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Abstract

Since the discovery of dissipative Kerr solitons in optical microresonators, significant progress

has been made in the understanding of the underlying physical principles from the funda-

mental side and generation of broadband coherent optical Kerr frequency combs from the

applied side. Rich nonlinear dynamics of the discovered coherent dissipative structures have

been explored and widely applied from distance measurements and telecommunication to

neuromorphic optical computing. However, these studies were mostly limited to the single-

resonator case, in which the nonlinear dynamics is essentially one-dimensional. On the other

hand, increasing the number of particles (i.e., resonators) and creating new dimensions in

photonic devices are expected to provide a plethora of novel dynamical effects with a funda-

mental and technological potential, which however remains an uncharted territory, with the

large capacity for both theoretical and experimental explorations.

With this thesis, we explore this direction by investigating the nonlinear dynamics in various

lattices of nonlinear optical microresonators, extending the conventional single-resonator

paradigm. We consider two types of photonic lattices: synthetic and spatial. Providing the

analytical, numerical, and experimental studies, we investigate emerging four-wave mixing

processes, chaotic states, and formation of coherent structures. In the synthetic frequency

dimension framework, we consider electro-optically and dispersion modulated resonators,

demonstrating the formation of novel nonlinear states as well and related new four-wave

mixing pathways that result in the spectral broadening of frequency combs. In the case of

coupled resonators, we investigate parametric processes, existence and stability of coherent

structures and demonstrate potential applications for optical parametric oscillators and mi-

crowave signal generation. We also develop a general theory of nonlinear dynamics and Kerr

frequency comb formation in lattices of resonators, demonstrating the multidimensional na-

ture of the nonlinear processes in such systems. We investigate in detail the two-dimensional

spatio-temporal dynamics in chains of equally coupled resonators. Finally, we describe an

open-source software – PyCORe, developed during the course of this thesis, which allows

simulation of nonlinear dynamics in the systems under consideration.

Keywords: dissipative Kerr solitons, nonlinear photonics, nonlinear dynamics, spatio-temporal

locking, optical parametric oscillators, modulation instability.
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Résumé

Depuis la découverte de solitons dissipatifs de Kerr dans les microrésonateurs optiques,

des progrès significatifs ont été réalisés dans la compréhension des principes physiques

sous-jacents du côté fondamental et la génération de peignes de fréquence de Kerr optiques

cohérents à large bande du côté appliqué. La dynamique non linéaire riche des structures

dissipatives cohérentes découvertes a été explorée et largement appliquée des mesures de

distance et de télécommunication au calcul optique neuromorphique. Cependant, ces études

ont été principalement limitées au cas de résonateur unique, dans lequel la dynamique non

linéaire est essentiellement unidimensionnelle. D’autre part, l’augmentation du nombre

de particules (c’est-à-dire des résonateurs) et la création de nouvelles dimensions dans les

dispositifs photoniques devraient fournir une pléthore d’effets dynamiques nouveaux avec un

potentiel fondamental et technologique, qui reste cependant un territoire inexploré, avec la

grande capacité pour les explorations théoriques et expérimentales.

Avec cette thèse, nous explorons cette direction en étudiant la dynamique non linéaire dans

divers réseaux de microrésonateurs optiques non linéaires, en étendant le paradigme conven-

tionnel à résonateur unique. Nous considérons deux types de réseaux photoniques : synthé-

tique et spatial. En fournissant les études analytiques, numériques et expérimentales, nous

étudions les processus de mélange à quatre ondes émergents, les états chaotiques et la forma-

tion de structures cohérentes. Dans le cadre de la dimension de fréquence synthétique, nous

considérons les résonateurs modulés électro-optiquement et de dispersion, démontrant la

formation de nouveaux états non linéaires ainsi que de nouvelles voies de mélange à quatre

ondes connexes qui entraînent l’élargissement spectral des peignes de fréquence. Dans le cas

des résonateurs couplés, nous étudions les processus paramétriques, l’existence et la stabilité

de structures cohérentes et démontrons des applications potentielles pour les oscillateurs

paramétriques optiques et la génération de signaux micro-ondes. Nous développons égale-

ment une théorie générale de la dynamique non linéaire et de la formation de peignes de

fréquence de Kerr dans les réseaux de résonateurs, démontrant la nature multidimensionnelle

des processus non linéaires dans de tels systèmes. Nous étudions en détail la dynamique

spatio-temporelle bidimensionnelle dans les chaînes de résonateurs également couplés. Enfin,

nous décrivons un logiciel open-source – PyCORe, développé au cours de cette thèse, qui

permet la simulation de dynamiques non linéaires dans les systèmes considérés.

Mots-clés : solitons dissipatifs de Kerr, photonique non linéaire, dynamique non linéaire,

verrouillage spatio-temporel, oscillateurs paramétriques optiques, instabilité modulationnelle.
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Introduction

Nonlinear phenomena have been extensively studied in various physical systems over the

past decades [1]. Unlike linear systems, where the principle of superposition holds true (the

combination of two solutions of the governing equation results in another valid solution), non-

linear systems described by nonlinear partial differential equations (PDEs) lack this property.

Interactions between different solutions (e.g., waves) can result in complex and unexpected

dynamics [2].

One of the manifests of nonlinear phenomena is chaos – a particular state of a system charac-

terized by extremely sensitive dependence on initial conditions. One of such chaotic systems is

the Lorenz model for cellular convention [3]. Another phenomenon characterized by irregular

behavior is turbulence, which is commonly observed in fluid and air flows, magnetohydrody-

namics, and other fields [4]. Despite its extreme complexity, turbulence plays a crucial role in

various systems, enabling the effective distribution of energy across turbulent cascades [5].

However, nonlinear interactions also result in self-organization effects when ordered struc-

tures emerge from an initially disordered system state [2]. Such pattern formation plays an

important role in understanding complex systems and has been observed in many models, in-

cluding the Brusselator system [6], Gross-Pitaevsky equation [7] for Bose-Einstein condensate,

and the Lugiato-Lefever equation (LLE) [8, 9, 10]. Another important aspect in such systems is

the existence of localized and self-sustaining wave-like solutions called solitons [11, 12, 13, 14].

Their existence relies on the delicate balance between dispersion (diffraction) that tends to

broaden the pulse and nonlinearity, responsible for the focusing. Although this thesis pri-

marily focuses on the study of nonlinear interactions arising from four-wave mixing (FWM)

procceses in optical microresonators [15], a branch of nonlinear optics, it also delves into

various phenomena that manifest across different areas of physics. These effects encompass

many nonlinear phenomena discussed earlier, such as Turing pattern formation [16], dynam-

ics of dissipative solitons (DKS) [15], wave collapses [17], and more. We investigate these

phenomena using the LLE as a basis, modifying it according to the specific characteristics of

the studied systems. Our research covers synthetic dimensions and lattices of coupled mi-

croresonators, where we connect our observations with existing models and explore potential

applications in the field of optical frequency combs.
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Solitons

Solitons, as localized pulses, can arise in both conservative and open systems and play a

crucial role in understanding the nonlinear dynamics of a given model. Their investigation is

often sufficient to fully describe field dynamics in many conservative models, which can be

generalized further to open systems with gain and loss.

Since soliton initial discovery by Scott Russell in 1834 [18], soliton theory has undergone several

significant developments. The first model inspired by Russell’s findings was the description of

waves on shallow water surfaces through the Korteweg–de Vries (KDV) equation. The "solitary-

wave pulses" were initially discovered through numerical simulations by N. J. Zabusky and M.

D. Kruskal [19], leading to the development of the inverse scattering transform (IST) [20]—a

foundational concept in soliton theory for many conservative nonlinear equations [21].

The general idea behind this method lies in the transformation of the original nonlinear prob-

lem (e.g., initial value problem for the KDV equation) into a linear scattering problem, which

is less challenging to understand due to existing methods for linear equations. As a result, the

temporal evolution of the nonlinear field is mapped onto the dynamics of the scattering data.

In this approach, a significant challenge lies in identifying the suitable linear equation. Later,

Zakharov and Shabat extended the method, introducing a systematic approach to discovering

these equations [22], which led to the demonstration of integrability of many other nonlinear

PDE [23, 24], including the Nonlinear Schrödinger equation (NLSE) [22].

In nonlinear optics, the NLSE plays a crucial role as it serves as a fundamental model for many

optical effects, including self-phase modulation (SPM), self-focusing or defocusing, solitons,

and more, all of which are caused by optical Kerr nonlinearity [25]. The NLSE describes light

propagation in various optical platforms, including bulk nonlinear media [26, 27] and optical

fibers [28, 29], for which the equation for the optical field envelope E can be written as

∂E

∂z
=−i

β2

2

∂2E

∂τ2 + iγ|E |2E , (1)

where z is longitudinal coordinate along the fiber (waveguide), τ is the time window for the

pulse,β2 is the group velocity dispersion, andγ=ω0n2/c Aeff, whereω0 is the carrier frequency,

n2 is the nonlinear refractive index, c is the speed of light, Aeff is the effective mode area. Fused

silica fibers, known for their extremely low propagation losses, have not only revolutionized

the field of optical communications [30] but have also provided an excellent platform for

testing the NLSE. Extensive experimental studies on temporal solitons, breathers, integrable

turbulence, rogue waves, and more [29, 31, 32, 33, 34, 35] have successfully demonstrated

a high degree of agreement with the theoretical predictions, significantly advancing our

understanding of nonlinear physics.

2



Introduction

Soliton solutions family

Nonlinearity

Dispersion	

Diffraction

Dispersion

Diffraction

Nonlinearity

Gain

Loss

a b
Hamiltonian systems Open systems

c d

Figure 1: Schematics of soliton balance in different systems. a) Hamiltonian and b) open sys-
tems with gain and loss. c) Schematics of an optical fiber in panel (c) and of a microresonator
in panel (d). The figure design is inspired by Ref. [36]

Dissipative Solitons

Integrable models, such as KDV or NLSE, have a distinct property due to their conservative

nature: the soliton solutions, existing due to the balance between dispersion and nonlinearity,

usually form a family of solutions, e.g., NLSE solitons with the same amplitude can also have

different velocities [22]. Schematically, this concept can be represented as in Fig. 1a. On the

other hand, open systems require an additional balance between gain and loss to maintain

localized solutions [37, 36]. As a result, such dissipative solitons are characterized as dynamical

attractors and can possess non-trivial energy flows within themselves to maintain the loss-

gain balance (see Fig. 1b). Consequently, interactions between such solitons can result in

the annihilation or the formation of soliton molecules [38], in contrast to their conservative

counterparts that do not interact during the collision and acquire only an additional phase

shift [39, 40]. This striking difference can be observed in two seemingly close systems: an

optical fiber, schematically presented in Fig. 1c, and an optical microresonator, shown in

Fig. 1d.

However, conservative models can be connected to the dissipative using standard approaches,

such as modulation instability analysis, or they can be treated in the perturbative way, where

the terms responsible for the gain and loss are considered as corrections to the unperturbed

Hamiltonian. The approaches such as the method of moments [41], Lagrangian method [42],

and IST-based perturbation theory [43, 44], help to reduce system’s complexity and understand

soliton interactions.
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Dissipative Kerr Solitons

In context of this thesis, an integrable basis model is the NLSE presented in Eq. (1). However,

here we work with resonant systems, i.e., the optical waveguide is closed in a loop, forming a

resonator, with an output coupler at z = L, which introduces losses in the system and allows for

synchronous pumping. To include this element into the model, one can impose the boundary

conditions at z = L

E n+1(τ, z = 0) =
p
ΘEin +

p
1−Θe iφ0 E n(τ, z = L), (2)

connecting the optical field at n and n +1 roundtrips, Θ is the coupling coefficient of the

coupler, Ein is the input field that compensates the energy losses from the cavity, φ0 is the

phase acquired by the pulse during its propagation in the cavity. This condition, together with

Eq. (1), corresponds to the approach known as Ikeda map, which is often used to describe

resonant systems [45, 46, 47]. However, to facilitate the analytical treatment, this equation can

be reduced to the mean-field model known as the LLE

∂A

∂τ
= i

D2

2

∂2 A

∂ϕ2 + i g0|A|2 A−
(κ0 +κex

2
+ iδω0

)
A+p

κexSin (3)

that describes temporal evolution of optical field envelope in a microresonator (see Fig. 1d).

First two terms constitute the NLSE, while the last two terms represent the loss and the external

forcing. The optical field envelope A is normalized such as
∫ |A|2dϕ/2π represents the number

of photons circulating in the cavity. D1 = (ω1 −ω0)/2 = 2π/β1LR is the mode spacing in the

vicinity of the pump mode ω0. LR is the cavity length, β1 = ng /c is the group velocity defined

via the group index ng and speed of light c, ϕ is the azimuth coordinate inside the resonator,

g0 is the single photon Kerr frequency shift, κ0 is the loss rate of the resonator arising due to

the internal and scattering losses, κex is the coupling rate to the bus waveguide, δω0 is the

pump-cavity detuning, Sin =p
P/ħω is the pump term, and D2 is the group velocity dispersion

(GVD) defined through the integrated dispersion Dint(µ) = ωµ−µD1 = β2D2
1/β1, where ωµ

is the frequency of the µ-th optical resonance. In general, the GVD depends on the mode

profile since its value is defined by the material and geometric dispersion. Positive (negative)

D2 > (<)0 corresponds to the anomalous (normal) GVD. For example, the fundamental mode

TE 00 in Fig. 2a is mainly localized in the waveguide, which has a different refractive index

compared to its surroundings. On the other hand, the higher order mode TE 10 shown in

Fig. 2b has a larger effective area and "feels" the surrounding material more, resulting in a

different effective refractive index due to the geometric dispersion. Due to this effect, the

actual position of the resonators modes are not equally spaced, as shown in Fig. 2c, and the

integrated dispersion Dint(µ), presented in Fig. 2d, is introduced as a deviation measure of the

actual resonance position from the equidistant grid. The dispersion profile can be engineered

via changing the cavity geometry, resulting in the generation of different optical pulses.

During the last decades, the LLE was extensively studied in context of passive optical systems

under external forcing for both, spatial and temporal self-organization effects [10, 48, 49, 50,
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Figure 2: Dispersion of optical modes. Spatial mode profiles in an optical waveguide for
the fundamental TE 00 mode in panel a) and the higher-order mode TE 10 in panel b). c)
Schematics of the cavity resonances of a given mode family. d) Corresponding integrated
dispersion profile Dint(µ).

51]. It can also be written in the dimensionless units as

∂Ψ

∂t
= i d2

∂2Ψ

∂ϕ2 + i |Ψ|2Ψ− (1+ iζ0)Ψ+ f , (4)

where t = τκ/2, ζ0 = 2δω0/κ with κ= κ0 +κex, d2 = D2/κ,Ψ=√
2g0/κA, f =

√
8κ0g0/κ3Sin.

This model, which depends only on two parameters ζ0 and f , captures with a very high

accuracy in the limit of high cavity finesse1 F ≫ 1. Interestingly, the rich dynamics and the

whole the variety of states inherent to the LLE can be tracked only through two parameters ζ0

and f 2 and can be mapped on the stability chart that demonstrates existence regions of Turing

rolls, chaotic states, breathers, and DKS, shown in Fig. 3a. Instead, for low finesse cavities or in

the high power regime ( f 2 ≫ 1), the Ikeda map scheme presented in Eq. (1,2) should be used

to describe the cavity dynamics [52]. However, the mean-field form helps to employ different

methods that we present below to analyze the dynamics.

Bistability

Bistability is ubiquitous in nonlinear systems, and the LLE is no exception. To analyze it, one

simply needs to neglect the dispersion term in Eq. (4) and derive the governing equation for

I = |Ψ|2, considering only stationary solutions. The resulting equation

I
(
1+ (I −ζ0)2)− f 2 = 0 (5)

1F = τph/TR = 2π ·FSR/κ≫ 1, where τph is the photon lifetime inside the microresonator, κ= 1/τph, TR is the
roundtrip time and the free spectral range (FSR) defined as FSR = 2π/TR . Finesse defines the number of roundtrips
one photon makes before decaying.
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is cubic in I ; hence, it has three solutions. Under low pump power conditions ( f 2 ≪ 1), there

is always one real and a couple of complex conjugate roots. However, for f 2 > 8
p

3/9, a region

with three possible real solutions appears (see red line in Fig. 3b) [53]. The upper and lower

branches are the stable solutions, while the middle one is unstable, resulting in the name

bistable region. Interestingly, this region almost covers the soliton existence range shown in

the stability chart in Fig. 3a (the edge of the bistable zone depicted as the dashed line). The

exact soliton existence range can be obtained via the Lagrangian pertubative approach, which

can be found in Ref. [48, 54] and in chapter 1.

Once the dispersion is taken into account, the resonance response shows additional features

(blue line in Fig. 3b). Before the bistable zone, the curve does not follow a smooth profile

anymore and shows a breaking point, followed by incoherent dynamics and oscillating and

constant behavior afterwards. Resolving the field along the azimuth coordinate ϕ as shown in

Fig. 3c, one can observe formation of pulses that we describe below.

Turing Rolls

First, in the vicinity of ζ0 ≈ 1, the continuous wave (CW) field breaks into several pulses known

as Turing rolls (or cnoidal waves) [16]. The main mechanism responsible for this behavior is

modulation instability (MI), which plays a major role in many Kerr nonlinear cavities with

anomalous dispersion (d2 > 0). Due to the four-wave mixing processes, photons from the

pump mode are converted into a couple of sidebands, forming a modulated field profile

shown in Fig. 3d. The modulation depth and period depend on the pump power, detuning,

dispersion value, and losses [55]. Increasing the pump power and detuning, these structures

can experience different instabilities [16, 51], but they can also emerge as a periodic train of

pulses, connecting them closely to single DKS and soliton crystals [56, 50].

Moreover, in most experiments involving frequency comb generation with microresonators, in

order to access the soliton state, the cavity is first excited in the Turing rolls regime. The optical

spectra of Turing rolls can be as large as DKS and achieve high conversion efficiency [57].

Due to these properties, these dissipative structures can be used as chip-scale optical hyper-

parametric oscillators (OPOs) [58, 59].

Chaotic States and Breathers

Since the LLE is an open system, stable structures exist only within a specific region of pa-

rameter space as dynamical attractors [38]. Outside of these regions, the generated structures

can experience different instabilities, such as Hopf or saddle-node bifurcations [60, 61, 62, 51].

The resulting field dynamics can be completely incoherent, as shown in Fig. 3c in the region

ζ0 ∈ (5,7) and in Fig. 3e, manifesting collisions between different pulses, or breathing, leading

to periodic oscillations of the generated structures (e.g., soliton breathers in Fig. 3f). In the

highly nonlinear regime, field dynamics becomes turbulent with positive Lyapunov expo-

7
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nents and can induce the appearance of rogue waves in such resonators [9, 63]. Despite its

unpredictable dynamics, chaotic states are found to be useful for soliton switching [64] and in

chaotic lidar [65].

Localized Structures

Tuning the laser frequency further beyond the chaotic states region results in the extraction of

several pulses that, if they are well separated, do not interact anymore and can coexist together

(see Fig. 3b,c,g). The exact form of these solutions is not known to date, however it can be

approximated using the Lagrangian perturbative approach [48, 54] as

Ψ=ΨCW +
√

2ζ0sech

(√
ζ0

d2
ϕ

)
e iφS , (6)

where sech is the hyperbolic secant, φS = arccos
p

8ζ0

f π is the DKS phase, andΨCW =p
I is the

lower branch of the CW solution of Eq. (5). The exponential in the latter yields the soliton

existence range as

ζmax = π2 f 2

8
. (7)

The Lagrangian approach proposes to treat the LLE as a perturbed NLSE, resulting in a soliton

solution close to the fundamental soliton in NLSE. However, the main difference here is that

the soliton exists on a CW background and propagates without any changes; this situation in

NLSE corresponds to the Kuznetsov-Ma breather – a soliton solution experiencing periodic

dynamics in time [11, 66, 67]. This difference is also encompassed by the non-preserved IST

spectrum introduced in Refs. [68, 69, 70], which shows that discrete eigenvalues identifying

the solitonic content indeed correspond to the Kuznetsov-Ma breather.

In the normal dispersion regime, the nonlinear dynamics of such cavities drastically differ

due to the different dynamics of MI. While in the anomalous dispersion case, the regime

of positive parametric gain can be readily achieved [53], for pure normal dispersion, the

MI gain lobes appear only in a narrow region of parameters and are very challenging to

observe [71]. As a result, chaotic dynamics similar to Fig. 3c,e do not occur, and soft excitation

(via external laser tuning through the MI region) of coherent structures remains challenging.

However, normal-dispersion cavities support dark solitons [53] (also known as platicons [72]

due to their flat top profile) that also exist in the cavity bistable region. Their existence is

ensured due to the coexistence of two CW solutions: lower and upper branch roots of Eq. (5)

interconnected via the so-called switching waves [73]. In practice, platicons are usually

generated in a system with mode-crossings that change the phase-matching condition and

facilitate the comb generation [74, 75]. It is also important to note that DKS and platicons

are related to each other, as shown in Ref. [76]. In this paper, the authors investigated the

dynamics of so-called zero-dispersion solitons, where 3rd order dispersion dominates over the

group velocity dispersion, and demonstrated that these solutions form a family of structures
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that include DKS in the pure anomalous and platicons in the pure normal dispersion regimes.

Concluding, microresonator frequency combs and DKS in particular have attracted significant

attention after their first discovery in 2014 [77] due to the possibility of generation coherent

and broadband microresonator frequency combs [15]. These properties resulted in novel

applications from distance measurements and telecommunication to neuromorphic optical

computing [78, 79, 80, 81, 82, 83].

Photonic lattices

With this thesis, we aim to extend the conventional single-resonator systems in two ways

that result in the photonic lattices: via creating synthetic dimensions [84] or a photonic

crystal of coupled microresonators [85]. Increasing the number of particles and creating new

dimensions in photonic devices are expected to provide a plethora of novel dynamical effects

with a fundamental and technological potential, which exploration both theoretically and

experimentally remains uncharted territory.

Synthetic Dimensions

The idea of unification of physical theories by using higher dimensional models beyond

the usual space-time paradigm has arisen in the early years of development of quantum

mechanics [86] and became an important precursor for modern unification theories [87].

However, investigation of effects presented in higher dimensions faces apparent challenges

related to the number of dimensions provided by conventional physical systems. Boada and

co-authors [84] have proposed to address these challenges by extending the well-established

quantum simulator platform based on cold atoms with an additional synthetic dimension. The

essence of the proposed idea was to encode an additional dimension into another degree of

freedom (atomic spin state in this case) in the way that effective Hamiltonian is analogues to a

higher-dimensional one.

Since then, the concept of synthetic dimensions has been extended and used in various

branches of physics [88]. It acquired special significance in photonics, where it provides

platform for exploring otherwise hardly accessible physical phenomena [89] and employment

of synthetic dimensions allows for the dimensional extension employing only internal degrees

of freedom of a system. This approach has been successfully applied to simulating particle ran-

dom walk [90], effects of Bloch oscillations [91], unidirectional invisibility and unconventional

reflection in parity-time symmetric systems [92], Anderson localization [93, 94], etc. Recently,

synthetic dimensions have been used in the studies of topological photonics [95, 96, 97]. Obser-

vation of a large variety of topological effects employing the synthetic frequency dimension has

been proposed theoretically [98, 99, 100] or realized experimentally [101, 102, 103, 104, 105].

Synthetic dimensions in photonics can be realized using different physical mechanisms [106].

For example, coupled oscillating waveguides [101], pair of coupled unequal loops [107] and
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Figure 4: Synthetic frequency dimensions. a) Schematics of a ring resonator with an electro-
optical modulator. b) One-dimensional synthetic crystal created under single tone modulation.
c) Corresponding cosine band structure represented as resolved cavity response as a function
of laser detuning and azimuth coordinate ϕ. d) Two-dimensional synthetic crystal created
under two-tone modulation. e) Corresponding band structure.

phase modulation inside a ring cavity [108] allows for encoding a synthetic dimension into

spatial discrete models, arrival time of pulses, and resonator modes, respectively. We will

refer to the latter case as synthetic frequency dimensions. It can be created by inserting an

electro-optical (EO) modulator into the ring resonator circumference [108, 109, 110]. Mod-

ulating intracavity field at a frequency equal to an integer number of free spectral ranges

(FSRs) (Fig. 4a), one can establish an effective photon flux between different optical modes

supported by the resonator. In the case of the nearest-neighbor coupling (single FSR modula-

tion) this system becomes similar to one-dimensional chain of identical atoms (see Fig. 4b).

However, in contrast to solid state physics, the modulated cavity modes play the role of a

direct space, whereas time acts as a reciprocal one. Hence, exciting a cavity with an external

laser which operates at a frequency ωp close to the resonant ω0 and measuring the intracavity

field response as a function of detuning ω0 −ωp , one can readily obtain a cosine-like band

structure of the chain [99] (see Fig. 4c). Furthermore, applying dual-tone modulation creates

an effective two-dimensional frequency crystal (Fig. 4d) with controllable coupling strength

(applied voltage) and phase flux (relative modulation phase) as introduced in the pioneer-

ing work by Dutt et al. [99]. Due to non-zero phase flux, the corresponding band structure

has non-reciprocal profile (Fig. 4e). Introducing an additional amplitude modulator opens

new possibilities in realization of non-Hermitian Hamiltonains with nontrivial controllable

topological band winding that can be controlled [111].

Resonator lattices

Arrays of optical waveguides and integrated on-chip microresonators that successfully emulate

different many-body Hamiltonians have opened new avenues for light control [112, 113, 114,

115, 116, 117]. In the context of nonlinear photonics, such lattices attract significant interest

due to the rich physics that remains to be explored, considering the wide range of dispersion

modifications and nonlinear interactions [118].
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Figure 5: Coupled resonator structure for efficient microcomb generation. a) Schematics of
two coupled resonators with different free spectral ranges. b) Integrated dispersion profile
with the tunable pump mode. c) Output soliton spectra for different mode displacements.

Recent advances in ultra-low loss nonlinear integrated platforms, particularly silicon ni-

tride [119, 120], have dramatically reduced the threshold for optical parametric oscillations.

As a result, dissipative coherent structures have been successfully generated in two coupled

resonators [121, 122, 123, 124, 125]. The spatial overlap of optical modes in both cavities

induces interaction between them, resulting in the frequency splitting. For example, Helgason

and co-authors proposed considering a system of two microresonators with different FSRs,

as depicted in Fig. 5a [124]. If the radius ratio of the rings is chosen correctly, the smooth

dispersion profile Dint acquires an additional mode crossing whose position and strength

can be controlled (see Fig. 5b). Therefore, pumping the system at the mode crossing with a

correctly adjusted mode shift results in the reproducible generation of DKS with high conver-

sion efficiency, allowing for the production of microcombs with high conversion efficiency

(see Fig. 5c). In the case of two coupled resonators with identical FSRs (Fig. 6a), each optical

mode begins to interact, resulting in the splitting of every optical mode in the integrated

dispersion profile, as shown in Fig. 6b. In such a system, Tikan and co-authors demonstrated

the generation of DKS (see Fig. 6c) and a variety of emergent nonlinear dynamics [122], such

as soliton hopping and recurrent dispersive waves.

As shown above, even the simplest case of two coupled resonators demonstrates rich and unex-

pected dynamics. Therefore, 1D and 2D lattices become even more attractive for investigation

of nonlinear processes and frequency comb generation. The history of 1D chains of resonators

began in 1999 with a theoretical paper on coupled resonator optical waveguides (CROWs) by

Yariv and co-authors [126]. In their paper, the authors developed the first idea of a photonic

band structure in such a system and discussed the corresponding group velocity, which can

be close to 0, opening an opportunity to create a slow light waveguide. Later, CROWs were

demonstrated experimentally and used as optical filters, delay lines, and for optical parametric

oscillators [85].

Adding more resonators and engineering the coupling between them creates an opportunity

to study effects of topological physics. For example, in topologically non-trivial lattices, light

can propagate through the whole system (i.e., excite the bulk modes), but also be localized

at the edges, exciting the edge states that are immune against various perturbations [95]. In
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2018, two papers on the theory of topological insulator lasers based on the Haldane model

and their experimental demonstration were published [113, 114]. In these works, the authors

demonstrated the superior laser efficiency of the edge states with respect to trivial ones, in

addition to the natural protection of the edge modes due to the topology against disorder. Kerr

comb dynamics in large lattices were largely unexplored due to computational and fabrication

challenges until the recent work by Mittal and co-authors [127]. In their work, the authors

considered the Haldane model with Kerr nonlinear resonators and demonstrated numerically

the formation of traveling edge state dissipative Kerr solitons. So far, this remains the sole

study addressing multimode optical ring cavities with Kerr nonlinearity, and there is still a

considerable gap in comprehending nonlinear interactions.

In this thesis, we aim to explore nonlinear dynamics, including four-wave mixing and the

formation of coherent dissipative structures, in different optical lattices, formed in synthetic

and real dimensions; thus, bridging the fields of Kerr frequency combs and collective dynamics

in arrays of microresonators. The first two chapters are devoted to the investigation of synthetic

frequency dimensions created by electro-optic phase modulation and periodic modulation of

dispersion of a single cavity. The second part, from chapters 3 to 7, covers lattices of coupled

resonators from the dimer configuration to the Su-Schrieffer-Heeger model.
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1 Synthetic frequency dimension in
electro-optic modulated cavities

This chapter reports on the investigation of nonlinear dynamics in a synthetic frequency crystal

created by an electro-optical modulator in a ring cavity. The results are partially adapted from

A. Tusnin et al., “Nonlinear states and dynamics in a synthetic frequency dimension,” Physical

Review A 102, 023518 (2020).

1.1 Introduction

Recently, synthetic dimensions in photonics attracted significant interest for investigation

complex Hamiltonians and band structures. However, the role of nonlinearity in such systems

dimension is hardly explored. This is of particular importance for simulating locally interacting

Hamiltonians [128, 129, 130] in complex many-body systems which are actively investigated

in the context of photonic quantum simulators development [88]. Yuan and co-authors have

proposed a scheme that employs Kerr nonlinearity to achieve the local interaction between the

simulated particles [129]. They have simulated a synthetic state governing by an effective Bose-

Hubbard Hamiltonian and successfully explored the photon blockade effect. Even though

this approach requires fulfillment of very restrictive conditions (such as zero dispersion and

conserved total number of photons, which restrains this study to low-power regime), it is

nonetheless very powerful since experimental platforms for realizing synthetic frequency

dimensions often include materials with nonzero χ(3) optical susceptibility.

The present chapter investigates the nonlinear dynamics in a dispersive cavity withχ(2) andχ(3)

optical susceptibilities where voltage-induced phase modulation creates a synthetic frequency

dimension. Starting from the coupled-mode formalism, we derive mean-field Gross-Pitaevskii

equation with a cosine potential which describes nonlinear dynamics of resonantly modulated

intracavity field in microresonators and fiber loop cavities [131]. We found that the modulation

leads to predictable dissipative Kerr solitons (DKSs) [77, 15] emergence and possibility of

generation soliton crystals on-demand [56, 132, 50]. We found that the modulation instability

(MI) becomes bounded by the curved bi-stability region. Surprisingly, with increasing of the

coupling rate, new stable coherent structures emerge in the MI region, which we call Band
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Chapter 1. Synthetic frequency dimension in electro-optic modulated cavities

Soliton. These states appear to be dispersionless which makes them of particular interest in

the context of synthetic frequency dimensions. Introducing a second tone to the intracavity

phase modulation, we effectively create a nontrivial geometry which enables a nonreciprocal

photon transfer [99]. This leads to the coexistence of stable coherent and chaotic regions

which we interpret as chimera-like states [133]. Our results highlight the rich Physics that can

be accessed in synthetic dimensions with cubic nonlinearity.

1.2 Theory

We consider an optical ring coupled to a bus waveguide with external coupling rate κex

(Fig. 1.1(a)). The cavity excited by a monochromatic laser with photon flux sin = √
P/ħωp

(P is the input power) and frequency ωp , which is close to resonance frequency ω0. We

suppose the modes being not equally spaced due to the dispersion, so the mode frequency

(ωµ) depends on the mode number (µ) asωµ =ω0+D1µ+µ2D2/2, where D1/2π equals to FSR,

and D2 characterizes the group velocity dispersion (GVD) (Fig. 1.1(f)). A synthetic frequency

dimension is created by an EO modulator at one part of the ring with modulation frequency

Ω= sD1 with s ∈N [106]. If modulator consists of χ(2) active material, then it changes locally

refractive index n(φ, t ) and provides with linear coupling between different modes, which can

be described by the equations of motion for the amplitudes aµ as (see Supplementary Note 1

in Ref. [99]),
∂aν(t )

∂t
=−iωνaν(t )+ i

∑
µ

Jµ−ν(t )aµ(t ). (1.1)

Let us suppose that the coupling coefficient does not depend on µ and depends harmonically

on time as Jµ−ν = Js cos(Ωt +θ), whereΩ is the modulation frequency and θ is the modulation

phase. Under the transformation into rotating frame (aν = bνe−iωνt ), the equation reads

ḃνe−iωνt = i

2

∑
µ

Jsbµe−iωµt (e iΩt+iθ+e−iΩt−iθ) (1.2)

(ḃµ indicates time derivative). Supposing that we pump the resonator near to frequency ω0

such that

ωµ =ω0 +µD1 +D2
µ2

2
, (1.3)

and modulation frequencyΩ is chosen asΩ= sD1, where s is an integer, the RHS of Eq. (1.2)

incorporates two exponentials

ωµ+ sD1 −ων = D1(µ+ s −ν)+ D2

2
(µ2 −ν2), (1.4)

ωµ− sD1 −ων = D1(µ− s −ν)+ D2

2
(µ2 −ν2). (1.5)
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Figure 1.1: Dynamically modulated optical cavity with χ(2) and χ(3) susceptibilities. (a)
Optical cavity with an integrated EO (electro-optical) modulator. The modulation frequency is
integer number of FSRs (free spectral ranges): Ω= sD1, where s ∈N. Due to the modulation,
modes with frequencies ωµ and ωµ+s become coupled with coupling strength Js creating
a synthetic lattice. A(ϕ, t) represents slowly varying envelope of the interactivity field in
the rotating frame ϕ = φ−D1t , where φ is the polar angle. (b) Schematics of the lattice
with the nearest neighbor coupling (s = 1). (c) Corresponding cavity field response with
J1 = 10κ/2, which represents the band structure. (d,e) the same as (b,c) but in the case of
dual-tone modulation with relative phase θ = π/2 and J2 = 0.45J1. (f ) Displacement of the
cavity resonance (in blue) from their exact equidistant positions (black dotted lines) due to the
presence of dispersion. (g) Conventional nonlinear dynamics in a Kerr optical microresonator
with anomalous group velocity dispersion.
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Chapter 1. Synthetic frequency dimension in electro-optic modulated cavities

Therefore, the resonant interaction appears between modes µ= ν± s, and the equation 1.2

simplifies to

ḃν = i Js

2

(
e iθbν+se−i

D2 s
2 (2ν+s)t +e−iθbν−se i

D2 s
2 (2ν−s)t ). (1.6)

Now we aim to find the corresponding equation of the cavity field. In optical cavity the field

envelop may be presented as Fourier series

A(φ, t ) =∑
µ

aµe iµφ =∑
µ

bµe i (µφ−ωµt ). (1.7)

Taking the time derivative, one obtains

Ȧ =∑
µ

(ḃµ− iωµbµ)e i (µφ−ωµt ). (1.8)

Let us consider only the first term. Substituting Eq. (1.6) yields

∑
µ

ḃµe i (µφ−ωµt ) = i
∑
µ

e i (µφ−ωµt ) Js
(
aµ−se i

D2 s
2 (2µ−s)t+iθ+aµ+se−i

D2 s
2 (2µ+s)t−iθ). (1.9)

One may readily rearrange the exponentials relations

ωµ−s =ωµ− sD1 + D2

2
(s2 −2µs)

ωµ+s =ωµ+ sD1 + D2

2
(s2 +2µs),

and the summation yields that modulation creates a potential for the electric field

Js cos(φs − sD1t +θ). (1.10)

Therefore, in the frame ϕ rotating with speed D1 such that ϕ=φ−D1t , electric field obeys the

following equation

Ȧ = i Js cos(sϕ+θ)A. (1.11)

This result, combined with the Lugiato-Lefever formalism for Kerr combs in optical cavi-

ties [14], gives the equation the mean field equation for driven-dissipative nonlinear cavity

with resonant modulation that can be presented as

∂A

∂t
=−

(κ
2
+ iδω

)
A+ i D2

2

∂2 A

∂ϕ2 +2i Js cos
(
sϕ+θ)

A+ i g0|A|2 A+p
κexsin. (1.12)

In the normalized units, the equation takes form

∂Ψ

∂τ
=−(1+ iζ0)Ψ+ i d2

∂2Ψ

∂ϕ2 + i |Ψ|2Ψ+ i J cos(sϕ+θ)Ψ+ f , (1.13)
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Figure 1.2: Bi-stable branches and DKS (dissipative Kerr soliton)/platicon-existence range.
(a) Value of the discriminant∆ (Eq. (1.15)) for coupling rate J = 3 and pump f 2 = 6 as a function
of ζ0 and ϕ; (b) and (c) intracavity field in the case of anomalous and normal GVD (group
velocity dispersion), respectively. Black solid lines represent value ∆ = 0 and indicate the
bi-stable zone. A novel dynamics is observed in chaotic regime: MI (modulation instability)
does not penetrate the bi-stable region. Soliton existence range is almost covered by the
bi-stable region at ϕ= 0. (d) Bi-stability range at ϕ= 0 for coupling values J = 0 (solid), J = 3
(dashed), and J = 6 (dot-dashed). With increase of coupling J , the bi-stable zone shifts into
the effectively red detuned region (ζ0 > 0) preserving its width. (e) Amplitude (solid blue) and
phase (dashed red) profiles of DKS for detuning ζ1 = 6.3 (dashed lines on (b,c)).(f ) The same
in the case of normal dispersion.

where normalized variables τ = t/τph, τph = 2/κ is photon lifetime, d2 = D2/κ, ζ0 = 2δω/κ,

δω = ω0 −ωp , J = 2Js/κ, f =
√

8κex g0/κ3sin, Ψ = √
2g0/κA, κ = κex +κ0, κ0 is intrinsic loss

rate, g0 is single-photon Kerr frequency shift, A describes the optical field envelope and

normalized such that
∫ 2π

0 |A|2dϕ/2π is the number of photons inside the cavity.

