
Caching and Neutrality
Muhammad Abdullah

EPFL
Lausanne, Switzerland

muhammad.abdullah@epfl.ch

Pavlos Nikolopoulos
EPFL

Lausanne, Switzerland
pavlos.nikolopoulos@epfl.ch

Katerina Argyraki
EPFL

Lausanne, Switzerland
katerina.argyraki@epfl.ch

Abstract
We are used to defining network neutrality as absence of traffic
differentiation, like policing or shaping. These mechanisms,
however, are often not what determines end-users’ quality of
experience (QoE). Most content today is accessed through
edge caches, operated by cloud providers, but located near or
inside the end-user’s Internet Service Provider (ISP). Hence,
the end-users’ QoE is often determined by the interplay be-
tween the caching system (controlled by the cloud provider)
and the network between edge cache and end-user (controlled
by the eyeball ISP). So, we argue that an obvious point where
differentiation may occur, and where transparency and neu-
trality may be desirable is the caching system; and that we (as
a community) should perhaps consider notions of neutrality
that capture the connection between caching and QoE.

CCS Concepts
• Networks → Network measurement; Network design
principles.

Keywords
Network neutrality, Edge caching

ACM Reference Format:
Muhammad Abdullah, Pavlos Nikolopoulos, and Katerina Argyraki.
2024. Caching and Neutrality. In Proceedings of The 22nd ACM
Workshop on Hot Topics in Networks (HotNets’23). ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
The point of network neutrality is to enable competition and
innovation: the network should not affect the popularity of
certain content (e.g., from a particular server or application)

by making it easier or harder for end-users to access or enjoy
that content; and it should not affect how hard it is for new
content to become popular by making it easier to access or
enjoy content from established players.

The traditional way in which a network interferes with
content is to throttle (or block, at the extreme) the traffic
that carries it, and thereby control the rate at which the con-
tent reaches each individual end-user and/or the aggregate
capacity that it consumes inside the network. Eyeball ISPs
notoriously followed this practice with popular peer-to-peer
(P2P) applications [6] and still do so with voice and video
services (that are not offered by themselves) [10].

Hence, it is not surprising that “neutrality violation” has be-
come synonymous with throttling of target content, implicitly
defining network neutrality as absence of selective throttling.

However, we expect that the main reason why end-users
today access different content with different performance is
not selective throttling—or any kind of differentiation inside
the data-plane—but different routes to different content. To-
day, most content is accessed through the cloud1. When an
end-user accesses a cloud-hosted piece of content, they may
get it from a cloud datacenter, or a cache located at a nearby
Point of Presence (PoP), or an “edge cache” located inside
their own eyeball ISP. The resulting performance difference
can be dramatic.

This situation blurs the line between content carrier and
content provider. A cloud certainly provides content (more on
this in §2), but it also chooses where (in which ISPs) to place
caches, which content (from which particular service or appli-
cation that it hosts) to cache and where, and which end-users
to serve from each cache. An ISP certainly carries content, but
it also chooses whose caches to host in its network, and how
close to the end-users to place each cache. So, the routes be-
tween end-users and content are determined by the interplay
between ISPs’ and clouds’ business and technical goals.

Yet, end-user expectations and Internet regulations have
been shaped by a clear separation between the notions of
content carrier and content provider. For instance, end-users
tend to object to the idea of their ISP inserting ads in their
traffic, because they view their ISP as a carrier—and a carrier
should never alter the content it carries; yet they tend to accept
this practice from clouds, because those are viewed as content

1We use the term “cloud” broadly: it may denote a private cloud, a public
cloud, or a Content Distribution Network (CDN).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

HotNets’23, November 28-29, 2023, Cambridge, Massachusetts Muhammad Abdullah, Pavlos Nikolopoulos, and Katerina Argyraki

providers. Similarly, we (as a community) tend to object to the
idea of an ISP prioritizing some content over other, because
a carrier should carry all content equally well; yet it seems
natural that a cloud serves some third-party content from right
next to the end-user and some other from the other side of the
world.

