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Abstract

In the rapidly evolving landscape of machine learning research, neural networks stand out

with their ever-expanding number of parameters and reliance on increasingly large datasets.

The financial cost and computational resources required for the training phase have sparked

debates and raised concerns regarding the environmental impact of this process. As a result, it

has become paramount to construct a theoretical framework that can provide deeper insights

into how model performance scales with the size of the data, number of parameters, and

training epochs.

This thesis is concerned with the analysis of such large machine learning models through

a theoretical lens. The sheer sizes considered in these models make them suitable for the

application of statistical methods in the limit of high dimensions, akin to the thermodynamic

limit in the context of statistical physics. Our approach is based on different results from

random matrix theory, which involves large matrices with random entries. We will make a

deep dive into this field and use a spectrum of tools and techniques that will underpin our

investigations of these models across various settings.

Throughout our journey, we begin by constructing a model starting from a linear regression.

We then extend and build upon it to allow for a wider range of architectures, culminating

in a model that closely resembles the structure of a multi-layer neural network. With the

gradient-flow dynamics, we further develop analytical formulas predicting the learning curves

of both the training and generalization errors. The equations derived in the process reveal

several underlying phenomena emerging from the dynamics such as the double descent, and

specific descent structures over time.

We then take a detour to explore the dynamics of the rank-one matrix estimation problem,

commonly referred to as the spiked Wigner model. This model is particularly intriguing

due to the presence of a phase transition with respect to the signal-to-noise ratio, as well as

challenges related to the non-convexity of the loss function and non-linear learning equations.

Subsequently, we address the extensive-rank matrix denoising problem which is an extension

of the previous model. It holds particular interest in the context of sample covariance matrix

estimation, and presents other challenges stemming from the initialization and the tracking

of eigenvectors alignment.

Keywords: Random matrix theory, machine learning, random feature, matrix denoising,

gradient flow, high-dimensions, spiked Wigner, double descent, phase transition
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Résumé

Dans le paysage en constante évolution de la recherche en apprentissage automatique, les

réseaux de neurones se distinguent par leur nombre de paramètres toujours croissant et

leur dépendance à l’égard d’ensembles de données de plus en plus volumineux. Le coût

et les ressources informatiques nécessaires à la phase d’entraînement suscitent des débats

et soulèvent des préoccupations quant à l’impact environnemental de ce processus. Par

conséquent, il devient essentiel de construire un cadre théorique capable de fournir des

perspectives plus approfondies sur la manière dont les performances de ces modèles évoluent

en fonction de la taille des données, du nombre de paramètres et d’étapes réalisées lors de

l’entraînement.

Cette thèse se consacre à l’analyse de ces grands modèles d’apprentissage automatique à

travers une perspective théorique. La taille considérable de ces modèles les rend aptes à

l’application de méthodes statistiques dans la limite des dimensions élevées, semblable à la

limite thermodynamique dans le contexte de la physique statistique. Notre approche repose

sur des résultats de la théorie des matrices aléatoires, qui implique des matrices de grande

dimension avec des entrées aléatoires. Nous approfondirons ce domaine et utiliserons un

éventail d’outils et de techniques qui soutiendront nos investigations de ces modèles dans

divers contextes.

Tout au long de notre parcours, nous commencerons par construire un modèle à partir d’une

régression linéaire que nous développerons par la suite pour permettre l’analyse d’une plus

grande variété d’architectures. Nous aboutirons à un modèle dont la structure se calque

étroitement à celle d’un réseau de neurones multicouche. Grâce à la dynamique du gradient-

flow, nous développerons des formules analytiques prédisant les courbes d’apprentissage

des erreurs d’entraînement et de généralisation. Les équations obtenues au cours de cette

analyse révèlent plusieurs phénomènes sous-jacents émergeant lors de la dynamique, tels

que la "double-descente", ainsi que des structures de descente plus spécifiques au cours de

l’apprentissage.

Nous ferons ensuite un détour pour explorer la dynamique du problème d’estimation de

matrice de rang un, communément appelé le modèle spiked Wigner. Celui-ci est particuliè-

rement intrigant en raison de la présence d’une transition de phase en fonction du rapport

signal/bruit, et présente des difficultés liés à la non-convexité de la fonction d’objectif et la

non-linéarité des équations d’apprentissage. Nous aborderons finalement le problème de

débruitage de matrices de rang extensif, qui peut se concevoir comme une extension du
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Résumé

modèle précédent. Il suscite un intérêt particulier dans le contexte de l’estimation de matrice

de covariance dans un échantillon de données, et présente d’autres défis liés à l’initialisation

ainsi qu’à l’alignement des vecteurs propres.

Mots clés : Théorie des matrices aléatoires, apprentissage automatique, random-feature, débrui-

tage de matrices, gradient-flow, hautes dimensions, spiked Wigner, double-descente, transition

de phase
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1 Introduction

As the saying goes, “All models are wrong” (Box, 1976), and machine learning models are no

exception. At the root of this statement lies the fact that these models are a mathematical

construction with a particular structure that seeks to replicate the functioning of a "system"

whose underlying full description and mechanism is not only fundamentally unkown, but

quite often beyond reach. Observations of the true model - or more commonly called samples

of data - is the raw ingredient to mimic its functioning with the expectation to accurately

match it on future unseen observations. This is all achieved with an optimization algorithm

that seeks to align underlying free parameters of this mathematical structure to better fit with

these observations. There are the three pillars around which revolves a machine learning

model: the data, the model and the optimization method.

As a general principle stated in Box’s article, since the true model is unknown, the scientist

“should seek an economical description of natural phenomena” thereby following William Oc-

cam’s law of parsimony. Hence the Occam’s razor rule, which states that the scientist should

choose simplicity over complexity when faced with two competing models that explain the

sample data equally well. And yet, at the time of the writing of this work, current machine

learning models seem to defy this principle. Indeed, the current trend in machine learning

is to build more and more complex models that are able to fit the data with an ever increas-

ing fidelity. Current models approach a trillion number of parameters (e.g. large language

models in Brown et al. (2020)) and even at fixed number of data samples, current empirical

observations seem to suggest evidence for better generalization performances with both an

optimally increased number of parameters and training computations (Hoffmann et al., 2022).

This seems to suggest that the notion of simplicity fostered by Occam’s razor is neither solely

determined by the number of parameters of the model, nor by the number of training epochs.

While these empirical evidence steer our understanding towards the idea that the most eco-

nomical representation of the data distribution is enabled by more parameters and its selection

can be operated by more learning epochs, an overall growing concern regarding these struc-

tures are their interpretability. This is in stark contrast with the classical approach in physical

sciences which puts at the forefront the interpretability of the model and simplicity of the

1



Chapter 1. Introduction

equations. However, physics models are no stranger to modeling complex interactions be-

tween a large number of variables. In fact, history in thermodynamic is a successful example

where empirical laws where devised first (such as Boyle-Mariotte law in the 17th century)

until modern approaches enabled by statistical physics allowed to derive these laws from first

principles (for instance with the work of Maxwell-Boltzmann in the 19th century). Sometimes,

physical sciences elaborate simplified models of reality that enable us to have an understand-

ing of the interactions at work for the emergence of more complex phenomena. This is the

case for instance with the 1-dimensional Ising model in statistical physics that provides hints

of the emergence of ferromagnetism in a material, and in particular the existence of a phase

transition with respect to the Curie temperature (Ising, 1925).

In this thesis, we propose to follow a similar path and explore different machine learning

models through diverse settings for the data, the model design and the optimization algorithm.

Although the models that we will scrutinize are simplifications and idealizations of more

intricate models commonly used in practice, they offer a precise framework in which the

emergence of complex phenomena can be studied. Specifically, our investigation unfolds

across several sections: from a detailed exploration of linear models (Sections 1.1 to 1.3),

where we assess their performance in high-dimensional scenarios (Sections 1.4 and 1.5), to an

examination of non-convex settings with a focus on a rank-one matrix factorization model

(Section 1.6). And finally, we address the extensive-rank case in Section 1.7.

1.1 The class of linear models

In supervised learning, a model learns to make predictions based on a set of real-valued labels

y generated from a d-dimensional real input vector x. One of the most ubiquitous and simplest

models that fit in this class are the linear models. They have been widely described in many

text-books (Hastie et al., 2001; James et al., 2013), and although they strike by their simplicity

compared to the aforementioned highly-parameterized generative models in the introduction,

they serve as a building block of many different models. They can also be considered as the

embryo of a neural network as we will see later on. Despite their simplicity, they display many

features encountered with more complex models (training error, generalization error, over-

fitting, etc). They are therefore a convenient starting point and will be a major topic of this

thesis. Specifically, the second part of the thesis is dedicated to investigating the emergence of

complex phenomena in the high-dimensional limit.

In the most elementary description of these linear models, the labels are assumed to have

a linear relationship with the data. Thus, the distribution of y is constructed with a hidden

d-dimensional vector β∗ such that the output conditional on the vector x follows a normal

distribution:

E[y |x] ∼N
(
β∗

0 +xTβ∗,σ2) (1.1)

Equivalently, the true labels are given by an underlying linear-function f ∗(x) = β∗
0 + xTβ∗

while the output y is precisely this label to which some additional Gaussian noise with tunable

2



1.1 The class of linear models

variance σ2 is added, say ϵ∼N (0,σ2):

y(x) = f ∗(x)+ϵ (1.2)

In practice in the supervised learning setting, the model usually only has access to a finite

number of samples (xi , yi ), for i = 1, . . . ,n such that all the xi are independent with each other

and drawn from a true distribution Px . We write conveniently X ∈ Rn×d the data matrix

where each line i corresponds to a sample xi , and Y such that Yi corresponds to yi . For

the sake of simplicity, we assume that the labels are centered, leaving β∗
0 = 0. With this

condition, the optimization problem consists in finding an estimator β̂ such that the function

ŷ(x) = xT β̂ effectively captures the data-points and has the potential to generalize to future

new points. The measure of fitness is probed with a loss function: in the regression setting,

a standard loss is the quadratic loss
∥∥Y − Ŷ

∥∥2
. Therefore, β̂ is chosen so as to minimize this

loss: β̂= argminβ
∥∥Y − Ŷ

∥∥2
. From a Bayesian perspective, this corresponds to the maximum

likelihood estimator (MLE) from the likelihood of Y given the parameters β and the data X :

P (Y |X ,β) =
n∏

i=1

1p
2πσ2

exp

(
− (yi −xT

i β)2

2σ2

)
(1.3)

In order to mitigate a range of different issues that are discussed in the subsequent sections,

a regularization term is added to the loss function. This is equivalent to imposing a prior-

distribution on β∼N
(
0, σ

2

λ I
)

and maximizing the distribution P (Y ,β|X ):

P (Y ,β|X ) = P (Y |X ,β)P (β|X ) =
(

n∏
i=1

1p
2πσ2

exp

(
− (yi −xT

i β)2

2σ2

))
1

d
√

2πσ2

λ

exp

(
−λ

∥∥β∥∥2

2σ2

)
(1.4)

Hence this corresponds to calculating the ridge regression estimator:

β̂= argmin
β

L (β) with L (β) = ∥∥Y −Xβ
∥∥2 +λ∥∥β∥∥2 (1.5)

Solving ∇βL (β̂) = 0 yields an explicit formula known as the ridge regression estimator:

β̂= (X T X +λId )−1X T Y (1.6)

At this stage, we start with the description of our first model 1.1 that will serve as a foundation

to introduce the methods used for further complex models. This is referred to as the random

ridge regression model, wherein the data is sampled from a Gaussian distribution. This model

will be studied in Chapter 4 and follows from a range of different results such as in (Hastie

et al., 2019; Belkin et al., 2020a; Advani et al., 2020a).

Model 1.1. (Random ridge regression). In this model, we consider the ridge regression estimator

with a regularization term λ for the input matrix X ∈ Rn×d and the output vector Y ∈ Rn

related by the linear relation Y = Xβ∗+ξ for some noise vector ξ∼N (0,σ2In) and a hidden

signal β∗ ∈ Rd . The data matrix X is a random matrix with independent entries such that

3



Chapter 1. Introduction

Xi j ∼N (0, 1
d ) for all (i j ). The true signal β∗ is any deterministic vector whose norm satisfies

the relation r 2 = 1
d

∥∥β∗∥∥2.

When a learning mechanism is specified, instead of the ridge regression estimator, another

estimator β(k) arises from the learning dynamics at each step k. A common method for this

purpose is the gradient descent algorithm which starts with a random initialization β(0) and

iterates through new values of the estimator using an update rule based on the gradient of the

loss function and parameterized by a learning rate η. More precisely, it generates a sequence

of estimate vectors β(k) with the following formula:

β(k +1) =β(k)−η∇βL (β(k)) (1.7)

As shown in Hastie et al. (2019), a sufficiently small learning rate guarantees that when k →
+∞, the gradient descent algorithm converges to the ridge regression estimator β̂ that will

be denoted as β(+∞) in this case. This algorithm can also be understood in terms of a

discretization scheme of the gradient-flow method, where β evolves as a continuous function

of time t with:
dβt

dt
=−∇βL (βt ) (1.8)

The gradient-flow method is often regarded as a viable approximation of the gradient-descent

method while providing a set of differential ordinary differential equations that are more

readily amenable to analysis. Consequently, this approach will be followed in this thesis when

examining the dynamics of our machine learning models.

1.2 Multivariate gaussian structure of the data

To introduce the next model that will serve as more general framework to cover many different

cases, we will further consider a situation where the data is generated from two different

centered-normal distributions sharing a covariance matrix Σwith a specific structure:(
x

x̂

)
∼N

((
0

0

)
,

(
V ∗ Σ

ΣT U∗

))
(1.9)

In this setting, the true model (the teacher) and the underlying learning model (the student)

have access to two distinct data distributions, albeit with specific correlations. Given a data

point x for the teacher jointly distributed with a data point x̂ for the student, the teacher

model outputs y(x) = xTβ∗ while the student assumes the existence of a linear relation with

x̂, so ŷ(x̂) = x̂Tβ. This structure is introduced in full generality in Loureiro et al. (2021) and is

referred to as the Gaussian covariate model.

Adjusting the variance profile of the data-points enables to capture a broader range of different

models. For instance, when σ= 0, the fundamental case defined in model 1.1 corresponds to

U∗ =V ∗ =Σ= Id . Otherwise, a substitute of the noise term ϵ∼N (0,σ2) can be constructed

4



1.2 Multivariate gaussian structure of the data

by setting U∗ = Id as before, but adding one extra dimension for x acting as a surrogate of the

noise:

V ∗ =


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . σ2

 ∈R(d+1)×(d+1) Σ=


1 . . . 0
...

. . .
...

0 . . . 1

0 . . . 0

 ∈R(d+1)×d (1.10)

This way, by setting β∗
d+1 = 1, we effectively have defined y(x) = xT

[1:d ]β
∗
[1:d ] +xd+1 with xd+1 ∼

N (0,σ2) while x[1:d ] is the truncated vector x to its first d elements. This structure can be

leveraged more extensively to investigate various models such as a misspecified model where

the student only has access to a subset of the teacher vector x as described in Belkin et al.

(2020a), or more general kernel methods (Loureiro et al., 2021). This motivates us to introduce

our second model which will be thoroughly examined in Chapter 5.

Model 1.2. (Gaussian Covariate Model). In this model, we consider a random matrix Z ∈Rn×d

where each element are independent with Zi j ∼N (0, 1
d ). We let A ∈ Rd×p A and B ∈ Rd×pB be

two deterministic matrices that can have different dimension p A and pB .

1. The teacher is given the data matrix X = Z B and generates the output Y = Xβ∗ for a

deterministic vector β∗ ∈RpB

2. The student has the data matrix X̂ = Z A and generates Yt = X̂βt by learning a vector

βt ∈ Rp A using the gradient-flow optimization method with β0 drawn independently

from a normal distribution [β0]i ∼N (0,r 2
0 ).

Note that this is an alternative but equivalent description of the covariance profile given before.

The relation to the former representation results from U∗ = AT A, V ∗ = B T B and Σ = B T A.

The opposite relation is displayed in more details in Chapter 5. With this view, the data matrix

of the teacher and the student is generated from the same source of randomness Z although

the matrix A and B can be set to project the rows of Z to different subspaces.

Furthermore, instead of considering the covariance structure of X , it is also possible to see

this model through an alternative angle where the structure is placed on β∗. Since Y = Xβ∗ =
Z Bβ∗, it is possible to investigate this model as a ridge regression Y = Zβ∗ with a signal

β̃∗ = Bβ∗. As an illustrative remark highlighting the capabilities of this model, the Fourier

model described in (Belkin et al., 2020a) falls within its scope when we choose B = Fω, where

Fω is the Fourier matrix of size d ×d with [Fω]i j = 1p
d

e−2πi (i−1)( j−1)
d .

Despite the apparent simplicity due to the inherent linearity, we will see how model 1.2 can

be used to investigate various models where the data is mapped to a feature vector through

non-linear functions. These models are commonly referred to as the Kernel ridge regression

model (Murphy, 2012). In the subsequent section, we will delve into a specific subclass of

these feature-maps, which yields the so-called random feature model.
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Figure 1.1: Graphical representation of the random feature model

1.3 The random feature model

The final cornerstone of this thesis concerning linear models is the random feature model,

initially proposed by Rahimi and Recht (2008). It introduces a weight matrix, denoted as

Θ ∈RN×d , in conjunction with a non-linear activation function σ :R→R. This combination

results in the mapping of a data point x to a feature vector z, which can be expressed as

z =σ(Θx) with the point-wise application of σ at each vector element. The student estimator

becomes ŷt (x) =σ(Θx)Tβt which can either be interpreted as a specific version of a kernel

ridge regression, or alternatively as a 2-layer neural network with a first layer fixed. Figure 1.1

illustrates the two dense layers within the model’s structure. Therefore, it makes it a model of

choice to study and capture neural network behaviors, and it is extensively described in the

literature (Hastie et al., 2019; Mei and Montanari, 2019; Jacot et al., 2020a; Dhifallah and Lu,

2020).

The improvements over the previously considered linear-models are twofolds: first the in-

troduction of an additional size parameter, denoted as N , provides greater control over the

model complexity, enabling thereby the selection of either an over-parameterized or under-

parameterized regime. Second, the introduction of a non-linear activation function, repre-

sented as σ, facilitates the modeling of more complex interactions between the data points.

We will further introduce a scaling parameter within the activation function to keep the values

standardized (of mean 0 and variance 1) in the specifications of model 1.3, as will become

clear later in Section 1.4 and further in Chapter 6.

Model 1.3. (Random feature Model). In this model, we consider the random weight matrixΘ ∈
RN×d and the random data matrix X ∈Rn×d with both independent and identically distributed

entries Xi j ∼N (0,1) andΘi j ∼N (0,1). We define further the matrix Z =σ(d− 1
2 XΘT ) ∈Rn×N
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Figure 1.2: Two examples of centered activation functions

with the point-wise application of the activation function σ ∈ L2(e−
x2

2 dx). In particular, for the

sake of simplification, we add the constraint thatσ is centered, meaning that Eϵ∼N (0,1)[σ(ϵ)] = 0.

The teacher outputs a vector Y = Xβ∗+ξ with ξ∼N (0,σ2Id ) and the student learns a vector

βt ∈RN using the gradient-flow optimization method on the regression problem Ŷt = Zβt . The

initial value β0 is drawn independently from a normal distribution [β0]i ∼N (0,
r 2

0
d ).

Two classical examples of activation functions are displayed in Figure 1.2 with the centered

rectified linear unit (ReLU on the left), which is the function x 7→ max(x,0) shifted downward

to account for the null mean, and the hyperbolic tangent (tanh on the right). The introduction

of a non-linearity adds complexity to the examination of the evolution of βt . As for the other

models, we will resort to further assumptions in Chapter 6 in order to allow for a tractable

analysis. One of these assumptions is the high-dimensional regime, a topic that will be briefly

addressed in the subsection Section 1.4.

1.4 High-dimensional systems

1.4.1 Random Matrices for Machine Learning

In this thesis, our focus lies in tracking the average behavior of the systems outlined within

each model. And while the models that have been introduced may seem deceptively simple

at first sight, only model 1.1 can be comprehensively analyzed for finite values of d and n.

Indeed, model 1.2 would require to resort to complex calculations and model 1.3 remains

challenging to tractably explore unless operating within a high-dimensional regime. This is

sometimes referred to as the thermodynamic limit of the system in reference to statistical

physics language. In this regime, the dimensions of the problem, represented as d and n (and

N for the random feature model) are "infinite", but the ratio n
d (and N

d ) is fixed and becomes a

constant of the model. The consideration of infinite-dimensional approximations becomes

especially pertinent in the era of large-scale machine learning models, as evidenced by the

7
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sheer number of parameters employed in the most recent large language models (billions

of parameters in Brown et al. (2020)). This is particularly valuable to get analytical insights:

analyzing these models in finite size is challenging due to the number of interacting parameters

involved. By taking the thermodynamic limit, the analysis is simplified and yields tractable

mathematical expressions and insights into the model’s behavior. Note that other lines of

work examines other possible settings such as the online-learning where each data-point is

sampled at each step of a learning process (Wang et al., 2017), or infinitely wide neural network

such as the NTK (Jacot et al., 2020b) and mean-field view analysis (Mei et al., 2018). While

other analyses investigate various relationships between n and d , such as the polynomial

relationship discussed in Hu and Lu (2022), this thesis focuses specifically on cases where n
d

(and N
d ) is of finite order as n,d , N →+∞.

This specific setting where both the number of samples n and the number of parameters d

go to infinity at the same rate puts us in the realm of random matrix theory. Historically, in

the 1950’s, Eugene Wigner faced analogous challenges while working on understanding the

intricate organizational structure of heavy nuclei in nuclear physics. Instead of solving the

Schrödinger Equation for n strongly interacting particles, Wigner proposed an innovative

approach where their interactions are approximated by a Hamiltonian matrix with elements

independently sampled from a specific distribution. In this way, Wigner postulated that by

constructing this simplified model with a random matrix, it could effectively capture the

energy spectrum of heavy nuclei, which corresponds to the eigenvalues of the Hamiltonian.

This gave rise to the celebrated Wigner surmise as stated in Mehta (2004).

Since then, a multitude of random matrices have been devised and explored, some with

specific characteristics that will be further discussed in Section I. A fundamental example, as

illustrated in Figure 1.3, is the Gaussian Orthogonal Ensemble (GOE). In the GOE, the elements

of an n ×n real symmetric matrix are independently sampled from a normal distribution

N (0, 1
n ). The choice of variance 1

n ensures that, in the limit of large n, the eigenvalues take

finite values of order 1. As n increases, the eigenvalues of such matrices tend to arrange

themselves to follow the well-known Wigner semicircle law, characterized by the probability

density function ρ(x) = 1
2π

p
4−x2, thereby following the shape of a semicircle.

It is worth noting that matrix elements need not be normally distributed, just as datasets in

the field of machine learning may not conform to such a distribution either. In fact, Wigner

was considering larger sets of random matrices in Wigner (1958). Fairly recent research is

still being conducted on similar distributional universalities (Bai, 1997; Tao and Vu, 2008),

with a focus on a related concept known as "circular law", and demonstrating that the dis-

tribution requirements can indeed be relaxed and remain quite general while still leading to

the emergence of the same law. In this thesis, our models will primarily resort to Gaussian

random matrices, however, the possibility of exploring alternative distributions remains open

for future research.

Another ubiquitous random matrix model in machine learning is the class of Wishart matrices,
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M =


0.084 0.082 . . . 0.028
0.082 0.055 . . . −0.086

...
...

. . .
...

0.028 −0.086 . . . −0.032


(a) A real symmetric random matrix with indepen-
dent entries sampled from a normal distribution
N (0, 1

n ) with n = 300. (b) Eigenvalues histogram for M

Figure 1.3: The "rise" of the semicircle law

which is also a fundamental example described by the product of a random matrix with its

transpose (or transconjugate in the complex case). In the context of linear models 1.1 and

1.2 presented before, the Wishart matrix is the Gram matrix X T X (or sometimes referred

to as the kernel when considering X X T ) of the data matrix X . Let’s consider X ∈ Rn×d with

independent entries sampled from Xi j ∼N (0, 1
d ). The variance of the entries is adjusted to

ensure that the eigenvalue distribution is well-defined in the limit of large d and n with the

fixed ratio φ= n
d . In the high-dimensional limit, akin to the semicircle law for Wigner matrix,

the eigenvalues of the Wishart matrix are distributed according to the Marchenko-Pastur

distribution as established by these authors in Marčenko and Pastur (1967). This distribution

is characterized by the following probability density function ρ with λ± =
(
1± 1p

φ

)2

:

ρ(λ) = φ

2π

√(
λ+
λ

−1

)(
1− λ−

λ

)
1λ−≤λ≤λ+ +

(
1−φ)

δ0(λ)1φ<1 (1.11)

As in the Wigner case, in the limit of large n and d , individual matrix elements lose their

significance for our purposes, but the calculation reveals valuable analytical insights through

the limiting spectral density. For instance, when φ< 1, the formula indicates the presence of a

proportion 1−φ zero eigenvalues - as expected from the matrix X T X which is not full-rank

when n < d .

Note that the spectral density is not the primary focus of the calculations in this thesis, but

rather can be derived as a byproduct of the resulting equations. In some instances, analytical

expressions for the spectral density may not even exist, necessitating the use of numerical

methods for its computation. Instead, the central focus lies in computing traces involving

large-dimensional random matrices. As an illustrative example, consider equation (1.6) which

we will encounter further in Chapter 4. In the noiseless setting when Y = Xβ∗, we can quantify

9



Chapter 1. Introduction

the "dissimilarity" between the estimated parameter β̂ and the true parameter β∗ as follows:

1

d

∥∥β̂−β∗∥∥2 = 1

d

∥∥((X T X +λId )−1X T X − Id )β∗∥∥2 = λ2

d
β∗T (X T X +λId )−2β∗ (1.12)

When averaging this dissimilarity over β∗ ∼N (0, Id ), the term on the right-hand side can be

simplified by using the cyclicity of the trace operator and the independence of β∗ and X :

Eβ∗ [β∗T (X T X +λId )−2β∗] = Tr
[
(X T X +λId )−2E[β∗β∗T ]

]=− ∂

∂λ
Tr

[
(X T X +λId )−1] (1.13)

This term is thus related to the derivative of the Stieltjes transform of the spectral density ρX T X

of the Gram matrix X T X . In some contexts, in the limit of large d , such expressions can be

averaged and analytical results can be derived, while offering a more elegant and manipulable

form than working with the spectrum itself. For instance, consider the distribution ρM that

emerges with the Wigner matrix M defined as in Figure 1.3, a case which will be further

investigated in Chapter 2. We can establish the following relationship between the Stieltjes

transform and the trace of (M − zIn)−1 in the limit of large n for any z ∈C\R:∫
R

ρM (λ)dλ

λ− z
= lim

n→∞
1

n
ETr

[
(M − zIn)−1] (1.14)

This Stieltjes transform of ρM , denoted as g (z) for convenience, is a solution of an algebraic

expression:

g (z)2 + zg (z)+1 = 0 (1.15)

As we consider increasingly complex models and associated random matrices in our different

models, the expressions describing the traces tend to become more intricate systems of

algebraic equations. Deriving these expressions will be addressed in different chapters of this

thesis. We will rely essentially on the so-called linear pencil method that was initially described

in Rashidi Far et al. (2006) and will be comprehensively discussed in Chapter 3.

1.4.2 Activation functions on matrix elements

As discussed thus far, random matrix theory has a rich literature and set of tools to calculate

closed-form expressions involving traces of Gaussian random matrices. We have seen that

Marchenko-Pastur law provides an analytic expression that describes the spectral density of

the Gram matrix X T X or the kernel K = X X T in the high-dimensional limit for the Gaussian

design matrix X . But the situation is more complicated with an additional non-linear activa-

tion function σ, such as in the description of model 1.3 where the kernel becomes K = Z Z T .

Here, the elements of Z are not Gaussian and they also exhibit interactions with one another.

As the reader may anticipate, a new law leading to further simplifications arise when the sizes

of the involved random matrices are increasingly large. An initial study that sheds light on

this phenomenon is presented in Pennington and Worah (2017) where the complete kernel

spectral distribution is derived analytically. In this context, the class of applicable activation

10
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functions is reduced to the contribution of two specific coefficients µ and ν that are related to

σ by the following formula:

µ= E[σ(ϵ)ϵ] ν2 = E[σ(ϵ)2]−µ2 (1.16)

As an example, we find for the shifted ReLu on the left of Figure 1.2 that µ= 1
2 and ν= 1

2

√
1− 2

π .

Alternatively, in the high-dimensional limit, the impact of the centered activation function

in the random feature model can be entirely characterized by the ensemble of activation

functions spanned by the linear combination of the two Hermite Polynomials He1 (x) = x

and He2 (x) = x2 −1. As a seminal example of this application highlighted in the same paper,

the authors describe a phenomenon through an analytical result in which the coefficient ν,

controlling the non-linearity of σ, turns out to control the memorization capacity of a random

feature model using only the Stieltjes transform of the kernel. This capacity is assessed through

the training error achieved with random labels.

The exploration of this principle which characterizes the random feature kernel using non-

linear activation functions, has spurred the development of an alternative approach involving

what are described as Gaussian equivalents. This simplification arises whenever there is the

application of such activation functions and asserts that the random matrix Z =σ(d− 1
2 XΘ) can

be equivalently represented as Z =µd− 1
2 XΘ+νΩ, whereΩ is a newly introduced independent

random matrix with independent entries. This alternative representation yields the same

results in the random feature model and is extensively applied in Adlam and Pennington

(2020a). The rigorousness of the application of such equivalents continues to be an active

area of research, as is exemplified by recent work such as (Lu and Yau, 2022; Goldt et al., 2022).

In this thesis, we will employ it as a fundamental principle - even in more intricate algebraic

expressions of random matrices.

1.4.3 Sample covariance matrix and realistic datasets

A final aspect to address concerns realistic datasets. As for the Wigner’s Hamiltonian, it may

be tempting to assume that once normalized, datasets can be treated as Gaussian random

matrices equally well. This assumption is actually partly motivated by our earlier discussion,

which showed that even non-Gaussian independent entries exhibit a universal eigenvalue

distribution. However, even for common datasets such as MNIST, the independence of the

entries is not guaranteed. In this thesis, we adopt an alternative approach by approximating

these datasets under the assumption that any vector x sampled from the data is a Gaussian

vector with a hidden sample covariance matrix, as discussed in Potters and Bouchaud (2020).

This corresponds to considering that there exists a matrix B such that any vector x is sam-

pled from a standard Gaussian vector z such that x = B z (or X = Z B in matrix form). This

assumption aligns with the specification of our model 1.2. Estimating the covariance matrix

can be challenging and is contingent on the number of samples of the data. Therefore, in

this setting, we will resort to estimating the covariance matrix using the full dataset when

11
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the sample size permits it (B T B ≃ X T X = B Z T Z B). We will then develop some predictive

formula for a sub-sample of the data (with a size considerably smaller than n). The eigenvalue

distribution of the sub-samples can be shown to follow a formula that will depend on the

spectral distribution of the covariance matrix. This will be treated as a theoretical example in

Chapter 3 using the previously mentioned linear-pencil method, and will be used in greater

length in Chapter 5 to demonstrate the predictive capabilities of the equations derived in this

chapter.

1.5 Training and generalization curves

While the model 1.1, 1.2 and 1.3 are optimized - or trained - using the mean square error

introduced in equation (1.5), this loss has to be scaled to converge to a finite value in the limit

n,d →+∞. To achieve this convergence, an additional scaling-factor 1
n (or 1

d ) is added to both

terms specified in the loss function (1.5). We shall refer to this modified loss as the training

error, denoted as E λ
train(β).

Besides, as the model is only trained on a sample of size n drawn from Px , perfect gener-

alization to unobserved data points is neither guaranteed nor expected. So in addition to

the training error, we assess model performances using the generalization error, denoted as

Egen. This metric represents the expected loss on new data points x sampled from the true

distribution Px , and still in the limit n →+∞:

E λ
train(β) = lim

n,d→∞

{
1

n

∥∥Y −Xβ
∥∥2 + λ

d

∥∥β∥∥2
}

(1.17)

Egen(β) = lim
n,d→∞

Ex∼Px

[
(y(x)−xTβ)2] (1.18)

Notably, the training error E λ
train(β) is still a random variable as it depends on the randomness

of the matrix X . Furthermore, βt itself also depends on X and thus, so does Egen(β) which is

consequently a random variable. However, it is often the case that these errors concentrate

around their mean value, also referred to as self-averaging. Roughly speaking, this means

that the probability of E λ
train(β) to deviate from its mean is typically bounded by a decreasing

function of n. Note that the same self-averaging phenomenon also holds with respect to β∗

and ξ when they are sampled from an appropriate distributions as those described in the

previous models. This concentration is typically difficult to prove, and won’t be the primary

focus of part 4 in which it will usually just be assumed.

It is quite common to further decompose these terms into smaller irreducible quantities which

are often referred to as bias and variance. The general representation is given by the identity:

E
[
(ŷ(x)− y(x))2]= E[ŷ(x)− y(x)]2 +Var(ŷ(x))+Var(y(x)) (1.19)

where the first term is the bias, the second term is the variance of the estimator and the

third term another irreducible noise from the ground truth. The expectation is made on the
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1.5 Training and generalization curves

different sources of randomness, here X ,ξ,ϵ. But also β0 when using gradient-flow. However,

the same formula also applies conditional on some chosen random variables, so that different

decompositions can be made. For instance, we can rewrite the previous identity conditional

on the data matrix X and the new input x:

E
[
(ŷ(x)− y(x))2]= E[

E[ŷ(x)− y(x)|X , x]2]+E[
Var(ŷ(x)|X , x)

]+E[
Var(y(x)|X , x)

]
(1.20)

To give an example, let’s consider an estimator β̂ (which could be βt or β∞) such that ŷ(x) =
xT β̂. Let’s also assume that Px ∼N (0, 1

d Id ) so that Ex [xxT ] = 1
d Id :

E
[
Var(ŷ(x)|X , x)

]= E[(
xT β̂−E[xT β̂|X , x]

)2
]

(1.21)

= E
[(
β̂−E[β̂|X ]

)T
(xxT )

(
β̂−E[β̂|X ]

)]
(1.22)

= 1

d
E
[∥∥β̂−E[β̂|X ]

∥∥2
]

(1.23)

For the bias term, assuming further that y(x) = xTβ∗+ ϵ with ϵ ∼ N (0,σ2) and β∗ is a de-

terministic vector, first we find the irreducible noise E
[
Var(y(x)|X , x)

] = σ2, and the bias

term:

E
[
E[ŷ(x)− y(x)|X , x]2]= E[(

xTβ∗−xT E[β̂|X ]
)2

]
(1.24)

= E
[(
β∗−E[β̂|X ]

)T
xxT (

β∗−E[β̂|X ]
)]

(1.25)

= 1

d
E
[∥∥β∗−E[β̂|X ]

∥∥2
]

(1.26)

So in the limit n,d →∞, with the self-averaging assumption as before, we find the following

generalization error decomposition:

Egen(β̂) = E[Egen(β̂)] =σ2 + lim
n,d→∞

1

d
E
[∥∥β∗−E[β̂|X ]

∥∥2
]

︸ ︷︷ ︸
BX (β̂)

+ lim
n,d→∞

1

d
E
[∥∥β̂−E[β̂|X ]

∥∥2
]

︸ ︷︷ ︸
VX (β̂)

(1.27)

In other words, in the high-dimensional regime, the generalization error can still be decom-

posed in two irreducible and finite quantities which are the squared-bias BX (β̂) and the

variance VX (β̂). As these terms represent irreducible positive quantities contributing to the

total error, they often exhibit a counterbalancing effect. Minimizing one of these terms tends

to result in the increase in the other, giving rise to the tradeoff phenomenon. This tradeoff is

illustrated as a diagram in Figure 1.4. More specifically, these two errors are known to evolve

differently depending on the "model complexity". In general, on the one hand, in the case of

"simple" models, the bias is typically high because the model lacks the capability to properly

fit the data. However, they exhibit relative stability when trained on different datasets, which is

referred to as the under-fitting regime. On the other hand, in the case of "complex" models, the

bias decreases as these models can be fine-tuned enough to fit the training set. However, this

comes at the cost of increased sensitivity to the training set, leading to phenomenon known
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Figure 1.4: Bias-variance tradeoff diagram

as over-fitting. We raise the awareness to the reader that different conventions can be taken

regarding the bias-variance decomposition as described in Adlam and Pennington (2020b).

The convention chosen in this regard is called the classical bias-variance decomposition.

It may be tempting to assume that the notion of complexity boils down to a simple parameter

count, such as in the parameter N of the random feature model 1.3. However, recent works

revealed the inadequacy of such a simplistic understanding of the nascent neural networks

structures in the random feature model as proved in Belkin et al. (2019a); Hastie et al. (2019);

Mei and Montanari (2019). Indeed, the landscape of the generalization curve proves to be far

more intricate than initial intuition might suggest, as depicted in the diagram 1.5.

Figure 1.5: Double descent diagram

This diagram continues to feature the classical U-shaped curve previously described, where

the over-fitting phase results in an increase of the generalization error. However, it also

demonstrates a second descent phase, in which the generalization error decreases again. This

phenomenon is known as the double descent. It has a long history, with initial observations

dating back to 1989, but has attracted a lot of attention in recent years. For a detailed historical

overview, we refer the reader to (Loog et al., 2020). Surprisingly, this observation is not

confined to the random feature model, but it also manifests in the basic model referred in 1.1.
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1.5 Training and generalization curves

Figure 1.6: Double descent during the training phase in the random feature model - theoretical
curves for shifted ReLu and φ= n

d = 2 and ψ= N
d = 6

However, what is particularly interesting in model 1.3 is that the model can clearly achieve

better generalization performances in this second phase rather known as the "interpolating

regime". In other words, adding more parameters in the 2-layer neural network benefits the

generalization error instead of exacerbating it. What is also intriguing is that this phenomenon

occurs even as the training error becomes virtually zero numerically, a point often referred

to as the interpolation threshold. At this location, the model doesn’t seem to self-improve

purely based on the value given by the training error. However, it remains possible to enhance

the generalization performance by introducing more parameters. One interpretation of this

phenomenon given in (Belkin et al., 2019a) is that the increase of parameters enriches the

function class encompassed by all potential model parameterizations: richer models leads

to richer class of learnable functions. Consequently, the model has improved its capacity

to discover a more suitable and "simpler" data fit. This perspective not only aligns with the

Occam’s razor principle but also revises our understanding of complexity, suggesting that it is

not merely proportional to the number of parameters.

Quite remarkably, the double-descent phenomena is not an idea confined to theoretical

realms, rather, it manifests as a general phenomenon. First and foremost, it has been observed

empirically in Nakkiran et al. (2020a) for deep neural network (specifically, ResNet18) and real

datasets (such as CIFAR10), and bolstered the notion that an increase in parameters can be

advantageous in the domain of deep learning. Furthermore, the double descent phenomenon

extends beyond the dimension of the parameter count, it is also observed with the number

of training samples (sample-wise double descent) and epochs (epoch-wise double descent).

In this thesis, we aim to establish precise generalization error curves for the generalization

error as in Figure 1.6. On this picture, we can see that a epoch-wise double-descent structure

emerges as the number of parameters N increase compared to d (with the ratio ψ).

Incidentally, even more surprising structures can emerge such as the parameter-wise triple

descent observed in (d’Ascoli et al., 2020) and also empirically in (Nakkiran et al., 2020b). We

will see that in fact, by tuning the structure of matrix B in model 1.2, any number of descents
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can be engineered.

1.6 Non-convex optimization with Spiked Wigner model

The class of linear models trained with the mean-squared loss is highly effective to demonstrate

complex phenomena observed empirically such as the double-descent, yet it exhibits at least

two main limitations. Firstly, the convex nature of the loss function and the linearity of its

gradient renders the model more tractable although this is usually not the case with deep

learning models. Secondly, the setting that has been described doesn’t allow to consider other

scalings with the number of parameters which typically grows linearly with the number of

samples or dimensions. For instance, if the first layer of the random feature model is not fixed,

the number of parameters would grow quadratically with the number of samples because the

weight matrix Θ would need to be learned. Some work has been pursued in this direction (Ba

et al., 2022), but the analysis remains challenging.

To address the first issue, we will explore another optimization problem and examine a differ-

ent setting where the loss function is non-convex and the gradient is non-linear, yet the model

remains tractable. This model is known as the Spiked Wigner model and is defined as follows:

Model 1.4 (Spiked Wigner Model). In this model we consider a hidden signal θ∗ sampled

uniformly on the hypersphere Sn−1(
p

n), that is such that ∥θ∗∥2 = n and a real symmetric

random matrix ξ ∈Rn×n with independent entries sampled from a normal distribution N (0,1).

The matrix of observations is generated as follows:

Y = θ∗θ∗T +
√

n

λ
ξ (1.28)

for a predefined signal to noise ratio λ> 0. In this setting, we learn a vector θ by minimizing the

Frobenius norm H (θ) = ∥∥Y −θθT
∥∥2

F using a gradient-flow method on the hypersphere with a

given θ0 initialized at random with θ0 ∼U (Sn−1(
p

n)).

Contrary to the first three models, the nature of the setting is not to learn a response y(x) given

a set of inputs (Y , X ), but instead to recover a signal vector θ∗ from a noisy input matrix Y . We

can find some connections in machine learning with different methods and problems, such

as PCA, low-rank matrix factorization, matrix completion and other lines of research Ge et al.

(2017a); Bhojanapalli et al. (2016); Ge et al. (2017b); De Sa et al. (2015).

In the outlined model 1.4, the primary metric of interest is the overlap q(θ) = θT θ∗
n . As both

vectors have norm
p

n, this quantity characterizes the cosine, ranging from −1 and 1, of the an-

gle between the true signal and the estimated signal. Note also that −θ∗ yields the exact same

observation matrix Y as θ∗, so in the best case it is only possible to recover the signal vector

up to a sign. Alternatively, a natural choice is to consider the mean-square-error between the

same vectors, but for any estimator θ ∈Sn−1(
p

n), we find the relation 1
n ∥θ−θ∗∥2 = 2(1−q(θ)).

Consequently, the overlap is self-sufficient to describe both quantities.
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The statistical limits of the model when n →+∞ have been elucidated in great detail in the

Bayesian framework in a series of works where the minimum mean-square error is rigorously

computed (Korada and Macris, 2009; barbier et al., 2016; Lelarge and Miolane, 2018; Miolane,

2017). It has also prompted many different investigations uncovering intriguing phenomena,

especially when the prior distribution on the hidden signal θ∗ deviates from the uniform

distribution on the hypersphere, which can yield discontinuous overlaps. With the uniform

prior on the signal, as is the case in model 1.4, it is shown rigorously that for a fixed λ> 0, the

optimal achievable overlap is ±
√

1− 1
λ when λ≥ 1, and 0 otherwise. In other words, as this

is illustrated in Figure 1.7, there exists a critical limit for λ= 1 in which the model undergoes

a phase transition. From an algorithmic perspective, this optimal theoretical overlap can be

achieved by selecting the eigenvector associated with the largest eigenvalue of the matrix Y in

absolute value (Péché, 2004; Baik et al., 2005b).

Figure 1.7: Phase transition for the overlap in the Spike-Wigner model with respect to λ

The existence of this transition can be explained by examining the eigenvalue distribution

of Y in large dimension. To illustrate this, let us first reformulate the problem as M1 =p
λθ

∗θ∗T

n +M0 with M1 =
p
λ

n Y and M0 = ξp
n

. In this way, M0 is the standard Wigner matrix

whose spectral distribution becomes the semicircle law in the limit of large n. Now for finite n,

when λ is large enough, the eigenvalue distribution of M1 will essentially match that of M0

if n is sufficiently large, but with an additional outlier eigenvalue coming from the rank-one

perturbation
p
λ

n θ∗θ∗T . Note that as n →+∞, the mass of this additional eigenvalue tends

to 0 as there are infinitely many more eigenvalues distributed on the support (−2,2) of the

semicircle law. Nevertheless, it remains possible to calculate its exact location in this limit.

Intuitively, if λ is not sufficiently large, the additional eigenvalue will be absorbed by the bulk

of the semicircle law and won’t manifest as an outlier. This is depicted in Figure 1.8 for λ= 3

where we observe that the outlier eigenvalue is already in close proximity to the bulk.

As an illustrative example using key concepts of random matrix theory, let us show the exact

recovery of the aforementioned results. Using the spectral theorem, let λ1, . . . ,λn be the
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sorted eigenvalues of M1 and u1, . . . ,un their normalized associated eigenvectors, so that

M1 =∑n
i=1λi ui uT

i . Then, the resolvent of M1 can be expressed as:

(M1 − zIn)−1 = u1uT
1

λ1 − z
+ . . .+ unuT

n

λn − z
(1.29)

Depending on the largest value between |λ1| and |λn |, either
p

nu1 or
p

nun is selected as the

estimator θ. Let’s assume this is λn . In large dimension, we thus expect λ1, . . . ,λn−1 to follow

closely the bulk distribution of a Wigner matrix and λn will be an outlier. Now if we examine

the resolvent using Shermann-Morrison formula:

(M1 − zIn)−1 = (M0 − zIn)−1 −
p
λ

n (M0 − zIn)−1θ∗θ∗T (M0 − zIn)−1

1+
p
λ

n θ∗T (M0 − zIn)−1θ∗
(1.30)

we thus expect to find an outlier pole at z0 = λn when 1+
p
λ

n θ∗T (M0 − zIn)−1θ∗ = 0. In the

high-dimensional limit, using for instance the results of (Erdós et al., 2008), this becomes

1+p
λg (z0) = 0 with g (z) given in equation (1.15). After some algebraic reductions, we can

determine that the outlier eigenvalue has the precise location z0 =λn = 1p
λ
+p

λ for λ≥ 1.

In order to recover the overlap, let us set θ = p
nun and compute the limiting value of

q(θ) = 1p
n

uT
n θ

∗. By using again the resolvent of M1, notice that from equation (1.29), the

quadratic form θ∗T (M1 − zIn)−1θ∗ yields an expression with the overlap between θ∗ and each

eigenvector:

θ∗T (M1 − zIn)−1θ∗ =
n∑

i=1

1

λi − z
uT

i θ
∗uT

i θ
∗ (1.31)

By further multiplying by 1
n (λn − z) and taking the limit when z → λn , we find the squared

overlap q2
λ

:
1

n
lim

z→λn

{
(λn − z)θ∗T (M1 − zIn)−1θ∗

}= 1

n
(uT

n θ
∗)2 = q2

λ (1.32)

Now, by proceeding in a similar way but using the right-hand side of the formula (1.30):

1

n
lim

z→λn

{
(λn − z)θ∗T (M1 − zIn)−1θ∗

}= lim
z→λn

p
λ(z −λn)

( 1
nθ

∗T (M0 − zIn)−1θ∗
)2

1+p
λ 1

nθ
∗T (M0 − zIn)−1θ∗

(1.33)

So in the limit of large n, we expect to find:

q2
λ = lim

z→z0

(z − z0)
p
λg (z)2

1+p
λg (z)

(1.34)

Using l’Hôpital’s rule results in q2
λ
= g (z0)2

g ′(z0) . With the derivative of equation (1.15) with respect

to z (which yields the formula 2g ′(z)g (z)+ zg ′(z)+ g (z) = 0) we conclude with the expected

result:

q2
λ =

g (λn)2

g ′(λn)
=−g (λn)(2g (λn)+λn) = 1p

λ

(
−2

1p
λ
+ 1p

λ
+
p
λ

)
= 1− 1

λ
(1.35)
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1.6 Non-convex optimization with Spiked Wigner model

Figure 1.8: Histogram of the eigenvalues of a data matrix sampled according to the Spike
Wigner model 1.4 for λ= 3 and n = 1000

As a side remark, it is also possible to achieve a smaller mean-square error between θ and θ∗

when the condition on the norm of θ is relaxed. To achieve it, is suffices to rescale the given

largest eigenvalue with a coefficient α, so θ̃ =αθ. In this case, we find the quadratic equation
1
n

∥∥θ̃−θ∗∥∥2 =α2−2αq(θ)+1 whose minimum is given atα0 = q(θ). Therefore, in this situation,

a smaller overlap is obtained with q(θ̃) = q(θ)2 but also a smaller error: 1
n

∥∥θ̃−θ∗∥∥2 = 1−q(θ)2

Another focal point is the best achievable solutions for various algorithms, such as Approx-

imate Message Passing (AMP), as explored in (barbier et al., 2016; Lesieur et al., 2015). Oth-

ers have investigated the behaviour of AMP under spectral initialization (Montanari and

Venkataramanan, 2021). In this thesis, the highlight is again on the gradient-flow algorithm.

Specifically, we are interested in the evolution of this optimization algorithm in the precise

setting of model 1.4 while constraining the norm of the estimator. The gradient-flow method

needs to be adjusted with an additional term ensuring that d∥θt∥2

dt = 0 at all time:

dθt

dt
=−∇θH (θt )+ 1

n

(
θT

t ∇θH (θt )
)
θt (1.36)

In contrast to the linear models, we no longer have a linear differential equation in the parame-

ter θt . However, we will demonstrate rigorously that the evolution of the model is still tractable

in the high-dimensional limit n →+∞, albeit exhibiting different challenges compared to the

previous models. In particular, the full time evolution of qλ(t ) can be expressed analytically

although it displays some computationally challenging characteristics which involve multiple

integrals and Bessel functions. Nevertheless, the solution is expressive enough to derive the

asymptotic behaviour of the model in the limit t →+∞, including the first order term. As

it can be anticipated, our analysis retrieves the phase transition phenomenon previously

discussed in this asymptotic limit. However, quite surprisingly at first sight, we also find that

the model exhibits a critical time at which the overlap reaches another maximum value. The

theory remains consistent as this phenomenon is linked to the initial value of qλ(t = 0) which
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must not be set to zero in order to initiate the gradient-flow dynamics. The tradeoff is that the

algorithm starts with a prior information on the overlap, which results in the existence of this

critical time. This will be looked in greater detail in Chapter 7.

1.7 Matrix denoising and extensive rank models

An important characteristic of the former model is that the data matrix grows quadratically

with n compared to the former models. However, the hidden signal that is being learned is still

of order n. In fact, even the linear models that have been described so far have a number of

parameters which is always proportional to n, the number of samples. Therefore, a first step

towards quadratic number of parameters is to naturally increase the dimension of the spike

and consider the learning of a matrix instead of a vector. This is the setting of model 1.5 which

is described as follows:

Model 1.5 (Symmetric positive definited matrix denoising). In this model, we consider a

hidden signal matrix X ∗ ∈Rn×d with independent entries and X ∗
i j ∼N (0, 1

n ), and a symmetric

Gaussian noise matrix ξ ∈ Rn×n with independent entries and ξi j ∼ N (0,1). The matrix of

observations is generated as follows:

Y = X ∗X ∗T + 1p
λ
ξ (1.37)

The estimator X (t) ∈ Rn×m is learned by minimizing the following loss function with a free

parameter µ> 0 using the gradient flow algorithm with a random initialization with iid matrix

elements from N (0, 1
n ):

H (X ) = 1

4d

∥∥Y −X X T
∥∥2

F + µ

2d
∥X ∥2

F (1.38)

Compared to the former model 1.4, this is also referred to as an extensive rank model as

the dimension of the signal is of a rank m that grows with n with a fixed ratio m =ψn. And

similarly with the signal X where d =φn.

Certain aspects related to overparameterization have already been elucidated using a similar

model in (Tarmoun et al., 2021). However an essential aspect that will be treated in Chapter 8 is

the study of the gradient-flow algorithm in the high-dimensional limit for a random Gaussian

initialization of X (0). In particular, we do not constrain the initial estimator to be aligned with

the eigenvectors of Y , resulting effectively solely in the evolution of the n eigenvalues of X X T

while it is not clear a priori how the system would evolve when this is not the case. To measure

the performance of the algorithm, we use the matrix mean-square error:

E = 1

d

∥∥X ∗X ∗T −X X T
∥∥2

F (1.39)
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1.8 Organization and main contributions

The thesis is broadly divided into three main parts. The initial part is dedicated to random

matrix theory and serves as a general toolbox for different methods and results employed

in the other parts. The next two parts can be read independently. Their primary objective

is to establish analytic formulas that describe the evolution of different models in the high-

dimensional limit. The second part focuses on the general constructions described in models

1.1, 1.2, and 1.3, all falling under the same scope as the Gaussian covariate model. It will also

provide a more comprehensive examination of the dynamics of the random feature model.

The last part is centered on matrix denoising problems described in the rank one setting in

model 1.4 and the extensive rank in model 1.5.

In Chapter 2, we will briefly review standard definitions and results in random matrix theory

that will be used throughout the thesis. We formulate common text-books results and methods

along with a few typical examples to illustrate their applications. This chapter is not intended

to be comprehensive, rather, it aims to provide a brief reference for the reader.

In Chapter 3, we delve deeper into the realm of random matrix theory. Our focus will be on

introducing a stronger result that addresses a broader class of random matrices than those

discussed in the preceding chapter. This will be achieved through the use of the linear pencil

method which expresses a fixed point equations in the form of algebraic equations. These

results are known and proved rigorously for specific contexts. A main contribution of this

chapter is the presentation of three distinct approaches to obtain the same results with greater

simplicity, albeit in a non-rigorous manner. In particular, one approach uses the Replica

method, a powerful tool in statistical physics, and another is based on Brownian motions.

This, in turn, allows us to derive even stronger results compared to existing literature, to

the best of our knowledge. In our approach, the expression being calculated may involve

deterministic matrices that can be evaluated at a later stage. This will be particularly valuable

in Chapter 5. As an additional byproduct of these methods, we also derive a similar results

for the characteristic polynomials of random matrices in finite dimensions. Although this

particular result won’t be directly applied in the remaining chapters of this thesis, it opens

up a potential avenue for further investigation into our various models within the context of

finite-size settings.

Chapter 4 introduces the second part of this thesis and examines a simplistic setting described

in model 1.1. This chapter does not present new contributions. Instead, it will lay the ground-

work for the following chapters by describing the spirit of the methods employed for the

machine learning models that will be used later, albeit in a simplified context.

Chapter 5 lays the foundation of a general framework for investigating the teacher-student

model, as described in model 1.2, but also 1.1 and 1.3 which are specific sub-cases. We present

analytical results to track the evolution of both training and generalization errors over time.

We provide examples and heat-maps to display the landscape of the learning curves while

varying different parameters. The framework can be customized by specifying two general
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data structures for both the teacher and the student through the definition of two covariance

matrices. This enables to consider a wide range of different models. In this way, we show

how an astute choice of structure can be used to construct a contrived learning problem

that can effectively yield as many descent structures as desired. These multiple descents can

be derived and analyzed precisely asymptotically. Furthermore, we validate our approach

through experiments, showing that the analytical formulas provided by the framework even

have a certain predictive capability in tracking learning curves over time with real datasets,

such as MNIST.

In Chapter 6, we will have a closer look at the random feature model, which can eventu-

ally be regarded as a particular instance of the model described in the previous Chapter 5

in accordance with the Gaussian equivalence principle. Note that this chapter can be read

independently and doesn’t rely on the former results as we derive the learning curves from

scratch. As discussed in the previous sections of this introduction, the random feature model

has become a model of choice in theoretical machine learning. It can be described as an

"embryonic" deep neural network since it features 2 fully connected dense layers with a

non-linear activation function while still remaining analytically tractable when the first layer

is fixed. This chapter focuses on the time evolution of the model. In the journey, we es-

tablish a set of algebraic equations. The solutions can subsequently be computed through

contour integrals to calculate these evolutions in the high-dimensional regime. This approach

enables the generation of diverse fine-grained heat-maps and curves without conducting

any empirical simulations. However, we do include a series of experiments to compare and

validate the theoretical findings. One of the challenge of this derivation consists in reducing

the number of equations produced by the linear-pencil under consideration to make it nu-

merically computable. This study reveals the presence of distinct structures reminiscent of

the double-descent phenomenon - albeit on an epoch-wise basis instead of parameter-wise.

Our observations suggest that these structures are associated with the initial conditions on

the model, and in particular with the norm of the initial vector β0.

Chapter 7 introduces the last part of this thesis with the rank-one matrix estimation problem

described in model 1.4. In contrast to the preceding chapters, the random matrix methods

employed here are more conventional. However, this model introduces its unique set of

challenges. Due to the structure of the mean-square-error and the constraints imposed on the

signal, the gradient flow differential equations are non-linear and the approach to derive the

time evolution of the model is more involved. We derive the precise asymptotic behavior of

the overlap evolution over time in the high-dimensional limit and retrieve the phase transition

phenomenon in the limit t →+∞. Furthermore, the analytical expressions can be used to

derive the first order correction within this limit. This correction enables us to show the

existence of a critical time at which the overlap surpasses that achieved in the limit t →+∞.

This critical time is intricately linked to the initial condition of the model.

Chapter 8 is the last chapter of this thesis, focusing on addressing the matrix denoising

problem as described in model 1.5. This model extends the rank-one model by representing
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both the hidden signal and the estimator as matrices, rather than vectors. These matrices have

finite aspect ratios in the high-dimensional limit and the objective function exhibits infinitely

many minima instead of a finite set. However, the constraints on gradient flow method are

more relaxed when compared to the rank-one problem, where, as we recall, the hidden signal

was confined to the hypersphere. The technical challenge lies in the initial matrix whose

eigenvectors can be unaligned with the observation matrix. We derive the full-time evolution

of the gradient-flow method using the principles derived in Chapter 3 with the linear-pencil

method and show that the evolution remains tractable despite this initial condition.

In conclusion, this thesis aims to provide a general framework to study the time evolution of

different models in the high-dimensional limit.
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2 Preliminaries with random matrices

This chapter primarily focuses on revisiting essential properties and notions from random

matrix theory, which will be extensively employed throughout the thesis. It is not intended to

provide a comprehensive introduction to the field but rather offers a concise introduction to

the main concepts and results essential for the subsequent chapters. Random matrix theory is

a rich subject, and readers seeking in-depth insights can delve further into many references

(Tao, 2012; Potters and Bouchaud, 2020; Mehta, 2004; Benaych-Georges and Knowles, 2016a).