Let us begin with the analysis of stable solutions in the dispersionless limit (d2 = 0). Introduc-

ing I = |Ψ|2, one can readily derive the cubic equation(
1+ (

I + J cos(sϕ)−ζ0
)2

)
I = f 2. (1.14)

The roots of this equation can be analyzed through its discriminant ∆. Since the cubic equa-

tion (1.14) is written for real value |Ψ|2, the solution has to be real as well. However, it is well

known that a cubic equation always possesses three roots, and they are characterized through
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Chapter 1. Synthetic frequency dimension in electro-optic modulated cavities

its discriminant ∆. In our case, the discriminant has the following form

∆=−27 f 4 −4(1+ζ2
0)2 +4 f 2ζ0(9+ζ2

0)+4J cos(sϕ)×

×
[
−3 f 2(3+ζ2

0)+4ζ0(1+ζ2
0)− J cos(sϕ)×

×
(
2−3 f 2ζ0 +6ζ2

0 + J cos(sϕ)
(

f 2 −4ζ2
0 + J cos(sϕ)

))]
. (1.15)

Solving the equation ∆ = 0, we find values f 2 and ζ0 which determine the bi-stable zone.

Depending on the sign of ∆, there are three scenarios for solutions of Eq. (1.14): if ∆< 0 there

is one real root and two complex conjugated roots, if ∆= 0 roots are real and at least two of

them are equal, if ∆> 0 roots are real distinct numbers. Thus, negative (positive) discriminant

corresponds to mono-stable (bi-stable) solutions, and in order to determine the bi-stability

zone one needs to find f 2 and ζ0 such that the discriminant equals to zero. Since Eq. (1.14)

explicitly depends on ϕ, the discriminant becomes ϕ dependent, therefore different spatial

parts of the cavity are found at different parts of the stability diagram at the same value of laser

detuning (see Fig. 1.2(a)). The threshold value f 2 which corresponds to the triple real root of

Eq. (1.14) can be obtained analytically, and it equals to f 2
mi n = 8

p
3/9, which coincides with

the critical value for the resonance tilt for LLE [53]. Remarkably, this result does not depend

on ϕ, despite the ϕ dependence of Eq. (1.14).

1.3 Numerical simulations

1.3.1 Dynamics of dissipative solitons and platicons

For further analysis we consider the case s = 1. In Fig. 1.2(a) we show the values of the

discriminant ∆ as a function of ϕ and ζ0 for pump rate f 2 = 6 and coupling J = 3. As one can

see, the presence of the potential leads to bending of the bi-stable zone in a way, that for a

given detuning the system can be simultaneously on the mono-stable and bi-stable branches.

With increasing of coupling strength J , the bistability zone bends further and goes deeper into

the effectively red detuned region (ζ0 > 0) (see Fig. 1.2(a)).

We continue the further analysis by performing numerical simulation of GPE (1.13), taking

d2 = ±0.01 and scanning the cavity from blue- (ζ0 < 0) to red-detuned side. We employ

numerical integration utilizing the split-step Fourier method [29]. The positive (negative)

value of d2 corresponds to anomalous (normal) dispersion regimes. We analyze these cases

separately.

Anomalous dispersion.We observe that the presence of the potential in GPE (1.13) breaks the

translational symmetry along ϕ coordinate and leads to confinement of the MI region [133].

We observe that chaotic patterns do not penetrate into bi-stable zone, and DKS appear at

20



1.3 Numerical simulations

the center of the cavity (Fig. 1.2(b)). The latter might be qualitatively understood through

the analysis of the steady-state dispersionless linear solution, which can be considered as a

background for the dissipative nonlinear structures in the cavity. The intracavity field can be

expressed as

Ψ= f

1+ i (ζ0 − J cos(ϕ))
. (1.16)

Depending on normalized detuning, the field intensity has one (ζ0 > J , ϕ0 = 0) or two (ζ0 < J ,

ϕ± =±arccosζ0/J) maxima. When the modulated background has only one peak, a single

DKS can be formed on it. Numerical simulations show that the DKS appears on the peak of the

modulated background in the bi-stable region (Fig. 1.2(b)) [134]. The width of this region as a

function of f 2 and J can be calculated analytically, and we present it in Fig. 1.2(d) for coupling

rates J = 0, 3, 6. Surprisingly, this zone simply shifts into the effectively red-detuned region

linearly with J , and the critical detuning for f 2
min is

ζmin =p
3+ J . (1.17)

In order to calculate the soliton existence range, we employ the Lagrangian perturbative

approach [48, 54]. First of all, we introduce the change of variable Θ = 1/
√

2d2ϕ to the

equation (1.13). Thus, the equation for the Lagrangian density can be written as follows:

L = i

2

(
Ψ∗ ∂Ψ

∂τ
−Ψ∂Ψ

∗

∂τ

)− 1

2

∣∣∣∂Ψ
∂Θ

∣∣∣2+

+ 1

2
|Ψ|4 + (J cos(αΘ)−ζ0)|Ψ|2, (1.18)

where α= 2d2. The dissipative function is introduced in the form:

R =−iΨ+ i f . (1.19)

The Lagrangian L = ∫
L dΘ obeys:

∂L

∂qi
− d

dτ

∂L

∂q̇i
=

∫ (
R
∂Ψ∗

∂qi
+R∗ ∂Ψ

∂qi

)
dΘ. (1.20)

Using the ansatz of a stationary soliton Ψ = Bsech(BΘ)e iφS , we integrate it over Θ on the

interval (−∞,+∞) (under the assumption D2/κ≪ 1). As a result, the Lagrangian takes form

L =−2B
∂φS

∂τ
+ 1

3
B 3 −2BφS + Jαπ

sinh
(
απ
2B

) . (1.21)

The right hand side of Eq. (1.20) is not affected by the presence of the potential and coincides
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Chapter 1. Synthetic frequency dimension in electro-optic modulated cavities

with Refs. [48, 54]. Considering q1 = B and q2 =φS in Eq. ( 1.20), we get

dB

dτ
=−2B +π f cosφS , (1.22)

dφS

dτ
= 1

2
B 2 −ζ0 + Jδ2 coshδ

sinhδ

1

sinhδ
, (1.23)

where we define δ = απ/2B . Considering α≪ 1 and using Tailor expansion we obtain the

stable solution

B 2 = 2(ζ0 − J ), (1.24)

cosφS = 2B

π f
. (1.25)

From the latter we obtain the analytical expression of the maximum detuning for stable soliton

in the presence of nearest-neighbor coupling

ζmax =π2 f 2/8+ J . (1.26)

This result generalizes the known expression for the soliton existence range to single-tone EO

modulated cavity. Similarly to bi-stable zone, the maximum detuning ζmax simply shifts by J .

Increasing the modulation frequency (i.e. increasing of s in Eq. (1.13)) leads to period multi-

plication of the modulated background and allows for creating soliton crystals [56, 50] with s

equally spaced DKSs. Alternatively, applying several modulation signals and having control of

the modulation phase, one can control positions and the number of DKS in the cavity, which

enables controlled soliton tweezing [134], and as shown later, leads to a new dynamics.

Normal dispersion.In the context of the conventional LLE with normal GVD (d2 < 0), the

dark solitons (also called platicons) are hard to excite by simple laser tuning (soft excitation)

for relatively small detunings and pump rates [53]. In order to create them, one needs to

use additional methods, such as pumped modulation [72], or pumping in the avoided mode

crossings [74, 135]. In this context, EO modulation provides with an effective flux of photons

from the pumped resonance to sidebands, making platicons accessible without additional

perturbations. In Fig. 1.2(c) one can see platicon generation in the resonantly modulated

cavity. In contrast to the DKS, the platicons appear only when one part of the cavity passes the

whole bi-stable region; however, Fig. 1.2(d) can still indicate approximate platicon existence

range.

1.3.2 Confined MI region

Let us restrict our consideration for the case of anomalous GVD (d2 > 0). In the conven-

tional LLE formalism, in order to generate DKS via the soft excitation, one needs to scan
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Figure 1.3: Dynamics of the confined MI (modulation instability) region in the presence
of potential. (a-c) Spatio-temporal diagrams of the intracavity field for f 2 = 6, ζ0 = 1.28.
Coupling J = 3 corresponds to (a), J = 6 (b), and J = 9 (c). (d-f ) Corresponding NDR (nonlinear
dispersion relation) which represents effective nonlinear dispersion relation of the system.
One can notice how the dispersion relation transforms with increase of J . For J = 3 the system
consists of constantly appearing and colliding dispersionless structures (lines with opposite
slopes in (d)) which radiate dispersive waves (parabola in (d)), for J = 6 (b,e) the field oscillates
as a whole and forms a ladder in the NDR profile, which indicates periodic breathing in time.
Further increase of J (c,f ) transforms the field into dispersionless stable dissipative structure.
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the resonance through the MI region. In this region, coherent structures randomly appear

and collide with each other, and may give birth to rogue waves [136]. However, due to the

modulated background, the nonlinear structures appear and interact at different parts of the

resonator differently (Fig. 1.3(a-f)). In order to investigate the role of coupling J , we explore

spatio-temporal diagrams at a fixed pump rate, detuning and coupling rate and its nonlinear

dispersion relation (NDR). First of all, we chose simulation parameters as in Fig. 1.2(b), but

with fixed detuning ζ0 = 1.3. On the spatio-temporal diagram Fig. 1.3(a) one can see how

nonlinear structures periodically arise and oscillate in the vicinity of background maxima

ϕ±, propagate towards the maximum of the background phase at ϕ≈ 0 (red dashed line in

Fig. 1.4(b)) and annihilate. There are several distinct structures on the corresponding NDR

(Fig. 1.3(d)): the periodic lines along the slow frequency axis with opposite slopes correspond

to the colliding structures which locally have conventional DKS (dissipative Kerr soliton)

profile; the parabola corresponds to dispersive waves which are emitted by the breathing

DKS on the background. With increasing of the detuning these structures come closer, get

smaller group velocity, and interact more chaotically while the field in the vicinityϕ=±π rests

unperturbed. Thus, we observe that for relatively small coupling rates the potential leads to

confinement of the MI (modulation instability) state.

However, with increasing coupling strength (J = 6, 9), we observe how this constantly inter-

acting solitons are transformed into a new stable dispersionless structure (Fig. 1.3(b,c,e,f)).

For coupling rate J = 6, we observe that the field starts to periodically oscillate in time. The

corresponding NDR consists of a ladder of lines, which signifies the appearance of a new

dispersionless breathing structure. Further increasing of the coupling (J = 9) stabilizes this

structure, it becomes coherent and dispersionless. In the following sections we further explore

this novel state.

1.3.3 Band Soliton

With increase of coupling strength J , we observe that the MI region is getting stabilized at

a certain detuning range, and new stable (i.e. coherent) nonlinear structures emerge. In a

linear dispersionless case with the nearest-neighbor coupling (s = 1), the intracavity field

response for different detunings represents a band structure of a one-dimensional synthetic

crystal. However, the presence of FWM introduces global nonlinear coupling between the

modes, which efficiency is given by the chromatic dispersion. The latter signifies that the

eigenfunction basis (see Ref. [99]) is modified, and the intracavity field response can no longer

be considered as a band structure.

The Fig. 1.4(a) demonstrates this difference: the deterministic dispersionless response (see

upper right inset) transforms into a complex structure, which contains localized chaotic and

stable states. However, the notion of band structure remains important even in the nonlinear

regime [137, 138]. We observe that there is a threshold value of J for a given pump rate f

when the novel coherent structures appear. Comparing nonlinear response (Fig. 1.4(a)) with
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corresponding cavity response (upper right). Horizontal line corresponds to detuning ζI = 4,
for which we examine field and spectrum profiles (b-e). (b) Linear field intensity (solid blue
line) and phase (dashed red line). (c) Linear field spectrum without dispersion (solid blue
line) and with dispersion d2 = 0.01 (dotted green line). (d) Nonlinear field intensity (solid
blue line) and phase (dashed red line). (e) Nonlinear field spectrum (solid blue line) and
corresponding linear spectrum with dispersion (dotted green line). (f-h) Phase diagrams for
coupling strengths J = 0, J = 6 and J = 9. The red zone corresponds to continuous wave;
the yellow zone indicates the confined MI (modulation instability) state; the green zone
corresponds to the soliton existence range, which is predicted analytically. The dashed line
indicates the end of the bi-stable region. The dark green region depicts DKS breathers. The
blue zone indicates existence range of band solitons, a new type of dissipative coherent
structure that appears in a conventional (J = 0) chaotic MI region.
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Chapter 1. Synthetic frequency dimension in electro-optic modulated cavities

dispersionless linear one (inset in the Fig. 1.4(a)), we notice that these structures emerge in the

center of the band structure, thus we call them band solitons. In analogy to solid state physics,

we can introduce the notion of synthetic Bloch waves (BW) [99], existing in the frequency

space. Their group velocity reaches its maximum in the part of the band structure with the

highest slope steepness. The latter signifies that the stable nonlinear states appear due to

the interplay between FWM and linear BW. When the coupling strength is smaller than the

threshold value, linear waves do not have sufficient velocity to redistribute perturbations

induced by FWM. This regime corresponds to the confined MI. However, when the coupling

strength exceeds the threshold value, the group velocity of the BW in the center of the band

increases as well, and the BW can propagate faster along the frequency space and redistribute

perturbations induced by FWM, leading to locking between the modes and the emergence of

new coherent states. This reasoning can also be applied to the explanation of the conventional

DKS states existence. As we have shown in previous sections, DKS appears exactly at the top of

the band structure, where the group velocity of the BW equals to zero; hence the photon flux

from the pump is provided only due to FWM, and the synthetic BWs do not affect this process.

Due to this fact, this soliton corresponds to conventional soliton in optical χ(3) microcavities.

Now we investigate the field’s amplitude, phase and spectrum at ζI = 4 (Fig. 1.4(d,e). In the

linear dispersionless case, the solution can be found analytically (Eq. (1.16)), and the field

incorporates two maxima (Fig. 1.4(b)). Corresponding spectral profile (Fig. 1.4(c), solid blue

line) decays exponentially with mode number µ, showing that the coupling rests the same

for all the modes. Dispersion shifts the modes, decreasing coupling efficiency for higher-

order modes and leading to truncation of the spectrum and emergence of a conventional EO

comb (green dots on the Fig. 1.4(c,e)) [139]. However, FWM shifts the resonances, enhancing

coupling between the modes by restoring translational symmetry in the frequency space (see

Fig. 1.4(e), solid blue line). The spectrum of this new state incorporates a flat part near the

pump (at −10 dB level) and decays slower than the EO comb, which signifies the restored

coupling between the modes beyond the cut-off [139, 140, 141].

In order to investigate stability of these states, we scan the cavity for different pump rates and

coupling strengths. In Fig. 1.4(g,h) we present the phase diagram for single-tone modulation

with coupling strengths J = 6 and J = 9 respectively and compare it with the conventional LLE

model (Fig. 1.4(f)). The presence of the potential significantly changes the system dynamics,

especially the MI region has new features. Band solitons emerge in a region around ζ0 = 0. With

increasing J , their existence range increases along both axes. One can notice that this existence

range is asymmetric, while in the linear case the band structure is symmetric (Fig. 1.4(a) upper

right inset). However, FWM induces self-phase modulation, leading to the frequency shift

towards the effectively red-detuned zone, and the whole band obtains an offset from ζ0 = 0.

The band solitons transform to conventional EO combs at the low pump rates when FWM

process becomes negligible. With increase of the pump rate, the band solitons start to breath,

become unstable and transform to confined MI. Since the transition from the breathing state

to the chaotic one is smooth, we joined these regions and labeled them as confined MI in

Fig. 1.4(g,h) (note, we do not indicate here a narrow region of stable MI, which always manifest
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1.3 Numerical simulations
N

o
rm

a
liz

e
d
 d

e
tu

n
in

g
, 
ζ 0

0

20

10

0

10

20

0
0

300

T
im

e
,

p
h

64 0 64
Relative mode number

I
I

0.0 2.5 5.0
0.01

0.1

10

P
D

F 
(
I I

)

...

...

...

...

J1

J2
θ θ θ

Intensity, 10 dB/div Spectral power, 10 dB/div

S
lo

w
 f

re
q
u
n
e
n

cy
,

 a
rb

. 
u
n
it

s

ζII

(a)

(b) (c)

(d)1

2

1 2

Figure 1.5: Appearance of chimera-like states in the case of dual-tone modulation. (a)
Intracavity field for potential J

(
cosϕ+0.45cos(2ϕ+θ)

)
, coupling strength J = 9 with relative

phase θ = π/2 and f 2 = 9. Insets: corresponding schematics of lattice (upper left) in linear
case without dispersion and the cavity response (upper right). Horizontal line corresponds
to detuning ζII = 1.9, for which we examine spatio-temproal diagram (b), NDR (nonlinear
dispersion relation) (c). (d) Single point PDF (probability density function) of the normalized
intensity for two intracavity coordinates ϕ1 =−1.4 (blue) and ϕ2 = 1.8 (red). Black solid line
corresponds to exponential PDF exp− I

〈I 〉 .

itself at negative values of detuning). This region appears to be wider than MI region in the

conventional LLE model (Fig. 1.4(f)).

1.3.4 Chimera-like states

Using two modulation frequencies and controlling the relative phase between them, one

introduces a two-dimensional synthetic lattice [99] in the frequency space (Fig. 1.5(a) upper

left inset). The phase flux between the nodes can be controlled in this arrangement by the

relative modulation phase. In particular, one can obtain asymmetric band structure intro-

ducing nonreciprocal frequency conversion (Fig. 1.5(a) upper right inset) [99]. We investigate

nonlinear dynamics for a dual-tone modulation corresponding to the effective potential

J
(

cosϕ+0.45cos(2ϕ+θ)
)

with coupling J = 9 and the relative phase θ = π/2. Nonrecipro-

cal photon flow introduces a significant asymmetry in the corresponding spectral profile

(Fig. 1.5(c)) [142]. However, in contrast to the single tone modulation, it is possible to find a

region where one side of the band structure is almost flat while another one has a maximum

of its slope (ζ0 ≈ 2 in Fig. 1.5(a)). Therefore, for certain coupling rates fully chaotic dynamics

manifests itself in a part of the cavity where the synthetic band structure slope (and hence the

photon flow due to the linear BWs) is small, while another side can support a novel coherent

band soliton existence. A similar intriguing feature was recently observed in systems with

local coupling [56, 133]. Following these works, we refer to the observed phenomenon as

chimera-like state.
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Chapter 1. Synthetic frequency dimension in electro-optic modulated cavities

In order to investigate the chimera-like state, we extract the complex field envelope at the

detuning value ζI I = 1.9 (black dashed line in Fig. 1.5(a)) and numerically propagate fixing

all the parameters. The dynamics of the field modulus is shown in Fig. 1.5(b). Nonreciprocal

photon transfer breaks the underlying symmetry of the system which also follows from the

NDR (see Fig. 1.5(c)). Computing the single point probability density function (PDF) of

the intensity variation I /〈I 〉 (〈I 〉 is averaged intensity in time) in coherent (ϕ1 = −1.4) and

incoherent (ϕ2 = 1.8) regions using 3×105 samples, we show that the PDF atϕ2 approaches the

exponential (i.e. Gaussian distribution for the real part of the field) which can be considered

as a signature of a fully developed MI stage [136] (also [143, 144]), while at ϕ1 it is close to the

delta-like distribution. Such states have no counterparts in DKS-based on χ(3) and single-tone

driving.

1.4 Conclusion

In summary, we proposed a theoretical model which describes nonlinear dynamics of a

modulated optical cavity with χ(2) and χ(3) optical susceptibilities and second order GVD. We

have shown that in the linear dispersionless limit the model describes the physics of a ring

with a synthetic frequency dimension. Considering the dynamics of the full model, we found

that despite the presence of GVD which breaks the translational symmetry there are coherent

dispersionless structures for which the coupling remains resonant. There are two types of

structures we have observed. First is found in the region of zero group velocity of the synthetic

Bloch waves. They correspond to conventional DKS solutions of LLE but living on a modulated

background. Applying different modulation signals, one can directly control the background

modulation, hence control number and positions of DKS, making soliton crystals and soliton

tweezing readily accessible. The second type of the structures is found at the maximum of

the synthetic Bloch waves group velocity. Coherence of these novel structures, that we called

Band Solitons, relies on the efficient photon transfer due to the linear mode coupling and Kerr

nonlinearity which compensates the effect of dispersion. Therefore, such structures can be

considered as nonlinear states in the synthetic frequency dimension. We generalized this result

by including far neighbor coupling (double-tone modulation) into the model. We found that

due to the nonreciprocal photon transfer the symmetry of the system is broken which leads to

the coexistence of stable coherent structures and chaos. We interpret these as the appearance

of chimera-like states in the system.

We would like to emphasize that the proposed model can be used for further investigation of

the synthetic frequency dimension as well as for simulations of EO combs in χ(2) resonators. It

can be readily generalized for an arbitrary dispersion profile, which can incorporate either

higher order dispersion D3, D4, or avoided mode crossings. Also, the potential of this model

in the investigation of nonlinear effects in the synthetic frequency dimension in resonator

lattices is of high interest. For example, by simulating a set of coupled GPE, one may explore

the nonlinear dynamics of topological states, that can be created by changing the relative

modulation phase of each ring.
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1.4 Conclusion

As a physical platform for the model one can consider a high-Q optical microcavity with χ(2)

and χ(3) optical susceptibilities. With recent success in fabrication process, it has become pos-

sible to create optical cavities based on lithium niobate [145, 139] or aluminum nitride [146], as

well as gallium phosphide [147] photonic platforms. These materials are of particular interest

because they possess both quadratic and cubic susceptibilities, and it has been successfully

used for generation of Kerr-based [145, 148], EO-combs [139], and Pockels soliton [146].

In addition to the integrated platforms, our model was experimentally verified in a fiber loop

cavitiy with an EO modulator in Ref. [149]. Through their research, the authors successfully

experimentally demonstrated the emergence of the confined modulation instability region

that we observed in Fig. 1.3b together with the generation of dissipative Kerr soliton in the stop-

band of the synthetic band structure. Moreover, the authors investigated Bloch oscillations in

the soliton regime by intentionally detuning the EOM frequency from the cavity’s free spectral

range.
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2 Synthetic frequency dimension in a
dispersion-modulated resonator

This chapter reports on the investigation of optical frequency combs and two-dimensional

four-wave mixing processes in dispersion-modulated cavities. The results are partially adapted

from M. Anderson et al, “Dissipative solitons and switching waves in dispersion-modulated

Kerr cavities," Physical Review X 13, 011040 (2023).

2.1 Introduction

To achieve sufficiently low propagation losses, high-Q microresonators usually require wide

waveguides that possess not only the fundamental mode, but also a set of high-order optical

modes. Their excitation often obstructs the formation of coherent structures; therefore, to

avoid their influence on the comb generation, one can introduce a so-called mode filtering

section [150]. This section is a narrow single-mode segment of the resonator which acts as a

loss channel for higher-order modes (schematically shown in Fig. 2.1a). However, with the

narrowing waveguide’s width, the fundamental mode experiences a change in the refractive

index, resulting in the modification of the integrated dispersion profile, creating a dispersion-

modulated cavity. Remarkably, such modulated systems have been studied (predominantly

in fiber resonators) in the context of the competition between the Faraday instability and

conventional modulation instability [151, 152, 153]. It has also been shown that the periodic

modulation leads to resonant dispersive wave emission [154].

In this chapter, we propose to treat the parametric processes in dispersion-modulated cav-

ities in a two-dimensional setting from the synthetic frequency dimension perspective. In

contrast to the previous chapter, there is no need in additional elements (e.g., electro-optical

modulator), and the additional dimension is created via changing one of the parameters of

the cavity – waveguide width. This periodic modulation induces Floquet dynamics inside the

cavity and results in the creation of an additional synthetic frequency dimension, which is

reciprocal to the temporal axis of the resonator dynamics. We demonstrate, that the integrated
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Chapter 2. Synthetic frequency dimension in a dispersion-modulated resonator

Figure 2.1: Dispersion-modulated microresonator. (a) Schematics of the microresonator
with varying width of the waveguide. (b) Integrated dispersion profile and schematics of
photon interactions in case of sinusoidal dispersion modulation. Grey solid line – initial
dispersion of the resonator; grey dashed (dot-dashed) line corresponds to the dispersion of
+ (−)1 Floquet order separated by D1; red lines represent the two-dimensional XPM four-wave
mixing processes (solid lines – interband XPM for n = 0, dashed lines – interband XPM for
µ= 0, dot-dashed lines – 2D XPM); blue lines – linear coupling between the nearest Floquet
orders that increases quadratically with comb index µ.

dispersion is translated along the Floquet axis with a constant period equal to one free spec-

tral range (FSR) and four-wave mixing processes occur between these bands in an effective

two-dimensional frequency lattice (see Fig. 2.1b). We analyze these processes and investigate

stability of continuous wave (CW) solution in the normal and anomalous regimes, describing

the modulation and Faraday instabilities.

2.2 Two-dimensional photon transfer

While propagating along the ring circumference, the optical mode experiences variations

in refractive index, resulting in periodic changes in group velocity dispersion. To capture

the non-linear behavior of the cavity, we employ an extended version of the Lugiato-Lefever

equation (LLE). This particular form of the LLE incorporates a dispersion term that varies

periodically in time [155] with a period Tr equal to the resonator round-trip time. In the

dimensionless units, the equation can be expressed as:

∂Ψ

∂t
=−(1+ iζ0)Ψ+ i [d (0)

2 +d2(t )]
∂2Ψ

∂ϕ2 + i |Ψ|2Ψ+ f (ϕ). (2.1)

Here,Ψ(ϕ, t ) represents the slowly-varying envelope of the optical field within the microres-

onator. The function f (ϕ) describes the driving force that can be CW or pulsed. The variable

ϕ corresponds to the azimuthal coordinate inside the cavity, observed from the frame moving

with the velocity d1 = 2D1/κ, where D1 = 2π/Tr denotes the distance between consecutive

resonator modes and 1/Tr is the free spectral range (FSR). The normalized laser detuning takes

form ζ0 = 2δω0/κ, while κ= κ0 +κex represents the total linewidth of the resonator, incorpo-

rating the internal linewidth κ0 and the coupling to the bus waveguide κex. The dispersion

coefficients d (0)
2 and d2(t ) are associated with the dispersion effect, where d (0)

2 as the averaged

resonator dispersion and d2(t) is the periodic modulation with period T = Trκ/2 = πκ/D1.
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2.2 Two-dimensional photon transfer

The time variable t is normalized by the photon lifetime, such that d (0)
2 = D (0)

2 /κ and t = t ′κ/2,

with t ′ representing real laboratory time. First, we suppose the driving function f (ϕ, t ) has a

period T . To find solutions for the fieldΨwith the symmetryΨ(t +T ) =Ψ(t ), we can utilize

the Fourier transform

d2(t ) =∑
n

d̃ (n)
2 e−i d1nt , (2.2)

Ψ(ϕ, t ) =∑
nµ
ψ̃nµe iµϕ−i d1nt . (2.3)

Consequently, we derive an effective two-dimensional equation that governs the Floquet

dynamics (note that for simplicity, we assume f to be constant, although the equation can be

readily generalized):

∂ψ̃nµ

∂t
=−(1+ i [ζ0 −nd1]+ i d (0)

2 µ2)ψ̃nµ−
− i

∑
m

d̃ (n−m)
2 µ2ψ̃mµ+ i

∑
n1,n2,n3
µ1,µ2,µ3

ψ̃n1µ1ψ̃n2µ2ψ̃
∗
n3µ3

δFWM +δn,0 f . (2.4)

In this context, the conservation law δFWM = δ(µ1 +µ2 −µ3 −µ)δ(n1 +n2 −n3 −n) governs

the 2D Four-Wave Mixing (FWM) processes in the fast (µ) - slow (n) frequency space as

schematically shown as red lines in Fig. 2.1b. Therefore, we can infer that the periodically

varying dispersion, which introduces a time-dependent dispersion term in the LLE, induces

coupling between distinct Floquet orders (n) of the intracavity field. Effectively, it leads to

a breathing with a multiple of FSR frequency. The coupling strength between the Floquet

bands scales quadratically with the comb index µ, resulting in the increased coupling rate for

higher mode numbers |µ| (see blue lines in Fig. 2.1b). As a result, periodic modulation of the

dispersion results in an effective dimensionality extension of the model: in addition to the fast

frequency (µ), the slow frequency with the grid defined by the Floquet orders (n) acts as an

additional orthogonal dimension. Due to the nonlinear (FWM) and linear coupling between

the Floquet bands, the photons can occupy different sites on the two-dimensional µ−n plane.

It is important to note the absence of dispersion along the n direction (i.e., the modes are

evenly spaced with a frequency spacing D1). This fact gives us hope for dissipative Kerr solitons

(DKS) and switching waves (SW) to be stable against transverse perturbations that are inherent

to the 2D NLSE [156, 157]. Even though, such statement for our systems requires a rigorous

proof, we still observe generation of stable SW and DKS as shown in details in Ref. [158].

In the actual devices, the resonator’s mode-stripping section is not just a simple sine function,

and the Fourier decomposition of the dispersion in Eq. (2.2) has many harmonics. In this case,

each Fourier amplitude d̃ (n)
2 corresponds to the coupling strength between Floquet orders

separated by n×FSR. However, for simplicity we consider the case of harmonic modulation

(presented in Fig. 2.1b), i.e., d̃ (1)
2 = d̃ (−1)

2 = ∆/2 and we neglect the higher-order terms by

assuming d̃ (n)
2 ≪ d̃ (1)

2 .
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Chapter 2. Synthetic frequency dimension in a dispersion-modulated resonator

2.3 Modulation instability

While the governing equation in the form of Eq. (2.4) helps to qualitatively understand the

properties of the system, we return to the original version of LLE (2.1) to quantitatively analyze

the modulation instability gain lobes on the n −µ plane. In the limit of harmonic modulation,

we are able to develop an analytical derivation and analyze the linear stability of the CW

background field. We assume the optical field ψ(t) = ψ0(ϕ, t) + ξ(ϕ, t), where ψ0(ϕ, t) is

a solution of Eq. (2.1) with an unmodulated dispersion term and the small perturbation

ξ(ϕ, t ) ≪ψ0(ϕ, t ) obeys the linearized equation

∂ξ

∂t
=−(1+ iζ0)ξ+ i

(
d (0)

2 +∆e i d1t +e−i d1t

2

) ∂2

∂ϕ2 ξ+ i (2|ψ0|2ξ+ψ2
0ξ

∗)+∆∂
2ψ0

∂ϕ2 cosd1t . (2.5)

Furthermore, we use ξ = A(t)exp iµϕ+B∗(t)exp−iµϕ as an ansatz to derive the coupled

mode equations for the modes A and B
∂A
∂t =−(1+ iζ0)A− i

(
d (0)

2 +∆ e i d1 t+e−i d1 t

2

)
µ2 A+ i (2|ψ0|2 A+ψ2

0B)+∆∂2ψ0

∂ϕ2 cosd1t ,
∂B
∂t =−(1− iζ0)B + i

(
d (0)

2 +∆ e i d1 t+e−i d1 t

2

)
µ2B − i (2|ψ0|2B +ψ2

0 A)+∆∂2ψ0

∂ϕ2 cosd1t .
(2.6)

Our next step to capture the 2D FWM processes consists in the assumption A =α0+α+ exp i d1t+
α− exp−i d1t , B =β0 +β+ exp i d1t +β− exp−i d1t , where the amplitudes obey

d

d t
Y=MY, (2.7)

where Y= [α0,α+,α−,β0,β+,β−]T and the matrix

M=



m00 −iµ2∆/2 −iµ2∆/2 iψ2
0 0 0 0

−iµ2∆/2 m11 0 0 iψ2
0 0

−iµ2∆/2 0 m22 0 0 iψ2
0

−iψ∗2
0 0 0 m∗

00 iµ2∆/2 iµ2∆/2

0 −iψ∗2
0 0 iµ2∆/2 m∗

11 0

0 0 −iψ∗2
0 iµ2∆/2 0 m∗

22


, (2.8)

where m00 =−(1+ iζ0)− iµ2d (0)
2 +2i |ψ0|2, y11 = m00 − i d1, and m22 = m00 + i d1. The eigen-

values λ j of this matrix help to analyze modulationally unstable solution: the real part Reλ j

represents the gain rate, and the imaginary part Imλ j reveals the phase-matching condition

for such solutions to be unstable. We analyze the eigenvalues λ j numerically as shown in

Fig. 2.2 for the cases of dominating anomalous (panel a) and normal (panel b) dispersion.

In both cases, Imλ j reflect the appearance of the dispersion parabolas in the Floquet bands

with ±1D1 offsets and their complex-conjugated counterparts due to the nonlinear term.

However, the parametric gain lobes drastically differ for these two dispersion regimes. In the

case of anomalous dispersion (Fig. 2.2a), there are three regions with positive gain. First region,

with the largest value Re(λ j ) appears due to the crossings of the dispersion parabola and its
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Figure 2.2: Eigenvalues of the matrix (2.8). (a) Anomalous dispersion, (b) normal dispersion.
Red (black) dots represent the parametric gain (frequency) of the modes α0, α+, α−, β0, β+,
β−. Blue solid lines show the integrated dispersion profile d (0)

2 µ2; dotted and dash-dotted
lines correspond to the integrated dispersion in for ±1 Floquet orders. Numerical values of
the parameters: d1 = 100, d (0)

2,anom = 0.005 =−d (0)
2,norm, ∆= 0.5d (0)

2,norm, f 2 = 20, ζ0 = 9.08.

conjugated counterpart from the same Floquet band. Effectively, this modulation instability

corresponds to the classical Turing instability with breathing frequency of one FSR. In other

words, this process is very similar to the XPM process in a single microresonator. In contrast,

the second region of the unstable modes appears due to the crossing between the parabolas

from 0th order Floquet order with the parabolas from ±1st bands. Since the frequencies of the

unstable solutions are separated by d1/2 from the pump mode (µ= 0), the temporal dynamics

of the pump mode with these sidebands would have period 2Tr , i.e., the field would go back

to its initial state every second roundtrip, experiencing period-doubling dynamics. This effect

is attributed to the Faraday instability (FI) and we further investigate it in detail. The crossings

of the parabolas from 1st and −1st bands gives rise to the third gain lobe, which has no off-set

from the pump mode. In the normal dispersion regime, there is no Turing instability and only

second and third regions are present, however the third region of the gain lobes does not have

positive values for the chosen parameters of pump f and detuning ζ0.

2.3.1 Faraday instability

In this section, we focus on the Faraday instability. To simplify the analytical treatment, we

reduce the dimensionality of the matrix (2.8), neglecting the solutions that are in-phase with

the pump mode, and consider only the oscillating modes, i.e., we assume A =α+ exp i d1/2t +
α− exp−i d1/2t , B = β+ exp i d1t/2+β− exp−i d1t/2. Effectively, we restrict ourselves to the
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Chapter 2. Synthetic frequency dimension in a dispersion-modulated resonator

period-doubling solutions. The resulting matrix takes form

M=


m00 −iµ2∆/2 iψ2

0 0

−iµ2∆/2 m11 0 iψ2
0

−iψ∗2
0 0 m∗

00 iµ2∆/2

0 −iψ∗2
0 iµ2∆/2 m∗

11

 , (2.9)

where m00 =−(1+ iζ0)− i d1/2− iµ2d (0)
2 +2i |ψ0|2 and m11 = y00 + i d1. This matrix has degen-

erate eigenvalues that read

λ1,2 =−1+ i

2

(
∆2µ4 +d 2

1 +4
(
d (0)

2 µ2 +ζ0

)2 +12|ψ0|4 −16|ψ0|2
(
d (0)

2 µ2 +ζ0

)
−

−4

√
|ψ0|4

(
4∆2µ4 +3d 2

1

)+ (
∆2µ4 +d 2

1

)(
d (0)

2 µ2 +ζ0

)(
d (0)

2 µ2 +ζ0 −4|ψ0|2
))1/2

(2.10)

λ3,4 =λ∗
1 . (2.11)

To find which comb indexes start to experience positive parametric gain, we need to look

for the roots of the expression under the square root in Eq. (2.10), i.e., we need to solve an

equation Im(λ1) = 0. The resulting expression is quite cumbersome and difficult to analyze.

However, we can write an approximate expression for the mode indexes µ≫ 1 separated far

away from the pump mode, neglecting terms ψ0 and ζ0 that are linked via the Eq. 2.1. The

resulting expression reads

µ≈±
√√√√ d1

2
√

(d (0)
2 )2 − (∆/2)2

≈=±
√

D1

D (0)
2

. (2.12)

This expression can be obtained from simpler considerations: one just needs to find an

intersection between the unperturbed dispersion prfoile with a conjugated parabola from

the 1st Floquet band, i.e., solve an equation d (0)
2 µ2 = −d (0)

2 µ2 +d1. However, analyzing the

eigenvalues we quantitatively prove that these sidebands are the result of phase matching

between the original 0th order parabola and the conjugated 1st order parabola. Additionally,

we can observe that sidebands appear further away from the pump with increasing modulation

depth ∆/d (0)
2 .