So, we argue that caching should be more transparent. If we
care that the network does not affect content popularity and
does not make it harder for new content to become popular,
then it makes sense to understand the processes that determine
which content is served from where.

This paper does not raise any ethical issues.

2 Then and Now
When the notion of network neutrality first appeared in the
early 00’s, the standard ways to provide an online service
were to (a) set up a web server, potentially connected to a
back-end, and connect it to the Internet through an edge ISP;
or (b) create a peer-to-peer (P2P) application and encourage
end-users to install it on their devices. The vision was that,
soon, everyone would have access to a good and affordable
Internet connection. Hence, to ensure that all online services
had more-or-less equal chance of success, the only thing
needed was that ISPs did not differentiate across end-users,
servers, or applications.

Of course, everyone did not have access to a good and af-
fordable Internet connection, not to mention the know-how of
setting up web servers or writing P2P applications. Obviously
and unavoidably, end-users living in areas with better and
cheaper Internet were better-positioned to provide successful
online services.

Today, the standard way to provide an online service is to
deploy it in the cloud: one’s own dedicated private cloud (like
Facebook), a public cloud, or both (e.g., Netflix leverages
some Amazon services but serves its content through its own
CDN). Some public-cloud providers offer edge caching as a
service (e.g., Amazon’s CloudFront): Suppose a public-cloud
customer stores a piece of content in a storage bucket and buys
edge caching for it; when an end-user accesses this content
(from anywhere in the word), it is served from an edge cache.
Some of these edge caches are located in eyeball ISPs, while
others are located in the cloud provider’s PoPs.

So, providing an online service has arguably become sig-
nificantly more accessible: At least anyone who can buy basic
public-cloud services, no matter where they themselves live
and how good their own Internet connection is, can provide an
online service that benefits from the reliability and scalability
of public clouds—and from their edge caches.

At the same time, network neutrality has become harder to
define in a sensible way, in at least three ways:

(1) Many eyeball ISPs host cloud-operated caches ("edge
caches") inside their network. The relevant agreements be-
tween clouds and ISPs are private, and we don’t know whether
they involve payment from either side. In a neutral world, an
ISP should not prioritize one service’s traffic over another’s.
But isn’t it prioritization when one service’s content is served
from an edge cache while another’s is served from a remote
data-center? Hence, ideally, edge caching should be done in a
way that all online services can benefit from it.

(2) From the point of view of an online service that is
hosted in a public cloud (e.g., TikTok or Disney+), the cloud
is a content carrier as much as an eyeball ISP is a content car-
rier for the ISP’s end-users. In a neutral world, an ISP should
treat equally all end-users who have bought the same ISP
service. In the same spirit, a public cloud should treat equally
all customers who have bought the same public-cloud service.
However, this has implications for the cloud’s edge-caching
policies: When two customers (say, two social networks, or
two video services) buy edge caching for their content, the
cloud should ideally serve each customer’s content from an
edge cache with more-or-less the same probability, even if
one customer’s content is more popular than the other’s. Oth-
erwise, end-users will access the popular customer’s content
with better performance, even if the two customers are paying
for the same public-cloud service.

(3) Cloud providers typically offer their own online ser-
vices, which may compete with the services of their public-
cloud customers. E.g., any video-streaming service deployed
on Amazon’s public cloud competes with Amazon’s Prime
Video, and any video-sharing service deployed on Google’s
public cloud competes with Google’s YouTube. This is on
par with the common scenario where an ISP offers its own
streaming service that competes with third-party streaming
services that are accessed by the ISP’s end-users. In a neutral
world, an ISP should not prioritize traffic from its own service
over traffic from third-party services. In the same spirit, a
cloud should ideally not serve content that belongs to its own
online services from edge caches, while it serves content that
belongs to its customers’ competing services from remote
data-centers, even if the cloud’s own online services are more
popular.