In the first section, we will introduce fundamental concepts of random matrices and review

the relation between the resolvent of random matrices and the Stieltjes transform of their

spectral distribution that has been briefly discussed in the introduction. We will then inspect

two classical examples, namely the semicircle law and the Marchenko-Pastur law, and examine

their derivations. The next section will be dedicated to some references on the Cauchy

integration formula and its application with random matrices. Finally, we will present various

tools for performing operations on multiple random matrices and computing their resulting

spectral densities. This will motivate the next chapter dedicated to the linear pencil method

resulting in fixed-point equations.

2.1 Random matrices and their spectral distribution

Numerous results in random matrix theory are concerned with the spectral distribution of

these matrices, and in particular the limiting behavior of these eigenvalues as the matrix size

approaches infinity. As it will be the case in this thesis, it is often convenient to work with the

Stieltjes transform of the spectral distribution rather than the distribution itself:

Definition 2.1. The Stieltjes transform, denoted as gµ, of a probability density function µ is

defined for all z ∈C\R, the set of complex numbers with non-zero imaginary part, as follows:

gµ(z) =
∫
R

µ(λ)dλ

λ− z
(2.1)
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Note that the integral is well-defined since z has a non-zero imaginary part and
∣∣ 1
λ−z

∣∣≤ 1
| Im z| <

∞. Furthermore, if the support of µ is not the whole set R, the domain of gµ can be extended

on some subsets of the real line. For instance, in the case of the distribution of the eigenvalues

of positive definite matrices, the support is located on R+ and thus gµ os also defined on R∗−,

the set of all strictly negative real numbers.

Conversely, the original distribution µ yielding the Siteltjes transform gµ can be retrieved

using the following formula for any λ0 ∈R:

µ(λ0) = lim
ϵ→0+

1

π
Im gµ(λ0 + iϵ) (2.2)

This result is a consequence of the Poisson kernel ηϵ(x) = 1
π Im

( 1
x−iϵ

)
, which in the limit ϵ→ 0+,

is a representation of the Dirac delta function. In particular, we have:

1

π
Im gµ(λ0 + iϵ) =

∫
R

1

π
Im

(
1

(λ−λ0)− iϵ

)
µ(λ)dλ=

∫
R
ηϵ(λ−λ0)µ(λ)dλ (2.3)

In this thesis, the distributions of interest are those that arise from the spectral density of a

matrix M ∈ Cn×n . An interesting connection emerges with the trace of (M − zIn)−1, which

represents the resolvent of M :

Definition 2.2. Let M be a self-adjoint matrix of size n ×n with the eigenvalues λ1, . . . ,λn . The

empirical spectral distribution of M is defined as the probability measure µM such that for all

A ∈B(R), the Borel sets of R:

µM (A) = 1

n

n∑
i=1

1λi∈A (2.4)

The Stieltjes transform of the eigenvalue distribution of an Hermitian matrix M (or simply the

Stieltjes transform of M) is denoted as gM such that for all z ∈C\ SpM,

gM (z) =
∫
R

dµM (λ)

λ− z
= 1

n

n∑
i=1

1

λi − z
= 1

n
Tr

[
(M − zIn)−1] (2.5)

As we will later observe, this object plays a pivotal role in many calculations in random matrix

theory. In this thesis, it will in fact be directly the quantity of interest instead of the spectral

distribution itself when expanding the relevant metrics such as the generalization error of our

models.

As a side note, another ubiquitous object in linear algebra is the characteristic polynomial

χM (z) = det(M −zIn), which has a direct connection with gM through the following derivative:

gM (z) =− 1

n

∂ lnχM (z)

∂z
=− 1

n

χ′M (z)

χM (z)
(2.6)

The key difference is that in χM , the eigenvalues of M are the roots of the polynomial, while in

28



2.2 Semicirclular law and Marchenko-Pastur law

gM , they are the given as the poles of a rational function. As it will become apparent later in

the next chapter, χM can prove to be easier to manipulate than gM in the finite dimensional

case as we are dealing with moments of the matrix elements. However, when investigating

the asymptotic behavior of sequences of random matrices when n →+∞, the trace of the

resolvent often proves to be more convenient and well-defined. Hence we define the limiting

Stieltjes transform as follows:

Definition 2.3. Given a sequence of Hermitian random matrices M (n), we define the limiting

Stieltjes transform M when it existst as:

g (z) = Trn
[
(M (n) − zIn)−1] := lim

n→+∞
1

n
E
[
Tr

[
(M (n) − zIn)−1]] (2.7)

In the cases where there is no ambiguity, we will drop the upperscript M (n) and simply write M.

The major subject in random matrix theory and in this thesis is to derive the limiting expression

of g (z). A straightforward approach to determine this function is to use the relation with the

moments of M , in particular when |z| > ∥M∥op we find:

g (z) =
+∞∑
k=0

−1

zk+1
Trn

[
M k

]
(2.8)

Calculating the limiting traces of the moments of M leads to combinatorics methods that

often become involved if not impractical when M is a complex expression with multiple

random matrices. In the next section, we will see a different method that can be seen as the

groundwork for the linear pencil method which will be the subject of the next chapter.

2.2 Semicirclular law and Marchenko-Pastur law

2.2.1 Wigner Matrix

In this section, we will first investigate the case of a Wigner matrix, denoted as M ∈ Rn×n

and such that Mi j = M j i ∼N (0, σ
2

n ) with each element (i j ) with i ≤ j being independently

distributed. We will provide a short outline of a proof to derive the semi-circle law that

describes the spectral density in the limit n →+∞.

We will use the matrix inversion formula, which frequently finds application in the subsequent

chapters. To describe it, let L ∈ Rn×n be a matrix that can be partitioned into four blocks

A ∈ Rd×d , D ∈ R(n−d)×(n−d), B ∈ Rd×(n−d) and C ∈ R(n−d)×d . Let’s further assume that D is

invertible and the Schur complement of D in L, that is A−BD−1C , is also invertible. Then:

L =
(

A B

C D

)
=⇒ L−1 =

(
(A−BD−1C )−1 −(A−BD−1C )−1BD−1

−D−1C (A−BD−1C )−1 D−1 +D−1C (A−BD−1C )−1BD−1

)
(2.9)
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Instead, if A is invertible and the Schur complement of A in L is also invertible, then:

L−1 =
(

A−1 + A−1B(D −C A−1B)−1C A−1 −A−1B(D −C A−1B)−1

−(D −C A−1B)−1C A−1 (D −C A−1B)−1

)
(2.10)

For the Wigner matrix case, we will consider L = M (n)−zIn and fix the dimension d = 1. In such

case, A is a real number and C is a column vector and B =C T is a row vector. The structure of

D is similar to a realization of
√

n−1
n M (n−1) − zIn−1. By applying the matrix inversion formula

(2.9), we obtain a relation on the element (11) of the inverse of L:

(L−1)11 =
(

M (n)
11 − z −

n−1∑
i j=1

Ci (D−1)i j C j

)−1

(2.11)

In this scenario, M (n)
11 concentrates to 0 since it has a variance σ2

n . Thus the fluctuations of

this term are of order O( 1p
n

). The same goes for the fluctuations of the last term. To see this,

let us use the spectral theorem on D with O an orthogonal basis andΛ= diag(λ1, . . . ,λn−1) a

diagonal matrix such that D =OTΛO. Then:

n−1∑
i j=1

Ci (D−1)i j C j =C T D−1C = (OC )TΛ−1(OC ) =
n−1∑
i=1

(OC )2
i

λi
(2.12)

Notice first that 1
|λi | ≤

1
| Im(z)| for the reasons stated when arguing that gµ is well-defined. And

secondly, we notice that C is a gaussian vector of covariance matrix σ2

n In−1. because O is

orthogonal, the distribution of OC is the same as C . So we find:

Var(C T D−1C ) ≤ 1

| Im z|2
n−1∑
i=1

Var
(
(OC )2

i

)≤ 2(n −1)σ4

n2| Im z|2 =O

(
1

n

)
(2.13)

Note that more general concentration results can be derived with other distributions, we refer

to (Vershynin, 2018) for instance for more details. The main focus here is that the right-hand

side term of equation (2.10) concentrates towards its mean. As we have already mentioned, D

has some similar structure as L so when n is large enough:

lim
n→+∞E

[
C T D−1C

]= lim
n→+∞

σ2

n
E[Tr

[
D−1]] = lim

n→+∞σ
2

√
n −1

n
E

[
gn−1

(
z

√
n

n −1

)]
(2.14)

Assuming further the existence of a point-wise limit limn→+∞E[gn(z)] = g (z), we thus expect

that (L−1)11 concentrates towards (z +σ2g (z))−1.

To pursue further with the proof, a crucial remark is that M is rotationally invariant, in the

sense that the distribution of the elements of M are the same as those of ST MS for any

orthogonal matrix S (SST = In). This can be seen from the probability distribution and using
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2.2 Semicirclular law and Marchenko-Pastur law

the cyclicity of the trace:

P (M) = 1
p

2πσ2n2 exp
{ −n

4σ2 Tr
[
M 2]} (2.15)

The same remark applies for L. 1 In other words, all the diagonal elements of L−1 shares the

same distribution with a mean (z +σ2g (z))−1 and a bounded variance O( 1
n ). To conclude, we

can use the relation with the trace of L−1:

1

n

∑
i

(L−1)i i = 1

n
Tr

[
L−1]= gn(z) (2.16)

So that, in the limit of large n, and by averaging on both sides, we can derive the fixed-point

equation:

g (z) =− 1

z +σ2g (z)
(2.17)

This expression can be replaced by its quadratic version σ2g (z)2 + zg (z)+1 = 0 which is often

the form that we will manipulate. In this situation, we can retrieve the spectral density of

M by decomposing: g = Re g + i Im g and replacing z = λ+ iϵ with ϵ = 0 to find the limit of

Im g (z + iϵ) as ϵ→ 0+. This yields:

σ2(Re g + i Im g )2 +λ(Re g + i Im g )+1 = 0 (2.18)

which results in a system of equations:σ2((Re g )2 − (Im g )2)+λRe g +1 = 0

2σ2(Re g )(Im g )+λ Im g = 0
(2.19)

After reducing it further and replacing 1
π Im g = ρ(λ) we find:

ρ(λ)
(
4σ4π2ρ(λ)2 +λ2 −4σ2)= 0 (2.20)

thus, we retrieve the semicircle law:

ρ(λ) = 1

2σ2π

√
4σ2 −λ21λ∈[−2σ,2σ] (2.21)

As a side note, it is also possible to express g (z) as one of the two solutions of the quadratic

equation:

g (z) =
−z ± z

√
1− 4σ2

z2

2σ2 (2.22)

A question arises as to which of the two solution selects the correct limiting value of the trace

of the resolvent. This is, in fact, a more general problem that will emerge in the next chapters

1Letting Si the orthogonal matrix that leaves the canonical basis vectors with e1, . . . ,en unchanged except e1 and
ei with Si ei = e1 and Si e1 = ei , we find (Si LSi )−1

11 = (Si L−1Si )11 = (L−1)i i . But Si LSi has the same distribution as
L, so there is nothing particular about the location (11).
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for more complicated results. In some cases, we can resort on certain characteristics that are

expected from the trace of the resolvent. In particular, we expect that:

lim
|z|→∞

−zg (z) = lim
|z|→∞

Tr
[−z(M − zIn)−1]= 1 (2.23)

Such a condition is only satisfied by the solution with the "plus" sign, which thus gives us the

correct form. With this expression, we can now retrieve the limiting moments of the Wigner

matrix and recognize the generating functions of the Catalan numbers Ck = 1
k+1

(2k
k

)
with the

series expansion for large enough z:

g (z) = z

2σ2

√
1− 4σ2

z2 −1

=−1

z

+∞∑
k=0

Ck

(σ
z

)2k
(2.24)

So by identification with (2.8), we find a relation between the kth moment of M and the kth

Catalan number which can also be derived directly from combinatorics methods instead:

lim
n→+∞

1

n
ETr

[
M 2k

]
=Ckσ

2k and lim
n→+∞

1

n
ETr

[
M 2k+1

]
= 0 (2.25)

2.2.2 Marchenko-Pastur law

Another prominent example of large random matrices is the Gram matrix. It corresponds to

the matrix X X T with X ∈Rp×d where the matrix elements of X are gaussian and independently

distributed with Xi j ∼N (0, 1
p ). In this setting, the aspect ratio p

d of the matrix is fixed, denoted

as φ, and in the limit of large p and d , the spectrum of the Gram matrix follows a distribution

commonly referred to as the Marchenko-Pastur distribution (Marchenko and Pastur, 1967).

We will adopt a similar approach as the Wigner matrix and specify a variance profile for the

previously defined matrix M , now with dimension n = p +d . The variance profile is defined

as follow: consider a deterministic matrix σi j ∈Rn×n with 1
nσ

2
i j = E[M 2

i j ]. For each element

i j in the area 1 ≤ i , j ≤ p and p ≤ i , j ≤ n, we let σi j = 0. In the remaining domain of (i j ), we

set σ2
i j = n

p . This corresponds to regarding X as the sub-blocks of M within the domain of

non-zero variance profile. We can further analyze and compute the inverse of L = M −zIn and

have:

L = M − zIn =
(
−zIp X

X T −zId

)
=⇒ L−1 =

(
z(−z2I +X X T )−1 1

z (−zI + 1
z X X T )−1X

1
z X T (−zI + 1

z X X T )−1 z(−z2I +X T X )−1

)
(2.26)

Unlike the previous case, the elements of the diagonal of L−1 do not share all the same

distribution. Rather, only the first p elements have similar distribution. And using the same

procedure as before, now with careful considerations on the variance profile with the block-

matrix inversion formula and the different concentration assumptions in the limit of large
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2.2 Semicirclular law and Marchenko-Pastur law

p,d , with φ= p
d we find:

lim
p,d→+∞

1

p
Tr

[
z(−z2I +X X T )−1]= 1

−z − limp,d→+∞ 1
p Tr

[
z(−z2I +X T X )−1

] (2.27)

With gX X T (z) = Trp
[
(X X T − zIp )−1

]
and gX T X (z) = Trd

[
(X T X − zId )−1

]
, we thus have:

zgX X T (z2) = 1

−z − z
φgX T X (z2)

(2.28)

As is known, gX X T can be related to gX T X as X X T and X T X share the same non-zero eigen-

values and only differ by the multiplicity of the null eigenvalue. Another way to see this is to

calculate first:

Tr
[
(X X T − zIp )−1X X T ]= Tr

[
(X X T − zIp )−1(X X T − zIp + zIp )

]
(2.29)

= p + zTr
[
(X X T − zIp )−1] (2.30)

and secondly, using the push-through identity and the cyclicity of the trace:

Tr
[
(X X T − zIp )−1X X T ]= Tr

[
X (X T X − zId )−1X T ]

(2.31)

= Tr
[
(X T X − zId )−1X T X

]
(2.32)

= d + zTr
[
(X T X − zId )−1] (2.33)

So we find the expected additional pole at z = 0:

Tr
[
(X T X − zId )−1]= p −d

z
+Tr

[
(X X T − zIp )−1] (2.34)

In the high-dimensional limit, this corresponds to gX T X (z) = φ−1
z +φgX X T (z). Consequently,

we have the closed-form equation:

zgX X T (z2)

(
z + z

(
1− 1

φ

z2 + gX X T (z2)

))
+1 = 0 (2.35)

Hence we retrieve the Stieltjes transform of the celebrated Marchenko-Pastur distribution

(Marchenko and Pastur, 1967) albeit evaluated in z2:

z2gX X T (z2)2 +
(
1+ z2 − 1

φ

)
gX X T (z2)+1 = 0 (2.36)

In the next chapter, we will generalize this approach and formulate a general result that can

be applied in a straightforward way.
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2.3 Holomorphic functional calculus

In the upcoming section, we will examine matrices that may not necessarily be in the form

of a resolvent. They can take various forms, such as terms like e−t X T X where the variable t

represents time, as will be discussed in Chapter 4. In such cases, it is convenient to use the

Cauchy integration formula such that for any holomorphic function f :C→C, λ ∈C and any

contour Γ enclosing λ:

f (λ) = −1

2πi

∮
Γ

f (z)

λ− z
dz (2.37)

In particular, when consider a symmetric matrix, denoted as M , which is expressed using the

spectral theorem in the form M =∑n
i=1λi ui uT

i with ui ∈Rn the normalized eigenvectors and

λi ∈R the eigenvalues of M , we have for any contour Γ containing all the eigenvalues:

f (M) =
n∑

i=1
f (λi )ui uT

i =
n∑

i=1

−1

2πi

∮
Γ

f (z)

λi − z
ui uT

i dz = −1

2πi

∮
Γ

f (z)(M − zIn)−1dz (2.38)

This is developed in greater extent in Dunford and Schwartz (1988). This, in turn, enables the

computation of more general traces involving the random matrix M of the previous section

with its associated Stieltjes transform g (z):

Trn
[

f (M)
]= −1

2πi

∮
Γ

f (z)Trn
[
(M − zIn)−1]dz = −1

2πi

∮
Γ

f (z)g (z)dz (2.39)

This time, because we are in the limit of large dimensions, it becomes necessary for Γ to

enclose all the branch-cuts of g (z) corresponding to the support of the spectral density ρ

defined before, rather than a set of individual eigenvalues. Note that in this scenario, it is

always possible to use the other formula Trn
[

f (M)
] = ∫

R f (λ)ρ(λ)dλ that uses the spectral

density ρ instead of g . The connection can be demonstrated by choosing a contour Γ that

closely enlaces the branch-cuts produced by the spectral support. For instance, let’s assume

the support is (−2,2) (which is the case for the Wigner matrix) and consider Γ representing the

perimeter of the rectangle extending from the point at the bottom-left corner −2−δ− iϵ to

the point at the top-right corner 2+δ+ iϵ, with δ> 0 and ϵ> 0. Thus:

Trn
[

f (M)
]= −1

2πi

(∫ 2+δ−iϵ

−2−δ−iϵ
+

∫ 2+δ+iϵ

2+δ−iϵ
+

∫ −2−δ+iϵ

2+δ+iϵ
+

∫ −2−δ−iϵ

2+δ+iϵ

)
f (z)g (z)dz (2.40)

= −1

2πi

(∫ 2+δ−iϵ

−2−δ−iϵ
−

∫ 2+δ+iϵ

−2−δ+iϵ
+

∫ 2+δ+iϵ

2+δ−iϵ
+

∫ −2−δ−iϵ

2+δ+iϵ

)
f (z)g (z)dz (2.41)

and:

−1

2πi

(∫ 2+δ−iϵ

−2−δ−iϵ
−

∫ 2+δ+iϵ

−2−δ+iϵ

)
f (z)g (z)dz =

∫ 2+δ

−2−δ
+1

2πi

(
f (λ+ iϵ)g (λ+ iϵ)− f (λ− iϵ)g (λ− iϵ)

)
dλ

(2.42)
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So in the limit ϵ→ 0+, with the continuity of f and the definition of g (z) we find:

lim
ϵ→0+

(
f (λ+ iϵ)g (λ+ iϵ)− f (λ− iϵ)g (λ− iϵ)

)= 2i f (λ) lim
ϵ→0+ Im(g (λ+ iϵ)) (2.43)

So in fact:

lim
ϵ,δ→0+

−1

2πi

(∫ 2+δ−iϵ

−2−δ−iϵ
−

∫ 2+δ+iϵ

−2−δ+iϵ

)
f (z)g (z)dz =

∫ 2

−2
f (λ) lim

ϵ→0+
1

π
Im g (λ+ iϵ)dλ=

∫ 2

−2
f (λ)ρ(λ)dλ

(2.44)

As the other integral terms vanishes when δ→ 0+ we find exactly the result that we would

obtain by using the distribution ρ instead of g :

Trn
[

f (M)
]= ∫

R
f (λ)ρ(λ)dλ (2.45)

Arguably, this last expression may, in some cases, be easier to handle when running numerical

calculations as the path of the integral is on the real line. However, some situations that we

will encounter are provided with more complex expressions. For instance, we will have to

tackle the form R f (M)Ω f (M)R with R and Ω two matrices having potential element-wise

dependencies with M . For some contour Γx and Γy , we will extend the former development

to decouple the calculations involving random matrices from the application of f with:

Trn
[
R f (M)Ω f (M)R

]= −1

4π2

Ó
Γx×Γy

f (x) f (y)Trn
[
R(M −xI )−1Ω(M − y I )−1R

]
dxdy (2.46)

The precise derivation of this trace in the limit n →+∞ inside the double integral will be the

main subject of different chapters presented in this thesis.

2.4 Algebraic expressions of random matrices

As stated on the previous formula, while the decoupling of the application of f is applied, there

remains a general algebraic expression involving the matrices M ,R,Ω. A classical problem

arising in random matrix theory is the addition of two random matrices A,B ∈ Rn×n , so

say g A+B (z) = Trn
[
(A+B − zIn)−1

]
. A common approach is to use the additivity of the R-

transform, a function that will be further investigated in the next chapter. This transform is

applicable with some conditions on A and B , we refer the reader to the free-probability section

of the books mentioned in the introduction for more details on the subject. As an example,

when A is deterministic and B is a wigner matrix, we can derive the following result:

RA+B (g ) =RA(g )+RB (g ) (2.47)

where we define RA(g ) the function such that:

RA(g A(z)) = z + 1

g A(z)
(2.48)
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A similar approach exists with the S -transform:

SAB (g ) =SA(g )SB (g ) (2.49)

where we define SA(g ) the function such that:

SA(−zg A(z)−1) = g A(z)

zg A(z)+1
(2.50)

Both the R and S transforms are powerful tools but the calculations can be involved when

dealing with a complex expressions. Another idea that will be explored in the next chapter is

to extend the former construction with the variance profile to yield the expressions of interest.

For instance, consider the following block-matrix and its inverse:

M =
(
−zI A

B −I

)
=⇒ M−1 =

(
(AB − zI )−1 (AB − zI )−1 A

−B(AB − zI )−1 I +B(AB − zI )−1 A

)
(2.51)

so clearly, the partial trace of M−1 in the first block is precisely the trace of the resolvent of the

product of A and B . This is the main concept behind the linearization method that will be

presented in the next chapter.
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In this chapter, we extend our focus beyond the Wigner case, which deals with a single sym-

metric random matrix with independent Gaussian entries, and the Wishart matrix, resulting

from the multiplication two random matrices. We will introduce the linear pencil method,

an approach that enables the computation of traces for more general rational expressions

involving multiple independent standard symmetric or non-symmetric random matrices.

Albeit not required for simple enough models as the ones described in model 1.1 and 1.4

(and further investigated in chapters 4 and 7), it will be of great use in the others and will be

employed extensively in chapters 5, 6 and 8.

This method yields a fixed-point equation, the solutions of which are associated with the

partial trace of the inverse of a large random block matrix. Some of these blocks can remain

partially deterministic such that these traces can be calculated at a later stage. We will show

various sketches of proof to derive this fixed-point equation.

3.1 Introduction

As we have seen in previous Chapter 2, instead of calculating directly the distribution of the

spectral density ρ(λ) of a large random matrix A, the Stieltjes transform of the spectrum

g (z) = ∫
λ
ρ(λ)dz
λ−z is usually the object that yields the most practical formulations and is directly

related to the trace of the Resolvent (A− zI )−1. The spectral density can be recovered from the

Stieltjes transform using the inverse formula ρ(λ) = 1
π limϵ→0+ Im g (λ+ iϵ) and both objects

can have analytical expressions in high-dimension depending on the matrix A into considera-

tion. Here we are interested in the situation where we deal with traces of intricate algebraic

expressions involving one or many large random matrices. A simple common example is the

Marchenko-Pastur distribution derived from A = X X T where X is a gaussian random matrix.

With more intricate algebraic expressions, finding such analytical formulas remain cumber-

some even with the help of different methods such as the R-transform and S-transform for

adding and multiplying random matrices respectively (see for instance Potters and Bouchaud

(2020)). To circumvent this issue, another method using so-called linear pencil matrices was

37



Chapter 3. The Linear-pencil method

developed first in (Rashidi Far et al., 2006) and since then, has been refined and described as a

linearization trick and analyzed rigorously using free probability with operator-valued convo-

lutions in (Mingo and Speicher, 2017) and (Helton et al., 2018). Afterwards, this technique has

been further employed successfully in the machine learning community and has been gaining

more attraction, for instance in (Adlam and Pennington, 2020a) or (Bodin and Macris, 2021a)

for the asymptotic behavior of the training and generalization error in simple machine learn-

ing models. New proofs avoiding free-convolutions have been proposed such as perturbative

methods in (Cui et al., 2020). In this chapter, we propose to revisit again the linear pencil

construction with the help of stochastic calculus and Dyson’s brownian motion (Dyson, 1962).

We show that based on the intrinsic relation between the determinant from the heat-equation

and the trace from the Burger equation (with Hopf-Cole transform already mentioned in

Kardar et al. (1986)). We further derive some common results for complex Wigner matrices as

well as complex Wishart matrices with the Marchenko pastur distribution (Marchenko and

Pastur, 1967). In addition, there is a growing interest in results for finite-dimensional matrices,

as demonstrated in (Marcus et al., 2022). We show that our method also applies to some extent

to the finite-dimensional case using the same linearization technique.

3.1.1 Preliminaries

For the sake of simplicity, we will develop our results in the Gaussian Unitary Ensemble (GUE).

We define Fn,d the set of complex random matrices of size n ×d such that the real part and

imaginary part of the entries are all independent standard gaussian distribution. Similarly, in

the same spirit, we let F S
n be the set of self-adjoint random matrices of size n ×n. We will see

the definitions of such ensembles later in more detail in Section 3.5.1.

Let us consider an invertible self-adjoint block matrix L with N ×N blocks and denote L(i j )

the block (i j ) of size Ni ×N j . One can write L =∑
i j Ei j ⊗L(i j ) where1 Ei j = ei eT

j are the basis

matrices of CN×N . We will assume that the size of the blocks of L can be deterministically

increased with a linear relation with respect to some parameter n, that is to say for each i there

exists some fixed coefficient γi such that Ni (n) = γi n. We say that L is a linear-pencil if each

block L(i j ) is the sum of a deterministic matrix L(i j )
0 and a random matrix W (i j ) such that W (i j )

can be described as a linear combination with real coefficients of some elements of FNi ,N j ,

and F S
Ni

(when Ni = N j ) with coefficients proportional to 1p
n

. This means in particular that

every element of the block (i j ) is normally distributed with a variance proportional to 1
n . We

will define more generally L0 = EL and the covariance structure such that for S= {
i j |Ni = N j

}
is the set of indices indexing the square blocks:

∀(i l , j k) ∈S2, (σkl
i j )2 = 1

γiγ j

∥∥∥EW (i j ) ⊙ (W (kl ))T
∥∥∥2

F
(3.1)

Where A⊙B denotes the Hadamard product of two matrices such that (A⊙B)i j = Ai j Bi j and

∥·∥F is the Frobenius norm. When Ni ̸= Nl or N j ̸= Nk , we set σkl
i j = 0. Another equivalent

1with e1, . . . ,eN is the canonical basis of CN
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definition of σ is as follows: given (i l , j k) ∈S2 and (uv) with 1 ≤ u ≤ Ni and 1 ≤ v ≤ N j :

σkl
i j = n ·Cov(L(i j )

uv ,L(kl )
vu ) = n ·E

[
W (i j )

uv W (kl )
vu

]
(3.2)

In the following, we will use the linear operator ηL : CN×N → CN×N as the map acting on a

matrix g such that

[ηL(g )]i l =
∑

j k∈S
σkl

i j g j k (3.3)

For technical reasons that will become clear later in the following sections, we will assume

that this linear operator restricted on its image is invertible. As an example, this is the case

for self-adjoint linear pencils when for each element ( j k) ∈S, there exists a unique (i l ) ∈S
such that σkl

i j ̸= 0. In this case, we find that ηL(E j k ) =σkl
i j Ei l . By construction, this also implies

ηL(Ei l ) =σl k
j i E j k =σkl

i j E j k , so there is a one-to-one mapping between each elements of the

canonical basis of CN×N on the image of ηL , so ηL is invertible. In this scenario, for any

non-zero random block within the ’block-row’ j at a given location ( j k), there is precisely one

non-zero random block within the ’block-column’ k with element-wise dependencies on the

other.

Finally, we define the operator (ηL ⊗ I )(·) such that:

∀(i j ), [(ηL ⊗ I )(g )](i j ) =
[ηL(g )]i j INi if (i j ) ∈S

ONi ,N j otherwise
(3.4)

where INi is the identity matrix of size Ni ×Ni , and ONi ,N j the all-zero matrix of size Ni ×N j .

Similarly, with J the N×N the matrix Ji l = δS(i l ), we define the partial-trace operator (J⊗Tr)[·]
such that given a N ×N block matrix G with a structure similar to L above (G =∑

i j Ei j ⊗G (i j ))

with:

∀(i j ), [(J ⊗Tr)[G]]i j =
Tr

[
G (i j )

]
if (i j ) ∈S

0 otherwise
(3.5)

As an example, let’s assume N = 2 with N1 ̸= N2. Then S= {(00), (11)} and J = I2 the identity

matrix, and we have a linear-pencil:

L = E11 ⊗L(11) +E12 ⊗L(12) +E21 ⊗L(21) +E22 ⊗L(22) (3.6)

=
(

1 0

0 0

)
⊗L(11) +

(
0 1

0 0

)
⊗L(12) +

(
0 0

1 0

)
⊗L(21) +

(
0 0

0 1

)
⊗L(22) (3.7)

=
(

L(11) L(12)

L(21) L(22)

)
(3.8)

Similarly for G :

G =
(

G (11) G (12)

G (21) G (22)

)
(3.9)
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and we have the partial trace operator:

(J ⊗Tr)[G] =
(

Tr
[
G (11)

]
0

0 Tr
[
G (22)

]) (3.10)

and the operator ηL operates on a given matrix g as:

ηL(g ) =
(
σ11

11g11 +σ21
12g22 0

0 σ12
21g11 +σ22

22g22

)
(3.11)

finally, we can apply the operator ηL ⊗ I on g as:

(ηL ⊗ I )(g ) =
(

(σ11
11g11 +σ21

12g22)IN1 ON1,N2

ON2,N1 (σ12
21g11 +σ22

22g22)IN2

)
(3.12)

3.1.2 Main Statement

The main statement of this chapter holds in the high-dimensional limit n →+∞. We define

the operator Trn [·] such that for a sequence of random matrices A(n), if the limit exists we

define

Trn [A(n)] := lim
n→+∞

1

n
ETr[A(n)] (3.13)

In order to simplify the notations, we will discard the reference to n in the sequence A(n) and

simply write A. Our first result holds in the asymptotic limit n →+∞:

Result 3.1. Under the assumption of the existence in the limit n →+∞ of a deterministic matrix

g ∈CN×N with gi j such that:

gi j = Trn

[
(L−1)(i j )

]
(3.14)

we claim that:

g = (J ⊗Trn)
[
(L0 − (ηL ⊗ I )(g ))−1] (3.15)

In particular, when L0 = Z where Z =Z ⊗ I is such that its sub-blocks are only scalar matrices

(ie, proportional to the identity), that is where Z (i j ) = Zi j INi for (i j ) ∈S and Z (i j ) = ONi ,N j

otherwise, we find:

gi j = γi [(Z −ηL(g ))−1]i j (3.16)

Upon a rescaling of the elements of g in g̃ with g̃i j = 1
γi

gi j we have the equations:

g̃ (Z −ηL(g )) = (Z −ηL(g ))g̃ = I (3.17)

These equations are only polynomial in the matrix elements of g , and can thus be further

solved or reduced using techniques from algebraic geometry (for instance computing Gröbner

basis with Buchberger algorithm Buchberger (1965)).

Next, we present a result in finite dimension n that enables to calculate the average character-
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istic polynomial for any linear pencil. It is worth noting that this result will not be employed in

the subsequent chapters, instead, it arises as a by-product of our analysis.

Result 3.2. In finite dimension n, the average determinant of L is given by the formula

EW [det(L)] = EZ [det(L0 +Z ⊗ I )] (3.18)

such that for all (i l ) ∈S,Zi l has a complex normal distribution and for all (i l ), ( j k) ∈S2 we

have:

Cov(Zi l ,Zk j ) =− 1

n
[V V T ]i l ,k j =− 1

n
σkl

i j (3.19)

Cov(Zi l ,Z̄k j ) = 1

n
[V V̄ ]i l ,k j (3.20)

for any decomposition of σ such that σkl
i j =

∑
pq Vi l ,pqVk j ,pq

Remark: To see that σ admits such a decomposition, one can proceed as follows. First

consider the "matrixisation" of σ with (Σi l ,k j ) = (σkl
i j |Ni = Nl , Nk = Nl ) ∈C|S|×|S|. Notice now

that Σi l ,k j = σkl
i j = σl k

j i = Σk j ,i l , so Σ = ΣT and Σ is real, so the spectral theorem provides a

decomposition of the form σ=OT DO with O an orthonormal matrix and D a real diagonal

matrix. Thus, with V =OT D
1
2 O, Σ admits a decomposition of the form Σ=V V T (note that V

can be a complex matrix because D can have negative values).

3.2 Main Example: high-dimensional case

Let X ∈ Cn×d and Y ∈ Cn×n be two complex Gaussian random matrices with independent

entries, and Y a self-adjoint matrix. The variance is set to be 1
n for all entries in X and Y .

We take a quenched self-adjoint matrix C ∈ Cd×d and we want to calculate the eigenvalue

distribution of the matrix M = XC X T +λY . On the one hand, when C = 0 and λ= 1, it reduces

to the complex Wigner matrix Y . On the other hand, when C = I and λ= 0, it becomes the

Wishart matrix X X T . When C is left undefined, this is the sample covariance matrix problem.

The conjunction of λ ̸= 0 and C ̸= 0 features an example of a linear pencil problem with

two kinds of operations (sums and products) acting on random matrices with an additional

quenched matrix. We will use this matrix M as a canonical example of the linear pencil

method.

In the first subsection 3.2.1, we will construct a linear pencil that will allow us to calcu-

late the Stieltjes transform of the eigenvalue distribution of M which we define as gM (z) =
Trn

[
(M − zI )−1

]
. In the second subsection 3.2.2 we will use the linear pencil to calculate the

effect of the random matrices X and Y .
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Chapter 3. The Linear-pencil method

3.2.1 Constructing a linear pencil

The goal is to determine the eigenvalue distribution of the matrix M using the resolvent

U0 = (XC X T +λY − zI )−1. We linearize the problem by introducing auxiliary matrices such

that the U0 is given by a sub-block of a larger block-matrix construction.

In this particular case, we notice that (λY +XC X T −zI )U0 = I . No inverse are remaining in the

former expression. Let’s introduce U1 = X T U0. We have XCU1 + (λY − zI )U0 = I . Then let’s

introduce U2 =CU1. We now have XU2+(λY −zI )U0 = I . At this point, we have the linearized

system of block-matrices: λY − zI 0 X

0 C I

X T I 0


︸ ︷︷ ︸

L

 U0

−U1

U2

=

I

0

0

 (3.21)

Therefore taking the inverse of L yields the solution

U0 =
(
I 0 0

) U0

−U1

U2

=
(
I 0 0

)λY − zI 0 X

0 C I

X T I 0


−1 I

0

0

= (L−1)(11) (3.22)

At this point, we have constructed a linear pencil L. Although the linearization method

outlined here is more or less systematic, it is important to realize that these constructions are

not unique and other linear pencils can be proposed. However, some may be more or less

convenient to use depending on the problem at hand. For instance, the construction that has

been displayed here presents some symmetries that can be easier to use for computing the

inverses in the next section.

3.2.2 Calculating the interaction of the random matrices

We find σ11
11 =λ2 due to Y being self-adjoint and σ31

13 =σ13
31 = 1 with X . We find:

ηL(g ) =

λ
2g11 + g33 0 0

0 0 0

0 0 g11

 (3.23)

Thus we are left to calculate:

(L0 − (ηL ⊗ I )(g ))−1 =

−(λ2g11 + g33 + z)In 0 0

0 C Id

0 Id −g11Id


−1

(3.24)

=


−(λ2g11 + g33 + z)−1In 0 0

0

0

(
C Id

Id −g11Id

)−1

 (3.25)
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3.2 Main Example: high-dimensional case

Using the block-matrix inversion formula:(
C Id

Id −g11Id

)−1

=
(

(C + g−1
11 )−1 (g11C + Id )−1

(g11C + Id )−1 −g−1
11 (I − g−1

11 (C + g−1
11 )−1)

)
(3.26)

finally, with φ = n
d and the fixed point equation of result 3.1, we find the following closed

system of equations where gC (z) = Trd
[
(C − zId )−1

]
is the Stieltjes transform of C :

g11 =−(λ2g11 + g33 + z)−1 (3.27)

g33 =−g−1
11 Trn

[
Id − (g11C + Id )−1]= 1

φ

1

g11

(
1

g11
gC

(
− 1

g11

)
−1

)
(3.28)

With gM = g11, this can be reduced to a single equation for gM :

λ2g 2
M (z)+ 1

φ

(
1

gM (z)
gC

(
− 1

gM (z)

)
−1

)
+ zgM (z)+1 = 0 (3.29)

3.2.3 Special cases

λ= 1 and C = 0:The Stieltjes transform of C gives gC (z) =− 1
z and the equation (3.29) reduces

as expected to the well-known quadratic equation for the Stieltjes transform of the Wigner

matrix Y :

g 2
M (z)+ zgM (z)+1 = 0 (3.30)

λ= 0 and C = I :The Stieltjes transform of C is gC (z) = 1
1−z and the equation (3.29) reduces to:

1

φ

(
1

gM (z)

1

1+ 1
gM (z)

−1

)
+ zgM (z)+1 = 0 (3.31)

After rearranging the terms, we find the celebrated Marchenko-Pastur equation:

zg 2
M (z)+

(
1+ z − 1

φ

)
gM (z)+1 = 0 (3.32)

λ = 0 and C is quenched:The Stieltjes transform of C is gC (z) = Trd
[
(C − zId )−1

]
and the

equation (3.29) reduces to:

−1

gM (z)
gC

( −1

gM (z)

)
= z

(
φgM (z)+ φ−1

z

)
(3.33)

Note that if we define E =C
1
2 X T XC

1
2 ∈Cd×d with gE (z) = Trd

[
(E − zId )−1

]
, we find the rela-

tion gE (z) =φgM (z)+ φ−1
z and defining z1 = −1

gM (z0) , we find z1gC (z1) = z0gE (z0) as stated for

instance in equation (17.5) in (Potters and Bouchaud, 2020)
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Chapter 3. The Linear-pencil method

3.3 Application with finite size

3.3.1 Wigner Matrix and Hermite polynomials

With a standard 1×1 linear pencil L = C +W − zId , with C a deterministic matrix and W a

Wigner matrix, using the formula we find in result 3.2:

EW det(L) = Eu∼N
(
0, 1

d

)[det(C + (i u − z)Id )] = Eu∼N
(
0, 1

d

)[XC (z − i u)] (3.34)

In particular, when C is the all-zero matrix, this is EW det(L) = Eu
[
(i u − z)d

]
and it is easy to

see that it is related to the Hermite polynomials. Indeed, with hd (z) = Es∼N (0,1)
[
(i s + z)d

]
, we

have using integration by part:

hd+1(z) = Es

[
(i s + z)(i s + z)d

]
(3.35)

= iEs

[
u(i s + z)d

]
− zhd (z) (3.36)

=−dhd−1(z)+ zhd (z) (3.37)

which is exactly the recurrence relation of the Hermite polynomials (with h0(z) = 1 and

h1(z) = z). Finally we have find the well-kown relation:

EW det(W − zId ) = Es

[(
i

1p
d

s − z

)d
]
= 1

p
d

d
hd

(
−
p

d z
)

(3.38)

3.3.2 Wishart Matrix and Laguerre polynomials

For this case we consider the example given in (3.21) in finite-dimension but we will only

consider the situation where λ= 0 for the general case is too cumbersome to be written down

explicitly here. In this scenario, we define the matrix Σwith the indices in {11,33}2 such that:

Σ=
(

0 1

1 0

)
(3.39)

So one can calculate a (non-unique) potential root V for Σ=V V T :

V = 1p
2

(
−i 1

i 1

)
(3.40)

so with Z = iV U where U ∼N (0, 1
n I2)we find:

Z11 = 1

2
(U1 + iU2) and Z33 =−1

2
(U1 − iU2) (3.41)

Next:

det(L̄0 +Z ⊗ I ) = det((Z11 − z)In)det(Z33C − Id ) (3.42)
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3.4 The additivity law of the R-transform

so using the block matrix determinant formula:

EX det(L) = (−1)d+1EX det(XC X T − zIn) (3.43)

= (−1)dEU

[(
1

2
(U1 + iU2)− z

)n

det

(
1

2
(U1 − iU2)C +1

)]
(3.44)

In particular, when C = Id we find the formula:

EX det(X X T − zIn) =−EU

[(
1

2
(U1 + iU2)− z

)n (
1

2
(U1 − iU2)+1

)d
]

(3.45)

Note that this expression can be precisely calculated using a Gausss-Hermite quadrature as

this is the expectation of a complex polynomial of degree d +n in C[U1,U2]. However, for this

particular case, this expression is related to the generalized Laguerre polynomials L (α)
k as

mentioned in (Potters and Bouchaud, 2020). We refer the reader to the appendix 3.A for the

details of the calculation. The final result is:

EX det(X X T − zIn) =
{

− n!
nn L (d−n)

n (nz) if n ≤ d

− n!
nn (−nz)n−d L (0)

d (nz) if n ≥ d
(3.46)

3.4 The additivity law of the R-transform

The R-transform is a convenient tool to compute the limiting eigenvalue distribution of the

sum of two matrices say A and B where B is rotated with a Haar-distributed random matrix

O. In other words, it allows to compute the eigenvalue distribution of C = A+OT BO in large

dimensions. In particular, we can show that:

RC (g ) =RA(g )+RB (g ) (3.47)

where RA(g ),RB (g ),RC (g ) are the R-transform of A,B and C respectively. The R-transform

can be defined through the equation:

RA(g A(z)) = z + 1

g A(z)
(3.48)

where g A(z) = Trn
[
(A− zI )−1

]
is the Stieltjes transform of A. Sometimes, calculating the

R-transform can be cumbersome. When we already have access to gB , a more convenient

formulation of this law can be expressed that directly gives gC :

gC (z) = gB (z −RA(gC (z))) (3.49)

To see the connection, let’s first remark that that (3.48) can be rewritten with g−1
A is the

reciproqual of g A :

RA(g ) = g−1
A (g )+ 1

g
(3.50)
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Applying the definition in the relation (3.47) gives:

g−1
C (g )+ 1

g
=RA(g )+ g−1

B (g )+ 1

g
(3.51)

So that with g = gC (z) (so that g−1
C (gC (z)) = z) it remains:

z =RA(gC (z))+ g−1
B (gC (z)) (3.52)

Finally, by rearranging the terms and applying gB on both sides of the equation, we can

conveniently express the Stieltjes transform of C as displayed in (3.49).

In this section, we will show how the R-transform emerges from the linear-pencil method for

B any polynomial pd of finite degree d of a random Wigner matrix X : B = pd (X ). Because X is

invariant by rotation, and henceforth also pd (X ), equation (3.47) is expected to boil down to:

RA+pd (X )(g ) =RA(g )+Rpd (X )(g ) (3.53)

Or following the convenient form (3.49) for any x ∈C+:

g A+pd (X )(x) = g A(x −Rpd (X )(g A+pd (X )(x))) (3.54)

Let’s see first that we can always construct a linear-pencil to compute gpd (X )(z), the Stieltjes-

transform of pd (X ). Let’s assume that pd (X ) =λd X d + . . .+λ1X +λ0. We can define:

(pd (X )− zIn)U1 = In (3.55)

U2 = XU1 (3.56)

U3 = XU2 = X 2U1 (3.57)

... (3.58)

Ud = XUd−1 = X dU1 (3.59)

The first matrix U1 is precisely the resolvent U1 = (pd (X )− zIn)−1 and we have:

(−zIn +λd X d + . . .+λ1X +λ0In)U1 = (−zIn +λ1X +λ0In)U1 +λ2XU2 + . . .+λd XUd (3.60)

This leads to the construction of the following linear-pencil:

λ0I +λ1X − zI λ2X λ3X . . . λd X

X −I 0 . . . 0

0 X −I . . . 0
...

...
...

. . .
...

0 0 0 . . . −I


︸ ︷︷ ︸

L



U1

U2

U3
...

Ud

=



I

0

0
...

0

 (3.61)

46



3.4 The additivity law of the R-transform

consequently, (L−1)(11) =U1. Let’s introduce the following matrices:

F =



λ0 0 . . . 0

0 −1 0 . . . 0

0 0 −1 . . . 0
...

...
...

. . .
...

0 0 0 . . . −1

 ∈Rd×d W =



λ1X λ2X λ3X . . . λd X

X 0 0 . . . 0

0 X 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 (3.62)

Then our linear-pencil can be written as L = L0 +W where L0 is made of scalar blocks: L0 =
−z(e1eT

1 )⊗ I +F ⊗ I . We know from result 3.1 that for h(z) = (J ⊗Trn)
[
L−1

]
we find:

h(z) = (−ze1eT
1 +F −ηL(h(z)))−1 (3.63)

Interestingly, with defining RL(h) := F −ηL(h) the fixed-point equation can also be written as:

RL(h(z)) = ze1eT
1 +h(z)−1 (3.64)

This equation for RL shows some similarity with the R-transform equation (3.48). However,

in this case RL is a d ×d matrix. To make the connection with Rpd (X ), we can use Sherman-

Morrison formula to extract −ze1eT
1 the rank-one term form (3.63) and compute h11(z):

h11(z) = eT
1 h(z)e1 (3.65)

= eT
1 (F −ηL(h(z)))−1e1 +

zeT
1 (F −ηL(h(z)))−1e1eT

1 (F −ηL(h(z)))−1e1

1− zeT
1 (F −ηL(h(z)))−1e1

(3.66)

= eT
1 (F −ηL(h(z)))−1e1

1− zeT
1 (F −ηL(h(z)))−1e1

(3.67)

So this leads to the formula:

(RL(h(z))−1)(11) = eT
1 (F −ηL(h(z)))−1e1 =

(
z + 1

h11(z)

)−1

(3.68)

Let’s recall that the because h11 is the Stieltjes transform of pd (X ), equation (3.48) states that

Rpd (X )(h11(z)) = z + 1
h11(z) , so we have:

Rpd (X )(gpd (X )(z)) =Rpd (X )(h11(z)) = (
(RL(h(z))−1)(11))−1

(3.69)

Let’s go back to the main problem: we want to have an expression for Trn [G] with G = (A −
xI + pd (X ))−1 for some deterministic matrix A. This time, we consider the linear-pencil

L′ = (e1eT
1 )⊗ (−xI + A)+F ⊗ I +W and take g = (J ⊗Trn)

[
(L′)−1

]
. By construction, we have

((L′)−1)(11) =G so we will be interested in g11. Also we can apply again result 3.1 and find:

g = (J ⊗Trn)
[
((e1eT

1 )⊗ (−xI + A)+F ⊗ I −ηL′(g )⊗ I )−1 ]
(3.70)
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Let’s assume that λ is a random variable sampling the spectrum of A. With a careful look,

because all the identity matrices in the right-hand side of the tensor expressions can be written

in the basis of the eigenvectors of A, the former expression can be simplified further as:

g = Eλ
[
((λ−x)e1eT

1 +F −ηL′(g ))−1] (3.71)

The final point is to remark that ηL′ and ηL are in fact exactly the same operators because they

operate based on the same structure σ which is set by W only. So we can write:

g = Eλ
[
((λ−x)e1eT

1 +RL(g ))−1] (3.72)

And again, as we are interested only in g11, we can use Shermann-Morrison formula to find:

g11 = Eλ
[

(RL(g )−1)(11) − (λ−x)((RL(g )−1)(11))2

1+ (λ−x)((RL(g )−1)(11))

]
(3.73)

= Eλ
[

((RL(g ))−1)(11)

1+ (λ−x)(RL(g )−1)(11)

]
(3.74)

= Eλ
[(

(λ−x)+ (((RL(g ))−1)(11))−1)−1
]

(3.75)

So because of equation (3.69) we can expect (((RL(g ))−1)(11))−1 = Rpd (X )(g11). This is non-

trivial and will be proved below. So we find:

g11 = Eλ
[(

(λ−x)+Rpd (X )(g11)
)−1

]
(3.76)

Finally, we can rewrite this equation in terms of the Stieltjes transform g A of A and we find

back (3.54):

g11 = g A(x −Rpd (X )(g11)) (3.77)

It remains to show the relation (((RL(g ))−1)(11))−1 = Rpd (X )(g11). To be true, it requires the

existence of a z1 ∈C such that g = h(z1). To get the intuition of this, first remark that z1 can

and has to be chosen such that g11 = h11(z1). So there remains to see that for one of these

z1, this implies that g = h(z1) (in other words, equality at the elements of index (1,1) implies

equality at each element between the matrices). First define the sub-blocks:

RL(g ) =
(

AR (g ) BR (g )

CR (g ) DR (g )

)
(3.78)

With AR (g ) ∈C1×1, BR (g ) ∈C1×n−1, CR (g ) ∈Cn−1×1, CR (g ) ∈Cn−1×n−1. Therefore (3.72) can be

written as:

g = Eλ
[(

(λ−x)+ AR (g ) BR (g )

CR (g ) DR (g )

)−1]
(3.79)

Using the block-inversion formula, we can derive a simpler expression of the inverse of the
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matrix on the right-hand side with:

g =
(

K ′(g ) −K ′(g )BR (g )DR (g )−1

−CR (g )DR (g )−1K ′(g ) DR (g )−1 +DR (g )−1CR (g )K ′(g )BR (g )DR (g )−1

)
(3.80)

where K ′(g ) is given by the expectation:

K ′(g ) = Eλ
[
((λ−x)+ AR (g )−BR (g )DR (g )−1CR (g ))−1] (3.81)

On the other hand, a similar equation holds for h(z) with:

h(z) =
(
−z + AR (h(z)) BR (h(z))

CR (h(z)) DR (h(z))

)−1

(3.82)

So the block-matrix inversion formula yields a similar simpler expression of the inverse:

h =
(

K (h) −K (h)BR (h)DR (h)−1

−CR (h)DR (h)−1K (h) DR (h)−1 +DR (h)−1CR (h)K (h)BR (h)DR (h)−1

)
(3.83)

This time with another expression for K (h):

K (h(z)) = (−z + AR (h)−BR (h)DR (h)−1CR (h))−1 (3.84)

But now for z = z1, and thus h11(z1) = g11, this imply that K (h(z1)) = K ′(g ) by construction. In

this situation, (3.80) and (3.83) are exactly the same, so h ang g satisfies the same fixed-point

equation and hence we expect g = h.

3.5 Derivation of result 3.2 in finite-dimension

3.5.1 Derivation of a heat-equation

As stated in the preliminaries, we will consider the case of the Gaussian Unitary Ensemble

(GUE). We consider the linear-pencil Lt = L0 +Wt with L1 the random-matrix into consider-

ation, and L0 the deterministic matrix at t = 0. The elements of Wt are brownian motions,

for which we impose that Wt is self-adjoint and that ReWt and ImWt are two independent

random matrices.

The blocks of Lt can be seen as Dyson brownian motions with the covariance σ embedded

into the stochastic covariation for u ̸= v and Ni = Nl and N j = Nk :

d[ReL(i j )
uv ,ReL(l k)

uv ] = d[ImL(i j )
uv , ImL(lk)

uv ] = 1

2n
σkl

i j dt (3.85)

Specifically, this implies what one would expect when dealing simply with the real random
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matrices scenario for Ni = Nl and N j = Nk :

d[ReL(i j )
uv ,ReL(kl )

vu ] = d[ReL(i j )
uv ,Re L̄(l k)

uv ] = d[ReL(i j )
uv ,ReL(l k)

uv ] = 1

2n
σkl

i j dt (3.86)

With the additional imaginary part, we also get for Ni = Nl and N j = Nk :

d[ImL(i j )
uv , ImL(kl )

vu ] = d[ImL(i j )
uv , Im L̄(lk)

uv ] =−d[ImL(i j )
uv , ImL(l k)

uv ] =− 1

2n
σkl

i j dt (3.87)

This way, using L(i j )
uv = ReL(i j )

uv + i ImL(i j )
uv and the independence between the real and imagi-

nary part, we find for u ̸= v and for Ni = Nl and N j = Nk :

d[L(i j )
uv ,L(lk)

uv ] = 1

n

(
d[ReL(i j )

uv ,ReL(lk)
uv ]−d[ImL(i j )

uv , ImL(lk)
uv ]

)
= 0 (3.88)

d[L(i j )
uv ,L(kl )

vu ] = 1

n

(
d[ReL(i j )

uv ,ReL(kl )
vu ]−d[ImL(i j )

uv , ImL(kl )
vu ]

)
= 1

n
σkl

i j dt (3.89)

Note that the first equation is true for the complex case but not always for real random matrices.

Considering the complex case thus simplifies the derivations that follow.

Note that these results also apply when u = v , except when dL(i j ) is self-adjoint. In this case,

the diagonal terms of dL(i j ) are necessarily real, so we impose for Ni = N j = Nk = Nl :

d[ReL(i j )
uu ,ReL(kl )

uu ] = 1

n
σkl

i j dt d[ImL(i j )
uu , ImL(kl )

uu ] = 0 (3.90)

In conclusion, we have for any block (i j ), (kl ) such that Ni = Nl and N j = Nk :

d[L(i j )
uv ,L(kl )

pq ] = 1

n
δuqδv pσ

kl
i j dt (3.91)

We further define the block matrix Z such that for all (i j ) ∈ S, Zi j = zi j INi with zi j ∈ C and

0 otherwise. Then let’s define fn(Lt , Z ) = det(Lt + Z ), and 〈 fn〉(t , Z ) = E fn(Lt , Z ). Using Itô

formula, we have:

d fn(Lt , Z ) =∑
i j

∑
uv

∂ fn

∂L(i j )
uv

dL(i j )
uv + 1

2

∑
i j ,kl

∑
uv,pq

∂(2) fn

∂L(i j )
uv ∂L(kl )

pq

d[L(i j )
uv ,L(kl )

pq ] (3.92)

Using the covariation, the expression can be simplified to:

d fn(Lt , Z ) =∑
i j

∑
uv

∂ fn

∂L(i j )
uv

dL(i j )
uv + 1

2n

∑
i j ,kl

∑
uv

∂(2) fn

∂L(i j )
uv ∂L(kl )

vu

σkl
i j dt (3.93)

Provided invertibility as per the assumptions, let G = (L+Z )−1. Straightforward calculations
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leads to the two following formulas:

∂ fn

∂L(i j )
uv

= fn ·G ( j i )
vu

∂G ( j i )
vu

∂L(kl )
pq

=−G ( j k)
v p G (l i )

qu (3.94)

Combining this with the previous formula, we have:

∑
uv

∂(2) fn

∂L(i j )
uv ∂L(kl )

vu

=∑
uv

fn ·
(
G ( j i )

vu G (l k)
uv −G ( j k)

v v G (l i )
uu

)
(3.95)

= fn ·
(
Tr

[
G ( j i )G (lk)

]
−Tr

[
G ( j k)

]
Tr

[
G (l i )

])
(3.96)

Similarly, with the Wirtinger derivatives, we find:

∂ fn

∂zi l
= fn ·Tr

[
G (l i )

] ∂(2) fn

∂zi l∂zk j
= fn ·

(
Tr

[
G (l i )

]
Tr

[
G ( j k)

]
−Tr

[
G (lk)G ( j i )

])
(3.97)

As a side remark, the traces of interest are thus given by the formula

1

n
Tr

[
G (i j )

]
= 1

n

∂ log fn

∂z j i
(3.98)

In conclusion, the Ito formula can be rewritten as:

d fn(Lt , Z ) =∑
i j

∑
uv

∂ fn

∂L(i j )
uv

dL(i j )
uv − 1

2n

∑
i j ,kl

∂(2) fn

∂zi l∂zk j
σkl

i j dt (3.99)

and thus on the average, it yields the reversed-time heat-equation which is exact for all n ∈N∗:

∂〈 fn〉
∂t

=− 1

2n

∑
i j ,kl

∂(2)〈 fn〉
∂zi l∂zk j

σkl
i j (3.100)

Note that this is an extension of the heat-equation from a Dyson brownian motion as described

for instance in (Tao, 2012).

3.5.2 Solution of the heat-equation

The heat-equation can be solved exactly at finite n. Let’s first consider the "matrixisation"

of σ with (Σi l ,k j ) = (σkl
i j |Ni = Nl , Nk = Nl ) ∈C|S|×|S| as described in the remark in 3.1.2 with a

decomposition of the form Σ=V V T . Now let’s consider a real vector u ∈R|S| and make the

change of variable for (pq) ∈S, of 〈 f̃n〉(t ,u) = 〈 fn〉(t , iV u):

∂〈 f̃n〉
∂upq

(t ,u) = i
∑
k j

Vk j ,pq
∂〈 fn〉
∂zk j

(t , iV u) (3.101)
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Then:
∂(2)〈 f̃n〉
∂u2

pq
(t ,u) =− ∑

i l ,k j
Vi l ,pqVk j ,pq

∂〈 fn〉
∂zk j∂zi l

(t , iV u) (3.102)

In particular, we have:

∑
pq∈S

∂(2)〈 f̃n〉
∂u2

pq
(t ,u) =− ∑

i l ,k j
[V V T ]i l ,k j

∂〈 fn〉
∂zk j∂zi l

(t , iV u) =− ∑
i l ,k j

Σi l ,k j
∂〈 fn〉

∂zk j∂zi l
(t , iV u) (3.103)

Therefore, 〈 f̃n〉 satisfies the "diagonal" heat-equation: ∂〈 f̃n〉
∂t = 1

2n∆u〈 f̃n〉 which has the solution

at s = iV r and t = 1:

〈 fn〉(1, s) =
( n

2π

)|S|/2
∫
R|S|

〈 fn〉 (0, iV u + s)exp
(
−n

2
∥u∥2

)
du (3.104)

So we arrive at the solution of the characteristic polynomial at finite n:

〈 fn〉(1, s) = Eu∼N (0, 1
n I|S|)

[〈 fn〉 (0, iV u + s)
]

(3.105)

One can also use the complex normal distribution as:

〈 fn〉(1, s) = Ev∼C N (s, 1
n V V̄ T ,− 1

n V V T )

[〈 fn〉 (0, v)
]

(3.106)

3.6 Derivation of result 3.1: Three methods

3.6.1 The method of characteristics applied to the heat-equation

Throughout this Section, we will make the following assumption in the limit n →+∞:

1

n
E[log fn] = 1

n
log〈 fn〉+on(1) (3.107)

Rather than deriving the exact stochastic process for the Stieltjes transform as done in (Bodin

and Macris, 2021a), our approach focuses on establishing an equation for the logarithm of fn ,

specifically the KPZ equation, followed by the Burger equation. Using equation (3.104), we

obtain the following:
∂ ln〈 f̃n〉
∂t

= 1

〈 f̃n〉
∂〈 f̃n〉
∂t

= 1

2n〈 f̃n〉
∑
i l

∂(2)〈 f̃n〉
∂u2

i l

(3.108)

and we retrieve the noiseless KPZ equation:

1

2n
∆u ln〈 f̃n〉 = 1

2n

∑
i l

∂(2) ln〈 f̃n〉
∂u2

i l

= 1

2n

∑
i l

(
1

f̃n

∂ ln〈 f̃n〉
∂u2

i l

−
(
∂ ln〈 f̃n〉
∂ui l

)2)
(3.109)

= ∂ ln〈 f̃n〉
∂t

− 1

2n

(∇u ln〈 f̃n〉
)2

(3.110)
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So without the change of variable in 〈 fn〉→ 〈 f̃n〉, the KPZ equation becomes:

∂ ln〈 fn〉
∂t

=− 1

2n

∑
i l ,k j

(
∂(2) ln〈 fn〉
∂zi l∂zk j

+ ∂ ln〈 fn〉
∂zi l

∂ ln〈 fn〉
∂zk j

)
σkl

i j (3.111)

At this point, we define the functions 〈g n
pq〉 for each (pq) ∈S such that 〈g n

pq〉(t , Z ) = 1
n
∂ ln〈 fn〉(t ,Z )

∂zqp
.