Next, we numerically investigate FI efficiency as a function of ∆/d (0)
2 . We fix the pump power

to f 2 = 15 and compute the maximal value of the parametric gain as a function of pump

detuning ζ0 for different modulation depths: ∆/d (0)
2 = 0.1, 0.3, 0.5, 0.7 as depicted in Fig. 2.3.

For the chosen pump power, the CW solution ψ0 follows the famous tilted resonance curve

with bi-stable behavior. In the bi-stable regime we choose the stable solution with highest

amplitude; therefore, one can observe the edge of the bi-stable region - a diagonal line in

Fig. 2.3. The instability tongues that form above this line appear due to the higher amplitude

of the value ψ0 and can have positive values of the parametric gain, while the region below

this line is computed always for the small values ofψ0 that are already out of the resonance. In
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Figure 2.3: Maximum Faraday instability gain as a function of pump power and detuning for
different modulation depths. (a)∆/d (0)

2 = 0.1, (b)∆/d (0)
2 = 0.3, (c)∆/d (0)

2 = 0.5, (c)∆/d (0)
2 = 0.7.

The colormaps are centered at max
(
Re

(
λ j

)) = 0 to visually distinguish the borders of the
unstable regions. Simulation parameters are the same as in Fig. 2.2, but pump power is
f 2 = 15.

the following, we focus only on the upper part of these plots. For a shallow modulation depth

(∆/d (0)
2 = 0.1, Fig. 2.3a), there are nine instability tongues, but their values are still negative.

However, with increasing value of ∆/d (0)
2 , the instability tongues become wider with higher

value of the parametric gain and start to merge for higher detuning and pump power (see

Fig. 2.3(b-d)). Thus, period-doubling can be observed with moderate pump power for higher

modulation depth values.

To verify our analytical findings, we make a numerical experiment by solving Eq. 2.1 using the

split-step Fourier method. The results, presented in Fig. 2.4, show the dynamics of the cavity

with normal dispersion d (0)
2 = 0.0027 and modulation depth ∆/d (0)

2 = 0.5. Indeed, we observe

a period-doubling dynamics (Fig. 2.4a,b), while optical spectrum in Fig. 2.4c reveals the actual

position of the primary sidebands which is close to the approximate position µ= 98 obtained

via Eq. (2.12). Reconstructing the NDR (Fig. 2.4d), we obtain direct access to the field in the

Fourier basis (Eq. (2.2,2.3)). We observe the main dispersion parabola and its conjugated

counter-part with the FI sidebands separated by d1/2 from the pump mode. Additionally, we

also observe a pair of sidebands from the third MI region that we discussed in section 2.3 and

showed in Fig. 2.2b that are in-phase with the pump line.
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Chapter 2. Synthetic frequency dimension in a dispersion-modulated resonator

Figure 2.4: Faraday instability numerical simulation. (a) Resolved dynamics of the intracavity
field as a function of roundtrip number. (b) Comparison of the field profiles at t = t0 (blue
line) and t = t0 +Tr (red line). (c) Snapshot of the corresponding optical spectrum. (d)
Reconstructed nonlinear dispersion relation of the dynamics. Simulation parameters: f 2 = 10,
ζ0 = 5, ∆= 0.5d (0)

2 , d (0)
2 = 0.0027, d1/2π= 8.

2.4 Dissipative Kerr Solitons And Switching Waves

To further investigate the role of the dispersion-induced Faraday instabilities on the dissipative

structures in a microresonator, we provide numerical simulations of LLE 2.1 in the normal and

anomalous dispersion regime (see Fig. 2.5). In the former, we generate DKS with CW pump,

while for the latter we generate SW in the pulse-pumped regime to facilitate the excitation of

the state.

2.4.1 Dissipative Kerr solitons

The simulated DKS is presented in Fig 2.5(a-e), for the conventional and modulated cavi-

ties. The generated soliton exists on a modulated background shown in Fig. 2.5(a,c) that

corresponds to the higher-order dispersive waves (Fig. 2.5b) in the spectral domain. These

dispersive waves originate from the instability appearing due to the phase-matching between

1st and −1st Floquet bands (see gain lobes with the smallest parametric gain in Fig. 2.2a).

Even though, the parametric gain value of this instability is the smallest for the analysis of

CW solution and Turing instability dominates, it plays an important role for solitons that are

prone to Turing instability. The resulted dispersive waves are phase-matched to the main

soliton spectrum and can be also attributed to Kelly sidebands that are observed in systems

with periodic amplification and soliton fiber lasers [159, 160, 161].

2.4.2 Switching Waves

The SW simulation is presented in Fig. 2.5(f-g). In contrast to the unmodulated cavity, the

generated pulse experiences period doubled dynamics with its profile changing every second
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Figure 2.5: Dissipative Kerr solitons (DKS) and switching waves (SW). (a) DKS field snap-
shot with (blue) and without (yellow) modulation. (b) Corresponding fast frequency power
spectrum. (c) Spatiotemporal diagram of the modulated DKS propagating in time. (d,e) DKS
nonlinear dispersion relations with (d) and without (e) modulation. Red circles show higher-
order dispersion waves from the third MI region. (f) SW snapshot with (blue) and without
(yellow) modulation under pulse-driven conditions. (g) Corresponding power spectrum. (h)
Spatiotemporal diagram of an SW in the modulated cavity. (i,j) SW nonlinear dispersion
relations with (d) and without (e) modulation. Red circles show the FI-originated sidebands.
Simulation parameters: f 2 = 10, ∆= 0.7d (0)

2 , d1/2π= 16, d (0)
2 = 0.0027, detuning ζ0 = 10 for

the DKS and ζ0 = 6 for the SW case.
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Chapter 2. Synthetic frequency dimension in a dispersion-modulated resonator

roundtrip as shown in Fig. 2.5f,h. Analyzing the SW spectrum and NDR in Fig. 2.5g,j we

observe that the Faraday instability is responsible for the spectral extension of the switching

waves, resulting in the generation of powerful satellite combs. There is a reciprocal locking in

repetition rate between these satellite combs and the core switching wave structure, similar

to the primary sidebands analyzed in section 2.3.1. Additionally, due to the high photon

occupancy in these sidebands, nonlinear modulation creates additional phase-matching

conditions between the dispersion curves from different Floquet bands as shown in Fig. 2.3.1j,

also resulting in the generation of the higher-order dispersion waves locked to the pump mode,

similar to the Kelly sidebands in the DKS regime.

2.5 Conclusion

In summary, we studied theoretically four-wave mixing in a cavity with a mode-filtering section

that periodically modulated its integrated dispersion. Using the comb index µ and spectral

harmonics of temporal oscillations of the optical field, we present a method of analyzing this

system in two dimensions. Using the comb index µ and spectral harmonics of temporal oscil-

lations of the optical field, we present a method of analyzing this system in two dimensions.

In other words, periodic modulation of the dispersion creates a synthetic slow frequency

dimension, which reflects temporal oscillations of the optical field. Providing modulation

instability analysis in the anomalous and normal dispersion regimes, we demonstrate new

four-wave mixing pathways arising due to the created Floquet bands. With a focus on the

normal dispersion regime, we investigate Faraday instability in detail that results in period-

doubling of the optical field dynamics. Providing numerical simulations, we show how the

discovered instabilities result in the generation of higher-order dispersive waves and Faraday-

instability induced sidebands in the DKS or SW regimes. The discovered four-wave mixing

pathways pave the way towards efficient spectral extension of the optical frequency combs in

low free-spectral range optical microresonators (∼ 10 GHz), as demonstrated experimentally

in M. Anderson et al., “Dissipative Solitons and Switching Waves in Dispersion-Modulated

Kerr Cavities”, Physical Review X, 13, (2023).

Regarding practical significance, in scenarios where achieving highly uniform dispersion in

a specific waveguide platform proves challenging, the proposed approach with the consec-

utive four-wave mixing dynamics can yield valuable outcomes. The deliberate dispersion

modulation naturally induces the creation of numerous higher-order dispersive waves. These

waves effectively broaden the spectrum of a soliton microcomb far beyond the point where the

main part of the comb merges with optical noise. Employing this deliberate strategy has the

potential to further expand an already wide-ranging soliton microcomb to the extent where it

could span an octave and be self-referenced using the f -2 f technique, as demonstrated in

previous research (Spencer et al., 2018) [81].
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3 Optical Parametric Oscillations in a
Photonic Dimer

This chapter reports on the study of optical parametric oscillators in a photonic dimer with

alternating dispersion. These results are partially adapted from D. Pidgaiko et al., “Voltage-

tunable optical parametric oscillator with an alternating dispersion dimer integrated on a

chip,” Optica 10, (2023).

3.1 Introduction

In the first part of this thesis, we reported on nonlinear dynamics in synthetic photonic

lattices. In second part, we investigate four-wave mixing (FWM) processes in arrays of optical

resonators. Specifically, in this chapter, we study the generation of primary sidebands in a

system of two coupled high-Q microresonators with opposite signs of group velocity dispersion

(GVD) (see Fig. 3.1a). We show that the FWM arising in this system enables us to achieve a

broadband voltage-tunable optical parametric oscillator (OPO).

Modern integrated photonics demonstrates remarkable growth and is quickly approaching

the ultimate lab-on-chip level of performance [162, 163]. Among other integrated compo-

nents, OPOs have garnered significant attention within the scientific community. After the

first demonstration of an ultralow-threshold OPO in a high-Q toroid cavity [164], there has

been ongoing effort to improve key parameters such as output power, conversion efficiency,

and wavelength tunability [58, 59, 165, 166, 57, 167]. These compact and versatile devices

hold immense potential for a wide range of applications [168], including optical communica-

tions [169] and photon pair generation [170]. The integration of OPOs on a chip offers several

advantages, including enhanced stability, reduced footprint, and compatibility with existing

semiconductor manufacturing processes [125]. These factors make chip-integrated OPOs

highly attractive for practical applications where space constraints and cost-effectiveness

are crucial considerations. One of the key properties of integrated OPOs is the tunability of

signal and idler wavelengths [171, 172, 173]. However, an outstanding challenge remains: the
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Figure 3.1: Parametric gain in the alternating-dispersion dimer.(a) Schematics of two cou-
pled resonators with opposite group velocity dispersions. The external laser excites the system
through the normal dispersion resonator. The output signal is measured from both add and
drop ports. The signal collected from the drop port demonstrates the pump filtering effect. (b)
Integrated dispersion hybridization for different interring detunings (voltages applied to the
heater)..

realization of wavelength tunability without relying on a broadly tunable (often exceeding

units of THz) and expensive external pump laser.

Here, we propose an OPO based on a hybrid-dispersion photonic dimer, which refers to a

system comprising two coupled optical microring resonators with opposite signs of GVD,

as qualitatively depicted in Fig. 3.1b. We investigate the theoretical formation of primary

sidebands and validate these findings through experimental confirmation using high-Q Si3N4

microresonators. The process of optical coupling results in the hybridization of the initial

dispersion profiles of the two rings. The hybridization of these dispersion profiles is controlled

using integrated heaters, which in turn govern the positioning of the interacting optical modes.

By applying voltage to an integrated heater device, we can dynamically adjust the curvature

of the dispersion profile. This adjustment leads to a modification of the spectral position of

the parametric gain maxima and, consequently, the frequencies of the signal and idler. Our

approach facilitates a tunable OPO with a nearly fixed pump laser operating wavelength, with

the signal/idler to pump tuning range exceeding previous schemes by a factor of 50 [172, 173].

This result overcomes the limitations of prior techniques.

3.2 Description of the parametric gain

We start with theoretical discription of the primary sidebands generation in a photonic dimer.

The coupled Lugiato-Lefever equation that govern the dynamics in such system can be written
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3.2 Description of the parametric gain

in the following way:

d A

d t
=−(

κA/2+ i (δω+δA)
)

A+ i
D A

2

2

∂2

∂ϕ2 A+ i JB + i g A
0 |A|2 A+

√
κA

exS A
in, (3.1)

dB

d t
=−(

κB /2+ i (δω+δB )
)
B + i

DB
2

2

∂2

∂ϕ2 B + i J A+ i g B
0 |B |2B +

√
κB

exSB
in, (3.2)

where A (B) describes the optical field envelope in the resonator with anomalous (normal)

dispersion; κA(B) = κ0 +κA(B)
ex is the total linewidth composed of the internal linewidth κ0

and the coupling to the bus waveguide; δω is the laser-cavity detuning, δA(B) is the frequency

detuning of resonator anomalous (normal) dispersion resonators; S A(B)
in =

√
P A(B)

in /ħω is the

pump term with P A(B)
in as an input power; D A(B)

2 is the group-velocity dispersion; J is the

coupling strength between two resonators; g A(B)
0 is the single-photon Kerr frequency shift.

To analyze the modulation instability (MI) gain lobes, we use the following Ansatz

A = A0 +aµ(t )e iµϕ+a∗
−µ(t )e−iµϕ, (3.3)

B = B0 +bµ(t )e iµϕ+b∗
−µ(t )e−iµϕ, (3.4)

where the CW solution A0 are B0 supposed to be constant in time and obey the equation

0 =−(
κA/2+ i (δω+δA)

)
A0 + i JB0 + i g A

0 |A0|2 A0 +
√
κA

exS A
in (3.5)

0 =−(
κB /2+ i (δω+δB )

)
B0 + i J A0 + i g B

0 |B0|2B0 +
√
κB

exSB
in. (3.6)

The amplitudes aµ and bµ are assumed to be small enough so their dynamics in time can be

linearized in the vicinity of the stable solutions A0 and B0. The resulting linearized system of

equations takes form

ȧµ =−(
κA/2+ i (δω+δA)

)
aµ− i

D A
2

2
µ2aµ+ i Jbµ+ i g A

0 (2|A0|2aµ+ A2∗
0 a∗

−µ) (3.7)

ȧ∗
−µ =−(

κA/2− i (δω+δA)
)
a∗
−µ+ i

D A
2

2
µ2a∗

−µ− i Jb∗
−µ− i g A

0 (2|A0|2a∗
−µ+ A2

0aµ) (3.8)

ḃµ =−(
κB /2+ i (δω+δB )

)
bµ− i

DB
2

2
µ2bµ+ i Jaµ+ i g B

0 (2|B0|2bµ+B 2∗
0 b∗

−µ) (3.9)

ḃ∗
−µ =−(

κB /2− i (δω+δB )
)
b∗
−µ+ i

DB
2

2
µ2b∗

−µ− i Ja∗
−µ− i g B

0 (2|B0|2b∗
−µ+B 2

0 bµ). (3.10)

This system of equations can be rewritten in matrix form for the unknown vector X in the

form

Ẋ =MX , where X = (aµ, a∗
−µ,bµ,b∗

−µ)T . (3.11)

The parametric gain rate for the OPO sidebands can be then inferred from the analysis of

the eigenvalues λ j (j=1,2,3,4) of the matrix M . To compute this matrix, we solve numerically

equations (3.5,3.6) imitating experimental tuning of the pump laser from the blue to red-
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Chapter 3. Optical Parametric Oscillations in a Photonic Dimer

detuned zones of the resonances.

In Fig. 3.2 we present the computed MI gain lobes and the structure of the eigenvalues λ j .

To compute it, we used κ0/2π = 60 MHz, D A
2 /2π = 12.6 MHz, DB

2 /2π = −1.1 MHz, κA
ex = κ0,

κB
ex = 2κ0, P A(B)

in = 0.3 W. In Fig. 3.2(a-d) we consider the excitation of the anomalous dispersion

resonator. We observe, that for the constant resonator detuning δB (δA = 0), the MI gain lobes

correspond to the conventional single-resonator case (see Fig. 3.2b). As shown in Fig. 3.2c,

the gain lobes almost do not change their position as they are dominated by the conventional

Turing instability in the anomalous dispersion (see Fig. 3.2d). However, when we pump the

normal dispersion ring (see Fig. 3.2(e-f)) and tune δA (δB = 0), we observe the desired effect.

Since we pump the region with normal dispersion, Turing instability does not manifest, and

the sidebands experience positive parametric gain due to the new phase-matching conditions.

For the fixed pump detuning, the gain lobes change their position as shown in Fig. 3.2g. The

eigenvalues in Fig. 3.2h show, that the new phase matching condition occurs due to the

crossing of the anomalous and normal dispersion parabolas. Thus, one can estimate the

position of the modes with positive parametric gain via simple formula

µ=±
√

2δA

D A
2 −DB

2

. (3.12)

The latter estimation works in the limit δA ≫ J . To achieve bigger tunability, one needs to

reduce the group velocity dispersion of both resonators.

A calculated hybridized dispersion profile at different detunings is shown in Fig. 3.1b. Here one

can see that the optical modes of the resonators are split the most in the vicinity of the initial

integrated dispersion crossings. Qualitatively, it results in the additional phase-matching

condition for the four-wave mixing processes that we aimed to exploit for the OPO generation.

3.3 Experimental Demonstration

We demonstrate the voltage-tunable OPO using a Si3N4 dimer with a free spectral range (FSR)

of 458 GHz and GVDs D A
2 /2π= 12.6 MHz and DB

2 /2π=−1.2 MHz for anomalous and normal

resonators (for the resonator design procedure, refer to appendix A.2).

First, we perform numerical signal/idler generation experiments using simulations of two

coupled LLEs. Building upon the outcomes of the preceding section, we keep the normal

dispersion resonator pumped at a fixed pump detuning and power while varying the detuning

of the anomalous resonator (i.e., δA , setting δB = 0; in the following, we denote δA as δ). The

generated signal and idler spectral positions, as depicted in Fig. 3.3a, closely match the results

shown in Fig. 3.2g. This agreement underscores the ability to achieve OPO signal tunability of

20 THz while maintaining a fixed pump laser frequency.

The experimental measurements are conducted on dimers fabricated by Ligentech SA (as

46



3.3 Experimental Demonstration

Resonator detuning δB, GHz

10 5 0 5 10
Resonator detuning δB, GHz

20

15

10

5

0

5

10

15

20

Pu
m

p 
de

tu
ni

ng
, G

H
z

10 5 0 5 10

60

40

20

0

20

40

60

a

c

Pu
m

p 
de

tu
ni

ng
, G

H
z

50 0 50
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

D
in

t, 
G

H
z

50 0 50
20

15

10

5

0

5

10

15

20

0

1

2

3

4

5

Param
etric gain, G

H
z

Dint Re(λ)
Laser detuning

Im(λ)

b

d

Anomalous-dispersion resonator excitation

Resonator detuning δA, GHz

20 10 0 10 20
Resonator detuning δA, GHz

20

15

10

5

0

5

10

15

20

Pu
m

p 
de

tu
ni

ng
, G

H
z

20 10 0 10 20

60

40

20

0

20

40

60

e

g

Pu
m

p 
de

tu
ni

ng
, G

H
z

50 0 50
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

D
in

t, 
G

H
z

50 0 50
20

15

10

5

0

5

10

15

20

0

1

2

3

4

5

Param
etric gain, G

H
z

Dint Re(λ) Im(λ)

f

h
Laser detuning

Normal-dispersion resonator excitation

Figure 3.2: Modulation instability (MI) gain lobes. a) Field response in one of the resonators
for different pump and resonator detunings δ. b) MI gain lobes as a function of pump detuning
along vertical dashed line in a). c) MI gain lobes along the horizontal dashed line in a). d)
Integrated dispersion and eigenvalues λ j structure for the point in panel a). (e-f) The same,
but for the excitation of the normal dispersion resonator.
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Figure 3.3: Voltage-controlled OPO. (a and b) LLE-based numerical and experimental OPO
tuning by thermal tuning of the normal-dispersion resonator. Inset in (a) is a photo of the
experimental dimer. Thick lines in (b) are optical spectra with interring detunings δ equal to
-16 GHz, -11 GHz and -2 GHz, respectively. The gap corresponds to the region forbidden by
mode crossings. (c-e) OPO spectra combined with integrated dispersion measurements for
the same interring detuning.

shown in the inset of Fig. 3.3a). All the experimental data presented in Fig. 3.3b originate from

a single experimental device (refer to the experimental setup in appendix A.3). The observed

wide range of operating wavelengths and the precise control over the OPO’s signal/idler posi-

tion are evident. Notably, gaps in Fig. 3.3(b) correspond to parameter ranges where sidebands

are generated in parasitic mode crossings or parametric oscillations are not detected.

In contrast to numerical simulations, realizing the tunable OPO experimentally necessitated

adjusting the pump frequency due to the initially designed relative inter-ring detunings of the

resonators. To achieve signal and idler tuning, we heated the normal dispersion resonator and

adjusted the pump frequency to stay in resonance. This pump frequency adjustment occurs

within a 20 GHz bandwidth, yielding an approximate 20 THz OPO signal/idler tuning range.

Thus, the laser tunability requirements are orders of magnitude lower than those demanded

by previous schemes. It’s worth noting that piezoelectric actuators can further alleviate these

requirements, offering the potential to significantly reduce the tuning range of the pump laser.

To establish a direct correlation between signal/idler frequency tuning and dispersion hy-

bridization, we conducted dispersion characterization measurements for each interring de-

tuning value illustrated in Fig. 3.3b. The outcomes for specific detunings are marked as dots

in Fig. 3.3c-e and are overlaid with the corresponding optical spectra (depicted as thick lines

in Fig. 3.3b). In order to emphasize the influence of hybridization on the dispersion profile,

we incorporated the fitted dispersion for the uncoupled regime, as indicated by the dashed

lines (for details on the fitting procedure, refer to appendix A.4). This approach enables a
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Figure 3.4: OPO pump suppression in the drop-port output. (a) Layout for pump suppression
effect. At the pump frequency, the optical power is localized in the normal-dispersion ring.
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representation of hybridized dispersion with pump, signal, and idler frequencies separation.
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the add/drop port measurements of the optical spectrum, respectively.

clear observation: the signal/idler lines emerge in proximity to the region of stronger mode

interaction and closely track it as we manipulate the inter-ring detuning.

3.4 Pump suppression

One of the key applications that can be influenced by the voltage-tunable OPO is quantum

communication [170]. In this context, the presence of a strong pump often poses a chal-

lenge for sensitive quantum detectors. Our scheme, based on coupled resonators, offers the

potential for efficient pump filtering. Two factors contribute to this process: pump mode

hybridization and utilization of the drop port. Notably, mode hybridization modifies the

dispersion curvature at distinct mode frequencies (refer to Fig. 3.4a in the vicinity of 192 THz).

Importantly, the hybridized pump mode predominantly resides within the normal dispersion

resonator. Conversely, near the crossing point of the original dispersion profiles—occurring at

the point of strongest interaction (205 THz in Fig. 3.4a)—optical power leaks into the auxiliary

resonator. This design enables the detection of signal/idler lines with suppressed pump on

the second ring drop port. The dependence of pump suppression on interring detuning is

calculated and presented in appendix A.1. However, it is noteworthy that in the fabricated

device, the placement of the drop port led to a cross-talk effect at the output. As shown in

Fig. 3.4b, this results in a consistent pump suppression of approximately 22 dB and a partial

enhancement of the sideband power.
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Finally, it should be noted that there are several potential improvements that could signifi-

cantly enhance the system’s performance. Firstly, the incorporation of integrated actuators

would effectively eliminate thermal cross-talk between resonators and negate the need for

pump laser tunability. Secondly, a more refined optimization of the dispersion profile could

extend the operation bandwidth to encompass octave-spanning regimes, further enhancing

pump suppression at the drop port. Thirdly, optimizing the bus-to-ring coupling would am-

plify the efficiency of the OPO. Given these potential enhancements, we firmly believe that our

proof-of-concept device has the potential to evolve into a reliable tool for modern photonic

applications.

3.5 Conclusion

In conclusion, the development of a broadband voltage-tunable OPO integrated on a chip

represents a remarkable achievement in the field of integrated photonics. Our approach, based

on two coupled resonators with opposing dispersion characteristics, offers extraordinary

tunability while circumventing the necessity for a broadly tunable and costly laser source. This

breakthrough paves the way for the realization of compact, cost-effective, and highly tunable

OPOs, capable of seamless integration into diverse photonic systems. This has the potential

to revolutionize the realms of optical communications, sensing, and quantum information

processing. By harnessing this concept, we showcase the potential for a groundbreaking

leap in voltage-tunable OPOs that can be seamlessly integrated on-chip. Moreover, achieving

broadband voltage tunability without reliance on a broadly tunable laser marks a significant

stride forward in the realm of integrated photonics. This advancement not only obviates the

need for expensive external laser sources but also elevates the device’s overall efficiency and

performance.
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4 Quiet points in a coupled resonator
system

This chapter reports on the quiet point investigation in a coupled resonator system for low-

noise microwave generation. These results are partially adapted from A. Triscari et al., “Quiet

point engineering for low-noise microwave generation with soliton microcombs,” Communi-

cations Physics 6, (2023).

4.1 Introduction

In the previous section, we investigated modulation instability of CW solution in a photonic

dimer and its application for OPO generation with optical microresonators. We demonstated

how mode interactions modify the dispersion profile and how this changes the stability of the

plane wave solutions. In this section, we focus on the dynamics of a signle DKS in a photonic

dimer system with its applications to the low-noise microwave generation. We consider a

system of two coupled resonators with different free spectral ranges (see Fig. 4.1a). The main

resonator is used to generate the DKS, while the mode interaction with the auxilary resonator

results in a single-mode displacement on the integrated dispersion profile as schematically

shown in Fig. 4.1b. Modification of the dispersion profile results in the generation of the

dispersive wave that allow for compensation of the Raman shift.

To understand the transduction of phase noise to the soliton (i.e., DKS repetition rate ωrep)

we consider Raman scattering and the DW recoil as the main noise transfer mechanisms (cf.

Fig. 4.1a), and aim to reduce the repetition rate susceptibility to the laser detuning fluctuations

δω, i.e., minimize |∂ωrep

∂δω | ∝ | ∂
∂δω (ΩRaman +ΩDW)| [174]. To introduce the presence of a DW,

we consider a simplified model of AMX, characterized by a single mode displacement at

position µ̄ and strength ∆µ̄, in the integrated dispersion profile, as shown in Fig. 4.1b. The

corresponding spectrum of the generated DKS has a typical sech2 shape with a frequency shift

Ω and dispersive wave at µ̄ (Fig. 4.1c). To qualitatively explain the noise reduction mechanism,

we start by separately analyzing the Raman and DW contributions to the DKS repetition rate
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response. We consider the simplest case of sinusoidal frequency modulation of the pump

detuning around a constant value δω as presented in Fig. 4.1d-i. In the presence of the Raman

effect only, the DKS’s group velocity is in-phase with the detuning change (c.f. Fig. 4.1d).

In the nonlinear dispersion relation (NDR) representation [175], the DKS dynamics has a

butterfly-shaped profile, revealing the transfer of the laser detuning modulation to the soliton

group velocity vg (i.e., the tilt of the soliton line in Fig. 4.1e) that directly reflects the repetition

rate change [176]. Equally, the NDR representation clearly shows the comb-line dependent

frequency noise multiplication mechanism induced by the repetition rate variation [177, 178]

(i.e., phase noise multiplication). In the presence of an AMX, the laser detuning dependence

of the DKS’s group velocity can exhibit the opposite sign as shown in Fig. 4.1f. Represented

in the NDR, the soliton forms a similar butterfly shape with enhanced photon occupancy at

the displaced mode (Fig. 4.1g). These two effects, combined together, can then counteract

due to the opposite dependence, resulting in the reduction of the detuning noise transfer

(Fig. 4.1h,i). In the following, we identify a QP by reconstructing the group velocity manifold

vg as a function of δω and parameters of the AMX i.e., mode index µ̄ and its displacement

from the unperturbed dispersion profile ∆µ̄, further computing its extrema along the laser

detuning direction. To compute the actual value vg , we employ the Newton-Raphson method

with group velocity as a variable parameter.

Since we focus on the dynamics of a single soliton in the main cavity, we model the system

using a modified LLE with Raman term. In the normalized form, it reads

∂ψ

∂t
=−(1+ iζ0)ψ+ i

2
∂2
θψ+ i |ψ|2ψ+ f + vg∂θψ− i∆µ̄ψµ̄e i m̄θ− iτψ∂θ|ψ|2. (4.1)

Here the mode index becomes non-integer m =µp2D2/κ, where µ is an integer mode index,

κ is the total loss rate, and D2 is the second-order integrated dispersion. The last three terms

represent group velocity change vg , modification of the Dint by the AMX at the mode µ̄, and

the Raman scattering, respectively.

4.2 QP with a single-mode displacement

To investigate the DKS group velocity response to the detuning variations ζ0, we look for a

single-soliton equilibrium solutionψDKS and its relative group velocity vg for the parameter set

( f ,ζ0, µ̄,∆µ̄) using the Newton-Raphson approach for Eq. (4.1). To reduce the dimensionality

of the parameter space, we fix the pump power f 2 = 6, |µ̄| = 21, and sweep the detuning value

within the soliton existence range (given by π2 f 2/8 [77] in the unperturbed case) and the

∆µ̄ in the vicinity of the dispersive wave resonance. As a result, we obtain a soliton solution

and the corresponding group velocity vg for every point on the (∆µ̄,ζ0)-subspace, both for

blue- (µ̄< 0) and red-side (µ̄> 0) mode shifts (cf. Fig. 4.2). First, we focus on the blue-sided

displacement (i.e. µ̄< 0). The presence of the shifted mode results in the generation of the

DW (see Fig. 4.2a), whose strength depends on the phase matching condition with the DKS.

The acquired group velocity due to the recoil increases in the vicinity of the DW resonance
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Figure 4.1: The concept of the quiet point engineering using coupled resonators. (a)
Schematic of the phase-noise reduction in a microresonator. The auxiliary cavity is required to
control the dispersive wave (DW) recoil in order to balance the effect of Raman scattering. (b)
Example of the considered integrated dispersion profile with shifted resonance for a single spa-
tial mode (i.e. localized AMX); the shifted mode number is µ̄= 15 and the resonance is shifted
from the perfect parabolic profile by ∆µ̄ = −4. (c) Power spectral density of stable soliton
solution both in the presence of Raman scattering and AMX for the integrated dispersion given
in (b); the presence of Raman scattering and AMX results in a detuning dependent frequency
shiftΩ of the soliton spectrum responsible for the noise transduction mechanism. The shift
induced by AMX on the dispersion profile leads to a perturbation δψµ̄ of the occupancy of
the displaced mode µ̄ with respect to the perfect hyperbolic secant profile resulting in the
generation of dispersive waves. (d-e) Real-space (d) and Fourier-space (e) soliton dynamics
driven with a sinusoidal detuning (ζ0(t ) = 4+0.4cos(αt +ϕ),α= 0.0033,ϕ=−200) in presence
of Raman scattering only (left), AMX (center) and both (right) for the dispersion profile in (b).
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Figure 4.2: Quiet point identification via group velocity detection and dynamics in the 2D
space of detuning-mode crossing strength (a-d) Simulation results obtained with the Newton-
Raphson algorithm for (∆µ̄,ζ0; µ̄=−21, f 2 = 6,τ= 5·10−3), i.e. in presence of Raman scattering
and single mode resonance shift. a) Single soliton solution for (∆µ̄ =−5,ζ0 = 4.73) (blue star).
The single mode shift leads to a periodic modulation of the constant background with period
2π
|µ̄| . (b) single soliton group velocity vg in (∆µ̄,ζ0)-plane. The black area indicates the region
of parameters where the method does not converge. The white dashed line highlights the
existence range of the single DKS solution. The colormap shows how the soliton existence
range is reduced in the presence of a higher value of the group velocity related to the increasing

intensity of the DW that perturbs the DKS state. (c) 10log10 |
∂vg

∂ζ0
| as a measure of the DKS

repetition rate susceptibility to the variation of laser detuning. The smallest value of the
susceptibility is obtained for a continuous line of operating point in the (∆µ̄,ζ0)-plane, here
called the QP line (dark blue). (d) Comparison of the susceptibility (solid) and group velocity
(dashed) profiles for two different sections of the QP line [green and light blue lines in subplot
(c)]. (e-h) Similar results for opposite mode displacement, i.e. (∆µ̄,ζ0; µ̄ = 21, f 2 = 6,τ =
5 ·10−3).
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as shown in Fig. 4.2b. After a given value of detuning, the DW destabilizes the DKS and the

equilibrium state cannot be achieved anymore (the absence of the soliton solution is depicted

in black in Fig. 4.2b).

Increasing the normalized mode shift strength ∆µ̄, we observe that the effect of the DW on

the soliton is substantially reduced and the soliton existence range approaches the value

estimated for the unperturbed LLE (see white dashed line in Fig. 4.2b). Next, we compute

the group velocity directional derivative ∂ζ0 vg shown in Fig. 4.2c. As a result, we observed

a family of solutions with ∂ζ0 vg = 0 that correspond to the QPs. Crucially, due to the lack of

control, prior experimental works have reported only a slice (vertical line cut) of the map for

the fixed ∆µ̄ as depicted in Fig. 4.2d. Dashed lines represent the interpolated group velocity

as a function of detuning ζ0 for two values ∆µ̄ =−6.85,−5 while the solid lines represent the

response ∂ζ0 vg on a logarithmic scale (directly reflecting the noise transduction). For both

values ∆µ̄ there are two points with zero derivative ∂ζ0 vg . We followed the same procedure

for the red-side mode displacement µ̄> 0 (same side as for the Raman frequency shift) and

observed similar behavior for the soliton states, group velocity, and its derivative (Fig. 4.2(e-h)).

Qualitatively, the soliton profile and its existence range remain the same as in the previous

case, but the QP line is shifted now towards the higher mode-displacement amplitudes where

the soliton existence range is narrowed.

4.3 Two-mode displacement for QP engineering

Next, we investigate the region where the two QPs (for displaced modes on the blue and the

red side of the pump) can co-exist and interact. First, as an example of the novel dynamics,

we fix the displaced mode index µ̄=−21 and the displacement strength ∆µ̄ =−5.00 scanning

the displacement ∆−µ̄, of the mode µ̄′ =−µ̄ for different detunings ζ0. The Newton-Raphson

results for the single soliton state are shown in Fig. 4.3(a-d). As in the case of a single-mode

displacement, the DKS coexists with a single-period DW background (the periodicity is given

by |µ̄|). In this case, we discovered that the single soliton solution exists for ∆−µ̄ < −7. For

large negative displacements (∆−µ̄ ≈−20), µ̄′ is out of resonance and the QP detuning value

corresponds to the one in Fig. 4.2c. Reducing the displacement |∆−µ̄|, the soliton starts

being resonant also to mode µ̄′ resulting in an effective bending of the QP line, converging

to the single mode one for red-shifted mode (Fig. 4.2.f). While in the case of a single-mode

displacement, the QP line is always tilted (see Fig 4.2c,g) which narrows down the noise

suppression region for a fixed value of ∆µ̄, displacing two modes, we are crucially able to

engineer a flat susceptibility over a wide range of laser detunings ζ0. We refer to this state of

the system as engineered QP (EQP). The flat susceptibility region is achieved at ∆−µ̄ =−12.52

(cf. Fig. 4.3c). In Fig. 4.3d, we compare vg and its susceptibility ∂ζ0 vg for the single mode

displacement (green lines in Fig. 4.2d) with the case in Fig. 4.3c (gray lines). The latter clearly

shows a flatter response profile that can be practically beneficial for accessing the QP regime.

The effect of this is depicted in Fig. 4.3d, which shows an order of magnitude broadening

of the QP detuning bandwidth. We repeat the same procedure, fixing the mode µ̄= 21 with
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Figure 4.3: Quiet point engineering (a-d) Newton-Raphson simulations for a dispersion profile
with two modes displaced: µ̄ and µ̄′ =−µ̄, i.e. (∆−µ̄,ζ0; µ̄=−21,∆µ̄ =−5, f 2 = 6,τ= 5 ·10−3).
(a) Equilibrium DKS solution for the EQP, i.e. (∆−µ̄ =−12.52,ζ0 = 5.41) (blue star). (b) Value
of the group velocity in the subspace of parameters (∆−µ̄,ζ0; f 2,τ,∆µ̄) and (c) its detuning

directional derivative (10log10|
∂vg

∂ζ0
|). (d) Comparison of detuning response between single

mode displaced quiet point QP1 (green line, see Fig. 2.c) and engineered quiet point (EQP1)
with second mode displaced (gray line in subplot c). (e-h) Similar plots for the case for µ̄= 21,
∆µ̄ =−10.7, µ̄′ =−21, ∆−µ̄ =−3.74

∆µ̄ = −10.7 and shifting the mode µ̄′ = −µ̄ by ∆−µ̄. Simulation results in Fig. 4.3(e-h) show

qualitatively similar behavior, with shorter DKS existence range (defined by the fixed mode

µ̄= 21, see Fig. 4.2f). However, in this case, we find two QP families for a single DKS solution.

The flattest response is achieved at ∆−µ̄ =−3.74 (see Fig. 4.3(g,h)). In this way, we observe that

careful control over the two-mode displacement can extend the noise suppression region of

the QP in the parameter space.

Using the Newton-Raphson method, we identified the quiet point regimes, however we

omitted the question of stability of these solutions. To estimate it, we perform linear stability

analysis: we numerically investigate the eigenvalues λ of the Jacobian operator associated

with (4.1) for each particular soliton state found in the previous section. In particular, we focus

on the eigenvalues with the biggest real part. In case of positive value, the corresponding

eigenfuctions are responsible for the linear growth of any perturbation around the equilibrium.

