintain reliable commu-

nications in the face of catastrophic infrastructural damage. Half a century after ARPANET’s

first deployment, the scale and pervasiveness of the Internet make it a pillar of planetary

communication, industry and economy [int21], as well as a fundamental medium for public

discourse and democratic engagement [ESWV22]. In stark contrast with the infrastructure

on which they rely, however, most Internet-scale services adopt a centralized architecture,

wherein millions or billions of clients entrust the same service provider with sensitive data to

store, process and transmit [Fit22, Run20].

Centralized computer systems are fast, scalable and easy to deploy, but come at a severe cost

in terms of security and transparency. On the one hand, single points of failure are notoriously

bad for security, as even the best-maintained systems are prone to being hacked or compro-

mised by random accidents. In 2023, cyber-attacks are projected to account for as much as 8

trillion US dollars in global economic damage [Far22] - over 8% of the world’s economy, lost to

improperly secured computer systems. In the last year alone, real-world attacks have been

successfully dealt [cyb23] on energy systems, financial infrastructure, healthcare providers,

governments and military organizations alike, both in war and peacetime. However well

maintained, a centralized system is prone to being hacked into, physically tampered with, or

compromised by random accidents.

On the other hand, centralized solutions force users to trust that the system’s maintainer (often

a self-interested, profit-driven organization) will behave in a way aligned with the users’ best

interests, e.g., by preserving data confidentiality or upholding accurate bookkeeping even

when failing to do so would be advantageous and difficult to detect. Over the last decade, this

power asymmetry resulted in a long sequence of abuses, with Internet-scale service providers

violating user privacy [Reu20, Cer19, Pri19], mismanaging hate speech [Moz18], enabling

democratic tampering [Con18] and harming the health of their most vulnerable users [Gay21].

Lacking ad-hoc transparency measures, centralized systems are opaque. Once cleartext data

is handed off, it is not easy to determine how that data will be handled.

1

Introduction

Byzantine distributed computing, on which this thesis focuses, has long 1 held the promise to

advance the security and transparency of humanity’s information infrastructure. By replicat-

ing a service across several, reciprocally mistrusting processes, a Byzantine-resilient system

upholds well-defined liveness and safety properties even if a fraction of the processes fail

maliciously, deviating arbitrarily from the algorithm they are are assigned. In theory, any

service can be replicated, faithfully and transparently executed on a common system whose

correctness and availability would be very hard to thwart. As such, Byzantine algorithms hold

the promise of profound societal impact, securing critical infrastructure and empowering

citizens with services whose operation is auditable and democratically established, beyond

the influence of any individual party.

Despite extensive research and interest from industry and governments, however, real-world

Byzantine systems still fall short of global adoption: from search engines to social networks,

from messaging platforms to software distribution infrastructures, most planetary-scale ser-

vices still adopt, at the time of writing, a centralized architecture. This lack of adoption, we

argue, is at least in part2 due to the limited scalability of Byzantine algorithms: the cost of

replication is still too high, preventing the rise of Byzantine hyper-scalers.

The Internet’s foundational vision was that of a highly-available, decentralized, secure, uni-

versal computer shared by all. This thesis hopes to make a small step towards that vision,

introducing practical distributed algorithms that billions of stakeholders can partake in as

servers, or use as clients.

Two levels of power, two ways to scale

This thesis focuses on two fundamental classes of distributed abstraction: Reliable Broadcast

and Consensus. Abstractions within the same class can be implemented from each other (for

example, Atomic Broadcast can be built atop Consensus, and vice versa). While Consensus can

be used to implement Reliable Broadcast, however, the converse is provably impossible [68]. As

such, abstractions in the Consensus class are strictly more powerful than those in the Reliable

Broadcast class. Consensus-powered algorithms, however, are generally more complex, and

require more stringent assumptions about the system on which they run.

Reliable Broadcast. Abstractions in the Reliable Broadcast class have correct processes agree

on messages issued by individual sources. Reliable Broadcast [31], the class’ namesake, has

one designated sender broadcast a single message. If the sender is correct, every correct pro-

cess delivers the message it broadcasts. Even if the sender is Byzantine, all correct processes

1The seminal “Byzantine Generals Problem" [104] was published in 1982, over forty years prior to the writing of
this thesis.

2Other factors might include the high latency inherent to WAN-based coordination, the lack of well-established,
practical solutions for deploying real-world distributed systems, and the incomplete legislative frameworks
regulating decentralised networks. This thesis aims to contribute technical results to the public discourse, but the
road ahead is likely long and interdisciplinary.

2

Introduction

deliver either the same message, or no message at all. Multi-shot variants [34] of Reliable

Broadcast include Source-Order Broadcast, wherein every process maintains an independent,

agreed-upon, append-only log, and Causal Broadcast, wherein no message is delivered before

any of its causal antecedents. Reliable Broadcast has well-known applications [37, 61] as

a building block in practical fault-tolerant systems. Most notably, the Asset-Transfer prob-

lem, which cryptocurrency-based systems traditionally solve using Consensus, was recently

reduced [80] to Causal Broadcast, showing Reliable Broadcast’s relevance as a stand-alone

solution. Abstractions in the Reliable Broadcast class are generally considered simpler to

implement [50] than their Consensus-based counterparts. Maybe more importantly, Reliable

Broadcast can be solved in the asynchronous setting [31]: all abstractions in the Reliable

Broadcast class uphold liveness and safety even when no assumption can be made on how

rapidly processes can exchange messages. This makes Reliable Broadcast solutions fast and

secure in environments with large latency spikes, such as the public Internet. Simplicity

and asynchrony, however, come at the cost of generality, as only a relatively narrow class of

problems 3 can be solved by abstractions in the Reliable Broadcast class - Consensus is still

required in the general case. We study abstractions in the Reliable Broadcast class in Parts I

and II of this thesis.

Consensus. Abstractions in the Consensus class have correct processes agree on values

contributed by multiple independent sources. Consensus [104], the class’ namesake, has each

correct process first propose, then decide a value. All correct processes eventually decide the

same value; if all correct processes propose the same value4, that value must be decided. The

canonical multi-shot variant of Consensus is Atomic Broadcast, wherein all sources contribute

messages to the same, totally-ordered, agreed-upon, append-only log. The most relevant

application of Atomic Broadcast is arguably State Machine Replication, the fundamental

distributed abstraction enabling universal Byzantine-resilient computation. In brief, State

Machine Replication uses Atomic Broadcast to order requests, usually contributed by an

external set of clients. Every correct process initializes a local copy of the same deterministic

state matchine to the same initial value, then serves the same requests in the same order.

Because all correct processes deterministically transition through the same sequence of states,

any response backed by sufficiently many processes is guaranteed to be correct - this technique

can be employed to make any deterministic service safe and available despite a (suitably small)

fraction of processes misbehaving arbitrarily. Abstractions in the Consensus class usually call

for more complex implementations than their Reliable Broadcast counterparts. Additionally,

Consensus is provably impossible in asynchrony [68]5, forcing Consensus algorithms to make

assumptions about the timeliness of inter-process communication. We study abstractions in

3Reliable Broadcast can only solve problems whose consensus number is 1 Herlihy’s hyerarchy [86].
4Several other flavors of validity are defined in literature [48], relating decisions to proposals. Weaker forms of

validity, for example, only apply if all processes are correct.
5The impossibility of asynchronous Consensus applies only to the deterministic variant of Consensus. Prob-

abilistic variants of Consensus, which deterministically uphold safety but only terminate with probability 1, do
allow for asynchronous solutions.

3

Introduction

the Consensus class in Part III.

The goal of this thesis is to contribute planetary-scale implementations for both classes of

abstraction. For each class, we attempt in particular to scale the number of processes that can

partake in the abstraction as servers, as well as the number of processes that can concurrently

use the abstraction as clients.

Scaling servers. Designing a distributed algorithm that can scale to billions of servers

presents some fundamental challenges. At the core of even the simplest distributed algo-

rithms [31] is the concept of quorums [149], sets of servers that are large enough to intersect in

at least one correct server. Classically, deterministic algorithms [22, 31, 43, 156] have at least

one process exchange messages with a quorum of servers, resulting in an unworkable com-

munication complexity: at planetary scale, no individual process can feasibly communicate

with (a non-negligible fraction of) the whole system. We tackle this fundamental problem

by shifting to the probabilistic setting, replacing quorums with samples. Unlike quorums,

samples do not provide any intersection guarantees - a sample is just large enough to be (with

high probability) statistically representative of the system as a whole. Studying the security of

a probabilistic system while accounting for Byzantine behavior is one of the main challenges

of this thesis. We focus on server scalability in Part I of this thesis.

Scaling clients. In order to reliably service billions of clients, a system will realistically need

to sustain millions of requests per second. Designing a distributed algorithm for such a high

throughput requires minimizing the amount of computation and communication required

server-side to process each request. Techniques such as batching [43, 55, 70, 140] are available

in literature to partially amortize the cost of coordination among servers. Even when batch-

ing is employed, however, the communication and computation cost incurred by a server

when processing a high rate of requests is often dominated by operations (such as message

authentication) that, we notice, are expensive to perform, but cheap to verify. To leverage

this observation, we extend the classical client-server model with brokers, a permissionless,

scalable set of processes whose only purpose is to alleviate server complexity. Unlike servers,

a large fraction of which we must assume to be correct, all brokers but one can be faulty. Bro-

kers act as an intermediary between clients and servers, taking upon themselves to perform

expensive, verifiable operations. We focus on client scalability in Parts II and III of this thesis.

Contributions of this thesis

This thesis (Figure 1) presents solutions to three of the four scalability challenges we outlined

above: we scale Reliable Broadcast servers in Part I, Reliable Broadcast clients in Part II, and

Consensus clients in Part III.

4

Introduction

Reliable Broadcast Consensus

Theory Systems Theory Systems

Server

Scalability
Part I, [81] (unpublished)

Client

Scalability
Part II, [41] [39] (submitted)

(work in
progress)

Part III, [40] (minor revisions)

Figure 1: Contributions of this thesis.

Part I: Scalable Byzantine Reliable Broadcast. We generalize single-shot Reliable Broadcast

to the probabilistic setting, allowing each of its properties to be violated with a fixed, arbitrarily

small probability. We leverage these relaxed guarantees in a protocol replacing quorums with

stochastic samples. Unlike quorums, samples do not provide any intersection guarantee: a

sample is just large enough to be statistically representative of the overall system (at least with

high probability). We implement Reliable Broadcast with three algorithms, building on top of

each other to progressively obtain stronger abstractions: Murmur for Probabilistic Broadcast,

Sieve for Probabilistic Consistent Broadcast, and Contagion for Probabilistic Reliable Broadcast.

To the best of our knowledge, Contagion is the first Reliable Broadcast protocol to achieve

logarithmic per-process computation and communication complexity, enabling scalability

to a practically unlimited number of servers. A major technical contribution of Part I is

a fully formal analysis of our protocol, deriving closed-form bounds on the probability of

each Reliable Broadcast property being compromised. The complexity of such an analysis is

exacerbated in the Byzantine setting, as each bound must hold for every possible adversarial

strategy. We tackle this problem using decorators, a novel suite of formal techniques designed

to progressively narrow down the set of strategies that provably includes the optimal adversary.

The algorithms and techniques discussed in Part I were presented [81] at the International

Symposium on Distributed Computing (DISC 2019). The paper won the Best Paper Award for

that edition of the conference. In addition to the theoretical results presented in this thesis,

a C++ implementation of Contagion was developed and tested on a global deployment of

Amazon AWS machines. Preliminary results showed a throughput of upwards of a thousand

messages per second even when Contagion was deployed on 2048 Micro instances (larger-

scale testing was unfeasbile due to budget constraints). Regrettably, the experimental results

on Contagion are, at the time of writing, unpublished.

Part II: Oracular Byzantine Reliable Broadcast. We study Client-Server Byzantine Reliable

Broadcast, a multi-shot variant of Reliable Broadcast whose interface is split between broad-

casting clients and delivering servers. We present Draft, an optimally resilient implementation

of Client-Server Byzantine Reliable Broadcast. Like most algorithms in the Reliable Broadcast

class, Draft guarantees both liveness and safety in the asynchronous setting. Under good

conditions, however, Draft stretches towards information-theoretical efficiency. In a moment

5

Introduction

of synchrony, free from Byzantine misbehavior, and at the limit of infinitely many broad-

casting clients, a Draft server delivers a b-bits payload at an asymptotic amortized cost of

0 signature verifications, and log2(c)+b bits exchanged, where c is the number of clients

in the system. This is the minimum number of bits required to convey the payload (b bits,

assuming it is incompressible) along with an identifier for its sender (log2 (c) bits, necessary

to enumerate any set of c elements, and optimal if broadcasting frequencies are uniform or

unknown). Noting that this is the same complexity a server would incur by receiving plain,

unauthenticated messages from a trusted oracle, we say that Draft can achieve oracularity,

effectively achieving zero-cost Byzantine fault tolerance. We achieve oracularity by noting

that a synchronous, interactive protocol can, in the absence of Byzantine behavior, reduce

the metadata of a batch of messages down to a constant. Remarkably, this reduction protocol

is expensive to perform, but publicly verifiable: ill-reduced batches are visibly malformed,

and can be discarded without additional coordination. This observation allows us to offload

reduction to brokers, a novel set of processes we add to the distributed computing model

between clients and servers. Brokers play no safety role in the system (even if they all fail,

only6 liveness is lost), and can be trustlessly spun up to meet client demand, interacting with

clients to produce reduced batches for the servers to oracularly process.

The results discussed in Part II were presented [41] at the International Symposium on Dis-

tributed Computing (DISC 2022). In addition to the theoretical results presented in this

thesis, Draft was generalized into Carbon, a reconfigurable, garbage-collected, asynchronous

asset-transfer system. When tested on a global deployment of 64 AWS machines, a Rust

implementation of Carbon sustained upwards of one million messages per second. Our ex-

perimental results are currently under review for publication [39] in the IEEE Transactions on

Dependable and Secure Computing (TDSC).

Part III: Byzantine Atomic Broadcast to the Network Limit. We present Chop Chop, a

Byzantine Atomic Broadcast system that amortizes the cost of ordering, authenticating and

deduplicating messages, achieving line rate (i.e., closely matching the complexity of a protocol

that does not ensure any ordering, authentication or Byzantine resilience) even when process-

ing messages as small as 8 bytes. Chop Chop attains this performance by means of distillation,

a generalization of the reduction techniques we introduced in Part II for the Reliable Broadcast

class. A distilled batch is a set of messages that are fast to authenticate and deduplicate, as

well as order. Batches are distilled using a novel, interactive protocol based on brokers. In a

geo-distributed deployment of 64 medium-sized servers, with clients situated cross-cloud, a

Rust implementation of Chop Chop processes 43,600,000 messages per second with an aver-

age latency of 3.6 seconds. Under the same conditions, state-of-the-art alternatives offer two

orders of magnitude less throughput for the same latency. We test three simple applications,

6The liveness of a critical system might arguably be as important as its safety. The trustless nature of brokers,
however, helps protect liveness too. Should well-established brokers experience catastrophic failure, concerned
stakeholders could, e.g., spin up their own brokers, bypassing lengthy security audits to quickly bring the system
back online.

6

Introduction

running on a replicated state machine powered by Chop Chop: a Payment system, an Auction

house and an instance of the “Pixel War" game, respectively achieving 32, 2.3 and 35 million

operations per second.

The results presented in Part III are under minor revisions for presentation [40] at the USENIX

Symposium on Operating Systems Design and Implementation (OSDI 2024). In addition to

the experimental results presented in this thesis, a paper is under development to generalize

oracularity to the Atomic Broadcast abstraction, further establish brokers as a well-defined

role in the distributed computing model, and prove Chop Chop’s correctness and oracularity

to the fullest extent of formal detail.

State of the art. To the best of our knowledge, all three results presented in this thesis are

state of the art at the time of writing. An implementation of Reliable Broadcast with sub-

logarithmic complexity would likely require going past stochastic sampling: even assuming

that only the sender is Byzantine, having every correct process query a sub-logarithmic sample

would result in a non-negligible probability of non-representativeness for at least one sample,

effectively poisoning a process’ view of the overall system. Concerning our oracular and

line-rate implementations, improving efficiency would necessarily involve some compression

scheme: assuming ids and messages are incompressible, both solutions asymptotically reach,

to the bit, the information-theoretical lower bound.

Towards Scalable Byzantine Atomic Broadcast. A great deal of effort was put towards the

development of a Byzantine Atomic Broadcast algorithm that (similarly to Contagion) would

achieve logarithmic per-process computation and communication complexity. Doing so

proved unfeasible within the time allowed by PhD research. While an algorithm, which we

conjecture to be correct, was developed, a fully formal proof of its safety and liveness proved

intractable within such a limited time frame. As we discuss in Part I, much of the complexity of

Contagion’s analysis stems from the non-trivial interaction between the probabilistic behavior

of correct processes and the arbitrary behavior of the Byzantine adversary. Adding to this the

subtlety of time analysis (our Atomic Broadcast algorithm works in the partially synchronous

model) further complicates our proofs. On the way to proving the algorithm’s correctness, a

fully formal theory of decorators was developed, framing Byzantine behavior in the general

scope of probabilistic games. Due to its length (comparable to the entire extent of this thesis)

and dubious standing as stand-alone contribution, our theoretical work on decorators was

omitted from this thesis, and is currently unpublished.

7

Part IScalable Byzantine Reliable Broadcast

9

1 Overview

1.1 Introduction

Broadcast is a popular abstraction in the distributed systems toolbox, allowing a process to

transmit messages to a set of processes. The literature defines many flavors of broadcast, with

different safety and liveness guarantees [34, 72, 82, 110, 125]. In this Part we focus on Byzantine

reliable broadcast, as introduced by Bracha [31]. This abstraction is a central building block

in practical Byzantine fault-tolerant (BFT) systems [37, 61, 80]. We tackle the problem of its

scalability, namely reducing the complexity of Byzantine reliable broadcast, and seeking good

performance despite a large number of participating processes.

In Byzantine reliable broadcast, a designated sender broadcasts a single message. Intuitively,

the broadcast abstraction ensures that no two correct processes deliver different messages

(consistency), either all correct processes deliver a message or none does (totality), and that, if

the sender is correct, all correct processes eventually deliver the broadcast message (validity).

This must hold despite a certain fraction of Byzantine processes, potentially including the

sender. We denote by N the number of processes in the system, and f the fraction of processes

that are Byzantine. Existing algorithms for Byzantine reliable broadcast scale poorly as they

typically have O(N) per-process communication complexity [32, 110, 111, 146]. The root

cause for the poor scalability of these algorithms is their use of quorums [112, 149], i.e., sets of

processes that are large enough to always intersect in at least one correct process. The size of

a quorum grows linearly with the size of the system [34].

To overcome the scalability limitation of quorum-based broadcast, Malkhi et al. [113] general-

ized quorums to the probabilistic setting. In this setting, two random quorums intersect with

a fixed, arbitrarily high probability, allowing the size of each quorum to be reduced to O(
p

N).

We are not aware of any Byzantine reliable broadcast algorithm building on probabilistic

quorums; nevertheless, such an algorithm could have a per-process communication com-

plexity reduced from O(N) to O(
p

N). The activet protocol of Malkhi et al. [110] uses a form of

samples for an optimistic path, but relies on synchrony and has a linear worst-case complexity

(that is arguably very likely to occur with only moderate amounts of faulty processes).

11

Chapter 1. Overview

Samples. In this Part, we present a probabilistic gossip-based Byzantine reliable broadcast

algorithm having O(log N) per-process communication and computation complexity, at the

expense of O(log N /loglog N) latency. Essentially, we propose samples as a replacement for

quorums. Like a probabilistic quorum, a sample is a randomly selected set of processes. Unlike

quorums, samples do not need to intersect. Any two quorums must have a large enough size

to ensure their intersection in a correct node (at least with high probability). Samples, instead,

can be significantly smaller than quorums, as each sample must be large enough only to be

representative of the system with high probability.

As with quorums, a process can use its sample to gather information about the global state

of the system. An old Italian saying provides an intuitive understanding of this shift of

paradigm: “To know if the sea is salty, one needs not drink all of it!" Intuitively, we lever-

age the law of large numbers, trading performance for a fixed, arbitrarily small probability of

non-representativeness. To get an intuition of the difference between quorums and samples,

consider the emulation of a shared memory in message passing [9]. One writes in a quorum

and reads from a quorum to fetch the last value written. Our algorithms are rather in the vein

of "write all, read any". Here we would "write" using a gossip primitive and "sample" the

system to seek the last value.

Throughout this Part, we extensively use samples to estimate the number of processes sat-

isfying a set of yes-or-no predicates, e.g., the number of processes that are ready to deliver a

message m. Consider the case where a correct process π queries K randomly selected pro-

cesses (a sample) for a predicate P . Assume a fraction p of correct processes from the whole

system satisfy predicate P . Let x be the fraction of positive responses (out of K) that π collects.

By the Chernoff bound, the probability of
∣∣x −p

∣∣≥ f + ϵ is smaller or equal to exp(−λ(ϵ)K),

where λ quickly increases with ϵ. For sufficient K , the probability of x differing from p by more

than f +ϵ can be made exponentially small.

To obtain a sample, our algorithms use a sampling oracle that returns the identity of a process

from the system picked with uniform probability. In a permissioned system (i.e., one where the

set of participating processes is known) sampling reduces to picking with uniform probability

an element from the set of processes. In a permissionless system subject to Byzantine failures

and slow churn, a (nearly) uniform sampling mechanism is still achievable using gossip [28].

1.1.1 Probabilistic Byzantine Reliable Broadcast

Our probabilistic algorithm, Contagion, allows each property of Byzantine reliable broadcast

to be violated with an arbitrarily small probability ϵ. We show that ϵ scales sub-quadratically

with N , and decays exponentially in the size of the samples. As a result, for a fixed value of ϵ,

the per-node communication complexity of Contagion is logarithmic.

We build Contagion incrementally, relying on two sub-protocols, as we describe next.

First, Murmur is a probabilistic broadcast algorithm that uses simple message dissemination

12

1.1 Introduction

to establish validity and totality. In this algorithm, each correct process relays the sender’s

message to a randomly picked gossip sample of other processes. For the sample sizeΩ(log N),

the resulting gossip network is a connected graph with O(log N /loglog N) diameter, with high

probability [47, 65]. In case of a Byzantine sender, however, Murmur does not guarantee

consistency.

Second, Sieve is a probabilistic consistent broadcast algorithm that guarantees consistency,

i.e., no two correct processes deliver different messages. To do so, each correct process uses a

randomly selected echo sample. Intuitively, if enough processes from any echo sample confirm

a message m, then with high probability no correct processes in the system delivers a different

message m′. Sieve, however, does not ensure totality. If a Byzantine sender broadcasts multiple

conflicting messages, a correct process might be unable to gather sufficient confirmations for

either of them from its echo sample, and consequently would not deliver any message, even if

some correct process delivers a message.

Finally, Contagion is a probabilistic reliable broadcast algorithm that guarantees validity,

consistency, and totality. The sender uses Sieve to disseminate a consistent message to a

subset of the correct processes. In order to achieve totality, Contagion mimics the spreading of

a contagious disease in a population. A process samples the system and if it observes enough

other "infected" processes in its sample, it becomes infected itself. If a critical fraction of

processes is initially infected by having received a message from the underlying Sieve layer,

the message spreads to all correct processes with high probability. If a process observes

enough other infected processes, it delivers. As in the original deterministic implementation

by Bracha [31], the crucial point here is that "enough" for becoming infected is less than

"enough" for delivering. This way, with high probability, either all correct processes deliver

a message or none does—Contagion satisfies totality. The other two important properties

(validity and consistency) are inherited from the underlying (Murmur and Sieve) layers.

1.1.2 Probability Analysis

A major technical contribution of this Part is a complete, formal analysis of the properties of

our three algorithms. To the best of our knowledge, this is the first analysis of a probabilistic

broadcast algorithm in the Byzantine fault model, and this turned out to be very challenging.

Intuitively, providing a bound on the probability of a property being violated reduces to

studying a joint distribution between the inherent randomness of the system and the behavior

of the Byzantine adversary. Since the behavior of the adversary is arbitrary, the marginal

distribution of the Byzantine’s behavior is unknown.

We develop two novel strategies to bound the probability of a property being violated, which

we use in the analysis of Sieve and Contagion respectively.

13

Chapter 1. Overview

Identifying the optimal adversarial strategy. When evaluating the consistency of Sieve, we

show that a bound holds for every possibly optimal adversarial strategy. Essentially, we identify

a subset of adversarial strategies that we prove to include the optimal one, i.e., the one that

has the highest probability of compromising Sieve’s consistency. We then prove that every

possibly optimal adversarial strategy has a probability of compromising the consistency of

Sieve smaller than some ϵ.

Identifying a set of possibly optimal adversarial strategies that is narrow enough to be amenable

to analytic bounds is the most technically involved challenge of this Part. We do so by means

of a novel technique that involves modeling the adversary as an algorithm interacting with

the system through a well-defined interface. We start from the set of all possible adversarial

algorithms (trivially, this set includes an optimal adversary). We then reduce the set of possibly

optimal adversaries in steps. At every step, we transform each adversary by means of a decora-

tor. Intuitively, a decorator tweaks an adversary in a way that simplifies its behavior without

reducing its effectiveness in compromising the system. With each decorator, the set of possibly

optimal adversaries becomes narrower and more tractable, finally yielding adversaries whose

behavior is so simple that the probability of consistency being compromised can be computed

analytically.

Making adversarial strategy irrelevant. When evaluating the totality of Contagion, we show

that the adversarial strategy does not affect the outcome of the execution. Here, we show

that any adversarial strategy reduces to a well-defined sequence of choices. We then prove

that, due to the limited knowledge of the Byzantine adversary, every choice is equivalent to a

random one.

1.1.3 Security and Complexity Evaluation

In Chapters 2 to 4 we present and study the security of three algorithms: Murmur, Sieve and

Contagion, building upon each other to implement probabilistic Byzantine reliable broadcast.

Each algorithm is configured by one or more security parameters (sample sizes and thresholds -

we discuss each in detail in the relevant chapter). Sample sizes in particular are what determine

the per-process communication complexity of each algorithm: in Murmur, a correct process

gossips (on average) with G other processes to disseminate the sender’s message; in Sieve,

a correct process samples E other processes to ensure consistency; in Contagion, a correct

process decides whether or not to amplify / deliver a message based on two independent

samples, respectively of size R and D .

The goal of Contagion’s security analysis is to derive closed-form expressions, relating sample

sizes and thresholds to the probability ϵ that Contagion will fail to uphold any of the properties

of probabilistic Byzantine reliable broadcast.

We employ numerical techniques to minimize ϵ, optimizing all security parameters under the

14

1.1 Introduction

Figure 1.1: Left – ϵ-security of Contagion, as a function of the average sample size S =
〈G ,E ,R,D〉. We use a system size of 1024 processes and fractions of tolerated Byzantine
processes f = 0.1 and f = 0.15. Right – Square root of the normalized ϵ-security of Contagion,
as a function of the system size N , for various fractions of Byzantine processes (f) and average
sample sizes (S). We normalize the values in each series by the first element of that series.
All lines appearing to grow sub-linearly with a square-rooted y-axis demonstrates that the
normalized ϵ security grows sub-quadratically.

constraint that the sum of all the sample sizes be constant (G +E +R +D = const). Because a

process communicates a constant number of times with each of the processes in its samples,

this corresponds to a fixed communication complexity.

For a given system size N and fraction of Byzantine processes f , we relate this per-process

communication complexity to the ϵ-security of Contagion. As Figure 1.1 (left) shows, the

probability ϵ of compromising the security of Contagion decays exponentially in the average

sample size S. We also study how the ϵ-security of Contagion changes as a function of the

system size N , for a fixed set of parameters (G ,E ,R,D). Figure 1.1 (right) shows that the

ϵ-security is bounded by a quadratic function in N .

In summary, for a fixed security ϵ, the average sample size (and consequently, the commu-

nication complexity of our algorithm) grows logarithmically with the system size N . For a

practical choice of parameters, the probability of violating the properties of our algorithm can

be brought down to 10−16 for systems with thousands of processes.

The latency in terms of message delays between broadcasting and delivery of a message is

O(log N /loglog N). Specifically, the latency converges to O(log N /loglog N) message delays

for gossip-based dissemination with Murmur (we prove this in Section 2.4, Theorem 5), and 2

message delays in total for Echo (Sieve) and Ready (Contagion) messages.

Roadmap. We discuss related work in Section 1.2. We state our model in Section 1.3. We

discuss our probabilistic broadcast implementation Murmur in Chapter 2, our probabilis-

tic consistent broadcast implementation Sieve in Chapter 3, and our probabilistic reliable

15

Chapter 1. Overview

broadcast implementation Contagion in Chapter 4. Each chapter introduces the relevant

abstraction, presents the relevant pseudocode, then formally studies the algorithm’s abidance

to the abstraction’s properties. For deterministic properties, we provide a proof of correctness.

For probabilistic properties, we analitically bound the probability that the property will be

violated.

1.2 Related Work

At its base, our broadcast algorithm relies on gossip. There is a great body of literature studying

various aspects of gossip, proposing flavors of gossip protocols for different environments

and analyzing their complexities [6, 13, 18, 19, 20, 63, 67, 73, 74, 75, 76, 77, 84, 139, 148, 157].

However, to the best of our knowledge, we propose the first highly scalable gossip-based

reliable broadcast protocol resilient to Byzantine faults with a thorough probabilistic analysis.

The communication pattern in the implementation of both our Sieve and Contagion algo-

rithms can be traced back to the Asynchronous Byzantine Agreement (ABA) primitive of Bracha

and Toueg [32] and the subsequent line of work [31, 37, 110, 132]. Indeed, our echo-based

mechanism in Sieve resembles algorithms from classic quorum-based systems for Byzantine

consistent broadcast [131, 146]. The ready-based mechanism in Contagion is inspired by

a two-phase protocol appearing in several practical (quorum-based) systems [37, 61, 111].

Compared to classic work on this topic, the key feature of Contagion and Sieve is that they

replace the building block of quorum systems with stochastic samples, thus enabling better

scalability for the price of abandoning deterministic guarantees.

There is significant prior work on using epidemic algorithms to implement scalable reliable

broadcast [23, 66, 89, 106]. Under benign failures or constant churn, these algorithms ensure,

with high probability, that every broadcast message reaches all or none, and that all messages

from correct senders are delivered. Our goal is to additionally provide consistency for broadcast

messages, and tolerate Byzantine environments [32, 111, 146]. To the best of our knowledge,

we are the first to apply the epidemic sample-based methodology in this context. Our main

algorithm Contagion scales well to dynamic systems of thousands of nodes, some of which

may be Byzantine. This makes it a suitable choice for permissionless settings that are gaining

popularity with the advent of blockchains [122].

Distributed clustering techniques seek to group the processes of a system into clusters, some-

times called shards or quorums, of size O(log N) [14, 79, 94, 95, 134]. This line of work has var-

ious goals (e.g., leader election, “almost everywhere” agreement, building an overlay network)

and they also aim for scalable solutions. The overarching principle in clustering techniques

is similar to our use of samples: build each cluster in a provably random manner so that

the adversary cannot dominate any single cluster. Samples in our solution are private and

individual on a per-process basis, in contrast to clusters which are typically public and global

for the whole system.

16

1.3 Model

The idea of communication locality appears in the context of secure multi-party computation

(MPC) protocols [29, 46, 71]. This property captures the intuition that, in order to obtain

scalable distributed protocols and permit a large number of participants, it is desirable to

limit the number of participants each process must communicate with. All of our three

algorithms have this communication locality property, since each process coordinates only

with logarithmically-sized samples. In contrast to secure MPC protocols, our algorithms

have different goals, system model, or assumptions (e.g., we do not assume a client-server

model [71], nor do we seek to address privacy issues). Our algorithms can be used as building

blocks towards helping tackle scalability in MPC protocols, and we consider this an interesting

avenue for future work.

1.3 Model

In this section we discuss our system model and assumptions, and introduce some useful

notation. We assume an asynchronous message-passing system where the set Π of N = |Π|
processes partaking in an algorithm is fixed. Any two processes can communicate via a reliable

authenticated point-to-point link.

We assume that each correct process has access to a local, unbiased, independent source

of randomness. We assume that every correct process has direct access to an oracle Ω that,

provided with an integer n ≤ N , yields the identities of n distinct processes, chosen uniformly

at random fromΠ. ImplementingΩ is beyond the scope of this Part, but it is straightforward

in practice. In a system where the set of participating processes is known, sampling reduces to

picking with uniform probability an element from the set of processes. In a system without

a global membership view, a (nearly) uniform sampling mechanism, Brahms, is available in

literature due to Bortnikov et al. [28]. Remarkably, Brahms tolerates (slow) churn, a good fit for

the usually permissionless nature of large-scale distributed systems. While we conjecture this

amenability to reconfiguration would gracefully extend to our algorithms, a thorough analysis

of churn is beyond the scope of this Part.

At most a fraction f of the processes are Byzantine, i.e., subject to arbitrary failures [104].

Byzantine processes may collude and coordinate their actions. Unless stated otherwise, we

denote by ΠC ⊆ Π the set of correct processes and by C = |ΠC | =
(
1− f

)
N the number of

correct processes. We assume a static Byzantine adversary controlling the faulty processes, i.e.,

the set of processes controlled by the adversary is fixed at the beginning and does not change

throughout the execution of the protocols.

We make standard cryptographic assumptions regarding the power of the adversary, namely

that it cannot subvert cryptographic primitives, e.g., forge a signature. We finally assume

that Byzantine processes are not aware of (1) the output of the local source of randomness

of any correct process; and (2) which correct processes are communicating with each other.

Both assumptions are crucial to the safety of sampling. Should the membership of a process’

sample be revealed, an adversary could bias its view of the system, singling out the queried

17

Chapter 1. Overview

processes with non-representative information. Anonymous communication is admittedly

our system’s most significant practical constraint. Even against ISP-grade adversaries, however,

anonymous communication was achieved in practice (at the cost of additional latency) using

techniques such as onion routing [58] or private messaging [147].

18

2 Murmur

In this chapter, we present the probabilistic broadcast abstraction and discuss its properties.

We then present Murmur, an algorithm that implements probabilistic broadcast, and evaluate

its security and complexity as a function of its parameters.

The probabilistic broadcast abstraction serves the purpose of reliably broadcasting a single

message from a designated correct sender to all correct processes (validity, totality).

We use probabilistic broadcast in the implementation of Sieve (see Chapter 3) to initially

distribute the message from the designated sender to all correct processes.

2.1 Interface

The probabilistic broadcast interface (instance pb, sender σ) exports the following events:

• Request:
〈

pb.Broadcast | m
〉

: Broadcasts a message m to all processes. This is only used

by σ.

• Indication
〈

pb.Deliver | m
〉

: Delivers a message m broadcast by process σ.

For any ϵ ∈ [0,1], we say that probabilistic broadcast is ϵ-secure if:

1. No duplication: No correct process delivers more than one message.

2. Integrity: If a correct process delivers a message m, and σ is correct, then m was

previously broadcast by σ.

3. ϵ-Validity: If σ is correct, and σ broadcasts a message m, then σ eventually delivers m

with probability at least (1−ϵ).

4. ϵ-Totality: If a correct process delivers a message, then every correct process eventually

delivers a message with probability at least (1−ϵ).

19

Chapter 2. Murmur

2.2 Algorithm

Murmur (Algorithm 1) distributes a single message across the system by means of gossip:

upon reception, a correct process relays the message to a set of randomly selected neighbors.

The algorithm depends on one integer parameter, G (expected gossip sample size), whose value

we discuss in Section 2.4.

Initialization. Upon initialization, (line 11) every correct process randomly samples a value

Ḡ from a Poisson distribution with expected value G , and uses the sampling oracle Ω to select

Ḡ distinct processes that it will use to initialize its gossip sample G .

Link reciprocation. Once its gossip sample is initialized, a correct process sends a

GossipSubscribe message to all the processes in G (line 13). Upon receiving a

GossipSubscribe message from a process π (line 17), a correct process adds π to its own

gossip sample (line 22), and sends back the gossiped message if it has already received it

(line 20).

Gossip. When broadcasting the message (line 34), a correct designated sender σ signs the

message and sends it to every process in its gossip sample G (line 28). Upon receiving a

correctly signed message from σ (line 37) for the first time (this is enforced by updating the

value of del i ver ed , line 25), a correct process delivers it (line 30) and forwards it to every

process in its gossip sample (line 28).

2.3 No duplication, integrity and validity

We start by verifying that Murmur satistifes no duplication, integrity and 0-validity, indepen-

dently of G .

Theorem 1. Murmur satisfies no duplication.

Proof. Procedure di spatch explicitly checks (line 25) if the variable del i ver ed is equal to ⊥
before delivering any message. Before a message is delivered (line 30), del i ver ed is updated

to a value different from ⊥ (line 26). Therefore a correct process only delivers one message.

Theorem 2. Murmur satistifes integrity.

Proof. Upon receiving a Gossip message, a correct process checks its signature against the

public key of the designated sender σ (line 37). Moreover, if σ is correct, it only signs messag e

when broadcasting (line 34). Since we assume that cryptographic signatures cannot be forged,

this implies that the message was previously broadcast by σ.

20

2.3 No duplication, integrity and validity

Algorithm 1 Murmur
1: Implements:
2: ProbabilisticBroadcast, instance pb
3:

4: Uses:
5: AuthenticatedPointToPointLinks, instance al
6:

7: Parameters:
8: G : expected gossip sample size
9:

10: upon event
〈

pb.Init
〉

do
11: G =Ω(Poisson[G]);
12: for all π ∈G do
13: trigger

〈
al .Send |π, [GossipSubscribe]

〉
;

14: end for
15: del i ver ed =⊥;
16:

17: upon event
〈

al .Deliver |π, [GossipSubscribe]
〉

do
18: if del i ver ed ̸= ⊥ then
19: (messag e, si g natur e) = del i ver ed ;
20: trigger

〈
al .Send |π, [Gossip,messag e, si g natur e]

〉
;

21: end if
22: G ←G ∪ {π};
23:

24: procedure dispatch(messag e, si g natur e) is
25: if del i ver ed =⊥ then
26: del i ver ed ← (messag e, si g natur e);
27: for all π ∈G do
28: trigger

〈
al .Send |π, [Gossip,messag e, si g natur e]

〉
;

29: end for
30: trigger

〈
pb.Deliver | messag e

〉
31: end if
32:

33: upon event
〈

pb.Broadcast | messag e
〉

do ▷ only process σ
34: di spatch(messag e, si g n(messag e));
35:

36: upon event
〈

al .Deliver |π, [Gossip,messag e, si g natur e]
〉

do
37: if ver i f y(σ,messag e, si g natur e) then
38: di spatch(messag e, si g natur e);
39: end if
40:

21

Chapter 2. Murmur

Theorem 3. Murmur satisfies 0-validity.

Proof. Upon broadcasting a message m, a correct sender calls the procedure

di spatch(m, si g n(m)) (line 34). Since del i ver ed is initialized to ⊥, this immediately

results in the delivery of m (line 30).

Since the validity property is satisfied deterministically, Murmur satisfies ϵ-validity for ϵ= 0.

2.4 Totality

We now compute, given the parameter G , the ϵ-totality of Murmur. To this end, we first prove

some preliminary lemmas.

Lemma 1. Let ρ andπ be two correct processes, let ρ be inπ’s gossip sample. Thenπ is eventually

in ρ’s gossip sample.

Proof. A gossip sample is updated only upon initialization (line 11) or when a

GossipSubscribe message is received (line 22).

If π selected ρ upon initialization, then it also sent it a GossipSubscribe message (line 13).

Since Byzantine network scheduling can only finitely delay the messages between correct

processes, ρ eventually receives π’s message (line 17) and adds π to its gossip sample.

If π received a GossipSubscribe message from ρ, then (line 13) ρ selected π upon initializa-

tion, which means that π is already in ρ’s gossip sample.

Definition 1 (Correct gossip network). Let π, ρ be two correct processes, let π↔ ρ denote the

condition ρ is eventually in π’s gossip sample. Lemma 1 proves that(
π↔ ρ

)⇔ (
ρ↔π

)
We define correct gossip network to be the undirected graph

G= (
ΠC ,

{(
π,ρ

) ∈Π2
C |π↔ ρ

})
(2.1)

Lemma 2. If the correct gossip network is connected, then Murmur satisfies totality.

Proof. We start by noting that a correct process eventually delivers a message (line 30) if and

only if it eventually sets del i ver ed to a value different from ⊥ (line 26).

Let π be a correct process for which eventually del i ver ed ̸= ⊥. Upon setting del i ver ed ←
(m ̸= ⊥), π sends m to all the processes in its gossip sample (line 28). Moreover, upon receiving

a GossipSubscribe message after setting del i ver ed ← m, π replies with m (line 20).

22

2.4 Totality

Therefore, every correct process that is eventually in π’s gossip sample eventually satisfies

del i ver ed ̸= ⊥. If G is connected, then a path exists in G between π and every other correct

process, and they all eventually satisfy del i ver ed ̸= ⊥, i.e., they deliver a message.

From Lemma 2 it follows that Murmur satisfies ϵ-totality if the probability of G being discon-

nected is at most ϵ.

Notation 1 (Binomial distribution). We use Bin
[
N , p

]
to denote the binomial distribution

with N trials and p probability of success.

Notation 2 (Poisson distribution). We use Poisson[λ] to denote the Poisson distribution with

expected value λ.

Notation 3 (Probability). Let E , F be events. We use P [E] to denote the probability of E. We

use P [E | F] to denote the probability of E , conditioned on the occurrence of F .

Let X , Y , Z be random variables. For example, we use the following expressions interchange-

ably:

P
[

X̄
]←→P

[
X = X̄

]
Note how X is a random variable, while X̄ is an element in the codomain of X . Stand-ins can

be combined. For example, we use the following expressions interchangeably:

P
[

X̄ , Ȳ
] ←→ P

[
X = X̄ ,Y = Ȳ

]
P

[
X̄ | Ȳ

] ←→ P
[

X = X̄ | Y = Ȳ
]

P
[

X̄ , Ȳ | Z̄
] ←→ P

[
X = X̄ ,Y = Ȳ | Z = Z̄

]
Stand-ins are only used to express exact values. Whenever non-trivial expressions are needed,

we use their explicit form. Explicit notation and stand-ins can be combined. For example, we

use the following expressions interchangeably:

P
[

X̄ | Y < K
] ←→ P

[
X = X̄ | Y < K

]
P

[
X̄ | X < K

] ←→ P
[

X = X̄ | X < K
]

Lemma 3. In the limit N →∞, G is a G
(
C , p

)
Erdős–Rényi graph, with

p = 1−
(
1− G

N

)2

Proof. It is a known result that, for large samples and small probabilities, a binomial distribu-

tion converges to a Poisson distribution:

lim
N→∞

N p=const

[
Bin

[
N , p

]
(n) =

(
N

n

)
pn(

1−p
)N−n

]
=

[(
N p

)n

n!
e−N p = Poisson

[
N p

]
(n)

]

23

Chapter 2. Murmur

therefore, in the limit N →∞,

Poisson[G](n) ≃ Bin

[
N ,

G

N

]
(n) (2.2)

As we discussed in Section 2.2, a gossip sample G is initialized upon initialization (line 11) by

first sampling a value Ḡ from a Poisson[G] distribution, then selecting Ḡ distinct processes

fromΠwith uniform probability.

Letπ ∈ΠC ,ρ ∈Π, let G i n
π beπ’s initial gossip sample, let q =G/N . By the law of total probability,

and using Equation (2.2), we have for large N

P
[
ρ ∈G i n

π

]
=

N∑
Ḡ=0

(
P

[
ρ ∈G i n

π | Ḡ
]
P

[
Ḡ

])
=

N∑
Ḡ=0

(
Ḡ

N
Poisson[G]

(
Ḡ

))≃ N∑
Ḡ=0

(
Ḡ

N
Bin

[
N , q

](
Ḡ

))

=
N∑

Ḡ=0

(
Ḡ

N

(
N

Ḡ

)
qḠ(

1−q
)N−Ḡ

)

=
N∑

Ḡ=0

(
Ḡ

N

N !

Ḡ !
(
N −Ḡ

)
!
qḠ(

1−q
)N−Ḡ

)

=
N∑

Ḡ=1

(
(N −1)!(

Ḡ −1
)
!
(
N −Ḡ

)
!
qqḠ−1(1−q

)N−Ḡ
)

= q
N−1∑
Ḡ ′=0

(
(N −1)!

Ḡ ′!
(
N −1−Ḡ ′)!

qḠ ′(
1−q

)N−1−Ḡ ′
)

= q
N−1∑
Ḡ ′=0

Bin
[
N −1, q

](
Ḡ ′)= q

Let ρ1, . . . ,ρR be distinct processes, with R ≤ N . Similar calculations yield

P
[
ρ1 ∈G i n

π , . . . ,ρR ∈G i n
π

]
= qR (2.3)

Equation (2.3) proves that every process ρ ∈Π has an independent probability q of being in

G i n
π . Since for any two π,ξ ∈ΠC we have

(π↔ ξ) ⇔
(
π ∈G i n

ξ ∨ξ ∈G i n
π

)
we can derive the probability p of any two correct processes being connected:

p = 1− (
1−q

)2 = 1−
(
1− G

N

)2

(2.4)

24

2.4 Totality

Therefore, following Equations (2.3) and (2.4), G=G(C , p) is an Erdős – Rényi graph with H

nodes and p probability of connection between any two nodes.

Lemma 3 allows us to bound the ϵ-totality of Murmur, given G .

Theorem 4. Murmur satisfies ϵt -totality, with ϵt bound by

ϵt ≤
C /2∑
k=1

((
C

k

)(
1−p

)k(C−k)

)
(2.5)

Proof. It follows immediately from Lemma 3 and a known result ([2]) on the connectivity of

Erdős–Rényi graphs.

We prove an additional result on the latency of Murmur.

Theorem 5. The latency of Murmur is asymptotically sub-logarithmic. More formally, the

diameter D(C ,G) of the correct gossip network limits to

lim
C→∞

D(C ,G) = log(C)

log
(
2−2 f

)+ log(G)

Proof. It is a known result ([47]) that the diameter of an Erdős–Rényi graph G(C , p) converges,

for C p →∞, to log(C)/ log(C p).

Noting that

lim
C→∞

1−
(
1− G

N

)2

= 2G

N

we get

lim
C→∞

D(C ,G) = log(C)

log(C)+ log(p)

= log(C)

log(C)+ log(2)+ log(G)− log(N)

= log(C)

log
(2C

N

)+ log(G)

= log(C)

log(2−2 f)+ log(G)

which proves the lemma. For a fixed security ϵ, we showed in Theorem 4 that G must scale

logarithmically with the size of the system. As a result, for a fixed security ϵ, the latency scales

as O(log(N)/ log(log(N)))

25

3 Sieve

In this chapter, we present the probabilistic consistent broadcast abstraction and discuss

its properties. We then present Sieve, an algorithm that implements probabilistic consistent

broadcast, and evaluate its security and complexity as a function of its parameters.

The probabilistic consistent broadcast abstraction allows a subset of the correct processes

to agree on a single message from a potentially Byzantine designated sender. Intuitively,

probabilistic consistent broadcast offers a tradeoff with respect to probabilistic broadcast.

Probabilistic broadcast guarantees (totality) that if any correct process delivers a message,

every correct process delivers a message. Probabilistic consistent broadcast, instead, guar-

antees (consistency) that, even if the sender is Byzantine, no two correct processes deliver

different messages. However, if the sender is Byzantine, it may happen with a non-negligible

probability that only an intermediate fraction of the correct processes deliver the message.

We use probabilistic consistent broadcast in the implementation of Contagion (see Chapter 4)

as a way to consistently broadcast messages.

3.1 Interface

The probabilistic consistent broadcast interface (instance pcb, sender σ) exposes the follow-

ing two events:

• Request:
〈

pcb.Broadcast | m
〉

: Broadcasts a message m to all processes. This is only

used by σ.

• Indication:
〈

pcb.Deliver | m
〉

: Delivers a message m broadcast by process σ.

For any ϵ ∈ [0,1], we say that probabilistic consistent broadcast is ϵ-secure if:

1. No duplication: No correct process delivers more than one message.

27

Chapter 3. Sieve

2. Integrity: If a correct process delivers a message m, and σ is correct, then m was

previously broadcast by σ.

3. ϵ-Total validity: If σ is correct, and σ broadcasts a message m, every correct process

eventually delivers m with probability at least (1−ϵ).

4. ϵ-Consistency: Every correct process that delivers a message delivers the same message

with probability at least (1−ϵ).

3.2 Algorithm

Algorithm 2 Procedure sample.
1: procedure sample(messag e, si ze) is
2: ψ=;;
3: for si ze times do
4: ψ←ψ∪Ω(1);
5: end for
6: for all π ∈ψ do
7: trigger

〈
al .Send |π, [messag e]

〉
;

8: end for
9: return ψ;

10:

Algorithm 2 implements a sample procedure that we use both in the implementation of

Sieve and Contagion. Procedure sample(messag e, si ze) usesΩ to pick si ze processes with

replacement, and sends them messag e.

Algorithm 3 implements Sieve. Sieve consistently distributes a single message across the

system as follows:

• Initially, probabilistic broadcast distributes potentially conflicting copies of the message

to every correct process.

• Upon receiving a message m from probabilistic broadcast, a correct process issues an

Echo message for m.

• Upon receiving enough Echo messages for the message m it Echoed, a correct process

delivers m.

A correct process collects Echo messages from a randomly selected echo sample of size E , and

delivers the message it Echoed upon receiving Ê Echoes for it. We discuss the values of the

two parameters of Sieve in Section 3.10.

28

3.2 Algorithm

Algorithm 3 Sieve
1: Implements:
2: ProbabilisticConsistentBroadcast, instance pcb
3:

4: Uses:
5: AuthenticatedPointToPointLinks, instance al
6: ProbabilisticBroadcast, instance pb
7:

8: Parameters:
9: E : echo sample size

10: Ê : delivery threshold
11:

12: upon event
〈

pcb.Init
〉

do
13: echo =⊥; del i ver ed = False; Ẽ =;;
14:

15: E = sample(EchoSubscribe,E);
16: r epl i es = {⊥}E ;
17:

18: upon event 〈al .Deliver |π, [EchoSubscribe]〉 do
19: if echo ̸= ⊥ then
20: (messag e, si g natur e) = echo;
21: trigger

〈
al .Send |π, [Echo,messag e, si g natur e]

〉
;

22: end if
23: Ẽ ← Ẽ ∪ {π};
24:

25: upon event
〈

pcb.Broadcast | messag e
〉

do ▷ only process σ
26: trigger

〈
pb.Broadcast | [Send,messag e, si g n(messag e)]

〉
;

27:

28: upon event
〈

pb.Deliver | [Send,messag e, si g natur e]
〉

do
29: if ver i f y(σ,messag e, si g natur e) then
30: echo ← (messag e, si g natur e);
31: for all ρ ∈ Ẽ do
32: trigger

〈
al .Send | ρ, [Echo,messag e, si g natur e]

〉
;

33: end for
34: end if
35:

36: upon event
〈

al .Deliver |π, [Echo,messag e, si g natur e]
〉

do
37: if π ∈ E and r epl i es[π] =⊥ and ver i f y(σ,messag e, si g natur e) then
38: r epl i es[π] ← (messag e, si g natur e);
39: end if
40:

41: upon
∣∣{ρ ∈ E | r epl i es[ρ] = echo

}∣∣≥ Ê and del i ver ed = False do
42: del i ver ed ← True;
43: trigger

〈
pcb.Deliver | messag e

〉
;

44:

29

Chapter 3. Sieve

Sampling. Upon initialization (line 12), a correct process randomly selects an echo sample E

of size E . Samples are selected with replacement by repeatedly calling Ω (Algorithm 2, line 4).

A correct process sends an EchoSubscribe message to all the processes in its echo sample

(Algorithm 2, line 7).

Publish-subscribe. Unlike in the deterministic version of Authenticated Echo
Broadcast, where a correct process broadcasts its Echo messages to the whole system, here

each process only listens for messages coming from its echo sample (line 37).

A correct process maintains an echo subscription set Ẽ . Upon receiving an EchoSubscribe
message from a process π, a correct process adds π to Ẽ (line 23). If a correct process re-

ceives an EchoSubscribe message after publishing its Echo message, it also sends back the

previously published message (line 21).

A correct process only sends its Echo messages (line 32) to its echo subscription set.

Echo. The designated sender σ initially broadcasts its message using probabilistic broadcast

(line 26). Upon pb.Delivery of a message m (correctly signed by σ) (line 28), a correct process

sends an Echo message for m to all the nodes in its echo subscription set (line 32).

Delivery. A correct process π that Echoed a message m delivers m (line 43) upon collecting

at least Ê Echo messages for m (line 41) from the processes in its echo sample.

3.3 No duplication and integrity

We start by verifying that Sieve satisfies both no duplication and integrity.

Theorem 6. Sieve satisfies no duplication.

Proof. A message is delivered (line 43) only if the variable del i ver ed is equal to False (line 41).

Before any message is delivered, del i ver ed is set to True. Therefore no more than one

message is ever delivered.

Theorem 7. Sieve satisfies integrity.

Proof. Upon receiving an Echo message, a correct process checks its signature against the

public of the designated sender σ (line 37), and the (messag e, si g natur e) pair is added to

the r epl i es variable only if this check succeeds. Moreover, a message is delivered only if it is

represented at least Ê > 0 times in r epl i es (line 41).

If σ is correct, it only signs messag e when broadcasting (line 26). Since we assume that

cryptographic signatures cannot be forged, this implies that the message was previously

30

3.4 Total validity

broadcast by σ.

3.4 Total validity

We now compute, given E and Ê , the ϵ-total validity of Sieve. To this end, we prove some

preliminary lemmas.

Lemma 4. In an execution of Sieve, if pb does not satisfy totality, then pcb does not satisfy total

validity.

Proof. A correct process delivers a message (line 43) only if the echo variable is different from

⊥. Moreover, the echo variable is set to a value different from ⊥ (line 30) only upon pb.Delivery

of a message (line 28).

Let m be the message broadcast by the correct sender σ. If pb does not satisfy totality, then at

least one correct process never sets echo to m. Therefore, at least one correct process does

not deliver the m, and the total validity of pcb is comrpomised.

Lemma 5. In an execution of Sieve, if pb satisfies totality and no correct process has more than

E − Ê Byzantine processes in its echo sample, then pcb satisfies total validity.

Proof. Let m be the message broadcast by the correct sender σ. Since pb satisfies totality (it

always satisfies validity), every correct process eventually issues an Echo(m) message (i.e., an

Echo message for m) (line 32).

Let π be a correct process that has no more than E − Ê Byzantine processes in its echo sample.

Obviously, π has at least Ê correct processes in its echo sample. Therefore, π eventually

receives at least Ê Echo(m) messages (line 36), and delivers m (line 41).

Lemmas 4 and 5 allow us to bound the ϵ-total validity of Sieve, given E and Ê .

Theorem 8. Sieve satisfies ϵv -total validity, with

ϵv ≤ ϵpb
t +

(
1−ϵpb

t

)(
1− (1−ϵo)C)

ϵo =
E∑

F̄=E−Ê+1

Bin
[
E , f

](
F̄

) (3.1)

if the underlying abstraction of probabilistic broadcast satisfies ϵpb
t -totality.

Proof. Following from Lemmas 4 and 5, the total validity of pcb can be compromised only if

the totality of pb is compromised as well, or if at least one correct process has more than E − Ê

Byzantine processes in its echo sample.

31

Chapter 3. Sieve

Since procedure sample independently picks E processes with replacement, each element of

a correct process’ echo sample has an independent probability f of being Byzantine, i.e., the

number of Byzantine processes in a correct echo sample is binomially distributed.

Therefore, a correct process has a probability ϵo of having more than E−Ê Byzantine processes

in its echo sample. Since every correct process picks its echo sample independently, the

probability of at least one correct process having more than E − Ê Byzantine processes in its

echo sample is 1− (1−ϵo)C .

3.5 Preliminary lemmas

In order to compute an upper bound for the probability of the consistency of Sieve being

compromised, we will make use of some preliminary lemmas. The statements of these lemmas

are independent from the context of Sieve. For the sake of readability, we therefore gather

them in this section, and use them throughout the rest of this chapter.

Lemma 6. Let A,B ∈N, let x, y ∈N such that x+y ≤ B. Let X , Y be random variables defined by

P
[

X̄
] = Bin

[
A,

x

B

](
X̄

)
P

[
Ȳ | X̄

] = Bin
[

A− X̄ ,
y

B −x

](
Ȳ

)
We have

P [X +Y = K] = Bin
[

A,
x + y

B

]
(K)

Proof. Since X is binomially distributed, it can be expressed as a sum of independent Bernoulli

random variables:

X = X1 + . . .+X A

Xi ∼ Bern
[x

B

]

Given the value of X̄ , Y is also binomially distributed with probability y/(B − x) and E − X̄

trials. We can therefore express Y as the sum of E Bernoulli variables Y1, . . . ,YE :

Y = Y1 + . . .+YE

P
[
Yi = 1 | X̄i

] =
0 iff X̄i = 1

y
B−x otherwise

We indeed note how, out of Y1, . . . ,YE :

• Only E − X̄ variables have a non-null probability of being equal to 1.

32

3.5 Preliminary lemmas

• Those variables that have a non-null probability of being equal to 1 have a probability

y/(B −x) of being equal to 1.

We therefore have

X +Y = (X1 +Y1)+ . . .+ (X A +YA)

and from the law of total probability we have

P [Xi +Yi = 1] = P [Xi = 1]+P [Yi = 1 | Xi = 0]P [Xi = 0]

= x

B
+

(
1− x

B

)(y

B −x

)
= x

B
+

(
(B −x)

B

y

(B −x)

)
= x + y

B

therefore

(Xi +Yi) ∼ Bern
[x + y

B

]
which proves the lemma.

Lemma 7. Let A,B ∈N such that A ≥ B, let p ∈ [0,1]. Let X1, . . . , XB be random variables defined

by

Xi ∼ Bin
[

A− i , p
]

We have that

P [Xi ≥ B − i]

is an increasing function of i .

Proof. We prove the lemma by induction by showing that, for any i < B ,

P [Xi ≥ B − i] ≤P [Xi+1 ≥ B − (i +1)]

In order to obtain the above, we expand

P [Xi ≥ B − i]−P [Xi+1 ≥ B − i −1]

=
A−i∑

n=B−i

(
(A− i)!

(A− i −n)!n!
pn(

1−p
)A−i−n

)
−

A−i−1∑
n=B−i−1

(
(A− i −1)!

(A− i −1−n)!n!
pn(

1−p
)A−i−1−n

)
= (⋆1)

33

Chapter 3. Sieve

By shifting the index in the second sum we get

(⋆1) =
A−i∑

n=B−i

(
(A− i)!

(A− i −n)!n!
pn(

1−p
)A−i−n

)
−

A−i∑
n=B−i

(
(A− i −1)!

(A− i −1− (n −1))!(n −1)!

p(n−1)(1−p
)A−i−1−(n−1)

)
=

A−i∑
n=B−i

(
(A− i)!

(A− i −n)!n!
pn(

1−p
)A−i−n

− (A− i)!n

(A− i)(A− i −n)!n!

pn

p

(
1−p

)A−i−n
)

=
A−i∑

n=B−i

((
(A− i)!

(A− i −n)!n!
pn(

1−p
)A−i−n

)(
1− n

(A− i)p

))
= (⋆2)

and by letting N = A− i , M = B − i we get

(⋆2) =
N∑

n=M

(
Bin

[
N , p

]
(n)

(
1− n

N p

))
= (⋆3)

Noticing that (1−n/N p) is positive for n < N p, we have

(⋆3) ≤
N∑

n=0

(
Bin

[
N , p

]
(n)

)− 1

N p

N∑
n=0

(
nBin

[
N , p

]
(n)

)
= 1− N p

N p
= 0

which proves the lemma.

Notation 4 (Ranges). Let a,b ∈ N, with b ≥ a. We use a..b to denote the range of integers

{a, . . . ,b}.

Lemma 8. Let f , g : 0..K →R, with f increasing, g positive and

K∑
x=0

g (x) = 1

we have
K∑

x=0

(
f (x)g (x)

)≥ K−1∑
x=0

(
f (x)g (x)

1− g (K)

)
34

3.5 Preliminary lemmas

Proof. We have

K∑
x=0

(
f (x)g (x)

)−K−1∑
x=0

(
f (x)g (x)

1− g (K)

)
= f (K)g (K)+

K−1∑
x=0

(
f (x)g (x)

)(
1− 1

1− g (K)

)
= f (K)g (K)−

K−1∑
x=0

(
f (x)g (x)

)(1− (
1− g (K)

)
1− g (K)

)
= g (K)

(
f (K)− 1

1− g (K)

K−1∑
x=0

(
f (x)g (x)

))

= g (K)

1− g (K)

(
f (K)− f (K)g (K)−

K−1∑
x=0

(
f (x)g (x)

))

= g (K)

1− g (K)

(
f (K)

K∑
x=0

(
f (x)g (x)

))
= (⋆1)

and noting that g (K) ≥ 0, 1− g (K) ≥ 0, and f is increasing, we have

(⋆1) ≥ g (K)

1− g (K)

(
f (K)− f (K)

K∑
x=0

g (x)

)
= (⋆2)

and since
∑

g (x) = 1 we get
g (K)

1− g (K)

(
f (k)− f (K)

)= 0

Corollary 1. Let f , g : 0..K →R, with f increasing, g positive and

K∑
x=0

g (x) = 1

for any l ∈ 0..(K −1), we have

K∑
x=0

(
f (x)g (x)

)≥ ∑K−l
x=0 f (x)g (x)∑K−l

x=0 g (x)

Proof. It follows immediately from applying Lemma 8 l times.

Lemma 9. Let f : −1..C →R, let g ,h : −1..C → [0,1], with:

• f decreasing.

• g ,h increasing.

• g (x) ≤ h(x) for all x.

35

Chapter 3. Sieve

• g (−1) = h(−1) = 0.

• g (C) = h(C) = 1.

We have
C∑

x=0

(
f (x)

(
g (x)− g (x −1)

))≤ C∑
x=0

(
f (x)(h(x)−h(x −1))

)
Proof. We have

C∑
x=0

f (x)
(
g (x)− g (x −1)

)− C∑
x=0

f (x)(h(x)−h(x −1))

=
C∑

x=0
f (x)

((
g (x)−h(x)

)− (
g (x −1)−h(x −1)

))
=

C∑
x=0

f (x)
(
g (x)−h(x)

)− C∑
x=0

f (x)
(
g (x −1)−h(x −1)

)
= (⋆1)

By shifting the index in then second sum we get

(⋆1) =
C∑

x=0
f (x)

(
g (x)−h(x)

)− C−1∑
x=−1

f (x +1)
(
g (x)−h(x)

)
=

C−1∑
x=0

(
f (x)− f (x +1)

)(
g (x)−h(x)

)
+ f (C)

(
g (C)−h(C)

)− f (−1)
(
g (−1)−h(−1)

)
= (⋆2)

and by noting that:

• Since f is decreasing, f (x)− f (x +1) ≥ 0.

• By hypothesis, g (x)−h(x) ≤ 0.

• By hypothesis, g (C)−h(C) = 1−1 = 0.

• By hypothesis, g (−1)−h(−1) = 0−0 = 0.

Consequently, all the terms of the sum in (⋆2) are negative, and the two terms out of the sum

are null. Therefore, (⋆2) ≤ 0.

Lemma 10. Let N ∈N, let K < N , let h, p1, . . . , pT ∈ [0,1] such that

h =∑
i

pi ≤ K −p
K

N

36

3.5 Preliminary lemmas

let X1, . . . , XT be independent random variables defined by

P
[

X̄i
]= Bin

[
N , pi

](
X̄i

)
We have

P

[∨
i

(Xi > K)

]
≤

(
eN h

K

)K

e−N h

Proof. Let p ∈ [0,1], let X ∼ Bin
[
N , p

]
. From the multiplicative form of the Chernoff bound

we have

P [X > K] = P
[

X > (1+δ)µ
]< (

eδ

(1+δ)(1+δ)

)µ
δ =

(
K

N p
−1

)
µ = N p

From the above follows

P [X > K] <

exp
(

K
N p −1

)
(

K
N p

) K
N p

µ

= exp

(
N p

(
K

N p
−1− K

N p
log

(
K

N p

)))
= exp

(
K −N p −K log

(
K

N p

))
= exp

(
K −K logK +K log N

)︸ ︷︷ ︸
(⋆a)

exp
(
K log p −N p

)︸ ︷︷ ︸
(⋆b)

We now study the domain where (⋆b) is convex:

∂2

∂2p
exp

(
K log p −N p

) = pK−2e−N p︸ ︷︷ ︸
≥0

(
K 2 −K

(
2N p +1

)+N 2p2)

Therefore we require

N 2p2 − (2K N)p + (
K 2 −K

) ≥ 0

37

Chapter 3. Sieve

Which reduces to

p ≤
2K N −

√
4K 2N 2 −4

(
N 2K 2 −N 2K

)
2N 2

= K −p
K

N

From Boole’s inequality we have

P

[∨
i

(Xi > K)

]
≤∑

i
P [Xi > K] = (⋆1)

which we can expand into

(⋆1) = exp
(
K −K logK +K log N

)︸ ︷︷ ︸
(⋆a)

∑
i

exp
(
K log pi −N pi

)︸ ︷︷ ︸
(⋆b)

= (⋆2)

As we established, (⋆b) is convex on the range
[
0,

∑
i pi

]
. Consequently,

(⋆2) ≤ exp
(
K −K logK +K log N

)
exp

(
K logh −N h

)
=

(
eN h

K

)K

e−N h

which proves the lemma.

3.6 Simplified Sieve
In this section, we introduce Simplified Sieve, a modified version of Sieve.

Simplified Sieve is a strawman both from a performance and a safety point of view. Indeed,

on the one hand Simplified Sieve has O(N 2) per-process communication complexity, which

makes it unfit for any real-world, scalable deployment. On the other, we prove that it is strictly

easier for any Byzantine adversary to compromise the consistency of Simplified Sieve than

that of Sieve.

Unlike Sieve, however, Simplified Sieve allows for an analytic probabilistic analysis. A critical

goal of this chapter is to compute a bound ϵc on the probability of compromising the consis-

tency of Simplified Sieve. Since the consistency of Simplified Sieve is weaker than that of Sieve,

ϵc is also a bound on the probability of compromising the consistency of Sieve.

3.6.1 Consistency-only broadcast

Simplified Sieve implements consistency-only broadcast, a minimal version of the probabilis-

tic consistent broadcast abstraction, designed to only provide ϵ-consistency. In particular, we

38

3.6 Simplified Sieve

drop the no duplication property, i.e., we allow a correct process to deliver more than one

message.

The consistency-only broadcast interface (instance cob, sender σ) exposes the following two

events:

• Request: 〈cob.Broadcast | m〉: Broadcasts a message m to all processes. This is only

used by σ.

• Indication 〈cob.Deliver | m〉: Delivers a message m broadcast by process σ.

For any ϵ ∈ [0,1], we say that consistency-only broadcast is ϵ-secure if:

1. ϵ-Consistency: With probability at least (1−ϵ), at most one message m exists, such that

m is delivered by any correct process.

We note how the above definition of ϵ-consistency is equivalent to the one we provided in

Section 3.1, but adapted for a context where no duplication is not guaranteed. In consistency-

only broadcast, consistency is compromised even if a single correct process delivers two or

more different messages.

3.6.2 Byzantine oracle

In order to implement Simplified Sieve, we make an additional assumption about the system:

• (Byzantine oracle) Every correct process has direct access to an oracleΨ that, provided

with a process π, returns True if π is Byzantine, and False if π is correct.

This assumption is obviously unsatisfiable in any realistic distributed system. Indeed, a sys-

tem where every faulty process is publicly flagged can hardly be considered being subject to

arbitrary failures. It is therefore critical to underline that Assumption 3.6.2 is not a require-

ment for the implementation of Sieve. Indeed, no correct process invokesΨ throughout any

execution of Algorithm 3. Assumption 3.6.2 is purely a theoretical artifice to aid in our proof of

correctness.

3.6.3 Algorithm

Before introducing the design principles behind Simplified Sieve, we prove a simple prelimi-

nary result.

Lemma 11. No execution of probabilistic broadcast results in more than C different messages

being delivered.

39

Chapter 3. Sieve

Proof. Following from Theorem 1, probabilistic broadcast satisfies no duplication, i.e., no

correct process delivers more than one message. As we discussed in Section 1.3, the system is

composed of C correct processes.

Since the set of messages that are pb.Delivered by at least one correct process has no more than

C elements, and noting that a correct process pcb.Delivers a message m only if it pb.Delivered

m, it is not restrictive to introduce the following definition.

Definition 2 (Message). A message is an element of the set

M = 1..C

Algorithm 4 Procedure mi mi c.
1: procedure correct() is
2: do
3: ρ =Ω(1)
4: until Ψ(ρ) = False
5: return ρ;
6:

7: procedure mimic(r e f er ence) is
8: ψ=;;
9: for all ρ ∈ r e f er ence do

10: if Ψ(ρ) = True then
11: ψ←ψ∪{

ρ
}
;

12: else
13: ψ←ψ∪ cor r ect ();
14: end if
15: end for
16: return ψ;
17:

Algorithm 5 implements Simplified Sieve. Simplified Sieve bears multiple differences to Sieve:

• A correct process can deliver more than one message. No correct process, however,

delivers the same message more than once.

• In order to cob.Deliver a message, a correct process does not need to pb.Deliver any

message.

• A correct process maintains C echo samples E [1..C]. The Echo messages collected from

the processes in the i -th echo sample E [i] determine whether or not message i ∈M is

delivered.

• Echo messages have two fields: sample and messag e. Intuitively, an Echo(s,m) mes-

sage (i.e., an Echo message with fields s and m) represents the following statement:

“within the context of message s, consider my Echo to be for message m".

40

3.6 Simplified Sieve

Algorithm 5 Simplified Sieve
1: Implements:
2: ConsistencyOnlyBroadcast, instance cob
3:

4: Uses:
5: AuthenticatedPointToPointLinks, instance al
6: ProbabilisticBroadcast, instance pb
7:

8: Parameters:
9: E : echo sample size

10: Ê : delivery threshold
11:

12: upon event 〈cob.Init〉 do
13: del i ver ed = {False}C ; r eveal = {False}C ;
14: r eveal ed = {False}C ;
15: r epl i es = {⊥}C×E ; ▷C ×E table filled with ⊥.
16: E = {;}C ;
17: E [1] ← sample(EchoSubscribe,E);
18:

19: for j ∈ 2..C do
20: E [j] ← mi mi c(E [1]);
21: end for
22:

23: upon event
〈

cob.Broadcast | messag e
〉

do ▷ only process σ
24: trigger

〈
pb.Broadcast | [Send,messag e]

〉
;

25:

26: upon event
〈

pb.Deliver | [Send,messag e]
〉

do
27: for all ρ ∈Π do
28: for all sample ∈M do
29: trigger

〈
al .Send | ρ, [Echo, sample,messag e]

〉
;

30: end for
31: end for
32:

33: upon event
〈

al .Deliver | ρ, [Echo, sample,messag e]
〉

do
34: if ρ ∈ E [sample] and r epl i es[sample][ρ] =⊥ then
35: r epl i es[sample][ρ] ← messag e;
36: r eveal ed [sample] ← False;
37: end if
38:

39: upon exists messag e such that |{ρ ∈ E [messag e] | r epl i es[messag e][ρ] = messag e}| ≥
Ê and del i ver ed [messag e] = False do

40: del i ver ed [messag e] ← True;
41: r eveal [messag e] ← True;
42: trigger

〈
cob.Deliver | messag e

〉
;

43:

41

Chapter 3. Sieve

44: upon exists messag e such that r eveal [messag e] = True and r eveal ed [messag e] =
False do

45: r eveal ed [messag e] ← True;
46: sample = {

ρ ∈ E [messag e] | r epl i es[messag e][ρ] ̸= ⊥}
;

47: for all π ∈Π do
48: trigger

〈
al .Send |π, [Reveal,messag e, sample]

〉
;

49: end for
50:

51: upon event
〈

al .Deliver | ρ, [Reveal,messag e, sample]
〉

do
52: if Ψ(ρ) = False then
53: r eveal [messag e] ← True;
54: end if
55:

Upon pb.Delivering a message m, a correct process sends C Echo messages to each

other process, one Echo(s,m) message for every s ∈ M . In other words, the correct

behavior is to echo m across all contexts s ∈M . A Byzantine process, however, can in

principle send to the same process a set of Echo messages echoing different messages

in different contexts (e.g, Echo(s,m) and Echo(s′,m′ ̸= m)).

• When a correct process π collects at least Ê Echo(m,m) messages from the processes in

E [m], π delivers m.

Mimic. Algorithm 4 presents two utility procedures for manipulating samples with respect to

their Byzantine component:

• (cor r ect , line 1) Procedure cor r ect returns a correct process, picked with uniform

probability. It does so by invoking Ω to select a process ρ with uniform probability

(line 3), then usingΨ to pick again if ρ is Byzantine (line 4).

• (mi mi c , line 7) Provided with a sample r e f er ence, procedure mi mi c returns a sample

ψ that shares with r e f er ence all Byzantine processes. It does so by looping over each

process ρ in r e f er ence. If ρ is Byzantine (line 11), ρ is added to ψ. If ρ is correct

(line 13), procedure cor r ect () is used to add a random correct process to ψ.

Samples. Upon initialization (line 12), a correct process initializes C echo samples E [1..C]

that share the same set of Byzantine processes. It does so by using procedure sample(. . .) to

randomly pick E [1] (line 17), then using mi mi c(E [1]) to pick samples 2 to C (line 20).

We underline how E [1] is selected using the sample procedure we defined in Algorithm 2. As a

result, upon initialization, a correct process sends an EchoSubscribe message to each process

in E [1]. However, a correct process does not handle the al.Delivery of an EchoSubscribe
message. This is done on purpose. The only goal of those EchoSubscribe messages is to let

42

3.6 Simplified Sieve

the Byzantine adversary know which Byzantine processes are in E [1] (and, consequently, in

every other sample).

Broadcast. Upon cob.Broadcasting a message messag e (line 23), the correct designated

sender uses pb.Broadcast to distribute messag e.

Echo. When a correct process pb.Delivers a message messag e (line 26), it sends to each

process ρ an Echo(sample,messag e) message, for every sample in M (line 29). In other

words, the correct behavior of a correct process that pb.Delivered messag e is to echo messag e

across all samples.

We note how Simplified Sieve does not make use of echo subscription sets. A correct process

sends its Echo messages to every process in the system. The goal of Simplified Sieve, indeed,

is not performance, but probabilistic tractability.

Delivery. A correct process maintains a table r epl i es to keep track of the Echo messages

received by each node in its echo samples. Upon receiving an Echo(sample, messag e)

message from a process ρ for the first time (line 33), if ρ is in E [sample], a correct process

sets r epl i es[sample][ρ] to messag e (line 35).

Upon receiving at least Ê Echo(messag e, messag e) messages from the processes in

E [messag e] (line 39) (this is checked using the r epl i es table), a correct process cob.Delivers

messag e (line 42).

Reveal. A correct process maintains a r eveal array to keep track of which echo samples it

should reveal. When, for some messag e, r eveal [messag e] = True (line 44), a correct process

sends to every process a Reveal message, containing the set of processes in E [messag e] that

issued an Echo(messag e, messag e ′) message for some messag e ′ ∈ M (line 48). In other

words, whenever r eveal [messag e] = True, a correct process reveals the set of processes in

its echo sample for messag e that issued a an Echo message for that sample.

If, after revealing its sample for messag e, a correct process receives additional Echo messages

from the processes in E [messag e], the reveal procedure is performed again. This is enforced

by setting a r eveal ed flag back to False (line 36) every time a new Echo message is received.

A correct process sets r eveal [messag e] to True under two circumstances: when it

cob.Delivers messag e (line 41) and when it receives a Reveal message for messag e from

a correct process (line 53). As a result, whenever any correct process delivers messag e, ev-

ery correct process reveals its sample for messag e, regardless of whether or not it delivered

messag e.

Like EchoSubscribe, the Reveal message serves the only purpose to provide information to

43

Chapter 3. Sieve

the Byzantine adversary.

3.7 Adversarial execution

In this section, we define the model underlying an adversarial execution of Sieve and Simplified
Sieve, and identify the set of Byzantine adversaries for either algorithm. Here, a Byzantine

adversary is an agent that acts upon a system with the goal of compromising its consistency.

Throughout the rest of this chapter, we use the term pcb adversary to denote a Byzantine

adversary for Sieve, and the term cob adversary (or just adversary) to denote a Byzantine

adversary for Simplified Sieve.

The main goal of this section is to formalize the information available both to the pcb and

the cob adversary, and the set of actions that they can perform on the system throughout an

adversarial execution of either algorithm.

Throughout the rest of this chapter, we bound the probability of compromising the consistency

of Sieve by assuming that, if the totality of pb is compromised, then the consistency of pcb is

compromised as well. In what follows, therefore, we assume that pb satisfies totality.

3.7.1 Model (Sieve)

Let π be any correct process. We make the following assumptions about an adversarial

execution of Sieve:

• As we established in Section 1.3, the pcb adversary does not know which correct pro-

cesses are in π’s echo sample. The pcb adversary knows, however, which Byzantine

processes are in π’s echo sample.

• At any time, the pcb adversary knows if π delivered a message. If π delivered a message,

then the pcb adversary knows which message did π deliver.

• The pcb adversary can cause π to pb.Deliver any message. As we established with

Theorem 1, π will, however, pb.Deliver only one message throughout an execution of

Sieve.

Throughout an adversarial execution of Sieve, an adversary performs a sequence of minimal

operations on the system. Each operation consists of either of the following:

• Selecting a correct process that did not pb.Deliver any message, and causing it to

pb.Deliver a message.

• Selecting a Byzantine process and causing it to send an Echo message to a correct

process.

44

3.7 Adversarial execution

As a result of each operation, zero or more correct processes deliver a message. The pcb

adversary is successful if, at the end of the adversarial execution, at least two different messages

are delivered by at least one correct process.

3.7.2 Model (Simplified Sieve)

Let π be any correct process. We make the following assumptions about an adversarial

execution of Simplified Sieve:

• As we established in Section 1.3, the cob adversary does not know which correct pro-

cesses are in π’s echo samples. The cob adversary knows, however, which Byzantine

processes are in π’s echo samples.

• At any time, the cob adversary knows if π delivered a message. If π delivered a message,

then the cob adversary knows which message did π deliver. Moreover, if π delivered a

message m, then at any time the cob adversary also knows the processes in π’s echo

sample for m that sent an Echo(m, m′) message to π, for some message m′.

• The cob adversary can cause π to pb.Deliver any message. As we established with

Theorem 1, π will, however, pb.Deliver only one message throughout an execution of

Simplified Sieve.

Throughout an adversarial execution of Simplified Sieve, an adversary performs a sequence of

minimal operations on the system. Each operation consists of either of the following:

• Selecting a correct process that did not pb.Deliver any message, and causing it to

pb.Deliver a message.

• Selecting a Byzantine process and causing it to send an Echo message to a correct

process.

As a result of each operation, zero or more correct processes deliver a message. The cob

adversary is successful if, at the end of the adversarial execution, at least two different messages

are delivered by at least one correct process.

3.7.3 Network scheduling

In this section, we discuss the behavior of the adversary in relation to network scheduling.

As we discussed in Section 1.3, the system is asynchronous, i.e., every message is eventually

delivered but can be delayed by an arbitrary, finite amount of time.

45

Chapter 3. Sieve

Gossip messages. As we stated in Section 3.7, throughout this section we assume that the

pb instance used by Sieve and Simplified Sieve satisfies totality. While this means that the

adversary cannot prevent any correct process from eventually pb.Delivering a message, the

adversary can indeed arbitrarily choose which correct process pb.Delivers which message.

This can be achieved by delaying the delivery of the Gossip messages issued by correct

processes. Noting that a correct process will accept a Gossip message from any source, the

adversary can then cause any of the processes it controls to quickly send a Gossip message

with arbitrary content to any correct process, effectively causing it to pb.Deliver an arbitrary

message.

Echo messages. As we stated in Sections 3.7.1 and 3.7.2, the two minimal operations a (pcb

or cob) adversary can perform essentially reduce to causing a Byzantine process to either

send a Gossip or an Echo message to a correct process. We can see that those operations

are indeed minimal: a correct process atomically al.Delivers a message (i.e., a message is the

minimal amount of information that can be meaningfully transferred on the network), and a

correct process will ignore any message that is not a Gossip or an Echo message.

Upon pb.Delivering a message, a correct process will issue zero or more Echo messages. As

we discussed in Section 1.3, the adversary can arbitrarily delay those messages, but they

will eventually be delivered. As a result, the outcome of an adversarial execution is solely

determined by the sequence of operations performed by the adversary, and is not affected by

network scheduling.

While the adversary could delay the delivery of Echo messages issued by correct processes, the

only effect this would have is to prevent the adversary from knowing the effect of an operation

on the system before performing the next one. An optimal adversary, therefore, performs an

operation, then waits until all the Echo messages issued by correct processes are delivered

before performing the next operation.

3.7.4 Interfaces

In Sections 3.7.1 and 3.7.2, we defined the model underlying an adversarial execution of Sieve
and Simplified Sieve respectively. In Section 3.7.3, we discussed the behavior of the Byzantine

adversary in relation to network scheduling. Throughout the rest of this chapter, we concretely

model a (pcb or cob) adversary as an algorithm that interacts with a system.

As we discussed, a (pcb or cob) adversary works in steps: at every step, the adversary either

performs one operation on the system, or queries the system for information about its state. In

this section, we model this interaction by defining four interfaces, respectively implemented

by the (pcb or cob) adversary and the (pcb or cob) system.

46

3.7 Adversarial execution

Both the pcb adversary and the cob adversary interfaces (instance adv) expose the following

procedures:

• Ini t (): It is called once, at the beginning of the adversarial execution, before any oper-

ation is performed on the system. Here the (pcb or cob) adversary setups its internal

state.

• Step(): It is called repeatedly, until the adversarial execution is completed. Here the

(pcb or cob) adversary performs one operation on the system. The execution fails (e.g.,

an exception is raised) if a call to ad v.Step() does not result in one, and only one, call to

s y s.Del i ver (. . .), s y s.Echo(. . .) or s y s.End() (as we define them below).

The pcb system interface (instance s y s) exposes the following procedures:

• B y zanti ne(pr ocess ∈ ΠC): Returns a list of all the Byzantine processes in pr ocess’

echo sample. The pcb adversary can invoke this procedure an unlimited number of

times both from the Ini t () and the Step() procedure.

• St ate(): Returns a list of pairs (π ∈ ΠC ,m ∈ M), representing which correct process

currently delivered which message. The pcb adversary can invoke this procedure an

unlimited number of times from the Step() procedure.

• Del i ver (pr ocess ∈ΠC ,messag e ∈M): Causes pr ocess to pb.Deliver messag e. The

execution fails if Del i ver is provided with the same pr ocess argument more than once:

a correct process does not pb.Deliver more than one message. The procedure does not

return any value.

• Echo(pr ocess ∈ ΠC , sour ce ∈ Π \ΠC ,messag e ∈ M): Causes sour ce to send an

Echo(messag e) message to pr ocess. The execution fails if Echo is provided with the

same pr ocess and sour ce arguments more than once: a correct process does not con-

sider more than one Echo message from the same source. The procedure does not

return any value.

• End(): Causes the execution to gracefully terminate. The execution fails if End() is

called before Del i ver (. . .) is invoked exactly C times: under the assumption that pb

satisfies totality, every correct process eventually pb.Delivers a message. The procedure

does not return any value.