Note that 〈g n
pq〉 may not coincide with the expectation of the partial trace 1

n
∂E ln fn

∂zqp
. However,

we will assume the equivalence in the limit of large n. Then we have:

∂〈g n
pq〉
∂t

=− 1

2n

∑
i l ,k j

∂(2)〈g n
pq〉

∂zi l∂zk j
− 1

2

∂

∂zqp

( ∑
i l ,k j

〈g n
l i 〉σkl

i j 〈g n
j k〉

)
(3.112)

The second term on the right-hand side of the equation can be simplified as:

∂

∂zqp

( ∑
i l ,k j

〈g n
li 〉σkl

i j 〈g n
j k〉

)
= ∑

i l ,k j

∂〈g n
li 〉

∂zqp
σkl

i j 〈g n
j k〉+

∑
i l ,k j

〈g n
li 〉σkl

i j

∂〈g n
j k〉

∂zqp
(3.113)

= ∑
i l ,k j

∂〈g n
li 〉

∂zqp
σkl

i j 〈g n
j k〉+

∑
i l ,k j

〈g n
j k〉σ

i j
kl

∂〈g n
l i 〉

∂zqp
(3.114)

= 2
∑
i l

1

n

∂ ln〈 fn〉
∂zi l∂zqp

[
η

(〈g n〉)]i l (3.115)

= 2
∑
i l

[
η

(〈g n〉)]i l

∂〈g n
pq〉

∂zi l
(3.116)

With the assumption that in the large limit n, the quantity 〈g n〉(t , Z ) converges to a finite value

g (t , Z ), we expect the dynamics of g to follow the Burger equation:

∂gpq

∂t
+∑

i l

[
η(g )

]
i l

∂gpq

∂zi l
= 0 (3.117)

Finally, let’s consider a trajectory s → (t̂(s), Ẑ (s)) such that ĝ (s) = g (t̂(s), Ẑ (s)) is constant for

all s. Then it implies for all (pq) ∈S:

dĝpq

ds
= ∂gpq

∂t

∂t̂

∂s
+∑

i l

∂gpq

∂zi l

∂Ẑi l

∂s
= 0 (3.118)

One solution is to match ∂t̂
∂s = 1 and ∂Ẑi l

∂s = [η(ĝ (s))]i l (Note that the right hand side of the

second equation is constant as ĝ (s) is assumed constant over s). This is achieved by setting

t̂ (s) = s and Ẑi l (s) = [η(ĝ (s))]i l (s−1). Using again that ĝ is independent of s, we find ĝ (1) = ĝ (0),

and therefore:

g (1,0) = g (0,−η(g (1,0))) (3.119)

At time t = 0, the term g (0,−η(g (1,0))) corresponds to the right-hand side of Equation (3.15)

while g (1,0) corresponds to the definition of g on left-hand side. This above relationship thus

leads to the desired result.
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3.6.2 The method of steepest descent

The equation (3.104) can be formulated as:

〈 fn〉(1, s) =
( n

2π

)|S|/2
∫
R|S|

enCn (u,s)du (3.120)

Where we define the term Cn(u, s):

Cn(u, s) = 1

n
ln〈 fn〉 (0, iV u + s)− 1

2
∥u∥2 (3.121)

Although not rigorously proved in this work, we use an approach in the same spirit as the

method of the steepest descent - that is to transform the integral as a contour integral. This

contour can be "twisted" to cross one or multiple saddle points which acts as accumulation

points for the integral, which in turn help derive a fixed-point equation. In our scenario, let’s

first assume in the limit of large n the concentration of hn = 1
n ln〈 fn〉 towards a function h and:

lim
n→∞Cn(u, s) ≃C (u, s) = h(0, iV u + s)− 1

2
∥u∥2 (3.122)

Then we can expect the existence of a specific saddle points ũ(s) solution of ∇uCn(ũ(s), s) = 0

for which:

h(1, s) = lim
n→+∞

1

n
ln〈 fn〉(1, s) ≃C (ũ(s), s) (3.123)

and in particular, with the same definition as in the previous section with gi j (1, Z ) = ∂h(1,Z )
∂z j i

,

we expect:

gi j (1, s) = ∂C (ũ(s), s)

∂u j i

∂ũ(s)

∂s j i
+ ∂C (ũ(s), s)

∂s j i
= 0+ ∂h(0, iV u + s)

∂s j i
= gi j (0, iV ũ(s)+ s) (3.124)

Therefore at s = 0:

g (1,0) = g (0, iV ũ(0)) (3.125)

Now on the other hand at this specific point u we find for all (i l ) ∈S:

∇uC (u(s), s) = 0 =⇒ ∑
k j

iVk j ,i l
∂h

∂zk j
(0, iV ũ(s)− s)− ũi l (s) = 0 (3.126)

So:

V T g (0, iV ũ(s)− s) =−i ũ(s) (3.127)

So at s = 0:

g (0, iV V T (V T )−1ũ(0)) =−i (V T )−1ũ(0) (3.128)

Combining both equations we have:

−i (V T )−1ũ(0) = g (1,0) (3.129)
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and then:

g (0, iV V T (LT )−1ũ(0)) = g (0,−V V T g (1,0)) = g (1,0) (3.130)

Finally, V V T =Σ and given a vector w and its corresponding matrix W , it is easy to see that

Σw is in fact the vectorization of η(W ). Hence we find a similar result as equation (3.119):

g (1,0) = g (0,−η(g (1,0))) (3.131)

3.6.3 The Replica method

The replica method is another approach leading to similar results and doesn’t rely on a stochas-

tic process over time. This approach has been described in Appendix D in (Bodin and Macris,

2021a). In this section, here we propose a different variation which accounts for the possibility

of keeping deterministic matrices in the linear-pencil. We will use the notation fn(Z ) instead

of fN (L1, Z ) and use the relation:

hn(Z ) = 1

n
ln fn(Z ) = lim

r→0+
1

n

1− fn(Z )−r

r
(3.132)

Let us define N̄ = ∑N
i=1 Ni . Using the density function of the complex normal distribution

C N (0,L−1,0) we have the following relation for the determinant:

fn(Z )−1 = |det(L)|−1 =
∫
CN̄

e−
1
2 (x̄T Lx+xT L̄x̄) dx

πN̄
(3.133)

In the following, we will make the assumption that L is self-adjoint (in particular that L0, W

and Z in L =W +L0 +Z are all self-adjoint) - although we will see that this condition can be

weakened. When r ∈N∗, we have the product of r integrals:

fn(Z )−r =
∫
Cr N̄

e−
∑r

a=1 x̄T
a Lxa

r∏
a=1

dxa

πN̄
(3.134)

After expanding L with L =W +L0 +Z , we find:∑
a

x̄T
a Lxa =∑

a

∑
i j

∑
uv

x̄(i )
au(L)(i j )

uv x( j )
av (3.135)

=∑
i j

∑
uv

(W (i j )
uv + (L0 +Z )(i j )

uv )
∑
a

x̄(i )
au x( j )

av (3.136)

=∑
i j

∑
uv

(ReW (i j )
uv + i ImW (i j )

uv + (L0 +Z )(i j )
uv )

∑
a

x̄(i )
au x( j )

av (3.137)

As a reminder, we impose the following covariance structure:

E[ReW (i j )
uv ReW (kl )

uv ] = E[ImW (i j )
uv ImW (kl )

uv ] = 1

2n
σlk

i j (3.138)
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So using this structure and the self-adjoint condition, we have:

E[ReW (i j )
uv ReW (kl )

vu ] = E[ReW (i j )
uv ReW̄ (lk)

uv ] = 1

2n
σkl

i j (3.139)

E[ImW (i j )
uv ImW (kl )

vu ] = E[ImW (i j )
uv ImW̄ (kl )

uv ] =− 1

2n
σkl

i j (3.140)

Which leads to the general average:

E[W (i j )
uv W (kl )

vu ] = 1

n
σkl

i j and E[W (i j )
uv W (kl )

uv ] = 0 (3.141)

So by taking the expectation over W with the moment generating function (which boils down

to similar calculations as in Section 3.5.1):

EW [ fn(Z )−r ] =
∫
Cr N̄

exp

{
1

2n

∑
i j ,kl

σkl
i j

∑
uv

(∑
a

x̄(i )
au x( j )

av

)(∑
b

x̄(k)
bv x(l )

bu

)
+R(x)

}
r∏

a=1

dxa

πN̄
(3.142)

Where

R(x) =− 1

n

∑
i j

∑
uv

(L0 +Z )(i j )
uv

∑
a

x̄(i )
au x( j )

av (3.143)

Notice further that:

∑
uv

(∑
a

x̄(i )
au x( j )

av

)(∑
b

x̄(k)
bv x(l )

bu

)
=∑

ab

(∑
u

x̄(i )
au x(l )

bu

)(∑
v

x( j )
av x̄(k)

bv

)
(3.144)

So let Σi l ,k j =σkl
i j be the "matrixization" of σ, and for the sake of clarity, let’s define X (i l )

ab (x) =
1
n

∑
u x̄(i )

au x(l )
bu . Then we can find an extended version of the Hubbard-Stratonovich transform:

∣∣∣det
(n

2
Σ

)∣∣∣∫ exp

{
−n

2

∑
i j ,kl

(
q (i l )

ab −X (i l )
ab (x)

)
σkl

i j

(
q̄ ( j k)

ab − X̄ ( j k)
ab (x)

)}∏
i l

dq (i l )
ab

π
= 1 (3.145)

So in fact we have (with extra caution about the Re)

e
n
2

∑
i j ,kl σ

kl
i j X (i l )

ab (x)X̄ ( j k)
ab (x) =

∣∣∣det
(n

2
Σ

)∣∣∣∫ e
− n

2

∑
i j ,kl σ

kl
i j

(
q (i l )

ab q̄ ( j k)
ab −2Re(X̄ (i l )

ab (x)q ( j k)
ab )

) ∏
i l

dq (i l )
ab

π
(3.146)

By grouping the terms in x, q̂ , q , the expression can be rewritten as:

E[ fn(Z )−r ] =
∣∣∣det

(n

2
Σ

)∣∣∣∫
q

en(Q̃r (q)+R̃n,r (q))

 ∏
a≤b
(i j )

dq (i j )
ab

π

 (3.147)
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where we introduced the functions Q̃r and R̃n,r given by:

Q̃r (q) =−1

2

∑
a≤b

∑
i j ,kl

σkl
i j q (i l )

ab q̄ ( j k)
ab (3.148)

R̃n,r (q) = 1

n
log

∫
Cr N̄

exp

{
n

(
R(x)+ ∑

i j ,kl ,a≤b
σkl

i j Re
(
q̄ ( j k)

ab X (i l )
ab (x)

))}( r∏
a=1

dxa

πN̄

)
(3.149)

Q̃r doesn’t depend on n but R̃n,r does. However, we make the assumption that for any given r ,

it concentrates towards a value R̃∞,r in the limit n →+∞, and assume that we can perform

the saddle-point approximation. This way we find for some constant C :

E[ fn(Z )−r ] ≃Ce
nExtr

q
(Q̃r (q)+R̃∞,r (q))

(3.150)

To compute the extremum, we constrain the subset of the possible solutions with the following

Ansatz: we assume that the extrema is located at a certain q (i j )
ab = p(i j )δab . In this way, we can

simplify the dependency in r in Q̃r and R̃∞,r , and have the extremum given by:

Extr
q

(
Q̃r (q)+ R̃∞,r (q)

)= r Extr
p∈CN×N

(
Q(p)+R∞(p)

)
(3.151)

where define R and Q are related to R̃ and Q̃ by:

R̃r,∞(q) = r R∞(p) Q̃r (q) = r Q(p) (3.152)

This lead to the following expressions for R∞(p):

R∞(p) = lim
n

1

nr
log

∫
Cr N̄

exp

{
n

(
R(x)+ ∑

ai j kl
σkl

i j Re

(
p̄( j k) 1

n

∑
u

x̄(i )
au x(l )

au

))}( r∏
a=1

dxa

πN̄

)
(3.153)

One can use the following:

∑
ai j kl

σkl
i j Re

(
p̄( j k) 1

n

∑
u

x̄(i )
au x(l )

au

)
= 1

2

∑
ai j kl

σkl
i j

(
p̄( j k) 1

n

∑
u

x̄(i )
au x(l )

au +p( j k) 1

n

∑
u

x̄(l )
au x(i )

au

)
(3.154)

= 1

2

∑
ai l

(
[η(p̄)]i l

1

n

∑
u

x̄(i )
au x(l )

au + [η(p)]i l
1

n

∑
u

x̄(l )
au x(i )

au

)
(3.155)

=∑
ai l

[η(p̄)]i l + [η(p)]l i

2

1

n

∑
u

x̄(i )
au x(l )

au (3.156)

So:

R∞(p) = lim
n

1

nr
log

∫
Cr N̄

r∏
a=1

(
exp

{
−∑

i j

∑
uv

((L0 +Z )(i l )
uv −

[
η(p̄)+η(p)T

2

]
i l
δuv )x̄(i )

au x(l )
av

}
dxa

πN̄

)
(3.157)

= lim
n

1

n
log

∣∣∣∣det

(
L0 +Z − 1

2
(η(p̄)+η(p)T )⊗ I

)∣∣∣∣ (3.158)
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Chapter 3. The Linear-pencil method

and similarly for Q:

Q(p) = 1

2

∑
i j ,kl

σkl
i j p(i l )p̄( j k) = 1

2

∑
i l

[η(p̄)]i l p(i l ) (3.159)

So:

Q(p)+R∞(p) = 1

2

∑
i l

[η(p̄)]i l p(i l ) + lim
n

1

n
log

∣∣∣∣det

(
L0 +Z − 1

2
(η(p̄)+η(p)T )⊗ I

)∣∣∣∣ (3.160)

We can show that we can limit the search of the extremum on the subspace im(η) instead of

CN×N . We will show that for any p ∈CN×N , there always exists pi ∈ im(η) such that:

Q(p)+R∞(p) =Q(pi )+R∞(pi ) (3.161)

First of all, as it is assumed in the introduction, we have that η|im(η), the restriction of η on its

image im(η) is an invertible operator which we will define as η−1 (and implicitly assume that,

when invoked, it is defined on im(η) → im(η)). This assumption implies that ker(η)+ im(η) =
CN×N . Therefore, given any p ∈ CN×N , there exists a pk ∈ ker(η) and a pi ∈ im(η) such that

p = pk +pi .

Next, using the linearity of η, we find η(p̄) = η(pk +pi ) = η(pi ) = η(p̄i ) and η(p)T = η(pi )T so

that settles R∞(p) =R∞(pi ). For Q, we use the fact that η is a Hermitian operator with the

scalar product 〈A,B〉 = Tr
[

ĀT B
]
. Indeed for the matrix basis Ei j = ei eT

j we have precisely that

〈η(E j k ),Ei l 〉 =σkl
i j and 〈E j k ,η(Ei l )〉 =σlk

j i , and because L is self-adjoint we find the expected

result σkl
i j =σlk

j i . Consequently, for any g ,h ∈CN×N , we have 〈η(g ),h〉 = 〈g ,η(h)〉. So we have:

∑
i l

[η(p̄)]i l p(i l ) = Tr
[
η(p̄)T p

]= 〈η(p), p〉 = 〈η(pk +pi ), pk +pi 〉 (3.162)

= 〈η(pi ), pk +pi 〉 (3.163)

= 〈pi ,η(pk +pi )〉 (3.164)

= 〈pi ,η(pi )〉 (3.165)

Therefore, we also have Q(p) =Q(pi ), which concludes with Equation (3.161). Therefore, the

extremum calculation can be simplified:

Extr
p∈CN×N

(
Q(p)+R∞(p)

)= Extr
p∈Im(η)

(
Q(p)+R∞(p)

)
(3.166)

= Extr
u∈Im(η)

(
Q(η−1(u))+R∞(η−1(u))

)
(3.167)

where we use the inverse expression:

Q(η−1(u))+R∞(η−1(u)) = 1

2

∑
i l

ūi l [η−1(u)](i l ) + lim
n

1

n
log

∣∣∣∣det

(
L0 +Z − ū +uT

2
⊗ I

)∣∣∣∣ (3.168)
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3.6 Derivation of result 3.1: Three methods

Let u∗ be an extremal point of Q(η−1(u))+R∞(η−1(u)) on Im(η). So at u = u∗, we expect
∂Q(η−1(u))+R∞(η−1(u))

∂ui l
= ∂Q(η−1(u))+R∞(η−1(u))

∂ūi l
= 0 for all i l ∈ S2. Now, because η is a Hermitian

operator, so is η−1. So we can write (using carefully the properties of the Wirtinger derivatives):

∂〈u,η−1(u)〉
∂ui l

= 〈 ∂u

∂ūi l
,η−1(u)〉+〈u,η−1

(
∂u

∂ui l

)
〉 (3.169)

= 〈0,η−1(u)〉+〈u,η−1 (Ei l )〉 (3.170)

= 〈η−1 (u) ,Ei l 〉 = 〈Ei l ,η−1 (u)〉 = [η−1(u)]i l (3.171)

And:

∂〈u,η−1(u)〉
∂ūi l

= 〈 ∂u

∂ui l
,η−1(u)〉+〈u,η−1

(
∂u

∂ūi l

)
〉 (3.172)

= 〈Ei l ,η−1(u)〉+0 = [η−1(u)]i l (3.173)

So we find for Q and for p∗ given such that u∗ = η(p∗):

∂Q ◦η−1

∂ui l
(u∗) = 1

2
[η−1(u∗)](i l ) =

1

2
p̄(i l )
∗ (3.174)

∂Q ◦η−1

∂ūi l
(u∗) = 1

2
p(i l )
∗ = 1

2
(pT

∗ )(l i ) (3.175)

Now for R∞, we find:

∂R∞ ◦η−1

∂ui l
(u∗) =−1

2
Trn

[
((L0 +Z − ū∗+uT∗

2
⊗ I )−1)(i l )

]
(3.176)

∂R∞ ◦η−1

∂ūi l
(u∗) =−1

2
Trn

[
((L0 +Z − ū∗+uT∗

2
⊗ I )−1)(l i )

]
(3.177)

So in fact, we have:

1

2
p̄∗ = 1

2
(J ⊗Trn)

[
((L0 +Z −η

(
p̄∗+pT∗

2

)
⊗ I )−1)

]
(3.178)

1

2
pT
∗ = 1

2
(J ⊗Trn)

[
((L0 +Z −η

(
p̄∗+pT∗

2

)
⊗ I )−1)

]
(3.179)

So by defining h∗ = p̄∗+pT
∗

2 , and summing both equations we have:

h∗ = (J ⊗Trn)
[
((L0 +Z −η(h∗)⊗ I )−1)

]
(3.180)

Now let’s assume that we can interchange the limit in n and r and have calculate the average:

h(Z ) = lim
n→+∞E[hn(Z )] = lim

r→0+ lim
n→+∞

1

n

1−E[ fn(Z )−r ]

r
(3.181)

2Because u ∈ Im(η) and by definition of η in (3.3), u can only defined on the set of indices spanned by S
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Chapter 3. The Linear-pencil method

Then we have h(Z ) =Q(p∗(Z ), Z )+R∞(p∗(Z ), Z ). We can pursue the calculation:

gi j (Z ) = ∂h(Z )

∂z j i
=∑

kl

∂p(kl )
∗ (Z )

∂z j i

∂Q+R∞
∂pkl

(p∗(Z ), Z )+ ∂Q+R∞
∂z j i

(p∗(Z ), Z ) (3.182)

= 0+ (J ⊗Trn)
[
(L0 + (Z −η(h∗(Z )))⊗ I )−1]

i j (3.183)

= h(i j )
∗ (Z ) (3.184)

Consequently, we notice that g is self-adjoint (as is h∗). So at Z = 0 we retrieve result 3.1:

g = (J ⊗Trn)
[
(L0 −η(g )⊗ I )−1] (3.185)

Remark on the non-self-adjoint case:As stated above, given a non-self-adjoing matrix L0,W, Z

such that L = L0 +W +Z is invertible, one can always construct a bigger self-adjoint matrix

L = L0 +W +Z with:

L =
(

0 L

L̄T 0

)
(3.186)

The same results as before will apply, in particular at Z = 0 we find

g = (J ⊗Trn)
[
(L0 −η(g )⊗ I )−1] (3.187)

where η is the operator applied for the covariance structure σ of L. But the inverse of L has

the following form:

L−1 =
(

0 (L̄T )−1

L−1 0

)
(3.188)

And consequently, g is expected to be the solution of the following form:

g =
(

0 ḡ T

g 0

)
(3.189)

With careful consideration, using the operator η applied on the covariance structure σ of L, it

can be shown that we have the following relation (where g and ḡ T are permuted):

η(g ) =
(

0 η(g )

η(ḡ T ) 0

)
(3.190)

Hence the formula for g when Z = 0 when L is not self-adjoint is still valid:

g = (J ⊗Trn)
[
(L0 −η(g )⊗ I )−1] (3.191)
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Appendix

3.A Derivation of the Laguerre polynomials

We let

Pn,d (z) = E
[(

1

2
U1 + i

1

2
U2 − z

)n (
1

2
U1 − i

1

2
U2 +1

)d
]

(3.192)

We find:

Pn,d (z) = E

[
∂

∂t n
1 ∂t d

2

exp

{
t1

(
1

2
U1 + i

1

2
U2 − z

)
+ t2

(
1

2
U1 − i

1

2
U2 +1

)}]∣∣∣∣∣
t1=t2=0

(3.193)

= E

[
∂

∂t n
1 ∂t d

2

exp

{
(t2 − zt1)+ 1

2
(t1 + t2)U1 + i

2
(t1 − t2)U2

}]∣∣∣∣∣
t1=t2=0

(3.194)

= ∂

∂t n
1 ∂t d

2

{
e(t2−zt1)E

[
e

1
2 (t1+t2)U1

]
E
[

e
i
2 (t1−t2)U2

]}∣∣∣∣∣
t1=t2=0

(3.195)

= ∂

∂t n
1 ∂t d

2

{
e(t2−zt1)+ 1

4n (t1+t2)2− 1
4n (t1−t2)2

}∣∣∣∣∣
t1=t2=0

(3.196)

= ∂

∂t n
1 ∂t d

2

{
e(t2−zt1)+ 1

n t1t2

}∣∣∣∣∣
t1=t2=0

(3.197)

First let’s consider the case d ≥ n:

Pn,d (z) = ∂

∂t n
1

{
e−zt1

∂

∂t d
2

e( 1
n t1+1)t2

}∣∣∣∣∣
t1=t2=0

= ∂

∂t n
1

{(
1

n
t1 +1

)d

e−zt1

}∣∣∣∣∣
t1=0

(3.198)
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Chapter 3. The Linear-pencil method

Then Using Leibniz formula we find:

Pn,d (z) =
n∑

k=0

(
n

k

)
(−z)k

[
∂

∂t n−k
1

(
1

n
t1 +1

)d
]

t1=0

(3.199)

=
n∑

k=0

(−z)k

k !

n!

(n −k)!

d !

(d −n +k)!

1

nn−k
(3.200)

= n!

nn

n∑
k=0

(
n + (d −n)

n −k

)
(−nz)k

k !
(3.201)

= n!

nn L (d−n)
n (nz) (3.202)

where we used the expression of the generalized Laguerre polynomial L (α)
n with α= d −n.

Now when d < n, we use instead:

Pn,d (z) = ∂

∂t d
2

{
e t2

∂

∂t n
1

e( 1
n t2−z)t1

}∣∣∣∣∣
t1=t2=0

= ∂

∂t d
2

{(
1

n
t2 − z

)n

e t2

}∣∣∣∣∣
t2=0

(3.203)

So with Leibniz formula we find:

Pn,d (z) =
d∑

k=0

(
d

k

)
1

nk
(−z)n−k n!

(n −k)!
(3.204)

= n!

nn (−nz)n−d
d∑

k=0

(
d

k

)
(−nz)d−k

(d −k)!
(3.205)

= n!

nn (−nz)n−d L (0)
d (nz) (3.206)
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Part IIHigh-dimensional estimations in
linear models
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4 Linear regression estimator

This chapter offers a brief overview of the methodologies used in the subsequent Gaussian

covariate model and random feature model. We begin by introducing a standard linear regres-

sion model as specificed in model 1.1 in the introduction and demonstrate the computation of

asymptotic results for its generalization error using the ridge regression estimator. Following

this, we will explore further into the process of deriving the training curves by applying contour

integration formulas.

4.1 High-dimensional test error and double descent

We consider the data matrix X ∈ Rn×d with independent entries, where Xi j ∼ N (0, 1
d ). Ad-

ditionally, we assume that the labels Y are generated by the equation Y = Xβ∗+ ξ, where

β∗ ∈ Rd is a deterministic vector of fixed norm 1
d

∥∥β∗∥∥2 = r 2. In this equation, the noise

vector ξ is a random variable, independent of X , which follows a uniform distribution on

the sphere ξ ∼ U (Sd−1(σ
p

d)). It is worth noting that a more common assumption is that

ξ∼N (0,σ2In). In fact, in the high-dimensional limit, both distributions can be considered

interchangeably. For the sake of simplicity, we choose the former distribution. In this context,

the ridge-regression estimator with a regularization parameter λ is given by:

β̂= (X T X +λI )−1X T (Xβ∗+ξ) (4.1)

Let’s compute the generalization error using the classical bias-variance decomposition:

Egen = lim
d ,n→+∞

E
∥∥y(x)−xT β̂

∥∥2 =σ2 + lim
d ,n→+∞

BX (β̂)+ lim
d ,n→+∞

VX (β̂) (4.2)

where, as stated in the introduction in equation (1.21) and (1.24):

BX (β̂) = 1

d
E
[∥∥β∗−E[β̂|X ]

∥∥2
]

and VX (β̂) = 1

d
E
[∥∥β̂−E[β̂|X ]

∥∥2
]

(4.3)
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Chapter 4. Linear regression estimator

We will show that we can express the generalization error using specifically the trace of the

resolvent of X T X , defined as gX T X (z) = 1
d Tr

[
(X T X − zId )−1

]
. Starting from the equation

E[β̂|X ] = (X T X +λI )−1X T Xβ∗ we can derive an expression for the average of the bias as

follows:

BX (β̂) = 1

d
EX

∥∥(I − (X T X +λI )−1X T X )β∗∥∥2
(4.4)

=λ2 1

d
EXβ

∗T (X T X +λI )−2β∗ (4.5)

=λ2r 2EX

[
1

d
Tr

[
(X T X +λI )−2]] (4.6)

Note that, as the random matrix X T X is invariant under rotation, the direction of the vector

β∗ has no effect in the preceding equation. Therefore, it can be considered deterministic with

a fixed norm. As for the variance, we have:

VX (β̂) = 1

d
EX

∥∥((X T X +λI )−1X T ξ
∥∥2

(4.7)

= 1

d
EX ξ

T X (X T X +λI )−2X T ξ (4.8)

= EXσ
2 1

d
Tr

[
(X T X +λI )−1 −λ(X T X +λI )−2] (4.9)

In conclusion we have found:

BX (β̂) =λ2r 2EX g ′
X T X (−λ) (4.10)

VX (β̂) =σ2 (
EX gX T X (−λ)−λEX g ′

X T X (−λ)
)

(4.11)

At this point, there remains to calculate the expected value of the Stieltjes-transform of X T X .

In the limit of large d , the Stieltjes-transform of X T X approaches that of the Marchenko-Pastur

distribution. In the next section, we will utilize this fact and the properties of this Stieltjes

transform to pursue our analysis.

4.2 Training and test error in the high-dimensional limit

In the high-dimensional limit, we can use the Marchenko-Pastur distribution to compute the

limiting value of the Stieltjes-transform of X T X with the aspect ratio φ= n
d . The Marchenko-

Pastur distribution is defined as (see Chapter 3):

zg 2(z)+ (
1+ z −φ)

g (z)+1 = 0 (4.12)

Given the bias and variance formula (4.10) and (4.11), we need to evaluate the expression at

z =−λ (note this value is outside of the spectrum of X T X and thus g (z) is well defined at this

point), and also calculate the derivative g ′. So let f = g (−λ) and h = g ′(−λ), by calculating the
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4.2 Training and test error in the high-dimensional limit

derivative of the Marchenko-Pastur law, we get the system of two algebraic equations:

−λ f 2 + (
1−λ−φ)

f +1 = 0 (4.13)

f 2 −2λ f h + f + (
1−λ−φ)

h = 0 (4.14)

With these two equations, it is possible to express the value of f , and then that of h and derive

the asymptotic limit in d →∞ of the bias and variance. However, for the sake of illustration,

we will instead consider another approach where we will derive directly two closed-form

algebraic equations for the bias and the variance. To this end, let’s define b and v the limiting

values of the bias and variance, using (4.10) and (4.11) we have:

b −λ2r 2h = 0 (4.15)

v −σ2 (
f −λh

)= 0 (4.16)

The method now consists in computing a reduced Gröbner basis (Buchberger, 1965) in the

polynomial ring R[ f ,h, v,b] with these four equations. Using an appropriate order with the

application of the Buchberger algorithm which is illustrated at the end of this paragraph, we

find the closed-form equation for b:(
λ2 +2λφ+2λ+ (φ−1)2)(b + r 2(φ−1)

)
b −λ2φr 4 = 0 (4.17)

Hence when λ= 0, the equation reduces to:

(φ−1)2 (
b + r 2(φ−1)

)
b = 0 (4.18)

So either b = 0 (when φ > 1) or b = r 2(1−φ) (when φ < 1). In the same way, we can find a

quadratic equation for v :(
λ2 +2λφ+2λ+ (φ−1)2)(v +σ2)v −φσ4 = 0 (4.19)

This equation is further simplified when λ= 0:

(φ−1)2 (
v +σ2)v −φσ4 = 0 (4.20)

So when λ= 0 we find two solutions:

v = −σ2(φ−1)2 ±
√
σ4(φ−1)4 +4φσ4(φ−1)2

2(φ−1)2 =σ2 ±(φ+1)− (φ−1)

2(φ−1)
(4.21)

Hence we find that v = σ2

φ−1 when φ> 1 or v = σ2φ
1−φ when φ< 1. All in all, we have:

Egen(r,σ,φ,λ= 0) =
σ2 +σ2 1

φ−1 if φ> 1

σ2 + r 2(1−φ)+σ2 φ
1−φ if φ< 1

(4.22)
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Chapter 4. Linear regression estimator

Note that we find back the results of Theorem 1 from (Hastie et al., 2019) when we take γ= 1
φ .

Importantly, this result displays the double-descent phenomena - albeit in a simple situation -

where the test error diverges in the neighborhood of φ= 1.

In the following chapters (in particular Chapter 6), we will use these methods more extensively

in order to reduce the number of equations. This can be accomplished automatically with the

use of a Computer Algebra System. As an example, we can use SymPy (Meurer et al., 2017) in

python:

from sympy import *
print(__version__)

1.12

f,h,lam,b,v,r,sig,phi = symbols("f,h,lambda,b,v,r,sigma,phi")

eq1 = (-lam)*f**2 + (1-lam-phi)*f + 1
eq2 = f**2 - 2*lam*f*h + f + (1 - lam - phi)*h

eqb = b - (lam**2)*(r**2)*h
eqv = v - (sig**2)*(f-lam*h)

EQ_List = Matrix([
eq1, eq2, eqb, eqv

])
EQ_List


− f 2λ+ f

(−λ−φ+1
)+1

f 2 −2 f hλ+ f +h
(−λ−φ+1

)
b −hλ2r 2

−σ2
(

f −hλ
)+ v


# change the order of the generators
res_b = groebner(EQ_List, [f,h,v,b])
res_v = groebner(EQ_List, [f,h,b,v])

# Equaiton for the bias
res_b[-1]

b2 (
λ2 +2λφ+2λ+φ2 −2φ+1

)+b
(
λ2φr 2 −λ2r 2 +2λφ2r 2 −2λr 2 +φ3r 2 −3φ2r 2 +3φr 2 − r 2)−

λ2φr 4

# Equation for the variance
res_v[-1]
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4.3 Time evolution and learning curves

−φσ4 + v2 (
λ2 +2λφ+2λ+φ2 −2φ+1

)+ v
(
λ2σ2 +2λφσ2 +2λσ2 +φ2σ2 −2φσ2 +σ2)

# solution for the bias when $\lambda = 0$
Matrix(solve(res_b[-1].subs(lam,0), b))

[
0

r 2 · (1−φ)]

# solution for the variance when $\lambda = 0$
Matrix(solve(res_v[-1].subs(lam,0), v))

[
σ2

φ−1

− φσ2

φ−1

]

# a plot for $r=1, \sigma^2 = 0.1$
plot(0.1 + Max(0,1-phi) + 0.1*Max(1/(phi-1),-phi/(phi-1)), (phi, 0, 2), ylim=(0.,2.),

ylabel="$E_{gen}$")

4.3 Time evolution and learning curves

In this section, we explain how we can derive the evolution of the bias and variance in time,

thereby following the ideas of (Advani et al., 2020a) but using complex contours of integration

as a tool to express the evolution of the bias and variance. We will use the same model as

before, but with the gradient-flow algorithm with the training error defined as:

E λ
train(β) = ∥∥Y −Xβ

∥∥2 +λ∥∥β∥∥2 (4.23)
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Chapter 4. Linear regression estimator

Using the gradient-flow formula, we find a differential equation for βt :

∂βt

∂t
=−∇βE λ

train(βt ) = X T (Y −Xβt )−λβt (4.24)

In the following, we will assume that we choose an initial vectorβ0 sampled on the hypersphere

independently of β∗ and X , with a norm
∥∥β0

∥∥2 = r 2
0 d . We can express βt as follows:

βt =
(
I −e−(X T X+λI )t

)
(X T X +λI )−1X T Y +e−(X T X+λI )tβ0 (4.25)

When β0 is a random variable, we can use another formulation in equation (4.2) with a

conditional bias and conditional variance, as explained in Section 1.5 in the introduction:

BX ,β0 (βt ) = 1

d
E
∥∥β∗−E[βt |X ,β0]

∥∥2 (4.26)

VX ,β0 (βt ) = 1

d
E
∥∥βt −E[βt |X ,β0]

∥∥2 (4.27)

The bias term can be decomposed into smaller terms:

BX ,β0 (βt ) = 1

d
E
∥∥β∗−E[βt |X ]

∥∥2 + 1

d
E
∥∥E[βt |X ]−E[βt |X ,β0]

∥∥2 (4.28)

In order to use the contour integration formula, let’s define a contour Γ⊂Cwhich encloses

the spectrum of X T X without containing the point −λ. Each term can be expanded:

1

d
E
∥∥β∗−E[βt |X ]

∥∥2 = 1

d
E
∥∥∥{

I −
(
I −e−t (X T X+λI )

)
(X T X +λI )−1X T X

}
β∗

∥∥∥2
(4.29)

= −1

2iπ

1

d

∥∥β∗∥∥2
∮
Γ

(
1− z

1−e−t (z+λ)

z +λ

)2

EX Tr
[
(X T X − zI )−1]dz (4.30)

= −r 2

2iπ

∮
Γ

(
λ+ ze−t (z+λ)

z +λ

)2

EX gX T X (z)dz (4.31)

Which, in the limit t →∞, corresponds to equation (4.4) as expected. Note that the minus

sign comes from the counter-clockwise integration on the complex contour Γ.

The second term yields an additional error term coming from the initialization:

1

d
E
∥∥E[βt |X ]−E[βt |X ,β0]

∥∥2 =− r 2
0

2iπ

∮
Γ

e−2t (z+λ)EX gX T X (z)dz (4.32)

Similarly for the variance, because we fixed 1
d ∥ξ∥2 =σ2, we get:

VX ,β0 (βt ) = −σ2

2iπ

∮
Γ

z

(
1−e−t (z+λ)

z +λ

)2

EX gX T X (z)dz (4.33)
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4.3 Time evolution and learning curves

We suppose that in the limit d →∞, we can take limd→∞EX gX T X (z) = g (z) and:

Egen(t ) =σ2 + −1

2iπ

∮
Γ

{
r 2

(
λ+ ze−t (z+λ)

z +λ

)2

+ r 2
0 e−2t (z+λ) +σ2z

(
1−e−t (z+λ)

z +λ

)2}
g (z)dz (4.34)

Thus, we have an analytic formula that can be computed numerically to determine the gener-

alization error at any time t for any set of parameters (r,r0,σ,φ,λ).

The analytical approach developed here will serve as a foundation for the methods explored

in the remaining chapters for more advanced models.
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model

A recent line of work has shown remarkable behaviors of the generalization error curves in

simple learning models. Even the least-squares regression has shown atypical features such as

the model-wise double descent, and further works have observed triple or multiple descents.

Another important characteristic are the epoch-wise descent structures which emerge during

training. The observations of model-wise and epoch-wise descents have been analytically

derived in limited theoretical settings (such as the random feature model) and are otherwise

experimental. In this work which is based on the work (Bodin and Macris, 2022), we leverage

the model 1.2 from the introduction to provide a full and unified analysis of the whole time-

evolution of the generalization curve, in the asymptotic large-dimensional regime and under

gradient-flow, within a wider theoretical setting stemming from a gaussian covariate model. In

particular, we cover most cases already disparately observed in the literature, and also provide

examples of the existence of multiple descent structures as a function of a model parameter or

time. Furthermore, we show that our theoretical predictions adequately match the learning

curves obtained by gradient descent over realistic datasets. Technically we compute averages

of rational expressions involving random matrices using recent developments in random

matrix theory based on "linear pencils" as described in Chapter 3.

5.1 Introduction

5.1.1 Preliminaries

With growing computational resources, it has become customary for machine learning models

to use a huge number of parameters (billions of parameters in Brown et al. (2020)), and the

need for scaling laws has become of utmost importance Hoffmann et al. (2022). Therefore it is

of great relevance to study the asymptotic (or "thermodynamic") limit of simple models in

which the number of parameters and data samples are sent to infinity. A landmark progress

made by considering these theoretical limits, is the analytical (oftentimes rigorous) calculation

of precise double-descent curves for the generalization error starting with Belkin et al. (2020a);

Hastie et al. (2019); Mei and Montanari (2019), Advani et al. (2020a), d’Ascoli et al. (2020),
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Chapter 5. A framework: the gaussian covariate model

Gerace et al. (2020a), Deng et al. (2021a), Kini and Thrampoulidis (2020) confirming in a

precise (albeit limited) theoretical setting the experimental phenomenon initially observed in

Belkin et al. (2019b), Geiger et al. (2019); Spigler et al. (2019b), Nakkiran et al. (2020a). Further

derivations of triple or even multiple descents for the generalization error have also been

performed d’Ascoli et al. (2020); Nakkiran et al. (2020b); Chen et al. (2021); Richards et al.

(2021); Wu and Xu (2020). Other aspects of multiples descents have been explored in Lin

and Dobriban (2021); Adlam and Pennington (2020b) also for the Neural tangent kernel in

Adlam and Pennington (2020a). The tools in use come from modern random matrix theory

Pennington and Worah (2017); Rashidi Far et al. (2006); Mingo and Speicher (2017), and

statistical physics methods such as the replica method Engel and Van den Broeck (2001a).

In this chapter we are concerned with a line of research dedicated to the precise time-evolution

of the generalization error under gradient flow corroborating, among other things, the pres-

ence of epoch-wise descents structures Crisanti and Sompolinsky (2018); Bodin and Macris

(2021a) observed in Nakkiran et al. (2020a). We consider the gradient flow dynamics for the

training and generalisation errors in the setting of a Gaussian Covariate model, and develop

analytical methods to track the whole time evolution. In particular, for infinite times we get

back the predictions of the least square estimator which have been thoroughly described in a

similar model by Loureiro et al. (2021).

In the next paragraphs we set-up the model together with a list of special realizations, and

describe our main contributions.

5.1.2 Model description

Generative Data Model:In this chapter, we use the so-called Gaussian Covariate model in a

teacher-student setting. An observation in our data model is defined through the realization

of a gaussian vector z ∼N (0, 1
d Id ). The teacher and the student obtain their observations (or

two different views of the world) with the vectors x ∈RpB and x̂ ∈Rp A respectively, which are

given by the application of two linear operations on z. In other words there exists two matrices

B ∈ Rd×pB and A ∈ Rd×p A such that x = B T z and x̂ = AT z. Note that the generated data can

also be seen as the output of a generative 1-layer linear network. In the following, the structure

of A and B is pretty general as long as it remains independent of the realization z: the matrices

may be random matrices or block-matrices of different natures and structures to capture more

sophisticated models. While the models we treat are defined through appropriate A and B , we

will often only need the structure of U = A AT and V = BB T .

A direct connection can be made with the Gaussian Covariate model described in Loureiro et al.

(2021) which suggests considering directly observations x̄ = (xT , x̂T )T ∼N (0,Σ) for a given

covariance structure Σ. The spectral theorem provides the existence of orthonormal matrix

O and diagonal D such that Σ=OT DO and D contains d non-zero eigenvalues in a squared

block D1 and p A +pB −d zero eigenvalues. We can write D = J T D1 J with J = (Id |0p A+pB−d ).

Therefore if we let z = 1p
d

D
− 1

2
1 JOx̄ which has variance 1

d Id , then upon noticing J J T = Id and
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5.1 Introduction

defining (A|B)T =p
dOT J T D

1
2
1 we find (A|B)T z ∼N (0,Σ).

The Gaussian Covariate model unifies many different models as shown in Table 5.1.1. These

special cases are all discussed in Section 5.3 and Appendix 5.D

Table 5.1.1: Different matrices and corresponding models

Target Matrix B Estimator Matrix A Corresponding Modelr
√

d
p Ip 0

0 σ
√

d
q Iq

 (√
d
p Ip

Oq×p

)
Ridgeless regression with signal
r and noise σ

√
r 2d

p Iγp 0 0

0
√

r 2d
p Iγ′p 0

0 0
√

σ2d
q Iq




√
d
γp Iγp

O(1−γ)p×γd

Oq×γd

 Mismatched ridgeless regression
withz signal r and noise σ and
mismatch parameter γ with γ+
γ′ = 1

Iγd 0 0 0
0 Iγd 0 0

0 0
. . .

...
0 0 . . . Iγd




1
α0 Iγd 0 0

0
. . .

...
0 . . . 1

α
p−1

2
Iγd


non-isotropic ridgless regression
noiseless with a α polynomial
distorsion of the inputs scalings


r
√

d
p Ip Op×q

ON×p ON×q

Oq×p σ
√

d
q Iq



µ
√

d
p W

ν
√

d
p IN

Oq×N


Random feature regression of a
noisy linear function with W the
random weights and (µ,ν) de-
scribing a non-linear activation
function

p
ω1 0 · · · 0
0

p
ω2 · · · 0

...
...

. . .
...

0 0 · · · p
ωd



p
ω1 0 · · · 0
0

p
ω2 · · · 0

...
...

. . .
...

0 0 · · · p
ωd


Further Kernel methods

Learning task:We consider the problem of learning a linear teacher function fd (x) = β∗T x

with x and x̂ sampled as defined above, and with β∗ ∈ Rp a column vectors. This hidden

vector β∗ (to be learned) can potentially be a deterministic vector. We suppose that we have

n data-points (zi , yi )1≤i≤n with xi = B zi , x̂i = Azi . This data can be represented as the n ×d

matrix Z ∈Rn×d where zT
i is the i -th row of Z , and the column vector vector Y ∈Rn with i -th

entry yi . Therefore, we have the matrix notation Y = Z Bβ∗. We can also set X = Z B so that

Y = Xβ∗.

In the same spirit, we define the estimator of the student ŷβ(z) =βT x = zT Aβ. We note that in

general the dimensions of β and β∗ (i.e., p A and pB ) are not necessarily equal as this depends

on the matrices B and A. We have Ŷ = Z Aβ= X̂β for X̂ = Z A.
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Chapter 5. A framework: the gaussian covariate model

Training and test error:We will consider the training error E λ
train and test errors Egen with a

regularization coefficient λ ∈R∗+ defined as

E λ
train(β) = 1

n
∥Ŷ −Y ∥2

2 +
λ

n

∥∥β∥∥2
2 , Egen(β) = E

z∼N (0,
Id
d )

[
(zT Aβ− zT Bβ∗)2] (5.1)

It is well known that the least-squares estimator β̂= argminE λ
train(β) is given by the Thikonov

regression formula β̂λ = (X̂ T X̂ +λI )−1X̂ T Y and that in the limit λ→ 0, this estimator con-

verges towards the β̂0 given by the Moore-Penrose inverse β̂0 = (X̂ T X̂ )+X̂ T Y .

Gradient-flow:We use the gradient-flow algorithm to explore the evolution of the test error

through time with ∂βt

∂t = −n
2 ∇βE λ

train(βt ). In practice, for numerical calculations we use the

discrete-time version, gradient-descent, which is known to converge towards the aforemen-

tioned least-squares estimator provided a sufficiently small time-step (in the order of 1
λmax

where λmax is the maximum eigenvalue of X̂ T X̂ ). The upfront coefficient n on the gradient is

used so that the test error scales with the dimension of the model and allows for considering

the evolution in the limit n,d , p A , pB →+∞ with a fixed ratios n
d , p A

d , pB

d . We will note φ= n
d .

5.1.3 Contributions

1. We provide a general unified framework covering multiple models in which we derive, in

the asymptotic large size regime, the full time-evolution under gradient flow dynamics of the

training and generalization errors for teacher-student settings. In particular, in the infinite

time-limit we check that our equations reduce to those of Loureiro et al. (2021) (as should be

expected). But with our results we now have the possibility to explore quantitatively potential

advantages of different stopping times: indeed our formalism allows to compute the time

derivative of the generalization curve at any point in time.

2. Various special cases are illustrated in Section 5.3, and among these a simpler re-derivation

of the whole dynamics of the random feature model Bodin and Macris (2021a), the full dynam-

ics for kernel methods, and situations exhibiting multiple descent curves both as a function of

model parameters and time (See Section 5.3.2 and Appendix 5.D.2). In particular, our analysis

allows to design multiple descents with respect to the training epochs.

3. We show that our equations can also capture the learning curves over realistic datasets such

as MNIST with gradient descent (See Section 5.3.4 and Appendix 5.D.5), extending further

the results of Loureiro et al. (2021) to the time dependence of the curves. This could be an

interesting guideline for deriving scaling laws for large learning models.

4. We use modern random matrix techniques, namely an improved version of the linear-pencil

method - recently introduced in the machine learning community by Adlam et al. (2019) -

to derive asymptotic limits of traces of rational expressions involving random matrices. We

refer to Chapter 3 for more details about the methods and the fixed point equation that will be

employed throughout this work.
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Notations:We will use Trd [·] ≡ limd→+∞ 1
d Tr[·] and similarly for Trn [·]. We also occasionally

use Nd (v) = limd→+∞ 1
d ∥v∥2 for a vector v (when the limit exists).

5.2 Main results

We resort to the high-dimensional assumptions (see Bodin and Macris (2021a) for similar

assumptions).

Assumptions 5.1 (High-Dimensional assumptions). In the high-dimensional limit, i.e, when

d →+∞ with all ratios n
d , p A

d , pB

d fixed, we assume the following

1. All the traces Trd [·], Trn [·] concentrate on a deterministic value.

2. There exists a sequence of complex contours Γd ⊂C enclosing the eigenvalues of the random

matrix X̂ T X̂ ∈Rd×d but not enclosing −λ, and there exist also a fixed contour Γ enclosing the

support of the limiting (when d →+∞) eigenvalue distribution of X̂ T X̂ but not enclosing −λ.

With these assumptions in mind, we derive the precise time evolution of the test error in

the high-dimensional limit (see result 5.1) and similarly for the training error (see result 5.4).

We will also assume that the results are still valid in the case λ= 0 as suggested in Mei and

Montanari (2019).

5.2.1 Time evolution formula for the test error

Result 5.1. The limiting test error time evolution for a random initialization β0 such that

Nd (β0) = r0 and E[β0] = 0 is given by the following expression:

Ēgen(t ) = c0 + r 2
0 B0(t )+B1(t ) (5.2)

with V ∗ = Bβ∗β∗T B T and c0 = Trd [V ∗] and:

B1(t ) = −1

4π2

∮
Γ

∮
Γ

(1−e−t (x+λ))(1−e−t (y+λ))

(x +λ)(y +λ)
f1(x, y)dxdy + 1

iπ

∮
Γ

1−e−t (z+λ)

z +λ f2(z)dz (5.3)

B0(t ) = −1

2iπ

∮
Γ

e−2t (z+λ) f0(z)dz (5.4)

where f1(x, y) = f2(x)+ f2(y)+ f̃1(x, y)− c0 and:

f̃1(x, y) = Trd
[
(φU +ζx I )−1(ζxζyV ∗+ f̃1(x, y)φU 2)(φU +ζy I )−1] (5.5)

f2(z) = c0 −Trd
[
ζzV ∗(φU +ζz I )−1] (5.6)

f0(z) =−
(
1+ ζz

z

)
(5.7)
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and ζz given by the self-consistent equation:

ζz =−z +Trd
[
ζzU (φU +ζz I )−1] (5.8)

The former result can be expressed in terms of expectations w.r.t the joint limiting eigenvalue

distributions of U and V ∗ when they commute with each other.

Result 5.2. Besides, when U and V ∗ commute, let u, v∗ be jointly-distributed according to U

and V ∗ eigenvalues respectively. Then:

f̃1(x, y) = Eu,v∗

[
ζxζy v∗+ f̃1(x, y)φu2

(φu +ζx )(φu +ζy )

]
, f2(z) = c0 −Eu,v∗

[
ζz v∗

φu +ζz

]
(5.9)

ζz =−z +Eu

[
ζz u

φu +ζz

]
(5.10)

Notice also that in the limit t →∞:

B1(+∞) = f1(−λ,−λ)−2 f2(−λ) = f̃1(−λ,−λ)− c0, B0(+∞) = 0 (5.11)

which leads to the next result.

Result 5.3. In the limit t →∞, the limiting test error is given by Ēgen(+∞) = f̃1(−λ,−λ).

Remark 1Notice that the matrix V ∗ is of rank one depending on the hidden vectorβ∗. However,

it is also possible to calculate the average generalization (and training) error over a prior dis-

tribution β∗ ∼P ∗. Averaging Eβ∗∼P ∗ [Ēgen] propagates the expectation within Eβ∗∼P ∗ [B0(t )]

and Eβ∗∼P ∗[B1(t )], which propagates it further into the traces of Eβ∗∼P ∗[ f̃1] and Eβ∗∼P ∗[ f2].

In fact we find:

EP ∗ [ f̃1(x, y)] = Trd
[
(φU +ζx I )−1(ζxζyEP ∗ [V ∗]+EP ∗ [ f̃1(x, y)]φU 2)(φU +ζy I )−1] (5.12)

Eβ∗∼P ∗ [ f2(z)] = c0 −Trd
[
ζzEP ∗ [V ∗](φU +ζz I )−1] (5.13)

In conclusion, we find that Eβ∗∼P ∗[Ēgen] follows the same equations as Ēgen in result 5.1

with Eβ∗∼P ∗[V ∗] instead of V ∗. In the following, we will consider V ∗ without any distinction

whether it comes from a specific vector β∗ or averaged through a sample distribution P ∗.
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Remark 2In the particular case where U is diagonal, the matrix V ∗ can be replaced by the

following diagonal matrix Ṽ ∗ which, in fact, commutes with U :

Ṽ ∗ =


[V ∗]11[β∗]2

1 0 . . . 0

0 [V ∗]22[β∗]2
2 . . . 0

...
...

. . .
...

0 0 . . . [V ∗]dd [β∗]2
d

 (5.14)

This comes essentially from the fact that given a diagonal matrix D and a non-diagonal matrix

A, then [D A]i i = [D]i i [A]i i . This is particularly helpful, and shows that in many cases the

calculations of f̃1 or f2 remain tractable even for a deterministic β∗ (see the example in

Appendix 5.D.3) .

Remark 3Sometimes U = A AT and V = BB T are more difficult to handle than their dual

counterparts U⋆ =φAT A and V⋆ =φB T B together with the additional matrix Ξ=φAT B . The

following expressions are thus very useful (See Appendix 5.C):

f1(x, y) = Trn
[
(U⋆+ζx I )−1((Ξβ∗β∗TΞT )+ f̃1(x, y)U⋆)U⋆(U⋆+ζy I )−1] (5.15)

f2(z) = Trn
[
(Ξβ∗β∗TΞT )(U⋆+ζz I )−1] (5.16)

ζz =−z +Trn
[
ζzU⋆(U⋆+ζz I )−1] (5.17)

In fact, when x = y =−λ (which corresponds to the limit when t →∞), these are the same

expressions as (59) in Loureiro et al. (2021) with the appropriate change of variableλ(1+V ) → ζ

and f̃1 → ρ+q −2m.

5.2.2 Time evolution formula for the training error

Result 5.4. The limiting training error time evolution is given by the following expression:

Ē 0
train(t ) = c0 + r 2

0 H0(t )+H1(t ) (5.18)

with:

H1(t ) = −1

4π2

∮
Γ

∮
Γ

(1−e−t (x+λ))(1−e−t (y+λ))

(x +λ)(y +λ)
h1(x, y)dxdy + 1

iπ

∮
Γ

1−e−t (z+λ)

z +λ h2(z)dz (5.19)

H0(t ) = −1

2iπ

∮
Γ

e−2t (z+λ)h0(z)dz (5.20)

where h1(x, y) = h2(x)+h2(y)+ h̃1(x, y)− c0 and with ηz = −z
ζz

:

h̃1(x, y) = ηxηy f̃1(x, y), h2(z) = ηz (c0 f0(z)+ f2(z)), h0(z) = ηz f0(z) (5.21)
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Eventually, in the limit t →∞ we find:

H1(+∞) = h1(−λ,−λ)−2h2(−λ) = h̃1(−λ,−λ)− c0, H0(+∞) = 0 (5.22)

Result 5.5. In the limit t →∞, we have the relation Ē 0
train(+∞) = η2

−λĒgen(+∞)

We notice the same proportionality factor η2
−λ =

(
λ

ζ(−λ)

)2
as already stated in Loureiro et al.

(2021), however interestingly, in the time evolution of the training error, such a factor is not

valid as we have h2(z) ̸= ηz f2(z).

5.3 Applications and examples

We discuss some of the models provided in table 5.1.1 and some others in Appendix 5.D.

5.3.1 Ridgeless regression of a noisy linear function

Target function Consider the following noisy linear function y(x) = r xTβ∗
0 +σϵ for some

constant σ ∈R+ and ϵ∼N (0,1), and a hidden vector β∗
0 ∼N (0, Ip ). Assume we have a data

matrix X ∈ Rn×p . In order to incorporate the noise in our structural matrix B , we consider

an additional parameter q(d) that grows linearly with d and such that d = p +q . Let φ0 = n
p .

Therefore φ= n
d = n

p
p
d = φ0ψ. Also, we let β∗T = (β∗T

0 |βT
1 ) ∼ N (0, Ip+q ) and we consider an

average V ∗ over β∗. We construct the following block-matrix B and compute the averaged V ∗

as follow:

B =
r

√
d
p Ip 0

0 σ
√

d
q Iq

=⇒V ∗ =
(

r 2 1
ψ Ip 0

0 σ2 1
1−ψ Iq

)
(5.23)

Now let’s consider the random matrix Z ∈Rn×d and split it into two sub-blocks Z =
(√

p
d X |

√
q
dΣ

)
.

The framework of the chapter yields the following output vector:

Y = Z Bβ∗ = r Xβ∗
0 +σξ (5.24)

where ξ=Σβ∗
1 is used as a proxy for the noise ϵ.

Estimator Now let’s consider the linear estimator ŷt = xTβt . To capture the structure of this

model, we use the following block-matrix A and compute the resulting matrix U :

A =
(√

d
p Ip

0q×p

)
=⇒U =

(
1
ψ Ip 0

0 0q×q

)
(5.25)

Therefore, it is straightforward to check that we have indeed: Ŷt = Z Aβt = Xβt .

Analytic result In this specific example, U and V ∗ are both diagonal-matrices, so Result 5.2
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applies. Let’s define (u, v∗) a random-variable sampling uniformly the eigenvalues of (U ,V ∗).