Today, clouds do not officially disclose their edge-caching
policies, and they appear to use different approaches. Some
of them appear to use edge caching only for their own content.
Others use it both for their own and their customers’ content.

It is also interesting to map Facebook’s Free Basics2 pro-
gram to this landscape: In some countries, Facebook provides
free ISP service but limits the online services that its end-users
can access to basic health- and education-related websites,
as well as the Facebook social network. This is an extreme

2https://www.facebook.com/connectivity/solutions/free-basics

https://www.facebook.com/connectivity/solutions/free-basics

Caching and Neutrality HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

example, where: the same entity is an eyeball ISP and a cloud
that provides its own online service; the only content that this
entity serves to its end-users from within its own network is
its own content; and it blocks most third-party content.

In summary: Clouds and ISPs collaboratively cache some
content close to end-users. Content that is served from these
edge caches benefits from (potentially significantly) better
network performance relative to content that is served from
further-away data-centers. Arguably, in a perfectly neutral
world (a) all online services would benefit from edge caching,
and (b) each online service should experience more-or-less
the same hit rate at the same cache. We are absolutely not
arguing for regulating clouds’ edge-caching policies. But
perhaps it is worth defining neutrality in a way that considers
edge caching, and monitoring this new kind of neutrality—the
way we monitor traffic differentiation by ISPs.

3 Caching (Obviously) Matters
It is expected that caching affects performance, but we wanted
to get a sense of magnitude. So, we considered two public
clouds (we will call them “Cloud 1” and “Cloud 2”), accessed
(from the same location) different online services provided
or hosted by them, and compared the resulting end-to-end
latency and cache-hit rates. To the best of our understanding,
all the customers of each cloud are paying for the same type of
edge caching. We start with the results, then briefly comment
on the underlying caching architecture and data collection.

Figs. 1 and 2 show the latency distribution and cache-hit
rates, experienced by the same client, approximately at the
same time, while accessing different online services through
edge caches of Cloud 1 or Cloud 2. For Cloud 2, we are
able to break down the cache-hit rate into level 1 (L1) and
level 2 (L2) hit rate. Some of the latency curves are anno-
tated with the corresponding average hit and miss latency.
Each hit-rate bar is annotated with the corresponding ser-
vice’s number of monthly visitors and popularity rank. Fig. 1
concerns video-streaming services. “Cloud Video” is offered
by Cloud 1 itself, while all the other video-streaming services
are cloud customers, who are paying Cloud 1 or Cloud 2 for
edge caching. To the best of our understanding, Cloud 1 uses
the same caching infrastructure for its own video-streaming
service and its customers’ video-streaming services. Fig. 2
concerns websites.

We see significant differences both in terms of latency and
in terms of cache-hit rates. Some of these differences can
be justified by popularity. E.g., Cloud Video benefits from a
significantly higher hit rate than any Cloud-1 customer (98%,
while the next highest hit rate is 56%), but it also receives an
order of magnitude more monthly visitors than any of them
(Fig. 1b). However, this is not the case for all differences. E.g.,
Video A receives an order of magnitude more visitors than

(a) Latency for services accessed
through Cloud 1 (top) and Cloud 2 (bottom).

(b) Cache-hit rates for services accessed
through Cloud 1 (left) and Cloud 2 (right).

Figure 1: Latency and cache-hit rates for different video-
streaming services.

Video B, yet benefits from lower hit rate (Fig. 1b, A: 29%,
B:56%). Or, Video Y and Video Z receive a similar number
of visitors, yet they benefit from significantly different hit
rates (Fig. 1b, Y: 2%, Z: 29%). Or, Sites K, P, and Q receive
a decreasing number of visitors, yet benefit from increasing
cache-hit rates (Fig. 2b).