The real part of the latter (maxRe{λ}) are plotted in Fig.4.4.a-d. We observe that the soliton

solutions are linearly stable almost everywhere in the considered subspace, and in particular

at the QPs. Exceptions are for a narrow region in correspondence with the reduced existence

range (reminding an instability tongue). In those regions there exist at least one eigenvalue

with positive real part. From the actual structure of the spectrum of the Jacobian, computed for

the quiet point states, (Fig.4.4.e-h) we find that these instabilities are due to Hopf bifurcations,

characterized by the vanishing real parts of a pair of the complex conjugated soft modes. In

this region of parameter space, those will be responsible for the transition from stable solitons
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Figure 4.4: Linear stability of the quiet points (a-d) Value of the real part of the Jacobian eigen-
value (λ) with highest real part, in the parameters subspaces considered in fig. 2.b,2.f,3.b,3.f
respectively. The analysis shows there are regions within the DKS existence range in which the
soliton solutions are linearly unstable (colored regions) but those do not include the analyzed
QP that is consequently considered stable. (e-h) Detail on the spectrum of the Jacobian for
the cases in (a-d). The spectrum shows that the instabilities arising in the colored regions
are due to the Hopf bifurcation, considered the presence of pairs of conjugated soft modes
approaching Re{λ} = 0.

to breathing states.

4.4 Dynamical simulation of the phase noise transfer

To compare the phase noise performance of different operating points, the dynamical evolu-

tion has been simulated with the step-adaptative Dormand-Prince Runge-Kutta method of

Order 8(5,3) [179]. We perform the direct dynamical simulations of the LLE adding a realistic

noise to the detuning term measured experimentally from the Topical CTL 1550 laser having

a standard deviation of 5 kHz. In this way, we simulate two DKS operating points: QP1 (see

Fig. 4.2.b) and EQP1 (see Fig. 4.3b). The difference between the phase noise transfer perfor-

mance at different operating points can be clearly seen in Fig. 4.5a,b. A series of numerical

experiments confirm the conclusion obtained with the stationary solver analysis. Indeed,

changing the central frequency of the pump by the value of 10−3 κ, we clearly observe that

the overall noise transduction from the pump to the soliton repetition rate (PM2PM at 10 kHz

offset, where PM stands for phase noise) performance of EQP1 increases by 0.5 dB for 3·10−3 κ,

while in the case of QP1, we observe > 28 dB of the transduction enhancement. Corresponding

single-sideband (SSB) phase noise performance is depicted in Fig. 4.5c. As one can see, the

fluctuations of the central frequency of the pump laser do not visibly affect the performance

of the system at EQP1.
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Figure 4.5: Dynamical simulations of the noise transfer for different operating points.
PM2PM coefficient (ratio between the microwave phase noise and the pump laser phase
noise) at 10 kHz modulation frequency in the vicinity of QP1 (green crosses in panel a) and
EQP1 (gray crosses in panel b). (c) SSB phase noise plot for exact laser detuning corresponding
to QP1 and EQP1 as well as a deviation of 3∆= 3 ·10−3 κ. (d) Spatiotemporal diagram of the
DKS evolution under the influence of amplified pump phase noise. (e) Nonlinear dispersion
relation, for different operating points. The noise transduction to the soliton repetition rate is
greatly reduced in the presence of two engineered mode-crossings.

Next, we verify that in the case of the noisy pump lasers (standard deviation of 8% κ/2) EPQ

leads to a significant noise reduction due to the larger noise suppression region. We employed

the same phase noise data, scaling it to obtain the detuning fluctuation of the order of the

width of the standard QP, i.e. 8% κ/2. In the parameter regime outside of the QP region

the influence of the pump fluctuations on the DKS dynamics is visible directly from the

spatiotemporal diagram (see Fig. 4.3d). To distinguish the performance of QP1 and EQP1, we

can use the NDR to represent its effect (Fig. 4.3e). We observe a clear suppression of the noise

multiplication in the case of EQP1. This confirms our predictions based on the group velocity

variation obtained with the stationary solution solver.

4.5 Conclusion

In summary, we have demonstrated a method to increase the effectiveness of QPs, that are

central to achieving low phase noise soliton microcombs for microwave generation. Our work

shows that engineering QP introduced via two dedicated and controllable mode crossings

enables one to create broader regions of enhanced noise suppression. Our work is directly im-

plementable using current technology and provides a new approach to the enduring challenge

of obtaining thermal noise-limited micro-wave generation from integrated soliton micro-

combs, which in contrast to crystalline resonators employ materials such as silicon nitride or

silica, that do exhibit a Raman self-frequency shift.

These results were obtained via a semi-analytical approach, based on the Newton-Raphson
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4.5 Conclusion

method, studied the phenomenology of QP in the presence of Raman scattering, dispersive

waves, and detuning noise, within a simplified model of AMX. This allowed us to obtain several

insights (i) QPs can be achieved by placing AMX on both blue- and red-detuned sides of the

pump. This highlights the fact that not the absolute value of the frequency shift must be

compensated, but its derivative over the laser detuning. (ii) Engineering the interaction of

two QPs leads to further reduction of the noise transfer. (iii) The EQPs predicted in this work

are linearly stable and characterized by more than 28 dB reduction of the PM2PM coefficient

with respect to a generic QP described in the literature when a detuning deviation of the

order of 0.03% of κ is introduced. We anticipate that the detuning-dependent variation of the

repetition rate can be completely eliminated by further controlling the integrated dispersion

profile for example by corrugating the microresonator circumference [180], which is however

outside the scope of this work.
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5 Dissipative Kerr solitons in dimers

This chapter reports on the investigation of dissipative Kerr solitons in a photonic dimer in two

coupling regimes: split resonance and split dissipation. The results are partially adapted from

K. Komagata et al., “Dissipative Kerr solitons in a photonic dimer on both sides of exceptional

point,” Communications Physics 4, 159 (2021).

5.1 Introduction

In the previous section, we considered two coupled resonators as a platform to control group

velocity of a conventional DKS via introducing coupling for a single optical mode. In the

following sections we will focus on the lattices of identical resonators where each optical mode

of one resonator is interacting with its neighbor’s counterpart.

In this chapter, we investigate a passive photonic dimer with a hidden P T -symmetry (further

referred to as P T -symmetry for simplicity) in linear and nonlinear multimode regimes.

In the linear regime, we analyze conditions for the critical coupling and demonstrate that

the line of EPs is a demarcation of these conditions. The exceptional point line splits the

parameter space into two parts which we refer to as split resonance (P T symmetric) and split

dissipation (P T -symmetry broken). In the split resonance regime, we show new insights into

the effects previously reported in [122], using the supermode basis representation. Further,

we investigate the nonlinear dynamics in the split dissipation regime which includes single-

resonator dissipative Kerr solioton (DKS), dark-bright DKSs pairs, and highly-efficient perfect

soliton crystals. Finally, we demonstrate switching of the soliton-generating cavity caused by

the nonlinear alteration of the P T symmetry.

5.1.1 Exceptional point as a demarcation of the critical coupling conditions

We consider the system of two identical multimode resonators [Fig. 5.1(a)] (i.e., identical

intrinsic loss rate κ0, mode spacing D1, dispersion D2, and single-photon Kerr frequency

shift g0). A global offset between the resonant frequencies ωµ of their respective modes µ

61



Chapter 5. Dissipative Kerr solitons in dimers

10 0 10
(ωp −ω0)/ 0

0.0

0.5

1.0 c

10 0 10
(ωp −ω0)/ 0

0

1

Po
we

r (
a.

u.
) b

0 1 2 3
J/ 0

0

5

10

15

ex
,1
/

0

d

Critical coupling
conditions
Exceptional points

2 4 6 8 10
ex, 1/ 0

1

0

1

Re
al

 p
ar

t (
0
)

Split resonance

e

Re(σ± )

Im(σ± )

5

4

3

2

1

Im
ag

in
ar

y 
pa

rt 
(

0
)

Split dissipation

sin
−→ Through port

sout,1
−→

Drop port
−→
sout,2

Resonator
1

Resonator
2

A

B
J

κex,2

κex,1

a
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is introduced with the inter-resonator detuning δ. The two resonators are coupled to each

other by the evanescent field with the rate Jµ, which generally depends on the mode number.

Each resonator is coupled to a waveguide (through and drop ports) with the rates κex,i , i = 1,2.

Resonator 1 is pumped by a continuous wave (CW) laser at frequencyωp . Nonlinear dynamics

in such photonic dimer can be described by two coupled Lugiato-Lefever equations (LLEs),

which in Fourier space is expressed as follows [181, 122]:

d

dt
Aµ =−[ 1

2 (κ0 +κex,1)+ i (ωµ+ 1
2δ−µD1 −ωp )]Aµ+ i g0F [A|A|2]µ+ i JµBµ+δµ,0

p
κex,1sin

d

dt
Bµ =−[ 1

2 (κ0 +κex,2)+ i (ωµ− 1
2δ−µD1 −ωp )]Bµ+ i g0F [B |B |2]µ+ i JµAµ, (5.1)

where g0 = ħω2
0cn2

n2
0Veff

is the Kerr coefficient, c stands for the speed of light in vacuum, ħ - the

Planck constant, ω0 - the frequency of the pumped mode, Veff - the effective mode volume, n0

and n2 are linear and nonlinear refractive indexes, respectively, δµ,0 is the Kronecker delta,

sin =
√

Pin
ħω0

- the input pump field amplitude, Aµ, Bµ are the field amplitudes of the modes

with index µ in the first and second resonator, respectively. The variables A, B are the slowly

varying intra-resonator field envelops, and F [...]µ denotes the µth-component of the discrete

Fourier transform.

Modes of each resonator with identical angular momentum are linearly coupled with the inter-
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5.1 Introduction

resonator coupling rate Jµ. In contrast, the Kerr nonlinearity couples all the modes within each

resonator via four-wave mixing (FWM) processes. The interplay between the linear coupling

in the spatial dimension and the nonlinear coupling in the frequency dimension is the source

of the rich dynamics of the system.

In the present section, we restrict ourselves to a linear and single mode analysis by considering

only the central mode µ = 0 with g0 = 0. The critical coupling conditions are of particular

interest for maximizing the pump transfer to the resonators and the eigenvalue analysis of the

coupled mode matrix for finding the EP conditions, which separate two conceptually different

dimer states.

5.1.2 Critical coupling conditions

Let us analyze the condition for critical coupling. In the linear single-mode representation,

Eq. 5.1 is simplified as follows:

i
d

dt

(
A

B

)
= M

(
A

B

)
+p

κex,1

(
sin

0

)
, M =

(
1
2δ− i

4∆κex −J

−J −1
2δ+ i

4∆κex

)
+ (ω0 −ωp − i

2κex)I ,

sout,1 = sin −p
κex,1 A, sout,2 =p

κex,2B. (5.2)

In Eq. 5.2, we defined the external coupling mismatch ∆κex = κex,1 −κex,2 and the average

external coupling κex = 1
2 (κex,1 +κex,2). The identity matrix is denoted as I . Critical coupling is

achieved when the transmission via the through port [Fig. 5.1(a)] vanishes, i.e. sout,1 = 0. In

the case of a single resonator, critical coupling is achieved when the external coupling rate

matches the loss, i.e. κex = κ0 [182, 183]. For two resonators, the conditions are easily found in

case of δ= 0. There are two possibilities

κex,1/κ0 =
4(J/κ0)2 +κex,2/κ0 +1

κex,2/κ0 +1
(5.3)

κex,1/κ0 = 2+κex,2/κ0. (5.4)

Eq. 5.3 is a natural generalization of the critical coupling conditions for a single resonator

that can be achieved by setting J to zero. Eq. 5.4 satisfies the critical coupling condition at

ωp =ω0 ±
√

4J 2 − (κ0 +κex,2)2. This condition requires strong coupling, i.e. J > 1
2 (κ0 +κex,2).

The critical coupling conditions are shown in Fig. 5.1(d) for κex,2 = 0. Typical cavity field

intensities for both cases are plotted in Fig. 5.1(b,c) as a function laser detuning.

The first critical coupling condition given by Eq. 5.3 has a quadratic dependence on the

inter-resonator coupling rate [Fig. 5.1(d)]. It leads to a broad resonance with a dip in the first

resonator (blue) and a narrow resonance in the second resonator (red) at the same resonance

frequency [Fig. 5.1(c)]. The second critical coupling condition (Eq. 5.4) branches off the first

one at J/κ0 = 0.5 and does not depend on the inter-resonator coupling rate. It features split

resonances with identical linewidths [Fig. 5.1(b)].
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Chapter 5. Dissipative Kerr solitons in dimers

Experimental implementation of the multimode photonic dimer demonstrated the presence

of the non-vanishing inter-resonator detuning δ caused by the fabrication imperfectness.

Nonetheless, the possibility to control and manipulate δ, and thereby establish control over the

output solitonic spectrum, has been demonstrated and efficiently implemented by imprinting

heaters directly on the photonic device [184, 122]. Critical coupling at non-vanishing δ is

possible as well. The inter-resonator detuning introduces asymmetry in the distribution of

the supermodes (eigenvectors) in each resonator. Thus, the supermode confined in the first

(second) resonator requires smaller (larger) κex,1 to be critically coupled. It follows that in

general when δ ̸= 0 only one supermode can be critically coupled for a given value of κex,1.

The qualitative behavior of the photonic dimer can be anticipated by examining the eigenval-

ues of the system Eq. 5.2. Operating with a naturally Non-Hermitian system, we can exploit

the concept of EP [185] to shed light on the nature of each critical coupling conditions

5.1.3 Eigenvalues and exceptional points

The eigenvalues of the matrix M defined in Eq. 5.2 in case of δ= 0, κex,2 = 0, and ω0 =ωp are

given by

σ± =−i ( 1
2κ0 + 1

4κex,1)± 1
4

√
16J 2 −κ2

ex,1, (5.5)

where the real (imaginary) part corresponds to resonance frequency (loss rate). The eigenval-

ues are shown in Fig. 5.1(e) as a function of κex,1 for an inter-resonator coupling J = 1.5κ0. Two

different regions of split resonance and split dissipation are identified and shaded in Fig. 5.1

with orange and purple, respectively. For κex,1 < 6κ0, the eigenvalues have degenerate imagi-

nary part and split real parts, associated with the split resonances as depicted in Fig. 5.1(b). In

contrast, κex,1 > 6κ0 leads to degenerate real parts and split imaginary parts, i.e. to identical

resonance frequencies but different loss rates, as can be seen in Fig. 5.1(c). The two regions

correspond to the P T -symmetric and P T -symmetry broken states, respectively.

An EP is found between the two regions at κex,1 = 6κ0, where the system eigenvalues become

degenerate and the two eigenvectors coalesce because of the vanishing square root in Eq. 5.5.

EPs lie along the line defined by κex,1 = 4J , which separates the two critical coupling conditions

in the (J ,κex,1) plane. Remarkably, the two critical coupling conditions and the EP line fork at

J = 1
2κ0, κex,1 = 2κ0. This particular point is highlighted by the blue star in Fig. 5.1(d). It is the

only EP that satisfies a critical coupling condition. This point also marks the entry into the

strong coupling regime (J > 1
2κ0). Above reasoning is valid when κex,2 = 0. In the general case

(κex,2 ̸= 0) the line of EPs can cross the line corresponding to critical coupling conditions.

Concluding, there are two types of critical coupling conditions in the photonic dimer. These

conditions are found on both sides of the EPs, such that critical coupling can be achieved in

the P T -symmetric as well as P T -symmetry broken states. In the next sections, we examine

the versatile nonlinear dynamics and dissipative Kerr soliton generation in theses states.
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Figure 5.2: FWM pathways between the dimer supermodes. (a) Table of the 9 possible FWM
pathways with corresponding coefficients ti . (b) Real (solid) and imaginary (dashed) part of
nonlinear coupling coefficients as a function of the normalized inter-resonator detuning d for
2 values of the external coupling mismatch∆κex in the split resonance regime (J = 20κ0). ∆κex

is the source of the imaginary component, which however is small compared to the real part,
except for t4 around d = 0. (c,d) Schematic integrated dispersion profile with emphasized
FWM pathways. The labeling indexes are specified in (a). Empty dashed circles denotes
cold cavity mode, filled circle denotes Kerr comb mode, and color codes AS (green) or S
(purple) mode family. (c) GS generated in the AS supermodes via conventional FWM (even
intra-band processes) and the emergence of commensurate dispersive waves via odd inter-
band processes. (d) Soliton in the AS supermodes and the generation of a soliton in the S
supermodes caused by even processes.

5.2 Critically coupled resonators: split resonance

In the present section we discuss the case of the split resonance (P T -symmetric). We revisit

ideas presented earlier in [122] by looking at the nonlinear dynamics from the supermode

perspective. We demonstrate a separability of the gear soliton (GS) dynamics from dispersive

waves (DWs) living in the S supermodes. Finally, we show how this representation explains the

origin of soliton hopping effect. An essential part of the investigation of the dynamics inherent

to the photonic dimer and described by Eq. 5.1 relies on numerical simulations.

5.2.1 Four-wave mixing pathways between supermodes

The linear part of Eq. 5.1 can be diagonalized by a linear transformation on each pair of

modes with index µ. We define the complex inter-resonator detuning δc = δ− i 1
2∆κex. If the
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Chapter 5. Dissipative Kerr solitons in dimers

inter-resonator coupling is independent of the wavelength, the complex frequency splitting

∆ωc =
√

4J 2 +δ2
c , and the (complex) normalized inter-resonator detuning

dc ≡ δc /∆ωc

are independent of the mode index. Therefore, the non-unitary transformation diagonalizing

the linear part of Eq. 5.1 is given by As,µ =αAµ+βBµ, Aas,µ =βAµ−αBµ, where

α≡
√

1−dcp
2

β≡
√

1+dcp
2

. (5.6)

Here S and AS stand for the symmetric (S) and antisymmetric (AS) mode, as they are completely

symmetric (antisymmetric) at dc = 0 in the split resonance regime. Then, by defining the

spatial envelope of the field in the S and AS modes As(θ) =∑
µ As,µe iµθ, Aas(θ) =∑

µ Aas,µe iµθ,

we can express Eq. 3.2 in the supermode basis (see an alternative Hamiltonian formulation

in [122]):

d

dt
As,µ =[−i (ωµ−µD1 −ωp − 1

2 Re(∆ωc ))

− 1
2 (κ0 +κex + Im(∆ωc ))]As,µ

+δµ,0α
p
κex,1sin + i g0F

[
t1 As,µ|As,µ|2

+ t2 Aas,µ|As,µ|2 + t4 A2
s,µA∗

as,µ+ t3 As,µ|As,µ|2

+1
2 t3 A2

as,µA∗
s,µ− 1

2 t2 Aas,µ|Aas,µ|2
]
µ

(5.7a)

d

dt
Aas,µ =[−i (ωµ−µD1 −ωp + 1

2 Re(∆ωc ))

− 1
2 (κ0 +κex − Im(∆ωc ))]Aas,µ

+δµ,0β
p
κex,1sin + i g0F

[1
2 t2 As,µ|As,µ|2

+ t3 Aas,µ|As,µ|2 + 1
2 t3 A2

s,µA∗
as,µ− t2 As,µ|Aas,µ|2

−t4 A2
as,µA∗

s,µ+ t1 Aas,µ|Aas,µ|2
]
µ

. (5.7b)

As one can see, the linear anti-diagonal terms are eliminated in the supermode basis, while

the nonlinear terms (diagonal in the resonator basis) induce nonlinear coupling between

the supermodes. In particular, we identify FWM processes between the supermodes. The

efficiencies of FWM pathways are associated with nonlinear coupling coefficients ti , i = 1, ..,4,

defined in Eq. C.14 of Appendix C.1. For example, the term 1
2 t3 A2

as,µA∗
s,µ in Eq. 5.7a signifies

the annihilation of two photons in Aas,µ and the creation of two photons in Aas,µ, and the rate

of the process is proportional to g0t3. The 9 different non-linear processes from Eq. 5.7 are

depicted in Fig. 5.2(a), where they are arranged in categories corresponding to intra-band

even processes, inter-band even processes and inter-band odd processes.

We refer to a nonlinear process as intra-band when two annihilated and two created photons

are from the same supermode family, while inter-band processes imply nonlinear mixing

66



5.2 Critically coupled resonators: split resonance

of photons belonging to different supermodes, inspired by the concept of Bloch bands in

condensed matter Physics. The number parity of the process (even or odd) refers to the

number of photons from each supermode family that is involved. We note that processes

(2,4,7,9) are the counterparts of processes (1,3,6,8) for permuted supermodes index. Schemes

of possible FWM pathways between the supermodes (while a solitonic state is generated in

the AS supermode family) are shown in Fig. 5.2(c,d) These processes are distinguished by the

nature of FWM: Fig. 5.2(c) shows odd processes (except the conventional even process #1),

while Fig. 5.2(d) shows even processes leading to soliton hopping (see Sec. 5.2.2).

While the index µ has been omitted in Fig. 5.2(a) for readability, both the mode number and

the energy have to be conserved in a FWM process. We employ the concept of integrated

dispersion Dint(µ) =ωµ− (ω0 +D1µ) to depict the processes which satisfy the phase matching

conditions.

The real and imaginary parts of the nonlinear coupling coefficients are shown in Fig. 5.2(b) as

a function of the normalized inter-resonator detuning d = δ/
√

4J 2 +δ2 with solid and dashed

dotted lines, respectively. The parameters are chosen in the split resonance regime with

J = 20κ0. Vanishing and non-vanishing ∆κex are considered, emphasizing that the imaginary

parts of all the nonlinear coupling coefficients originate from the external coupling mismatch.

The imaginary part, however, generally constitutes only a small fraction of the absolute value

of the nonlinear coupling coefficients.

Coefficient t1 is responsible for the intra-band processes, that is, the usual FWM within the

same mode family (S) or (AS). It has its lowest value equal to 0.5 at the maximum hybridization

(d = 0). In contrast, coefficient t3 is maximized at d = 0 and causes inter-band and even

processes. The coefficients t2 and t4 are responsible for inter-band and odd processes. Their

real parts are odd with respect to d . Therefore, there are no odd FWM processes at d = 0, unless

an external coupling mismatch is present. In this case, coefficient t4 has a non-vanishing

absolute value.

5.2.2 Nonlinear dynamics and soliton generation in split resonance regime

The type of the critical coupling conditions corresponding to the split resonances allows for

accessing dynamical states characterized by efficient generation of bright dissipative Kerr

solitons in both cavities. Emergent dynamical effects described in [122] are found in this

regime. In this section, we provide an additional (to the result already shown in [122]) and

complementary description of these phenomena by representing the inter-resonator field in

the hybridized supermodes basis.

Modulation Instability state

We restrict ourselves to the AS supermodes pumping scheme since we did not observe dynam-

ics different from the single resonator case when exciting the S supermode family. Fig. 5.3(a,b)
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Chapter 5. Dissipative Kerr solitons in dimers

a b

c d

e f

Figure 5.3: Numerical simulations of the split resonance regime (P T -symmetric case). (a)
Intracavity field power evolution in resonator basis. (b) Intracavity field power evolution in
supermode basis. Spatiotemporal diagrams for the field evolution in first resonator (c), AS
mode (d), second resonator (e), S mode (f). Parameters of numerical simulations are close
to the exact critical coupling conditions: κ0/2π = 50 MHz, κex,1/2π = 100 MHz, κex,2/2π = 20
MHz, δ/2π = 4 GHz, J/2π = 4.5 GHz, the pump power was fixed to 1.2 W.

68



5.2 Critically coupled resonators: split resonance

show the intracavity power evolution as a function of laser detuning in the resonator and

supermode basis, respectively. It is numerically generated by exciting the system in a soft

manner, i.e. adiabatically changing the laser detuning ξ = ω0 −ωp from blue to red side of

the AS hybridized resonance. Initial dynamics is found to be similar to the single resonator

case. We observe the formation of primary combs in the AS supermode family followed by

cnoidal waves (Turing rolls). The subsequent chaotic modulation instability stage [yellow area

in Fig. 5.3(a,b)] already demonstrates a significant difference. Namely, the average intracavity

power evolution in the second resonator, which is depicted by the red line, as a function

of normalized detuning ξ/∆ω exhibits a local maximum inside the modulation instability

area which corresponds to the efficient photon transfer to the S supermodes [violet curve in

Fig. 5.3(b)]. At these values of detuning ( ξ/∆ω≈ -1), we observe an enhancement of spectral

components distinct from the modulation instability gain region. The mode number of the

components corresponds exactly to the distance from the pumped mode to the lower (S

supermodes) parabola for a given value of the laser detuning, as described in [122]. This is a

first signature of the interaction between the supermodes.

Fig. 5.3(c,d) provide the underlying evolution of intracavity power (spatiotemporal diagram)

in the supermode basis. The modulation instability region in the conventional basis does not

differ for the single-particle dynamics. However, the supermode basis reveals that the transfer

of photons to the S supermode family occurs after a certain detuning threshold. As follows

from the spatiotemporal diagram of the AS state, it occurs in the developed AS supermodes

modulation instability stage, where collision and annihilation of unstable coherent structures

lead to the enhancement of wings in the optical spectrum [136] and thereby populates the

modes in vicinity of the symmetric resonances.

Breathing state

As in conventional single resonator systems above a threshold pump power level, the modula-

tion instability region is followed by the breathing solitons region [violet area in Fig. 5.3(a,b)].

Breathing originates from the Hopf bifurcation as demonstrated for the single resonator

case [62]. It manifests itself as a periodic oscillation of localized coherent structures (simi-

lar to solitons on a finite background, such as Kuznetsov-Ma soliton [11, 67] — a solution

of the nonlinear Schrödinger equation), which radiates DWs at every cycle of oscillation.

Fig. 5.4(a) shows the intracavity power evolution. Breathers in the photonic dimer exist in

both resonators and oscillate in phase. However, the intracavity trace is found to be randomly

deviating from the average because of the photon transfer to the S supermodes and, therefore,

the generation of additional DWs.

The periodic oscillation of a coherent structure in slow time results in the appearance of a

ladder of equally-spaced lines on the nonlinear dispersion relation [186]. The presence of

such ladder has been experimentally demonstrated (see [122] supplementary information) by

reconstructing the comb spectrum with high resolution. Indeed, as follows from Fig. 5.4(c,e)

the breathing frequency is given by the frequency offset between the lines. The same reasoning
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Figure 5.4: Breathing state. (a,b) Intracavity power evolution with a fixed pump laser detuning
(a) in the first and second resonator (shown by blue and red lines) and (b) in the supermode
basis (green and violet for AS and S mode families, respectively). (c-f) Nonlinear dispersion
relations (c,e) for the first and second resonators (d,f) for AS and S supermode families.

can be applied to the single resonator breathing states. There, it has been demonstrated ex-

perimentally that the breathing frequency linearly depends on the pump laser detuning [187].

Therefore, we can make a conjecture that the breathing occurs due to the photon transfer

between the Kerr-shifted dispersion parabola and the first solitonic line given by the laser

detuning, while the breathing frequency is the corresponding gap. In the points where the

ladder crosses the AS supermodes parabola enhancement of the comb power is observed.

Therefore, optical spectrum of a breather contains a set of sidebands [187].

In the supermode basis [see Fig. 5.4(b)] it becomes evident that the breathing occurs mostly

in AS supermode families. Therefore, the breathing dynamics in the AS mode family does

not show significant difference from the conventional breathing found in the single resonator

case as follows from the nonlinear dispersion relation [Fig. 5.4(d)], although it demonstrates

significant differences in the resonator basis. Fig. 5.4(f) shows the nonlinear dispersion relation

for the S supermode family. The origin of the DWs which perturb the breathing state can be

seen as an enhancement of the certain supermodes in the S family (µ ≈ ±70) in the places

where the ladder from AS supermodes crosses the S parabola.

Soliton hopping state

The soliton hopping state recently predicted in the photonic dimer [122] is characterized by

a periodic energy exchange between the coupled resonators in the presence of temporally-
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Figure 5.5: Soliton hopping state. (a,b) Intracavity field power evolution and power spectral
density (PSD) at fixed laser detuning corresponding to the the soliton hopping regime, in
supermode basis. (c,d) Nonlinear dispersion relation for AS and S supermode families, re-
spectively. White dots show points on the nonlinear dispersion relation where the spectral
components are enhanced. Arrows connect these points with the corresponding spectral
components.
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localized coherent structures. Inter-resonator oscillations have a frequency equal to the

splitting between the supermode parabolas. The average power modulation is much stronger

than in the breathing state, which leads to the enhanced sideband amplitudes in the optical

spectrum [see Fig. 5.5(b)].

The spatiotemporal diagrams for the diagonalized system [see Fig. 5.3(c,d)] reveal a remarkable

insight about the soliton hopping state. The soliton hopping range [blue area in Fig. 5.3(a,b)]

coincides with the emergence of a localized coherent structure in the S supermodes family

accompanied by a characteristic solitonic step in the average intracavity power evolution as

follow from Fig. 5.3(b). This coherent structure is generated via the emerged FWM pathways

depicted in Fig. 5.2(d). Soliton in AS supermode family acts in this case as a source of photons

which triggers the parametric processes, thereby resonantly populating the S parabola in the

vicinity of the 0th mode (i.e. with the offset −∆ω) via the process #5 (photons from AS and S

supermodes annihilate creating photons form AS and S supermodes). Energy conservation

is ensured by populating supermodes offset by approximately +∆ω. Cascaded parametric

process #2 (a pair of S supermode photons annihilates creating another pair of S supermode

photons) populates the neighbouring S supermodes similarly to the CW-pumped single

resonator. Therefore, we assume that the coherent structure generated in S supermodes is a

GS (i.e. supermode dissipative Kerr soliton). Thus, the origin of the oscillatory behavior can

be seen as a time periodic interference of coherent structures living in different supermodes.

Fig. 5.5(a) shows the dimer dynamics at fixed pump laser detuning, in the soliton hopping

regime in AS and S supermodes representation. It can be obtained numerically by seeding

the solitonic state in the AS supermode and further tune into the soliton hopping state.

The average power exhibits small amplitude oscillations around a certain value. Periodic

oscillations in slow time results in the series of sidebands (also similar to Kelly-sidebands

widely present in the mode-locked lasers [159]) in the optical spectrum as has been shown

in [122]. Corresponding nonlinear dispersion relation shows a ladder of lines similar to the

breathing state discussed in above, but the spacing between them is equal to the splitting

between the DWs parabolas. The origin of the double maxima spectral sidebands is well seen

in the supermode basis [see Fig. 5.5(b)]. They appear due to the different Kerr nonlinearity-

induced shift of supermodes in the presence of inter-resonator detuning. White dots indicate

the point where the ladder crosses dispersive parabolas and the continuing arrows indicate

the corresponding spectral components enhancement. Both nonlinear dispersion relations

depicted in Fig. 5.5(d,c) contain a corresponding DW parabola and the hopping ladder. Since

the ladder crosses parabolas at slightly different mode numbers, sidebands have two maxima.

5.2.3 Experimental and numerical evidences of the deterministic single soliton
generation

Deterministic generation of a single soliton state in optical microresonators is essential for

a turn-key dissipative Kerr soliton-based broadband frequency combs generation. Indeed,
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Figure 5.6: Experimental and numerical evidences of single GS generation. Numerical (a)
and experimental (b) confirmations. (a, top) Simulation of average intracavity field evolution
for different input powers as a function of pump laser detuning. For every value of the pump
power there are 10 traces superimposed. (a, bottom) Examples at three different powers.
Single GSs are depicted by arrow. (b) Experimental confirmation obtained by piezo-tuning of
central frequency of a widely tunable external cavity diode laser over the AS resonance. For
every value of the pump power there are 50 generated light traces superimposed.

passing the chaotic modulation instability stage, soliton arrangement inside the cavity can be

arbitrary which leads to a non-homogeneous spectral profile due the interference of different

solitonic components. One way to control and structure the soliton arrangement inside the

cavity is to introduce a background modulation which leads to the generation of perfect

soliton crystals [50]. However, the single soliton state is, nonetheless, difficult to achieve in

this configuration.

Another way to naturally fall into the single soliton state has been described in [188]. It has

been proposed to employ a strong avoided mode crossing with higher-order modes of the

resonator, which leads to an extensive cavity Cerenkov radiation [189]. In this case, the soliton,

being a line on the nonlinear dispersion relation [190], crosses the distorted cavity mode,

which leads to effective photon transfer towards the higher-order modes [174]. In this way,

every soliton acts as a "source" of DWs. Therefore, if the energy of the DWs is sufficient to

perturb the solitonic states the number of solitons will decay towards unity, where the state

will be stabilized.

Here, we present a deterministic version of this mechanism utilizing discovered properties

of the photonic dimer [122]. Due to the more complex dispersion landscape, the single

soliton generation process does not require any additional interaction with higher-order

mode, even though it is shown to be enhanced for certain supermodes due to the underlying

symmetry that we discuss in chapter 6 of this thesis. Indeed, the periodic intra-resonator
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field enhancement due to the crossing of the S supermode parabola is found to be sufficient

to trigger the process discussed in [188]. In order to verify this claim, we investigate both

numerically and experimentally the GSs generation. Fig. 5.6 shows the qualitative comparison

of numerical and experimental phase diagrams. As follows from the numerical simulations of

coupled LLEs 5.1, single soliton generation occurs when passing a threshold power of 0.9 W.

A similar result follows from the experimental investigations. Figure 5.6(b) shows 50 traces

of the generated combs power at different values of the pump power as a function of the

laser detuning from the position of AS resonance. The central frequency of a widely tunable

external cavity diode laser has been controlled by the piezo-tuning technique.

5.3 Critically coupled resonators: split dissipation

Passing through an EP, which exhibits a singularity of nonlinear interactions efficiency, we

enter the domain of split dissipation (P T -symmetry broken phase), which exhibits drastically

different dynamical features. We study soliton generation in this region and show that P T -

symmetry breaking leads to soliton generation in either cavities. The soliton localization can

be switched by increasing the pump power and thereby flipping the broken P T -symmetry.

Four distinct dynamical states are identified, we observe among them on-demand perfect

soliton crystals generation, which can be a promising alternative to the existing technology

relying on the resonator’s mode interaction [50].

5.3.1 Phase diagram: inter-resonator coupling vs pump power

We numerically explore the phase diagram under the condition of critical coupling in the

nondegenerate dissipation regime [see Fig. 5.7(a)]. In Fig. 5.7(a), κex,1 is varied with J in the

way that the critical coupling condition (Eq. 5.3) is satisfied across the phase diagram and the

dimer is in a state of broken P T -symmetry (split dissipation). An EP is found at J = 0.5κ0

[see Fig. 5.1(d)]. We selected 14 values of pump power distributed logarithmically from 0.01 W

to 1.5 W and 13 values of inter-resonator detuning distributed linearly from 0κ0 to 2.4κ0. For

each set of parameters, we employ the conventional soliton generation scheme by scanning

the resonance from blue to red-detuned side. The spatiotemporal and spectrum evolution

diagrams in the resonator basis is used to identify the stable soliton state that is generated

during the scan. Colors in Fig 5.7(a) correspond to different stationary states attainable in

the split dissipation regime. Thus, for different points on the phase diagram, the value of

detuning is not the same. If several stationary states are identified, we choose the first state in

the soliton existence range. The phase diagram is averaged over 3 realizations and the pump

laser frequency is swept at the speed 1
10κ

2
0/2π, corresponding to a change of frequency κ0

every 10 photon lifetimes (2π/κ0).
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5.3 Critically coupled resonators: split dissipation

Figure 5.7: Phase diagram for critically coupled photonic dimer under the split dissipation
(P T -symmetry broken) condition. (a) Schematic phase diagram represented as a function of
input power and J . Four states are identified: soliton in resonator 1 (S1, blue region), soliton
crystal in resonator 1 (C1, cyan region), coexistence of soliton in resonator 2 and periodic
coherent structure resonator 1 (S2/C1, green region), and soliton in resonator 2 (S2, yellow
region). The insets show the intracavity field intensity in the resonators 1 (blue) and 2 (red), at
the parameter indicated by the grey dot. White color refers to the absence of stable solitonic
state. (b) Intracavity power traces at different input powers for J/2π = 70 MHz. Parameters for
the simulations are κ0/2π= 50 MHz, κex,2 = 0, δ= 0, D1/2π=180 GHz, D2/2π= 4 MHz.

Dynamical states in split dissipation regime

We differentiate four dynamical states in this regime: multi or single soliton in resonator 1 (S1,

blue region), soliton crystal in resonator 1 (C1, cyan region), coexistence of periodic coherent

structures in resonator 1 and soliton in resonator 2 (S2/C1, green region), and soliton in

resonator 2 (S2, yellow region). The parameter regions enabling their generation are coloured

on the phase diagram and their characteristic intracavity intensity profile are shown in the

insets. White region refer to the absence of solitonic states.

At weak inter-resonator coupling (J < 1
2κ0), the system qualitatively follows the single resonator

dynamics and features the S1 state, where DKSs exist in resonator 1 while resonator 2 only

features their low-power projection. Increasing the inter-resonator coupling, dynamical

regions corresponding to states C1, S2/C1, and eventually S2 are accessed.

The states are almost exactly partitioned in the resonator basis. For example, state S1 is

confined in resonator 1 although a negligible amount (≪ 1%) is found in resonator 2. That

is, the field amplitude distribution between the resonators does not follow the supermode

distribution which is given by linear analysis. We assume that the nonlinearity changes the field

distribution of the supermode, making them localized in the resonators. These supermodes

are referred to as high-loss (confined in resonator 1) and low-loss (confined in resonator 2).
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Chapter 5. Dissipative Kerr solitons in dimers

Parametric switching of the soliton-localisation

In the range of 1.2κ0 ≲ J ≲ 1.8κ0, the four stable states can also be accessed by changing

the pump power. Fig. 5.7(b) shows the intracavity power evolution as a function of the laser

detuning for pump power levels corresponding to four dynamical states in this range of

J . Therefore, gradually increasing the pump power, states S2, S2/C1, C1, and S1 can be

sequentially accessed.