The structures of U and V ∗ give the following joint-distribution:

P

(
u = 1

ψ
, v∗ = r 2

ψ

)
=ψ P

(
u = 0, v∗ = σ2

1−ψ
)
= 1−ψ (5.26)

In this specific example, we focus only on rederiving the high-dimensional generalization

error without any regularization term (λ= 0) for the minimum least-squares estimator. So we

calculate ζ= ζ(0) as follows: ζ=ψ ζ 1
ψ

φ

ψ
+ζ +0 implies ζ2 +φ0ζ= ζ so ζ ∈ {

0,1−φ0
}
. For f̃1 we get:

f̃1 =ψ
f̃1

φ

ψ2

(φψ +ζ)2
+ψr 2

ψ

ζ2

(φψ +ζ)2
+ (1−ψ)

σ2

1−ψ
ζ2

(ζ)2 (5.27)

In fact, the expression can be simplified as follow (without the constants φ,ψ):(
1− φ0

(φ0 +ζ)2

)
f̃1 = r 2 ζ2

(φ0 +ζ)2 +σ2 (5.28)

Using both solutions ζ= 0 or ζ= 1−φ0 yields the same results as in Hastie et al. (2019); Belkin

et al. (2020a) using 5.3:

Egen(+∞) =
{

σ2 φ0

φ0−1 (ζ= 0)

r 2(1−φ0)+σ2 1
1−φ0

(ζ= 1−φ0)
(5.29)

5.3.2 Non-isotropic ridgeless regression of a noiseless linear model

Non-isotropic models have been studied in Dobriban and Wager (2018) and then also Wu and

Xu (2020); Richards et al. (2021); Nakkiran et al. (2020b); Chen et al. (2021) where multiple-

descents curve have been observed or engineered. In this section, we extend this idea to

show that any number of descents can be generated and derive the precise curve of the

generalization error as in Figure 5.3.1.

Target function We use the standard linear model y(z) = zTβ∗ for a random β∗ ∼ N (0, Id ).

Therefore, we consider the matrix B = Id and thus V ∗ = Id such that Y = Z Bβ∗ = Zβ∗.

Estimator: Following the structure provided in table 5.1.1, the design a matrix A is a scalar

matrix with p ∈N∗ sub-spaces of different scales spaced by a polynomial progression α− 1
2 i . In

other words, the student is trained on a dataset with different scalings. We thus have U = A2

and Ŷt = X̂βt = Z Aβt , such that for a given data-sample x̂ and any 0 ≤ i ≤ p −1 and 1 ≤ k ≤ d
p ,

we have Var
(
x̂i d

p +k

)
=α−i .

Analytic results We refer the reader to the Appendix 5.D.2 for the calculation. Depending if φ

is above or below 1, ζ is the solution of the following equations: ζ= 0 or 1 = 1
p

∑p−1
i=0

1
φ+αi ζ

. In
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the over-parameterized regime (φ< 1), the generalisation error is fully characterized by the

equation:

Ēgen(+∞) =φ(1−φ)

(
1

p

p−1∑
i=0

αiζ

(φ+αiζ)2

)−1

−φ (5.30)

In the asymptotic limit α→∞, ζ can be approximated and thus we can derive an asymptotic

expansion of Ēgen(+∞) for φ ∈ [0,1] \ k
pZwhere clearly, the multiple descents appear as roots

of the denominator of the sum:

Ēgen(+∞) = 1

p

p−1∑
k=0

φ(1−φ)(
φ− k

p

)(
k+1

p −φ
)1]

k
p ; k+1

p

[(φ)−φ+oα(1) (5.31)

Figure 5.3.1: Example of theoretical multiple descents in the least-squares solution for the non-isotropic
ridgeless regression model with p = 3,λ= 10−7 (left) and p = 4,λ= 10−13 (right), and α= 104 in both of them.

Interestingly, we can see how these peaks are being formed with the time-evolution of the

gradient flow as in Figure 5.3.2 with one peak close toφ= 1
3 and the second one atφ= 2

3 . (Note

that small λ requires more computational resources to have finer resolution at long times,

hence here the second peak develops fully after t = 104). It is worth noticing also the existence

of multiple time-descent, in particular at φ= 1 with some "ripples" that can be observed even

in the training error.

Figure 5.3.2: Example of theoretical multiple descents evolution in the non-isotropic ridgeless regression model
with p = 3,λ= 10−5,α= 100 with φ= 1 on the left and a range φ ∈ (0,1) on the right heatmap.

The eigenvalue distribution (See Appendix 5.D.2) provides some insights on the existence

of these phenomena. The emergence of a new spike when φ increases in Figure 5.3.1 when

p = 3 coincides with the rise of a new "bulk" in the eigenvalue distribution. This can be seen

in Figure 5.3.3 around φ = 1
3 and φ = 2

3 . Note the analogy with the generic double-descent

phenomena discussed in Hastie et al. (2019), where, instead of two distinct bulks, there is only
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one bulk but with a mass concentrated at 0. Furthermore, the existence of multiple bulks

allow for multiple evolution at different scales (with the e−(z+λ)t terms) and thus enable the

emergence of multiple epoch-wise peaks.

Figure 5.3.3: Theoretical (log-)eigenvalue distribution in the non-isotropic ridgeless regression model with
p = 3,λ= 10−5,α= 100 with φ= 1 on the left and a range φ ∈ (0,1) on the right heatmap.

5.3.3 Random feature regression

In this section, we show that we can derive the learning curves for the random feature model

introduced in Rahimi and Recht (2008), and we consider the setting described in Bodin and

Macris (2021a). In this setting, we define the random weight-matrix W ∈Rp×N where ψ0 = N
p

such that Wi j ∼ N (0, 1
p ) and d = p +N + q and φ = n

d , ψ = p
d , and φ0 = n

p = n
d

d
p = φ

ψ (thus
q
d = 1− (1+ψ0)ψ). So with Z =

(√
p
d X |

√
p
dΩ|

√
q
d ξ

)
, using the structures A and B from table

5.1.1 we have: Z A =µX W +νΩ and Z B = X +σξ, hence the model:

Ŷ = Z Aβ= (µX W +νΩ)β (5.32)

Y = Z Bβ∗ = Xβ∗
0 +σξβ∗

1 (5.33)

With further calculation that can be found in Appendix 5.D.4, a similar complete time deriva-

tion of the random feature regression can be performed with a much smaller linear-pencil

than the one suggested in Bodin and Macris (2021a). As stated in this former work, the curves

derived from this formula track the same training and test error in the high-dimensional

limit as the model with the point-wise application of a centered non-linear activation func-

tion f ∈ L2(e−
x2

2 dx ) with Ŷ = 1p
p f (

p
p X W )β. More precisely, with the inner-product defined

such that for any function g ∈ L2(e−
x2

2 dx ), 〈 f , g 〉 = Ex∼N (0,1)[ f (x)g (x)], we derive the equiv-

alent model parameters (µ,ν) with µ = 〈 f , He1〉, ν2 = 〈 f , f 〉−µ2 while having the centering

condition 〈 f , He0〉 = 0 where (Hen ) is the Hermite polynomial basis.

This transformation is dubbed the Gaussian equivalence principle and has been observed and

rigorously proved under weaker conditions in Pennington and Worah (2017); Péché (2019);

Hu and Lu (2022), and since then has been applied more broadly for instance in Adlam and

Pennington (2020a).
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5.3.4 Towards realistic datasets

As stated in Loureiro et al. (2021), the training and test error of realistic datasets can also be

captured. In this example we track the MNIST dataset and focus on learning the parity of

the images (y = +1 for even numbers and y = −1 for odd-numbers). We refer to Appendix

5.D.5 for thorough discussions of Figures 5.3.4 and 5.3.5 as well as technical details to obtain

them, and other examples. Besides the learning curve profile at t =+∞, the full theoretical

time evolution is predicted and matches the experimental runs. In particular, the rise of the

double-descent phenomenon is observed through time.

Figure 5.3.4: Comparison between the analytical and experimental learning profiles for the minimum least-
squares estimator at λ = 10−3 on the left (20 runs) and the time evolution at λ = 10−2,n = 700 on the right (10
runs).

Figure 5.3.5: Analytical training error and test error heat-maps for the theoretical gradient flow for λ= 10−3.

5.4 Conclusion

The time-evolution can also be investigated using the dynamical mean field theory (DMFT)

from statistical mechanics. We refer the reader to the book Parisi et al. (2020) and a series of

recent works Sompolinsky et al. (1988); Crisanti and Sompolinsky (2018); Agoritsas et al. (2018);

Mignacco et al. (2020, 2021) for an overview of this tool. This method is a priori unrelated to

ours and yields a set of non-linear integro-differential equations for time correlation functions

which are in general not solvable analytically and one has to resort to a numerical solution.

It would be interesting to understand if for the present model the DMFT equations can be

reduced to our set of algebraic equations. We believe it can be a fruitful endeavor to compare

in detail the two approaches: the one based on DMFT and the one based on random matrix

theory tools and Cauchy integration formulas.
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5.4 Conclusion

Another interesting direction which came to our knowledge recently is the one taken in Lu

and Yau (2022); Hu and Lu (2022) and in Misiakiewicz (2022); Xiao and Pennington (2022),

who study the high-dimensional polynomial regime where n ∝ dκ for a fixed κ. In particular,

it is becoming notorious that changing the scaling can yield additional descents. This regime

is out of the scope of the present work but it would be desirable to explore if the linear-pencils

and the random matrix tools that we extensively use in this work can extend to these cases.
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Appendix

5.A Gradient flow calculations

In this section, we derive the main equations for the gradient flow algorithm, and derive

and set of Cauchy integration formula involving the limiting traces of large matrices. The

calculation factoring out Z in the limit d →∞ is pursued in the next section. First, we recall

and expand the training error function in 5.1:

E λ
train(βt ) = 1

n
∥Y − X̂βt∥2

2 +
λ

n

∥∥βt
∥∥2

2 (5.34)

= 1

n
∥Y ∥2

2 −
2

n
Y T X̂βt + 1

n
βT

t X̂ T X̂βt + λ

n

∥∥βt
∥∥2

2 (5.35)

= 1

n

∥∥Z Bβ∗∥∥2
2 −

2

n
β∗T B T Z T Z Aβt + 1

n
βT

t AT Z T Z Aβt + λ

n

∥∥βt
∥∥2

2 (5.36)

Let K = (X̂ T X̂ +λI )−1 = (AT Z T Z A +λI )−1 which is invertible for λ > 0. Therefore, we can

write the gradient of the training error for any β as:

n

2
∇βEtrain(β) = X̂ T (X̂β−Y )+λβ= (X̂ T X̂ +λI )β− X̂ T Y = K −1β− X̂ T Y (5.37)

The gradient flow equations reduces to a first order ODE

∂βt

∂t
=−n

2
∇βE λ

train(βt ) = X̂ T Y −K −1βt (5.38)

The solution can be completely expressed using Lt = (I −exp(−tK −1)) as

βt = exp(−tK −1)β0 + (I −exp(−tK −1))K X̂ T Y (5.39)

= (I −Lt )β0 +Lt K X̂ T Xβ∗ (5.40)

In the following two subsections, we will focus on deriving an expression of the time evolution

of the test error and training error using these equations averaged over the a centered random

vector β0 such that r 2
0 = Nd (β0)2.
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5.A.1 Test error

As above, the test error can be expanded using the fact that on N0 = N (0, 1
d ), we have the

identity Ez∼N0 [zzT ] = 1
d Id :

Egen(βt ) = Ez∼N0

[
(zT Aβt − zT Bβ∗)2] (5.41)

= (Aβt −Bβ∗)T Ez∼N0 [zzT ](Aβt −Bβ∗) (5.42)

= 1

d
βT

t (AT A)βt − 2

d
β∗T B T Aβt + 1

d
β∗T B T Bβ∗ (5.43)

So expanding the first term yields

βT
t (AT A)βt = (βT

0 (I −Lt )+β∗T X T X̂ K Lt )(AT A)((I −Lt )β0 +Lt K X̂ T Xβ∗) (5.44)

=βT
0 (I −Lt )(AT A)(I −Lt )β0 (5.45)

+β∗T (B T Z T Z A)K LtU (AT A)Lt K (AT Z T Z B)β∗ (5.46)

+2βT
0 (I −Lt )(AT A)Lt K (AT Z T Z B)β∗ (5.47)

while the second term yields

β∗T B T Aβt =β∗T B T A((I −Lt )β0 +Lt K X̂ T Xβ∗) (5.48)

=β∗T B T A(I −Lt )β0 +β∗T Lt K (AT Z T Z B)β∗ (5.49)

Let’s consider now the high-dimensional limit Ēgen(t ) = limd→+∞Egen(βt ). We further make

the underlying assumption that the generalisation error concentrates on its mean with β0,

that is to say: Ēgen(t) = limd→+∞Eβ0 [Egen(βt )]. Let V ∗ = Bβ∗β∗T B T and c0 = Trd [V ∗], then

using the former expanded terms in 5.41 we find the expression

Ēgen(t ) = c0 + r 2
0 Trd

[
A(I −Lt )2 AT ]

(5.50)

+Trd
[

Z T Z AK Lt AT ALt K AT Z T Z V ∗]−2Trd
[

ALt K AT Z T Z V ∗]
(5.51)

So Ēgen(t ) = c0 + r 2
0 B0(t )+B1(t ) with:

B0(t ) = Trd
[

AT (I −Lt )2 A
]

(5.52)

B1(t ) = Trd
[

Z T Z AK Lt AT ALt K AT Z T Z V ∗]−2Trd
[

ALt K AT Z T Z V ∗]
(5.53)

Let K (z) = (X̂ T X̂ − zI )−1 the resolvent of X̂ T X̂ , and let’s have the convention K = K (−λ) to

remain consistent with the previous formula. Then for any holomorphic functional f :U→C

defined on an open setUwhich contains the spectrum of X̂ T X̂ , with Γ a contour inC enclosing

the spectrum of X̂ T X̂ but not the poles of f , we have with the extension of f onto Cn×n :
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f (X̂ T X̂ ) = −1
2iπ

∮
Γ f (z)K (z)dz. For instance, we can apply it for the following expression:

K Lt = Lt K = (I −exp(−t X̂ T X̂ − tλI ))(X̂ T X̂ −λI )−1 (5.54)

= −1

2iπ

∮
Γ

1−e−t (z+λ)

z +λ (X̂ T X̂ − zI )−1dz (5.55)

= −1

2iπ

∮
Γ

1−e−t (z+λ)

z +λ K (z)dz (5.56)

So we can generalize this idea to each trace and rewrite B1(t ) and B0(t ) with

B1(t ) = −1

4π2

∮
Γ

∮
Γ

(1−e−t (x+λ))(1−e−t (y+λ))

(x +λ)(y +λ)
f1(x, y)dxdy + 1

iπ

∮
Γ

1−e−t (z+λ)

z +λ f2(z)dz (5.57)

B0(t ) = −1

2iπ

∮
Γ

e−2t (z+λ) f0(z)dz (5.58)

where we introduce the set of functions f1(x, y), f2(z) and f0(z)

f1(x, y) = Trd
[

Z T Z AK (x)AT AK (y)AT Z T Z V ∗]
(5.59)

f2(z) = Trd
[

AK (z)AT Z T Z V ∗]
(5.60)

f0(z) = Trd
[

AK (z)AT ]
(5.61)

Let G(x) = (U Z T Z −xI )−1, using the push-through identity, it is straightforward that AK (z)A =
G(z)U =UG(z)T . This help us reduce further the expression of f1 into smaller terms which

will be easier to handle with linear-pencils later on

f1(x, y) = Trd
[

Z T ZUG(x)T G(y)U Z T Z V ∗]
(5.62)

= Trd
[
(G(x)−1 +xI )T G(x)T G(y)(G(y)−1 + y I )V ∗]

(5.63)

= Trd
[
(I + yG(y))V ∗(I +xG(x))T ]

(5.64)

= c0 + yTrd
[
G(y)V ∗]+xTrd

[
G(x)V ∗]+x yTrd

[
G(x)V ∗G(y)T ]

(5.65)

Similarly with f2 and f0, they can be rewritten as

f2(z) = Trd
[
G(z)U Z T Z V ∗]

(5.66)

= Trd
[
G(z)(G(z)−1 + zI )V ∗]

(5.67)

= c0 + zTrd
[
G(z)V ∗]

(5.68)

f0(z) = Trd [G(z)U ] (5.69)

Hence in fact the definition f̃1(x, y) = x yTrd
[
G(x)V ∗G(y)T

]
such that

f1(x, y) = f2(x)+ f2(y)+ f̃1(x, y)− c0 (5.70)

At this point, the equations provided by 5.57 are valid for any realization Z in the limit d →∞.

We will see in the next section how to simplify these terms by factoring out Z .
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5.A.2 Training error

Similar formulas can be derived for the training error. For the sake of simplicity, we pro-

vide a formula to track the training error without the regularization term, that is to say

E 0
train(βt ) (as in Loureiro et al. (2021)) while still minimizing the loss E λ

train(βt ). So using

the expanded expression 5.34, and considering the high-dimensional assumption with con-

centration Ē 0
train(t ) := limd→+∞Etrain(βt ) = limd→+∞Eβ0 [Etrain(βt )] we have

Ē 0
train(t ) = Trn

[
Z T Z V ∗]+ r 2

0 Trn
[

AT Z T Z A(I −Lt )2] (5.71)

+Trn
[

Z T Z AK Lt AT Z T Z ALt K AT Z T Z V ∗]
(5.72)

−2Trn
[

Z T Z ALt K AT Z T Z V ∗]
(5.73)

First of all, standard random matrix results (for instance see Rubio and Mestre (2011)) assert

the result Trd
[

Z T Z V ∗] = Trd
[

Z T Z
]

Trd [V ∗] = φc0. This result can also be derived under

our random matrix theory framework, for completeness we provide this calculation in 5.C.2.

Therefore, we can define H0(t ) and H1(t ) such that

Ē 0
train(t ) = c0 + r 2

0 H0(t )+H1(t ) (5.74)

where we have the traces

H0(t ) = Trn
[

AT Z T Z A(I −Lt )2] (5.75)

H1(t ) = Trn
[

Z T Z AK Lt (AT Z T Z A)Lt K AT Z T Z V ∗]−2Trn
[

Z T Z ALt K AT Z T Z V ∗]
(5.76)

And using the functional calculus argument with Cauchy integration formula over the same

contour Γwe find

H1(t ) = −1

4π2

∮
Γ

∮
Γ

(1−e−t (x+λ))(1−e−t (x+λ))

(x +λ)(y +λ)
h1(x, y)dxdy + 1

iπ

∮
Γ

(1−e−t (z+λ))

(z +λ)
h2(z)dz

(5.77)

H0(t ) = −1

2iπ

∮
Γ

e−2t (z+λ)h0(z)dz (5.78)

Where we use the traces (which only contain algebraic expression of matrices):

h1(x, y) = Trn
[

Z T Z AK (x)AZ T Z AT K (y)AT Z T Z V ∗]
(5.79)

h2(z) = Trn
[

Z T Z AK (z)AT Z T Z V ∗]
(5.80)

h0(z) = Trn
[

Z T Z AT K (z)AT ]
(5.81)
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The expression of h1 can be reduced to smaller terms as before with f1

φh1(x, y) = Trd
[

Z T ZUG(x)T Z T ZG(y)U Z T Z V ∗]
(5.82)

= Trd
[
(G(x)−1 +xI )T G(x)T Z T ZG(y)(G(y)−1 + y I )V ∗]

(5.83)

= Trd
[

Z T Z V ∗]+xTrd
[
G(x)T Z T Z V ∗]+ yTrd

[
Z T ZG(y)V ∗]

(5.84)

+x yTrd
[

Z T ZG(y)V ∗G(x)T ]
(5.85)

= c0φ+xTrd
[

Z T ZG(x)V ∗]+ yTrd
[

Z T ZG(y)V ∗]
(5.86)

+x yTrd
[

Z T ZG(y)V ∗G(x)T ]
(5.87)

and similarly with h2

φh2(z) = Trd
[

Z T ZG(z)U Z T Z V ∗]
(5.88)

= Trd
[

Z T ZG(z)(G(z)−1 + zI )V ∗]
(5.89)

= Trd
[

Z T Z V ∗]+ zTrd
[

Z T ZG(z)V ∗]
(5.90)

= c0φ+ zTrd
[

Z T ZG(z)V ∗]
(5.91)

and similarly with h0

φh0(z) = Trd
[

Z T ZG(z)U
]

(5.92)

= Trd
[
G(z)(G(z)−1 + zI )

]
(5.93)

= 1+ zTrd [G(z)] (5.94)

We can also define the term h̃1(x, y) = x yTrn
[

ZG(y)V ∗G(x)T Z T
]

so that:

h1(x, y) = h2(x)+h2(y)+ h̃1(x, y)− c0 (5.95)

5.B Test error and training error limits with linear pencils

In this section we compute a set of self-consistent equation to derive the high-dimensional

evolution of the training and test error. We refer to Chapter 3 for the definition and result

statements concerning the linear pencils.

We will derive essentially two linear-pencils of size 6×6 and 4×4 which will enable us to

calculate the limiting values for f̃1, f2, f0 for the test error, and h̃1,h2,h0 for the training error.

Note that these block-matrices are derived essentially by observing the recursive application

of the block-matrix inversion formula and manipulating it so as to obtain the desired result.

Compared to other works such as Bodin and Macris (2021a); Adlam and Pennington (2020a),

our approach yields smaller sizes of linear-pencils to handle, which in turn yields a smaller

set of algebraic equations. One of the ingredient of our method consists in considering a

multiple-stage approach where the trace of some random blocks can be calculated in different

parts (See the random feature model for example in Appendix 5.D.4). However, the question
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of finding the simplest linear-pencil remains open and interesting to investigate.

5.B.1 Limiting traces of the test error

Limiting trace for f̃1 and f0

We construct a linear-pencil M1 as follow (with Z the random matrix into consideration)

M1 =



0 0 0 −y I 0 Z T

0 0 0 0 Z I

0 0 0 U I 0

−xI 0 U −x yV ∗ 0 0

0 Z T I 0 0 0

Z I 0 0 0 0


(5.96)

The inverse of this block-matrix contains the terms in the traces of f̃1 and f0. To see this, let’s

calculate the inverse of M1 by splitting it first into other "flattened" blocks:

M1 =
(

0 B T
y

Bx D

)
=⇒ M−1

1 =
(
−B−1

x DB T−1
y B−1

x

B T−1
y 0

)
(5.97)

Where Bx and D are given by

Bx =

−xI 0 U

0 Z T I

Z I 0

 D =

−x yV ∗ 0 0

0 0 0

0 0 0

 (5.98)

then to calculate the inverse of Bx , notice first its lower right-hand sub-block has inverse(
Z T I

I 0

)−1

=
(

0 I

I −Z T

)
(5.99)

Which lead us to the following inverse using the block-matrix inversion formula (the dotted

terms aren’t required):

B−1
x =

 G(x) −G(x)U G(x)U Z T

−ZG(x) . . . In −ZG(x)U Z T

Z T ZG(x) . . . . . .

 (5.100)
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5.B Test error and training error limits with linear pencils

With g 〈i j 〉
d the trace of the squared sub-block (M−1

1 )〈i j 〉 divided by the size of the block (i j ), we

find the desired functions

f̃1(x, y) = lim
d→+∞

−g 〈11〉
d (5.101)

f0(x) = lim
d→+∞

−g 〈15〉
d OR f0(y) = lim

d→+∞
−g 〈51〉

d (5.102)

Let’s now consider g the limiting value of gd , and calculate the mapping η(g ):

η(g ) =



0 0 0 0 φg 〈26〉 0

0 0 0 0 0 g 〈15〉

0 0 0 0 0 0

0 0 0 0 0 0

φg 〈62〉 0 0 0 φg 〈22〉 0

0 g 〈51〉 0 0 0 g 〈11〉


(5.103)

So we can calculate the matrixΠ(M1) such that the elements of g are the limiting trace of the

squared sub-blocks of (Π(M1))−1 (divided by the block-size) following the steps of the result in

Chapter 3:

Π(M1) =



0 0 0 −y I −φg 〈26〉I 0

0 0 0 0 0 (1− g 〈15〉)I

0 0 0 U I 0

−xI 0 U −x yV ∗ 0 0

−φg 〈62〉I 0 I 0 −φg 〈22〉I 0

0 (1− g 〈51〉)I 0 0 0 −g 〈11〉I


(5.104)

Therefore, there remains to compute the inverse ofΠ(M1). We split againΠ(M1) as flattened

sub-blocks to make the calculation easier

Π(M1) =
(

0 B̃ T
y

B̃x D̃

)
=⇒Π(M1)−1 =

(
−B̃−1

x D̃(B̃−1
y )T B̃−1

x

(B̃−1
y )T 0

)
(5.105)

With the three block-matrices

B̃x =

 −xI 0 U

−g 〈62〉φI 0 I

0 (1− g 〈51〉)I 0

 B̃y =

 −xI 0 U

−g 〈26〉φI 0 I

0 (1− g 〈15〉)I 0

 (5.106)

D̃ =

−x yV ∗ 0 0

0 −g 〈22〉φI 0

0 0 −g 〈11〉I

 (5.107)
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Chapter 5. A framework: the gaussian covariate model

A straightforward application of the block-matrix inversion formula yields inverse of B̃x

B̃−1
x =

 (φg 〈62〉U −xI )−1 −U (φg 〈62〉U −xI )−1 0

0 0 (1− g 〈51〉)−1I

φg 〈62〉(φg 〈62〉U −xI )−1 −x(φg 〈62〉U −xI )−1 0

 (5.108)

Therefore, we retrieve the following close set of equations:

g 〈11〉 = Trd
[
(g 〈62〉φU −xI )−1(x yV ∗+ g 〈22〉φU 2)(g 〈26〉φU − y I )−1] (5.109)

g 〈22〉 = g 〈11〉(1− g 〈15〉)−1(1− g 〈51〉)−1 (5.110)

g 〈26〉 = (1− g 〈51〉)−1 (5.111)

g 〈15〉 =−Trd
[
U (g 〈62〉φU −xI )−1] (5.112)

These equations can be simplified slightly by removing g 〈22〉, g 〈26〉 and introducing q〈15〉:

g 〈11〉 = Trd
[
(φU −xq〈15〉I )−1(x yq〈15〉q〈51〉V ∗+ g 〈11〉φU 2)(φU − yq〈51〉I )−1] (5.113)

q〈15〉 = Trd
[
(φU −xq〈15〉I +q〈15〉U )(φU −xq〈15〉I )−1] (5.114)

g 〈15〉 = 1−q〈15〉 (5.115)

Let ζx =−xq〈15〉, or by symmetry ζy =−yq〈51〉, then using the fact that f̃1(x, y) =−g 〈11〉 and

f0(x) =−g 〈15〉 we find the system of equations

f̃1(x, y) = Trd
[
(φU +ζx I )−1(ζxζyV ∗+ f̃1(x, y)φU 2)(φU +ζy I )−1] (5.116)

f0(x) =−
(
1+ ζx

x

)
(5.117)

ζz =−z +Trd
[
ζzU (φU +ζz I )−1] (5.118)

Remark:As a byproduct of this analysis, notice the term g 〈62〉 = (q〈15〉)−1 = −x
ζx

. In fact we have:

g 〈62〉 = Trn
[
In −ZG(x)U Z T ]

(5.119)

= 1−Trn
[

Z (A AT Z T Z −xI )−1 A AT Z T ]
(5.120)

= 1−Trn
[
(Z A AT Z T −xI )−1Z A AT Z T ]

(5.121)

= 1−Trn
[
(X̂ X̂ T −xI )−1(X̂ X̂ T −xIn +xIn)

]
(5.122)

=−xTrn
[
(X̂ X̂ T −xI )−1] (5.123)

So if we let m(x) = Trn
[
(X̂ X̂ T −xI )−1

]
the trace of the resolvent of the student data matrix, we

find that m(x) = ζ−1
x . This can be useful for analyzing the eigenvalues as in Appendix 5.D.2.
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Limiting trace for f2

As before, we construct a second linear-pencil M2 with Z the random matrix component into

consideration

M2 =


I 0 0 0

−zV ∗ −zI 0 U

0 0 Z T I

0 Z I 0

 (5.124)

The former flattened block Bz can be recognized in the lower right-hand side of M2, thus we

can use the block matrix-inversion formula and get:

M−1
2 =


I 0 0 0

zG(z)V ∗

−z ZG(z)V ∗ B−1
z

z Z T ZG(z)V ∗

 (5.125)

Now it is clear that we can express f2(z) = c0 + limd→+∞ g 〈21〉
d . Following the steps of Chapter 3

we calculate the mapping

η(g ) =


0 0 0 0

0 0 0 0

0 φg 〈34〉 0 0

0 0 g 〈23〉 0

 (5.126)

Which in returns enable us to calculateΠ(M2)

Π(M2) =


I 0 0 0

−zV ∗ −zI 0 U

0 −g 〈34〉φI 0 I

0 0 (1− g 〈23〉)I 0

 (5.127)

To compute the inverse of Π(M2), the block-matrix is first split with the sub-block B̃z defined

as follow

B̃z =

 −zI 0 U

−g 〈34〉φI 0 I

0 (1− g 〈23〉)I 0

 Π(M2) =


I 0 0 0

−zV ∗

0 B̃z

0

 (5.128)

A straightforward application of the block-matrix inversion formula yields the inverse of B̃z :

B̃−1
z =

 (g 〈34〉φU − zI )−1 −U (g 〈34〉φU − zI )−1 0

0 0 (1− g 〈23〉)−1I

g 〈34〉φ(g 〈34〉φU − zI )−1 −z(g 〈34〉φU − zI )−1 0

 (5.129)
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Hence we can derive the inverse

Π(M2)−1 =


I 0 0 0

z(g 〈34〉φU − zI )−1V ∗

0 B̃−1
z

zg 〈34〉φ(g 〈34〉φU − zI )−1V ∗

 (5.130)

Eventually, using the fixed-point result on linear-pencils, we derive the set of equations

g 〈21〉 = Trd
[
zV ∗(g 〈34〉φU − zI )−1] (5.131)

g 〈34〉 = (1− g 〈23〉)−1 (5.132)

g 〈23〉 =−Trd
[
U (g 〈34〉φU − zI )−1] (5.133)

g 〈41〉 = Trd
[
zg 〈34〉φ(g 〈34〉φU − zI )−1V ∗]

(5.134)

g 〈22〉 = Trd
[
(g 〈34〉φU − zI )−1] (5.135)

(5.136)

In fact, it is a straightforward to see that g 〈23〉, g 〈34〉 follows the same equations as the former

g 〈15〉, g 〈26〉 in the previous subsection, therefore g 〈23〉 = g 〈15〉 = 1− q〈15〉 = 1+ ζz
z , and thus

g 〈34〉 =− z
ζz

Eventually we get g 〈21〉 =−Trd
[
ζzV ∗(φU +ζz I )−1

]
so in the limit d →∞:

f2(z) = c0 −Trd
[
ζzV ∗(φU +ζz I )−1] (5.137)

5.B.2 Limiting traces for the training error

Limiting trace for h1

A careful attention to the linear-pencil M1 shows that the terms in the trace of h̃1 are actually

given by the location g 〈22〉. We have to be careful also of the fact that (M−1
1 )〈22〉 is a block matrix

of size n ×n, so it is already divided by the size n (and not d). Hence we simply have with

ηz = −z
ζz

:

h̃1(x, y) =−g 〈22〉 = −x

ζx

−y

ζy
f1(x, y) = ηxηy f1(x, y) (5.138)

Limiting trace for h2

In the case of h2, we need the specific term provided by the linear-pencil M2 by the location

g 〈41〉 with φh2(z) = c0φ+ g 〈41〉

For h2 we use the linear pencil for f2, but instead of using g 〈21〉 we use h2 = c0φ+ g 〈41〉. We
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find:

g 〈41〉 = zφTrd
[
V ∗(φU +ζz I )−1] (5.139)

=φ z

ζz
Trd

[
ζzV ∗(φU +ζz I )−1] (5.140)

=φ z

ζz
(c0 − f2(z)) (5.141)

Hence:

h2(z) = c0

(
1− −z

ζz

)
+ −z

ζz
f2(z) = ηz (c0 f0(z)+ f2(z)) (5.142)

Limiting trace for h0

Finally for h0 we use again the linear pencil M2 with:

Trd [zG(z)] = zg 〈22〉 =−Trd
[
ζz (φU +ζz I )−1] (5.143)

=−Trd
[
(ζz +φU −φU )(φU +ζz I )−1] (5.144)

=−1+φTrd
[
U (φU +ζz I )−1] (5.145)

=−1+ φ

ζz
Trd

[
ζzU (φU +ζz I )−1] (5.146)

=−1+ φ

ζz
(ζz + z) (5.147)

Therefore:

h0(z) =
(
1− −z

ζz

)
=−

(
1+ ζz

z

) −z

ζz
= ηz f0(z) (5.148)

5.C Other limiting expressions

In this section we bring the sketch of proofs of additional expressions seen in the main results.

5.C.1 Expression with dual counterpart matrices U⋆ and V⋆

The former functionals f2 and f̃1 can be rewritten as:

f2(z) = c0 −Trd
[
ζzV ∗(φU +ζz I )−1] (5.149)

= c0 −Trd
[
(ζz I +φU −φU )V ∗(φU +ζz I )−1] (5.150)

= c0 −Trd
[
V ∗]+Trd

[
φAT V ∗(φU +ζz I )−1 AT ]

(5.151)

= c0 − c0 +Trd
[
φAT Bβ∗β∗T B T A(U⋆+ζz I )−1] (5.152)

= Trn
[
(Ξβ∗β∗TΞT )(U⋆+ζz I )−1] (5.153)
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With similar steps using:

ζxV ∗ζy =−(ζx I +φU )V ∗(ζy I +φU )+ζxV ∗(ζy I +φU )+ (ζx I +φU )V ∗ζy +φ2UV ∗U (5.154)

We find:

f̃1(x, y) =−c0 +Trd
[
ζxV ∗(ζy I +φU )−1]+Trd

[
(ζx I +φU )−1V ∗ζy

]
(5.155)

+Trd
[
(φU +ζx I )−1(φ2UV ∗U + f̃1(x, y)φU 2)(φU +ζy I )−1] (5.156)

= c0 − f2(x)− f2(y) (5.157)

+Trn
[
(U⋆+ζx I )−1((Ξβ∗β∗TΞT )+ f̃1(x, y)U⋆)U⋆(U⋆+ζy I )−1] (5.158)

Hence in fact:

f1(x, y) = Trn
[
(U⋆+ζx I )−1((Ξβ∗β∗TΞT )+ f̃1(x, y)U⋆)U⋆(U⋆+ζy I )−1] (5.159)

Finally, we have using the push-through identity and the cyclicity of the trace:

ζz =−z +Trd
[
ζz A AT (φA AT +ζz I )−1] (5.160)

=−z +Trd
[
ζz A(φAT A+ζz I )−1 AT ]

(5.161)

=−z +Trn
[
ζzU⋆(U⋆+ζz I )−1] (5.162)

5.C.2 Limiting trace of Z T Z V ∗

Here we show another way in which our random matrix result can be used to infer the result

on the limiting trace Trd
[

Z T Z V ∗]
. To this end, we can design the linear-pencil:

M3 =


I −V ∗ 0 0

0 I Z T 0

0 0 I Z

0 0 0 I

 (5.163)

It is straightforward to calculate the inverse of the sub-matrix:I Z T 0

0 I Z

0 0 I


−1

=

I −Z T Z T Z

0 I −Z

0 0 I

 (5.164)

So that:

M−1
3 =


I V ∗ −Z T V ∗ V ∗Z T Z

0 I −Z T Z T Z

0 0 I −Z

0 0 0 I

 (5.165)
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5.D Applications and calculation details

At this point, it is clear that the quantity of interest is provided by the term g 〈14〉 of the linear-

pencil M3. We find calculate further:

η(g ) =


0 0 0 0

0 0 0 φg 〈33〉

0 0 g 〈42〉 0

0 0 0 0

 (5.166)

Based on the inverse of M3, we can already predict that g 〈33〉 = 1 and g 〈42〉 = 0. Hence:

Π(M3) =


I −V ∗ 0 0

0 I 0 −φI

0 0 I 0

0 0 0 I

 =⇒ Π(M3)−1 =


I V ∗ 0 φV ∗

0 I 0 φI

0 0 I 0

0 0 0 I

 (5.167)

Finally we obtain g 〈14〉 = Trd
[
φV ∗]

, and hence Trd
[

Z T Z V ∗]=φTrd [V ∗].

5.D Applications and calculation details

5.D.1 Mismatched Ridgeless regression of a noisy linear function

Target function Here we consider a slightly more complicated version of the former exam-

ple where we let y(x0, x1) = r
(
xT

0 β
∗
0 +xT

1 β
∗
1

)+σϵ and still averaged over β0 ∼ N (0, Iγp ) and

β1 ∼ N (0, I(1−γ)p ) with x0 ∈ Rγp , x1 ∈ R(1−γ)p . We let again d = p + q and ψ = p
d and φ0 = p

q .

Therefore the former relation still holds φ= n
d = n

p
p
d =φ0ψ. Similarly, we derive a block-matrix

B and compute V ∗:

B =


r
√

d
p Iγp 0 0

0 r
√

d
p I(1−γ)p 0

0 0 σ
√

d
q Iq

=⇒V ∗ =


r 2

ψ Iγp 0 0

0 r 2

ψ I(1−γ)q 0

0 0 σ2

1−ψ Iq

 (5.168)

So that with the splitting Z =
(√

p
d X0|

√
p
d X1|

√
q
dΣ

)
, and β∗T = (

β∗T
0 |β∗T

1 |β∗T
2

)
, and with ξ=

Σβ∗
2 :

Y = Z Bβ∗ = r (X0β
∗
0 +X1β

∗
1 )+σξ (5.169)

Estimator Following the same steps, we construct A and U with

A =


√

d
γp Iγp

0(1−γ)p×γd

0q×γd

=⇒U =


1
γψ Iγp 0 0

0 0 0

0 0 0

 (5.170)

99



Chapter 5. A framework: the gaussian covariate model

So that we get the linear estimator Ŷt

Ŷt = Z Aβt = 1p
γ

X0βt (5.171)

Analytic result as U and V ∗ commute again, the joint probability distribution can be derived:

P

(
u = 1

γψ
, v = r 2

ψ

)
= γψ (5.172)

P

(
u = 0, v = r 2

ψ

)
= (1−γ)ψ (5.173)

P

(
u = 0, v = σ2

(1−ψ)

)
= 1−ψ (5.174)

Therefore, in the regime λ= 0, with κ= φ0

γ , a calculation leads to the following result (dubbed

the "mismatched model" in Hastie et al. (2019))

Egen(+∞) = f̃1 =
{

κ
κ−1 (σ2 + (1−γ)r 2) (κ> 1)

1
1−κσ

2 + r 2γ(1−κ) (κ< 1)
(5.175)

5.D.2 Non isotropic model

We have the joint probabilities P (u =α−i , v = 1) = 1
p = γ for i ∈ {0, . . . , p −1} and λ= 0. Then:

f̃1 = 1

p

p−1∑
i=0

f̃1φ+ (αiζ)2

(φ+αiζ)2
(5.176)

ζ= 1

p

p−1∑
i=0

ζ

φ+αiζ
(5.177)

f2 = c0 − 1

p

p−1∑
i=0

ζαi

φ+αiζ
(5.178)

So either ζ= 0 and thus f̃1 = 0, or ζ ̸= 0 and:

f̃1 =
(

1− 1

p

p−1∑
i=0

φ

(φ+αiζ)2

)−1
1

p

p−1∑
i=0

(αiζ)2

(φ+αiζ)2
(5.179)

1 = 1

p

p−1∑
i=0

1

φ+αiζ
(5.180)
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Writing further down (αiζ)2 = (αiζ+φ−φ)2 = (αiζ+φ)2 −2φ(αiζ+φ)+φ2 we get:

1

p

p−1∑
i=0

(αiζ)2

(φ+αiζ)2
= 1−2φ

1

p

p−1∑
i=0

1

φ+αiζ
+φ2 1

p

p−1∑
i=0

1

(φ+αiζ)2
(5.181)

= 1−2φ+φ2 1

p

p−1∑
i=0

1

(φ+αiζ)2
(5.182)

= (1−φ)−φ
(

1− 1

p

p−1∑
i=0

φ

(φ+αiζ)2

)
(5.183)

So:

f̃1 = (1−φ)

(
1− 1

p

p−1∑
i=0

φ

(φ+αiζ)2

)−1

−φ (5.184)

Now injecting the expression for ζ:

1− 1

p

p−1∑
i=0

φ

(φ+αiζ)2
= 1

p

p−1∑
i=0

(
1

φ+αiζ
− φ

(φ+αiζ)2

)
(5.185)

= 1

p

p−1∑
i=0

αiζ

(φ+αiζ)2
(5.186)

Hence the formula

Egen(∞) = (1−φ)

(
1

p

p−1∑
i=0

αiζ

(φ+αiζ)2

)−1

−φ (5.187)

Asymptotic limit: Let’s consider the behavior of the generalisation error when α→∞. Let’s

consider the potential solution for some k ∈ {0, . . . , p −1}:

ζk = ck

αk
(1+oα(1)) (5.188)

for some constant ck . Then:

p =
p−1∑
i=0

1

φ+ ckαi−k (1+oα(1))
= 1

φ+ ck
+ k

φ
+oα(1) (5.189)

Hence we choose:

ck =φ
(

1

pφ−k
−1

)
(5.190)

Because Egen(∞) ≥ 0, we need to enforce ζk > 0 which leads to the condition 1
pφ−k −1 ≥ 0, that

is 1 ≥ pφ−k > 0. So in fact it implies φ ∈
]

k
p , k+1

p

]
, so ζk can only be a solution for φ in this

range. Therefore we can consider the solution ζ(φ) =∑p−1
i=0 1

]
k
p ; k+1

p

[(φ)ζk (φ). Then notice:

p−1∑
i=0

αiζk

(φ+αiζk )2
= ck

(ck +φ)2 +oα(1) =−p2
(
φ− k

p

)(
φ− k +1

p

)
+oα(1) (5.191)
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and thus for φ ∈ [0,1] \ k
pZ:

Egen(∞) =
p−1∑
k=0

φ(1−φ)

p
(
φ− k

p

)(
k+1

p −φ
)1]

k
p ; k+1

p

[(φ)−φ+oα(1) (5.192)

So we clearly see that in the limit ofα large, the test error approaches a function with two roots

at the denominator.

Evolution:

f̃1(x, y) = 1

p

p−1∑
i=0

f̃1(x, y)φ+α2iζxζy

(φ+αiζx )(φ+αiζy )
(5.193)

ζz =−z + 1

p

p−1∑
i=0

ζz

φ+αiζz
(5.194)

f2(z) = c0 − 1

p

p−1∑
i=0

αiζz

φ+αiζz
(5.195)

In particular f2 is given by:

f2(z) = c0 −1+ φ

p

p−1∑
i=0

1

φ+αiζz
= c0 −1+φζz

(
1+ z

ζz

)
(5.196)

and f̃1 is given by:

f̃1(x, y) =
1
p

∑p−1
i=0

α2i ζxζy

(φ+αi ζx )(φ+αi ζy )

1− φ
p

∑p−1
i=0

1
(φ+αi ζx )(φ+αi ζy )

(5.197)

Eigenvalue distribution

In our figures, we look at the log-eigenvalue distribution of the student data ρlogλ as it provides

the most natural distributions on a log-scale basis. So in fact, if we plot the curve y(x) = ρlogλ(x)

we have:

y(x) = ρlogλ(x) = ∂

∂x
P (logλ≤ x) (5.198)

= ∂

∂x
P (λ≤ ex ) (5.199)

= exρλ(ex ) (5.200)
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So in a log-scale basis we have ρlogλ(log x) = xρλ(x). It is interesting to notice the connection

with ηx for running computer simulations:

ρlogλ(log x) = x

π
lim
ϵ→0+ m(x + iϵ) = 1

π
lim
ϵ→0+

x + iϵ

ζ(x + iϵ)
=− 1

π
lim
ϵ→0+ηx+iϵ (5.201)

It is work mentioning that the bulks are further "detached" as α grows as it can be seen in

figure 5.D.1. Furthermore, bigger α makes the spike more distringuisable.

Figure 5.D.1: Theoretical (log-)eigenvalue distribution in the non-isotropic ridgeless regression
model with p = 3,λ = 10−5,α = 104 with φ = 1 on the left and a range φ ∈ (0,1) on the right
heatmap.

5.D.3 Kernel Methods

Kernel methods are equivalent to solving the following linear regression problem:

β= argmin
β

n∑
i=1

(
θT

0 φ(xi )−βTφ(xi )
)2 +λ∥∥β∥∥2 (5.202)

Where φ(x) = (φi (x))i∈N = (
p
ωi ei (x)) for some orthogonal basis (ei )i∈N. In fact we can con-

sider:

A = B =


p
ω1 0 · · · 0

0
p
ω2 · · · 0

...
...

. . .
...

0 0 · · · p
ωd

 (5.203)

and zi = (e1(xi ), . . . ,ed (xi )). Then let’s consider the following linear regression problem:

β̂= argmin
β

∥∥Z
(
Bβ∗− Aβ

)∥∥2 +λ∥∥β∥∥2 (5.204)

Egen(β̂) = Ez

[(
zT (

Bβ∗− Aβ̂
))2

]
(5.205)

This problem is identical to the kernel methods in the situation with a specificβ∗T = (θ01, . . . ,θ0d ).

Although V ∗ and U don’t commute with each other, Notice that with x = y =−λ, due to the
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diagonal structure of U :

f̃1 = Trd
[
(φU +ζI )−1(ζ2V ∗+ f̃1φU 2)(φU +ζI )−1] (5.206)

= 1

d

d∑
i=1

[(ζ2V ∗+ f̃1φU 2)(φU +ζI )−2]i i (5.207)

= 1

d

d∑
i=1

(ζ2[V ∗]i i + f̃1φ[U 2]i i )(φ[U ]i i +ζ)−2 (5.208)

So in fact we find the self-consistent set of equation with Egen(+∞) = f̃1:

ζ=λ+ 1

d

d∑
i=1

ζωi

φωi +ζ
(5.209)

f̃1 = 1

d

d∑
i=1

f̃1φω
2
i +ζ2θ2

0iωi

(φωi +ζ)2 (5.210)

This is precisely the results from equation (78) in Loureiro et al. (2021) (see also Bordelon et al.

(2020)) with the change of variables λ(1+V ) → ζ and ρ+q −2m → f̃1.

5.D.4 Random feature example

We get the following matrices U ,V with µ̃2 = µ2

ψ , ν̃2 = ν2

ψ , r̃ 2 = r 2

ψ , σ̃2 = σ2

1−(1+ψ0)ψ :

U =

µ̃
2W W T µ̃ν̃W 0

µ̃ν̃W T ν̃2IN 0

0 0 0

 V =

r̃ 2Ip 0 0

0 0 0

0 0 σ̃2Iq

 (5.211)

In fact, the matrices U and V do not commute with each other, so we have more involved

calculations. First we consider the subspace F = Ker(V − σ̃2Iq )⊥. Let’s define the matrices:

UF =
(
µ̃2W W T µ̃ν̃W

µ̃ν̃W T ν̃2IN

)
VF =

(
r̃ 2Ip 0

0 0

)
(5.212)

UF⊥ =
(
0
)

VF⊥ =
(
σ̃2Iq

)
(5.213)

Then, although U and V can’t be diagonalized in the same basis, they are still both block-

diagonal matrices in the same direct-sum space Rd = F ⊕F⊥, so in fact the following split

between the two subspaces F and F⊥ holds:

f̃1 = Trd
[
(φUF +ζx I )−1ζxζyVF (φUF +ζy I )−1] (5.214)

+Trd
[
(φUF⊥ +ζx I )−1ζxζyVF⊥(φUF⊥ +ζy I )−1] (5.215)

+Trd
[
(φU +ζx I )−1 f̃1φU 2(φU +ζy I )−1] (5.216)
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Now let’s define κ1,κ2,κ3 such that:

f̃1 = r 2κ1 + f̃1(1−κ−1
2 )+σ2κ3 (5.217)

That is to say, we get directly f̃1 = (r 2κ1 +σ2κ3)κ2 and by definition:

r 2κ1 = Trd
[
(φUF +ζx I )−1ζxζyVF (φUF +ζy I )−1] (5.218)

1− 1

κ2
= Trd

[
(φU +ζx I )−1φU 2(φU +ζy I )−1] (5.219)

σ2κ3 = Trd
[
(φUF⊥ +ζx Iq )−1ζxζyVF⊥(φUF⊥ +ζy Iq )−1]=σ2 (5.220)

So we already know that κ3 = 1. Let’s focus on κ1, we can deal with a linear pencil M such

that we would get the desired term. First we define similarly AT
F , the restriction of AT on the

subspace F :

AF =
(
µ̃W

ν̃IN

)
=⇒ UF = AF AT

F (5.221)

Then, following the structure of M1 we can construct the following linear-pencil M :

M =


0 0 ζy I AF

0 0 AT
F − 1

φ I

ζx I AF −ζxζyVF 0

AT
F − 1

φ I 0 0

=

 0 By

Bx

(
−ζxζyVF 0

0 0

)  (5.222)

So that:

M−1 =

 B−1
x

(
−ζxζyVF 0

0 0

)
B−1

y B−1
x

B−1
y 0

 (5.223)

where:

B−1
x =

(
(φUF +ζx I )−1 φ(φUF +ζx I )−1 AF

AT
Fφ(φUF +ζx I )−1 (− 1

φ I − 1
ζy

AT
F AF )−1

)
(5.224)

In the above matrices, the sub-blocks AF and VF are implicitly flattened, so in fact M is given

completely by:

M =



0 0 0 ζy I 0 µ̃W

0 0 0 0 ζy I ν̃I

0 0 0 µ̃W T ν̃I − 1
φ I

ζx I 0 µ̃W −r̃ 2ζxζy Ip 0 0

0 ζx I ν̃I 0 0 0

µ̃W T ν̃I − 1
φ I 0 0 0


(5.225)

and therefore, one has to pay attention on the quantity of interest which is given by a sum of
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two terms:

r 2κ1 = lim
d→+∞

(
p

d
g 〈11〉+ N

d
g 〈22〉

)
=ψ(g 〈11〉+ψ0g 〈22〉) (5.226)

Using a Computer-Algebra-System, we get the equations with γx ,γy ,δx ,δy defined such that

g 〈36〉 =−ψγxζx , g 〈63〉 =−ψγyζy , δx = ζx g 〈14〉, δy = ζy g 〈41〉:

ψg 〈11〉 = (ζxζy )−1(δxδy )(r 2ζxζy +µ2ψ0g 〈33〉) (5.227)

ψg 〈22〉 =φ−2(γxγy )(ψg 〈11〉µ2ν2φ2) (5.228)

g 〈33〉 = (ζxζy )(γxγy )(ψg 〈11〉µ2) (5.229)

δy = (1+γyµ
2ψ0)−1 (5.230)

γy = (µ2δy +φ−1
0 ζy +ν2)−1 (5.231)

So:

(1−µ4ψ0(δxδy )(γxγy ))ψg 〈11〉 = (δxδy )(r 2) (5.232)

and:

ψg 〈11〉+ψ0ψg 〈22〉 = (
1+ψ0µ

2ν2(γxγy )
)

(ψg 〈11〉) (5.233)

Hence the result:

κ1 =
1+ν2µ2ψ0(γxγy )

1−µ4ψ0(δxδy )(γxγy )
(δxδy ) (5.234)

Also there remain to use the last equation regarding ζx using the fact that:

ζy + y = Trd
[
ζxU (φU +ζx I )−1] (5.235)

Notice that we have

g 〈63〉 =−γyψζy = TrN

[(
− 1

φ
I − 1

ζy
AT

F AF

)−1]
(5.236)

So because AT
F AF = AT A:

ζyγy =φ0ζy TrN
[
(φAT A+ζy I )−1] (5.237)

=φ0TrN
[
(φAT A+ζy I −φAT A)(φAT A+ζy I )−1] (5.238)

=φ0TrN
[
I −φAT A(φAT A+ζy I )−1] (5.239)

=φ0
(
1−TrN

[
φ(φU +ζy I )−1U

])
(5.240)

=φ0

(
1− φ0

ψ0ζy
Trd

[
ζyU (φU +ζy I )−1]) (5.241)

=φ0

(
1− φ0

ψ0ζy
(ζy + y)

)
(5.242)

Therefore:
γy

φ0
ζy = 1− φ0

ψ0

(
1+ y

ζy

)
(5.243)

For κ2 we can calculate the following expression - which in fact is general and doesn’t depend
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on the specific design of U :

1− 1

κ2
= Trd

[
(φU +ζx I )−1φU 2(φU +ζy I )−1] (5.244)

= Trd
[
(φU +ζx I )−1(φU +ζx I −ζx I )U (φU +ζy I )−1] (5.245)

= Trd
[
(I −ζx (φU +ζx I )−1)U (φU +ζy I )−1] (5.246)

= Trd
[
U (φU +ζy I )−1 −ζx (φU +ζx I )−1)U (φU +ζy I )−1] (5.247)

= Trd

[
U (φU +ζy I )−1 − ζx

ζy −ζx
(U (φU +ζx I )−1 −U (φU +ζy I )−1)

]
(5.248)

= 1

ζy −ζx
Trd

[
ζyU (φU +ζy I )−1 −ζxU (φU +ζx I )−1] (5.249)

= 1

ζy −ζx

(
ζy + y −ζx −x

)
(5.250)

= 1+ y −x

ζy −ζx
(5.251)

Hence the general formula:

κ2 =−ζy −ζx

y −x
(5.252)

One can check that the same formula applies for instance for the mismatched ridgeless

regression. Also, we assume that it can be replaced by its continuous limit in y → x in the

situation x = y .

Finally for f2, we find

f2 = c0 −Trd
[
ζzV (φU +ζz I )−1] (5.253)

= c0 −Trd
[
ζzVF⊥(φUF⊥ +ζz I )−1]−Trd

[
ζzVF (φUF +ζz I )−1] (5.254)

= c0 −σ2 − lim
d→+∞

(
p

d
g̃ 〈11〉+ N

d
g̃ 〈22〉

)
(5.255)

= c0 −σ2 −ψ(g̃ 〈11〉+φ0g̃ 〈22〉) (5.256)

where we use g̃ associated to a slightly different linear-pencil M̃ :

M̃ =


0 0 I 0

0 0 0 I

ζz I AF −ζzVF 0

AT
F − 1

φ I 0 0

 (5.257)

from which we get using a Compute-Algebra-System

ψg̃ 〈11〉+ψφ0g̃ 〈22〉 = r 2δz (5.258)

Another more straightforward way for obtaining the same result without the need for an

additional linear-pencil is to notice that if we let E1 =
(
Ip |0p×N

)
such that VF = r̃ 2E1E T

1 , then
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we have:

Trd
[
ζxVF (φUF +ζx I )−1]= Trd

[
ζx r̃ 2E T

1 (φUF +ζx I )−1E1
]

(5.259)

= r̃ 2ζx Trp
[
E T

1 (φUF +ζx I )−1E1
]

(5.260)

Therefore reusing the definition of δx and the former linear-pencil M :

Trd
[
ζxVF (φUF +ζx I )−1]= r̃ 2ψζx g 〈14〉 = r 2δx (5.261)

Conclusionwe have the following equations

f̃1(x, y) =
(
−ζy −ζx

y −x

)(
r 2 1+ν2µ2ψ0(γxγy )

1−µ4ψ0(δxδy )(γxγy )
(δxδy )+σ2

)
(5.262)

f2(z) = c0 − (r 2δz +σ2) (5.263)

δz = (1+γzµ
2ψ0)−1 (5.264)

γz = (µ2δz +φ−1
0 ζz +ν2)−1 (5.265)

γy

φ0
ζy = 1− φ0

ψ0

(
1+ y

ζy

)
(5.266)

5.D.5 Realistic datasets

For the realistic datasets, we capture the time evolution for two different datasets: MNIST

and Fashion-MNIST. To capture the dynamics over a realistic dataset X ∈ Rntot×d , it is more

convenient to use the dual matrices U⋆,V⋆,Ξ. We only need to estimate U⋆ and Ξβ∗ with

U⋆ ≃ 1
ntot

X T X and Ξβ∗ ≃ 1
ntot

X T Y . In both cases, we sill sample a subset of n < ntot data-

samples for the training set. The scope of the theoretical equations is still subject to the

high-dimensional limit assumption, in other words we need n and d "large enough", that is to

say 1 ≪ n. At the same time, the approximation of U⋆ and Ξβ∗ hints at ntot sufficiently large

compared to the number of considered samples n. Hence we need also n ≪ ntot.

Numerically, for the two following datasets and as per assumptions 5.1, the theoretical pre-

diction rely on a contour enclosing the spectrum Sp(X̂ T X̂ ) of X̂ T X̂ , but not enclosing −λ.

Therefore, in order to proceed with our computations, we take a symmetric rectangle around

the x-axis crossing the axis at the particular values −λ
2 and 1.2maxSp(X̂ T X̂ ) after a preliminary

computation of the spectrum. For the need of our experiments, we commonly discretized the

contour and ran a numerical integration over the discretized set of points.

MNIST Dataset: We consider the MNIST dataset with ntot = 70′000 images of size 28×28 of

numbers between 0 and 9. In our setting, we consider the problem of estimating the parity of

the number, that is the vector Y with Yi = 1 if image i represents an even number and Yi =−1

for an odd-number. The dataset X ∈Rntot×d is further processed by centering each column to
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its mean, and normalized by the global standard-deviation of X (in other words the standard

deviation of X seen as a flattened ntot ×d vector) and further by
p

d (for consistency with the

theoretical random matrix Z ).

The results that we obtain are shown in Figure 5.3.4. On the figure on the left side we show the

theoretical prediction of the training and test error with the minimum least-squares estimator

(or alternatively the limiting errors at t =+∞). We make the following observations which in

fact relates to the same ones as in Figure 4 in Loureiro et al. (2021):

• There is an apparent larger deviation in the test error for smaller n which tends to heal

with increasing number of data samples

• A bias between the mean observation of the test error and the theoretical prediction

emerges around the double-descent peak between n = 100 and n = 1000, in particular,

the experiments are slightly above the given prediction. We notice that this bias is even

more pronounced for smaller values of λ.

• Although it is not visible on the figure, increasing n further tends to create another

divergence between the theoretical prediction and the experimental runs - as it is

expected with n getting closer to ntot.

Besides the limiting error, we chose to draw the time-evolution of the training and test error

around at n = 700 around the double descent on the right side of Figure 5.3.4. This time, a

gradient descent algorithm is executed for each 10 experimental runs with a constant learning-

rate dt = 0.01. Due to the log-scale of the axis, it is interesting to notice that with such a

basic non-adaptive learning-rate, each tick on the graph entails 10 times more computational

time to update the weights. By contrast, the theoretical curves can be calculated at any point

in time much farther away. Overall we see a good agreement between the evolution of the

experimental runs with the theoretical predictions. However, as it is expected around the

double-descent spike, learning-curves of the experimental runs appear slightly biased and

above the theoretical curves.