The cob system interface (instance s y s) exposes the following procedures:

• B y zanti ne(pr ocess ∈ΠC): Returns a list of all the Byzantine processes in the first echo

sample of pr ocess. The cob adversary can invoke this procedure an unlimited number

of times both from the Ini t () and the Step() procedure.

47

Chapter 3. Sieve

• St ate(): Returns a list of pairs (π ∈ ΠC ,m ∈ M), representing which correct process

currently delivered which message. The cob adversary can invoke this procedure an

unlimited number of times from the Step() procedure.

• Sample(pr ocess ∈ ΠC ,messag e ∈ M): Returns the processes that are in the echo

sample for message messag e of process pr ocess and that sent an Echo(messag e,

messag e ′) to pr ocess, for some message messag e ′. The cob adversary can invoke this

procedure an unlimited number of times from the Step() procedure. The execution fails

if no correct process has cob.Delivered messag e: a correct process does not reveal its

echo sample for messag e before messag e is delivered by at least one correct process.

• Del i ver (pr ocess ∈Πc ,messag e ∈ M): Causes pr ocess to pb.Deliver messag e. The

execution fails if Del i ver is provided with the same pr ocess argument more than once:

a correct process does not pb.Deliver more than one message. The procedure does not

return any value.

• Echo(pr ocess ∈ΠC , sample ∈M , sour ce ∈Π \ΠC ,messag e ∈M): Causes sour ce to

send an Echo(sample, messag e) message to pr ocess. The execution fails if, through-

out an execution, Echo is provided with the same pr ocess, sample and sour ce ar-

guments more than once: a correct process does not consider more than one Echo
message for the same sample from the same source. The procedure does not return any

value.

• End(): Causes the execution to gracefully terminate. The execution fails if End() is

called before Del i ver (. . .) is invoked exactly C times: under the assumption that pb

satisfies totality, every correct process eventually pb.Delivers a message. The procedure

does not return any value.

3.8 Simplified adversarial power

In this section, we prove that an optimal consistency-only broadcast adversary is more pow-

erful than an optimal probabilistic consistent broadcast adversary. This result is intuitive: a

correct process in Simplified Sieve can deliver more than one message, and in general more

information is available to the cob adversary than to the pcb adversary.

3.8.1 Preliminary definitions

Before proving that an optimal cob adversary is more powerful than an optimal pcb adversary,

we provide some definitions on pcb and cob systems and adversaries.

Definition 3 (Pcb system). A pcb system σ is an element of the set

Spcb = E C
pcb

Epcb = ΠE

48

3.8 Simplified adversarial power

Intuitively, a system σ ∈Spcb is defined by the echo sample of each of its C correct processes.

The echo sample of a correct process is a vector of E processes.

Let σ ∈Spcb . We use σ[π ∈ΠC][i ∈ 1..E] to denote the i -th process in π’s echo sample.

Definition 4 (Cob system). A cob system σ is an element of the set

Scob = E C
cob

Ecob = {(
e1, . . . ,eC ∈ΠE) |M (

ei ,e j
) ∀i , j ∈ 1..C

}
M (e,e ′) : ∀k, (ek ∈Π\ΠC) =⇒ (

e ′k = ek
)

Intuitively, a system σ ∈Scob is defined by the echo samples of each of its C correct processes.

Each correct process has C echo samples e1, . . . ,eC (one per message), each represented by

a vector of E processes. Any two echo samples ei , e j of a given process satisfy M (ei ,e j), i.e.,

they share the same set of Byzantine processes.

We also use just S to denote the set of cob systems Scob . Let σ ∈Scob , we use σ[π ∈ΠC][m ∈
M][i ∈ 1..E] to denote the i -th process in π’s echo sample for m.

Definition 5 (Adversary). A pcb adversary (cob adversary) is a terminating algorithm that ex-

poses the pcb adversary (cob adversary) interface and does not cause the adversarial execution

to fail (see Section 3.7.4) when coupled with any system σ ∈Spcb (σ ∈Scob).

Let α, α′ be two pcb (cob) adversaries such that, for every σ ∈Spcb (σ ∈Scob), the execution

of α coupled with σ is identical to the execution of α′ coupled with σ. We consider α and α′ to

be functionally the same adversary.

We use Apcb to denote the set of pcb adversaries. We use Acob (or just A) to denote the set of

cob adversaries.

Definition 6 (Adversarial power). Let α be a pcb (cob) adversary. The adversarial power of

α is the probability of α compromising the consistency of a pcb (cob) system, picked with

uniform probability from Spcb (Scob).

Definition 7 (Optimal adversary). Let α be a pcb (cob) adversary. We say that α is an optimal

adversary if its adversarial power is greater or equal to that of any other pcb (cob) adversary.

We note that Definition 7 is well defined: indeed, both Apcb and Acob are finite sets, and

therefore admit a maximum for the adversarial power.

Definition 8 (Optimal set of adversaries). Let A ′ be a set of pcb (cob) adversaries. We say that

A ′ is an optimal set of adversaries if A ′ includes an optimal pcb (cob) adversary.

Definition 9 (Pcb invocation/response pair). The pair (i ,r) is a pcb invocation/response pair

49

Chapter 3. Sieve

if

i = (Byzantine,π ∈ΠC) r = (ξ1, . . . ,ξk ∈Π\ΠC)

i = (State) r = ((π1,m1), . . . ,

(πk ∈ΠC ,mk ∈M))

i = (Deliver,π ∈ΠC ,m ∈M) r =⊥
i = (Echo,π ∈ΠC ,ξ ∈Π\ΠC ,m ∈M) r =⊥

Definition 10 (Cob invocation/response pair). The pair (i ,r) is a cob invocation/response

pair if

i = (Byzantine,π ∈ΠC) r = (ξ1, . . . ,ξk ∈Π\ΠC)

i = (Sample,π ∈ΠC ,m ∈M) r = (ρ1, . . . ,ρk ∈Π)

i = (State) r = ((π1,m1), . . . ,

(πk ∈ΠC ,mk ∈M))

i = (Deliver,π ∈ΠC ,m ∈M) r =⊥
i = (Echo,π ∈ΠC , s ∈M ,ξ ∈Π\ΠC ,m ∈M) r =⊥

Definition 11 (Trace). A pcb trace (cob trace) is a finite sequence of pcb (cob) invocation/re-

sponse pairs. Letα be a (pcb or cob) adversary, letσ be a (pcb or cob, correspondingly) system.

We use τ(α,σ) to denote the trace produced by α coupled with σ. We use T to denote the set

of traces.

Notation 5 (Power set). Let X be a set. We use P(X) to denote the power set of X . We use

PK (X) = {x ∈P(X) | |x| = K } to denote the elements in P(X) that have K elements. We use

PK+(X) = {x ∈P(X) | |x| ≥ K } to denote the elements in P(X) that have at least K elements.

3.8.2 Consistency of Simplified Sieve

We can now prove that the ϵ-consistency of Simplified Sieve is strictly weaker than that of

Sieve.

Lemma 12. An optimal cob adversary is more powerful than an optimal pcb adversary.

Proof. Let α∗ be an optimal pcb adversary. In order to prove that an optimal cob adversary

is more powerful than α∗, we just need to find a cob adversary α+ that is more powerful

than α∗. We achieve this using a pcb-to-cob decorator, i.e., an algorithm that acts as an

interface between a pcb adversary and cob system. A pcb adversary coupled with a pcb-to-cob

decorator effectively implements a cob adversary. Here we show that a pcb-to-cob decorator

∆cob exists such that, for every α ∈Apcb , the cob adversary α′ =∆cob(a) is more powerful than

α. If this is true, the lemma is proved: indeed, α+ =∆cob(α∗) is more powerful than α∗.

50

3.8 Simplified adversarial power

Algorithm 6 Cob decorator.
1: Implements:
2: CobAdversary + PcbSystem, instance cadv
3:

4: Uses:
5: PcbAdversary, instance padv, system cadv
6: CobSystem, instance sys
7:

8: procedure cadv.Init() is
9: del i ver i es = {⊥}C ;

10: pad v.Ini t ();
11:

12: procedure cadv.Step() is
13: pad v.Step();
14:

15: procedure cadv.Byzantine(pr ocess) is
16: return s y s.B y zanti ne(pr ocess);
17:

18: procedure cadv.State() is
19: st ate =;;
20:

21: for all (π,m) ∈ s y s.St ate() do
22: if del i ver i es[π] = m then
23: st ate ← st ate ∪ {(π,m)};
24: end if
25: end for
26:

27: return st ate;
28:

29: procedure cadv.Deliver(pr ocess,messag e) is
30: del i ver i es[pr ocess] ← messag e;
31: s y s.Del i ver (pr ocess,messag e);
32:

33: procedure cadv.Echo(pr ocess, sour ce,messag e) is
34: s y s.Echo(pr ocess,messag e, sour ce,messag e);
35:

36: procedure cadv.End() is
37: s y s.End();
38:

51

Chapter 3. Sieve

pcb adversary
padv

pcb system
sys

Byzantine
State
Deliver
Echo
End

Init
Step

Trace τ
′

Figure 3.1: An execution without decorator.

Decorator. Algorithm 6 implements Cob decorator, a pcb-to-cob decorator. Provided with

a pcb adversary pad v , Cob decorator acts as an interface between pad v and a cob system

s y s, effectively implementing a cob adversary cad v . Cob decorator exposes both the cob

adversary and the pcb system interfaces: the underlying pcb adversary pad v uses cad v as its

system.

Cob decorator works as follows:

• Procedure cad v.Ini t() initializes a del i ver i es array that is used to keep track of the

message pb.Delivered by each correct process, and a g ap set that it uses to keep track of

the messages cob.Delivered by each correct process in s y s.

• Procedure cad v.Step() simply forwards the call to pad v.Step().

• Procedure cad v.St ate() returns a list of pairs (π ∈ ΠC ,m ∈ M) such that π both

pb.Delivered and delivered m in s y s. This is achieved by querying s y s.St ate(), then

looping over each element (π,m) of the response and checking if del i ver i es[π] = m.

• Procedure cad v.B y zanti ne(pr ocess) simply forwards the call to

s y s.B y zanti ne(pr ocess).

• Procedure cad v.Del i ver (pr ocess,messag e) sets del i ver i es[pr ocess] to messag e

(to signify that pr ocess pb.Delivered messag e). It then forwards the call to

s y s.Del i ver (pr ocess,messag e), causing pr ocess to pb.Deliver messag e.

• Procedure cad v.Echo(pr ocess, sour ce,messag e) forwards the call to

s y s.Echo(pr ocess,messag e, sour ce,messag e), causing sour ce to send an

Echo(messag e, messag e) message to pr ocess.

• Procedure cad v.End() simply forwards the call to s y s.End().

Let ∆cob : Apcb →Acob denote the function that Cob decorator implements, mapping pcb

adversaries into cob adversaries. We want to prove that, for every α ∈Apcb , the adversarial

power of α′ =∆cob(α) is greater than that of α.

52

3.8 Simplified adversarial power

pcb adversary
padv pcb system

cob adversary cob system
sys

Byzantine
State
Sample
Deliver
Echo
End

Byzantine
State
Deliver
Echo
End

Init
Step

Init
Step

Trace τ

cob decorator
cadv

Figure 3.2: A decorator exposing both its system interface to the pcb adversary and its
adversary interface to the cob system.

System translation. Let α be a pcb adversary. We start by noting that, since α is correct,

α always causes every correct process to pb.Deliver a message. We can therefore define a

function

µ : Apcb ×Spcb ×ΠC →M

such that µ(α,σ,π) = m if and only ifα eventually causes π to pb.Deliver m, whenα is coupled

with σ.

We then define a system translation functionΨ[α] : Spcb →P(Scob) that maps a pcb system

into a set of cob systems:(
σ′ ∈Ψ[α](σ)

)⇐⇒ (∀π ∈ΠC , σ[π] =σ′[π][µ(α,σ,π)]
)

Letσ be a pcb system, letσ′ be a cob system, let π be any correct process, let m be the message

that α eventually causes π to pb.Deliver, when α is coupled with σ. Intuitively, σ′ is in Ψ[α](σ)

if π’s echo sample for m in σ′ is identical to π’s echo sample in σ.

Roadmap. Letα ∈Apcb ,α′ =∆cob(α). Letσ ∈Spcb such thatα compromises the consistency

of σ. In order to prove that α′ is more powerful than α, we prove that:

• For every σ′ ∈Ψ[α](σ), α′ compromises the consistency of σ′.

• The probability ofΨ[α](σ) is equal to the probability of σ.

• For every σ̂ ∈Spcb such that σ̂ ̸=σ, the setsΨ[α](σ) andΨ[α](σ̂) are disjoint.

Indeed, if all of the above are true, then the probability ofα′ compromising the consistency of a

random cob systemσ′ is greater or equal to the probability ofα compromising the consistency

of a random system σ, and the lemma is proved.

53

Chapter 3. Sieve

Ψ[α]

pcb systems cob systems

α α
′

σ

pcb adversary cob adversary

Δcob

compromises compromises

Ψ[α][σ]

σ
′

Figure 3.3: An illustration of the steps needed to prove that the adversarial power of α is
greater than that of α′.

Trace. We start by noting that, if we couple Cob decorator with σ′, we effectively obtain a

pcb system interface δ with which α directly exchanges invocations and responses. Here we

show that the trace τ(α,σ) is identical to the trace τ(α,δ). Intuitively, this means that α has no

way of distinguishing whether it has been coupled directly with σ, or it has been coupled with

σ′, with Cob decorator acting as an interface. We prove this by induction.

Let us assume

τ(α,σ) = ((i1,r1), . . .)

τ(α,δ) = ((i ′1,r ′
1), . . .)

i j = i ′j ,r j = r ′
j ∀ j ≤ n

with n ≥ 0 (here n = 0 means that this is α’s first invocation). We start by noting that, since a is

a deterministic algorithm, we immediately have

in+1 = i ′n+1

and we need to prove that rn+1 = r ′
n+1.

Let us assume that in+1 = (Byzantine,π). By hypothesis, at least one of the echo samples

of π in σ′ is identical to the echo sample of π in σ. Moreover, all π’s echo samples in σ′

share the same set of Byzantine processes. Therefore, the first of π’s echo samples in σ′

contains the same Byzantine processes as π’s echo sample in σ. Finally, the decorator sim-

ply forwards the call to cad v.B y zanti ne(π) to s y s.B y zanti ne(π). Consequently, rn+1 = r ′
n+1.

54

3.8 Simplified adversarial power

Before considering the case in+1 = (State), we prove some auxiliary results. Let π be a correct

process, let ρ be a process, let ξ be a Byzantine process, let m be a message. For every j ≤ n+1,

as we established, we have i j = i ′j . Therefore, after the (n+1)-th invocation, the following hold

true:

• π pb.Delivered m inσ′ if and only if π pb.Delivered m inσ. Indeed, cad v.Del i ver (π,m)

was invoked if and only if s y s.Del i ver (π,m) was invoked as well.

• π pb.Delivered m in σ′ if and only if del i ver i es[π] = m. Indeed, cad v.Del i ver (π,m)

was invoked if and only if del i ver i es[π] was set to m.

• ξ sent an Echo(m) to π in σ′ if and only if ξ sent an Echo(m, m) message to π in σ.

Indeed, cad v.Echo(π,ξ,m) was invoked if and only if s y s.Echo(π,m,ξ,m) was invoked

as well.

• If π pb.Delivered m in σ, then π’s echo sample for m in σ′ is identical to π’s echo sample

in σ. This follows from the definition ofΨ (we recall that σ′ ∈Ψ[α](σ)).

• If π delivered m in σ, it also delivered m in σ′. Indeed, since π pb.Delivered m in σ, π’s

echo sample for m in σ′ is identical to π’s echo sample in σ. Moreover, if π received an

Echo(m) message from ρ in σ, then it also received an Echo(m, m) message from ρ in

σ′.

• If π both pb.Delivered and delivered m in σ′, it also delivered m in σ. Indeed, since

π pb.Delivered m in σ′, then it also pb.Delivered m in σ, and π’s echo sample in σ is

identical to π’s echo sample for m in σ′. Moreover, if π received an Echo(m) message

from ρ in σ′, then it also received an Echo(m, m) message from ρ in σ.

Let us assume in+1 = (State). We start by noting that cad v.St ate() returns all the pairs (π′,m′)
in s y s.St ate() that satisfy del i ver i es[π′] = m′. If (π,m) ∈ rn+1, then π both pb.Delivered

and delivered m both in σ. Therefore, π both pb.Delivered and delivered m in σ′, and

del i ver i es[π] = m. Consequently, (π,m) ∈ r ′
n+1. If (π,m) ∈ r ′

n+1, then (π,m) was returned

from s y s.St ate(), and del i ver i es[π] = m. Therefore, π both pb.Delivered and delivered m in

σ′. Consequently, π delivered m in σ, and (π,m) ∈ rn+1.

Noting that procedures Del i ver (. . .) and Echo(. . .) never return a value, we trivially have that

if in+1 = (Deliver,π,m) or in+1 = (Echo,π, s,ξ,m) then rn+1 = ⊥ = r ′
n+1. By induction, we

have τ(α,σ) = τ(α,δ).

Consistency of σ′. We proved that τ(α,σ) = τ(α,δ). Moreover, we proved that if a correct

process π eventually pcb.Delivers a message m in σ, then π also cob.Delivers m in σ′.

55

Chapter 3. Sieve

Since α compromises the consistency of σ, two correct processes π, π′ and two distinct mes-

sages m, m′ ̸= m exist such that, in σ, π pcb.Delivered m and π′ pcb.Delivered m′. Therefore,

in σ′, π cob.Delivered m and π′ cob.Delivered m′. Therefore α′ compromises the consistency

of σ′.

Translation probabilities. We now prove that, for every σ ∈Spcb , the probability of Ψ[α](σ)

is equal to the probability of σ.

The probability of σ is

P [σ] =P
[
σ[π1][1] =π1,1, . . . ,σ[πC][E] =πC ,E

]= N−EC

and the probability ofΨ[α](σ) is

P [Ψ[α](σ)] =
P

[
σ[π1][µ(α,σ,π1)][1] =π1,1, . . . ,σ[πC][µ(α,σ,πC)[E] =πC ,E]

] = N−EC

which proves the result.

Translation disjunction. We now prove that, for any two σa , σb ̸=σa , we have Ψ[α](σa)∩
Ψ[α](σb) = ;. We prove this by contradiction. Suppose a system σ′ exists such that σ′ ∈
Ψ[α](σa) and σ′ ∈Ψ[α](σb). We want to prove that σa =σb .

We start by noting that, if τ(α,σa) = τ(α,σb), then σa =σb . Indeed, we have

τ(α,σa) = τ(α,σb)

=⇒ µ(α,σa ,π) = µ(α,σb ,π) ∀π ∈ΠC

=⇒ σa[π] = σ′[π][µ(α,σa ,π)]

= σ′[π][µ(α,σb ,π)]

= σb[π] ∀π
=⇒ σa = σb

We prove that τ(α,σa) = τ(α,σb) by induction. Let us assume

τ(α,σa) = ((i1,r1), . . .)

τ(α,σb) = ((i ′1,r ′
1), . . .)

i j = i ′j ,r j = r ′
j ∀ j ≤ n

with n ≥ 0 (here n = 0 means that this is α’s first invocation). We start by noting that, since a is

56

3.8 Simplified adversarial power

a deterministic algorithm, we immediately have

in+1 = i ′n+1

and we need to prove that rn+1 = r ′
n+1.

Let us assume that in+1 = (Byzantine,π). By hypothesis, among the echo samples of π in σ′,
at least one is identical to the echo sample of π in σa , and at least one is identical to the echo

sample of π in σb . Noting that π’s echo samples share the same set of Byzantine processes,

we immediately have that the Byzantine processes in σa[π] are the same as in σb[π], and

rn+1 = r ′
n+1.

Before considering the case in+1 = (State), we prove some auxiliary results. Let π be a correct

process, let ρ be a process, let ξ be a Byzantine process, let m be a message. For every j ≤ n+1,

as we established, we have i j = i ′j . Therefore, after the (n+1)-th invocation, the following hold

true:

• π pb.Delivered m in σa if and only if π pb.Delivered m in σb .

• ξ sent an Echo(m) message to π in σa if and only if ξ send an Echo(m) message to π in

σb .

• If π pb.Delivered m (both in σa and σb), then σa[π] =σb[π]. Indeed,

σa[π] = σ′[π][µ(α,σa ,π)]

= σ′[π][µ(α,σb ,π)]

= σb[π]

• π delivered m in σa if and only if π delivered m in σb . Indeed, if π delivered m in σa ,

then it also pb.Delivered m in σa and, consequently, σb . Therefore, π’s echo sample in

σa is identical to π’s echo sample in σb . Since π received the same Echo messages in σa

and σb then π delivered m in σb . The argument can be trivially reversed to prove that, if

π delivered m in σb , then π also delivered m in σa .

Let us consider the case in+1 = (State). From the above follows rn+1 = r ′
n+1.

Noting that procedures Del i ver (. . .) and Echo(. . .) never return a value, we trivially have that

if in+1 = (Deliver,π,m) or in+1 = (Echo,π, s,ξ,m) then rn+1 = ⊥ = r ′
n+1. By induction, we

have τ(α,σa) = τ(α,σb).

Therefore, σa =σb , which contradicts the hypothesis and thus proves that the setsΨ[α](σa)

andΨ[α](σb) are disjoint.

57

Chapter 3. Sieve

3.9 Two-phase adversaries

In Section 3.8 we proved the important result that it is easier to compromise the consistency of

Simplified Sieve than that of Sieve. Throughout the rest of this chapter, we compute a bound

on the ϵ-security of Simplified Sieve.

It is easy to see that the ϵ-security of Simplified Sieve is equal to the adversarial power of an

optimal adversary. Therefore, ϵc is a bound on the ϵ-security of Simplified Sieve if ϵc bounds

the adversarial power of every adversary in an optimal set of adversaries.

In this section, we derive a set At p ⊆A of two-phase adversaries that we prove to be optimal.

Unlike A , At p is small enough to be probabilistically tractable. In the next sections, we

compute a bound on the adversarial power of every a ∈At p .

In a similar way to Lemma 12, the proofs of optimality of most of the sets of adversaries

presented in this section make extensive use of decorators, and are in general lengthy and

non-trivial. For the sake of readability, in this section we only state our results, and defer each

explicit proof to Section 3.11.

Auto-echo adversary

As we introduced in Section 3.6.3, an Echo message in Simplified Sieve has two fields: a sample

s and a message m. Intuitively, an Echo(s, m) message represents the following statement:

“within the context of message s, consider my Echo to be for message m".

Upon pb.Delivering a message m, a correct process sends to every other process an Echo(s,

m) for every s. In other words, a correct process supports the message it pb.Delivers across all

samples. A Byzantine process, however, is not constrained to do this.

A correct process cob.Delivers a message m upon collecting enough Echo(m, m) messages

from its echo sample for m. It is easy to see, therefore, that the probability of a correct process

π cob.Delivering m increases if all the Byzantine processes send an Echo(m, m) message to π.

Definition 12 (Auto-echo adversary). An adversary a ∈A is an auto-echo adversary if, at the

beginning of its execution, it causes ξ to send an Echo(m, m) message to π, for every π ∈Πc ,

ξ ∈Π\ΠC and m ∈M . We use Aae to denote the set of auto-echo adversaries.

In Section 3.11.1, we formally prove this intuition, i.e., we prove that the set of auto-echo

adversaries Aae is optimal.

Process-sequential adversary

As we discussed in Section 3.6.3, a correct process reveals its sample for a message m only after

delivering m. At the beginning of the execution, the adversary only knows which Byzantine

58

3.9 Two-phase adversaries

processes are in each correct process’ echo samples. In Section 3.9, however, we proved that

this does not affect the optimal adversary’s strategy: the set of Byzantine processes in a correct

process’ echo samples don’t play any role in an optimal adversarial execution.

Intuitively, therefore, an optimal adversary has effectively no meaningful way to distinguish

any two correct processes based on the outcome that their actions will have on the system.

Definition 13 (Correct process enumeration). We define a bijection

ζ : 1..C ↔ΠC

that uniquely maps an integer identifier i ∈ 1..C to a correct process.

Definition 14 (Process-sequential adversary). An auto-echo adversary α ∈Aae is a process-

sequential adversary if it never causes ζ(i) to pb.Deliver a message before any ζ(j < i). We

use Aps to denote the set of process-sequential adversaries.

In Section 3.11.2, we formally prove this intuition, i.e., we prove that the set of process-

sequential adversaries Aps is optimal.

Sequential adversary

As we introduced in Section 3.6.3, in Simplified Sieve a correct process independently selects

C echo samples, one for every message in M . Moreover, every echo sample shares the same

set of Byzantine processes. Finally, let π be a correct process, let m be a message, no correct

process in π’s echo sample for m is known to the adversary before π delivers m.

Intuitively, therefore, an adversary has effectively no meaningful way of distinguishing two

messages, based on the outcome that their pb.Delivery will have on the system.

Definition 15 (Poisoned process). Let σ be a system, let π be a correct process. We say that π

is poisoned in σ if and only if at least Ê processes in π’s first echo sample in σ are Byzantine.

Definition 16 (Sequential adversary). A process-sequential adversary α ∈Aps is a sequential

adversary if it never causes a correct process to pb.Deliver m ∈ M before causing every

l < m ∈M to be pb.Delivered by at least one correct process. We use Asq to denote the set of

sequential adversaries.

In Section 3.11.3, we formally prove this intuition, i.e., we prove that the set of sequential

adversaries Asq is optimal.

Non-redundant adversary

As we established in Section 3.6.1, the consistency of consistency-only broadcast is compro-

mised if and only if at least two messages are delivered by at least one correct process.

59

Chapter 3. Sieve

It is easy to see, therefore, that an adversary that has already caused at least one correct

process to deliver a message m gains no advantage from causing more correct processes to

pb.Deliver m. Indeed, doing so would not increase the probability of at least one correct

process delivering m (that condition is verified with probability 1): an optimal adversary

should focus its remaining pb.Deliveries on achieving the goal to cause at least one other

message to be delivered by at least one correct process.

Definition 17 (Non-redundant adversary). A sequential adversaryα ∈Asq is a non-redundant

adversary if, whenever exactly one message m has been delivered, it never causes any ad-

ditional correct process to pb.Deliver m. We use Anr to denote the set of non-redundant

adversaries.

In Section 3.11.4, we formally prove this intuition, i.e., we prove that the set of non-redundant

adversaries Anr is optimal.

Sample-blind adversary

In Section 3.6.3, we discussed how, in Simplified Sieve, a correct process reveals its echo

sample for a message after at least one correct process delivered that message. Throughout

Section 3.10.1, we extensively used Reveal messages (through the Sample(. . .) system inter-

face) to build a sequence of decorators that improved the power of any adversary in their

domain.

In this section, we prove the counter-intuitive result that the information contained in a

Reveal message is actually useless to an optimal adversary. Indeed, the decorators we devel-

oped leveraged Reveal messages to correct the sub-optimal behavior of a generic adversary.

However, for every decorator that we developed, we argue that we could develop an adver-

sary in the codomain of that decorator that never uses the information provided by Reveal
messages.

An intuitive insight on Reveal messages can be provided by the observation that the informa-

tion they provide is disclosed in the moment it ceases to actually be useful. Indeed, a correct

process reveals the content of its echo sample for a message m only after at least one correct

process delivered m. As we proved in Section 3.9, causing additional processes to deliver

m gives no advantage to the adversary. Moreover, since the correct processes in each echo

sample are picked independently from each other, the knowledge of a correct process π’s echo

sample for m does not grant any advantage in causing π to deliver m′ ̸= m.

Notation 6 (Undefined minima and maxima). Let X ⊂ N, with X finite, let S : X →
{True,False} be a predicate on X . We use

(min n ∈ X | S(n)) = ⊥
(max n ∈ X | S(n)) = ⊥

60

3.9 Two-phase adversaries

to denote that

∄n ∈ X | S(n)

Definition 18 (Trace compatibility). Let τ be a trace, let σ be a system. We say that τ is

compatible withσ, or τ∼σ, if the sequence of invocations in τ, applied in order toσ, produces

the corresponding sequence of responses in τ.

Notation 7 (Consistency compromission). Let α be an adversary, let σ be a system, let τ be

a trace. We use α↘σ to signify that α compromises the consistency of σ. We use τ↘σ to

signify that the sequence of invocations in τ compromises the consistency of σ.

Definition 19 (Sample-blind adversary). A non-redundant adversary α ∈ Anr is a sample-

blind adversary if it never invokes Sample(. . .). We use Asb to denote the set of sample-blind

adversaries.

In Section 3.11.5, we formally prove this intuition, i.e., prove that the set of sample-blind

adversaries Asb is optimal.

Byzantine-counting adversary

In Section 3.7.2 we discussed how an adversary for Simplified Sieve knows which Byzantine

processes are in the first echo sample of any correct process. In Section 3.9, however, we

proved that the optimal adversarial behavior with respect to Echo messages is always to cause

every Byzantine process to send an Echo(m, m) message to every correct process, for every

message m ∈M .

Intuitively, therefore, a correct process gains no advantage from knowing specifically which

Byzantine processes are in the first echo sample of any correct process.

Definition 20 (Byzantine-counting adversary). A sample-blind adversary α ∈ Asb is a

Byzantine-counting adversary if, whenever it invokes B y zanti ne(π ∈ ΠC), it invokes∣∣B y zanti ne(π)
∣∣. In other words, the behavior of a Byzantine-counting adversary does not

depend on the specific set of Byzantine processes in the first echo sample of any correct

process. We use Abc to denote the set of Byzantine-counting adversaries.

In Section 3.11.6, we formally prove this intuition, i.e., we prove that the set of Byzantine-

counting adversaries Abc is optimal.

Single-response adversary

As we introduced in Section 3.7.2, the goal of a cob adversary is to compromise the consistency

of a cob system by causing two distinct messages to be delivered by at least one correct process

each. In order to achieve this, it acts upon the system in steps, causing correct processes to

pb.Deliver a sequence of messages, until the consistency is compromised.

61

Chapter 3. Sieve

We distinguish two phases of an adversarial execution.

Definition 21 (Trace phases). Let α be an adversary, let σ be a system. We call first phase of

τ(α,σ) the sequence τ(α,σ)1, . . . ,τ(α,σ)n with n given by

n =
min j | S(j) iff ∃ j | S(j)

|τ(α,σ)| otherwise

S(j) = (
τ(α,σ) j = (State,rh), rh ̸= ;)

We call τ(α,σ)n+1, . . . ,τ(α,σ)|τ(α,σ)| the second phase of τ(α,σ). We call η(α,σ) the first phase

of τ(α,σ). We call θ(α,σ) the second phase of τ(α,σ).

The first phase of a trace ends when, for the first time, a call to St ate() returns a non-empty set.

Intuitively, the first phase ends when the adversary becomes aware that at least one correct

process delivered a message.

Let us focus on the second phase of an adversarial execution carried out by a Byzantine-

counting adversary. We know that, at the beginning of the second phase, at least one message

has been delivered by at least one correct process. If more than one message has been deliv-

ered, the adversary already compromised the consistency of the system, and the invocations

in the second phase are irrelevant to its success.

If exactly one message has been delivered, an optimal adversary will issue a sequence of

invocations that, given the information available on the system, maximizes the probability of

at least one more message being delivered by at least one correct process. Since the adversary

is non-redundant, the response provided by any invocation to St ate() will not change until the

consistency is compromised. Intuitively, therefore, the information available to the adversary

throughout the second phase does not change until consistency is compromised. Since any

invocation issued by the adversary after consistency is compromised is irrelevant to its success,

an optimal adversary does not need to invoke St ate() throughout the second phase of any

adversarial execution.

Definition 22 (Single-response adversary). A Byzantine-counting adversaryα ∈Abc is a single-

response adversary if it never invokes St ate() throughout the second phase of any adversarial

execution. We use Asr to denote the set of single-response adversaries.

In Section 3.11.7, we formally prove this intuition, i.e., we prove that the set of single-response

adversaries Asr is optimal.

State-polling adversary

In Section 3.9, we proved that an optimal adversary does not need to invoke St ate() in the

second phase of an adversarial execution, i.e., after at least one message has been delivered by

62

3.9 Two-phase adversaries

at least one correct process.

It is easy to see, however, that, throughout the first phase, the information provided by St ate()

is useful to the adversary. Intuitively, the sooner a single-response adversary becomes aware

that at least one correct process delivered a message, the sooner it can focus its strategy to

cause the delivery of a second, distinct message.

In this section, we prove this intuition, i.e., we formally prove that the set of state-polling

adversaries is optimal.

Definition 23 (State-polling adversary). A single-response adversary α ∈Asr is a state-polling

adversary if it invokes St ate() before the first invocation of Del i ver (. . .) and after each invo-

cation of Del i ver (. . .), until St ate() returns a non-empty set. We use Asp to denote the set of

state-polling adversaries.

Lemma 13. The set of state-polling adversaries Asp is optimal.

Proof. It follows immediately from the observation that, for any adversary, not invoking

St ate() is equivalent to invoking St ate() and ignoring its response.

Two-phase adversary

In Section 3.9, we proved that: throughout the first phase, an optimal adversary invokes

St ate() before the first invocation of Del i ver (. . .) and after each invocation of Del i ver (. . .);

throughout the second phase, an optimal adversary never needs to invoke St ate().

As we discussed, if the first phase is concluded with more than one message being delivered,

the adversary already compromised the consistency of the system, and the invocations in the

second phase are irrelevant to its success.

Let us consider the case where, at the beginning of the second phase, exactly one message m∗

has been delivered. In Section 3.6.3, we discussed how a correct process selects the correct

component of each echo sample independently. Intuitively, therefore, the knowledge of which

processes delivered m∗ is useless to the adversary, as it provides no information about the

correct component of any echo sample for a message m ̸= m∗. In other words, an optimal

adversary only needs to know when the first phase of the execution is concluded, but not how.

Definition 24 (Two-phase adversary). A state-polling adversary α ∈Asp is a two-phase adver-

sary if, whenever it invokes St ate(), it only invokes (St ate() ̸= ;). In other words, the behavior

of a two-phase adversary does not depend on the content of St ate(), but only on whether or

not St ate() is empty.

Lemma 14. Let α be a state-polling adversary, let σ,σ′ be systems such that∣∣η(α,σ)
∣∣= ∣∣η(α,σ′)

∣∣
63

Chapter 3. Sieve

and, for all π ∈ΠC , m ∈M ,

|{n ∈ 1..E |σ[π][m][n] ∈ΠC }| = ∣∣{n ∈ 1..E |σ′[π][m][n] ∈ΠC
}∣∣

We have

∀n < ∣∣η(α,σ)
∣∣,τ(α,σ)n = τ(α,σ′)n

Proof. The lemma is proved by induction. Let us assume

τ(α,σ) = ((i1,r1), . . .)

τ(α,σ′) = ((i ′1,r ′
1), . . .)

i j = i ′j ,r j = r ′
j ∀ j ≤ n

We start by noting that, since α is a deterministic algorithm, we immediately have

in+1 = i ′n+1

and we need to prove that rn+1 = r ′
n+1.

Let us assume that in+1 = (Byzantine,π). By hypothesis, the number of Byzantine processes

in π’s first echo sample is identical in σ and σ′: with a minor abuse of notation we effectively

have rn+1 = r ′
n+1.

Let us assume that in+1 = (State). By hypothesis, n +1 < ∣∣η(α,σ)
∣∣= ∣∣η(α,σ′)

∣∣, and we imme-

diately get rn+1 = r ′
n+1 =;.

Since α is a sample-blind adversary, we have in+1 ̸= (Sample,π,m).

Noting that procedures Del i ver (. . .) and Echo(. . .) never return a value, we trivially have that

if in+1 = (Deliver,π,m) or in+1 = (Echo,π, s,ξ,m) then rn+1 = ⊥ = r ′
n+1. By induction, we

have that, for every n < ∣∣η(α,σ)
∣∣, τ(α,σ)n = τ(α,δ)n .

Lemma 15. Let α be a state-polling adversary, let σ,σ′ be systems such that

η(α,σ) = η(α,σ′)

and, for all π ∈ΠC , m ∈M ,

|{n ∈ 1..E |σ[π][m][n] ∈ΠC }| = ∣∣{n ∈ 1..E |σ′[π][m][n] ∈ΠC
}∣∣

We have

τ(α,σ) = τ(α,σ′)

64

3.9 Two-phase adversaries

Proof. The proof is similar to the proof of Lemma 14, and we omit it for the sake of brevity.

The lemma is proved by induction and noting that, since α is a single-response adversary, it

never invokes St ate() throughout the second phase of an adversarial execution.

In Section 3.11.8, we formally prove that the set of two-phase adversaries At p is optimal.

Before moving on to computing a bound on the adversarial power of At p , we prove two

additional lemmas on the behavior of two-phase adversaries.

Lemma 16. Let α be a two-phase adversary. Let η(i)(α,σ) denote the sequence of invocations in

η(α,σ). Let σ,σ′ be systems such that, for all π ∈ΠC ,∣∣σ.B y zanti ne(π)
∣∣= ∣∣σ′.B y zanti ne(π)

∣∣
We have

∀n ≤ min(
∣∣η(α,σ)

∣∣, ∣∣η(α,σ′)
∣∣), η(i)(α,σ)n = η(i)(α,σ′)n

Proof. The proof is similar to the proof of Lemma 14, and we omit it for the sake of brevity.

The lemma is proved by induction and noting that, except for the last one, every response to

(State) in η(α,σ), η(α,σ′) is, by definition, ;.

Lemma 17. Let α be a two-phase adversary. Let σ,σ′ be systems such that
∣∣η(α,σ) = ∣∣η(α,σ′)

∣∣∣∣.
Let θ(i)(α,σ) denote the sequence of invocations in θ(α,σ) and, for all π ∈ΠC ,

∣∣σ.B y zanti ne(π)
∣∣= ∣∣σ′.B y zanti ne(π)

∣∣
We have

θ(i)(α,σ) = θ(i)(α,σ′)

Proof. The proof is again similar to the proof of Lemma 14, and we omit it for the sake of

brevity. The lemma is proved by induction and noting that:

• Sinceα is two-phase, it only invokes St ate() ̸= ;, the content of the
∣∣η(α,σ)

∣∣-th response

does not affect its behavior.

• Since α is single-response, it never invokes St ate() throughout the second phase.

65

Chapter 3. Sieve

3.10 Consistency

In this section, we finally achieve the main goal of this chapter, i.e., to compute a bound on

the ϵ-consistency of Sieve. In order to achieve this, in Section 3.6, we introduced Simplified
Sieve, a strawman algorithm designed to be analytically tractable.

In Section 3.8, we proved that the consistency of Simplified Sieve is weaker than the consistency

of Sieve. More precisely, we proved that an optimal adversary has a greater probability of

compromising the consistency of Simplified Sieve than that of Sieve.

In doing so, we reduced the problem of bounding the ϵ-consistency of Sieve to that of bounding

the adversarial power of a set of adversaries for Simplified Sieve that provably includes an

optimal adversary.

Throughout Section 3.9, we employed a sequence of decorators to iteratively reduce the size

of the set that provably includes an optimal adversary. Specifically, we proved that the set At p

of two-phase adversaries is optimal. Intuitively, we proved that the behavior of an optimal

adversary reduces to:

• (Echo phase): Causing every Byzantine process to send an Echo(m, m) message to every

correct process, for every message m.

• (First phase): In sequence, causing correct processes to deliver a predefined sequence

of messages until at least one correct process delivers a message.

• (Second phase): In sequence, causing the remaining set of correct process to deliver a

predefined sequence of messages, determined only by the number of correct processes

that pb.Delivered a message throughout the first phase.

In particular, the only information that we did not prove to be unnecessary to the Byzantine

adversary is:

• The number of Byzantine processes in the first echo sample of each correct process π.

This information is available to the adversary from the beginning of the adversarial exe-

cution, and does not change throughout the execution. We conjecture this information

to still be of no use to the adversary, but we don’t rely on this conjecture in proving what

follows.

• The number of correct processes that pb.Deliver a message throughout the first phase

of the adversarial execution, i.e., before at least one correct process delivers a message.

In this section, we redefine a two-phase adversary as a table of messages. In doing so, we

provide a sound structure to a set of adversaries that provably includes an optimal one. We

66

3.10 Consistency

then use this structure to analitically bound the probability of any two-phase adversary

compromising the consistency of a random Simplified Sieve system.

First, we focus on the second phase of an adversarial execution, and study the probability

of any two-phase adversary compromising the consistency of Simplified Sieve, given the

number of correct processes that pb.Delivered, throughout the first phase, the message that

was delivered by at least one correct process at the end of the first phase.

We then focus on the first phase of an adversarial execution, and study the probability of any

two-phase adversary concluding the first phase of an adversarial execution having caused

less than n correct processes to pb.Deliver m, m being the message that at least one correct

process delivers at the end of the first phase.

We finally join the two above results to compute a bound ϵc on the probability of a two-

phase adversary compromising the consistency of Simplified Sieve. Since at least one two-

phase adversary is provably optimal, Simplified Sieve satisfies ϵc -consistency. Since the ϵ-

consistency of Sieve is provably bound by the ϵ-consistency of Simplified Sieve, Sieve satisfies

ϵc -consistency.

3.10.1 Two-phase adversaries

In Section 3.9, we proved that the set At p is optimal. In this section, we use Lemmas 16 and 17

to re-define the set of two-phase adversaries as a set of triangular message tables.

Definition 25 (Byzantine population). A Byzantine population is a vector in the set

F = (0..E)ΠC

Let σ be a system. We define the Byzantine population of σ by

∀π, F (σ)π =
∣∣σ.B y zanti ne(π)

∣∣
Definition 26 (Two-phase adversary). A two-phase adversary α ∈At p is a triangular table

defined by:

α[F]i ∈M F ∈F , i ∈ 1..C

α[F]n
i ∈M F ∈F , n ∈ 0..C , i ∈ 1..(C −n)

Coupled with a system σ, a two-phase adversary α:

• (Echo phase) Causes every Byzantine process to send an Echo(m, m) message to every

correct process in σ, for every message m.

• (First phase) Sequentially causes ζ(1) to pb.Deliver α[F (σ)]1, ζ(2) to pb.Deliver α[F (σ)]2,

67

Chapter 3. Sieve

. . . in σ, until, as a result of the n-th pb.Delivery, at least one correct process delivers a

message in σ. We note that, if σ is poisoned, then at least one correct process delivers a

mesage in σ as a result of the echo phase, and n = 0.

• (Second phase) Sequentially causes ζ(n+1) to pb.Deliverα[F (σ)]n
1 , . . ., ζ(C) to pb.Deliver

α[F (σ)]n
C−n in σ.

3.10.2 Random variables

Let α be a two-phase adversary. In the next sections, we compute a bound on the probability

of α compromising the consistency of a random, non-poisoned system. To this end, in this

section we introduce a set of random variables.

Notation 8 (Delivery indicator). Let σ be a system, let m, m1, . . . ,mn be messages. We use

δm[m1, . . . ,mn](σ) ∈ {True,False}

to indicate whether or not at least one correct process delivers m in σ, if ζ(1) pb.Delivers m1,

. . ., ζ(n) pb.Delivers mn in σ. We additionally define

δ[m1, . . . ,mn](σ) = ∨
m∈M

δ[m1, . . . ,mn](σ)

Let σ be a random, non-poisoned system. We define:

• Byzantine population Fπ∈ΠC (σ): represents the number of Byzantine processes in the

first echo sample of π in σ.

• First phase duration η(σ): represents the number of correct processes that pb.Deliver a

message in the first phase, when α is coupled with σ. More formally,

η(σ) = minn | (δ[α[F (σ)]1, . . . ,α[F (σ)]n] = True∨n =C)

• First-phase deliveries Sm∈M (σ): represents the number of correct processes that

pb.Deliver message m throughout the first phase, when α is coupled with σ. More

formally,

Sm(σ) = ∣∣{n ∈ 1..η(σ) |α[F (σ)]n = m
}∣∣

• Second-phase deliveries Tm∈M (σ): represents the number of correct processes that

pb.Deliver message m throughout the second phase, when α is coupled with σ. More

formally,

Tm(σ) =
∣∣∣{n ∈ 1..(C −η(σ)) |α[F (σ)]η(σ)

n = m
}∣∣∣

• Deliveries Nm∈M (σ): represents the number of correct processes that pb.Deliver mes-

68

3.10 Consistency

sage m, when α is coupled with σ. More formally,

Nm(σ) = Sm(σ)+Tm(σ)

• First delivered message H(σ) ∈ M ∪ {⊥}: if, when α is coupled with σ, at least one

correct process delivers a message, H(σ) represents the first message to be delivered by

at least one correct process in σ. Otherwise, H(σ) =⊥. More formally,

H(σ) =
α[F (σ)]η(σ) iff δ[α[F (σ)]1, . . . ,α[F (σ)]C] = True

⊥ otherwise

• Correct echoes E k∈0..C
m∈M

[π](σ) ∈ 0..E ∪ {⊥}: if k ≤ Ni (σ), then E k
i [π](σ) represents the

number of correct processes in π’s echo sample for m that sent an Echo(m, m) message

to π in σ, when exactly k correct processes pb.Delivered m in σ. Otherwise, E k
m[π](σ) =

⊥.

• Delivery Ak∈0..C
m∈M

[π ∈ΠC](σ) ∈ {True,False,⊥}: if k ≤ Nm(σ), Ak
m[π] represents, when α

is coupled with σ, whether or not π delivered m after k correct processes pb.Delivered

m. More formally,

Ak
m[π](σ) =

E k
m[π] ≥ Ê −Fπ iff k ≤ Nm(σ)

⊥ otherwise

• Global delivery Ak∈0..C
m∈M

(σ): if k ≤ Nm(σ), Ak
i represents, when α is coupled with σ,

whether or not at least one process delivered m after k correct processes pb.Delivered

m. More formally,

Ak
m(σ) =

∨
π∈ΠC

Ak
m[π](σ) iff k ≤ Nm(σ)

⊥ otherwise

• First phase plan Lm(σ): represents the number of times m appears in the sequence

α[F (σ)]1, . . . ,α[F (σ)]C

Intuitively, Lm represents the number of correct processes thatαwould eventually cause

to pb.Deliver m, if no correct process ever delivered any message.

• Adversarial success W : W represents whether or not the adversary successfully com-

promises the consistency of the system.

69

Chapter 3. Sieve

We additionally define:

Em[π](σ) = E Nm (σ)
m [π](σ)

E (s)
m [π](σ) = E Sm (σ)

m [π](σ)

E (t)
m [π](σ) = Em[π](σ)−E (s)

m [π](σ)

Am[π](σ) = ANm (σ)
m [π](σ)

Am(σ) = ANm (σ)(σ)

3.10.3 Byzantine population, correct echoes, delivery

In this section, we compute the probability distributions underlying Byzantine population.

Given the Byzantine population, we then compute the number of correct echoes and the

probability of delivery.

Byzantine population. As we discussed in Section 3.6.3, every correct process selects its first

echo sample using the Sample(. . .) procedure, which, in turn, picks each element indepen-

dently from the set of processes. Therefore, the number of correct processes in the first echo

sample of each correct process is independently binomially distributed:

P
[
F̄π

]= Bin
[
E , f

](
F̄π

)
Correct echoes. Let π be a correct process, let m be a message. If π has F̄π Byzantine

processes in its first echo sample and exactly k correct processes pb.Delivered m, then each

of the E − F̄π correct process in π’s echo sample for m has an independent probability k/C of

having pb.Delivered m.

Consequently, we have

P
[

Ē k
m[π] | F̄π

]
=

Bin
[

E − F̄π, k
C

](
Ē k

m[π]
)
P

[
k ≤ Nm | F̄π

]
iff Ē k

m[π] ̸= ⊥
P

[
k > Nm | F̄π

]
otherwise

We underline that the above holds true only because the adversary α is non-redundant.

Indeed, since α knows the first phase duration η, it also knows H (this immediately follows

from H = α[F]η). Therefore, if α was not non-redundant, the value of E k
m[π] would not

necessarily be independent from the event k ≤ Nm .

We can see this with an example. With a minor slip of notation, consider an adversary α such

70

3.10 Consistency

that

α[{0}ΠC]1 = 1

α[{0}ΠC]i>1 ̸= 1

α[{0}ΠC]1
1 = 1

We can immediately see that α is not non-redundant: if no correct process has any Byzantine

process in its echo samples, and at least one correct process delivers 1 as an immediate result

of ζ(1) pb.Delivering 1, α causes ζ(2) to pb.Deliver 1 again. If η= 1, then l ≥ 1 correct process

π∗
1 , . . . ,π∗

l exists such that ζ(1) appears at least Ê times in π∗
i ’s echo sample for 1. Since a

correct process π has a probability l /C of being among π∗
1 , . . . ,π∗

l , if N1 ≥ 2 the distribution of

Ē k
m[π] becomes

P
[

Ē k
m[π] | F [π] = 0, N1 ≥ 2

]
= Bin

[
E ,

k

C

](
Ē k

m[π]
)C − l

C
+ l

C

I (Ē k
m[π] ≥ Ê)∑E

e=Ê
Bin

[
E , k

C

]
(e)

which is clearly not a binomial. Intuitively, if α was not non-redundant, the value of Nm may

come to depend on whether or not m was delivered by at least one correct process, which

obviously correlates with the value of E k
m[π].

Since α is non-redundant, however, and every correct process picks each echo sample inde-

pendently, the value of E k
m[π] is indeed independent from the event k ≤ Nm .

Delivery. Noting that a correct process π delivers a message m if it collects at least Ê Echo(m,

m) messages from its echo sample for m, we can use the distribution underlying the correct

echoes to obtain

P
[

Ak
m[π] | F̄π

]
=

E−F̄π∑
Ē k

m [π]=Ê−F̄π

P
[

Ē k
m[π] | F̄π

]
and, using the law of total probability, we get

P
[

Ak
m[π]

]
=

E∑
F̄π=0

P
[

Ak
m[π] | F̄π

]
P

[
F̄π

]

Finally, since the above holds independently for every process π, we have

P
[

Ak
m

]
= 1− ∏

π∈ΠC

(
1−P

[
Ak

m[π]
])

= 1−
(
1−P

[
Ak

m[ζ(1)]
])C

71

Chapter 3. Sieve

3.10.4 Second phase

In the previous sections, we computed the probability of any correct process delivering a

message m, given that k correct processes pb.Delivered m. In Section 3.10.1, we discussed

how an optimal adversarial execution unfolds in two phases: the first takes place before any

correct process delivers any message; throughout the second, the goal of the adversary is to

cause at least one correct process to deliver one additional message.

In this section, we focus on the second phase. We assume that a message H has already

been delivered by at least one correct process. Given the number of correct processes that

pb.Delivered each message throughout the first phase, we compute (where possible) a bound

on the probability of any message different from H being delivered before the end of the

adversarial execution, i.e., the probability of the adversary successfully compromising the

consistency of the system.

Correct echoes for a non-delivered message. Let π be a correct process that has F̄ Byzantine

processes in its first echo sample. Let m be a message such that π does not deliver m after k

correct processes pb.Delivered m. Here we use Bayes’ theorem to compute the probability

distribution underlying the number of correct echoes received by π for m.

Notation 9 (Indicator function). We use I to denote the indicator function. Let c be a predi-

cate, then

I (c) =
1 iff c is true

0 otherwise

P
[

Ē k
m[π] |����

Ak
m[π], F̄π

]
= P

[
Ē k

m[π] | E k
m[π] < Ê − F̄π, F̄π

]
= P

[
E k

m[π] < Ê − F̄π | Ē k
m[π], F̄π

]
P

[
Ē k

m[π] | F̄π
]

P
[
E k

m[π] < Ê − F̄π | F̄π
]

= I (Ē k
m[π] < Ê − F̄π)P

[
Ē k

m[π] | F̄π
]

∑Ê−F̄π−1
e=0 P

[
E k

m[π] = e | F̄π
]

where the numerator of the last term includes an indicator function because any condition

A < B , given Ā and B̄ , is always satisfied deterministically.

Conditions. Letπ be a correct process, let m be a message. Throughout the rest of this section,

we compute the probability of π eventually delivering m under the following conditions:

• F̄π processes in π’s first echo sample are Byzantine.

• m is not the message that is delivered at the end of the first phase, i.e., H ̸= m.

72

3.10 Consistency

• S̄m correct processes pb.Deliver m throughout the first phase.

• T̄m correct processes pb.Deliver m throughout the second phase.

First phase correct echoes. Here we compute, under the above conditions, the probabil-

ity distribution underlying E (s)
m [π], i.e., the number of correct echoes that π collects for m

throughout the first phase.

Since H ̸= m, π does not deliver m throughout the first phase. In other words, π does not

deliver m after S̄m correct processes pb.Delivered m, and we immediately have

P
[
Ē (s)

m [π] | H ̸= m, S̄m , F̄π
]=P

[
E S̄m

m [π] = Ē (s)
m [π] |����

AS̄m
m [π], F̄π

]

Second phase correct echoes. Here we compute, under the above conditions and given

Ē (s)
m [π], the probability distribution underlying Ē (t)

m [π], i.e., the number of correct echoes that

π collects for m throughout the second phase.

We start by noting that, out of the E elements in π’s echo sample for m:

• F̄π are Byzantine.

• Ē (s)
m [π] belong to the set of S̄m processes that pb.Delivered m throughout the first phase.

• E−F̄π−Ē (s)
m [π] belong to the set of C−S̄m processes that did not pb.Deliver m throughout

the first phase.

Moreover, out of the C − S̄m processes that did not pb.Deliver m throughout the first phase,

T̄m pb.Delivered m throughout the second phase. Therefore, each of the processes in π’s

echo sample for m that did not pb.Deliver m throughout the first phase has an independent

probability T̄m/(C − S̄m) of pb.Delivering m throughout the second phase.

Consequently, Ē (t)
m is binomially distributed:

P
[
Ē (t)

m | Ē (s)
m , S̄m , T̄m , F̄π

]= Bin

[
E − F̄π− Ē (s)

m ,
T̄m

C − S̄m

](
Ē (t)

m [π]
)

Delivery probability (given message). We can finally compute, under the above conditions,

the probability of π eventually delivering m.

We start by expanding the definition of Am[π] to get

P
[

Am[π] | H ̸= m, S̄m , T̄m , F̄π
]

= P
[
Em[π] ≥ Ê − F̄π | H ̸= m, S̄m , T̄m , F̄π

]= (⋆1)

73

Chapter 3. Sieve

and then expand the definition of Em[π] to get

(⋆1) =P
[
E (t)

m [π] ≥ Ê − F̄π−E (s)
m [π] | H ̸= m, S̄m , T̄m , F̄π

]= (⋆2)

Finally, using the law of total probability on each possible value of E (s)
m [π], we get

(⋆2) =
E−F̄π∑

Ē (s)
m [π]=0

P
[
E (t)

m [π] ≥ Ê − F̄π− Ē (s)
m [π] | Ē (s)

m [π], S̄m , T̄m , F̄π
]︸ ︷︷ ︸

(⋆a)

·P [
Ē (s)

m [π] | H ̸= m, S̄m , F̄π
]︸ ︷︷ ︸

(⋆b)

As we previously established,

P
[
Ē (t)

m [π] | E (s)
m [π] = i , S̄m , T̄m , F̄π

]=P
[

Xi = Ē (t)
m [π]

]
with

Xi ∼ Bin
[

A− i , p
]

A = E − F̄π

p = T̄m

(C − S̄m)

Moreover,

(⋆a) =P [Xi ≥ B − i]

with

B = Ê − F̄π ≤ E − F̄π = A

Therefore, following from Lemma 7, (⋆a) is an increasing function of Ē (s)
m [π]. Moreover, as we

previously established,

P
[
Ē (s)

m [π] | H ̸= m, S̄m , F̄π
] = P

[
E S̄m

m [π] = Ē (s)
m [π] |��

��
AS̄m

m [π], F̄π
]

=
I (Ē S̄m

m [π] < Ê − F̄π)P
[

Ē S̄m
m [π] | F̄π

]
∑Ê−F̄π−1

e=0 P
[

E S̄m
m [π] = e | F̄π

]

74

3.10 Consistency

and (⋆2) can be restated as

(⋆2) =
∑K−l

x=0 f (x)g (x)∑K−l
x=0 g (x)

K = E − F̄π

l = E − Ê +1

f (x) = P
[
E (t)

m [π] ≥ Ê − F̄π−x | E (s)
m [π] = x, S̄m , T̄m , F̄π

]
g (x) = P

[
E S̄m

m [π] = x | F̄π
]

with f (x) increasing and
∑K

x=0 g (x) = 1. Following from Corollary 1, we therefore have

P
[

Am[π] | H ̸= m, S̄m , T̄m , F̄π
]

≤
E−F̄π∑

Ē (s)
m [π]=0

P
[
Ē (s)

m [π]+E (t)
m [π] ≥ Ê − F̄π | Ē (s)

m [π], S̄m , T̄m , F̄π
]

·P
[

E S̄m
m [π] = Ē (s)

m [π] | F̄π
]

= (⋆3)

which, as we previously established, can be restated as

(⋆3) = P [X +Y ≥ H] =
A∑

K=H
P [X +Y = K]

P
[

X̄
] = Bin

[
A,

x

B

](
X̄

)
P

[
Ȳ | X̄

] = Bin
[

A− X̄ ,
y

B −x

](
Ȳ

)
H = Ê − F̄π

A = E − F̄π

B = C

x = S̄m

y = T̄m

which, using Lemma 6, yields the bound

P
[

Am[π] | H ̸= m, S̄m , T̄m , F̄π
]≤ ∑

e=Ê−F̄π

Bin

[
E − F̄π,

S̄m + T̄m

C

]
(e) (3.2)

Delivery probability (any message). We now move on to compute the probability that a

correct process π will eventually deliver any message other than H , under the following

assumptions:

75

Chapter 3. Sieve

• The first phase of the adversarial execution is concluded.

• The number F̄π of Byzantine processes in the first echo sample of π is given.

• The number S̄m , T̄m of correct processes that pb.Delivered each message m throughout

the first and second phase respectively is given.

Since every echo sample is picked independently, from Equation (3.2) follows

P

[∨
m ̸=H̄

Am[π] | S̄1, . . . , S̄C , T̄1, . . . , T̄C , F̄π

]
≤ P

[∨
i ̸=m

(Xi ≥ K)

]
P

[
X̄i

] = Bin
[
N , pi

](
X̄i

)
N = E − F̄π

K = Ê − F̄π

pi = S̄i + T̄i

C

and noting that ∑
m ̸=H̄

S̄m + T̄m

C
= ∑

n ̸=H̄

N̄m =C − N̄H̄

we can use Lemma 10 to obtain the bound

P

[∨
m ̸=H̄

Am[π] | S̄1, . . . , S̄C , T̄1, . . . , T̄C , F̄π

]
≤φ(N̄H̄ , F̄π)

with

φ(N̄H̄ , F̄π) =
α(N̄H̄ , F̄π) ·β(N̄H̄ , F̄π) iff C−N̄H̄

C ≤ (Ê−F̄π)−
p

Ê−F̄π
E−F̄π

1 otherwise
(3.3)

where

α(N̄H̄ , F̄π) =
e(E − F̄π)C−N̄H̄

C

Ê − F̄π

(Ê−F̄π)

β(N̄H̄ , F̄π) = exp

(
−(E − F̄π)

C − N̄H̄

C

)

At a first glance, the second branch of the bound above could seem unreasonably lax. We

underline, however, that for a large enough (Ê − F̄π),

(
Ê − F̄π

)−√
Ê − F̄π

E − F̄π
≃ Ê − F̄π

E − F̄π

76

3.10 Consistency

and, since the median of Bin
[
N , p

]
is either ⌈N p⌉ or ⌊N p⌋,

E−F̄π∑
e=Ê−F̄π

Bin

[
E − F̄π,

Ê − F̄π
E − F̄π

]
(e) ≃ 1

2

Therefore, even in the second branch, the bound introduces a limited multiplicative error.

Moreover, as we will see in the numerical analysis, the error introduced by the bound is

non-negligible only for extremely unlikely values of N̄H̄ .

Adversarial success probability. Throughout this section, we computed the probability

that a correct process π will deliver a message different from the message that was delivered

throughout the first phase.

We showed that such probability can be bound by a function that only depends on the number

of Byzantine processes in the first echo sample of π, and the number of correct processes that

pb.Delivered H throughout the first phase.

We therefore have

P

[∨
m ̸=H

Am[π] | N̄H , F̄π

]
≤φ(N̄H , F̄π)

By the law of total probability we have

P

[∨
m ̸=H

Am[π] | N̄H

]
= ∑

m ̸=H
P

[∨
m ̸=H

Am[π] | N̄H , F̄π

]
P

[
F̄π | N̄H

]
≤ ∑

m ̸=H̄

φ(N̄H , F̄π)P
[
F̄π | N̄H

]

Since H was delivered by at least one correct process at the end of the first phase, we know

that:

• One correct process π+ delivered H immediately after N̄H correct processes

pb.Delivered H .

• Every other correct process did not deliver H before N̄H correct processes pb.Delivered

H .

We start by computing the probability distribution underlying F̄π+ . Using Bayes’ theorem we

77

Chapter 3. Sieve

get

P
[
F̄π+ | N̄H

] = P
[

F̄π+ | AN̄H
H [π+],������

AN̄H−1
H [π+]

]
=

P
[

AN̄H
H [π+],������

AN̄H−1
H [π+] | F̄π+

]
P

[
F̄π+

]
P

[
AN̄H

H [π+],������
AN̄H−1

H [π+]
]

and noting that AN̄H−1
H [π+] =⇒ AN̄H

H [π+], we have

P
[

AN̄H
H [π+],������

AN̄H−1
H [π+]

]
= P

[
AN̄H

H [π+]
]
−P

[
AN̄H−1

H [π+]
]

P
[

AN̄H
H [π+],������

AN̄H−1
H [π+] | F̄π+

]
= P

[
AN̄H

H [π+] | F̄π+
]

−P
[

AN̄H−1
H [π+] | F̄π+

]

Similarly, for π− ̸=π+, we get

P
[
F̄π− | N̄H

] = P
[

F̄π− |������
AN̄H−1

H [π−]
]

=
P

[
������
AN̄H−1

H [π−] | F̄π−
]
P

[
F̄π−

]
P

[
������
AN̄H−1

H [π−]
]

Since each correct process picks its echo sample independently, we have

P
[
W | N̄H

]= 1− ∏
π∈ΠC

(
1−P

[∨
m ̸=H

Am[π] | N̄H

])
≤ 1− (

1−φ+(N̄H)
)(

1−φ−(N̄H)
)C−1

(3.4)

with

φ+(N̄H) =
E∑

F̄π+=0

φ(N̄H , F̄π+)P
[
F̄π+ | N̄H

]
φ−(N̄H) =

E∑
F̄π−=0

φ(N̄H , F̄π−)P
[
F̄π− | N̄H

]

3.10.5 First phase

In the previous section, we computed, given the number of correct processes that pb.Delivered

the first delivered message, the probability of a two-phase adversary successfully compromis-

ing the consistency of a system.

In this section, we compute the probability distribution underlying the number of correct

processes that pb.Deliver the first delivered message.

78

3.10 Consistency

Definition 27 (Deafened adversary). Let α be a two-phase adversary. We define ∆(α) the

deafened version of α if:

• ∆(α) is a process-sequential adversary.

• Coupled with a system σ, ∆(α) sequentially causes the pb.Delivery of

α[F (σ)]1, . . . ,α[F (σ)]C .

Intuitively, the deafened version of a two-phase adversary α is an adversary whose adversarial

execution would be identical to α’s, if no correct process ever delivered any message.

Lemma 18. Let α be a two-phase adversary, let σ be a system. We have

η(α,σ) = η(∆(α),σ)

Proof. It follows immediately from Definition 27: ∆(α) causes the same processes to pb.Deliver

the same messages as α throughout the first phase.

Definition 28 (Delivery cost). Let α be an auto-echo adversary, let σ be a non-poisoned

system, let m be a message such that, when α is coupled with σ, at least one correct process

delivers m. We define the delivery cost of m λ(α,σ,m) as the minimum λ ∈ 1..C such that,

when α is coupled with σ, at least one correct process delivers m after λ correct processes

pb.Delivered m.

Lemma 19. Let α be a two-phase adversary, let σ be a non-poisoned system such that, when

coupled with σ, α causes at least one correct process to deliver one message. Let H̄ be the first

message delivered by at least one correct process, when α is coupled with σ.

We have that

λ(α,σ, H̄) ≥ min
m∈M

λ(∆(α),σ,m)

Proof. Following from Lemma 18 η(α,σ) = η(∆(α),σ). Therefore, at least one correct process

delivers H̄ after λ(α,σ, H̄) processes pb.Deliver H̄ , when ∆(α) is coupled with σ.

In this section, we bound the cumulative probability P [NH ≤ L] for an adversary α by bound-

ing the probability that the deafened adversary ∆(α) will cause the delivery of at least one

message m, with a cost smaller or equal to L.

Let m be a message. We start by noting that, by definition, ∆(α) eventually causes Lm correct

processes to pb.Deliver m. Let π be a correct process, let F̄π be the number of Byzantine

processes in π’s first echo sample.

79

Chapter 3. Sieve

We denote with Λm[π] the random variable representing the minimum number of correct

processes that pb.Deliver m, before π delivers m. If π never delivers m, we setΛm[π] =∞.

Let L ∈ 1..C . Using the tools we developed in the previous section, we immediately get

P
[
Λm[π] ≤ L | L̄m , F̄π

]= E−F̄π∑
e=Ê−F̄π

Bin

[
E − F̄π,

min
(
L̄m ,L

)
C

]
(e)

and using the independence of echo samples, we get

P

[∨
m∈M

Λm[π] ≤ L | L̄1, . . . , L̄C , F̄π

]
= P

[∨
i∈M

(Xi ≥ K)

]
P

[
X̄i

] = Bin
[
N , pi

](
X̄i

)
N = E − F̄π

K = Ê − F̄π

pi = min
(
L̄i ,L

)
C

and we can use Lemma 10 to obtain the bound

P

[∨
m∈M

Λm[π] ≤ L | L̄1, . . . , L̄C , F̄π

]
≤ 1− (

1−ψ(L, F̄π)
)⌊C

L ⌋(1−ψ(C mod L, F̄π)
)

with

ψ(M , F̄π) =
α(M , F̄π) ·β(M , F̄π) iff M

C ≤ (Ê−F̄π)−
p

Ê−F̄π
E−F̄π

1 otherwise
(3.5)

where

α(M , F̄π) =
(

e(E − F̄π) M
C

Ê − F̄π

)(Ê−F̄π)

β(M , F̄π) = exp

(
−(E − F̄π)

M

C

)

Noting that the bound holds for any value of L̄1, . . . , L̄C , we can use again the law of total

probability to obtain

P

[∨
m∈M

Λm[π] ≤ L

]
≤ψ(L)

with

ψ(L) =
E∑

F̄π=0

1− (
1−ψ(L, F̄π)

)⌊C
L ⌋(1−ψ(C mod L, F̄π)

)
P

[
F̄π

]
(3.6)

80

3.10 Consistency

and using the independence of echo samples across correct processes we finally get

P

[∨
π∈ΠC ,m∈M

Λm[π] ≤ L

]
≤ 1− (1−ψ(L))C (3.7)

We now have all the elements to prove

Theorem 9. Sieve satisfies ϵc -consistency, with

ϵc ≤ ϵp +
C∑

L=0
ψ̃(L)φ̃(L)

ψ̃(L) =

(
1− (1−ψ(L))C

)− (
1− (1−ψ(L−1))C

)
iff L ∈ 1..C

0 iff L ∈ {−1,0}

1 iff L =C

φ̃(L) = (
1− (1−φ+(L))(1−φ−(L))C−1)

ϵp = 1−
(

1−
E∑

F̄=Ê

Bin
[
E , f

](
F̄

))C

Proof. Following from Lemma 19, we have

P [NH ≤ L] ≤P

[∨
π∈ΠC ,m∈M

Λm[π] ≤ L

]
(3.8)

By the law of total probability, we have

P [W] =
C∑

x=0

(
f (x)

(
g (x)− g (x −1)

))
f (x) = P

[
W | N̄H = x

]
g (x) = P [NH ≤ x]

and from Lemma 9 we get

P [W] ≤
C∑

x=0

(
f (x)(h(x)−h(x −1))

)
h(x) = P

[∨
π∈ΠC ,m∈M

Λm[π] ≤ x

]

The probability of compromising a non-poisoned system is obtained by applying the bounds

in Equations (3.4), (3.7) and (3.8).

It is easy to see that ϵp represents the probability of a random system being poisoned: indeed,

81

Chapter 3. Sieve

each correct process has an independent probability

E∑
F̄=Ê

Bin
[
E , f

](
F̄

)
of having more than Ê Byzantine processes in its first echo sample, i.e., of being poisoned.

Therefore, the bound on ϵc bounds the probability of any two-phase adversary compromising

the consistency of a cob system. Due to Lemma 27, the set At p of two-phase adversaries is

optimal. Therefore, Simplified Sieve satisfies ϵc -consistency.

Due to Lemma 12, the adversarial power of an optimal pcb adversary is bound by the adver-

sarial power of an optimal cob adversary, and the theorem is proved.

3.11 Decorators

In this section, we provide the proof that each of the sets of cob adversaries presented in

Section 3.9 is optimal.

3.11.1 Auto-echo adversary

Lemma 20. The set of auto-echo adversaries Aae is optimal.

Proof. We prove the result using a decorator, i.e., an algorithm that acts as an interface

between an adversary and a system. An adversary coupled with a decorator effectively im-

plements an adversary. Here we show that a decorator ∆ae exists such that, for every α ∈A ,

the adversary α′ = ∆ae (α) is an auto-echo adversary, and more powerful than α. If this is

true, then the lemma is proved: let α∗ be an optimal adversary, then the auto-echo adversary

α+ =∆ae (α∗) is optimal as well.

Decorator. Algorithm 7 implements Auto-echo decorator, a decorator that transforms an

adversary into an auto-echo adversary. Provided with an adversary ad v , Auto-echo decorator

acts an interface between ad v and a system s y s, effectively implementing an auto-echo

adversary aead v . Auto-echo decorator exposes both the adversary and the system interfaces:

the underlying adversary ad v uses aead v as its system.

Auto-echo decorator works as follows:

• Procedure aead v.Ini t () initializes the following variables:

– A queue list that contains every combination of (π,m,ξ), π being a correct process,

m being a message and ξ being a Byzantine process: queue is used to initially

82

3.11 Decorators

Algorithm 7 Auto-echo decorator.
1: Implements:
2: AutoEchoAdversary + CobSystem, instance aeadv
3:

4: Uses:
5: CobAdversary, instance adv, system aeadv
6: CobSystem, instance sys
7:

8: procedure aeadv.Init() is
9: queue =;;

10:

11: for all π ∈ΠC do
12: for all m ∈M do
13: for all ξ ∈Π\ΠC do
14: queue ← queue ∪ {(π,m,ξ)};
15: end for
16: end for
17: end for
18:

19: echoes = {⊥}C×C×N ; ▷C ×C ×N table filled with ⊥.
20: executed = False;
21: ad v.Ini t ();
22:

23: procedure aeadv.Step() is
24: if queue ̸= ; then
25: (π,m,ξ) = queue[1];
26: s y s.Echo(π,m,ξ,m);
27: queue ← queue \ {(ξ,π,m)};
28: else
29: executed ← False;
30: while executed = False do
31: ad v.Step();
32: end while
33: end if
34:

35: procedure aeadv.Byzantine(pr ocess) is
36: return s y s.B y zanti ne(pr ocess);
37:

83

Chapter 3. Sieve

38: procedure aeadv.State() is
39: st ate =;;
40:

41: for all (π,m) ∈ s y s.St ate() do
42: n = 0;
43:

44: for all ρ ∈ s y s.Sample(π,m) do
45: if echoes[π][m][ρ] = m then
46: n ← n +1;
47: end if
48: end for
49:

50: if n ≥ Ê then
51: st ate ← st ate ∪ {(π,m)};
52: end if
53: end for
54:

55: return st ate;
56:

57: procedure aeadv.Sample(pr ocess,messag e) is
58: sample =;;
59:

60: for all ρ ∈ s y s.Sample(pr ocess,messag e) do
61: if echoes[pr ocess][messag e][ρ] ̸= ⊥ then
62: sample ← sample ∪{

ρ
}
;

63: end if
64: end for
65:

66: return sample;
67:

68: procedure aeadv.Deliver(pr ocess,messag e) is
69: executed = True;
70:

71: for all π ∈ΠC do
72: for all m ∈M do
73: echoes[π][m][pr ocess] = messag e;
74: end for
75: end for
76:

77: s y s.Del i ver (pr ocess,messag e, f l ag);
78:

79: procedure aeadv.Echo(pr ocess, sample, sour ce,messag e) is
80: echoes[pr ocess][sample][sour ce] = messag e;
81:

84

3.11 Decorators

82: procedure aeadv.End() is
83: executed = True;
84: s y s.End();
85:

cause every Byzantine process ξ to send an Echo(m, m) message to every correct

process π, for every message m.

– An echoes table, initialized with ⊥ values: echoes is used to keep track of all the

Echo messages that would have been sent to each correct process in s y s, if ad v

was playing instead of aead v .

• Procedure aead v.Step() checks if queue is not empty. If it is not empty, it pops (i.e.,

picks and removes) its first element (π,m,ξ), with ξ ∈Π\ΠC , π ∈ΠC and m ∈M . It then

causes ξ to send π an Echo(m, m) message.

If queue is empty instead, the procedure calls ad v.Step() until either s y s.Del i ver (. . .)

or s y s.End() are called: this is achieved using the executed flag.

• Procedure aead v.B y zanti ne(pr ocess) simply forwards the call to

s y s.B y zanti ne(pr ocess).

• Procedure aead v.St ate() returns a list of pairs (π ∈ΠC ,m ∈M) such that π delivered

m in s y s, and π would have delivered m in s y s, if ad v was playing instead of aead v .

This is achieved by querying s y s.St ate(), then looping over each element (π,m) of the re-

sponse. For each (π,m), the procedure loops over every element ρ of s y s.Sample(π,m),

and computes the number n of Echo(m, m) messages that π would have received from

its echo sample for m in s y s, if ad v was playing instead of aead v . This is achieved

using the echoes table. If n is greater or equal to Ê , (π,m) is included in the list returned

by the procedure.

• Procedure aead v.Sample(pr ocess,messag e) returns every process in

s y s.Sample(pr ocess,messag e) that would have sent an Echo(messag e, messag e ′)
message for some message messag e ′ to pr ocess in s y s, if ad v was playing instead of

aead v . This is achieved using the echoes table.

• Procedure aead v.Del i ver (pr ocess,messag e) updates the echo table to reflect all the

Echo messages that pr ocess will send, as a result of having pb.Delivered messag e.

It then forwards the call to s y s.Del i ver (pr ocess,messag e), causing pr ocess to

pb.Deliver messag e.

• Procedure aead v.Echo(pr ocess, sample, sour ce,messag e) updates the echo table to

include the Echo(sample, messag e) message that pr ocess would receive from sour ce,

if ad v was playing instead of aead v .

• Procedure aead v.End() simply forwards the call to s y s.End().

85

Chapter 3. Sieve

Correctness. We start by proving that no adversary, coupled with Auto-echo decorator, causes

the execution to fail.

We start by establishing a preliminary result. Let π ∈ΠC , let m ∈M . If (π,m) is returned from

aead v.St ate(), then π delivered m in s y s. Indeed, (π,m) is returned from aead v.St ate() only

if (π,m) is returned from s y s.St ate().

Let π ∈ΠC , let m ∈M . The following hold true:

• An invocation to aead v.Step() results in one and only one call to s y s.Del i ver (. . .),

s y s.Echo(. . .) or s y s.End(). Indeed, if queue is not empty, exactly one call to

s y s.Echo(. . .) is issued. Otherwise, ad v.Step() is called until executed = True, and

executed is set to True only after an invocation to s y s.Del i ver (. . .) or s y s.End().

• Procedure aead v.St ate() never causes the execution to fail. Indeed, s y s.Sample(π,m)

is called only if (π,m) is returned from s y s.St ate(). This means that s y s.Sample(π,m)

is called only if π delivered m in s y s. Therefore, s y s.Sample(π,m) is never invoked

from aead v.St ate() unless at least one correct process delivered m in s y s.

• No invocation of aead v.Sample(. . .) causes the execution to fail. Noting that ad v

is correct, it will never invoke aead v.Sample(π,m) unless (π′,m) was returned from

a previous invocation of aead v.St ate(), for some π′ ∈ ΠC . As we previously estab-

lished, (π′,m) is returned from aead v.St ate() only if π′ delivered m in s y s. Therefore,

s y s.Sample(π,m) is never invoked from aead v.Sample(. . .) unless at least one correct

process delivered m in s y s.

Auto-echo. It is easy to prove that Auto-echo decorator always implements an auto-echo

adversary. Indeed, every call to aead v.Step() results in a call to s y s.Echo(π,m,ξ,m), causing

the Byzantine process ξ to send an Echo(m, m) message to the correct process π, until queue

is exhausted.

Therefore, only s y s.Echo(. . .) is invoked until ξ sent an Echo(m, m) message to π, for every

π ∈ΠC , every m ∈M , and every ξ ∈Π\ΠC .

Roadmap. Let α ∈ A , let α′ = ∆ae (α). Let σ be a system such that α compromises the

consistency of σ. Let σ′ be an identical copy of σ. In order to prove that α′ is more powerful

than α, we prove that α′ compromises the consistency of σ′.

Trace. We start by noting that, if we couple Auto-echo decorator withσ′, we effectively obtain

a system instance δwith which α directly exchanges invocations and responses. Here we show

that the trace τ(α,σ) is identical to the trace τ(α,δ). Intuitively, this means that α has no way

of distinguishing whether it has been coupled directly with σ, or it has been coupled with σ′,
with Auto-echo decorator acting as an interface. We prove this by induction.

86

3.11 Decorators

Let us assume

τ(α,σ) = ((i1,r1), . . .)

τ(α,δ) = ((i ′1,r ′
1), . . .)

i j = i ′j ,r j = r ′
j ∀ j ≤ n

We start by noting that, since α is a deterministic algorithm, we immediately have

in+1 = i ′n+1

and we need to prove that rn+1 = r ′
n+1.

Let us assume that in+1 = (Byzantine,π). Since aead v.B y zanti ne(π) simply forwards the

call to s y s.B y zanti ne(π), and σ′ is an identical copy of σ, we immediately have rn+1 = r ′
n+1.

Before considering the remaining possible values of in+1, we prove some auxiliary results. Let

π be a correct process, let ξ be a Byzantine process, let ρ be a process, let s,m be messages. For

every j ≤ n +1, as we established, we have i j = i ′j . Therefore, after the (n +1)-th invocation,

the following hold true:

• ρ sent an Echo(s, m) message to π in σ if and only if echoes[π][s][ρ] = m. Indeed, if ρ

is correct, ρ sent an Echo(s, m) message to π in σ if and only if aead v.Del i ver (ρ,m)

was invoked. In turn, echo[π′][s′][ρ] was set to m for every π′ ∈ΠC , s′ ∈M if and only if

aead v.Del i ver (ρ,m) was invoked. If ρ is Byzantine, ρ sent an Echo(s, m) message to

π in σ if and only if aead v.Echo(π, s,ρ,m) was invoked. In turn, echo[π][s][ρ] was set

to m if and only if aead v.Echo(π, s,ρ,m) was invoked.

• If ρ sent an Echo(m, m′) message to π in σ for some m′ ∈ M , then ρ sent an Echo(m,

m′′) message to π in σ′ as well, for some m′′ ∈ M . Indeed, if ρ is correct, then

aead v.Del i ver (ρ,m′) was invoked. As a result, s y s.Del i ver (ρ,m′) was called, and

ρ sent an Echo(s′, m′) message to π′ for every π′ ∈ΠC , s′ ∈M . If ρ is Byzantine, then it

sent an Echo(m′′′, m′′′) message to π′, for every π′ ∈ΠC , m′′′ ∈M .

• If ρ sent an Echo(m, m) message to π in σ, then ρ sent an Echo(m, m) message to π in

σ′ as well. Indeed, if ρ is correct, then aead v.Del i ver (ρ,m) was invoked. As a result,

s y s.Del i ver (ρ,m) was called, and ρ sent an Echo(s′, m) message to π′ for every π′ ∈ΠC ,

s′ ∈M . If ρ is Byzantine, then it sent an Echo(m′, m′) message to π′, for every π′ ∈ΠC ,

m′ ∈M .

• If π delivered m in σ, then π delivered m in σ′ as well. This follows from the above and

the fact that σ′ is an identical copy of σ (i.e., π’s echo sample for m in σ is identical to

π’s echo sample in σ′.

87

Chapter 3. Sieve

Let us assume that in+1 = (State). Let π be a correct process, let m be message. We start by

noting that aead v.St ate() returns (π,m) if and only if π delivered m in σ′, and π delivered

m in σ. Indeed, (π,m) is added to the return list of aead v.St ate() if and only if (π,m) is

returned from s y s.St ate(), and at least Ê processes sent an Echo(m, m) message to π in σ. If

(π,m) ∈ rn+1, then π delivered m in σ, and π delivered m in σ′ as well. Therefore (π,m) ∈ r ′
n+1.

If (π,m) ∈ r ′
n+1, then we immediately have that π delivered m in σ, and (π,m) ∈ rn+1.

Let us assume that in+1 = (Sample,π,m). Let ρ be a process. We start by noting that

aead v.Sample(π,m) returns ρ if and only ρ sent an Echo(m, m′′) message to π in σ′ for

some m′′ ∈ M , and echoes[π][m][ρ] ̸= ⊥. If ρ ∈ rn+1, then ρ sent an Echo(m, m′) mes-

sage to π in σ, for some m′ ∈ M . Therefore, ρ sent an Echo(m, m′′) message to π in σ′,
for some m′′ ∈ M , and echoes[π][m][ρ] = m′ ̸= ⊥. Consequently, ρ ∈ r ′

n+1. If ρ ∈ r ′
n+1, then

echoes[π][m][ρ] = m′ ̸= ⊥ for some m′ ∈M . Therefore, ρ sent an Echo(m, m′) message to π

in σ, and ρ ∈ rn+1.

Noting that procedures Del i ver (. . .) and Echo(. . .) never return a value, we trivially have that

if in+1 = (Deliver,π,m) or in+1 = (Echo,π, s,ξ,m) then rn+1 = ⊥ = r ′
n+1. By induction, we

have τ(α,σ) = τ(α,δ).

Consistency of σ′. We proved that τ(α,σ) = τ(α,δ). Moreover, we proved that if a correct

process π eventually delivers a message m in σ, then π also delivers m in σ′.

Since α compromises the consistency of σ, two correct processes π, π′ and two distinct

messages m, m′ ̸= m exist such that, in σ, π delivered m and π′ delivered m′. Therefore, in σ′,
π delivered m and π′ delivered m′. Therefore α′ compromises the consistency of σ′.

Consequently, the adversarial power of α is smaller or equal to the adversarial power of

α′ =∆ae (a), and the lemma is proved.

3.11.2 Process-sequential adversary

Lemma 21. The set of process-sequential adversaries Aps is optimal.

Proof. We again prove the result using a decorator, i.e., an algorithm that acts as an interface

between an adversary and a system. An adversary coupled with a decorator effectively imple-

ments an adversary. Here we show that a decorator ∆ps exists such that, for every α ∈ Aae ,

the adversary α′ = ∆ps(α) is a process-sequential adversary, and as powerful as α. If this is

true, then the lemma is proved: let α∗ be an optimal adversary, then the process-sequential

α+ =∆ps(α∗) is optimal as well.