Bottom line: The same client accesses similar online ser-
vices, yet experiences significantly different latency and cache-
hit rates, even if the target services are paying for the same
edge-caching product. We are not saying that the clouds are
doing anything wrong. However, consider the effect on a new
and not-yet-popular video-streaming service or website: until
it achieves the same popularity as its established competitors,
it may be accessed with significantly worse performance.

Caching architecture. By combining publicly available
documentation with our measurements, we put together the
following picture for the caching architecture of both clouds:
The content sits behind a two-tier caching hierarchy, which
consists of “user facing” or L1 caches, and “origin-facing” or
L2 caches. Some caches are located close to end-users (“edge
caches”), while others are located further away (“regional
caches”). For all the online services we considered, when
a user makes a DNS request for a URL, the DNS response
always points to an L1 cache (which is typically an edge
cache); if the requested content is not there, it is requested
from an L2 cache (which may be an edge or a regional cache);

HotNets’23, November 28-29, 2023, Cambridge, Massachusetts Muhammad Abdullah, Pavlos Nikolopoulos, and Katerina Argyraki

(a) Latency.

(b) Cache-hit rates.

Figure 2: Latency and cache-hit rates for websites ac-
cessed through Cloud 2.

and if it is not there either, it is requested from the content
store. As a side note, DNS plays a crucial role, as it determines
the edge cache from which each URL is requested, hence,
essentially controls the hit rate of each cache.

Data collection. We used a web crawler running on a
machine with a stable (wired) Internet connection, located
in a city where both clouds have edge caches. To access
the video-streaming services: Our crawler played back a few
seconds of the top-100 video titles of each service, and it
captured the URLs of the first few video chunks; from these,
we manually discerned the pattern of video-chunk URLs for
each service, and we generated the first 50 URLs for each
video title (assuming the first chunks are more likely to be
cached). To access websites: We randomly selected 7 from
our country’s top-1000 websites that cache at least 100 web
elements on Cloud 2; for each website, our crawler extracted
the URLs of all the web elements (images, JavaScript, CSS,
etc.) on the landing page, as well as 8 pages featured on it. For
each generated or extracted URL, the crawler sent an HTTP
HEAD request and recorded the response time and whether
it resulted in a cache hit or miss. Responses from Cloud 1
additionally included the Point of Presence (PoP) from which
the URL was served, while responses from Cloud 2 included
whether a cache hit was an L1 or an L2 hit. We collected all
measurements during the peak hours of activity for the target
services.

4 A Neutral-Caching Theory?
We now make a short foray into the world of caching theory
to see if it can help us define and reason about the neutrality
of modern networks. Neutrality is a kind of fairness, so we
revisit the problem of fair caching, focusing on recent work
that considers “caching networks,” which are meant to model
CDNs and/or Information/Content Centric Networks (ICNs
and CCNs) [1, 3–5, 8, 11, 13, 14, 17].

4.1 Fair Caching
Fair caching is a utility-optimization problem: given a “caching
network,” pick a “caching strategy,” so as to maximize some
notion of “utility.” The latter can be a function of cache-hit
rate, throughput, latency, routing-cost savings—in general,
any metric that caching is supposed to improve.

More formally, a “caching network” is represented as a
directed graph 𝐺 (𝑉 , 𝐸), where 𝑉 is a set of caches and 𝐸

is the set of bidirectional edges with possibly asymmetric
routing costs. The network serves content requests for a fixed
set of items 𝐶 as follows: each item 𝑐 ∈ 𝐶 is permanently
stored at a subset of “designated” nodes 𝑉𝑐 ⊆ 𝑉 , but it may
be cached at any node; each request for 𝑐, denoted by (𝑐, 𝑝),
is routed over a pre-established path 𝑝 that traverses various
caches (of perhaps different levels), until it reaches the first
node on the path that caches 𝑐 and can serve the request. The
paths do not have loops, and for each request (𝑐, 𝑝) only the
last node of 𝑝 is a designated server of 𝑐 (i.e. the last node
belongs to 𝑉𝑐).