Our analytical framework thus offers the possibility to capture the full theoretical evolution of

the training and test errors at any given point in time across a variable range of the parameter

n. This capability is illustrated in the heat-maps presented in Figure 5.3.5, showcasing the

complete theoretical evolution of both errors for the same model and dataset with λ= 10−3.

Fashion-MNIST Dataset: We provide another example with MNIST-Fashion dataset with

d = 784 and ntot = 70′000. The dataset X is processed as for the MNIST dataset. We take

the output vector Y such that Yi = 1 for items i above the waist, and Yi =−1 otherwise. We

provide the results in Figure 5.D.2 where the training set is sampled randomly with n elements

in ntot and the test set is sampled in the remaining examples. As it can be seen, the test error

is slightly above the prediction for n < 103 but fits well with the predicted values for larger
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n. Furthermore, the learning curves through time in Figure 5.D.3 are different compared

to the MNIST dataset in Figure 5.3.4 and we still observe a good match with the theoretical

predictions. However the mismatch in the learning curves seems to increase in the specific

case when λ is lower, increasing thereby the effect of the double descent.

Figure 5.D.2: Comparison between the analytical and experimental learning profiles for the minimum least-
squares estimator at λ= 10−3 on the left (average and ± 2-standard-deviations over 20 runs) and λ= 10−2,n = 700
on the right.

Figure 5.D.3: Comparison between the analytical and experimental learning evolution at λ= 10−2,n = 700 (10
runs).
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6 The Random feature model

Recent evidence has shown the existence of a so-called double-descent and even triple-descent

behavior for the generalization error of deep-learning models. This important phenomenon

commonly appears in implemented neural network architectures, and also seems to emerge

in epoch-wise curves during the training process. A recent line of research has highlighted that

random matrix tools can be used to obtain precise analytical asymptotics of the generalization

(and training) errors of the random feature model. In this chapter which is based on the work

(Bodin and Macris, 2021a), we analyze the whole temporal behavior of the generalization and

training errors under gradient flow for the random feature model which has been described in

model 1.3 in the introduction and briefly outlined in Chapter 5, Section 5.3.3. This chapter

stands alone as a self-contained unit, reintroducing the random-feature model independently

of the Gaussian covariate framework. Furthermore, we conduct a more comprehensive

analysis of this model. We show that in the asymptotic limit of large system size the full

time-evolution path of both errors can be calculated analytically. This allows us to observe

how the double and triple descents develop over time, if and when early stopping is an option,

and also observe time-wise descent structures. Our techniques are based on Cauchy complex

integral representations of the errors together with recent random matrix methods based on

linear pencils.

6.1 Introduction

Deep learning models have vastly increased in terms of number of parameters in the architec-

ture and data sample sizes with recent applications using unprecedented numbers with as

much as 175 billions parameters trained over billions of tokens Brown et al. (2020). Such mas-

sive amounts of data and growing training budgets have spurred research seeking empirical

power laws to scale model sizes appropriately with available resources Kaplan et al. (2020),

and nowadays it is common wisdom among practitioners that "larger models are better". This

ongoing trend has been challenging classical statistical modeling where it is thought that

increasing the number of parameters past an interpolation threshold (at which the training

error vanishes while the test error usually increases) is doomed to over-fit the data Hastie et al.
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(2001). We refer to Zhang et al. (2016) for a recent extensive discussion on this contradictory

state of affairs. Progress towards rationalizing this situation came from a series of papers

Belkin et al. (2019b, 2018, 2019c, 2020b); Spigler et al. (2019a); Geiger et al. (2020); Advani

et al. (2020b) evidencing the existence of phases where increasing the number of parameters

beyond the interpolation threshold can actually achieve good generalization, and the charac-

teristic U curve of the bias-variance tradeoff is followed by a "descent" of the generalization

error. This phenomenon has been called the double descent and was analytically corroborated

in linear models Hastie et al. (2019); Derezinski et al. (2020); Muthukumar et al. (2020); Bartlett

et al. (2020); Deng et al. (2021b) as well as random feature (RF) (or random feature regression)

shallow network models Mei and Montanari (2019); Liao et al. (2020); Gerace et al. (2020b);

D’Ascoli et al. (2020). Many of these works provide rigorous proofs with precise asymptotic

expressions of double descent curves. Further developments have brought forward rich phe-

nomenology, for example, a triple-descent phenomenon d’Ascoli et al. (2020) linked to the

degree of non-linearity of the activation function. Further empirical evidence Nakkiran et al.

(2020a) has also shown that a similar effect occurs while training (ResNet18s on CIFAR10

trained using Adam) and has been called epoch-wise double descent. Moreover the authors of

Nakkiran et al. (2020a) extensively test various CIFAR data sets, architectures (CNNs, ResNets,

Transformers) and optimizers (SGD, Adam) and classify their observations into three types of

double descents: (i) model-wise double descent when the number of network parameters is

varied; (ii) sample-wise double descent when the data set size is varied; and (iii) epoch-wise

double descent which occurs while training. We wish to note that sample-wise double descent

was derived long ago in precursor work on single layer perceptron networks Opper (1998);

Engel and Van den Broeck (2001b). An important theoretical challenge is to unravel all these

structures in a unified analytical way and understand how generalization error evolves in time.

In this contribution we achieve a detailed analytical analysis of the gradient flow dynamics

of the RF model (or regression) in the high-dimensional asymptotic limit. The model was

initially introduced in Rahimi and Recht (2008) as an approximation of kernel machines; more

recently it has been recognized as an important playground for theoretical analysis of the

model-wise double descent phenomenon, using tools from random matrix theory Mei and

Montanari (2019); Liao et al. (2020); Jacot et al. (2020b). Following Mei and Montanari (2019)

we view the RF model as a 2-layer neural network with fixed-random-first-layer-weights and

dynamical second layer learned weights. The data is given by n training pairs constituted of

d-dimensional input vectors and output given by a linear function with additive gaussian

noise. The data is fed through N neurons with a non-linear activation function and followed by

one linear neuron whose weights we learn by gradient descent over a quadratic loss function.

The high-dimensional asymptotic limit is defined as the regime n,d , N →+∞ while the ratios

tend to finite values N
d →ψ and n

d →φ. As the training loss is convex one expects that the least-

squares predictor (with Moore-Penrose inversion) gives the long time behavior of gradient

descent. This has led to the calculation of highly non-trivial analytical algebraic expressions

for training and generalization errors which describe (model-wise and sample-wise) double

and triple descent curves Mei and Montanari (2019); d’Ascoli et al. (2020). However, to the
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best of our knowledge, there is no complete analytical derivation of the whole time evolution

of the two errors.

We analyze the gradient flow equations in the high-dimensional regime and deduce the whole

time evolution of the training and generalization errors. Numerical simulations show that

the gradient flow is an excellent approximation of gradient descent in the high-dimensional

regime as long as the step size is small enough (see Fig. 6.3.1). Main contributions presented

in detail in Sect. 6.3 comprise:

a. Results 6.1 and 6.2 give expressions of the time evolution of the errors in terms of one and

two-dimensional integrals over spectral densities whose Stieltjes transforms are given by a closed

set of purely algebraic equations. The expressions lend themselves to numerical computation

as illustrated in Fig. 6.1.1 and more extensively in Sect. 6.3 and the supplementary material.

b. Model and sample-wise double descents develop after some definite time at the interpola-

tion threshold and are preceded by a dip or minimum before the spike develops. This indicates

that early stopping is beneficial for some parameter regimes. A similar behavior also occurs

for the triple descent. (See Figs. 6.3.2, 6.3.3 and the 3D version Fig. 6.1.1).

c. We observe two kinds of epoch-wise "descent" structures. The first is a double plateau

monotonously descending structure at widely different time scales in the largely overparame-

terized regime (see Fig. 6.3.2). The second is an epoch-wise double descent similar to the one

found in Nakkiran et al. (2020a). In fact, as in Nakkiran et al. (2020a), rather than a spike, this

double descent appears to be an elongated bump over a wide time scale (see Fig. 6.3.4 and the

3D version Fig. 6.1.1).

Let us say a few words about the techniques used in this work. We first translate the gradient

flow equations for the learned weights of the second layer into a set of integro-differential

equations for generating functions, as in Bodin and Macris (2021b), involving the resolvent of

a random matrix (constructed out of the fixed first layer weights, the data, and the non-linear

activation). The solution of the integro-differential equations and the time evolution of the

errors can then be expressed in terms of Cauchy complex integral representation which has

the advantage to decouple the time dependence and static contributions involving traces

of algebraic combinations of standard random matrices (see Liao and Couillet (2018) for

related methods). This is the content of propositions 6.1 and 6.2. With a natural concentration

hypothesis in the high-dimensional regime, it remains to carry out averages over the static

traces involving random matrices. This is resolved using traces of sub-blocks from the inverse

of a larger nontrivial block-matrix, a so-called linear pencil. To the best of our knowledge linear

pencils have been introduced in the machine learning community only recently in Adlam

and Pennington (2020a). This theory is developed in the context of random matrix theory in

Rashidi Far et al. (2006); Helton et al. (2007) and Helton et al. (2018) using operator valued

free-probability. The non-linearity of the activation function is addressed using the gaussian

equivalence principle Pennington and Worah (2017); Péché (2019); Adlam and Pennington

(2020a). Finally, our analysis is not entirely mathematically controlled mainly due to the
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concentration hypothesis in Sect. 6.2.3 but comparison with simulations (see Fig. 6.3.1 and

SM) confirms that the analytical results are exact.

In the conclusion we briefly discuss possible extensions of the present analysis and open

problems among which is the comparison with a dynamical mean-field theory approach.

Figure 6.1.1: 3D plot of analytical test error evolution. See Figs. 6.3.4 and 6.3.3 (on the right) for
parameter values.

6.2 Random feature model

6.2.1 Model description

Generative model and neural network:We consider the problem of learning a linear function

fd (x) = d− 1
2β∗T x with x,β∗ ∈ Rd column vectors. The vector x is interpreted as a random

input and β∗ as a random hidden vector; both with distribution N (0, Id ), Id the d ×d identity

matrix. We assume having access to the hidden function through the noisy outputs y = fd (x)+ϵ
with additive gaussian noise ϵ ∼ N (0, s2), s ∈ R+. We suppose that we have n data-points

(xi , yi )1≤i≤n . This data can be represented as the n ×d matrix X ∈Rn×d where xT
i is the i -th

row of X , and the column vector vector Y ∈ Rn with i -th entry yi . Therefore, we have the

matrix notation Y = d− 1
2 Xβ∗+ξ where ξ∼N (0, s2In) and In the n ×n identity matrix.

We learn the data with a shallow 2-layer neural network. There are N hidden neurons with

weight (column) vectors θi ∈Rd , i = 1, · · · , N each connected to the d input neurons. Out of

these we form the matrix (of the first layer connecting input and hidden neurons)Θ ∈RN×d

where θT
i is the i -th row of Θ . Its entries are assumed independent and sampled through

a standard gaussian distribution N (0,1); they are not learned but fixed once for all. The

data-points in X are applied linearly to the parametersΘ, and the output Z ∈Rn×N of the first

layer is the pointwise application of an activation function σ :R→R, Z =σ(d− 1
2 XΘT ). We use

the notation zT
i to express the i -th row of Z . The second layer consists in a weight (column)

vector βt ∈RN to be learned, indexed by time t ≥ 0, with components initially sampled at t = 0

i.i.d N (0,r 2), r ∈R+. The prediction vector is expressed as Ŷt = N− 1
2 Zβt .
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We assume that the activation function belongs to L2(e−
x2

2 d x) with inner product denoted

〈 , 〉. It can be expanded on the basis of Hermite polynomials, so σ ∈ Span
(
(Hek )k≥0

)
, where

Hek (x) = (−1)k e
x2

2 d k

d xk e−
x2

2 (so He0 (x) = 1, He1 (x) = x, He2 (x) = x2 − 1, He3 (x) = x3 − 3x, ...).

Furthermore we take σ centered with 〈σ, He0〉 = 0, and set µ= 〈σ, He1〉, ν2 = 〈σ,σ〉−µ2. For

instance, σ= id has (µ,ν) = (1,0) while σ= Relu− 1p
2π

has (µ,ν) = ( 1
2 , 1

2 (1− 2
π )1/2) ≃ (0.5,0.3).

Finally, we recall that we are interested in the high dimensional regime where the parameters

N ,n,d tend to infinity with the ratios N
d →ψ and n

d →φ.

Training and test errors:For a new input x0 ∈Rd , we define the predictor ŷt (x0) = 1p
N

z(x0)Tβt

where z(x0) =σ( 1p
d
Θx0). We will further define the standard training and test errors with a

penalization term λ> 0 and the quadratic loss:

Etrain(β) = 1

n

∥∥Y − Ŷ
∥∥2 + λ

N

∥∥β∥∥2 , Egen(β) = Ex0∼N (0,1)
[
(y(x0)− ŷ(x0))2] (6.1)

Note that because of the λ-penalization term, in this context, the training error can be above

the test error in some configurations of parameters. Also, we will slightly abuse this notation

throughout the chapter by using Etrain(t ),Egen(t ) to designate Etrain(βt ),Egen(βt ).

Gradient flow:Minimizing the training error of this shallow-network is equivalent to a standard

Tikhonov regularization problem with a design matrix Z for which the optimal weights are

given by β∞ = ( Z T Z
N + n

N λIN )−1 Z Tp
N

Y . The errors generated by the predictors with weights β∞
have been analytically calculated in the high-dimensional regime in Mei and Montanari (2019)

and further analyzed in d’Ascoli et al. (2020). Here we study the whole time evolution of the

gradient flow and thus introduce an additional time dimension in our model. Of course as

t →+∞ one recovers the errors generated by the predictors with weights β∞. The output

vector βt is updated through the ordinary differential equation dβt

d t =−η∇βEtrain(βt ) with a

fixed learning rate parameter η> 0. As η can be absorbed in the time parameter, from now

on we consider without loss of generality that η= n
2 . Setting δ=λ n

N , we find that the gradient

flow for βt is a first order linear matrix differential equation,

dβt

d t
=−

(
Z T Z

N
+δIN

)
βt + Z T Yp

N
. (6.2)

Recall the initial condition β0 is a vector with i.i.d N (0,r 2) components.

6.2.2 Cauchy integral representations of the training and test errors

An important step of our analysis is the representation of Etrain and Egen in terms of Cauchy

contour integrals in the complex plane. To this end we decompose both errors in elementary

contributions and derive contour integrals for each of them. Details are found in section 6.4

and the SM.
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We begin with the test error which is more complicated. We have

Egen(t ) = 1+ s2 −2µg (t )+µ2h(t )+ν2l (t )+od (1) (6.3)

where limd→+∞ od (1) = 0 with high probability, and g (t) = β∗T
p

d
ΘTp

d

βtp
N

, h(t) = ∥ ΘTp
d

βtp
N
∥2, and

l (t ) = ∥ βtp
N
∥2. To describe Cauchy’s integral representation of the elementary functions g , h, l

we introduce the resolvent R(z) = ( Z T Z
N − zIN )−1 for all z ∈C\ Sp( Z T Z

N ).

Proposition 6.1 (Test error). Let Rz be the functional acting on holomorphic functions f :

C\ Sp( Z T Z
N ) →C as Rz { f (z)} =−∮

Γ
dz

2πi f (z) over a contour Γ encircling the spectrum Sp( Z T Z
N )

in the counterclockwise direction. Similarly, let Rx,y be the functional acting on two-variable

holomorphic functions f : (C\ Sp( Z T Z
N ))2 →C as Rx,y { f (x, y)} = ∮

Γ

∮
Γ

dx
2πi

dy
2πi f (x, y). Let Gt (z) =

β∗T
p

d
ΘTp

d
R(z) βtp

N
and K (z) = β∗T

p
d
ΘTp

d
R(z) Z T Y

N . We have for all t ≥ 0

g (t ) =Rz

{
e−t (z+δ)G0(z)+ 1−e−t (z+δ)

z +δ K (z)

}
. (6.4)

Let Lt (z) = βT
tp
N

R(z) βtp
N

and Ut (z) = Y T Z
N R(z) βtp

N
and V (z) = Y T Z

N R(z) Z T Y
N . For all t ≥ 0

l (t )=Rz

{
e−2t (z+δ)L0(z)+2e−t (z+δ)

(
1−e−t (z+δ)

δ+ z

)
U0(z)+

(
1−e−t (δ+z)

δ+ z

)2

V (z)

}
. (6.5)

Let Ht (x, y) = βT
tp
N

R(x)ΘΘ
T

d R(y) βtp
N

, Qt (x, y) = βT
tp
N

R(x)ΘΘ
T

d R(y) Z T Y
N

and W (x, y) = Y T Z
N R(x)ΘΘ

T

d R(y) Z T Y
N . For all t ≤ 0

h(t ) =Rx,y

{
e−t (2δ+x+y)

(
e t (δ+y) −1

δ+ y
Q0(x, y)+ e t (δ+x) −1

δ+x
Q0(y, x)

)}

+Rx,y

{
1−e−t (x+δ)

x +δ
1−e−t (y+δ)

y +δ W (x, y)

}
+Rx,y

{
e−t (x+y+2δ)H0(x, y)

}
. (6.6)

A similar but much simpler representation holds for the training error.

Proposition 6.2 (Training error). With the same definitions than in proposition 6.1 we have

Etrain(t )= ∥Y ∥2

n
+1

c
Rz

{
(z +δ)e−2t (z+δ)L0(z)−2e−2t (z+δ)U0(z)−1−e−2t (δ+z)

δ+ z
V (z)

}
. (6.7)

6.2.3 High-dimensional framework

The Cauchy integral representation involves a set of one-variable functions S1 = {G0,K ,L0,U0,

V } :C\ Sp( Z T Z
N ) →C and a set of two-variable functions S2 = {H0,W,Q0} :C\ Sp( Z T Z

N ))2 →C

so that g , h, l and thus also Egen and Etrain are actually functions of (t ;S1,S2). Thus we can
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write for instance: Egen(βt ) = Egen(t ;S1,S2). We simplify the problem by considering the

high-dimensional regime where N ,n,d →∞ with ratios N
d →ψ, n

d →φ tending to fixed values

of order one. In this regime we expect that the functions in S1 and S2 concentrate and can

therefore be replaced by their averages over randomness. These averages can be carried out

using recent progress in random matrix theory Rashidi Far et al. (2006), Helton et al. (2007),

and we are able to compute pointwise asymptotic values of the functions in S1, S2, and

eventually substitute them in the Cauchy integral representations for the training and test

error. In general, rigorously showing concentration of the various functions involved is not

easy and we will make the following assumptions:

Assumptions 6.1. In the high dimensional limit with d , N ,n →+∞ and N
d →ψ, n

d →φ:

1. The random functions in S1, S2 are assumed to concentrate. We let S̄1 = {Ḡ0, K̄ , L̄0,Ū0,V̄ }

and S̄2 = {H̄0,W̄ ,Q̄0} be the pointwise limit of the functions.

2. There exists a bounded subset C ⊂R+ such that the functions in S̄1 and S̄2 are holomor-

phic on C\C and (C\C )2 respectively

3. The gaussian equivalence principle (see sect. 6.4.2) can be applied to the limiting quanti-

ties.

It is common that the closure of the spectrum of suitably normalized random matrices con-

centrates on a deterministic set. Thus the bounded set C can be understood as the limit

of the finite interval [0, limd maxSp( Z T Z
N )]. In the sequel we will distinguish the theoretical

high-dimensional regime from the finite dimensional regime using the upper-bar notation.

Definition 6.1 (High-dimensional framework). Under the assumptions 6.1, we define the

theoretical test error Ēgen(t) = Egen(t ;S̄1,S̄2) and the theoretical training error Ētrain(t) =
Etrain(t ;S̄1,S̄2)

We conjecture that limd Etrain(t) = Ētrain(t) and limd Egen(t) = Ēgen(t) at all times t ∈ R. We

verify that this conjecture stands experimentally for sufficiently large d on different con-

figurations (see additional figures in the SM). This also lends experimental support on the

assumption 6.1. Furthermore we conjecture that the d →+∞ and t →∞ limits commute,

namely limd limt Etrain(t ) = limt Ētrain(t ) and limd limt Egen(t ) = limt Ēgen(t ).

6.3 Results and insights

6.3.1 Main results

In this section we provide the main results of this work: analytical formulas tracking the test

and training errors during gradient flow of the random feature model for all times in the

high-dimensional theoretical framework.
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Result 6.1. Under the assumption 6.1, the theoretical test and training errors of definition 6.1

are given for all times t ≥ 0 by the formulas

Ēgen(t ) = 1+ s2 −2µḡ (t )+µ2h̄(t )+ν2 l̄ (t ), (6.8)

Ētrain(t ) = 1+ s2 + 1

c

∫
R

[
(δ+ω)e−2t (ω+δ)ρL̄0

(ω)− 1−e−2t (δ+ω)

δ+ω ρV̄ (ω)

]
dω, (6.9)

with c = φ
ψ , δ= cλ, and the functions ḡ , h̄, l̄ given by

ḡ (t ) =
∫
R

1−e−t (ω+δ)

ω+δ ρK̄ (ω)dω, (6.10)

l̄ (t ) =
∫
R

[
e−2t (ω+δ)ρL̄0

(ω)+
(

1−e−t (ω+δ)

ω+δ

)2

ρV̄ (ω)

]
dω, (6.11)

h̄(t ) =
Ï
R2

[
e−t (u+v+2δ)ρH̄0

(u, v)+ 1−e−t (u+δ)

u +δ
1−e−t (v+δ)

v +δ ρW̄ (u, v)

]
dudv, (6.12)

where the measures ρK̄ ,ρL̄0
,ρV̄ ,ρH̄0

,ρW̄ (are possibly signed) are characterized by their Stieltjes

transforms given by K̄ , L̄0,V̄ , H̄0,W̄K̄ (x) = t x
1 , L̄0(x) = r 2g x

1 , V̄ (x) = s2
(
1+xg x

1

)+ (
c −hx

4

)
,

H̄0(x, y) = r 2q1, W̄ (x, y) = s2cq4 +q2

(6.13)

where for each x, y ∈ C+ (the upper half complex plane) g x
1 ,hx

4 , t x
1 , g y

1 ,hy
4 , t y

1 and q1, q2, q4, q5

(which depend symmetrically on (x, y), e.g., q1 = q x,y
1 = q y,x

1 ) are solutions of a purely algebraic

system of equations (see SM for the criterion to select the relevant solution)

0 =µψg x
1 hx

4 − t x
1

0 =µψg y
1 hy

4 − t y
1

0 = (c −1−xg x
1 )

(
c −µ2φg x

1 hx
4

)− chx
4

0 = (c −1− y g y
1 )

(
c −µ2φg y

1 hy
4

)− chy
4

0 = 1− g x
1

(
µ2hx

4 + (c −1−xg x
1 )ν2 −x

)
0 = 1− g y

1

(
µ2hy

4 + (c −1− y g y
1 )ν2 − y

)
0 =−µ2g y

1 q2 +µ2hx
4 q1 +µg y

1 t x
1 +µg y

1 t y
1 − cg y

1 q4ν
2 − g y

1 −q1x +q1ν
2
(
c − g x

1 x −1
)

0 =µ(
φ−ψg x

1 x −ψ)(−µg x
1 q2 +µhy

4 q1 + g x
1 t y

1

)+ cq4(1−µt y
1 )−q2

0 =−µ2φg x
1 (1−µt x

1 )q4 +µ2q5
(
c − g y

1 y −1
)−ν2φg x

1 q4 −φq4 +q1ν
2
(
φ−ψg y

1 y −ψ)
0 =ψ(µ2φg x

1 g y
1 q4 +ψg x

1 g y
1 +q1)(1−µt y

1 )−µ2ψg x
1 q5

(
c − g x

1 x −1
)−q5

We can also deduce the limiting training error and test errors in the infinite time limit:
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Result 6.2. In the limit t →∞ we find:

lim
t→∞ Ēgen(t )=1+ s2 −2µK̄ (−δ)+µ2W̄ (−δ,−δ)+ν2 dV̄

dx
(−δ), lim

t→∞ Ētrain(t )=1+ s2 − 1

c
V̄ (−δ)

Interestingly, in the limit t →∞, the expressions become simpler and completely algebraic in

the sense that we do not need to compute integrals (or double-integrals) over the supports

of the eigenvalue distributions. It is not obvious to see on the analytical expressions that the

result is the same as the algebraic expressions obtained in Mei and Montanari (2019) but Fig.

6.3.1 shows an excellent match with simulation experiments. We note here that checking that

two sets of complicated algebraic equations are equivalent is in general a non-trivial problem

of computational algebraic geometry Cox et al. (2007).

6.3.2 Insights and illustrations of results

The set of analytical formulas allows to compute numerically the measuresρK ,ρL0 ,ρV ,ρH0 ,ρW

and in turn the full time evolution of the test and training errors. The result matches the

simulation of a large random feature model where d is taken large as can be seen on Figs. 6.3.1

for the infinite time limit (experimental check of result 6.2) and additional figures in the SM

(experimental check of result 6.1). Below we illustrate numerical computations obtained with

analytical formulas of result 6.1 for various sets of parameters (t ,µ,ν,ψ,φ,r, s,λ). For instance,

we can freely choose two of these parameters and plot the generalization error in 3D as in Fig.

6.1.1, or as a heat-map in the following. We describe three important phenomena which are

observed with our analysis.

Double descent and early-stopping benefits: while Mei and Montanari (2019) mostly analyze

the minimum least-squares estimator of the random feature model which displays the double-

descent at ψ = φ, we are predicting the whole time evolution of the gradient flow as in Fig.

6.3.2. We clearly observe the double-descent curve at t = 1010 for ψ=φ; but we now notice

that if we stop the training earlier, say at times 1 < t < 10, the generalization error performs

better than the minimum least squares estimator. Actually, in the time interval t ∈ (1,10) for

ψ≈φ the test error even has a dip or minimum just before the spike develops. We also notice

a two-steps descent structure with the test error which is non-existent in the training error

and materializes long after the training error has stabilized in the overparameterized regime

ψ≫φ. This is also reminiscent but not entirely similar to the abrupt grokking phenomenon

described in Power et al. (2021).

Triple descent: We can observe a triple descent phenomenon materialized by two spikes as

seen in Fig. 6.3.1 at t =∞ (we also check that the theoretical result matches very well the

empirical prediction of the minimum least squares estimator both for training and test errors).

This triple descent phenomenon is already contained in the formulas of Mei and Montanari

(2019) (although not discussed in this reference) and has been analyzed in detail in d’Ascoli

et al. (2020). The test error contains a so-called linear spike for φ= 1 (n = d) and a non-linear
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spike for ψ= φ (N = n). The two spikes are often not seen together as this requires certain

conditions to be met, and they tend to materialize together for specific values µ, ν of the

activation function where µ≫ ν. Here we further observe the evolution through time of the

triple descent and the two spikes and how they develop in Fig. 6.3.3. There, we notice that the

linear-spike seems to appear earlier than the non-linear one.

Epoch-wise descent structures: Important phenomena that we uncover here are two time-wise

"descent structures". (i) As can be seen in Fig. 6.3.2, the test error develops a double plateau

structure at widely different time scales in the over-parameterized regime (ψ≫φ) while there

seems to be only one time scale for the training error. This kind of double plateau descent

is different from the "usual" double-descent. (ii) Moreover, on Fig. 6.3.4 for well chosen

parameters (in particular for noises with s and r "larger" and ψ= 2φ), we can also observe

an elongated bump (rather than a thin spike) for small λ’s. Notice the logarithmic time-scale

which clearly shows that here we need to wait exponentially longer to attain the "second

descent" after the bump. This is very reminiscent of the epoch-wise double descent described

in Nakkiran et al. (2020a) for deep networks (which happens on similar time scales).

Figure 6.3.1: Large time limit. Analytical training error and test error profile with parameters
(µ,ν,ψ,r, s,λ) = (10,1,2,1,0.5,0.01) compared with experimental least squares MSE with 40 data-points
with d = 5000 (average of 10 instances with confidence bar at 2σ)

Figure 6.3.2: Model-wise double descent. Analytical training error and test error evolution with
parameters (µ,ν,φ,r, s,λ) = (0.5,0.3,3,2.,0.4,0.001). Note that we vary the number of model parameters
(ψ).
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6.4 Sketch of proofs and analytical derivations

Figure 6.3.3: Sample-wise descents. Analytical training error and test error evolution with parameters
(µ,ν,ψ,r, s,λ) = (0.9,0.1,2,1,0.8,0.0001). Note that we vary the number of samples (φ).

Figure 6.3.4: Epoch-wise descent structures. Analytical test error evolution with respect to different
values of λ (µ,ν,ψ,φ,r, s) = (0.5,0.3,6,3,2.0,0.5). Here the ratio of number of parameters and samples
is fixed.

6.4 Sketch of proofs and analytical derivations

The analysis is threefold. Firstly, we decompose the training and test errors in elementary terms

and establish Cauchy’s integral representation for each of them, as provided in proposition

6.1. A crucial advantage of this form is that it dissociates a scalar time-wise component and

static matrix terms. Secondly, we switch to the high-dimensional framework where the matrix

terms are substituted by their limit using the gaussian equivalence principle. Thirdly, we can

compute the expectations of matrix terms thanks to a random matrix technique based on

linear pencils. In this section we only sketch the main ideas for each step and provide details

in the supplementary material.

6.4.1 Cauchy’s integral representation

We sketch the derivation for the test error and leave details to appendices. The derivation

for the training error is entirely found in the SM. Expanding the square in Equ. (6.1) and

carrying out averages we find Equ. (6.3) for Egen(t) with g (t) = β∗T
p

d
ΘTp

d

βtp
N

, h(t) = ∥ ΘTp
d

βtp
N
∥2,

and l (t ) = ∥ βtp
N
∥2 (see SM for this derivation).
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We show how to derive the Cauchy integral representation for g (t). For h(t), l (t) the steps

are similar and found in SM. Let us consider the function (t , z) 7→ Gt (z) as in 6.1. Then we

have the relation g (t) = −1
2iπ

∮
ΓdzGt (z) where Γ is a loop in C enclosing the spectrum of Z T Z

N .

This can easily be seen by decomposing the symmetric Z T Z
N in an orthonormal basis v1, . . . , vN

with the eigenvalues λ1, . . . ,λN : then we have Gt (z) =∑N
i=1

1
λi−z

(
β∗T
p

d
ΘTp

d
vi vT

i
βtp

N

)
and because

λi are all encircled by Γ, we find −∮
Γ

dz
2πi Gt (z) = ∑N

i=1
β∗T
p

d
ΘTp

d
vi vT

i
βtp

N
= g (t). Now, the ODE

derived for βt in (6.2), can be written slightly differently using the fact that Z T Z
N = R(z)−1 + zI

for any z outside Sp( Z T Z
N ). Namely, dβt

d t = Z T Yp
N

−R(z)−1βt − (z +δ)βt . Then, we can derive an

integro-differential equation for Gt (z) involving g (t ) and K (z):

∂tGt (z)

∂t
= K (z)− g (t )− (z +δ)Gt (z) (6.14)

In the following, we let L be the Laplace transform operator (L f )(p) = ∫ +∞
0 d t e−pt f (t ), Re p

large enough. Note that the contour integral is performed over a compact set Γ so for Re p

large enough, by Fubini’s theorem, the operations L and Rz commute. Applying L to (6.14)

and rearranging terms we find for Re(p + z +δ) ̸= 0:

L Gp (z) = G0(z)

p + z +δ + K (z)

p(p + z +δ)
− L g (p)

p + z +δ (6.15)

Now, we can always choose Γ such that −(p + δ) is outside of the contour if we assume

Re(p +δ) > 0 (since mini λi ≥ 0). Thus, applying Rz to (6.15) nullifies the last term because

the pole is outside Γ, and using commutativity RzL Gp =L RzGp ,

RzL Gp =L Rz

{
e−t (z+δ)G0(z)+ 1−e−t (z+δ)

z +δ K (z)

}
=L g (p). (6.16)

Finally, using the inverse Laplace transform leads to (6.4).

6.4.2 Gaussian equivalence principle

The matrix terms must be estimated in the limit d → ∞ with {β∗,β0,ξ,Θ, X } all indepen-

dently distributed. As per assumptions 6.1 all the matrix terms in S1,S2 are assumed to

concentrate. So for instance we assume that the following limit exists K̄ (z) ≡ limd→∞ K (z) =
limd→∞Eβ∗,ξ,Θ,X [K (z)]. Using cyclicity of the trace we easily perform averages over β∗,ξ to

find

K̄ (z) = lim
d
Eβ∗,Θ,X Tr

[
ΘT

p
d

R(z)
Z T X

N

β∗β∗T

d

]
= lim

d

1

d
Eβ∗,Θ,X Tr

[
ΘT

p
d

R(z)
Z T X

N

]
. (6.17)

After these reductions, the expressions of all functions in S̄1,S̄2 essentially involve products

of random matrices Θ, X and pointwise applications of the non-linear activation σ. This

can be further reduced to simpler algebraic expressions using the gaussian equivalence prin-
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ciple. This principle states that: there exists a standard gaussian random matrix Ω ∈ Rn×N

independent of {X ,Θ} such that in the infinite dimensional limit we can make the substitution

Z =σ(
d−1/2XΘT

)−→µd−1/2XΘT +νΩ in the expressions of all functions in S̄1,S̄2. This ap-

proach is quite general and is well described in Adlam and Pennington (2020a); Adlam et al.

(2019) (and formerly in Pennington and Worah (2017) and Péché (2019)). Thus it remains to

compute expectations of traces containing only products, and inverses of products and sums,

of gaussian matrices.

6.4.3 Expectations over random matrices using linear pencils

We explain how to compute the limit of (6.17) once the gaussian equivalence principle has
been applied. A powerful approach is to design a so-called linear pencil. In the present
context this is a suitable block-matrix containing gaussian random matrices and multiples
of the identity matrix, for which full block-inversion gives back the products of terms in the
traces that are being sought. This approach has been described in Rashidi Far et al. (2006);
Helton et al. (2007); Mingo and Speicher (2017). We have found a suitable linear pencil which
contains fortuitously all the terms required in S̄1,S̄2. It is described by the 13×13 block-
matrix M , and pursuing with our example, we get for instance with the block (7,12) that
limd K (y) = limd

1
d Tr[(M−1)(7,12)]

M =



−xI −µ Θp
d

−I 0 0 0 Θp
d

0 0 0 0 0 0

0 I 0 X Tp
N

0 0 0 0 0 0 0 0 0

0 0 I ν ΩTp
N

0 0 0 0 0 0 0 0 0

0 0 0 I Xp
N

ν Ωp
N

0 0 0 0 0 0 0

µΘTp
d

0 0 0 I 0 0 0 0 0 0 0 0

I 0 0 0 0 I 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0 0 0 0 ΘTp
d

0 0 0 0 0 0 0 I 0 ν ΩTp
N

0 0 0

0 0 0 0 0 0 0 0 I X Tp
N

0 0 0

0 0 0 0 0 0 0 0 0 I ν Ωp
N

Xp
N

0

0 0 0 0 0 0 0 0 0 0 I 0 −I

0 0 0 0 0 0 0 0 0 0 0 I −µΘTp
d

0 0 0 0 0 0 0 I µ Θp
d

0 0 0 −y I


Next, the great advantage of the linear pencil is that (as described in Rashidi Far et al. (2006);

Helton et al. (2007); Mingo and Speicher (2017)) it allows to write a fixed point equation

F (G) =G for a "small" 13×13 matrix G with scalar matrix elements. We also provide in the SM

an independent derivation of the fixed point equations using the replica method (a technique

from statistical physics Edwards and Jones (1976)).The components of G are linked to the

limiting traces of the blocks of M−1 as in [G]2,7 = K̄ (z). The action of F can be completely

described as an algebraic function leading to (a priori) 13×13 = 169 equations over the matrix

elements of G . The number of equations can be immediately reduced to 39 because many

elements vanish, and with the help of a computer algebra system the number of equations
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can be further brought down to 10. We refer to the SM for all the details about the method.

6.5 Conclusion

We believe that our analysis could be extended to study the learning of non-linear functions,

the effect of multilayered structures, and potentially different layers such as convolutions, as

long as they are not learned. A challenging task is to extend the present methods to learned

multilayers. A further question is the application of our analysis in teacher-student scenarios

with realistic datasets (See Loureiro et al. (2021); Adlam et al. (2019)).

Finally we wish to point out that a comparison of the approach of the present chapter (and

the similar but simpler one of Bodin and Macris (2021b)) with the dynamical mean-field

theory (DMFT) approach of statistical physics remains to be investigated. DMFT has a long

history originating in studies of complex systems (turbulent fluids, spin glasses) where one

eventually derives a set of complicated integro-differential equations for suitable correlation

and response functions capturing the whole dynamics of the system (we refer to the recent

book Parisi et al. (2020) and references therein). This is a powerful formalism but the integral

equations must usually be solved entirely numerically which itself is not a trivial task. For

problems close to the present context (neural networks,generalized linear models, phase

retrieval) DMFT has been developed in the recent works Sompolinsky et al. (1988); Crisanti

and Sompolinsky (2018); Agoritsas et al. (2018); Mignacco et al. (2020, 2021). We think that

comprehensively comparing this formalism with the present approach is an interesting open

problem. It would be desirable to connect the DMFT equations to our closed form solutions

for the training and generalization errors expressed in terms of a set of algebraic equations of

suitable Stieltjes transforms.
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Appendix

6.A Test Error substitutions

The test error Egen(t ) in (6.1) can be expanded into smaller terms

Egen(t ) = Ex0 [y(x0)2]−2Ex0 [y(x0)ŷt (x0)]+Ex0 [ŷt (x0)2]

= Ex0 [y(x0)2]−2
β∗T

p
d
Ex0 [x0z(x0)T ]

βtp
N

+ βT
tp
N
Ex0 [z(x0)z(x0)T ]

βtp
N

. (6.18)

The random noise ϵ from y(x0) only impacts the first term on the right hand side with

Ex0 [y(x0)2] = 1+s2. Using further q(t ) = β∗T
p

d
Ex0 [x0z(x0)T ] βtp

N
and p(t ) = βT

tp
N
Ex0 [z(x0)z(x0)T ] βtp

N
,

we write Egen(t ) = 1+ s2 −2q(t )+p(t ).

We provide analytical arguments to justify the formula (6.3) showing that:

q(t ) =µg (t )+od (1) (6.19)

p(t ) =µ2h(t )+ν2l (t )+od (1) (6.20)

with

g (t ) = β∗T

p
d

ΘT

p
d

βtp
N

, l (t ) =
∥∥∥∥ βtp

N

∥∥∥∥2

, h(t ) =
∥∥∥∥ΘT

p
d

βtp
N

∥∥∥∥2

(6.21)

and where limd→+∞ od (1) = 0 with probability tending to one when d →+∞. The arguments

below are based further on the prior assumption that the (θi /
p

d) are sampled uniformly on

the hyper-sphere of radius 1. We will assume further that these results can be extended in

our setting with θi sampled from a gaussian distribution. Notice that this is a reasonable

assumption because ∥θi∥2 /d is a χ2 distribution of mean 1 and variance 2
d .

6.A.1 limit of q(t )

We decompose our activation function as σ(x) = µx +νσ⊥(x) where σ⊥ ∈ Span(Hei )i≥2. In

other words, we have EG [σ⊥(G)] = EG [σ⊥(G)G] = 0 and EG [σ⊥(G)2] = 1. Notice that conditional

on (θi )i sampled on the sphere of radius
p

d , we have for all i ∈ {1, . . . , N } that ui ≡ θT
i x0p

d
∼
x0
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N (0,1), and for all j ∈ {1, . . . , N }, we have Cov(ui ,u j ) = θT
i θ j

d =
[
ΘΘT

d

]
i , j

. Similarly, for any

l ∈ {1, . . . ,d} we have Cov(u j , [x0]l ) = [θ j ]lp
d

.. Now, using the Mehler-Kernel formula, we have

Ex0

[
[x0]l [z(x0)] j

]= ∑
k≥0

1

k !

(
Cov(u j , [x0]l )

)k
Ex0

[
x0Hek (x0)

]
Eu j

[
σ(u j )Hek (u j )

]
(6.22)

which does not vanish only for k = 1 due to the first expectation on the RHS. Thus

Ex0

[
[x0]l [z(x0)] j

]= [θ j ]lp
d
µ (6.23)

and hence we find that q(t ) = β∗T
p

d
Ex0

[
x0z(x0)T

] βtp
N
=µβ∗T

p
d
ΘTp

d

βtp
N

.

The result ought not be exact anymore when (θi ) are sampled from a normal distribution, and

we make the assumption that we can account for a correction term od (1) which goes to 0 as d

grows to infinity, hence q(t ) =µg (t )+od (1) in general.

6.A.2 limit of p(t )

Similarly for p(t), we evaluate the kernel Ui , j = Ex0

[
[z(x0)]i [z(x0)] j

]
for which the Mehler-

Kernel formula provides

Ui , j = ∑
k≥0

1
k !

(
Cov(ui ,u j )

)k
Eui

[
σ(ui )Hek (ui )

]2

= µ2Cov(ui ,u j )+ν2 ∑
k≥2

(Cov(ui ,u j ))k

k ! Eui

[
σ⊥(ui )Hek (ui )

]2
.

(6.24)

Intuitively, the terms
(
Cov(ui ,u j )

)k for k ≥ 2 are on a smaller order in d compared to Cov(ui ,u j )

when i ̸= j . We refer the reader to Lemma C.7 in Mei and Montanari (2019) where it is

shown with some additional assumptions on σ (weakly differentiable with ∃c0,c1,∀x > 0,

|σ(x)|, |σ′(x)| ≤ c0ec1x ) that:

EΘ

[∥∥∥∥U −µ2ΘΘ
T

d
−ν2IN

∥∥∥∥
op

]
= od (1). (6.25)

Therefore, we can bound:

|p(t )−µ2h(t )−ν2l (t )| =
∣∣∣〈 βT

tp
N

,
(
U −µ2ΘΘT

d −ν2
)
βT

tp
N

〉∣∣∣
≤

∥∥∥ βtp
N

∥∥∥ ·∥∥∥U −µ2ΘΘT

d −ν2IN

∥∥∥
op

·
∥∥∥ βtp

N

∥∥∥
= l (t )

∥∥∥U −µ2ΘΘT

d −ν2IN

∥∥∥
op

.

(6.26)

As per the general assumptions 6.1, l (t ) concentrates to a finite quantity l̄ (t ) at all times as d

grows to infinity (that l̄ (t) is finite is explicitly checked by the anlytical computations of the

generalization error). Thus by Markov’s inequality we have at any fixed time t , |p(t )−µ2h(t )−
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ν2l (t )| = od (1) with probability tending to one as d →+∞.

Notice also that we assume as before that od (1) also contains the correction added when (θi )

are sampled from a normal distribution.

6.B Cauchy’s integral representation formula

In this section we complete the proof of propositions 6.1 and 6.2. We show how to derive the

Cauchy integral representation of the two functions l (t) and h(t) by similar analysis of Sect.

6.4.1 for the representation of g (t ).

6.B.1 Representation formula for l (t )

We define the function Lt (z) = βT
tp
N

R(z) βtp
N

and the auxiliary functions Ut (z) = Y T Z
N R(z) βtp

N

and V (z) = Y T Z
N R(z) Z T Y

N . We find a set of 2 integro-differential equations using the gradient

flow equation for dβt

dt (as in the derivation of 6.14)

1

2

∂Lt (z)

∂t
=Ut (z)− l (t )− (z +δ)Lt (z)

∂tUt (z)

∂t
=V (z)−RzUt − (z +δ)Ut (z)

(6.27)

Similarly Gt (z) and g (t), we also have that l (t) = −∮
Γ

dz
2iπLt (z) = Rz Lt . So we get a pair of

integro-differential equations in this case (wheras for Gt (z) we had only one such equation).

However, we have one additional differential equation in this case. Pursuing with the Laplace

transform operator1 the equations (6.27) become

L Lp (z) = 1
1
2 p+z+δ

(1
2 L0(z)+LUp (z)−L l (p)

)
LUp (z) = 1

p+z+δ
(
U0(z)+ V (z)

p −L RzUp

) (6.28)

and re-injecting LUp from the second equation into the first equation we find

L Lp (z) = 1
1
2 p + z +δ

(
L0(z)

2
−L l (p)

)
+ 1

( 1
2 p + z +δ)(p + z +δ)

(
U0(z)+ V (z)

p
−L RzUp

)
.

(6.29)

With similar considerations as before, with p large enough to have −δ is outside the loop Γ, we

see the terms L l (p) and L RzUp don’t contribute to the former equation when the operator

Rz is applied

RzL Lp (z) =Rz

{
1

2

L0(z)
1
2 p + z +δ + 1

( 1
2 p + z +δ)(p + z +δ)

(
U0(z)+ V (z)

p

)}
. (6.30)

1Defined as (L f )(p) = ∫ +∞
0 d te−pt f (t ) for Re p large enough. We also use the notation L fp to mean (L f )(p)

specially when there are other variables involved. For example L Lp (z) = ∫ +∞
0 d te−pt Lt (z).
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Finally, there remains to use the commutativity of Rz and L (for Re p large enough by Fubini’s

theorem) and compute the inverse Laplace transforms to find

l (t ) =Rz

{
e−2t (z+δ)

[
L0(z)+2

e t (δ+z) −1

δ+ z
U0(z)+

(
e t (δ+z) −1

δ+ z

)2

V (z)

]}
(6.31)

Expanding further the terms individually

l (t ) =Rz

{
e−2t (z+δ)L0(z)+2e−t (z+δ)

(
1−e−t (z+δ)

δ+ z

)
U0(z)+

(
1−e−t (δ+z)

δ+ z

)2

V (z)

}
. (6.32)

We end-up (as for g (t)) with an expression where the time dependence is decoupled from

random matrix expressions.

6.B.2 Representation formula for h(t )

The last term requires additional considerations. We will now use a double contour Γx ,Γy

enclosing the eigenvalues of Z T Zp
N

and such that Γx ∩Γy =;. We consider the operators Rx ,Ry

associated to each contour. Contrary to the previous two representations, when computing

the multiple derivatives h(k)(t), due to the Θ matrix in h(t), there appears pairs of matrices
Z T Zp

N
. In terms of generating functions, this translates into a "2-variable resolvent" functions

Ht (x, y) = βT
tp
N

R(x)
ΘΘT

d
R(y)

βtp
N

, (6.33)

which has the property h(t ) =Rx,y Ht , and two auxiliary functions

Qt (x, y) = βT
tp
N

R(x)
ΘΘT

d
R(y)

Z T Y

N
, and W (x, y) = Y T Z

N
R(x)

ΘΘT

d
R(y)

Z T Y

N
. (6.34)

Using the former method for equation (6.27) leads to the following integro-differential equa-

tions:

∂Ht (x, y)

∂t
=Qt (x, y)+Qt (y, x)−Rx Ht (y)−Ry Ht (x)− (x + y +2δ)Ht (x, y)

∂Qt (x, y)

∂t
=W (x, y)−RxQt (y)− (x +δ)Qt (x, y)

(6.35)

Then the Laplace transform on the first equation reads

L Hp (x, y) = 1

p +x + y +2δ

[
H0(x, y)+L

{
Qt (x, y)+Qt (y, x)−Rx Ht (y)−Ry Ht (x)

}]
. (6.36)

Notice that Rx and Ry commute with each other as being integrals over a compact set Γx ,Γy

respectively. So by Fubini we can name indifferently Rx,y =RxRy =RyRx . Notice also that

Rx Ht (y) is not a function of x anymore, thus for p large enough to have |2δ+x + y | > 0 for all
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(x, y) ∈ Γx ×Γy , we find

Rx,y

{
Rx Ht (y)

p +x + y +2δ

}
=Ry

{
Rx

{
Rx Ht (y)

p +x + y +2δ

} }
=Ry {0} = 0. (6.37)

Symmetrically, the same statement can be made for Ry Ht (x), so applying the operator Rx,y

and the result (6.37) to (6.36) we find

Rx,yL Hp (x, y) =Rx,y

{
H0(x, y)+L Qp (x, y)+L Qp (y, x)

p +x + y +2δ

}
. (6.38)

Finally, we have Rx,yL Hp (x, y) = L Rx,y Hp (x, y) = L h(p). The Laplace transform of the

second equation of (6.35) provides

L Qp (x, y) = 1

p +x +δ
(
Q0(x, y)+ W (x, y)

p
−RxL Qp (y)

)
. (6.39)

Before injecting this equation into (6.38) (and its symmetrical result in x and y), notice that

one term will not contribute under the operator Rx,y

Rx,y

{
RxL Qp (y)

(p +x + y +2δ)(p +x +δ)

}
=Ry {0} = 0 (6.40)

and finally, using W (x, y) =W (y, x), we obtain

L h(p) =Rx,y

 1

p +x + y +2δ

H0(x, y)+
Q0(x, y)+ W (x,y)

p

p +x +δ +
Q0(y, x)+ W (x,y)

p

p + y +δ

 . (6.41)

Eventually, applying inverse Laplace transform we get the representation

h(t ) = Rx,y
{
e−t (x+y+2δ)H0(x, y)

}
+ Rx,y

{
e−t (2δ+x+y)

(
e t (δ+y)−1
δ+y Q0(x, y)+ e t (δ+x)−1

δ+x Q0(y, x)
)}

+ Rx,y

{
1−e−t (x+δ)

x+δ
1−e−t (y+δ)

y+δ W (x, y)
} (6.42)

6.B.3 Remark on the consistency with the minimum least squares estimator

It can be seen, at least formally, that the integral representation formula correctly retrieves the

minimum least-squares estimator formulas in the limit t →∞. Indeed, commuting limt and

Rz we find

lim
t→+∞g (t ) =Rz

{
1

z +δK (z)

}
=

N∑
i=1

β∗T

p
d

vi Rz

{
1

(λi + z)(z +δ)

}
vT

i
Z T Y

N

=
N∑

i=1

β∗T

p
d

vi vT
i

(λi −δ)

Z T Y

N
= K (−δ). (6.43)
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On the other hand, we expect

lim
t→+∞g (t ) = lim

t

β∗T

p
d

ΘT

p
d
βt = β∗T

p
d

ΘT

p
d
β∞ (6.44)

with β∞ defined as the minimum least-squares estimator. Thus, we clearly have:

β∗T

p
d

ΘT

p
d
β∞ = β∗T

p
d

ΘT

p
d

(
Z T Z

N
+δI

)−1
Z T

p
N

Yp
N

= K (−δ) (6.45)

The same calculations can be done on each term h(t ), l (t ).

6.B.4 Representation formula for the training error

The derivation of Etrain(t ) is quite straightforward based on the previous terms derived for the

test error. Firstly, expanding the expression of Etrain(t ) we get:

Etrain(t ) = 1

n

∥∥∥∥ Y −Z
βtp

N

∥∥∥∥2

+λ
∥∥∥∥ βtp

N

∥∥∥∥2

= ∥Y ∥2

n
− 2

n
Y T Zβtp

N
+ 1

n

∥∥∥∥ Zβtp
N

∥∥∥∥2

+ δ

c

∥∥∥∥ βtp
N

∥∥∥∥2

(6.46)

Reusing the function Ut (z) from Sect. 6.B.1, and defining u(t) = RzUt (z) = 1
N Y T Zβtp

N
and

h̃(t ) = 1
N

∥∥∥ Zβtp
N

∥∥∥2
, we get:

Etrain(t ) = ∥Y ∥2

n
+ 1

c

(−2u(t )+ h̃(t )+δl (t )
)

(6.47)

Furthermore, reusing the differential equation found for Ut (z), a simpler solution can be

extracted for u(t ):

u(t ) =Rz

{
e−t (z+δ)U0(z)+ 1−e−t (z+δ)

z +δ V (z)

}
(6.48)

The second term h̃(t ) can also be derived from the expression Lt (z) which is also defined in

appendix 6.B.1. We find h̃(t) =Rz { zLt (z)}. Hence the terms δl (t) and h̃(t) can be grouped

together with h̃(t )+δl (t ) =Rz { (z +δ)Lt (z)}. Expanding from the expression of RzL Lt (z) we

find

(h̃ +δl )(t ) =Rz

{
(z +δ)e−2t (z+δ)L0(z)+2e−t (z+δ)

(
1−e−t (z+δ)

)
U0(z)

+
(
1−e−t (δ+z)

)2

δ+ z
V (z)

}
. (6.49)

Remarkably, all the terms can be summed together in (6.47) and we retrieve a simpler expres-
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sion

Etrain(t )= ∥Y ∥2

n
+ 1

c
Rz

{
(z +δ)e−2t (z+δ)L0(z)−2e−2t (z+δ)U0(z)− 1−e−2t (δ+z)

δ+ z
V (z)

}
. (6.50)

6.C High-dimensional limit

In this appendix we use assumption 6.1 in Section 6.2.3 to compute limiting expressions of

traces.

As d → ∞, the mean of β0 or β∗ converges two 0. Let’s consider the auxiliary functions

U0(z),G0(z),Q0(x, y). These three terms have only occurrence of β0 and β∗ on each side of

the matrix-vector multiplication composition (notice β∗ is also included in the term Y ): they

can be written in the form F (H) = βT
0p
N

H β∗
p

d
where H is a random matrix independent of

β0,β∗. For instance we have G0(z) = F
(
R(z) Θp

d

)
. As the mean of F (H ) is precisely 0, assuming

concentration, we have that these terms go to 0 when d → ∞. The same considerations can

be applied to the term ξ from Y .

Besides, when a vector such as β0 is expressed on both side of another expression such

as F (H) = βT
0p
N

H β0p
N

, it can still be rewritten as the trace F (H) = Tr
[

H
β0β

T
0

N

]
so that we can

effectively use the independence of H with β0 and compute the expectation Eβ0 [F (H)] =
r 2

N Tr[H ]. Hence if F (H) concentrates as N → ∞, we can replace it by limN
r 2

N Tr[H ].

In the sequel we will adopt the following notation. For any sequence of matrices (Mk ) ∈Rk×k

we set Trk [Mk ] = limk→∞ 1
k Tr[Mk ].

Therefore, in general, applying the concentration arguments above, we can substitute the

limiting expressions with the following terms

L0(z) = βT
0p
N

R(z)
β0p

N
−→

d→∞
r 2 TrN [R(z)] (6.51)

K (z) = β∗T

p
d

ΘT

p
d

R(z)
Z T Y

N
−→

d→∞
Trd

[
ΘT

p
d

R(z)
Z T

p
N

Xp
N

]
(6.52)

H0(x, y) = βT
0p
N

R(x)
ΘΘT

d
R(y)

β0p
N

−→
d→∞

r 2 TrN

[
R(x)

ΘΘT

d
R(y)

]
(6.53)

V (z) = Y T Z

N
R(z)

Z T Y

N
−→

d→∞
Trd

[
X T

p
N

Zp
N

R(z)
Z T

p
N

Xp
N

]
+ s2TrN

[
Zp
N

R(z)
Z T

p
N

]
(6.54)

W (x, y) −→
d→∞

Trd

[
X T

p
N

Zp
N

R(x)
ΘΘT

d
R(y)

Z T

p
N

Xp
N

]
+ s2TrN

[
Zp
N

R(x)
ΘΘT

d
R(y)

Z T

p
N

]
(6.55)

As for the training error, all the required terms are given by V (z),L0(z),U0(z), of which only

V (z),L0(z) contributes to the result as d →∞
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Finally, we apply the gaussian equivalence principle with the substitution described in 6.4.2

with the linearization Z → Zlin with Zlin ≡ µp
d

XΘT +νΩ. This substitution is applied through-

out all the occurrences of Z , including in the resolvents z → R(z).

6.D Linear Pencil

6.D.1 Main matrix

The main approach of the linear-pencil method is to design a block-matrix Mx,y =∑
i , j Ei , j ⊗

M (i , j )
x,y where the blocks M (i , j )

x,y are either a gaussian random matrix or a scalar matrix, and Ei , j

is the matrix with matrix elements (Ei , j )k,l = δkiδl j . The subscripts indicate explicitly the

dependence on two complex variables (x, y) ∈C2. Importantly, this matrix is inverted using

block-inversion formula to have an expression of the form M−1
x,y =

∑
i , j Ei , j ⊗ (M−1

x,y )(i , j ) such

that some blocks (M−1
x,y )(i , j ) match the different matrix terms in equations (6.51).

In order to define our main linear pencil matrix, we first need to introduce some additional

upper-level blocks: U T = [ Xp
N

,ν Ωp
N

] and V T = [µ Θp
d

, I ]. In addition, in order to keep a consis-

tent symmetry and structure to our block-matrix, we will use the following blocks in reverse

order: Ū T = [ν Ωp
N

, Xp
N

] and V̄ T = [I ,µ Θp
d

]. Furthermore, we let Kx = (−xI + Z T
lin Zlinp

N
)−1 and

Lx = (−xI +UU T V V T )−1 and Rx = (−xI +V V T UU T )−1 and K̃x = (−xI + Zlin Z T
linp

N
)−1. The fol-

lowing identities (which can be obtained with the push-through identity) provide additional

relations which can be used later:

Zlinp
N

=U T V (6.56)

LxUU T =U K̃xU T (6.57)

V V T Lx =V KxV T (6.58)

−xK̃x = I −
(
−xI + ZlinZ T

lin

N

)−1
ZlinZ T

lin

N
= I − Zlinp

N
Kx

Z T
linp
N

(6.59)

We define our main block-matrix consisting in 13×13 blocks where the upper-level blocks
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6.D Linear Pencil

U ,V ,Ū ,V̄ are to be considered as "flattened":

Mx,y =



−xI −V T 0 0 Θp
d

0 0 0 0

0 I U 0 0 0 0 0 0

0 0 I U T 0 0 0 0 0

V 0 0 I 0 0 0 0 0

0 0 0 0 I 0 0 0 ΘTp
d

0 0 0 0 0 I Ū 0 0

0 0 0 0 0 0 I Ū T 0

0 0 0 0 0 0 0 I −V̄

0 0 0 0 0 V̄ T 0 0 −y I



(6.60)

This is precisely the block-matrix M given at the end of Sect. 6.4.