Decorator. Algorithm 8 implements Process-sequential decorator, a decorator that trans-

forms an auto-echo adversary into a process-sequential adversary. Provided with an auto-echo

88

3.11 Decorators

Algorithm 8 Process-sequential decorator.
1: Implements:
2: ProcessSequentialAdversary + CobSystem, instance psadv
3:

4: Uses:
5: AutoEchoAdversary, instance aeadv, system psadv
6: CobSystem, instance sys
7:

8: procedure psadv.Init() is
9: per m = {⊥}C ; cur sor = 1;

10: aead v.Ini t ();
11:

12: procedure psadv.Step() is
13: aead v.Step();
14:

15: procedure psadv.Byzantine(pr ocess) is
16: return s y s.B y zanti ne(pr ocess);
17:

18: procedure psadv.State() is
19: return s y s.St ate();
20:

21: procedure psadv.Sample(pr ocess,messag e) is
22: sample =;;
23:

24: for all ρ ∈ s y s.Sample(pr ocess,messag e) do
25: if ρ ∈ΠC then
26: sample ← sample ∪{

ζ(per m[ζ−1(ρ)])
}

27: else
28: sample ← sample ∪{

ρ
}
;

29: end if
30: end for
31:

32: return sample;
33:

34: procedure psadv.Deliver(pr ocess,messag e) is
35: per m[cur sor] = ζ−1(pr ocess);
36: s y s.Del i ver (ζ(cur sor),messag e);
37: cur sor ← cur sor +1;
38:

39: procedure psadv.Echo(pr ocess, sample, sour ce,messag e) is
40: s y s.Echo(pr ocess, sample, sour ce,messag e);
41:

42: procedure psadv.End() is
43: s y s.End();
44:

89

Chapter 3. Sieve

adversary aead v , Process-sequential decorator acts as an interface between aead v and a sys-

tem s y s, effectively implementing a process-sequential adversary psad v . Process-sequential

decorator exposes both the adversary and the system interfaces: the underlying adversary

aead v uses psad v as its system.

Process-sequential decorator works as follows:

• Procedure psad v.Ini t () initializes the following variables:

– A per m array of C elements: per m is used to consistently translate process identi-

fiers between aead v and s y s.

– A cur sor variable, initially set to 1: at any time, cur sor identifies the next process

that will pb.Deliver a message in s y s.

• Procedure psad v.Step() simply forwards the call to aead v.Step().

• Procedure psad v.B y zanti ne(pr ocess) simply forwards the call to

s y s.B y zanti ne(pr ocess).

• Procedure psad v.St ate() simply forwards the call to s y s.St ate().

• Procedure psad v.Sample(pr ocess,messag e) returns the list of processes returned

by s y s.Sample(pr ocess,messag e), translated through per m. More specifically, for

every process ρ in s y s.Sample(pr ocess,messag e): if ρ is correct, it is translated to

ζ(per m[ζ−1(ρ)]); if ρ is Byzantine, it is left unchanged.

• Procedure psad v.Del i ver (pr ocess,messag e) sets per m[cur sor] to ζ−1(pr ocess),

then forwards the call to s y s.Del i ver (ζ(cur sor),messag e). Finally, it increments

cur sor . This serves the purpose to sequentially cause ζ(1), ζ(2), . . . to deliver a mes-

sage, while storing the translation in per m in order for psad v.Sample(. . .) to provide a

response consistent with any previous invocation of psad v.Del i ver (. . .).

• Procedure psad v.Echo(pr ocess, sample, sour ce,messag e) simply forwards the call

to s y s.Echo(pr ocess, sample, sour ce,messag e).

• Procedure pasd v.End() simply forwards the call to s y s.End().

Correctness. We start by proving that no adversary, coupled with Process-sequential decora-

tor, causes the execution to fail.

The following hold true:

• No invocation of psad v.Sample(. . .) causes the execution to fail. Noting that aead v

is correct, it will never invoke psad v.Sample(π,m) unless (π′,m) was returned from a

90

3.11 Decorators

2 1 4 4 2 1 3 1 1 1 4 4 2 2 3

3 4 2 2 3 4 1 4 1 4 4 2 2 3 3 1

sys1

sys2

Π1 Π2 Π3 Π4

3

perm[cursor] cursor

3 1

4 2

2 3

1 4

process message

1 1

2 1

3 2

4 3

process message

3 1

4 1

2 2

1 3

sys1 execution sys2 execution

Figure 3.4: Two systems with (one of) their respective echo samples. The table on the right
shows the permutation from s y s1 to s y s2. Clearly both systems are equally likely. Moreover,
the effect of process 3 delivering message 1 (grey) in s y s1, is equal to process 1 delivering
the same message in s y s2. It can be seen that this holds for all further message deliveries.
Intuitively this shows why we can restrict the adversary to always deliver in sequence.

previous invocation of psad v.St ate(), for some π′ ∈ΠC . Moreover, since psad v.St ate()

simply forwards the call to s y s.St ate(), if (pi ′,m) was returned from psad v.St ate(),

then π′ delivered m in s y s. Therefore, s y s.Sample(π,m) is never invoked from

psad v.Sample(. . .) unless at least one correct process delivered m in s y s.

• Procedure s y s.Sample(. . .) never calls ζ(⊥). We defer the proof of this result to a later

section of this lemma.

• Procedure s y s.Del i ver (. . .) is never invoked twice on the same process. Indeed, by

definition, ζ is a bijection between 1..C andΠC , and cur sor is incremented every time

s y s.Del i ver (. . .) is called.

Process-sequential. It is easy to prove that Process-sequential decorator always implements a

process-sequential adversary. Indeed, s y s.Del i ver (. . .) is invoked sequentially on ζ(1), ζ(2), . . .

as cur sor is incremented, regardless of the process originally provided to psad v.Del i ver (. . .).

System translation. Letα be an adversary. We start by noting that, sinceα is correct,α always

causes every correct process to pb.Deliver a message. We can therefore define a function

µ : A ×S ×ΠC → 1..C

such thatµ(α,σ,π) = d if and only ifπ is the d-th process thatα causes to pb.Deliver a message,

when α is coupled with σ. We additionally define

(
µ−1(α,σ,d) =π) de f⇐==⇒ (

µ(α,σ,π) = d
)

91

Chapter 3. Sieve

We then define a system translation function Ψ[α] : S →S such that, for every system σ,

every correct process π, every message m, and every e ∈ 1..E ,

Ψ[α](σ)[π][m][e] =
ζ(µ(α,σ,σ[π][m][e])) iffσ[π][m][e] ∈ΠC

σ[π][m][e] otherwise

Let σ be a system, let σ′ =Ψ[α](σ). Intuitively, σ′ is obtained from σ simply by relabeling

every correct process in every echo sample. Whenever a correct process π appears in an echo

sample in σ, it is replaced with ζ(d), d being the position of π in the ordered list of processes

that α causes to pb.Deliver a message, when coupled with σ. Byzantine processes are left

unchanged.

Roadmap. Let α ∈Aae , let α′ =∆ps(α). Let σ ∈S such that α compromises the consistency

of σ. In order to prove that α′ is as powerful as α, we prove that:

• α′ compromises the consistency of σ′ =Ψ[α](σ).

• Ψ[α](σ) is a permutation on S .

Indeed, if the above are true, then the probability of α′ compromising the consistency of a

random system σ′ is equal to the probability of α compromising the consistency of a random

system σ, and the lemma is proved.

Trace. We start by noting that, if we couple Process-sequential decorator with σ′, we effec-

tively obtain a system interface δ with which α directly exchanges invocations and responses.

Here we show that the trace τ(α,σ) is identical to the trace τ(α,δ). Intuitively, this means that

α has no way of distinguishing whether it has been coupled directly with σ, or it has been

coupled with σ′, with Process-sequential decorator acting as an interface. We prove this by

induction.

Let us assume

τ(α,σ) = ((i1,r1), . . .)

τ(α,δ) = ((i ′1,r ′
1), . . .)

i j = i ′j ,r j = r ′
j ∀ j ≤ n

with n ≥ 0 (here n = 0 means that this is α’s first invocation). We start by noting that, since a is

a deterministic algorithm, we immediately have

in+1 = i ′n+1

and we need to prove that rn+1 = r ′
n+1.

92

3.11 Decorators

Let us assume that in+1 = (Byzantine,π). Let ξ be a Byzantine process. If ξ ∈ rn+1 then, by def-

inition, ξ ∈σ[π][1], i.e., for at least one e ∈ 1..E , σ[π][1][e] = ξ. Therefore, σ′[π][1][e] = ξ, and

ξ ∈ r ′
n+1. If ξ ∉ rn+1 then, for all e ∈ 1..E , σ[π][1][e] ̸= ξ. If σ[π][1][e] ∈ΠC , then σ′[π][1][e] ∈ΠC

as well, so σ′[π][1][e] ̸= ξ. If σ[π][1][e] ∈Π \ΠC , then σ′[π][1][e] = σ[π][1][e] ̸= ξ. Therefore,

ξ ∉ r ′
n+1.

Before considering the remaining possible values of in+1, we prove some auxiliary results. Let

π be a correct process, let m be a message, let d ∈ 1..C , let e ∈ 1..E . For every j ≤ n +1, as we

established, we have i j = i ′j . Therefore, after the (n +1)-th invocation, the following hold true:

• π pb.Delivered m in σ if and only if ζ(µ(α,σ,π)) pb.Delivered m in σ′. Indeed:

– If π pb.Delivered m in σ, then psad v.Del i ver (π,m) was invoked. More-

over, by definition, psad v.Del i ver (π,m) was the µ(α,σ,π)-th invocation

of psad v.Del i ver (. . .). Noting that cur sor is incremented at each invo-

cation of psad v.Del i ver (. . .), when psad v.Del i ver (π,m) was invoked we

had cur sor = µ(α,σ,π). Finally, psad v.Del i ver (π,m) forwards the call to

s y s.Del i ver (ζ(cur sor),m). Consequently, ζ(µ(α,σ,π)) pb.Delivered m in σ′.

– If ζ(µ(α,σ,π)) pb.Delivered m in σ′ then s y s.Del i ver (ζ(cur sor),m) was invoked,

with cur sor = µ(α,σ,π). Noting that cur sor is incremented after each invoca-

tion of s y s.Del i ver (. . .), we have that psad v.Del i ver (. . .) was invoked at least

µ(α,σ,π) times. By definition, this means that psad v.Del i ver (π,m) was invoked.

Consequently, π pb.Delivered m in σ.

• If π pb.Delivered a message in σ′, then per m[ζ−1(π)] ̸= ⊥. Indeed, noting that cur sor

is incremented every time psad v.Del i ver (. . .) is invoked, we have that ρ pb.Delivered

a message in σ′ as a result of the ζ−1(π)-th invocation of psad v.Del i ver (. . .). As a

result, per m[ζ−1(π)] was set to a value other than ⊥. From this follows that procedure

s y s.Sample(. . .) never calls ζ(⊥).

• If per m[d] ̸= ⊥, then per m[d] = ζ−1(µ−1(α,σ,d)). Indeed, noting that cur sor is incre-

mented every time psad v.Del i ver (. . .) is invoked, per m[d] was set to a value other

than ⊥ upon the d-th invocation of psad v.Del i ver (. . .). By the definition of µ, the

d-th invocation of psad v.Del i ver (. . .) is psad v.Del i ver (µ−1(α,σ,d),m′), for some

m′ ∈M .

• σ[π][m][e] sent an Echo(m, m) message to π in σ if and only if σ′[π][m][e] sent

an Echo(m, m) message to π in σ′. Indeed, if σ[π][m][e] ∈ ΠC , then σ′[π][m][e] =
ζ(µ(α,σ,σ[π][m][e])). Therefore, σ[π][m][e] pb.Delivered m in σ if and only if

σ′[π][m][e] pb.Delivered m inσ′. Noting thatα is an auto-echo adversary, ifσ[π][m][e] ∈
Π\ΠC , then σ′[π][m][e] =σ[π][m][e], and both sent an Echo(m, m) message to π (in σ

and σ′, respectively).

93

Chapter 3. Sieve

• π delivered m in σ if and only if π delivered m in σ′. This immediately follows from the

above.

Let us assume in+1 = (State). From the above immediately follows rn+1 = r ′
n+1.

Let us assume in+1 = (Sample,π,m). Let ρ be a process. The following hold true:

• If ρ ∈ rn+1, then ρ ∈ r ′
n+1. Indeed, if ρ ∈ ΠC , then ρ ∈ σ[π][m] and ρ sent an Echo(m,

m′) message to π in σ, for some m′ ∈M . Therefore, ρ delivered m′ in σ. By definition,

ζ(µ(α,σ,ρ)) ∈σ′[π][m]. Moreover, ζ(µ(α,σ,ρ)) delivered m′ in σ′ and, as a result, it sent

an Echo(m, m′) message to π in σ′. Therefore, ζ(µ(α,σ,ρ)) ∈ s y s.Sample(π,m). Finally,

per m[µ(α,σ,ρ)] = ζ−1(ρ). Consequently, ρ ∈ r ′
n+1. If ρ ∈Π \ΠC then ρ ∈ σ[π][m] and

ρ ∈σ′[π][m]. Moreover, ρ sent an Echo(m, m′) message to π, for some m′ ∈M , both in

σ and σ′. Consequently, ρ ∈ r ′
n+1.

• If ρ ∈ r ′
n+1, then ρ ∈ rn+1. Indeed, if ρ ∈ ΠC , then ζ(per m−1[ζ−1(ρ)])1 was returned

from s y s.Sample(π,m), in other words ζ(per m−1[ζ−1(ρ)]) pb.Delivered some message

m′ ∈M in σ′. Moreover, using our auxiliary result on per m we obtain

ζ(per m−1[ζ−1(ρ)]) = ζ(µ(α,σ,ρ))

therefore ζ(µ(α,σ,ρ)) pb.Delivered m′ in σ′, and ρ pb.Delivered m′ in σ. Finally, since

ζ(µ(α,σ,ρ)) ∈σ′[π][m], then by definition ρ ∈σ[π][m]. Consequently, ρ ∈ rn+1.

Noting that procedures Del i ver (. . .) and Echo(. . .) never return a value, we trivially have that

if in+1 = (Deliver,π,m) or in+1 = (Echo,π, s,ξ,m) then rn+1 = ⊥ = r ′
n+1. By induction, we

have τ(α,σ) = τ(α,δ).

Consistency of σ′. We proved that τ(α,σ) = τ(α,δ). Moreover, we proved that if a correct

process π eventually delivers a message m in σ, then ζ(µ(α,σ,π)) also delivers m in σ′.

Since α compromises the consistency of σ, two correct processes π, π′ and two distinct

messages m, m′ ̸= m exist such that, in σ, π delivered m and π′ delivered m′. Therefore, in

σ′, ζ(µ(α,σ,π)) delivered m and ζ(µ(α,σ,π′)) delivered m′. Therefore α′ compromises the

consistency of σ′.

Translation permutation. We now prove that, for any two σa , σb ̸= σa , we have

Ψ[α](σa) ̸= Ψ[α](σb). We prove this by contradiction. Suppose a system σ′ exists

such that σ′ =Ψ[α](σa) =Ψ[α](σb). We want to prove that σa =σb .

1Noting that per m is injective, we define per m−1[b] = a ⇐⇒ per m[a] = b.

94

3.11 Decorators

We start by noting that, if τ(α,σa) = τ(α,σb), then σa =σb . Indeed, if τ(α,σa) = τ(α,σb), then

for every π ∈ΠC and every d ∈ 1..C we have

µ(α,σa ,π) = µ(α,σb ,π)

µ−1(α,σa ,d) = µ−1(α,σb ,d)

and since, by definition, for every π ∈ΠC , m ∈M and e ∈ 1..E , we have

σa[π][m][e] =
µ−1(α,σa ,ζ−1(σ′[π][m][e])) iffσ′[π][m][e] ∈ΠC

σ′[π][m][e] otherwise

σb[π][m][e] =
µ−1(α,σb ,ζ−1(σ′[π][m][e])) iffσ′[π][m][e] ∈ΠC

σ′[π][m][e] otherwise

we get

σa[π][m][e] =σb[π][m][e]

and σa =σb .

We prove that τ(α,σa) = τ(α,σb) by induction. Let us assume

τ(α,σa) = ((i1,r1), . . .)

τ(α,σb) = ((i ′1,r ′
1), . . .)

i j = i ′j ,r j = r ′
j ∀ j ≤ n

with n ≥ 0 (here n = 0 means that this is α’s first invocation). We start by noting that, since a is

a deterministic algorithm, we immediately have

in+1 = i ′n+1

and we need to prove that rn+1 = r ′
n+1.

Let us assume that in+1 = (Byzantine,π). Let ξ be a Byzantine process. if ξ ∈ rn+1, then for at

least one e ∈ 1..E we have σa[π][m][e] = ξ. Therefore, σ′[π][m][e] = ξ, and σb[π][m][e] = ξ.

Consequently, ξ ∈ r ′
n+1. The argument can be reversed to prove ξ ∈ r ′

n+1 =⇒ ξ ∈ rn+1.

Before considering the remaining possible values of in+1, we prove some auxiliary result. Let

π be a correct process, let m be a message, let e ∈ 1..E . For every j ≤ n +1, as we established,

we have i j = i ′j . Therefore, after the (n +1)-th invocation, the following hold true:

• π pb.Delivered m in σa if and only if π pb.Delivered m in σb . Indeed, if π pb.Delivered

m in σa , then some j ≤ (n + 1) exists such that i j = (Deliver,π,m). Since i ′j = i j ,

95

Chapter 3. Sieve

π pb.Delivered m in σb as well. The argument can be reversed to prove that, if π

pb.Delivered m in σb , then π pb.Delivered m in σa as well.

• If π pb.Delivered m in σa (or, equivalently, σb), then µ(α,σa ,π) = µ(α,σb ,π). Indeed,

some j ≤ (n +1) exists such that i j = i ′j = (Deliver,π,m). Since, for all h < j , we also

have ih = i ′h , then ∣∣{h ∈ 1..(j −1) | ih = (Deliver,π′ ∈ΠC ,m′ ∈M)
}∣∣

= ∣∣{h ∈ 1..(j −1) | i ′h = (Deliver,π′ ∈ΠC ,m′ ∈M)
}∣∣

• σa[π][m][e] sent an Echo(m, m) message to π in σa if and only if σb[π][m][e] sent an

Echo(m, m) message to π in σb . We prove this by cases:

– Let us assume that σa[π][m][e] is correct, and pb.Delivered m in σa . By definition,

we have

σ′[π][m][e] = ζ(µ(α,σa ,σa[π][m][e]))

σ′[π][m][e] = ζ(µ(α,σb ,σb[π][m][e]))

and from the above we have

ζ(µ(α,σa ,σa[π][m][e])) = ζ(µ(α,σb ,σa[π][m][e]))

Equating the two above we get

ζ(µ(α,σb ,σa[π][m][e])) = ζ(µ(α,σb ,σb[π][m][e]))

and noting thatµ is always injective, we haveσa[π][m][e] =σb[π][m][e]. Therefore

σb[π][m][e] pb.Delivered m in σb .

The argument can be inverted to prove that, if σb[π][m][e] is correct, and

pb.Delivered m in σb , then σa[π][m][e] pb.Delivered m in σa as well.

– Let us assume that σa[π][m][e] is correct, but did not pb.Deliver m. From the

definition of Ψ[α], we know that σb[π][m][e] is correct as well. By contradic-

tion, following from the above, we have that if σb[π][m][e] pb.Delivered m in σb ,

σa[π][m][e] would have pb.Delivered m in σa as well.

The argument can be inverted to prove that, if σb[π][m][e] is correct, but did not

pb.Deliver m in σb , then σa[π][m][e] did not pb.Deliver m in σa either.

– Let us assume that σa[π][m][e] is Byzantine. Then, from the definition of Ψ[α],

we immediately have σb[π][m][e] = σa[π][m][e] and, since α is an auto-echo

adversary, both sent an Echo(m, m) message to π (in their respective systems).

• π delivered m in σa if and only if π delivered m in σb as well. This follows immediately

from the above.

96

3.11 Decorators

Let us assume in+1 = (State). From the above immediately follows rn+1 = r ′
n+1.

Let us assume in+1 = (Sample,π,m). Let ρ be a process. If ρ ∈ rn+1, then for some e ∈ 1..E ,

σa[π][m][e] = ρ, and ρ sent an Echo(m, m′) message to π in σa , for some m′ ∈M . Following

from the above, we have σb[π][m][e] = ρ as well, and ρ sent an Echo(m, m′) message to π in

σb as well. Therefore, ρ ∈ r ′
n+1. The argument can be inverted to prove that, if ρ ∈ r ′

n+1, then

ρ ∈ rn+1 as well.

Noting that procedures Del i ver (. . .) and Echo(. . .) never return a value, we trivially have that

if in+1 = (Deliver,π,m) or in+1 = (Echo,π, s,ξ,m) then rn+1 = ⊥ = r ′
n+1. By induction, we

have τ(α,σa) = τ(α,σb).

Therefore, σa =σb , which contradicts the hypothesis.

3.11.3 Sequential adversary

Lemma 22. The set of sequential adversaries Asq is optimal.

Proof. We again prove the result using a decorator. Here we show that a decorator ∆sq exists

such that, for every α ∈ Aps , the adversary α′ = ∆sq (α) is a sequential adversary, and as

powerful as α. If this is true, then the lemma is proved: let α∗ be an optimal adversary, then

the sequential α+ =∆sq (α∗) is optimal as well.

Decorator. Algorithm 9 implements Sequential decorator, a decorator that transforms a

process-sequential adversary into a sequential adversary. Provided with a process-sequential

adversary psad v , Sequential decorator acts as an interface between psad v and a system s y s,

effectively implementing a sequential adversary sqad v . Sequential decorator exposes both

the adversary and the system interfaces: the underlying adversary psad v uses sqad v as its

system.

Sequential decorator works as follows:

• Procedure sqad v.Ini t () initializes the following variables:

– A per m array of C elements: per m is used to consistently translate messages

between psad v and s y s.

– A cur sor variable, initially set to 1: at any time, cur sor identifies the next message

that will be pb.Delivered in s y s, if psad v will invoke the delivery of a process

whose delivery psad v never invoked before.

– A poi soned variable: poi soned is set to True if and only if at least one cor-

rect process in s y s is poisoned. This condition is verified by looping over

s y s.B y zanti ne(π) for every correct process π.

97

Chapter 3. Sieve

Algorithm 9 Sequential decorator.
1: Implements:
2: SequentialAdversary + CobSystem, instance sqadv
3:

4: Uses:
5: ProcessSequentialAdversary, instance psadv, system sqadv
6: CobSystem, instance sys
7:

8: procedure sqadv.Init() is
9: per m = {⊥}C ; cur sor = 1; step = 0;

10:

11: poi soned = False;
12: for all π ∈ΠC do
13: if

∣∣s y s.B y zanti ne(π)
∣∣≥ Ê then

14: poi soned ← True;
15: end if
16: end for
17:

18: psad v.Ini t ();
19:

20: procedure sqadv.Step() is
21: step ← step +1;
22:

23: if poi soned = False or step ≤ (N −C)C 2 then
24: psad v.Step();
25: else if step ≤ (N −C)C 2 +C then
26: s y s.Del i ver (ζ(step − (N −C)C 2),1);
27: else
28: s y s.End();
29: end if
30:

31: procedure sqadv.Byzantine(pr ocess) is
32: return s y s.B y zanti ne(pr ocess);
33:

34: procedure sqadv.State() is
35: st ate =;;
36:

37: for all (π,m) ∈ s y s.St ate() do
38: st ate ← st ate ∪{

(π, per m[m])
}
;

39: end for
40:

41: return st ate;
42:

98

3.11 Decorators

43: procedure sqadv.Sample(pr ocess,messag e) is
44: return s y s.Sample(pr ocess, per m−1[messag e]);
45:

46: procedure sqadv.Deliver(pr ocess,messag e) is
47: if messag e ∈ per m then
48: s y s.Del i ver (pr ocess, per m−1[messag e]);
49: else
50: per m[cur sor] = messag e;
51: s y s.Del i ver (pr ocess,cur sor);
52: cur sor ← cur sor +1;
53: end if
54:

55: procedure sqadv.Echo(pr ocess, sample, sour ce,messag e) is
56: s y s.Echo(pr ocess, sample, sour ce,messag e);
57:

58: procedure sqadv.End() is
59: s y s.End();
60:

– A step variable, initially set to 0: at any time, step counts how many times

sqad v.Step() has been invoked.

• Procedure sqad v.Step() increments step, then implements two different behaviors

depending on the value of poi soned :

– If poi soned = True, it forwards the call to psad v.Step() for the first (N −C)C 2

times. For the next C steps, it sequentially invokes s y s.Del i ver (ζ(1),1), . . .,

s y s.Del i ver (ζ(C),1). Finally, it calls s y s.End().

– If poi soned = False, it forwards the call to psad v.Step().

• Procedure sqad v.B y zanti ne(pr ocess) simply forwards the call to

s y s.B y zanti ne(pr ocess).

• Procedure sqad v.St ate() returns the list of process / message pairs returned

by s y s.St ate(), with each message translated through per m. More specifically,

sqad v.St ate() returns (π, per m[m]) for every (π,m) in s y s.St ate().

• Procedure sqad v.Sample(pr ocess,messag e) simply forwards the call to

s y s.Sample(pr ocess, per m−1[messag e]).

• Procedure sqad v.Del i ver (pr ocess,messag e) checks if psad v has already invoked

the delivery of messag e (this is achieved by checking if messag e is in per m). If so,

it forwards the call to s y s.Del i ver (pr ocess, per m−1[messag e]). Otherwise, it sets

per m[cur sor] to messag e, then forwards the call to s y s.Del i ver (pr ocess,cur sor).

Finally, it increments cur sor . This mechanism serves two purposes:

99

Chapter 3. Sieve

– To consistently translate a sqad v.Del i ver (. . .) invocation to a s y s.Del i ver (. . .)

invocation. More specifically, the set of invocations psad v.Del i ver (π1,m),

. . ., psad v.Del i ver (πk ,m) is always translated to s y s.Del i ver (π1,m′), . . .,

s y s.Del i ver (pik ,m′).

– To never cause the pb.Delivery of a message b in s y s before every message a < b

has been pb.Delivered in s y s at least once.

• Procedure sqad v.Echo(pr ocess, sample, sour ce,messag e) simply forwards the call

to s y s.Echo(pr ocess, sample, sour ce,messag e).

• Procedure sqad v.End() simply forwards the call to s y s.End().

Correctness. We start by proving that no adversary, coupled with Sequential decorator, causes

the execution to fail. We distinguish two cases, based on the value of poi soned .

Let us assume poi soned = True. When sqad v.Step() is invoked, the call is forwarded to

psad v.Step() only for the first (N −C)C 2 times. Noting that psad v is an auto-echo adver-

sary, every call to psad v.Step() results in a call to sqad v.Echo(. . .). For the next C steps,

sqad v.Step() sequentially causes ζ(1),ζ(2), . . . to pb.Deliver message 1. Finally, sqad v.Step()

invokes s y s.End(). Therefore, sqad v never causes the execution to fail, and it implements a

process-sequential adversary.

Let us assume poi soned = False. Let π be a correct process, let m be a message. The

following hold true:

• Procedure sqad v.St ate() never returns a (π,⊥) pair. Indeed, if (π,m) ∈ s y s.St ate(),

then π pb.Delivered m in s y s. Since π is not poisoned, π received at least one Echo(m,

m) message from a correct process. Consequently, if (π,m) is returned from s y s.St ate(),

then at least one correct process pb.Delivered m in s y s, i.e., s y s.Del i ver (π′,m)

was invoked for some π′ ∈ ΠC . The statement is proved by noting that, whenever

s y s.Del i ver (π′,m) is invoked for some π′ ∈ ΠC , we have per m[m] ̸= ⊥: indeed, ei-

ther s y s.Sample(pr ocess, per m−1[messag e]) is invoked, and messag e ∈ per m, or

s y s.Sample(pr ocess,cur sor) is invoked, and per m[cur sor] = messag e ̸= ⊥.

• No invocation of sqad v.Sample(. . .) causes the execution to fail. Noting that psad v

is correct, it will never invoke sqad v.Sample(π,m) unless (π′,m) was returned from

a previous invocation of sqad v.St ate(), for some π′ ∈ ΠC . Since π′ is not poisoned,

(π′, per m−1[m]) was returned from s y s.St ate(), therefore π′ delivered per m−1[m] in

s y s. Therefore s y s.Sample(π,m) is never invoked from sqad v.Sample(. . .) unless at

least one correct process delivered m in s y s.

Sequential. It is easy to prove that Sequential decorator always implements a sequential ad-

versary. Indeed, if poi soned = True, sqad v simply causes every correct process to pb.Deliver

100

3.11 Decorators

message 1 (which trivially implements a sequential adversary). If poi soned = False, then

whenever s y s.Del i ver (π,m) is invoked, either of the following holds true:

• m = per m−1[messag e] for some messag e ∈ per m. In this case s y s.Del i ver (. . .) was

previously invoked on m (i.e., some process π′ exists such that s y s.Del i ver (π′,m) was

previously invoked).

• m = cur sor . Then s y s.Del i ver (. . .) was never invoked on m. Noting that, whenever

s y s.Del i ver (. . .) is invoked on a new message, cur sor is incremented, we have that

every message l < m was previously pb.Delivered by at least one correct process in s y s.

System translation. Let α be an adversary. We can define a function

µ : A ×S ×M → 1..C ∪ {⊥}

such that:

• µ(α,σ,m) = (d ∈ 1..C) if and only if m is the d-th distinct message that α causes at least

one correct process to pb.Deliver, when α is coupled with σ.

• µ(α,σ,m) =⊥ if and only if α never causes any correct process to pb.Deliver m, when α

is coupled with σ.

We additionally define ν : A ×S → 1..C by

ν(α,σ) = max
m∈M

µ(α,σ,m)

and (
µ−1(α,σ,d) = m

) de f⇐==⇒ (
µ(α,σ,m) = d

)
for all d ≤ ν(α,σ). Here ν(α,σ) counts the number of distinct messages that α causes at

least one correct process to pb.Deliver, when coupled with σ. It is immediate to see that

µ(α,σ,d) =⊥ for all d > ν(α,σ).

We then define a message permutation function χ : A ×S ×M →M as follows:

χ(α,σ,d) =

µ−1(α,σ,d) iff d ≤ ν(α,σ)

maxm ∈M |∣∣{l ≤ m :µ(α,σ, l) =⊥}∣∣= d −ν(α,σ) otherwise

For a given α and σ, the permutation χ maps d to the d-th distinct message that is

pb.Delivered when α is coupled with σ, if such a message exists. If such a message does not

exist, χ simply enumerates sequentially the messages that are never pb.Delivered when α is

101

Chapter 3. Sieve

coupled with σ.

For example, let us consider the case where C = 10 and α coupled with σ causes the

pb.Delivery of messages 3,7,1,4 (in this order of first appearance). Then χ will assume the

following values for d ∈ 1..C : 3,7,1,4,2,5,6,8,9,10.

Finally, we define a system translation function Ψ[α] : S →S such that, for system σ, every

correct process π and every message m,

Ψ[α](σ)[π][m] =
σ[π][m] iff ∃π′ ∈ΠC |π′ is poisoned inσ

σ[π][χ(α,σ,m)] otherwise

Let σ be a system, let σ′ =Ψ[α](σ). Intuitively, if at least one correct process is poisoned in σ,

then σ′ =σ. Otherwise, σ′ is obtained from σ by permuting the echo samples of each correct

process in σ using χ.

Roadmap. Let α ∈Aps , let α′ =∆sq (α). Let σ ∈S such that α compromises the consistency

of σ. In order to prove that α′ is as powerful as α, we prove that:

• α′ compromises the consistency of σ′ =Ψ[α](σ).

• Ψ[α](σ) is a permutation on S .

Indeed, if the above are true, then the probability of α′ compromising the consistency of a

random system σ′ is equal to the probability of α compromising the consistency of a random

system σ, and the lemma is proved.

Poisoned case. We start by considering the case where poi soned = True. Let π be a correct

process that is poisoned in σ. Noting that psad v is an auto-echo adversary, π eventually

delivers every message. Indeed, every Byzantine process eventually sends to π an Echo(m,

m) message, for every m ∈M . Since all of π’s echo samples share the same set of at least Ê

Byzantine processes, π eventually delivers every message.

As a result, if at least one correct process in σ is poisoned, the consistency of σ is compro-

mised by any auto-echo adversary. Noting that σ′ =Ψ[α](σ) =σ, and ∆sq (α) is an auto-echo

adversary, we immediately have that α′ compromises the consistency of σ′ as well.

In the next sections of this proof, we consider the case poi soned = False.

102

3.11 Decorators

Trace. We start by noting that, if we couple Process-sequential decorator with σ′, we effec-

tively obtain a system interface δ with which α directly exchanges invocations and responses.

Here we show that, if poi soned = False, the trace τ(α,σ) is identical to the trace τ(α,δ).

Intuitively, this means that, if poi soned = False, α has no way of distinguishing whether

it has been coupled directly with σ, or it has been coupled with σ′, with Process-sequential

decorator acting as an interface. We prove this by induction.

Let us assume poi soned = False, and

τ(α,σ) = ((i1,r1), . . .)

τ(α,δ) = ((i ′1,r ′
1), . . .)

i j = i ′j ,r j = r ′
j ∀ j ≤ n

with n ≥ 0 (here n = 0 means that this is α’s first invocation). We start by noting that, since a is

a deterministic algorithm, we immediately have

in+1 = i ′n+1

and we need to prove that rn+1 = r ′
n+1.

Let us assume that in+1 = (Byzantine,π). We can note that sqad v.B y zanti ne(pr ocess)

simply forwards the call to s y s.B y zanti ne(pr ocess), and χ defines a permutation over 1..C .

Therefore, a message m exists such that π’s first echo sample for in σ′ is identical to π’s echo

sample for m in σ. Moreover, all of π’s echo samples in σ share the same set of Byzantine

processes. Consequently, rn+1 = r ′
n+1.

Before considering the remaining possible values of in+1, we prove some auxiliary results. We

start by noting the following:

• Let d ∈ 1..C . At any time, if per m[d] ̸= ⊥, then per m[d] = µ−1(α,σ,d). Indeed, at any

time, a message m is in per m if and only if sqad v.Del i ver (. . .) was previously invoked

on m. Moreover, whenever sqad v.Del i ver (. . .) is invoked on a message m that is not in

per m, m is added to per m and cur sor is incremented. Therefore per m[cur sor] is set

to m if and only if sqad v.Del i ver (. . .) was never invoked on m, and sqad v.Del i ver (. . .)

was previously invoked on exactly cur sor −1 distinct messages. Moreover, by definition,

when sqad v.Del i ver (. . .) is invoked on m for the first time, sqad v.Del i ver (. . .) was

previously invoked on exactly µ(α,σ,m)−1 distinct messages. Consequently, cur sor =
µ(α,σ,m), and m =µ−1(α,σ,cur sor).

• No two values of per m are equal to each other. Indeed, a message m is added to per m

only if m ∉ per m.

• Let π ∈ΠC , let m ∈M . If π delivered m, then at least one correct process pb.Delivered m.

103

Chapter 3. Sieve

This separately holds true both in σ and σ′. Indeed, if π delivered m, then it received at

least Ê Echo(m, m) messages from its echo sample for m and, since no correct process

is poisoned in neither σ nor σ′, at least one of them must have come from a correct

process.

Let π be a correct process, let ρ be a process, let m, s be messages. For every j ≤ n +1, as we

established, we have i j = i ′j . By hypothesis, α is an auto-echo adversary, so i j = i ′j , r j = r ′
j =⊥

for every j ≤ (N −C)C 2. Let us consider the non-trivial case n ≥ (N −C)C 2. After the (n+1)-th

invocation, the following hold true:

• π pb.Delivered m in σ if and only if π pb.Delivered µ(α,σ,m) in σ′. Indeed:

– If π pb.Delivered m in σ, then sqad v.Del i ver (π,m) was invoked.

If sqad v.Del i ver (π,m) was the first invocation of sqad v.Del i ver (. . .) on m, then

m was not in per m, per m[cur sor] was set to m, and s y s.Del i ver (π,cur sor)

was invoked. As we previously proved, however, we have per m[cur sor] =
µ−1(α,σ,m), so cur sor = µ(α,σ,m). Consequently, s y s.Del i ver (π,µ(α,σ,m))

was invoked, and π pb.Delivered µ(α,σ,m) in σ′. If sqad v.Del i ver (π,m) was

not the first invocation of sqad v.Del i ver (. . .) on m, then m was in per m, and

s y s.Del i ver (π, per m−1(m)) was invoked. Due to the above, we have again

per m−1[m] = µ(α,σ,m). Consequently, s y s.Del i ver (π,µ(α,σ,m)) was invoked,

and π pb.Delivered µ(α,σ,m) in σ′.

– If π pb.Delivered µ(α,σ,m) in σ′, then s y s.Del i ver (π,µ(α,σ,m)) was invoked.

If s y s.Del i ver (π,cur sor) was invoked, we have that cur sor = µ(α,σ,m),

and sqad v.Del i ver (π,m′) was invoked for some m′ ∉ per m. As a result,

per m[cur sor] was set to m′. As we previously established, however,

m′ =µ−1(α,σ,cur sor) =µ−1(α,σ,µ(α,σ,m)) = m

and sqad v.Del i ver (π,m) was invoked. As a result, π pb.Delivered m in σ.

If s y s.Del i ver (π, per m−1(m′)) was invoked for some m′ ∈ per m, we have

per m−1[m′] =µ(α,σ,m), and again m′ = m. Consequently, sqad v.Del i ver (π,m)

was invoked, and π pb.Delivered m in σ.

• π received an Echo(m, m) message from ρ in σ if and only if π received an

Echo(µ(α,σ,m), µ(α,σ,m)) message from ρ in σ′. Indeed:

– If ρ is a correct process, from the above we have that π pb.Delivered m in σ if

and only if π pb.Delivered µ(α,σ,m) in σ′. Therefore, ρ sent to π an Echo(m, m)

message if and only if ρ sent to π an Echo(µ(α,σ,m), µ(α,σ,m)) message.

– If ρ is a Byzantine process then, noting that α is an auto-echo adversary, ρ sent to

π an Echo(m, m) both in σ and σ′.

104

3.11 Decorators

• π received an Echo(s, m′) message for some m′ ∈M from ρ in σ if and only if π received

an Echo(µ(α,σ, s), m′′) message for some m′′ ∈M from ρ in σ′′. Indeed:

– If ρ is correct, it sent an Echo(s′, m′) message for every s′ ∈S and some m′ ∈S

to π in σ if and only if ρ pb.Delivered a message in σ. Moreover, ρ pb.Delivered a

message in σ if and only if ρ pb.Delivered a message in σ′. Finally, ρ pb.Delivered

a message in σ′ if and only if ρ sent an Echo(s′′, m′′) message for every s′′ ∈S and

some m′′ ∈S to π in σ′.

– If ρ is Byzantine, it sent an Echo(m′, m′) message for every m′ ∈S both in σ and

σ′.

• π delivered m in σ if and only if π delivered µ(α,σ,m) in σ′. Indeed, if π delivered m in

σ, then at least one correct process pb.Delivered m in σ, and at least one correct process

pb.Delivered µ(α,σ,m) in σ′; if π delivered µ(α,σ,m) in σ′, then at least one correct

process pb.Delivered µ(α,σ,m) in σ′, and at least one correct process pb.Delivered m in

σ. Following from the definition of χ, π’s echo sample for m in σ is identical to π’s echo

sample for µ(α,σ,m) in σ′. Moreover, π received an Echo(m, m) message from ρ in σ if

and only if π received an Echo(µ(α,σ,m), µ(α,σ,m)) message from ρ in σ′. Therefore π

delivered m in σ if and only if π delivered µ(α,σ,m) in σ′.

Let us assume in+1 = (State). Let π be a correct process, let m be a message. The following

hold true:

• If (π,m) ∈ rn+1, then (π,m) ∈ r ′
n+1. Indeed, π delivered m in σ, therefore π delivered

µ(α,σ,m) in σ′. Moreover, sqad v.Del i ver (. . .) was invoked at least once on m, and

per m[µ(α,σ,m)] = m. Finally, per m[µ(α,σ,m)] was returned from sqad v.St ate(), i.e.,

(π,m) ∈ r ′
n+1.

• If (π,m) ∈ r ′
n+1, then π delivered per m−1[m] in σ′. Since per m[m] = µ−1(α,σ,m), π

delivered µ(α,σ,m) in σ′. Therefore π delivered m in σ, and (π,m) ∈ rn+1.

Let us assume in+1 = (Sample,π,m). At least one correct process delivered m in σ. Since

no correct process is poisoned, at least one correct process pb.Delivered m in σ, and

sqad v.Del i ver (. . .) was invoked at least once on m. Therefore, per m[m] = µ−1(α,σ,m).

Moreover, from the definition of χ, we have that π’s echo sample for m in σ is identi-

cal to π’s echo sample for µ(α,σ,m) in σ′. Finally, every process that sent an Echo(s,

m′) for some m′ ∈ M to π in σ sent an Echo(µ(α,σ, s), m′′) for some m′′ ∈ M to π in σ′.
Since sqad v.Sample(π,m) forwards the call to s y s.Sample(π, per m−1(m)), we again have

rn+1 = r ′
n+1.

Noting that procedures Del i ver (. . .) and Echo(. . .) never return a value, we trivially have that

if in+1 = (Deliver,π,m) or in+1 = (Echo,π, s,ξ,m) then rn+1 = ⊥ = r ′
n+1. By induction, we

have τ(α,σ) = τ(α,δ).

105

Chapter 3. Sieve

Consistency of σ′. We proved that, if poi soned = False, then τ(α,σ) = τ(α,δ). Moreover,

we proved that if a correct process π eventually delivers a message m in σ, then π delivers

µ(α,σ,m) in σ′.

Since α compromises the consistency of σ, two correct processes π, π′ and two distinct

messages m, m′ ̸= m exist such that, in σ, π delivered m and π′ delivered m′. Therefore, in

σ′, π delivered µ(α,σ,m) and π′ delivered µ(α,σ,m′) ̸=µ(α,σ,m) (since µ is a permutation).

Therefore α′ compromises the consistency of σ′.

Translation permutation. We now prove that, for any two σa , σb ̸= σa , we have

Ψ[α](σa) ̸= Ψ[α](σb). We prove this by contradiction. Suppose a system σ′ exists

such that σ′ =Ψ[α](σa) =Ψ[α](σb). We want to prove that σa =σb .

Following from the definition ofΨ[α], if at least one correct process in σ′ is poisoned, then we

immediately have σa =σ′ =σb . Consequently, no correct process in σ′ is poisoned.

We start by noting that, if τ(α,σa) = τ(α,σb), then σa =σb . Indeed, if τ(α,σa) = τ(α,σb), then

for every π ∈ΠC and every m ∈M we have

µ(α,σa ,m) =µ(α,σb ,m)

from which immediately follows

χ(α,σa ,m) =χ(α,σb ,m)

and, since no correct process is poisoned, for every π ∈ΠC and every m ∈M we have

σa[π][m] = σ′[π][χ−1(α,σa ,m)]

= σ′[π][χ−1(α,σb ,m)]

= σb[π][m]

therefore σa =σb .

We prove that τ(α,σa) = τ(α,σb) by induction. Let us assume

τ(α,σa) = ((i1,r1), . . .)

τ(α,σb) = ((i ′1,r ′
1), . . .)

i j = i ′j ,r j = r ′
j ∀ j ≤ n

with n ≥ 0 (here n = 0 means that this is α’s first invocation). We start by noting that, since a is

a deterministic algorithm, we immediately have

in+1 = i ′n+1

106

3.11 Decorators

and we need to prove that rn+1 = r ′
n+1.

Let us assume that in+1 = (Byzantine,π). As we previously established, the Byzantine pro-

cesses in π’s echo samples in σ′ are identical to the Byzantine processes in π’s echo samples in

σa and σb . Therefore rn+1 = r ′
n+1.

Before considering the remaining possible values of in+1, we prove some auxiliary result. Let

π be a correct process, let ρ be a process, let m, s be messages. For every j ≤ n +1, as we

established, we have i j = i ′j . By hypothesis, α is an auto-echo adversary, so i j = i ′j , r j = r ′
j =⊥

for every j ≤ (N −C)C 2. Let us consider the non-trivial case n ≥ (N −C)C 2. After the (n+1)-th

invocation, the following hold true:

• ρ sent an Echo(m, m) message to π in σa if and only if ρ sent an Echo(m, m) message

to π in σb . Indeed, if ρ is a correct process, and ρ pb.Delivered m in σa , then some

j ≤ (n +1) exists such that i j = (Deliver,ρ,m). Since i ′j = i j , ρ pb.Delivered m in σb

as well. If ρ is Byzantine, and ρ sent an Echo(m, m) message to π in σa , then some

j ≤ (n +1) exists such that i j = (Echo,π,m,ρ,m). Since i ′j = i j , ρ sent an Echo(m, m)

message to π in σb as well. Both arguments can be reversed to prove that, if ρ sent an

Echo(m, m) message to π in σb , then ρ sent an Echo(m, m) message to π in σa as well.

• ρ sent an Echo(s, m′) for some m′ ∈ M to π in σa if and only if ρ sent an Echo(s, m′′)
message for some m′′ ∈M to π in σb . Indeed:

– If ρ is correct, and it sent an Echo(s, m′) message to π in σa , then it pb.Delivered

m′ in both σa and σb . Consequently, ρ sent an Echo(s, m′) message to π in σb

as well. The argument can be inversed to prove that, if ρ is correct and it sent

an Echo(s, m′′) message for some m′′ ∈M to π in σb , then ρ sent an Echo(s, m′)
message for some m′ ∈M in σa .

– If ρ is Byzantine, then it sent an Echo(m′, m′) message for every m′ ∈M , both in σ

and σ′.

• If at least one correct process pb.Delivered m in σa (or, equivalently, σb), then

µ(α,σa ,m) = µ(α,σb ,m). Indeed, let j be the minimum index such that i j = i ′j =
(Deliver,π′,m) for some π′ ∈ΠC . By definition, we have

µ(α,σa ,m) = ∣∣{m ∈M | ∃k ≤ j ,π′ ∈ΠC : ik = (Deliver,π′,m)
}∣∣

= ∣∣{m ∈M | ∃k ≤ j ,π′ ∈ΠC : i ′k = (Deliver,π′,m)
}∣∣

= µ(α,σb ,m)

• π delivered m in σa if and only if π delivered m in σb . Indeed, if π delivered m in σa ,

then at least one correct process pb.Delivered m both in σa and σb , and µ(α,σa ,m) =
µ(α,σb ,m). From the definition of χ, we immediately get χ(α,σa ,m) =χ(α,σb ,m) and,

107

Chapter 3. Sieve

as we previously established, π’s echo sample for m in σa is identical to π’s echo sample

for m in σb . Since π received the same Echo(m, m) messages in σa and σb , π delivered

m inσb as well. The argument can be reversed to prove that, if π delivered m inσb , then

π delivered m in σa as well.

Let us assume in+1 = (State). From the above it immediately follows rn+1 = r ′
n+1.

Let us assume in+1 = (Sample,π,m). As we established, π receives an Echo(m, m′) message

for some m′ ∈M from the same set of processes in σa and σb . Moreover, since at least one

correct process pb.Delivered m in both σa and σb , π’s echo sample for m in σa is identical to

π’s echo sample for m in σb . Therefore, rn+1 = r ′
n+1.

Noting that procedures Del i ver (. . .) and Echo(. . .) never return a value, we trivially have that

if in+1 = (Deliver,π,m) or in+1 = (Echo,π, s,ξ,m) then rn+1 = ⊥ = r ′
n+1. By induction, we

have τ(α,σa) = τ(α,σb).

Therefore, σa =σb , which contradicts the hypothesis.

3.11.4 Non-redundant adversary

Lemma 23. The set of non-redundant adversaries Anr is optimal.

Proof. We again prove the result using a decorator. Here we show that a decorator ∆nr exists

such that, for every α ∈ Asq , the adversary α′ = ∆sq (α) is a non-redundant adversary, and

more powerful than α. If this is true, then indeed the lemma is proved: let α∗ be an optimal

adversary, then the sequential α+ =∆nr (α∗) is optimal as well.

Decorator. Algorithm 10 implements Non-redundant decorator, a decorator that transforms

a sequential adversary into a non-redundant adversary. Provided with a sequential adversary

sqad v , Non-redundant decorator acts as an interface between sqad v and a system s y s, effec-

tively implementing a non-redundant adversary nr ad v . Non-redundant decorator exposes

both the adversary and the system interfaces: the underlying adversary sqad v uses nr ad v as

its system.

Non-redundant decorator works as follows:

• Procedure nr ad v.Ini t () initializes a del i ver i es array that is used to keep track of the

message each correct process would have delivered, if sqad v was playing instead of

nr ad v .

• Procedure nr ad v.Step() simply forwards the call to sqad v.Step();

108

3.11 Decorators

Algorithm 10 Non-redundant decorator.
1: Implements:
2: NonRedundantAdversary + CobSystem, instance nradv
3:

4: Uses:
5: SequentialAdversary, instance sqadv, system nradv
6: CobSystem, instance sys
7:

8: procedure nradv.Init() is
9: del i ver i es = {⊥}C ;

10: sqad v.Ini t ();
11:

12: procedure nradv.Step() is
13: sqad v.Step();
14:

15: procedure nradv.Byzantine(pr ocess) is
16: return s y s.B y zanti ne(pr ocess);
17:

18: procedure nradv.State() is
19: st ate =;;
20:

21: for all (·,m) ∈ s y s.St ate() do
22: for all π ∈ΠC do
23: n = 0;
24:

25: for all ρ ∈ s y s.Sample(π,m) do
26: if ρ ∈Π\ΠC or del i ver i es[ρ] = m then
27: n ← n +1;
28: end if
29: end for
30:

31: if n ≥ Ê then
32: st ate ← st ate ∪ {(π,m)};
33: end if
34: end for
35: end for
36:

37: return st ate;
38:

39: procedure nradv.Sample(pr ocess,messag e) is
40: return s y s.Sample(pr ocess,messag e);
41:

109

Chapter 3. Sieve

42: procedure nradv.Deliver(pr ocess,messag e) is
43: st ate =;;
44:

45: for all (·,m) ∈ s y s.St ate() do
46: st ate ← st ate ∪ {m};
47: end for
48:

49: if st ate = {
messag e

}
then

50: s y s.Del i ver (pr ocess,messag e +1);
51: else
52: s y s.Del i ver (pr ocess,messag e);
53: end if
54:

55: del i ver i es[pr ocess] = messag e;
56:

57: procedure nradv.Echo(pr ocess, sample, sour ce,messag e) is
58: s y s.Echo(pr ocess, sample, sour ce,messag e);
59:

60: procedure nradv.End() is
61: s y s.End();
62:

• Procedure nr ad v.B y zanti ne(pr ocess) simply forwards the call to

sqad v.B y zanti ne(pr ocess).

• Procedure nr ad v.St ate() returns a list of pairs (π ∈ΠC ,m ∈M) such at least one correct

process delivered m in s y s, and π would have delivered m in s y s, if sqad v was playing

instead of nr ad v .

This is achieved by querying s y s.St ate(), then looping over each message m in

the response. For every π ∈ ΠC , the procedure loops over every element ρ of

s y s.Sample(π,m), and computes the number n of Echo(m, m) messages that π would

have received from its echo sample for m in s y s, if sqad v was playing instead of nr ad v .

This is achieved using the del i ver i es table, and the hypothesis that sqad v is an auto-

echo adversary. If n is greater or equal to Ê , (π,m) is included in the list returned by the

procedure.

• Procedure nr ad v.Sample(pr ocess,messag e) simply forwards the call to

s y s.Sample(pr ocess,messag e).

• Procedure nr ad v.Del i ver (pr ocess,messag e) uses s y s.St ate() to determine which

messages have been delivered by at least one correct process in s y s. If

messag e is the only message that was delivered, the procedure forwards the

call to s y s.Del i ver (pr ocess,messag e + 1). Otherwise, it forwards the call to

s y s.Del i ver (pr ocess,messag e). Finally, it updates the del i ver i es array to reflect

110

3.11 Decorators

the fact that pr ocess would have pb.Delivered messag e in s y s, if sqad v was playing

instead of nr ad v .

• Procedure nr ad v.Echo(pr ocess, sample, sour ce,messag e) simply forwards the call

to s y s.Echo(pr ocess, sample, sour ce,messag e).

• Procedure nr ad v.End() simply forwards the call to s y s.End().

Correctness. We start by proving that no adversary, coupled with Non-redundant decorator,

causes the execution to fail.

Let π ∈ΠC , let m ∈M . The following hold true:

• Procedure nr ad v.St ate() never causes the execution to fail. Indeed, s y s.Sample(π,m)

is called only if (π′,m) was returned from s y s.St ate(), for some π′ ∈ΠC . This means

that s y s.Sample(π,m) is called only if at least one correct process delivered m in s y s.

• No invocation of nr ad v.Sample(. . .) causes the execution to fail. Noting that sqad v

is correct, it will never invoke nr ad v.Sample(π,m) unless (π′,m) was returned from

a previous invocation of nr ad v.St ate(), for some π′ ∈ ΠC . Moreover, (π′,m) is re-

turned from nr ad v.St ate() is and only if, for some π′′ ∈Πc , (π′′,m) is returned from

s y s.St ate(). Therefore, s y s.Sample(π,m) is never invoked unless at least one correct

process delivered m in s y s.

• Procedure nr ad v.Del i ver (. . .) never calls s y s.Del i ver (. . .) on a message greater than C .

Let m ∈M . If m is the only message that was delivered in s y s, then no correct process is

poisoned in s y s: indeed, as we proved, if a correct message was poisoned in s y s, it would

have delivered every message. Therefore, at least one correct process pb.Delivered m.

Moreover, since sqad v is a sequential adversary, it invokes nr ad v.Del i ver (. . .) for the

n-th time only on a message m ≤ n. Since nr ad v.Del i ver (. . .) is invoked at most C

times, we have n ≤C , and, since m was delivered as a result of a previous invocation of

nr ad v.Del i ver (. . .), we have m ≤ n −1. Consequently, m +1 ≤C .

We further prove that nr ad v is a sequential adversary. Let π ∈ΠC , let m ∈M . Since sqad v is

sequential, it invokes nr ad v.Del i ver (π,m) only if it previously invoked nr ad v.Del i ver (. . .)

on every message l < m ∈M . Therefore, nr ad v can be a non-sequential adversary only as

a result of a call to s y s.Del i ver (π,m + 1). If m is the only message that was delivered by

at least one correct process in s y s, then no correct process is poisoned in s y s. Therefore,

if s y s.Del i ver (π,m + 1) is invoked, then, as we established, at least one correct process

pb.Delivered m in s y s. Noting that the set of messages that are delivered by at least one

correct process in s y s is non-decreasing, if no correct process is poisoned in s y s then sqad v

invoked nr ad v.Del i ver (. . .) on m at least once when no correct process had delivered m.

Consequently, for every l < m, nr ad v.Del i ver (. . .), and as a result s y s.Del i ver (. . .), was

invoked on l .

111

Chapter 3. Sieve

Non-redundant. It is easy to prove that Non-redundant decorator always implements a

non-redundant adversary. Indeed, let π ∈ΠC , let m ∈M , s y s.Del i ver (π,m) is never invoked

if m is the only message that was delivered.

Roadmap. Let α ∈ Asq , let α′ = ∆nr (α). Let σ be a system such that α compromises the

consistency of σ. Let σ′ be an identical copy of σ. In order to prove that α′ is more powerful

than α, we prove that α′ compromises the consistency of σ′.

Trace. We start by noting that, if we couple Non-redundant decorator with σ′, we effectively

obtain a system instance δ with which α directly exchanges invocations and responses. Here

we show that the trace τ(α,σ) is identical to the trace τ(α,δ). Intuitively, this means that α has

no way of distinguishing whether it has been coupled directly with σ, or it has been coupled

with σ′, with Non-redundant decorator acting as an interface. We prove this by induction.

Let us assume

τ(α,σ) = ((i1,r1), . . .)

τ(α,δ) = ((i ′1,r ′
1), . . .)

i j = i ′j ,r j = r ′
j ∀ j ≤ n

We start by noting that, since α is a deterministic algorithm, we immediately have

in+1 = i ′n+1

and we need to prove that rn+1 = r ′
n+1.

Let us assume that in+1 = (Byzantine,π). Since nr ad v.B y zanti ne(π) simply forwards the

call to s y s.B y zanti ne(π), and σ′ is an identical copy of σ, we immediately have rn+1 = r ′
n+1.

Before considering the remaining possible values of in+1, we prove some auxiliary results.

Let π be a correct process, let ρ be a process, let m be a message . For every j ≤ n +1, as we

established, we have i j = i ′j . Therefore, after the (n +1)-th invocation, the following hold true:

• π pb.Delivered m in σ if and only if del i ver i es[π] = m. This follows immediately from

the fact that, whenever nr ad v.Del i ver (π,m) is invoked, del i ver i es[π] is set to m.

• π pb.Delivered a message in σ if and only if π pb.Delivered a message in σ′. This follows

immediately from the fact that every nr ad v.Del i ver (π,m) is always either forwarded

to s y s.Del i ver (π,m) or s y s.Del i ver (π,m +1).

• If m was delivered by at least one correct process in σ, then m was delivered by at least

112

3.11 Decorators

one correct process in σ′ as well. Indeed:

– If at least one correct process is poisoned, then it delivered every message both in

σ and σ′.

– If no correct process is poisoned then, for some j∗ ≤ n+1, after the j -th invocation,

exactly one message m∗ was delivered by at least one correct process in σ. This

follows from the fact that a non-poisoned process delivers m only as a result of

receiving an Echo(m, m) message, and no two messages Echo(m, m), Echo(m′ ̸=
m, m′) are ever issued as a result of a single invocation.

– If no correct process is poisoned, and m = m∗, then some correct process π∗

delivered m in σ as a result of the j∗-th invocation. It is easy to see that, up to

the j∗-th invocation, every call to nr ad v.Del i ver (π,m) was simply forwarded to

s y s.Del i ver (π,m). Therefore, noting that π∗’s echo sample for m is identical in σ

and σ′, π∗ delivered m in s y s as well.

– If no correct process is poisoned, and m ̸= m∗, then no invocation of

nr ad v.Del i ver (. . .) sees m as the only message delivered by at least one correct

process in s y s. Therefore, all calls to nr ad v.Del i ver (π,m) are simply forwarded

to s y s.Del i ver (π,m). Consequently, noting that π’s echo sample for m is identical

in σ and σ′, if π delivered m in σ, then π delivered m in σ′ as well.

Let us assume that in+1 = (State). Let π be a correct process, let m be message. The following

hold true:

• If (π,m) ∈ rn+1, then π delivered m inσ. Therefore, at least one correct process delivered

m in σ′. Let π′ be a correct process in π’s echo sample for m that pb.Delivered m in

σ: as we established, we have del i ver i es[π′] = m and π′ pb.Delivered a message in

σ′. Therefore, π′ ∈ s y s.Sample(π,m). Since nr ad v.St ate(. . .) counts the processes in

s y s.Sample(π,m) that are either Byzantine or have their del i ver i es value set to m, we

have (π,m) ∈ r ′
n+1.

• If (π,m) ∉ rn+1, then less than Ê processes in π’s echo sample for m are either Byzan-

tine or have pb.Delivered m. Therefore, less than Ê processes in π’s echo sample are

either Byzantine or have their del i ver i es value set to m. Since s y s.Sample(π,m) is a

subset of π’s echo sample for m, and since nr ad v.St ate(. . .) counts the processes in

s y s.Sample(π,m) that are either Byzantine or have their del i ver i es value set to m,

(π,m) ∉ r ′
n+1.

Let us assume that in+1 = (Sample,π,n). By hypothesis, π’s echo sample for m is identical

in σ and σ′. Moreover, the set of processes that pb.Delivered a message is identical in σ

and σ′. Noting that nr ad v.Sample(π,m) simply forwards the call to s y s.Sample(π,m), we

immediately get rn+1 = r ′
n+1.

113

Chapter 3. Sieve

Noting that procedures Del i ver (. . .) and Echo(. . .) never return a value, we trivially have that

if in+1 = (Deliver,π,m) or in+1 = (Echo,π, s,ξ,m) then rn+1 = ⊥ = r ′
n+1. By induction, we

have τ(α,σ) = τ(α,δ).

Consistency of σ′. We proved that τ(α,σ) = τ(α,δ). Moreover, we proved that if a message m

is eventually delivered by at least a correct process in σ, then m is eventually delivered by at

least a correct process in σ′ as well.

Since α compromises the consistency of σ, two distinct messages m, m′ ̸= m exist such that,

in σ, both m and m′ are delivered by at least one correct process. Therefore, in σ′, both m

and m′ are delivered by at least one correct process as well. Therefore, α′ compromises the

consistency of σ′.

Consequently, the adversarial power of α is smaller or equal to the adversarial power of

α′ =∆nr (α), and the lemma is proved.

3.11.5 Sample-blind adversary

Lemma 24. The set of sample-blind adversaries Asb is optimal.

Proof. We again prove the result using a decorator. Here we show that a decorator ∆sm exists

such that, for every α ∈Anr , the adversary α′ =∆C 2

sm(α) is a sample-blind adversary, and more

powerful than α. If this is true, then the lemma is proved: let α∗ be an optimal adversary, then

the sample-blind α+ =∆C 2

sm(α∗) is optimal as well.

Decorator. Algorithm 11 implements Sample-masking decorator, a decorator that masks

every invocation of Sample(π,m) issued by a non-redundant adversary, if Sample(π,m) is

the first invocation of Sample(. . .) issued by that adversary.

Provided with a non-redundant adversary nr ad v , Sample-masking decorator acts as an

interface between nr ad v and a system s y s. Sample-masking decorator is only guaranteed

to mask any invocation to s y s.Sample(π,m), for one process π and one message m. Noting

that |ΠC | = C and |M | = C , we have that, for every α ∈ Anr , α′ = ∆C 2

sm(α) is a sample-blind

adversary: indeed, all of α’s C 2 possible calls to Sample(. . .) are necessarily masked.

Sample-masking decorator exposes both the adversary and the system interfaces: the un-

derlying adversary nr ad v uses smad v as its system. Sample-masking decorator works as

follows:

• Procedure smad v.Ini t () initializes the following variables:

– An i ndex and a cache variable, both initially set to ⊥: i ndex is used to store

the pair (π ∈ΠC ,m ∈M) that was provided as argument to the first invocation of

114

3.11 Decorators

Algorithm 11 Sample-masking decorator.
1: Implements:
2: SampleMaskedAdversary + CobSystem, instance smadv
3:

4: Uses:
5: NonRedundantAdversary, instance nradv, system smadv
6: CobSystem, instance sys
7:

8: procedure smadv.Init() is
9: i ndex =⊥; cache =⊥;

10: tr ace = [];
11: del i ver i es = {⊥}C ;
12: nr ad v.Ini t ();
13:

14: procedure optimize(pr ocess,messag e) is
15: smad v.B y zanti ne(pr ocess);
16: best .sample =⊥; best .pr obabi l i t y = 0;
17:

18: for all sample ∈ΠE do
19: s y stems = 0;
20: compr omi ssi ons = 0;
21: for all σ ∈S do
22: if tr ace ∼σ and σ[pr ocess][messag e] = sample then
23: s y stems ← s y stems +1;
24: if NonRedund ant Ad ver sar y ↘σ then
25: compr omi ssi ons ← compr omi ssi ons +1;
26: end if
27: end if
28: end for
29:

30: if s y stems > 0 and compr omi ssi ons/s y stems > best .pr obabi l i t y then
31: best .sample = sample;
32: best .pr obabi l i t y = compr omi ssi ons/s y stems;
33: end if
34: end for
35:

36: return best .sample;
37:

38: procedure smadv.Step() is
39: nr ad v.Step();
40:

41: procedure smadv.Byzantine(pr ocess) is
42: tr ace ← tr ace + [

(Byzantine, pr ocess, s y s.B y zanti ne(pr ocess))
]
;

43: return s y s.B y zanti ne(pr ocess);
44:

115

Chapter 3. Sieve

45: procedure smadv.State() is
46: tr ace ← tr ace + [

(State, s y s.St ate())
]
;

47: st ate = s y s.St ate() \ {i ndex};
48:

49: if i ndex ̸= ⊥ then
50: (π,m) = i ndex;
51:

52: n = 0;
53: for all ρ ∈ cache do
54: if ρ ∈Π\ΠC or del i ver i es[ρ] = m then
55: n ← n +1;
56: end if
57: end for
58:

59: if n ≥ Ê then
60: st ate ← st ate ∪ {(π,m)};
61: end if
62: end if
63:

64: return st ate;
65:

66: procedure smadv.Sample(pr ocess,messag e) is
67: if i ndex =⊥ then
68: i ndex ← (pr ocess,messag e);
69: cache ← opti mi ze(pr ocess,messag e);
70: end if
71:

72: if (pr ocess,messag e) = i ndex then
73: sample = {};
74: for all π ∈ cache do
75: if del i ver i es[π] ̸= ⊥ then
76: sample ← sample ∪ {π};
77: end if
78: end for
79: return sample;
80: else
81: return s y s.Sample(pr ocess,messag e);
82: end if
83:

84: procedure smadv.Deliver(pr ocess,messag e) is
85: tr ace ← tr ace + [

(Deliver, (pr ocess,messag e))
]
;

86: del i ver i es[pr ocess] = messag e;
87: s y s.Del i ver (pr ocess,messag e);
88:

116

3.11 Decorators

89: procedure smadv.Echo(pr ocess, sample, sour ce,messag e) is
90: tr ace ← tr ace + [

(Echo, (pr ocess, sample, sour ce,messag e))
]
;

91: s y s.Echo(pr ocess, sample, sour ce,messag e);
92:

93: procedure smadv.End() is
94: s y s.End();
95:

smad v.Sample(. . .); cache is used to store the content of the echo sample smad v

generates for (π,m) when smad v.Sample(. . .) is invoked for the first time. This

guarantees that subsequent invocations of smad v.Sample(π,m) are provided

with consistent responses throughout the entire adversarial execution.

– A tr ace array: tr ace is used to store the sequence of invocations and responses

exchanged between nr ad v and s y s.

– A del i ver i es array of C elements: del i ver i es is used to track the message

pb.Delivered in s y s by each correct process.

• Procedure opti mi ze(pr ocess,messag e) returns the sample sample for

(pr ocess,messag e) that maximizes the probability of nr ad v winning against a random

system σ that is compatible with tr ace, and satisfies σ[pr ocess][messag e] = sample.

This is achieved as follows:

– The procedure calls smad v.B y zanti ne(pr ocess), causing an invocation to

s y s.B y zanti ne(pr ocess) to be appended to tr ace along with its response. This

is necessary because, if smad v.B y zanti ne(pr ocess) was never invoked before,

the set of Byzantine processes in the generated sample might differ from the

Byzantine processes in pr ocess’ echo sample for messag e in s y s. Noting that

all of pr ocess’ echo samples in s y s share the same set of Byzantine processes, a

subsequent call to smad v.B y zanti ne(pr ocess) could return a set of Byzantine

processes that is inconsistent with the sample, causing undefined behavior on

nr ad v .

– The procedure loops over every possible value of sample. For each value of

sample, it counts the number s y stems of systems σ that are compatible with

tr ace, and satisfy σ[pr ocess][messag e] = sample. Among the systems that sat-

isfy those two constraints, the procedure counts the number compr omi ssi ons of

systems whose consistency the adversary would compromise.

– The procedure returns the value of sample that satisfies s y stems > 0, and maxi-

mizes compr omi ssi ons/s y stems. In other words, the procedure returns a sam-

ple sample that is compatible with at least with one of the systems that are com-

patible with tr ace, and maximizes the probability that the adversary would com-

promise the consistency of a randomly selected system compatible with tr ace,

picked among those where pr ocess’ echo sample for messag e is sample.

117

Chapter 3. Sieve

• Procedure smad v.B y zanti ne(pr ocess) appends to tr ace the invocation of

s y s.B y zanti ne(pr ocess) along with its response. It then forwards the call to

s y s.B y zanti ne(pr ocess).

• Procedure smad v.St ate() appends to tr ace the invocation of s y s.St ate() along with

its response. It then returns the response of s y s.St ate(), modified to be compatible

with any previous masked invocation of s y s.Sample(. . .). More specifically, if i ndex =
(π,m) ̸= ⊥ (i.e., nr ad v ’s first invocation of smad v.Sample(. . .) was smad v.Sample(π,

m)), then (π,m) is included in the set of pairs returned by smad v.St ate() only if π

would have delivered m in s y s, if π’s echo sample for m was cache. This is achieved by

looping over every process in cache, and counting the number n of those processes that

are either Byzantine, or pb.Delivered m (this is achieved using the del i ver i es array).

• Procedure smad v.Sample(pr ocess,messag e) determines whether

smad v.Sample(. . .) has ever been invoked before by checking the value of i ndex.

If it has not, it sets i ndex to (pr ocess,messag e), and generates a sample for

(pr ocess,messag e) by setting cache to the value returned by opti mi ze(pr ocess,

sample).

If (pr ocess,messag e) is equal to i ndex, the procedure returns the set of processes

in cache that pb.Delivered a message in s y s. This is achieved by looping over every

process ρ in cache, and adding ρ to the response if ρ is either Byzantine, or satisfy

del i ver i es[ρ] ̸= ⊥.

If (pr ocess,messag e) is not equal to i ndex, the call is forwarded to

s y s.Sample(pr ocess,messag e).

• Procedure smad v.Del i ver (pr ocess,messag e) appends to tr ace the invocation of

s y s.Del i ver (pr ocess,messag e). To reflect the fact that pr ocess pb.Delivered m

in s y s, it then updates the del i ver i es array. Finally, it forwards the call to

s y s.Del i ver (pr ocess,messag e).

• Procedure smad v.Echo(pr ocess, sample, sour ce,messag e) appends to tr ace the in-

vocation of s y s.Echo(pr ocess, sample, sour ce,messag e). It then forwards the call to

s y s.Echo(pr ocess, sample, sour ce,messag e).

• Procedure smad v.End() simply forwards the call to s y s.End().

Correctness. We start by proving that no adversary has undefined behavior when coupled

with Sample-masked decorator. An adversary has undefined behavior if, at any point, the

sequence of invocations and responses it exchanges with smad v is incompatible with every

system.

Let π ∈ ΠC , let m ∈ M , let us assume that the first invocation to smad v.Sample(. . .) is

smad v.Sample(π,m). We start by noting that every invocation in smad v is forwarded to

118

3.11 Decorators

the corresponding invocation in s y s except for smad v.St ate() and smad v.Sample(π,m).

Moreover, before the first invocation of smad v.Sample(π,m), i ndex is set to ⊥ and, as a

result, smad v.St ate() effectively forwards to s y s.St ate(). Therefore, the trace exchanged

between nr ad v and smad v is trivially compatible with s y s before the first invocation of

smad v.Sample(π,m).

When smad v.Sample(π,m) is invoked for the first time, cache is set to opti mi ze(π,m).

When opti mi ze(π,m) is called, it calls smad v.B y zanti ne(π), which appends the invocation

and the corresponding response to tr ace. After that, the set of systems that are compat-

ible with tr ace is non empty, as it trivially includes s y s. The procedure opti mi ze(π,m)

returns a sample sample only if at least one system σ is compatible with tr ace, and satis-

fies σ[π][m] = sample. Since s y s.B y zanti ne(π) is in tr ace, the Byzantine component of

sample is identical to s y s.B y zanti ne(π): indeed, any system σ where the Byzantine compo-

nent of σ[π][m] is different from s y s.B y zanti ne(π) is incompatible with σ.

Therefore, the system obtained by replacing π’s echo sample for m in s y s with cache is a valid

system, and it is compatible with tr ace up to the first invocation of smad v.Sample(π,m).

Moreover, tr ace will always be compatible with such system. Indeed:

• Every subsequent call to smad v.Sample(π,m) uses the del i ver i es table to determine

which processes in cache pb.Delivered a message in s y s, thus returning a response that

is consistent with π’s echo sample for m being cache.

• Every subsequent call to smad v.St ate() includes (π,m) in its response only if at least Ê

processes in cache are either Byzantine or pb.Delivered m in s y s (this is verified using

the del i ver i es table).

This proves that that no adversary, coupled with Sample-masked decorator, has undefined

behavior.

Sample-blind. It is easy to see that Sample-masking decorator masks the first invocation

to Sample(. . .) issued by the decorated adversary. Indeed, if smad v.Sample(π,m) is the

first invocation of smad v.Sample(. . .) issued by nr ad v , then i ndex is set to (π,m), and

s y s.Sample(π,m) is never be invoked.

Let α be a non-redundant adversary, we have that ∆sb(α) issues calls to Sample(. . .) for at

most C 2 −1 pairs (π′ ∈ΠC ,m′ ∈M). The same argument can be applied again to see that, by

composing Sample-masking decorator with itself C 2 times, all possible calls to Sample(. . .)

are masked. Therefore, α′ =∆C 2

sb (α) is a sample-blind adversary.

119

Chapter 3. Sieve

Sample replacement. Let α be an adversary, let σ be a system. We define a function ν :

A ×S →N∪ {⊥} by

ν(α,σ) = min n | (τ(α,σ)n = ((Sample,π ∈ΠC ,m ∈M),⊥)
)

Intuitively, ν(α,σ) returns the index of the first invocation of Sample(. . .) in τ(α,σ) if such

invocation exists, and ⊥ otherwise. We additionally define π(α,σ) and m(α,σ) by

τ(α,σ)ν(α,σ) = ((Sample,π(α,σ),m(α,σ)),⊥)

if ν(α,σ) ̸= ⊥, and by

π(α,σ) = m(α,σ) =⊥
if ν(α,σ) = ⊥. Whenever at least an invocation to Sample(. . .) is issued when α is coupled

with σ, π(α,σ) and m(α,σ) are the arguments to that invocation.

We then define σ− : A ×S →N∪ {⊥}, σ+ : A ×S →N∪ {⊥}. If ν(α,σ) ̸= ⊥

σ−(α,σ) = maxn < ν(α,σ) | τ(α,σ)n = ((State),rn),(((((
Ψ(rn ,α,σ)

σ+(α,σ) = minn < ν(α,σ) | τ(α,σ)n = ((State),rn),Ψ(rn ,α,σ)

whereΨ is a predicate defined as

Ψ(rn ,α,σ) = (π(α,σ),m(α,σ)) ∈ rn

Otherwise, i.e. if ν(α,σ) =⊥
σ−(α,σ) =σ+(α,σ) =⊥

otherwise. Intuitively, when ν(α,σ) ̸= ⊥: σ−(α,σ) returns the index of the last invocation of

St ate() prior to ν(α,σ) that did not include (π(α,σ),m(α,σ)) in its response; σ+(α,σ) returns

the index of the first invocation of St ate() prior to ν(α,σ) that included (π(α,σ),m(α,σ)) in

its response.

We additionally define δ : A ×S ×M ×N→P(ΠC) by

π ∈ δ(α,σ,m,n)
de f⇐==⇒∃ j < n | τ(α,σ) j = ((Deliver,π,m),⊥) (3.9)

Intuitively, π is in δ(α,σ,m,n) if α invokes Del i ver (π,m) before the n-th invocation it issues,

when coupled with σ. In other words, δ(α,σ,m,n) represents the set of correct processes that

pb.Deliver m before the n-th invocation, when α is coupled with σ.

120

3.11 Decorators

Finally, we define δ− : A ×S →P(ΠC), δ+ : A ×S →P(ΠC) by

δ−(α,σ) =
δ(α,σ,m(α,σ),σ−(α,σ))) iffσ−(α,σ) ̸= ⊥
; otherwise

δ+(α,σ) =
δ(α,σ,m(α,σ),σ+(α,σ))) iffσ+(α,σ) ̸= ⊥
ΠC otherwise

Intuitively:

• When σ−(α,σ) ̸= ⊥, δ−(α,σ) represents the set of processes that pb.Delivered m(α,σ)

before σ−(α,σ). Intuitively, δ− is designed to guarantee that less than Ê elements of

σ[π(α,σ)][m(α,σ)] are either Byzantine or included in δ−(α,σ). If this was not the

case, the σ−(α,σ)-th invocation of St ate() would have included (π(α,σ),m(α,σ)) in its

response.

• When σ+(α,σ) ̸= ⊥, δ+(α,σ) represents the set of processes that pb.Delivered m(α,σ)

before σ+(α,σ). Intuitively, δ+ is designed to guarantee that at least Ê elements of

σ[π(α,σ)][m(α,σ)] are either Byzantine or included in δ+(α,σ). If this was not then

case, the σ+(α,σ)-th invocation of St ate() would not have included (π(α,σ),m(α,σ))

in its response.

All the above definitions allow us to define a sample replacement function E [α] : S →P
(
ΠE

)
by

E [α](σ) =;
if ν(α,σ) =⊥ and

Ē ∈ E [α](σ)
de f⇐==⇒

σ[π(α,σ)][m(α,σ)][n] ∈Π\ΠC =⇒
(Ē [n] =σ[π(α,σ)][m(α,σ)][n])∣∣{n ∈ 1..E | Ē [n] ∈ δ−(α,σ)∪ (Π\ΠC)

}∣∣< Ê∣∣{n ∈ 1..E | Ē [n] ∈ δ+(α,σ)∪ (Π\ΠC)
}∣∣≥ Ê

otherwise. Intuitively, E [α] is designed so that, if α is non-redundant, when ν(α,σ) ̸= ⊥, a

sample E is in E [α](σ) if, by replacing π(α,σ)’s echo sample for m(α,σ) in σ with E , we obtain

a system σ′ that is interchangeable with σ, i.e., a system that cannot be distinguished from

σ up to the ν(α,σ)-th invocation, and whose consistency is compromised by the same set of

traces. We prove these two properties in the next section of this proof.

More specifically, a sample Ē is in E [α](σ) if it satisfies the following conditions:

• Ē shares the set of Byzantine processes in σ[π(α,σ)][m(α,σ)].

121

Chapter 3. Sieve

• Less than Ê processes in Ē pb.Deliver m(α,σ) before the last invocation of St ate(. . .) in

τ(α,σ) (before ν(α,σ)) that does not include (π(α,σ),m(α,σ)) in its response.

• At least Ê processes in Ē pb.Deliver m(α,σ) before the first invocation of St ate(. . .) in

τ(α,σ) (before ν(α,σ)) that includes (π(α,σ),m(α,σ)) in its response.

Sample interchangeability. Let α be a non-redundant adversary, let σ be a system such that

ν(α,σ) ̸= ⊥. Let π∗ = π(α,σ), let m∗ = m(α,σ). Let σ′ be a system such that, for every pair

(π,m) ̸= (π∗,m∗) (i.e., π ̸=π∗ or m ̸= m∗), the two following statements hold:

σ′[π∗][m∗] ∈ E [α](σ)

σ′[π][m] = σ[π][m]

In this section, we prove the following:

∀n < ν(α,σ),τ(α,σ)n = τ(α,σ′)n

(α↘σ) =⇒ (τ(α,σ) ↘σ′)

We establish the first result by induction. Let us assume

τ(α,σ) = ((i1,r1), . . .)

τ(α,σ′) = ((i ′1,r ′
1), . . .)

i j = i ′j ,r j = r ′
j ∀ j ≤ n

with n ≥ 0 (here n = 0 means that this is α’s first invocation). We start by noting that, since a is

a deterministic algorithm, we immediately have

in+1 = i ′n+1

and we need to prove that rn+1 = r ′
n+1.

Let us consider the case in+1 = (Byzantine,π,m). Following from the definition of E [α](σ),

π∗’s echo sample for m∗ inσ′ includes the same set of Byzantine processes asπ∗’s echo sample

for m∗ inσ. Since all other echo samples are trivially identical inσ andσ′, we have rn+1 = r ′
n+1.

Let us consider the case in+1 = (State). Let π ∈ ΠC , let ρ ∈ Π, let m ∈ M . Noting that i j =
i ′j ∀ j ≤ n+1, we trivially have that ρ sent an Echo(m, m) message to π in σ if and only if ρ sent

an Echo(m, m) message to π in σ. Noting that all echo samples but π∗’s echo sample for m∗

are identical in σ, we immediately get that the symmetric difference between rn+1 and r ′
n+1

can only include (π∗,m∗). The following hold true:

122

3.11 Decorators

• If (π∗,m∗) ∈ rn+1, then (π∗,m∗) ∈ r ′
n+1. Indeed, if (π∗,m∗) ∈ rn+1, then by definition

σ+(α,σ) ≤ n +1. Therefore, by definition, every correct process in δ+(α,σ) pb.Delivered

m∗ (both in σ and σ′). Noting that α is an auto-echo adversary, every process in

δ+(α,σ)∪ (Π \ΠC) sent an Echo(m∗, m∗) message to π∗, both in σ and σ′. Finally,

by definition, E [α](σ) includes at least Ê processes in δ+(α,σ)∪ (Π\ΠC). Therefore π∗

delivered m∗ in σ′, and (π∗,m∗) ∈ rn+1.

• If (π∗,m∗) ∉ rn+1, then (π∗,m∗) ∉ r ′
n+1. Indeed, if (π∗,m∗) ∈ rn+1, then by definition

σ−(α,σ) ≥ n +1. Therefore, by definition, every correct process that pb.Delivered m∗

(both in σ and σ′) is included in δ−(α,σ). Finally, by definition, E [α](σ) includes less

than Ê processes in δ−(α,σ)∪ (Π \ΠC). Therefore π∗ did not deliver m∗ in σ′, and

(π∗,m∗) ∉ rn+1.

which proves rn+1 = r ′
n+1.

Noting that, by definition, n < ν(α,σ), in+1 cannot be (Sample,π,m).

Noting that procedures Del i ver (. . .) and Echo(. . .) never return a value, we trivially have that

if in+1 = (Deliver,π,m) or in+1 = (Echo,π, s,ξ,m) then rn+1 = ⊥ = r ′
n+1. By induction, we

have

∀n < ν(α,σ),τ(α,σ) = τ(α,σ′)

Let us assume that α compromises the consistency of σ. We want to prove that τ(α,σ)

compromises the consistency of σ′.

We start by noting that, since by definition α’s ν(α,σ)-th invocation in τ(α,σ) is

(Sample,π∗,m∗) then, since α is correct, for some j < ν(α,σ), the j -th invocation in τ(α,σ) is

(State), and its response includes (π,m∗) for some π ∈ΠC . Therefore, before the ν(α,σ)-th

invocation, at least one correct process in σ delivered m∗.

We previously proved, however, that since j < ν(α,σ), we have τ(α,σ) j = τ(α,σ′) j . Therefore,

at least one correct process delivered m∗ in σ′ as well.

Since α compromises the consistency of σ, at least one correct process π′ eventually delivers

a message m′ ̸= m∗ in σ. Noting that π′’s echo sample for m′ is identical in σ and σ′, we

immediately have that π′ delivers m′ in σ′ as well.

System optimization. Let α be a non-redundant adversary, let σ be a system. In the previous

section of this proof, we proved that, if we replace π(α,σ)’s echo sample for m(α,σ) in σ with

any sample in E [α](σ), we obtain a system σ′ such that τ(α,σ)n = τ(α,σ′)n for all n < ν(α,σ).

We start by defining a function N : A →P(S) by

N (α) = {σ ∈S | ν(α,σ) ̸= ⊥}

123

Chapter 3. Sieve

Provided with an adversary α, N returns the set of systems coupled with which α issues at

least one invocation to Sample(. . .).

We then define a function S [α] : N (α) →P(N (α)) by

S [α](σ) = {
σ′ ∈S | τ(α,σ)1..(ν(α,σ)−1) ∼σ′}

Intuitively, when ν(α,σ) ̸= ⊥, (S)[α](σ) returns the set of systems that α cannot distinguish

from σ, before the first invocation of Sample(. . .).