A “caching strategy” 𝑆 typically specifies which content
items are cached at each node. It is represented as a |𝑉 | × |𝐶 |
binary matrix, where each element 𝑠𝑣𝑐 is equal to 1 if node
𝑣 caches content 𝑐, and 0 otherwise. Existing formulations
assume that the admission and eviction policies are the same
on all nodes and are given as input; however, it is possible to
reformulate the problem to consider eviction and admission
policy as part of the strategy, i.e., the output.

As a result of a caching strategy 𝑆 , each request (𝑐, 𝑝)
attains a “benefit rate” 𝑧 (𝑐,𝑝) (𝑆), which could be the achieved
cache-hit rate [3–5, 13], throughput [1, 17], latency [7], or
caching gain rate (i.e. the reduction in routing costs due to
caching) [8, 11, 14].

A “utility function” 𝑈 is a non-decreasing, continuously
differentiable, and strictly concave function that maps the
benefit rate to the quantity we want to optimize. The simplest
example is 𝑈 (𝑥) = 𝑥 , where the utility is the benefit rate
itself (i.e., we want to optimize the aggregate benefit rate
achieved by all requests). Other examples are proportional or
max-min fairness. A popular choice for theoretical analysis
is the generalized version of an 𝛼-fair utility function, which
accepts most other types of fairness as special cases.

Caching and Neutrality HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

With these definitions, we can summarize existing formu-
lations of the fair-caching problem as follows:

Traditional Fairness: Find a caching strategy 𝑆 that
maximizes the aggregate utility of all requests per
content item, i.e., solve

𝑆𝑜𝑝𝑡 = argmax
𝑆

∑︁
𝑐∈𝐶

𝑈
©«

∑︁
(𝑐,𝑝) ∈𝑅𝑐

𝑧 (𝑐,𝑝) (𝑆)
ª®¬ , (1)

where the maximization is done across all binary matrices 𝑆
of size |𝑉 | × |𝐶 |, and 𝑅𝑐 is the set of all requests for content
item 𝑐.

This formulation achieves “content fairness” but can be
easily tweaked to achieve “user fairness” or “content-provider
fairness” by changing the summation terms: Instead of opti-
mising the aggregate utility of all requests per content item,
we can optimize the aggregate utility of all requests per user,
or all requests for content originating from a given content
provider.

So, traditional fairness already offers a basis for designing
caching networks that treat content, users, and/or content
providers fairly, and it admits a flexible definition of fairness.
Is anything missing?

4.2 Neutrality as Long-term Fairness
If we define neutrality as a form of long-term network behav-
ior, then we must take into account that content popularity
may change in response to caching strategy. For example, a
strategy that increases the cache-hit rate of a given content
item, or decreases the latency with which that item is accessed,
may increase the item’s popularity over time.

Traditional fairness does not account for this feedback: it
assumes that the arrival rate of requests for a given content
item is independent from the caching strategy. In particular,
most work assumes that the arrival of requests for each content
item 𝑐, routed over path 𝑝, forms a Poisson process with
static rate 𝜆 (𝑐,𝑝) . As a result of this assumption, the caching
benefit rate 𝑧 (𝑐,𝑝) (𝑆) is typically computed as the product,
𝜆 (𝑐,𝑝) ·𝑦 (𝑐,𝑝) (𝑆), of the corresponding (static) request rate and
caching benefit. So, traditional fairness ignores the effect of
caching on 𝑐’s popularity and request rate over time.

We consider two alternative formulations that capture the
connection between caching strategy, content popularity, and
request rates. In particular, they modify traditional fairness
to account for the impact of caching strategy on request rates
over time.