In this process, the soliton-localization switches from resonator 2 to resonator 1. Linear

analysis predicts that the resonant soliton will be confined in the low-loss supermode while

the red-detuned CW background will be in the high-loss supermode [see Fig. 5.1(c)] as is the

case for state S2 [inset of Fig. 5.7(a)]. However, despite the field distribution predicted by the

linear analysis, the presence of nonlinearity in the system introduces a mechanism allowing

for the parametric switching between the cavities.

Indeed, at low pump power, only the low-loss supermode has a quality factor sufficient for the

soliton generation, resulting in state S2. At higher pump powers, both supermodes can sustain

a coherent structure, leading to the coexistance of soliton and periodic coherent structure

that has been observed in a limited intermediate range of parameters. Above a threshold,

solitons are not generated in resonator 2. Moreover, in the C1 and S1 state, the parametric gain

is able to compensate the difference of losses between the supermodes, and invert the P T

symmetry: the parametric gain (via intra-band FWM) is larger in the supermode localized in

resonator 1 than in the other supermode making the state of broken P T -symmetry flipped

in comparison to the linear regime for longitudinal modes with µ ̸= 0.

We note that no specific solitonic state was found at the EP. We suppose that the Kerr shift

lifts the degeneracy between the two supermodes. However, an extensive investigation of the

soliton generation in the close vicinity of the EP is beyond the scope of this study.

5.3.2 Deterministic soliton crystal and efficient comb generation

In this section, we study the generation of state C1, which corresponds to the deterministic

generation of a soliton crystal [50]. Fig. 5.8 shows the numerical simulations of Eq. 3.2 setting

the pump power to 0.2 W and J/2π = 75 MHz. Fig. 5.8(a) shows the intracavity power in

both resonators as a function of laser detuning. The incident light couples into both high-

and low-loss, supermodes of the system simultaneously, such that the low-loss supermode

features a chaotic regime while the high-loss supermode remains in the cnoidal wave regime

[Fig. 5.8(c,e)]. After passing a critical detuning (∼ 7κ0), resonator 2 leaves the chaotic regime

without any coherent structures generated while cnoidal waves of resonator 1 transition into

a soliton crystal state. Fig. 5.8(b) shows that the crystal state at detuning I [Fig. 5.8(a)] is

perfect [50] with more than 100 dB of extinction over almost the full existence range.

This state is known to exhibit a high conversion efficiency due to the high occupancy of the

resonator 1 as shown in Fig. 5.8(b,d). Fig. 5.8(f) shows the output power in the pump mode
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Figure 5.8: Deterministic perfect soliton crystal generation in the P T -symmetry broken
phase. (a) Intracavity power as a function of detuning. (b,d) Spectrum (b) and waveform (d)
at detuning I. (c,e) Spatio-temporal diagrams for resonators 1 (c) and 2 (e). (f) Output of the
through port, showing pump conversion above 75 % into coherent comb. Pin =0.2 W and
J/2π= 75 MHz. Other parameters are identical to Fig. 5.7.

(µ= 0) and comb modes (µ ̸= 0). We observe that the perfect soliton crystal formation leads to

a conversion efficiency higher than 75%. Also, we note that the pump is almost completely

absorbed by the system, such that an effective nonlinear critical coupling is achieved. Accord-

ing to [50], the soliton crystal is generated deterministically when the pump power is below

the threshold to avoid spatiotemporal chaos under the condition that modal crossings with

higher-order modes trigger background modulation. Here, we observe deterministic soliton

generation in the absence of modal crossings.

5.3.3 Bright-dark solitons coexistence and their interaction with periodic coher-
ent structures

We perform and analyze a simulation with J/2π= 75 MHz, Pin = 0.1 W, as shown in Fig. 5.9

in order to generate S2/C1 state depicted by green in the phase diagram [Fig. 5.7(a)]. The

power trace [Fig. 5.9(a)] shows the presence of a step in each resonator. The spectrum and

temporal intensity at detuning I are shown in Fig. 5.9(b). A soliton exists in resonator 2,

while background modulation reminiscent of C1 state are present in both resonators. The

comb modes in both resonators are excited in this state, hinting at nonlinearly-induced P T -

transition that restores the P T symmetry in the comb modes [191, 192]. Spatiotemporal

diagrams shown in Fig. 5.9(c,e) as a function of the laser detuning indicate that the S2/C1

state decays into a S2 state after the end of the soliton existence range in resonator 1. After
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Figure 5.9: Generation of bright-dark soliton pairs and interaction with periodic coherent
structures in the P T -symmetry broken phase. (a) Intracavity power as a function of laser
detuning. (b) Spectrum and waveform at detuning I. (c,e) Spatiotemporal diagram in resonator
1 and 2. (d,f) Simulation at fixed detuning seeded with the state from I, showing the evolution
of the bright-dark soliton pair interacting with periodic coherent structures in resonator 1.
Pin =0.1 W. Other parameters are identical to Fig. 5.7.
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5.4 Conclusion

transitioning to the S2 state, the field in resonator 1 acts as a source for resonator 2, resonantly

supplying additional energy to the solitonic state. This results in a coexistence of a bright and

dark solitons synchronously rotating in the resonators. This situation is similar to a dual fiber

loop arrangement presented in [121] but in the limit of equal cavities.

While the existence of a periodic coherent structure in resonator 1, bright-dark soliton pair

can be generated as well. A simulation at a fixed detuning starting from the initial conditions I

[Fig. 5.9(b)] is shown in the spatiotemporal diagrams Fig. 5.9(d,f). We observe that the soliton

pair is bounded by the effective nonlinear potential induced by the periodic structures in the

neighbouring cavity. The spatiotemporal diagram depicts the possibility for the bright-dark

soliton pair to tunnel from one potential unit cell to another interacting with their boundaries

in an oscillatory manner. In addition to the fast oscillations, a random walk of the pair is

observed at a slower timescale.

5.4 Conclusion

In this chapter we investigate nonlinear dynamics in a driven-dissipative photonic dimer

exhibiting an exceptional point. We analyze the generation of dissipative Kerr solitons on both

sides of the exceptional point which acts as a demarcation of the dimer critical coupling con-

ditions. These two regimes are the split resonance regime (with the preserved symmetry) and

split dissipation regime (with broken symmetry), as found in conventional P T -symmetric

systems with gain and loss. Each regime exhibits unique nonlinear dynamics not found in the

single resonator.

In the split resonance regime, which has been substantially discussed in [122], we observe

that dimer solitons can be generated in either supermodes, however, only the antisymmetric

one exhibits non-conventional soliton dynamics related to the emerging efficient four-wave

mixing pathways. The dynamics is conveniently expressed in the supermode basis, for which

we developed the concepts of inter-band four wave mixing. Supermode representation re-

veal that, despite the complexity of the dimer system, we are able to separate conventional

single-resonator soliton dynamics from the dispersive waves emerging in another supermode.

Breathing state of the photonic dimer in the supermode basis appears remarkably similar to its

single-resonator counterpart except for a small perturbation. In this case, the intra-resonator

power of both cavities oscillates in phase. Rapid and counter-phase power oscillations (soliton

hopping) are observed above a threshold pump power, originating from the generation of syn-

chronized solitons in both supermodes. We highlight the fact that all the dynamics appearing

in the split resonance regime can be well understood in the supermode representation.

The same does not apply to the regime of split dissipation. The absence of the resonance

splitting implies the pumping of both supermodes simultaneously. Therefore, the most conve-

nient representation in this case is the conventional resonator basis which exhibits the broken

P T -symmetry of the system. Satisfying the critical coupling condition, we impose different

loss rates on the two resonators so resonator 1 becomes substantially overcoupled. We observe
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Chapter 5. Dissipative Kerr solitons in dimers

the generation of four different stable solitonic states localized in either or both resonators.

In these states we observe: the synchronization of bright-dark soliton pairs (in resonators

2 and 1, respectively), the interaction of periodic coherent structures in resonator 1 with

the bright-dark soliton pair, the deterministic generation of soliton crystal states with more

than 75% pump conversion efficiency into the comb lines, and bright solitons in resonator 1.

Thereby, the pump power enables the parametric switching of the soliton localization between

resonator 1 and 2. The switching is induced by flipping the broken P T symmetry so the

lossy resonator 1 has more gain in the comb modes than resonator 2. We suspect nonlinearly

induced P T transition to take place in the intermediate regime [191, 192].

80



6 Avoided mode-crossings and dissipa-
tive solitons in coupled resonators

This chapter reports on the theoretical and experimental investigation of the avoided mode

crossings in coupled resonator systems and their influence on the dissipative Kerr soliton

generation. The results are partially adapted from A. Tikan et al., “Protected generation of

dissipative Kerr solitons in supermodes of coupled optical microresonators”, Science Advances

8 eabm6982(2022).

6.1 Introduction

The analogy between molecules and coupled resonator systems has been discussed in var-

ious studies [193, 194, 195]. Similar to the molecular energy surface non-crossings (first

pointed out by von Neumann and Wigner [196] in the early years of molecular quantum

mechanics), different eigenmode families of an optical resonator experience avoided mode

crossings (AMXs) leading to distortions of initially smooth (i.e. unperturbed) dispersion

profile [197, 198, 199, 200]. The dispersion profile is important in a plurality of resonant non-

linear wave-mixing schemes, including DKS [200] and platicon [74, 75, 135, 123] generation.

Although in the domain of normal dispersion, AMXs play a role in initiating nonlinear dy-

namics, they are generally considered unfavorable for the formation of DKS [201], particularly

when their position and intensity cannot be managed [200]. Even in scenarios where mode-

crossings can be controlled, as demonstrated in Ref. [122] and in chapter 4, the presence of

a shifted mode during soliton interaction results in a reduction of the DKS existence range.

This challenge remains significant even in cases involving coupled resonators, where DKS

consistently interacts with other supermodes. Even though, DKS were successfully generated

in the antisymmetric (AS) mode (see chapter 5 and Ref. [122]), some of the predicted effects

(such as soliton hopping) were not observed due to an unexpectedly enhanced interaction

of the symmetric (S) supermode with higher-order modes (HOMs). Due to this interaction,

AMX on the S supermodes strongly disrupts DKS generation and completely suppresses it

above a certain power level. Contrary, the interaction of the AS modes with HOMs can be

completely eliminated. As we show in this chapter, this effect is ubiquitous in strongly-coupled

resonator arrangements. We propose a general model explaining the effect of protection and
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Figure 6.1: Effect of protection against mode crossings in the photonic dimer and supermode
DKS generation. (a) Schematic representation of the experimental setup. Abbreviations:
External cavity diode laser (ECDL); erbium doped fiber amplifier (EDFA); fiber polarization
controller (FPC); optical circulator (CIRC); fiber Bragg grating (FBG); optical spectrum analyzer
(OSA); sampling oscilloscope (OSC); photodiode (PD). ECDL is coupled into and out of the
microresonator chip via lensed fibers. The dashed fiber path corresponds to the dispersion
measurement scheme. (b) Dispersion profile measurements of the photonic dimer. Inset
shows two cross-sections of plot (b) at mode numbers -32 and -28 corresponding to AMX
and its close vicinity, respectively. (c,d) Experimental recording of generated light in AS and S
modes of the photonic dimer, respectively. Each plot contains 600 superimposed oscilloscope
traces. The color density indicates a number of superimposed traces at a given point.

apply it to the topological Su–Schrieffer–Heeger (SSH) arrangement, demonstrating the failure

of the topological protection. Furthermore, we provide a recipe for harnessing the effect

for on-demand protection of the dispersion profile, which is essential for the experimental

generation of edge state soliton frequency combs.

6.1.1 Photonic dimer

We start with the description of AMXs in the supermodes of a photonic dimer. We studied

strongly coupled microrings having ≈200 GHz free spectral range and loaded Q-factor of

the order of 2 millions, realized on the Si3N4 platform using the photonic Damascene reflow

process [202]. The resonators are designed to feature an identical free spectral range. The

intrinsic loss rate of the dimer is 50 MHz, and both resonators are interfaced with bus waveg-

uides having external coupling rates of 100 MHz. Employing frequency comb calibrated diode

laser spectroscopy (see Fig. 6.1a as well [203]), we retrieve first the dispersion profile of the

photonic dimer. Figure 6.1b depicts the transmission spectrum of the photonic dimer in the

form of an echellogram, where consecutive vertical lines are spaced by the free-spectral range

D1/2π of the microring resonator at the pump frequency ω0. The slow frequency denotes
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the frequency offset of the resonance from the equidistant grid and, therefore, reveals the

integrated dispersion (Dint(µ) =ωµ− (ω0 +D1µ)) of the photonic dimer modes directly. The

dispersion profile reveals two dimer supermode families. The fundamental S supermode

family is strongly affected by AMXs while the AS supermode dispersion profile is almost unper-

turbed. The inset of Fig. 6.1b shows a cross-section of the plot at the mode crossed by a HOM

(orange line) and before it (blue line). HOMs and, therefore, AMXs are likely to be present in

soliton-generating microresonators because the waveguide constituting the microresonator is

usually chosen to be multimode in order to guarantee low propagation losses (hence high Q

factor) by reducing the influence of the fabrication-induced surface roughness [204].

We also study the influence of AMXs on the generation of supermode DKSs. Fig. 6.1c,d show a

superposition of 600 transmission traces obtained by sweeping the pump laser frequency over

the AS and S resonances at 1554 nm with an optical power in the waveguide of 43 mW. We use

a conventional CW pumping scheme combined with fast single side-band tuning to eliminate

thermal heating and resonance shifts [205]. The strong pump line is filtered using fiber Bragg

gratings and the light generated by nonlinear processes in the resonator is sampled using a

fast photodetector with 1 GHz bandwidth. Generated light profiles for the AS mode, detected

with a photodiode after filtering out the pump comb line, systematically show the presence

of characteristic steps signifying the stable access to the solitonic state [77, 64]. Contrary, S

supermodes exhibit no solitonic feature at the equivalent pump power. At lower input powers,

soliton generation can be observed in the S mode family, however, it depends on the particular

distribution of AMXs on the dispersion profile. Indeed, as pointed out in [188] presence of

the AMX leads to the intense generation of dispersive waves which perturb the solitonic state.

Each soliton acts as a source of dispersive waves and, therefore, the number of solitons is

naturally reduced until the perturbation becomes sufficiently weak to maintain the state. The

strength of the perturbation depends on the position of AMX since the power spectral density

of the soliton and, hence, the optical power transferred to the HOM decays exponentially from

the pumped mode.

Even though, the soliton generation has several key aspects including the quality factor of the

resonators and stability of the pump source, we refer to this effect as protected generation of

DKSs in supermodes implying that the problems related to the soliton generation in a single

resonator are addressed. Therefore, the key limitation in this case is the detuning rate between

resonators which can only be controlled up to 70-80 GHz, resulting in the reduced (compared

to the single resonator) fabrication yield.

6.1.2 Photonic trimer and plaquette

A similar effect is observed in the trimer configuration. Linear dispersion measurements (see

Fig. 6.2a) reveal that the protection effect is the strongest for the trimer supermode with the

highest relative frequency and gradually decreases for lower frequency states on the integrated

dispersion profile. We also investigate a more complex resonator arrangement representing a
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Figure 6.2: Effect of protection in photonic trimer and plaquette. (a) Linear dispersion
measurement of a chain of three coupled resonators (photonic trimer). (b) The same for a
square lattice (plaquette). Insets show microscope images of the Si3N4 microresonators of
≈200 GHz free spectral range and imprinted system of heaters. (c-e) Optical spectra obtained
by investigating the square lattice tuned into the degenerate state similar to the trimer config-
uration. Spectral corresponds to top, middle and bottom resonances of the effective trimer,
respectively. The red line shows a fitting with the hyperbolic secant profile. Insets show a
schematic representation of the supermode distribution.

fundamental element of the square lattice — a plaquette. Fig. 6.2b shows the corresponding

dispersion profile. In the ideal case, two central mode families are degenerate. However, due to

the presence of the finite inter-resonator detuning δ, the degeneracy is lifted and we observe

all four mode families. Imprinting metallic heaters on top of the device, we establish a control

over the detuning of each individual resonator, thereby, bringing the plaquette system to the

degenerate state. We choose to work with this system as it represents a more general case of

coupled resonators, including the trimer to the degenerate case. Fig. 6.2c-e corresponding to

the upper, middle (2x degenerate) and lower frequency resonance, show nonlinear probing of

the plaquette structure. As follows from the figure, DKS in such configuration can be generated

only in the upper resonance, which is expected to be protected from interaction with HOM.

The intersection of the soliton line with the dispersive parabolas in the nonlinear dispersion

relation [122], as shown in Fig. D.1 of Appendix D.1, results in the generation of dispersive

waves that can be identified by the presence of strong sidebands in the multisoliton spectrum

show in Fig. 6.2c. Therefore, the low noise radio frequency generation in systems of coupled

resonators is an open question which is a subject of future investigations.

6.1.3 Model of mode crossing suppression

In order to shed light on the protection phenomenon, we derive from Maxwell’s equations

a Hermitian model of four coupled modes interaction (see Appendix D.3). We consider two

fundamental a1(2) and two transverse HOMs b1(2) of both resonators constituting the dimer.
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Figure 6.3: Effect of protection in coupled resonators. (a) Schematic representation of
coupled resonators chain and description of the coefficients of the coupling matrix used in
Eq. 6.1. (b) Protection in the photonic dimer. Protected state is highlighted by the blue circle.
Green line corresponds to AS fundamental mode, violet to S fundamental mode, red — AS
higher-order mode, and orange — S higher-order mode. Parameters are chosen to be close
to the experimental ones: J ext

aa /2π = 4.5 GHz, J int
ab = J ext

ab = 0.1J ext
aa (c) The splitting between

hybridized supermodes with coinciding central frequencies. The dashed black line shows
parameters corresponding to the cross-section of plot (b) atω2 = 0. (d) Protection in the trimer
configuration. (e) The gap distance between split resonances as a function of J int

ab /J ext
aa for a

chain of 5 coupled resonators at ω2 = 0, keeping the value of J ext
ab /2π= 0.1J ext

aa /2π=0.45 GHz.
Lines are numbered according to the relative frequency of the modes, as shown in plot (d).
Blue stars depict the protected states.
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The coupled mode equations can be written as follows [206]:

i
dU

d t
=−


−ω1 J ext

aa J int
ab J ext

ab
J ext

aa −ω1 J ext
ab J int

ab
J int

ba J ext
ba −ω2 J ext

bb
J ext

ba J int
ba J ext

bb −ω2

U , (6.1)

where U = (a1, a2,b1,b2)⊺. Eigenvalues of the coupling matrix can be found analytically.

Assuming that the coupling matrix is symmetric, we obtain:

λ1,2(as) =
1

2

(
2J ext

aa ±
√

4(J int
ab − J ext

ab )2 + (ω1 −ω2)2 +ω1 +ω2

)
λ3,4(s) =
1

2

(
−2J ext

aa ±
√

4(J int
ab + J ext

ab )2 + (ω1 −ω2)2 +ω1 +ω2

)
.

(6.2)

The notation for coupling coefficients is described in Fig. 6.3a. J ext
aa corresponds to the coupling

between fundamental modes of the nearest resonators, J ext
ab — to the coupling between fun-

damental mode of one resonator and HOM of the neighbor, and J int
ab is the coupling between

fundamental and HOM within the same resonator. The coupling strength between two HOMs

is set to J ext
aa since it does not qualitatively change the result. The difference between J ext

aa and

J ext
bb leads to a shift of the hybridization area along the direction of the HOM. As an example of

the resonator HOM, we show TE10. The influence of the dissipative coupling in our system

is negligible [207], and therefore is not included in the analysis. Thus, we find two pairs of

eigenvalues that represent the mode interaction. The first couple λ1,2 corresponds to the AS

supermodes while λ3,4 to S one. The expression under the square root in the first couple of

eigenvalues contains the term (J int
ab − J ext

ab )2. Therefore, in the case when J int
ab and J ext

ab are of the

same order, the influence of the AMX is reduced. However, in the second couple eigenvalues,

the effect of AMX is increased in comparison to the conventional hybridization in the single

resonator case.

Indeed, numerical simulations of the coupling region for parameters close to experimental

ones (see Appendix D.5) demonstrated that the ratio between J ext
ab and J int

ab tends to one for

silicon nitride based anomalous dispersion ring microresonators. The coupling sections to bus

and drop waveguides will contribute to the coefficient J int
ab as well, however, this contribution

is found to be one order of magnitude smaller which is consistent with the experimentally

observed strong protection of the AS supermode parabola (Fig. 6.1b).

The eigenvalue system Eq. 6.2 as a function of the central frequency of the HOM ω2 with the

ratio J int
ab /J ext

ab = 1 is depicted in Fig. 6.3b. Fig. 6.3c shows the dependence of the hybridized

modes position for ω1 =ω2 (at the center of Fig. 6.3b) as a function of J ext
ab /J ext

aa . Black dashed

line corresponds to the conditions considered in Fig. 6.3b. As predicted from Eq. 6.2, when

J int
ab and J ext

ab coincide exactly, the gap distance tends to zero.
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6.2 Protection of topological states in the Su–Schrieffer–Heeger model

The structure of the coupling matrix in Eq. 6.1 is notably similar to the Hamiltonian discussed

in [208], which underpins the profound nature of the analogy with molecular systems. Similar

effects, known as conical or diabolical crossings [209] in this community, have been actively

investigated at the end of the last century.

This model can be easily extended to the case of arbitrary number of resonators (see Ap-

pendix D.4). An example of the mode hybridization for the trimer configurations is shown in

Fig. 6.3d. Influence of the AMX increases with the decreasing relative frequency, as suggested

by the experimental data. Numerical analysis of longer chains revealed that the index of

the protected mode depends on the values J ext
ab and J int

ab and, therefore, can be manipulated.

When J ext
ab can be neglected then the effect of AMXs is the same for all the hybridized mode.

In the opposite case, when J int
ab ≪ J ext

ab , the protection falls into the middle mode family and

symmetrically decreases towards modes with higher and lower relative frequencies. Therefore,

the protection can be moved along the dispersion relation by changing the coupling coeffi-

cients ratio. Fig. 6.3e shows the dependence of the AMX-induced gap width as a function of

normalized J int
ab coefficient for a five resonator chain computed using the same parameters

as previously. When J int
ab can be neglected, the middle mode (3) becomes protected. With

increasing J int
ab , the protection moves towards the fourth mode family and subsequently to the

fifth one.

Even though there is a number of techniques allowing one to suppress the excitation of

higher-order modes in a microresonator [210, 150, 211], this can lead to the reduction of the

coefficient J int
ab while the control of both J int

ab and J ext
ab is required.

6.2 Protection of topological states in the Su–Schrieffer–Heeger model

In order to highlight the importance of protection for the future development of field of the

soliton lattices, we study the effect of AMXs on topologically protected edge states in the SSH

model [212] originally proposed for the explanation of mobile neutral defects in polyacetylene.

This model is described by the following Hamiltonian: ĤSSH =∑
n t1ĉ†

n ĉn−1 + t2ĉ†
n+1ĉn , where

ĉ†
n is the creation operator at the nth site and t1,2 is the hopping amplitudes. Due to the

simplicity of implementation [213], this model often serves as a primary verification platform

for novel nonlinearity-related topological effects [118]. It can be realized in our system by

varying the inter-resonator coupling coefficients J ext
aa and J ext

ab playing here the role of the

hopping amplitudes. Schematic representation of the SSH chain is shown in Fig. 6.4a. The

alternating coupling effectively divides the chain into a number of unit cells shown by dashed

rectangles. The coupling strength ratio inside a unit cell and between unit cells (t1/t2 =
J ext

aa,ab,1/J ext
aa,ab,2) is chosen to be 0.1 which is sufficientfor opening a wide photonic band gap

and obtaining a nonzero integer winding number — a topological property, invariant under

adiabatic perturbations [214].

Fig. 6.4b shows the mode hybridization for the SSH model realized with ten resonators. The

topologically protected (against the disorder and variation of the coupling coefficients) edge
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Chapter 6. Avoided mode-crossings and dissipative solitons in coupled resonators

Figure 6.4: Protection against mode crossing of the topological edge state in
Su–Schrieffer–Heeger model. (a) Schematic representation of 10 coupled resonators with
alternating coupling, which constitutes the SSH chain. (b) Influence of AMX when J int

ab ≈ J ext
ab,2.

(c) The same configuration with J int
ab ≪ J ext

ab,2 (J int
ab = 0.001J ext

ab,2) exhibits the protection against
AMX.

state is in the middle of the gap between two bulk states as shown in Fig. 6.4b. The same

is observed for the HOM family. According to the model, a crucial influence of AMX on the

topological state is expected, which potentially forbids or drastically obstructs the generation

of topological DKSs if the protection is not controlled. Indeed, AMXs in this system, together

with inter-resonator detuning in absolute frequency, act as on-side potential breaking the

chiral symmetry of the SSH lattice [215] and omitting the inherent topological protection [216].

However, increasing the difference between J int
ab and J ext

ab , we observe enhancement of the

protection effect on the edge state modes. This can be achieved by carefully designing the

coupling section to suppress the internal transverse mode couplings. Choosing the ratio

J int
ab = 0.001J ext

ab,2, we observe a complete protection against AMX as shown in Fig. 6.4c.

6.3 Conclusion

Concluding, we introduced the notion of protection against AMX in chains of coupled multi-

mode resonators, which exhibit a remarkable similarity with conical energy level crossings in

molecular systems. The crucial influence of this effect on the dispersion profile and, therefore,

the supermode DKS generation is demonstrated experimentally. We propose a simple model

which fully explains the effect and proposes a way to harness it for stable DKS generation.

Furthermore, we delve into the potential to manipulate the count of mode protections by

adjusting the ratio between coupling to higher-order modes within a ring and that between
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6.3 Conclusion

neighboring rings. Emphasizing its significance for the field’s future advancement, we illus-

trate how this effect influences topologically protected edge states within the SSH model. This

finding underscores the need to meticulously consider AMXs when designing experimental

setups for observing topological gear solitons, ensuring accurate and reliable results.
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7 Nonlinear dynamics in lattices of cou-
pled resonators

This chapter reports on the theory of two-dimensional four-wave mixing processes in chains

of coupled microresonators. The results are partially adapted from A. Tusnin et al., “Nonlinear

dynamics in lattices of coupled resonators,” Communications Physics 6, (2023) and A. Tusnin

et al., “Dissipative Kerr solitons at the edge state of the Su-Schrieffer-Heeger model,” Journal

of Physics: Conference Series, Volume 2015, 012159 (2021).

7.1 Introduction

While the previous chapters discussed optical frequency comb generation and nonlinear

dynamics in systems of coupled resonators, these lattices were relatively small. The observed

effects, which go beyond single-resonator physics, can still be understood using the one-

dimensional Lugiato-Lefever equation. On the other hand, large-scale arrays of coupled

resonators that combine spatial and frequency dimensions remain largely unexplored, both

theoretically and experimentally. They can allow for significantly more complex dispersion

landscapes, opening new ways to engineer dispersion. Moreover, such lattices can also enable

the study of topological systems, such as the Su-Schrieffer-Heeger model or honeycomb

lattices [214, 88], which have been extensively studied in the linear regime in photonics over

the past decade.

In this chapter, we consider systems with many coupled resonators, naturally extending the

problem dimensionality. For example, for a 1D chain of resonators, we obtain a 2D system

with nonlinearly coupled frequency and spatial axes. We provide a leading-order model in

the form of the 2D continuous-discrete LLE. This model demonstrates a striking difference

in comparison with its lower-dimensional counterpart. The two-dimensional version of the

LLE was first derived in the context of transverse pattern formation in nonlinear cavities [10]

and was recently applied to a novel type of cylindrical high-Q cavities [217]. The extension of

the LLE to the two-dimensional case makes inherent dissipative solitons stable (contrary to

its conservative counterpart [218]) only in a narrow region of parameters in the monostable

part of the tilted resonance [219]. In contrast, the bistable part features only hexagonal
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Figure 7.1: Dispersion hybridization in lattices of resonators. (a) Chain of equally coupled
resonators. Dispersion of the spatial supermodes results in a two-dimensional hybridized sur-
face. Blue asterisks represent the cosine band structure of a single mode for which integrated
supermode dispersion at k = 4 is presented in panel (b). (b) Integrated supermode dispersion
of the edge state of the Haldane model compared to the dispersion of a chain of resonators.
Inset: numerically computed band structure for 21×21 resonators with phase flux in the unit
cell π.

patterns [220]. We observe similar effects in a chain of 20 coupled optical resonators (Fig. 7.1a),

demonstrating fundamentally distinct nonlinear regimes attributed to the local dispersion

profile: elliptic and hyperbolic. We also demonstrate the emergence of two-dimensional

spatiotemporal mode-locked solitons and discuss their correspondence to the observed

solitons in the edge state of the Haldane model studied in Ref. [127], by comparing the local

dispersion profiles (Fig. 7.1b). Similarly, we demonstrate that conventional 1D DKS are not

expected to exist in arbitrary lattices of resonators. However, using the celebrated Su-Schrieffer-

Heeger (SSH) model, we investigate the nonlinear dynamics of the edge state and demonstrate

the generation of a 1D DKS, which is, however, strongly perturbed by dispersive waves in the

bulk modes.

7.2 General theory

We start with a general description of nonlinear dynamics in an arbitrary N-dimensional lattice

of resonators. Such system is shown to be governed by a set of linearly coupled Lugiato-Lefever

equations (LLEs), which can be presented in matrix form as

∂

∂t
A= D̂A+ iM̂A+ i g0|A|2A+F, (7.1)
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7.2 General theory

where vector A = [A0, ..., AN−1]T contains optical field envelopes of each resonator in the

lattice, matrix

D̂= diag
[− (κ0 +κex,0

2
+ iδω0

)+ i
D2

2

∂2

∂ϕ2 , ...,−(κ0 +κex,N−1

2
+ iδω0

)+ i
D2

2

∂2

∂ϕ2

]
contains detuning, losses, and dispersion for each resonator, the coupling between differ-

ent rings is introduced in matrix M̂, the nonlinear term |A|2A = [|A0|2 A0, ..., |AN−1|2 AN−1]T

describes the conventional Kerr nonlinearity, and F = [
p
κex,0sin,0, ...,

p
κex,N−1sex,N−1]T rep-

resents the pump. In general, the coupling matrix M̂ is diagonalizable and possesses a set

of eigenvectors {Vi } and associated eigenvalues λi , so any stateA can be represented in this

basis

A=∑
j

c jV j , (7.2)

where coefficients c j = 〈A|V j 〉 correspond to the amplitude of the collective mode V j and

〈·|·〉 indicates scalar product. Therefore, Eq. (7.1) can be rewritten for the amplitudes c j in

the basis of eigenvectors {V j }, where the the linear part of the equation will take a form of a

matrix with eigenvalues λi on the diagonals corresponding to the resonance frequencies of

the collective excitations. However, the nonlinear term will be no longer diagonal in this basis.

In the resonator index basis, the nonlinear term takes form

|A|2A= ∑
j1, j2, j3

c j1 c j2 c∗j3
V j1V j2V

∗
j3

.

Projecting this expression onto the state V j , one obtains the coupled-mode equations for the

amplitudes c j

∂c j

∂t
=−(

κ0 +κex

2
+ i (δω0 −λ j ))c j + i

D2

2

∂2c j

∂ϕ2 + i
∑

j1, j2, j3

c j1 c j2 c∗j3
〈V j1V j2V

∗
j3
|V j 〉+ f̃ j , (7.3)

where f̃ j = 〈F|V j 〉 is the projection of the pump on the eigenstate V j , the nonlinear term

represents the conventional four-wave mixing process with the conservation law dictated

by the product 〈V j1V j2V
∗
j3
|V j 〉. The eigenvalues λ j , showing the dependence of supermode

frequency on supermode number, naturally start to play a role of dispersion, similar to the

conventional LLE in a single resonator. In general, the eigenvalues λ j are not equidistantly

separated, and the supermode dispersion can be introduced similar to the integrated disper-

sion of a single resonator Dint(k) =λk −λk0 − J1(k−k0), where J1 is the local free spectral range

of the spatial supermodes in the vicinity of k0. Depending on the system, the supermode

dispersion has the same dimensionality D as the system’s band structure. Thus, the total

hybridized dispersion (including the chromatic dispersion) profile for photons in the system

has D+1 dimensionality.
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Chapter 7. Nonlinear dynamics in lattices of coupled resonators

7.3 Chain of equally coupled resonators

We continue our analysis by considering a system of the equally coupled chain of resonators.

First, we explicitly write Eq. (7.1) in the case of constant coupling in a chain

∂Aℓ

∂t
=−(

κex,ℓ+κ0

2
+ iδω0)Aℓ+ i J (Aℓ−1 + Aℓ+1)

+i
D2

2

∂2 Aℓ

∂ϕ2 + i g0|Aℓ|2 Aℓ+
√
κex,ℓsin,ℓe iφℓ . (7.4)

For simplicity, in the case of constant couplings to the bus waveguides κex,ℓ, we introduce

normalized variables d2 = D2/κ, κ= κ0 +κex, ζ0 = 2δω/κ, j = 2J/κ, fℓ =
√

8κexg0/κ3sin,ℓe iφℓ ,

Ψℓ =
√

2g0/κAℓ. In the normalized units, Eq. (7.4) reads

∂Ψℓ

∂τ
=−(1+ iζ0)Ψℓ+ i d2

∂2Ψℓ

∂ϕ2 + i j
(
Ψℓ−1 +Ψℓ+1

)+ i |Ψℓ|2Ψℓ+ fℓ. (7.5)

Further, we can readily diagonalize the linear part by taking the Fourier transform

ψµk = 1

2π
p

N

∫ N∑
ℓ=1
Ψℓe2πi (ℓk/N+µϕ)dϕ, (7.6)

where k is the supermode index and µ is the comb line index. With the Kerr term, Eq. (7.5)

transforms to

∂ψµk

∂τ
=−(1+ iζ0)ψµk − i

[
d2µ

2 −2 j cos
2πk

N
]ψµk +δµ0 f̃k+

+ i

N

∑
k1,k2,k3
µ1µ2µ3

ψµ1k1ψµ2k2ψ
∗
µ3k3

δµ1+µ2−µ3−µδk1+k2−k3−k . (7.7)

In this form, we obtain the analytical expression for the hybridized 2D dispersion surface

dint(µ,k) = 2(ωµk −ω0 +D1µ)/κ= d2µ
2 −2 j cos(2πk/N ). (7.8)

In the case of anomalous GVD (d2 > 0, Fig. 7.1a) of the individual resonator, this surface with

parabolic and cosine cross-sections is shown in Fig. 7.1a. Local dispersion topography changes

along the k axis, revealing different regions with parabolic and saddle shapes. The pump term

f̃k stands for the projection of the pump on the k-th supermode

f̃k = 1p
N

N∑
ℓ=1

fℓe2πiℓk/N . (7.9)

7.3.1 Spatial eigenstates and pump projection on the chain

The supermode dispersion (i.e., band structure) has regions of anomalous and normal super-

mode group velocity dispersion (sGVD). For a given supermode index k0, the linear term in the
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7.3 Chain of equally coupled resonators

Taylor series of the cosine gives the supermode FSR equal to J1/2π= 2J/N sin(2πk0/N ) and

the corresponding quadratic term yields sGVD J2 = 2J (2π/N )2 cos(2πk0/N ) for eq. (7.4). The

excitation of the individual supermode requires an accurate pump projection on its spatial

profile. In case of imperfect projection of the pump, the number of the excited modes will de-

pend on the local density of states within the width of the band. Moreover, the single-resonator

pump scheme always leads to the excitation of supermodes in pairs due to their two-fold

degeneracy, except for the modes from the very top and bottom of the band. According to

Eq. (7.9), if the resonator ℓ = 0 is pumped, all the supermodes have a pump term with the

projection amplitude 1/
p

N . With the increasing number of resonators, a pumping scheme

with a single resonator excitation becomes less efficient, and more sophisticated schemes are

required. For simplicity of the further analysis, in the following we focus on the ideal case of a

single supermode excitation. Accurate projection to the supermode with index k0 requires

accurate adjustment the relative phases of the pump lasers according to

f = f (0)[1,e−2πi k0/N ,e−4πi k0/N , ...,e−2(N−1)πi k0/N ]
, (7.10)

where f (0) =
√

8g0κexP/κ3ħωN is normalized pump for a single resonator.

7.3.2 Modulation instability gain lobes.

Further, we investigate the stability of plane wave solutions ψ00. Considering the pump

at µ0 = 0 and at the parabolic region k0 = 0 (saddle point k0 = N /2), we investigate FWM

processes between the pump mode and the modes with indexes µ,k. Linearizing the system,

we identify the modes with positive parametric gain. We consider the system to be in a

stable state ψ0k0 with k0 = 0 or N /2. These two supermodes have opposite sGVD. Keeping

only quadratic term in Tailor series of the cosine in Eq. (7.7) and performing inverse Fourier

transform, we obtain the 2D LLE

∂Ψ

∂τ
=−(1+ iζk0

0 )Ψ+ i d2
∂2Ψ

∂ϕ2 + i j k0
2

∂2Ψ

∂Θ2 + i |Ψ|2Ψ+ f (0)e−i k0Θ, (7.11)

withΘ= 2πℓ/N , j k0
2 =±(2π/N )2 j , ζk0

0 = ζ0∓2 j , and+(−) standing for excitation of k0 = 0(N /2).