Let σ be a system such that ν(α,σ) ̸= ⊥, let σ′ ∈ S [α](σ). Noting that α is a deterministic

adversary, we immediately get

τ(α,σ′)n = τ(α,σ)n ∀n < ν(α,σ)

and

ν(α,σ′) = ν(α,σ)

from which immediately follows

S [α](σ′) =S [α](σ)

Let α be a non-redundant adversary, let σ, σ′ be systems in N (α). Let σS [α]σ′ denote the

relationship

σ′ ∈S [α](σ)

Since τ(α,σ) ∼σ, we immediately have that S [α] is reflexive. Since we established S [α](σ′) =
S [α](σ), S [α] is also symmetric and transitive. Therefore, S [α] is an equivalence relation on

N (α).

Let

S [α]1, . . .S [α]h = N (α)

S [α]

intuitively, each S [α]i is a distinct set of systems that are indistinguishable to α, before the

first invocation of Sample(. . .).

Let i ∈ 1..h. Let σ ∈ S [α]i , let E ∈ E [α](σ), let σ′ be identical to σ, with the exception

of π(α,σ)’s echo sample for m(α,σ), which is replaced with E . As we previously proved,

τ(α,σ)1..(ν(α,σ)−1) ∼ σ′, therefore have σ′ ∈ S [α]i . Moreover, we proved that for every σ in

S [α]i , E [α](σ) yields the same set of samples.

Let σ,σ′ be systems in S [α]i , let π∗ = π(α,σ) = π(α,σ′), let m∗ = m(α,σ) = m(α,σ′). Let

σ E [α]σ′ denote the relationship

σ[π∗][m∗] =σ′[π∗][m∗] ∈ (E [α](σ) = E [α](σ′))

124

3.11 Decorators

from its definition we can immediately see that E [α] is an equivalence relation, and we can

partition

E [α]i
1, . . . ,E [α]i

l =
S [α]i

E [α]

with ∣∣∣E [α]i
1

∣∣∣= . . . =
∣∣∣E [α]i

l

∣∣∣
Let C [α]i

1, . . . ,C [α]i
l denote the probability of α compromising a random element of

E [α]i
1, . . . ,E [α]i

l :

C [α]i
j =

∣∣∣{σ ∈ E [α]i
j |α↘σ

}∣∣∣∣∣∣E [α]i
j

∣∣∣
we can determine the subset whose consistencyα has the highest probability of compromising

by

C [α]i
∗ = argmax

j
C [α]i

j

Finally, we define an optimization function O [α] : N (α) →N (α). Let σ ∈S [α]i , we define

O [α] by

O [α](σ)[π][m] =
E [α](σ)C [α]i∗ iffπ=π(α,σ),m = m(α,σ)

σ[π][m] otherwise

As we previously proved, every E [α]i
j has the same number of elements. Moreover, O [α] maps

a system σ in E [α]i
j to the corresponding system σ′ in E [α]i

C [α]i∗
that is identical to σ, except

for π(α,σ)’s echo sample for m(α,σ), which is replaced with E [α](σ)C [α]i∗ .

Therefore, for every σ,σ′ ∈ E i
C [α]i∗

,

∣∣O [α]−1(σ)
∣∣= ∣∣O [α]−1(σ′)

∣∣= |S [α]i |∣∣E [α]i
1

∣∣
System masking. Let α be a non-redundant adversary, let α′ =∆sb(α), let σ be a system.

We start by noting that, if ν(α,σ) = ⊥, then τ(α,σ) = τ(α′,σ). Indeed, if α never invokes

Sample(. . .) when coupled with σ, all calls to smad v are simply forwarded to the corre-

sponding calls in s y s. Therefore, if α compromises the consistency of σ, then trivially α′

compromises the consistency of σ as well.

Let us assume that ν(α,σ) ̸= ⊥. Let σ′ be an identical copy of σ. We start by noting that,

if we couple Sample-masking decorator with σ′, we effectively obtain a system instance δ

125

Chapter 3. Sieve

with which α directly exchanges invocations and responses. Here we show that the trace

τ(α,O [α](σ)) is identical to the trace τ(α,δ). Intuitively, this means that α has no way of

distinguishing whether it has been coupled directly with O [α](σ), or it has been coupled with

σ′, with Non-redundant decorator acting as an interface.

We previously proved that the trace exchanged between nr ad v and smad v is identical to the

trace that nr ad v would exchange with s y s, if π(α,σ)’s echo sample for m(α,σ) in s y s was

replaced with cache.

Let i ∈ N such that σ ∈ S [α]i . Procedure opti mi ze explicitly loops over all possible val-

ues of sample ∈ ΠE . For every value of sample, if loops over all the systems σ̄ that are

compatible with tr ace, and satisfy σ̄[π(α,σ)][m(α,σ)] = sample. If, at the end of the loop,

s y stems ̸= 0, then compr omi ssi ons effectively represents, for some j , the number of sys-

tems in E [α]i
j that α compromises. Since opti mi ze selects the value of sample that maxi-

mizes compr omi ssi ons/s y stem, the value that is eventually assigned to cache is effectively

E [α](σ)C [α]i∗ , which proves the statement.

We previously proved that, if α compromises the consistency of O [α](σ), then τ(α,O [α](σ))

compromises the consistency ofσ as well. Noting that every invocation to smad v.Del i ver (. . .)

or smad v.Echo(. . .) is respectively forwarded to s y s.Del i ver (. . .) or s y s.Echo(. . .), we finally

obtain that ifα compromises the consistency of O [α](σ), thenα′ compromises the consistency

of σ as well.

Adversarial power. We can finally show that the adversarial power of α′ is greater than the

adversarial power of α. Let σ be a system.

As we previously established, if σ ∉ N (α), then the probability of α compromising σ is

identical to the probability of α compromising σ′.

Let us assume that σ ∈N (α). Let i , j ∈N such that σ ∈ E [α]i
j . The probability of α compro-

mising the consistency of σ is

P [α↘σ] =C [α]i
j

and, since α′ compromises the consistency of σ if α compromises the consistency of O [α](σ),

the probability of α′ compromising the consistency of σ is

P
[
α′ ↘σ

]=P [α↘O [α](σ)] =C [α]i
C [α]i∗

≥C [α]i
j =P [α↘σ]

Which proves that the adversarial power of α′ is greater or equal to the adversarial power of

α.

126

3.11 Decorators

3.11.6 Byzantine-counting adversary

Lemma 25. The set of Byzantine-counting adversaries Abc is optimal.

Proof. We again prove the result using a decorator. Here we show that a decorator ∆bc exists

such that, for every α ∈Asb , the adversary α′ =∆bc (α) is a Byzantine-counting adversary, and

more powerful than α. If this is true, then the lemma is proved: let α∗ be an optimal adversary,

then the Byzantine-counting α+ =∆bc (α∗) is optimal as well.

Decorator. Algorithm 12 implements Byzantine-counting decorator, a decorator that trans-

forms a sample-blind adversary into a Byzantine-counting adversary. Provided with a sample-

blind adversary sbad v , Byzantine-counting decorator acts as an interface between sbad v and

a system s y s, effectively implementing a Byzantine-counting adversary bcad v . Byzantine-

counting decorator exposes both the adversary and the system interface: the underlying

adversary sbad v uses bcad v as its system.

Byzantine-counting decorator works as follows:

• Procedure bcad v.Ini t() generates best .by zanti ne, an array of C pre-

computed responses that bcad v will provide to any subsequent invocation of

bcad v.B y zanti ne(. . .), optimized to maximize the probability of compromising s y s.

This is achieved as follows:

– The procedure loops over every correct processπ, and queries
∣∣s y s.B y zanti ne(π)

∣∣
to determine how many Byzantine processes there are in the first echo sample of π.

For each π, the procedure sets variable space[π] to the set of all possible responses

to bcad v.B y zanti ne(π) that satisfy the condition
∣∣bcad v.B y zanti ne(π)

∣∣ =∣∣s y s.B y zanti ne(π)
∣∣.

– The procedure loops over every possible array by zanti ne of C responses that, for

every π ∈ ΠC , satisfies by zanti ne[π] ∈ space[π]. It then counts the number of

systems σ that are compatible with by zanti ne (i.e., that satisfy, for every π ∈ΠC ,

σ.B y zanti ne(π) = by zanti ne[π]) and whose consistency is compromised by the

underlying adversary SampleBl i nd Ad ver sar y .

– The procedure sets best .by zanti ne to the array by zanti ne that maximizes the

number of systems compatible with by zanti ne whose consistency is compro-

mised by SampleBl i nd Ad ver sar y .

• Procedure bcad v.B y zanti ne(pr ocess) simply returns best .by zanti ne[pr ocess].

• Procedure bcad v.St ate() simply forwards the call to s y s.St ate().

• Procedure bcad v.Sample(pr ocess,messag e) is never called. This is due to the fact

that sbad v is sample-blind.

127

Chapter 3. Sieve

Algorithm 12 Byzantine-counting decorator.
1: Implements:
2: ByzantineCountingAdversary + CobSystem, instance bcadv
3:

4: Uses:
5: SampleBlindAdversary, instance sbadv, system bcadv
6: CobSystem, instance sys
7:

8: procedure bcadv.Init() is
9: best .by zanti ne =⊥; best .compr omi ssi ons = 0;

10: space = {⊥}C ;
11:

12: for all π ∈ΠC do
13: count = ∣∣s y s.B y zanti ne(π)

∣∣;
14: space[π] = (Π\ΠC)count ;
15: end for
16:

17: for all by zanti ne ∈ space[π1]× . . .× space[πC] do
18: compr omi ssi ons = 0;
19: for all σ ∈S do
20: match = True;
21: for all π ∈ΠC do
22: if σ.B y zanti ne(π) ̸= by zanti ne[π] then
23: match ← False;
24: end if
25: end for
26:

27: if match and SampleBl i nd Ad ver sar y ↘σ then
28: compr omi ssi ons ← compr omi ssi ons +1;
29: end if
30: end for
31:

32: if compr omi ssi ons > best .compr omi ssi ons then
33: best .by zanti ne ← by zanti ne;
34: best .compr omi ssi ons = compr omi ssi ons;
35: end if
36: end for
37: sbad v.Ini t ();
38:

39: procedure bcadv.Step() is
40: sbad v.Step();
41:

42: procedure bcadv.Byzantine(pr ocess) is
43: return best .by zanti ne[pr ocess];
44:

128

3.11 Decorators

45: procedure bcadv.State() is
46: return s y s.St ate();
47:

48: procedure bcadv.Sample(pr ocess,messag e) is
49: raise error;
50:

51: procedure bcadv.Deliver(pr ocess,messag e) is
52: s y s.Del i ver (pr ocess,messag e);
53:

54: procedure bcadv.Echo(pr ocess, sample, sour ce,messag e) is
55: s y s.Echo(pr ocess, sample, sour ce,messag e);
56:

57: procedure bcadv.End() is
58: s y s.End();
59:

• Procedure bcad v.Del i ver (pr ocess,messag e) simply forwards the call to

s y s.Del i ver (pr ocess,messag e).

• Procedure bcad v.Echo(pr ocess, sample, sour ce,messag e) simply forwards the call

to s y s.Echo(pr ocess, sample, sour ce,messag e).

• Procedure bcad v.End() simply forwards the call to s y s.End().

Correctness. We start by proving that no adversary has undefined behavior when coupled

with Byzantine-counting decorator. An adversary has undefined behavior if, at any point,

the sequence of invocations and responses it exchanges with bcad v is incompatible with

every system.

Upon initialization, bcad v generates an array best .by zanti ne of C responses, one for every

call to bcad v.B y zanti ne(π ∈ΠC). For every correct process π, best .by zanti ne[π] contains

only Byzantine processes and satisfies
∣∣best .by zanti ne[π]

∣∣= ∣∣s y s.B y zanti ne(π)
∣∣. Let s y s′

be the system obtained by replacing the Byzantine component of each correct process π’s echo

samples in s y s with best .by zanti ne[π]. The trace exchanged between sbad v and bcad v is

always compatible with s y s′. Indeed:

• Every call to bcad v.B y zanti ne(π) returns best .by zanti ne[π] which is equal, by defi-

nition, to s y s.B y zanti ne(π).

• Every call to bcad v.St ate() is simply forwarded to s y s.St ate(). Let π be a correct

process, let m be a message. Since that bcad v is an auto-echo adversary, when

bcad v.St ate() is invoked, every Byzantine process in π’s echo sample for m has sent

an Echo(m, m) message both in s y s and s y s′. Moreover, the number of Byzantine

processes in π’s echo sample for m is identical in s y s and s y s′. Finally, set of cor-

129

Chapter 3. Sieve

rect processes in π’s echo sample for m is identical in s y s and s y s′. Consequently,

bcad v.St ate() = s y s.St ate() = s y s′.St ate().

Byzantine-counting. It is immediate to see that Byzantine-counting decorator always im-

plements a Byzantine-counting adversary. Indeed, for any π ∈ΠC , s y s.B y zanti ne(π) is only

invoked from
∣∣s y s.B y zanti ne(π)

∣∣.
Byzantine interchangeability. Let α be a sample-blind system. Let σ be a system, let σ′ be a

system such that, for every correct process π, every message m, and every n ∈ 1..E ,

(σ[π][m][n] ∈ΠC) =⇒ (σ′[π][m][n] =σ[π][m][n])

(σ[π][m][n] ∉ΠC) =⇒ (σ′[π][m][n] ∉ΠC)

In other words, for every π ∈ ΠC and every m ∈ M , the set of correct processes in π’s echo

sample for m is identical in σ and σ′.

Here we prove that, if α compromises σ, then τ(α,σ) compromises σ′. In order to do this, we

first establish some auxiliary results.

Let us consider the case where α is run against σ and τ(α,σ) is applied to σ′. Let π be a correct

process, let ρ be a process, let m be a message. At the end of both adversarial executions, the

following hold true:

• If π pb.Delivered m in σ, then π pb.Delivered m in σ′ as well. This follows immediately

from the fact that τ(α,σ) is applied to σ′, and ((Deliver,π,m),⊥) ∈ τ(α,σ).

• If ρ sent an Echo(m, m) message to π in σ, then ρ sent an Echo(m, m) message to π in

σ′. Indeed, if ρ is a correct process, and it sent an Echo(m, m) message to π in σ, then

it pb.Delivered m both in σ and σ′. Therefore, it sent an Echo(m, m) message to π in

σ′ as well. If ρ is a Byzantine process then, since α is an auto-echo adversary, ρ sent an

Echo(m, m) message to π both in σ and σ′.

• If π delivered m in σ, then π also delivered m in σ′. This follows from the above, and the

fact that the correct processes in π’s echo sample for m are identical in σ and σ′.

If α compromises the consistency of σ, then two correct processes π, π′ and two distinct

messages m, m′ ̸= m exist such that π delivered m, and π′ delivered m′ in σ. From the above,

however, π delivered m, and π′ delivered m′, in σ′ as well. Consequently, τ(α,σ) compromises

the consistency of σ′.

130

3.11 Decorators

System optimization. Let σ, σ′ be systems. We define the relationship
|F |∼ by(

σ
|F |∼ σ′

) de f⇐==⇒ (∀π ∈ΠC ,∀n ∈ 1..E ,σ[π][1][n] ∈ΠC ⇔σ′[π][1][n] ∈ΠC
)

In other words, σ
|F |∼ σ′ if, for every π and for every n ∈ 1..E , the n-th element of the first of π’s

echo samples is either correct both in σ and σ′, or Byzantine both in σ and σ′.

It is immediate to see that
|F |∼ is an equivalence relation. We can therefore partition S with

|F |∼
to obtain

S1, . . . ,Sh = S

|F |∼

Let σ, σ′ be systems. We define the relationship F∼ by(
σ

F∼σ′
) de f⇐==⇒ (∀π ∈ΠC ,∀n ∈ 1..E ,σ[π][1][n] ∉ΠC ⇔σ′[π][1][n] =σ[π][1][n]

)
Intuitively, σ F∼ σ′ if the Byzantine processes in each echo sample are identical in σ and σ′.
Again, F∼ is an equivalence relation that we can use to partition Si :

S i
1 , . . . ,S i

l = Si

F∼
and noting that, in Simplified Sieve, every correct process selects independently the correct

processes in its echo samples, we have∣∣∣S i
1

∣∣∣= . . . =
∣∣∣S i

l

∣∣∣
Let α be a sample-blind adversary. We define C [α]i

j as the fraction of systems in S i
j whose

consistency is compromised by α:

C [α]i
j =

∣∣∣{σ ∈S i
j |α↘σ

}∣∣∣∣∣∣S i
j

∣∣∣
From C [α]i

j we can define

C [α]i
∗ = argmax

j
C [α]i

j

Intuitively, C [α]i∗ identifies the partition of Si that α has the highest probability of compro-

mising consistency.

131

Chapter 3. Sieve

Finally, we define an optimization function O [α] : S →S . Let σ ∈Si , we define O [α] by

O [α](σ) ∈ S i
C [α]i∗

σ[π][m][n] ∈ΠC =⇒ O [α](σ)[π][m][n] =σ[π][m][n]

As we previously proved, every S i
j has the same number of elements. Moreover, O [α] maps a

system σ in S i
j to the corresponding system σ′ in S i

C [α]i∗
such that every correct process in an

echo sample in σ is identical to the corresponding process in σ′.

Therefore, for every σ,σ′ ∈S i
C [α]i∗

,

∣∣O [α]−1(σ)
∣∣= ∣∣O [α]−1(σ′)

∣∣= |Si |∣∣S i
1

∣∣
System masking. Let α be a sample-blind adversary, let α′ =∆bc (α), let σ be a system, let σ′

be an identical copy of σ. We start by noting that, if we couple Byzantine-counting decorator

with σ′, we effectively obtain a system instance δ with which α directly exchanges invocations

and responses. Here we show that the trace τ(α,O [α](σ)) is identical to the trace τ(α,δ).

Intuitively, this means thatα has no way of distinguishing whether it has been coupled directly

with O [α](σ), or it has been coupled with σ′, with Byzantine-counting decorator acting as an

interface.

We previously proved that the trace exchanged between sbad v and bcad v is identical to the

trace that sbad v would exchange with the system s y s′ that is obtained by replacing the Byzan-

tine component of each correct process π’s echo samples in s y s with best .by zanti ne[π].

Let i ∈N such that σ ∈Si . Procedure bcad v.Ini t () explicitly loops over all the possible values

of by zanti ne that satisfy the condition
∣∣by zanti ne[π]

∣∣= ∣∣s y s.B y zanti ne(π)
∣∣ for all π ∈ΠC .

It then loops over every system σ that satisfies σ.B y zanti ne(π) = by zanti ne[π], and counts

the number of systems that α compromises. It finally selects the value of by zanti ne that

maximizes the number of compromissions. In doing so, bcad v.Ini t() is effectively looping

over every S i
j , and selecting the j that maximizes the probability ofα compromising a random

element of S i
j . Since bcad v.Ini t() is effectively masking σ with the element of S i

C [α]i∗
with

which σ shares the correct component of every sample, the trace τ(α,O [α](σ)) is identical to

the trace τ(α,δ).

We previously proved that, if α compromises the consistency of O [α](σ), then τ(α,O [α](σ))

compromises the consistency ofσ as well. Noting that every invocation to bcad v.Del i ver (. . .)

or bcad v.Echo(. . .) is respectively forwarded to s y s.Del i ver (. . .) or s y s.Echo(. . .), we finally

obtain that ifα compromises the consistency of O [α](σ), thenα′ compromises the consistency

of σ as well.

132

3.11 Decorators

Adversarial power. We can finally show that the adversarial power of α′ is greater than the

adversarial power of α. Let σ be a system.

Let i , j ∈N such that σ ∈S i
j . The probability of α compromising the consistency of σ is

P [α↘σ] =C [α]i
j

and, since α′ compromises the consistency of σ if α compromises the consistency of O [α](σ),

the probability of α′ compromising the consistency of σ is

P
[
α′ ↘σ

]=P [α↘O [α](σ)] =C [α]i
C [α]i∗

≥C [α]i
j =P [α↘σ]

Which proves that the adversarial power of α′ is greater or equal to the adversarial power of

α.

3.11.7 Single-response adversary

Lemma 26. The set of single-response adversaries Asr is optimal.

Proof. We again prove the result using a decorator. Here we show that a decorator ∆sr exists

such that, for every α ∈Abc , the adversary α′ =∆sr (α) is a single-response adversary, and as

powerful as α. If this is true, then the lemma is proved: let α∗ be an optimal adversary, then

the sequential α+ =∆sr (α∗) is optimal as well.

Decorator. Algorithm 13 implements Single-response decorator, a decorator that transforms

a Byzantine-counting adversary into a single-response adversary. Provided with a Byzantine-

counting adversary bcad v , Single-response decorator acts as an interface between bcad v and

a system s y s, effectively implementing a single-response adversary sr ad v . Single-response

decorator exposes both the adversary and the system interfaces: the underlying adversary

bcad v uses sr ad v as its system.

Single-response decorator works as follows:

• Procedure sr ad v.Ini t () initializes the following variables:

– A cache set, initially empty: cache is used to store the first non-empty set returned

from s y s.St ate().

– A poi soned variable: poi soned is set to True if and only if at least one cor-

rect process in s y s is poisoned. This condition is verified by looping over

s y s.B y zanti ne(π) for every correct process π.

133

Chapter 3. Sieve

Algorithm 13 Single-response decorator.
1: Implements:
2: SingleResponseAdversary + CobSystem, instance sradv
3:

4: Uses:
5: ByzantineCountingAdversary, instance bcadv, system sradv
6: CobSystem, instance sys
7:

8: procedure sradv.Init() is
9: cache =;; poi soned = False; step = 0;

10:

11: for all π ∈ΠC do
12: if

∣∣s y s.B y zanti ne(π)
∣∣≥ Ê then

13: poi soned ← True;
14: end if
15: end for
16:

17: bcad v.Ini t ();
18:

19: procedure sradv.Step() is
20: step ← step +1;
21:

22: if poi soned = False or step ≤ (N −C)C 2 then
23: bcad v.Step();
24: else if step ≤ (N −C)C 2 +C then
25: s y s.Del i ver (ζ(step − (N −C)C 2),1);
26: else
27: s y s.End();
28: end if
29:

30: procedure sradv.Byzantine(π) is
31: count = ∣∣s y s.B y zanti ne(π)

∣∣;
32: return {⊥}count ;
33:

34: procedure sradv.State() is
35: return cache;
36:

37: procedure sradv.Sample(pr ocess,messag e) is
38: raise error;
39:

134

3.11 Decorators

40: procedure sradv.Deliver(pr ocess,messag e) is
41: s y s.Del i ver (pr ocess,messag e);
42:

43: if cache =; then
44: cache ← s y s.St ate();
45: end if
46:

47: procedure sradv.Echo(pr ocess, sample, sour ce,messag e) is
48: s y s.Echo(pr ocess, sample, sour ce,messag e);
49:

50: procedure sradv.End() is
51: s y s.End();
52:

– A step variable, initially set to 0: at any time, step counts how many times

sr ad v.Step() has been invoked.

• Procedure sr ad v.Step() increments step, then implements two different behaviors

depending on the value of poi soned :

– If poi soned = True, it forwards the call to bcad v.Step() for the first (N −C)C 2

times. For the next C steps, it sequentially invokes s y s.Del i ver (ζ(1),1), . . .,

s y s.Del i ver (ζ(C),1). Finally, it calls s y s.End().

– If poi soned = False, it forwards the call to bcad v.Step().

• Procedure sr ad v.B y zanti ne(pr ocess) returns an array of count elements, count

being the number of elements returned by s y s.B y zanti ne(pr ocess). The array is filled

with ⊥ values: since bcad v is Byzantine-counting, the content of the array is irrelevant.

• Procedure sr ad v.St ate() simply returns cache.

• Procedure sr ad v.Sample(pr ocess,messag e) is never called. This is due to the fact

that bcad v is sample-blind.

• Procedure sr ad v.Del i ver (pr ocess,messag e) forwards the call to

s y s.Del i ver (pr ocess,messag e). Then, if cache is empty, it updates cache with

s y s.St ate().

• Procedure sr ad v.Echo(pr ocess, sample, sour ce,messag e) simply forwards the call

to s y s.Echo(pr ocess, sample, sour ce,messag e).

• Procedure sr ad v.End() simply forwards the call to s y s.End().

Correctness. Here we prove that every adversary, when coupled with Single-response
adversary:

135

Chapter 3. Sieve

• Has a well-defined behavior. An adversary has undefined behavior if, at any point, the

sequence of invocations and responses it exchanges with sr ad v is incompatible with

every system.

• Is process-sequential, sequential, and Byzantine-counting.

We start by noting that poi soned = True if and only if s y s is poisoned. Indeed, sr ad v.Ini t ()

explicitly checks if any correct process has at least Ê Byzantine processes in its first echo

sample.

We distinguish two cases, based on the value of poi soned . Let us assume poi soned = True.

When sr ad v.Step() is invoked, the call is forwarded to bcad v.Step() only for the first

(N −C)C 2 times. Noting that bcad v is an auto-echo adversary, every call to bcad v.Step()

results in a call to sr ad v.Echo(. . .). For the next C steps, sr ad v.Step() sequentially causes

ζ(1),ζ(2), . . . to pb.Deliver message 1. Finally, sr ad v.Step() invokes s y s.End(). Therefore,

sr ad v has a well defined behavior and implements a process-sequential adversary. Since it

causes only message 1 to be pb.Delivered, sr ad v is also trivially sequential.

Let us assume poi soned = False. As we proved in Section 3.9, since s y s is not poi-

soned, a correct process in s y s will only deliver a message m as a result of an invocation

to s y s.Del i ver (π,m) for some π ∈ΠC . Until cache ̸= ;, cache is updated to s y s.St ate() after

every call to s y s.Del i ver (. . .). Therefore, throughout the first phase, sr ad v.St ate() is always

identical to s y s.St ate(). The trace exchanged between bcad v and sr ad v is, therefore, trivially

compatible with s y s.

Throughout the second phase, we have cache ̸= ⊥. Since, throughout the first phase, cache is

updated after every call to s y s.Del i ver (. . .), only one message m∗ exists such that, for some

π∗ ∈ ΠC , (π∗,m∗) ∈ cache. Noting that bcad v is a non-redundant adversary, it will never

invoke sr ad v.Del i ver (. . .) on m∗: indeed, the value returned from sr ad v.St ate() never

changes throughout the second phase. We define a system s y s′ by

s y s′[π][m][n] =
s y s[π][m][n] iff m = m∗ or s y s[π][m][n] ∈Π\ΠC

π∗ otherwise

The trace exchanged between bcad v and sr ad v is compatible with s y s′. Indeed, for every

π ∈ΠC , π’s sample for m∗ in s y s is identical to π’s echo sample for m∗ in s y s′: at any moment,

π delivered m∗ in s y s if and only if π delivered m∗ in s y s′. For every π ∈ΠC and m ̸= m∗ ∈
M , π’s every correct process in π’s sample for m is π∗. However, π∗ pb.Delivered m∗ ̸= m.

Therefore, since s y s′ is not poisoned, no correct process in s y s′ ever delivers a message other

than m∗.

136

3.11 Decorators

Every call to sr ad v.Del i ver (. . .) and sr ad v.Echo(. . .) is respectively forwarded to

s y s.Del i ver (. . .) and s y s.Echo(. . .). Moreover, bcad v is process-sequential and sequential.

Therefore, if poi soned = True, sr ad v is also process-sequential and sequential.

It is immediate to see that Single-response decorator always implements a Byzantine-

counting adversary. Indeed, for any π ∈ ΠC , s y s.B y zanti ne(π) is only invoked from∣∣s y s.B y zanti ne(π)
∣∣.

Single-response. It is immediate to see that Single-response decorator always implements

a single-response adversary. Indeed, when s y s.St ate() returns a non-empty set for the first

time, cache is set to a non-empty set, and s y s.St ate() is never invoked again.

Roadmap. Let α ∈ Abc , let α′ = ∆sr (α). Let σ be a system such that α compromises the

consistency of σ. Let σ′ be an identical copy of σ. In order to prove that α′ is as powerful as α,

we prove that α′ compromises the consistency of σ′.

Poisoned case. Noting that α′ is an auto-echo adversary, if σ is poisoned we immediately

have that α′ compromises the consistency of σ′.

Trace. Let us assume that σ is not poisoned. We start by noting that, if we couple Single-

response decorator with σ′, we effectively obtain a system instance δ with which α directly

exchanges invocations and responses.

We start by defining a boolean sequence W by setting Wn = True if and only if, after the n-th

invocation, two correct processes π,π′ and two distinct messages m,m′ ̸= m exist such that π

delivered m and π′ delivered m′ in σ. Since α compromises the consistency of σ, for some n

we have Wn = True. Let

w = minn |Wn = True

Here we show that, for every n ≤ w , the trace τ(α,σ)n is identical to the trace τ(α,δ)n . Intu-

itively, this means that, until the consistency of σ is compromised, α has no way of distin-

guishing whether it has been coupled directly with σ, or it has been coupled with σ′, with

Single-response decorator acting as an interface. We prove this by induction.

Let us assume

τ(α,σ) = ((i1,r1), . . .)

τ(α,δ) = ((i ′1,r ′
1), . . .)

i j = i ′j ,r j = r ′
j ∀ j ≤ n

137

Chapter 3. Sieve

We start by noting that, since α is a deterministic algorithm, we immediately have

in+1 = i ′n+1

and we need to prove that rn+1 = r ′
n+1.

Let us assume that in+1 = (Byzantine,π). Since procedure sr ad v.B y zanti ne(π) forwards

the call to s y s.B y zanti ne(π), bcad v is a Byzantine-counting adversary, and σ′ is an identical

copy of σ, with a minor abuse of notation we effectively have rn+1 = r ′
n+1.

Let us assume that in+1 = (State). We start by noting that, since all calls to sr ad v.Del i ver (. . .)

and sr ad v.Echo(. . .) are respectively forwarded to s y s.Del i ver (. . .) and s y s.Echo(. . .), a cor-

rect process π delivered m∗ in σ if and only if it delivered m∗ in σ′ as well. As we proved,

throughout the first phase, sr ad v.St ate() always returns the same value as s y s.St ate(). Let

us assume n > ∣∣η(α,σ)
∣∣. Let m∗ be the only message that was delivered by at least one correct

process in σ. Noting that a correct process delivers a message only as a result of a call to

s y s.Del i ver (. . .), we have n < w . Therefore, by definition, no correct process in σ delivered

a message other than m∗. Since α is a non-redundant adversary, it never causes any correct

process to pb.Deliver m∗ throughout the second phase. As a result, no correct process delivers

m∗ in σ throughout the second phase. Therefore, all the processes that delivered m∗ in σ

are represented in cache, and no other process delivered a message m ̸= m∗. Consequently,

rn+1 = r ′
n+1.

Noting that procedures Del i ver (. . .) and Echo(. . .) never return a value, we trivially have that

if in+1 = (Deliver,π,m) or in+1 = (Echo,π, s,ξ,m) then rn+1 = ⊥ = r ′
n+1. By induction, we

have that, for every n ≤ w , τ(α,σ)n = τ(α,δ)n .

Consistency of σ′. We proved that, for all n ≤ w , τ(α,σ)n = τ(α,δ)n . Moreover, we proved

that if a correct process π eventually delivers a message m in σ before the w-th invocation,

then π also delivers m in σ′ before the w-th invocation.

Since α compromises the consistency of σ after the w-th invocation, two correct processes π,

π′ and two distinct messages m, m′ ̸= m exist such that, in σ, π delivered m and π′ delivered

m′ before the w-th invocation. Therefore, in σ′, π delivered m and π′ delivered m′ before the

w-th invocation. Therefore α′ compromises the consistency of σ′.

Consequently, the adversarial power of α is equal to the adversarial power of α′ =∆sr (a), and

the lemma is proved.

138

3.11 Decorators

3.11.8 Two-phase adversary

Lemma 27. The set of two-phase adversaries At p is optimal.

Proof. We again prove the result using a decorator. Here we show that a decorator ∆t p exists

such that, for every α ∈Asm , the adversary α′ =∆t p (α) is a two-phase adversary, and more

powerful than α. If this is true, then the lemma is proved: let α∗ be an optimal adversary, then

the sequential α+ =∆t p (α∗) is optimal as well.

Decorator. Algorithm 14 implements Two-phase decorator, a decorator that transforms a

state-polling adversary into a two-phase adversary. Provided with a state-polling adversary

spad v , Two-phase decorator acts as an interface between spad v and a system s y s, effectively

implementing a single-response adversary t pad v . Two-phase decorator exposes both the

adversary and the system interfaces: the underlying adversary spad v uses t pad v as its

system.

Two-phase decorator works as follows:

• Procedure t pad v.Ini t () initializes a i nvocati ons variable: at any time, i nvocati ons

counts the number of invocations issued by spad v .

• Procedure compati ble(i nvocati ons) returns a set of systems σ that satisfy the follow-

ing properties:

– For every correct process π, the number of Byzantine processes in π’s first echo

sample is identical in σ and s y s.

– The length
∣∣η(α,σ)

∣∣ of the first phase when α is coupled with σ is equal to

i nvocati ons.

• Procedure t pad v.Step() simply forwards the call to spad v.Step().

• Procedure t pad v.B y zanti ne(pr ocess) increments i nvocati ons, then returns an

array of count elements, count being the number of elements returned from

s y s.B y zanti ne(pr ocess). The array is filled with ⊥ values: since spad v is Byzantine-

counting, the content of the array is irrelevant.

• Procedure t pad v.St ate() increments i nvocati ons. It then returns an empty set if

s y s.St ate() is empty. If s y s.St ate() is not empty, the procedure returns, among all the

possible responses that are compatible with the trace exchanged between spad v and

t pad v , the one that maximizes the probability of spad v compromising the consistency

of s y s. This is achieved as follows:

– The procedure loops over every system σ in the set compati ble(i nvocati ons).

In doing so, the procedure loops over every system σ such that: σ has the same

139

Chapter 3. Sieve

Algorithm 14 Two-phase decorator.
1: Implements:
2: TwoPhaseAdversary + CobSystem, instance tpadv
3:

4: Uses:
5: StatePollingAdversary, instance spadv, system tpadv
6: CobSystem, instance sys
7:

8: procedure tpadv.Init() is
9: i nvocati ons = 0;

10: spad v.Ini t ();
11:

12: procedure compatible(i nvocati ons) is
13: s y stems =;;
14:

15: for all σ ∈S do
16: match = True;
17: for all π ∈ΠC do
18: if

∣∣σ.B y zanti ne(π)
∣∣ ̸= ∣∣s y s.B y zanti ne(π)

∣∣ then
19: match = False;
20: end if
21: end for
22:

23: if match = True and
∣∣η(α,σ)

∣∣= i nvocati ons then
24: s y stems ← s y stems ∪ {σ};
25: end if
26: end for
27:

28: return s y stems;
29:

30: procedure tpadv.Step() is
31: spad v.Step();
32:

33: procedure tpadv.Byzantine(pr ocess) is
34: i nvocati ons ← i nvocati ons +1;
35: count = s y s.B y zanti ne(pr ocess);
36: return {⊥}count ;
37:

140

3.11 Decorators

38: procedure tpadv.State() is
39: i nvocati ons ← i nvocati ons +1;
40:

41: if s y s.St ate() ̸= ; then
42: outcomes =;;
43: for all σ ∈ compati ble(i nvocati ons) do
44: (i nvocati on,r esponse) = τ(α,σ)i nvocati ons ;
45: outcomes ← outcomes ∪{(

r esponse,τ(α,σ)
)}

;
46: end for
47:

48: best .r esponse =⊥; best .compr omi ssi ons = 0;
49:

50: for all (r esponse, f ul l tr ace) ∈ outcomes do
51: compr omi ssi ons = 0;
52:

53: for all σ ∈ compati ble(i nvocati ons) do
54: if f ul l tr ace ↘σ then
55: compr omi ssi ons ← compr omi ssi ons +1;
56: end if
57: end for
58:

59: if compr omi ssi ons > best .compr omi ssi ons then
60: best .r esponse ← r esponse;
61: best .compr omi ssi ons = compr omi ssi ons;
62: end if
63: end for
64:

65: return best .r esponse;
66: else
67: return ;;
68: end if
69:

70: procedure tpadv.Sample(pr ocess,messag e) is
71: raise error;
72:

73: procedure tpadv.Deliver(pr ocess,messag e) is
74: i nvocati ons ← i nvocati ons +1;
75: s y s.Del i ver (pr ocess,messag e);
76:

77: procedure tpadv.Echo(pr ocess, sample, sour ce,messag e) is
78: i nvocati ons ← i nvocati ons +1;
79: s y s.Echo(pr ocess, sample, sour ce,messag e);
80:

81: procedure tpadv.End() is
82: s y s.End();
83:

141

Chapter 3. Sieve

Byzantine count as s y s; when α is coupled with σ, it concludes the first phase in

exactly i nvocati ons invocations.

– For every process σ in compati ble(i nvocati ons), the procedure stores in a

set outcome a (r esponse, f ul l tr ace) pair, r esponse being the St ate() of σ at

the end of the first phase (r esponse is extracted from τ(α,σ)i nvocati ons), and

f ul l tr ace being τ(α,σ), the full trace exchanged between α and σ.

– For every (r esponse, f ul l tr ace) in outcomes, the procedure loops over every

systemσ in compati ble(i nvocati ons), and counts the number of systems whose

consistency is compromised by f ul l tr ace. The procedure returns the value of

r esponse that maximizes the number of systems in compati ble(i nvocati ons)

whose consistency is compromised by f ul l tr ace.

• Procedure t pad v.Sample(pr ocess,messag e) is never called. This is due to the fact

that spad v is sample-blind.

• Procedure t pad v.Del i ver (pr ocess,messag e) increments i nvocati ons, then for-

wards the call to s y s.Del i ver (pr ocess,messag e).

• Procedure t pad v.Echo(pr ocess, sample, sour ce,messag e) increments

i nvocati ons, then forwards the call to s y s.Echo(pr ocess, sample, sour ce,messag e).

• Procedure t pad v.End() simply forwards the call to s y s.End().

Correctness. Here we prove that every adversary, coupled with Two-phase decorator:

• Has a well-defined behavior. An adversary has undefined behavior if, at any point, the

sequence of invocations and responses it exchanges with t pad v is incompatible with

every system.

• Is Byzantine-counting and single-response.

We start by noting that, since i nvocati ons is incremented every time spad v issues an invoca-

tion, when t pad v.St ate() is invoked and s y s.St ate() ̸= ; we have i nvocati ons = ∣∣η(α,σ)
∣∣.

Every invocation of a procedure in t pad v is always forwarded to the corresponding procedure

in s y s, except for t pad v.St ate(). Whenever s y s.St ate() =;, t pad v.St ate() returns ; as well.

Therefore, up to the (
∣∣η(α, s y s)

∣∣−1)-th invocation, the trace exchanged between spad v and

t pad v is trivially compatible with s y s.

Procedure compati ble(i nvocati ons) returns all systems σ such that the condition∣∣σ.B y zanti ne(π)
∣∣= ∣∣s y s.B y zanti ne(π)

∣∣ holds for all π ∈ΠC , and
∣∣η(α,σ)

∣∣= i nvocati ons =∣∣η(σ, s y s)
∣∣. It is immediate to see that compati ble(i nvocati ons) is non-empty, as it includes

s y s. Every system σ ∈ compati ble(i nvocati ons) is compatible with the first n −1 elements

142

3.11 Decorators

of the trace exchanged between spad v and t pad v . Procedure t pad v.St ate() then returns a

response r esponse, such that

τ(α,σ)i nvocati ons = ((State),r esponse)

for some σ ∈ compati ble(i nvocati ons). Therefore, the first n elements of the trace ex-

changed between spad v and t pad v is compatible with σ. Due to Lemma 15, the entire trace

exchanged between spad v and t pad v is compatible with σ.

It is easy to see that t pad v always implements a Byzantine-counting and single-response ad-

versary. Indeed: whenever t pad v invokes s y s.B y zanti ne(π), it invokes
∣∣s y s.B y zanti ne(π)

∣∣;
t pad v.St ate() returns a non-empty set if and only if s y s.St ate() returns a non-empty set,

and spad v is a single-response adversary.

Two-phase. It is immediate to see that Two-phase decorator always implements a two-phase

adversary. Indeed, whenever t pad v invokes s y s.St ate(), it invokes (s y s.St ate() ̸= ;).

System partitioning. Let α be a state-polling adversary, let σ be a system. Let us denote with

S ∗ the set of non-poisoned systems. We denote with α∼ the two conditions ∀π ∈ΠC ,∀m ∈M ,

|{n ∈ 1..E |σ[π][m][n] ∈ΠC }| = ∣∣{n ∈ 1..E |σ′[π][m][n] ∈ΠC
}∣∣

and ∣∣η(α,σ)
∣∣= ∣∣η(α,σ′)

∣∣
It is immediate to see that α∼ is an equivalence relation, and we can use α∼ to partition S ∗:

S [α]1, . . . ,S [α]h = S
α∼

Let i ∈ 1..h. Due to Lemma 14, we have

∀σ,σ′ ∈S [α]i ,∀n < ∣∣η(α,σ)
∣∣, τ(α,σ)n = τ(α,σ′)n

Moreover, since σ is not poisoned, η(α,σ) includes at least one call to Del i ver (. . .). Therefore,

for every i ∈ 1..h, let σ ∈S [α]i , we can define a function δ[α]i : M ×1..(
∣∣η(α,σ

∣∣) by

π ∈ δ[α]i (m,n)
de f⇐==⇒∃ j < n | τ(α,σ) j = ((Deliver,π),⊥)

Intuitively, δ[α]i (m,n) represents the set of correct processes that α causes to pb.Deliver m

before the n-th invocation, when α is coupled with any σ ∈S [α]i .

143

Chapter 3. Sieve

We additionally define π[α]i : M →P(ΠC), π−[α]i : M →P(ΠC) by, let σ ∈S [α]i ,

π[α]i (m) = δ[α]i (m,
∣∣η(α,σ)

∣∣)
π−[α]i (m) = δ[α]i (m,

∣∣η(α,σ)
∣∣−1))

Intuitively, π[α]i (m) represents the set of correct processes that α causes to pb.Deliver m

throughout the first phase, when α is coupled with any σ ∈ S [α]i . Noting that α is a state-

polling adversary, andσ is not poisoned, thenπ−[α]i (m) represents the set of correct processes

thatα causes to pb.Deliver m throughout the first phase whenα is coupled with anyσ ∈S [α]i ,

excluding the last invocation to Del i ver (. . .) in η(α,σ).

Finally, we define m(α)i by, let σ ∈S [α]i

τ(α,σ)|η(α,σ)| = ((Deliver,π ∈ΠC ,m),⊥)

Intuitively, m(α)i is the last message that α causes a correct process to pb.Deliver throughout

the first phase, whenα is coupled with anyσ ∈S [α]i . Noting thatα is a state-polling adversary,

and that σ is not poisoned, m is the only message delivered by at least one correct process at

the end η(α,σ).

Let σ,σ′ ∈S [α]i . We can prove that α∼ can be equivalently restated as ∀π ∈ΠC ,∀m ∈M

|{n ∈ 1..E |σ[π][m][n] ∈ΠC }| = ∣∣{n ∈ 1..E |σ′[π][m][n] ∈ΠC
}∣∣

and

∄ π ∈ΠC |
|{n ∈ 1..E |σ[π][m(α)i][n] ∈ (π−[α]i (m(α)i)∪ (Π\ΠC)))}| ≥ Ê

∃ π ∈ΠC |
|{n ∈ 1..E |σ[π][m(α)i][n] ∈ (π[α]i (m(α)i)∪ (Π\ΠC)))}| ≥ Ê

∄ m ̸= m(α)i ,π ∈ΠC |
|{n ∈ 1..E |σ[π][m][n] ∈ (π[α]i (m)∪ (Π\ΠC))}| ≥ E

Indeed, we are restating the condition
∣∣η(α,σ)

∣∣= ∣∣η(α,σ′)
∣∣ with the following conditions:

• No correct process has, in its echo sample for m(α)i , at least Ê processes that are either

Byzantine, or pb.Deliver m(α)i as a result of any invocation of Del i ver (. . .) in η(α,σ)

except the last. This encodes the condition that no correct process delivers m(α)i before

the last invocation of Del i ver (. . .) in η(α,σ).

• At least one correct process has, in its echo sample for m(α)i , at least Ê processes that

are either Byzantine, or pb.Deliver m(α)i throughout the first phase when α is coupled

with σ. This encodes the condition that at least one correct process delivers m(α) after

144

3.11 Decorators

the last invocation of Del i ver (. . .) in η(α,σ).

• No correct process has, in its echo sample for m ̸= m(α)i , at least Ê processes that are

either Byzantine, or pb.Deliver m throughout the first phase when α is coupled with σ.

This encodes the condition that no message is delivered before m(α)i .

Let σ,σ′ ∈S [α]i . We denote with m∼ the condition ∀π ∈ΠC ,

σ[π][m(α)i] =σ′[π][m(α)i]

Again, m∼ is an equivalence relation, and can be used to partition S [α]i :

S [α]i
1, . . .S [α]i

l =
S [α]i

m∼

Let σ̄ ∈ S [α]i , let τ = τ(α, σ̄). For any σ ∈ S [α]i , τ compromises the consistency of σ if τ

causes at least one correct process to deliver a message m′ ̸= m(α)i throughout the second

phase. Since this condition is independent from the echo sample for m(α)i of any correct

process, we finally have that, for every j ∈ 1..l ,

P
[
τ↘

(
σ ∈S [α]i

j

)]
=P [τ↘ (σ ∈S [α]i)]

Adversarial power. Here we prove that α′ =∆t p (α) is more powerful than α. Let σ̄ denote a

random system in S .

Let us assume that σ̄ is poisoned. Since both α and α′ are auto-echo adversaries, both

compromise σ̄.

Let us assume that σ̄ is not poisoned. For some i , j , we therefore have σ ∈ S [α]i
j .

When t pad v.St ate() is invoked and s y s.St ate() ̸= ;, the procedure returns a response

best .r esponse such that the trace τ∗ that α issues as a result of best .r esponse satisfies

τ∗ = argmax
τ

P [τ↘ (σ ∈S [α]i)]

As we proved in the previous section, we therefore have

P
[
τ∗ ↘ (σ ∈S [α]i)

]≥P [τ↘ (σ ∈S [α]i)] =P
[
τ↘

(
σ ∈S [α]i

j

)]
which proves that, if σ is not poisoned, then the probability of α′ compromising σ is greater or

equal to the probability of α compromising σ.

The adversarial power of α′ is therefore greater or equal to the adversarial power of α, and the

lemma is proved.

145

4 Contagion

In this chapter, we present in detail the probabilistic reliable broadcast abstraction and

discuss its properties. We then present Contagion, an algorithm that implements probabilistic

reliable broadcast, and evaluate its security and complexity as a function of its parameters.

The probabilistic reliable broadcast abstraction allows the entire set of correct processes

to agree on a single message from a potentially Byzantine designated sender. Probabilistic

reliable broadcast is a strictly stronger abstraction than probabilistic consistent broadcast:

in the case of a Byzantine sender, while probabilistic consistent broadcast only guarantees

that every correct process that delivers a message delivers the same message (consistency),

probabilistic reliable broadcast also guarantees that either no or every correct process delivers

a message (totality).

4.1 Interface

The probabilistic reliable broadcast interface (instance pr b, sender σ) exposes the following

two events:

• Request:
〈

pr b.Broadcast | m
〉

: Broadcasts a message m to all processes. This is only

used by σ.

• Indication:
〈

pr b.Deliver | m
〉

: Delivers a message m broadcast by process σ.

For any ϵ ∈ [0,1], we say that probabilistic reliable broadcast is ϵ-secure if:

1. No duplication: No correct process delivers more than one message.

2. Integrity: If a correct process delivers a message m, and σ is correct, then m was

previously broadcast by σ.

3. ϵ-Validity: If σ is correct, and σ broadcasts a message m, then σ eventually delivers m

with probability at least (1−ϵ).

147

Chapter 4. Contagion

4. ϵ-Totality: If a correct process delivers a message, then every correct process eventually

delivers a message with probabiity at least (1−ϵ).

5. ϵ-Consistency: Every correct process that delivers a message delivers the same message

with probability at least (1−ϵ).

4.2 Algorithm

Algorithm 15 implements Contagion. Let π be a correct process, let m be a message. Contagion
securely distributes a single message across the system as follows:

• Initially, probabilistic consistent broadcast consistently distributes the same message to

a subset of the correct processes.

• π can issue a Ready message for more than one message. π issues a Ready message m

when either:

– π receives m from probabilistic consistent broadcast, or

– π collects enough Ready messages for m from its ready sample.

• π delivers m if m is the first message for which π collected enough Ready messages

from its delivery sample.

A correct process collects Ready messages from two randomly selected samples, the ready

sample of size R, and the delivery sample of size D . A correct process issues a Ready message

for m upon collecting R̂ Ready messages for m from its ready sample, and it delivers m upon

collecting D̂ Ready messages for m from its delivery sample. We discuss the values of the four

parameters of Contagion in Sections 4.4, 4.9 and 4.10.

Sampling. Upon initialization (line 12), a correct process randomly selects a ready sample

R of size R, and a delivery sample D of size D. Samples are selected with replacement by

repeatedly callingΩ (Algorithm 2, line 4).

Publish-subscribe. Like Sieve, Contagion uses publish-subscribe to reduce its communica-

tion complexity. This is achieved by having each correct process send Ready messages only to

its ready subscription set (lines 32 and 50), and accept Ready messages only from its ready

and delivery samples (lines 40 and 43).

Consistent broadcast. The designated sender σ initially broadcasts its message using proba-

bilistic consistent broadcast (line 27). When message m is pcb.Delivered (correctly signed by

σ) (line 29), a correct process sends a Ready message for m (line 33) to all the processes in its

ready subscription set.

148

4.2 Algorithm

Algorithm 15 Contagion
1: Implements:
2: ProbabilisticReliableBroadcast, instance prb
3:

4: Uses:
5: AuthenticatedPointToPointLinks, instance al
6: ProbabilisticConsistentBroadcast, instance pcb
7:

8: Parameters:
9: R: ready sample size R̂: contagion threshold

10: D : delivery sample size D̂ : delivery threshold
11:

12: upon event
〈

pr b.Init
〉

do
13: r ead y =;; del i ver ed = False; R̃ =;;
14:

15: R = sample(ReadySubscribe,R);
16: D = sample(ReadySubscribe,D);
17:

18: r epl i es.r ead y = {;}R ; r epl i es.del i ver y = {;}D

19:

20: upon event
〈

al .Deliver |π, [ReadySubscribe]
〉

do
21: for all (messag e, si g natur e) ∈ r ead y do
22: trigger

〈
al .Send |π, [Ready,messag e, si g natur e]

〉
;

23: end for
24: R̃ ← R̃∪ {π};
25:

26: upon event
〈

pr b.Broadcast | messag e
〉

do ▷ only process σ
27: trigger

〈
pcb.Broadcast | [Send,messag e, si g n(messag e)]

〉
;

28:

29: upon event
〈

pcb.Deliver | [Send,messag e, si g natur e]
〉

do
30: if ver i f y(σ,messag e, si g natur e) then
31: r ead y ← r ead y ∪{

(messag e, si g natur e)
}
;

32: for all ρ ∈ R̃ do
33: trigger

〈
al .Send | ρ, [Ready,messag e, si g natur e]

〉
;

34: end for
35: end if
36:

149

Chapter 4. Contagion

37: upon event
〈

al .Deliver |π, [Ready,messag e, si g natur e]
〉

do
38: if ver i f y(σ,messag e, si g natur e) then
39: r epl y = (messag e, si g natur e);
40: if π ∈R then
41: r epl i es.r ead y[π] ← r epl i es.r ead y[π]∪{

r epl y
}
;

42: end if
43: if π ∈D then
44: r epl i es.del i ver y[π] ← r epl i es.del i ver y[π]∪{

r epl y
}

45: end if
46: end if
47:

48: upon exists messag e such that |{ρ ∈R | (messag e, si g natur e) ∈ r epl i es.r ead y[ρ]}| ≥ R̂
do

49: r ead y ← r ead y ∪{
(messag e, si g natur e)

}
;

50: for all ρ ∈ R̃ do
51: trigger

〈
al .Send | ρ, [Ready,messag e, si g natur e]

〉
;

52: end for
53:

54: upon exists messag e such that |{ρ ∈ D | (messag e, si g natur e) ∈
r epl i es.del i ver y[ρ]}| ≥ D̂ and del i ver ed = False do

55: del i ver ed ← True;
56: trigger

〈
pr b.Deliver | messag e

〉
;

57:

Contagion. Upon collecting R̂ Ready messages for a message m (line 48), a correct process

sends a Ready message for m (line 51) to all the nodes in its ready subscription set.

Delivery. Upon collecting D̂ Ready messages for a message m for the first time, (line 54), a

correct process delivers m (line 56).

4.3 No duplication and integrity

We start by verifying that Contagion satisfies both no duplication and integrity.

Theorem 10. Contagion satisfies no duplication.

Proof. A message is delivered (line 56) only if the variable del i ver ed is equal to False (line 54).

Before any message is delivered, del i ver ed is set to True. Therefore no more than one

message is ever delivered.

Theorem 11. Contagion satisfies integrity.

Proof. Upon receiving a Ready message, a correct process checks its signature against the

150

4.4 Validity

public key of the designated sender σ (line 38), and the (messag e, si g natur e) pair is added

to the r epl i es.del i ver y variable only if this check succeeds. Moreover, a message is delivered

only if it is represented at least D̂ times in r epl i es.del i ver y (line 54).

If σ is correct, it only signs messag e when broadcasting (line 27). Since we assume that

cryptographic signatures cannot be forged, this implies that the message was previously

broadcast by σ.

4.4 Validity

We now compute, given D and D̂, the ϵ-validity of Contagion. To this end, we prove one

preliminary lemma.

Lemma 28. In an execution of Contagion, if pcb satisfies total validity and the sender has no

more than D − D̂ Byzantine processes in its delivery sample, then prb satisfies validity.

Proof. Let m be the message broadcast by the correct sender σ. Since pcb satisfies total

validity, every correct process eventually issues a Ready(m) message (i.e., a Ready message

for m) (line 33).

By hypothesis, σ has no more than D − D̂ Byzantine processes in its echo sample. Obviously,

σ has at least D̂ correct processes in its echo sample. Therefore, σ eventually receives at least

D̂ Ready(m) messages (line 37), and delivers m (line 56).

Lemma 28 allows us to bound the ϵ-validity of Contagion, given D and D̂ .

Theorem 12. Contagion satisfies ϵv -validity, with

ϵv ≤ ϵpcb
v +

(
1−ϵpcb

v

)
ϵo

ϵo =
D∑

F̄=D−D̂+1

Bin
[
D, f

](
F̄

) (4.1)

if the underlying abstraction of pcb satisfies ϵpcb
v -total validity.

Proof. We compute a bound on ϵv by assuming that, if the total validity of the underlying

pcb instance is compromised, the validity of prb is compromised as well. Following from

Lemma 28, the validity of prb can be compromised only if the total validity of pcb is compro-

mised as well, or if σ has more than D − D̂ Byzantine processes in its delivery sample.

Since procedure sample independently picks D processes with replacement, each element of

a correct process’ echo sample has an independent probability f of being Byzantine, i.e., the

number of Byzantine processes in a correct delivery sample is binomially distributed.

151

Chapter 4. Contagion

Therefore, σ has a probability ϵo of having more than D −D̂ Byzantine processes in its delivery

sample.

4.5 Adversarial execution

In this section, we define the model underlying an adversarial execution of Contagion. Here,

a Byzantine adversary is an agent that acts upon a system with the goal to compromise its

consistency and / or totality. The main goal of this section is to formalize the information

available to the adversary, and the set of actions that it can perform on the system throughout

an adversarial execution.

Throughout the rest of this section, we bound the probability of compromising the consis-

tency and totality of Contagion by assuming that, if the consistency of the pcb instance used

in Contagion is compromised, then both the consistency and the totality of Contagion are

compromised as well. In what follows, therefore, we assume that Sieve satisfies consistency.

4.5.1 Model

Let π be any correct process. We make the following assumptions about an adversarial

execution of Contagion:

• As we established in Section 1.3, the adversary does not know which correct processes

are in π’s ready or delivery samples. The adversary knows, however, which Byzantine

processes are in π’s ready sample, and which Byzantine processes are in π’s delivery

sample.

• At any time, the adversary knows the set of messages for which π sent a Ready message.

• At any time, the adversary knows if π delivered a message. If π delivered a message, then

the adversary knows which message did π deliver.

• The adversary can arbitrarily cause π to pcb.Deliver a given message m∗. Since we

assume that the underlying pcb instance satisfies consistency, the adversary cannot

cause two correct processes to pcb.Deliver two different messages.

Throughout an adversarial execution of Contagion, an adversary performs a sequence of

minimal operations on the system. Each operation consists of either of the following:

• Selecting a correct process that did not pcb.Deliver m∗ and causing it to pcb.Deliver m∗.

• Selecting a Byzantine process and causing it to issue a Ready message to a correct

process.

152

4.6 Epidemic processes

As a result of each operation, zero or more processes send a Ready message and/or deliver

a message. The adversary is successful if, at the end of the adversarial execution, either the

consistency or the totality of the system is compromised.

4.6 Epidemic processes

In the next sections, we compute bounds for the ϵ-consistency and ϵ-totality of Contagion. In

order to do so, in this section we study the feedback mechanism produced by Ready messages

in an execution of Contagion.

As we discussed in Section 4.2, a correct process issues a Ready message for a message m after

either pcb.Delivering m (line 33) or collecting at least R̂ Ready(m) messages from its ready

sample (line 51). We formalize this observation in the following definition.

Definition 29 (Ready, E-ready, R-ready). Let π be a correct process, let m be a message.

Throughout an execution of Contagion, π is E-ready for m if π eventually pcb.Delivers m; π is

R-ready for m if π eventually receives at least R̂ Ready(m) messages from its ready sample; π

is ready for m if π is either E-ready or R-ready for m.

We note how a correct process can simultaneously be E-ready and R-ready for the same

message.

It is easy to observe that the R-ready condition creates a feedback process: as a result of a

correct process being R-ready for a message m, it issues a Ready(m) message that might cause

other correct processes to become R-ready for m as well.

Intuitively, this feedback process is designed to have two stable configurations:

• Few processes are ready: the fraction of correct processes that are E-ready for a message

m is significantly smaller than R̂/R . As a result, the probability of a correct process being

R-ready for m becomes very small, and the set of processes that are ready for m is, with

high probability, nearly identical to the set of processes that are E-ready for m.

• All processes are ready: the fraction of correct processes that are E-ready for a message

m is not significantly smaller than R̂/R. As a result, a correct process that is not E-

ready for m has a significant probability of becoming R-ready for m. If this happens,

the probability of a correct process becoming R-ready for m further increases, and

eventually every correct proces is ready for m.

In this section, we show that the R-ready feedback mechanism is isomorphic to an epidemic

process as we define it in Section 4.11. In summary, an epidemic process depends on one

parameter (contagion threshold R̂) to mimic the spread of a disease in a population:

153

Chapter 4. Contagion

• A population is represented on the nodes of a directed multigraph, allowing multi-edges

and loops. Intuitively, an a → b edge represents the relation a can infect b.

• Each member of the population (or node) can be in either of two states: healthy or

infected. An infected node stays infected: there is no cure for the infection.

• A set of nodes is initially infected. The epidemic process evolves in steps. At every step,

all the nodes that have at least R̂ infected predecessors become infected as well. The

process is completed when either all nodes are infected, or no healthy node has at least

R̂ infected predecessors.

We refer the reader to Section 4.11 for a more formal discussion of epidemic processes. In

this section, we prove the critical result that the R-ready feedback mechanism in Contagion is

isomorphic to an epidemic process.

Definition 30 (Adversarial execution). A adversarial execution (or just execution) is the

sequence of events produced by an execution of Contagion on N processes, a fraction f of

which are under the control of the adversary described in Section 4.5.1. For the sake of brevity,

we omit a more formal definition.

Let x, x ′ be executions. We say that x is equivalent to x ′ (x = x ′) if:

• The sequences of messages exchanged are identical in x and x ′.

• The values produced by each correct, local source of randomness are identical in x and

x ′.

Definition 31 (Ready sample matrix). A ready sample matrix is an element of the set

J = (
ΠR)ΠC

Definition 32 (Ready sample matrix of an execution). Let x be an execution, let j be a ready

sample matrix. j is x’s sample matrix if, for every correct process π, π’s ready sample in x is

jπ.

Definition 33 (Random ready sample matrix). A random ready sample matrix is a random

variable representing the sample matrix of a random execution.

Lemma 29. Random sample matrices are uniformly distributed. More formally, if j is a random

sample matrix, then

P
[

j̄
]= (

1

N

)RC

Proof. As we discussed in Section 1.3, the adversary has no control over the local source of

randomness of each correct process. Each correct process independently selects with uniform

probability R elements for its ready sample.

154

4.6 Epidemic processes

Lemma 30. Let j be a ready sample matrix. Let x, x ′ be executions of Contagion such that:

• No Byzantine process issues any Ready message in x or x ′.

• The ready sample matrix of both x and x ′ is j .

Let ρE ,ρ′
E denote the set of correct processes that are E-ready for m in x, x ′ respectively. Let ρ, ρ′

denote the set of correct processes that are ready for m in x, x ′ respectively.

We have (
ρE = ρ′

E

) =⇒ (
ρ = ρ′)

Proof. Let us assume ρE = ρ′
E . Let π be a correct process. As we established, π is ready for m if

π is either E-ready or R-ready for m. Since ρE = ρ′
E , we immediately have that π is E-ready for

m in x if and only if π is E-ready for m in x ′.

By definition, π is R-ready for m in x (x ′) if it eventually receives at least R̂ Ready(m) messages

from its ready sample in x (x ′). By hypothesis, no Byzantine process issues any Ready message

in x (x ′). Therefore, π is eventually R-ready for m in x (x ′) if π receives at least R̂ Ready(m)

messages from the correct processes in its ready sample in x (x ′).

As we discussed in Section 1.3, we assume that every message is eventually delivered in an

unbounded but finite amount of time. Therefore, π is eventually R-ready for m in x (x ′) if at

least R̂ correct processes in π’s sample eventually issue a Ready(m) message in x (x ′), i.e., if at

least R̂ correct processes in π’s sample are eventually ready for m in x (x ′).

Since the above condition does not depend on the network scheduling, a correct process π

is eventually ready for m in x if and only if π is also eventually ready for m in x ′. Therefore,

ρ = ρ′.

Lemma 31. Let x be an execution of Contagion where no Byzantine process ever issues any

Ready message. Let j be x’s ready sample matrix. Let m be a message, let ρE denote the set of

correct processes that are E-ready for m in x. Let ρ denote the set of correct processes that are

eventually ready for m in x.

Let s0 = ((v,e), w0) be a contagion state (as defined in Definition 35), with

v = ΠC(
π,π′) ∈ e ⇐⇒ π ∈ jπ′

w0 = ρE

Let s∞ = ((v,e), w∞) be the contagion state resulting from the epidemic process with input s0.

We have

ρ = w∞

155

Chapter 4. Contagion

Proof. Following from Lemma 30, ρ does not depend on x’s network scheduling. Without loss

of generality, we can therefore make a synchrony assumption for x, and assume that every

message delay is unitary.

Let ρt denote the set of correct processes that are ready for m in x at time t . We have

ρ0 = w0 = ρE

In x, a correct process that is not ready for m at time t becomes ready for m at time t +1 if at

least R̂ processes in its ready sample are ready for m at time t . Therefore

π ∈ ρt+1 ⇐⇒ (
π ∈ ρt ∨ ∣∣ jπ∩Rt

∣∣≥ R̂
)

As we discuss in Section 4.11, at step t +1, all the healthy nodes in an epidemic process that

have at least R̂ predecessors infected at time t become infected. Therefore

π ∈ wt+1 ⇐⇒ (
π ∈ wt ∨ ∣∣ jπ∩wt

∣∣≥ R̂
)

Therefore, if ρt = wt , then ρt+1 = wt+1, and, by induction, for all t , ρt = wt . In Section 4.11, we

prove that an epidemic process identically converges in a finite number of steps. Consequently,

ρ∞ = w∞, which proves the lemma.

Lemma 32. Let m be a message. Let x be an execution of Contagion where every Byzan-

tine process sends a Ready(m) message to every correct process from which it received a

ReadySubscribe message. Let j be x’s ready sample matrix. Let ρE denote the set of correct

processes that are E-ready for m in x. Let ρ denote the set of correct processes that are eventually

ready for m in x.

Let s0 = ((v,e), w0) be a contagion state (as defined in Definition 35), with

v = Π(
π,π′) ∈ e ⇐⇒ (

π′ ∈ΠC
)∧ (

π ∈ jπ′
)

w0 = ρE ∪ (Π\ΠC)

Let s∞ = ((v,e), w∞) be the contagion state resulting from the epidemic process with input s0.

We have

ρ = w∞ \ (Π\ΠC)

Proof. It follows immediately from Lemma 31 and the observation that, in x, a Byzantine

process sends the same Ready messages as a correct process that is E-ready for m.

156

4.7 Threshold contagion (overview)

4.7 Threshold contagion (overview)

As we discussed in the previous section, in Section 4.11 we introduce epidemic processes, an

abstract model of the feedback mechanism produced by Ready messages in an execution of

Contagion. Given the multigraph on which it occurs, an epidemic process is deterministic. In

Section 4.11, we also generalize epidemic processes to the probabilistic setting: we introduce

and analyze Threshold Contagion, a game where a player infects in rounds arbitrary subsets of

a population, causing a sequence of epidemic processes on a random, unknown multigraph.

Threshold Contagion depends on six parameters: node count N , sample size R, link

probability l , round count K , infection batch S, and contagion threshold R̂.

In summary, a game of Threshold Contagion is played as follows:

• A random multigraph with N nodes is generated. The number of predecessors of each

node follows a Bin[R, l] distribution. Each predecessor of a node is independently

picked with uniform probability from the set of nodes.

The topology of the network is not disclosed to the adversary.

• For K rounds:

– The player infects an arbitrary set of S healthy nodes.

– An epidemic process with contagion threshold R̂ is ran on the resulting contagion

state.

We refer the reader to Section 4.11 for a more formal discussion of Threshold Contagion. There

we introduce the random variable

γ(N ,R, l ,K ,S, R̂)

representing the number of nodes that are infected at the end of a game of Threshold Conta-

gion. We then prove that, by arbitrary choosing which nodes to infect, the adversary has no

way to bias γ. Finally, we analitically compute the probability distribution underlying γ.

In this section, we prove the critical result that a game of Threshold Contagion can be used to

model two classes of adversarial executions of Contagion.

Lemma 33. Let m∗ be a message. Let x be an adversarial execution of Contagion where:

• No Byzantine process issues any Ready message.

• For K rounds:

– The adversary selects, if possible, S correct process that are not ready for m∗, and

causes them to pcb.Deliver m∗.

157

Chapter 4. Contagion

– The adversary waits until every resulting Ready message is delivered.

Let ρ denote the number of correct processes in σ that, at the end of the adversarial execution,

are ready for m. We have

P
[
ρ̄
]=P

[
γ(C ,R,1− f ,K ,S, R̂) = ρ̄]

Proof. We start by defining a function g : J →G (see Definition 39 for a definition of G) by

g(j)i ,k =
ζ−1

(
jζ(i),k

)
iff jζ(i),k ∈ΠC

⊥ otherwise

We start by noting that, for every ḡ ∈G ,

P
[
ḡ
]=P

[
g−1(g)

]
Indeed, following from Lemmas 41 and 42:

P
[
ḡ
] = ∏

i ,k
P

[
ḡi ,k

]
P

[
gi ,k =⊥] = (1− l) = f

P
[
gi ,k = (

ḡi ,k ∈ 1..C
)] = 1

C

and following from Definition 33 and Lemma 29 we have

P
[

j̄
] = ∏

π,k
P

[
j̄π,k

]
P

[
jπ,k ∈Π\ΠC

] = f

P
[

jπ,k = (
π̄′ ∈ΠC

)] = 1

C

We now build from x a game of Threshold Contagion y , played on g(j). At the beginning of

each round, if the adversary causes a correct process π to pcb.Deliver m∗, then ζ(π) is infected.

We can prove that, if π is eventually ready for m∗ in x, then ζ(π) is eventually infected in y .

Indeed, following from Lemma 31, if π is ready for m∗ at the end of a round in x, then ζ(π) is

infected at the end the same round in y .

Therefore, the following hold true:

• The probability of j̄ is identical to the probability of g(j̄).

• The number of correct processes that are eventually ready for m∗ in x is identical to the

158

4.8 Preliminary lemmas

number of nodes that are eventually infected in y .

Lemma 34. Let m be a message. Let x be an adversarial execution of Contagion where:

• No correct process pcb.Delivers m.

• Every Byzantine process sends a Ready(m) message to every correct process from which it

received a ReadySubscribe message.

Let ρ denote the number of correct processes in σ that, at the end of the adversarial execution,

are ready for m. We have

P
[
ρ̄
]=P

[
γ(N ,R,0,1, N −C , R̂) = ρ̄+ (N −C)

]

Proof. The proof is similar to the proof of Lemma 33, using Lemma 32 instead of Lemma 31.

4.8 Preliminary lemmas

In order to compute an upper bound for the probability of the consistency of Contagion being

compromised, we will make use of some preliminary lemmas. The statements of those lemmas

are independent from the context of Contagion. For the sake of readability, we therefore gather

them in this section, and use them throughout the rest of this section.

Lemma 35. Let N ,K ∈N such that K ∈ 0..N . Let X be a random variable defined by

P
[

X̄
]= Bin

[
N , p

](
X̄

)
We have that

P [X ≥ K]

is an increasing function of p.

Proof. We expand

P [X ≥ K] =
N∑

X̄=K

Bin
[
N , p

](
X̄

)
159

Chapter 4. Contagion

and take the derivative

∂

∂p

N∑
X̄=K

(
N

X̄

)
p X̄ (1−p)N−X̄

=
N∑

X̄=K

(
N

X̄

)(
p X̄ (

1−p
)N−X̄

)(X̄

p
− N − X̄

1−p

)

= 1

p(1−p)︸ ︷︷ ︸
≥1

N∑
X̄=K

Bin
[
N , p

](
X̄

)
(X̄ −pN)

≥
N∑

X̄=K

Bin
[
N , p

](
X̄

)
(X̄ −pN)

We now prove that, for every K ∈ [0, N],

N∑
X̄=K

Bin
[
N , p

](
X̄

)
(X̄ −pN) ≥ 0 (4.2)

We start by noting that Equation (4.2) holds true for every K > pN . Indeed, if K > pN , then

every term of the sum in Equation (4.2) is positive.

We prove that Equation (4.2) holds true for every K < pN by induction. For K = 0 we have

N∑
X̄=0

Bin
[
N , p

](
X̄

)
(X̄ −pN)

=
N∑

X̄=0

X̄ Bin
[
N , p

](
X̄

)
︸ ︷︷ ︸

=pN

−pN
N∑

X̄=0

Bin
[
N , p

](
X̄

)
︸ ︷︷ ︸

=1

= 0

Let us assume that Equation (4.2) holds true for some K < pN . We have

N∑
X̄=K+1

Bin
[
N , p

](
X̄

)
(X̄ −pN)

=
N∑

X̄=K

Bin
[
N , p

](
X̄

)
(X̄ −pN)︸ ︷︷ ︸

≥0 by IH

−Bin
[
N , p

]
(K)(K −pN)

≥ 0

which proves that Equation (4.2) holds true for K +1 as well. By induction, Equation (4.2)

holds true for every K < pN . This proves that the derivative is positive for all p ∈ [0,1] which

proves the lemma.

160

4.9 Consistency

4.9 Consistency

In this section, we compute a bound on the ϵ-consistency of Contagion. As we discussed in

Section 4.5.1, here we bound the probability of compromising the consistency of Contagion by

assuming that, if the consistency of the pcb instance used in Contagion is compromised, the

consistency of Contagion is compromised as well.

Let m∗ denote the only message that any correct process can pcb.Deliver. We start by noting

that, simply by having every Byzantine process behave like a correct process, an adversary

can cause any correct process to deliver m∗: indeed, with f = 0, Contagion satisfies validity

deterministically 1.

As we discussed in Section 4.2, a correct process can issue a Ready message for an arbitrary

number of messages. In other words, causing a correct process to become E-ready for m∗

does not affect its behavior with respect to a message m ̸= m∗.

Therefore, if an adversary can cause at least one correct process π to eventually receive at

least R̂ Ready messages for a message m ̸= m∗, it can also compromise the consistency of

Contagion.

Indeed, as we discussed in Section 1.3, the adversary has arbitrary control over the network

scheduling. Even if πwould eventually receive enough Ready(m∗) messages to deliver m∗, the

adversary can slow those messages down, and cause π to first receive enough Ready(m) mes-

sages to deliver m. Every other correct process will eventually deliver m∗, thus compromising

the consistency of the system.

We formalize the above intuition in the following lemma.

Lemma 36. Let m∗ denote the only message that any correct process can pcb.Deliver. An optimal

adversary causes every Byzantine process to send a Ready(m) message, for some m ̸= m∗, to

every correct process from which it received a ReadySubscribe message.

Proof. Let B denote the number of Byzantine processes that eventually issue a Ready(m)

message. Let π be a correct process, let Q denote the number of Ready(m) messages that

π eventually collects. Since π picks each element of its delivery sample independently, Q is

binomially distributed:

P
[
Q̄

]= Bin

[
D,

B

N

](
Q̄

)
Following from Lemma 35,

P
[
Q ≥ D̂

]= D∑
Q̄=D̂

P
[
Q̄

]
1Here we are slightly abusing the result of Theorem 12, as it only guarantees that a correct sender will eventually

deliver its message. The result, however, independently holds for any other correct process as well.

161

Chapter 4. Contagion

is an increasing function of B , and maximized by B = (N −C). Therefore, the probability of π

eventually receiving enough Ready(m) messages to deliver m is maximized if every Byzantine

process issues a Ready(m) message.

As we previously established, the adversary can cause every correct process to also receive

at least D̂ Ready(m∗) messages. Since the adversary has control over network scheduling,

it can cause π to deliver m, and every other process to deliver m∗, thus compromising the

consistency of the system.

Lemma 37. Let m∗ denote the only message that any correct process can pcb.Deliver, let m ̸= m∗.

If, throughout an optimal adversarial execution, no correct process eventually collects enough

Ready(m) messages to deliver m, then no correct process eventually collects enough Ready(m)

messages to deliver any message m′ ̸= m.

Proof. Following from Lemma 36, the optimal adversary causes every Byzantine process to

issue a Ready(m) message. In Lemma 32, we use the fact that this strategy makes the Byzantine

processes behave identically to correct processes that are E-ready for m to show that the set of

correct processes that are eventually ready for m only depends on the ready sample matrix of

the execution.

Since a correct process does not change its ready or delivery samples throughout an execution,

the set of processes that will eventually be ready for m′ is at most the same as the set of

processes that will eventually be ready for m. In turn, this means that if no correct process

eventually delivers m, no correct process eventually delivers m′ either.

We can now use Lemma 36 to compute a bound on the ϵ-consistency of Contagion.

We introduce the random variable γ+ by

P
[
γ̄+

]=P
[
γ(N ,R,0,1, N −C , R̂) = γ̄+]

Following from Lemmas 34 and 36, γ+ represents the number of processes (Byzantine or

correct) that eventually issue a Ready message for a message m ̸= m∗, when an optimal

adversary is trying to compromise the consistency of the system.

We can finally compute a bound for the ϵ-consistency of Contagion. We define

µ =
N∑

γ̄+=N−C

(
1− (

1− µ̃(γ̄+)
)C

)
P

[
γ̄+

]
µ̃(γ̄+) =

D∑
D̄=D̂

Bin

[
D,

γ̄+

N

](
D̄

)

162

4.10 Totality

Theorem 13. Contagion satisfies ϵc -consistency, with

ϵc ≤ ϵpcb
c +

(
1−ϵpcb

c

)
µ

if the underlying abstraction of pcb satisfies ϵpcb
c -consistency.

Proof. We start by noting that µ̃(γ̄+) represents the probability that a specific correct process

will eventually collect enough Ready(m) messages to deliver m, given the number γ̄+ of

processes that eventually issue a Ready(m) message.

Indeed, since every correct process picks its delivery sample independently, each of the D

elements of a correct process’ delivery sample has a probability γ̄+/N of issuing a Ready(m)

message.

We then note that µ represents the probability of any correct process eventually collecting

enough Ready(m) messages to deliver m. µ is obtained by applying the law of total probability

to µ(γ̄+).

Finally, ϵc is obtained by the assumption that, if the consistency of the underlying pcb instance

is compromised, the totality of Contagion is compromised as well.

4.10 Totality

In this section, we compute a bound on the ϵ-totality of Contagion. As we discussed in

Section 4.5.1, here we bound the probability of compromising the totality of Contagion by

assuming that, if the consistency of the pcb instance used in Contagion is compromised, the

consistency of Contagion is compromised as well.

4.10.1 Minimal operations

Let m∗ be the only message that any correct process can pcb.Deliver. As we discussed in

Section 4.5.1, throughout an execution of Contagion, an adversary performs a sequence of

minimal operations on the system, i.e., it either causes a correct process to pcb.Deliver m∗, or

it causes a Byzantine process to send an arbitrary Ready(m) message to a correct process.

We further relax the bound by assuming that, if the adversary can cause any message m ̸= m∗

to be delivered by at least one correct process, the totality of Contagion is compromised as

well.

Under the assumption that no correct process can eventually collect enough Ready(m) mes-

sages to deliver any message m different from m∗, causing a Byzantine process to send a

Ready(m) message has no effect on the totality of the system.

163

Chapter 4. Contagion

This reduces the set of adversarial operations that have a non-null effect on the totality of the

system to:

• Causing an arbitrary correct process to pcb.Deliver m∗.

• Causing a Byzantine adversary to send a Ready(m∗) message to a correct process.

We now prove a lemma to further reduce the set of minimal operations of an optimal adversary.

Lemma 38. Let m∗ be the only message that any correct process can potentially pcb.Deliver. Let

π be a correct process, let ξ be a Byzantine process in π’s ready sample. An optimal adversary

never causes ξ to send a Ready(m∗) message to π.

Proof. As a result of receiving a Ready(m∗) message from ξ, π can either:

• Have collected less than R̂ Ready(m∗) messages from its ready sample. The operation

has no effect.

• Have collected exactly R̂ Ready(m∗) messages from is ready sample. Then π becomes

ready for m∗. However, the same outcome could have been achieved deterministically

by causing π to pcb.Deliver m∗.

Since every outcome of ξ’s Ready(m∗) message to π can be deterministically emulated by

causing π to pcb.Deliver (or not pcb.Deliver) m∗, the operation is useless to an optimal

adversary.

4.10.2 Delivery probability

Let γ− denote the random variable counting the number of correct processes that are even-

tually ready for m∗. In this section, we study the probability of totality being compromised,

given the value of γ−.

By definition, totality is compromised if at least one correct process delivers m∗ and one

correct process does not deliver m∗.

Let π be a correct process. We introduce the following events:

• Aπ: process π delivers m∗.

• A: all correct processes deliver m∗.

• Ã: no correct process delivers m∗.

• T : the totality of the system is compromised.

164

4.10 Totality

Given γ̄−, the probability of Aπ is bound by

α−
π(γ̄−) ≤P

[
Aπ | γ̄−

]≤α+
π(γ̄−)

with

α−
π(γ̄−) =

D∑
D̄=D̂

Bin

[
D,

γ̄−

N

](
D̄

)
α+
π(γ̄−) =

D∑
D̄=D̂

Bin

[
D,

γ̄−+ (N −C)

N

](
D̄

)

The lower bound is attained when none of the Byzantine processes issue a Ready(m∗) message,

and the upper bound is attained when all Byzantine processes issue a Ready(m∗) message.

Noting that each correct process independently picks its delivery sample, we can compute,

given γ̄−, a lower bound for the probability of A:

P
[

A | γ̄−]≥ (
α−(γ̄−)

)C

and a lower bound for the probability of Ã:

P
[

Ã | γ̄−]≥ (
1−α+(γ̄−)

)C

The above allow us to compute, given γ̄−, an upper bound for the probability of T :

P
[
T | γ̄−] = P

[
�A,��̃A | γ̄−

]
≤ 1−P

[
A | γ̄−]−P

[
Ã | γ̄−]

≤ α(γ̄−)

with

α(γ̄−) = 1− (
α−(γ̄−)

)C − (
1−α+(γ̄−)

)C

4.10.3 C-step Threshold Contagion

Due to Lemma 38, the minimal set of operations for an optimal adversary reduces to

• Causing an arbitrary correct process to pcb.Deliver m∗.

• Causing a Byzantine process ξ in the delivery sample of a correct process π to send a

Ready(m∗) message to π.

It is immediate to see that the latter operation has no effect over which correct processes

eventually become Ready for m∗. In the previous section, we computed an upper bound

165

Chapter 4. Contagion

on the probability of compromising the totality of the system, given the number of correct

processes that are eventually ready for m∗.

In this section, we prove a final constraint on the optimal adversarial strategy, and finally

compute a bound on the ϵ-totality of Contagion.

Lemma 39. Let m∗ denote the only message that any correct process can pcb.Deliver. An optimal

adversary executes in C rounds. At every round, the adversary causes one correct process to

pcb.Deliver m∗, then waits until all the resulting Ready messages are delivered.

Proof. Due to Lemma 31, the outcome of the execution is not affected by network scheduling:

causing one correct process at a time to pcb.Deliver m∗ has the same effect, e.g., as causing

any set of correct processes to simultaneously pcb.Deliver m∗.

Following from Lemma 39, we can intuitively see an adversarial execution whose goal is to

compromise the totality of Contagion as a game similar to blackjack. The game unfolds in

C rounds. At every round, the adversary causes one more correct process to pcb.Deliver m∗.

With high probability, this will have two possible negative outcomes for the player:

• Nothing happens: no correct process is able to deliver m∗, even if the Byzantine pro-

cesses in its delivery sample issue a Ready(m∗) message. The only possible move is to

play again.

• The execution is busted: a feedback loop is generated that eventually causes, with high

probability, every correct process to deliver m∗, even if no Byzantine process issues any

Ready(m∗) message. The adversary fails in compromising the totality of the system.

If the adversary is lucky enough, however, one of the rounds will result in a configuration

where no feedback loop occurred, but at least one correct process can deliver m∗. In that case,

the adversary causes that process to deliver m∗, and stops: totality is compromised.

Following from Lemma 33, the probability distribution underlying the number of correct

processes that are ready for m∗ at the end of the n-th step is

P
[
γ̄−n

]=P
[
γ(C ,R,1− f ,C ,1, R̂)

]
We can finally compute a bound on the ϵ-totality of Contagion.

Theorem 14. Contagion satisfies ϵt -totality, with

ϵt ≤ ϵpcb
c +µ+ϵb

ϵb =
C∑

n=0

C∑
γ̄−n=0

P
[
γ−n

]
α(γ̄−n)

166

4.11 Threshold Contagion

if the underlying abstraction of pcb satisfies ϵpcb
c -consistency.

Proof. Let Tn denote the event of totality being compromised at the end of round Tn .

Under the assumption that the consistency of pcb is satisfied, and no message other than m∗

can be delivered by any correct process, the probability of Tn with n > 1 is

P [Tn] =
C∑

γ̄−n=0
P

[
Tn | γ̄−n

]
P

[
γ̄−n |���Tn−1

]

Indeed, the adversary will proceed to round n only if round n −1 was unsuccessful in compro-

mising the totality of the system. We can use the law of total probability to get

P [Tn] ≤
C∑

γ̄−n=0
P

[
Tn | γ̄−n

](
P

[
γ̄−n |���Tn−1

]+P
[
γ̄−n | Tn−1

])
=

C∑
γ̄−n=0

P
[
Tn | γ̄−n

]
P

[
γ̄−n

]

We can use Boole’s inequality to get

P [T] ≤
C∑

n=0
P [Tn]

and since

P
[
Tn | γ̄−n

]≤α(γ−n)

we have that ϵb bounds the probability of compromising totality, if the consistency of pcb is

satisfied, and no message other than m∗ can be delivered by any correct process.