Horizon Fairness. For each content item 𝑐, routed over
path 𝑝, we assume that the request rate 𝜆 (𝑐,𝑝) changes over
a time horizon 𝐻 as a static function of the caching benefit

𝑦 (𝑐,𝑝) (𝑆) achieved through caching strategy 𝑆 , i.e., 𝑑𝜆 (𝑐,𝑝)
𝑑𝑡

=

𝑓𝑐,𝑝 (𝑦 (𝑐,𝑝) (𝑆)). So, Traditional Fairness assumes that request
rates are static; our first alternative assumes that request rates
are dynamic but change according to a static function 𝑓(𝑐,𝑝) .
Hence, to obtain the caching benefits for any set of (𝑐, 𝑝)
requests, we integrate over the time horizon 𝐻 :

Horizon Fairness: Find a caching strategy 𝑆 that
maximizes the aggregate utility of all requests per
content item over a given time horizon 𝐻 , i.e., solve

𝑆𝑜𝑝𝑡 = argmax
𝑆

∑︁
𝑐∈𝐶

𝑈

(∑︁
(𝑐,𝑝) ∈𝑅𝑐

1
𝐻

∫ 𝐻

𝑡=0
𝑓𝑐,𝑝 (𝑦 (𝑐,𝑝) (𝑆))𝑦 (𝑐,𝑝) (𝑆)𝑑𝑡

)
, (2)

where, as in (1), the maximization is done across all binary
matrices 𝑆 of size |𝑉 | × |𝐶 |.

Since 𝑆 is a binary matrix, this is a combinatorial optimiza-
tion problem, hence NP-hard, even in the case of the trivial
utility function 𝑈 (𝑥) = 𝑥 ; however, combinatorial optimiza-
tion theory offers a large variety of approximation algorithms
that can solve it efficiently.

A more interesting challenge is that the function 𝑓𝑐,𝑝 needs
to be known in advance, even for new content items that
have never been cached before. One solution would be to
use a rough prediction for 𝑓𝑐,𝑝 , based on expert knowledge
or experience with similar items. For example, it is plausible
that a content provider will have a rough idea, or at least an
expectation about how specific caching benefits will affect the
popularity of a given content item. In this scenario, solving (2)
would achieve fairness with respect to the expected utility of
the overall caching benefits per content item. Still, assuming
a static function 𝑓𝑐,𝑝 and requiring knowledge or prediction
of that function is arguably non-elegant.

Dynamic Fairness. Our second alternative embraces the
fact that a caching network is a dynamic system with feed-
back: The request rate 𝜆 (𝑐,𝑝) is not a static function of the
caching benefit; instead, it is stochastically affected both by
the environment and by the caching strategy. Moreover, we
do not seek one caching strategy that is bound to a fixed time
horizon 𝐻 ; instead, we seek a dynamic “caching policy” that
may apply different caching strategies over time.

A classic tool for modelling such a system is a discrete-time
Markov Decision Process (MDP) [16]—a stochastic control
process used for decision-making problems, where the out-
comes are partially random and partially controllable. More
specifically, an MDP is defined by a 4-tuple (S,A, P𝑎,R𝑎),
where: S is a set of states, called “the state space”; A is the
set of actions, called “the action space”; P𝑎 is the transition
probability matrix given some action 𝑎—hence, P𝑎 (𝑠, 𝑠′) =

HotNets’23, November 28-29, 2023, Cambridge, Massachusetts Muhammad Abdullah, Pavlos Nikolopoulos, and Katerina Argyraki

Pr(𝑠𝑡+1 = 𝑠′ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) is the probability that an action 𝑎

at time 𝑡 will make the process transition from state 𝑠 to 𝑠′; R𝑎

is the expected immediate reward received after transitioning
from state 𝑠 to 𝑠′ as a result of action 𝑎.