Further, we investigate unstable solutions c(t)exp(i [µϕ+kΘ]) [156]. The linearized system

yields the following eigenvalues
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Chapter 7. Nonlinear dynamics in lattices of coupled resonators

λ1,2 =−1± i
√

(ζk0
0 + j k0

2 k2 −3|ψ0k0 |2)(ζk0
0 + j k0

2 k2 −|ψ0k0 |2), k ̸= 0,µ= 0

(7.12)

λ3,4 =−1± i
√

(ζk0
0 +d2µ2 −3|ψ0k0 |2)(ζk0

0 +d2µ2 −|ψ0k0 |2), k = 0,µ ̸= 0

(7.13)

λ5,6 =−1± i
√

(ζk0
0 +d2µ2 + j k0

2 k2 −5|ψ0k0 |2)(ζk0
0 +d2µ2 + j k0

2 k2 −3|ψ0k0 |2), k ̸= 0,µ ̸= 0.

(7.14)

With the stable state satisfying

(1+ iζk0
0 )ψ0k0 = i |ψ0k0 |2ψ0k0 + f (0)e−i k0Θ, (7.15)

similar to Ref. [55], we derive the position of the primary sidebands

d2µ
2 ± j2k2 = 4|ψ00|4 +

√
|ψ00|4 −1−ζk0

0 , µ,k ̸= 0, (7.16)

d2µ
2 = 2|ψ00|4 +

√
|ψ00|4 −1−ζk0

0 , k = 0, (7.17)

j2k2 = 2|ψ00|4 +
√

|ψ00|4 −1− [ζ0 −2 j ], µ= 0, k0 = 0 (7.18)

with j2 = (2π/N )2 j . Eq. (7.16) indicates that the primary combs are formed on an ellipse (hy-

perbola) in the vicinity k0 = 0 (N /2), equations (7.17,7.18) reveal conventional position of the

unstable solutions. Our analysis, similar to Ref. [156], shows that the modulationally unstable

solutions form an ellipse (hyperbola) in the µ − k space (k ̸= 0,µ ̸= 0).
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Figure 7.2: Modulation instability gain lobes
in chains of coupled resonators. Hybridized
dispersion profile shown as a surface in panel
(a) for the elliptic and (b) for the hyperbolic
regions. Contour plots in the k −µ plane at
Dint = 0 highlight the different local topogra-
phies that result in the elliptic (a) or hyperbolic
(b) modulation instability gain lobes depicted
in red.

An example of the modulation instabil-

ity gain lobes [Eq. (7.16)] is presented in

Fig. 7.2(a,b) for both regions in case of d2 =
0.04 and j2 = |J2|/κ = 1. Fig. 7.2(a) re-

veals that the supermode corresponding to

the excitation of all the resonators in-phase

(anomalous sGVD) is unstable against small

perturbations withµ and k indexes that form

an ellipse. The width and height of the ellipse

are defined by pump power, d2, and j2 coef-

ficients that correspond to GVD and sGVD.

In contrast, the state corresponding to the

excitation of the neighboring resonators in

the opposite phase (normal sGVD) is unsta-

ble against the perturbations with µ and k

forming a hyperbola (see Fig. 7.2(b)), show-

ing that all the supermodes can experience

positive parametric gain.
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Figure 7.3: Numerical reconstruction of the nonlinear dispersion relation in the elliptic
and hyperbolic regions in the unstable regime. Panels (a-c) correspond to the elliptic region
(k0 = 0, d2 > 0, j2 > 0), panels (b-f) to the hyperbolic (k0 = N /2, d2 > 0, j2 < 0). Spatiotemporal
diagrams of unstable states in 0th resonator are shown in (a) and (d); The corresponding
nonlinear dispersion relation (NDR) in the elliptic region (b) demonstrates excitation of all the
optical and spatial modes, whereas the NDR in the hyperbolic region (e) reveals that photon
transfer between the spatial supermodes is suppressed in the vicinity of the pump mode µ= 0
; The panes (c) and (f) represent the nonlinear supermode dispersion relation [Eq. (7.19)] of
0th comb line for the state in (a) and 25th comb line for the state in (d).

7.3.3 Wave collapse

We continue with the simulation of the coupled LLEs in Eq. (7.4) for 20 resonator chain and

constant normalized coupling j = 10 ( j2 = 1). To simulate the temporal dynamics, we employ

the step-adaptative Dormand-Prince Runge-Kutta method of Order 8(5,3) [179] and approxi-

mate the dispersion operator by the second-order finite difference scheme. We deliberately

choose the pumping scheme allowing for exciting only a given mode. To trigger the FWM pro-

cesses, we numerically scan the resonance with a fixed pump power and track field dynamics

in all the resonators.

First, we focus on the investigation of the unstable behavior of the system pumping the elliptic

(k0 = 0) and hyperbolic regions (k0 = N /2) with the pump fℓ = 2.35 and corresponding detun-

ings ζ0 = 22.1 and ζ0 =−17.0. In the former case, at a single resonator level we observe the

random appearance of the pulses in different parts of the cavity and further their rapid com-

pression, during which the peak amplitude significantly exceeds (60 times) the background

level (cf. Fig. 7.3(a)). Computing the NDR, we observe the high photon occupancy of the pump

region beneath the parabolas (cf. Fig. 7.3(b)), which indicates the presence of 2D dissipative

nonlinear structures. Furthermore, all the hybridized parabolas are populated by the photons,

meaning that supermodes from both dispersion regions are excited. To further confirm it,

we reconstruct the supermode NDR for the 0th comb line (µ0 = 0) for all resonators in the

following way

N DR(Ω,µ0,k) = 1p
Nt N

∑
ℓ,n
ψµ0ℓ(t )e i (2πkℓ/N−Ωtn ), (7.19)
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Chapter 7. Nonlinear dynamics in lattices of coupled resonators

where Ω is slow frequency, tn = ∆tn with ∆t = T /Nt time-step, T is simulation time with

Nt number of discretization points. The result is shown in Fig. 7.3(c). The whole cosine

band structure is populated, including the region of the normal dispersion. In the opposite

case, the spatiotemporal diagram [Fig. 7.3(d)] in hyperbolic region does not demonstrate

any extreme events, showing slow (with respect to the elliptic case) incoherent dynamics.

Comparing the NDR [Fig. 7.3(e)] with the elliptic case, we show less supermode occupancy.

In the vicinity of µ = 0, the normal sGVD suppresses the photon transfer along the k axis.

Nevertheless, the photon transfer to other supermodes is stimulated with respect to eq. (7.16)

that depicts MI gain lobes position, resulting in the generation of dispersive waves [122, 221].

Reconstructing the supermode NDR (Fig. 7.3(f)) for µ= 25 comb line [the average crossing

position in Fig. 7.3(e)], we observe the predominant population of the center of the band.

We attribute this drastic difference in the chaotic dynamics to the effect called wave col-

lapse [17, 222] that plays an important role in physics and leads to an effective mechanism of

local energy dissipation. Our system, in the long-wavelength limit, can be modeled by 2D LLE

with elliptic (∂2
ϕϕ+∂2

θθ
) or hyperbolic (∂2

ϕϕ−∂2
θθ

) dispersion (here θ stands for the continuous

coordinate along the circumference of the chain). Neglecting the pump and damping terms,

we obtain the conservative 2D Nonlinear Schrödinger equation (NLSE), which in the elliptic

case can result in full compression of a pulse to an infinitely small area concentrating there a

finite amount of energy [218, 223]. Such pulse becomes ultra-broad in the spectral domain,

and even the presence of dissipation in 2D LLE does not restrict this effect [224]. On the con-

trary, wave collapses do not occur in the 2D focusing NLSE with hyperbolic dispersion [223],

signifying that it is the dispersion curvature that is responsible for the effect. Moreover, higher

dispersion orders of the cosine limit the pulse compression in the elliptic region, regularizing

the singularity [225, 226].

7.3.4 Coherent dissipative structures

Turing patterns.

As the different dispersion topographies result in completely different chaotic dynamics, the

Turing patterns in the elliptic and hyperbolic regions differ in the same way. To observe

the coherent structures, we first bring the system to into an unstable state. Stimulating

the incoherent patterns, we further tune towards the monostable region (ζk0
0 = ζ0 ∓ 2 j <p

3, + (−) stands for k0 = 0 (N /2)) and obtain stable coherent structures in both regimes

(Fig. 7.4). One can see that in the elliptic regime at | fℓ| = 1.05 and ζ0 = 20.5, we observe the

formation of a Turing pattern [Fig. 7.4(a)] [227, 228, 220]. On a single resonator level, this

corresponds to locked pulses [Fig. 7.4(b)] with a typical comb spectrum shown in Fig. 7.4(d).

The corresponding 2D k-µ spectral profile in Fig. 7.4(c) shows that the sidebands form a disk,

occupying the supermodes from both anomalous (|k−k0| < 5) and normal dispersion regimes.

In the hyperbolic regime, at | fℓ| = 2.35 and ζ0 =−20.3, we observe a train of pulses in each

resonator locked to each other [Fig. 7.4(e,f)]. The corresponding 2D spectral profile [Fig. 7.4(g)]
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7.3 Chain of equally coupled resonators
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Figure 7.4: Coherent dissipative structures in a driven nonlinear photonic ring lattice. Panels
(a-d) correspond to the elliptic region (k0 = 0, d2 > 0, j2 > 0), and panels (e-h) correspond
to the hyperbolic (k0 = N /2, d2 > 0, j2 < 0). Spatiotemporal profiles of the mode-locked
structures are shown in panels (a,e) with the corresponding field profile on a single resonator
level in panels (b,f). The 2D spectral profiles of the states (a) and (e) obtained via Eq. (7.6)
are presented in (c) and (g), respectively. The spectral profile in elliptic regime (c) forms a
disk, whereas the spectrum of the pattern in hyperbolic regime (g) tends to align one of the
asymptotes of the hyperbola depicting modulation instability gain in Eq. (7.16). The Fourier
spectra of the states (b) and (f) are presented in (d) and (h).
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Figure 7.5: Localized 2D dissipative soliton in a chain of 20 resonators. Instantaneous field
profile in the chain of resonators and the corresponding 2D spectral profile in dB are shown
in panels (a) and (b). Inset in (a) shows the roundtrip number of the soliton in time. c)
Schematics of the soliton as a dispersionless structure (blue disk) beneath the hybridized
dispersion surface (similar to Fig. 7.1a, spans over 1.25 of the Brillouin zone along k axis).
Intersection between the soliton disk and the dispersion defines the position of the dispersive
waves taking the form of a ’fish tail’ in panel (b). d) Field dynamics on a single resonator level
with an inset resolving one pulse. Color represents the amplitude in dB (see colorscale in panel
(a)), the cross-sections of the inset are in linear scale normalized on the average amplitude in
the cavity. The corresponding super-resolution and averaged spectrum are presented in panel
(e).

forms a line in k-µ space, that qualitatively follows one of the asymptotes of the hyperbola

that depicts modulation instability gain lobes in Fig. 7.2(b). Comparing the comb spectra at

the 1st resonator Fig. 7.4(d)] with the elliptic case [Fig. 7.4(h)], one can notice that the state at

the hyperbolic regime has a wider comb spectrum.

Spatiotemporal two-dimensional dissipative soliton.

We also generate a localized 2D dissipative solitons [219] traveling along the circumfer-

ence of the chain, which we describe in the following. To generate this spatiotemporal

Kerr soliton (2D-DKS), we pump the 4th supermode in the elliptic regime (blue asterisk

at k = 4 in Fig. 7.1(b) with | fℓ| = 2.35 and ζ0 = 10.92, so the local dispersion has anoma-

lous sGVD j2 = j (π/10)2 cos2π/5 = 0.30 in addition to the non-zero supermode FSR j1/2π=
0.1 j sin2π/5 = 0.95. The obtained solution of the 2D-DKS corresponds to a continuously

re-circulating spatial discrete soliton that forms an ellipse with a fish-like tail in the spectral

domain cf. Fig. 7.5(a,b). Similar to Cherenkov radiation for conventional DKS, the disk-shaped

soliton crosses the hybridized dispersion in the vicinity of the edge of the Brillouin zone (cf.

Fig. 7.5(c)), resulting in the intensive generation of the dispersive waves, forming the fish-like

spectrum, but presuming the soliton coherence. In the leading order, such 2D soliton is

described by 2D LLE, therefore its approximate existence range can be inferred from Ref. [219].
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7.4 Su-Schrieffer-Heeger model

On the single resonator level, the optical field envelope demonstrates breathing dynamics

(Fig. 7.5(d)) due to the periodic appearance of the pulse in every individual resonator con-

stituting the chain. Resolving the field envelope dynamics in time, one detects the periodic

appearance of optical pulses and adjacent dispersive waves. Sampling this signal in time and

computing the overall Fourier transform gives the so-called super-resolution spectrum shown

in Fig. 7.5(e). The periodic nature of the signal reveals a typical comb spectrum, with the

presence of a fine spectral structure around each comb line, shown in the inset of Fig. 7.5(e).

These subcombs appear due to the breathing dynamics and emergence of the corresponding

dispersive waves, and the number of spatial modes does not define the number of these

subcombs. In fact, these subcombs correspond to just low-frequency breathing, which is also

present in the single resonator case in the breathing regime [187]. The time-averaging of the

signal yields a smooth spectral profile (solid line in Fig. 7.5(e)), indicating the periodic nature

of the signal. Noteworthy, a similar (in terms of hybridized dispersion) 2D-DKS was observed

in the edge state of the Haldane model [127]. Indeed, local dispersion profile of the edge-state

is one-dimensional, and its dynamics should be close to the one we described in this chapter.

However, the soliton coherence of the observed structure suffered from the presence of the

bulk, which effect we investigate below with an example of the edge states of the SSH model.

7.4 Su-Schrieffer-Heeger model

Lattices of nonlinear resonators also provide a platform for studying topological systems,

such as the Su-Schrieffer-Heeger (SSH) model or honeycomb lattices [214, 88], which have

been extensively explored in the linear regime within photonics over the past decade. Nonlin-

ear effects, including spatial solitons, have been studied and observed in arrays of coupled

optical waveguides [115, 116, 117]. However, these nonlinear effects did not include paramet-

ric frequency conversion (i.e., parametric oscillations), which is the fundamental principle

underlying soliton microcombs. A preliminary analysis of dissipative Kerr soliton (DKS) for-

mation was conducted in Ref. [127], where the authors explored a Kerr nonlinear version of

the photonic 2D Haldane model composed of coupled multi-mode optical microresonators

with anomalous dispersion, coupled via link resonators. In this work, we shift our focus to

the simpler SSH model, which, while simpler than the Haldane model, still provides insights

into the nonlinear interactions of edge and bulk states. Notably, we demonstrate that this

model possesses a band structure with different dimensionality: the edge state is 1D, while

the bulk states are 2D (see Fig. 7.6a). This distinction allows for a direct comparison between

the edge-state soliton and the conventional single-resonator DKS (see Fig. 7.6b).

First, we consider the staggered coupling system with periodic boundary conditions to simplify

the analytical treatment. We introduce collective excitation amplitudes ψµk and φµk for two
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sublattices constituting the chain.

ψµk = 1

2π
p

N

∫ ∑
ℓ=1,3,5...

Aℓe2πi (ℓk/N+µϕ)dϕ, φµk = 1

2π
p

N

∫ ∑
ℓ=2,3,6...

Aℓe2πi (ℓk/N+µϕ)dϕ,

(7.20)

where N is the number of unit cells. In contrast to the previous case, now the dynamics is be

described by a set of coupled equations on ψµk , φµk

∂ψµk

∂τ
=−(1+ iζ0)ψµk − i d2µ

2ψµk + i
[

Jinter + Jintrae−2πi k/N ]
φµk

+ i

N

∑
k1,k2,k3
µ1µ2µ3

ψµ1k1ψµ2k2ψ
∗
µ3k3

δµ1+µ2−µ3−µδk1+k2−k3−k +δk,k0δµ,0 f̃ 1
k0

, (7.21)

∂φµk

∂τ
=−(1+ iζ0)φµk − i d2µ

2φµk + i
[

Jinter + Jintrae2πi k/N ]
ψµk

+ i

N

∑
k1,k2,k3
µ1µ2µ3

φµ1k1φµ2k2φ
∗
µ3k3

δµ1+µ2−µ3−µδk1+k2−k3−k +δk,k0δµ,0 f̃ 2
k0

. (7.22)

According to Eq. (7.21), this system possesses two-dimensional dynamics as well, and the

supermode dispersion can be obtained by diagonalizing the linear part of the system. The

dynamics now incorporates interactions between two sublattices. Kerr nonlinearity acts

within each of them, resulting into four-wave mixing processes on each of the dispersion

surfaces. The coupling term can also lead to intraband mixing as shown in Ref. [122]. This

property remains valid for open boundary conditions, where edge states can be found.
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7.4 Su-Schrieffer-Heeger model

The edge eigenvalues λedge represent a 0D band. Thus, the hybridized dispersion profile corre-

sponds to a conventional integrated dispersion of a single microresonator . The chain supports

edge states in the case where inter-cell coupling Jinter is bigger than intra-cell coupling Jintra

(shown in Fig. 7.6a). In the limit Jintra → 0 (trivial edge state [214]), the first resonator is

completely decoupled from the chain, and its dynamics is described by conventional LLE.

With the finite ratio Jintra/Jinter < 1, the formed band structure (see Fig. 7.6a) has upper and

lower bulk regions with eigenmodes in the middle of the gap that correspond to the edge

states [229]. With the chromatic dispersion taken into account, the nonlinear interactions

happen on the hybridized dispersion surface. Due to the nontrivial topology, the hybridized

dispersion of the bulk has a form of a two-dimensional surface, while the edge states have a

1D dispersion curve. To generate an edge soliton, one needs to pump the edge state (c0 is the

corresponding amplitude in Eq. (7.3)). Neglecting the presence of the bulk states (c j ≪ c0),

according to Eq. (7.3), the governing equation takes the form of a simple LLE. This analogy

helps further to understand the soliton interaction with the bulk states. Generation of the edge

soliton corresponds to the formation of the dispersionless line below the edge state parabola

(schematically shown in Fig. 7.6a). If the width of the bandgap is large enough (effectively

corresponds to the limit Jintra/Jinter → 0, Jinter ≫ κ), the dynamics of the soliton will be simi-

lar to the single-resonator dynamics, because the field will be still localized in the first ring.

However, if the soliton line crosses the lower bulk band, additional photon transfer to the bulk

modes will occur (a similar effect has already been observed in the system of just two coupled

resonators considered in Ref. [122]). The photons scattered to the bulk will experience now

2D dynamics and can drastically affect the soliton stability and existence range.

To demonstrate this effect, we simulated an SSH chain of 10 resonators with typical param-

eters of Si3N4: κ0/2π = 50 MHz, D2/2π = 4.1 MHz, green Jinter/2π = 5 GHz, FSR=182 GHz,

Jintra/2π = 1 GHz under 100 mW pump power (that corresponds to the normalized pump

f 2 = 22, cf. Ref. [77] for the normalization) with critically coupled (κex = κ0) first resonator.

We excited the edge state resonance in the conventional way, scanning the pump laser from

the blue- to red-detuned zone. We show the intracavity power in the first (blue line) and

second (red line) resonators as a function of detuning in Fig. 7.7a along with the limit case of a

decoupled single resonator (black line). As one can clearly see, the power dynamics in the first

resonator generally has the same features as the decoupled resonator, but the soliton existence

range (δω ≈ 27.2κ/2) is shortened in the case of the SSH chain (δω ≈ 21.0κ/2). In fact, the

power in the second resonator reveals several resonance features with increased detuning.

Investigating the field and spectral profiles of the DKS (detuning δω= 2π ·1.48 GHz = 14.8κ/2)

itself in these resonators (cf. Fig. 7.7b,c), one can see that the soliton has a smooth sech profile

in the first cavity, while there is a strong background modulation in the second with the soliton

amplitude 200 times smaller. The reconstructed NDRs (Fig. 7.7d,e) reveal that the soliton,

formed below the edge parabola crosses the lower bulk modes that lead to the generation

of the dispersive waves in the second resonator, breaking the topological protection of the

edge state. While here we presented a case of moderate edge-bulk interaction, stronger in-

teractions can occur for spectrally broader solitons (smaller ratio D2/κ) or narrow bandgaps.
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7.5 Conclusion

Nevertheless, our conclusions remain valid for a smaller gap size and can be generalized for

higher dimension topological lattices: due to the presence of the other bands, the generated

edge-state soliton (be it DKS or 2D-DKS) induces edge-to-bulk scattering that influences

soliton stability and can result in its temporal decoherence.

7.5 Conclusion

We theoretically described nonlinear interactions via four-wave mixing (i.e. parametric oscil-

lations) in lattices of driven photonic microresonators. We showed the hybridization of the

chromatic dispersion with the N-spatial dimensional band structure gives rise to an effective

(N+1)-dimensional dispersion surface that governs the FWM processes with the conserva-

tion law defined by the structure of the lattice’s eigenfunctions. Further, we analytically and

numerically explored the nonlinear dynamics of the 1D band in a chain of equally coupled

resonators. We demonstrated that this system possesses a 2D dispersion surface and can

be described in the long wavelength limit by the 2D LLE at its local extrema. Different parts

of the dispersion surface correspond to two fundamentally different regimes of operation:

elliptic and hyperbolic. This results in different local dispersion topography. Simulating the

full set of coupled LLEs, we demonstrated nonlinear effects inherent to 2D systems which

include Turing pattern formation, 2D spatial-temporal dissipative Kerr solitons, and wave

collapses in the chaotic state. Considering the SSH model, we demonstrated that 0D bands

that correspond to the edge state can be approximated by the conventional 1D-LLE. How-

ever, the coherence and existence range of the generated DKS is strongly perturbed by the

DKS-induced edge-bulk mixing, breaking the protection that is present in the linear case. In

summary, our theory sheds light on nonlinear interactions in integrated photonic lattices

and will be helpful to guide future experimental investigations of multi-mode systems with

complex band structures, and highlight the limitation of topological protection when it comes

to the formation of Kerr frequency combs in lattices.
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8 Conclusion and Outlook

The thesis reports on the experimental and theoretical investigation of nonlinear interactions

in synthetic and real lattices of photonic microresonators. The first part, including chapter 1

and 2, covers effects of Kerr nonlinearity in electro-optic (EO) and dispersion modulated

cavities respectively. The second part, chapters 3, 4, 5, 6, and 7 is devoted to the study of

four-wave mixing processes in spatial lattices of resonators.

In synthetic frequency crystals created by EO phase modulation, we demonstrate the emer-

gence of confined modulation instability and show that conventional dissipative Kerr solitons

are formed in the stop-band of the synthetic band structure, i.e., in the region, where syn-

thetic Bloch waves do not propagate along the lattice and nonlinear dynamics is determined

purely by four-wave mixing processes. However, synthetic Bloch waves define the nonlinear

dynamics of the cavity excited in the center of the synthetic band structure. We demonstrate

that with increasing EO coupling between the adjacent modes, conventional EO frequency

combs emerge as novel states termed band solitons. However, with increasing pump power,

these coherent structures destabilize, resulting in coexistence of stable continuous wave (CW)

solution in one part of the cavity and chaotic dynamics in another. Moreover, for 2D synthetic

crystal, emergence of chimera-like states that exist due to the simultaneous presence of stop

and propagation bands of the synthetic band structure. Investigating dispersion-modulated

microresonators in chapter 2, we thoroughly analyzed its Floquet dynamics and demonstrated

emergence of a slow synthetic frequency dimension. We show the 2D nature of four-wave

mixing interactions in such lattices and analyze CW solution stability that results in primary

sideband generation in normal and anomalous dispersion resonators. As a result, we ob-

serve Faraday instability in such systems as an efficient mechanism of optical microcombs

broadening.

Second part of this thesis, covering chapters 3, 4, 5, 6, and 7 reports on the spatial lattices

of microresonators. In chapter 3, we present an approach of using two coupled resonators

with opposite dispersions for optical parametric oscillators. We investigate analytically the

frequency conversion mechanism and verify it experimentally with Si3N4 micoresonators.

Chapter 4 is devoted to the investigation of quiet points for low loss microwave generation
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Chapter 8. Conclusion and Outlook

using dissipative Kerr solitons in coupled resonator system. We present an approach how

to reduce the noise transduction mechanism from the pump laser to the soliton repetition

rate, and demonstrate how to expand the quiet point operation bandwidth. In chapter 5,

we explore the variety of dissipative Kerr solitons states in a photonic dimer in two coupling

regimes: split resonance and dissipation. We discuss in detail soliton breather and hoping

states, discover the soliton crystal and dark soliton states. In chapter 6, we study avoided mode

crossings in coupled resonators as a limiting factor for coherent structures generation. We

discover that for conventional ring resonators, the coupling region results in the excitation of

the higher order modes that lead to the enhanced strength of the mode crossings for lower

energy states and suppressed for higher ones. We demonstrate this effect with generation of

dissipative Kerr solitons in a chain of four microresonators and discuss the protection against

mode crossing of the edge state in the Su-Schrieffer-Heeger model. Chapter 7 concludes the

thesis with a theory of nonlinear interactions in coupled resonator lattices. We investigate

in detail one-dimensional chains a discover a plethora of nonlinear phenomena such as

spatio-temporal 2D-DKS, elliptic and hyperbolic Turing patterns, the regularized wave collapse,

edge-state DKS, and nonlinearly induced edge-bulk scattering. Our findings encompass rich

variety of nonlinear phenomena observed in many physical systems and will be helpful to

guide future investigations of multi-mode systems with complex band structures, their phase

transitions and frequency combs generation with a potential applications to quantum optics,

metrology, sensing, etc.

Below, the author discusses possible future directions for development of the topics covered

in this thesis.

Synthetic Dimensions. Photonics provides convenient means to emulate and test various

systems with high accuracy. For instance, optical fibers have often been used to examine

the nonlinear Schrödinger equation and compare its dynamics with deep water waves. Simi-

larly, synthetic dimensions have the potential to investigate different Hamiltonians that are

challenging to realize on alternative platforms. Systems with non-trivial topologies are of

particular interest, as they often necessitate three or more dimensions [230]. In this thesis, we

have focused on two approaches to extending dimensionality: through phase and dispersion

modulations. However, there are numerous ways to explore even more complex systems,

such as an EO-modulated cavity with clockwise and counter-clockwise coupling [104], or

incorporating an additional amplitude modulation, resulting in a non-Hermitian topological

system [111]. Four-wave mixing interactions in such systems can reveal different nonlinear

phenomena, including various dissipative structures, which may also be of interest for applied

photonics.

Coupled Resonator Lattices. Integrated coupled resonator networks, such as those fabricated

with silicon nitride, offer a versatile platform for studying the rich physics and nonlinear

dynamics at the intersection of topological and nonlinear photonics [118]. For instance, the

supermodes of a lattice lead to dispersion hybridization and natural filtering due to their

different spatial mode profiles. These effects hold potential for applications in broadband
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frequency comb engineering and optical parametric oscillators for optical clocks [125], as

well as for quantum photonics [231]. Recent demonstration of the self-injection locked

dissipative Kerr solitons in coupled resonators using CMOS-compatible fabrication techniques

also expands the engineering techniques for scalable production of optical microresonator

frequency combs [125]. Additionally, as demonstrated in this thesis with the phenomenon of

regularized wave collapse, extended dimensionality can result in the generation of chaotic

states with extreme events. Such states could be applied to sensing, akin to the chaotic states

used for distance ranging as presented in Ref. [65]. Overall, coupled resonator lattices possess

significant potential in nonlinear optics for investigation various nonlinear phenomena with

possible applications in future photonic technologies.
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A Appendix to chapter 3

A.1 Pump suppression

Let’s estimate the lower limit of pump suppression. For simplicity, we introduce a normalized

version of the LLE, considering a CW-type solution and neglecting the nonlinear terms:

d

dt
ψa =−[1+ i (ξ0 + 1

2δn)]ψa + i Jnψb + f

d

dt
ψb =−[κn + i (ξ0 − 1

2δn)]ψb + i Jnψa , (A.1)

where the subscript index n stands for normalization by κA/2, κn = κB /κA , Jn = 2J/κA .

Alternatively, we can rewrite Eq. A.1 in matrix form, considering the stationary case in the

symmetrically coupled dimer: (
0

0

)
=M

(
ψa

ψb

)
+

(
f

0

)
, (A.2)

where

M =
 −1− i

(
ξ0 + δn

2

)
i Jn

i Jn −1− i
(
ξ0 − δn

2

)  . (A.3)

The solution of this system is given by:

(
ψ̃a

ψ̃b

)
=−M−1

(
f

0

)
=

−
f
(
−1−i

(
ξ0− δn

2

))
δ2

n
4 +J 2

n−ξ2
0+2iξ0+1

i f Jn

δ2
n
4 +J 2

n−ξ2
0+2iξ0+1

.

 (A.4)
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Figure A.1: Pump suppression at the drop-port output.

We define pump suppression as follows:

η=
∣∣∣∣Sout,1

Sout,2

∣∣∣∣2

=
∣∣ f −ψa

∣∣2∣∣ψb
∣∣2 . (A.5)

Taking the normalized field amplitude at the center of the pumped resonance, we obtain:

η=
3δn

√
δ2

n +4J 2
n +5δ2

n +18J 2
n +8

2J 2
n

. (A.6)

The lower limit of the pump suppression given by Eq. A.6 is depicted in Fig. A.1. The pump

detuning is chosen to be at the position of the resonance. It can be observed that when

δn ≫ Jn , Eq. A.6 can be simplified as η ≈ 4δ2
n/J 2

n . This value reaches 34 dB in the case of a

large detuning, which corresponds to the largest signal-to-pump frequency offset presented

in Fig. 3.3b in chapter 3.

A.2 Resonators design

The search for the geometric parameters of resonators with different dispersion types was

conducted using COMSOL Multiphysics. In the simulation, we varied the radius and width

of the micro-ring, while keeping the height fixed. The simulated parameter is the effective

refractive index for the fundamental TE mode, from which we calculated the free spectral

range (FSR) and D2/2π. The map displaying D2/2π is presented in Fig. A.2a. The black lines

in the figure denote equal FSR values in GHz. The final design choice was guided by two

requirements. Firstly, the rings needed to possess different signs for D2. Secondly, they were

required to share an equal FSR. The significance of equal FSR is elucidated in Figs. A.2b and c.

The hybridized dispersion with precisely matched FSR is portrayed in Fig. A.2b. The outcome

depicted in Fig. A.2c corresponds to dispersions with a 1.1 GHz difference in FSR. Even such

a minor difference (which constitutes less than 1 percent of FSR) leads to a deviation of the

hybridization mode from the desired configuration.
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A.3 Experimental setup and uncoupled dispersion

Our experimental setup operates in two distinct regimes. The first regime, referred to as linear

measurements, involves dispersion characterization [203], allowing for the measurement of

free spectral range (FSR) and integrated dispersion. The second regime, designed for nonlinear

optical pumping and measurement of optical spectra from generated light, is where the action

takes place. In this second channel, a pump with a tunable wavelength sourced from an

external-cavity diode laser is amplified by an erbium-doped fiber amplifier and subsequently

coupled to the dimer. The generated signal is then subjected to analysis using an optical

spectrum analyzer. The setup also incorporates a photodiode connected to an oscilloscope to

facilitate the measurement of transmission traces. In both of these operational regimes, the

heater elements of the microrings are powered by a DC power source, an essential aspect for

tuning the interring detuning. With no power applied to the heaters, the detuning is significant

enough to consider the rings optically uncoupled. The integrated dispersion measurements for

normal and anomalous rings with zero power applied are depicted in Fig. A.3b and c. Notably,

the fitting curves derived from these measurements are used for the analysis of hybridization

regimes in Fig. 3.3c-e in chapter 3. According to the fitted curves, the D2/2π values are 12.56

MHz and -1.15 MHz for the normal and anomalous rings, respectively. Additionally, the

measured FSR deviation amounts to 0.1 GHz.

A.4 Detuning calibration

Experimental data regarding the detuning-to-heaters voltage relationship is directly incor-

porated into the main experimental results depicted in Fig. 3.3b of the primary paper. In

this experiment, each spectrum corresponds to a distinct heater voltage. Consequently, the

original outcome showcases voltage on the y-axis (refer to Fig. A.4a). Since the pumping was

executed on the same ring as the one undergoing heating, adjustments to the pump laser’s

frequency were essential for every voltage tuning iteration. As a result, by monitoring the shift

of the pump laser (manifested as the center lines of the spectra in Fig. A.4a), we can deduce the

conversion scale from voltage to an absolute frequency value. For translation of this data into

a relative interring detuning, a preliminary condition is required. We chose a voltage value

(2050 mV) that would yield zero relative detuning between the dispersions. The outcome

of this process is presented in Fig. A.4b, wherein we applied a linear approximation. This

approximation was subsequently employed to recompute each voltage from Fig. A.4, leading

to the primary result showcased in Fig. 3.3b in chapter 3
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B Appendix to chapter 4 — Quiet points
in a coupled resonator system

B.1 Newton-Raphson method

In this section, we illustrate the application of the Newton-Raphson (NR) method for finding

stationary solutions of the Lugiato-Lefever equation (LLE). Initially, we consider the simplest

form of the LLE as follows:

∂Ψ

∂t
= i d2

∂2Ψ

∂ϕ2 + i |Ψ|2Ψ− (1+ iζ0)Ψ+ f . (B.1)

In general, the NR method is utilized to determine approximate solutions for an arbitrary

system of equations, denoted as F (x) = 0. Consequently, stationary solutions of the LLE

(where ∂Ψ/∂t = 0) can also be found using this approach. The task involves solving the

system F (X) = 0, with the vector X defined as X = (Ψ,Ψ∗)T , where the field envelope Ψ is

considered as a variable. To locate a solution, an initial guessΨ0 must be defined, followed by

the computation of the corresponding Jacobian matrix:

J (X0) =
(−(1+ iζ0)+ i d2

∂2

∂ϕ2 + i 2|Ψ0|2 iΨ2
0

−i (Ψ2
0)∗ −(1− iζ0)− i d2

∂2

∂ϕ2 − i 2|Ψ0|2.

)
(B.2)

Subsequently, the first approximation X1 can be obtained using the equation:

X1 = X1 − J−1 ·F (X0). (B.3)

To refine the solution, the Jacobian is recalculated using the computed solution X1. This

iterative process can be expressed as:

Xk+1 = Xk − J−1 ·F (Xk) (B.4)
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This iteration continues until convergence to a solution XK at iteration K , with a specified

tolerance ε such that:

||XK −XK−1||2 < ε, (B.5)

where || · ||2 represents the L2 norm.

In this section, we demonstrate how the Newton-Raphson (NR) method is extended to find

stationary solutions in cases where the soliton’s group velocity (vg ) depends on various pa-

rameters due to the presence of effects like Raman scattering or higher-order dispersion terms.

In such scenarios, vg becomes a variable in the iteration process and is included in the vector

X = (
Ψ,Ψ∗, vg

)T . To handle this variable, an additional equation is introduced to fix the soliton

Ψ at a specific axial coordinate ϕmax, which defines the position of the maximum amplitude

of the wave packet |Ψ|2. The chosen equation for this purpose is:

Re

(
∂Ψ

∂ϕ

)∣∣∣∣∣
ϕ=ϕmax

= 0. (B.6)

The LLE in this case needs to be modified accordingly, as shown in Eq. (4.1), to incorporate vg

into the equation. For the specific example of Eq. (4.1), the NR formulation takes the following

form:

F (X) =

F̃1,1 F̃1,2 F̃1,3

F̃2,1 F̃2,2 F̃2,3

F̃3,1 F̃3,2 F̃3,3


 ΨΨ∗

vg

 (B.7)

Here, the matrix elements are defined as shown below:
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B.2 Dynamical simulation of the noise transduction.

F̃1,1 =−1− i (ζ0 − 1

2
∂2
θ+∆µ̄e i µ̄θF̂µ̄)

F̃1,2 = iψ2(1−τ∂θ)− iτψ∂θψ

F̃1,3 = F̃2,3 = ∂θ
F̃2,2 = (F̃1,1)∗

F̃2,1 = (F̃1,2)∗

F̃3,1 = F̃3,2 = 1

2

∫
R

dθδ(θ−θmax )∂θ

F̃3,3 = 0

F̂Ψ=
∫

dθΨe−iµθ =Ψµ

F̂−1Ψµ =
∑
µ
Ψµe iµθ =Ψ

F̂µ̄Ψ=∑
µ
δµ,µ̄F̂Ψ=Ψµ̄

Please note that the axial coordinateϕ is transformed to fast time θ through the transformation

θ =
√

κ
2D2

ϕ. The Jacobian matrix takes the form:

J (X) = F (X)+

∆̂(Ψ) 0 0

0 ∆̂∗(Ψ) 0

0 0 0

 (B.8)

where ∆̂(Ψ) := 2i |Ψ|2+vg∂θ−iτ(∂θ|Ψ|2+|Ψ|2∂θ+Ψ∂θΨ∗). With these definitions, the iteration

steps can be performed as defined in Eq. (B.4).

B.2 Dynamical simulation of the noise transduction.