The value provided for ϵt follows from applying again Boole’s inequality to include ϵpcb
c and µ

(which, in Section 4.9, we proved to bound the probability of any correct process delivering a

message other than m∗).

4.11 Threshold Contagion

In this section we discuss epidemic processes, mimicking the spread of a disease in a population,

and the Threshold Contagion game, which gives a player the possibility to actively infect parts

of a population.

As we discuss in Section 4.2, in Contagion, when a correct process receives enough Ready
messages from its ready sample for the same message m, it issues itself a Ready message for

m. This produces a feedback mechanism that, in Section 4.7, we showed to be isomorphic to

an epidemic process as we define it below.

167

Chapter 4. Contagion

Threshold Contagion is a game where a player iteratively applies the epidemic process to

chosen inputs. We use Threshold Contagion for modeling and analyzing our Contagion
algorithm.

4.11.1 Epidemic processes

An epidemic process models the spreading of a disease in a population.

Preliminary definitions

Definition 34 (Directed multigraph). A directed multigraph is a pair g = (v,e), where v is a

set and e : v2 →N is a multiset whose elements are pairs of elements of v . We call the elements

of v the vertices (or nodes) of g . We call the elements of e the edges of g .

Following from Definition 34, a directed multigraph allows self-loops (let a ∈ v , (a, a) can be

an element of e) and multiple edges (let a,b ∈ v , the multiplicity of (a,b) in e can be greater

than one).

Contagion state

The spreading of a disease is represented by a contagion state.

Definition 35 (Contagion state). A contagion state is a pair s = (g , w), where g = (v,e) is a

multigraph and w ∈P(v). We call the elements of w the infected nodes of s.

Let s = ((v,e), w) be a contagion state. In an epidemic process:

• Each node in v corresponds to one individual member of the population.

• A node is always in one of two possible states: healthy or infected. We do not consider

any cure—once a node becomes infected, it stays infected forever. The set w represents

the nodes that are infected.

• Edges model interactions between the members of the population. The multiset of

edges e represents the "can infect" relation. Note that this relation is not symmetric. A

directed edge (a → b) between nodes a and b means that a can infect b, but not that b

can infect a.

Definition 36 (Predecessors). Let g = (v,e) be a multigraph, let a ∈ v . Then the predecessors

of a in g form the multiset p[a] : v →N defined by

p[a](x ∈ v) = e(x, a)

168

4.11 Threshold Contagion

Following from Definition 36, the predecessors of a node a in a multigraph g form the multiset

of nodes that have an edge to a. If a node has multiple edges to a, then it has a multiplicity

greater than one in p[a].

Contagion rule

In an epidemic process, the infection of healthy nodes follows a single rule.

• Contagion rule: A healthy node becomes infected if the number of its infected prede-

cessors reaches a critical threshold.

The input to an epidemic process is a contagion state s. The epidemic process repeatedly

applies the contagion rule to s until either all nodes are infected or no healthy node has enough

infected predecessors to become infected itself. The epidemic process outputs the resulting

contagion state.

4.11.2 Threshold Contagion

Threshold Contagion is a game played on the nodes of a random directed multigraph g .

Threshold Contagion consists of one or more rounds. Each round inputs a contagion state

s and outputs a contagion state s′. The input to the first round is the contagion state (g ,;),

i.e., the contagion state with no infected nodes whose multigraph is g . The input to any other

round is the output of the previous round.

A round with input s is played as follows:

• The player infects a fixed-size subset of the healthy nodes of the contagion state s. This

results in a contagion state s′.

• The contagion state s′ is provided as input to an epidemic process. The output s′′ of the

epidemic process is returned.

4.11.3 Rules

In this section, we formally define the rules of Threshold Contagion and introduce its

parameters.

Threshold Contagion is played on the nodes of a random, directed multigraph g = (v,e). The

in-degree of each node n in v is independently binomially distributed; each predecessor of n

is uniformly picked with replacement from v .

169

Chapter 4. Contagion

Parameters

A game of Threshold Contagion depends on the following numerical parameters:

• Node count (N ∈N): Represents the number of nodes in the multigraph (N = |v |).

• Sample size (R ∈N): Represents the maximum in-degree of a node in the multigraph.

• Link probability (l ∈ [0,1]): Represents the probability of a predecessor link being

successfully established. The in-degree of a node follows the distribution Bin[R, l].

• Round count (K ∈N>0): Represents the number of rounds in the game.

• Infection batch ((S < N) ∈N>0): Represents the number of healthy nodes the player

infects at the beginning of each round.

• Contagion threshold ((R̂ ≤ R) ∈N): Represents the number of infected predecessors

that will cause an healthy node to become infected (see Contagion rule).

Game

A game of Threshold Contagion is played as follows:

• A random, directed multigraph g = (v,e) with N nodes is built. For every node n in v :

– R times:

* A Bernoulli random variable B̄ ← Bern[l] is sampled.

* If B̄ = 1, then a random node m is selected with uniform probability from v ,

and the edge m → n is added to e (i.e., m is added to the predecessors of n).

• Let s = (g , w =;) be a contagion state. For K rounds:

– If at least S nodes in v are healthy (i.e., they are not in the set of infected nodes w),

the player selects S distinct nodes and infects them. The player cannot inform this

choice with knowledge of the topology of g .

– An epidemic process is run on s: until either every node in v is infected (i.e.,

v = w), or no healthy node in v has at least R̂ infected predecessors, the following

contagion step is iterated:

* Every node in v with at least R̂ infected predecessors is infected, i.e., it is added

to w .

Figure 4.1 shows an example game of Threshold Contagion with small parameters.

170

4.11 Threshold Contagion

(1) (2)

(3) (4)

(5) (6)

Figure 4.1: An example game of Threshold Contagion. Here N = 11, l = 1, R = 3, R̂ = 2, K = 1
and S = 3. Notice how nodes can be linked to themselves, form loops, or be linked more than
once. An initial set of S nodes (1) is infected by the player (2). The game then unfolds in
contagion steps (3 to 6): whenever a node has at least R̂ infected predecessors, it becomes
infected. This example shows how easily a game of Threshold Contagion can converge to a
fully-infected configuration.

171

Chapter 4. Contagion

4.11.4 Random variables

We introduce the following random variables, which we discuss in more formal detail in the

next sections:

• Infection size N r
i : represents the number of infected nodes at round r and step i .

• Frontier size U r
i : represents the number of nodes that are infected at round r and step

i , but are not infected at round r and step i −1.

• Infection status W r
i [j]: represents whether or not the j -th node is infected at round r

and step i . We use W r
i [j] to signify that the node is infected, and

���W r
i [j] to signify that

the node is not infected.

• Infected predecessors count V r
i [j]: represents the number of predecessors of the j -th

node that are infected at round r and step i .

Remark: for the sake of readability, the round number and/or the node index (for W and V)

will be omitted whenever it can be unequivocally inferred from the context.

4.11.5 Goal

The goal of this section is to compute the probability distribution underlying the number of

infected nodes at the end of a game of Threshold Contagion.

Lemma 40. For any r , the random variables N r
i , U r

i , W r
i [j], and V r

i converge in a finite number

of steps.

Proof. We note the following:

• N r
i is a non-decreasing function of i , and N r

i ≤ N .

• U r
i>0 = N r

i −N r
i−1.

• For any j , W r
i [j] =⇒ W r

i+1[j].

• V r
i is a non-decreasing function of i and V r

i ≤ R.

From the above follows that all random variables converge for i →∞.

The codomains of N , U , W and V are all finite. Therefore, all random variables converge in a

finite number of steps.

Corollary 2. All rounds terminate in a finite number of contagion steps.

172

4.11 Threshold Contagion

Notation 10 (End of round). We use N r∞, U r∞, W r∞[j], V r∞ to denote the values of N , U , W , V

at the end of round r .

The goal of this section is to compute the probability distribution underlying the random

variable

γ(N ,R, l ,K ,S, R̂) = N K
∞ (4.3)

i.e., the probability of a game of Threshold Contagion resulting in N̄ K∞ nodes ultimately being

infected. Lemma 40 proves that Γ is a well defined variable (i.e., the limit exists) and, since K

is finite, can be computed in a finite total number of steps.

4.11.6 Sample space

In this section, we define a sample space for Threshold Contagion, i.e., the set of all possible

outcomes of a Threshold Contagion game. As we described in Section 4.11.2, the outcome of a

game of Threshold Contagion is completely determined by two factors:

1. The topology of the random multigraph g on which Threshold Contagion is played. The

probability distribution underlying g is known, and we compute it in this section.

2. The player’s infection strategy, i.e., the nodes the player chooses to infect at the beginning

of each round. The probability distribution underlying the player’s choices is unknown

and arbitrary. In this section, we only formalize their sample space.

Thus, an element of the sample space is a pair consisting of a multigraph (1.) and an infection

strategy (2.).

Multigraph

As discussed in Section 4.11.3, a game of Threshold Contagion is played on the nodes of a multi-

graph g = (v,e) allowing multi-edges and loops. Every node in v has at most R predecessors.

Therefore, g can be represented by a predecessor matrix as we define it below.

We start by explicitly labeling the elements of v .

Notation 11 (Vertices). Let g = (v,e) be a multigraph, with |v | = N . Without loss of generality,

we label the elements of v using natural numbers:

v = 1..N

Since every node in g has at most R predecessors, for every j ∈ v we can represent the elements

of p
(

j
)

as the components of a predecessor vector.

173

Chapter 4. Contagion

Definition 37 (Predecessor vector). A predecessor vector is an element of the set

R = ({⊥}∪ v)R

In a multigraph g = (v,e), whose in-degree is bound by R, we use a predecessor vector to

represent the predecessors of a node. Let r ∈R be the predecessor vector of a node j ∈ v . If

rk =⊥, we say that the k-th predecessor of j is missing.

As discussed in Section 4.11.3, the predecessors of each node in v are generated by indepen-

dently sampling R times a value B̄ from a Bernoulli variable; whenever B̄ = 1, an additional

predecessor is uniformly picked with replacement from the elements of v . We call a vec-

tor of predecessors selected this way a random predecessor vector, as formally defined in

Definition 38.

Definition 38 (Random predecessor vector). A random predecessor vector is a predecessor

vector generated by the procedure described in Section 4.11.3.

Let r be a random predecessor vector. For every k ∈ {1, . . . ,R}, B̄ ← Bern[l] is independently

sampled; if B̄ = 0, rk is set to ⊥, otherwise rk is set to an element of v , picked independently

with uniform probability.

Lemma 41. Let r be a random predecessor vector. Then

P [r̄] =
R∏

k=1
P [r̄k]

P [rk =⊥] = (1− l)

P [rk = (r̄k ∈ v)] = l

N

Proof. Following from Definition 38, each component of r is independently sampled. Each

component has a probability (1− l) of being missing. Each non-missing component of r has

an equal probability of being equal to any element of v .

As we discussed in Section 4.11.3, the multigraph g = (v,e) is constructed by independently

generating the predecessors for each node in v . Therefore, the topology of g is completely

determined by N predecessor vectors, that can be organized in a predecessor matrix.

Definition 39 (Predecessor matrix). A predecessor matrix is an element of the set

G =RN

Notation 12 (Predecessor matrix). Since a predecessor matrix uniquely identifies a multigraph,

we interchangebly use g to denote a predecessor matrix and its corresponding multigraph.

Let g be a predecessor matrix defining a multigraph (v,e), then g j is the predecessor vector of

node j ∈ v .

174

4.11 Threshold Contagion

Definition 40 (Random predecessor matrix). A random predecessor matrix is a predecessor

matrix representing the outcome of the multigraph generation process described in Sec-

tion 4.11.3. More formally, a random predecessor matrix consists of N independent random

predecessor vectors.

Lemma 42. Let g be a random predecessor matrix. Then

P
[
ḡ
]= N∏

j=1
P

[
ḡ j

]
(4.4)

Proof. It follows immediately from Definition 40.

Sub-threshold predecessor set

As discussed in Section 4.11.3, an epidemic process consists of a sequence of contagion steps.

Let s = ((v,e), w) be a contagion state. In a contagion step, a healthy node j ∈ v (j ∈ w)

becomes infected if at least R̂ of its predecessors are infected, i.e., if∣∣p(j
)∩w

∣∣≥ R̂

Given the set w , the set of predecessor vectors that do not satisfy the condition above is

uniquely defined. We define sub-threshold predecessor sets to capture this notion.

Definition 41 (Sub-threshold predecessor set). Let g be a predecessor matrix defining a

multigraph (v,e). Let X ⊆ v . The sub-threshold predecessor set of X is the set

R̃X = {
r ∈R | |{k ∈ 1..R | rk ∈ X }| < R̂

}
R̃X contains all the predecessor vectors in R that have less than R̂ components in X .

Figure 4.2 shows an example multigraph where the predecessors of three nodes are displayed,

two of which are in the sub-threshold predecessor set of a given set X .

Player’s strategy

As discussed in Section 4.11.3, at the beginning of each round of Threshold Contagion the

player selects, if possible, S distinct healthy nodes and infects them. These are the only K

choices the player makes throughout Threshold Contagion. Moreover, the player has no

knowledge of the topology of the multigraph g on which Threshold Contagion is played.

The player’s choices can be expressed in an infection strategy, as we formally define it in

this section. Together with the topology of the multigraph on which the game is played, an

infection strategy uniquely determines the outcome of an instance of Threshold Contagion.

175

Chapter 4. Contagion

1

2

4

5

3

6

7
v

X

Figure 4.2: An example multigraph g = (v,e) with 7 nodes. A subset X ⊆ v is highlighted.
Numbered dots represent the elements of v , and the edges to nodes 1, 2 and 3 are displayed.
With R = 3 and R̂ = 2, we have g1 ∉ R̃X , g2 ∈ R̃X , and g3 ∈ R̃X . Note how the predecessor
vector of node 2 is in the sub-threshold predecessor set of X even if node 2 is in X . Note how
node 3 has one missing predecessor (i.e., one of the elements in g3 is ⊥). The nodes whose
predecessor vectors are in R̃X are highlighted.

Let g = (v,e) be the multigraph on which Threshold Contagion is played. At the beginning

of round r , the player knows the value of W r ′
i [j] for every r ′ < r , every i ∈N and every j ∈ v ,

which we encode in an infection history. The player chooses a set of S of the nodes that are

healthy at the beginning of round r . We model this choice with an infection function. We call

infection strategy the sequence of choices the player makes throughout the game.

Definition 42 (Infection history). An infection history for round r > 0 is an element of the set

Hr =
((

{⊥,⊤}N)∞)r

An infection history is a table with three indices. The first represents the round, the second

represents the step, the third represents the node. Let h ∈Hr , then hr ′
i ′ [j] =⊤ signifies that

node j is infected at round r ′ and step i ′.

Notation 13 (Round and step order). Let r,r ′ be round numbers, let i , i ′ be step numbers. We

say that (r, i) < (r ′, i ′) if (r, i) temporally precedes (r ′, i ′). More formally

(r, i) < (r ′, i ′) ⇐⇒ (
r ′ > r

)∨ (r ′ = r ∧ i ′ > i)

Definition 43 (Valid infection history). A valid infection history for round r > 0 is an element

of the set

H ∗
r =

{
h ∈Hr | hr ′

i ′ [j] =⊤ =⇒ hr ′′
i ′′ [j] =⊤∀ (r ′′, i ′′) > (r ′, i ′)

}
A valid infection history is an infection history where a node is never healed. If a node is

176

4.11 Threshold Contagion

infected at round r ′ and step i ′, then it also infected at any subsequent round r ′′ and step i ′′.

Definition 44 (Incomplete infection history). An incomplete infection history for round r > 0

is an element of the set

H +
r = {

h ∈H ∗
r | ∣∣{ j ∈ 1..N | hr−1

∞ [j] =⊥}∣∣≥ S
}

An incomplete infection history is a valid infection history with at least S healthy nodes at the

end of round r −1.

Definition 45 (Infection function). An infection function for round r is an element of the set

Fr =
{

f : H +
r →PS({1..N }) | ∀x ∈ f (h),hr−1

∞ [x] =⊥}
An infection function is a function that inputs an incomplete infection history and outputs a

set of S nodes, all of which are healthy at the end of round r −1.

Definition 46 (Infection strategy). An infection strategy is an element of the set

F =P1..N (S)×
R−1∏
r=1

Fr

The first element of an infection strategy is a set of S nodes to infect at the beginning of round

0. Let r > 0, the r -th element of an infection strategy is an infection function for round r .

An infection strategy encodes all the choices a player makes during a game of Threshold

Contagion:

• At the beginning of round 0, the player has no information available. All nodes are

healthy, and its choice reduces to selecting S of them to infect.

• At the beginning of round r ≥ 1, the information available to the player is the propagation

of the infection throughout all previous rounds. Such information is input to the r -th

infection function, which returns a set of S healthy nodes to infect.

Sample space

In Section 4.11.6, we noticed how the outcome of a game of Threshold Contagion is completely

determined once both the topology of the multigraph and the strategy of the player are known.

In Section 4.11.6, we showed how a multigraph can be expressed with a predecessor matrix,

defined the space of predecessor matrices and derived the probability distribution underlying

random predecessor matrices.

177

Chapter 4. Contagion

In Section 4.11.6, we showed how the choices that a player makes at the beginning of each

round in response to the infection history can be encoded in infection strategies. We then

defined the space of infection strategies. Unlike random multigraphs, infection strategies are

under the control of the player. Therefore, a probability distribution over the space of infection

strategies is not available.

As we discussed in Section 4.11.6, an element of the sample space is a pair of a multigraph and

an infection strategy.

Definition 47 (Sample space). The sample space for Threshold Contagion is the setΩ=G×F .

Lemma 43. Let ω= (g , f) be a random element ofΩ. Then P
[
ḡ , f̄

]=P
[
ḡ
]
P

[
f̄
]
, i.e., g and f

are independent.

Proof. It immediately follows from the fact that the player has no knowledge of the topology

of the multigraph g .

4.11.7 Random variables as sample functions

In Section 4.11.4 we intuitively defined a set of random variables to capture useful properties

of a game of Threshold Contagion. In the next sections, we use those random variables to

compute the probability distribution underlying the number of infected nodes at the end of a

game.

In Section 4.11.6 we formally defined the sample space of a game of Threshold Contagion. We

started by showing that an instance of the game is completely determined once the topology

of the multigraph and the strategy of the player are known. We also computed the probability

of any specific multigraph topology occurring.

In this section, we rigorously re-define the random variables we defined in Section 4.11.4 by

expressing them as functions on the sample space as defined in Section 4.11.6.

Infection history

As discussed in Section 4.11.6, an infection function for round r inputs an incomplete infection

history for round r and outputs a set of S nodes to infect out of those that are healthy at the

end of round r −1.

We introduce two useful functions to manipulate infection histories.

Definition 48 (Sample history function). The sample history function for round r is the

function hr :Ω→H ∗
r defined by

(hr (ω))r ′
i [j] =W r ′

i [j](ω)

178

4.11 Threshold Contagion

The sample history function for round r inputs a sample ω and outputs the valid infection

history for round r produced by ω.

Note how the definition of sample history function relies on the definition of the infection

status W . We introduced W in Section 4.11.4, and we formally define it in the next section.

Definition 49 (Sample completion function). The sample completion function for round r is

the function cr :Ω→ {⊤,⊥} defined by

cr (ω) =
⊥ iff hr (ω) ∈H +

r

⊤ otherwise

The sample completion function for round r inputs a sample and outputs ⊤ if the infection

history of the sample is complete at round r , and ⊥ otherwise.

Infection status

As stated in Section 4.11.3, the infection status is defined as follows:

• At the beginning of the game, all the nodes are healthy.

• During the first step of each round, the player selects a set of S healthy nodes and infects

them.

• During every subsequent step, every healthy node that has at least R̂ infected predeces-

sors is infected.

• The infection state at the end of a round is carried without change to the beginning of

the next round.

In order to formalize the above in the definition of infection status, we preliminarly define

infection sets.

Definition 50 (Infection set). The infection set at round r and step i is the random variable

Ŵ r
i :Ω→P(1..N) defined by

Ŵ r
i (ω) = {

j ∈ 1..N |W r
i [j](ω) =⊤}

The infection set Ŵ r
i (ω) represents the set of nodes that are infected in ω at round r and step

i .

Like the sample history function, the definition of infection set relies on the definition of

infection status W , which we can now define by cases.

179

Chapter 4. Contagion

Definition 51 (Infection status). Let ω= (
g , f

) ∈Ω. The infection status for round r , step i

and node j is the random variable W r
i [j] :Ω→ {⊤,⊥} defined by

W 0
0 [j](ω) = ⊥ (4.5)

W r>0
0 [j](ω) = W r−1

∞ [j](ω) (4.6)

W 0
1 [j](ω) =

⊤ iff j ∈ f0

W 0
0 [j](ω) otherwise

(4.7)

W r>0
1 [j](ω) =

⊤ iff cr (ω) =⊥ ∧ j ∈ fr (hr (ω))

W r
0 [j](ω) otherwise

(4.8)

W r
i>1[j](ω) =

W r
i−1[j](ω) iff g j ∈ R̃Ŵ r

i−1(ω)

⊤ otherwise
(4.9)

The above equations encode the following properties:

• At the beginning of the game (Equation (4.5)), all nodes are healthy.

• The infection status at the beginning of round r > 0 (Equation (4.6)) is equal to the

infection status at the end of round r −1.

• During step 1 of round 0 (Equation (4.7)), all the nodes in f0 are infected. Intuitively, the

player selects S nodes and infects them. Note how this choice is not informed by any

history (following from Definition 46, f0 is a set and not a function).

• During step 1 of round r > 0 (Equation (4.8)), if ω is not complete (i.e., there are at least

S healthy nodes at the beginning of round r), all the nodes in fr (hr (ω)) are infected.

Intuitively, the player selects S healthy nodes and infects them. This choice is informed

by the infection history for round r (see Definition 48).

• During step i > 0 of any round r (Equation (4.9)), all the nodes whose predecessor vector

is not in the sub-threshold predecessor set (see Definition 41) of the infection set at step

i −1 are infected. In other words, the contagion rule (see Section 4.11.1) is applied, and

all the nodes that have at least R̂ infected predecessors are infected.

Following from Definition 51, we prove that nodes are never healed in a game of Threshold

Contagion.

Lemma 44. Let j ∈ 1..N , r,r ′ ∈ 1..K , i , i ′ ∈N, let ω ∈Ω. If (r ′, i ′) ≥ (r, i), then

W r
i [j](ω) =⊤ =⇒ W r ′

i ′ [j](ω)

Proof. Let r ′′ ∈ 1..K , i ′′ ∈N. Following from Equations (4.5) to (4.9), we have

W r ′′
i ′′+1[j](ω) ̸=W r ′′

i ′′ [j](ω) =⇒ W r ′′
i ′′+1[j](ω) =⊤ (4.10)

180

4.11 Threshold Contagion

The lemma is proved by induction on Equations (4.6) and (4.10).

Corollary 3. The infection set Ŵ r
i (ω) is non-decreasing in (r, i).

Infection size, frontier size and infected predecessors count

In Section 4.11.7, we defined the infection status W r
i [j] as a function on the sample space (see

Definition 51). We also defined the infection set Ŵ r
i as the set of nodes for which W r

i =⊤ (see

Definition 50).

As stated in Section 4.11.4, the infection size N r
i represents the number of infected nodes

at round r and step i , and the frontier size U r
i>0 represents the number of nodes that are

infected at round r and step i , but not at step i −1. We can formalize the above in the following

definitions.

Definition 52 (Infection size). The infection size for round r and step i is the random variable

N r
i :Ω→ 0..N defined by

N r
i (ω) = ∣∣Ŵ r

i (ω)
∣∣

The infection size counts the infected nodes at step (r, i).

Definition 53 (Frontier size). The frontier size for round r and step i is the random variable

U r
i :Ω→ 0..N defined by

U r
i>0(ω) = N r

i (ω)−N r
i−1(ω)

The infection size counts the nodes that are infected at step (r, i), but not at step (r, i −1).

As stated in Section 4.11.4, the infected predecessors count of node j for round r and step i

represents the number of predecessors of node j that are infected at round r and step i . We

can formalize this definition in the following.

Definition 54 (Infected predecessors count). Let ω= (g , f) ∈Ω. The infected predecessors

count of node j for round r and step i is the random variable V r
i [j] :Ω→ 0..R defined by

V r
i [j](ω) = ∣∣{k | (g j ,k

) ∈ Ŵ r
i (ω)

}∣∣
The infected predecessors count counts the number of predecessors of node j that are infected

at step (r, i).

Lemma 45. Let ω= (g , f) ∈Ω, let j ∈ 1..N , r ∈ 1..K , i ∈N. Then

g ∈ R̃Ŵ r
i [j] ⇐⇒V r

i [j](ω) ≤ R̂

Proof. It follows immediately from Definitions 41 and 54.

181

Chapter 4. Contagion

4.11.8 Contagion step

In Section 4.11.7, we expressed the random variables we introduced in Section 4.11.4 as

functions over the elements of the sample space we defined in Section 4.11.6. As we established

in Section 4.11.5, the goal of this section is to compute the distribution underlying N K∞ (see

Equation (4.3)).

Here we focus on the contagion steps of a round of Threshold Contagion. As per Equation (4.9),

at every step (r, i) such that i > 1, all the healthy nodes that have at least R̂ infected predeces-

sors become infected.

In this section, we show that a contagion step defines a Markov chain with states (N̄ r
i ,Ū r

i).

More formally, we show that a transition matrix M exists such that, for every (N̄ ,Ū), (N̄ ′,Ū ′)
and for every r ∈ 1..K , i ≥ 1,

M N̄ ′,Ū ′

N̄ ,Ū
=P

[
N r

i+1 = N̄ ′,U r
i+1 = Ū ′ | N r

i = N̄ ,U r
i = Ū

]
(4.11)

Intuitively, this means that, once the infection size and the frontier size at step (r, i) are

determined, no other knowledge is needed to compute the probability distribution underlying

the frontier size at step (r, i +1). This means, in particular, that the player’s infection strategy

does not affect the end result of the game. This result is somewhat unsurprising: since the

player has no knowledge of the multigraph on which Threshold Contagion is played, the player

has no way to meaningfully distinguish two nodes by the effect that their infection will have

on the system. Since the number of infected nodes per round is determined, every choice

of the player can be shown to be effectively equivalent to the infection of S random healthy

nodes.

Roadmap

Notation 14 (Markov states). We use
〈

N̄ r
i ,Ū r

i

〉
to denote the subset of the sample spaceΩ that

satisfies N r
i (ω ∈Ω) = N̄ r

i ,U r
i (ω ∈Ω) = Ū r

i .

Equivalently, 〈
N̄ r

i ,Ū r
i

〉= (
N r

i

)−1(N̄ r
i

)∩ (
U r

i

)−1(Ū r
i

)
In order to show that a infection step defines a Markov chain with states (N̄ r

i ,Ū r
i), we:

• Define a set of partition functions S r
i : Ω→ P(Ω) that map elements of Ω into well-

structured subsets ofΩ. Intuitively, S r
i maps a sampleω= (g , f) to a set of samples that

are similar to it (by a notion of similarity that we define later).

• Let ω′ ∈S r
i (ω). We show that ω and ω′ result in the same infection history up to step

(r, i).

182

4.11 Threshold Contagion

...

...

... ...

...

...

⟨4,4⟩
⟨3,2⟩

⟨5,1⟩
s1

s2

s3

Figure 4.3: An illustration of sample space and the steps needed to show that a contagion
step defines a Markov chain. The grey arrow represents a transition from a state to another.
One of the states is further partitioned by S r

i . The dark grey area represents a case that we
prove won’t happen.

• We show that S r
i can be used to define an equivalence relation on the sample spaceΩ.

• Let ω be equivalent to ω′ through S r
i . We show that, since N r

i (ω) = N r
i (ω′) and U r

i (ω) =
U r

i (ω′), then S r
i can be used to quotient

〈
N̄ r

i ,Ū r
i

〉
.

• Let r ∈ 1..K , i > 1. We use S r
i to partition

〈
N̄ r

i ,Ū r
i

〉
in s1, . . . , sq . We show that the

probability ofω being in
〈

N̄ r
i+1,Ū r

i+1

〉
given thatω is in sh is analitically computable and

independent of h.

• We use the independence across partitions to compute the terms of M N̄ ′,Ū ′

N̄ ,Ū

Partition functions

We start by defining a set of partition functions S r
i :Ω→ P(Ω) that map elements of Ω into

subsets ofΩ. Intuitively, a partition function maps a sample to a set of samples that are similar

to it.

Let ω= (g , f) ∈Ω, let ω′ = (g ′, f ′) ∈S r
i (ω). We define S r

i such that the following hold:

• f ′ = f , i.e., the player’s strategy is left unchanged by S r
i .

• Let j ∈ 1..N be a node. If j is infected in ω at step (r, i), then g ′
j = g j . In other words, the

predecessors of a node that is infected at step (r, i) in ω are left unchanged by S r
i .

• Let j ∈ 1..N be a node. If j is not infected in ω at step (r, i), then g ′
j is an element of the

sub-threshold predecessor set of Ŵ r
i−1(ω). In other words, the predecessors of a node

183

Chapter 4. Contagion

that is not infected at step (r, i) in ω can be changed by S r
i , as long as no more than R̂

of them are infected in ω′ at step (r, i −1). Intuitively, we allow the predecessors of j to

change in a way that does not make it infected in ω at step (r, i).

We formalize the above in the following definition.

Definition 55 (Partition function). Let r ∈ 1..K , i ≥ 1, letω= (g , f) ∈Ω. The partition function

for round r and step i is the function S r
i :Ω→P(Ω) defined by

S r
i (ω) =

(
N∏

j=1
S r

i [j](ω)

)
×{

f
}

(4.12)

S r
i [j](ω) =

{

g j
}

iff W r
i [j](ω) =⊤

R̃Ŵ r
i−1(ω) otherwise

(4.13)

Infection history

In Section 4.11.8 we defined a set of partitions functions that map a sample ω ∈Ω to a set of

samples that are similar to ω.

Let ω= (g , f) ∈Ω. We designed S r
i to leave unchanged the player’s strategy and the predeces-

sors of every node that is infected in ω at step (r, i). The predecessors of the nodes that are not

infected in ω at step (r, i) can change, as long as less than R̂ of them are among the nodes that

are infected in ω at step (r, i −1).

Intuitively, S r
i is designed to alter the topology of g in a way that does not affect its infection

history: since the predecessors of the nodes that are not infected in ω at step (r, i) are not

changed, they will still be infected in ω′. Similarly, if a node is not infected in ω at step (r, i), its

predecessors are not changed in a way that makes it infected in ω′ at step (r, i).

In this section, we formally prove this intuitive result.

Lemma 46. Let j ∈ 1..N , let ω,ω′ ∈Ω. If ω′ ∈S r
i (ω), then for every (r ′, i ′) ≤ (r, i)

W r ′
i ′ [j](ω′) =W r ′

i ′ [j](ω)

Proof. Let ω= (g , f) and ω′ = (g ′, f ′). We prove the lemma by induction. We start by noting

that, following from Equation (4.5),

W 0
0 [j](ω′) =⊥=W 0

0 [j](ω)

Now, assume that (r ′, i ′) < (r, i) and, for all j ∈ 1..N , Ŵ r ′
i ′ [j](ω′) = Ŵ r ′

i ′ [j](ω).

184

4.11 Threshold Contagion

If r ′ = 0 and i ′ = 0, then from Equation (4.7) it follows that, if j ∈ (
f0 = f ′

0

)
,

W 0
1 [j](ω′) =⊤=W 0

1 [j](ω)

and, otherwise,

W 0
1 [j](ω′) =W 0

0 [j](ω′) =W 0
0 [j](ω) =W 0

1 [j](ω)

If r ′ > 0 and i ′ = 0, then hr (ω′) = hr (ω). Following from Equation (4.8), if
(
cr (ω) = cr (ω′)

)=⊥
and j ∈ (

fr (hr (ω)) = f ′
r (hr (ω′))

)
, then

W r ′
1 [j](ω′) =⊤=W r ′

1 [j](ω)

and otherwise

W r ′
1 [j](ω′) =W r ′

0 [j](ω′) =W r ′
0 [j](ω) =W r ′

1 [j](ω)

We now consider the case i ′ ≥ 1. We start by noting that, since Ŵ r ′
i ′ (ω′) = Ŵ r ′

i ′ (ω), then

R̃Ŵ r ′
i ′ (ω′) = R̃Ŵ r ′

i ′ (ω).

If W r
i [j](ω) = ⊤, then g j = g ′

j . Following from Equation (4.9), if
(
g ′

j = g j

)
∈(

R̃Ŵ r ′
i ′ (ω′) = R̃Ŵ r ′

i ′ (ω)
)
, then

W r ′
i ′+1[j](ω′) =W r ′

i ′ [j](ω′) =W r ′
i ′ [j](ω) =W r ′

i ′+1[j](ω)

and otherwise

W r ′
i ′+1[j](ω′) =⊤=W r ′

i ′+1[j](ω)

If W r
i [j](ω) =⊥, then g ′

j ∈ R̃Ŵ r
i−1(ω). Noting that (r ′, i ′) ≤ (r, i −1), from Lemma 44 it follows

that Ŵ r ′
i ′ (ω) ⊆ Ŵ r

i−1(ω), and consequently, from Equation (4.9), we have

g ′
j ∈

(
R̃Ŵ r

i−1(ω) ⊆ R̃Ŵ r ′
i ′ (ω) = R̃Ŵ r ′

i ′ (ω′)
)

Moreover, since W r
i [j](ω) =⊥, from Lemma 44 it follows

W r ′
i ′+1(ω) =W r ′

i ′ (ω) =W r ′
i ′ (ω′) =⊥

and therefore

W r ′
i ′+1(ω′) =W r ′

i ′ (ω′) =W r ′
i ′+1(ω)

Finally, if i =∞, then following from Equation (4.6) we have

W r ′+1
0 [j](ω′) =W r ′

∞[j](ω′) =W r ′
∞[j](ω) =W r ′+1

0 [j](ω)

185

Chapter 4. Contagion

Corollary 4. Let ω,ω′ ∈Ω. If ω′ ∈S r
i (ω), then

N r
i (ω′) = N r

i (ω)

U r
i (ω′) =U r

i (ω)

Equivalence relation

In Section 4.11.8, we introduced a set of functions S r
i :Ω→P(Ω) that map a sample into a set

of similar samples. In Section 4.11.8, we proved that, if ω ∈Ω and ω′ ∈S r
i (ω), then ω and ω′

produce the same infection history (i.e., the same values for Ŵ r
i) up to round r and step i .

In this section, we show that S r
i can be used to define a equivalence relation onΩ.

Lemma 47. Let ω,ω′ ∈Ω. If ω′ ∈S r
i (ω), then S r

i (ω′) =S r
i (ω).

Proof. Let ω= (g , f), ω′ = (g ′, f ′). Following from Lemma 46, for every j we have

W r
i [j](ω′) =W r

i [j](ω)

W r
i−1[j](ω′) =W r

i−1[j](ω)

Following from Definition 55, if W r
i [j](ω) =⊤, then g ′

j = g j . Consequently,

S r
i [j](ω′) =

{
g ′

j

}
= {

g j
}=S r

i [j](ω)

If W r
i [j](ω) =⊥, then

S r
i [j](ω′) = R̃Ŵ r

i−1[j](ω′) = R̃Ŵ r
i−1[j](ω) =S r

i [j](ω)

Therefore,

S r
i (ω′) =

N∏
j=1

S r
i [j](ω′) =

N∏
j=1

S r
i [j](ω) =S r

i (ω)

Definition 56 (Partition relation). Let ω,ω′ ∈Ω. If ω′ ∈S r
i (ω), then ω′ has a partition relation

with ω at round r and step i :

ω′ (r,i)∼ ω

Lemma 48. (r,i)∼ is an equivalence relation.

186

4.11 Threshold Contagion

Proof. Let j ∈ 1..N , let ω ∈ Ω. Following from Equation (4.9), if W r
i [j](ω) = ⊥, then g j ∈

R̃Ŵ r
i−1(ω). Consequently, following from Definition 55, if W r

i [j](ω) =⊤, then

g j ∈
{

g j
}=S r

i [j](ω)

and if W r
i [j](ω) =⊥, then

g j ∈ R̃Ŵ r
i−1[j](ω) =S r

i [j](ω)

Therefore, ω ∈S r
i (ω), and

ω
(r,i)∼ ω

therefore
(r,i)∼ is reflexive.

Let ω′ ∈S r
i (ω). By Lemma 47, S r

i (ω′) =S r
i (ω). Consequently

ω ∈ (
S r

i (ω) =S r
i (ω′)

)
and

ω′ (r,i)∼ ω =⇒ ω
(r,i)∼ ω′

therefore
(r,i)∼ is symmetric.

Let ω′′ ∈S r
i (ω′). Again by Lemma 47,

ω′′ ∈ (
S r

i (ω′) =S r
i (ω)

)
and

ω′ (r,i)∼ ω,ω′′ (r,i)∼ ω′ =⇒ ω′′ (r,i)∼ ω

therefore,
(r,i)∼ is transitive.

Transition probabilities

In Section 4.11.8 we showed that the partition function we introduced in Section 4.11.8 can be

used to induce an equivalence relation on the sample spaceΩ.

In this section, we use this result to show that a contagion step defines a Markov chain with

states (N̄ r
i ,Ū r

i), and compute the values of its associated transition matrix M .

More formally, let r ∈ 1..K , i ≥ 1. In this section, we compute

P
[
N̄ r

i+1,Ū r
i+1 | N̄ r

i ,Ū r
i

]
and we show that its value is independent of the player’s strategy.

As we established in Lemma 48,
(r,i)∼ is an equivalence relation onΩ. Moreover, let ω ∈Ω, by

187

Chapter 4. Contagion

Corollary 4 we have S r
i (ω) ⊆ 〈

N̄ r
i ,Ū r

i

〉
.

We can therefore use
(r,i)∼ to partition

〈
N̄ r

i ,Ū r
i

〉
:

{
s1, . . . , sq

}= 〈
N̄ r

i ,Ū r
i

〉
(r,i)∼

By the law of total probability,

P
[
N̄ r

i+1,Ū r
i+1 | N̄ r

i ,Ū r
i

] = P
[
N̄ r

i+1,Ū r
i+1 |

〈
N̄ r

i ,Ū r
i

〉]
=

q∑
l=1

P
[
N̄ r

i+1,Ū r
i+1 | sl

]
P

[
sl |

〈
N̄ r

i ,Ū r
i

〉]

Note how P
[
sl |

〈
N̄ r

i ,Ū r
i

〉]
is unknown, as it depends on the probability distribution underly-

ing the player’s strategy. For a given h, we instead focus on computing P
[
N̄ r

i+1,Ū r
i+1 | sh

]
.

Roadmap. In order to compute P
[
N̄ r

i+1,Ū r
i+1 | sh

]
, we compute the probability for a node

that is not infected in sh at step (r, i) to become infected at time (r, i +1). Let j be a node that

is not infected in sh at step (r, i). We compute the probability of it becoming infected at step

(r, i + 1) by first computing the probability distribution underlying V r
i−1[j]. Given V̄ r

i−1[j],

we then compute the probability distribution underlying V r
i [j], and threshold it with R̂ to

compute the probability of j becoming infected at step i +1.

Notation 15 (Kronecker delta). We use δ to denote the Kronecker delta. Let i , j ∈N, then

δi , j = I (i = j)

Let ω̄= (ḡ , f̄) ∈ sh be an example of sh . Let W ,��W denote the set of nodes that are infected and

not infected in ω̄ at step (r, i), respectively:

W = {w1, . . . , wn} = Ŵ i
r (ω̄)

��W = {��w1, . . . ,��wm} = 1..N \Ŵ i
r (ω̄)

with n = N r
i (ω̄) and m = N −n. Let ω= (g , f), following from Lemma 45 we have

(ω ∈ sh) ⇐⇒ (
gw1 = ḡw1 , . . . , gwn = ḡwn ,V r

i−1[��w1] ≤ R̂, . . . ,V r
i−1[��wm] ≤ R̂

)
Let j ∈��W , i.e., W r

i [j] =⊥. Using the independence of the distribution of each predecessor

vector in sh (see Equation (4.4) and Definition 55), we can compute the probability distribution

188

4.11 Threshold Contagion

underlying V r
i−1[j] in sh :

P
[
V̄ r

i−1[j] |
���W r

i [j], sh
]

= P
[
V̄ r

i−1[j] |
���W r

i [j], ḡw1 , . . . , ḡwn ,ri−1[��w1] < R̂, . . . ,V r
i−1[��wm] < R̂

]
= P

[
V̄ r

i−1[j] |
���W r

i [j],V r
i−1[��w1] < R̂, . . . ,V r

i−1[��wm] < R̂
]

= P
[
V̄ r

i−1[j] |V r
i−1[j] < R̂

]
Using Bayes’ theorem we get

P
[
V̄ r

i−1 |V r
i−1 < R̂

]= P
[
V r

i−1 < R̂ | V̄ r
i−1

]
P

[
V̄ r

i−1

]
P

[
V r

i−1 < R̂
] (4.14)

Following from Lemma 41, each predecessor of j is independently selected with uniform

probability. Given N̄ r
i−1, each predecessor of j has a probability l

(
N̄ r

i−1/N
)

of being in Ŵ r
i−1.

The unconditioned number of infected predecessors of j is therefore binomially distributed:

P
[
V̄ r

i−1

]= Bin

[
E , l

N̄ r
i−1

N

](
V̄ r

i−1

)
(4.15)

Plugging Equation (4.15) in Equation (4.14) and noting that N r
i−1 = N r

i −U r
i we get

P
[
V̄ r

i−1 |V r
i−1 < R̂

]= I
(
V̄ r

i−1 < R̂
)
Bin

[
R, l

N̄ r
i −Ū r

i
N

](
V̄ r

i−1

)
∑R̂−1

V̄ =0
Bin

[
R, l

N̄ r
i −Ū r

i
N

](
V̄

)
We now compute the distribution underlying V r

i , given V̄ r
i−1,�

�W r
i and sh . Given V̄ r

i−1,�
�W r
i and

sh , j has E − V̄ r
i−1 predecessors that are not in Ŵ r

i−1. Let g j ,k be a predecessor of j that is not

in Ŵ r
i−1, we have

P
[
g j ,k ∈ Ŵ r

i | g j ,k ∉ Ŵ r
i−1

] = P
[
g j ,k ∈ Ŵ r

i , g j ,k ∉ Ŵ r
i−1

]
P

[
g j ,k ∉ Ŵ r

i−1

]
= l Ūi

N

1− l
N̄ r

i −Ū r
i

N

Following from Equation (4.4), each predecessor of j that is not in Ŵ r
i−1 has an independent

chance of being in Ŵ r
i . Therefore, the number of newly infected predecessors for j at step i is

189

Chapter 4. Contagion

binomially distributed:

P
[
V̄ r

i | V̄ r
i−1,�

�W r
i , sh

]= Bin

R − V̄ r
i−1,

l Ūi
N

1− l
N̄ r

i −Ū r
i

N

(
V̄ r

i − V̄ r
i−1

)
(4.16)

Using the law of total probability, we can now use Equations (4.14) and (4.16) to compute the

probability distribution underlying V r
i [j], given�

�W r
i and sh :

P
[
V̄ r

i |��W r
i , sh

]= R̂−1∑
V̄ r

i−1=0

P
[
V̄ r

i | V̄ r
i−1,�

�W r
i , sh

]
P

[
V̄ r

i−1 |��W r
i , sh

]

Finally, following from Lemma 45, we get the probability of W r
i [j], given�

�W r
i and sh :

P
[
W r

i |��W r
i , sh

]= R∑
V̄ r

i =R̂

P
[
V̄ r

i |��W r
i , sh

]

Since each of the N − N̄i nodes in��W has an independent probability of becoming infected at

round i +1, the frontier size at step i +1, given sh is binomially distributed:

P
[
N̄ r

i+1,Ū r
i+1 | sh

]= Bin
[
N − N̄i ,P

[
W r

i+1 |��W r
i , sh

]](
Ū r

i+1

)
δN̄ r

i+1−N̄ r
i ,Ū r

i+1

We can now note how, when computing P
[
N̄ r

i+1,Ū r
i+1 | sh

]
, the condition on sh reduces only

to a condition on the values of N̄ r
i and Ū r

i . Since s1, . . . , sq share the same values of (N̄ r
i ,Ū r

i),

the transition probability for the Markov chain underlying a contagion step reduces to

P
[
N̄ r

i+1,Ū r
i+1 | N̄ r

i ,Ū r
i

]= q∑
l=1

P
[
N̄ r

i+1,Ū r
i+1 | sl

]
P

[
sl |

〈
N̄ r

i ,Ū r
i

〉]
(4.17)

=P
[
N̄ r

i+1,Ū r
i+1 | sh

] q∑
l=1

P
[
sl |

〈
N̄ r

i ,Ū r
i

〉]
=P

[
N̄ r

i+1,Ū r
i+1 | sh

]
4.11.9 Final infection size

In Section 4.11.8, we showed that a contagion steps defines a Markov chain with states (N̄ r
i ,Ū r

i),

and we computed the values of its associated transition matrix M . In this section, we use this

result to achieve our goal to compute the probability distribution underlying the infection size

at the end of a game of Threshold Contagion.

As we established in Section 4.11.8, provided with P
[
N̄ r

i ,Ū r
i

]
, we can compute P

[
N̄ r

i+1,Ū r
i+1

]
.

Moreover, following from Corollary 2, every configuration P
[
N̄ r

1 ,Ū r
1

]
converges in a finite

190

4.11 Threshold Contagion

number of steps i∗ to satisfy

P
[
N̄ r

i ,Ū r
i

]=P
[
N̄ r

i+1,Ū r
i+1

] ∀i ≥ i∗

P
[
U r

i > 0
]= 0 ∀i ≥ i∗

It is easy to see that the first step of each round (where the player selects S healthy node and

infects them) also defines a Markov chain that deterministically increases, if possible, the

infection size by S.

Specifically, the transition probabilities from step 0 to step 1 in each round are defined by:

P
[
N̄ r

1 ,Ū r
1

]=

P
[
N r

0 = N̄ r
1 −S

]
iff N̄ r

1 ≥ S,Ū r
1 = S

P
[
N r

0 = N̄ r
1

]
iff N̄ r

1 > (N −S),Ū r
1 = 0

0 otherwise

(4.18)

The distribution underlying the final infection size can be computed as follows:

• The distribution underlying the first step of the game is known:

P
[
N̄ 0

0 ,Ū 0
0

]= δN̄ 0
0 ,0δŪ 0

0 ,0

• For K rounds:

– If r > 0, then P
[
N̄ r

0 ,Ū r
0

]=P
[
N̄ r−1∞ ,Ū r−1∞

]
.

– Apply Equation (4.18) to compute P
[
N̄ r

1 ,Ū r
1

]
.

– Until convergence:

* Apply Equation (4.17) to compute P
[
N̄ r

i ,Ū r
i

]
.

191

Part IIOracular Byzantine Reliable
Broadcast

193

5 Overview

5.1 Introduction

Byzantine reliable broadcast (BRB) is one of the most fundamental and versatile building

blocks in distributed computing, powering a variety of Byzantine fault-tolerant (BFT) sys-

tems [37, 61]. The BRB abstraction has recently been shown to be strong enough to process

payments, enabling cryptocurrency deployments in an asynchronous environment [80]. Orig-

inally introduced by Bracha [31] to allow a set of processes to agree on a single message from a

designated sender, BRB naturally generalizes to the multi-shot case, enabling higher-level ab-

stractions such as Byzantine FIFO [34, 132] and causal [11, 24] broadcast. We study a practical,

multi-shot variant of BRB whose interface is split between broadcasting clients and delivering

servers. We call this abstraction Client-Server Byzantine Reliable Broadcast (CSB).

CSB in brief. Clients broadcast, and servers deliver, payloads composed by a context and a

message. This interface allows, for example, Alice to announce her wedding as well as will her

fortune by respectively broadcasting"My wife is"︸ ︷︷ ︸
context cw

, "Carla"︸ ︷︷ ︸
message mw

"All my riches go to"︸ ︷︷ ︸

context cr

, "Bob"︸ ︷︷ ︸
message mr

CSB guarantees that: (Consistency) no two correct servers deliver different messages for the

same client and context; (Totality) either all correct servers deliver a message for a given

client and context, or no correct server does; (Integrity) if a correct server delivers a payload

from a correct client, then the client has broadcast that payload; and (Validity) a payload

broadcast by a correct client is delivered by at least one correct server. Following from the

above example, Carla being Alice’s wife does not conflict with Bob being her sole heir (indeed,

cw ̸= cr), but Alice would not be able to convince two correct servers that she married Carla

and Diana, respectively. Higher-level broadcast abstractions can be easily built on top of CSB.

For example, using integer sequence numbers as contexts and adding a reordering layer yields

195

Chapter 5. Overview

Client-Server Byzantine FIFO Broadcast. For the sake of CSB, however, it is not important

for contexts to be integers, or satisfy any property other than comparability. Throughout the

remainder of this Part, the reader can picture contexts as opaque binary blobs. Lastly, while

the set of servers is known, CSB as presented does not assume any client to be known a priori.

The set of clients can be permissionless, with servers discovering new clients throughout the

execution.

A utopian model. Real-world BRB implementations are often bottlenecked either by ex-

pensive signature verifications [52] or by communication overhead [32, 110, 111]. With the

goal of broadening those bottlenecks, simplified, more trustful models are useful to establish

a (sometimes grossly unreachable) bound on the efficiency that an algorithm can attain in

the Byzantine setting. For example, in a utopian model where any agreed-upon process can

be trusted to never fail (let us call it an oracle), CSB can easily be implemented with great

efficiency. Upon initialization, the oracle organizes all clients in a list, which it disseminates to

all servers. For simplicity, let us call id a client’s position in the list. To broadcast a payload

p, a client with id i simply sends p to the oracle: the oracle checks p for equivocation (thus

ensuring consistency), then forwards
(
i , p

)
to all servers (thus ensuring validity and totality).

Upon receiving
(
i , p

)
, a server blindly trusts the oracle to uphold all CSB properties, and

delivers
(
i , p

)
. Oracle-CSB is clearly very efficient. On the one hand, because the oracle can

be trusted not to attribute spurious payloads to correct clients, integrity can be guaranteed

without any server-side signature verification. On the other, in order to deliver
(
i , p

)
, a server

needs to receive just
(⌈log2 (c)⌉+ ∣∣p∣∣) bits, where c denotes the total number of clients, and

∣∣p∣∣
measures p’s length in bits. This is optimal assuming the rate at which clients broadcast is

unknown1 or uniform2 [51].

Matching the oracle. Due to its reliance on a single infallible process, Oracle-CSB is not a

fault-tolerant distributed algorithm: shifting back to the Byzantine setting, a single failure

would be sufficient to compromise all CSB properties. Common sense suggests that Byzantine

resilience will necessarily come at some cost: protocol messages must be exchanged to pre-

serve consistency and totality, signatures must be produced and verified to uphold integrity

and, lacking the totally-ordering power that only consensus can provide, ids cannot be as-

signed in an optimally dense way. However, this Part proves the counter-intuitive result that

an asynchronous, optimally-resilient, Byzantine implementation of CSB can asymptotically

match the efficiency of Oracle-CSB. This is not just up to a constant, but identically. In a

synchronous execution, free from Byzantine misbehaviour, and as the number of concurrently

1Lacking an assumption on broadcasting rates, an adversarial scheduler could have all messages broadcast by
the client with the longest id, which we cannot guarantee to be shorter than ⌈log2 (c)⌉ bits.

2Should some clients be expected to broadcast more frequently than others, we could further optimize Oracle-
CSB by assigning smaller ids to more active clients, possibly at the cost of having less active clients have ids whose
length exceeds ⌈log2 (c)⌉. Doing so, however, is beyond the scope of this Part.

196

5.1 Introduction

broadcasting clients goes to infinity (we call these conditions the batching limit3), our CSB

implementation Draft delivers a payload p at an asymptotic4, amortized cost of 0 signature

verifications5 and
(⌈log2 (c)⌉+ ∣∣p∣∣) bits exchanged per server, the same as in Oracle-CSB (we

say that Draft achieves oracular efficiency). At the batching limit a Draft server is dispensed

from nearly all signature verifications, as well as nearly all traffic that would be normally

required to convey protocol messages, signatures, or client public keys. Network is the limit:

payloads are delivered as quickly as they can be received.

CSB’s common bottlenecks. To achieve oracular efficiency, we focus on three types of server

overhead that commonly affect a real-world implementation of CSB:

• Protocol overhead. Safekeeping consistency and totality typically requires some form of

communication among servers. This communication can be direct (as in Bracha’s origi-

nal, all-to-all BRB implementation) or happen through an intermediary (as in Bracha’s

signed, one-to-all-to-one BRB variant), usually employing signatures to establish au-

thenticated, intra-server communication channels through a (potentially Byzantine)

relay.

• Signature overhead. Upholding integrity usually requires clients to authenticate their

messages using signatures. For servers, this entails both a computation and a commu-

nication overhead. On the one hand, even using well-optimized schemes, signature

verification is often CPU-heavy enough to dominate a server’s computational budget,

dwarfing in particular the CPU footprint of much lighter, symmetric cryptographic

primitives such as hashes and ciphers. On the other hand, transmitting signatures

results in a fixed communication overhead per payload delivered. While the size of

a signature usually ranges from a few tens to a few hundreds of bytes, this overhead

is non-negligible in a context where many clients broadcast small messages. This is

especially true in the case of payments, where a message reduces to the identifier of a

target account and an integer to denote the amount of money to transfer.

• Identifier overhead. CSB’s multi-shot nature calls for a sender identifier to be attached

to each broadcast payload. Classically, the client’s public key is used as identifier. This is

convenient for two reasons. First, knowing a client’s identifier is sufficient to authenti-

cate its payloads. Second, asymmetric keypairs have very low probability of collision.

As such, clients can create identities in the system without any need for coordination:

locally generating a keypair is sufficient to begin broadcasting messages. By crypto-

graphic design, however, public keys are sparse, and their size does not change with the

3The batching limit includes other easily achievable, more technical conditions that we omit in this section for
the sake of brevity. We formally define the batching limit in Section 6.4.2

4The asymptotic costs are reached quite fast, at rates comparable to C−1 or log (C) ·C−1.
5This does not mean that batches are processed in constant time: hashes and signature aggregations, for

example, still scale linearly in the size of a batch. The real-world computational cost of such simple operations,
however, is several orders of magnitude lower than that of signature verification.

197

Chapter 5. Overview

number of clients. This translates to tens to hundreds of bytes being invested to identify

a client from a set that can realistically be enumerated by a few tens of bits. Again, this

communication overhead is heavier on systems where broadcasts are frequent and

brief.

On the way to matching Oracle-CSB’s performance, we develop techniques to negate all

three types of overhead: at the batching limit, a Draft server delivers a payload wasting 0 bits

to protocol overhead, performing 0 signature verifications, and exchanging ⌈log2 (c)⌉ bits of

identifier, the minimum required to enumerate the set of clients. We outline our contributions

below, organized in three (plus one) take-home messages (T-HMs).

T-HM1: The effectiveness of batching goes beyond total order. In the totally ordered setting,

batching is famously effective at amortizing protocol overhead [8, 133]. Instead of dissemi-

nating its message to all servers, a client hands it over to (one or more)6 batching processes.

Upon collecting a large enough set of messages, a batching process organizes all messages in a

batch, which it then disseminates to the servers. Having done so, the batching process submits

the batch’s hash to the system’s totally-ordering primitive. Because hashes are constant in

length, the cost of totally ordering a batch does not depend on its size. Once batches are totally

ordered, so too are messages (messages within a batch can be ordered by any deterministic

function), and equivocations can be handled at the application layer (for example, in the

context of a cryptocurrency, the second request to transfer the same asset can be ignored by

all correct servers, with no need for additional coordination). At the limit of infinitely large

batches, the relative overhead of the ordering protocol becomes vanishingly small, and a

server can allocate virtually all of its bandwidth to receiving batches. This strategy, however,

does not naturally generalize to CSB, where batches lack total order. As payloads from mul-

tiple clients are bundled in the same batch, a correct server might detect equivocation for

only a subset of the payloads in the batch. Entirely accepting or entirely rejecting a partially

equivocated batch is not an option. In the first case, consistency could be violated. In the

second case, a single Byzantine client could single-handedly “poison” the batches assembled

by every correct batching process with equivocated payloads, thus violating validity. In Draft,

a server can partially reject a batch, acknowledging all but some of its payloads. Along with its

partial acknowledgement, a server provides a proof of equivocation to justify each exception.

Having collected a quorum of appropriately justified partial acknowledgements, a batching

process has servers deliver only those payloads that were not excepted by any server. Because

proofs of equivocations cannot be forged for correct clients, a correct client handing over its

payload to a correct batching process is guaranteed to have that payload delivered. In the

common case where batches have little to no equivocations, servers exchange either empty or

small lists of exceptions, whose size does not scale with that of the batch. This extends the

protocol-amortizing power of batching to CSB and, we conjecture, other non-totally ordered

abstractions.
6In most real-world implementations, a client optimistically entrusts its payload to a single process, extending

its request to larger portions of the system upon expiration of a suitable timeout.

198

5.1 Introduction

T-HM2: Interactive multi-signing can slash signature overhead. Traditionally, batching

protocols are non-interactive on the side of clients. Having offloaded its message to a correct

batching process, a correct client does not need to interact further for its message to be

delivered: the batching process collects an arbitrary set of independently signed messages and

turns to the servers to get each signature verified, and the batch delivered. This approach is

versatile (messages are not tied to the batch they belong to) and reliable (a client crashing does

not affect a batch’s progress) but expensive (the cost of verifying each signature is high and

independent of the batch’s size). In Draft, batching processes engage in an interactive protocol

with clients to replace, in the good case, all individual signatures in a batch with a single,

batch-wide multi-signature. In brief, multi-signature schemes extend traditional signatures

with a mechanism to aggregate signatures and public keys: an arbitrarily large set of signatures

for the same message7 can be aggregated into a single, constant-sized signature; similarly, a

set of public keys can be aggregated into a single, constant-sized public key. The aggregation of

a set of signatures can be verified in constant time against the aggregation of all corresponding

public keys. Unlike verification, aggregation is a cheap operation, reducing in some schemes

to a single multiplication on a suitable field. Multi-signature schemes open a possibility to

turn expensive signature verification into a once-per-batch operation. Intuitively, if each client

contributing to a batch could multi-sign the entire batch instead of its individual payload, all

multi-signatures could be aggregated, allowing servers to authenticate all payloads at once.

However, as clients cannot predict how their payloads will be batched, this must be achieved

by means of an interactive protocol. Having collected a set of individually-signed payloads

in a batch, a Draft batching process shows to each contributing client that its payload was

included in the batch. In response, clients produce their multi-signatures for the batch’s hash,

which the batching process aggregates. Clients that fail to engage in this interactive protocol

(e.g., because they are faulty or slow) do not lose liveness, as their original signature can still

be attached to the batch to authenticate their individual payload. In the good case, all clients

reply in a timely fashion, and each server has to verify a single multi-signature per batch. At

the limit of infinitely large batches, this results in each payload being delivered at an amortized

cost of 0 signature verifications. The usefulness of this interactive protocol naturally extends

beyond CSB to all multi-shot broadcast abstractions whose properties include integrity.

T-HM3: Dense id assignment can be achieved without consensus. In order to efficiently

convey payload senders, Oracle-CSB’s oracle organizes all clients in a list, attaching to each

client a successive integral identifier. Once the list is disseminated to all servers, the oracle can

identify each client by its identifier, sparing servers the cost of receiving larger, more sparse,

client-generated public keys. Id-assignment strategies similar to that of Oracle-CSB can be

developed, in the distributed setting, building on top of classical algorithms that identify

clients by their full public keys (we call such algorithms id-free, as opposed to algorithms such

as Draft, which are id-optimized). In a setting where consensus can be achieved, the identifier

7Some multi-signature schemes also allow the aggregation of signatures on heterogeneous messages. In
that case, however, aggregation is usually as expensive as signature verification. Given our goal to reduce CPU
complexity for servers, this Part entirely disregards heterogeneous aggregation schemes.

199

Chapter 5. Overview

density of Oracle-CSB is easily matched. Upon initialization, each client submits its public key

to an id-free implementation of Atomic Broadcast. Upon delivery of a public key, every correct

process agrees on its position within the common, totally-ordered log. As in Oracle-CSB,

each client can then use its position in the list as identifier within some faster, id-optimized

broadcast implementation. In a consensus-less setting, achieving a totally-ordered list of

public keys is famously impossible [62]. This Part, however, proves the counter-intuitive

result that, when batching is used, the density of ids assigned by a consensus-less abstraction

can asymptotically match that of those produced by Oracle-CSB or consensus. In Dibs, our

consensus-less id-assigning algorithm, a client requests an id from every server. Each server

uses an id-free implementation of FIFO Broadcast to order the client’s public key within its

own log. Having observed its public key appear in at least one log, the client publicly elects the

server in charge of that log to be its assigner. Having done so, the client obtains an id composed

of the assigner’s public key and the client’s position within the assigner’s log. We call the two

components of an id domain and index, respectively. Because the set of servers is known to

(and can be enumerated by) all processes, an id’s domain can be represented in ⌈log2 (n)⌉ bits,

where n denotes the total number of servers. Because at most c distinct clients can appear in

the FIFO log of any server, indices are at most ⌈log2 (c)⌉ bits long. In summary, Dibs assigns ids

to clients without consensus, at an additional cost of ⌈log2 (n)⌉ bits per id. Interestingly, even

this additional complexity can be amortized by batching. Having assembled a batch, a Draft
batching process represents senders not as a list of ids, but as a map, associating to each of

the n domains the indices of all ids in the batch under that domain. At the limit of infinitely

large batches (C ≫ N), the bits required to represent the map’s keys are entirely amortized

by those required to represent its values. This means that, while
(⌈log2 (n)⌉+⌈log2 (c)⌉) bits

are required to identify a client in isolation, ⌈log2 (c)⌉ bits are sufficient if the client is batched:

even without consensus, Draft asymptotically matches the id efficiency of Oracle-CSB.

Bonus T-HM: Untrusted processes can carry the system. In THM1, we outlined how batch-

ing can be generalized to the consensus-less case, and discussed its role in removing protocol

overhead. In THM2, we sketched how an interactive protocol between clients and batching

processes can eliminate signature overhead. In employing these techniques, we shifted most

of the communication and computation complexity of our algorithms from servers to batching

processes. Batching processes verify all client signatures, create batches, verify and aggregate

all client multi-signatures, then communicate with servers in an expensive one-to-all pattern,

engaging server resources (at the batching limit) as little as an oracle would. Our last contri-

bution is to observe that a batching process plays no role in upholding CSB’s safety. As we

discuss in detail throughout the remainder of this Part, a malicious batching process cannot

compromise consistency (it would need to collect two conflicting quorums of acknowledge-

ments), totality (any server delivering a batch has enough information to convince all others

to do the same) or integrity (batches are still signed, and forged or improperly aggregated

multi-signatures are guaranteed to be detected). Intuitively, the only damage a batching pro-

200

5.2 Related Work

cess can do to the system is to refuse to process client payloads8. This means that a batching

process does not need to satisfy the same security properties as a server. CSB’s properties

cannot be upheld if a third of the servers are faulty. Conversely, Draft has both liveness and

safety as long as a single batching process is correct. This observation has profound practical

implications. In the real world, scaling the resources of a permissioned, security-critical set

of servers can be hard. On the one hand, reputable, dependable institutions partaking in

the system might not have the resources to keep up with its demands. On the other, more

trusted hardware translates to a larger security cross-section. Trustless processes, however, are

plentiful to the point that permissionless cryptocurrencies traditionally waste their resources,

making them compete against each other in expensive proofs of Sybil-resistance [122]. In this

Part, we extend the classical client-server model with brokers, a permissionless, scalable set

of processes whose only purpose is to alleviate server complexity. Unlike servers, more than

two-thirds of which we assume to be correct, all brokers but one can be faulty. In Draft, brokers

act as an intermediary between clients and servers, taking upon themselves the batching of

payloads, verification and aggregation of signatures, the dissemination of batches, and the

transmission of protocol messages.

Roadmap. We discuss related work in Section 5.2. We state our model and recall useful

cryptographic background in Section 5.3. We discuss our CSB implementation Draft in

Chapter 6: we formally define the Client-Server Byzantine Reliable Broadcast abstraction

in Section 6.1; we present Draft in Section 6.2; we prove Draft’s correctness in Section 6.3;

we analyze Draft’s complexity at the batching limit in Section 6.4. We discuss our Directory

implementation Dibs in Chapter 7: we introduce the Directory abstraction in Section 7.1; we

present Dibs’s pseudocode in Section 7.2; we prove the correctness of Dibs in Section 7.3.

5.2 Related Work

Byzantine Reliable Broadcast (BRB) is a classical primitive of distributed computing, with

widespread practical applications such as in State Machine Replication (SMR) [33, 37, 118],

Byzantine agreement [44, 92, 100, 123, 141], blockchains [8, 53, 55], and online payments [50,

80, 101]. In classical BRB, a system of n processes agree on a single message from a single

source (one of the n processes), while tolerating up to f Byzantine failures (f of the n processes

can behave arbitrarily). A well known solution to asynchronous BRB with provably optimal

resilience (f < n/3) was first proposed by Bracha [30, 31] who introduced the problem. Bracha’s

broadcast reaches O(n2) message complexity, and O(n2L) communication complexity (total

number of transmitted bits between correct processes [154]), where L is the length of the

message. Since O(n2) message complexity is provably optimal [59], the main focus of BRB-

related research has been on reducing its communication complexity. The best lower bound

8Or cause servers to waste resources, e.g., by transmitting improperly signed batches. Simple accountability
measures, we conjecture, would be sufficient to mitigate these attacks in Draft. A full discussion of Denial of
Service, however, is beyond the scope of this Part.

201

Chapter 5. Overview

for communication complexity isΩ(nL+n2), although it is unknown whether it is tight. The

nL term comes from all processes having to receive the message (length L), while the n2

term comes from each of the n processes having to receiveΩ(n) protocol messages to ensure

agreement in the presence of f =Θ(n) failures [59]. One line of research focuses on worst-case

complexity, predominantly using error correcting codes [17, 130] or erasure codes [5, 38, 85,

126], and has produced various BRB protocols with improved complexity [5, 35, 38, 57, 123],

many of them quite recently. The work of Das, Xiang and Ren [57] achieves O(nL + kn2)

communication complexity (specifically, 7nL+2kn2), where k is the security parameter (e.g.,

the length of a hash, typically 256 bits). As the authors note, the value of hidden constants

(and k, which is sometimes considered as a constant in literature) is particularly important

when considering practical implementations of these protocols. Another line of research

focuses on optimizing the good case performance of BRB, i.e., when the network behaves

synchronously and no process misbehaves [1, 35, 44, 100, 129]. As the good case is usually

the common case, in practice, the real-world communication complexity of these optimistic

protocols matches that of the good case. A simple and widely-used hash-based BRB protocol

is given by Cachin et al. [35]. It replaces the echo and ready phase messages in Bracha’s

protocol with hashes, achieving O(nL +kn2) in the good case (specifically, nL +2kn2), and

O(n2L) in the worst-case. Considering practical throughput, some protocols also focus on

the amortized complexity per source message [44, 111, 129]. Combining techniques such

as batching [44] and threshold signatures [137], at the limit (of batch size), BRB protocols

reach O(nL) amortized communication complexity in the good case [129]. At this point, the

remaining problem lies in the hidden constants. In the authenticated setting, batching-based

protocols rely on digital signatures to validate (source) messages before agreeing to deliver

them [129]. In reality, each source message in a batch includes its content, an identifier

of the source (e.g., a k-sized public key), a sequence id (identifying the message), and a k-

sized signature. When considering systems where L is small (e.g., online payments), these

can take up a large fraction of the communication. To be precise, the good-case amortized

communication complexity would be O(nL+kn). In fact, message signatures (the kn factor)

are by far the main bottleneck in practical applications of BRB today [55, 141], both in terms

of communication and computation (signature verification), leading to various attempts at

reducing or amortizing their cost [53, 111]. For example, Crain et al. [53] propose verification

sharding, in which only f +1 processes have to receive and verify all message signatures in the

good case, which is a 3-fold improvement over previous systems (on the kn factor) where all n

processes verify all signatures. However, by itself, this does not improve on the amortized cost

of O(nL+kn) per message. When contrasting theoretical research with practical systems, it is

interesting to note the gap that can surge between the theoretical model and reality. The recent

work of Abraham et al. [1], focused on the good-case latency of Byzantine broadcast, expands

on some of these mismatches and argues about the practical limitations of focusing on the

worst-case. Another apparent mismatch lies in the classical model of Byzantine broadcast. In

many of the applications of BRB mentioned previously (e.g., SMR, permissioned blockchains,

online payments), there is usually a set of servers (n, up to f of which are faulty), and a set

of external clients (X) which are the true sources of messages. The usual transformation

202

5.3 Model & background

from BRB’s classical model into these practical settings maps the set of n servers as the n

processes and simply excludes clients as system entities, e.g., assuming their messages are

relayed through one of the servers. Since the number of clients can be very large (|X | ≫ n),

clients are untrusted (which can limit their usefulness), and the focus is on the communication

complexity of the servers, this transformation seems reasonable and simplifies the problem.

However, it can also limit the search for more practical solutions. In this Part, in contrast

with the classical model of BRB, we explicitly include the set of clients X in our system while

focusing on the communication complexity surrounding the servers (i.e., the bottleneck).

Furthermore, we introduce brokers, an untrusted set B of processes, only one of which is

assumed to be correct, whose goal is to assist servers in their operation. By doing this, we can

leverage brokers to achieve a good-case, amortized communication complexity (for servers,

information received or sent) of nL+o(nL).

5.3 Model & background

5.3.1 Model

System and adversary. We assume an asynchronous message-passing system where the set

Π of processes is the distinct union of three sets: servers (Σ), brokers (B), and clients (X).

We use n = |Σ|, k = |B | and c = |X |. Any two processes can communicate via reliable, FIFO,

point-to-point links (messages are delivered in the order they are sent). Faulty processes are

Byzantine, i.e., they may fail arbitrarily. Byzantine processes know each other, and may collude

and coordinate their actions. At most f servers are Byzantine, with n = 3 f +1. At least one

broker is correct. All clients may be faulty. We use ΠC and ΠF to respectively identify the

set of correct and faulty processes. The adversary cannot subvert cryptographic primitives

(e.g., forge signatures). Servers and brokers9 are permissioned (every process knows Σ and B),

clients are permissionless (no correct process knows X a priori). We call certificate a statement

signed by either a plurality (f +1) or a quorum (2 f +1) of servers. Since every process knows

Σ, any process can verify a certificate.

Good case. The algorithms presented in this Part are designed to uphold all their properties

in the model above. Draft, however, achieves oracular efficiency only in the good case. In

the good case, links are synchronous (messages are delivered at most one time unit after

they are sent), all processes are correct, and the set of brokers contains only one element. To

take advantage of the good case, Draft makes use of timers (which is uncommon for purely

asynchronous algorithms). A timer with timeout δ set at time t rings: after time (t +δ), if

the system is synchronous; after time t , otherwise. Intuitively, in the non-synchronous case,

timers disregard their timeout entirely, and are guaranteed to ring only eventually.

9The assumption that brokers are permissioned is made for simplicity, and can be easily relaxed to the require-
ment that every correct process knows at least one correct broker.

203

Chapter 5. Overview

5.3.2 Background

Besides commonly used hashes and signatures, the algorithms presented in this Part make

use of two less often used cryptographic primitives, namely, multi-signatures and Merkle trees.

We briefly outline their use below. An in-depth discussion of their inner workings, however is

beyond the scope of this Part.

Multi-signatures. Like traditional signatures, multi-signatures [15] are used to publicly au-

thenticate messages: a public / secret keypair
(
p,r

)
is generated locally; r is used to produce a

signature s for a message m; s is publicly verified against p and m. Unlike traditional signatures,

however, multi-signatures for the same message can be aggregated. Let
(
p1,r1

)
, . . . ,

(
pn ,rn

)
be a set of keypairs, let m be a message, and let si be ri ’s signature for m.

(
p1, . . . , pn

)
and

(s1, . . . , sn) can be respectively aggregated into a constant-sized public key p̂ and a constant-

sized signature ŝ. As with individually-generated multi-signatures, ŝ can be verified in constant

time against p̂ and m. Aggregation is cheap and non-interactive: provided with
(
p1, . . . , pn

)
(resp., (s1, . . . , sn)) any process can compute p̂ (resp., ŝ).

Merkle trees. Merkle trees [117] extend traditional hashes with compact proofs of inclusion.

As with hashes, a sequence (x1, . . . , xn) of values can be hashed into a preimage and collision-

resistant digest (or root) r . Unlike hashes, however, a proof pi can be produced from (x1, . . . , xn)

to attest that the i -th element of the sequence whose root is r is indeed xi . In other words,

provided with r , pi and xi , any process can verify that the i -th element of (x1, . . . , xn) is indeed

xi , without having to learn (x1, . . . , xi−1, xi+1, . . . , xn). The size of a proof of inclusion for a

sequence of n elements is logarithmic in n.

204

6 Draft

In this chapter, we present in detail the Client-Server Byzantine Reliable Broadcast ab-

straction and discuss its properties. We then present Draft, an algorithm that implements

Client-Server Byzantine Reliable Broadcast, and evaluate its security and complexity, showing

that it achieves oracularity at the batching limit.

6.1 Interface

A Client-Server Byzantine Reliable Broadcast (CSB) system offers two interfaces, CSB Client

(instance cl) and CSB Server (instance sr), exposing the following events:

• Request:
〈

cl .Broadcast | context ,messag e
〉

: Broadcasts a message messag e for con-

text context to all servers.

• Indication
〈

sr.Deliver | cl i ent ,context ,messag e
〉

: Delivers the message messag e

broadcast by client cl i ent for context context .

A Client-Server Byzantine Reliable Broadcast system satisfies the following properties:

1. No duplication: No correct server delivers more than one message for the same client

and context.

2. Integrity: If a correct server delivers a message m for context c from a correct client χ,

then χ previously broadcast m for c.

3. Consistency: No two correct servers deliver different messages for the same client and

context.

4. Validity: If a correct clientχ broadcasts a message for context c , then eventually a correct

server delivers a message for c from χ.

205

Chapter 6. Draft

Figure 6.1: Draft’s protocol. Having collected a batch of client payloads, a broker engages
in an interactive protocol with clients to reduce the batch, replacing (most of) its individual
payload signatures with a single, batch-wide multi-signature. The broker then disseminates
the batch to all servers, successively gathering a witness for its correctness and a certificate
to commit (some of) its payloads. Having had a plurality of servers deliver the batch, the
broker notifies all clients with a suitable certificate. In the bad case, servers can ensure totality
without any help from the broker, propagating batches and commit certificates in an all-to-all
fashion.

5. Totality: If a correct server delivers a message for context c from a client χ, then eventu-

ally every correct server delivers a message for c from χ.

6.2 Algorithm

In this section, we present our CSB implementation Draft. We outline Draft’s protocol in

Section 6.2.1, providing qualitative arguments for its security. We qualitatively analyze Draft’s

complexity in Section 6.2.2. We present Draft’s full pseudocode in Sections 6.2.3 (client), 6.2.4

(broker) and 6.2.5 (server). The remainder of Chapter 6 proves Draft’s security and complexity

to the fullest extent of formal detail.

6.2.1 Protocol & correctness overview

Dramatis personae. The goal of this section is to provide an intuitive understanding of Draft’s

protocol. In order to do this, we focus on four processes: a correct client χ, a correct broker β,

a correct and fast server σ, and a correct but slow server σ̃. We follow the messages exchanged

between χ, β, σ and σ̃ as the protocol unfolds, as captured by Figure 6.1.

206

6.2 Algorithm

The setting. χ’s goal is to broadcast a payload p. χ has already used Draft’s underlying

Directory abstraction (DIR) to obtain an id i . In brief, DIR guarantees that i is assigned to

χ only, and provides χ with an assignment certificate a, which χ can use to prove that its id

is indeed i . As we discussed in Section 5.1, Draft uses DIR-assigned ids to identify payload

senders. This is essential to Draft’s performance, as DIR guarantees density: as we outline in

Section 6.2.2, ⌈log2 (c)⌉ bits are asymptotically sufficient to represent each id in an infinitely

large batch. We discuss the details of the DIR abstraction in Section 7, along with our DIR

implementation, Dibs. Throughout the remainder of this Part, we say that a process π knows

an id î iff π knows the public keys to which î is assigned.

Building a batch. In order to broadcast its payload p, χ produces a signature s for p, and

then sends a Submission message to β (fig. 6.1, step 1). The Submission message contains

p, s, and χ’s assignment certificate a. Upon receiving the Submission message, β learns

χ’s id i from a, then verifies s against p. Having done so, β stores
(
i , p, s

)
in its submission

pool. For a configurable amount of time, β fills its pool with submissions from other clients,

before flushing it into a batch. Let us use
(
i1, p1, s1

)
, . . . ,

(
ib , pb , sb

)
to enumerate the elements

β flushes from the submission pool (for some n, we clearly have
(
i , p, s

) = (
in , pn , sn

)
). For

convenience, we will also use χ j to identify the sender of p j (owner of i j). Importantly, β

flushes the pool in such a way that i j ̸= ik for all j ̸= k: for safety reasons that will soon be clear,

Draft’s protocol prevents a client from having more than one payload in any specific batch.

Because of this constraint, some payloads might linger in β’s pool. This is not an issue: β will

simply flush those payloads to a different batch at a later time. When building the batch, β

splits submissions and signatures, storing
(
i1, p1

)
, . . . ,

(
ib , pb

)
separately from s1, . . . , sb .

Reducing the batch. Having flushed submissions
(
i1, p1

)
, . . . ,

(
ib , pb

)
and signatures s1, . . . , sb ,

β moves on to reduce the batch, as exemplified in Figure 6.2. In an attempt to minimize

signature overhead for servers, β engages in an interactive protocol with clients χ1, . . . ,χb to

replace as many signatures as possible with a single, batch-wide multi-signature. In order

to do so, β organizes
(
i1, p1

)
, . . . ,

(
ib , pb

)
in a Merkle tree with root r (for brevity, we call r

the batch’s root). β then sends an Inclusion message to each χ j (fig. 6.1, step 2). Each

Inclusion message contains r , along with a proof of inclusion q j for
(
i j , p j

)
. Upon receiving

its Inclusion message, χ checks qn against r . In doing so, χ comes to two conclusions. First,

χ’s submission
(
i , p

) = (
in , pn

)
is part of a batch whose root is r . Second, because no Draft

batch can contain multiple payloads from the same client, that batch does not attribute χ

any payload other than p. In other words, χ can be certain that β will not broadcast some

spurious payload p ′ ̸= p in χ’s name: shouldβ attempt to do that, the batch would be verifiably

malformed, and immediately discarded. This means χ can safely produce a multi-signature m

for r : as far as χ is concerned, the batch with root r upholds integrity. Having signed r , χ sends

m to β by means of a Reduction message (fig. 6.1, step 3). Upon receiving χ j ’s Reduction
message, β checks χ j ’s multi-signature m j against r . Having done so, β discards χ j ’s original

signature s j . Intuitively, with m j , χ j attested its agreement with whatever payload the batch

207

Chapter 6. Draft

attributes to χ j . Because this is equivalent to individually authenticating p j , s j is redundant

and can be dropped. Upon expiration of a suitable timeout, β stops collecting Reduction
messages: clearly, if β waited for every χ j to produce m j , a single Byzantine client could

prevent the protocol from moving forward by refusing to send its Reduction message. β

aggregates all the multi-signatures it collected for r into a single, batch-wide multi-signature

m. In the good case, every χ j is correct and timely. If so, β drops all individual signatures, and

the entire batch is authenticated by m alone.

Figure 6.2: An example of partially reduced batch. B = 8 submissions are organized on
the leaves of a Merkle tree with root r . Each submission

(
i j , p j

)
is originally authenticated

by an individual signature s j . Upon collecting a multi-signature m j for r , the broker drops
s j . Here the broker collected multi-signatures m2, m5, m6 and m8, leaving a straggler set
S = {(i1, s1), (i3, s3), (i4, s4), (i7, s7)}. Upon expiration of a suitable timeout, the broker aggregates
m2, m5, m6 and m8 into a single multi-signature m. As such, every payload in the batch is
authenticated either by m or by S.

The perks of a reduced batch. Having reduced the batch, β is left with a sequence of submis-

sions
(
i1, p1

)
, . . . ,

(
ib , pb

)
, a multisignature m on the Merkle root r of

(
i1, p1

)
, . . . ,

(
ib , pb

)
, and

a straggler set S holding the individual signatures that β failed to reduce. More precisely, S

contains
(
i j , s j

)
iff β did not receive a valid Reduction message from χ j before the reduction

timeout expired. We recall that m’s size is constant, and S is empty in the good case. Once

reduced, the batch is cheap to authenticate: it is sufficient to verify the batch’s multi-signature

against the batch’s root, and each straggler signature against its individual payload. More

precisely, let T denote the set of timely clients (χ j is in T iff (i j , ..) is not in S). Let t denote

the aggregation of T ’s public keys. Provided with
(
i1, p1

)
, . . . ,

(
ib , pb

)
, m and S, any process

that knows i1, . . . , ib can verify that the batch upholds integrity by: (1) computing r and t from(
i1, p1

)
, . . . ,

(
ib , pb

)
and S; (2) using t to verify m against r ; and (3) verifying each s j in S against

p j . In the good case, authenticating the batch reduces to verifying a single multi-signature.

This is regardless of the batch’s size.

208

6.2 Algorithm

The pitfalls of a reduced batch. As we discussed in the previous paragraph, reducing a

batch makes it cheaper to verify its integrity. Reduction, however, hides a subtle trade-off:

once reduced, a batch gets easier to authenticate as whole. Its individual payloads, however,

become harder to authenticate. For the sake of simplicity, let us imagine that β successfully

dropped all the individual signatures it originally gathered from χ1, . . . ,χb . In order to prove

that
(
χ=χn

)
broadcast

(
p = pn

)
, β could naively produce the batch’s root r ,

(
in , pn

)
’s proof of

inclusion qn , and the batch’s multi-signature m for r . This, however, would not be sufficient

to authenticate p: because the multi-signature mn that χ produced for r was aggregated with

all others, m can only be verified by the aggregation of all χ1, . . . ,χb ’s public keys. This makes

authenticating p as expensive as authenticating the entire batch: in order to verify m, all(
i j , p j

)
must be produced and checked against r , so that all corresponding public keys can be

safely aggregated.

Witnessing the batch. As we discuss next, proving the integrity of individual payloads is

fundamental to ensure Draft’s validity. In brief, to prove that some χk equivocated its payload

pk = (ck , lk), a server must prove to β that χk also issued some payload p ′
k = (

ck , l ′k ̸= lk
)
.

Lacking this proof, a single Byzantine server could, for example, claim without basis that χ

equivocated p. This could trick β into excluding p, thus compromising Draft’s validity. As we

discussed in the previous paragraph, however, proving the integrity of an individual payload

in a reduced batch is difficult. While we conjecture that purely cryptographic solutions to this

impasse might be achievable in some schemes1, Draft has β engage in a simple protocol to

further simplify the batch’s authentication, replacing all client-issued (multi-)signatures with

a single, server-issued certificate. Having collected and reduced the batch, β sends a Batch
message to all servers (fig. 6.1, step 4). The Batch message only contains

(
i1, p1

)
, . . . ,

(
ib , pb

)
.