6.D.2 Linear-pencil inversion and relation to the matrix terms

The inverse of Mx,y can be computed by splitting it into higher-level blocks. These blocks are

highlighted with the lines and double-lines depicted in equation (6.60): the block-matrix is

split into a 2×2 block-matrix recursively in order to apply the block-matrix inversion formula

recursively. Starting with the higher level split:

Mx,y =
[

M1,1 M1,2

0 M2,2

]
=⇒ M−1

x,y =
[

M−1
1,1 −M−1

1,1M1,2M−1
2,2

0 M−1
2,2

]
(6.61)

It is now quite straightforward algebra to proceed with the remaining blocks. Starting with

M1,1:

M−1
1,1 =


Kx KxV T −Kx

Z T
linp
N

Kx
Z T

linp
N

U T

−U Zlinp
N

Kx −xLx xLxU −xLxUU T

Zlinp
N

Kx
Zlinp

N
V T Lx −xK̃x xK̃xU T

−V Kx −V V T Lx V
Z T

linp
N

K̃x −xRx

 (6.62)

For M2,2, with an additional split:

M2,2 =
[

I N1,2

0 N2,2

]
=⇒ M−1

2,2 =
[

I −N1,2N−1
2,2

0 N−1
2,2

]
(6.63)
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A straightforward algebra calculation provides the result of M−1
2,2:

M−1
2,2 =



I ΘTp
d

Ky V̄ T − ΘTp
d

Ky
Z T

linp
N

ΘTp
d

Ky
Z T

linp
N

Ū T − ΘTp
d

Ky

0 −yR̄y yŪ K̃y −yŪŪ T L̄y Ū Zlinp
N

Ky

0 K̃y
Zlinp

N
V̄ T −yK̄y yŪ T L̄y − Zlinp

N
Ky

0 −L̄y V̄ V̄ T L̄y V̄
Z T

linp
N

−yL̄y V̄ Ky

0 −Ky V̄ T Ky
Z T

linp
N

−Ky
Z T

linp
N

Ū T Ky


(6.64)

Finally, using Q = Kx
ΘΘT

d Ky we obtain the third block of Mx,y :

−M−1
1,1M1,2M−1

2,2 =


−Kx

Θp
d

−QV̄ T Q
Z T

linp
N

−Q
Z T

linŪ T

p
N

Q

U Zlinp
N

Kx
Θp

d
U Zlinp

N
QV̄ T −U Zlinp

N
Q

Z T
linp
N

U Zlinp
N

Q
Z T

linŪ T

p
N

−U Zlinp
N

Q

− Zlinp
N

Kx
Θp

d
− Zlinp

N
QV̄ T Zlinp

N
Q

Z T
linp
N

− Zlinp
N

Q
Z T

linŪ T

p
N

Zlinp
N

Q

V Kx
Θp

d
V QV̄ T −V Q

Z T
linp
N

V Q
Z T

linŪ T

p
N

−V Q


(6.65)

Notice now that all the matrix terms in equations (6.51) are actually contained in some of the

blocks of our matrix (note that Trd

[
X T X

n

]
= 1):

L̄0(y) = r 2TrN
[
Ky

]
(6.66)

K̄ (y) = Trd

[
ΘT

p
d

Ky
Z T

linp
N

Ū T

]
1,2

(6.67)

H̄0(x, y) = r 2TrN [Q] (6.68)

W̄ (x, y) = s2 φ

ψ
Trn

[
Zlinp

N
Q

Z T
linp
N

]
+Trd

[
U Zlinp

N
Q

Z T
linŪ T

p
N

]
1,2

(6.69)

V̄ (x) = s2 φ

ψ
Trn

[
In +xK̃x

]+(
Trd

[
xLxUU T ]

1,1 +Trd

[
X T X

N

])
(6.70)

Or equivalently, with the block coordinates of the inverse matrix M−1
x,y :

L̄0(y) = r 2TrN

[
(M−1

x,y )(13,13)
]

(6.71)

K̄ (y) = Trd

[
(M−1

x,y )(7,12)
]

(6.72)

H̄0(x, y) = r 2TrN

[
(M−1

x,y )(1,13)
]

(6.73)

W̄ (x, y) = s2 φ

ψ
Trn

[
(M−1

x,y )(4,10)
]
+Trd

[
(M−1

x,y )(2,12)
]

(6.74)

V̄ (x) = s2 φ

ψ

(
1−Trn

[
(M−1

x,y )(4,4)
])

+
(
−Trd

[
(M−1

x,y )(2,5)
]
+ φ

ψ

)
(6.75)

In the next section we show how to derive further each trace of the squared matrices from the

block matrix Mx,y . In order to deal with self-adjoint matrices, we double the dimensions with
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M̃x,y :

M̃x,y =
[

0 Mx,y

M †
x,y 0

]
(6.76)

and find the inverse:

M̃−1
x,y =

[
0 (M †

x,y )−1

M−1
x,y 0

]
(6.77)

6.D.3 Structural terms of the limiting traces

The matrix Mx,y is a block-matrix constituted with either gaussian random matrices, or

constant matrices (proportional to I ). More precisely, letting S be the matrix of the coefficients

of the constant blocks of Mx,y (and S̃ for M̃x,y ), and A the random blocks part (Ã respectively)

we write : M̃x,y =∑
i , j Ei , j ⊗ M̃ (i , j )

x,y where M̃ (i , j )
x,y = S̃(i , j ) + Ã(i , j ) is the block of size (Ni , N j ). Also

notice that letting L= {(i , j )| Ni = N j }, the fact that the constant blocks are supposed to be

proportional to an identity matrix implies that: ∀(i , j ) ∉ L =⇒ S̃(i , j ) = 0 = zi , j 0Ni ,N j with 0Ni ,N j

the zero-matrix of size Ni ×N j and otherwise ∀(i , j ) ∈ L =⇒ S̃(i , j ) = zi , j INi with B̃ = (zi , j ) the

matrix of size 26×26.

Now we want to find a matrix G̃ ∈R26×26 such that

[G̃]i , j = TrNi

[
(M̃−1

x,y )(i , j )
]

, ∀(i , j ) ∈ L, (6.78)

An important theorem in Mingo and Speicher (2017) (chapter 9, equ. (9.5) and theorem 2),

which we show again in the next section, states that there is a solution G̃ of the equation

B̃G̃ = I +η(G̃)G̃ (6.79)

which satisfies (6.78). In this equation η(G̃) is the matrix mapping defined element-wise as:

[η(G̃)]i , j = δL(i , j ) · ∑
k,l∈L

σ(i ,k; l , j ) · [G̃]k,l (6.80)

and where σ satisfies the relation for all (i ,k, l , j ) such that Ni = N j and Nk = Nl (and keeping

in mind that the Nk are growing with the dimension d):

∀(r, s) ∈ {1, . . . , Ni }× {1, . . . , N j },r ̸= s =⇒ σ(i ,k; l , j ) = lim
d →∞

Nk ·E
[

[Ã(i ,k)]r,s[Ã(l , j )]s,r

]
(6.81)

We remark that the setting here, and in particular equation (6.79), is in fact more general than

in Mingo and Speicher (2017) (chapter 9, equ. (9.5)) and we provide an independent and

self-contained (formal) derivation of (6.79) in Chapter 3 with various methods.

For example, we have M (5,1)
x,y = µ ΘTp

d
of size d × N and M (1,7)

x,y = Θp
d

of size N ×d . So this is

M̃ (5,14)
x,y = µ ΘTp

d
and M̃ (1,20)

x,y = Θp
d

, with N5 = N20 = d and N14 = N1 = N . For r = 1, s = 2 (or any
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other suitable indices) we find:

σ(5,14;1,20) = lim
d→∞

µ
N

d
E
[
[Θ]2

1,2

]=µψ
In fact, a careful inspection of all the blocks in row 5 and all the blocks in column 20 shows

that we have [η(G̃)]5,20 =µψ[G̃]14,1.

Calculating all the terms of η(G̃) is quite cumbersome, but it can be done automatically

with the help of a computer algebra system. Still, this approach yields many equations

for each 26× 26 terms of G̃ . However, some initial structure can also be provided for this

matrix. Looking back at M̃−1
x,y , it is clear that some blocks will have the same limiting traces

(potentially seen using the aforementioned push-through identities). For instance, (M−1
1,1)(1,1) =

Kx = −(M−1
1,1)(6,1) (expanding the U ,V blocks), so (M−1

x,y )(1,1) = −(M−1
x,y )(6,1), in other words

(M̃−1
x,y )(14,1) =−(M̃−1

x,y )(19,1), and thus we expect [G̃]14,1 =−[G̃]19,1. Non-squared blocks can also

be mapped to 0 in G̃ . In the end, taking every block into account, G̃ is expected to be of the

form:

G̃ =
[

0 G†

G 0

]
(6.82)

with

G =

 G1,1 G1,2 G1,3

0 1 G2,3

0 0 G3,3

 (6.83)

(which has 13×13 scalar matrix elements) where:

G1,3 =



−q1 0 0 −νq y x
6 0 q1

0 µq y x
7 0 0 q2 0

νq x y
6 0 0 ν2q3 0 −νq x y

6

0 0 q4 0 0 0

0 µ2q5 0 0 µq x y
7 0

q1 0 0 νq y x
6 0 −q1


(6.84)

G1,1 =



g x
1 0 g x

1 0 0 νg x
2

0 hx
1 0 0 hx

4 0

−νg x
2 0 hx

2 0 0 ν2hx
5

0 0 0 g x
3 0 0

0 −µ2hx
3 0 0 hx

1 0

−g x
1 0 −g x

1 0 0 hx
2


(6.85)
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G3,3 =



hy
2 0 0 ν2hy

5 0 νg y
2

0 hy
1 0 0 hy

4 0

0 0 g y
3 0 0 0

−g y
1 0 0 hy

2 0 g y
1

0 −µ2hy
3 0 0 hy

1 0

−g y
1 0 0 −νg y

2 0 g y
1


(6.86)

G1,2 =



0

t x
1

0

0

µhx
3

0


G2,3 =

[
0 µhy

3 0 0 t y
1 0

]
(6.87)

All (non-vanishing) matrix elements depend on the complex variables x and y . This is in-

dicated by the upper-script notation with x, y, x y, y x. Some quantities depend only on x,

some only on y , and some on both x and y . Among the ones that depend on both variables

the quantities q x y
6 , q y x

6 , q x y
7 , q y x

7 are non-symmetric, while q1, q2, q3, q4, q5 are symmetric (e.g.,

q x,y
1 = q y,x

1 ). We choose not to use the upper-script notation for the symmetric quantities in

order to distinguish them from the non-symmetric ones.

Eventually, with a careful mapping between M̃−1
x,y and G̃ in equations (6.66), only g x

1 , t x
1 ,hx

4 , g x
3

and the symmetric terms q1, q2, q4 are needed and equations (6.66) take the form:

L̄0(x) = r 2g x
1 (6.88)

K̄ (x) = t x
1 (6.89)

H̄0(x, y) = r 2q1 (6.90)

W̄ (x, y) = s2 φ

ψ
q4 +q2 (6.91)

V̄ (x) = s2 φ

ψ

(
1− g x

3

)+(
φ

ψ
−hx

4

)
(6.92)

6.D.4 Solution of the fixed point equation

The fixed-point equations as described in (6.79) for the given matrices S̃,η(G̃),G̃ is a priori

a system of 26×26 algebraic equations. are computed using Sympy in python, a symbolic

calculation tool. In effect this is really a fixed point equation for G a priori involving 13×13

algebraic equations. It turns out that many matrix elements vanish and (using the symbolic

calculation tool Sympy in python) we can extract a system of 39 algebraic equations which are

given in the following:

0 = g x
1

(−µ2hx
4 +x

)− g x
2ν+1 (6.93)
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0 = g x
1

(−µ2hx
4 +x

)+hx
2 (6.94)

0 = g x
2ν

(−µ2hx
4 +x

)+hx
5ν

2 (6.95)

0 =−g y
1

(
µ2q2 −µt x

1 −µt y
1 +1

)+νq x y
6 −q1

(−µ2hx
4 +x

)
(6.96)

0 =−g y
2ν

(
µ2q2 −µt x

1 −µt y
1 +1

)+ν2q3 −νq y x
6

(−µ2hx
4 +x

)
(6.97)

0 = g y
1

(
µ2q2 −µt x

1 −µt y
1 +1

)−νq x y
6 +q1

(−µ2hx
4 +x

)
(6.98)

0 = µ2φg x
3 hx

3

ψ
−hx

1 +1 (6.99)

0 = φg x
3 hx

1

ψ
−hx

4 (6.100)

0 =−µφg x
3 hx

3

ψ
− t x

1 (6.101)

0 = µ2φg x
3 q5

ψ
+ µ2φhy

3 q4

ψ
−µq y x

7 (6.102)

0 = µφg x
3 q x y

7

ψ
+ φhy

1 q4

ψ
−q2 (6.103)

0 =−φg x
1 g x

3ν
2

ψ
+ g x

2ν (6.104)

0 =−φg x
1 g x

3ν
2

ψ
−hx

2 +1 (6.105)

0 = φg x
3 hx

2ν
2

ψ
−hx

5ν
2 (6.106)

0 =−φg y
1ν

2q4

ψ
+ φg x

3ν
2q1

ψ
−νq x y

6 (6.107)

0 = φg x
3ν

3q y x
6

ψ
+ φhy

2ν
2q4

ψ
−ν2q3 (6.108)

0 = φg y
1ν

2q4

ψ
− φg x

3ν
2q1

ψ
+νq x y

6 (6.109)

0 = g x
3

(
µ2hx

3

ψ
− g x

1ν
2 −1

)
+1 (6.110)

0 = g y
3

(
µ2q5

ψ
+ν2q1

)
+q4

(
µ2hx

3

ψ
− g x

1ν
2 −1

)
(6.111)

0 =−µ2ψg x
1 hx

1 −µ2hx
3 (6.112)

0 =−µ2ψg x
1 hx

4 −hx
1 +1 (6.113)

0 =−µ2ψg x
1 t x

1 +µψg x
1 +µhx

3 (6.114)

0 =−µ3ψg x
1 q y x

7 −µ2ψg x
1 hy

3 +µ2ψhy
1 q1 −µ2q5 (6.115)

0 =−µ2ψg x
1 q2 +µ2ψhy

4 q1 +µψg x
1 t y

1 −µq x y
7 (6.116)

0 =−g x
2ν−hx

2 +1 (6.117)

0 =µψg y
1 hy

1 +µhy
3 (6.118)

138



6.D Linear Pencil

0 =µψg y
1 hy

4 − t y
1 (6.119)

0 =−φg y
1 g y

3ν
2

ψ
−hy

2 +1 (6.120)

0 = φg y
3 hy

2ν
2

ψ
−hy

5ν
2 (6.121)

0 = φg y
1 g y

3ν
2

ψ
− g y

2ν (6.122)

0 = µ2φg y
3 hy

3

ψ
−hy

1 +1 (6.123)

0 = φg y
3 hy

1

ψ
−hy

4 (6.124)

0 = g y
3

(
µ2hy

3

ψ
− g y

1ν
2 −1

)
+1 (6.125)

0 =−g y
2ν−hy

2 +1 (6.126)

0 =−µ2ψg y
1 hy

1 −µ2hy
3 (6.127)

0 =−µ2ψg y
1 hy

4 −hy
1 +1 (6.128)

0 =−g y
1

(−µ2hy
4 + y

)−hy
2 (6.129)

0 =−g y
2ν

(−µ2hy
4 + y

)−hy
5ν

2 (6.130)

0 = g y
1

(−µ2hy
4 + y

)− g y
2ν+1 (6.131)

6.D.5 Reduction of the solutions

The previous system of equations can be reduced further by substitutions with a computer

algebra system. We find the variables g x
3 , t x

1 ,hx
4 , g x

1 ,hx
1 are linked through the algebraic system:

0 = 1+ g x
1

(
−µ2hx

4 −
φ
ψg x

3 u2 +x
)

0 =−hx
4 + g x

3

(
−µ2φg x

1 hx
4 +

φ
ψ

)
0 = φ

ψ (1− g x
3 )− g x

1 x −1

0 =µψg x
1 hx

4 − t x
1

0 = 1−hx
1 −µt x

1

(6.132)

Notice this system can be shrinked further down to 3 equations to get to the main result in

6.1 using the substitution hx
1 with the 5th equation and g x

3 with the 3rd equation. Also, by

symmetry we find the same equations for g y
3 , t y

1 ,hy
4 , g y

1 ,hy
1 .

For the other variables, a set of equations link q1, q2, q4, q5. Notice there can many different

representations depending on the reductions that are applied. Here we only show the example
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which has been used throughout the computations:

0 =−µ2g y
1 q2 +µ2hx

4 q1 +µg y
1 t x

1 +µg y
1 t y

1 − φg y
1 q4ν

2

ψ − g y
1 −q1x + q1ν

2(φ−ψg x
1 x−ψ)

ψ

0 =µ(
φ−ψg x

1 x −ψ)(−µg x
1 q2 +µhy

4 q1 + g x
1 t y

1

)+ φhy
1 q4

ψ −q2

0 =−µ2g x
1 hx

1 q4 + µ2q5(φ−ψg y
1 y−ψ)

φψ − g x
1 q4ν

2 −q4 + q1ν
2(φ−ψg y

1 y−ψ)
φ

0 =µ2φg x
1 g y

1 hy
1 q4 − µ2g x

1 q5(φ−ψg x
1 x−ψ)

ψ +ψg x
1 g y

1 hy
1 +hy

1 q1 − q5

ψ

(6.133)

In conclusion, we can obtain 3 systems with (4,5,5)-equations or 3 systems with (4,3,3)-

equations (so a total of 10), as in the main result 6.1 (as discussed above these various systems

are all equivalent and depend on the applied reductions).

The solutions are not necessarily unique and one has to choose the appropriate ones with

care. In our experimental results using Matlab with the "vpasolve" function, conditioning

on Im g x
1 > 0 and Im g x

3 > 0 provided a unique solution to (6.132) for x ∈R+ (or x ∈R× i [0,ϵ]

for ϵ close to 0 ); while conditioning on g x
1 , g x

3 ∈R+ provided a unique solution to (6.132) for

x ∈R−. We remind that we use x ∈R− exclusively in the time limit t →∞ in result 6.2 while we

use x ∈R+ in the situation of result 6.1. In addition, we found that selecting the appropriate

solutions for x and y as just described for (6.132) also led to a unique solution for 6.133 in our

experiments.

6.E Numerical results

All the experiments are run on a standard desktop configuration:

1. Matlab R2019b is used to generate the heatmaps or 3D landscapes. Most exemples can

be generated in less than 12h on a standard machine.

2. The experimental comparisons run on a standard instance of a Google collaboratory

notebook in less than a few hours.

6.E.1 Numerical computations

We take equation (6.4) as an example of how to proceed with the numerical experiments.

Specifically we consider the second integral in the Cauchy integral representation of g (t )

g2(t ) =− 1

2iπ

∮
Γ

dz

{
1−e−t (z+δ)

z +δ K (z)

}
. (6.134)

We choose a contour with λ∗ = maxSp Z T Z
N with two positive fixed constants ϵ,∆:

Γ= {γλ∗± i∆|−ϵ≤ γ≤ 1 +ϵ}∪ {ϵλ∗+γi∆|−1 ≤ γ≤ 1 }∪ {−ϵ+γi∆|−1 ≤ γ≤ 1 } (6.135)
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Now, the integrand is continuous in λ⋆+ϵ and −ϵ for ϵ small enough. So taking the limit ϵ→ 0

and ∆→ 0

g (t ) = lim
∆→0

1

2iπ

∫ λ∗

0

{
1−e−t (r+δ+i∆)

r +δ+ i∆
K (r + i∆)− 1−e−t (r+δ)−i∆

r +δ− i∆
K (r − i∆)

}
dr (6.136)

which is simply

g (t ) =
∫ λ∗

0

1−e−t (r+δ)

r +δ lim
∆→0

1

2iπ

{
K (r + i∆)−K (r − i∆)

}
dr (6.137)

Obviously the inward term is also given by the limit lim∆→0
1
π ImK (r + i∆). So this all there is

to compute from the former algebraic equations are appropriate imaginary parts. This can be

done by taking a discretized interval 0 ≤ r1 ≤ . . . ≤ rK ≤λ∗, and solving the algebraic equations

for the imaginary value Im t x
1 for x = ri , i = 1, · · · ,K .

We proceed similarly with the terms containing two complex variables x and y (or two resol-

vents). For instance for W (x, y) one uses the limit in ∆x ,∆y → 0 of ρ(x, y) where

ρ(x, y) = lim
∆x→0

lim
∆y→0

[ −1

4π2

{
W (rx + i∆x ,ry + i∆y )−W (rx + i∆x ,ry − i∆y )

}
− −1

4π2

{
W (rx − i∆x ,ry + i∆y )−W (rx − i∆x ,ry − i∆y )

}]
(6.138)

or equivalenlty

ρ(x, y) = lim
∆x ,∆y→0

1

2π2 Re

{
W (rx + i∆x ,ry − i∆y )−W (rx + i∆x ,ry + i∆y )

}
(6.139)

6.E.2 Technical considerations

Dirac distributions with 1-variable functions:It happens that the limiting distribution Z T Z
N

may contain a mixture of a Dirac peak at 0 and a continuous measure. For instance, K (z)

may contain a branch cut in the interval C ∗ = [λ1,λ∗] with λ0 = 0 <λ1 <λ∗ <∞ along with

an isolated pole in 0 with: K (z) = α
0−z +Kc (z) (where Kc :C\C ∗ →C). For instance, equation

(6.137) becomes:

g (t ) =α1−e−tδ

δ
+

∫ λ∗

λ0

dr
1−e−t (δ+r )

r +δ lim
∆→0

1

π
ImKc (r + i∆) (6.140)

The weight α can be retrieved by computing α= limϵ→0+(−iϵ)K (iϵ) = limϵ→0+ ϵ ImK (iϵ).
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Dirac distributions with 2-variables functions:Similarly, we can have an isolated pole at 0 for

x, y for W (x, y). In that case, we can write down W (x, y) as for instance:

W (x, y) = αx y

(0−x)(0− y)
+ αx

0−x
Wy (y)+ αy

0− y
Wx (x)+Wx y (x, y) (6.141)

where Wx ,Wy are defined on C\C ∗ →C and Wx y : (C\C ∗)2 →C. Firstly, We can easily find

αx y with:

αx y = lim
ϵ→0+(−ϵ2)ReW (iϵ, iϵ) (6.142)

Secondly, all the considered 2-variables functions are symmetrical with respect to x and y :

W (x, y) =W (y, x) which implies that αx =αy and Wx (r ) =Wy (r ) for all r ∈C\C ∗. Therefore,

if we have γt (z) = 1−e−t (δ+z)

z+δ , we have to compute:

Rx,y
{
γt (x)γt (y)W (x, y)

}= γt (0)2αx y +
Ï

[λ0,λ∗]2
γt (u)γt (v)ρ(u, v)dudv

+2γt (0)
∫ λ∗

λ0

drγt (r ) lim
∆→0+

αx

2iπ

{
Wy (r + i∆)−Wy (r − i∆)

} (6.143)

But because we don’t have access to αx nor Wy directly, we can use the full form:

Rx,y
{
γt (x)γt (y)W (x, y)

}= γt (0)2αx y +
Ï

[λ0,λ∗]2
γt (u)γt (v)ρ(u, v)dudv

+2γt (0)
∫ λ∗

λ0

drγt (r ) lim
∆→0+ lim

ϵ→0+
−iϵ

2iπ

{
W (iϵ,r + i∆)−W (iϵ,r − i∆)

} (6.144)

This comes from the fact that for ϵ→ 0 we have: W (iϵ,r + i∆) ∼ αx
−iϵWy (r + i∆). Because we

expect a real result, we ought to have numerically:

Rx,y
{
γt (x)γt (y)W (x, y)

}= γt (0)2αx y +
Ï

[λ0,λ∗]2
γt (u)γt (v)ρ(u, v)dudv

+γt (0)
∫ λ∗

λ0

drγt (r ) lim
∆→0+ lim

ϵ→0+
ϵ

π
Re

{
W (iϵ,r − i∆)−W (iϵ,r + i∆)

} (6.145)

1-variable distributions in 2-variables functionsFinally, it can happen that the 2-variables

functions W (x, y) actually generates a distribution ρ(u, v) = ρc (u, v)+µ(u)δ(v −u) which

may be the sum of a continuous measure ρc (u, v) as described above, and another measure

µ(u)δ(v −u) = δ(u − v)µ(v).

6.E.3 Additional heatmaps

We provide additional heatmaps that complement those of Sect. 6.3. Notice that all the

heat-maps are always derived from a 3D mesh comprising 30×100 points as in Fig. 6.E.7.

Instead of fixing λ, we can rescale it and fix δ= cλ. As we have seen, the λ parameter seems to
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affect the length of the time scale on the first plateau. Rescaling it as seen in Fig. 6.E.1, the

interpolation threshold time scale becomes constant in the over-parametrized regime at fixed

δ, and the results are consistent with what is observed empirically in Nakkiran et al. (2020a).

We notice also that under the configuration in Fig. 6.E.2 where r = 0 (the noise of the second

layer vanishes), the second plateau seems to vanish with the test error.

One of the effects of a large λ is that it removes the double descent on the test error, which is

consistent with the description in Mei and Montanari (2019). Another effect is that it seems to

add an additional "two-stage decrease" in the training error as can be seen in Fig. 6.E.4 and

also in the experiments in Figs. 6.E.10, 6.E.11.

Note that the previous figures are perfomed for the activation function σ(x) = Relu(x)− 1p
2π

while Figs. 6.E.5 and 6.E.6 are displayed other activation functions, σ(x) = tanh(x) and σ(x) =
tanh(5x). We can see that the epoch-wise structures are more marked when the slope of the

activation function is bigger in the second case.

Figure 6.E.1: Analytical training error and test error evolution at fixed δ with parameters
(µ,ν,φ,r, s,δ) = (0.5,0.3,3,2.,0.4,0.001)

Figure 6.E.2: Analytical training error and test error evolution with parameters (µ,ν,φ,r, s,λ) =
(0.5,0.3,3,0,0.4,0.001)
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Figure 6.E.3: Analytical training error and test error evolution with parameters (µ,ν,φ,r, s,λ) =
(0.5,0.3,0.5,2,0.1,0.003)

Figure 6.E.4: Analytical training error and test error evolution with parameters (µ,ν,φ,r, s,λ) =
(0.5,0.3,3,0,0.4,0.1)

Figure 6.E.5: Analytical training error and test error evolution with parameters corresponding
to σ(x) = tanh(x) with (µ,ν,φ,r, s,λ) = (0.61,0.15,3,0,0.4,0.001)

6.E.4 Comparison with experimental simulations

We have already shown on figure 6.3.1 in Sect. 6.3 that the analytical formulas for the training

and generalization errors match the experimental curves in the limit of t →+∞. Here we

provide additional evidence that this is also the case for the whole time-evolution in Figs. 6.E.8

and 6.E.9 as the dimension d increases.
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Figure 6.E.6: Analytical training error and test error evolution with parameters corresponding
to σ(x) = tanh(5x) with (µ,ν,φ,r, s,λ) = (0.79,0.47,3,2,0.4,0.001)

Figure 6.E.7: Analytical training error with parameters (µ,ν,φ,r, s,λ) = (0.5,0.3,3,2.,0.4,0.001)

In 6.E.10, 6.E.11, we can see that the epoch-wise descent structures of the training error and

test error can be captured correctly experimentally for long time. Note that we have taken

d = 100 small enough to be able to run these experiments for such a long timescale.

Figure 6.E.8: Analytical training error and test error profile with parameters (µ,ν,φ,ψ,r, s,λ) =
(0.5,0.3014,1.4,1.8,1.0,0,0.01) compared to 10 experimental runs (σ= Relu− 1p

2π
) with d = 200

and dt = 0.01
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Figure 6.E.9: Analytical training error and test error profile with parameters (µ,ν,φ,ψ,r, s,λ) =
(0.5,0.3014,1.4,1.8,1.0,0,0.01) compared to 10 experimental runs (σ= Relu− 1p

2π
) with d =

1000 and dt = 0.01

Figure 6.E.10: Analytical training error with parameters (µ,ν,φ,ψ,r, s,λ) =
(0.5,0.3,300,3,2,0.4,0.1) compared to 10 experimental runs (σ= Relu− 1p

2π
) with d = 100 and

dt = 0.01
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Figure 6.E.11: Analytical test error with parameters (µ,ν,φ,ψ,r, s,λ) =
(0.5,0.3,6,3,2,0.4,0.0001) compared to 10 experimental runs with d = 100 and dt = 0.01 for
0 ≤ t ≤ 104 and dt = 0.1 for 104 ≤ t ≤ 106
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7 The rank-one model: a non-convex
setting

This chapter is based on the work (Bodin and Macris, 2021b) which investigates model 1.4.

More precisely, we consider a rank-one symmetric matrix corrupted by additive noise. The

rank-one matrix is formed by an n-component unknown vector on the sphere of radius
p

n,

and we consider the problem of estimating this vector from the corrupted matrix in the high

dimensional limit of n large, by gradient descent for a quadratic cost function on the sphere.

Explicit formulas for the whole time evolution of the overlap between the estimator and

unknown vector, as well as the cost, are rigorously derived. In the long time limit we recover

the well known spectral phase transition, as a function of the signal-to-noise ratio. The explicit

formulas also allow to point out interesting transient features of the time evolution. Our

analysis technique is based on recent progress in random matrix theory and uses local versions

of the semi-circle law.

7.1 Introduction

Gradient descent dynamic is at the root of machine learning methods, and in particular, its

stochastic version augmented by various ad-hoc methods, has been very successful at finding

"good" minima of cost functions Lecun et al. (1998). However, rigorous detailed results on

the full time evolution of the dynamics are scarce even for simple models and usual gradient

descent. In this contribution, we show how to completely solve for the whole time evolution

for a simple paradigm of non-linear estimation; the problem of estimating a rank-one spike

embedded in noise.

Let θ∗ ∈ Sn−1(
p

n) a hidden vector on the n −1 dimensional sphere of radius
p

n, i.e., θ∗ =
(θ∗1 , . . . ,θ∗n)T and ∥θ∗∥2

2 = n. We consider the data matrix Y with elements Y = θ∗θ∗T +
√

n
λξ

where λ> 0 is the signal-to-noise parameter and ξ= (ξi , j )1≤i , j≤n a symmetric random noise

matrix with i.i.d ξi , j for i ≤ j . The goal is to recover θ∗ given that Y and λ are known. This

model is usually considered for a gaussian noise symmetric matrix ξi j ∼N (0,1), i ≤ j , and is

variously called the noisy rank-one matrix estimation problem or the spiked Wigner model. In

this chapter, all the results hold under the general assumption that Eξi j = 0, Eξ2
i j = 1+O(δi j )
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and for all integers p we have E|ξi j |p finite.1

We consider the cost function (∥ ·∥F the Frobenius norm)

H (θ) = 1

2n2

∥∥Y −θθT
∥∥2

F − 1

2n2

∥∥Y −θ∗θ∗T
∥∥2

F (7.1)

(normalized so that, H (θ∗) = 0, and at the same time, the limit n →+∞ is well defined) and

want to characterize the time evolution of the estimator for θ∗ provided by gradient descent

dynamics on the sphere. In gradient descent, an initial (deterministic) vector θ0 ∈Sn−1(
p

n) is

updated through the autonomous ordinary differential equation

dθt

d t
=−η(∇θH (θt )− θt

n
〈θt ,∇θH (θt )〉) (7.2)

where η ∈ R∗+ is a learning rate. The second term on the right hand side enforces the con-

straint θt ∈ Sn−1(
p

n) at all times (see Appendix 7.E). The main quantities of interest to be

computed are the time evolutions of the cost H (θt ) and overlap q(t ) = n−1〈θ∗,θt 〉 in the high-

dimensional limit n →+∞. We note that the overlap is equivalent to the mean-square-error

n−1∥θt −θ∗∥2
2 = 2

(
1− 〈θ∗,θt 〉

n

)
.

Contribution: We compute the full time evolution of the cost and overlap in the scaling limit

limn→+∞H (θt=τn/η) and limn→+∞
〈θ∗,θt=τn/η〉

n for all τ > 0. Explicit formulas are expressed

solely in terms of a modified Bessel function of first order in theorems 7.1 and 7.2 (Section

7.2). The formulas allow to explore the asymptotic behavior as τ→+∞, as well as transient

behavior by computing one and two dimensional integrals numerically (Section 7.2). In the

long time limit we recover (analytically) as expected the phase transition atλ= 1 with a limiting

value of the overlap equal to si g n(〈θ∗,θ0〉)
p

1−1/λ1(λ> 1). This is the well known BBP-like

phase transition found in the spectral method Péché (2004); Féral and Péché (2006); Baik et al.

(2005b). The transient behavior also exhibits interesting features. For example, depending on

the magnitude of the initial overlap n−1〈θ∗,θ0〉 and λ> 1 for intermediate times we find that

the overlap may display a maximum and then decrease to its limiting value. Such results may

therefore give guidelines for applying early stopping during gradient descent to get a better

estimate of the signal. We note that in the asymptotic limit of large n we require an initial

overlap which is bounded away from zero uniformly in n. There are interesting situations

where the signal θ∗ has some structure and this is not an unnatural situation. These points are

further discussed in Section 7.2.2.

On the technical side the analysis is based on a set of integro-differential equations (derived in

Section 7.3) satisfied by matrix elements of the resolvent of the noise matrix 〈θ∗, ( 1p
n
ξ−z)−1θt 〉

and 〈θt , ( 1p
n
ξ− z)−1θt 〉, z ∈C\R. These quantities concentrate with respect to the probability

law of the noise matrix as n →+∞ (for deterministic θ∗ and θ0). The main steps to prove

1The notation O(δi j ) means that the second moment of off-diagonal elements is 1 but the variance of diagonal
elements can be different. For example ξi j ∼N (0,1), i < j , and ξi i ∼N (0,2), corresponds to Wigner’s Gaussian
Orthogonal Ensemble. We refer to the general case as the generalized Wigner ensemble.
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concentration are explained in Section 7.4. They combine concentration properties of the

matrix elements of the resolvents with an adaptation of Gronwall type arguments to the

integro-differential equations. Concentration of matrix elements of resolvents of random

matrices amount to study the spectrum on a local scales. Such results are only a decade old

in random matrix theory and go under the name of local semi-circle laws Erdós et al. (2008);

Bloemendal et al. (2014); Benaych-Georges and Knowles (2016b). They have found many

applications and here we provide one more. In Section 7.5 we present an exact analysis of the

integro-differential equations and deduce the formulas for the time evolution of the overlap

and cost.

Related Work: The statistical limits of the symmetric as well as non-symmetric spiked Wigner

model have been elucidated in great detail in the Bayesian framework in a series of works

Korada and Macris (2009); barbier et al. (2016); Lelarge and Miolane (2018); Miolane (2017)

where expressions for mutual information (in the form of low-dimensional variational prob-

lems) and minimum-mean-square-error are rigorously computed. This analysis has also been

carried on for estimation of low-rank tensors corrupted by additive gaussian noise Lesieur et al.

(2017b); Barbier et al. (2017); Perry et al. (2020). The dynamical behaviour under Approximate

Message Passing (AMP) has also been investigated in detail and, depending on the exact model

and prior, large computational-to-statistical gaps are found barbier et al. (2016); Lesieur et al.

(2017b). We note that these settings are different from the one of the present chapter in that

θ∗ as well as θ0 are random. When the prior of the spike is unbiased with zero mean (for

example uniform on the sphere or binary) an initial strictly positive overlap (uniformly in n),

is necessary to start the AMP algorithm, much like gradient descent, and hence the initial

condition cannot be chosen at random. In this connection, the behaviour of AMP under

spectral initialization has been derived in the work Montanari and Venkataramanan (2021).

We note that spectral initialization is not an option for us because it yields a stationary point

of gradient flow (see appendix 7.F for a justification).

Starting with the early work of Burer and Monteiro (2005, 2003) the efficiency of gradient

descent techniques has been uncovered in recent years for a host of low-rank matrix recovery

modern problems, e.g., in PCA, low-rank matrix factorization, matrix completion, phase

retrieval, phase synchronization, Ge et al. (2017a); Bhojanapalli et al. (2016); Ge et al. (2017b);

De Sa et al. (2015); Park et al. (2017); Ling et al. (2019); Bandeira et al. (2016). We also refer to

Chi et al. (2019a) for a general review and references. Underpinning the efficiency of gradient

descent in such non-convex problems, is a high-level result Lee et al. (2016), stating that

when the landscape satisfies a strict saddle property (i.e., critical points are strict saddles or

minima) gradient descent with sufficiently small discrete step size and random initialization

will converge almost surely to a minimum Lee et al. (2016). The spiked Wigner models falls in

this category at least for n finite: critical points of the cost function on the sphere S n−1(
p

n) are

the eigenvectors of Y and it is easy to show that almost surely (with respect to the noise matrix

ξ) the largest eigenvector is a minimum while all the other ones are strict saddles. Therefore

gradient descent will converge for small enough step size to the largest eigenvector and the

spectral properties of Y imply that for λ> 1 with high probability this largest eigenvector has
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an overlap with θ∗ close to ±p1−1/λ (these known facts are briefly reviewed in Appendix

7.F).

While these approaches are able to provide guarantees and convergence rates of gradient

descent and variants thereof, they do not provide the full time-evolution and do not say

much about intermediate or transient times. This is what we achieve in this chapter for the

admittedly simple Wigner spiked models. We believe that the techniques used here can be

extended to other problems of interest in regression and learning. Recently, pure gradient

descent was studied for the much harder optimization of the cost of a mixed matrix-tensor

inference problem Sarao Mannelli et al. (2019); Mannelli et al. (2019) (see also Sarao Mannelli

et al. (2020) for Langevin dynamics) and it was shown how the structure of saddles and minima

determines the phase transition thresholds. This is based on a set of very sophisticated integro-

differential CSHCK equations Crisanti et al. (1993); Cugliandolo and Kurchan (1993) with a long

history in the framework of Langevin dynamics on spin-glass landscapes in statistical physics.

While these derivation of the CSHCK equations for the inference problem are non-rigorous

and their solution entirely numerical, they contain in principle the whole time evolution of the

system (in the context of spin-glasses the formalism has been made rigorous Ben Arous et al.

(2004)). The integro-differential equations and methods of the present chapter are entirely

different (and involve different objects) even when specializing to the matrix case. We note that

for the mixed matrix-tensor case the CSHCK formalism is quite intractable, but nevertheless

in the pure matrix case it should be possible to retrieve our final analytical solution as (partly)

done in Cugliandolo and Dean (1995) for the spherical spin-glass. We briefly comment on

possible extensions of our formalism in the conclusion.

Organization of this chapter: The main theorems and illustrations of analytical formulas

for the whole time-evolution of the overlap and cost are presented in Section 7.2. The heart

of the method presented here is contained in sections 7.3 (derivation of integro-differential

equations), 7.4 (local semi-circle laws and concentration of solutions), 7.5 (analytical solution

of integro-differential equations). Appendices contain proofs, of intermediate results and

technical material.

In the rest of the chapter, it is understood that the noise matrix ξ satisfies: (i) Eξi j = 0, (ii)

Eξ2
i j = 1+O(δi j ), (iii) E|ξi j |p finite for all p ∈ N. We use the notations H = n−1/2ξ, P for its

probability law, and Xn
P−→

n→∞ X for convergence in probability, i.e., limn→+∞P(|Xn −X | > ϵ) = 0

for any ϵ> 0.

7.2 Analytical solutions and illustrations

We solve gradient descent dynamics (7.2) in the scaling limit t = τn/η, with fixed τ> 0 and

n →+∞. The main quantities that we determine in the scaling limit are the overlap q(τ) =
1
n 〈θ∗,θnτ/η〉 and the cost H (θnτ/η). We remark that the overlap is directly linked to the mean-

square error n−1∥θ∗−θnτ/η∥2 = 2(1−q(τ)).
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The initial condition θ0 is fixed such that q(0) =α where α ∈ [−1,1] is independent of n. It will

become clear that: (i) If θt is a solution with initial condition q(0) =α then −θt is a solution

with q(0) =−α; (ii) For α= 0 the solution remains trivial q(τ) = 0. Therefore the reader can

keep in mind that α> 0 (all the analysis is valid for any α though).

7.2.1 Main results

The solution of the gradient descent dynamics can be entirely expressed thanks to a scaled

moment generating function of Wigner’s semi-circle law µsc(s) = 1
2π

p
4− s2χ[−2,2](s),

Mλ(τ) =
∫ ∞

−∞
d sµsc(s)e s τp

λ (7.3)

Setting s = 2cosθ we have Mλ(τ) = 2
∫ π

0
dθ
π (sinθ)2e

2τp
λ

cosθ. Integration by parts then shows

that Mλ(τ) =
p
λ
τ I1( 2τp

λ
) where I1(x) = ∫ π

0
dθ
π (cosθ)ex cosθ is a modified Bessel function of the

first kind.

Theorem 7.1 (Time evolution of the overlap). Let θ0 ∈ Sn−1(
p

n) an initial condition such

that q(0) = 1
n 〈θ∗,θ0〉 = α for a fixed α ∈ [−1,+1]. The overlap converges in probability to a

deterministic limit:

q(τ)
P−→

n→∞ q̄(τ) = q̂(τ)√
p̂(τ)

(7.4)

where

q̂(τ) =αe(1+ 1
λ

)τ[1− 1

λ

∫ τ

0
d s e−(1+ 1

λ
)s Mλ(s)

]
(7.5)

and

p̂(τ) = Mλ(2τ)+2α
∫ τ

0
d s q̂(s)Mλ(2τ− s)+

∫ τ

0

∫ τ

0
dud v q̂(u)q̂(v)Mλ(2τ−u − v). (7.6)

Theorem 7.2 (Time evolution of the cost). Under the same conditions as in theorem 7.1 the

cost converges to a deterministic limit H (θτn/η)
P−→

n→∞ 1− 1
2

d
dτ

{
ln p̂(τ)

}
.

Using asymptotic properties of the Bessel function and the Laplace method it is possible

to calculate the asymptotics of the integrals in (7.5) and (7.6) for τ→+∞. We find for the

overlap limτ→∞ q̄(τ) = sign(α)
p

1−λ−11(λ≥ 1). The overlap displays the well known phase

transition at λ = 1 also predicted by the spectral method. The asymptotic values can also

be derived independently from theorem 7.1 by directly looking at the stationary equation

∇θH (θ∞)− θ∞
n 〈θ∞,∇θH (θ∞) = 0. This is discussed in Appendix 7.G for completeness. It is

also possible to go one step further in the asymptotics to argue that at the transition λ= 1 the

power law behavior holds q̄(τ) ∼ ( 2
πτ )1/4 (see Appendix 7.I).

Besides the transition at λ= 1, for finite λ, a detailed analysis of the equations of theorem 7.1
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which are described also in Appendix 7.I allows to derive the first order asymptotic behavior

of q̄ for large τ. These tedious calculations are carried out analytically in detail and checked

numerically. Specifically, in the regime 1 <λ<+∞ we find

q̄(τ)− sign(α)

√
1− 1

λ
∼ sign(α)

2
p
πλ

1
4

√
1− 1

λ

(
1− 1p

λ

)2 τ
− 3

2 e−(1− 1p
λ

)2τ (7.7)

As for 0 <λ< 1, we retrieve a power law behavior:

q̄(τ) ∼ α
( 2
π

) 1
4

λ
5
8

(
1− 1p

λ

)2 √
1−α2 + α2

λ( 1p
λ
−1)2

τ−
3
4 (7.8)

The noise-less regimeλ=+∞ is an elementary case for which the overlap can be obtained very

simply. Taking the inner product of (7.2) with θ∗ we find the differential equation (for t = τn/η)
d q(τ)

dτ = q(τ)−q(τ)3, q(0) =α, which has the solution q(τ) =α(α2+(1−α2)e−2τ)−1/2. As we will

see, in the noisy case there is no closed form first order ODE for q(τ) and we must solve integro-

differential equations for suitable generating functions (or an infinite hierarchy of coupled

differential equations for generalized overlaps). As a sanity check, we can verify that theorem

7.1 leads to the same expression when λ→+∞. Explicitly, we find limλ→+∞ q̂(τ) =αeτ and

limλ→+∞ p̂(τ) = 1−α2 +α2e2τ which implies the noiseless expression for the overlap.

7.2.2 Discussion and numerical experiments

Theorems 7.1 and 7.2 provide theoretical predictions for the full time evolution of the overlap

and risk in the high dimensional limit n →+∞. In this section (and Appendix 7.J) we briefly

illustrate and discuss this time evolution. Moreover in Appendix 7.J we also compare the

theoretical predictions with simulations of discrete step size gradient descent for runs over

multiple samples of ξ.

Choice of the initial condition

Given θ∗ ∈ Sn−1(
p

n) if we choose the initial condition θ0 uniformly at random we expect

α a random variable of zero mean and standard deviation n−1/2. To analyze this case one

should deal with finite n corrections to the dynamics which is beyond the scope of this thesis.

Numerical plots of our formulas (fig 1a, 5a) show when α→ 0 gradient flow kicks-off at larger

and larger times; this suggests that if α∼ n−1/2 gradient flow kicks-off once a large enough

time-scale has elapsed. Our analysis is presumably valid beyond this time-scale (we do not

have a proof of this claim), but estimating this time-scale is open. As mentioned in the

introduction AMP suffers from similar issues. However, there are many interesting situations

where the signal has some structure which is partially known, and it is then very natural to have

α> 0 (uniformly in n). For example signals which may have a non-zero empirical expectation
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ρ > 0, for instance with components distributed as Ber(ρ+1
2 ) in {−1,1}. Then we can take the

initial all-one vector θ0 =1n , and thus α= ρ > 0 which naturally kicks-off the gradient flow,

and our analysis applies.

Time evolution of the overlap

Figure 7.2.1 shows the theoretical overlap at all times τ ∈R+ for two initial conditions α= 0.1

and α = 0.5 and any signal-to-noise ratio λ. Let us say a few words about the transient

behaviors that are observed.

On the one hand, the closer α gets to 0, the longer it takes for the gradient descent to "kick-in":

the overlap stays longer close to 0 before reaching its asymptotic behavior. An additional

example for α= 0.01 illustrates this fact in Appendix 7.J. On the other hand, we clearly see that

when the initial overlap α is not too close to 0, the time evolution is not monotone even for

λ> 1, and a specific bump is reached at early times where the overlap reaches a maximum

before dropping down to its limit. In fact this is clearly suggested by (7.7) for α< 1. This can be

seen in particular in the case α= 0.5 in Figure 7.2.1 (b). This suggests that in practice, in such

situations, it is worth using early-stopping techniques to optimize the estimation of the signal.

The increase of the overlap above the spectral estimate for finite times is a consequence of the

side information α> 0 that standard PCA does not have. As a side note we mention that in

the Bayesian setting with known prior the information theoretic overlap is at least as good or

better than PCA (for a N (0,1) prior they are equal).

In the case λ= 1 one can show that q̂(τ) =α (I0(2τ)+ I1(2τ)) (with modified Bessel functions

of the first kind) and it is numerically much easier to evaluate the asymptotic behavior of q(τ).

The calculation yields q(τ) ∼ ( 2
πτ

) 1
4 (see Appendix 7.I). Furthermore plotting a family of curves

with λ= 1 and α ∈ (0,1) in Figure 7.2.2, it appears that this asymptote also seems to act as an

upper-bound.

Time evolution of the cost

We also have predictions for the evolution of cost at any time for any values of (α,λ). This is

illustated in Figure 7.2.3. As seen in the analysis of Section 7.A, Equ. (7.41) the cost has two

additive contributions basically interpreted as q(τ)2 and p1(τ) = n−1〈θτ, Hθτ〉. The second

contribution equals n−1TrHθτθ
T
τ can be interpreted as a similarity measure of the recon-

structed matrix θτθτT and the noise matrix H , and is thus a "proxy" for assessing over-fitting

in this particular setting. Interestingly, in the depicted example where λ = 2,α = 0.1, p1(τ)

is shown to decrease the risk at early stages at a fast rate, until it slightly "heals" for τ ≥ 3.

Conversely, when α = 0.5, we see p1(τ) does not decrease as much in early stages, and the

healing phenomenon does not occur. At the same time, as observed on 7.2.1 (b) q(τ) is not

monotonous: it increases at early stages and decreases down to its limiting value later.
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(a) α= 0.1 (b) α= 0.5

Figure 7.2.1: Overlap as a function of time according to theorem 7.1 for two initial conditions
and different signal-to-noise ratios. Thick dotted line corresponds to λ= 1 and tends to zero
slowly as (2/πτ)1/4. For λ< 1 the curves tend to zero and for λ> 1 they tend to

p
1−1/λ.

Figure 7.2.2: Overlap comparison for λ= 1 with a range of values for α

(a) α= 0.1 (b) α= 0.5

Figure 7.2.3: Cost evolution for λ= 5
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7.3 Integro-differential equations

7.3 Integro-differential equations

We study gradient descent in a regime where t = τn/η, n →+∞, with τ fixed. Abusing slightly

notation we set θτn/η→ θτ so that equation (7.2) reads

dθτ
dτ

=−n∇θH (θτ)+θτ〈θτ,∇θH (θτ)〉 = 1

n2 Y θτ− 1

n2 〈θτ,Y θτ〉θτ (7.9)

We define H = n−1/2ξ the suitably normalized noise matrix. Besides the basic overlap q(τ) =
1
n 〈θ∗,θτ〉, another one also plays an important role, namely p1(τ) = 1

n 〈θτ, Hθτ〉.
Using Y = θ∗θ∗T + np

λ
H we find

dθτ
dτ

= q(τ)θ∗+ 1p
λ

Hθτ−
(

q(τ)2 + p1(τ)p
λ

)
θτ (7.10)

It is not possible to write down a closed set of equations that involve only q(τ) and p1(τ), but

only for a hierarchy of such objects, or for their generating functions. We now introduce these

generating functions and then give the closed set of equations which they satisfy.

The n ×n matrix H = n−1/2ξ is drawn with the probability law P. Fix any small δ> 0 and let

S n
δ

the set of realizations of H such that all eigenvalues fall in an interval Iδ = [−2−δ,2+δ].

Then P(S n
δ

) → 1 as n →+∞ (see for example Erdós (2011)). In the rest of this section it is

understood that H ∈S n
δ

. In particular the resolvent matrix2 R(z) = (H − zI )−1 is well defined

for z ∈C\ Iδ if H ∈S n
δ

.

For any contour C = {z ∈C | z = ρe iθ,θ ∈ [0,2π]} with ρ > 2+δ we can define three generating

functions

Qτ(z) = 1

n
〈θτ,R(z)θ∗〉, Pτ(z) = 1

n
〈θτ,R(z)θτ〉, R(z) = 1

n
〈θ∗,R(z)θ∗〉. (7.11)

From standard holomorphic functional calculus for matrices (see for example Dunford and

Schwartz (1988)) we have

q(τ) =−
∮
C

d z

2πi
Qτ(z), p1(τ) =−

∮
C

d z

2πi
zPτ(z). (7.12)

Note that these two overlaps are part of a hierarchy of overlaps qk (τ) ≡ 〈θ∗,H kθτ〉
n =−∮

C
d z
2πi zkQτ(z)

and pk (τ) ≡ 〈θτ,H kθτ〉
n =−∮

C
d z
2πi zk Pτ(z), k ≥ 1, which can all be calculated by the methods of

this chapter (note q(τ) corresponds to k = 0).

Proposition 7.1. For any realization H ∈Sδ and any z ∈C\ Iδ the generating functions (7.11)

2Here I is the identity n×n matrix and we will slightly abuse notation by omitting it and simply write (H − z)−1.
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satisfy the integro-differential equation
d

dτQτ(z) = q(τ)R(z)+ 1p
λ

(zQτ(z)+q(τ))−
(
q2(τ)+ 1p

λ
p1(τ)

)
Qτ(z)

1
2

d
dτPτ(z) = q(τ)Qτ(z)+ 1p

λ
(zPτ(z)+1)−

(
q2(τ)+ 1p

λ
p1(τ)

)
Pτ(z)

(7.13)

where q(τ) =−∮
C

d z
2πi Qτ(z) and p1(τ) =−∮

C
d z
2πi zPτ(z).

Proof. Let us derive the first equation. Using (7.10)

d

dτ
Qτ(z) = 1

n
〈θ∗, (H − z)−1 dθτ

dτ
〉 = q(τ)

n
〈θ∗, (H − z)−1θ∗〉+ 1

n
p
λ
〈θ∗, (H − z)−1Hθτ〉

−
(

q(τ)2 + p1(τ)p
λ

)
1

n
〈θ∗, (H − z)−1θτ〉 (7.14)

Using (H − z)−1H = I + z(H − z)−1 in the second term in the right hand side, we immediately

get the first equation of (7.13). Let us now derive the second equation. Again using (7.10) and

since (H − zI ) is a symmetric matrix

d

dτ
Pτ(z) = 2

n
〈θτ, (H − z)−1 dθτ

dτ
〉 = 2

q(τ)

n
〈θτ, (H − z)−1θ∗〉+ 2

n
p
λ
〈θτ, (H − z)−1Hθτ〉

−2

(
q(τ)2 + p1(τ)p

λ

)
1

n
〈θτ, (H − z)−1θτ〉 (7.15)

Thus using again (H − z)−1H = I + z(H − z)−1 and 〈θτ,θτ〉 = 1 we get the second equation of

(7.13).

7.4 Concentration results

We introduce the Stieltjes transform of the semi-circle law µsc(s) = 1
2π

p
4− s2χ[−2,2](s),

Gsc(z) =
∫
R

d s
µsc(s)

s − z
= 1

2
(−z +

√
z2 −4), z ∈C\ [−2,2]. (7.16)

It is a classical result of random matrix theory Erdós (2011) that, for any z ∈C\ [−2,2],

1

n
TrR(z)

P−→
n→∞ Gsc(z)

. However here we will need convergence in probability of matrix elements of the resolvent

(for given z and also uniformly in z). This tool is provided by recent results in random matrix

theory that go under the name of local semi-circle laws Bloemendal et al. (2014).

Recall that S n
δ

is the set of realizations of H = 1p
n
ξwith eigenvalues in Iδ = [−2−δ,2+δ], δ> 0,

and that limn→+∞P(S n
δ

) = 1. It will be convenient to use the notation Pδ for the conditional

probability law of H conditioned on the event H ∈S n
δ

.
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7.4.1 Initial condition analysis

We first derive natural initial conditions for the integro-differential equations (7.13) when
1
n 〈θ0,θ∗〉 = q(0) = α ∈ [−1,+1]. We claim (corollary 7.1 below) that the initial conditions

Q0(z),P0(z) as well as R(z) concentrate on explicit functions Q̄0(z), P̄0(z), R̄(z). The main tool

is the following proposition which we prove in Section 7.B (based on a theorem in Bloemendal

et al. (2014)):

Proposition 7.2. Fix δ> 0, ϵ> 0. For any fixed z ∈C\ Iδ and any deterministic sequence of unit

vectors u(n), v (n) ∈Sn−1(1) the n-sphere of unit radius, we have

lim
n→∞Pδ

(|〈u(n),R(z)v (n)〉−〈u(n), v (n)〉Gsc(z)| > ϵ)= 0. (7.17)

Applying this proposition to the three pairs of unit vectors (u(n), v (n)) = ( θ0p
n

, θ
∗p
n

), ( θ0p
n

, θ0p
n

), and

( θ
∗p
n

, θ
∗p
n

) we directly obtain

Corollary 7.1. Fixα ∈ [−1,+1] and θ0 such that 1
n 〈θ0,θ∗〉 =α. For z ∈C\Iδ we have convergence

in probability of Q0(z),P0(z),R(z) to the Stieljes transform of the semi-circle law:

Q0(z)
Pδ−→

n→∞ Q̄0(z) =αGsc(z), P0(z)
Pδ−→

n→∞ P̄0(z) =Gsc(z), R(z)
Pδ−→

n→∞ R̄(z) =Gsc(z). (7.18)

7.4.2 Concentration of the overlap for finite times

We consider the integro-differential equations (7.13) for the limiting initial conditions (Q̄0(z),

P̄0(z)) = (αGsc(z),Gsc(z)) and limiting R̄(r ) =Gsc(z). More explicitly we define Q̄τ(z), P̄τ(z) as

the (holomorphic over z ∈C\ Iδ) solutions of
d

dτQ̄τ(z) = q̄(τ)R̄(z)+ 1p
λ

(zQ̄τ(z)+ q̄(τ))−
(
q̄2(τ)+ 1p

λ
p̄1(τ)

)
Q̄τ(z)

1
2

d
dτ P̄τ(z) = q̄(τ)Q̄τ(z)+ 1p

λ
(zP̄τ(z)+1)−

(
q̄2(τ)+ 1p

λ
p̄1(τ)

)
P̄τ(z)

(7.19)

where by definition q̄(τ) =−∮
C

d z
2πi Q̄τ(z) and p̄1(τ) =−∮

C
d z
2πi zP̄τ(z), and the initial conditions

are Q̄0(z) = αGsc(z), P̄0(z) = Gsc(z). The explicit calculation of the solutions Q̄τ(z), P̄τ(z) in

Section 7.5 shows that they exist and they are holomorphic for z ∈C\ Iδ.

One can show that the concentration result of corollary 7.1 extends to all finite times. This

can be done by a Grönwall stability type argument. A difficulty with respect to the standard

argument is that here we deal with an integro-differential equation instead of purely ordinary

differential equation. For this reason we need a uniform (over z) concentration result which

strengthens proposition 7.2. The following is proved in Section 7.B.

Proposition 7.3. Fix δ> 0, ϵ> 0. Recall C = {z ∈C | z = ρe iθ,θ ∈ [0,2π]} for ρ ≥ 2+δ. For any

deterministic sequence of unit vectors u(n), v (n) ∈Sn−1(1) the n-sphere of unit radius, we have

lim
n→∞Pδ

(
sup
z∈C

|〈u(n),R(z)v (n)〉−〈u(n), v (n)〉Gsc(z)| > ϵ)= 0. (7.20)
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Applying this proposition to appropriate pairs of unit vectors as previously we get directly:

Corollary 7.2. Fix α ∈ [−1,+1] and θ0 such that 1
n 〈θ0,θ∗〉 = α. Let C = {z ∈ C | z = ρe iθ,θ ∈

[0,2π]} for someρ ≥ 2+δ. Recall Q̄0(z) =αGsc(z), P̄0(z) =Gsc(z), R̄(z) =Gsc(z). Then supz∈C |Q0(z)−
Q̄0(z)|, supz∈C |P0(z)− P̄0(z)|, supz∈C |R(z)− R̄(z)| all converge in Pδ-probability to zero.