The dynamical simulations have been carried out with the step-adaptative Dormand-Prince

Runge-Kutta method of Order 8(5,3) [179] with PyCORe described in detail in appendix E, hard

seeded an approximate DKS solution. The input pump phase noise has been obtained from a

linearization of the data of the power spectral density data of Toptica CTL 1550 Laser, Sin
φ . In

particular, it has been implemented through a detuning noise term ζ0(t ) obtained as

ζ0(t ) =αF̂t (
√
ν2Sin

φ
(ν)e i x(ν)), (B.9)

where a uniformly distributed random phase x(ν) has been added to each frequency to obtain

a random realization of the detuning noise and coefficientα normalizes the standard deviation

of the pump detuning. We used the following simulation parameters [77]: n0 = 1.9, n2 = 2.4e-19

m2/W, FSR = 95.4 GHz, ω0/2π = 192 THz, waveguide dimensions: 1.5 x 0.85 µm, κ0/2π = 100
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MHz, κex/2π = 100 MHz, τR = 1 fs, D2/2π = 1.3 MHz. Output field in real units for the case of

critical coupling (κex = κ0):

Pout(ϕ, t ) =ħω0
κ2

ex

g0
| f −ψ|2 (B.10)

Spectrogram:

Pµ(t ) = F̂µPout (B.11)

where, F̂µ is the operator taking the µ-th Fourier component of a function (the power in this

case), as defined in the previous section. The phase of the first comb line (repetition rate

phase):

φ(t ) = arg
[
P1(t )

]
, (B.12)

where arg
[
P1(t)

]
denotes the phase of the first complex Fourier component of the detected

optical power. The spectrum of phase noise:

Sφ(ν) = |F̂νφ(t )|2 (B.13)

The transduction coefficient has been computed as:

PM2PM = 10log10
Sφ

Sin
φ

(B.14)

We point out, in this analysis we assume an ideal photodetector, neglecting so its actual

response function. As for the Newton-Raphson method, we discretized the fast time axis (i.e.

azimuthal coordinate) in Nψ = 210 points while the slow time in Nt = 20000 points. In addition,

in order to obtain a sensitivity of the order of the kHz, we simulate the soliton dynamics for 1

ms. TRN phase noise limit is calculated using methods and parameters presented in Ref. [232]
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Figure B.1: SSB phase noise plot of a DKS at QP1 compared to pump laser phase noise and
TRN phase noise limit.
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C Appendix to chapter 5 — Dissipative
kerr solitons in dimers

C.1 Projection into supermodes

C.1.1 Single longitudinal mode closed system

In order to analyze Eq. 5.1, it is first simplified to a non-linear two level system isolated from

the environment, that is

d

dt
A =−i

(
ω0 + δ

2

)
A+ i JB + i g0 A|A|2

d

dt
B =−i

(
ω0 − δ

2

)
B + i J A+ i g0B |B |2. (C.1)

For g0 = 0, the system can be diagonalized by defining the variables:

As =αA+βB Aas =βA−αB (C.2)

α=
p

1−dp
2

β=
p

1+dp
2

, (C.3)

where d = δ/∆ω and ∆ω=
√

4J 2 +δ2, such that the Eq. C.1 becomes

d

dt
As =−i

(
ω0 − ∆ω

2

)
As + i g0(αA|A|2 +βB |B |2)

d

dt
Aas =−i

(
ω0 + ∆ω

2

)
Aas + i g0(βA|A|2 −αB |B |2). (C.4)

We expand the non-linear part of Eq. C.4 using A =αAs +βAas and B =βAs −αAas. For the S

123



Appendix C. Appendix to chapter 5 — Dissipative kerr solitons in dimers

mode, for example,

αA|A|2 +βB |B |2 =
(α2|α|2 +β2|β|2)As|As|2 +2αβ(|α|2 −|β|2)Aas|As|2
+ (α3β∗−β3α∗)A2

s A∗
as +2(α2|β|2 +β2|α|2)As|Aas|2

+ (β2|α|2 +α2|β|2)A2
as A∗

s +αβ(|β|2 −|α|2)Aas|Aas|2. (C.5)

Therefore, Eq. C.4 can be rewritten as

d

dt
As =−i (ω0 − ∆ω

2
)As + i g0

[1
2 (1+d 2)As|As|2

−d
√

1−d 2 Aas|As|2 − 1
2 d

√
1−d 2 A2

s A∗
as

+ (1−d 2)As|Aas|2 + 1
2 (1−d 2)A2

as A∗
s

+ 1
2 d

√
1−d 2 Aas|Aas|2

]
d

dt
Aas =−i (ω0 + ∆ω

2
)Aas + i g0

[− 1
2 d

√
1−d 2 As|As|2

+ (1−d 2)Aas|As|2 + 1
2 (1−d 2)A2

s A∗
as

+d
√

1−d 2 As|Aas|2 + 1
2 d

√
1−d 2 A2

as A∗
s

+ 1
2 (1+d 2)Aas|Aas|2

]
. (C.6)

C.1.2 Derivation with complex inter-resonator detuning

The same analysis can be adapted when drive and dissipation are included. However, the inter-

resonator detuning takes a complex component accounting for different loss rates between

the resonators. We therefore start with

d

dt
A =

[
−i (ω0 + δ

2
)− κ0 +κex,1

2

]
A+ i JB + i g0 A|A|2 +p

κex,1sin

d

dt
B =

[
−i (ω0 − δ

2
)− κ0 +κex,2

2

]
B + i J A+ i g0B |B |2, (C.7)

and define ∆κex to satisfy

κex,1 = κex + 1
2∆κex

κex,2 = κex − 1
2∆κex, (C.8)

such that we can define the complex inter-resonator detuning δc = δ− i 1
2∆κex. We apply the

following non-unitary transformation to Eq. C.7

As =αA+βB Aas =βA−αB (C.9)

α=
√

1−dcp
2

β=
√

1+dcp
2

(C.10)
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with dc = δc /∆ωc and ∆ωc =
√

4J 2 +δ2
c to obtain

d

dt
As =

(
−iω0 − κ0 +κex

2

)
As + i 1

2∆ωc As + i g0
(
αA|A|2 +βB |B |2)+αpκex,1sin

d

dt
Aas = (−iω0 − κ0 +κex

2
)Aas − i 1

2∆ωc Aas + i g0(βA|A|2 −αB |B |2)+βpκex,1sin. (C.11)

Here, the square roots of the complex numbers are taken as the root with positive real part as

is the case when∆κex = 0. The complex inter-resonator detuning leads to a complex frequency

splitting∆ωc , which can be approximated to second order in ∆κex
∆ω in the split resonance regime

as √
4J 2 + (δ− i 1

2∆κex)2 ≈ ∆ω

(
1+ 1

8 (d 2 −1)

(
∆κex

∆ω

)2)
− i 1

2δ
∆κex

∆ω
. (C.12)

As in the closed case, A =αAs +βAas, B =βAs −αAas and the non-linear expansions such as

Eq. C.5 are retrieved, such that

d

dt
As =

[−i
(
ω0 − 1

2 Re(∆ωc )
)

−1
2 (κ0 +κex + Im(∆ωc ))

]
As +αpκex,1sin

+ i g0
[
t1(dc )As|As|2 + t2(dc )Aas|As|2

+ t4(dc )A2
s A∗

as + t3(dc )As|Aas|2
+1

2 t3(dc )A2
as A∗

s − 1
2 t2(dc )Aas|Aas|2

]
d

dt
Aas =

[−i
(
ω0 + 1

2 Re(∆ωc )
)

−1
2 (κ0 +κex − Im(∆ωc ))

]
Aas +βpκex,1sin

+ i g0
[1

2 t2(dc )As|As|2 + t3(dc )Aas|As|2
+ 1

2 t3(dc )A2
s A∗

as − t2(dc )As|Aas|2
−t4(dc )A2

as A∗
s + t1(dc )Aas|Aas|2

]
(C.13)

with

t1(dc ) = 1
4 ((1−dc )|1−dc |+ (1+dc )|1+dc |) ≈ 1

2 (1+d 2)

t2(dc ) = 1
2

√
1−d 2

c (|1−dc |− |1+dc |) ≈ d
√

1−d 2

t3(dc ) = 1
2 ((1−dc )|1+dc |+ (1+dc )|1−dc |) ≈ 1−d 2

t4(dc ) = 1
4

(
(1−dc )

√
1−dc +d∗

c −|dc |2 −(1+dc )
√

1+dc −d∗
c −|dc |2

)
≈−d

2

√
1−d 2. (C.14)

This derivation is valid in both the split dissipation and spit resonance regime. The approxi-

mations are considered for the latter regime, and are exact when ∆κex = 0, where the result

coincides with those found in Subsect. C.1.1.

The same transformation can be applied for any pair of longitudinal mode, and the same
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coefficients are retrieved for the non-linear coupling terms. Due to the linearity of the Fourier

transform, and in case of frequency independent inter-resonator detuning and coupling, it

suffices to add the Fourier transform to the non-linear term to obtain Eq. 5.7.
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D.1 Numerical simulations of soliton generation in a degenerate

photonic plaquette

In order to support the experimental data and justify the recorded shape of the solitonic

spectrum of the photon, we perform numerical simulations of four coupled Lugiato-Lefever

equations. We use step-adaptative Dormand-Prince Runge-Kutta method of Order 8(5,3) with

numerical boxes each having 512 points. The simulation parameters are chosen be similar

to the experimental ones: integrated group velocity dispersion D2=10 MHz, inter-resonator

coupling J=4.5 GHz, 1st (pumped) and 3rd rings are coupled to a waveguide with the rate

κex =70 MHz, Si3N4 waveguide has dimensions 1.5x0.8 µm, free spectral range is 181 GHz.

The parameters are identical for every ring constituting the plaquette. Solitons were excited

by tuning over the resonance to the soliton existence region and further hard-seeded with a

fixed detuning. The pump (0.8 W) is injected to the first ring only. The integration time is 1

microsecond. The nonlinear dynamics over the slow time is sampled with 1000 points.

Fig. D.1 (a) shows an averaged optical spectrum, of the field generated in the pumped resonator.

The spectrum demonstrates features similar to the experimentally recorded one. There is a

symmetric enhancement of ≈55th mode optical power which, taking in the account the free

spectral ranges of the resonators, corresponds to ≈10 THz. This is in a good agreement with

the reported experimental observations. The symmetric enhancement of comb lines signifies

the presence of strong dispersive waves in the cavity. The corresponding intracavity temporal

waveform is shown in Fig. D.1 (b). The main (sech-shaped) part of the spectrum has a periodic

perturbation similar to the one recorded experimentally. This perturbation is caused by the

presence of multiple (two in this case) solitons in the cavity. The dispersive waves appear as a

periodic perturbation of the background as well as the solitons. This makes soliotns oscillating

with time as shown in the spatio-temporal diagram for the intracavity power profile. Using the

spatio-temporal diagram, we can reconstruct the nonlinear dispersion relation by applying a

double Fourier transform. The nonlinear dispersion relation reveals the origin of the of comb

enhancement. The soliton line (since the dispersion is compensated by the nonlinearity)
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Figure D.1: Solitons in a phonic plaquette. All data is shown for the pumped resonator. (a)
Power spectra density (PSD) of two solitons averaged over 0.5 µsec. (b) Temporal profile of
dissipative Kerr solitons (DKSs). The horizontal axis depicts the inter-resonator azimuth angle
∈(-π,π). (c) Spatio-temporal diagram. (d) Corresponding nonlinear dispersion relation. White
circles show crossing points of the soliton line with the lower parabola.

crosses the dispersion parabola which corresponds to another supermode of the system. The

crossing point is shown with white circles.

D.2 Additional experimental data

In order to demonstrate that the effect of protection is not linked to a particular device, we

present here a set of linear measurements. Fig.D.2 suggests that we observe a similar behavior

in a number of devices.

Further, we present additional data for the soliton generation in the photonic plaquette.

Namely, simultaneously with the optical spectra, we recorded the transmission trace. The

presence of distinct steps in the transmission trace is one of the key signatures of the dissipative

Kerr soliton generation in microresonators. The traces were generated by using a fast single-

sideband tuning technique. As follows from Fig. D.3, only the resonance having higher absolute

frequency (tuning is done from the blue-detuned to the red-detuned side of the resonance)

demonstrates the presence of steps.
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D.2 Additional experimental data

Figure D.2: Linear spectroscopy of different photonic dimers. All the devices have similar
parameters and fabricated on the same wafer.

Figure D.3: Filtered transmission trace. The case of a phonic plaquette.The resonance on the
left demonstrates the presence of soliton steps. The pump laser detuning is swept from higher
to lower frequencies.
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D.3 Mode interactions in two evanescently coupled resonators

We examine here the mode interaction of two ring resonators using a perturbation approach.

Taking the solution of the Maxwell’s equations for single resonator as a basis for the field

profile in the coupled system, we derive coupling coefficients between different modes as a

function of mode overlaps. The obtained expressions can be used for the exact evaluation of

the coupling coefficients for whispering gallery mode resonators, since analytical expressions

are known in this case [233, 234], while for integrated microresonator dimers they, however,

help to qualitatively understand the mode-crossing mechanism.

We start from the scalar wave equation on electric field in the system comprising two identical

evanescently coupled optical resonators. The wave equation

(∆+
n2

g

c2

∂2

∂t 2 )E = 0 (D.1)

governs the electric field in the media with the group index ng . In a single resonator case,

rotational symmetry allows one to obtain a set of eigenfrequencies and eigenfunctions sup-

ported by the system. Typically there are two polarization mode families (TE and TM), and

within each polarization mode family there is a set of eigenfunctions (i.e. states) which have

different spatial distributions. In the ideal case, all the eigenfunctions are orthogonal, even if

they correspond to degenerate eigenfrequencies. The presence of perturbations which cause

the axial symmetry breaking leads to the interaction between the modes breaking, thereby

their orthogonality. This interaction manifest itself as avoided mode crossings (AMXs) in the

dispersion profile. The AMXs appear at degenerate frequencies, where two different modes

have close eigenvalues [235, 236].

The scenario of mode interaction in the photonic dimer is similar to the conventional conven-

tional single resonator case, but the difference arises form the fact that we investigate two sets

of eigenmodes which belong to different rings. In order to obtain the coupling coefficients, we

employ the perturbation approach. Starting from independent eigenfunctions for both rings,

implying at first the infinite distance between the resonators, we decompose the electric field

on a series of eigenfunctions and obtain a system of coupled ordinary differential equations

on amplitudes of the modes.

We start with a singe resonator case which has the group index ng I . Using the ansatz of

harmonic time dependence E → Ee−iωt , one obtains the Helmholtz equation

(∆+n2
g I

k2
0)E = 0, (D.2)

where k0 =ω/c is the wavenumber. Eq. (D.2) defines eigenfrequencies ωI
µ and eigenfunctions

ΨI
µ with orthogonality relation: ∫

ΨI
µ(ΨI

ν)∗n2
g I

dV = δµ,ν. (D.3)
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D.3 Mode interactions in two evanescently coupled resonators

Here asterisk stands for complex conjugation. The electric field is E = AI
µΨ

I
µ, where AI

µ is

the normalization constant. Note, that same is valid for the second resonator for which it

is sufficient simply to replace I by I I . Moreover, we consider the resonators to be identical,

meaning that ωI
ν =ωI I

ν .

Now, we suppose that the two resonators are placed closed so their eigenfunctions overlap.

In order to exploit the eigenfuctions of each ring, we rewrite the group index ng in following

form:

n2
g =

n2
g I
+nI I

n2
g I I

+nI ,
(D.4)

depending on the basis we want to use. We decompose further the electric field in the following

way:

E =∑
i

AI
i (t )ΨI

i e−iωi t +∑
i

AI I
i (t )ΨI I

i e−iωi t . (D.5)

Substituting this to the Eq. D.1 and using the slowly varying envelope approximation (d 2 AI
i /d t 2 ≪

ωi d AI /d t ) we obtain the following equation:

∆E −
n2

g

c2

∂2E

∂t 2 =
∑

i

(
nI IΨ

I
i AI

iλ
2
i +2iλi ȦI

iΨ
I
i

(n2
g I
+nI I )

c

)
e−iωi t+

∑
i

(
nIΨ

I I
i AI I

i λ
2
i +2iλi ȦI I

i Ψ
I I
i

(n2
g I I

+nI )

c

)
e−iωi t = 0, (D.6)

where λi =ωi /c and Ȧ stands for the time derivative of A. Now, we multiply this equation by

(ΨI (I I )
k )∗ and integrate it over the whole volume. Using the orthogonality relation (D.3), one

obtains a system of ordinary differential equations on the mode amplitudes with coupling

coefficients proportional to the mode overlap.

Considering the case of two mode families in both resonators, one can derive the matrix model

introduced in the main text. In order to keep the same notations, we denote AI
1 ≡ a1 ,AI

2 ≡ b1,

AI I
1 ≡ a2, AI I

2 ≡ b2. Taking only leading order coefficients, system (D.6) takes form

ȧ1 = i (Ja1a1 a1 + Ja1a2 a2 + Ja1b1 b1 + Ja1b2 b2)

ȧ2 = i (Ja2a1 a1 + Ja2a2 a2 + Ja2b1 b1 + Ja2b2 b2)

ḃ1 = i (Jb1a1 a1 + Jb1a2 a2 + Jb1b1 b1 + Jb1b2 b2)

ḃ2 = i (Jb2a1 a1 + Jb2a2 a2 + Jb2b1 b1 + Jb2b2 b2),

(D.7)

where diagonal terms indicate self-frequency shift due to presence of the coupling sections.
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They can be expressed through the mode overlap integrals as follows:

Ja1a1 =
λ0c

2

∫
ΨI

0Ψ
I∗
0 nI I dV ; Ja2a2 =

λ0c

2

∫
ΨI I

0 Ψ
I I∗
0 nI dV (D.8)

Jb1b1 =
λ1c

2

∫
ΨI

1Ψ
I∗
1 nI I dV ; Jb2b2 =

λ1c

2

∫
ΨI I

1 Ψ
I I∗
1 nI dV. (D.9)

Due to the symmetry, the expressions in each line of Eq. (D.8) are equal. Applying the notations

from the main text, we obtain ω1 = Ja1a1 and ω2 = Jb1b1 .

The off-diagonal coefficients in system (D.7) depict the mode interaction. Let us consider

the interaction between the fundamental and higher order modes of one resonator. The

corresponding coefficients are expressed as

Ja1b1 =
λ2

1c

2λ0

∫
ΨI

1Ψ
I∗
0 nI I dV e−i (ω1−ω0)t , (D.10)

Ja2b2 =
λ2

1c

2λ0

∫
ΨI I

1 Ψ
I I∗
0 nI dV e−i (ω1−ω0)t , (D.11)

Jb1a1 =
λ2

0c

2λ1

∫
ΨI

0Ψ
I∗
1 nI I dV e−i (ω0−ω1)t , (D.12)

Jb2a2 =
λ2

0c

2λ1

∫
ΨI I

0 Ψ
I I∗
1 nI dV e−i (ω0−ω1)t . (D.13)

As one can see, the interaction efficiency is enhanced at the points of degeneracy, where

the eigenfrequencies coincide. These points correspond to the exact positions of the mode

crossings. In the main text we consider this particular example, thus J int
ab = Ja1b1 |ω0=ω1 =

Ja2b2 |ω0=ω1 and J int
ba = Jb1a1 |ω0=ω1 = Jb2a2 |ω0=ω1 , where we assumed the coupling purely real for

simplicity.

The coupling coefficients between the fundamental modes of both resonators take form:

Ja1a2 =
λ0c

2

∫
ΨI I

0 Ψ
I∗
0 nI dV , (D.14)

Ja2a1 =
λ0c

2

∫
ΨI

0Ψ
I I∗
0 nI I dV , (D.15)

and they are equal due to the symmetry. The corresponding coefficient in the main text

J ext
aa = Ja1a2 Ja2a1 . In similar way we express coupling between higher order modes

Jb1b2 =
λ1c

2

∫
ΨI I

1 Ψ
I∗
1 nI dV , (D.16)

Jb2b1 =
λ1c

2

∫
ΨI

1Ψ
I I∗
1 nI I dV , (D.17)

with J ext
bb = Jb1b2 = Jb2b1 .

The coefficients governing interactions between fundamental and higher order modes of
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distinct resonators are placed on the side diagonal of the system (D.7), and their expressions

are by

Ja1b2 =
λ2

1c

2λ0

∫
ΨI I

1 Ψ
I∗
0 nI dV e−i (ω1−ω0)t , (D.18)

Ja2b1 =
λ2

1c

2λ0

∫
ΨI

1Ψ
I I∗
0 nI I dV e−i (ω1−ω0)t , (D.19)

Jb2a1 =
λ2

0c

2λ1

∫
ΨI

0Ψ
I I∗
1 nI I dV e−i (ω0−ω1)t , (D.20)

Jb1a2 =
λ2

0c

2λ1

∫
ΨI I

0 Ψ
I∗
1 nI dV e−i (ω0−ω1)t . (D.21)

As one can see, the interaction increases at degenerate frequencies, and then J ext
ab = Ja1b2 |ω1=ω2 =

Ja2b1 |ω1=ω2 , J ext
ba = Jb2a1 |ω1=ω2 = Jb1a2 |ω1=ω2 . It is important to note, that the intraresonator in-

teraction originates from the mode overlap in the area where both modes decay exponentially

(for example see Eq. (D.10)), when the interesonator coupling originates from the area where

one is localized and second one is evanescent (e.g. Eq. (D.18)). However, it is hard to estimate

the ratio between these coefficients because it also depends on the integral along azimuth

coordinate. In order to obtain this ration we provide FDTD simulations in Lumerical, which

are presented in the next sections.

D.4 Matrix model

Generalized to the case of N coupled resonators, the coupling matrix of the size 2Nx2N can be

represented as follows:

i
dU

d t
=−



−ω1 J ext
aa J i nt

ab J ext
ab

J ext
aa −ω1

. . . J ext
ab J i nt

ab

. . .
. . .

. . . J ext
aa

. . .
. . . J ext

ab
J ext

aa −ω1 J ext
ab J i nt

ab
J i nt

ba J ext
ba −ω2 J ext

bb

J ext
ba J i nt

ba

. . . J ext
bb −ω2

. . .
. . .

. . . J ext
ba

. . .
. . . J ext

bb
J ext

ba J i nt
ba J ext

bb −ω2



U , (D.22)

where U = (a1, ..., aN ,b1, ...,bN )⊺. The coupling matrix is comprised of four blocks of symmetric

tridiagonal matrices, implying that empty spaces are zeros. For the calculations presented

in the article we suppose that J ext ,i nt
ab and J ext ,i nt

ab are equal due to the apparent summery,

therefore second and third blocks of the coupling matrix are identical. Blocks one and four

are also set to be identical since the difference between J ext
aa and J ext

bb will lead to a simple shift

along the direction of the higher-order mode and the mode interaction therefore has to be
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source

M2

M1

(a) (b)

(c)

Figure D.4: FDTD simulations of the coupling section. (a) Normalized electric field distribution
shown in log scale, the colour bar measures the field power. The mode source is launched
normal to the waveguide propagation direction with unity power. Insets present spatial
field distributions recorded by monitor M1 and M2. The gap distance is set as 0.3 µm. (b)
Dependence of the coupling coefficients to higher-order modes on gap distance, at mesh
3. (c) Convergence of the coupling coefficients to higher-order modes with mesh order, as
illustrated by the red dashed line, the coupling coefficient ratio converges closely to unity.

examined at ω1 =ω2 = 0.

D.5 FDTD simulations of the coupling section

In order to confirm the coupling coefficient ratio expected from the analytical model of four-

mode interaction, we provide FDTD simulations of the coupling section of the photonic

dimer. We constructed a model of a dimer device comprised of two 200 GHz ring resonators.

The silicon nitride (Si3N4) resonator core is fully cladded with Silicon dioxide (SiO2). Both

resonators are 1.5 µm wide and 0.82 µm high, with sidewall angle α = 90◦, as used in the

experiments. The mode source was configured to inject at an angle of 20◦ with unity power,

as shown in Fig. D.4a, and to excite only the fundamental mode of the ring. In this way, we

shrank the simulation region to 100 × 30 × 8 µm3 and the simulation time to 900 fs, which is

sufficient to capture correctly the coupling to higher-order modes with much less processing

time. The boundary of the simulation region is fixed with a perfectly matched layer (PML)

condition to absorb the incident light and therefore to prevent backreflection. The light field

then propagated in the full simulation region until a stationary state is reached. Monitors M0,

M1 and M2 recorded the spatial distributions of the mode source, the transmitted field and

the coupled field respectively. In addition, two mode expansion monitors were placed in the

same plane as M1 and M2 to calculate the power of selected resonator eigenmode (TE10). All

powers are normalized as they derived from the resonator fundamental mode that is launched

with unity power. The coupling coefficients, Ji nt
ab and Jext

ab , are estimated using a simplified

coupled mode equation, by Ji
ab = D1 ×arccos(

√
1−P i

ab), where D1/2π= F SR.

134



D.5 FDTD simulations of the coupling section

Numerical simulations reveal that increasing the gap distance between two resonators, Jext
ab

rapidly (eventually exponentially) decays, while Ji nt
ab remains constant at 18 GHz except the

region 0.2-0.4 µm where it demonstrates lower values at mesh order 3 as shown in Fig. D.4.

Careful analysis of the ratio Ji nt
ab /Jext

ab convergence with increasing mesh order (decreasing the

simulation net size) suggests that the ratio converges to unity. The simulations with mesh

order 3 gives a considerable error of ≈ 35%.

The coupling of the ring resonator to the bus and drop waveguides was also simulated at 0.3

µm, rendering a converged result of 0.75 GHz, which contributes to the coefficient J int
ab .
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with PyCORe

Numerical simulations often remain the primary tool for the investigation of complex systems

where the analytical treatment fails to predict the dynamics. An important example is nonlin-

ear systems that exhibit complex behavior including turbulence, chaos, formation of patterns,

solitons, etc. Nonlinear optics is one of the primary platforms for the investigation of complex

nonlinear dynamics.

We developed a numerical tool to efficiently simulate nonlinear dynamics and optical fre-

quency combs in a single resonator, synthetic frequency dimension discussed in chapters 1, 3, 5, 6,

and 7.

E.1 Functionality and utilities

The solver is implemented in Python, wrapping a fast C++ core. It operates with an arbitrary

number of coupled resonators and modes, including the following functionalities and features:

• Arbitrary dispersion profile

• Raman scattering

• Periodic perturbation leading to the Faraday dynamics

• Thermal effects

• Hard seeding of solitons and CW solutions

• Interactive plotter of the spatiotemporal diagram

• Eigenmode plotter for single resonator and chains of coupled resonators

This solver includes the following simulation methods for finding dynamical and stationary

solutions:
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• Split operators method also known as split-step method for single resonator class

• Step adaptive Dormand-Prince Runge-Kutta method of Order 8(5,3) [179]

• Newton-Raphson method for the search of stationary solutions

• Linear stability analysis of the stationary solutions obtained using the Newton-Raphson

method

E.2 Installation

• Clone the repository from https://github.com/ElKosto/PyCORe;

• Install Anaconda. Make sure that Numpy and Scipy are installed.

If the user intends to use only the single resonator solver or the Newton-Raphson stationary

solver, the preceding steps should be sufficient. The solver functions on both Unix and

Windows systems. However, to utilize the solver for chains of resonators, users will need to

install additional packages. This functionality is compatible only with Unix-based systems,

such as Ubuntu or MacOS.

1. Download boost (https://www.boost.org/, free) or Numerical recipes (https://www.boost.org/,

50$) headers;

2. Locate your local C header folder in terminal via the command

1 cpp -v

Usually, it is /usr/local/include/

3. Copy there the boost or numerical recipes headers. Make sure that numerical recipes

headers are in the folder named as NR/code/, and boost headers are in the folder boost/.

1 sudo scp -r boost/ /usr/local. include /

or

1 sudo scp -r NR/ /usr/local. include /

4. Install fftw (https://www.fftw.org/download.html). The best way is to download the full

source code, go to the downloaded folder and execute

1 ./ configure
2 make
3 sudo make install

5. Compile the needed solvers. All the commands are available in the README file located

in PyCORe/lib/.
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PropagateSplitStep	

PropagateSAM	
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PropagateSAM	
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Simulation parameters
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methods:
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class: CROW(Resonator)

PyCORe_main.py

Figure E.1: Solver architecture.

In the following, we present the compilation commands for different solvers:

• For single resonator solver:

1 g++ -fPIC -shared -lfftw3 -lm -O3 -o lib_lle_core.so lle_core.cpp

• For chains of resonators with open boundary conditions:

1 g++ -fPIC -shared -lfftw3 -lm -O3 -o lib_crow_core.so crow_core.cpp

• For chains of resonators with closed in a chain:

1 g++ -fPIC -shared -lfftw3 -lm -O3 -o lib_ periodic _crow_core.so
periodic _crow_core.cpp

E.3 Solver architecture

The overall architecture of the solver is depicted in Fig. E.1. Python serves as the primary

interface for utilizing the library. Users define both the physical parameters of the resonators

and the simulation parameters for the solvers within this environment. This schematic repre-

sentation is available in Fig. E.1 and can be found in the file main.py. Following this, users are

required to create specific classes corresponding to the devices they intend to simulate. These

classes, exemplified in Fig. E.1 and implemented in the file PyCORe_main.py, encompass fields

defined by the physical parameters. Once this preparatory step is complete, users can select a

suitable solver method within the chosen class. The chosen method then performs the neces-

sary computations. Certain methods exclusively require the Numpy and Scipy libraries for

simulation execution. These libraries can be conveniently installed using package managers

such as pip or conda. In such cases, the method produces simulation data without involving

any of the C++ modules. However, to accelerate dynamical simulations within coupled sys-

tems, we’ve developed methods that utilize Runge-Kutta integrator functions. These functions

are implemented in C++ and can be accessed through resources like Numerical Recipes [179]
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or Boost.Odeint [237]. This integration is facilitated by ctypes, a Python library that allows for

function calls and collaboration with C libraries from Python code. This capability can also be

viewed as a specialized Application Programming Interface (API)."

E.3.1 Code structure

In the following we provide a description of the different components, classes, and methods

of the solver.

main.py

In the main file, users define the physical parameters of the resonator using a Python dictionary.

For instance, a typical Si3N4 resonator can be defined as follows:

1 PhysicalParameters = {’n0’ : 1.9,
2 ’n2’ : 2.4e-19,# m^2/W
3 ’FSR ’ : 181.7 e9 ,#Hz
4 ’w0’ : 2*np.pi *192 e12 , #rad Hz
5 ’width ’ : 1.5e-6, #m
6 ’height ’ : 0.85e-6, #m
7 ’kappa_0 ’ : 50e6 *2* np.pi , #rad Hz
8 ’kappa_ex ’ : 50e6 *2* np.pi , #rad Hz
9 ’Dint ’ : Dint , #rad Hz

10 }

Here, n0 represents the group index, n2 stands for the nonlinear refractive index (measured

in [m2/W]), FSR indicates the free spectral range (measured in [Hz]), w0 corresponds to the

carrier angular frequency ω0 = 2π f0, while width and height denote the dimensions of the

resonator waveguide (measured in [m]). These dimensions are used to estimate the effective

mode area as Aeff = width×height, which is subsequently employed to compute the single-

photon Kerr frequency shift: g0 = ħω2
0cn2

n2
0Veff

. The effective volume is determined as Veff = Aeffc
n0FSR .

Internal linewidth is represented by kappa_0, while coupling to the bus waveguide is denoted

by kappa_ex. Additionally, Dint refers to the array of integrated dispersion values Dint as a

function of the integer mode index µ.

To create the resonator object, the user needs to call the empty constructor of the class

Resonator and then call the method Init_From_Dict to initialize its parameters from the

dictionary, as follows

1 import PyCORe_main as pcm
2 single_ring = pcm. Resonator ()
3 single_ring . Init_From_Dict ( PhysicalParameters )

There are three main classes:

• Resonator: Used for single resonator simulations, including synthetic frequency dimen-
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sions and electro-optical combs.

• SiL_Resonator: Used for self-injection locked resonator simulations. Users also need to

provide parameters of the laser that is locked to the resonator.

• CROW (Coupled Resonator Optical Waveguide): Used for strongly coupled chains of

microresonators. Users need to specify the coupling strength J .

Pump laser parameters are initiated as

1 dNu_ini = -1e9 #Hz
2 dNu_end = 3e9 #Hz
3 sampling _ points = 2000
4 dOm = 2*np.pi*np. linspace (dNu_ini ,dNu_end , sampling _ points )
5 scan_time = 1e-6 #s
6 P0 = 0.15# W
7 Pump = np.zeros(len(mu),dtype=’complex ’)
8 Pump [0] = np.sqrt(P0)

In this particular scenario, we consider the pump laser operating in continuous-wave (CW)

mode at a power of 150 mW, designated as the variable P0. The laser’s frequency undergoes a

linear sweep from ω0 +2π ·dNu_ini to ω0 +2π ·dNu_end over the course of one microsecond,

as defined by the variable scan_time. The level of discretization for the laser scan array

dOm is determined by the sampling_points variable. Additionally, the variable Pump shares

the same length as the mode index array mu and is structured as an array to represent both

continuous-wave (CW) and pulsed-pumping schemes. This array is defined in the spectral

domain, incorporating frequency shifts. Specifically, within the Pump array, frequency bin

0 contains the CW signal at the carrier frequency ω0. Frequency bins 1 to Pump.size/2 en-

compass positive frequencies in ascending order, aligned with increasing positive values of

µ. The frequency bin at Pump.size/2+1 holds the most negative frequencies, mirroring the

absolute values of the positive frequencies in bin (Pump.size/2)−1. These negative frequencies

gradually decrease in absolute value as the bin numbers increase. It’s noteworthy that the fre-

quency bin at Pump.size−1 accommodates the least negative frequencies, which correspond

in absolute value to the positive frequencies present in bin 1.

The variables, defined above, are used to initialize the simulation_parameters dictionary

1 simulation_parameters = {’slow_time ’ : scan_time ,
2 ’detuning_array ’ : dOm ,
3 ’noise_level ’ : 1e-9,
4 ’output ’ : ’map ’,
5 ’absolute_tolerance ’ : 1e-10,
6 ’relative_tolerance ’ : 1e-6,
7 ’max_internal_steps ’ : 2000}

Here, noise_level defines the amplitude of the white noise in the frequency domain. This

variable is necessary to initiate four-wave mixing processes under continuous-wave (CW)
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pumping. ’output’ : ’map’ defines the dense output from the solver, while absolute_tolerance,

relative_tolerance, and max_internal_steps establish the conditions for the step-adaptive

solvers.

To execute the simulations, it is necessary to invoke an integrator method from the instantiated

class object using the following approach:

1 map2d = single_ring . Propagate_PseudoSpectralSAMCLIB ( simulation_parameters
, Pump)

In this example, the output array map2d possesses two dimensions, [sample_points, mu.size],

and encapsulates the simulation results in the spectral domain for each time step throughout

the entire scan_time.

The generated data can be stored using the class method Save_Data with the following syntax:

1 single _ring.Save_Data(map2d,Pump , simulation _parameters ,dOm ,’./ data /’)

In the selected directory, ’./data/’ in this instance, this method saves the detuning array dOm,

simulation data map2d, and pump array Pump as Numpy binary files: ’dOm.npy’, ’map2d.npy’,

and ’Pump.npy’, respectively. Moreover, it generates two subdirectories: ’./data/class_parameters/’

and ’./data/sim_parameters/’, which encompass all the variables in a Numpy binary format.

These files can be utilized to initialize the class, thus enabling further work with the cur-

rent model. To achieve this, one must invoke the constructor Init_From_File using the

subsequent syntax:

1 simulation_parameters ,map2d_scan ,dOm_scan ,Pump= single_ring . Init_From_File
(’./ data/’)

PyCORe_main.py

Here, we outline the contents of the ’PyCORe_main.py’ file.

Single resonator class In this section, we present an in-depth explanation of the Resonator

class. The subsequent code block depicts the constructor, initialization, and saving methods.

1 class Resonator :
2 def __init__ (self): #Empty constructor
3 def Init_From_Dict (self , resonator_parameters ): #Class initialization

from dictionary
4 def Init_From_File (self , data_dir ): #Class initialization from folder
5 def Save_Data (self ,map2d ,Pump , Simulation_Params ,dOm =[0] , directory =’./

’):# method to save the data

The physical parameters of the device are established as class fields. The technique to generate

white noise with an amplitude a and randomized phases in the spectral domain for each comb

line is as follows:
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1 def noise(self , a):
2 return a*(np. random . uniform (-1,1, self. N_points ) + 1j*np. random .

uniform (-1,1, self. N_points ))

The solvers, which exclusively rely on the Numpy and Scipy libraries for dynamic simulations,

are defined as follows:

1 def Propagate_SplitStep (self , simulation_parameters , Pump , Seed =[0] ,
dt=5e-4, Normalized_Units =False):

2 def Propagate_SAM (self , simulation_parameters , Pump , Seed =[0] ,
Normalized_Units =False):

The first solver is the conventional split-step method of second order in time. Here, dt is the

fixed time step, which has to be carefully chosen to avoid numerical instabilities [29, 238].

The boolean variable Normalized_units is True in case the user performs the simulations in

normalized units. The second method uses the step-adaptative Dormand-Prince Runge-Kutta

method of Order 8(5,3) from the Scipy library. These solvers are used within the standard

Python installation and do not require any additional steps. However, to accelerate simulations,

users can use solvers from the C++ libraries defined below.

1 def Propagate_SplitStepCLIB (self , simulation_parameters , Pump , Seed
=[0] , dt=5e-4, HardSeed =False):

2 def Propagate_SAMCLIB (self , simulation_parameters , Pump , Seed =[0] ,
dt=5e-4, HardSeed =False):

3 def Propagate_PseudoSpectralSAMCLIB (self , simulation_parameters ,
Pump , Seed =[0] , dt=5e-4, HardSeed =False ,lib=’NR’):

These solvers offer equivalent functionality but operate more swiftly than their Python coun-

terparts. The variable lib=NR or lib=boost empowers the user to select the integrator from

either Numerical Recipes or Boost headers. Moreover, we distinguish between the methods

Propagate_SAMCLIB and Propagate_PseudoSpectralSAMCLIB. In the former, we solely

consider second-order dispersion and approximate the second derivative ∂2
ϕ through finite

differences. Specifically,
∂2

∂ϕ2 A
∣∣∣
ϕ=ϕi

≈ Ai+1 −2Ai + Ai−1

∆ϕ2 , (E.1)

where ∆ϕ=ϕi+1 −ϕi . This approach results in a numerical complexity per iteration of O(n).

In the latter method, denoted as Propagate_PseudoSpectralSAMCLIB, we calculate the

dispersion operator in the frequency domain. As a consequence, the numerical complexity is

reduced to O(n logn), enabling more accurate simulations.