Upon receiving the Batch message, σ collects in a set Uσ all the ids it does not know (i j

is in Uσ iff σ does not know i j), and sends Uσ back to β by means of a BatchAcquired
message (fig. 6.1, step 5). Upon receiving σ’s BatchAcquired message, β builds a set Aσ

containing all id assignments that σ is missing (a j is in Aσ iff i j is in Uσ). Having done so,

β sends a Signatures message to σ (fig. 6.1, step 6). The Signatures message contains

the batch’s multi-signature m, the straggler set S, and Aσ. We underline the importance of

sending id assignments upon request only. Thinking to shave one round-trip off the protocol,

β could naively package in a single message all submissions, all (multi-)signatures, and all

assignments relevant to the batch. In doing so, however, β would force each server to receive

one assignment per submission, immediately forfeiting Draft’s oracular efficiency. As we

discuss in Section 6.4.2, at the batching limit we assume that all servers already know all

broadcasting clients. In that case, both Uσ and Aσ are constant-sized, empty sets, adding

1For example, using BLS, β could aggregate the public keys of χ1, . . . ,χn−1,χn+1, . . . ,χb into a public key t̃n ,
then show that the aggregation of t̃n with χ’s public key correctly verifies m against r . Doing so, however, would
additionally require β to exhibit a proof that t̃n is not a rogue public key, i.e., that t̃n indeed results from the
aggregation of client public keys. This could be achieved by additionally having χ1, . . . ,χb multi-sign some hard-
coded statement to prove that they are not rogues. β could aggregate such signatures on the fly, producing a
rogue-resistance proof for t̃n that can be transmitted and verified in constant time. This, however, is expensive
(and, frankly, at the limit of our cryptographic expertise).

209

Chapter 6. Draft

only a vanishing amount of communication complexity to the protocol. Upon receiving the

Signatures message, σ verifies and learns all assignments in Aσ. Having done so, σ knows

i1, . . . , ib . As we outlined above, σ can now efficiently authenticate the whole batch, verifying

m against the batch’s root r , and each i j in S against p j . Having established the integrity

of the whole batch, σ produces a witness shard for the batch, i.e., a multi-signature wσ for

[Witness,r], effectively affirming to have successfully authenticated the batch. σ sends wσ

back to β by means of a WitnessShard message (fig. 6.1, step 7). Having received a valid

WitnessShard message from f +1 servers, β aggregates all witness shards into a witness w .

Because w is a plurality (f +1) certificate, at least one correct server necessarily produced

a witness shard for the batch. This means that at least one correct server has successfully

authenticated the batch by means of client (multi-)signatures. Because w could not have been

gathered if the batch was not properly authenticated, w itself is sufficient to authenticate the

batch, and β can drop all (now redundant) client-generated (multi-)signatures for the batch.

Unlike m, w is easy to verify, as it is signed by only f +1, globally known servers. Like m, w

authenticates r . As such, any p j can now be authenticated just by producing w , and
(
i j , p j

)
’s

proof of inclusion q j .

Gathering a commit certificate. Having successfully gathered a witness w for the batch, β

sends w to all servers by means of a Witness message (fig. 6.1, step 8). Upon receiving the

Witness message, σ moves on to check
(
i1, p1

)
, . . . ,

(
ib , pb

)
for equivocations. More precisely,

σ builds a set of exceptions Eσ containing the ids of all equivocating submissions in the batch

(i j is in Eσ iff σ previously observed χ j submit a payload p ′
j that conflicts with p j ; we recall

that p j and p ′
j conflict if their contexts are the same, but their messages are different). σ then

produces a commit shard for the batch, i.e., a multi-signature cσ for [Commit,r,Eσ], effectively

affirming that σ has found all submissions in the batch to be non-equivocated, except for

those in Eσ. In the good case, every client is correct and Eσ is empty. Having produced cσ, σ

moves on to build a set Qσ containing a proof of equivocation for every element in Eσ. Let us

assume that σ previously received from some χk a payload p ′
k that conflicts with pk . σ must

have received p ′
k as part of some witnessed batch. Let r ′

k identify the root of p ′
k ’s batch, let w ′

k

identify r ′
k ’s witness, let q ′

k be
(
ik , p ′

k

)
’s proof of inclusion in r ′

k . By exhibiting
(
r ′

k , w ′
k , p ′

k

)
, σ

can prove toβ that χk equivocated: pk conflicts with p ′
k , and

(
ik , p ′

k

)
is provably part of a batch

whose integrity was witnessed by at least one correct server. Furthermore, because correct

clients never equivocate,
(
r ′

k , w ′
k , p ′

k

)
is sufficient to convince β that χk is Byzantine. For each

i j in Eσ, σ collects in Qσ a proof of equivocation
(
r ′

j , w ′
j , p ′

j

)
. Finally, σ sends a CommitShard

message back to β (fig. 6.1, step 9). The CommitShard message contains cσ, Eσ and Qσ. Upon

receiving σ’s CommitShard message, σ verifies cσ against r and Eσ, then checks all proofs in

Qσ. Having collected valid CommitShard messages from a quorum of servers σ1, . . . ,σ2 f +1, β

aggregates all commit shards into a commit certificate c. We underline that each σ j signed

the same root r , but a potentially different set of exceptions Eσ j . Let E denote the union of

Eσ1 , . . . ,Eσ2 f +1 . We call E the batch’s exclusion set. Because a proof of equivocation cannot

be produced against a correct client, β knows that all clients identified by E are necessarily

210

6.2 Algorithm

Byzantine. In particular, because χ is correct, (i = in) is guaranteed to not be in E .

Committing the batch. Having collected a commit certificate c for the batch, β sends c to all

servers by means of a Commit message (fig. 6.1, step 10). Upon receiving the Commit message,

σ verifies c , computes the exclusion set E , then delivers every payload p j whose id i j is not in

E . Recalling that c is assembled from a quorum of commit shards, at least f +1 correct servers

contributed to c. This means that, if some ik is not in E , then at least f +1 correct servers

found pk not to be equivocated. As in most BRB implementations [31], this guarantees that

no two commit certificates can be gathered for equivocating payloads: Draft’s consistency is

upheld.

The role of equivocation proofs. As the reader might have noticed, β does not attach any

proof of equivocation to its Commit message. Having received β’s commit certificate c ,σ trusts

β’s exclusion set E , ignoring every payload whose id is in E . This is not becauseσ can trust β to

uphold validity. On the contrary,σ has no way to determine that β is not maliciously excluding

the payload of a correct client. Indeed, even if σ were to verify a proof of exclusion for every

element in E , a malicious β could still censor a correct client simply by ignoring its Submit
message in the first place. Equivocation proofs are fundamental to Draft’s validity not because

they force malicious brokers to uphold validity, but because they enable correct brokers to do

the same. Thanks to equivocation proofs, a malicious server cannot trick a correct broker into

excluding the payload of a correct client. This is enough to guarantee validity. As we discuss

below, χ successively submits p to all brokers until it receives a certificate attesting that p was

delivered by at least one correct server. Because we assume at least one broker to be correct, χ

is eventually guaranteed to succeed.

Notifying the clients. Having delivered every payload whose id is not in the exclusion set E ,

σ produces a completion shard for the batch, i.e., a multi-signature zσ for
[
Completion,r,E

]
,

effectively affirming that σ has delivered all submissions in the batch whose id is not in E . σ

sends zσ to β by means of a CompletionShard message (fig. 6.1, step 11). Upon receiving

f +1 valid CompletionShard messages, β assembles all completion shards into a completion

certificate z. Finally, β sends a Completion message to χ1, . . . ,χb (fig. 6.1, step 12). The

Completion message contains z and E . Upon receiving the Completion message, χ verifies

z against E , then checks that i is not in E . Because at least one correct server contributed

a completion shard to z, at least one correct process delivered all payloads that E did not

exclude, including p. Having succeeded in broadcasting p, χ does not need to engage further,

and can stop successively submitting p to all brokers.

No one is left behind. As we discussed above, upon receiving the commit certificate c, σ

delivers every payload in the batch whose id is not in the exclusion set E . Having gotten at

least one correct server to deliver the batch, β is free to disengage, and moves on to assembling

211

Chapter 6. Draft

and brokering its next batch. In a moment of asynchrony, however, all communications

between β and σ̃might be arbitrarily delayed. This means that σ̃ has no way of telling whether

or not it will eventually receive batch and commit certificate: a malicious β might have

deliberately left σ̃ out of the protocol. Server-to-server communication is thus required to

guarantee totality. Having delivered the batch, σ waits for an interval of time long enough for

all correct servers to deliver batch and commit certificate, should the network be synchronous

and β correct. σ then sends to all servers an OfferTotality message (fig. 6.1, step 13). The

OfferTotality message contains the batch’s root r , and the exclusion set E . In the good case,

upon receiving σ’s OfferTotality message, every server has delivered the batch and ignores

the offer. This, however, is not the case for slow σ̂, which replies toσwith an AcceptTotality
message (fig. 6.1, step 14). Upon receiving σ̃’s AcceptTotality message, σ sends back to

σ̃ a Totality message (fig. 6.1, step 15). The Totality message contains all submissions(
i1, p1

)
, . . . ,

(
ib , pb

)
, id assignments for i1, . . . , ib , and the commit certificate c. Upon delivering

σ’s Totality message, σ̃ computes r from
(
i1, p1

)
, . . . ,

(
ib , pb

)
, checks c against r , computes

E from c, and delivers every payload p j whose id i j is not in E . This guarantees totality and

concludes the protocol.

6.2.2 Complexity overview

Directory density. As we introduced in Section 6.2.1, Draft uses ids assigned by its underlying

Directory (DIR) abstraction to identify payload senders. A DIR-assigned id is composed of two

parts: a domain and an index. Domains form a finite set Dwhose size does not increase with

the number of clients, indices are natural numbers. Along with safety (e.g., no two processes

have the same id) and liveness (e.g., every correct client that requests an id eventually obtains

an id), DIR guarantees density: the index part of any id is always smaller than the total number

of clients c (i.e., each id index is between 0 and (c −1)). Intuitively, this echoes the (stronger)

density guarantee provided by Oracle-CSB, the oracle-based implementation of CSB we

introduced in Section 5.1 to bound Draft’s performance. In Oracle-CSB, the oracle organizes

all clients in a list, effectively labeling each client with an integer between 0 and (c −1). In a

setting where consensus cannot be achieved, agreeing on a totally-ordered list of clients is

famously impossible: a consensus-less DIR implementation cannot assign ids if |D| = 1. As we

show in Section 7, however, DIR can be implemented without consensus if servers are used as

domains (D=Σ). In our DIR implementation Dibs, each server maintains an independent list

of public keys. In order to obtain an id, a client χ has each server add its public key to its list,

then selects a server σ to be its assigner. In doing so, χ obtains an id (σ,n), where n ∈ 0..(c −1)

is χ’s position in σ’s log. In summary, a consensus-less implementation of DIR still guarantees

that indices will be smaller than c, at the cost of a non-trivial domain component for each id.

This inflates the size of each individual id by ⌈log2 (|D|)⌉ bits.

Batching ids. While DIR-assigned ids come with a non-trivial domain component, the size

overhead due to domains vanishes when infinitely many ids are organized into a batch. This

212

6.2 Algorithm

is because domains are constant in the number of clients. Intuitively, as infinitely many ids

are batched together, repeated domains become compressible. When building a batch, a

Draft broker represents the set I of sender ids not as a list, but as a map ĩ . To each domain, ĩ

associates all ids in I under that domain (n is in ĩ [d] iff (d ,n) is in I). Because ĩ ’s keys are fixed,

as the size of I goes to infinity, the bits required to represent ĩ ’s keys are completely amortized

by those required to represent ĩ ’s values. At the batching limit, the cost of representing each id

in ĩ converges to that of representing its index only, ⌈log2 (c)⌉.

Protocol cost. As we discuss in Section 6.4.2, at the batching limit we assume a good-case

execution: links are synchronous, all processes are correct, and the set of brokers contains

only one element. We additionally assume that infinitely many clients broadcast concurrently.

Finally, we assume all servers to already know all broadcasting clients. Let β denote the

only broker. As all broadcasting clients submit their payloads to β within a suitably narrow

time window, β organizes all submissions into a single batch with root r . Because links are

synchronous and all clients are correct, every broadcasting client submits its multi-signature

for r in time. Having removed all individual signatures from the batch, β is left with a single,

aggregated multi-signature m and an empty straggler set S. β compresses the sender ids and

disseminates the batch to all servers. As m and S are constant-sized, the amortized cost for a

server to receive each payload p is
(⌈log2 (c)⌉+ ∣∣p∣∣) bits. As m authenticates the entire batch,

a server authenticates each payload at an amortized cost of 0 signature verifications. The

remainder of the protocol unfolds as a sequence of constant-sized messages: because all

broadcasting clients are known to all servers, no server requests any id assignment; witnesses

are always constant-sized; and because all processes are correct, no client equivocates and

all exception sets are empty. Finally, again by the synchrony of links, all offers of totality are

ignored. In summary, at the batching limit a server delivers a payload at an amortized cost of

0 signature verifications and
(⌈log2 (c)⌉+ ∣∣p∣∣) bits exchanged.

Latency. As depicted in Figure 6.1, the latency of Draft is 10 message delays in the syn-

chronous case (fast servers deliver upon receiving the broker’s Commit message), and at most

13 message delays in the asynchronous case (slow servers deliver upon receiving other servers’

Totality messages). By comparison, the latency of the optimistic reliable broadcast algorithm

by Cachin et al. [35] is respectively 4 message delays (synchronous case) and 6 message de-

lays (asynchronous case). Effectively, Draft trades oracular efficiency for a constant latency

overhead.

Worst-case complexity. In the worst case, a Draft server delivers a b-bits payload by ex-

changing O
((

log(c)+b
)
kn

)
bits, where c, k and n respectively denote the number of clients,

brokers and servers. In brief, the same id, payload and signature is included by each broker

in a different batch (hence the k term) and propagated in an all-to-all fashion (carried by

Totality messages) across correct servers (hence the n term). By comparison, the worst-case

213

Chapter 6. Draft

communication complexity of Cachin et al.’s optimistic reliable broadcast is O(ln) per server,

where l is the length of the broadcast payload. A direct batched generalization of the same

algorithm, however, would raise the worst-case communication to O
(
ln2

)
per server, similar

to that of Draft when n ∼ k. Both batched Bracha and Draft can be optimized by polyno-

mial encoding, reducing their per-server worst-case complexity to O(ln) and O(
(
log(c)+b

)
k)

respectively. Doing so for Draft, however, is beyond the scope of this Part.

6.2.3 Pseudocode (Client)

1 implements:
2 CSBClient, instance cl
3

4

5 uses:
6 Directory, instance dir
7 PerfectPointToPointLinks, instance pl
8

9

10 parameters:
11 b: Interval // Batching window
12

13

14 struct Submission:
15 message: Message,
16 signature: Signature,
17 submitted_to: {Broker},
18 included_in: {Root}
19

20

21 upon <cl.Init>:
22 trigger <dir.Signup>;
23 await <dir.SignupComplete | id>;
24

25 submissions: {Context: Submission} = {};
26 completed: {Root} = {};
27

28

29 upon <cl.Broadcast | context, message>:
30 signature = sign([Message, context, message]);
31

32 submissions[context] = Submission {
message, signature,

214

6.2 Algorithm

submitted_to: {}, included_in: {}
};

33

34 submit(context):
35

36

37 procedure submit(context):
38 if let submission = submissions[context]

and let β in (B \ submission.submitted_to):
39 assignment = dir.export(id);
40 trigger <pl.Send | β,

[Submission, assignment, (context, submission.message,
submission.signature)]>;

41

42 submission.sumbitted_to.add(β);
43 trigger <timer.Set | [Submit, context], 13 + b>;
44

45

46 upon <timer.Ring | [Submit, context]>:
47 submit(context);
48

49

50 upon <pl.Deliver | β, [Inclusion, context, root, proof]>:
51 if let submission = submissions[context]:
52 if verify(root, proof,(id, context, submission.message)):
53 submission.included_in.add(root);
54 multisignature = multisign([Reduction, root]);
55 trigger <pl.Send | β, [Reduction, root, multisignature]>;

56

57

58 upon <pl.Deliver | β, [Completion, root, exclusions, certificate]>:
59 if verify_plurality(certificate, [Completion, root, exclusions])

and id not in exclusions:
60 completed.add(root);
61

62

63 upon exists (context, submission) in submissions such that
(submission.included_in ∩ completed) != {}:

64 submissions.remove(context);

215

Chapter 6. Draft

6.2.4 Pseudocode (Broker)

1 implements:
2 CSBBroker, instance bk
3

4

5 uses:
6 Directory, instance dir
7 PerfectPointToPointLinks, instance pl
8

9

10 parameters:
11 b: Interval // Batching window
12

13

14 struct Submission:
15 context: Context,
16 message: Message,
17 signature: Signature
18

19

20 enum Batch:
21 payloads: {Id: (Context, Message)},
22 signatures: {Id: Signature},
23 reductions: {Id: MultiSignature},
24

25 commit_to: {Server},
26 committable: bool,
27

28 variant Reducing:
29 (empty)
30

31 variant Witnessing:
32 witnesses: {Server: MultiSignature}
33

34 variant Committing:
35 commits: {Server: ({Id}, MultiSignature)}
36

37 variant Completing:
38 exclusions: {Id},
39 completions: {Server: MultiSignature}
40

41

216

6.2 Algorithm

42 upon <bk.Init>:
43 pending: {Id: [Submission]} (default []) = {};
44 pool: {Id: Submission} = {};
45 collecting: bool = false;
46

47 batches: {Root: Batch} = {};
48

49

50 upon <pl.Deliver | χ, [Submission, assignment, (context, message,
signature)]>:

51 dir.import(assignment);
52

53 if χ.verify(signature, [Message, context, message]) and let id =
dir[χ]:

54 pending[id].push_back(Submission {context, message, signature
});

55

56

57 upon exists id in pending such that pending[id] != [] and id not in
pool:

58 submission = pending[id].pop_front();
59 pool[id] = submission;
60

61

62 upon pool != {} and collecting = false:
63 collecting = true;
64 trigger <timer.Set | [Flush], b + 1>;
65

66

67 upon <timer.Ring | [Flush]>:
68 collecting = false;
69

70 submissions = pool;
71 pool = {};
72

73 leaves = [(id, context, message)
for (id, Submission {context, message, ..}) in submissions];

74

75 tree = merkle_tree(leaves);
76 root = tree.root();
77

78 for (id, Submission {context, message, ..}) in submissions:

217

Chapter 6. Draft

79 χ = dir[id];
80 proof = tree.prove((id, context, message));
81 trigger <pl.Send | χ, [Inclusion, context, root, proof]>;
82

83 payloads = {id: (context, message)
for (id, Submission {context, message, ..}) in submissions};

84

85 signatures = {id: signature for (id, Submission {signature, ..})
in submissions};

86

87 batches[root] = Reducing {
payloads, signatures,
reductions: {},
commit_to: {},
committable: false

};
88

89 trigger <timer.Set | [Reduce, root], 2>;
90

91

92 upon <pl.Deliver | χ, [Reduction, root, multisignature]>:
93 if let batch alias batches[root] and batch is Reducing

and let id = dir[χ] and id in batch.payloads:
94 if χ.multiverify(multisignature, [Reduction, root]):
95 batch.reductions[id] = multisignature;
96 batch.signatures.remove(id);
97

98

99 upon <timer.Ring | [Reduce, root]>:
100 batch alias batches[root];
101 compressed_ids = compress(batch.payloads.keys());
102 payloads = batch.payloads.values()
103

104 for σ in Σ:
105 trigger <pl.Send | [Batch, compressed_ids, payloads]>;
106

107 batch = Witnessing {witnesses: {}, ..batch};
108 trigger <timer.Set | [Committable, root], 4>;
109

110

111 upon event <timer.Ring | [Committable, root]>:
112 if let batch = batches[root]:

218

6.2 Algorithm

113 batch.committable = true;
114

115

116 upon <pl.Deliver | σ, [BatchAcquired, root, unknowns]>:
117 if let batch = batches[root]:
118 if exists unknown in unknowns such that unknown not in dir:
119 return;
120

121 assignments = dir.export(unknowns..);
122

123 multisignature = aggregate(batch.reductions.values());
124 signatures = batch.signatures;
125

126 trigger <pl.Send | σ,
[Signatures, root, assignments, multisignature, signatures

]>;
127

128

129 upon <pl.Deliver | σ, [WitnessShard, root, shard]>:
130 if let batch alias batches[root]:
131 batch.commit_to.add(σ);
132

133 if batch is Witnessing:
134 if σ.multiverify(shard, [Witness, root]):
135 batch.witnesses[σ] = shard;
136

137

138 upon exists root in batches such that batches[root] is Witnessing
and |batches[root].witnesses| >= f + 1:

139 batch alias batches[root];
140 certificate = aggregate(batch.witnesses);
141

142 for σ in Σ:
143 trigger <pl.Send | [Witness, root, certificate]>;
144

145 batch = Committing {commits: {}, ..batch};
146

147

148 upon <pl.Deliver | σ, [CommitShard, root, conflicts, commit]>:
149 if let batch alias batches[root] and batch is Committing:
150 if !σ.multiverify(commit, [Commit, root, conflicts.keys()]):
151 return;

219

Chapter 6. Draft

152

153 for (id, (conflict_root, conflict_witness, conflict_proof,
conflict_message))

in conflicts:
154 if id not in batch.payloads:
155 return;
156

157 (context, message) = batch.payloads[id];
158

159 if not verify_plurality(conflict_witness, [Witness,
conflict_root]):

160 return;
161

162 if not verify(conflict_root, conflict_proof,
(id, context, conflict_message)):

163 return;
164

165 if message = conflict_message:
166 return;
167

168 batch.commits[σ] = (conflicts.keys(), commit);
169

170

171 upon exists root in batches such that batches[root] is Committing
and batches[root].committable and |batches[root].commits| >= 2f +

1:
172

173 batch alias batches[root];
174 patches: {{Id}: {MultiSignature}} (default {}) = {};
175

176 for (_, (conflicts, commit)) in batch.commits:
177 patches[conflicts].add(commit);
178

179 patches = {ids: aggregate(signatures) for (ids, signatures) in
patches};

180

181 for σ in batch.commit_to:
182 trigger <pl.Send | σ, [Commit, root, patches]>;
183

184 exclusions = union(patches.keys());
185 batch = Completing {exclusions, ..batch};
186

220

6.2 Algorithm

187

188 upon <pl.Deliver | σ, [CompletionShard, root, completion]>:
189 if let batch alias batches[root] and batch in Completing:
190 if multiverify(completion, [Completion, root, batch.exclusions

]):
191 batch.completions[σ] = completion
192

193

194 upon exists root in batches such that batches[root] is Completing
and |batches[root].completions| >= f + 1:

195 batch alias batches[root];
196 certificate = aggregate(batch.completions);
197

198 for id in payloads:
199 χ = dir[id];
200 trigger <pl.Send | χ, [Completion, root, batch.exclusions,

certificate]>;
201

202 batches.remove(root);

6.2.5 Pseudocode (Server)

1 implements:
2 CSBServer, instance sr
3

4

5 uses:
6 Directory, instance dir
7 PerfectPointToPointLinks, instance pl
8

9

10 struct Batch:
11 ids: [Id],
12 payloads: [(Context, Message)],
13 tree: MerkleTree
14

15

16 upon event <sr.Init>:
17 batches: {Root: Batch} = {};
18 witnesses: {Root: Certificate} = {};
19 commits: {(Root, {Id}): {{Id}: Certificate}} = {};
20

221

Chapter 6. Draft

21 messages: {(Id, Context): (Message, Root)} = {};
22 delivered: {(Id, Context)} = {};
23

24

25 procedure compress(ids):
26 compressed_ids: {Domain: {Id}} (default {}) = {};
27

28 for (domain, index) in ids:
29 compressed_ids[domain].add(index)
30

31 return compressed_ids
32

33 procedure expand(compressed_ids):
34 ids = {};
35

36 for (domain, indices) in compressed_ids:
37 for index in indices:
38 ids.push_back((domain, index));
39

40 ids.sort();
41 return ids;
42

43

44 procedure join(ids, payloads):
45 return [(id, context, message)

for (id, (context, message)) in zip(ids, payloads)];
46

47

48 procedure handle_batch(compressed_ids, payloads):
49 ids = expand(compressed_ids);
50

51 if ids.has_duplicates() or |ids| != |payloads|:
52 return ⊥;
53

54 unknowns = {id for id in ids such that id not in dir};
55

56 leaves = join(ids, payloads);
57 tree = merkle_tree(leaves);
58 root = tree.root();
59

60 batches[root] = Batch {ids, payloads, tree};
61 return [BatchAcquired, root, unknowns];

222

6.2 Algorithm

62

63

64 upon event <pl.Deliver | π, [Batch, compressed_ids, payloads]>:
65 response = handle_batch(compressed_ids, payloads);
66

67 if response != ⊥ and π in B:
68 trigger <pl.Send | π, response>;
69

70

71 procedure handle_signatures(root, assignments, multisignature,
signatures):

72 dir.import(assignments..);
73

74 if root not in batches:
75 return ⊥;
76

77 Batch {ids, payloads, tree} = batches[root];
78

79 if exists id in ids such that id not in dir:
80 return ⊥;
81

82 for (id, signature) in signatures:
83 if id not in ids:
84 return ⊥;
85

86 (context, message) = payloads[ids.index_of(id)];
87

88 if not dir[id].verify(signature, [Message, context, message]):

89 return ⊥;
90

91 multisigners = ids \ signatures.keys();
92

93 if not dir[multisigners..].multiverify(multisignature, [Reduction,
tree.root()]):

94 return ⊥;
95

96 shard = multisign([Witness, root]);
97 return [WitnessShard, root, shard];
98

99

100 upon <pl.Deliver | β, [Signatures, root, assignments, multisignature,

223

Chapter 6. Draft

signatures]>:
101 response = handle_signatures(root, assignments, multisignature,

signatures);
102

103 if response != ⊥:
104 trigger <pl.Send | β, response>;
105

106

107 procedure handle_witness(root, certificate):
108 if root not in batches:
109 return ⊥;
110

111 Batch {ids, payloads, tree} = batches[root];
112

113 if !verify_plurality(certificate, [Witness, root]):
114 return ⊥;
115

116 witnesses[root] = certificate;
117 conflicts: {Id: (Root, Certificate, MerkleProof, Message)} = {};
118

119 for (id, context, message) in join(ids, payloads):
120 if let (original_message, original_root) = messages[(id,

context)]
and original_message != message:

121 original_witness = witnesses[original_root];
122 original_batch = batches[original_root];
123

124 Batch {
ids: original_ids,
payloads: original_payloads,
tree: original_tree

} = original_batch;
125

126 original_leaf = (id, context, original_message);
127

128 conflicts[id] = (original_root,
original_witness,
original_tree.prove(original_leaf),
original_message

);
129 else:
130 messages[(id, context)] = (message, root);

224

6.2 Algorithm

131

132 commit = multisign([Commit, root, conflicts.keys()]);
133 return [CommitShard, root, conflicts, commit];
134

135

136 upon <pl.Deliver | β, [Witness, root, certificate]>:
137 response = handle_witness(root, certificate);
138

139 if response != ⊥:
140 trigger <pl.Send | β, response>;
141

142

143 procedure handle_commit(root, patches):
144 if root not in batches:
145 return ⊥;
146

147 Batch {ids, payloads, ..} = batches[root];
148

149 if exists id in ids such that id not in dir:
150 return ⊥;
151

152 signers: {Server} = {};
153

154 for (conflicts, certificate) in patches:
155 if not certificate.verify([Commit, root, conflicts]):
156 return ⊥;
157

158 signers.extend(certificate.signers());
159

160 if |signers| < 2f + 1:
161 return ⊥;
162

163 exclusions = union(patches.keys());
164 commits[(root, exclusions)] = patches;
165

166 for (id, context, message) in join(ids, payloads):
167 keycard = dir[id];
168

169 if id not in exclusions
and (keycard, context) not in delivered:

170 delivered.add((keycard, context));
171 trigger <sr.Deliver| keycard, context, message}>;

225

Chapter 6. Draft

172

173 trigger <timer.Set | [OfferTotality, root, exclusions], 7>;
174

175 shard = multisign([Completion, root, exclusions]);
176 return [CompletionShard, root, shard];
177

178

179 upon <pl.Deliver | π, [Commit, root, patches]>:
180 response = handle_commit(root, patches);
181

182 if response != ⊥ and π in B:
183 trigger <pl.Send | π, response>;
184

185

186 upon <timer.Ring | [OfferTotality, root, exclusions]>:
187 for σ in Σ:
188 trigger <pl.Send | σ, [OfferTotality, root, exclusions]>;
189

190

191 upon <pl.Deliver | σ, [OfferTotality, root, exclusions]>:
192 if (root, exclusions) not in commits:
193 trigger <pl.Send | σ, [AcceptTotality, root, exclusions]>;
194

195

196 upon <pl.Deliver| σ, [AcceptTotality, root, exclusions]>:
197 if let batch = batches[root]

and let patches = commits[(root, exclusions)]:
198 Batch {ids, payloads, ..} = batch;
199

200 assignments = dir.export(ids..);
201 compressed_ids = compress(ids);
202

203 trigger <pl.Send| σ, [Totality, root, assignments,
(compressed_ids, payloads), patches]>;

204

205

206 upon <pl.Deliver | σ, [Totality, root, assignments, (ids, payloads),
patches]>:

207 dir.import(assignments..);
208

209 handle_batch(ids, payloads);
210 handle_commit(root, patches)

226

6.3 Correctness

6.3 Correctness

In this section, we prove to the fullest extent of formal detail that Draft implements a Client-

Server Byzantine Reliable Broadcast system.

6.3.1 No duplication

In this section, we prove that Draft satisfies no duplication.

Lemma 49. Let σ be a correct server, let χ be a client, let c be a context. If
(
χ,c

) ∉ del i ver ed at

σ, then ser ver did not deliver a message from χ for c.

Proof. Upon initialization, del i ver ed is empty at σ (line 22). Moreover, σ adds
(
χ,c

)
to

del i ver ed only by executing line 170. Immediately after doing so, σ delivers a message from

χ for c (line 171), and because σ never removes elements from del i ver ed , the lemma is

proved.

Theorem 15. Draft satisfies no duplication.

Proof. Let σ be a correct server, let χ be a client, let c be a context. σ delivers a message for c

from χ only by executing line 171. σ does so only if
(
χ,c

) ∉ del i ver ed (line 169). By Lemma

49, we then have thatσ never delivers a message for c from χmore than once, and the theorem

is proved.

6.3.2 Consistency

Notation 16 (Contexts, messages). We use C and M to respectively denote the set of contexts

and messages broadcast in a Client-Server Byzantine Reliable Broadcast system.

Definition 57 (Ideal accumulator). d An ideal accumulator is a tuple (U ,R,P ,ρ,ζ,ν) com-

posed by

• An universe U ;

• A set of roots R;

• A set of proofs P ;

• A root function ρ : U <∞ →R;

• A proof function ζ : U <∞×N→P ;

• A verification function ν : R×P ×N×U → {True,False};

227

Chapter 6. Draft

such that

∀z ∈U <∞,∀n ≤ |z|, ν(
ρ(z),ζ(z,n),n, zn

)= True

∀z ∈U <∞,∀n ≤ |z|,∀q ̸= zn ,∀p ∈P , ν
(
ρ(z), p,n, q

)= False

Let r ∈R, let p ∈P , let n ∈N, let x ∈U such that ν
(
r, p,n, x

)= True. We say that p is a proof

for x from r .

Lemma 50. Let
(
U ,R,P ,ρ,ζ,ν

)
be an ideal accumulator. We have that ρ is injective.

Proof. Let us assume by contradiction that z, z ′ ∈U <∞ exist such that z ̸= z ′ and ρ(z) = ρ(
z ′).

Let n ∈N such that zn ̸= z ′
n . By Definition 57 we have

True= ν(
ρ(z),ζ(z,n),n, zn

)=
= ν(

ρ
(
z ′),ζ(z,n),n, zn

)= False

which immediately proves the lemma.

Throughout the remainder of this document, we use Merkle hash-trees as a cryptographic

approximation for an ideal accumulator(
(I×C×M),R,P ,ρ,ζ,ν

)
on the universe of triplets containing an id, a context and a message. In brief: while a success-

fully verifiable, corrupted proof can theoretically be forged for a Merkle tree (Merkle tree roots

are highly non-injective), doing so is unfeasible for a computationally bounded adversary. An

in-depth discussion of Merkle trees is beyond the scope of this Part.

Lemma 51. Let σ be a correct server. Let (r,b) ∈ batches at σ, let

i = b.i d s

p = b.payload s

We have |i | = ∣∣p∣∣.
Proof. We start by noting that, upon initialization, batches is empty at σ (line 17). Moreover,

σ adds B atch
{
i d s : i , payload s : p, ..

}
to batches only by executing line 60: σ does so only if

|i | = ∣∣p∣∣ (lines 51 and 52).

Lemma 52. Let σ be a correct server. Let (r,b) ∈ batches at σ, let

i = b.i d s

The elements of i are all distinct.

228

6.3 Correctness

Proof. The proof of this lemma is identical to that of Lemma 51, and we omit it for the sake of

brevity.

Definition 58 (Join function). The join function

j :
{(

i , p
) | i ∈ I<∞, p ∈ (C×M)<∞, |i | = ∣∣p∣∣}→ (I×C×M)<∞

is defined by ∣∣j(
i , p

)∣∣= (|i | = ∣∣p∣∣)
j
(
i , p

)
n = (in ,cn ,mn), where (cn ,mn) = pn

Lemma 53. Let σ be a correct server. Let (r,b) ∈ batches at σ, let l = j
(
b.i d s,b.payload s

)
. We

have r = ρ(l).

Proof. We underline that, because by Lemma 51 we have |b.i d s| = ∣∣b.payload s
∣∣, the defini-

tion of l is well-formed. We start by noting that, upon initialization, batches is empty at σ

(line 17). Moreover, σ sets

batches[r] = B atch
{
i d s : i , payload s : p, ..

}
only by executing line 60. Immediately before doing so, σ computes r = ρ(l) (lines 56, 57 and

58).

Lemma 54. Let σ, σ′ be correct servers. Let (r,b) ∈ batches at σ, let
(
r,b′) ∈ batches at σ′. We

have b = b′.

Proof. Upon initialization, batches is empty at bothσ andσ′. Moreover,σ andσ′ respectively

set

batches[r] = B atch
{
i d s : i , payload s : p, tr ee : t

}
batches[r] = B atch

{
i d s : i ′, payload s : p ′, tr ee : t ′

}

only by executing line 60. By Lemma 53, we have

ρ
(
j
(
i , p

))= r = ρ(
j
(
i ′, p ′))

which, by Lemma 50 and the injectiveness of j, proves i = i ′ and p = p ′. Because σ (resp., σ′)
computes t (resp. t ′) as a pure function of i and p (resp., i ′ = i and p ′ = p) (line 57), we have

t = t ′. This proves b = b′ and concludes the lemma.

Lemma 55. Let σ be a correct server, let i be an id. Whenever σ invokes di r [i], σ knows i .

229

Chapter 6. Draft

Proof. σ invokes di r [i] only by executing lines 88, 93 or 167. If σ invokes di r [i] by executing

lines 88 or 93, then i ∈ I (lines 83 and 84, line 91 respectively) for some I ⊆ I such that, for all

i ′ ∈ I , σ knows i ′ (lines 79 and 80). Similarly, if σ invokes di r [i] by executing line 167, then

i ∈ I (line 166) for some I ⊆ I such, for all i ′ ∈ I , σ knows i ′ (lines 149 and 150).

Lemma 56. Let σ be a correct server. Let χ be a client, let c be a context, let m be a message such

that σ delivers
(
χ,c,m

)
. We have that σ knows χ.

Proof. σ delivers
(
χ,c,m

)
only by executing line 171. Immediately before doing so, σ invokes

di r [i] for some i ∈ I to obtain χ (line 167). By Lemma 55 we then have that σ knows i which,

by Definition 66, proves that σ knows k as well, and concludes the lemma.

Lemma 57. Let σ be a correct server. Let χ be a client, let c be a context, let m be a message such

that σ delivers
(
χ,c,m

)
. Let i = D

(
χ
)
. Some l ∈ (I×C×M)<∞, σ1, . . . ,σ2 f +1 ∈Σ, ϵ1, . . . ,ϵ2 f +1 ⊆ I

exist such that:

• For some k, lk = (i ,c,m);

• For all n, i ∉ ϵn ;

• For all n, σn signed
[
Commit,ρ(l),ϵn

]
.

Proof. We underline the soundness of the lemma’s statement. Because σ delivers
(
χ, ..

)
, by

Lemma 56 σ knows χ, and by Notation 30 D
(
χ
)

is well-defined.

We start by noting that some b = batches[r] exists (lines 144, 145 and 147) such that, for some

k, we have i = b.i d s[k] and (c,m) = b.payload s[k] (line 166). Let l = j
(
b.i d s,b.payload s

)
.

By Definition 58 we immediately have lk = (i ,c,m). Moreover, by Lemma 53, we have r = ρ(l).

Moreover, some S ⊆Σ exists such that:

• |S| ≥ 2 f +1 (lines 160 and 161);

• For all σ′ ∈ S, some ϵ
(
σ′) exists such that σ′ signed

[
Commit,r,ϵ

(
σ′)] (lines 152, 155, 156

and 158: S is obtained by iteratively extending an initially empty set with certificate

signers);

Let σ1, . . . ,σ2 f +1 be distinct elements of S, let ϵn = ϵ(σn).

Finally, some ϵ⊇ ϵ1 ∪ . . .∪ϵ2 f +1 exists (lines 154 and 163) such that i ∉ ϵ (line 169). For all n we

then obviously have i ∉ ϵn .

In summary: lk = (i ,c,m); for all n, σn signed
[
Commit,ρ(l) = r,ϵn

]
; for all n, i ∉ ϵn . The

lemma is therefore proved.

230

6.3 Correctness

Lemma 58. Letσ be a correct server, let i be an id, let c be a context, let m be a message. Let t ∈R
such that, at time t, messag es[(i ,c)] = (m,_). At any time t ′ > t , we have messag es[(i ,c)] =
(m,_) as well.

Proof. After setting messag es[(i ,c)] = (m,_), σ sets messag es[(i ,c)] = (m,_)′ only by execut-

ing line 130. It does so only if m = m′ (line 120).

Lemma 59. Let σ be a correct server. Let i be an id, let c be a context, let m be a message. Let

l ∈ (I×C×M)<∞, let ϵ⊆ I such that:

• For some k, lk = (i ,c,m);

• i ∉ ϵ;

• σ signs
[
Commit,ρ(l),ϵ

]
.

We have that σ sets messag es[(i ,c)] = (m,_).

Proof. Prior to signing
[
Commit,ρ(l),ϵ

]
(line 132), σ retrieves b′ = batches

[
ρ(l)

]
(lines 108

and 109 and 111). Let l ′ = j
(
b′.i d s,b′.payload s

)
. By Lemma 53 we have ρ

(
l ′

)= ρ(l) which,

by Lemma 50, proves l = l ′.

Subsequently, σ loops through all elements of l = l ′ (line 119). For each
(
i j ,c j ,m j

)
in l , σ

either adds i j to ϵ (line 128), or sets messag es
[
i j ,c j

]= (
m j ,_

)
(line 130). Because σ does so

in particular for j = k, and i ∉ ϵ, σ sets messag es[(i ,c)] = (m,_), and the lemma is proved.

Theorem 16. Draft satisfies consistency.

Proof. Let σ,σ′ be two correct servers. Let χ be a client, let c be a context, let m,m′ be

messages such that σ and σ′ deliver
(
χ,c,m

)
and

(
χ,c,m′) respectively. By Lemma 56, σ

knows χ. Let i = D
(
χ
)
. By Lemma 57, and noting that at most f servers are Byzantine, some

l ∈ (I×C×M)<∞, σ1, . . . ,σ f +1 ∈Σ, and ϵ1, . . . ,ϵ f +1 exist such that: for some k, lk = (i ,c,m); for

all n, σn is correct; for all n, i ∉ ϵn ; for all n, σn signed
[
Commit,ρ(l),ϵn

]
. By Lemmas 59 and

58, messag es[(i ,c)] is permanently set to (m,_) at σ1, . . . ,σ f +1.

By an identical reasoning, some σ′
1, . . . ,σ′

f +1 exist such that for all n, σ′
n is correct and perma-

nently sets messag es[(i ,c)] = (
m′,_

)
. Because

(
σ1, . . . ,σ f +1

)
and

(
σ′

1, . . . ,σ′
f +1

)
intersect in at

least one server, we have m = m′, and the theorem is proved.

231

Chapter 6. Draft

6.3.3 Totality

Notation 17 (Ordering). Let X be a set endowed with a total order relationship. We use

X ↗ ⊂ X <∞ to denote the set of finite, non-decreasing sequences on X . Let Y ⊆ X . We use

S (Y) to denote sorted Y , i.e., the sequence containing all elements of Y in ascending order.

Definition 59 (Id compression and expansion). The id compression function

c : I↗ → (D→P(N))

is defined by

n ∈ c(i)(d) ⇐⇒∃ j | i j = (d ,n)

The id expansion function

e : (D→P(N)) → I↗

is defined by

e
(

f
)=S

({
(d ,n) | n ∈ f (d)

})
Lemma 60. Let i ∈ I↗. We have e(c(i)) = i .

Proof. It follows immediately from Definition 59.

Lemma 61. Let σ,σ′ be correct processes, let (r,b) ∈ batches at σ, let

i = b.i d s

p = b.payload s

Upon evaluating handl e_batch
(
c(i), p

)
, σ′ sets batches[r] = b.

Proof. We start by noting that, upon initialization, batches is empty at σ (line 17). Moreover

σ adds (r,b) to batches only by executing line 60. σ does so only if i has no duplicates, and

|i | = ∣∣p∣∣ (line 51).

Upon invoking handle_batch
(
c(i), p

)
, σ′ verifies that i = e(c(i)) (line 49, see Lemma 60) has

no duplicates and satisfies |i | = ∣∣p∣∣ (line 51). Having done so, σ′ sets batches[r] = b′ for some

b′. However, by Lemma 54 we have b = b′, and the lemma is proved.

Lemma 62. Let σ,σ′ be correct processes, let ((r,ϵ),ζ) ∈ commi t s at σ, let (r,b) ∈ batches

at σ′ such that for all i ∈ b.i d s, σ′ knows i . Upon evaluating handle_commi t (r,ζ), σ′ sets

commi t s[(r,ϵ)] = ζ.

Proof. We start by noting that, upon initialization, commi t s is empty at σ (lines 19 and 156).

Moreover σ adds ((r,ϵ),ζ) to commi t s only by executing line 164. σ does so only if, for all

232

6.3 Correctness

(c, z) ∈ ζ (line 154), z verifies correctly against [Commit,r,c] (line 155) and∣∣∣∣∣ ⋃
(_,z)∈ζ

z.si g ner s()

∣∣∣∣∣≥ 2 f +1

(lines 160 and 161). We additionally have

ϵ= ⋃
(c,_)∈ζ

c

(line 163).

Upon invoking handle_commi t s(r,ζ), by hypothesis σ′ verifies that r ∈ batches (line 144)

and, for all i ∈ b.i d s (line 147), i ∈ di r (line 149). Moreover, because ver i f y is a pure proce-

dure, σ′ passes the checks at lines 155 and 160. Next, σ′ computes

ϵ′ = ⋃
(c,_)∈ζ

c = ϵ

(line 163) and sets commi t s
[(

r,ϵ′
)]= ζ (line 164), concluding the lemma.

Lemma 63. Let σ be a correct process, let (r,_) ∈ commi t s at σ. We have r ∈ batches at σ.

Proof. Upon initialization, commi t s is empty at σ (line 19). Moreover, σ adds (r,_) to

commi t s only by executing line 164. σ does so only if r ∈ batches (lines 144 and 145).

Lemma 64. Let σ be a correct process, let (r,_) ∈ commi t s at σ. Let b = batches[r] at server.

For all i ∈ b.i d s, σ knows i .

Proof. We start by noting that, by Lemma 63, the definition of b is well-formed. Upon initializa-

tion, commi t s is empty at σ (line 19). Moreover, σ adds (r,_) to commi t s only by executing

line 164. σ does so only if, for all i in b.i d s, σ knows i (lines 147 and 149 and 150).

Lemma 65. Let σ be a correct process, let (r,ϵ) ∈ commi t s at σ. Let b = batches[r] at σ, let

i = b.i d s

p = b.payload s

For all j , let
(
c j ,_

)= p j . For all j such that i j ∉ ϵ, σ delivered a message from D
(
i j

)
for c j .

Proof. We underline that, by Lemma 64, D
(
i j

)
is well-defined for all j . Upon initialization,

commi t s is empty at σ (line 19). Moreover, σ adds (r,ϵ) to commi t s only by executing line

164. Upon doing so, σ retrieves b from batches (line 147) and delivers a message from D
(
i j

)
for c j (lines 167 and 171) for all j such that: i j ∉ ϵ; and σ did not previously deliver a message

from D
(
i j

)
for c j (line 169, see Lemma 49).

233

Chapter 6. Draft

Theorem 17. Draft satisfies totality.

Proof. Let σ,σ′ be correct servers. Let χ be a client, let c be a context such that σ delivers a

message fromχ for c . σ delivers a message fromχ for c only by executing line 171. Immediately

before doing so, σ sets commi t s[r,ϵ] = ζ for some r , ϵ and ζ such that D
(
χ
) ∉ ϵ (lines 164, 167

and 169). Let b = batches[r] at σ (by Lemma 63, r ∈ batches at σ), let

i = b.i d s

p = b.payload s

For all j , let
(
c j ,_

)= p j . For some k we have ik = D
(
χ
)

and ck = c (lines 147, 166 and 167).

Immediately after delivering a message from χ for c, σ sets a timer for
[
OfferTotality,r,ϵ

]
(line 173). When the timer eventually rings (line 186), σ sends an

[
OfferTotality,r,ϵ

]
message to all servers, including σ′ (lines 187 and 188). Upon eventually delivering[
OfferTotality,r,ϵ

]
(line 191), σ′ checks if (r,ϵ) ∈ commi t s (line 192). Let us assume that

(r,ϵ) ∈ commi t s at σ′. Let b′ = batches[r] at σ′ (by Lemma 63, r ∈ batches at σ′). By Lemma

54, we have b′ = b. As a result, by Lemma 65, σ′ already delivered a message from D(ik) =χ for

ck = c. Throughout the remainder of this proof, we assume (r,ϵ) ∉ commi t s at σ′.

Upon verifying that (r,ϵ) ∉ commi t s (line 192), σ′ sends back to σ an
[
AcceptTotality,r,ϵ

]
message (line 193). Upon delivering

[
AcceptTotality,r,ϵ

]
(line 196), σ verifies that r ∈

batches and (r,ϵ) ∈ commi t s (line 197), exports an array a of assignments for all elements of

i (line 200) (by Lemma 64 σ knows all elements of i), and sends
[
Totality,r, a,

(
c(i), p

)
,ζ

]
to

σ′ (line 203)

Upon delivering
[
Totality,r, a,

(
c(i), p

)
,ζ

]
(line 206), σ′ imports all elements of a (line

207). Having done so, σ′ knows all elements of i . Then, σ′ invokes handle_batch
(
c(i), p

)
(line 209). By Lemma 61, having done so σ′ sets batches[r] = b. Finally, σ′ invokes

handle_commi t (r,ζ) (line 210). By Lemma 62, having done so σ′ sets commi t s[(r,ϵ)] = ζ.

By Lemma 65, σ′ delivers a message from D
(
χ
)= ik for c = ck .

In summary, if σ delivers a message from χ for c , then σ′ eventually delivers a message from χ

for c as well, and the theorem is proved.

6.3.4 Integrity

In this section, we prove that Draft satisfies integrity.

Lemma 66. Let σ be a correct server. Let χ be a client, let c be a context, let m be a message such

that σ delivers m from χ for c. Some correct server σ′ and some (r,b) ∈ batches at σ′ exists such

234

6.3 Correctness

that σ′ signed [Witness, r] and, with

i = b.i d s

p = b.payload s

some k exists such that ik = D
(
χ
)

and pk = (c,m).

Proof. We start by noting that σ delivers m from χ for c only by executing line 171. When σ

does so, some (r,b) ∈ batches exists at σ (line 147) such that, with

i = b.i d s

p = b.payload s

some k exists such that ik = D
(
χ
)

and pk = (c,m) (lines 166 and 167). Moreover, a set S ⊆ Σ
exists such that |S| ≥ 2 f + 1 (lines 160 and 161) and, for all σ̃ ∈ S, σ̃ signed a [Commit,r,_]

message (lines 152, 155, 156 and 158). Noting that at most f processes are Byzantine, at least

one element σ∗ of S is correct.

σ∗ signs [Commit,r,_] only upon executing line 132. σ∗ does so only if at least f +1 servers

signed [Witness,r] (lines 113 and 114). Noting that at most f processes are Byzantine, at least

one correct server σ′ signed [Witness,r].

σ′ signs [Witness,r] only by executing line 96. It does so only if some
(
r,b′) ∈ batches exists

at σ′ (lines 74, 75). By Lemma 54, we have b′ = b.

In summary, some correct serverσ′ exists such thatσ′ signed [Witness,r] and (r,b) ∈ batches

at σ′, with ik = D
(
χ
)

and pk = (c,m): the lemma is proved.

Lemma 67. Let χ be a correct client. Let (c, s) ∈ submi ssi ons at χ, let

m = s.messag e

We have that χ broadcast m for c.

Proof. Upon initialization, submi ssi ons is empty at χ (line 25); χ adds (c, s) to submi ssi ons

(line 32) only upon broadcasting m for c (line 29).

Lemma 68. Let σ be a correct server, let l ∈ (I×C×M)↗ such that σ signs
[
Witness,ρ(l)

]
. For

all j , let
(
i j ,c j ,m j

)= l j , let χ j = D
(
i j

)
. For all k such that χk is correct, χk broadcast mk for ck .

Proof. We start by noting that σ signs
[
Witness,ρ(l)

]
only by executing line 96. Immediately

before doing so, σ loads a batch b = batches
[
ρ(l)

]
(line 77). By Lemmas 53 and 50, we have

l = j
(
b.i d s,b.payload s

)
235

Chapter 6. Draft

Moreover, by Lemma 52, all elements of i are distinct.

Next, σ uses a set H ⊆ I to partition the elements of i . For each h ∈ H (line 82), σ verifies that:

for some j , we have h = i j (lines 83 and 89); and χ j signed
[
Message,c j ,m j

]
(lines 86, 88 and

89). Finally, for all j such that i j ∉ H (line 91),σ verifies that χ j signed
[
Reduction,ρ(l)

]
(lines

93 and 94).

In summary, for all j , we have that either χ j signed
[
Message,c j ,m j

]
, or χ j signed[

Reduction,ρ(l)
]
.

Let k such that χk is correct. Let us assume that χk signed
[
Message,ck ,mk

]
. χk signs[

Message,ck ,mk
]

only by executing line 30. It does so only upon broadcasting mk for ck (line

29). Throughout the remainder of this proof, we assume that χk signed
[
Reduction,ρ(l)

]
.

χk signs
[
Reduction,ρ(l)

]
only by executing line 55. It does so only if, for some p ∈P , n ∈N,

c ′ ∈C, m′ ∈M, we have

ν
(
ρ(l), p,n,

(
ik ,c ′,m′))= True (6.1)

(line 52), and χk previously broadcast m′ for c ′ (line 51, see Lemma 67). By Equation 6.1

and Definition 57, we must have ln = (ik , . . .). As a result, because i is non-repeating, we

immediately have n = k, c ′ = ck and m′ = mk . We then have that χk previously broadcast mk

for ck , and the lemma is proved.

Theorem 18. Draft satisfies integrity.

Proof. Let σ be a correct server. Let χ be a correct client, let c be a context, let m be a

message such that σ delivers m from χ for c. By Lemma 66, some correct server σ′ and some

(r,b) ∈ batches at σ′ exist such that σ′ signed [Witness,r] and, with

i = b.i d s

p = b.payload s

some k exists such that ik = D
(
χ
)

and pk = (c,m). Let l = j
(
i , p

)
. We trivially have lk =(

D
(
χ
)
,c,m

)
. By Lemma 53 we have r = ρ(l). For all j , let

(
c j ,m j

)= p j . By Lemma 68, we have

that
(
χ= D

(
D
(
χ
))= D(ik)

)
broadcast (m = mk) for (c = ck), and the theorem is proved.

6.3.5 Validity

In this section, we prove that Draft satisfies validity.

Lemma 69. Let χ be a correct client. Upon initialization, χ knows χ.

236

6.3 Correctness

Proof. It follows immediately from lines 22 and 23, and the signup validity of Directory.

Lemma 70. Let χ be a correct client, let c be a context such that χ broadcast a message for c. If

c ∉ submi ssi ons at χ, then at least one correct server delivered a message from χ for c.

Proof. Let i = D
(
χ
)

(by Lemma 69, i is well-defined). Let m be the message χ broadcast for c.

We start by noting that χ adds c to submi ssi ons (line 32) upon broadcasting a message for c

(line 29). As a result, χ satisfies c ∉ submi ssi ons only upon removing (c, s) from submi ssi ons

(line 64 only). χ does so only if

s.i ncl uded_i n ∩ compl eted ̸= ;

Let r ∈ s.i ncl uded_i n ∩ compl eted .

Noting that s.i ncl uded_i n is initially empty at χ (line 32), χ must have added r to

s.i ncl uded_i n (line 53 only). Noting that χ permanently sets s.messag e to m upon ini-

tialization (line 32 only, see line 29), χ adds r to s.i ncl uded_i n (line 53) only if, for some

p ∈P and n ∈N, we have

ν
(
r, p,n, (i ,c,m)

)= True (6.2)

(line 52).

Noting that compl eted is initially empty at χ (line 26), χ must have added r to compl eted

(line 60 only). χ does so only if some ϵ exists such that i ∉ ϵ and at least f +1 servers signed[
Completion,r,ϵ

]
(line 59).

Noting that at most f servers are Byzantine, some correct server σ exists such that σ signed[
Completion,r,ϵ

]
(line 175 only). σ does so only if r ∈ batches (lines 144 and 145). Let

b = batches[r] atσ, let l = j
(
b.i d s,b.payload s

)
, let

(
i j ,c j ,m j

)= l j , let χ j = D
(
i j

)
. By Lemma

53, we have r = ρ(l), and by Equation 6.2 and Definition 57 we have ln = (i ,c,m).

Immediately before signing
[
Completion,r,ϵ

]
, σ loops through l (line 166) and delivers m j

from χ j for c j (lines 167 and 171) if and only if i j ∉ ϵ andσ did not previously deliver a message

from χ j for c j (line 169, see Lemma 49). Recalling that (i = in) ∉ ϵ, σ delivers a message from(
χ=χ j

)
for

(
c = c j

)
before or upon signing

[
Completion,r,ϵ

]
, and the lemma is proved.

Lemma 71. Letχ be a correct client, let c be a context, let m be a message such thatχ broadcast m

for c. Eventually, either a correct server delivers a message fromχ for c, or a correct broker delivers

a [Submission, a, (c,m, s)] message, where a is an assignment for χ and s is χ’s signature for[
Message,c,m

]
.

Proof. Upon broadcasting m for c (line 29), χ sets

submi ssi ons[c] = Submi ssi on
{
messag e : m, si g natur e : s, submi t ted_to : ;, ..

}
237

Chapter 6. Draft

where s is a signature for
[
Message,c,m

]
(lines 30 and 32). χ never updates

submi ssi ons[c].messag e or submi ssi ons[c].si g natur e. Subsequently, χ invokes

submi t (c) (line 34).

Upon executing submi t (c) (line 37), χ immediately returns if and only if c ∉ submi ssi ons,

or no β ∈ (B \ submi ssi ons[c].submi t ted_to) exists (line 38). Otherwise, χ sends a

[Submission, a, (c,m, s)] message to β (where a is an assignment for χ) (lines 39 and 40),

then adds β to submi ssi ons[c].submi t ted_to (line 42), and finally schedules submi t (c) for

eventual re-execution (lines 43, 46 and 47).

Noting that χ updates submi ssi ons[c].submi t ted_to only by executing line 42, χ keeps

re-executing submi t (c) until either

• c ∉ submi ssi ons: by Lemma 70, at least one correct server delivered a message from χ

for c; or

• χ sent to all brokers a [Submission, a, (c,m, s)] message, where a is an assignment for χ

The lemma follows immediately from the observation that B is finite and the assumption that

at least one broker is correct.

Lemma 72. Let β be a correct broker. If pool ̸= {} at β, then eventually pool = {} at β.

Proof. We start by noting that the [Flush] timer is pending at β if and only if col l ect i ng =
True at β. Indeed, upon initialization, we have col l ect i ng = False at β. Moreover, β sets

col l ect i ng = True (line 63) only upon setting the [Flush] timer (line 64 only). Finally, β resets

col l ect i ng = False (line 68 only) only upon ringing [Flush] (line 67).

Upon ringing [Flush] (line 67), β resets pool = {} (line 71). As a result, whenever pool ̸= {} at

β, we either have:

• col l ect i ng = True at β: [Flush] is pending at β and βwill eventually reset pool = {}; or

• col l ect i ng = False at β: β will eventually detect that pool ̸= {} and col l ect i ng =
False (line 62) and set col l ect i ng = tr ue - the above will then apply.

Lemma 73. Let β be a correct broker, let i be an id such that

pendi ng [i] = [s1, . . . , sS]

238

6.3 Correctness

at β, with S ≥ 1. We eventually have

pool [i] = s1

pendi ng [i] = [s2, . . . , sS , . . .]

at β.

Proof. We start by noting that, by Lemma 72, if i ∈ pool then eventually pool = {} at β. Noting

that β adds elements to pool only by executing line 59, we then have that eventually β detects

pendi ng [i] ̸= [] and i ∉ pool (line 57). Upon doing so, β sets pendi ng [i] = [s2, . . . , sS , . . .] (line

58) and pool [i] = s1 (line 59).

Lemma 74. Let β be a correct broker, let i be an id, let s be a submission such that β pushes s to

pendi ng [i]. We eventually have pool [i] = s at β.

Proof. It follows immediately by induction on Lemma 73, and the observation that β only

pushes elements to the back of pendi ng .

Lemma 75. Let β be a correct broker. Let χ be a client, let a be an assignment for χ, let c

be a context, let m be a message, let s be χ’s signature for
[
Message,c,m

]
. If β delivers a

[Submission, a, (c,m, s)], then β eventually sets

pool [i] = Submi ssi on
{
context : c,messag e : m, ..

}
where i = D

(
χ
)
.

Proof. Upon delivering [Submission, a, (c,m, s)] (line 50), β imports a (line 51). Be-

cause s successfully verifies against
[
Message,c,m

]
and β knows χ (line 53), β pushes

Submi ssi on
{
context : c,messag e : m, ..

}
to pendi ng [i] (line 54). The lemma immediately

follows from Lemma 74.

Definition 60 (Map). Let X , Y be sets. A map m : X ↣ Y is a subset of (X ×Y) such that

∀(
x, y

)
,
(
x ′, y ′) ̸= (

x, y
) ∈ m, x ̸= x ′

We use

D(m) = {x ∈ X | (x,_) ∈ m}

C (m) = {
y ∈ Y | (_, y

) ∈ m
}

to respectively denote the domain and codomain of m.

Notation 18 (Sorting maps). Let X , Y be sets such that X is endowed with a total order

relationship, let m : X ↣ Y . With a slight abuse of notation, we use S (C (m)) to denote the

239

Chapter 6. Draft

codomain of m, sorted by m’s domain. For example, let m = {(1,□), (2,◦), (3,△)}, we have

S (C (m)) = (□,◦,△).

Definition 61 (Broker variables). Let β be a correct broker, let t ∈R, let r be a root.

• We use Pβ(t)[r] : I↣ (M×C) to denote, if it exists, the value of batches[r].payload s at

β at time t ; we use Pβ(t)[r] =⊥ otherwise.

• We define Cβ(t)[r] : I↣C and Mβ(t)[r] : I↣M by(
Cβ(t)[r][i],Mβ(t)[r][i]

)= Pβ(t)[r][i]

if Pβ(t)[r][i] ̸= ⊥; we use Cβ(t)[r][i] = Mβ(t)[r][i] =⊥ otherwise.

• We define Lβ(t)[r] ∈ (I×C×M)↗ by

Lβ(t)[r] =S
({

(i ,c,m) | (i , (c,m)) ∈ Pβ(t)[r]
})

if Pβ(t)[r] ̸= ⊥; we use Lβ(t)[r] =⊥ otherwise.

• We use Sβ(t)[r] : I↣S1 and Qβ(t)[r] : I↣S+ to respectively denote, if they exist, the

values of batches[r].si g natur es and batches[r].r educti ons at β at time t ; we use

Sβ(t)[r] = Qβ(t)[r] =⊥ otherwise.

• We use Yβ(t)[r] ⊆Σ and Zβ(t)[r] ∈ {True,False} to respectively denote, if they exist, the

values of batches[r].commi t_to and batches[r].commi t t able at β at time t ; we use

Yβ(t)[r] = Zβ(t)[r] =⊥ otherwise.

• We use Wβ(t)[r] : Σ↣ S+ to denote, if it exists, the value of batches[r].wi tnesses at

β at time t ; we use Wβ(t)[r] = ⊥ otherwise. We underline that batches[r].wi tnesses

exists only if batches[r] exists and is Witnessing.

• We use Xβ(t)[r] :Σ↣
(
P(I)×S+)

to denote, if it exists, the value of batches[r].commi t s

at β at time t ; we use Xβ(t)[r] =⊥ otherwise. We underline that batches[r].commi t s

exists only if batches[r] exists and is Committing.

• We use Eβ(t)[r] ∈ P(I) and Tβ(t)[r] : Σ↣ S+ to respectively denote, if they exist, the

values of batches[r].exclusi ons and batches[r].compl eti ons at β at time t ; we

use Eβ(t)[r] = Tβ(t)[r] =⊥ otherwise. We underline that batches[r].exclusi ons and

batches[r].compl eti ons exist only if batches[r] exists and is Completing.

Notation 19 (Broker variables). Let r be a root. Wherever it can be unequivocally inferred

from context, we omit the correct broker and the time from P[r], C[r], M[r], L[r], S[r], Q[r],

Y[r], Z[r], W[r], X[r], E[r] and T[r].

240

6.3 Correctness

Lemma 76. Let β be a correct broker, let r be a root. We have

(P[r] =⊥) ⇐⇒ (C[r] =⊥) ⇐⇒ (M[r] =⊥) ⇐⇒
⇐⇒ (Y[r] =⊥) ⇐⇒ (Z[r] =⊥) ⇐⇒ (L[r] =⊥) ⇐⇒
⇐⇒ (S[r] =⊥) ⇐⇒ (Q[r] =⊥)

and

(P[r] =⊥) =⇒ (W[r] = X[r] = E[r] = T[r] =⊥)

Proof. It follows immediately from Definition 61.

Lemma 77. Let β be a correct broker, let i be an id, let c be a context, let m be a message such

that

pool [i] = Submi ssi on
{
context : c,messag e : m, ..

}
at β. Eventually some root r exists such that P[r][i] = (c,m).

Proof. By Lemma 72, eventually pool = {} at β. Moreover, β resets pool = {} only by executing

line 71. Upon first doing so, β stores the original value of pool in a variable u (line 70), which

it uses to define a variable p by(
(i , (c,m)) ∈ p

)⇐⇒ ((i ,Submi ssi on{c,m, ..}) ∈ u)

(line 83). We immediately have p[i] = (c,m). Finally, for some r , β adds (r,b) to batches, with

b.payload s = p (line 87). The lemma follows immediately from Definition 61.

Lemma 78. Let χ be a correct client, let i = D
(
χ
)
. Let c be a context, let m be a message such that

χ broadcast m for c. Eventually, either a correct server delivers a message from χ for c, or some

correct broker β and some root r exist such that eventually P[r][i] = (c,m).

Proof. The lemma immediately follows from Lemmas 71, 75 and 77.

Lemma 79. Let β be a correct broker, let i be an id. If i ∈ pool at β, then β knows i .

Proof. We start by noting that, upon initialization, pool is empty at β (line 44). Moreover, β

adds (i ,_) to pool only by executing line 59. β does so only if pendi ng [i] is not empty (line

57). Upon initialization, all values of pendi ng are also empty at β (line 43). Finally, β adds

elements to pendi ng [i] only by executing line 54. Because β does so only if β knows i (line

53), the lemma is proved.

Lemma 80. Let β be a correct broker, let r be a root such that P[r] ̸= ⊥. For all i ∈ D(P[r]), β

knows i .

241

Chapter 6. Draft

Proof. We start by noting that, upon initialization, batches is empty atβ (line 47). Moreover, β

adds (r,b) to batches only by executing line 87. Upon doing so, β satisfies D
(
b.payload s

)=
D(u) (line 83) for some u initialized to pool (line 70). The lemma immediately follows from

Lemma 79.

Lemma 81. Let β be a correct broker, let r be a root such that (P[r] ̸= ⊥) ⇐⇒ (S[r] ̸= ⊥). We have

D(P[r]) =D(S[r])∪D(Q[r]) and D(S[r])∩D(Q[r]) =;

Proof. We start by noting that, upon initialization, batches is empty atβ (line 47). Moreover,β

adds (r,b) to batches only by executing line 87. Upon doing so, β satisfies D
(
b.payload s

)=
D

(
b.si g natur es

)
(lines 83 and 85). Subsequently, β updates batches[r].si g natur es and

batches[r].r educti ons only concurrently, by executing lines 95 and 96. Upon doing

so, β shifts an id i in batches[r].payload s (line 93) from D
(
batches[r].si g natur es

)
to

D(batches[r].r educti ons).

Lemma 82. Let β be a correct broker, let r be a root such that S[r] ̸= ⊥. Let i ∈ D(S[r]), let

χ= D(i), let (c,m) = P[r][i], let s = S[r][i]. We have that s is χ’s signature for
[
Message,c,m

]
.

Proof. We underline that c and m are well-defined by Lemma 81, and i is well-defined by

Lemmas 81 and 80. We start by noting that, upon initialization, batches is empty at β (line 47).

Moreover, β adds (r,b) to batches only by executing line 87. Upon last doing so, β satisfies

(c,m) = b.payload s[i] = (
w.context , w.messag e

)
s = b.si g natur es[i] = w.si g natur e

with w = u[i] for some copy u of pool (lines 70, 83 and 85).

Upon initialization, pool is empty at β as well (line 44). Moreover, β sets pool [i] = w only by

executing line 59. It does so only if w was in pendi ng [i] (lines 57 and 58). Finally, pendi ng is

initially empty at β (line 43), and β adds w to pendi ng [i] only by executing line 54. β does so

only if w.si g natur e is D(i)’s signature for
[
Message, w.context , w.messag e

]
(line 53). This

proves that s is χ’s signature for
[
Message,c,m

]
and concludes the lemma.

Lemma 83. Let β be a correct broker, let r be a root such that Q[r] ̸= ⊥. Let i ∈ D(Q[r]), let

χ= D(i), let q = Q[r][i]. We have that q is χ’s multisignature for [Reduction,r].

Proof. We start by noting that, upon initialization, batches is empty atβ (line 47). Moreover, β

adds (r,b) to batches only by executing line 87. Upon doing so, β satisfies b.r educti ons = {}.

Finally, β adds
(
i , q

)
to batches[r].r educti ons only by executing line 95. β does so only if q

is
(
χ= D(i)

)
’s multisignature for [Reduction,r] (lines 93 and 94).

Lemma 84. Let β be a correct broker, let r be a root such that P[r] ̸= ⊥. We have r = ρ(L[r]).

242

6.3 Correctness

Proof. We start by noting that β adds elements to batches only by executing line 87, and β

never updates batches[r].payload s. Immediately before adding (r,b) to batches (line 87),

β computes r = ρ(S (l)) (lines 75 and 76), with

((i ,c,m) ∈ l) ⇐⇒ ((i ,Submi ssi on{c,m, ..}) ∈ u)

⇐⇒ (
(i , (c,m)) ∈ b.payload s

)
for some u (lines 73 and line 83). The lemma immediately follows from Definition 61.

Lemma 85. Let β be a correct broker, let r be a root, let t , t ′ ∈ R such that Pβ(t)[r] ̸= ⊥ and

Pβ
(
t ′

)
[r] ̸= ⊥. We have Pβ(t)[r] = Pβ

(
t ′

)
[r].

Proof. It follows immediately from Lemmas 84 and 50 and Definition 61.

Lemma 86. Let β be a correct broker, let σ be a correct server, let r be a root such that P[r] ̸= ⊥
and r ∈ batches at σ. Let b = batches[r] at σ, let

i = b.i d s

p = b.payload s

We have

i =S (D(P[r]))

p =S (C (P[r]))

Proof. It follows immediately from Definition 61, Lemmas 84 and 53, and Lemma 50.

Lemma 87. Let β be a correct broker, let r be a root, let t , t ′′ ∈R such that t ′′ > t , Wβ(t)[r] ̸= ⊥
and Wβ

(
t ′′

)
[r] =⊥. For some t ′ ∈ [

t , t ′′
]

we have
∣∣Wβ(

t ′
)
[r]

∣∣≥ f +1.

Proof. We start by noting that, by Definition 61, batches[r] is Witnessing at β at time t .

Let t ′ identify the first moment after t when β updates batches[r]’s variant. β does so only

by executing line 145, and only if |batches[r].wi tnesses| ≥ f +1 (line 138). We then have∣∣Wβ(
t ′

)
[r]

∣∣≥ f +1, and the lemma is proved.

Notation 20 (Sequence elements). Let X be a set, let z ∈ X <∞. We use

{z} = {zn | n ≤ |z|} (6.3)

to denote the elements of z.

Notation 21 (Sequence indexing). Let X be a set, let z ∈ X <∞ such that all elements of z are

distinct. Let x ∈ {z}. We use

(zx) = (n ⇐⇒ zn = x)

243

Chapter 6. Draft

to identify the index of x in z.

Lemma 88. Let β be a correct broker, let r be a root such that W[r] ̸= ⊥. β has sent a
[
Batch, ĩ , p

]
message to all servers, with

ĩ = c(i)

i =S (D(P[r]))

p =S (C (P[r]))

Proof. β sets batches[r]’s variant to Witnessing only by executing line 107. The lemma

immediately follows from lines 100, 101, 102, 104 and 105 and Definition 61.

Lemma 89. Let β be a correct broker, let r be a root such that P[r] ̸= ⊥, let

ĩ = c(i)

i =S (D(P[r]))

p =S (C (P[r]))

Let σ be a correct server. Upon delivering a
[
Batch, ĩ , p

]
message from β, σ sets

batches[r] = B atch
{
i d s : i , payload s : p, ..

}
and sends a

[
BatchAcquired,r,u

]
message back to β, with u ⊆D(P[r]) such that σ knows all

elements of (D(P[r]) \ u).

Proof. Noting that i and p respectively list the domain and codomain of the same map, we

have that i has no duplicates and |i | = ∣∣p∣∣. Moreover, by Definitions 58 and 61, we have

j
(
i , p

)= L[r]. By Lemma 84, this proves r = ρ(
j
(
i , p

))
.

Upon delivering
[
Batch, ĩ , p

]
(line 64), σ expands ĩ back into i = e

(
ĩ
)

(line 49) and verifies

that i has no duplicates and |i | = ∣∣p∣∣ (line 51). σ then computes the set u of ids in {i } that

σn does not know (line 54). We immediately have u ⊆ D(P[r]), and σ knows all elements

of (D(P[r]) \ u). Next, σn computes r = ρ
(
j
(
i , p

))
(lines 56, 57 and 58). Finally, σn sets

batches[r] = B atch
{
i d s : i , payload s : p, ..

}
(line 60), and sends a

[
BatchAcquired,r,u

]
message back to β (lines 61, 67 and 68).

Lemma 90. Let β be a correct broker, let r be a root such that, at some point in time, we have

P[r] ̸= ⊥. At some point in time we have |W[r]| ≥ f +1.

Proof. Upon initialization, batches is empty at β (line 47). Moreover, upon adding (r,_) to

batches (line 87 only), β sets a [Reduce,r] timer (line 64). When [Reduce,r] eventually rings

244

6.3 Correctness

at β (line 99), β updates batches[r]’s variant to Witnessing. By Lemma 88, before doing so β

sends a
[
Batch, ĩ , p

]
message to all servers, with

ĩ = c(i)

i =S (D(P[r]))

p =S (C (P[r]))

Let σ1, . . . ,σ f +1 be distinct correct servers (noting that at most f servers are Byzantine,

σ1, . . . ,σ f +1 are guaranteed to exist). Let n ≤ f +1. By Lemma 89, upon delivering
[
Batch, ĩ , p

]
σn sets batches[r] = B atch

{
i d s : i , payload s : p, ..

}
, and sends a

[
BatchAcquired,r,u

]
mes-

sage back to β, with u ⊆D(P[r]) such that σ knows all elements of (D(P[r]) \ u).

Let us assume that, upon delivering
[
BatchAcquired,r,u

]
from σn , we have r ∉ batches at β.

By Definition 61 we have P[r] =⊥ which, by Lemma 76, implies W[r] =⊥. As a result, by Lemma

87, at some point in time we must have had |W[r]| ≥ f +1. Throughout the remainder of this

proof we assume that, upon delivering
[
BatchAcquired,r,u

]
from σn , we have r ∈ batches

at β.

Upon delivering
[
BatchAcquired,r,u

]
from σn (line 116), β verifies that b ∈ batches (line

117) and, because β knows all elements of u (line 118), β maps u into a corresponding set of

assignments a (line 121). Next, β aggregates all elements of C (Q[r]) into a multisignature q

(line 123) and copies S[r] into a map s (line 124).

By Lemmas 85 and 81 we have

{i } \D(s) =D(P[r]) \D(S[r]) =D(Q[r]) (6.4)

By Lemma 82, for all
(
î , ŝ

) ∈ s,
(
ŝ = s

[
î
]= S[r][i]

)
is D

(
î
)
’s signature for

[
Message,c,m

]
, with

(c,m) = p(i î) = P[r]
[
î
]

By Lemma 83 and Equation 6.4, q is (({i } \D(s)) =D(Q[r]))’s multisignature for [Reduction,r].

Having computed a, q and s, β sends a
[
Signatures,r, a, q, s

]
message back to σn (line 126).

Upon delivering
[
Signatures,r, a, q, s

]
from β (line 100), σn imports all elements of a (line

72). Noting that a contains assignments for all elements of u, and any element of ({i } \ u) was

known to σn upon delivering [Batch, . . .], σn knows all elements of i . Noting that σn never

modifies or removes elements of batches, σn successfully retrieves i and p from batches[r]

(lines 74 and 77). σn then verifies to know all elements of i (line 79).

245

Chapter 6. Draft

Next, σn loops through all elements of s. For each
(
î , ŝ

)
in s, σn verifies that î ∈ i (line 83, see

Lemma 81), then verifies that ŝ is D
(
î
)
’s signature for

[
Message,c,m

]
, with (c,m) = p(i î) (lines

86 and 88). Subsequently, σn verifies that q is (i \D(s))’s multisignature for [Reduction,r]

(lines 91 and 93). Finally, σ produces a multisignature w for [Witness, r] (line 96) and sends

a [WitnessShard, r, w] message back to β (lines 97, 103 and 104).

Let us assume that, upon delivering [WitnessShard,r, w] from σn , we have r ∉ batches or

batches[r] not Witnessing at β. By Definition 61 we have W[r] =⊥. As a result, by Lemma 87,

at some point in time we must have had |W[r]| ≥ f +1. Throughout the remainder of this proof

we assume that, upon delivering [WitnessShard,r, w], we have r ∈ batches and batches[r]

Witnessing at β.

Upon delivering [WitnessShard,r, w] from σn (line 129), β verifies that r ∈ batches and

batches[r] is Witnessing (lines 130 and 133), then verifies that w is σn ’s multisignature for

[Witness,r] (line 134) and finally adds (σn , w) to batches[r].wi tnesses (line 135).

In summary, for all n ≤ f + 1, either |W[r]| ≥ f + 1, or β adds a distinct element to

batches[r].wi tnesses. Noting that β never removes elements from batches[r].wi tnesses,

this trivially reduces to β eventually satisfying |W[r]| ≥ f +1, and the lemma is proved.

Lemma 91. Let σ be a correct server, let (r, w) ∈ wi tnesses at σ. We have that w is a plurality

certificate for [Witness,r].

Proof. Upon initialization, wi tnesses is empty at σ (line 18). Moreover, σ adds (r, w) to

wi tnesses only by executing line 116. Immediately before doing so, σ verifies that w is a

plurality certificate for [Witness,r] (lines 113 and 114).

Lemma 92. Let σ be a correct server, let t ∈R, let (r,b) ∈ batches at σ at time t. For all t ′ ≥ t ,

(r,b) ∈ batches at σ at time t .

Proof. Let t ′ ≥ t . Because σ never removes elements from batches, for some b′ we have(
r,b′) ∈ batches at σ at time t ′. By Lemmas 53 and 50 we have b′ = b, and the lemma is

proved.

Lemma 93. Let σ be a correct server, let ((i ,c), (_,r)) ∈ messag es at σ. We have r ∈ batches at

σ.

Proof. We start by noting that, upon initialization, messag es is empty atσ (line 21). Moreover,

σ adds ((i ,c), (_,r)) to messag es only by executing line 130. σ does so only if r ∈ batches

(lines 108 and 109). The lemma immediately follows from Lemma 92.

246

6.3 Correctness

Lemma 94. Let σ be a correct server, let ((i ,c), (m,r)) ∈ messag es at σ. Let b = batches[r] at

σ, let

i = b.i d s

p = b.payload s

let l = j
(
i , p

)
. We have (i ,c,m) ∈ {l }.

Proof. We underline that, by Lemma 93, b is well-defined. We start by noting that, upon

initialization, messag es is empty at σ (line 21). Moreover, σ adds ((i ,c), (m,r)) to messag es

only by executing line 130. σ does so only if (see Lemma 92) (i ,c,m) ∈ {l } (lines 111, 119).

Lemma 95. Let β be a correct broker, let r be a root, let t , t ′′ ∈R such that t ′′ > t , Xβ(t)[r] ̸= ⊥
and Xβ

(
t ′′

)
[r] =⊥. For some t ′ ∈ [

t , t ′′
]

we have
∣∣Xβ(

t ′
)
[r]

∣∣≥ 2 f +1.

Proof. We start by noting that, by Definition 61, batches[r] is Committing at β at time t .

Let t ′ identify the first moment after t when β updates batches[r]’s variant. β does so only

by executing line 185, and only if |batches[r].commi t s| ≥ 2 f +1 (line 171). We then have∣∣Xβ(
t ′

)
[r]

∣∣≥ 2 f +1, and the lemma is proved.

Lemma 96. Let β be a correct broker, let r be a root such that |W[r]| ≥ f +1. At some point in

time we have |X[r]| ≥ 2 f +1.

Proof. We start by noting that, if batches[r] is Witnessing at broker, β never removes ele-

ments from batches[r].wi tnesses, and β updates batches[r]’s variant only by executing line

145. As a result, β is eventually guaranteed to detect that batches[r] is Witnessing and that

|batches[r].wi tnesses| ≥ f +1 (line 138). Upon doing so, β aggregates batch[r].wi tnesses

into a certificate c (lines 139 and 140) and sends a [Witness,r,c] message to every server (lines

142 and 143).

Let σ1, . . . ,σ2 f +1 be distinct correct servers (noting that at most f servers are Byzantine,

σ1, . . . ,σ2 f +1 are guaranteed to exist). Let n ≤ 2 f + 1. Noting that W[r] ̸= ⊥, by Lemma 88,

the source-order delivery of perfect links and Lemmas 89 and 92, by the time σn handles the

delivery of [Witness,r,c], σn satisfies

batches[r] = B atch
{
i d s : i , payload s : p, ..

}
with

i =S (D(P[r]))

p =S (C (P[r]))

247

Chapter 6. Draft

Upon delivering [Witness,r,c] (line 136), σn verifies that r ∈ batches (line 108) and retrieves

i and p from batches[r] (line 111). σn then initializes an empty map f : I↣
(
R,S+,P ,M

)
(line 117), and loops through all elements of j

(
i , p

)
(line 119).

For all j ≤ (|i | = ∣∣p∣∣), let
(
c j ,m j

)= p j . Noting that σn adds to f only keys that belong to i (line

128), let k ≤ (|i | = ∣∣p∣∣) such that σn sets

f [ik] = (
r ′

k , w ′
k , p ′

k ,m′
k

)
By line 120 we immediately have m′

k ̸= mk . Additionally, because w ′
k = wi tnesses

[
r ′

k

]
at σ

(line 121), by Lemma 91 w ′
k is a plurality certificate for

[
Witness,r ′

k

]
. Finally, by line 120 we

have
(
(ik ,ck),

(
m′

k ,r ′
k

)) ∈ messag es at σn . Let b′
k = batches

[
r ′

k

]
at σn , let

l ′k = j
(
b′

k .i d s,b′
k .payload s

)
By Lemma 94 we have

(
ik ,ck ,m′

k

) ∈ l ′k . As a result, by lines 122, 124, 126 and 128, we have that

p ′
k is a proof for

(
ik ,ck ,m′

k

)
from r ′

k .

Having looped over all elements of j
(
i , p

)
, σn produces a signature s for

[
Commit,r,D

(
f
)]

(line 132) and sends a
[
CommitShard,r, f , s

]
message back to β (lines 133, 139 and 140).

Let us assume that, upon delivering
[
CommitShard,r, f , s

]
from σn , we have r ∉ batches or

batches[r] not Witnessing at β. By Definition 61 we have X[r] =⊥. As a result, by Lemma

95, at some point in time we must have had |X[r]| ≥ 2 f +1. Throughout the remainder of

this proof we assume that, upon delivering
[
CommitShard,r, f , s

]
, we have r ∈ batches and

batches[r] Witnessing at β.

Upon delivering
[
CommitShard,r, f , s

]
from σn (line 148), β verifies that r ∈ batches and

batches[r] is Witnessing (line 149). β then verifies that s is σn ’s multisignature for[
Commit,r,D

(
f
)]

(line 150). Recalling that D
(

f
)⊆ {i } and, by Lemma 85, we still have

i =S (D(P[r]))

p =S (C (P[r]))

for all k ≤ |i | such that
(
ik ,

(
r ′

k , w ′
k , p ′

k ,m′
k

)) ∈ f (line 153)), β successfully verifies that: ik ∈ {i }

(line 154); w ′
k is a plurality certificate for

[
Witness,r ′

k

]
(line 159); p ′

k is a proof for
(
ik ,ck ,m′

k

)
from r ′

k (lines 157 and 162); and m′
k ̸= mk (lines 157 and 165). Having done so, β adds (σn ,_)

to batches[r].commi t s (lines 149 and 168).

In summary, for all n ≤ 2 f + 1, either |X[r]| ≥ 2 f + 1, or β adds a distinct element to

batches[r].commi t s. Noting that β never removes elements from batches[r].commi t s,

this trivially reduces to β eventually satisfying |X[r]| ≥ 2 f +1, and the lemma is proved.

248

6.3 Correctness

Lemma 97. Let β be a correct broker, let r be a root such that X[r] ̸= ⊥. Let (σ, (i ,_)) ∈ X[r]. We

have i ⊆D(P[r]).

Proof. Upon first setting batches[r]’s variant to Committing (line 145 only), β sets

batches[r].commi t s = {}. Moreover, β adds (σ, (i ,_)) to batches[r].commi t s only by ex-

ecuting line 168. Before doing so, β retrieves b = batches[r] (line 149), loops through every

element î of i (line 153) and verifies î ∈ b.payload s (line 154). The lemma immediately

follows from Definition 61.

Lemma 98. Let β be a correct broker, let r be a root such that P[r] ̸= ⊥, let (i , (c,m)) ∈ P[r] such

that χ= D(i) is correct. We have that χ broadcast m for c.