In Section 7.C this corollary is used to prove:

Proposition 7.4. Fix α ∈ [−1,+1] and θ0 such that 1
n 〈θ0,θ∗〉 = α. Fix any T > 0. We have

convergences at any τ ∈ [0,T ] of the following overlaps to the deterministic limits q(τ)
P−→

n→∞
q̄(τ), p1(τ)

P−→
n→∞ p̄1(τ) where here convergence is with respect to the probability law P of the

generalized Wigner ensemble.

Remark 7.1. With a bit more work the proof of this corollary can be strengthened to also

show that for any z ∈C\ Iδ and τ ∈ [0,T ] we have convergence in probability of Qτ(z),Pτ(z) to

the deterministic solutions of the integro-differential equations (7.19), i.e., Qτ(z)
Pδ−→

n→∞ Q̄τ(z),

Pτ(z)
Pδ−→

n→∞ P̄τ(z), as well as convergence of all overlaps qk (τ), pk (τ)
P−→

n→∞ q̄k (τ), p̄k (τ) (k ≥ 1).

Since we will not need these results we omit their proof.

7.5 Solution of integro-differential equations and overlap

In this section we analyze (7.19) for z ∈C\ Iδ with the initial conditions (Q̄0(z), P̄0(z), R̄(z)) =
(αGsc(z),Gsc(z),Gsc(z)). In the process we obtain q̄(τ) ≡−∫

C
d z
2πi Q̄τ(z).

Proof of formulas (7.5) and (7.6) in theorem 7.1. We use a change of variable Q̂τ(z) = eF (τ)Q̄τ(z)

and P̂τ(z) = e2F (τ)P̄τ(z) with F (τ) = ∫ τ
0 d s

(
q̄2(s)+ 1p

λ
p̄1(s)

)
. Similarly, we define also q̂(τ) =

eF (τ)q̄(τ), p̂(τ) = e2F (τ). We have q̄(τ) = q̂(τ)/
√

p̂(τ), and therefore in order to determine the

overlap it suffices to determine q̂(τ) and p̂(τ). With the change of variables equations (7.13)

become 
d

dτQ̂τ(z) = q̂(τ)
(
R̄(z)+ 1p

λ

)
+ zp

λ
Q̂τ(z)

1
2

d
dτ P̂τ(z) = q̂(τ)Q̂τ(z)+ 1p

λ
p̂(τ)+ zp

λ
P̂τ(z)

(7.21)

We analyze these equations in the Laplace domain. Recall the Laplace transformation L f (p) =∫ +∞
0 dτe−pτ f (τ), Re p > a ∈ R+, which is well defined as long as | f (τ)| ≤ eaτ. All functions

involved below in Laplace transforms satisfy this requirement for some a ∈R+ large enough in-

dependent of n. It will often be convenient to use the notations L ( f (t ))(p) = ∫ +∞
0 dτe−pτ f (τ),

L Qp (z) = ∫ +∞
0 dτe−pτQτ(z), L Pp (z) = ∫ +∞

0 dτe−pτPτ(z).

A) Derivation of (7.5) for q̂(τ). Taking the Laplace transform of the first equation in (7.21)

pL Q̂p (z)−Q̂0(z) =L q̂(p)
(
R̄(z)+ 1p

λ

)+ zp
λ

L Q̂p (z) (7.22)
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Notice that Q̂0(z) = eF (0)Q̄0(z) =αGsc(z) and R̄(z) =Gsc(z), and hence we can re-arrange the

terms,

L Q̂p (z) =α
p
λGsc(z)

p
p
λ− z

+L q̂(p)

p
λGsc(z)+1

p
p
λ− z

. (7.23)

Now, assuming Re p > 2+δp
λ

(recall Re p > 0) leaves the point p
p
λ outside the contour C . Using

Fubini first and the definition of q̂ secondly∮
C

d z

2πi

∫ +∞

0
dτe−pτQ̂τ(z) =

∫ +∞

0
dτe−pτ

∮
C

d z

2πi
Q̂τ(z) =−

∫ +∞

0
dτe−pτq̂(τ) (7.24)

Thus we have
∮
C

d z
2πi L Q̂p (z) = −L q̂(p) on the left side of (7.23) while a straightforward

calculation using Fubini on compact sets shows∮
C

d z

2πi

Gsc(z)

p
p
λ− z

= 1

2πi

∮
C

∫ 2

−2

µsc(l )dldz

(l − z)(p
p
λ− z)

=
∫ 2

−2

µsc(l )dl

l −p
p
λ
=Gsc(p

p
λ) (7.25)

So taking Cauchy integration formula on both sides of (7.23) we get

−L q̂(p) =α
p
λGsc(p

p
λ)+L q̂(p)

p
λGsc(p

p
λ) (7.26)

Thus we find:

L q̂(p) =− αGsc(p
p
λ)

1p
λ
+Gsc(p

p
λ)

=α
1+ 1p

λ
Gsc(p

p
λ)

p − (1+ 1
λ )

(7.27)

where the last equality can be checked from the explicit expression (7.16) of Gsc(z). It remains

to invert this equation in the time domain. To do so we first notice that

Gsc(p
p
λ) =− 1p

λ

∫ 2

−2
d sµsc(s)

∫ +∞

0
dτe( sp

λ
−p)τ =− 1p

λ

∫ +∞

0
dτe−pτMλ(τ) (7.28)

where we recall that Mλ(τ) is the scaled moment generating function of the semi-circle

law (7.3). The interchange of integrals in the third equality is justified by Fubini. Using

L (e(1+ 1
λ

)τ)(p) = (p − (1+ 1
λ ))−1, equation (7.27) becomes

L q̂(p) =αL (e(1+ 1
λ

)t )(p)− α

λ
L (e(1+ 1

λ
)t )L Mλ(p) (7.29)

This is easily transformed back in the time-domain using standard properties of the Laplace

transform to get (7.5).

B) A useful identity. For the derivation of p̂(τ) we will need the following identity derived in

Appendix 7.H

−
∮
C

d z

2πi
Q̂u(z)e

z(τ−u)p
λ =αMλ(2τ−u)+

∫ u

0
d sq̂(s)Mλ(2τ−u − s) (7.30)
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where we recall C is the circle with center the origin and radius ρ > 2+δ.

C) Derivation of p̂(τ). Taking the Laplace transform of the second equation in (7.21) we find

1

2
(pL P̂p (z)− P̂0(z)) =L (q̂(τ)Q̂τ(z))(p)+ 1p

λ
L p̂(p)+ zp

λ
L P̂p (z) (7.31)

and using P̂0(z) = eF (0)P̄0(z) =Gsc(z) we can rearrange the terms to get

L P̂p (z) = 1

p − z
p
λ

2

(
Gsc(z)+2

p
λL (q̂(τ)Q̂τ(z))(p)+ 2p

λ
L p̂(p)

)
. (7.32)

Then using (p − 2zp
λ

)−1 =L (e
2ztp
λ )(p) and

2L (e
2ztp
λ )L (q̂(t )Q̂t (z)) =L

(
2
∫ t

0
q̂(u)Q̂u(z)e

2z(t−u)p
λ du

)
, (7.33)

and replacing in (7.32) we get

L P̂p (z) =L
(
e

2zτp
λ
)
(p)Gsc(z)+2L

(∫ τ

0
q̂(u)Q̂u(z)e

2z(τ−u)p
λ du

)
(p)+ 2p

λ
L (e

2zτp
λ )(p)L p̂(p).

(7.34)

Now we take Re p > 4/
p
λ and choose the contour C , encircling the interval Iδ, but such that

it does not encircle the point z = 1
2 p

p
λ, and integrate each term of (7.34) along this contour.

First note that the contribution of the last term vanishes since L (e
2zτp
λ )(p) = (p − 2zp

λ
)−1 and

the pole z = 1
2 p

p
λ lies in the exterior of C . Then there remains∮

C

d z

2πi
L P̂p (z) =

∮
C

d z

2πi
L (e

2zτp
λ )(p)Gsc(z)+2

∮
C

d z

2πi
L

(∫ τ

0
q̂(u)Q̂u(z)e

2z(τ−u)p
λ du

)
(p). (7.35)

For the left hand side we have∮
C

d z

2πi

∫ +∞

0
dτe−pτP̂τ(z) =

∫ +∞

0
dτe−pτ

∮
C

d z

2πi
P̂τ(z) =−

∫ +∞

0
dτe−pτp̂(τ) (7.36)

where the first equality follows from Fubini and the second by functional calculus Dunford

and Schwartz (1988). For the first term on the right hand side of (7.35) we find (see Appendix

7.H for details) ∮
C

d z

2πi
Gsc(z)

∫ +∞

0
dτe−pτe

zτp
λ =−

∫ +∞

0
dτe−pτMλ(τ). (7.37)

Finally it remains to treat the last contour integral in (7.35). Using again Fubini and (7.30) we
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find∮
C

d z

2πi

∫ +∞

0
dτe−pτ

∫ τ

0
q̂(u)Q̂u(z)e

2z(τ−u)p
λ du =

∫ +∞

0
dτe−pτ

∫ τ

0
q̂(u)

∮
C

d z

2πi
Q̂u(z)e

2z(τ−u)p
λ du

=−
∫ +∞

0
dτe−pτ

∫ τ

0
duq̂(u)

[
αMλ(2τ−u)+

∫ u

0
d sq̂(s)Mλ(2τ−u − s)

]
=−

∫ +∞

0
dτe−pτ

[
α

∫ τ

0
duq̂(u)Mλ(2τ−u)+ 1

2

∫ τ

0

∫ τ

0
dud sq̂(s)Mλ(2τ−u − s)

]
(7.38)

Putting together (7.35), (7.36), (7.37), (7.38) we obtain (7.6) in the Laplace domain. Going back

to the time domain we obtain (7.6).

7.6 Conclusion and future work

Tracking gradient descent dynamics and their variants for different scores and loss functions

can be used to provide meaningful insights on a learning algorithm and for example, help

monitor its progress and avoid over-fitting. As computational capabilities increase with

distributed systems allowing for bigger datasets and larger systems to be treated, a good

understanding of the dynamics can help account for computational cost.

We have seen in this work that for the rank-one matrix recovery problem in the regime of

large dimensions, probabilistic concentrations naturally occur that can be captured by the

local semi-circle laws in random matrix theory obtained in the last decade. In particular,

suitable generating functions constructed out of the resolvent of the noise matrix concentrate

around the solutions of a set of deterministic integro-differential equations. We have been

able to completely solve these equations thereby tracking the dynamics for all times. It is also

observed that the analytical solution provides a good approximation for the expected behavior

of the learning algorithm, even for dimensions as low as n < 100.

The method and integro-differential equations derived here can be generalized to different

models. For instance, we will show in forthcoming work how it is possible to apply it to certain

neural-network architectures, and in particular the random feature models. This allows us

to better understand the dynamical emergence of interesting behaviors such as the double

descent phenomenon. The generalisation is possible, in essence, when the dynamics can be

captured by spectral properties of some "resolvent matrix". Depending on the system though,

performing random matrix averages can be arbitrarily complicated. For problems where the

dynamics is not captured by some resolvent matrix, such as a genuine tensor problem (with

tensor of order greater equal than three) it is not so clear how to proceed since there are no

obvious spectral notions for tensors. One option would be to approach the problem by looking

at the dynamics of the alternating least square method.
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Appendix

7.A Analysis of the cost

Proof of theorem 7.2. Expanding the Frobenius norm in the cost and using ∥θτ∥2 = ∥θ∗∥2 = n

we find

H (θτ) = 1

2n2

{−2TrY θτθ
T
τ +Tr(θτθ

T
τ θτθ

T
τ )

}− 1

2n2

{−2TrY θ∗θ∗T +Tr(θ∗θ∗T θ∗θ∗T )
}

= 1

n2 〈θ∗,Y θ∗〉− 1

n2 〈θτ,Y θτ〉. (7.39)

Using that Y = θ∗θ∗T + np
λ

H (recall H = 1p
n
ξ) we get

H (θτ) = (
1+ 1p

λ

〈θ∗, Hθ∗〉
n

)− ( 〈θτ,θ∗〉2

n2 + 1p
λ

〈θτ, Hθt 〉
n

)
= (

1+ 1p
λ

〈θ∗, Hθ∗〉
n

)− (
q(τ)2 + p1(τ)p

λ

)
. (7.40)

By the law of large numbers 〈θ∗,Hθ∗〉
n

P−→
n→∞ 0 and since q(τ)

P−→
n→∞ q̄(τ) and p1(τ)

P−→
n→∞ p̄1(τ) we

have

H (θτ)
P−→

n→∞ 1−
(

q̄(τ)2 + p̄1(τ)p
λ

)
. (7.41)

Now it remains to recall the definition of F (τ) and p̂0(τ) = e2F (τ), to see that

q̄(τ)2 + p̄1(τ)p
λ

= dF (τ)

dτ
= 1

2

d

dτ
ln p̂(τ). (7.42)

The result of the theorem follows from (7.41) and (7.42).

7.B Proof of propositions 7.2 and 7.3

The proof is based the following local semi-circle law (theorem 2.12 in Bloemendal et al.

(2014)):

Theorem 7.3 (isotropic local semi-circle law Bloemendal et al. (2014)). For any ω ∈ (0,1)
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consider the following domain in the upper half-plane

S(ω,n) =
{

z ∈C | |Re(z)| ≤ 1

ω
,

1

n1−ω ≤ Im(z) ≤ 1

ω

}
.

Then for all δ,D > 0, there exists n0 ∈N such that for all n > n0, and any unit vectors u, v ∈Sn(1):

sup
z∈S(ω,n)

P

(
|〈u,R(z)v〉−〈u, v〉Gsc(z)| > nδ

[√
ImGsc(z)

n Im z
+ 1

n Im z

])
< 1

nD
(7.43)

where P is the probability law on the generalized Wigner matrix.

Proof of proposition 7.2. First we note that for Im z ̸= 0 since limn→+∞P(S n
δ

) = 1 we have

lim
n→+∞P

(|〈u,R(z)v〉−〈u, v〉Gsc(z)| > ϵ)= lim
n→+∞Pδ

(|〈u,R(z)v〉−〈u, v〉Gsc(z)| > ϵ). (7.44)

We consider fist the cases Im z strictly positive, negative, and then give the extra argument

needed for Im z = 0.

First we take Im z > 0. We can find n1 ∈N,ω ∈ (0,1) such that z ∈ S(ω,n1) and henceforth, for

all n ≥ n1, z ∈ S(ω,n). Taking δ= 1
4 ,D = 1 and applying theorem 7.3 yields the existence of n0

such that for all n ≥ max(n0,n1):

P

(
|〈u,R(z)v〉−〈u, v〉Gsc(z)| > n

1
4

[√
ImGsc(z)

n Im z
+ 1

n Im z

])
< 1

n
. (7.45)

Set l (n, z) = n
1
4

[√
ImGsc(z)

n Im z + 1
n Im z

]
. Since limn→∞ l (n, z) = 0, we can find n2 such that for all

n ≥ n2 we have l (n, z) < ϵ. Thus for all n ≥ max(n0,n1,n2) we have the set inclusion in the

generalized Wigner ensemble

{H : |〈u,R(z)v〉−〈u, v〉Gsc(z)| > ϵ} ⊂ {H : |〈u,R(z)v〉−〈u, v〉Gsc(z)|| > l (n, z)} (7.46)

and therefore

P
(|〈u,R(z)v〉−〈u, v〉Gsc(z)| > ϵ)< 1

n
. (7.47)

Applying this inequality to a deterministic sequence (u(n), v (n)) on the unit sphere and taking

the limit n →∞ concludes the proof for Im z > 0.

To deal with Im z < 0 it suffices to remark that |〈u,R(z)v〉 − 〈u, v〉Gsc(z)| = |〈u,R(z̄)v〉 −
〈u, v〉Gsc(z̄)|. Alternatively one could use a version of theorem 7.3 for the lower half-plane.

Consider now z = x with x ∈ R \ Iδ and H ∈ S n
δ

. Take a complex number x + i y , 0 < y ≤
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ϵ
2 |x − (2+δ)|2. From the mean value theorem we have

|(〈u,R(x)v〉−〈u, v〉Gsc(x))− (〈u,R(x + i y)v〉−〈u, v〉Gsc(x + i yk ))|

≤ |y |sup
y>0

| d

d y
〈u,R(x + i y)v〉|. (7.48)

Since for H ∈S n
δ

| d

d y
〈u,R(x + i y)v〉| = |〈u, (x + i y −H)−2v〉| ≤ 1

(x − (2+δ))2 + y2 (7.49)

we deduce from (7.48) and the triangle inequality

|〈u,R(x)v〉−〈u, v〉Gsc(x)| ≤ |〈u,R(x + i y)v〉−〈u, v〉Gsc(x + i yk )|+ y

|x − (2+δ)|2
≤ |〈u,R(x + i y)v〉−〈u, v〉Gsc(x + i yk )|+ ϵ

2
. (7.50)

Thus for realizations H ∈ S n
δ

, the event |〈u,R(x)v〉 − 〈u, v〉Gsc(x)| > ϵ implies the event

|〈u,R(x + i y)v〉−〈u, v〉Gsc(x + i y)| ≥ ϵ
2 for any 0 < y ≤ ϵ

2 |x − (2+δ)|2. In other words

Pδ
(|〈u,R(x)v〉−〈u, v〉Gsc(x)| > ϵ)≤Pδ(|〈u,R(x + i y)v〉−〈u, v〉Gsc(x + i y)| ≥ ϵ

2

)
. (7.51)

By the previous results for Im z > 0 we conclude that these probabilities tend to zero as

n →+∞.

Proof of proposition 7.3. The proof uses a discretization argument together with the union

bound. Consider the discrete set of N points on the contour C , zk = ρe iθk , θk = 2πk
N , k =

0, . . . , N −1. First, Observe that from the union bound

P
(

max
k=0,··· ,N

|〈u(n),R(zk )v (n)〉−〈u(n), v (n)〉Gsc(zk )| > ϵ)
≤

N∑
k=0

P
(|〈u(n),R(zk )v (n)〉−〈u(n), v (n)〉Gsc(zk )| > ϵ) (7.52)

thus from proposition (7.2)

lim
n→+∞P

(
max

k=0,··· ,N
|〈u(n),R(zk )v (n)〉−〈u(n), v (n)〉Gsc(zk )| > ϵ)= 0 (7.53)

Second, for any z = ρe iθ ∈ C there exist a θk such that |θ−θk | ≤ 1
N . Applying the triangle

inequality |b| ≤ |a|+|b−a| for a = 〈u(n),R(z)v (n)〉−〈u(n),Gsc(z)v (n)〉 and b = 〈u(n),R(zk )v (n)〉−
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〈u(n),Gsc(zk )v (n)〉, and the mean value theorem, we get

|〈u(n),R(zk )v (n)〉−〈u(n),Gsc(zk )v (n)〉| ≤ |〈u(n),R(z)v (n)〉−〈u(n),RH (z)v (n)〉|

+ 1

N
sup

θ∈[0,2π]
| d

dθ
〈u(n),R(ρe iθ)v (n)〉| (7.54)

We can take the supremum of the right hand side over z ∈C and then the maximum of the

right hand side over k = 0, . . . , N −1 to deduce

max
k=0,...,N

|〈u(n),R(z)v (n)〉−〈u(n),Gsc(z)v (n)〉| ≤ sup
z∈C

|〈u(n),R(zk )v (n)〉−〈u(n),R(zk )v (n)〉|

+ 1

N
sup

θ∈[0,2π]
| d

dθ
〈u(n),R(ρe iθ)v (n)〉| (7.55)

Since

d

dθ
〈u(n),R(ρe iθ)v (n)〉 = iρe iθ〈u(n), (ρe iθ−H)−2v (n)〉 (7.56)

we deduce from Cauchy-Schwarz, that with probability tending to one as n →+∞

1

N
sup

θ∈[0,2π]
| d

dθ
〈u(n),R(ρe iθ)v (n)〉| ≤ ρ

N (ρ−2)2 (7.57)

Therefore taking N > 2ρ
ϵ(ρ−2)2 we find from (7.53), (7.57) and (7.55)

lim
n→+∞P

(
sup
z∈C

|〈u(n),R(z)v (n)〉−〈u(n), v (n)〉Gsc(z)| ≥ ϵ

2

)= 0 (7.58)

for any ϵ> 0. This concludes the proof.

7.C Proof of proposition 7.4

We assume the condition H ∈ S n
δ

so that ∥R(z)∥op ≤ (ρ− 2)−1 for all z ∈ C = {z ∈ C | z =
ρe iθ,θ ∈ [0,2π]} and ρ > 2+δ. The condition is relaxed at the very end.

The proof of proposition 7.4 is based on a Gronwall type argument. As explained in Section

7.4 the difficulty here is that we have an integro-differential equation instead of a plain ordi-

nary differential equation and the usual Lipshitz condition is not a priori satisfied. For this

reason, given that H ∈ S n
δ

, we need preliminary bounds on supz∈C |Qτ(z)|, supz∈C |Pτ(z)|,
supz∈C |R(z)|, supz∈C |R̄(z)| and on supz∈C |Q̄τ(z)|, supz∈C |P̄τ(z)|, for τ ∈ [0,T ]. Here we do

not seek the best possible bounds but rather we just need that all quantities are bounded (with

high probability for the first three).

For the first four quantities the bound easily follows from their definition (7.11). By Cauchy-

Schwartz we obtain that supz∈C |Qτ(z)|, supz∈C |Pτ(z)| and supz∈C |R(z)| are upper bounded
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by (ρ−2)−1. For supz∈C |R̄(z)| we can use the integral representation to get the same (loose)

bound.

The remaining two quantities are here defined through the solution of the integro-differential

equation (7.19) which we take as a starting point to prove a bound. In Section 7.5 we

compute exactly the combination q̄(τ)2 + 1
λ p̄1(τ) ≡ 1

2 ln p̂(τ) and find p̂(τ) given by formula

(7.6). It can be checked that this is a continuous function for any compact time interval, so

supτ∈[0,T ] |q̄(τ)2 + 1p
λ

p̄1(τ)| ≤ L∗(T ) <+∞ for any T > 0 (in fact one can even take L∗ indepen-

dent of T but we will not need this information). Then, integrating the first equation in (7.19)

over [0,τ], using the triangle inequality, and then taking suprema, we deduce

sup
z∈C

|Q̄τ(z)| ≤sup
z∈C

|Q̄0(z)|+ ( ρ

ρ−2
+ 2ρp

λ
+ρ2L∗(T )

)∫ τ

0
d s sup

z∈C
|Q̄s(z)| (7.59)

Iterating this inequality a standard calculation yields any τ ∈ [0,T ]

sup
z∈C

|Q̄τ(z)| ≤ sup
z∈C

|Q̄0(z)|eT
(

ρ

ρ−2+
2ρp
λ
+ρ2L∗(T )

)
≤ α

ρ−2
eT

(
ρ

ρ−2+
2ρp
λ
+ρ2L∗(T )

)
(7.60)

where we used Q̄0(z) =αGsc(z), and for |Gsc(z)| ≤ 1
ρ−2 for z ∈C . The definition of q̄(τ) in terms

of a contour integral implies immediately supτ∈[0,T ] |q̄(τ)| ≤ L(T ) where L(T ) is the right hand

side of (7.60) multiplied by ρ. Now, integrating the second equation in (7.19) over [0,τ], using

the triangle inequality, and then taking suprema again, we deduce

1

2
sup
z∈C

|P̄τ(z)| ≤1

2
sup
z∈C

|P̄0(z)|+ α2ρτ

(ρ−2)2 e2T
(

ρ

ρ−2+
2ρp
λ
+ρ2L∗(T )

)
+ τp

λ

+ ( ρp
λ
+L∗(T )

)∫ τ

0
sup
z∈C

|P̄s(z)| (7.61)

Again a standard calculation yields (using the initial condition P̄0(z) =Gsc(z))

sup
z∈C

|P̄τ(z)| ≤
(

1

ρ−2
+ 2α2ρT

(ρ−2)2 e2T
(

ρ

ρ−2+
2ρp
λ
+ρ2L∗(T )

)
+ 2τp

λ

)
eT ( ρp

λ
+L∗(T )) (7.62)

Note that this implies the bound supτ∈[0,T ] |p̄1(τ)| ≤ L1(T ) where L1(T ) is the right hand side

of (7.62) multiplied by ρ2.

We now have all the elements to adapt a Gronwall type argument.

Proof of proposition 7.4. We start by deriving preliminary bounds We set Qτ(z)−Q̄τ(z) =∆Q
τ (z),

Pτ(z)− P̄τ(z) = ∆P
τ (z), R(z)− R̄(z) = ∆R (z), q(τ)− q̄(τ) = δq (τ), p1(τ)− p̄1(τ) = δp1 (τ). Note

for later use that all the supz∈C | · | of these differences are bounded by some finite positive

constant depending only on ρ,α,λ,T . Taking the difference of (7.19) and (7.13) we find after a
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bit of algebra

d

dτ
∆

Q
τ (z) =δq (τ)∆R (z)+δq (τ)R̄(z)+ q̄(τ)∆R (z)+ 1p

λ

(
z∆Q

τ (z)+δq (τ)
)

− (q(τ)+ q̄(τ))δq (τ)∆Q
τ (z)− (q(τ)+ q̄(τ))δq (τ)Q̄τ(z)− q̄(τ)2∆

Q
τ (z)

− 1p
λ

(
δp1 (τ)∆Q

τ (z)−δp1 (τ)Q̄τ(z)− p̄1(τ)∆Q
τ (z)

)
(7.63)

and

d

dτ
∆P
τ (z) =δq (τ)∆Q

τ (z)+δq (τ)Q̄τ(z)+ q̄(τ)∆Q
τ (z)+ 1p

λ
z∆P

τ (z)

− (q(τ)+ q̄(τ))δq (τ)∆P
τ (z)− (q(τ)+ q̄(τ))δq (τ)P̄τ(z)− q̄(τ)2∆P

τ (z)

− 1p
λ

(
δp1 (τ)∆P

τ (z)−δp1 (τ)P̄τ(z)− p̄1(τ)∆P
τ (z)

)
(7.64)

After integrating the above equations over the interval [0,τ], using the triangle inequal-

ity, and the inequalities |δq (τ)| ≤ ρ supz∈C |∆Q
τ (z)|, |δp1 (τ)| ≤ ρ2 supz∈C |∆P

τ (z)|, |q(τ)| ≤ 1,

supτ∈[0,T ] |q̄(τ)| < L(T ), supτ∈[0,T ] |p̄1(τ)| < L1(T ), we deduce (with L = max(L(T ),L1(T ))

sup
z∈C

|∆Q
τ (z)| ≤ sup

z∈C
|∆Q

0 (z)|+ρ sup
z∈C

|∆R (z)|
∫ τ

0
d s sup

z∈C
|∆Q

s (z)|+ρ sup
z∈C

|R̄(z)|
∫ τ

0
d s sup

z∈C
|∆Q

s (z)|

+Lτsup
z∈C

|∆R (z)|+ 2ρp
λ

∫ τ

0
d s sup

z∈C
|∆Q

s (z)|+ (1+L)ρ
∫ τ

0
d s (sup

z∈C
|∆Q

s (z)|)2

+ (1+L)ρ
∫ τ

0
d s (sup

z∈C
|∆Q

s (z)|)2 sup
z∈C

|Q̄s(z)|+L2
∫ τ

0
d s sup

z∈C
|∆Q

s (z)|

+ ρ2

p
λ

∫ τ

0
d s sup

z∈C
|∆P

s (z)|sup
z∈C

|∆Q
s (z)|+ ρ2

p
λ

∫ τ

0
d s sup

z∈C
|∆P

s (z)|sup
z∈C

|Qs(z)|

+ Lp
λ

∫ τ

0
d s sup

z∈C
|∆Q

s (z)| (7.65)

and

sup
z∈C

|∆P
τ (z)| ≤ sup

z∈C
|∆P

0 (z)|+ρ
∫ τ

0
d s sup

z∈C
|∆Q

s (z)|2 +ρ
∫ τ

0
d s sup

z∈C
|∆Q

s (z)|sup
z∈C

|Q̄s(z)|

+L
∫ τ

0
d s sup

z∈C
|∆Q

s (z)|+ ρp
λ

∫ τ

0
d s sup

z∈C
|∆P

s (z)|+ (1+L)ρ
∫ τ

0
d s sup

z∈C
|∆Q

s (z)|sup
z∈C

|∆P
s (z)|

+ (1+L)ρ
∫ τ

0
d s sup

z∈C
|∆Q

s (z)|sup
z∈C

|P̄s(z)|+L2
∫ τ

0
d s sup

z∈C
|∆P

s (z)|

+ ρ2

p
λ

∫ τ

0
d s sup

z∈C
|∆P

s (z)|2 + ρ2

p
λ

∫ τ

0
d s sup

z∈C
|∆P

s (z)|sup
z∈C

|P̄s(z)|+ Lp
λ

∫ τ

0
d s sup

z∈C
|∆P

s (z)|
(7.66)

Now, using (7.60) and (7.62) we can "linearize" the right hand side to obtain two inequalities
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of the form (where C (ρ,α,λ,T ) is a suitable constant)

sup
z∈C

|∆Q
τ (z)| ≤ sup

z∈C
|∆Q

0 (z)|+Lτsup
z∈C

∆R (z)+C (ρ,α,λ,T )
∫ τ

0
d s

{
sup
z∈C

|∆Q
s (z)|+ sup

z∈C
|∆P

s (z)|}
(7.67)

and

sup
z∈C

|∆P
τ (z)| ≤ sup

z∈C
|∆P

0 (z)|+C (ρ,α,λ,T )
∫ τ

0
d s

{
sup
z∈C

|∆Q
s (z)|+ sup

z∈C
|∆P

s (z)|} (7.68)

Summing (7.67) and (7.68) and iterating the resulting integral inequality we deduce

sup
z∈C

|∆Q
τ (z)|+ sup

z∈C
|∆P

τ (z)| ≤ {
sup
z∈C

|∆Q
0 (z)|+ sup

z∈C
|∆P

0 (z)|+LT sup
z∈C

∆R (z)
}
e2T C (ρ,α,λ,T ) (7.69)

By corollary 7.2 we conclude that for τ ∈ [0,T ] supz∈C |∆Q
τ (z)| and supz∈C |∆P

τ (z)| converge in

Pδ-probability to zero.

Finally, we can look at the overlaps. Observe that |q(τ)− q̄(τ)| = |∫C
d z
2πi∆

Q
τ (z)| so |q(τ)−

q̄(τ)| ≤ ρ supz∈C |∆Q
τ (z)| and |p1(τ)− p̄1(τ)| = |∫C

d z
2πi z∆P

τ (z)| ≤ ρ2 supz∈C |∆P
τ (z)|. Therefore

|q(τ)− q̄(τ)| and |p1(τ)− p̄1(τ)| converge with Pδ-probability to 0. But since limn→+∞P(H ∈
S n
δ

) = 1 it is easy to see (by the law of total probability) that |q(τ)− q̄(τ)| and |p1(τ)− p̄1(τ)|
also converge with P-probability to 0.

7.D Laplace Transform applicability

Laplace transform can be applied appropriately with the condition of deriving a bound of the

form eaτ with a > 0 for the terms q̂(τ), p̂(τ) first, and Q̂τ(z), P̂τ(z) secondly. For q̂(τ) because

Mλ(s) is positive on [0,τ] and αq̂(τ) remains positive at all time, we derive the bound

0 ≤ |q̂(τ)| ≤ e(1+ 1
λ

)τ (7.70)

Next we find a bound for Mλ(τ) with the definition (7.3)

|Mλ(τ)| ≤ 2
∫ π

0

dθ

π
|sin(θ)2|ecos(θ) 2τp

λ ≤ 2e
2τp
λ (7.71)

For p̂(τ) using the previous bound and |α| ≤ 1

|p̂(τ)| ≤ |Mλ(2τ)|+2
∫ τ

0
|q̂(s)||Mλ(2τ− s)|ds +

∫ τ

0

∫ τ

0
|q̂(u)q̂(v)||Mλ(2τ−u − v)|dudv (7.72)

≤ 2e
4τp
λ +4

∫ τ

0
e(1+ 1

λ
)s+ 2p

λ
(2τ−s)ds +2

∫ τ

0

∫ τ

0
e(1+ 1

λ
)(u+v)+ 2p

λ
(2τ−u−v)dudv (7.73)
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Hence

1

2
|p̂(τ)|e− 4τp

λ ≤ 1+2
∫ τ

0
e(1− 1p

λ
)2sds +

∫ τ

0

∫ τ

0
e(1− 1p

λ
)2ue(1− 1p

λ
)2v dudv (7.74)

≤
(
1+

∫ τ

0
e(1− 1p

λ
)2sds

)2

(7.75)

≤
1+ e(1− 1p

λ
)2τ−1

(1− 1p
λ

)2

2

(7.76)

≤ e2(1− 1p
λ

)2τ

e−(1− 1p
λ

)2τ+ 1−e−(1− 1p
λ

)2τ

(1− 1p
λ

)2

2

(7.77)

≤ e2(1− 1p
λ

)2τ

1+ 1

(1− 1p
λ

)2

2

(7.78)

Hence with Cλ = 2

(
1+ 1

(1− 1p
λ

)2

)2

we have the exponential bound |p̂(τ)| ≤Cλe2(1+ 1
λ

)τ.

Now going back to equations (7.21) we have the system
d

dτe−
zτp
λ Q̂τ(z) = e−

zτp
λ q̂(τ)

(
R̄(z)+ 1p

λ

)
1
2

d
dτe

−2zτp
λ P̂τ(z) = e

−2zτp
λ q̂(τ)Q̂τ(z)+ 1p

λ
p̂(τ)e

−2zτp
λ

(7.79)

Hence integrating over [0,τ] providesQ̂τ(z) = Q̄0(z)e
zτp
λ +

(
R̄(z)+ 1p

λ

)∫ τ
0 dse

z(τ−s)p
λ q̂(s)

P̂τ(z) = e
2zτp
λ P̄0(z)+2

∫ τ
0 dse

2z(τ−s)p
λ q̂(s)Q̂s(z)+ 2p

λ

∫ τ
0 dsp̂(s)e

2z(τ−s)p
λ

(7.80)

Notice again that we have |Gsc(z)| ≤ 1
ρ−2 for z ∈C = { z ∈ C| z = ρe iθ,θ ∈ [0,2π]} where ρ > 2.

For Q̂τ(z) we find

|Q̂τ(z)| ≤ |α|
ρ−2

e
Re(z)τp

λ +
(

1

ρ−2
+ 1p

λ

)∫ τ

0
dse

Re(z)(τ−s)p
λ e(1+ 1

λ
)s (7.81)

≤ e
ρτp
λ

(
1

ρ−2
+

(
1

ρ−2
+ 1p

λ

)∫ τ

0
dse( 1

λ
− ρp

λ
)s+s

)
(7.82)

≤ e
ρτp
λ

(
1

ρ−2
+

(
1

ρ−2
+ 1p

λ

)
e
τ
λ

∫ τ

0
dse s

)
(7.83)

≤ e
ρτp
λ

(
1

ρ−2
+

(
1

ρ−2
+ 1p

λ

)
e( 1

λ
+1)τ(1−e−τ)

)
(7.84)

≤ e(1+ ρp
λ
+ 1
λ

)τ
(

2

ρ−2
+ 1p

λ

)
(7.85)
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With C ′
ρ,λ = 2

ρ−2 + 1p
λ

we thus have |Q̂τ(z)| ≤C ′
ρ,λe(1+ ρp

λ
+ 1
λ

)τ for any z ∈C . Similarly for P̂τ(z):

|P̂τ(z)| ≤ e
2ρτp
λ

(
1

ρ−2
+2C ′

ρ,λ

∫ τ

0
e

−2ρsp
λ
+(1+ 1

λ
)s+(1+ ρp

λ
+ 1
λ

)sds + 2Cλp
λ

∫ τ

0
e

−2ρsp
λ
+2(1− 1p

λ
)2sds

)
(7.86)

≤ e
2ρτp
λ

(
1

ρ−2
+2C ′

ρ,λe2(1+ 1
λ

)τ+ 2p
λ

e2(1+ 1
λ

)τ
)

(7.87)

≤ e2(1+ ρp
λ
+ 1
λ

)τ
(

1

ρ−2
+2C ′

ρ,λ+
2p
λ

Cλ

)
(7.88)

Hence with C ′′
λ,ρ = 1

ρ−2 +2C ′
ρ,λ+ 2p

λ
Cλ we find |P̂τ(z)| ≤C ′′

ρ,λe2(1+ ρp
λ
+ 1
λ

)τ for any z ∈C .

7.E Enforcing the spherical constraint in gradient dynamics

The second term in equation (7.2) enforces the spherical constraint θt ∈ Sn−1(
p

n) at all

times. This is well known but we briefly recall how to derive it for completeness. Since

the n dimensional sphere is embedded in Rn the covariant gradient Dθ can be obtained by

projecting the usual gradient ∇θ on a tangent plane. This projection is obtained by subtracting

the component along a radius of the sphere, i.e., θp
n
〈 θp

n
,∇θH (θ)〉. Therefore gradient descent

reads

dθt

d t
= ηDθH (θt ) = η(∇θH (θt )− θt

n
〈θt ,∇θH (θt )〉). (7.89)

It is easily checked that
d∥θt∥2

2
d t = 0 and since θ0 ∈Sn−1(

p
n) we have θt ∈Sn−1(

p
n) for all times.

Indeed

d∥θt∥2
2

d t
= 2〈θt ,

dθt

d t
〉 = 2η

(〈θt ,∇θH (θt )〉− 〈θt ,θt 〉
n

〈θt ,∇θH (θt )〉)= 0. (7.90)

7.F Strict saddle property

We say that the strict saddle property is satisfied if the critical points of the cost are strict

saddles or minima (a strict saddle has by definition at least one strictly negative eigenvalue

of the Hessian). It is known from Lee et al. (2016) that for a cost satisfying the strict saddle

property, gradient descent with small enough discrete time steps converges to a minimum,

almost surely with respect to the initial condition. In the present context (as shown below)

the critical points are given by the eigenvectors of A ≡
p
λ

n Y =
p
λ

n θ∗θ∗T + 1p
n
ξ - call them

vi ∈S n−1(
p

n), i = 1, . . . ,n - and the Hessian at vi is proportional to αi I − A where αi is the

corresponding eigenvalue. For a random n ×n matrix and fixed λ the spectrum is almost

surely non-degenerate,3 i..e., α1 <α2 < . . . <αn , so the strict saddle property is almost surely

satisfied. Moreover the top eigenvector vn has positive definite Hessian and is a minimum,

3However for a fixed realization when λ varies we can have eigenvalue crossings.
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while for the other ones are strict saddles with non-zero positive and negative eigenvalues.

Now, forλ> 1 we know, that for n large enough with high probability, {α1 < ·· · <αn−1} ⊂ [−2,2],

αn ≈p
λ+1/

p
λ> 2 and n−1|〈θ∗, vn〉〉| ≈

p
1−1/λ (where a ≈ b means |a −b| = on(1)) Péché

(2004); Féral and Péché (2006). This explains that for λ > 1 gradient descent with a small

enough discrete time steps will converge to vn and the overlap approach ±p1−1/λ.

The critical points on the sphere S n−1(
p

n) satisfy DθH (θ) = 0 where Dθ = (1− 1
nθθ

T )∇θ is

the covariant derivative. We have

DθH (θ) ∝ 1

n
〈θ, Aθ〉θ− Aθ = 0 (7.91)

and has n solutions θ = vi , i = 1, . . . ,n. The Hessian matrix on the sphere is (up to a positive

prefactor)

DθDT
θ H (θ) ∝ (1− 1

n
θθT )

( 1

n
〈θ, Aθ〉I − A

)
(7.92)

and for each critical point θ = vi we find DθDT
θ
R(vi ) ∝ 1

n2 (αi I−A). This has n−1 eigenvectors

v j , j ̸= i (perpendicular to vi and tangent to the sphere) with eigenvalues αi −α j , j ̸= i , and

one eigenvector vi with 0 eigenvalue. For fixed λ there is no degeneracy α1 <α2 < . . . <αn ,

almost surely and vn is a minimum while v j , j ̸= n are strict saddles.

7.G Analysis of the stationary equation

The stationary equations corresponding to (7.13) are given by setting the time derivatives on

the left hand side to zero.q̄∞
(
R̄(z)+ 1p

λ

)
+

(
zp
λ
− (q̄∞)2 − 1p

λ
p̄∞

1

)
Q̄∞(z) = 0

q̄∞Q̄∞(z)+ 1p
λ
+

(
zp
λ
− (q̄∞)2 − 1p

λ
p̄∞

1

)
P̄∞(z) = 0

(7.93)

where q̄∞ ≡−∫
C

d z
2πi Q̄∞(z), p̄∞

1 ≡−∫
C

d z
2πi zP̄∞(z), R̄(z) =Gsc(z), and C = {z ∈C | z = ρe iθ,θ ∈

[0,2π]}, ρ > 2. Here we show how to derive all possible solutions of these equations. One

expects that the set of solutions contains the limiting solution for τ→+∞ and we check that

this is indeed the case.

From (7.93) we get 
Q̄∞(z) = q̄∞

p
λGsc(z)+1p

λ(q̄∞)2+p̄∞
1 −z

P̄∞(z) = (q̄∞)2
p
λ

p
λGsc(z)+1(p

λ(q̄∞)2+p̄∞
1 −z

)2 + 1p
λ(q̄∞)2+p̄∞

1 −z

(7.94)

Let us first assume that |pλ(q̄∞)2 + p̄∞
1 | ≤ 2. We integrate the second equation over the

contour C . One can show that integral of the first term on the right hand side vanishes. Thus

we find the condition by p̄∞
1 =p

λ(q̄∞)2 + p̄∞
1 which implies q̄∞ = 0. This implies in turn that
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Q∞(z) = 0, P∞(z) = (p̄∞
1 − z)−1 and |p∞

1 | ≤ 2.

Now assume that |pλ(q̄∞)2 + p̄∞
1 | > 2. Integrating the first equation of (7.94) over C we find

q̄∞ =
p
λq̄∞

∫
z∈C

d z

2πi

Gsc(z)

z − (
p
λ(̄q∞)2 + p̄∞

1 )
(7.95)

The solution q̄∞ = 0 is again a possibility Q∞(z) = 0, P∞(z) = (p̄∞
1 − z)−1 and |p̄∞

1 | > 2.

Now assume that q̄∞ ̸= 0 (and still |pλ(q̄∞)2 + p̄∞
1 | > 2). Computing the contour integral we

find the equation 1 =−pλGsc(
p
λ(q̄∞)2 + p̄∞

1 ) which provides a solution and a condition

p
λ(q̄∞)2 + p̄∞

1 = 1p
λ
+
p
λ (7.96)

p
λ(q̄∞)2 + p̄∞

1 ≥ 2p
λ

(7.97)

Notice that the initial condition
p
λ(q̄∞)2+ p̄∞

1 > 2 is satisfied for all λ ̸= 1, while 1p
λ
+p

λ≥ 2p
λ

is equivalent to λ≥ 1. So a solution can only exist when λ> 1. Integrating the second equation

in (7.94) over C we find

− 1

λ
= (q̄∞)2

∫
z∈C

d z

2πi

Gsc(z)(
z − (

p
λ(q̄∞)2 + p̄∞

1 )
)2 =−(q̄∞)2 dGsc(z)

d z
|pλ(q̄∞)2+p̄∞

1
(7.98)

Then using the explicit expression of Gsc(z) we find that (q̄∞)2 = 1− 1
λ , with λ> 1. Furthermore

we have from (7.94) and (7.96)
Q̄∞(z) = (1− 1

λ )
p
λGsc(z)+1p
λ+ 1p

λ
−z

P̄∞(z) = (1− 1
λ )
p
λ

p
λGsc(z)+1(p
λ+ 1p

λ
−z

)2 + 1p
λ+ 1p

λ
−z

(7.99)

Note that multiplying the second equation in (7.99) by z and integrating over C yields p̄∞
1 = 2p

λ
.

This is consistent with (7.96).

We conclude by noting that the solutions that are attainable from the time evolution when

λ> 1 are {q̄∞ = 0, |p̄∞
1 | ≤ 2} and {q̄∞ =±

√
1− 1

λ , p̄∞
1 = 2

λ }. The first one is "attained" from an

initial condition with α = 1
n 〈θ∗,θ0〉 = 0. In this case gradient descent "does not start" and

q̄∞ = q̄(0) = 0, p̄∞
1 = p̄1(0) = 1

n 〈θ0, Hθ0〉 and p̄1(0) ≤ 2 with high probability. The other two

solutions correspond to the initial conditions α= 1
n 〈θ∗,θ0〉 with α> 0 and α< 0. When λ≤ 1,

there is only one possible solution {q̄∞ = 0, |p̄∞
1 | ≤ 2}.

7.H Intermediate identities

We derive a number of identities requiring interchange of integrals.
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A) Derivation of (7.30). To prove (7.30) we start with (7.23) in the form

L Q̂p (z) =αGsc(z)L (e
ztp
λ )(p)+L q̂(p)L (e

ztp
λ )(p)

(
Gsc(z)+ 1p

λ

)
(7.100)

and invert it back to the time domain

Q̂τ(z) =αGsc(z)e
zτp
λ +Gsc(z)

∫ τ

0
d sq̂(s)e

z(τ−s)p
λ + 1p

λ

∫ τ

0
d sq̂(s)e

z(τ−s)p
λ . (7.101)

So this generating function is entirely known. Now we multiply this equation by e
z(τ−u)p

λ and

integrate along C . It is easy to see that, by Fubini’s theorem, for the last term on the right

hand side, the contour integral and the s-integral can be exchanged. Therefore the contour

integral of the last term on the right hand side vanishes because e
z(2τ−s−u)p

λ is holomorphic in the

whole complex plane. For the other two terms on the right hand side we use the semi-circle

law representation of Gsc(z) to obtain (see below for details) to obtain∮
C

d z

2πi
Gsc(z)e

z(2τ−u)p
λ =−Mλ(2τ−u) (7.102)

and ∮
C

d z

2πi
Gsc(z)

∫ τ

0
d sq̂(s)e

z(2τ−s−u)p
λ =−

∫ τ

0
d sq̂(s)Mλ(2τ− s −u). (7.103)

Putting together (7.102), (7.103) and (7.101) we obtain the claimed identity (7.30).

B) Derivation of (7.102). From the semi-circle law representation of Gsc∮
C

d z

2πi
Gsc(z)e

z(2τ−u)p
λ =

∮
C

d z

2πi

∫ 2

−2
d s
µsc(s)

s − z
e

z(2τ−u)p
λ (7.104)

It is easy to see that Fubini’s theorem can be applied to interchange the integrals. Indeed the

contour integral over C can be parametrized so that we then have two integrals with bounded

functions over bounded intervals. So

∮
C

d z

2πi
Gsc(z)e

z(2τ−u)p
λ =

∫ 2

−2
d sµsc(s)

∮
C

d z

2πi

e
z(2τ−u)p

λ

s − z
=−

∫ 2

−2
d sµsc(s)e

s(2τ−u)p
λ =−Mλ(2τ−u)

(7.105)

C) Derivation of (7.103). We proceed similarly. First,

∮
C

d z

2πi
Gsc(z)

∫ τ

0
d sq̂(s)e

z(2τ−s−u)p
λ =

∮
C

d z

2πi

∫ 2

−2
d x

∫ τ

0
d sµsc(x)q̂(s)

e
z(2τ−s−u)p

λ

x − z
(7.106)
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Again, it is clear that the contour integral can be parametrized so that we all integrals are over

bounded intervals and all functions are bounded, so that Fubini’s theorem applies. Thus

∮
C

d z

2πi
Gsc(z)

∫ τ

0
d sq̂(s)e

z(2τ−s−u)p
λ =

∫ τ

0
d sq̂(s)

∫ 2

−2
d xµsc(x)

∮
C

d z

2πi

e
z(2τ−s−u)p

λ

x − z

=−
∫ τ

0
d sq̂(s)Mλ(2τ− s −u) (7.107)

D) Derivation of (7.37). Again, using Fubini and then Cauchy’s theorem,∮
C

d z

2πi
Gsc(z)

∫ +∞

0
dτe−pτe

zτp
λ =

∫ +∞

0
dτe−pτ

∮
Γ′

d z

2πi
Gsc(z)e

zτp
λ

=
∫ +∞

0
dτe−pτ

∮
C

d z

2πi
e

zτp
λ

∫ 2

−2
d s
µsc(s)

s −x

=
∫ +∞

0
dτe−pτ

∫ 2

−2
d sµsc(s)

∮
d z

2πi

e
zτp
λ

s − z

=−
∫ +∞

0
dτe−pτ

∫ 2

−2
d sµsc(s)e

sτp
λ

=−
∫ +∞

0
dτe−pτMλ(τ) (7.108)

7.I Asymptotic analysis of q̄

7.I.1 limit when λ> 1

We deduce the limiting behavior for λ> 1. The next order correction is given in 7.I.3. Rewriting

the first term from theorem 7.1, we have for τ ∈R+

e−(1+ 1
λ

)τq̂(τ) =α
[

1− 1

λ

∫ τ

0
e−(1+ 1

λ
)s Mλ(s)ds

]
. (7.109)

We notice that in the limit τ→∞, the right hand side of the integral is the laplace transform∫ ∞

0
e−(1+ 1

λ
)s Mλ(s)ds =L Mλ

(
1+ 1

λ

)
(7.110)

and we have seen the connection with resolvent in (7.28)

L Mλ

(
1+ 1

λ

)
=−

p
λGsc

(
(1+ 1

λ
)
p
λ

)
. (7.111)
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But X 2 + (1+ 1
λ )
p
λX +1 = 0 has two roots: {−pλ; −1p

λ
}. To ensure Gsc(z) ∈C+ when z ∈C+, we

have −pλ for λ< 1 and −1p
λ

for λ> 1. Thus we conclude

lim
τ→∞e−(1+ 1

λ
)τq̂(τ) =

{
0 (λ< 1)

α(1− 1
λ ) (λ> 1)

(7.112)

Therefore, in the regime λ> 1, we find the asymptotic behavior for τ→∞

q̂(τ) ∼αe(1+ 1
λ

)τ(1− 1

λ
). (7.113)

A careful analysis of the terms entering p̂(τ) shows the main contribution stems from the last

term, on the square C = [
p
τ,τ]2 (as the integral can be neglected on [0,τ]2 \C ):

p̂(τ) ≃
∫ τ

p
τ

∫ τ

p
τ

q̂(u)q(v)Mλ(2τ−u − v)dudv. (7.114)

Using the approximation of q̂(t ) in (7.113) for large t ∈C , we can further approximate

p̂(τ) ≃α2
(
1− 1

λ

)2 ∫ τ

p
τ

∫ τ

p
τ

e(1+ 1
λ

)(u+v)τMλ(2τ−u − v)dudv (7.115)

and a change of variables u = τ−x, v = τ− y provides

p̂(τ) ≃α2e2(1+ 1
λ

)τ
(
1− 1

λ

)2 Ï
[0,τ(1− 1p

τ
)]2

e−(1+ 1
λ

)(x+y)Mλ(x + y)dydx. (7.116)

Now, notice the integral converges towards a non-zero value Kλ when τ→∞

Kλ =
Ï

[0,∞]2
e−(1+ 1

λ
)(x+y)Mλ(x + y)dydx. (7.117)

Using a further change of variable s = x + y we find

Kλ =
∫ ∞

x=0

∫ ∞

s=x
e−(1+ 1

λ
)s Mλ(s)dsdx =

∫ ∞

s=0

∫ s

x=0
e−(1+ 1

λ
)s Mλ(s)dxds. (7.118)

Hence again, we find a connection with a Laplace transform (with a derivative from the

additional s term inside the integral)

Kλ =
∫ ∞

s=0
e−(1+ 1

λ
)s sMλ(s)dx =−(L Mλ)′

(
1+ 1

λ

)
(7.119)

As L Mλ(p) = −pλGsc(p
p
λ), and considering that G ′

sc(z) = − Gsc(z)
2Gsc(z)+z , and that Gsc((1 +
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1
λ )
p
λ) =− 1p

λ
in the case when λ> 1, we conclude

Kλ =λ
1p
λ

−2 1p
λ
+ (1+ 1

λ )
p
λ
= 1

1− 1
λ

. (7.120)

Finally, with (7.120) and (7.116) we find

p̂(τ) ∼α2
(
1− 1

λ

)
e2(1+ 1

λ
)τ (7.121)

and for α> 0, we can conclude limτ→∞ q̄(τ) =
√

1− 1
λ .

7.I.2 Asymptotic analysis of λ< 1

The case λ< 1 is computationally more involved as q̂(τ) converges to 0, and hence we need to

find the rate of convergence towards 0 of this term and that of p̂(τ) in order to deduce the one

from q̄(τ). Though it is not the main topic of the chapter, we provide some calculus elements

to achieve this. We start with a lemma to find a suitable expression for q̂(τ). Most of the calcu-

lations has been checked with Mathematica (a notebook is provided in the supplementary

material).

Lemma 7.1. q̂(τ) has the following equivalent form:

q̂(τ) =α
(
1− 1

λ

)
e(1+ 1

λ
)τI(1,+∞)(λ)+ 2α

πλ
e

2p
λ
τ
∫ π

0
e

2p
λ

(cos(θ)−1)τ sin(θ)2

(1+ 1
λ )− 2p

λ
cos(θ)

dθ (7.122)

Proof. Starting with q̂(τ) from (7.1), one can use a similar expression of Mλ

e−(1+ 1
λ

)τ

α
q̂(τ) = 1− 2

πλ

∫ π

0

∫ τ

0
e

(
2p
λ

cos(θ)−(1+ 1
λ

)
)
s

sin(θ)2dsdθ (7.123)

The inward integral can further be integrated (notice the constant term in the exponent is

non-zero)

e−(1+ 1
λ

)τ

α
q̂(t ) = 1− 2

πλ

∫ π

0

(
e

(
2p
λ

cos(θ)−(1+ 1
λ

)
)
τ−1

)
sin(θ)2

2p
λ

cos(θ)− (1+ 1
λ )

dθ (7.124)

Using proposition 7.5 with the constant a = 1+ 1
λ

2p
λ

> 1, one can simplify

a −
√

a2 −1 =
p
λ

1+ 1
λ −|1− 1

λ |
2

=
{

1p
λ

(λ> 1)p
λ (λ< 1)

(7.125)
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and we finally find

2

πλ

∫ π

0

sin(θ)2

2p
λ

cos(θ)− (1+ 1
λ )

dθ = 1

π
p
λ

∫ π

0

sin(θ)2

cos(θ)−a
dθ =

{
− 1
λ (λ> 1)

−1 (λ< 1)
(7.126)

using the solution (7.126) in (7.124) concludes the proof.

Proposition 7.5. For any a > 1, we have:∫ π

0

sin(θ)2

cos(θ)−a
dθ =π(

√
a2 −1−a) (7.127)

Proof. Bioche’s rules suggest a change of variable u = tan(θ2 ), we find on the left-hand side

∫ π

0

sin(θ)2

cos(θ)−a
dθ =

∫ ∞

0

( 2u
u2+1

)2

1−u2

1+u2 −a

2du

1+u2 =
∫ ∞

0

8u2

[(1−a)− (1+a)u2](1+u2)2 du (7.128)

Using the constant K = a−1
a+1 (or equivalently a = 1+K

1−K ) we can rewrite

∫ π

0

sin(θ)2

cos(θ)−a
dθ =−4(1−K )

∫ ∞

0

u2

(K +u2)(1+u2)2 du (7.129)

and make a classical partial fraction decomposition of the inward term of the integral

u2

(K +u2)(1+u2)2 = 1

(1−K )2

(
u2

K +u2 − u2

1+u2

)
− 1

1−K

u2

(1+u2)2 (7.130)

= 1

(1−K )2

(
1

1+u2 − K

K +u2

)
− 1

1−K

[
1

1+u2 − 1

(1+u2)2

]
(7.131)

= K

(1−K )2

(
1

1+u2 − 1

K +u2

)
+ 1

1−K

1

(1+u2)2 (7.132)

Then on the one hand, with change of variable u = tan(x) we have:∫ ∞

0

du

(1+u2)2 =
∫ π

2

0

dx

1+ tan2(x)
=

∫ π
2

0
cos2(x)dx = π

4
(7.133)

On the other hand, with change of variable u =p
K tan(x) we have:∫ ∞

0

du

K +u2 =
∫ π

2

0
dx = π

2

1p
K

(7.134)

Thus:

−4(1−K )
∫ ∞

0

u2du

(K +u2)(1+u2)2 =−π
[

2K

1−K

(
1− 1p

K

)
+1

]
(7.135)

and:
2K

1−K

(
1− 1p

K

)
+1 = a −

√
a2 −1 (7.136)
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Going back to the case λ< 1, we can simplify the expression from equation (7.122)

q̂(τ) = 2α

πλ
e

2p
λ
τ
∫ π

0
e

2p
λ

(cos(θ)−1)τ sin(θ)2

(1+ 1
λ )− 2p

λ
cos(θ)

dθ (7.137)

Further, with u = 2p
λ

(1−cos(θ)) we rewrite (7.137) to apply Watson’s lemma

q̂(τ) = 2α

πλ
e

2p
λ
τ

(p
λ

2

) 1
2 ∫ p

λ

0
e−uτ (u(2−

p
λ

2 u))
1
2

(1+ 1
λ )− 2p

λ
(1−

p
λ

2 u)
du (7.138)

Therefore, Watson’s lemma provides the asymptotic equivalence

q̂(τ) ∼ 2α

πλ
e

2p
λ
τ

(p
λ

2

) 3
2 2

1
2Γ( 3

2 )τ−
3
2

(1+ 1
λ )− 2p

λ

(7.139)

With Γ( 3
2 ) =

p
π

2 we have therefore

q̂(τ) ∼ ατ−
3
2 e

2p
λ
τ

2
p
πλ

1
4

(
1− 1p

λ

)2 (7.140)

The remaining term p̂(τ) can further be analyzed by splitting each integral from theorem 7.1

and analyzing the terms with the asymptotic form e
4τp
λ τ−

3
2 . For instance, we get easily the first

term for which we have

Mλ(2τ) =
p
λ

2τ
I1

(
4τp
λ

)
∼

p
λe

4τp
λ

2t
√

2π 4τp
λ

∼ λ
3
4 e

4τp
λ

2
5
2
p
πτ

3
2

(7.141)

The other terms require more technical considerations. We will use both former approxima-

tions from the equivalence relations (7.140) and (7.141). However, these approximations are

only valid for large τ while the integral for the second term is applied on the whole range [0,τ].