The stationary Newton-Raphson solver is built upon the Numpy library and employs the

standard gradient descent technique to locate the solution. The functions used to compute it

are established as methods of the class, as illustrated below:

1 def Jacobian (self ,zeta_0 ,A,D1):
2 def JacobianForLinAnalysis (self ,zeta_0 ,A):
3 def D1A(self ,A):
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4 def DispersionMatrix (self ,D1=0, order =0):
5 def LinMatrix (self ,zeta_0 ,dense=True):
6 def NewtonRaphson (self ,A_input ,dOm , Pump ,vg=0, HardSeed = True , tol =1e

-5, max_iter =50):
7 def NewtonRaphsonFixedD1 (self ,A_input ,dOm , Pump , HardSeed = True , tol

=1e-5, max_iter =50):
8 def LinearStability (self ,solution ,dOm ,v=0, plot_eigvals =True):

Here, the function NewtonRaphson calculates the stationary solution and determines its group

velocity vg. On the other hand, NewtonRaphsonFixedD1 is utilized in the context of a pure

LLE, where the soliton revolves with the group velocity D1. The remaining functions serve as

subroutines to compute the Jacobian matrix and its eigenvalues for the obtained stationary

solution.

Chains of coupled resonators class.

This class is named CROW, and it is a subclass of the Resonator class. The initialzation method

is the similar to the Resonator class, but the user needs to provide the following parameters

in the resonator_parameters dictionary:

• resonator_parameters[’Inter-resonator_coupling’]: An array of the size of the

number of modes × the number of coupling sections that contains coupling parameters

J between the resonators. The user can define an open chain or a closed ring configu-

ration. In the first case, the number of coupling sections is the number of resonators

minus 1; in the second case, they are equal.

• resonator_parameters[’Resonator detunings’]: An array of the relative abso-

lute detunings between the resonators.

The following methods allow calling dynamical simulation solvers. Their syntax is similar to

the methods in the Resonator class.

1 def Propagate_SAMCLIB (self , simulation_parameters , Pump , Seed =[0] , dt=5e
-4, HardSeed =False):

2 def Propagate_PSEUDO_SPECTRAL_SAMCLIB (self , simulation_parameters , Pump ,
Seed =[0] , dt=5e-4, HardSeed =False , lib=’NR’):

The stationary Newton-Raphson method relies on the following methods:

1 def DispersionMatrix (self , order =0):
2 def LinMatrix (self , j, d2 , dphi , delta , kappa , zeta_0 ):
3 def Jacobian (self , j, d2 , dphi , delta , kappa , zeta_0 , A):

These methods construct matrices corresponding to the dispersion term and then the linear

term. The linear matrix is subsequently used to construct the complete Jacobian. These

functions are called in the NewtonRaphson method, which employs them during the gradient

descent.
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1 def NewtonRaphson (self , Seed_sol , dOm , Pump , HardSeed =True , tol =1e-5,
max_iter =50, learning_rate =1e -1):

This method is designed for stationary solutions only and cannot determine the velocity of

moving solutions.

C++ Routines for Single Resonator Solvers

In this section, we will describe the functions utilized to solve various versions of the Lugiato-

Lefever Equation.

lle_core.cpp

Below, we provide descriptions of the functions utilized to solve the LLE and its various

versions in C++. These functions serve as interfaces for invoking Numerical Recipes headers.

• std :: complex <double >* WhiteNoise (const double amp , const int Nphi)

This function is used to generate random white noise for each frequency component at

every simulation time step.

• void* PropagateSS ( double * In_val_RE , double * In_val_IM , double * Re_F
, double * Im_F , const double *detuning , const double J, const
double *phi , const double * Dint , const int Ndet , const int Nt ,
const double dt , const int Nphi , double noise_amp , double * res_RE ,
double * res_IM )

This is the Split-step integrator.

• void* PropagateSAM ( double * In_val_RE , double * In_val_IM , double *
Re_F , double * Im_F , const double *detuning , const double J, const
double *phi , const double * Dint , const int Ndet , const int Nt ,
const double dt , const double atol , const double rtol , const int
Nphi , double noise_amp , double * res_RE , double * res_IM )

This is the step-adaptive Dormand-Prince (SAMDP) integrator with the dispersion term

approximated by second-order finite differences.

• void* Propagate_PseudoSpectralSAM ( double * In_val_RE , double *
In_val_IM , double * Re_F , double * Im_F , const double *detuning ,
const double J, const double *phi , const double * Dint , const int
Ndet , const int Nt , const double dt , const double atol , const
double rtol , const int Nphi , double noise_amp , double * res_RE ,
double * res_IM )

This solver is the same as the previous one, but we compute the dispersion term in the

frequency domain, enabling a complex dispersion profile and higher precision.
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• void* PropagateThermalSAM ( double * In_val_RE , double * In_val_IM ,
double * Re_F , double * Im_F , const double *detuning , const double J
, const double t_th , const double kappa , const double n2 , const
double n2t , const double *phi , const double * Dint , const int Ndet ,
const int Nt , const double dt , const double atol , const double
rtol , const int Nphi , double noise_amp , double * res_RE , double *
res_IM )

This solver solves LLE using SAMDP in the presence of thermal effects in the cavity. The

dispersion term is approximated by second-order finite differences.

• void* Propagate_SiL_PseudoSpectralSAM ( double * In_val_RE , double *
In_val_IM , const double *detuning , const double kappa , const double

kappa_laser ,const double kappa_sc , const double kappa_inj , const
double coupling_phase , const double g0 , const double alpha , const
double gamma , const double V, const double a, const double e, const

double N0 , const double eta , const double I_laser , const double
zeta , const double * Dint , const int Ndet , const double Tmax , const
double T_step , const int Nt , const double dt , const double atol ,
const double rtol , const int Nphi , double noise_amp , double * res_RE
, double * res_IM )

This solver solves LLE coupled to a laser using SAMDP. The dispersion term is computed

in the frequency domain.

• void* Propagate_PseudoSpectralSAM_Raman ( double * In_val_RE , double *
In_val_IM , double * Re_F , double * Im_F , const double *detuning ,
const double *tau_r_mu , const double * Dint , const int Ndet , const
int Nt , const double dt , const double atol , const double rtol ,
const int Nphi , double noise_amp , double * res_RE , double * res_IM )

This solver solves LLE with Raman effect. The dispersion term is computed in the

frequency domain.

The functions defined above receive all the necessary parameters from Python. Their descrip-

tions are presented below:

• *In_val_RE: Pointer to the array of the real part of the initial distribution of the field.

• *In_val_IM: Pointer to the array of the imaginary part of the initial distribution of the

field.

• *res_RE: Pointer to the output array of the real part of the solution.

• *res_IM: Pointer to the output array of the imaginary part of the solution.

• *Re_F: Pointer to the array of the real part of the pump.

• *Im_F: Pointer to the array of the imaginary part of the pump.
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• *detuning: Pointer to the array of detunings.

• *phi: Pointer to the array of the azimuth coordinate ϕ inside the resonator.

• *Dint: Pointer to the array of the integrated dispersion Dint.

• Nphi: Length of the azimuth coordinate array.

• Ndet: Length of the detuning array.

• Nt: Total number of integration steps in time for one value of detuning.

• dt: Time step measured in units of κ/2.

• noise_amp: White noise amplitude.

• J: Amplitude of the electro-optical coupling to simulate electro-optical combs and

synthetic frequency dimension with one FSR modulation.

• atol: Absolute tolerance for the step-adaptive methods.

• rtol: Relative tolerance for the step-adaptive methods.

• n2: Kerr nonlinearity coefficient.

• n2t: Thermal nonlinearity coefficient.

• t_th: Thermal relaxation time.

• kappa: Total linewidth of the resonator.

• kappa_laser: Laser cavity loss rate.

• kappa_sc: Coupling rate between clockwise and counter-clockwise modes in the res-

onator.

• kappa_inj: Laser-microresonator coupling rate.

• theta: Optical feedback phase.

• g0: Single-photon Kerr frequency shift g0.

• alpha: Linewidth enhancement Henry factor.

• gamma: Carrier recombination rate.

• V: Volume of the active section.

• a: Differential gain.

• e: Elementary electronic charge.

• N0: Carrier density at transparency.
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• eta: Conversion factor.

• I: Laser biased current.

• zeta: Current-frequency tuning coefficient.

• tau_r_mu: Normalized Raman shock time.

lle_core.hpp

In this header, we created structures for different modifications of LLE.

• struct rhs_lle {}

This structure is used to solve pure LLE with dispersion approximated by second-order

finite differences.

• struct rhs_pseudo_spectral_lle {}

This structure is used to solve pure LLE with dispersion computed in the frequency

domain.

• struct rhs_lle_thermal {}

This structure is used to solve LLE with thermal effects with dispersion approximated by

second-order finite differences.

• struct rhs_pseudo_spectral_sil_lle {}

This structure is used to solve LLE coupled to an external laser to simulate self-injection

locking with dispersion computed in the frequency domain.

• struct rhs_pseudo_spectral_lle_w_raman {}

This structure is used to solve LLE with Raman effect with dispersion computed in the

frequency domain.

lle_core_boost.cpp

For the Boost library, we have implemented only a solver from Boost/Odeint that employs the

runge_kutta_fehlberg78 solver. However, we adhere to the same naming convention.

• void* Propagate_PseudoSpectralSAM ( double * In_val_RE , double *
In_val_IM , double * Re_F , double * Im_F , const double *detuning ,
const double J, const double *phi , const double * Dint , const int
Ndet , const int Nt , const double dt , const double atol , const
double rtol , const int Nphi , double noise_amp , double * res_RE ,
double * res_IM )
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The corresponding structure is defined in the header lle_core_boost.hpp.

• struct rhs_pseudo_spectral_lle {}

The functions and structures described above possess the same functionality as the functions

with the same names that employ Numerical Recipes headers. The integration of Boost solvers

for different models is currently in progress.

C++ Routines for Chains of Coupled Resonators

In this section, we describe the functions used to solve the coupled Lugiato-Lefever Equation,

which models nonlinear dynamics in chains of coupled resonators.

crow_core.cpp

Below, we present a set of functions that we have implemented. They follow the same naming

convention and functionality as the solvers for single LLE, unless otherwise specified.

• std :: complex <double >* WhiteNoise (const double amp , const int Nphi)

• void* PropagateSAM ( double * In_val_RE , double * In_val_IM , double *
Re_F , double * Im_F , const double *detuning , const double * kappa ,
const double kappa0 , const double *delta , const double * J, const
double *phi , const double * d2 , const int Ndet , const int Nt , const

double dt , const double atol , const double rtol , const int Nphi ,
const int Ncrow , double noise_amp , double * res_RE , double * res_IM )

This is the SAMDP integrator for coupled LLEs with the dispersion term approximated

by second-order finite differences.

• void* Propagate_PseudoSpectralSAM ( double * In_val_RE , double *
In_val_IM , double * Re_F , double * Im_F , const double *detuning ,
const double * kappa , const double kappa0 , const double *delta ,
const double * J, const double *phi , const double * Dint , const int
Ndet , const int Nt , const double dt , const double atol , const
double rtol , const int Nphi , const int Ncrow , double noise_amp ,
double * res_RE , double * res_IM )

This solver is the same as the previous one, but we compute the dispersion term in the

frequency domain, enabling a complex dispersion profile and higher precision.

• void* PropagateThermalSAM ( double * In_val_RE , double * In_val_IM ,
double * Re_F , double * Im_F , const double *detuning , const double *
kappa , const double kappa0 , const double t_th , const double n2 ,
const double n2t , const double *delta , const double * J, const
double *phi , const double * d2 , const int Ndet , const int Nt , const

double dt , const double atol , const double rtol , const int Nphi ,
const int Ncrow , double noise_amp , double * res_RE , double * res_IM )
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This solver solves coupled LLEs using SAMDP in the presence of thermal effects in the

cavity. The dispersion term is approximated by second-order finite differences.

• void* Propagate_PseudoSpectralThermalSAM ( double * In_val_RE , double *
In_val_IM , double * Re_F , double *Im_F , const double *detuning ,
const double * kappa , const double kappa0 , const double t_th , const
double n2 , const double n2t , const double *delta ,const double * J,
const double *phi , const double * Dint , const int Ndet , const int Nt
, const double dt , const double atol , const double rtol , const int
Nphi , const int Ncrow , double noise_amp , double * res_RE , double *
res_IM )

This solver solves coupled LLEs using SAMDP in the presence of thermal effects in the

cavity. The dispersion term is computed in the frequency domain.

The input variables presented here have the same meanings as in the single-resonator routines.

The coupled-resonator related variables are:

• *kappa: Pointer to the array of coupling strengths of the bus waveguide to different

resonators.

• *J: Pointer to the array of couplings between the resonators.

• *delta: Pointer to the array of relative detunings between the resonators.

• *d2: Pointer to the array of group velocity dispersions.

• kappa0: Internal linewidth of the resonators.

• Ncrow: Total number of resonators.

crow_core.hpp

In this header, we have created structures for different modifications of coupled LLEs:

• struct rhs_crow {}

This structure is used to solve coupled LLEs with dispersion approximated by second-

order finite differences.

• struct rhs_pseudo_spectral_crow {}

This structure is used to solve coupled LLEs with dispersion computed in the frequency

domain.

• struct rhs_crow_thermal {}
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This structure is used to solve coupled LLEs with thermal effects with dispersion approx-

imated by second-order finite differences.

• struct rhs_pseudo_spectral_crow_thermal {}

This structure is used to solve coupled LLEs with thermal effects with dispersion com-

puted in the frequency domain.

boost_crow_core.cpp

Just as with the single resonator solvers, we have implemented the runge_kutta_fehlberg78
solver from Boost/Odeint.

• void* Propagate_PseudoSpectralSAM ( double * In_val_RE , double *
In_val_IM , double * Re_F , double * Im_F , const double *detuning ,
const double * kappa , const double kappa0 , const double *delta ,
const double * J, const double *phi , const double * Dint , const int
Ndet , const int Nt , const double dt , const double atol , const
double rtol , const int Nphi , const int Ncrow , double noise_amp ,
double * res_RE , double * res_IM )

The corresponding structure in the header file boost_crow_core.hpp:

• struct rhs_pseudo_spectral_crow {}

E.4 Examples

In this section, we provide a code and simple examples of the functionality explained above.

In the first part of the section, we provide a simulation code that works both in Python and

C++. This implies that the scripts from the sections allows for out-of-box Python simulations

that do not require any additional steps. The usage of the Python-based CROW solver is not

recommended because of the large integration time.

E.4.1 Single LLE soft excitaton

To simulate the single LLE dynamics with real resonator parameters, the following code can

be used:

1

2 import matplotlib . pyplot as plt
3 import numpy as np
4 import sys ,os
5 import PyCORe_main as pcm
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6

7 curr_dir = os. getcwd ()
8 PyCore_dir = os.path. dirname ( curr_dir )
9 sys.path. append ( PyCore_dir )

10

11 Num_of_modes = 2**9 # Number of modes (Box size)
12 nn = 2000 # number of output steps
13

14 # Integrated dispersion constructor
15 D2 = 4.1 e6# -1* beta2*L/Tr*D1 **2 ## From beta2 to D2
16 D3 = -25e3
17 mu = np. arange (- Num_of_modes /2, Num_of_modes /2)
18 Dint = 2*np.pi*(mu **2* D2/2 + mu **3* D3 /6)
19

20 # Pump laser - resonator detuning range in Hz
21 dNu_ini = -1e9
22 dNu_end = 3e9
23

24 ramp_stop = 0.99 # Detuning sweep stop
25 dOm = 2*np.pi*np. concatenate (
26 [np. linspace (dNu_ini ,dNu_end , int(nn* ramp_stop )),dNu_end *np.ones(
27 int(np.round ((1- ramp_stop )*nn)))])
28

29 PhysicalParameters = {’n0’ : 1.9, # refractive index
30 ’n2’ : 2.4e-19,# nonlinear RI [m^2/W]
31 ’FSR ’ : 181.7e9 , # free spectral range
32 ’w0’ : 2*np.pi *192 e12 , # pump frequency
33 ’width ’ : 1.5e-6, # waveguide width
34 ’height ’ : 0.85e-6, # waveguide height
35 ’kappa_0 ’ : 50e6 *2* np.pi , # internal loss rate
36 ’kappa_ex ’ : 50e6 *2* np.pi , # external loss rate
37 ’Dint ’ : Dint}
38

39 simulation_parameters = {’slow_time ’ : 1e-6,# seconds
40 ’detuning_array ’ : dOm ,
41 ’electro - optical coupling ’ : 0,
42 ’noise_level ’ : 1e-12,# shot noise
43 ’output ’ : ’map ’, # choose the output type
44 ’absolute_tolerance ’ : 1e-8,
45 ’relative_tolerance ’ : 1e-8,
46 ’max_internal_steps ’ : 2000}
47

48 # Pump vector construction
49 P0 = 0.15# Pump power in [W]
50 Pump = np.zeros(len(mu),dtype=’complex ’)
51 Pump [0] = np.sqrt(P0)
52

53 # Class initialization
54 single_ring = pcm. Resonator ()
55 single_ring . Init_From_Dict ( PhysicalParameters )
56

57 # Uncomment to choose the integrator of interest
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58 map2d = single_ring . Propagate_SplitStep ( simulation_parameters , Pump ,dt
=0.5e -3)

59 #map2d = single_ring . Propagate_SAM ( simulation_parameters , Pump)
60

61 #Save all the simulation parameter in the local folder ’data ’
62 single_ring . Save_Data (map2d ,Pump , simulation_parameters ,dOm ,’./ data/’)
63 %\ end{ minted }

Line-by-line description:

• Lines (1-4) packages import. Note: some packages can be duplicated inside the PyCORe

main file.

• Lines (6-8) getting the current working directory of the process, and appending it to

PyCore directory

• Lines (11-12) dimensions of the numerical box

• Lines (14-18) We construct the integrated dispersion using D2 and D3 coefficient of the

expansion.

• Lines (21-27) We defined the laser detuning range in Hz and convert it the angular fre-

quency adding an option to stop the sweep earlier depending on the value of ramp_stop.

• Lines (29-37) Physical Parameters dictionary in the microresonator units.

• Lines (39-46) Simulation parameters dictionary (see ref for details)

• Lines (49-51) Pump vector construction in the Fourier domain. The vector is reversed in

the way that the central frequency is placed at 0th index.

• Lines (53-55) pcm class construction with the Physical Parameters dictionary.

• Lines (57-59) Calling a solver method providing the simulation parameters and pump

vector.

• Line (62) Save data

As a result, we obtain the spatio-temporal diagram plotted with the interactive viewer "Plot_Map".

It is displayed in Fig. 1. Parameters of the simulation and corresponding output data are saved

in the /data/ folder using binaries of NumPy.

E.4.2 Hard seeding of solitons

To resolve the spatio-temporal dynamics of the intraresonator field at fixed detuning, the hard

seeding techniques must be used. It includes the following steps:
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• Perform the dynamical simulations as described in Ch..

• Choose the detuning of interest using the interactive viewer.

• Load the parameter files

• Perform simulations with a fixed laser detuning

The code for the last two files is the following:

1

2 import matplotlib . pyplot as plt
3 import numpy as np
4 import sys ,os
5 import PyCORe_main as pcm
6 import time
7

8 curr_dir = os. getcwd ()
9 PyCore_dir = os.path. dirname ( curr_dir )

10 sys.path. append ( PyCore_dir )
11

12 start_time = time.time ()
13 map2d_scan = np.zeros ([], dtype= complex )#np.load(’ map2d_scan .npy ’)
14 dOm_scan = np.zeros ([])
15 Pump=np.zeros ([], dtype= complex )
16 simulation_parameters ={}
17 single_ring = pcm. Resonator ()
18 # single_ring =pcm.CROW ()
19 simulation_parameters ,map2d_scan ,dOm_scan ,
20 Pump= single_ring . Init_From_File (’./ data/’)
21

22 idet = 1000
23 nn = 10000
24 dOm = np.ones(nn)* dOm_scan [idet]
25 simulation_parameters [’slow_time ’]=1e-6
26 simulation_parameters [’detuning_array ’]= dOm
27

28 Seed = map2d_scan [idet ,:]#/ single_ring . N_points
29

30 map2d = single_ring . Propagate_SplitStep ( simulation_parameters , Pump , Seed
=Seed ,

31 dt =0.5e-3, HardSeed =True)
32

33 #plt. figure ()
34 #plt.plot(dOm /2/ np.pi ,np.mean(np.abs(map2d)**2, axis =1))
35

36 #pcm. Plot_Map (np.fft.ifft(map2d ,axis =1) ,dOm *2/ single_ring .kappa)
37 pcm. Plot_Map (np.fft.ifft(map2d ,axis =1) ,np. arange (nn))
38

39 #np.save(’ map2d_ ’+str(idet),map2d [:,:], allow_pickle =True)

Line-by-line description:
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• Lines (11-16) Creating the arrays

• Lines (18-19) Loading the simulation parameters from data file

• Line 21 Choosing the slice index at which the solution of LLE is taken for the hard seed.

• Line 22 Number of output steps

• Line (23-25) Defining the constant detuning and slow time arrays.

• Line 27 Defining seed

• Line (29-30) Performing simulation. The result is given in the Fourier domain

• Line 35 Plotting the solution

• Line 36 Plotting the solution for selected number of steps

• Line 38 Save data

E.4.3 Nonlinear dispersion relation

Nonlinear systems often exhibit complex dynamics that can be extremely challenging to

analyze. Moreover, despite the existence of many analytical methods, they cannot always be

applied to every specific system. Therefore, there is a continual need for new approaches to

describe these systems. One such method is the nonlinear dispersion relation (NDR), which

was recently introduced for the nonlinear Schrödinger equation (NLSE) in Refs. [190, 175],

and we actively utilize it in this thesis. This method helps to readily identify the presence

of nonlinear structures and understand how they give rise to dispersive waves in different

regimes.

Here, we start with the simplest treatment that however helps to qualitatively understand it.

Let us first consider the simplest version of LLE with only dispersion term

∂A

∂t
= i

∂2 A

∂ϕ2 . (E.2)

Its beauty lies in the algebraic solvability in the Fourier basis

A(t ,ϕ) =∑
µ

aµ exp(iµϕ− iωµt ) (E.3)

that yields the famous parabolic dispersion relation

ωµ =µ2 (E.4)

that can be readily generalized to take into account higher-order dispersion terms.
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In other words, if the Fourier amplitudes aµ are well defined in the initial moment of time

t = 0, the equation is algebraically solved in the Fourier domain where the dispersion relation

is also defined. Now, let’s generalize the dispersion relation in the nonlinear regime for the

NLSE
∂A

∂t
= i

∂2 A

∂ϕ2 + i |A|2 A. (E.5)

In the Fourier space, considering ∂t aµ = 0, we get

aµωµ = aµµ
2 − ∑

µ1,µ2,µ3

aµ1 aµ2 a∗
µ3
δ(µ1 +µ2 −µ3 −µ). (E.6)

This expression already identifies dispersive (first term) and nonlinear (second term) of the

cavity. For example, taking into account only the self-phase modulation term, we obtain the

modified dispersion relation

ωµ =µ2 −|aµ|2, (E.7)

which yields a well known result: Kerr nonlinearity leads to the frequency shifting to the

towards longer wavelength.

In practice, computing this expression analytically is challenging, especially for systems

described by the Lugiato-Lefever equation (LLE) or others. However, it can still be obtained

via a two-dimensional fast Fourier transform (FFT) of the resolved field dynamics. Essentially,

applying the FFT transform to the field A governed by NLSE or LLE is equivalent to Eq. (E.3),

resulting in an expression similar to (E.6). In other words, the Nonlinear Dispersion Relation

(NDR) is essentially the Fourier transform of the spatio-temporal diagram along two axes:

time (t ) and space (ϕ). This two-dimensional Fourier transform provides information about

the effective NDR and reveals insights about linear dispersive and nonlinear waves in the

system [190]. To demonstrate this, we consider three examples of field distribution for LLE

with third-order dispersion: chaotic state (Fig. E.2a), soliton breather (Fig. E.2b), and stable

solitons (Fig. E.2c). By taking the 2D FFT, we obtain the two-dimensional spectra presented

in Fig. E.2d-f. For the chaotic state, one can see the dispersion parabola with the highlighted

region on top. This region represents solitons with different velocities that interact with each

other. In the breather state, NDR shows a set of equally spaced lines, indicating the presence of

a coherent structure oscillating in time. The tilt angle indicates the group velocity. A coherent

structure, e.g., dissipative Kerr soliton, is represented by a single line under the dispersion

curve. The intersection of these lines indicates the additional phase-matching condition and,

consequently, the position of the dispersive wave.

First, one needs to simulate field dynamics with fixed detuning. An example of such code is

presented below

1 # add data folder
2

3 #!/ usr/bin/env python3
4 # -*- coding : utf -8 -*-
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5 """
6 Created on Tue May 23 15:25:20 2023
7

8 @author : aleksandrtusnin
9 """

10 import matplotlib . pyplot as plt
11 import numpy as np
12 import sys , os
13 sys.path. append (’/Users/ aleksandrtusnin / Documents / Projects / PyCORe /’)
14 import PyCORe_main as pcm
15

16 import time
17 from scipy. constants import c, hbar
18 import scipy. signal as signal
19

20 import scipy as scp
21

22 start_time = time.time ()
23

24 map2d_scan = np.zeros ([], dtype= complex )#np.load(’ map2d_scan .npy ’)
25 dOm_scan = np.zeros ([])
26 Pump=np.zeros ([], dtype= complex )
27 simulation_parameters ={}
28 device = pcm. Resonator ()
29

30 simulation_parameters ,map2d_scan ,dOm_scan ,Pump= device . Init_From_File (’./
data/’)

31

32 idet = 1163
33 nn = 100000
34 dOm = np.ones(nn)* dOm_scan [idet]
35 simulation_parameters [’slow_time ’]=1e-6
36 simulation_parameters [’detuning_array ’]= dOm
37

38

39 Seed = map2d_scan [idet ,:]
40

41 map2d = device . Propagate_PseudoSpectralSAMCLIB ( simulation_parameters ,
Pump ,Seed=Seed , HardSeed =True)

42

43 np.save(’./ data/ map2d_ ’+str(idet),map2d [:,:], allow_pickle =True)
44 #%%
45 pcm. Plot_Map (np.fft.ifft(map2d [:,:], axis =1) ,np. arange (dOm.size))
46 #%%
47 print(" --- %s seconds ---" % (time.time () - start_time ))

Further, we can readily reconstruct the NDR

1 import matplotlib . pyplot as plt
2 import numpy as np
3 import sys ,os
4 sys.path. append (’/Users/ aleksandrtusnin / Documents / Projects / PyCORe /’)
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5

6 import PyCORe_main as pcm
7 import time
8 plt. rcParams . update ({’font.size ’: 8})
9

10 # map2d_scan =np.load (’./ data/map2d.npy ’)
11 #map2d=np.load (’./ data/ map2d_672 .npy ’)
12 map2d=np.load(’./ data/ map2d_758 .npy ’)
13 #dOm=np.load (’./ data/dOm.npy ’)
14 map2d_scan = np.zeros ([], dtype= complex )
15 dOm_scan = np.zeros ([])
16 Pump=np.zeros ([], dtype= complex )
17 simulation_parameters ={}
18 device = pcm. Resonator ()
19

20 simulation_parameters ,map2d_scan ,dOm_scan ,Pump= device . Init_From_File (’./
data/’)

21 #det = dOm_scan [672]/2/ np.pi
22 det = dOm_scan [758]/2/ np.pi
23 nn = map2d [: ,0]. size
24

25 Time =1e-6
26 hann_window = np. hanning (nn)
27

28 N_modes = map2d [0 ,:]. size
29 phi = np. linspace (0 ,2* np.pi , N_modes )
30 mu = np. arange (0, N_modes ) - N_modes /2
31 slow_freq = (np. arange (0,nn) - nn /2)/Time
32 map2d_direct = np.zeros ([nn , N_modes ],dtype= complex )
33 #%%
34 text_width = 146.8*0.0393701 #in inches
35 fig_width = text_width
36 fig_height = fig_width *6/4
37

38 fig ,axs = plt. subplots (ncols =3, nrows =2, figsize =[ fig_width , fig_height ],
frameon =False ,dpi =300 , layout =" constrained ")

39

40

41 name_list = [’./ data/ map2d_672 .npy ’,’./ data/ map2d_758 .npy ’,’./ data/
map2d_1163 .npy ’]

42 file_iter = 0
43 for name in name_list :
44 map2d=np.load(name)
45 for jj in range(nn):
46 map2d_direct [jj ,:] = np.fft.ifft(map2d[jj ,:], axis =0)
47 for jj in range (0, N_modes ):
48 map2d_direct [:,jj ]*= hann_window
49

50

51

52 NDR =(np.fft. fftshift (np.fft.fft2( map2d_direct [: ,:])))
53 max_val =np.max(abs(NDR)**2)
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54

55

56

57 ax = axs [0][ file_iter ]
58 ax. pcolormesh (np. linspace (0,Time ,nn)/1e-6, device .phi ,abs(np.fft.ifft(

map2d ,axis =1).T)**2, cmap=’viridis ’,rasterized =True)
59 ax. set_xticklabels ([])
60 ax. set_yticklabels ([])
61

62

63

64

65 ax = axs [1][ file_iter ]
66 colbar =ax. pcolormesh (-mu ,- slow_freq /1e9 ,10* np.log10(np.abs(NDR)**2/

max_val ),cmap=’afmhot ’,rasterized =True)
67 colbar . set_clim ( -300 ,0)
68

69 ax. set_xlim ( -250 ,250)
70 ax. set_ylim ( -25 ,10)
71

72

73

74

75 ax. set_xticklabels ([])
76 ax. set_yticklabels ([])
77

78 file_iter +=1
79

80 axs [0 ,0]. set_ylabel (r’$\ varphi$ ’)
81 axs [0 ,0]. set_yticks ([0,np.pi ,2* np.pi])
82 axs [0 ,1]. set_yticks ([0,np.pi ,2* np.pi])
83 axs [0 ,2]. set_yticks ([0,np.pi ,2* np.pi])
84 axs [0 ,0]. set_yticklabels ([r’$-\ pi$ ’,r’$0$ ’,r’$\pi$ ’])
85

86 axs [0 ,0]. set_xticks ([0, Time /1e -6])
87 axs [0 ,0]. set_xticklabels ([r’$0$ ’,r’$1$ ’])
88 axs [0 ,0]. set_xlabel (r’Time ($\mu$s)’)
89 axs [0 ,1]. set_xticks ([0, Time /1e -6])
90 axs [0 ,1]. set_xticklabels ([r’$0$ ’,r’$1$ ’])
91 axs [0 ,1]. set_xlabel (r’Time ($\mu$s)’)
92 axs [0 ,2]. set_xticks ([0, Time /1e -6])
93 axs [0 ,2]. set_xticklabels ([r’$0$ ’,r’$1$ ’])
94 axs [0 ,2]. set_xlabel (r’Time ($\mu$s)’)
95

96

97

98 axs [1 ,0]. set_ylabel (r’Slow frequency (GHz)’)
99 axs [1 ,0]. set_yticks ([ -20 , -10 ,0 ,10])

100 axs [1 ,0]. set_yticklabels ([’$ -20$’,’$ -10$’,’$0$ ’,’$10$ ’])
101 axs [1 ,1]. set_yticks ([ -20 , -10 ,0 ,10])
102 axs [1 ,2]. set_yticks ([ -20 , -10 ,0 ,10])
103
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Figure E.2: Nonlinear states and the corresponding nonlinear dispersion relation. Spa-
tiotemporal dynamics of the cavity field in the a) chaotic, b) breather, and c) soliton states.
Corresponding nonlinear dispersion relation in panels d-f.

104 axs [1 ,0]. set_xticks ([ -250 ,0 ,250])
105 axs [1 ,0]. set_xticklabels ([r’$ -250$’,r’$0$ ’,r’$250$ ’])
106 axs [1 ,0]. set_xlabel (r’$\mu$ ’)
107 axs [1 ,1]. set_xticks ([ -250 ,0 ,250])
108 axs [1 ,1]. set_xticklabels ([r’$ -250$’,r’$0$ ’,r’$250$ ’])
109 axs [1 ,1]. set_xlabel (r’$\mu$ ’)
110 axs [1 ,2]. set_xticks ([ -250 ,0 ,250])
111 axs [1 ,2]. set_xticklabels ([r’$ -250$’,r’$0$ ’,r’$250$ ’])
112 axs [1 ,2]. set_xlabel (r’$\mu$ ’)
113 plt.show ()

As a result, we obtain the results presented in Fig. E.2.

We successfully applied this method in Chapters 1 to investigate localized modulation instabil-

ity states and Band solitons. In chapter 2, NDR identified the Floquet zones in the numerical

experiment and provided further evidence for the analytical results. To investigate quiet points

in coupled resonators in chapter 4, NDR qualitatively demonstrated the reduction in noise

transfer. In lattices of resonators (chapters 5-7), this method proved invaluable in analyzing

the complex dynamics within different resonators.
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E.4.4 Two coupled resonators

In this section, we present an example of nonlinear dynamics simulation in photonic dimer.

We provide the simulation code below

1 import matplotlib . pyplot as plt
2 plt. rcParams [’figure .dpi ’] = 150
3 plt. rcParams [’savefig .dpi ’] = 150
4 import numpy as np
5 import sys ,os
6 my_PyCore_dir = os.path. dirname (’/Users/ aleksandrtusnin / Documents /

Projects / PyCORe /’)
7 sys.path. append ( my_PyCore_dir )
8 import PyCORe_main as pcm
9 from scipy. constants import c, hbar

10

11 #%%
12 Num_of_modes = 2**9
13 mu = np. arange (- Num_of_modes /2, Num_of_modes /2)
14 N_res = 2
15 Dint = np.zeros ([ Num_of_modes ,N_res ])
16 D2 = 4.1 e6 *2* np.pi
17 Dint [: ,0] = (mu **2* D2 /2)
18 Dint [: ,1] = (mu **2* D2 /2)
19 Delta = np.zeros ([ Num_of_modes ,( N_res)])
20 J = 2*1 e9 *2* np.pi*np.ones ([mu.size ,( N_res -1) ])
21 kappa_ex_ampl = 20e6 *2* np.pi
22 kappa_ex = np.zeros ([ Num_of_modes ,N_res ])
23 kappa_ex [: ,0] = kappa_ex_ampl *np.ones ([ Num_of_modes ])
24 kappa_ex [: ,1] = 2* kappa_ex_ampl *np.ones ([ Num_of_modes ])
25 omega = 2*np.pi *193.414489 e12
26

27 PhysicalParameters = {’Inter - resonator_coupling ’: J,
28 ’Resonator detunings ’ : Delta ,
29 ’n0’ : 1.9,
30 ’n2’ : 2.4e-19,### m^2/W
31 ’FSR ’ : 457.9 e9 ,
32 ’w0’ : omega ,
33 ’width ’ : 2.35e-6,
34 ’height ’ : 0.8e-6,
35 ’kappa_0 ’ : 20e6 *2* np.pi ,
36 ’kappa_ex ’ : kappa_ex ,
37 ’Dint ’ : Dint}
38 crow = pcm.CROW ()
39 crow. Init_From_Dict ( PhysicalParameters )
40 dNu_ini = -3*1e9
41 dNu_end = 4e9
42

43 nn = 1000
44 dOm = 2*np.pi*np. linspace (dNu_ini ,dNu_end ,nn)
45 simulation_parameters = {’slow_time ’ : 1e-6,
46 ’detuning_array ’ : dOm ,
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47 ’noise_level ’ : 1e-9,
48 ’output ’ : ’map ’,
49 ’absolute_tolerance ’ : 1e-10,
50 ’relative_tolerance ’ : 1e-12,
51 ’max_internal_steps ’ : 2000}
52

53 P0 = 0.3### W
54

55 Pump = np.zeros ([ len(mu),N_res],dtype=’complex ’)
56

57 Pump [0 ,0] = np.sqrt(P0)
58 #%%
59 map2d = crow. Propagate_PSEUDO_SPECTRAL_SAMCLIB ( simulation_parameters ,

Pump , BC=’OPEN ’)
60 #%%
61 Sin = Pump/np.sqrt(hbar* PhysicalParameters [’w0’])
62 Sout = np. zeros_like (map2d)
63 Sout = Sin - np.sqrt(crow. kappa_ex )*map2d/ Num_of_modes
64

65 fig = plt. figure ( figsize =[11.7 ,4] , frameon =False ,dpi =150)
66 ax = fig. add_subplot (1 ,2 ,1)
67 ax.plot(dOm [10:]/2/ np.pi/1e9 ,np.sum(abs(Sout [10: ,: ,0]) **2, axis =1)/np.max(

abs(Sin)**2) ,label=’1$^{\ mathrm {th}}$ resonator ’)
68 ax. set_ylabel (r’Transmission $S_\ mathrm {out }/S_\ mathrm {in}$’)
69 ax. set_xlabel (’Pump detuning (GHz)’)
70 plt. legend ()
71 ax = fig. add_subplot (1 ,2 ,2)
72 ax.plot(dOm [10:]/2/ np.pi/1e9 ,np.sum(abs(Sout [10: ,: ,1]) **2, axis =1)/np.max(

abs(Sin)**2) ,c=’r’,label=’2$^{\ mathrm {nd}}$ resonator ’)
73 ax. set_xlabel (’Pump detuning (GHz)’)
74 plt. legend ()
75 #plt. tight_layout ()
76 fig. savefig (’./ trans_trace .pdf ’)

The computed transmission traces through the pump and drop waveguides defined as

Sout = Sin −p
κex A (E.8)

shown in Fig. E.3
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