Proof. Upon initialization, batches is empty at β (line 47). Moreover, β adds (r,b) to batches

only by executing line 87. Upon doing so, β sets b.r educti ons = {}. By Definition 61 and

Lemma 81 we then have D(S[r]) =D(P[r]). Therefore, by Lemma 82, χ signed
[
Message,c,m

]
.

Because χ does so (line 30 only) only upon broadcasting m for c (line 29), the lemma is

proved.

Lemma 99. Let σ be a correct server, let r be a root such that σ signs [Witness,r]. Some

l ∈ (I×C×M)↗ exists such that r = ρ(l).

Proof. σ signs [Witness,r] only by executing line 96. σ does so only if r ∈ batches (lines 74

and 75). Upon initialization, batches is empty atσ (line 17. Moreover,σ adds (r,_) to batches

(line 60 only) only if, for some sorted l (lines 49 and 56), we have r = ρ(l) (lines 57 and 58).

Lemma 100. Let β be a correct broker, let r be a root such that X[r] ̸= ⊥. Let (_, (i ,_)) ∈ X[r], let

î ∈ i , let χ= D
(
î
)
. We have that χ is Byzantine.

Proof. We underline that, by Lemmas 97 and 80, χ is well-defined. Upon first setting

batches[r]’s variant to Committing (line 145 only), β sets batches[r].commi t s = {}. More-

over, β adds (_,(i ,_)) to batches[r].commi t s only by executing line 168. Before doing so,

β retrieves b = batches[r] (line 149), then loops through all elements of i (line 153). Upon

looping over î , β retrieves (c,m) = b.payload s[r]. β then verifies that, for some root r ′, at

least f +1 servers signed
[
Witness,r ′] (line 159). Next, β verifies, that for some proof p, index

n and message m′, we have

ν
(
r ′, p,n,

(
î ,c,m′))= True (6.5)

(line 162). Finally, β verifies that m ̸= m′ (line 165).

Let us assume by contradiction that χ is correct. By Lemma 98 we immediately have that χ

broadcast m for c. Moreover, noting that at most f servers are Byzantine, at least one correct

server signed
[
Witness,r ′]. As a result, by Lemma 99, some l ′ ∈ I×C×M↗ exists such that

r ′ = ρ
(
l ′

)
. Moreover, by Equation 6.5 and Definition 57, we have l ′n = (

i ,c,m′). By Lemma

249

Chapter 6. Draft

68, this proves that χ broadcast m′ for c. In summary, χ broadcast m and m′ ̸= m for c. This

contradicts χ being correct and proves the lemma.

Lemma 101. Let β be a correct broker, let r be a root such that X[r] ̸= ⊥. Let (σ, (ϵ, s)) ∈ X[r]. We

have that s is σ’s multisignature for [Commit,r,ϵ].

Proof. Upon setting batches[r]’s variant to Committing (line 145 only), β initializes

batches[r].commi t s to an empty map. Moreover, β adds (σ, (ϵ, s)) to batches[r].commi t s

only by executing line 168. β does so only if s is σ’s multisignature for [Commit,r,ϵ] (lines 150,

151).

Lemma 102. Let β be a correct broker, let r be a root, let σ ∈ Y[r] be a correct server. We have

that r ∈ batches at server, and σ knows all elements of D(P[r]).

Proof. Upon initialization of batches[r], we have batches[r].commi t_to =; at β (line 87

only). Moreover, β adds σ to batches[r].commi t_to only by executing line 131. β does

so only upon receiving a [WitnessShard,r] message from σ (line 129). In turn, σ sends a

[WitnessShard,r] message to β only by executing line 104. σ does so only if r ∈ batches at σ

(lines 74 and 75) and β knows all elements of batches[r].i d s (lines 88 and 89). By Lemma 86,

however, we have batches[r].i d s =S (D(P[r])), and the lemma is proved.

Lemma 103. Let β be a correct broker, let r be a root such that X[r] ̸= ⊥. We have |Y[r]| ≥ f +1.

Proof. We start by noting that β updates batches[r]’s variant to Committing only by execut-

ing line 145. β does so only if batches[r] is Witnessing and |batches[r].wi tnesses| >=
f + 1 (line 138). Upon setting batches[r]’s variant to Witnessing (line 107 only), β

initializes batches[r].wi tnesses to an empty map. Finally, whenever β adds (σ,_) to

batches[r].wi tnesses (line 135 only), β also adds σ to batches[r].commi t_to (line 131).

The lemma immediately follows from the observation that β never removes elements from

batches[r].commi t_to.

Lemma 104. Let β be a correct broker, let r be a root such that X[r] ̸= ⊥. We eventually have

Z[r] = True.

Proof. We start by noting that β removes r from batches (line 202 only) only if batches[r] is

Completing (line 194). Moreover, β sets batches[r]’s variant to Completing (line 185 only)

only if batches[r].commi t t able = True. In other words, if X[r] ̸= ⊥, then β removes r from

batches only if Z[r] = True.

β updates batches[r]’s variant to Committing (line 145 only) only if batches[r]’s variant is

Witnessing. Immediately after setting batches[r]’s variant to Witnessing (line 107 only), β

sets a [Committable,r] timer (line 108). When [Committable,r] eventually rings (line 111), β

checks if r ∈ batches (line 112). If so, β sets batches[r].commi t t able to True. Otherwise, as

250

6.3 Correctness

we proved above, we previously had batches[r].commi t t able = True at β, and the lemma is

proved.

Lemma 105. Let β be a correct broker, let r be a root such that |X[r]| ≥ 2 f +1. Let

E = ⋃
(_,(ϵ,_))∈X[r]

ϵ

Let î ∈ (D(P[r]) \ E), let χ̂ = D
(
î
)
, let (ĉ,_) = P[r]

[
î
]
. Some correct server σ exists such that σ

eventually delivers a message from χ̂ for ĉ.

Proof. We start by noting that, if batches[r] is Committing at β, β never removes elements

from batches[r].commi t s, and β updates batches[r]’s variant only by executing line 185. As

a result, by Lemma 104, β is eventually guaranteed to detect that: batches[r] is Committing;

batches[r].commi t abl e = tr ue; and |batches[r].commi t s| ≥ 2 f +1 (line 171). Upon doing

so, β builds a map p :P(I)↣P
(
S+)

such that(
(ϵ,_) ∈ p

)⇐⇒ ((_, (ϵ,_)) ∈ X[r]) (6.6)

and

p[ϵ] = ⋃
(_,(ϵ,s))∈X[r]

s (6.7)

(lines 174, 176, 177). From p, β builds a map q :P(I)↣S+ that to each ϵ in p associates the

aggregation of p[ϵ] (line 179). By Equation 6.6 we immediately have⋃
(ϵ,_)∈q

ϵ= E

For all (_,c) ∈ q , let |c| denote the number of signers of c. By Equations 6.6 and 6.7 we have∑
(_,c)∈q

|c| = ∑
(_,s)∈p

|s| = |X[r]| ≥ 2 f +1

Finally, by Lemma 101, for every (ϵ,c) ∈ q , c certifies [Commit,r,ϵ]. Having computed q , β

sends a
[
Commit,r, q

]
message to all servers in Y[r] (lines 181 and 182).

By Lemma 103, we have |Y[r]| ≥ f +1. Let σ ∈ X[r] be a correct server. Noting that at most f

servers are Byzantine, σ is guaranteed to exist. By Lemma 102, upon receiving a
[
Commit,r, q

]
message from β (line 179), σ verifies that r ∈ batches (line 144). By Lemma 86, σ then verifies

to know all elements ({batches[r].i d s} =D(P[r])) (line 149). Next, σ verifies that, for every

(ϵ,c) ∈ q , c certifies [Commit,r,ϵ] (lines 154 and 155). Finally, σ verifies that∑
(_,c)

|c| ≥ 2 f +1

(lines 152, 154, 158 and 160). Having done so, σ computes E (line 163). Next, by Lemma

251

Chapter 6. Draft

86 σ loops through all elements of P[r] (line 166). For every (i , (c,m)) ∈ P[r] such that i ∉ E

(line 169), σ either delivers m from D(i) for c (lines 167 and 171), or σ has already delivered a

message from D(i) for c (line 169, see Lemma 49). This proves in particular that σ delivers a

message from χ̂ for ĉ, and concludes the lemma.

Theorem 19. Draft satisfies validity.

Proof. Let χ be a correct client, let c be a context, let m be a message such that χ broadcasts

m for c. By Lemma 78, either a correct server delivers message from χ for c, or some correct

broker β and some root r exist such that eventually P[r][i] = (c,m). Throughout the remainder

of this proof, we assume the existence of β and r . By Lemma 90, at some point in time we

have |W[r]| ≥ f +1. Therefore, by Lemma 96, at some point in time we have |X[r]| ≥ 2 f +1.

Moreover, by Lemma 100, for all (_, (ϵ,_)) ∈ X[r], we have D
(
χ
) ∉ ϵ. As a result, by Lemma 105,

some correct server delivers a message from χ for c, and the theorem is proved.

6.4 Complexity

In this section, we prove to the fullest extent of formal detail the good-case signature and

communication complexity of Draft.

6.4.1 Auxiliary results

In this section we gather definitions and lemmas that we will use to prove, in the next sections,

the good-case signature and communication complexity of Draft. The results presented in

this section hold independently of Draft itself, and could be applicable to a broader spectrum

of analyses.

Notation 22 (Bit strings). We use S = {0,1}<∞ to denote all finite strings of bits. We use

��□ to denote the empty sequence of bits. We use S<b = {0,1}<b , S≤b = {0,1}≤b , Sb = {0,1}b ,

S≥b = {0,1}≥b and S>b = {0,1}>b . We use Seven and Sodd to denote the sets of strings with an

even and odd number of bits, respectively. We use programming notation when indexing a

string of bits: for all s ∈S we use s = (s0, s1, . . .).

Notation 23 (Cropping). Let n ∈N, let s ∈S. We use the following cropping notation:

(s|≤n) = (s0, . . . , sn)

(s|≥n) = (
sn , . . . , s|s|−1

)
We also use (s|<n) = (s|≤n−1) and (s|>n) = (s|≥n+1).

Definition 62 (Integer encoding). For all b ∈ N, the b-bits integer representation ι̃b :

252

6.4 Complexity

(
0..

(
2b −1

))↔Sb is defined by

ι̃b(n)i = ⌊ n

2i
⌋ mod 2

ι̃−1
b (s) =

b∑
i=0

2i si

The b-bits integer encoding ιb :S× (
0..

(
2b −1

))↔S≥b is defined by

ιb(s,n) = ι̃b(n)⌢ s

ι−1
b (s) = (

(s|≥b), ι̃−1
b ((s|<b))

)
Lemma 106. Let b ∈N. ι̃−1

b is injective.

Proof. Let s, s′ ∈S such that s ̸= s′. Let

k = max i | si ̸= s′i

Noting that s ̸= s′, k is guaranteed to exist. Without loss of generality, let us assume sk = 1,

s′k = 0. We by Definition 62 have

ι̃−1
b (s)− ι̃−1

b

(
s′

)= ∑
i=0

2i (si − s′i
)=

=
k−1∑
i=0

2i (si − s′i
)+2k ≥

≥
k−1∑
i=0

−2i +2k ≥ 1

which proves ι̃−1
b (s) ̸= ι̃−1

b

(
s′

)
and concludes the lemma

Lemma 107. Let b ∈N, let s ∈Sb . We have ι̃b
(
ι̃−1
b (s)

)= s.

253

Chapter 6. Draft

Proof. By Definition 62 we have

ι̃b
(
ι̃−1
b (s)

)
i = ⌊

∑b
j=0 2 j s j

2i
⌋ mod 2 =

= ⌊
∑i−1

j=0 2 j s j

2i
+ si +

∑b
j=i+1 2 j s j

2i
⌋ mod 2 =

= ⌊
∑i−1

j=0 2 j s j

2i︸ ︷︷ ︸
<1

+ si +2
b−i−1∑

j=0
2 j s j+i+1︸ ︷︷ ︸

∈N

⌋ mod 2 =

=

si +2
b−i−1∑

j=0
2 j s j+i+1︸ ︷︷ ︸
∈N

 mod 2 = si

Lemma 108. Let b ∈N. ι̃b is is a bijection.

Proof. It follows immediately from Lemmas 106 and 107.

Lemma 109. Let b ∈N. ιb is a bijection.

Proof. It follows immediately from Definition 62 and Lemma 108.

Definition 63 (Varint encoding). The varint representation ν̃ :N+ ↔Seven is defined by

|ν̃(n)| = 2⌈log2 (n +1)⌉

ν̃(n)i =

1 iff i mod 2 = 0, i < 2⌈log2 (n +1)⌉−2

0 iff i = 2⌈log2 (n +1)⌉−2

ι̃⌈log2 (n+1)⌉(n) i−1
2

otherwise

ν̃−1(s) = ι̃−1
|s|
2

(
s1, s3, s5, . . . , s|s|−1

)
The set of varint-parseable strings is the set

Sν = {s ∈S | (∃k ∈N | s2k = 0)}

The varint encoding ν :
(
S×N+ ↔Sν

)
is defined by

ν(s,n) = ν̃(n)⌢ s

ν−1(s) = ((
s|≥λ(s)

)
, ν̃−1((s|<λ(s)

)))
254

6.4 Complexity

with λ :S→N defined by

λ(s) = 2(mink | s2k = 0)+2

Definition 63 contains a slight abuse of notation: we prove below that ν̃−1 inverts ν̃, but we do

not prove that ν̃ inverts ν̃−1 (it does not). Similarly we prove that ν−1 inverts ν, but not that ν

inverts ν−1.

Lemma 110. Let n ∈N+. We have ν̃−1(ν̃(n)) = n.

Proof. By Definition 63 and Lemma 109 we have

ν̃−1(ν̃(n)) = ι̃−1
2⌈log2 (n+1)⌉

2

(
ι̃⌈log2 (n+1)⌉(n)0

, ι̃⌈log2 (n+1)⌉(n)1
, . . . , ι̃⌈log2 (n+1)⌉(n)⌈log2 (n+1)⌉−1

)
=

= ι̃−1
log2 (n+1)

(
ι̃log2 (n+1)(n)

)= n

Lemma 111. Let let s ∈S, let n ∈N+. We have ν−1(ν(s,n)) = (s,n).

Proof. All derivations in this lemma follow directly from Definition 63. We have

ν(s,n) = ν̃(n)⌢ s

Moreover, we have

∀k < ⌈log2 n +1⌉−1,ν(s,n)2k = ν̃(n)2k = 1

and

ν(s,n)2(⌈log2 (n+1)⌉−1) = ν̃−1(n)2(⌈log2 (n+1)⌉−1) = 0

which proves

λ(ν(s,n)) = 2⌈log2 (n +1)⌉
This implies (

ν(s,n)|<λ(ν(s,n))
)= (

ν̃(n)⌢ s|<2⌈log2 (n+1)⌉
)= ν̃(n)

and similarly (
ν(s,n)|≥λ(ν(s,n))

)= s

By Lemma 110 we then have

ν−1(ν(s,n)) = (
s, ν̃−1(ν̃(n))

)= (s,n)

and the lemma is proved.

255

Chapter 6. Draft

Notation 24 (Integer partition). Let X be a finite set, let µ : X →P<∞(N). We call µ a integer

partition on X . We use ∣∣µ∣∣= ∑
x∈X

∣∣µ(x)
∣∣

maxµ= max
x∈X

maxµ(x)

Notation 25 (Enumeration). Let X = {
x1, . . . , x|X |

}
be a finite set. We use E (X) = (

x1, . . . , x|X |
)

to denote any specific enumeration of X .

Definition 64 (Partition representation). Let X be a finite set. The partition representation

on X is the function ρ :
(
X →P<∞(N)

)↔S defined, with(
x1, . . . , x|X |

)= E (X)

by

w
(
µ
)= ⌈log2

(
maxµ+1

)⌉
d

(
µ
)= ⌈log2

(∣∣µ∣∣+1
)⌉

yn
(
µ
)= ∣∣µ(xn)

∣∣(
z1

(
µ
)
, . . . , z|µ|

(
µ
))= E

(
µ(x1)

)
⌢ . . .⌢E

(
µ
(
x|X |

))
v0

(
µ
)=��□

vn
(
µ
)= ιw(µ)

(
vn−1

(
µ
)
, zn

(
µ
))

v
(
µ
)= v|µ|

(
µ
)

k0
(
µ
)= v

(
µ
)

kn
(
µ
)= ιd(µ)

(
kn−1

(
µ
)
, yn

(
µ
))

k
(
µ
)= k|X |

(
µ
)

g
(
µ
)= ν(

k
(
µ
)
, w

(
µ
))

h
(
µ
)= ν(

g
(
µ
)
,d

(
µ
))

ρ
(
µ
)= h

(
µ
)

256

6.4 Complexity

and

h(s) = s(
g(s),d(s)

)= ν−1(h(s))

(k(s), w(s)) = ν−1(g(s)
)

k|X |(s) = k(s)(
kn−1(s), yn(s)

)= ι−1
d(s)(kn(s))

t (s) =
|X |∑

n=1
yn(s)

v(s) = k0(s)

vt (s)(s) = v(s)

(vn−1(s), zn(s)) = ι−1
w(s)(vn(s))

pn(s) =
n∑

i=1
yn(s)

ρ−1(s)(xn) = {
zpn−1(s)+1(s), . . . , zpn (s)(s)

}
Definition 64 contains a slight abuse of notation: we prove below that ρ−1 inverts ρ, but ρ is

obviously not defined on all of S (��□ being a trivial counterexample).

Lemma 112. Let X be a finite set, let µ : X →P<∞(N). We have ρ−1
(
ρ
(
µ
))=µ.

Proof. All derivations in this lemma follow from Notation 24, Definition 64 and Lemmas 109

and 111. Let s = ρ(
µ
)
. We trivially have

h(s) = s = ρ(
µ
)= h

(
µ
)

In steps, we can derive(
g(s),d(s)

)= ν−1(h(s)) = ν−1(h(
µ
))= ν−1(ν(

g
(
µ
)
,d

(
µ
)))= (

g
(
µ
)
,d

(
µ
))

(k(s), w(s)) = ν−1(g(s)
)= ν−1(g(

µ
))= ν−1(ν(

k
(
µ
)
, w

(
µ
)))= (

k
(
µ
)
, w

(
µ
))

and

k|X |(s) = k(s) = k
(
µ
)= k|X |

(
µ
)

By backwards induction, for all n ∈ 1..|X | we then have(
kn−1(s), yn(s)

)= ι−1
d(s)(kn(s)) = ι−1

d(µ)
(
kn

(
µ
))=

= ι−1
d(µ)

(
ιd(µ)

(
kn−1

(
µ
)
, yn

(
µ
)))= (

kn−1
(
µ
)
, yn

(
µ
))

257

Chapter 6. Draft

from which follows

t (s) =
|X |∑

n=1
yn(s) =

|X |∑
n=1

yn
(
µ
)= |X |∑

n=1

∣∣µ(xn)
∣∣= ∣∣µ∣∣

In steps, we can then derive

v(s) = k0(s) = k0
(
µ
)= v

(
µ
)

v|µ|(s) = vt (s)(s) = v(s) = v
(
µ
)= v|µ|

(
µ
)

Again by backwards induction, for all n ∈ 1..
∣∣µ∣∣ we then have

(vn−1(s), zn(s)) = ι−1
w(s)(vn(s)) = ι−1

w(µ)
(
vn

(
µ
))

= ι−1
w(µ)

(
ιw(µ)

(
vn−1

(
µ
)
, zn

(
µ
)))= (

vn−1
(
µ
)
, zn

(
µ
))

In summary we have

∀n ∈ 1..|X |, yn(s) = yn
(
µ
)

∀n ∈ 1..
∣∣µ∣∣, zn(s) = zn

(
µ
)

from which finally follows

ρ−1(s)(xn) = {
zpn−1(s)+1(s), . . . , zpn (s)(s)

}=
= {

zpn−1(s)+1
(
µ
)
, . . . , zpn (s)

(
µ
)}=

=
{

z(
∑n−1

i=1 yi (s)+1)
(
µ
)
, . . . , z(

∑n
i=1 yi (s))

(
µ
)}=

=
{

z(
∑n−1

i=1 yi (µ)+1)
(
µ
)
, . . . , z(

∑n
i=1 yi (µ))

(
µ
)}=

=
{

z(
∑n−1

i=1 |µ(xi)|+1)
(
µ
)
, . . . , z(

∑n
i=1 |µ(xi)|)

(
µ
)}=

=
{

z(
∑n−1

i=1 |E (µ(xi))|+1)
(
µ
)
, . . . , z(

∑n
i=1 |E (µ(xi))|)

(
µ
)}=

=
{
E

(
µ(xn)

)
1, . . . ,E

(
µ(xn)

)
|µ(xn)|

}
=µ(xn)

which proves ρ−1
(
ρ
(
µ
))= ρ−1(s) =µ, and concludes the lemma.

Lemma 113. Let X be a finite set, let µ :N→ (
X →P<∞(N)

)
be a sequence of partition represen-

ations such that

lim
n→∞

∣∣µn
∣∣=∞

lim
n→∞

log2

(
log2

(
maxµn

))∣∣µn
∣∣ = 0

We have

lim
n→∞

∣∣ρ(
µn

)∣∣∣∣µn
∣∣ = ⌈log2

(
maxµn +1

)⌉
258

6.4 Complexity

Proof. All derivations in this proof follow from Definitions 64, 63 and 62. Let n ∈N. We have∣∣v0
(
µn

)∣∣= 0

and, for all k ∈ 1..
∣∣µ∣∣,∣∣vk
(
µn

)∣∣= ∣∣vk−1
(
µn

)∣∣+w
(
µn

)= ∣∣vk−1
(
µn

)∣∣+⌈log2

(
maxµn +1

)⌉
from which, by induction, follows∣∣v(

µn
)∣∣= ∣∣µn

∣∣⌈log2

(
maxµn +1

)⌉
Similarly we have ∣∣k0

(
µn

)∣∣= ∣∣µn
∣∣⌈log2

(
maxµ+1

)⌉
and, for all k ∈ 1..|X |,∣∣kk

(
µn

)∣∣= ∣∣kk−1
(
µn

)∣∣+d
(
µn

)= ∣∣kk−1
(
µn

)∣∣+⌈log2

(∣∣µn
∣∣+1

)⌉
from which, by induction, follows∣∣k(

µn
)∣∣= ∣∣µn

∣∣⌈log2

(
maxµn +1

)⌉+ |X |⌈log2

(∣∣µn
∣∣+1

)⌉
In steps we can then derive∣∣g(

µn
)∣∣= ∣∣k(

µn
)∣∣+2⌈log2

(
w

(
µn

)+1
)⌉ =

= ∣∣µn
∣∣⌈log2

(
maxµn +1

)⌉+ |X |⌈log2

(∣∣µn
∣∣+1

)⌉+2⌈log2

(⌈log2

(
maxµn +1

)⌉+1
)⌉

and finally∣∣ρ(
µn

)∣∣= ∣∣h(
µn

)∣∣= ∣∣g(
µn

)∣∣+2⌈log2

(
d

(
µn

))⌉ =
= ∣∣µn

∣∣⌈log2

(
maxµn +1

)⌉+ |X |⌈log2

(∣∣µn
∣∣+1

)⌉+2⌈log2

(⌈log2

(
maxµn +1

)⌉+1
)⌉

+2⌈log2

(⌈log2

(∣∣µn
∣∣+1

)⌉+1
)⌉

The above holds for any n ∈N. Moreover, by hypothesis we have

lim
n→∞

|X |⌈log2

(∣∣µn
∣∣+1

)⌉∣∣µn
∣∣ = 0

lim
n→∞

2⌈log2

(⌈log2

(∣∣µn
∣∣+1

)⌉+1
)⌉∣∣µn

∣∣ = 0

259

Chapter 6. Draft

and

lim
n→∞

2⌈log2

(⌈log2

(
maxµn +1

)⌉+1
)⌉∣∣µn

∣∣ =

lim
n→∞

2⌈log2

(⌈log2

(
maxµn

)⌉)⌉∣∣µn
∣∣

��������������
⌈log2

(⌈log2

(
maxµn +1

)⌉+1
)⌉

⌈log2

(⌈log2

(
maxµn

)⌉)⌉ = 0

This proves that

lim
n→∞

∣∣ρ(
µn

)∣∣∣∣µn
∣∣ = ⌈log2

(
maxµn +1

)⌉
and concludes the lemma.

6.4.2 Batching limit

As we discussed in Section 5.1, Draft is designed to asymptotically match, in the good case,

the signature and communication complexity of Oracle-CSB, a toy implementation of CSB

that relies on an infallible oracle to uphold all CSB properties. As we discussed, Oracle-CSB
achieves optimal signature complexity (as it requires no signature verification) and optimal

communication complexity (if the frequency at which clients broadcast their payloads is

uniform or unknown). Below we establish and discuss Draft’s batching limit, i.e., the collection

of assumptions and limits at which Draft matches Oracle-CSB’s complexity:

• Assumption: good-case execution. As we discussed in Section 5.3.1, in the good case:

links are synchronous (messages are delivered at most one time unit after they are sent);

all processes are correct; and the set of brokers contains only one element. Discussion. We

assume only one broker for pedagogical reasons: as long as every broker is exposed to a

high enough rate of submissions, all derivations in this section still hold true. In the real

world, the assumptions of synchrony and correctness are not strict for clients: if a small

fraction of broadcasting clients is slow or Byzantine, Draft still achieves near-oracular

efficiency, linearly degrading its performance as more client fail to engage with the

broker to reduce its batch2.

• Assumption: steady-state directory. We assume that all servers know all broadcasting

clients. Discussion. This assumption is naturally satisfied if all broadcasting clients have

already broadcast at least one message. In a real-world, long-lived system, most clients

can safely be assumed to broadcast more than one message (this is especially true in

the context of a cryptocurrency). Similarly to client synchrony and correctness, Draft’s

performance degrades linearly in the number of unknown, broadcasting clients.

• Assumption: concurrent broadcasts. We assume that all clients broadcast their message

within b time units of each other, where b is Draft’s batching window parameter (see

Sections 6.2.3 and 6.2.4). Discussion. Similarly to broker count, this assumption is made

2Proving this result is beyond the scope of this Part, and left as an exercise to the interested reader.

260

6.4 Complexity

for pedagogical reasons: as long as the rate at which payloads are submitted to each

broker is high enough, all derivations in this section still hold true.

• Limit: infinite broadcasts. We derive Draft’s complexity at the limit of infinitely many

broadcasting clients. Discussion. All limits derived in this section converge approxi-

mately inversely with the number of broadcasting clients. This means that even a finite,

real-world implementation of Draft can achieve near-oracular efficiency.

• Limit: sub-double-exponential clients. We assume that the number of clients is in-

finitely small with respect to the exponential of the exponential of the number of broad-

casting clients. Discussion. This limit is only technical, and trivially satisfied by any

realistic number of broadcasting clients.

6.4.3 Protocol analysis

In this section, we establish Draft’s signature and communication complexity at the batching

limit.

Theorem 20. At the batching limit, a Draft server delivers a payload p by performing 0 signature

verifications and exchanging at most
(⌈log2 (c)⌉+ ∣∣p∣∣) bits.

Proof. All derivations in this proof follow from the batching limit’s assumptions and limits

(see Section 6.4.2). Let β denote the only broker in the system. Let χ1, . . . ,χM denote the set

of broadcasting clients. We have M →∞. For all j , let i j = D
(
χ j

)
, let p j =

(
c j ,m j

)
identify the

payload broadcast by χ j , let a j be i j ’s id assignment certificate. Without loss of generality

we assume that for all j < j ′ we have i j < i j ′ . The goal of this proof is to compute, for all

j ∈ 1..M , p j ’s maximum amortized signature complexity ψ j and p j ’s maximum amortized bit

complexity χ j .

Let n ∈ 1..M . Without loss of generality, we assume that χn triggers 〈cl .Broadcast〉 (line 29)

between time 0 and b. Upon doing so, χ produces a signature sn for
[
Message,cn ,mn

]
(line

30), then sends a [Submission, an , (cn ,mn , sn)] message to β (line 40).

β receives [Submission, an , (cn ,mn , sn)] (line 50) between time 0 and time B +1: indeed, χn ’s

Submission message takes between 0 and 1 time units to reach β. Upon delivering χn ’s

Submission message, β pushes

yn = Submi ssi on
{
context : cn ,messag e : mn , si g natur e : sn

}
to pendi ng [in] (line 54), detects that pendi ng [in] is not empty (line 57), empties

pendi ng [in] (line 58) and adds
(
in , yn

)
to pool (line 59). Initially, we have col l ect i ng =

False and pool =; at β. Moreover, β adds its first element to pool no earlier than time 0.

Upon doing so (line 62), β sets a [Flush] timer to ring at some time t f ≥ B +1 (line 64).

261

Chapter 6. Draft

In summary, for all j ∈ 1..M , β adds
(
i j , y j

)
to pool by time B +1, and [Flush] rings at time

t f ≥ B +1. When [Flush] rings (line 67), β takes
(
i1, p1

)
, . . . ,

(
iM , pM

)
from pool (line 70) and

computes r = ρ
(
j
(
i , p

))
(line 76). For each j ∈ 1..M , β produces an inclusion proof q j for(

i j ,c j ,m j
)

in r (line 80), then sends an
[
Inclusion,c j ,r, q j

]
message to χ j . Next, β sets

batches[r] = Reduci ng
{

payload s : p, si g natur es : s, . . .
}

(line 87). Finally, β sets a [Reduce,r] to ring at some time tr ≥ t f +2 (line 89).

χn receives
[
Inclusion,cn ,r, qn

]
by time t f +1 (line 50). Upon doing so, χn produces a multi-

signature gn for [Reduction,r] (line 54), then sends a
[
Reduction,r, gn

]
message to β (line

55).

β receives
[
Reduction,r, gn

]
by time tr (line 92). Because [Reduce,r] has not yet rung,

batches[r] is still Reducing at β (line 93). β adds
(
in , gn

)
to batches[r].r educti ons (line 95),

then removes (in , sn) from batches[r].si g natur es (line 96).

In summary, before [Reduce,r] rings at time tr , for all j ∈ 1..M , β added
(
i j , g j

)
to

batches[r].r educti ons and removed
(
i j , s j

)
from batches[r].si g natur es. This means

in particular that, when [Reduce,r], batches[r].si g natur es is empty at β. Upon ringing

[Reduce,r] (line 99), β builds the integer partition ĩ :D↣P<∞(N) defined by(
(d ,k) ∈ ĩ

)⇐⇒ ((d ,k) ∈ i)

(line 101). We have
∣∣ĩ ∣∣= |i | = M . Moreover, by the density of Directory, we have max ĩ ≤ c −1.

Recalling that M →∞ and log
(
log(c)

)
/M →∞, by Lemmas 112 and 113, ĩ can be represented

by a string of bits î such that ∣∣î ∣∣= M⌈log2 (c)⌉+o(M)

To each server, β sends a

x(b) = [
Batch, ĩ , p

]
message (line 105). We have

∣∣∣x(b)
∣∣∣= M⌈log2 (c)⌉+

M∑
j=1

∣∣p j
∣∣+o(M) =

=
M∑

j=1

(⌈log2 (c)⌉+ ∣∣p j
∣∣+o(1)

)
Consequently, for all j ∈ 1..M , x(b)’s amortized size for p j is∣∣∣x(b)

∣∣∣
j
= (⌈log2 (c)⌉+ ∣∣p j

∣∣)
Having sent x(b) to all servers, β updates batches[r] to Witnessing (line 107).

262

6.4 Complexity

Let σ be a server. Upon receiving
[
Batch, ĩ , p

]
(line 64), σ observes to know all ids in i1, . . . , iM

(line 54), computes r (line 58) then sends back to β a

x(ba) = [
BatchAcquired,r,;]

message (line 68). Noting that ∣∣∣x(ba)
∣∣∣=O(1) =

M∑
j=1

o(1)

for all j ∈ 1..M , x(ba)’s amortized size for p j is∣∣∣x(ba)
∣∣∣

j
= 0

Upon receiving σ’s
[
BatchAcquired,r,;]

(line 116), β exports no assignment (line 121),

aggregates all g1, . . . , gM into a single g (line 123), observes batches[r].si g natur es to be

empty, then sends back to σ a

x(s) = [
Signatures,r,;, g ,;]

message (line 126). Noting that
∣∣x(s)

∣∣=O(1), x(s)’s amortized size for p j is∣∣x(s)
∣∣

j = 0

Upon receiving
[
Signatures,r,;, g ,;]

(line 100), σ verifies only g (line 91, the loop at line

82 does no iterations). Noting that σ performs signature verifications only upon receiving a

Signatures message, and noting that

1 =
M∑
1

o(1)

we can immediately derive

ψ j = 0

Next, σ produces a multi-signature wσ for [Witness,r] (line 96), then sends back to β a

x(w s)
σ = [WitnessShard,r, wσ]

message (line 104). Noting that
∣∣∣x(w s)
σ

∣∣∣=O(1), x(w s)
σ ’s amortized size for p j is

∣∣x(w s)
σ

∣∣
j = 0

Upon receiving f +1 WitnessShard messages (lines 129, 135, 138), β aggregates all witnesses

263

Chapter 6. Draft

into a certificate w (line 140), then sends a

x(w) = [Witness,r, w]

message to all servers (line 143). Noting that
∣∣x(w)

∣∣=O(1), x(w)’s amortized size for p j is∣∣x(w)
∣∣

j = 0

Upon receiving [Witness,r, w] (line 136),σ observes that, for all j , p j is not equivocated (lines

119 and 120) (because all clients are correct, no client equivocates), produces a multi-signature

cσ for [Commit,r,;] (line 132), then sends a

x(cs)
σ = [CommitShard,r,;,cσ]

message (line 140). Noting that
∣∣∣x(cs)
σ

∣∣∣=O(1), x(cs)
σ ’s amortized size for p j is

∣∣x(cs)
σ

∣∣
j = 0

Upon receiving 2 f +1 CommitShard messages (lines 148, 168 and 171), β builds a map h :

P(I) ↣S+ with only the key ; (lines 176, 177, 179) (we recall that every server produced an

empty exception set for r). β then sends a

x(c) = [Commit,r,h]

message to all servers (line 182). Noting that |x(c)| =O(1), x(c)’s amortized size for p j is∣∣x(c)
∣∣

j = 0

Upon delivering [Commit,r,h] (line 179), σ delivers p1, . . . , pM (line 171), produces a multi-

signature zσ for
[
Completion,r,;]

(line 175), then sends a

x(zs)
σ = [

CompletionShard,r, zσ
]

message to β (line 183). Noting that
∣∣∣x(zs)
σ

∣∣∣=O(1), x(zs)
σ ’s amortized size for p j is

∣∣x(zs)
σ

∣∣
j = 0

Finally, σ sets an
[
OfferTotality

]
timer to ring after 7 time units (173). Summarizing the

scheduling of messages we have that: every server delivers the Batch message between time

tr and tr +1; β delivers all BatchAcquired messages between time tr and tr +2; every server

delivers a Signatures message between time tr and tr + 3; β delivers all WitnessShard
messages between time tr and tr +4; every server delivers the Witness message between

264

6.4 Complexity

time tr and tr +5; β delivers all CommitShard messages between time tr and tr +6; all servers

deliver the Commit message between time tr and tr +7. As a result,
[
OfferTotality,r

]
rings

atσ after all servers delivered p1, . . . , pM . Upon ringing
[
OfferTotality,r

]
(line 186),σ sends

a

x(ot) = [
OfferTotality,r

]
message to all servers (line 188).

Let σ′ be a server. Upon receiving σ’s
[
OfferTotality,r

]
message, σ′ verifies to have already

delivered a batch with root r and no exclusions (line 192) and ignores the message.

In summary, noting thatσ exchanges 2n OfferTotality messages (N outgoing, N incoming),

σ’s amortized bit complexity for p j is

ψσ
j =

∣∣∣x(b)
∣∣∣

j
+

∣∣∣x(ba)
∣∣∣

j
+ ∣∣x(s)

∣∣
j +

∣∣x(w s)
σ

∣∣
j +

∣∣x(w)
∣∣

j +
∣∣x(cs)
σ

∣∣
j +

∣∣x(c)
∣∣

j +
∣∣x(zs)
σ

∣∣
j +2n

∣∣x(ot)
∣∣

j

from which immediately follows

ψσ
j = (⌈log2 (c)⌉+ ∣∣p j

∣∣)
and

ψ j = max
σ

ψσ
j = (⌈log2 (c)⌉+ ∣∣p j

∣∣)
which concludes the theorem.

265

7 Dibs

In this chapter, we present in detail the Directory abstraction and discuss its properties. We

then present Dibs, an algorithm that implements Directory, and prove its security.

7.1 Interface

Notation 26 (Signatures and multi-signatures). We use S1 and S+ to respectively denote the

set of signatures and multisignatures.

Definition 65 (Id). An id is an element of (I=D×N), where D is a finite set of domains. Let

i = (d ,n) be an id, we call d and n the domain and index of i , respectively.

The Directory interface (instance di r) exposes the following procedures and events:

• Request
〈

di r.Signup
〉

: requests that an id be assigned to the local process.

• Indication
〈

di r.SignupComplete
〉

: indicates that an id was successfully assigned to the

local process.

• Getter di r [i d]: returns the process associated with id i d , if known. Otherwise, returns

⊥.

• Getter di r [pr ocess]: returns the id associated with process pr ocess, if known. Other-

wise, returns ⊥.

• Getter di r.expor t (i d): returns the assignment for id i d , if known. Otherwise, returns

⊥.

• Setter di r.i mpor t (assi g nment): imports assignment assi g nment .

Notation 27 (Bijective relations). Let X , Y be sets. We use (X ↔ Y) to denote the set of

bijective relations between X and Y .

267

Chapter 7. Dibs

Notation 28 (Tuple binding). Let t = (t1, . . . , tn) be a tuple. When binding t , we use the any

symbol _ to mark which elements of t are discarded from the binding. For example,(
x,_, . . . ,_, y,_

)= t

binds x = t1, and y = tn−1. We use the tail symbol .. to indicate that all subsequent elements of

t are discarded from the binding. For example,(
x ′, y ′, ..

)= t

binds x ′ = t1 and y ′ = t2, regardless of n. Let X be a set. We use the tuple binding notation to

filter the elements X . For example, we use
{(

x ′′,_, y ′′, ..
)}

to identify the set{
t ∈ X | |t | ≥ 3,

(
x ′′,_, y ′′, ..

)= t
}

of tuples in X whose first element is x ′′ and whose third element is y ′′.

Definition 66 (Directory record). Let D : (ΠC ×R) → (I↔Π). D is a directory record if and only

if:

• For all π ∈ΠC , Dπ(t) is non-decreasing in t .

• For all π,π′ ∈ΠC , t , t ′ ∈R, Dπ(t)∪Dπ′
(
t ′

)
is a a bijective relation.

Let π be a correct process, let t be a time, let i be an id, let ρ be a process. π associates i and ρ

by time t if and only if
(
i ,ρ

) ∈ Dπ(t). π knows i (resp., ρ) by time t if and only if (i ,_) ∈ Dπ(t)

(resp.,
(
_,ρ

) ∈ Dπ(t)).

Notation 29 (Directory record). Let π be a correct process. Wherever it can be unequivocally

inferred from context, we omit the time from the directory record Dπ.

A Directory satisfies the following properties:

• Correctness: Some directory record D exists such that, for any id i and process ρ, if a

process π invokes di r [i] (resp., di r [ρ]), π obtains ρ (resp., i) if and only if π associates i

and ρ.

• Signup Integrity: A correct process never triggers
〈

di r.SignupComplete
〉

before trigger-

ing
〈

di r.Signup
〉

.

• Signup Validity: If a correct process triggers
〈

di r.Signup
〉

, it eventually triggers〈
di r.SignupComplete

〉
.

• Self-knowledge: Upon triggering
〈

di r.SignupComplete
〉

, a correct process knows itself.

268

7.2 Algorithm

• Transferability: If a correct process invokes di r.expor t (i) to obtain an assignment a,

then any correct process knows i upon invoking di r.i mpor t (a).

• Density: For every correct process π, for every time t , for every ((_,n),_) ∈ Dπ(t), we have

n < |Π|.

Notation 30 (Directory mapping). Let i be an id, let ρ be a process such that, for some π ∈ΠC ,

t ∈R, we have
(
i ,ρ

) ∈ Dπ(t). We say that i and ρ are known, and we use

i = D
(
ρ
)
ρ = D(i)

We underline the soundness of Notation 30: by Definition 66, if
(
i ,ρ

) ∈ Dπ(t), then no i ′ ̸= i or

ρ′ ̸= ρ exist such that, for some π′, t ′, we have
(
i ,ρ′) ∈ Dπ′

(
t ′

)
or

(
i ′,ρ

) ∈ Dπ′
(
t ′

)
. In other words,

no i ′ ̸= i or ρ′ ̸= ρ exist such that i ′ = D
(
ρ
)

or ρ′ = D(i).

7.2 Algorithm

In this section, we present Dibs’s pseudocode. The remainder of Chapter 7 proves Dibs’s

security to the fullest extent of formal detail.

7.2.1 Pseudocode (Client)

1 implements:
2 Directory, instance dir
3

4

5 uses:
6 AuthenticatedPointToPointLinks, instance al
7

8

9 struct Assignment:
10 id: Id,
11 process: Process,
12 certificate: Certificate
13

14

15 enum Status(Outsider, SigningUp, SignedUp)
16

17

18 upon <dir.Init>:
19 rankings: {Server: {Server}} (default {}) = {};
20 assigner: (Server or ⊥) = ⊥;

269

Chapter 7. Dibs

21 assignments: {Integer: {Server: MultiSignature}} (default {}) =
{};

22 status: Status = Outsider;
23

24 directory: {(Id, Process)} = {};
25 certificates: {Id: Certificate} = {};
26

27

28 upon <dir.Signup>:
29 status = SigningUp;
30

31 for σ in Σ:
32 trigger <al.Send | σ, [Signup]>;
33

34

35 upon <al.Deliver | σ, [Ranked, source]>:
36 rankings[source].add(σ);
37

38

39 upon exists source such that |rankings[source]| >= f + 1 and assigner
= ⊥:

40 assigner = source;
41

42 for σ in Σ:
43 trigger <al.Send | σ, [Assigner, assigner]>;
44

45

46 upon event <al.Deliver | σ, [Assignment, index, signature]>:
47 if σ.multiverify(signature, [Assignment, (assigner, index), self])

:
48 assignments[index][σ] = signature;
49

50

51 upon exists index such that |assignments[index]| >= 2f+1 and status =
SigningUp:

52 status = SignedUp;
53

54 id = (assigner, index);
55 certificate = aggregate(assignments[index]);
56

57 dir.import(Assignment {id, process: self, certificate});
58 trigger <dir.SignupComplete>;

270

7.2 Algorithm

59

60

61 procedure dir.[] (query):
62 if query is Id:
63 if exists process such that (query, process) in directory:
64 return process;
65 else if query is Process:
66 if exists id such that (id, query) in directory:
67 return id;
68

69 return ⊥;
70

71

72 procedure dir.export(id):
73 if let certificate = certificates[id]:
74 process = dir[id];
75 return Assignment {id, process, certificate};
76 else:
77 return ⊥;
78

79

80 procedure dir.import(assignment):
81 if assignment.certificate.verify_quorum(

[Assignment, assignment.id, assignment.process]
):

82 directory.add((assignment.id, assignment.process));
83 certificates[assignment.id] = assignment.certificate;

7.2.2 Pseudocode (Server)

1 implements:
2 DirectoryServer, instance dsr
3

4

5 uses:
6 FifoBroadcast, instance fb
7 AuthenticatedPointToPointLinks, instance al
8

9

10 upon <dsr.Init>:
11 rankings: {Server: [KeyCard]} (default []) = {};
12 assigners: {KeyCard: Server} = {};

271

Chapter 7. Dibs

13 certified: {KeyCard} = {};
14

15

16 upon <al.Deliver | π, [Signup]>:
17 trigger <fb.Broadcast | [Rank, π]>;
18

19

20 upon <fb.Deliver | σ, [Rank, process]>:
21 if process not in rankings[σ]:
22 rankings[σ].push_back(process);
23 trigger <al.Send | process, [Ranked, σ]>
24

25

26 upon <al.Deliver | π, [Assigner, assigner]>:
27 if π not in assigners:
28 assigners[π] = assigner;
29

30

31 upon exists process such that (process in assigners)
and (process in rankings[assigners[process]])
and (process not in certified):

32 certified.add(process);
33

34 assigner = assigners[process];
35 index = rankings[assigner].index_of(process);
36

37 signature = multisign([Assignment, (assigner, index), process]);
38 trigger <al.Send | process, [Assignment, index, signature]>;

7.3 Correctness

In this section, we prove to the fullest extent of formal detail that Dibs implements a Directory.

7.3.1 Correctness

In this section, we prove that Dibs satisfies correctness.

Lemma 114. Let σ be a correct server, let σ̂ be a server. All elements of r anki ng [σ̂] at σ are

distinct.

Proof. Upon initialization, r anki ng s[σ̂] is empty at σ (line 11). Moreover, σ appends π to

272

7.3 Correctness

r anki ng s[σ̂] only by executing line 22. Because σ does so only if π ∉ r anki ng s[σ̂] (line 21),

the lemma is proved.

Lemma 115. Let σ, σ′ be correct servers, let σ̂ be a server, let n ∈ N, let π be a process. If

r anki ng s[σ̂][n] =π at σ, then eventually r anki ng s[σ̂][n] =π at σ′ as well.

Proof. Let [Rank,π1], . . . , [Rank,πR] denote the sequence of [Rank,_] messages σ FIFO-

delivered from σ̂. By the totality and FIFO properties of FIFO broadcast, σ′ eventually de-

livers [Rank,π1], . . . , [Rank,πR] as well. Upon initialization, r anki ng s[σ̂] is empty at both σ

and σ′ (line 11). Moreover, σ (resp., σ′) adds some process π̂ to r anki ng s[σ̂] (line 22 only)

only upon FIFO-delivering a [Rank, π̂] message from σ̂ (line 20), and only if r anki ng s[σ̂]

satisfies a deterministic condition on π̂ (line 21). As a result, noting σ (resp., σ′) never re-

moves elements from r anki ng s[σ̂], if r anki ng s[σ̂][n] = π at σ as a result of σ delivering

[Rank,π1], . . . , [Rank,πR], then eventually r anki ng s[σ̂][n] =π at σ′ as well, as it also eventu-

ally delivers [Rank,π1], . . . , [Rank,πR].

Lemma 116. Let σ, σ′ be correct servers. Let σ̂ be a server, let n ∈N, let π, π′ be processes such

that σ and σ′ respectively sign
[
Assignment, (σ̂,n),π

]
and

[
Assignment, (σ̂,n),π′]. We have

π=π′.

Proof. σ (resp., σ′) signs
[
Assignment, (σ̂,n),π

]
(resp.,

[
Assignment, (σ̂,n),π′]) only by ex-

ecuting line 37. σ (resp., σ′) does so only if n is the index of π (resp., π′) in r anki ng s[σ̂]

at σ (resp., σ′) (line 35). We underline that, by Lemma 114, at most one element of

r anki ng s[σ̂] is π (resp., π′) at σ (resp., σ′), hence n is well-defined. By Lemma 115, however,

if r anki ng s[σ̂][n] = π at σ, then r anki ng s[σ̂][n] = π at σ′ as well. This proves π = π′ and

concludes the lemma.

Lemma 117. Let σ̂ be a server, let n ∈N, let π, π′ ̸= π be processes. If a quorum certificate for[
Assignment, (σ̂,n),π

]
exists, then no quorum certificate for

[
Assignment, (σ̂,n),π′] exists.

Proof. Let us assume by contradiction that quorum certificates exist for both[
Assignment, (σ̂,n),π

]
and

[
Assignment, (σ̂,n),π′]. Noting that at most f servers are

Byzantine, at least one correct server σ (resp., σ′) signed
[
Assignment, (σ̂,n),π

]
(resp.,[

Assignment, (σ̂,n),π′]). By Lemma 116 we then have π= π′, which contradicts π ̸= π′ and

proves the lemma.

Lemma 118. Let σ, σ′ be correct servers. Let σ̂ be a server, let n,n′ ∈N, let π be a process such

that σ and σ′ respectively sign
[
Assignment, (σ̂,n),π

]
and

[
Assignment,

(
σ̂,n′),π

]
, We have

n = n′.

Proof. σ (resp., σ′) signs
[
Assignment, (σ̂,n),π

]
(resp.,

[
Assignment,

(
σ̂,n′),π

]
) only by ex-

ecuting line 37. σ (resp., σ′) does so only if n (resp., n′) is the index of π in r anki ng s[σ̂]

at σ (resp., σ′) (line 35). We underline that, by Lemma 114, at most one element of

273

Chapter 7. Dibs

r anki ng s[σ̂] is π at σ (resp., σ′), hence n (resp., n′) is well-defined. By Lemma 115, however,

if r anki ng s[σ̂][n] =π at σ, then r anki ng s[σ̂][n] =π at σ′ as well. Again by Lemma 114, this

proves n = n′ and concludes the lemma.

Lemma 119. Let σ be a correct server. Let σ̂, σ̂′ be servers, let π be a process such that σ signs

both an
[
Assignment, (σ̂,_),π

]
and an

[
Assignment,

(
σ̂′,_

)
,π

]
message. We have σ̂= σ̂′.

Proof. σ signs an
[
Assignment, (σ̂,_),π

]
(resp.,

[
Assignment,

(
σ̂′,_

)
,π

]
) message only by exe-

cuting 37. σ does so only if σ̂= assi g ner s[π] (resp., σ̂′ = assi g ner s[π]) (line 34). The lemma

follows immediately from the observation thatσ sets assi g ner s[π] (line 28 only) at most once

(line 27).

Lemma 120. Let σ̂, σ̂′ be servers, let n,n′ ∈ N such that (σ̂,n) ̸= (
σ̂′,n′), let π be a pro-

cess. If a quorum certificate for
[
Assignment, (σ̂,n),π

]
exists, then no quorum certificate for[

Assignment,
(
σ̂′,n′),π

]
exists.

Proof. Let us assume that σ̂ = σ̂′. Because (σ̂,n) ̸= (
σ̂′,n′), we have n ̸= n′. Let us as-

sume by contradiction that quorum certificates exist for both
[
Assignment, (σ̂,n),π

]
and[

Assignment,
((
σ̂= σ̂′),n′),π

]
. Noting that at most f servers are Byzantine, at least one correct

server σ (resp. σ′) signed an
[
Assignment, (σ̂,n),π

]
(resp.,

[
Assignment,

(
σ̂,n′),π

]
) message.

By Lemma 118 we then have n = n′, which contradicts n ̸= n′.

Let us assume that σ̂ ̸= σ̂′. We have that at least f + 1 correct processes signed[
Assignment, (σ̂,_),π

]
(resp.,

[
Assignment,

(
σ̂′,_

)
,π

]
). Because any two sets of f + 1 cor-

rect processes intersect in at least one element, some correct server σ∗ exists that signed

both
[
Assignment, (σ̂,_),π

]
and

[
Assignment,

(
σ̂′,_

)
,π

]
. By Lemma 119 we then have σ̂= σ̂′

which contradicts σ̂ ̸= σ̂′ and proves the lemma.

Definition 67 (Certifiable assignments). Let i be an id, let π be a process. The set D∞ of

certifiable assignments contains (i ,π) if and only if a quorum certificate ever exists for[
Assignment, i ,π

]
.

Lemma 121. D∞ is a bijection.

Proof. It follows immediately from Definition 67 and Lemmas 117 and 120.

Notation 31 (Directory record). Let π be a correct process, let t ∈R. We use Dπ(t) to denote

the value of di r ector y at π at time t .

As we immediately prove, D is a directory record, which makes Notation 31 compatible with

Definition 66.

Lemma 122. Let π be a correct process, let t , t ′ ∈R such that t ′ ≥ t . We have Dπ
(
t ′

)⊇ Dπ(t).

274

7.3 Correctness

Proof. The lemma immediately follows from Notation 31 and the observation that π never

removes elements from di r ector y .

Lemma 123. Let π be a correct process, let t ∈R. We have Dπ(t) ⊆ D∞.

Proof. Upon initialization, di r ector y is empty at π (line 24). Moreover, π adds
(
î , π̂

)
only by

executing line 82. π does so only upon verifying a quorum certificate for
[
Assignment, î , π̂

]
(line 81). The lemma immediately follows from Definition 67 and Notation 31.

Lemma 124. D is a directory record.

Proof. By Lemma 122 we immediately have that, for every correct process π, Dπ(t) is non-

decreasing in t . Let π, π′ be correct processes, let t , t ′ ∈R. By Lemma 123 we have

Dπ(t)∪Dπ′
(
t ′

)⊆ D∞

By Lemma 121, this proves that Dπ(t)∪Dπ′
(
t ′

)
is bijective. The lemma immediately follows

from Definition 66.

Theorem 21. Dibs satisfies correctness.

Proof. Let π be a correct process, let î be an id, let π̂ be a process. By Notation 31, upon

invoking di r
[
î
]

(resp., di r [π̂]) (line 61), π obtains π̂ (resp., î) (line 64, resp., line 67) if and only

if
(
î , π̂

) ∈ Dπ (line 63, resp., line 66). The theorem follows immediately from Lemma 124.

7.3.2 Signup integrity

In this section, we prove that Dibs satisfies signup integrity.

Theorem 22. Dibs satisfies signup integrity.

Proof. Let π be a correct process. Upon initialization, we have st atus = Outsider at π (line

22). Moreover, π triggers
〈

di r.Si g nupComplete
〉

only by executing line 58. π does so only if

st atus = SigningUp (line 51). The theorem follows immediately from the observation that π

sets st atus = SigningUp (line 29 only) only upon triggering
〈

di r.Si g nup
〉

(line 28).

7.3.3 Signup validity

In this section, we prove that Dibs satisfies signup validity.

Lemma 125. Let π be a correct process that triggers
〈

di r.Si g nup
〉

. We eventually have

assi g ner ̸= ⊥ at π.

275

Chapter 7. Dibs

Proof. Upon triggering
〈

di r.Si g nup
〉

(line 28), π sends a
[
Signup

]
message to all servers

(lines 31 and 32). Let σ̂ be a correct server. Noting that at most f servers are Byzantine, σ̂ is

guaranteed to exist.

Upon delivering
[
Signup

]
from π (line 16), σ̂ FIFO-broadcasts a [Rank,π] message (line

17). Let σ1, . . . ,σ f +1 be distinct correct servers. Noting that at most f servers are Byzantine,

σ1, . . . ,σ f +1 are guaranteed to exist.

Let n ≤ f +1. We start by noting that, upon initialization, r anki ng s[σ̂] is empty at σn (line

11). Moreover, σn adds π to r anki ng s[σ̂] (line 22) only upon delivering a [Rank,π] message

from σ̂ (line 20). By the validity and totality of FIFO broadcast, σn is eventually guaranteed to

FIFO-deliver [Rank,π] from σ̂. Upon doing so (line 20), σn verifies that π ∉ r anki ng s[σ̂] (line

22), then sends a [Ranked, σ̂] message to π.

Upon delivering a [Ranked, σ̂] message from σn (line 35), π adds σn to r anki ng s[σ̂] (line

36). In summary, recalling that the above holds true for any n ≤ f +1, π adds σ1, . . . ,σ f +1

to r anki ng s[σ̂]. Noting that π never removes elements from r anki ng s[σ̂], that initially

assi g ner = ⊥ at π (line 20), and that π updates assi g ner only by executing line 40, π is

eventually guaranteed to detect that, for some σ∗,
∣∣r anki ng s[σ∗]

∣∣≥ f +1 and assi g ner =⊥
(line 39). Upon doing so, π sets assi g ner =σ∗, and the lemma is proved.

Lemma 126. Let π be a correct process, let σ̂ be a server such that assi g ner = σ̂ at π. We

eventually have π ∈ r anki ng s[σ̂] at all correct processes.

Proof. We start by noting that, upon initialization, we have assi g ner =⊥ at π (20). Moreover,

π sets assi g ner = σ̂ (line 40 only) only if
∣∣r anki ng s[σ̂]

∣∣ ≥ f +1 at π (line 39). Upon initial-

ization, r anki ng s[σ̂] is empty at π (line 19). Moreover, π adds σ to r anki ng s[σ̂] only upon

delivering a [Ranked, σ̂] message from σ. In summary, at least f +1 servers sent a [Ranked, σ̂]

message to π. Let σ be a correct server that sent a [Ranked, σ̂] message to π. Noting that at

most f servers are Byzantine, σ is guaranteed to exist.

σ sends a [Ranked, σ̂] to π (line 23 only) only upon FIFO-delivering a [Rank,π] message from σ̂.

By the totality of FIFO broadcast, eventually every correct process delivers [Rank,π]. Let σ′ be

a correct process. Upon FIFO-delivering [Rank,π] from σ̂ (line 20), σ′ either already satisfies

π ∈ r anki ng s[σ̂] (line 21) or adds π to r anki ng s[σ̂]. Noting that no correct process ever

removes elements from r anki ng s[σ̂], eventually π ∈ r anki ng s[σ̂] at all correct processes,

and the lemma is proved.

Lemma 127. Let π be a correct process, let σ̂ be a server such that assi g ner = σ̂ at π, let

r ∈ N such that, eventually, r anki ng s[σ̂][r] = π at all correct servers. We eventually have∣∣assi g nment s[r]
∣∣≥ 2 f +1 at π.

276

7.3 Correctness

Proof. We start by noting that, upon initialization, we have assi g ner = ⊥ at π (line 20).

Moreover, π updates assi g ner to σ̂ only by executing line 40. Upon doing so, π sends

a
[
Assigner, σ̂

]
to all servers (lines 42 and 43). Moreover, because π updates assi g ner

to a non-⊥ value (line 40) immediately before disseminating
[
Assigner, σ̂

]
, and π never

resets assi g ner back to ⊥, π never issues any
[
Assigner, (σ̃ ̸= σ̂)

]
message (see line 39).

Let σ1, . . . ,σ2 f +1 be distinct correct servers. Noting that at most f servers are Byzantine,

σ1, . . . ,σ2 f +1 are guaranteed to exist.

Let n ≤ 2 f +1. Upon initialization, assi g ner s is empty at σn (line 12). Moreover, σn adds

π to assi g ner s (line 28 only) only upon delivering a
[
Assigner,_

]
message from π (line

26). As a result, upon delivering
[
Assigner, σ̂

]
from π (line 26), σn verifies π ∉ assi g ner s

(line 27) and sets assi g ner s[π] = σ̂ (line 28). Upon initialization, cer t i f i ed is empty at σn

(line 13). Moreover, σn adds π to cer t i f i ed only by executing line 32. As a result, σn is

eventually guaranteed to observe assi g ner s[π] = σ̂, r anki ng s[σ̂] = r , and π ∉ cer t i f i ed

(line 31). Upon doing so, σn produces a signature sn for
[
Assignment, (σ̂,r),π

]
(lines 34, 35

and 37) and sends an
[
Assignment,r, sn

]
message back to π (line 38).

Upon delivering
[
Assignment,r, sn

]
from σn (line 46), π verifies sn against[

Assignment, (σ̂,r),π
]

(line 47), then adds σn to assi g nment s[r]. In summary, recall-

ing that the above holds true for all n ≤ 2 f + 1, assi g nment s[r] eventually contains

σ1, . . . ,σ2 f +1 at π, and the lemma is proved.

Theorem 23. Dibs satisfies signup validity.

Proof. Let π be a correct process that triggers
〈

di r.Signup
〉

. By Lemma 125, for some σ̂ we

eventually have assi g ner = σ̂ at π. By Lemmas 126 and 115, some r ∈ N exists such that,

eventually, r anki ng s[σ̂][r] = π at all correct processes. By Lemma 127, we eventually have∣∣assi g nment s[r]
∣∣ ≥ 2 f + 1 at π. Upon triggering

〈
di r.Si g nup

〉
(line 28), π sets st atus =

SigningUp (line 29). Moreover, if st atus = SigningUp, π updates st atus only by executing

line 52. As a result, π is eventually guaranteed to detect that
∣∣assi g nment s[r]

∣∣≥ 2 f +1 and

st atus = SigningUp (line 51). Upon doing so, π triggers
〈

di r.SignupComplete
〉

(line 58), and

the theorem is proved.

7.3.4 Self-knowledge

In this section, we prove that Dibs satisfies self-knowledge.

Lemma 128. Let π be a correct process. Let σ̂ be a server such that assi g ner = σ̂ at π. Let r ∈N,

let σ be a server such that, for some s, we have assi g nment s[r][σ] = s at π. We have that s is

σ’s signature for
[
Assignment, (σ̂,r),π

]
.

277

Chapter 7. Dibs

Proof. We start by noting that π updates assi g ner (line 40 only) only if assi g ner =⊥ (line

46). Consequently, at all times we either have assi g ner = ⊥ or assi g ner = σ̂ at π. Upon

initialization, assi g nment s is empty at π (line 21). Moreover, π sets assi g nment s[r][σ] = s

only by executing line 48. π does so only if s is σ’s multisignature for
[
Assignment, (σ̂,r),π

]
(line 47).

Theorem 24. Dibs satisfies self-knowledge.

Proof. Let π be a correct process that triggers
〈

di r.Si g nupCompl ete
〉

. π does so (line 58

only) only if, for some r , we have
∣∣assi g nment s[r]

∣∣≥ 2 f +1 at π (line 51). Let σ̂ denote the

value of assi g ner at π, let i = (σ̂,r). Immediately before triggering
〈

di r.SignupComplete
〉

,

π aggregates assi g nment s[r] into a certificate t (line 55). By Lemma 128, t is a quorum

certificate for
[
Assignment, i ,π

]
. π then invokes

di r.i mpor t
(

Assi g nment
{
i d : i , pr ocess :π,cer t i f i cate : t

})
(line 57). Upon doing so, π verifies that t is indeed a certificate for

[
Assignment, i ,π

]
(line 81),

and adds (i ,π) to di r ector y (line 82). By Notation 31 and Definition 66, π knows itself, and

the theorem is proved.

7.3.5 Transferability

In this section, we prove that Dibs satisfies transferability.

Lemma 129. Let π be a correct process, let i be an id, be a process such that (i ,_) ∈ di r ector y

at π. We have i ∈ cer t i f i cates at π.

Proof. Upon initialization, di r ector y is empty at π (line 24). Moreover, π adds (i ,_) to

di r ector y only by executing line 82. Immediately after doing so, π adds i to cer t i f i cates

(line 83).

Lemma 130. Let π be a correct process, let
(
î , π̂

) ∈ di r ector y at π. Let ĉ = cer t i f i cates
[
î
]

at

π. We have that ĉ is a quorum certificate for
[
Assignment, î , π̂

]
.

Proof. We underline that, by Lemma 129, ĉ is guaranteed to exist. By Notation 31 and Lem-

mas 123 and 121, for all π̂′ ̸= π̂ we always have
(
î , π̂′) ∉ di r ector y at π. Upon initialization,

cer t i f i cates is empty at π (line 25). Moreover, π adds
(
î , ĉ

)
to cer t i f i cates only by execut-

ing line 83. π does so only if ĉ is a quorum certificate for
[
Assignment, î , π̃

]
for some π̃ (line

81). Immediately before adding
(
î , ĉ

)
to cer t i f i cates, however, π adds

(
î , π̃

)
to di r ector y

(line 82). This proves that π̃= π̂ and concludes the lemma.

Theorem 25. Dibs satisfies transferability.

278

7.3 Correctness

Proof. Let π,π′ be correct processes, let î be an id such that a = di r.expor t
(
î
)

at π is an

assignment. Let

ĩ = a.i d

π̂= a.pr ocess

ĉ = a.cer t i f i cate

By lines 75 and 72, we immediately have ĩ = î . Moreover, by line 73 we have ĉ =
cer t i f i cates

[
î
]

at π. Finally, by line 74 we have
(
î , π̂

) ∈ di r ector y at π. By Lemma 130,

we then have that ĉ is a quorum certificate for
[
Assignment, î , π̂

]
.

Upon invoking di r.i mpor t (a), π′ verifies that ĉ is indeed a quorum certificate for[
Assignment, î , π̂

]
(line 81), then adds (i ,_) to di r ector y (line 82). By Notation 31 and Defi-

nition 66, π′ knows î , and the theorem is proved.

7.3.6 Density

In this section, we prove that Dibs satisfies density.

Lemma 131. Let σ be a correct server, let σ̂ be a server. We have
∣∣r anki ng s[σ̂]

∣∣< |Π| at σ.

Proof. Upon initialization, r anki ng s[σ̂] is empty at σ (line 19). Moreover, σ adds a process π

to r anki ng s[σ̂] (line 22 only) only ifπ is not already in r anki ng s[σ̂] (line 21). This proves that,

at σ, the elements of r anki ng s[σ̂] are distinct processes. We then have
∣∣r anki ng s[σ̂]

∣∣< |Π|
at σ, and the lemma is concluded.

Lemma 132. Let (d ,n) be an id, let π be a process. If a quorum certificate exists for[
Assignment, (d ,n),π

]
, then n < |Π|.

Proof. Let us assume that a quorum certificate exists for
[
Assignment, (d ,n),π

]
. Noting that

at most f servers are Byzantine, at least one correct server σ signed
[
Assignment, (d ,n),π

]
. σ

does so (line 37 only) only if n < ∣∣r anki ng s[σ̂]
∣∣, for some server σ̂ (line 35). By Lemma 131 we

then have n < |Π|, and the lemma is proved.

Theorem 26. Dibs satisfies density.

Proof. Let π be a correct process, let t ∈ R, let
((

d̂ , n̂
)
, π̂

) ∈ Dπ(t). By Lemma 123 we have((
d̂ , n̂

)
, π̂

) ∈ D∞. By Definition 67 and Lemma 132 we then have n < |Π|, and the theorem is

proved.

279

Part IIIByzantine Atomic Broadcast to the
Network Limit

281

8 Chop Chop

8.1 Overview

This Part focuses on Atomic Broadcast, the powerful consensus-equivalent primitive that

has a set of processes agree on the (total) order of client-issued messages. Unlike Reliable

Broadcast, which can only be applied to a relatively narrow class of useful problems (such

as Asset Transfer [80]), Atomic Broadcast powers state machine replication (SMR) [62, 135],

enabling decentralized universal computation in the face of arbitrary failures [104, 138].

Despite its versatility, however, Atomic Broadcast comes with fundamental bounds [59]

and constraints [68], hindering its real-world performance despite decades of extensive re-

search [10, 22, 36, 43, 49, 99, 108, 121, 155, 156, 159] and attention from industry, where SMR

powers a myriad of blockchains and ledgers [8, 78, 98, 102, 107, 116, 143, 144, 145, 152, 153].

When deployed globally, seminal Atomic Broadcast implementations, such as BFT-SMaRt [22]

and HotStuff [156], fail to stretch past a few thousand messages per second, three orders of

magnitude short of the millions of requests per second collectively handled by the Internet’s

largest, centralized services (Figure 8.1). As we discussed in the introduction to this thesis,

bringing Atomic Broadcast into the tens of millions of messages per second seems a necessary

stepping stone towards planetary-scale, decentralized computation.

Towards line rate. While slow and expensive, ordering messages in Atomic Broadcast is

amenable to batching [43]: order once, deliver in bulk. This observation motivated the

development of memory pool (mempool) protocols [55, 70, 140], as initiated by Narwhal [55],

designed to amortize ordering. This strategy proved effective, e.g., Bullshark [140] delivers

in the order of 380,000 messages per second when accelerated by Narwhal. Despite this

improvement, however, state-of-the-art batching still falls short of achieving line rate, i.e.,

matching the communication complexity of a protocol that does not ensure any ordering,

authentication, or Byzantine resilience. In such a simplified setting, a server could simply

deliver a sequence of application messages as it receives them from the network: b bits

283

Chapter 8. Chop Chop

100 101 102 103 104 105 106 107 108

Throughput [event/s, log scale]

Chop Chop
WhatsApp messages

Google searches
Credit card payments

Youtube video watches
Tweets

Figure 8.1: Throughput of Internet-scale services.

received, b bits delivered. Modern connections have enough bandwidth to receive tens

of millions of application messages per second:1 2.5 orders of magnitude of gap still exist

between Atomic Broadcast and unordered, unauthenticated dissemination. It is natural to ask

if such a large gap is inherent to atomicity’s unavoidable cost of ordering, authenticating and

deduplicating messages. In this Part, we answer in the negative, accelerating Atomic Broadcast

by a further two orders of magnitude with a system that performs within 8% of line-rate2, even

when handling 40 million requests per second.

Chop Chop. We present Chop Chop, a Byzantine Atomic Broadcast system. As a mempool,

Chop Chop uses an underlying instance of Atomic Broadcast to order batches, aggregating

messages to amortize costs. Classic methods of batching, however, fail to also amortize

authentication and deduplication: each payload in a batch still has to carry an individual

public key, signature and sequence number.

Chop Chop addresses this shortcoming with a new form of batches: distilled batches. Unlike a

classic batch, a distilled batch contains condensed information that allows to authenticate

and deduplicate its messages in bulk, much faster than in existing schemes. Distilled batches

leverage the strong ordering of Atomic Broadcast to minimize redundant information.

Trustless brokers. Chop Chop produces distilled batches using a novel interactive protocol

involving brokers, a layer of facilitating processes between clients and servers. Counterintu-

itively, distilled batches are faster for servers to receive and process, but expensive for brokers

to produce: distillation is interactive and relies on expensive cryptographic operations.

Importantly, however, incorrectly distilled batches are visibly malformed. As such, brokers are

untrusted: good brokers take load off the servers; bad ones cannot compromise the system’s

safety. Servers are exposed to every message in the system, bottleneck easily, and only a

threshold of them can be compromised before the system loses safety. Brokers, instead, can

1Payloads as small as 12 bytes can have real-world applications (see Section 8.2.1). A 5 Gbit/s link can receive 52
millions such payloads per second.

2Up to some minor differences, line-rate can be considered a real-world measure of oracularity, the property
we introduced in Part II to describe the ability of a distributed system to match the complexity of its centralized
counterpart.

284

8.1 Overview

be spun up by anyone, outside of Chop Chop’s security perimeter, to meet the load produced

by clients.

Evaluation. We evaluate Chop Chop in a cross-cloud, geo-distributed environment including

320 medium-sized AWS EC2 machines and 64 OVH machines. We simulate up to 257 million

clients and consider 12 experimental environments. Setting up each environment requires

the installation of 13 TB of synthetic workload. A naive installation using scp from a single

machine would take 68 hours. We designed silk, a one-to-many peer-to-peer file transfer

tool optimized for high latency connections, to install the files in 30 minutes instead.

We compare Chop Chop’s throughput and end-to-end latency against its baselines in multiple

real-world scenarios including server failures, adverse network conditions, and applications

running. In all scenarios, Chop Chop’s throughput outperforms its closest competitor by up

to two orders of magnitude, with no penalty in terms of latency. When put under stress, Chop

Chop orders, authenticates and deduplicates upwards of 43,600,000 messages per second

with a mean latency of 3.6 seconds. Except under the most adverse network conditions and

proportions of faulty clients, Chop Chop still achieves millions of operations per second.

Applications. Unlike most Atomic Broadcast implementations [22, 55, 140, 156], Chop Chop

does not offload authentication and deduplication to the application. This allows Chop Chop-

based applications to focus entirely on their core logic without ever engaging in expensive, and

easy to get wrong, cryptography. To showcase this, we implement three simple applications to

evaluate on top of Chop Chop: a Payment system, an Auction house and an instance of the

game “Pixel war”. These three simple applications (300 lines of logic) work effectively with

messages as small as 8 bytes, further underlying the communication overhead represented

by public keys, signatures and sequence numbers in non-distilled systems. Both Payments

and Pixel war inherit Chop Chop’s throughput, respectively processing over 32 and 35 million

operations per second. Even the Auction house, which is single-threaded, achieves 2.3 million

operations per second. (These applications are meant as examples, and further optimization

is beyond the scope of this Part.)

Contributions. We identify authentication and deduplication as the main bottlenecks of

batched Atomic Broadcast; we introduce distilled batches to extend the amortizing properties

of batching to authentication and deduplication; we present distillation, an interactive pro-

tocol to produce distilled batches, and identify the opportunity to offload it to an untrusted

set of brokers; we implement Chop Chop, an Atomic Broadcast system taking advantage of

distillation; we thoroughly evaluate Chop Chop, improving state-of-the-art Atomic Broadcast

throughput by two orders of magnitude, maintaining near line-rate performance up to 40

million requests per second; we showcase Chop Chop through a Payment system, an Auction

house and an instance of the “Pixel war” game, respectively achieving 32, 2.3 and 35 million

operations per second.

285

Chapter 8. Chop Chop

Roadmap. Section 8.2 introduces Atomic Broadcast, discusses classic batching mechanisms

and highlights the cost of authenticating and deduplicating messages in the resulting batches.

Section 8.3 presents distilled batches and, for pedagogical purposes, introduces a simplified

failure-free version of Chop Chop’s protocol. Section 8.4 describes Chop Chop’s fault-tolerant

protocol in further detail. Section 8.5 discusses Chop Chop’s implementation. Section 8.6

discusses Chop Chop’s empirical evaluation, highlighting the challenges of such large scale

experiments. We summarize related work in Section 8.7.

8.2 Atomic Broadcast

In an Atomic Broadcast system [45], clients broadcast messages that are delivered by servers.

Properties [34]. Correct servers deliver the same messages in the same order (agreement).

Messages from correct clients are eventually delivered (validity). Spurious messages cannot

be attributed to correct clients (integrity). No message is delivered more than once (no

duplication).

8.2.1 Cost of Atomic Broadcast

Informally, Atomic Broadcast’s most distinctive property, agreement, is also the most chal-

lenging to satisfy. Correct servers must coordinate to order messages without compromising

liveness. A great deal of research effort has been put in developing ordering techniques,

optimizing for latency [99, 114] or communication complexity [113, 124].

Integrity and no duplication, instead, allow for simple solutions. Clients can ensure integrity

by authenticating their messages using digital signatures: servers simply ignore incorrectly

authenticated messages. For no duplication, clients can tag each message with a strictly

increasing sequence number: after ordering, servers discard old messages as replays.

Both techniques—we call them classic authentication and classic sequencing—are non-

interactive, easy to implement, and agnostic of the protocol employed to order messages.

Arguably due to the simplicity and effectiveness of classic authentication and sequencing,

most Atomic Broadcast implementations overlook integrity and no duplication entirely: they

offload authentication and sequencing to the application, focusing on the more challenging

task of ordering.

Batching for ordering. Lacking an efficient technique to minimize its complexity, ordering

could be Atomic Broadcast’s main bottleneck.3 The well-known strategy of batching, how-

ever, is both general and effective at amortizing the agreement cost of an Atomic Broadcast

3Byzantine Atomic Broadcast among n participants cannot be achieved with a bit complexity smaller than
Θ(n2) [59].

286

8.2 Atomic Broadcast

implementation [43, 138].

Broadly speaking, batching is orchestrated by a broker as follows [55].4 Over a small window

of time, the broker collects multiple client-issued messages in a batch, which it disseminates

to the servers; the broker then submits to an underlying instance of Atomic Broadcast a

cryptographic hash of the batch it collected; upon delivering the hash of a batch from Atomic

Broadcast, a server retrieves the batch, and delivers to the application all the messages it

contains. Because the size of a hash is constant, the cost of ordering a batch does not depend

on its size: as batches become larger, the cost of ordering each message goes to zero. In practice,

batching can effectively eliminate the cost of ordering in any real-world implementation of

Atomic Broadcast.

Cost of integrity and no duplication. Batching does not efficiently uphold integrity and

no duplication. Regardless of how many messages are batched together, the cost of classic

authentication and sequencing stays constant: one public key, one signature and one sequence

number for each message.

In practice, these costs dominate the computation and communication budget of a batched

Atomic Broadcast system (see Section 8.3.2). On the one hand, signatures are among the most

CPU-intensive items in the standard cryptographic toolbox, dwarfing in particular symmetric

primitives such as hashes and ciphers. On the other, public keys, signatures and sequence

numbers can easily account for the majority of a batch’s size.

To illustrate these costs, consider the example of a payment system. A payment operation

requires three fields: sender, recipient, and amount. Sender and recipient fit in 4 B each if the

system serves less than 4 billion users. Amount needs 4 B for payments between 1 cent and 40

millions. Hence, a payment can be encoded in just 12 B. Using public keys to identify sender

and recipient (2×32 B using Ed25519 [21, 90]) and attaching a signature (64 B) and a sequence

number (8 B) to each message inflates payloads to 140 B. For payments, 91% of the bandwidth

is spent on integrity and no duplication.

8.2.2 Existing Mitigations

Chop Chop integrates the two following techniques to reduce the bandwidth and CPU cost of

authentication.

Short identifiers. Repeated public keys consume a significant slice of a server’s communi-

cation budget. A workaround is to have servers store public keys in an indexed directory [4].

Upon first joining the system, a client announces its public key via Atomic Broadcast to sign

up. Upon delivering a sign-up message, a server appends the new public key to its directory.

4In the literature, servers usually play the role of brokers. As we discuss in Section 8.4, however, Chop Chop
minimizes its load on the servers by offloading brokerage to a separate, trustless set of processes.

287

Chapter 8. Chop Chop

The same public key appears at the same position in the directory of all correct servers thanks

to Atomic Broadcast’s agreement. Having signed up, a client uses its position in the directory

as identifier instead of its public key.

In the previous example of a payment system, using such identifiers reduces a payment size

by 40%, from 140 B to 84 B. However, a signature per payment must still be transmitted.

Pooled signature verification. Authenticating a batch by verifying its signatures is a compu-

tationally intensive task for a server [43, 142]. However, Red Belly[53] and Mir [142] showed

that not all servers need to authenticate all batches. Indeed, assuming at most f faulty servers,

a broker optimistically asks only f +1 servers to authenticate a batch to be certain to reach

at least one correct server. If f +1 servers do not reply by a timeout, the broker extends its

request to f additional servers, thus reaching at least f +1 correct servers.

A correct server that authenticates a batch sends back to the broker a witness shard, i.e., a

signed statement that the batch is correctly signed. The broker aggregates f +1 identical

shards into a witness, which it sends to the other 2 f servers. Because every witness contains at

least one correct shard, the servers can trust the witness instead of verifying the batch.

Assuming 3 f +1 servers, this technique shaves up to two-thirds off the system’s authentication

complexity.

8.3 Distilled Batches

Chop Chop’s main contribution is distillation, a set of techniques aimed at extending the

amortizing properties of batches to authentication and sequencing.

Background: multi-signatures. Chop Chop makes use of multi-signature schemes [88]

to authenticate batches. Secret keys produce signatures that can be verified against the

corresponding public keys. Public keys and signatures, however, can be aggregated. Let

(p1,r1), . . . , (pn ,rn) be distinct key pairs, and s1, . . . , sn be signatures produced by r1, . . . ,rn

on the same message m: p1, . . . , pn (resp., s1, . . . , sn) can be aggregated into a constant-sized

aggregate public key p (resp., aggregate signature s).

Remarkably, s can be verified in constant time against p and m [25, 115]. Chop Chop uses

BLS multi-signatures [25] which can be aggregated cheaply and non-interactively: even a

non-signing process can compute p (resp., s) once provided with p1, . . . , pn (resp., s1, . . . , sn)

by computing a single multiplication over an elliptic curve.

288

8.3 Distilled Batches

...

...
...

...

Figure 8.2: Full distillation in action. With classic authentication and sequencing, each
payload qi contains a public key pki , a sequence number sni , a message msgi and a signature
si gi . In the fully distilled case, each qi reduces to just i di and msgi : one header H , composed
of one aggregate sequence number SN and one aggregate signature SIG , is sufficient for the
entire batch. Bars are to scale if small messages are broadcast using Ed25519 for signatures
and BLS12-381 for uncompressed multi-signatures: sni and SN are 8 B, msgi is 8 B, pki is
32 B, si gi is 64 B, SIG is 192 B.

8.3.1 Distillation at a Glance

In brief, distillation aims to produce distilled batches. A distilled batch has some of its signa-

tures (resp., sequence numbers) replaced by an aggregate signature (resp., aggregate sequence

number). When maximally successful, distillation produces a fully distilled batch, where all

signatures (resp., sequence numbers) have been replaced by a single aggregate signature (resp.,

sequence number). As we discuss below, distilled batches are vastly cheaper for servers to

receive and process. Figure 8.2 depicts the effect of distillation on a batch.

Full distillation (failure-free). For pedagogical purposes, we introduce distillation under the

assumption that all processes are correct. We detail Chop Chop’s fault-tolerant distillation

techniques in Section 8.4.2, optimized and adapted to the Byzantine setting. As in the classic

batching case, a set χ1, . . . ,χb of clients submit their messages m1, . . . ,mb to a broker β. Each

χi selects for its message mi a sequence number ki (greater than any sequence number

it previously used), then sends (ki ,mi) to β. Upon receiving all (ki ,mi)-s, β computes the

aggregate sequence number

k = max
i

ki

then builds the batch proposal

B = [(x1,k,m1) , . . . , (xb ,k,mb)]

289

Chapter 8. Chop Chop

where xi is χi ’s numerical identifier in the system (see Section 8.2.2). β then sends B back to

every χi . Upon receiving B , χi produces a multi-signature si for the hash H(B) of B , which it

sends back to β. Having collected all multi-signatures, β computes the aggregate signature

s =∏
i

si

In doing so, β obtains the fully distilled batch

B̃ = [s,k, ((x1,m1) , . . . , (xb ,mb))]

Upon receiving B̃ , any server now can: compute B by inserting k between each (xi ,mi);

compute H(B); use each xi to retrieve χi ’s public key pi from its directory; compute the

aggregate public key

p =∏
i

pi

and finally verify s against p and H(B).

Distillation outcome. Having engaged with β to distill the batch, every χi multi-signs the

same message H(B) and updates its sequence number to the same k. This allows β to authen-

ticate and sequence all of B̃ using s and k only.

Distillation safety. The proposed distillation protocol has no safety drawback. First, because

(xi ,k,mi) appears in B , χi still gets to authenticate mi . Intuitively, χi ’s multi-signature on

H(B) publicly authenticates whatever message in B is attributed to χi , mi in this case. Second,

because k ≥ ki , k is still a valid sequence number for mi . Sequence number distillation might

cause χi to skip some sequence numbers whenever any χ j issues some k j > ki . Contiguity of

sequence numbers, however, is not a requirement for deduplication. As with classic sequenc-

ing, χi produces—and servers deliver—messages with strictly increasing sequence numbers;

servers disregard all other messages as replays.

8.3.2 Distillation Microbenchmark

Having discussed how distilled batches are produced, we now estimate the significance of

their effect by means of a back-of-the-envelope calculation and a simple microbenchmark

on AWS. Consider a setting where 100 million clients broadcast 8-byte messages, e.g., to

issue payments (see Section 8.2.1). We compare classic authentication and sequencing, where

clients are identified by their public keys, messages are individually signed and sequenced,

against fully distilled batches where clients are identified by a numerical identifier and each

batch contains only one aggregated signature and sequence number. We use Ed25519 [90] for

signatures (32 B public keys, 64 B signatures) and BLS12-381 [27] for multi-signatures (192 B

uncompressed signatures). We use uncompressed BLS multi-signatures to save computation

290

8.4 Chop Chop

pks sigssns msgs

msgsids

7 MB

736 KB

Figure 8.3: Full distillation of a batch of 65,536 payloads (sizes to scale). The aggregate
signature and aggregate sequence number do not appear as a result of their small size.

time at the cost of storage space (96 B compressed vs. 192 B uncompressed).

Communication complexity. Payloads are 112 B per message in the classic case (32 B of

public key, 8 B of sequence number, 8 B of message, 64 B of signature) vs. 11.5 B in the fully

distilled case (28 bits = 3.5 B of identifier to represent 257M clients, 8 B of message). Assuming

batches of 65,536 messages (Figure 8.3), classic batches are exactly 7 MB long, while fully

distilled batches are 736 KB long including aggregate signature and sequence number.