Therefore, we split the integration intervals into two segments, say [0,
p
τ] and [

p
τ,τ], and

apply the approximations in the domains where it is valid.

Starting with the second term, as 2τ− s > τ for all s ∈ [0,τ], we can already apply the relation

(7.141) and split further the integrals:

∫ τ

0
q̂(s)Mλ(2τ− s)ds ≃ λ

3
4 e

4p
λ
τ

2
p
π

[∫ p
τ

0
q̂(s)

e−
2p
λ

s

(2τ− s)
3
2

ds +
∫ τ

p
τ

q̂(s)
e−

2p
λ

s

(2τ− s)
3
2

ds

]
(7.142)
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Then the integrand on the first segment of (7.142) is further approximated using 1

(2τ−s)
3
2
= 1

(2τ)
3
2

.

Indeed, as s ≤p
τ we have s = o(τ). In the end we retrieve the laplace transform of q̂ :

∫ p
τ

0
q̂(s)

e−
2p
λ

s

(2τ− s)
3
2

ds ≃ 1

(2τ)
3
2

∫ p
τ

0
q̂(s)e−

2p
λ

sds ≃ 1

(2τ)
3
2

L q̂

(
2p
λ

)
(7.143)

From (7.27) which remains valid at z = 2 with Gsc(2) = −1, we can even derive further the

constant term

L q̂

(
2p
λ

)
= −αGsc(2)

1p
λ
+Gsc(2)

= α
1p
λ
−1

(7.144)

In the second segment of the integral in (7.142), we use the approximation from (7.140) and

use change of variable r = s
τ

∫ τ

p
τ

q̂(s)
e−

2p
λ

s

(2τ− s)
3
2

ds ≃ α

2
p
πλ

1
4

[
(1+ 1

λ )− 2p
λ

] ∫ 1

1p
τ

1

r
3
2 (2− r )

3
2

τ

τ
3
2+ 3

2

dr (7.145)

The integral from the right side can be solved:

∫ 1

1p
τ

dr

r
3
2 (2− r )

3
2

=
1− 1p

τ√
1p
τ

(
2− 1p

τ

) ∼ τ
1
4p
2

(7.146)

Putting things together with (7.146) in (7.145) we get

∫ τ

p
τ

q̂(s)
e−

2p
λ

s

(2τ− s)
3
2

ds ≃ ατ−
7
4

2
p

2πλ
1
4

[
(1+ 1

λ )− 2p
λ

] (7.147)

So, the main contribution comes from the first integral of equation (7.142) with the coefficient

τ−
3
2

2α
∫ τ

0
q̂(s)Mλ(2τ− s)ds ∼ α2λ

3
4 e

4p
λ
τ
τ−

3
2

2
3
2
p
π

(
1p
λ
−1

) (7.148)

The third term with the double-integral requires extending the previous calculation idea on

each rectangle: I1 = [0,
p
τ]2, I2 = [0,

p
τ]× [

p
τ,τ], I ′2 = [

p
τ,τ]× [0,

p
τ] and I3 = [

p
τ,τ]2. As

we will see, only the integral on I1 brings a contribution of order τ−
3
2 and the others can be

neglected.

Interval I1 = [0,
p
τ]2On this interval, 2τ−u − v ≫ 1 so we consider

Ï
I1

q̂(u)q̂(v)Mλ(2τ−u − v)dudv ≃ λ
3
4 e

4p
λ
τ

2
p
π

Ï
I1

q̂(u)q̂(v)
e−

2p
λ

(u+v)

(2τ−u − v)
3
2

dudv (7.149)
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also, on I1 we have 1

(2τ−u−v)
3
2
≃ 1

(2τ)
3
2

, thus we are left to consider:

Ï
I1

q̂(u)q̂(v)e−
2p
λ

(u+v)dudv ≃
[
L q̂

(
2p
λ

)]2

(7.150)

hence with (7.124) we find

Ï
I1

q̂(u)q̂(v)Mλ(2τ−u − v)dudv ≃ α2λ
3
4 e

4p
λ
τ
τ−

3
2

2
5
2
p
π

(
1p
λ
−1

)2 (7.151)

Interval I2 = [0,
p
τ]× [

p
τ,τ]here we still have 2τ−u − v ≫ 1 but also v ≥ p

τ≫ 1 so with

(7.140) we first get

Ï
I2

q̂(u)q̂(v)Mλ(2τ−u − v)dudv ≃
α

Î
I2

q̂(u)v− 3
2 e

2p
λ

v Mλ(2τ−u − v)dudv

2
p
πλ

1
4

[
(1+ 1

λ )− 2p
λ

] (7.152)

and then:Ï
I2

q̂(u)v− 3
2 e

2p
λ

v Mλ(2τ−u − v)dudv ≃ λ
3
4 e

4p
λ
τ

2
p
π

Ï
I2

q̂(u)v− 3
2 e

2p
λ

v e−
2p
λ

(u+v)

(2τ−u − v)
3
2

dudv (7.153)

soÏ
I2

q̂(u)v− 3
2 e

2p
λ

v Mλ(2τ−u − v)dudv ≃ λ
3
4 e

4p
λ
τ

2
p
π

∫ p
τ

0
q̂(u)e−

2p
λ

u
∫ τ

p
τ

1

v
3
2 (2τ−u − v)

3
2

dvdu

(7.154)

At fixed u ∈ [0,
p
τ] With change of variable s = v

τ we find∫ τ

p
τ

1

v
3
2 (2τ−u − v)

3
2

dv =
∫ 1

1p
τ

1

τ
3
2 s

3
2 (τ(2− s)−u)

3
2

τds = 1

τ2

∫ 1

1p
τ

1

s
3
2
(
(2− s)− u

τ

) 3
2

ds (7.155)

Because u ≤p
τ we have u

τ = o(1). Notice we have

∫ 1

1p
τ

ds

s
3
2
(
(2− s)− u

τ

) 3
2

=

 2( u
τ +2s −2)

( u
τ −2)2

√
s(2− s − u

τ )


1

1p
τ

(7.156)

= 2

( u
τ −2)2

 u

τ
√

1− u
τ

−
u
τ + 2p

τ
−2√

1p
τ

(2− 1p
τ
− u

τ )

∼ τ
1
4p
2

(7.157)
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Hence we have a term in τ−
7
4 so the term on I2 can be neglected compared to I1:

Ï
I2

q̂(u)v− 3
2 e

2p
λ

v Mλ(2τ−u − v)dudv ∼ λ
3
4 e

4p
λ
τ
τ−

7
4

2
p

2π
L q̂

(
2p
λ

)
(7.158)

Notice finally that the interval I ′2 = [
p
τ,τ]× [0,

p
τ] is similar as the integrand is symmetric in

its arguments.

Interval I3 = [
p
τ,τ]2we can approximate both q̂(u), q̂(v)

Ï
I3

q̂(u)q̂(v)Mλ(2τ−u − v)dudv ≃
α2

Î
I3

(uv)−
3
2 e

2p
λ

(u+v)Mλ(2τ−u − v)dudv

4πλ
1
2

[
(1+ 1

λ )− 2p
λ

]2 (7.159)

Let’s focus on the right hand side integral

f (τ) =
Ï

I3

(uv)−
3
2 e

2p
λ

(u+v)Mλ(2τ−u − v)dudv (7.160)

Now, using change of variable u = τ−x, v = τ− y we have

f (τ) = e
4p
λ
τ
Ï

[0, τ(1− 1p
τ

)]2
(τ−x)−

3
2 (τ− y)−

3
2 e

−2p
λ

(x+y)Mλ(x + y)dxdy (7.161)

with s = x + y

e
−4p
λ
τ f (τ) =

∫ τ(1− 1p
τ

)

0

∫ x+τ(1− 1p
τ

)

x
(τ−x)−

3
2 (τ− s +x)−

3
2 e

−2p
λ

s Mλ(s)dsdx (7.162)

=
∫ 2τ(1− 1p

τ
)

0

∫ min
(
τ(1− 1p

τ
),s

)
max

(
s−τ(1− 1p

τ
),0

)(τ−x)−
3
2 (τ− s +x)−

3
2 dxe

−2p
λ

s Mλ(s)ds (7.163)

=
∫ τ(1− 1p

τ
)

0

∫ s

0
(τ−x)−

3
2 (τ− s +x)−

3
2 dxe

−2p
λ

s Mλ(s)ds (7.164)

+
∫ 2τ(1− 1p

τ
)

τ(1− 1p
τ

)

∫ τ(1− 1p
τ

)

s−τ(1− 1p
τ

)
(τ−x)−

3
2 (τ− s +x)−

3
2 dxe

−2p
λ

s Mλ(s)ds (7.165)

On the first integral, we find∫ s

0
(τ−x)−

3
2 (τ− s +x)−

3
2 dx =

[
2(2x − s)

(2τ− s)2
p

(τ−x)(τ+x − s)

]s

0
= 4s

(2τ− s)2
p

(τ− s)τ
(7.166)

However, s ≤ τ−p
τ so

p
τ≤ τ− s and τ+p

τ≤ 2τ− s so:

4s

(2τ− s)2
p

(τ− s)τ
≤

4τ(1− 1p
τ

)

τ2(1+ 1p
τ

)2τ
1
2 τ

1
4

= 4τ−
7
4 (1+oτ(1)) (7.167)
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Therefore, we find:∫ τ(1− 1p
τ

)

0

∫ s

0
(τ−x)−

3
2 (τ− s +x)−

3
2 dxe

−2p
λ

s Mλ(s)ds ≤ 4τ−
7
4 (1+oτ(1))L Mλ

(
2p
λ

)
(7.168)

Noticeably, L Mλ

(
2p
λ

)
=−pλGsc(2) =p

λ. In the asymptotic limit, this term can be neglected

due to τ−
7
4 compared to τ−

3
2 .

Similarly, we find

∫ τ(1− 1p
τ

)

s−τ(1− 1p
τ

)
(τ−x)−

3
2 (τ− s +x)−

3
2 dx = 4(2τ− s −2

p
τ)

(2τ− s)2τ
1
4

√
2τ−p

τ− s
(7.169)

then, in [τ−p
τ,2(τ−p

τ)] we approximate Mλ with its asymptotic expression. So we are left

to evaluate

K (τ) =
∫ 2τ(1− 1p

τ
)

τ(1− 1p
τ

)

4(2τ− s −2
p
τ)

s
3
2 (2τ− s)2τ

1
4

√
2τ−p

τ− s
ds (7.170)

Notice that 2τ− s −2
p
τ≤ τ(1− 1p

τ
), and 2τ

1
2 ≤ 2 τ− s and τ

1
2 ≤ 2τ−p

τ− s, hence

0 ≤ K (τ) ≤
4τ(1− 1p

τ
)

(2τ
1
2 )2τ

1
4

√
τ

1
2

∫ 2τ(1− 1p
τ

)

τ(1− 1p
τ

)

ds

s
3
2

(7.171)

So

0 ≤ K (τ) ≤
(1− 1p

τ
)

τ
1
2

[
− 2

s
1
2

]2τ(1− 1p
τ

)

τ(1− 1p
τ

)
(7.172)

with a change of variable u = s − (τ−p
τ) we find

K (τ) = 1

τ
1
4

∫ τ(1− 1p
τ

)

0

4(τ(1− 1p
τ

)−u)

(τ(1− 1p
τ

)+u)
3
2 (τ(1+ 1p

τ
)−u)2

p
τ−u

du (7.173)

with another change of variable u = τr we find:

K (τ) = 4

τ
9
4

∫ 1− 1p
τ

0

(1− 1p
τ
− r )

(1− 1p
τ
+ r )

3
2 (1+ 1p

τ
− r )2

p
1− r

dr (7.174)

Though this integral can be completely solved, we are only interested in bounding it. In

particular, we find:

K (τ) ≤ 4

τ
9
4

∫ 1− 1p
τ

0

(1− r )

(1− 1p
τ

)
3
2 (1− r )2

p
1− r

dr = 4

τ
9
4 (1− 1p

τ
)

3
2

∫ 1− 1p
τ

0

dr

(1− r )
3
2

(7.175)
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So

K (τ) ≤ 4

τ
9
4 (1− 1p

τ
)

3
2

[
2

(1− r )
1
2

]1− 1p
τ

0

=
8(1− 1

τ
1
4

)

τ
8
4 (1− 1p

τ
)

3
2

= 8τ−
8
4 (1+o(1)) (7.176)

In the end, the integral on I3 can also be neglected.

conclusionsumming up all the main contributions from (7.141), (7.148) and (7.151) we find

lim
τ→∞τ

3
2 e−

4τp
λ p̂(τ) = λ

3
4

2
5
2
p
π
+ α2λ

3
4

2
3
2
p
π

(
1p
λ
−1

) + α2λ
3
4

2
5
2
p
π

(
1p
λ
−1

)2 (7.177)

= λ
3
4

2
5
2
p
π

1+α2

 2
1p
λ
−1

+ 1(
1p
λ
−1

)2


 (7.178)

and thus:

1√
p̂(τ)

∼ 2
5
4π

1
4

λ
3
8

1−α2 + α2

λ( 1p
λ
−1)2

− 1
2

τ
3
4 e−

2p
λ
τ (7.179)

Using back (7.140) we find

q̄(τ) ∼ α
( 2
π

) 1
4

λ
5
8

(
1− 1p

λ

)2 √
1−α2 + α2

λ( 1p
λ
−1)2

τ−
3
4 (7.180)

Numerical evaluations from the functions of theorem 7.1 match correctly this expression for

different values of (α,λ), see Figure 7.I.1 (a) for instance.

7.I.3 Asymptotic analysis of λ> 1

Using the previous analysis for q̂(τ) ((7.122) and (7.140)), we have an additional term:

q̂(τ) =α
(
1− 1

λ

)
e(1+ 1

λ
)τ+ ατ−

3
2 e

2p
λ
τ

2
p
πλ

1
4

(
1− 1p

λ

)2 +o(τ−
3
2 e

2p
λ
τ) (7.181)

Now, for p̂(τ), we have already seen the leading asymptotics in equation (7.121). For the next

correction, we postulate through computer analysis that there exists a non-null constant

C ∈R∗+ such that it takes the form:

p̂(τ) =α2
(
1− 1

λ

)
e2(1+ 1

λ
)τ

[
1−2τ−

3
2 e−2(1− 1p

λ
)2τ(C +o(1))

]
(7.182)
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Hence the expression:

1√
p̂(τ)

= e−(1+ 1
λ

)τ

|α|
√

1− 1
λ

[
1+τ− 3

2 e−2(1− 1p
λ

)2τ(C +o(1))
]

(7.183)

Putting things together, we find:

q̄(τ) = sign(α)

√
1− 1

λ

1+ τ−
3
2 e−(1− 1p

λ
)2τ(1+o(1))

2(1− 1
λ )
p
πλ

1
4

(
1− 1p

λ

)2

(
1+τ− 3

2 e−2(1− 1p
λ

)2τ(C +o(1))
)

(7.184)

Hence the exponential term in the expression of q̂ dominates the one in the expression of p̂.

Therefore, expanding the asymptotic expansion provides the result:

q̄(τ)− sign(α)

√
1− 1

λ
∼ sign(α)

2
p
πλ

1
4

√
1− 1

λ

(
1− 1p

λ

)2 τ
− 3

2 e−(1− 1p
λ

)2τ (7.185)

More specifically, equation (7.184) shows that the second order term of q̂ dominates the one

of 1p
p̂

when we compute the final contribution in equation (7.185). Therefore, this fact can be

emphasized with the equivalent limiting behavior:

q̄(τ)− sign(α)

√
1− 1

λ
∼ 1

|α|
√

1− 1
λ

(
q̂(τ)e−(1+ 1

λ
)τ−α

(
1− 1

λ

))
(7.186)

This form is actually more convenient because a numerical evaluation q̄(τ) for large τ requires

extra precision and computational resources due to the double-integral within the p̂(τ) term.

Therefore, it appears to be easier to observe the equivalent behavior in (7.186) rather than in

(7.185). To illustrate this phenomenon, one can evaluate:

ψ(τ) = |α|
√

1− 1

λ

(
q̄(τ)− sign(α)

√
1− 1

λ

)
e(1− 1p

λ
)2τ (7.187)

φ(τ) =
(

q̂(τ)e−(1+ 1
λ

)τ−α
(
1− 1

λ

))
e(1− 1p

λ
)2τ (7.188)

A (τ) = α

2
p
πλ

1
4

(
1− 1p

λ

)2 τ
− 3

2 (7.189)

and expect to observeψ(τ) ∼φ(τ) ∼A (τ) when τ→∞ for any λ> 1 and α ̸= 0. See Figure 7.I.1

(b) as an example where the computation of ψ(τ) had to be stopped earlier in time to cope

with computational limits of the math library Scipy.
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(a) λ= 0.5, α= 0.1 (b) λ= 5, α= 0.1

Figure 7.I.1: Example of a numerical evaluation of theorem 7.1 and comparisons with their
respective asymptotes in log-scale for λ< 1 in (a) and λ> 1 in (b).

7.I.4 Asymptotic analysis for λ= 1

In the special case λ= 1 where the regime changes, one can write explicitly:

q̂(τ) =αe2τ (
1−1+e−2τ(I0(2τ)+ I1(2τ))

)=α [I0(2τ)+ I1(2τ)] (7.190)

and we find the first term of the asymptotic expansion in τ→ ∞:

q̂(τ) ∼α e2τ

p
πτ

. (7.191)

Some further analysis lead us to a similar estimate for p̂(τ)

√
p̂(τ) ∼ |α| e2t

(2πτ)
1
4

(7.192)

and thus to conclude using (7.191) (for α> 0):

q̄(τ) ∼
(

2

πτ

) 1
4

(7.193)

Using similar arguments as the case λ < 1 (see Section 7.I.2), we can check that the main

asymptotic contribution in τ−
1
2 comes from the third term of p̂ on the interval I3. Indeed, the

first term in M1(2τ) is obviously in τ−
3
2 .The second term can also be neglected, notice that we

have: ∫ τ

p
τ

q̂(s)
e−2s

(2τ− s)
3
2

ds ∼ αp
π

∫ τ

p
τ

ds
p

s(2τ− s)
3
2

∼ αp
πτ

(7.194)

Also we don’t have a constant term with the laplace transform of q̂ . Instead for any t > 0∫ t

0
q̂(s)e−2sds = α

2
(e−2t (1+4t )I0(2t )+4te−2t I1(2t )−1) (7.195)
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In particular when t =p
τ and τ→∞:

∫ p
τ

0
q̂(s)e−2sds ∼ 4α

p
τ√

4π
p
τ
∼ 2ατ

1
4p
π

(7.196)

Hence with the additional term in τ−
3
2 this gives a term in τ−

5
4 . We proceed similarly for the

third term with the 4 segments I1, I2, I ′2, I3.

Interval I1 = [0,
p
τ]2Similar considerations using the result (7.196) lead to the asymptotics:

Ï
I1

q̂(u)q̂(v)e−2(u+v)dudv ∼ 4α2τ
1
2

π
(7.197)

Hence with the additional term in τ−
3
2 this gives a term in τ−1.

Interval I2 = [0,
p
τ]× [

p
τ,τ]We get:Ï

I2

q̂(u)q̂(v)M1(2τ−u − v)dudv ≃ α

2π

Ï
I2

q̂(u)
e2v

p
v

e2(2τ−u−v)

(2τ−u − v)
3
2

dudv (7.198)

We can compute further the integral considering u = o(τ):

∫
v

1p
v(2τ−u−v)

3
2

dv = 2
2τ−u

[√
v

2τ−u−v

]τ
p
τ

= 2
2τ−u

[√
τ

2τ−u −
√ p

τ

2τ−u−pτ

]
∼ τ−1

(7.199)

Finally, using (7.196) gives:Ï
I2

q̂(u)q̂(v)M1(2τ−u − v)dudv ∼ α2

π
3
2

e4ττ−
3
4 (7.200)

Interval I3 = [
p
τ,τ]2On this interval we have:Ï

I3

q̂(u)q̂(v)M1(2τ−u − v)dudv ≃ α2

π

Ï
I3

e2(u+v) I1(2(2τ−u − v))

(2τ−u − v)
p

uv
dudv (7.201)

Let’s focus on the right hand side integral:

f (τ) =
Ï

I3

e2(u+v) I1(2(2τ−u − v))

(2τ−u − v)
p

uv
dudv (7.202)
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With x = τ−u, y = τ− v we find:

e−4τ f (τ) =
Ï

[0,τ−pτ]2
e−2(x+y) I1(2(x + y))

(x + y)
√

(τ−x)(τ− y)
dxdy (7.203)

Now, consider further the change of variable: x = (τ−p
τ)r and y = (τ−p

τ)s . we have:

p
τe−4τ f (τ) =

Ï
[0,1]2

p
τ

e−2(τ−pτ)(r+s)I1(2(τ−p
τ)(r + s))

(r + s)

√(
1

1− 1p
τ

− r

)(
1

1− 1p
τ

− s

) dr ds (7.204)

Now, for all r, s ∈ [0,1]2 \ {(0,0)}, we have:

lim
τ→∞

p
τ

e−2(τ−pτ)(r+s)I1(2(τ−p
τ)(r + s))

(r + s)

√(
1

1− 1p
τ

− r

)(
1

1− 1p
τ

− s

) = 1
p

4π(r + s)
3
2
p

(1− r )(1− s)
(7.205)

and it can be shown that this function is integrable:Ï
[0,1]2

dr ds
p

4π(r + s)
3
2
p

(1− r )(1− s)
=

√
π

2
(7.206)

Further, for all r, s ∈ [0,1]2 \ {(0,0)} and for instance τ≥ 4:

p
τI1(2(τ−p

τ)(r + s)) ≤ 1√
4 π(1− 1p

τ
)(r + s)

≤
p

2p
4 π(r + s)

(7.207)

and
1√(

1
1− 1p

τ

− r

)(
1

1− 1p
τ

− s

) ≤ 1p
(1− r )(1− s)

(7.208)

Hence for all τ≥ 4, the integrand is dominated by its limit times
p

2.

In conclusion, we have the main contribution termÏ
I3

q̂(u)q̂(v)M1(2τ−u − v)dudv ∼ α2

p
2πτ

(7.209)

7.I.5 Asymptotic analysis conclusion

We have seen the case λ< 1 in (7.180) and λ> 1 in (7.185). So compared to the first case λ< 1,

the convergence towards the limit is reached with an exponential term exp{−(1− 1p
λ

)2τ} in

the asymptotic limit for λ > 1. It confirms the result that the convergence happens faster

as λ grows to infinity, and that the exponential term vanishes as λ gets close to 1 - with an

additional singularity in the denominator.
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(a) α= 0.01 (b) α= 1.0

Figure 7.J.1: Comparison of the overlap over time with different configurations of λ parameter,
and between two different values of α.

7.J Additional experiments

A python notebook is available in the supplementary material to reproduce all the examples.

7.J.1 Limiting gradient descent

We illustrate the predicted time evolution for cases α very close to 0 and α very close to 1 in

Figure 7.J.1. Since α= 0 leads to a null overlap evolution, a slight non-zero initial value of α

is required to initiate the learning algorithm. The smaller the α the more is the asymptotic

regime delayed. The opposite case α= 1 brings another insight, namely when θ0 =±θ∗ the

effect of the noise inexorably disturbs the signal towards a lower limiting overlap (for λ<∞).

7.J.2 Comparison with experimental gradient descent algorithm

The theoretical gradient descent prediction is compared with the experimental values when

taking the data dimension n sufficiently large over multiple runs with new samples of the

noise matrix. Discrete step size gradient descent is performed while keeping θt on Sd (
p

n).

We choose a δt > 0 sufficiently small and consider discrete times tk = kδt for k ∈ N. We

update θtk in two steps: first with the gradient descent θtk+ δt
2
= θtk −ηδt∇H (θt ), and secondly

projecting back on the sphere θtk+1 = p
nθtk+ δt

2
∥θtk+ δt

2
∥−1. These steps are implemented

using Tensorflow in Python and run seamlessly on a standard single computer configuration.

The initial vectors θ0 and θ∗ are chosen deterministically as
p

nθ0 = αe1 +
p

1−α2e2 andp
nθ∗ = e1 with (ei )1≤i≤n the canonical basis of Rn , while the noise matrix H is generated

randomly. To account for the randomness of H at each execution, we perform 100 runs and

give the quantiles for quantities of interest.

As shown in Figure 7.J.2, the learning curve matches the theoretical limiting curve with some

fluctuations. As illustrated below, these fluctuations diminish as n is increased. Noticeably,
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(a) Overlap (b) Cost

Figure 7.J.2: λ= 10,n = 70,α= 0.1,δt = 0.1

in the regime where λ > 1, smaller values of λ require higher values of n to keep the same

concentration. Therefore, the formula from theorem 7.1 provides a good theoretical framework

to predict the behavior of the experimental learning algorithm. Such formulas potentially

allow to benchmark the time-evolution of gradient descent techniques and provide guidelines

for early-stopping commonly used in machine learning.

We provide a range of further different experiments for different values of λ, α, n.

Let us first comment the regime λ> 1 illustrated on Figures 7.J.3, 7.J.4, 7.J.5. Figure 7.J.3 clearly

shows that increasing n up to 1000 concentrates the experimental curves around the expect

limiting overlap and cost q̄ ,H̄ . We also see even more clearly the characteristic change of p1

with a "self-healing" process at some specific point in the dynamics of the learning algorithm

(recall that p1 is a similarity measure between the reconstructed matrix θtθ
T
t and the noise

matrix H). This is also seen in Figures 7.J.4 and 7.J.5 for different values of λ and α. Figures

7.J.3 and 7.J.4 only differ in the value λ: we observe that decreasing this parameter closer to 1

not only decreases the overlap, but also increases the deviation from the limiting theoretical

overlap q̄ - and thus as λ decreases higher values of n would thus be needed to match closely

q̄ .

Finally, in the regime λ< 1, we observe on Figure 7.J.6 that similarity measure p1 explodes and

overtakes the risk.
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(a) Overlap (b) Cost

Figure 7.J.3: λ= 10,n = 1000,α= 0.1,δt = 0.1

(a) Overlap (b) Cost

Figure 7.J.4: λ= 2,n = 1000,α= 0.1,δt = 0.1

(a) Overlap (b) Cost

Figure 7.J.5: λ= 2,n = 1000,α= 0.5,δt = 0.1
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(a) Overlap (b) Cost

Figure 7.J.6: λ= 0.5,n = 1000,α= 0.5,δt = 0.1. Note the different scale for the cost.
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8 Matrix denoising: an extensive rank
model

This work is based on the contribution (Bodin and Macris, 2023) and investigates model 1.5

described in the introduction. We present a new approach to analyze the gradient flow for a

positive semi-definite matrix denoising problem in an extensive-rank and high-dimensional

regime. We use recent linear pencil techniques of random matrix theory to derive fixed point

equations which track the complete time evolution of the matrix-mean-square-error of the

problem. The predictions of the resulting fixed point equations are validated by numerical

experiments. In this short note we briefly illustrate a few predictions of our formalism by way

of examples, and in particular we uncover continuous phase transitions in the extensive-rank

and high-dimensional regime, which connect to the classical phase transitions of the low-rank

problem in the appropriate limit. The formalism has much wider applicability than shown in

this communication.

8.1 Introduction

Matrix denoising and factorization play a crucial role in a variety of data science tasks such

as matrix sensing, phase retrieval or synchronisation, or matrix completion. The problem

consists in reducing the amount of noise or irrelevant information present in a dataset, allow-

ing for more accurate analysis and interpretation of the data, as well as better computational

efficiency and modeling by way of dimensionality reduction. The literature on the subject

is immense and we refer to (Chen and Chi, 2018; Chi et al., 2019b) for recent overviews of

applications and theory in various settings and formulations.

In this contribution we focus on the study of gradient-flow for the following statistical formu-

lation for positive definite matrix denoising. We consider a "ground truth" signal X ∗ ∈Rn×d

with randomly sampled independent entries X ∗
i j ∼ N (0, 1

n ) where the dimensions n,d are

such that φ= d
n is fixed. Then we define the corrupted data matrix Y ∈Rn×n

Y = X ∗X ∗T + 1p
λ
ξ (8.1)
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where ξ is an additive symmetric random noise with ξi j = ξ j i ∼N (0, 1
n ) and λ is (proportional

to) the signal-to-noise ratio. The objective is to estimate the ground truth positive semi-definite

matrix X ∗X ∗T from the corrupted data matrix Y with a matrix X X T such that X ∈Rn×m where

m is set from the fixed ratio ψ= m
n . Note that we allow d and m to be different. The estimator

studied in this contribution is given by the gradient flow X (t) (t is time) for an objective

function with regularization parameter µ, defined as

H (X ) = 1

4d

∥∥Y −X X T
∥∥2

F + µ

2d
∥X ∥2

F (8.2)

where ∥·∥F is the Frobenius norm. The initialization of gradient flow is X (0) = X0 ∈ Rn×m

random with i.i.d matrix elements from N (0, 1
n ). As a measure of performance we adopt the

expected matrix-mean-square-error

EE = 1

d
E
∥∥X ∗X ∗T −X X T

∥∥2
F (8.3)

where the expectation is over ξ, X ∗, X0. Note that the objective function and performance

measure are not the same and can be thought of as "training" and "generalization" errors in

the language of machine learning.

Summary of main contributions:

• We derive a set of analytical fixed point equations whose solutions allow to compute

the full performance curve t → EEt for the extensive-rank and high-dimensional regime

where m,d ,n all tend to infinity while φ,ψ are kept fixed (results 1 and 2 in Sec. 8.2).

Continuous time average behaviour of gradient flow is a proxy for the usual discrete

gradient descent algorithm, and has the advantage that it is more amenable to analytical

study. The numerical experiments confirm that (a) Et concentrates over its expectation;

(b) theoretical predictions of gradient flow agree with gradient descent. See Fig. 8.2.1.

• We further push the analysis of these equations in the time limit t =+∞ and display

specific examples where a critical value λc can be calculated such that: (a) for λ≤λc the

performance error of gradient flow is no better than the one of the null-estimator X = 0;

(b) for λ > λc better estimation is possible; (c) the phase transition between the two

regimes is a continuous type phase transition. These results are displayed on Fig. 8.2.2.

• We analyze the limit φ =ψ→ 0 (after n,m,d have been sent to infinity) and derive a

connection with the low-rank setting. It turns out that the matrix-mean-square-error

curve (when t →+∞) tends to the one of the rank-one problem and the phase transition

reduces to the well known BBP transition at λc = 1.

We use tools based on modern results in random matrix theory. Central to our derivations,

is the formalism of linear-pencils, that initially appeared in (Rashidi Far et al., 2006; Mingo

and Speicher, 2017) and has been further improved recently in the context of neural networks
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8.1 Introduction

(Adlam and Pennington, 2020a; Bodin and Macris, 2021a, 2022). In particular we make use of

extensions provided in (Bodin and Macris, 2022) to derive closed-form expressions of non-

trivial averages over ξ, X ∗, X0 appearing in traces of complicated "rational" expressions of

these random matrices. Although these techniques have not yet always been rigorously proven

they have been used successfully in different applications, and the predictions are confirmed

by numerical experiments. In addition, we use holomorphic functional calculus for matrices

(Dunford and Schwartz, 1988).

Brief review of literature: The full time-evolution of gradient flow for the rank-one problem

(the so-called spiked Wigner model with d = m = 1) has been solved and rigorously analyzed

in much the same spirit as the present work in (Bodin and Macris, 2021b) with the differ-

ence that the spike is constrained to lie on a sphere all along the evolution. For the present

extensive-rank setting rigorous or even analytical results on the whole time-evolution are

scarce. Closely connected to our work is the recent paper (Tarmoun et al., 2021). An essential

difference however is that in (Tarmoun et al., 2021) the initialization X (0) = X0 is taken to have

eigenvectors aligned with those of Y (this pre-processing can be implemented empirically in

practice). Moreover the authors do not carry out the random matrix averages fully analytically.

Gradient flow has been studied in a variety of settings more or less related to the present one,

see (Gunasekar et al., 2017; Chou et al., 2020; Saxe et al., 2013; Mannelli et al., 2019; Arous et al.,

2022; Liang et al., 2022).

Bayesian approaches are quite well understood for the low-rank problem (mainly rank-one).

This context is quite different from the present one. To begin with it is not dynamical. One

studies the Minimum-Mean-Square-Estimator (MMSE) computed as the conditional expecta-

tion of the signal with respect to the Bayesian posterior probability distribution (Montanari

and Richard, 2014; Lelarge and Miolane, 2019; Luneau et al., 2020; Barbier and Macris, 2019;

Miolane, 2017; Pourkamali and Macris, 2022b,a; Camilli et al., 2022; Barbier et al., 2022).

Bayesian-optimal as well as mismatched estimation settings have been well studied with rigor-

ous results on the mutual information, the MMSE, the cross-entropy, and the problem displays

a rich phenomenology of first and higher order phase transitions depending on the nature of

the priors. Related dynamics of the Approximate Message Passing (AMP) algorithms is also

well understood for these problems (Lesieur et al., 2017b,a; Montanari and Venkataramanan,

2017) . The realm of extensive-rank within such Bayesian and AMP approaches is quite open

and very timely (Kabashima et al., 2016; Barbier and Macris, 2022; Maillard et al., 2022; Troiani

et al., 2022; Camilli and Mézard, 2022).

Finally other types of non-dynamical approach belong to the class of spectral methods like

Principal Component Analysis (PCA). The low rank case is covered by (Baik et al., 2005a; Péché,

2004; Benaych-Georges and Nadakuditi, 2011). For the extensive-rank setting the results are

scarce and little is known except for ensembles of rotation invariant signals for which an

interesting class of Rotation Invariant Estimators (RIE) has been proposed (Bun et al., 2017).
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Chapter 8. Matrix denoising: an extensive rank model

8.2 Results

8.2.1 Preliminaries

We simplify the notations by introducing the variables Z = X X T and Z∗ = X ∗X ∗T and the

order parameters p and q such that E = r −2q +p with:

q = 1

d
Tr

[
Z∗Z

]
p = 1

d
Tr

[
Z 2] r = 1

d
Tr

[
(Z∗)2] (8.4)

In the rank-one setting, p can be seen as a norm of the estimator while q represents the angle

with the ground-truth. We consider the gradient flow

dX t

dt
=−φ∇H (X t ) (8.5)

and track the evolution of the matrix mean-square error Et through the quantities qt and

pt . The factor φ amounts to a rescaling of time which leads to more convenient expressions.

With the additional notation H = Y −µIn , expanding the gradient provides: dX t
dt = (H −Zt )X t ,

which in turns provides the matrix Riccati differential equation:

dZt

dt
= H Zt +Zt H −2Z 2

t (8.6)

A general solution of this matrix differential equation is (see e.g., (Tarmoun et al., 2021)):

Zt = e t H X0

(
Im +2X T

0

∫ t

0
e2sH dsX0

)−1

X T
0 e t H (8.7)

This formula is valid regardless of the dimensions n,m,d . In particular, when m = d = 1 this

is the solution of the rank-1 gradient flow. In the high-rank case, it is not straightforward a

priori how to track the evolution of the matrix Zt as firstly the rank of X0X T
0 and X ∗X ∗T (or Y

or H ) are not necessarily equal when d ̸= m, and secondly because the eigenvectors of the two

matrices are not aligned at the initialization.

In the following, we will consider the high-dimensional limit n,m,d →∞ with d/n and m/n

fixed and make the following assumptions:

• The limits of traces pt = 1
d Tr[Z 2

t ], qt = 1
d Tr[Z∗Zt ] (and Et ) concentrate on their expecta-

tion, as well as related traces used in the linear-pencils method in Sec. 8.3.

• We assume that H has a limiting spectral distribution whose support can be enlaced in

a finite contour Γ⊂C.

To keep notations lighter we shall abusively denote by pt , qt , Et their limiting deterministic

values.
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8.2 Results

8.2.2 Main results

The MSE Et of the problem is completely given by qt , pt and the constant r which in the high-

dimensional limit is found to be r = 1+φ from the second moment of the Marchenko-Pastur

law (Marchenko and Pastur, 1967). The main contribution of this chapter is the self-consistent

set of equations that fully track qt and pt :

(Result 1) In the high dimensional limit, the overlap qt evolves according the integral:

qt =
∫
R

zρQ (z)dz

1−e−2t z + zq̃t e−2t z (8.8)

with the auxiliary function q̃t solution of the fixed-point equation:

ψq̃t = 1+
∫
R

(1−e−2t z )ρP (z)dz
1
q̃t

(1−e−2t z )+ ze−2t z
(8.9)

and ρP ,ρQ are given by their inverse Stieltjes transforms P (z),Q(z). These are the analytic

solutions of the degree 3 polynomials such that −zP (z) → 1 when |z| →∞ and −zQ(z) → 1

when |z|→∞ where:

P 3 +P 2 (
λ(µ+ z)+1

)+Pλ
(
µ+ z −φ+1

)+λ= 0

Q3φ+Q2
(
µ+ z −2φ−1− 1

λ

)
−Q

(
µ+ z −φ−2

)= 1 (8.10)

(Result 2) In the high-dimensional limit, the eigenvalue distribution of Zt is found by the

inverse Stieltjes-Transform of ht (z) where:

ht (z) = −1

2πi

∮
Γ
−

(1+e−2t x ( x
h̃t (z)

−1))P (x)dx

x + z + ze−2t x ( x
h̃t (z)

−1)
(8.11)

h̃t (z) = 1+ 1

ψ

−1

2πi

∮
Γ
− (x + z − ze2t x )P (x)dx

x + z + ze−2t x ( x
h̃t (z)

−1)
(8.12)

in particular, we find:

pt =− 1

2φ

∂(2)

∂z2

(
1

z
ht

(
1

z

))∣∣∣∣
z=0

(8.13)

Note that a similar system of equations as (8.8) can be derived by calculating the first and

second derivatives in z as given by (8.13) and using the integrands in (8.11). However the

resulting formulas are too cumbersome to be presented here.

8.2.3 Discussions and experiments

Figure 8.2.1 provides an example of the calculation of qt through time compared with experi-

mental runs: we see a good agreement between the curves and the prediction.
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Chapter 8. Matrix denoising: an extensive rank model

Figure 8.2.1: Comparison of qt evolution with 10 runs of a gradient descent with n = 100,
m = 25, d = 75 and λ= 104 and µ= 0.

Asymptotic Limit t → ∞: An interesting question is to study the asymptotics of qt when

t →∞. We take the Ansatz that q̃t ∼ γe2αt in this limit with α> 0 and γ> 0 another constant

and plug this in equation (8.9):

ψ= 1

q̃t
+

∫
R

(1−e−2t z )ρP (z)dz

1−e−2t z + zq̃t e−2t z (8.14)

≃ e−2αt

γ
+

∫
R

(1−e−2t z )ρP (z)dz

1−e−2t z + zγe−2(z−α)t
(8.15)

≃
∫ ∞

α
ρP (z)dz = 1−FP (α) (8.16)

With FP the CDF of P . Such a solution exists when we can find α such that FP (α) = 1−ψ,

effectively selecting the proportion ψ of the eigenvalues of H in the interval (α,+∞). Due to

the assumption α> 0, a further condition for the existence of such an α is FP (0) < 1−ψ≤ 1 or:

0 ≤ψ< 1−FP (0) ≤ 1. This implies that the Ansatz is valid in the under-parameterized regime

(m < n). The asymptotic limit is thus given by q∞ = limt→∞ qt =
∫ ∞
α zρQ (z)dz. Note that the

alternative Ansatz that q̃t converges towards a finite limit leads to a similar solution as but

with α= 0.

A similar line of reasoning lead us to consider the term p∞ = 1
φ

∫ ∞
α z2ρP (z)dz and thus a

asymptotic mean square error:

E∞ = r −
∫ ∞

α

(
2zρQ (z)− 1

φ
z2ρP (z)

)
dz (8.17)

As an example, for φ=ψ= 1 and µ= 1
λ , and α= 0 we expect from formula (8.17) that E∞ =

r when the support of ρP and ρQ is located below 0. This can be found by studying the

discriminant ∆P (λ, z) of the polynomial solved by P : because it is a order 3 polynomial with

coefficients in Rwhen z ∈R, either the solutions are all real (∆P > 0) implying ρP (z) = 0, or one

is real and two are complex conjugate (∆P = 0) implying ρP (z) > 0. At a specific λ, the support

of ρP is located below 0 and touches z = 0. This λc is solution of ∆P (λc ,0) = 0 which provides

the solution λc = 4
27 . The whole error curve at t =+∞ is shown in Figure 8.2.2. The choice

µ= 1
λ is natural from a Bayesian point-of-view because it would correspond to the situation
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8.2 Results

Figure 8.2.2: Experimental and theoretical E∞ with φ=ψ= 1,µ= 1
λ

where the statistician matches its prior to the ground-truth when ψ=φ.

Low rank limit when φ=ψ→ 0: We bring to the reader’s attention that the objective function

H when d = 1 and n →∞ with µ= 1
λ corresponds precisely to the spiked-Wigner problem.

This suggest to look at the limit φ=ψ→ 0. In this situation, we expect α should be close to the

maximum eigenvalue of the bulk of ρQ . We make the following observation in Figure 8.2.3:

as φ decreases, ρP in blue has two bulks of eigenvalues, one of which disappears as φ grows.

On the other hand, ρQ in orange displays also two bulks at the same locations but the second

bulk develops a mass as φ→ 0. Therefore, we expect that α adjusts itself to the maximum

eigenvalue of the first bulk of ρP . Furthermore, interestingly we see that these two bulks are

getting closer when λ is closer to 1 as seen in Figure 8.2.4.

Figure 8.2.3: Bulk of eigenvalues for λ= 5 and different values of φ

Figure 8.2.4: Bulk of eigenvalues for λ= 2 and different values of φ
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Chapter 8. Matrix denoising: an extensive rank model

With these observations, we expect that Q(z) has a pole z = 1 in the limit φ→ 0. Let’s consider

a polynomial equation of Q̂ solving the reduced polynomial equation of Q with φ= 0:

Q̂2(z −1)−Q̂(z −2+ 1

λ
)−1 = 0. (8.18)

In order to find a potential pole, we consider Q(z) = (1− z)Q̂(z) and check for potential limits

of Q when z → 1. First of all, injecting Q in the former polynomial equation, we find:(
Q2λ+Q(λz −2λ+1)−λz +λ)

/(z −1) = 0. (8.19)

Therefore, on the upper-complex plane we find the numerator equals 0, and by analytic

continuation, the limit z → 1 follows: Q(1)(Q(1)λ−λ+1) = 0 so Q(1) ∈ {0,1− 1
λ }. It is interesting

to notice the connection with the usual Bayesian overlap of the spiked Wigner model - since

Q(1) represents the squared overlap q∞ in the limit φ→ 0. Pushing further this analysis for

P (z) allows to eventually get p∞ and E∞ in the limit φ→ 0 and check the connection with the

Bayesian MMSE of the spiked Wigner model.

8.3 Sketch of Proof

Our method relies on considering the interaction of the random matrices X0, X ∗,ξ. We treat

each term qt and pt separately with the linear-pencil technique. In both cases, we first factor

out the X0 matrix, then decouple the time dependency from the remaining random matrix

expressions, and finally factor-out X ∗,ξ.

Our results are derived in the limit n,m,d → +∞. For a sequence of matrices AN ∈ RN×N

we use the notation TrN [AN ] = limN→∞ 1
N Tr[AN ]. As stated in Sec. 8.2 we assume that the

limiting traces involved in the linear pencil method concentrate.

8.3.1 Tracking the angle qt

The term qt = Trd [Z∗Zt ] can be completely recovered from a sub-block of the following

linear-pencil Mq :

Mq =



0 Id 0 0 0 0 0

Id 0 0 0 0 0 Wt

0 0 0 X0 0 0 In

0 0 X T
0 Im 0 X T

0 0

0 0 0 0 Lt In 0

0 0 0 X0 In 0 0

0 W T
t In 0 0 0 0


(8.20)
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8.3 Sketch of Proof

Where Wt = X ∗T e t H and Lt = 2
∫ t

0 e2sH ds. A recursive application of the Schur-complement

to compute M−1
q shows that the block (M−1

q )(1,1) is the random matrix X ∗T Zt X ∗. So in fact:

qt = Trd

[
(M−1

q )(1,1)
]

.

The random matrices X0, X ∗,ξ are all independent and X0 is not part of the terms Wt ,Lt . There-

fore, we can apply the linear-pencil theory on Mq over the random-matrix X0 while considering

the other random matrices as fixed. To this end, we note the constant part Cq = EX0 [Mq ], and

consider matrix of sub-traces g ∈R7×7 such that for squared-blocks i j , gi j = TrNi

[
(M−1

q )(i , j )
]

where Ni is the size of the block i j in M−1
q . Then we apply the fixed-point equation described

in Appendix D of (Bodin and Macris, 2022) with gi j = 1
Ni

Tr
[
((Cq −η(g )⊗ I )−1)(i j )

]
where η(g )

is the matrix defined by:

η(g ) =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 ψg44 0 0 ψg44 0

0 0 0 g33 + g36+ 0 0 0

g63 + g66

0 0 0 0 0 0 0

0 0 ψg44 0 0 ψg44 0

0 0 0 0 0 0 0


(8.21)

Further inversion of Cq −η(g )⊗ I leads to:

g11 = Trd
[
g44ψWt (g44ψLt + In)−1W T

t

]
(8.22)

g44 = 1

1− g66
(8.23)

g66 =−Trn
[
Lt (g44ψLt + In)−1] (8.24)

Let Γ⊂C be a contour enclosing the eigenvalues of H , we use the fact that for any functional

f which applies on the eigenvalues of a matrix we have f (H) = −1
2πi

∮
Γ f (z)(H − zIn)−1dz to

obtain:

g11 = −1

2πi

∮
Γ

g44ψe2zt

1+ g44ψ
∫ t

0 2e2sz ds
Trd

[
(H − zIn)−1Z∗]

dz

which leads with Q(z) = Trd
[

X ∗T (H − zIn)−1X ∗]
to:

g11 = −1

2πi

∮
Γ

g44ψz

ψg44(1−e−2t z )+ ze−2t z Q(z)dz (8.25)

Similarly with P (z) = Trn
[
(H − zIn)−1

]
g66ψ= −1

2πi

∮
Γ

1−e−2t z

ψg44(1−e−2t z )+ ze−2t z P (z)dz (8.26)

We find the equations from the main results with q̃t = 1
ψg44

.
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Tracking the norm pt

The term pt = Trd
[

Z 2
t

]
can also be recovered from a similar calculation but would lead to

design a much larger linear-pencil. Another method is to track directly the eigenvalues of Zt

with the trace of the resolvent: h11 = Trn
[
(Zt − zIn)−1

]
with h the solution of the fixed point

equation (Appendix D in (Bodin and Macris, 2022)) stemming from the following linear-pencil:

Mp =



−zIn 0 0 0 0 e t H

0 0 X0 0 0 In

0 X T
0 Im 0 X T

0 0

0 0 0 Lt In 0

0 0 X0 In 0 0

e t H In 0 0 0 0


(8.27)

Which yields the set of equations:

h11 =−Trn

[(
Lt + 1

h33
In

)(
e2t H + zLt + z

h33
In

)−1]
h33 = 1− 1

ψ
Trn

[(
zLt +e2t H )(

e2t H + zLt + z

h33
In

)−1]
Using the contour integration technique, we obtain:

h11 = −1

2πi

∮
Γ
−

1
h33

+∫ t
0 2e2sx ds

z
h33

+e2t x + z
∫ t

0 2e2sx ds
P (x)dx (8.28)

which is reduced to:

h11(z) = −1

2πi

∮
Γ
−

1+e−2t x ( x
h33

−1)

x + z + ze−2t x ( x
h33

−1)
P (x)dx (8.29)

Similarly for h33:

h33(z) = 1+ 1

ψ

−1

2πi

∮
Γ
− (x + z − ze2t x )P (x)dx

x + z + ze−2t x ( x
h33

−1)
(8.30)

Two possible ways to retrieve pt from h11 and h33: either with φpt = −1
2πi

∮
Γ z2h11(z)dz, or

φpt =−1
2
∂(2)

∂z2

( 1
z h11( 1

z )
)|z=0. In both cases, there is an additional level of complexity in terms of

calculation as it either requires a double-contour integration, or computing derivative and

second derivative of the given functions yielding further new equations.
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Quantities Q(z),P (z)

There remains to calculate the terms Q(z),P (z) which depends only on the random matrices

X ∗,ξ and can be done altogether with the linear-pencil:

Mz =


In X ∗ 0 0

0 Id X ∗T 0

0 0 (z +µ)In − 1p
λ
ξ X ∗

0 0 X ∗T Id

 (8.31)

Using the kernel K = (H − zIn)−1, we can calculate the inverse:

M−1
z =


In −X ∗ −Z∗K Z∗K X ∗

0 Id X ∗T K −X ∗T K X ∗

0 0 −K K X ∗

0 0 −X ∗T K Id −X ∗T K X ∗

 (8.32)

So that Q(z) = − f13 and P (z) = f33 where we f is the analog of g and h with the former

linear-pencils. In particular we expect the following structure:

f =


1 0 −φQ(z) 0

0 1 0 −Q(z)

0 0 −P (z) 0

0 0 0 1−Q(z)

 (8.33)

We can further compute the fixed point equation with:

η( f ) =


0 0 f22φ+ f24φ 0

0 f31 0 f33

0 0 f33

λ + f42φ+ f44φ 0

0 f31 0 f33

 (8.34)

After some algebraic reductions, we obtain the degree 3 polynomials given in equation (8.10).

In general, these equations have multiple solutions but only one corresponds to the analytic

solution associated to the appropriate trace of resolvent.

8.4 Conclusion

Our work primarily shows how we can take advantage of random matrix techniques to derive

fixed-point equations solving the time evolution of the matrix-mean-square-error in the high-

dimensional limit. Although we choose a specific data model, as future considerations, the

matrix H can be generalized to other structures for which the same methods would apply. In

particular, if only the noise structure changes, then only ρQ and ρP are changed. We will come

back to these issues in a more extensive and detailed contribution.
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9 Conclusion and future research direc-
tions

Throughout this thesis, we have explored a class of large learning models in a statistical

limit that enables tracking the learning progression through the gradient-flow algorithm.

More precisely, we have examined the Gaussian covariate model discussed in Chapter 5,

which also captures a simplified representation of a 2-layer neural network as presented in

Chapter 6. In this context, we have investigated the potential to predict the evolution of the

gradient-descent algorithm for real-world datasets under specific conditions. In essence, this

allows us to forecast the future values of the training error and test-error for such models

and offers insights into their prospective performances. It also provides valuable time and

resource savings compared to the computationally intensive weight-updating process, or the

exploration of the hyper-parameter space.

This research can open the door to future possibilities for gaining deeper understanding

into the learning dynamics of large models and comprehending the scaling laws governing

the test-error and training error with various hyper-parameters. Specifically, these scaling

laws aim to establish the optimal achievable loss, denoted as L, within the constraints of

computational resources C , the model’s size N , and the available data D . As previously cited

in (Kaplan et al., 2020), there is a growing body of empirical evidence supporting the existence

of such scaling laws for a variety of models, including large transformer language models. As

mentioned in this same paper, "the training curves follow predictable power-laws [...]" and

"performance improves predictably as long as we scale N and D in tandem [...]". Notably, it

has been stated that the architectural details such as network width and depth seem to have

little impact in their investigations. So determining these laws is of utmost importance for

budgeting the training of large models. However, even with these empirical findings, there is

still no definitive consensus on the precise form they should have (Caballero et al., 2023). For

instance, (Hoffmann et al., 2022) provide an empirical law that exemplifies this concept for

some coefficients A,B ,L0,C0:

L = AN−α+BD−β+L0 (9.1)

C =C0N D (9.2)
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Chapter 9. Conclusion and future research directions

When the value of C is held constant and L is minimized, a precise power-law relationship

emerges for N and D in the form of N (C ) =G
(

C
C0

)a
and D(C ) =G−1

(
C
C0

)b
where the constants

a,b and G depend on the other previous coefficients A and B . This opens-up a potential

avenue and an interesting endeavour for applying the theory developed for the random-

feature model and investigating the existence of similar laws in this context. However, a

significant challenge lies in establishing a consistent definition of the computational budget C

as no definitive formulation readily stands out. In our experimental framework, given that

the first layer remains fixed, the primary computation cost arises from the update of βt ∈RN

which at most necessitates a fixed matrix-vector multiplication operation. Consequently, a

viable computation cost may take the form of C = ( T
∆t

)
C0N 2 for a learning step of size ∆t and

a time horizon T . Another critical consideration concerns the choice of this learning step ∆t .

For instance, it can be selected in relation to the largest eigenvalue of the Hessian of the loss

function to minimize the number of iterations required to reach any specified level of accuracy

while preserving the convergence towards β∞, as discussed in the introduction. Furthermore,

other parameters that must also be considered include the regularization parameter λwhich is

also another constant of our framework. As an example, λmay be chosen to minimize the test-

error while keeping the other parameters fixed. In Summary, it is not evident a priori whether

scaling laws exist with the random feature model of Chapter 6, and if they do, what form

they might take and whether they align with empirical observations from existing literature.

Nevertheless, this model offers a potential path for investigating the emergence of such laws

based on first principles.

While the Gaussian covariate model offers a theoretical foundation for analyzing supervised

learning tasks, it is worth noting that similar random matrix methods can be effectively applied

to address a broader spectrum of learning problems, such as the gradient-flow dynamics in

matrix completion problems. In this thesis, we have presented a formula for analyzing the

dynamics of the loss in the rank-one estimation problem with a non-trivial objective function,

as discussed in Chapter 7. A typical next step for this model is the investigation of the non-

symmetric case with Y = uvT +
√

n
λξ. Here, u ∈ Rn and v ∈ Rd are two vectors of size n and

d which are not necessarily equal, but still considered in the limit of large values with the

fixed ratio φ= n
d (Miolane, 2017). Another direction for future exploration is the analysis of

alternative prior distributions on θ∗, such as the Laplace prior, to assess their impact on the

learning curves. The objective function also needs to be adapted to account for the change of

prior distribution. It remains unclear to what extent the technical results developed in Chapter

7 can be extended to this case. Alternatively, the addition of a noise term in the gradient-flow

equation may be a viable path to explore further aspects of the optimization algorithm.

Additionally, we explored the extensive-rank model characterized by a quadratic number of

parameters. The dynamics involve the alignment of the eigenvectors of the estimator with the

data matrix, as detailed in Chapter 8. This model holds particular significance in the context of

sample covariance matrix estimation. It can find some practical applications for the realistic

datasets cases, thus presenting a potential avenue for improving the Gaussian covariate model

210



analysis and addressing the sub-sampling requirement for the training and test set. However,

it is important to note that this model employs a gradient-flow method that may not achieve

the same level of performance of the rotationally invariant estimator described in (Potters

and Bouchaud, 2020). To improve our approach, one potential strategy involves adjusting

the regularization term µ∥X ∥2
F as outlined in equation (8.2). For example, it can be refined

into a more general form as
∥∥∥A

1
2 X

∥∥∥2

F
, for an appropriate matrix A (with A =µI in the previous

case). Another line of research is the investigation of the non-symmetric instance. As for the

rank-one case, we consider the data-matrix Y =UV T + 1p
λ
ξ, featuring two random matrices U

and V . In this situation, an algorithm of interest is the gradient-flow method applied to both

estimators, Ut and Vt , simultaneously. It remains uncertain at this stage whether a closed

system, comprised of a finite number of equations, can be derived. Nevertheless, it is worth

noting that some progress appears feasible, albeit potentially leading to more intricate coupled

matrix Riccati differential equations.

Finally, in a similar vein, other models are concerned with tensor estimation problems where

Y is a tensor of order 3 or higher (Barbier et al., 2017), or even delve into the intricacies of

a mixture of spiked-matrix tensor models (Mannelli et al., 2019). While these models are

generally more complex, certain random-matrix methods may offer promising avenues to

further extend our approaches to address some of these more intricate scenarios (for instance

de Morais Goulart et al. (2022)).

At the heart of these models, we employ statistical methods of large-dimensional matrices with

random entries, which have been described thoroughly in Chapter 2 and 3. This mathematical

field, known as the random matrix theory, has been under development for over half a century

and has found successful applications across various scientific disciplines. Consequently, it

comes as no surprise that its relevance has been steadily increasing in the analysis of large-

scale learning models, making it a promising way for understanding the learning dynamics of

large neural networks. As described, the derivation of the equations governing the random

feature model makes extensive use of the tools and techniques from random matrix theory,

involving intricate operations with multiple matrices. However, there are still several hurdles to

tackle more general models, such as a random feature model where we relax the frozen weight

assumption. Such a model would offer a more realistic framework to understand full-sized

neural networks. A notable contribution in this direction can be found in the research paper

(Ba et al., 2022). While tracking the full gradient-flow of the weight matrix Θ (in Chapter 6)

may prove challenging in the near future, it is in the realm of possibilities to explore a simpler

but quite intricate scenario where a single gradient-step is applied to the loss with respect

to Θ to update this weight matrix. This results in a new matrix, denoted as Θ1, which can

subsequently be integrated within the regular random feature model and lead to new insightful

analytical results. In particular, depending on the magnitude with respect to n of this initial

gradient step, the weight matrixΘ1 can exhibit for instance a similar structure asΘwith the

addition of rank-one matrix, or even a new random matrix with multiple bulks. Besides, as in

(Adlam and Pennington, 2020a), these studies often involve more general operations on large
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Chapter 9. Conclusion and future research directions

random matrices, including some Hadamard products. While it is possible to derive these

operations in certain specific cases, this is not yet always achievable in a fully general context.

A parallel concern is the extension of our methods for generic loss and regularization functions

as exemplified in Loureiro et al. (2021). As demonstrated in Chapter 5, in the asymptotic limit

t →+∞, our methods align with these results when using the mean-squared-loss. However, it

is not yet clear whether the dynamics for other types of objective functions can be derived as

easily.

In conclusion, the future of random matrix theory in the context of large neural networks

holds great promise, and it calls for further developments, perhaps in the form of a novel

high-dimensional statistical framework tailored for large learning models.
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