Computation complexity. Running at maximum load, an Amazon EC2 c6i.8xlarge instance

authenticates 16.2± 0.4 classic batches per second using Ed25519’s batch verification for

65,536 signatures. The same machine authenticates 457.1± 0.3 fully distilled batches per

second: each authentication requires the aggregation of 65,536 BLS12-381 public keys and the

verification of one BLS12-381 multi-signature.

Summary. By the order-of-magnitude calculations above, fully distilled batches hold the

promise to reduce the costs of authentication and sequencing by a factor 9.7 for network

bandwidth, and 28.2 for CPU. Chop Chop aims to deliver on that promise for a real-world

fault-tolerant system.

8.4 Chop Chop

This section overviews Chop Chop’s architecture and protocol, and provides arguments for its

correctness.

Overview. Chop Chop involves three types of processes (Figure 8.4): broadcasting clients,

delivering servers and a layer of broadcast-facilitating brokers between them. Servers run

an Atomic Broadcast instance among themselves, to which brokers submit messages. Chop

Chop is agnostic to the implementation of Atomic Broadcast used by the servers. On top

of the provided broker-to-server Atomic Broadcast, Chop Chop implements a much faster

client-to-server Atomic Broadcast: clients submit messages to the servers, aided by brokers.

291

Chapter 8. Chop Chop

Clients
(untrusted)

Clients
(untrusted)

Clients
(untrusted)

Broker
(untrusted)

Server
(3f + 1)

Server
(3f + 1)

Server
(3f + 1)

D
is

til
la

tio
n

Su
bm

is
si

on

C
ho

p
C

ho
p

At
om

ic
 B

ro
ad

ca
st

Broker
(untrusted)

Clients
(untrusted)

Figure 8.4: Chop Chop architecture.

Chop Chop’s protocol unfolds in two phases: distillation (Section 8.4.2) and submission

(Section 8.4.3). In the distillation phase, clients interact with a broker to gather their messages

in a distilled batch (see Section 8.3). In the submission phase, the broker disseminates the

distilled batch to the servers and submits the batch’s hash to the server-run instance of

Atomic Broadcast. Upon delivering its hash from Atomic Broadcast, servers retrieve the batch

and deliver its messages. Chop Chop’s contributions mainly focus on the distillation phase.

Chop Chop’s submission strategy closely resembles prior batch-based Atomic Broadcast

implementations [55, 70, 140].

8.4.1 Architecture and Model

Chop Chop augments the architecture of a classic Atomic Broadcast, as described in Sec-

tion 8.2, with novel brokers.

Clients and servers. Clients broadcast messages to a (distinct) set of servers. We assume

that less than one third of servers can be faulty and behave in an arbitrary manner, i.e.,

be Byzantine [104], while all clients can be faulty. For simplicity, servers form a fixed set

that is known by all correct processes at system startup. Chop Chop can be extended for

reconfiguration thanks to its modular use of Atomic Broadcast [22, 103] (Figure 8.4). Clients

issue messages after broadcasting their public keys to the system (see Section 8.2.2).

Brokers. We discussed in Section 8.3 how both classic and distilled batches are assembled

by a broker. The role of brokers is traditionally taken by servers. Given the additional strain

put on brokers by Chop Chop’s interactive distillation protocol, however, having servers be

brokers would result in a waste of scarce, trusted resources. Importantly, however, distillation

is trustless. On the one hand, agreement rests entirely on Chop Chop’s underlying Atomic

Broadcast instance, for which brokers are only clients. On the other hand, as we argue

in Sections 8.4.2 and 8.4.4, a faulty broker cannot compromise integrity or no duplication:

292

8.4 Chop Chop

16
17
18

19

2
3
4

5

6

8

1

9

10
11

Response

12

Atomic
Broadcast

Distillation Witness

7

Delivery

13

14

15

Submission

Figure 8.5: Overview of the Chop Chop protocol between two clients (χ1, χ2), a broker (β)
and four servers (σ1–σ4). The protocol is comprised of 19 steps (#1–#19) and of an underlying
instance of Atomic Broadcast such as BFT-SMaRt or HotStuff.

distilled batches are publicly authenticated, and correct clients cannot be tricked into using

stale sequence numbers. Hence, brokers need no trust: a broker either does its job correctly

or produces distilled batches that are visibly malformed, and easily discarded by all correct

servers.

This observation is of paramount importance to the performance of Chop Chop: because

distillation is heavy but trustless, brokers should be distinct from servers. Along with clients

and servers, we thus assume a third, independent set of brokers, sitting between clients and

servers, to accelerate Atomic Broadcast by assembling client messages in distilled batches. We

assume that at least one broker is correct; the system loses liveness but not safety if all brokers

are faulty.

Network. Chop Chop guarantees that the batches collected and submitted to servers by

correct brokers are well-formed even in asynchrony, but achieves full distillation when the

network is synchronous (see Section 8.4.2). Chop Chop inherits the network requirements of

its underlying Atomic Broadcast.

8.4.2 Distillation Phase

We introduced in Section 8.3 a simplified, failure-free distillation protocol. This section

describes how Chop Chop renders distillation tolerant to arbitrary failures and improves its

performance via a sequence of improvements, each addressing a shortcoming of the simplified

protocol. The complete fault-tolerant protocol of Chop Chop is depicted in Figure 8.5.

In the failure-free distillation protocol: clients χ1, . . . ,χb send their messages m1, . . . ,mb , with

sequence numbers k1, . . . ,kb (#2) to a broker β (Figure 8.5, #1); β identifies the maximum

submitted sequence number k and builds a batch proposal B = [(x1,k,m1), . . . , (xb ,k,mb)]

(#3); β disseminates B to χ1, . . . ,χb (#4); each χi produces a multi-signature si on H(B) (#5),

which it sends to back β (#6); β aggregates s1, . . . , sn into an aggregate s, thus producing a fully

293

Chapter 8. Chop Chop

distilled batch B̃ = [s,k, ((x1,m1), . . . , (xb ,mb))] (#7).

Background: Merkle trees. Chop Chop uses Merkle trees [117] to hash batches. An l -element

vector z1, . . . , zl is hashed into a root r , used as commitment. For each i , zi ’s value can be

proved by means of a proof of inclusion pi , verifiable against r and zi . Proofs of inclusions are

O(log l) in size and are verified in O(log l) time.

What if a broker forges messages? A faulty β could try to falsely attribute to some χi a

message m′
i ̸= mi . β could do so by replacing mi with m′

i in B , then having χi sign H(B), thus

implicitly authenticating m′
i . This is easily fixed by having χi check that mi correctly appears

in B before signing H(B).

Can a broker avoid sending the entire batch? A clear inefficiency of the simplified protocol is

that β has to convey all of B back to each χi . This is fixed using Merkle trees. Upon assembling

B , β computes the Merkle root r of B , along with the Merkle proof pi for each (xi ,k,mi) in B .

Instead of sending B to all clients, β just sends r , k and pi to each χi . Upon receiving r , k and

pi , χi checks pi against r and (xi ,k,mi), producing si on r only if the check succeeds. If χi

signs r , then (xi ,k,mi) is necessarily an element of B . Importantly, however, β could inject

(xi ,k,m′
i ̸= mi) somewhere else in B , while still providing χi only with the proof for (xi ,k,mi).

This is solved by having servers ignore every distilled batch where two or more messages are

attributed to the same client. This way, if χi signs r , then either mi is the only message in B

attributed to χi , or B̃ is rejected by all servers as malformed: either way, integrity is upheld.

What if a client does not multi-sign? Under the assumption that χ1, . . . ,χb are correct, β

can safely wait until it collects all s1, . . . , sb . This policy is clearly flawed in the Byzantine

setting: a single crashed client can prevent β from ever aggregating s. Furthermore, lacking an

assumption of synchrony, β cannot exclude from B̃ those clients that do not sign r by some

timeout: consistently slow clients would always be excluded, and validity would be lost. This

issue is fixed by the fallback mechanism introduced in the following.

Fault-tolerant distillation. Upon first sending (ki ,mi) to β (#2), χi also sends an individual,

non-aggregable signature ti for (xi ,ki ,mi), which β stores. β then waits for si -s on r until

either all si -s are collected, or a timeout expires. For every si that ends up missing, due to χi

being crashed or delayed, β attaches (ki , ti) to B̃ . Upon receiving B̃ , a server first checks each

individual signature ti against the corresponding (xi ,ki ,mi). The server then checks s against

the public keys of the clients for which an individual signature ti was not given, i.e., the public

keys of all clients that signed r in time.

In summary: fast, correct clients who successfully produce their si -s in time authenticate

their message by multi-signing r ; slow or crashed clients still get their messages through,

294

8.4 Chop Chop

individually authenticated by the ti -s that they originally produced. Full distillation is achieved

whenever the network is synchronous and all clients are correct, which we argue is the case in

practice for the majority of a system’s lifetime. When the network is asynchronous, however, a

fraction of clients might fail to produce their si in time, resulting in a partially distilled batch.

At the limit where all clients fail to sign r in time, B̃ reduces to a classic batch, degrading

server-side performance to pre-distillation levels. We underline that safety and liveness are

preserved regardless of synchrony.

What if a broker replays messages? A problem introduced by the last fix is that χi authenti-

cates both ki and k as sequence numbers for mi , allowing a faulty β to play mi twice, hence

breaking Atomic Broadcast’s no duplication. This is fixed by having each client engage in the

broadcast of only one message at a time. This way, while β can replay mi , it can only do so

consecutively: all sequence numbers χi authenticates for mi belong to a range that does not

contain sequence numbers for any other message mi ′ ̸=i issued by χi .

This observation is key to the following fix: along with the last sequence number k̄χ each

client χ used, a correct server σ stores the last message m̄χ that χ broadcast; upon ordering a

message m with sequence number k from χ, σ delivers m if and only if k > k̄χ and m ̸= m̄χ. In

doing so, σ discards all consecutive replays of m̄χ, thus preventing replays in general.

What if a client broadcasts too frequently? The last fix relies on clients broadcasting one

message at a time. Depending on latency, a client broadcasting too frequently might accrue an

ever-growing queue of pending messages. This issue is fixed by flushing application messages

in bursts, akin to Nagle’s buffering algorithm for TCP.

What if a client submits the largest possible sequence number? Assuming that a finite

number of bits (e.g., 64) are allocated to representing sequence numbers, a faulty client χm

could set its km to the largest possible sequence number kmax (e.g., 264 −1). In doing so, χm

would force all other χi -s to update their sequence number to kmax . Since correct clients

only use strictly increasing sequence numbers, no χi could ever broadcast again: sequence

numbers would run out. Proving the legitimacy of sequence numbers fixes this issue.

Legitimate sequence numbers. By the rule that we established, no more than one message

from the same client can appear in the same batch. Moreover, correct clients always tag their

messages with the smallest sequence number they have not yet used, i.e., the largest they

have used plus one. By induction, we then have that unless some client misbehaves, no client

ever needs to use a sequence number larger than the number of batches ever delivered by the

servers: the largest sequence number any client submits to the very first batch is 0, therefore

no client submits a sequence number larger than 1 to the second batch, and so on. This

observation allows us to define as legitimate any sequence number smaller than the number

295

Chapter 8. Chop Chop

of batches servers have delivered at any given time.

Legitimacy proofs. This definition of legitimacy allows for the generation of legitimacy proofs:

upon delivering the n-th batch, a server publicly states so with a signature. By collecting f +1

server signatures stating that the n-th batch was delivered into a certificate ln , any process

can publicly prove that any sequence number smaller than n is legitimate.

Upon initially submitting ki (#2), χi also sends to β a certificate ln , for any n > ki ; β ignores

client submissions that lack such certificate, except when ki = 0 since no certificate is needed.

Upon sending k back to all χi -s (#4), β attaches the highest ln̂ it collected: ln̂ proves that k is

legitimate since n̂ > k. χi signs r (#5) only if k is proved legitimate by ln̂ .

This technique ensures correct clients always use legitimate sequence numbers. Because

legitimate sequence numbers grow only with the number of batches delivered by the servers,

no correct client is forced to skip too far ahead, compromising its own liveness.

What if a broker crashes? If β fails to engage in the protocol, each χi can submit its message

to any other broker.

8.4.3 Submission Phase

The submission phase ensures that all servers efficiently deliver a distilled batch, and that all

broadcasting clients receive a proof that their messages were delivered.

Witness. Having gathered a distilled batch B̃ (#7), β moves on to have f +1 servers signs

a witness shard for B̃ . In signing a witness shard for B̃ , a server σ simultaneously makes

two statements. First, B̃ is well-formed: σ successfully verified B̃ ’s signatures and found all

messages in B̃ to have a different sender. Second, B̃ is retrievable: σ stores B̃ and makes it

available for retrieval, should any other server need it. We call a witness for B̃ the aggregation

of f +1 witness shards for B̃ . Because any set of f +1 processes includes a correct process,

when presented with a witness for B̃ any server can trust B̃ to be well-formed and retrievable.

As discussed in Section 8.2.2, witnesses optimize server-side computation. Only f +1 servers

need to engage in the expensive checks required to safely witness B̃ . All other servers can trust

B̃ ’s witness, saving trusted CPU resources.

In order to collect a witness for B̃ , β sends B̃ to all servers (#8). Optimistically, β asks only f +1

servers to sign a witness shard for B̃ , progressively extending its request to 2 f +1 servers upon

expiration of suitable timeouts. Upon receiving B̃ (#9), a correct server σ stores B̃ . If asked to

witness B̃ , σ checks that B̃ is well-formed and sends back to β its witness shard for B̃ (#10).

β collects and aggregates f +1 shards into a witness for B̃ (#11), then submits B̃ ’s hash and

witness to the server-run Atomic Broadcast (#12).

296

8.4 Chop Chop

Delivery. Upon delivering B̃ ’s hash and witness from Atomic Broadcast (#13), a correct server

σ retrieves B̃ , either from its local storage (if it directly received B̃ from β at #8) or from another

server (#14). Because B̃ is retrievable, σ is guaranteed to eventually find a server to pull B̃ from.

Having retrieved B̃ (#15), σ delivers all non-duplicate messages in B̃ (see Section 8.4.2 for how

σ detects duplicates).

Response. Finally, σ signs a delivery certificate, listing the messages in B̃ that σ delivered.

σ sends its signature back to β (#16). By agreement of Atomic Broadcast, all correct servers

deliver the same subset of messages in B̃ . As such, β is guaranteed to eventually collect f +1

signatures on the same delivery certificate (#17). Upon doing so, β distributes a copy of B̃ ’s

delivery certificate to χ1, . . . ,χb (#18). Armed with B̃ ’s delivery certificate, a correct χi can

publicly prove the delivery of mi (#19) and safely broadcast its next message.

8.4.4 Correctness

This section summarizes Chop Chop’s correctness analysis.

Safety

The safety of Chop Chop is given by its agreement, integrity and no duplication properties

(see Section 8.2).

Agreement. Chop Chop inherits agreement from its underlying, server-run instance of

Atomic Broadcast. A correct server delivers messages only upon delivering the hash of a

batch from the server-run Atomic Broadcast. Upon doing so, a correct server retrieves the

full batch, checks its hash, and delivers all its messages in order of appearance. All correct

servers deliver the same messages in the same order assuming cryptographic hashes are

collision-resistant.

Integrity. A correct server only delivers messages included in a batch witnessed by f +1

servers, i.e., by at least one correct server. A correct server witnesses a batch only if: no

more than one message in the batch is attributed to the same client; every client in the batch

authenticates its message with a signature or the root of the batch’s Merkle tree with a multi-

signature. A correct client multi-signs the root of a batch’s Merkle tree only upon receiving a

proof of the inclusion of its message in the batch. As such, if a correct client multi-signs the

root of a batch’s Merkle tree, either the batch contains only the client’s intended message or it

is not witnessed. In summary, a correct server delivers a message m from a correct client χ

only if χ broadcast m.

297

Chapter 8. Chop Chop

No duplication. A correct client only broadcasts one message at a time. As such, while the

client might attach multiple sequence numbers to the same message (different brokers may

propose different aggregate sequence numbers for the client to authenticate) the sequence

numbers the client attaches to each message belong to distinct ranges. A correct server delivers

client messages only in increasing order of sequence number, and ignores repeated messages.

This means that a correct server delivers at most one message from each sequence number

range. In summary, no server delivers a correct client’s message more than once.

Liveness

The liveness of Chop Chop is given by its validity property.

Validity. If a correct client submits its message to a correct broker, the message is guaranteed

to eventually be delivered by all correct servers: even if the client fails to engage in distillation

in a timely manner, its message is still included in a batch which gets disseminated, witnessed

and delivered by all correct servers. Faulty brokers can clearly refuse to service (specific)

clients. Upon expiration of a suitable timeout, however, a correct client submits its message

to a different broker. As we assume that at least one broker is correct, all correct clients are

eventually guaranteed to find a correct broker and get their messages delivered by all correct

servers.

Other Attacks

As we outlined in Section 8.4.4, Chop Chop satisfies all properties of Atomic Broadcast. In

this section, we consider other attacks an adversary might deal to impair Atomic Broadcast’s

performance and fairness [93] in Chop Chop.

Denial of service. A faulty broker may refuse to service clients, thus forcing them to fall back

on other brokers, increasing latency. A faulty broker may also submit deliberately non-distilled

batches to servers to force them to waste trusted resources to receive and verify individual

signatures. While handling DoS is beyond the scope of this Part, Chop Chop is amenable to

accountability mechanisms [83]. Brokers could be asked to stake resource to join the system.

Correct, high-performance brokers could be rewarded, akin to gas fees in Ethereum [153].

Brokers that accrue a reputation of misbehavior or slowness could be banned and lose their

initial stake.

Front-running. A faulty broker might impact fairness by front-running messages of inter-

est [54, 160]. While front-running resistance is beyond the scope of this Part, Chop Chop is

compatible as-is with existing mechanisms to mitigate or prevent front-running, most notably

schemes that have clients submit encrypted messages whose content is revealed only after

298

8.5 Implementation Details

delivery [119, 158]. Importantly, these encrypt-order-reveal schemes could be selectively

employed only for those messages that are vulnerable to front-runs, e.g., messages used for

stock trading [128]. Maintaining Chop Chop’s throughput while providing quorum-enforced

fairness for every message [159] opens a valuable future avenue of research.

8.5 Implementation Details

A straightforward implementation of the protocol we presented in Section 8.4 would not

achieve the throughput and latency we observe in Section 8.6. In this section, we discuss some

of the techniques and optimizations required on the way to practically achieving Chop Chop’s

full potential. (Many optimizations are however left out due to space constraints).

Code. Chop Chop is implemented in Rust, totaling 8,900 lines of code. The main libraries

Chop Chop depends on are: tokio 1.12 for an asynchronous, event-based runtime; rayon 1.5

for worker-based parallel computation; serde 1.0 for serialization and deserialization; blake3
1.0 for cryptographic hashes; ed25519-dalek 1.2 for EdDSA signatures on Curve25519 [90];

blst 0.3.5 for multi-signatures on the BLS12-381 curve [27]. Chop Chop also depends on

in-house libraries: talk (9,800 lines of code) for basic distributed computing and high-level

networking and cryptography; zebra (7,100 lines of code) for Merkle-tree based data struc-

tures.

8.5.1 Broker

The goal of a Chop Chop broker is to produce batches as distilled as possible (to minimize

server load), as large as possible (to amortize ordering), and as quickly as possible (to minimize

latency). Our target is for a broker to assemble one fully distilled batch of 65,536 messages

(736 KB, see Figure 8.3) per second, with a 1 second distillation timeout.

Reliable UDP. Short-lived TCP connections between broker and clients are easier to work

with, but unfeasible for the broker to handle. Assuming an end-to-end broadcast time of

up to 10 seconds, the broker would need to maintain upwards of 600,000 simultaneous TCP

connections, which preliminary tests immediately proved unfeasible on the hardware we

have access to. This makes UDP the only option for client-broker communication. However,

UDP lacks the reliability properties of TCP, and tests showed non-negligible packet loss even

within the same AWS EC2 availability zone. As we discussed in Section 8.4.2, message loss

immediately translates to partial distillation. We address this issue by means of an in-house,

ACK-based, message retransmission protocol based on UDP that also smoothens the rate of

outgoing packets.

299

Chapter 8. Chop Chop

EdDSA batch verification. To avoid spoofing, all client messages are authenticated with

signatures. At the target rate, however, individually verifying each signature is unfeasible for

a broker. Luckily, ed25519-dalek allows for more efficient batched verification. A broker

buffers the client messages it receives and authenticates them in batches.

Tree-search invalid multi-signatures. Clients contributing to the same batch produce match-

ing multi-signatures for the batch’s root. At the target rate the broker cannot independently

verify each multi-signature. We tackle this problem by gathering multiple matching multi-

signatures on the leaves of a binary tree: internal nodes aggregate their children. For each tree,

the broker verifies the root multi-signature, recurring only on the children of an invalid parent.

This allows to identify invalid multi-signatures in logarithmic time while enabling batched

verification in the good case.

Caching legitimacy proofs. Clients justify their sequence numbers with legitimacy proofs.

Again, the broker cannot verify each proof in time. We address this problem by having

the broker verify a legitimacy proof only if higher than the highest it previously observed.

As a result, a faulty client might get away with submitting an invalid legitimacy proof but,

importantly, not an illegitimate sequence number.

8.5.2 Server

The goal of a Chop Chop server is to process distilled batches as quickly as possible without

overflowing its memory.

Batch garbage collection. Servers update each other on which batches they delivered. A

server garbage-collects a batch, both messages and metadata, as soon as it is delivered by

all other servers. We underline that, even if a single server fails to deliver a batch, the others

cannot garbage-collect it as the slow server might be correct. This is an inherent limitation of

Atomic Broadcast: agreement without synchrony can be ensured only in the infinite-memory

model.

Identifier-sorted batching. No two messages from the same client must appear in the same

batch. To simplify processing, brokers sort the messages in a batch by client identifier. Servers

reject batches whose identifiers are not strictly increasing, thus verifying that all identifiers are

distinct in constant size and in linear time. Sorting messages by identifier also enables parallel

deduplication: messages are split by identifier range, chunks are deduplicated independently.

300

8.6 Evaluation

8.6 Evaluation

We evaluate Chop Chop focusing on the following research questions (RQs): What workload

can Chop Chop sustain (Section 8.6.3)? What are the benefits of Chop Chop’s distillation

(Section 8.6.4)? How does Chop Chop scale to different numbers of servers (Section 8.6.5)?

How efficiently does Chop Chop use resources overall (Section 8.6.6)? How does Chop Chop

perform under adverse conditions, such as server failures (Section 8.6.7)? What performance

can applications achieve using Chop Chop (Section 8.6.8)?

8.6.1 Baselines

We compare Chop Chop against four baselines:

• HotStuff [156]: an Atomic Broadcast protocol designed for high-throughput (written in

C++);

• BFT-SMaRt [22]: an Atomic Broadcast protocol, similar to PBFT [43], designed for low-

latency (written in Java);

• Narwhal-Bullshark: the DAG-based Atomic Broadcast protocol Bullshark [140] with the

state-of-the-art high-throughput mempool Narwhal [55] (written in Rust);

• Narwhal-Bullshark-sig: akin to Narwhal-Bullshark but with Narwhal modified to au-

thenticate messages, thus matching Chop Chop’s guarantees.

We deploy Chop Chop with two distinct underlying Atomic Broadcast protocols (Figure 8.5):

HotStuff and BFT-SMaRt.

HotStuff and BFT-SMaRt. Evaluating HotStuff and BFT-SMaRt allows us to assess the base

performance of an Atomic Broadcast protocol and determine how much acceleration Chop

Chop provides. We evaluate Chop Chop on top of the same implementations of HotStuff5 and

BFT-SMaRt6 we benchmark against. These implementations are production-ready and do not

use state-of-the-art mempool protocols, only some basic form of batching. When evaluated

stand-alone, each message in these systems includes 80 B of header composed of a client

identifier (8 B), a sequence number (8 B), and a signature (64 B) verified by the servers. Both

systems use batches of 400 messages, i.e., of 34.4 KB.

Narwhal-Bullshark. As a state-of-the-art mempool, Narwhal7 is a close point of comparison

for Chop Chop. Servers in Narwhal scale out following a primary-workers model: each server

is paired with one or several workers into a server group. Similarly to Chop Chop, Narwhal

greatly accelerates its underlying Atomic Broadcast (here, Bullshark). Unlike Chop Chop,

5Authors’ implementation of HotStuff in C++: https://github.com/hot-stuff/libhotstuff
6Authors’ implementation of BFT-SMaRt in Java: https://github.com/bft-smart/library
7Authors’ implementation of Bullshark and Narwhal in Rust: https://github.com/asonnino/narwhal/tree/

bullshark

301

https://github.com/hot-stuff/libhotstuff
https://github.com/bft-smart/library
https://github.com/asonnino/narwhal/tree/bullshark
https://github.com/asonnino/narwhal/tree/bullshark

Chapter 8. Chop Chop

NAm SAm EU
SAf Aus Asia

AWS OVH

Load
brokers

ServersBrokers

Clients

Load
clients

continent

region

Figure 8.6: Cross-cloud deployment summary.

however, Narwhal leaves the responsibility of authenticating and deduplicating messages to

the application.

Narwhal-Bullshark-sig. For a better comparison, we also benchmark Narwhal-Bullshark-sig:

Narwhal-Bullshark where messages are authenticated by Narwhal in a state-of-the-art way,

i.e., using batched, multi-core Ed25519 signature verification. Each message includes an 80 B

header as for HotStuff and BFT-SMaRt. As for Narwhal-Bullshark, the remaining parameters

are the default ones, e.g., 500 KB batches.

8.6.2 Setup

Unless otherwise specified—in Sections 8.6.5 and 8.6.6—the Chop Chop benchmarks involve

64 c6i.8xlarge AWS servers, of 32 Intel vCPUs each, geo-distributed across 14 regions. Brokers

assemble, and servers process, batches of 65,536 messages. Each message is 8 B in length,

resulting in 736 KB batches (Figure 8.3). Baselines always use the same set of server machines

as their Chop Chop counterpart. All experiments run with maximum resilience, e.g., the

system survives 21 faulty servers out of 64. Figure 8.6 overviews the used deployment.

Matching trusted vs. total resources. Unlike its baselines, Chop Chop leverages untrusted

resources, brokers, to boost its performance. Lacking a well-defined conversion between

trusted and untrusted resources, two extremes can be taken to compare Chop Chop with its

baselines: we can either match trusted resources, e.g., same number of Chop Chop servers as

Narwhal workers, or match total resources, e.g., same number of servers and brokers in Chop

Chop as workers in Narwhal.

302

8.6 Evaluation

Intuitively, the first approach considers untrusted resources to be free while the second

considers untrusted resources to be as costly as trusted resources. We use the first approach

in Sections 8.6.3 to 8.6.5, 8.6.7 and 8.6.8 to stress Chop Chop, provisioning the system with

enough brokers to bottleneck servers. We use the second approach in Section 8.6.6 to assess

how efficiently Chop Chop uses its hardware resources, trusted or not.

Load clients and load brokers. We show in Section 8.6.3 that Chop Chop servers handle up to

43.6 million operations per second with an average latency of 3.6 seconds. To produce this level

of workload, a real-world deployment would require over 700 brokers, each handling around

200,000 clients broadcasting back-to-back thus totaling hundreds of millions of machines.

As we cannot experiment at such a scale, we introduce two new actors: load clients and load

brokers.8

Load clients connect to brokers and simulate thousands of concurrent client requests. Most

system evaluation typically use this approach to stress the system and measure latency. How-

ever, we explicitly separate clients from load clients in this evaluation. Clients run on very

small machines—less powerful than most smartphones—to provide more accurate end-to-end

latency measurements. We similarly split clients from load clients in all baseline runs.

Load brokers are unique to Chop Chop. Even using load clients, we could not deploy enough

brokers to bottleneck Chop Chop’s servers. Load brokers work around this limitation, submit-

ting batches of pre-generated messages directly to the servers. Free from interactions with

clients and expensive cryptography, a load broker puts on the servers a load equivalent to that

of tens of brokers working at full capacity.

Using load clients and load brokers, we manage to show that brokers can quickly generate

large batches of messages, and servers can process large numbers of batches.

Cross-cloud deployment. All servers are deployed on AWS, balanced across 14 regions:

Cape Town, São Paulo, Bahrain, Canada, Frankfurt, Northern Virginia, Northern California,

Stockholm, Ohio, Milan, Oregon, Ireland, London, and Paris. For system sizes of 8 in Sec-

tion 8.6.5, we distribute servers across the first 8 regions from the list, which constitute the

most adversarial setup with the highest pairwise latency.

Load brokers are placed in a separate cloud provider, OVH, for two purposes. First, it provides

a better representation of Internet load than a single-cloud deployment. AWS operates under

its own AS so any AS peering bottlenecks would be bypassed by an AWS-only deployment.

Second, OVH is one of the few cloud providers with enough peering with AWS to stress Chop

Chop without charging for egress bandwidth, saving us from using AWS’ costly bandwidth.

The final cost amounted to 25,000 USD in AWS credits. Using OVH saved us more than 70,000

8Throughout the remainder of this section, “brokers” and “clients” denote real brokers and real clients. The
term “load” is always used explicitly.

303

Chapter 8. Chop Chop

USD since each of Chop Chop’s data point on a figure would have cost 1,700 USD in AWS

egress bandwidth—21 TB at 0.08 USD per GB ≈ 1,700 USD.

For all experiments, we deploy one broker in each continent (Cape Town, São Paulo, Tokyo,

Sydney, Frankfurt, and Northern Virginia) and one client in each of the 14 regions above, plus

Tokyo and Sydney. Clients connect to their nearest broker. We configure the network for

geo-distribution and high load, e.g., TCP buffer sizes 9 and UDP parameters.

All baselines run on the same parameters. For Narwhal-Bullshark, we collocate each server

with one of the workers in its server group. We reproduced Narwhal-Bullshark’s original

experiments [140] and matched the results.

Hardware. All servers, brokers and load clients run on c6i.8xlarge machines with an Intel

Xeon Platinum 8375C (32 virtual CPUs, 16 physical cores, 2.9 GHz baseline, 3.5 GHz turbo),

64 GB of memory and 12.5 Gb/s of bandwidth. We selected these machines since they provide

good performance and are in the same “commodity” price range as those chosen initially for

Chop Chop’s main baseline: Narwhal-Bullshark. Clients run on t3.small machines: 2 vCPUs,

1 physical core, 2 GB of memory, and up to 5 Gb/s bandwidth—of which they use less than

1 KB/s. All machines run Linux Ubuntu 20.04 LTS on the AWS patched version of the Linux

kernel 5.15.0, except for the load brokers on OVH which run on Linux kernel 5.4.0—the same

kernel was not available.

Challenges. The most significant evaluation challenges arose from the scale of the targeted

deployment. The setup and orchestration alone required simultaneous handling of up to 320

machines across two different cloud providers and 25 regions, as well as transferring 13TB of

files—mostly public keys and pre-generated batches—for each of the 12 setups. To handle

this, we developed a new command-line tool to efficiently deploy distributed systems: silk.

Among other things, we use silk for peer-to-peer-style file transfer over aggregated TCP

connections, and for grouped process control. With silk, transferring all files from a single

machine takes around 30 minutes, compared to 68 hours with scp.

Additional challenges came from the real-world nature of the targeted deployment. First, the

connection between OVH and AWS’s Asia and Pacific regions was particularly unstable at

certain times of day especially when close to saturation. For example, Tokyo’s connection

was frequently degraded between 3pm and 5pm UTC. Second, the performance of some

machines sometimes deviated from their specifications. As an example, in a setup size of

64, we observed around 2 machines operating with a 10% lower CPU turbo clock rate than

specified. Considering these variations, we increased the number of servers a broker initially

asks for witness shards (see Section 8.4.3) by a margin, e.g., f +5 instead of f +1. This improves

system stability—i.e., lower latency variability—while slightly reducing maximum throughput.

9IBM’s TCP Tuning Guide: https://www.ibm.com/docs/en/linux-on-systems?topic=
recommendations-network-performance-tuning

304

https://www.ibm.com/docs/en/linux-on-systems?topic=recommendations-network-performance-tuning
https://www.ibm.com/docs/en/linux-on-systems?topic=recommendations-network-performance-tuning

8.6 Evaluation

Unless otherwise specified, we set the margin to 4 in all experiments, i.e., f +5.

Plots. Every data point is the mean of 5 runs of 2 minutes each (after excluding warmup and

cooldown, the relevant cross-section is at least 1 minute). All plots further depict one standard

deviation from the mean using either colored shaded areas or black error bars (which may be

too small to notice).

Figure 8.7: Throughput-latency of Chop Chop and of notable Atomic Broadcast systems
under various input rates.

8.6.3 RQ1 – Load Handling

Figure 8.7 shows the latency and throughput of Chop Chop and all its baselines for various

input rates of 8 B messages. The variability is represented using shaded areas.

Baselines. Both BFT-SMaRt and HotStuff showcase stable performances under low loads,

respectively achieving around 1,400 and 1,600 operations per second. BFT-SMaRt’s latency

is consistently better than HotStuff’s up to its inflection point (0.45–0.53 s vs. 1.2–1.6 s). We

measure up to 3.8M op/s for Narwhal-Bullshark and up to 382k op/s for Narwhal-Bullshark-

sig. The difference in respective throughput highlights the cost of authentication for servers:

verifying signatures reduces the throughput of Narwhal-Bullshark by one order of magnitude.

We observe a latency of around 3.6 s for both Narwhal-Bullshark and Narwhal-Bullshark-sig.

Chop Chop. Chop Chop achieves close to 44M op/s while running on top of both HotStuff

and BFT-SMaRt. Chop Chop’s latency range is 3.0–3.6 s with BFT-SMaRt and 5.8–6.5 s with

HotStuff. Notably, the latency of Chop Chop-HotStuff decreases under high load. This is due

to the internal batching mechanism of the HotStuff implementation: buffers fill faster under

305

Chapter 8. Chop Chop

0% 100%
100k

1M

10M

100M
Th

ro
ug

hp
ut

[o
p/

s,
lo

g]
CC-HotStuff CC-BFT-SMaRt NW-Bullshark-sig

8 32 128 512
(a) Distillation ratio (b) Message sizes [B]

Figure 8.8: Throughput of Chop Chop and authenticated Narwhal with Bullshark (log scale)
when (a) Chop Chop has no distillation and with (b) varying message size.

higher load, thus avoiding timeouts. This has an immediate impact on Chop Chop, which

feeds HotStuff at a low rate: HotStuff alone accounts for over 60% of Chop Chop-HotStuff’s

overall latency. BFT-SMaRt makes a better fit for Chop Chop, as its throughput is sufficient for

Chop Chop’s needs, and its latency is lower than HotStuff’s.

Mempools’ trade-off. In comparison to BFT-SMaRt and HotStuff, Chop Chop trades latency

in favor of throughput. This trade-off is mostly explained by batching and distillation. When

assembling a batch, a broker has to wait twice: once to collect enough messages to fill a batch,

and once to collect all multi-signatures from clients engaging in distillation. We set both waits’

timeout to 1 second. Notably, Narwhal-Bullshark seems to incur a similar latency cost, as

Chop Chop’s latency approximately matches that of Narwhal-Bullshark, even though Chop

Chop needs an extra round trip between clients and broker (Figure 8.5, #4–#6).

8.6.4 RQ2 – Distillation Benefits

We showcase the benefits of distillation by: evaluating throughput with and without distillation,

evaluating distillation for messages of different sizes, and observing the impact of distillation

on network bandwidth to achieve line rate.

Distillation vs. mitigations. Along with distillation, Chop Chop makes use of two techniques

available in the literature to mitigate the cost of Atomic Broadcast’s authentication: short

identifiers and pooled signature verification (see Section 8.2.2).

Figure 8.8a breaks down Chop Chop’s throughput, measuring how significantly distillation

alone contributes to Chop Chop’s performance. When no message is distilled, Chop Chop’s

servers bottleneck at 1.5M op/s, 3.9× higher than Narwhal-Bullshark-sig. This result is in

line with both systems bottlenecking on server CPU, as the technique employed by Chop

Chop to mitigate authentication complexity has only one third of the servers verify each

client signature. (We conjecture that the additional 1.3× factor may be owed to engineering

306

8.6 Evaluation

0 200k 400k 600k 800k
Input rate [op/s]

0.1

1

10

100
Ou

tp
ut

 ra
te

 [M
B/

s] NW-Bullshark-sig

0 20M 40M 60M
0

200
400
600
800

CC-BFT-SMaRt
Input rate Network rate Output rate

Figure 8.9: Throughput efficiency of authenticated Narwhal with Bullshark (left, log scale)
and Chop Chop with BFT-SMaRt (right, linear scale) with various input rates.

differences.) When batches are fully distilled, Chop Chop’s throughput grows to 44M op/s,

accounting for the additional 29-fold boost to Chop Chop’s performance.

Distillation for larger messages. Figure 8.8b illustrates Chop Chop’s maximum throughput

for message sizes of 8 B to 512 B which may be relevant to applications that cannot work

around smaller message sizes, e.g., many smart contracts. Chop Chop’s throughput is similar

with BFT-SMaRt and HotStuff, decreasing at an approximately 1-to-1 ratio as the message size

increases: 44.3M op/s for 8 B, 17.6M op/s for 32 B, 3.5M op/s for 128 B and 890k op/s for 512 B.

This is in line with expectations. As we discuss in Section 8.3.2, a server should receive

∼ b bytes in order to deliver a b-bytes message in a large, fully distilled batch, as full distillation

amortizes to zero the communication cost of authenticating and sequencing each message.

For 8 B messages, servers encounter a CPU bottleneck slightly before the link between load

brokers and servers is saturated. This explains why the throughput decreases only 2.52× when

messages grow to 32 B: all remaining server-bound bandwidth is used to convey messages

(as messages are larger) while the load on server CPUs is reduced (as less messages are deliv-

ered overall). The system remains communication-bottlenecked as the size of the messages

increases, and throughput starts decreasing linearly with message size, e.g., Chop Chop’s

throughput for 512 B messages is 4.00× smaller than for 128 B.

By contrast, Narwhal-Bullshark-sig bottlenecks on server CPUs longer, due to signature veri-

fication, maintaining a stable throughput until 512 B messages finally fill server links. Over-

all, Narwhal-Bullshark-sig’s throughput only decreases from 382k op/s for 8 B messages to

142k op/s for 512 B messages, which matches their non-authenticated evaluation with 512 B

messages. The gap between Chop Chop and Narwhal-Bullshark-sig at 512 B messages can

be mostly attributed to Chop Chop’s more efficient use of server bandwidth: unlike Narwhal,

Chop Chop offloads the dissemination of batches to external brokers. Narwhal’s use of worker-

to-worker communication in its common path also makes it more prone to be affected by

AWS’s various upload limitations, e.g., AWS upload bandwidth is half the stated download

bandwidth, and there are network credit limits for “burst” uploading.

307

Chapter 8. Chop Chop

Line rate. Figure 8.9 illustrates Chop Chop’s near line-rate network use by depicting its input,

network and output rates:

• Input rate measures the total bytes of useful information—i.e., client identifiers and

messages—that clients, load clients and load brokers all broadcast per time unit;

• Network rate measures the ingress bandwidth of servers at their network interface, i.e.,

useful information captured by the input rate as well as the Atomic Broadcast’s overhead

for ordering, authentication and deduplication;

• Output rate, or “goodput”, measures the total bytes of useful information that each

server delivers per time unit.

A system with perfect line rate would match all three rates: input rate would match output

rate as messages can be delivered in a timely fashion with no backlogging, and output rate

would match network rate as a server would only receive useful information, with no overhead

due to Atomic Broadcast. The gray-shaded areas in Figure 8.9 highlight this overhead, i.e., the

difference between network and input rates. Network and output rates are averaged over all

servers.

In this experiment, each of the 257M simulated clients broadcast 8 B messages. This results in

11.5 B of useful information per broadcast as 28 bits = 3.5 B are sufficient to represent every

identifier. This conversion is captured by the dotted line which converts the input rate from

op/s, represented on the x-axis, to B/s, represented on the y-axis.

For authenticated Narwhal-Bullshark, the output rate closely matches the input rate until

signature verification becomes the bottleneck at 378k op/s, shown by the plateauing output

rate. The gap between Narwhal-Bullshark-sig’s network and input rates is evident, differing

by one order of magnitude (notably in line with our back-of-the-envelope calculation in

Section 8.3.2). In contrast, thanks to distillation, Chop Chop practically achieves line-rate

up to its maximum throughput. Before its inflection point at 40M op/s, the the overhead

of Chop Chop is less than 8%. The drop in output and network rates at 60M op/s is due to

servers surpassing their computational capacity: broadcasts stall, server witness verification

gets backlogged and brokers, suspecting server faults, ask for more batch witnesses, further

stressing servers’ CPUs.

8.6.5 RQ3 – Number of Servers

Figure 8.10a illustrates the maximum throughput for systems of 8 (f = 2), 16 (f = 5), 32

(f = 10) and 64 (f = 21) servers. For Chop Chop, we adjust the witnessing margin as the

system grows by 0, 1, 2, and 4 for 8, 16, 32 and 64 servers respectively (see Section 8.6.2). Both

Chop Chop and authenticated Narwhal-Bullshark scale well to 64 servers. Note that, unless

trust assumptions are modified, Narwhal-Bullshark-sig only scales vertically: if a Narwhal

server or any of its workers are faulty, the entire server group is compromised. Chop Chop,

instead, scales horizontally with the number of brokers.

308

8.6 Evaluation

8 16 32 64
100k

1M

10M

100M

Th
ro

ug
hp

ut
[o

p/
s,

lo
g]

CC-HotStuff CC-BFT-SMaRt NW-Bullshark-sig

64 s
 m

64 s
128 m

64 s
 64 m

(a) System sizes (b) Matching resources

Figure 8.10: Throughput of Chop Chop and authenticated Narwhal with Bullshark (log
scale) when (a) varying system size, and when (b) varying the number of overall machines
(“m”) with 64 servers (“s”). Load brokers in Chop Chop simulate tens of brokers, hence are
noted “∞ m”.

8.6.6 RQ4 – Overall Efficiency

The center cluster of bars in Figure 8.10b compares Chop Chop’s throughput with that of

authenticated Narwhal-Bullshark when overall hardware resources are matched. In this

setting, both systems have 128 machines at their disposal. Chop Chop is provided with 64

servers, 64 brokers and 0 load brokers. Since a load broker uses pre-generated synthetic data

to simulate tens of brokers (see Section 8.6.2), involving load brokers in this experiment would

give an unfair advantage to Chop Chop. Narwhal-Bullshark-sig is provided with 128 workers,

to match Chop Chop’s total machines, balanced across 64 server groups, to match Chop

Chop’s servers. The left and right clusters of bars depict Chop Chop using load brokers and

Narwhal-Bullshark-sig with 64 server groups containing 1 worker each, respectively, as in the

other experiments.

We observe 4.6M op/s for Chop Chop, with servers reporting around 5% CPU usage. We

observe 679k op/s for Narwhal-Bullshark-sig. Chop Chop’s higher throughput is in line with

expectations. In Narwhal-Bullshark-sig, workers are trusted, and as such a worker can only

contribute to its own server group. Instead, since Chop Chop brokers are untrusted, a broker’s

work is useful to all servers.

8.6.7 RQ5 – Chop Chop Under Failures

Figure 8.11a depicts Chop Chop’s throughput when some servers crash 30 seconds into the

run. Performance drops marginally (from 44M op/s to 43M op/s) with one crash and by

66% (down to 15M op/s) when one-third of the servers crash, resulting in less CPU globally

available to witness batches.

Figure 8.8a captures Chop Chop’s performance hit when clients fail to engage in distillation.

This could be caused by clients being slow or crashed, or brokers being malicious. Under the

most extreme conditions, where no client engages in distillation, the throughput drops from

309

Chapter 8. Chop Chop

0 1 threshold
100k

1M

10M

100M
Th

ro
ug

hp
ut

[o
p/

s,
lo

g]
CC-HotStuff CC-BFT-SMaRt

Auction Payment Pixel war

(a) Server failures (b) Applications

Figure 8.11: Throughput of Chop Chop (log scale) with (a) various server failures and for (b)
different applications.

44M op/s to 1.5M op/s.

8.6.8 RQ6 – Application Use Cases

Figure 8.11b depicts the maximal stable throughput for various application use cases. In the

Auction app, a client can bid an amount on a token it does not own, or take the highest offer

it received for an item it owns. The highest amount bid on each token is locked and cannot

be used to bid elsewhere. Money bid is transferred when the owner of the token takes the

offer, or refunded when the bid is raised by another client. The Auction app is single-threaded

and many clients bid on the same token to approximate a real auction. In the Payments app,

clients choose a recipient and an amount to transfer. In Pixel war, clients choose a pixel and

an RGB color to paint on a 2,048 by 2,048 board. Operations are generated at random.

We observe 2.3M op/s for the Auction, 32M op/s for Payments and 35M op/s for Pixel war.

The bottleneck is the application in all cases, thus Chop Chop has sufficient capacity for high,

single-application throughput. Chop Chop can also support many separate high-throughput

applications simultaneously, making it a fitting Atomic Broadcast candidate to power a univer-

sal SMR system (or “Internet computer”).

8.7 Related Work

We overview below the state-of-the-art most relevant to Chop Chop, namely Atomic Broadcast

systems with high-throughput and efficient signature aggregation schemes.

High-throughput Atomic Broadcast. Narwhal [55] is a mempool protocol that separates

the reliable distribution of payloads from the communication-expensive ordering in order

to accelerate DAG-based Atomic Broadcast [69, 92, 140]. Narwhal utilizes trusted workers

to increase throughput while Chop Chop relies on trustless brokers, for the same effect, and

scales out more efficiently. To circumvent the bottleneck associated with the broadcast leader,

310

8.7 Related Work

approaches using multiple leaders have been developed—both for crash [64, 120] and arbi-

trary [7, 12, 141, 142] faults—to scale the broadcast throughput linearly with the number of

leaders. Dissemination trees [96, 124] have also been employed to reduce communication

cost and maximize network bandwidth utility, while sharded [98, 151] and federated [109] ap-

proaches reduce communication cost by promoting local communication in geo-distributed

setups. In comparison, Chop Chop shows that an optimal distillation mechanism for batches

achieves better performances without adding complexity to the Atomic Broadcast protocol

itself.

Other approaches have shown that the underlying hardware of servers can also be exploited

for higher throughput, such as FPGA [87, 91] and Intel SGX enclaves [16]. In comparison,

Chop Chop uniquely boosts throughput by exploiting trustless hardware via brokers. Atomic

Broadcast can also be accelerated in data centers by using the topology of the network [105,

127] or even by running within the network itself using P4-programmable switches [56, 97]. In

such low latency environments, the processing overhead incurred by the operating system

kernel can be bypassed to further increase the throughput of Atomic Broadcast [3, 97, 150].

Signature aggregation. Aggregate signatures were first proposed to save space by compacting

a large number of signatures into just one [26, 136]. Up until recently, aggregation could also

save verification time but only in certain cases: either when the signatures are generated by the

same signer [42], or when the signatures are on the same message, i.e., multi-signatures [88].

In the latter case, aggregation mechanisms have been proposed to achieve constant-time

verification of aggregated multi-signatures for both BLS [25] and Schnorr [115] signature

schemes. In particular, multi-signatures are used in cryptocurrencies to have many servers

sign the same batch of payloads [60, 96]. Servers in Chop Chop use rapidly-verifiable BLS

multi-signatures [25] for that very purpose. In addition to aggregating server signatures on

batches, Chop Chop’s distillation mechanism also aggregates all client signatures in a batch in

a way that provides constant-time verification. The theoretical scheme Draft [41] proposed

signature aggregation with similar verification performances but is tailored to Reliable Broad-

cast. It is however unclear how Draft could be implemented as a real-world system without

compromising liveness. Indeed, Draft assumes infinite memory to prevent message replay

attacks which would rapidly exhaust servers’ memory if Draft were to be deployed to match

Chop Chop’s target throughput in our evaluation (see Section 8.6.2). Chop Chop also aggre-

gates client sequence numbers to significantly reduce bandwidth consumption when small

messages are broadcast (Figure 8.2). Aggregating sequence numbers is made possible thanks

to the ordering of Atomic Broadcast and thanks to novel legitimacy proofs (see Section 8.4.2).

311

Conclusions

This thesis focused on the scalability of Byzantine distributed computing, with the goal to

develop systems that billions of stakeholders could partake in as servers, or use as clients. On

the side of server scalability, we focused on Reliable Broadcast. We introduced Contagion, the

first probabilistic Reliable Broadcast protocol to achieve logarithmic per-process computation

and communication complexity. At the core of Contagion are samples, a novel alternative

to quorums trading intersection guarantees for statistical representativeness. Contagion’s

analysis is, to our knowledge, the first to study a probabilistic distributed protocol in the

Byzantine setting, enabled by a novel proving technique based on decorators. On the side

of client scalability, we strove to maximize how efficiently Reliable Broadcast and Consensus

servers make use of their resources when subject to a high throughput of requests. In the

context of Reliable Broadcast, we introduced the notion of oracularity to describe a system’s

ability to match the performance of its centralized, trusted counterpart. We then introduced

Draft, the first algorithm to achieve oracularity (at least in the good case), effectively achieving

zero-cost Byzantine fault tolerance. To do so, we extended the distributed computing model

with brokers, an untrusted layer of processes whose goal is to alleviate server complexity by

performing heavy but verifiable operations. In the context of Consensus, we extended our

broker-based techniques to the Atomic Broadcast abstraction. We introduced Chop Chop, the

first near-line-rate system of its kind, processing tens of millions of operations per second on

a geo-distributed deployment of medium-sized servers.

Our results, we believe, open interesting new avenues of future research. We outline a few of

them below.

Scaling Consensus servers. As we discussed in the Introduction to this thesis, a great deal of

effort was put towards generalizing our results on scalable Reliable Broadcast to the Consensus

class. Doing so was challenging within the limited time frame of our PhD studies. While an

algorithm, which we conjecture to be correct, was developed in the partially synchronous

model, decorator-based proofs proved unwieldy when tackling the subtleties of probabilistic,

adversarial time analysis. At the cost of additional formal effort, we believe a provably secure,

logarithmic implementation of Atomic Broadcast should be attainable, completing the stated

goal of this thesis.

313

Conclusions

Theory of decorators. We believe decorators, the tool we introduced to prove the correctness

of Contagion, could be applied to the broader field of probabilistic Byzantine algorithms. To

this end, a more general theory of decorators should be developed, streamlining our ad-hoc,

decorator-based results into a usable toolbox of proving techniques. Significant (unpublished)

progress was already made towards this goal, framing decorators in the broader context of

probabilistic adversarial games.

Constant-memory Chop Chop. A global deployment of Chop Chop servers sustains a

throughput of tens of millions of operations per second. In the real world, such a high

throughput would realistically be generated by billions, maybe tens of billions of clients -

even if each client persistently broadcast every two minutes, five billion clients would be

necessary to incur a CPU bottleneck. Because each Chop Chop server must store the full list

of all client public keys, such a large number of clients might severely strain server memory.

More advanced cryptographic techniques, we believe, could enable offloading public key

storage to brokers, effectively making Chop Chop a constant-memory algorithm. Doing so

while maintaining near-line-rate performance presents a significant theoretical challenge.

Quantum resistance for reduction and distillation. The broker-based techniques we pre-

sented in this thesis to enhance batch authentication rely on multi-signature aggregation.

State-of-the-art multi-signature schemes, such as BLS, generally rest their security on the

hardness of the discrete logarithm problem, which is famously vulnerable to quantum attacks.

While practical attacks are (to our knowledge) yet to be dealt, the general cryptographic con-

sensus suggests pre-quantum schemes should be progressively phased out in the coming

decade. Upgrading our systems with post-quantum authentication while preserving their

communication complexity, we believe, will be of great importance in the near future.

Scaling out resource-intensive services. All applications showcased in this thesis (such as

payments or auctions) have a minimal footprint in terms of computation and bit complexity.

This choice was deliberate: our goal was to demonstrate our protocols would scale even in a

setting where bottlenecks could not possibly be blamed on application complexity. Real-world

applications, however, might be complex enough to severely bottleneck a fully-replicated

system. This setting, we believe, calls for partial replication, with a core of secure, fully-

replicated servers orchestrating computational resources contributed by the broader Internet.

Doing so while maintaining (probabilistic) security would further enable the vision of a secure,

planetary-scale computer shared by all.

314

Bibliography

[1] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. 2021. Good-Case Latency of

Byzantine Broadcast: A Complete Categorization. In ACM Symposium on Principles of

Distributed Computing (PODC).

[2] Daron Acemoglu and Asu Ozdaglar. 2009. Networks - Lecture 4: Erdős–Rényi Graphs and

Phase Transitions. (2009).

[3] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Antoine Murat, Athanasios

Xygkis, and Igor Zablotchi. 2023. uBFT: Microsecond-Scale BFT Using Disaggregated

Memory. In International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS).

[4] Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, Jean-Philippe Martin, and Alexander Shraer.

2010. Reconfiguring Replicated Atomic Storage: A Tutorial. Bulletin of the EATCS (2010).

[5] Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. 2021. Succinct Erasure

Coding Proof Systems. IACR Cryptology ePrint Archive (2021).

[6] Dan Alistarh, Seth Gilbert, Rachid Guerraoui, and Morteza Zadimoghaddam. 2010. How

Efficient Can Gossip Be? (On the Cost of Resilient Information Exchange). In International

Colloquium on Automata, Languages and Programming (ICALP).

[7] Salem Alqahtani and Murat Demirbas. 2021. BigBFT: A Multileader Byzantine Fault Toler-

ance Protocol for High Throughput. In IEEE International Performance, Computing, and

Communications Conference (IPCCC).

[8] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,

Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,

Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith

Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed

Cocco, and Jason Yellick. 2018. Hyperledger Fabric: A Distributed Operating System for

Permissioned Blockchains. In European Conference on Computer Systems (EuroSys).

[9] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Memory Robustly in

Message-Passing Systems. Journal of the ACM (JACM) (1995).

315

Bibliography

[10] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko

Vukolić. 2015. The Next 700 BFT Protocols. ACM Transactions on Computer Systems

(TOCS) (2015).

[11] Alex Auvolat, Davide Frey, Michel Raynal, and François Taïani. 2021. Byzantine-Tolerant

Causal Broadcast. Theoretical Computer Science (2021).

[12] Zeta Avarikioti, Lioba Heimbach, Roland Schmid, Laurent Vanbever, Roger Wattenhofer,

and Patrick Wintermeyer. 2020. FnF-BFT: Exploring Performance Limits of BFT Protocols.

In International Colloquium on Structural Information and Communication Complexity

(SIROCCO).

[13] Chen Avin, Michael Borokhovich, Keren Censor-Hillel, and Zvi Lotker. 2011. Order

Optimal Information Spreading Using Algebraic Gossip. In ACM Symposium on Principles

of Distributed Computing (PODC).

[14] Baruch Awerbuch and Christian Scheideler. 2009. Towards a Scalable and Robust DHT.

Theory of Computing Systems (2009).

[15] Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott. 2002. Efficient Algo-

rithms for Pairing-Based Cryptosystems. In Annual International Cryptology Conference

(CRYPTO).

[16] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2017. Hybrids on Steroids: SGX-Based

High Performance BFT. In European Conference on Computer Systems (EuroSys).

[17] Michael Ben-Or, Ran Canetti, and Oded Goldreich. 1993. Asynchronous Secure Compu-

tation. In Symposium on the Theory of Computing (STOC).

[18] Petra Berenbrink, Robert Elsaesser, and Tom Friedetzky. 2008. Efficient Randomised

Broadcasting in Random Regular Networks With Applications in Peer-to-Peer Systems. In

ACM Symposium on Principles of Distributed Computing (PODC).

[19] Petra Berenbrink, Robert Elsässer, and Thomas Sauerwald. 2010. Communication Com-

plexity of Quasirandom Rumor Spreading. In European Symposium on Algorithms (ESA).

[20] Petra Berenbrink, Robert Elsässer, and Thomas Sauerwald. 2010. Randomised Broadcast-

ing: Memory vs. Randomness. Theoretical Computer Science (2010).

[21] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In Interna-

tional Conference on Theory and Practice of Public Key Cryptography (PKC).

[22] Alysson Bessani, Joao Sousa, and Eduardo E.P. Alchieri. 2014. State Machine Replication

for the Masses With BFT-SMART. In Dependable Systems and Networks (DSN).

[23] Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and Yaron

Minsky. 1999. Bimodal Multicast. ACM Transactions on Computer Systems (TOCS) (1999).

316

Bibliography

[24] Joseph T.A. Birman K.P. 1987. Reliable Communication in the Presence of Failures. ACM

Transactions on Computer Systems (TOCS) (1987).

[25] Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact Multi-Signatures for

Smaller Blockchains. In International Conference on the Theory and Application of Cryp-

tology and Information Security (ASIACRYPT).

[26] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. 2003. Aggregate and Verifiably

Encrypted Signatures From Bilinear Maps. In International Conference on the Theory and

Application of Cryptographic Techniques (EUROCRYPT).

[27] Dan Boneh, Sergey Gorbunov, Riad S. Wahby, Hoeteck Wee, and Zhenfei Zhang. 2022.

BLS Signatures. RCF Draft.

[28] Edward Bortnikov, Maxim Gurevich, Idit Keidar, Gabriel Kliot, and Alexander Shraer. 2009.

Brahms: Byzantine Resilient Random Membership Sampling. Computer Networks (2009).

[29] Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. 2013. Communication Locality in

Secure Multi-Party Computation. In Theory of Cryptography Conference (TCC).

[30] Gabriel Bracha. 1984. An Asynchronous [(n-1)/3]-Resilient Consensus Protocol. In ACM

Symposium on Principles of Distributed Computing (PODC).

[31] Gabriel Bracha. 1987. Asynchronous Byzantine Agreement Protocols. Information and

Computation (1987).

[32] Gabriel Bracha and Sam Toueg. 1985. Asynchronous Consensus and Broadcast Protocols.

Journal of the ACM (JACM) (1985).

[33] Christian Cachin. 2010. State Machine Replication With Byzantine Faults. In Replication.

[34] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. 2011. Introduction to Reliable

and Secure Distributed Programming.

[35] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure and Effi-

cient Asynchronous Broadcast Protocols. In Annual International Cryptology Conference

(CRYPTO).

[36] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random Oracles in Con-

stantinople: Practical Asynchronous Byzantine Agreement Using Cryptography. Journal of

Cryptology (JCrypt) (2005).

[37] Christian Cachin and Jonathan A Poritz. 2002. Secure Intrusion-Tolerant Replication on

the Internet. In Dependable Systems and Networks (DSN).

[38] Christian Cachin and Stefano Tessaro. 2005. Asynchronous Verifiable Information Dis-

persal. In IEEE International Symposium on Reliable Distributed Systems (SRDS).

317

Bibliography

[39] Martina Camaioni, Rachid Guerraoui, Jovan Komatovic, Matteo Monti, Pierre-Louis

Roman, Manuel Vidigueira, and Gauthier Voron. 2023. Carbon: Scaling Trusted Payments

with Untrusted Machines. IEEE Transactions on Dependable and Secure Computing (TDSC)

(2023). (Under review).

[40] Martina Camaioni, Rachid Guerraoui, Matteo Monti, Pierre-Louis Roman, Manuel

Vidigueira, and Gauthier Voron. 2024. Chop Chop: Byzantine Atomic Broadcast to the

Network Limit. USENIX Symposium on Operating Systems Design and Implementation

(OSDI) (2024). (Under minor revisions).

[41] Martina Camaioni, Rachid Guerraoui, Matteo Monti, and Manuel Vidigueira. 2022. Orac-

ular Byzantine Reliable Broadcast. In International Symposium on Distributed Computing

(DISC).

[42] Jan Camenisch, Susan Hohenberger, and Michael Ostergaard Pedersen. 2012. Batch

Verification of Short Signatures. Journal of Cryptology (JCrypt) (2012).

[43] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In USENIX

Symposium on Operating Systems Design and Implementation (OSDI).

[44] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine Fault Tolerance and Proactive

Recovery. ACM Transactions on Computer Systems (TOCS) (2002).

[45] Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable Failure Detectors for Reliable

Distributed Systems. Journal of the ACM (JACM) (1996).

[46] Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser, Rafail

Ostrovsky, and Vassilis Zikas. 2015. The Hidden Graph Model: Communication Locality

and Optimal Resiliency With Adaptive Faults. In Innovations in Theoretical Computer

Science (ITCS).

[47] Fan Chung and Linyuan Lu. 2001. The Diameter of Sparse Random Graphs. Advances in

Applied Mathematics (2001).

[48] Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira.

2023. On the Validity of Consensus. International Symposium on Distributed Computing

(DISC) (2023).

[49] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi, Mike Dahlin,

and Taylor Riche. 2009. Upright Cluster Services. In Symposium on Operating Systems

Principles (SOSP).

[50] Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej

Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, and Athana-

sios Xygkis. 2020. Online Payments by Merely Broadcasting Messages. In Dependable

Systems and Networks (DSN).

318

Bibliography

[51] Thomas Cover and Joy Thomas. 2005. Elements of Information Theory, Second Edition.

[52] Tyler Crain, Christopher Natoli, and Vincent Gramoli. 2018. Evaluating the Red Belly

Blockchain. Computing Research Repository (CoRR) (2018).

[53] Tyler Crain, Christopher Natoli, and Vincent Gramoli. 2021. Red Belly: A Secure, Fair and

Scalable Open Blockchain. In IEEE Symposium on Security and Privacy (S&P).

[54] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz

Breidenbach, and Ari Juels. 2020. Flash Boys 2.0: Frontrunning in Decentralized Exchanges,

Miner Extractable Value, and Consensus Instability. In IEEE Symposium on Security and

Privacy (S&P).

[55] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman.

2022. Narwhal and Tusk: A DAG-Based Mempool and Efficient BFT Consensus. In Euro-

pean Conference on Computer Systems (EuroSys).

[56] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee, Noa Zilberman, Hakim Weather-

spoon, Marco Canini, Fernando Pedone, and Robert Soulé. 2020. P4xos: Consensus as a

Network Service. IEEE/ACM Transactions on Networking (TON) (2020).

[57] Sourav Das, Zhuolun Xiang, and Ling Ren. 2021. Asynchronous Data Dissemination and

Its Applications. In Annual ACM Conference on Computer and Communications Security

(CCS).

[58] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-

Generation Onion Router. In USENIX Security Symposium (SEC).

[59] Danny Dolev and Rüdiger Reischuk. 1985. Bounds on Information Exchange for Byzan-

tine Agreement. Journal of the ACM (JACM) (1985).

[60] Manu Drijvers, Sergey Gorbunov, Gregory Neven, and Hoeteck Wee. 2020. Pixel: Multi-

Signatures for Consensus. In USENIX Security Symposium (SEC).

[61] Sisi Duan, Michael K. Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT Made

Practical. In Annual ACM Conference on Computer and Communications Security (CCS).

[62] Xavier Défago, André Schiper, and Péter Urbán. 2004. Total Order Broadcast and Multicast

Algorithms: Taxonomy and Survey. ACM Computing Surveys (CSUR) (2004).

[63] Robert Elsässer and Dominik Kaaser. 2015. On the Influence of Graph Density on Ran-

domized Gossiping. IEEE International Parallel and Distributed Processing Symposium

(IPDPS) (2015).

[64] Vitor Enes, Carlos Baquero, Alexey Gotsman, and Pierre Sutra. 2021. Efficient Replication

via Timestamp Stability. In European Conference on Computer Systems (EuroSys).

319

Bibliography

[65] Paul Erdös and Alfréd Rényi. 1959. On Random Graphs. Publicationes Mathematicae

(1959).

[66] P. Th. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Kermarrec.

2003. Lightweight Probabilistic Broadcast. ACM Transactions on Computer Systems (TOCS)

(2003).

[67] Yaacov Fernandess, Antonio Fernández, and Maxime Monod. 2007. A Generic Theoretical

Framework for Modeling Gossip-Based Algorithms. ACM SIGOPS: Operating Systems

Review (2007).

[68] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of

Distributed Consensus With One Faulty Process. Journal of the ACM (JACM) (1985).

[69] Adam Gagol, Damian Leundefinedniak, Damian Straszak, and Michal Swietek. 2019.

Aleph: Efficient Atomic Broadcast in Asynchronous Networks With Byzantine Nodes. In

Conference on Advances in Financial Technologies (AFT).

[70] Fangyu Gai, Jianyu Niu, Ivan Beschastnikh, Chen Feng, and Sheng Wang. 2023. Scaling

Blockchain Consensus via a Robust Shared Mempool. In IEEE International Conference on

Data Engineering (ICDE).

[71] Juan Garay, Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. 2017. The Price of Low

Communication in Secure Multi-Party Computation. In Annual International Cryptology

Conference (CRYPTO).

[72] Juan A Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. 2011. Adaptively

Secure Broadcast, Revisited. In ACM Symposium on Principles of Distributed Computing

(PODC).

[73] Chryssis Georgiou, Seth Gilbert, Rachid Guerraoui, and Dariusz R. Kowalski. 2008. On

the Complexity of Asynchronous Gossip. In ACM Symposium on Principles of Distributed

Computing (PODC).

[74] Chryssis Georgiou, Seth Gilbert, Rachid Guerraoui, and Dariusz R. Kowalski. 2013. Asyn-

chronous Gossip. Journal of the ACM (JACM) (2013).

[75] Chryssis Georgiou, Seth Gilbert, and Dariusz R. Kowalski. 2011. Meeting the Deadline:

On the Complexity of Fault-Tolerant Continuous Gossip. Distributed Computing (2011).

[76] Mohsen Ghaffari and Merav Parter. 2016. A Polylogarithmic Gossip Algorithm for Plurality

Consensus. In ACM Symposium on Principles of Distributed Computing (PODC).

[77] George Giakkoupis, Yasamin Nazari, and Philipp Woelfel. 2016. How Asynchrony Af-

fects Rumor Spreading Time. In ACM Symposium on Principles of Distributed Computing

(PODC).

320

Bibliography

[78] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. 2017.

Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In Symposium on Operating

Systems Principles (SOSP).

[79] Rachid Guerraoui, Florian Huc, and Anne-Marie Kermarrec. 2013. Highly Dynamic

Distributed Computing With Byzantine Failures. In ACM Symposium on Principles of

Distributed Computing (PODC).

[80] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos Seredinschi.

2019. The Consensus Number of a Cryptocurrency. In ACM Symposium on Principles of

Distributed Computing (PODC).

[81] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-Adrian

Seredinschi. 2019. Scalable Byzantine Reliable Broadcast. International Symposium on

Distributed Computing (DISC) (2019).

[82] Vassos Hadzilacos and Sam Toueg. 1993. Fault-Tolerant Broadcasts and Related Problems.

In Distributed Systems.

[83] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. 2007. PeerReview: Practical

Accountability for Distributed Systems. In Symposium on Operating Systems Principles

(SOSP).

[84] Bernhard Haeupler, Gopal Pandurangan, David Peleg, Rajmohan Rajaraman, and Zhifeng

Sun. 2012. Discovery Through Gossip. In ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA).

[85] James Hendricks, Gregory R Ganger, and Michael K Reiter. 2007. Verifying Distributed

Erasure-Coded Data. In ACM Symposium on Principles of Distributed Computing (PODC).

[86] Maurice Herlihy. 1991. Wait-Free Synchronization. ACM Transactions on Programming

Languages and Systems (TOPLAS) (1991).

[87] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016. Consensus in a Box:

Inexpensive Coordination in Hardware. In Symposium on Networked Systems Design and

Implementation (NSDI).

[88] Kazuharu Itakura and Katsuhiro Nakamura. 1983. A Public-Key Cryptosystem Suitable

for Digital Multisignatures. NEC Research & Development (1983).

[89] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. 2009. T-Man: Gossip-Based Fast

Overlay Topology Construction. Computer Networks (2009).

[90] Simon Josefsson and Ilari Liusvaara. 2017. Edwards-Curve Digital Signature Algorithm

(EdDSA). RFC 8032.

321

Bibliography

[91] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle,

Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel. 2012. Cheap-

BFT: Resource-Efficient Byzantine Fault Tolerance. In European Conference on Computer

Systems (EuroSys).

[92] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. 2021. All

You Need Is DAG. In ACM Symposium on Principles of Distributed Computing (PODC).

[93] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-Fairness for

Byzantine Consensus. In Annual International Cryptology Conference (CRYPTO).

[94] Valerie King, Steven Lonargan, Jared Saia, and Amitabh Trehan. 2011. Load Balanced

Scalable Byzantine Agreement Through Quorum Building, With Full Information. In

International Conference of Distributed Computing and Networking (ICDCN).

[95] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. 2006. Scalable Leader Election.

In ACM-SIAM Symposium on Discrete Algorithms (SODA).

[96] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,

and Bryan Ford. 2016. Enhancing Bitcoin Security and Performance With Strong Consis-

tency via Collective Signing. In USENIX Security Symposium (SEC).

[97] Marios Kogias and Edouard Bugnion. 2020. HovercRaft: Achieving Scalability and Fault-

Tolerance for Microsecond-Scale Datacenter Services. In European Conference on Com-

puter Systems (EuroSys).

[98] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and

Bryan Ford. 2018. OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding.

In IEEE Symposium on Security and Privacy (S&P).

[99] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.

2007. Zyzzyva: Speculative Byzantine Fault Tolerance. In Symposium on Operating Systems

Principles (SOSP).

[100] Klaus Kursawe and Victor Shoup. 2005. Optimistic Asynchronous Atomic Broadcast. In

International Colloquium on Automata, Languages and Programming (ICALP).

[101] Petr Kuznetsov, Yvonne-Anne Pignolet, Pavel Ponomarev, and Andrei Tonkikh. 2021. Per-

missionless and Asynchronous Asset Transfer. In International Symposium on Distributed

Computing (DISC).

[102] Aptos Labs. 2022. The Aptos Blockchain: Safe, Scalable, and Upgradeable Web3 Infras-

tructure.

[103] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2010. Reconfiguring a State Machine.

SIGACT News (2010).

322

Bibliography

[104] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Generals

Problem. ACM Transactions on Programming Languages and Systems (TOPLAS) (1982).

[105] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports. 2016.

Just Say NO to Paxos Overhead: Replacing Consensus With Network Ordering. In USENIX

Symposium on Operating Systems Design and Implementation (OSDI).

[106] Meng-Jang Lin, Keith Marzullo, and Stefano Masini. 2000. Gossip Versus Deterministi-

cally Constrained Flooding on Small Networks. In International Symposium on Distributed

Computing (DISC).

[107] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Gün Sirer, and Peter Pietzuch.

2019. Teechain: A Secure Payment Network With Asynchronous Blockchain Access. In

Symposium on Operating Systems Principles (SOSP).

[108] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quema, and Marko Vukolic. 2016.

XFT: Practical Fault Tolerance Beyond Crashes. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI).

[109] Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry, Eli Gafni,

Jonathan Jove, Rafał Malinowsky, and Jed McCaleb. 2019. Fast and Secure Global Payments

With Stellar. In Symposium on Operating Systems Principles (SOSP).

[110] D. Malkhi, M. Merritt, and O. Rodeh. 1997. Secure Reliable Multicast Protocols in a WAN.

In IEEE International Conference on Distributed Computing Systems (ICDCS).

[111] Dahlia Malkhi and Michael Reiter. 1996. A High-Throughput Secure Reliable Multicast

Protocol. IEEE Computer Security Foundations Symposium (CSF) (1996).

[112] Dahlia Malkhi and Michael Reiter. 1997. Byzantine Quorum Systems. In Symposium on

the Theory of Computing (STOC).

[113] Dahlia Malkhi, Michael K Reiter, Avishai Wool, and Rebecca N Wright. 2001. Probabilistic

Quorum Systems. Information and Computation (2001).

[114] Jean-Philippe Martin and Lorenzo Alvisi. 2005. Fast Byzantine Consensus. In Dependable

Systems and Networks (DSN).

[115] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. 2019. Simple

Schnorr Multi-Signatures With Applications to Bitcoin. Designs, Codes and Cryptography

(DCC) (2019).

[116] David Mazieres. 2016. The Stellar Consensus Protocol: A Federated Model for Internet-

Level Consensus.

[117] Ralph C Merkle. 1987. A Digital Signature Based on a Conventional Encryption Function.

In Annual International Cryptology Conference (CRYPTO).

323

Bibliography

[118] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The Honey

Badger of BFT Protocols. In Annual ACM Conference on Computer and Communications

Security (CCS).

[119] Peyman Momeni, Sergey Gorbunov, and Bohan Zhang. 2023. FairBlock: Preventing

Blockchain Front-Running With Minimal Overheads. In Security and Privacy in Communi-

cation Networks (SecureComm).

[120] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There Is More Consen-

sus in Egalitarian Parliaments. In Symposium on Operating Systems Principles (SOSP).

[121] Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. 2014. Signature-Free

Asynchronous Byzantine Consensus With t < n/3 and O(n2) Messages. In ACM Symposium

on Principles of Distributed Computing (PODC).

[122] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.

[123] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. 2020. Improved

Extension Protocols for Byzantine Broadcast and Agreement. In International Symposium

on Distributed Computing (DISC).

[124] Ray Neiheiser, Miguel Matos, and Luís Rodrigues. 2021. Kauri: Scalable BFT Consensus

With Pipelined Tree-Based Dissemination and Aggregation. In Symposium on Operating

Systems Principles (SOSP).

[125] Fernando Pedone and André Schiper. 2002. Handling Message Semantics With Generic

Broadcast Protocols. Distributed Computing (2002).

[126] James S Plank and Lihao Xu. 2006. Optimizing Cauchy Reed-Solomon Codes for Fault-

Tolerant Network Storage Applications. In IEEE International Symposium on Network

Computing and Applications (NCA).

[127] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishnamurthy.

2015. Designing Distributed Systems Using Approximate Synchrony in Data Center Net-

works. In Symposium on Networked Systems Design and Implementation (NSDI).

[128] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying Blockchain Extractable

Value: How Dark Is the Forest?. In IEEE Symposium on Security and Privacy (S&P).

[129] HariGovind V Ramasamy and Christian Cachin. 2005. Parsimonious Asynchronous

Byzantine-Fault-Tolerant Atomic Broadcast. In International Conference on Principles of

Distributed Systems (OPODIS).

[130] Irving S Reed and Gustave Solomon. 1960. Polynomial Codes Over Certain Finite Fields.

Journal of the Society for Industrial and Applied Mathematics (SIAP) (1960).

324

Bibliography

[131] Michael K. Reiter. 1994. Secure Agreement Protocols: Reliable and Atomic Group

Multicast in Rampart. In Annual ACM Conference on Computer and Communications

Security (CCS).

[132] Michael K. Reiter and Kenneth P. Birman. 1994. How to Securely Replicate Services.

ACM Transactions on Programming Languages and Systems (TOPLAS) (1994).

[133] Nuno Santos and André Schiper. 2013. Optimizing Paxos With Batching and Pipelining.

Theoretical Computer Science (2013).

[134] Christian Scheideler. 2005. How to Spread Adversarial Nodes? Rotate!. In Symposium on

the Theory of Computing (STOC).

[135] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using the State Machine

Approach: A Tutorial. ACM Computing Surveys (CSUR) (1990).

[136] Claus P. Schnorr. 1991. Efficient Signature Generation by Smart Cards. Journal of

Cryptology (JCrypt) (1991).

[137] Victor Shoup. 2000. Practical Threshold Signatures. In International Conference on the

Theory and Application of Cryptographic Techniques (EUROCRYPT).

[138] Atul Singh, Tathagata Das, Petros Maniatis, Peter Druschel, and Timothy Roscoe. 2008.

BFT Protocols Under Fire. In Symposium on Networked Systems Design and Implementa-

tion (NSDI).

[139] Suman Sourav, Peter Robinson, and Seth Gilbert. 2018. Slow Links, Fast Links, and the

Cost of Gossip. IEEE International Conference on Distributed Computing Systems (ICDCS)

(2018).

[140] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias.

2022. Bullshark: DAG BFT Protocols Made Practical. In Annual ACM Conference on Com-

puter and Communications Security (CCS).

[141] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. 2022. State Machine

Replication Scalability Made Simple. In European Conference on Computer Systems (Eu-

roSys).

[142] Chrysoula Stathakopoulou, David Tudor, Matej Pavlovic, and Marko Vukolić. 2022.

[Solution] Mir-BFT: Scalable and Robust BFT for Decentralized Networks. Journal of

Systems Research (JSys) (2022).

[143] The Diem Team. 2021. DiemBFT V4: State Machine Replication in the Diem Blockchain.

[144] The DFINITY Team. 2022. The Internet Computer for Geeks. IACR Cryptology ePrint

Archive (2022).

[145] The MystenLabs Team. 2022. The Sui Smart Contracts Platform.

325

Bibliography

[146] Sam Toueg. 1984. Randomized Byzantine Agreements. In ACM Symposium on Principles

of Distributed Computing (PODC).

[147] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015. Vuvuzela:

Scalable Private Messaging Resistant to Traffic Analysis. In Symposium on Operating

Systems Principles (SOSP).

[148] Spyros Voulgaris, Márk Jelasity, and Maarten van Steen. 2004. A Robust and Scalable

Peer-to-Peer Gossiping Protocol. In Agents and Peer-to-Peer Computing (AP2PC).

[149] Marko Vukolic. 2010. The Origin of Quorum Systems. Bulletin of the EATCS (2010).

[150] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui. 2017. APUS: Fast

and Scalable Paxos on RDMA. In ACM Symposium on Cloud Computing (SoCC).

[151] Jiaping Wang and Hao Wang. 2019. Monoxide: Scale Out Blockchain With Asynchronous

Consensus Zones. In Symposium on Networked Systems Design and Implementation

(NSDI).

[152] Roger Wattenhofer. 2019. Blockchain Science: Distributed Ledger Technology.

[153] Gavin Wood. 2014. Ethereum: A Secure Decentralised Generalised Transaction Ledger.

[154] Andrew Chi-Chih Yao. 1979. Some Complexity Questions Related to Distributive Com-

puting. In Symposium on the Theory of Computing (STOC).

[155] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike Dahlin.

2003. Separating Agreement From Execution for Byzantine Fault Tolerant Services. In

Symposium on Operating Systems Principles (SOSP).

[156] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham.

2019. HotStuff: BFT Consensus With Linearity and Responsiveness. In ACM Symposium

on Principles of Distributed Computing (PODC).

[157] B. Zhang, K. Han, B. Ravindran, and E. D. Jensen. 2008. RTQG: Real-Time Quorum-

Based Gossip Protocol for Unreliable Networks. In International Conference on Availability,

Reliability and Security (ARES).

[158] Haoqian Zhang, Louis-Henri Merino, Vero Estrada-Galiñanes, and Bryan Ford. 2022.

Flash Freezing Flash Boys: Countering Blockchain Front-Running. In IEEE International

Conference on Distributed Computing Systems (ICDCS).

[159] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. 2020. Byzantine

Ordered Consensus Without Byzantine Oligarchy. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI).

[160] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais. 2021.

High-Frequency Trading on Decentralized on-Chain Exchanges. In IEEE Symposium on

Security and Privacy (S&P).

326

News Readings

[Cer19] Megan Cerullo. Google Reportedly Mining Millions of Americans Personal Health

Data. CBS News, 2019.

[Con18] Nicholas Confessore. Cambridge Analytica and Facebook: The Scandal and the

Fallout so Far. The New York Times, 2018.

[cyb23] Significant Cyber Incidents. Center for Strategic & International Studies, 2023.

[ESWV22] P. Ehin, M. Solvak, J. Willemson, and P. Vinkel. Internet Voting in Estonia 2005–2019:

Evidence from Eleven Elections. Government Information Quarterly, 2022.

[Far22] Malcomb Farber. Cybercrime Damages to Cost the World $8 Trillion USD in 2023.

Associated Press, 2022.

[Fit22] Afiq Fitri. Big Tech Now Accounts for More than Half of Global Internet Traffic.

Tech Monitor, 2022.

[Gay21] Damien Gayle. Facebook Aware of Instagram’s Harmful Effect on Teenage Girls,

Leak Reveals. The Guardian, 2021.

[int21] IAB Study Shows Internet Economy is Transforming the U.S. Economy, Creating

New Markets and Spurring Job Growth for Large and Small Businesses. Interactive

Advertising Bureau, 2021.

[Moz18] Paul Mozur. A Genocide Incited on Facebook, with Posts from Myanmar’s Military.

The New York Times, 2018.

[Pri19] Rob Price. The FTC has Approved a Roughly $5 Billion Settlement with Facebook.

Business Insider, 2019.

[Reu20] Reuters. Google Faces $5 Billion Lawsuit in U.S. for Tracking ’Private’ Internet Use.

NBC News, 2020.

[Run20] Dan Runkevicius. How Amazon Quietly Powers the Internet. Forbes, 2020.

327

	Preface
	Abstract (English / Français)
	Contents
	Introduction
	I Scalable Byzantine Reliable Broadcast
	Overview
	Introduction
	Probabilistic Byzantine Reliable Broadcast
	Probability Analysis
	Security and Complexity Evaluation

	Related Work
	Model

	Murmur
	Interface
	Algorithm
	No duplication, integrity and validity
	Totality

	Sieve
	Interface
	Algorithm
	No duplication and integrity
	Total validity
	Preliminary lemmas
	Simplified Sieve
	Consistency-only broadcast
	Byzantine oracle
	Algorithm

	Adversarial execution
	Model (Sieve)
	Model (Simplified Sieve)
	Network scheduling
	Interfaces

	Simplified adversarial power
	Preliminary definitions
	Consistency of Simplified Sieve

	Two-phase adversaries
	Consistency
	Two-phase adversaries
	Random variables
	Byzantine population, correct echoes, delivery
	Second phase
	First phase

	Decorators
	Auto-echo adversary
	Process-sequential adversary
	Sequential adversary
	Non-redundant adversary
	Sample-blind adversary
	Byzantine-counting adversary
	Single-response adversary
	Two-phase adversary

	Contagion
	Interface
	Algorithm
	No duplication and integrity
	Validity
	Adversarial execution
	Model

	Epidemic processes
	Threshold contagion (overview)
	Preliminary lemmas
	Consistency
	Totality
	Minimal operations
	Delivery probability
	C-step Threshold Contagion

	Threshold Contagion
	Epidemic processes
	Threshold Contagion
	Rules
	Random variables
	Goal
	Sample space
	Random variables as sample functions
	Contagion step
	Final infection size

	II Oracular Byzantine Reliable Broadcast
	Overview
	Introduction
	Related Work
	Model & background
	Model
	Background

	
	Interface
	Algorithm
	Protocol & correctness overview
	Complexity overview
	Pseudocode (Client)
	Pseudocode (Broker)
	Pseudocode (Server)

	Correctness
	No duplication
	Consistency
	Totality
	Integrity
	Validity

	Complexity
	Auxiliary results
	Batching limit
	Protocol analysis

	
	Interface
	Algorithm
	Pseudocode (Client)
	Pseudocode (Server)

	Correctness
	Correctness
	Signup integrity
	Signup validity
	Self-knowledge
	Transferability
	Density

	III Byzantine Atomic Broadcast to the Network Limit
	Chop Chop
	Overview
	Atomic Broadcast
	Cost of Atomic Broadcast
	Existing Mitigations

	Distilled Batches
	Distillation at a Glance
	Distillation Microbenchmark

	Chop Chop
	Architecture and Model
	Distillation Phase
	Submission Phase
	Correctness

	Implementation Details
	Broker
	Server

	Evaluation
	Baselines
	Setup
	RQ1 – Load Handling
	RQ2 – Distillation Benefits
	RQ3 – Number of Servers
	RQ4 – Overall Efficiency
	RQ5 – Chop Chop Under Failures
	RQ6 – Application Use Cases

	Related Work

	Conclusions

	Bibliography