We map the parameters of our fairness problem to the
parameters of the MDP as follows: S is the set of possible
request arrival patterns. In the simplest case, the requests
arrive independently from each other, but the rate at which
they arrive changes over time; hence, each state 𝑠𝑡 is the arrival
rate 𝜆 (𝑐,𝑝) (𝑡) at that point in time. A contains all possible
caching strategies 𝑆 that can be used at any time 𝑡 . R𝑎 are the
utilities of the contents achieved due to action 𝑎 (and the state
of the process at the given point in time).

Our goal is to find an optimal caching policy that speci-
fies the action we must choose when the process is in state 𝑠.
More specifically, we seek a (potentially probabilistic) map-
ping 𝜋 from state space S to action space A that maximizes
the cumulative return (i.e. the expected sum of all content
utilities):

Dynamic Fairness: Find a caching policy 𝜋 that max-
imizes the aggregate utility of all requests, i.e., solve

𝜋 (𝑠𝑡) = argmax
𝑎𝑡
E

[
𝐻∑︁
𝑡+1

∑︁
𝑐∈𝐶

𝑈

(∑︁
(𝑐,𝑝) ∈𝑅𝑐

𝑧 (𝑐,𝑝) (𝑎𝑡)
)]
,

(3)

where the expectation is taken over all states 𝑠𝑡+1, to
which the process can transition from state 𝑠𝑡 .

We are considering two approaches to solving this prob-
lem: One is to assume that the transition probabilities P𝑎 are
known in advance, e.g., through expert knowledge and/or
past evidence, in this case, the problem can be solved via
classic dynamic programming. The more natural and elegant
approach is to assume that the transition probabilities are
not known in advance and use (model-free) reinforcement
learning [15].

What about admission and replacement? We can eas-
ily tweak our formulations to incorporate some admission
and/or replacement algorithms, e.g., TTL-based replacement,
as long as we can compute the caching benefit rate as a func-
tion of the value of the timer. This does not apply, however,
to algorithms with correlated admission and eviction events,
e.g., Least-Recently-Used (LRU) replacement. For such al-
gorithms, one could leverage existing TTL-based approxi-
mations [2, 9, 12], but these typically assume static request
arrival models—hence need to be extended to our dynamic
framework. In summary, going from content placement to
admission and replacement seems plausible, yet challenging.

5 Discussion
“No special deals” as opposed to optimal utility. The last
section defined neutrality as optimal long-term utility; a sim-
pler alternative is “charging for service/resources in a uni-
form/public fashion, i.e. no special deals for anyone,” as
one of our reviewers put it. Under this definition, a caching
provider is neutral as long as it charges all customers the
same for the same type of caching and it applies customer-
agnostic caching strategies (i.e., content placement and ad-
mission/eviction algorithms). The fact that we explored a
utility-based definition does not mean that we are arguing
against this alternative. We are arguing that (a) it would be
useful to have a reasonable definition; and (b) public clouds
and ISPs should make their caching strategies transparent,
such that one can reason about their neutrality.

Not regulation; transparency and monitoring. We are
not advocating for regulating caching strategies; only for mak-
ing them transparent, such that end-users and cloud customers
can understand how caching affects, respectively, their QoE
and business. To confirm that a caching provider follows a
strategy it claims to follow, one needs to track the popularity
of the cached items, at a finer granularity than the number of
monthly visitors (which is what is typically disclosed today).
Each caching customer obviously tracks the popularity of its
own items; an interesting question is how much information
they need to exchange in order to collaboratively confirm their
caching provider’s claimed strategy.

Do we really need a definition? One might argue that
we don’t need a formal definition of neutrality: Performance
differences don’t matter, as long as content from all online
services is accessed with good-enough performance, where
“good enough” depends on the application. If end-users care
about neutrality, they should simply monitor the performance
with which they access competing online services; if they
find the differences significant enough to affect their QoE,
they should complain about it. In a competitive world, and as
long as enough end-users care, some cloud provider will offer
the desired behavior in order to attract more customers. This
is a plausible path to neutrality—as long as the cloud world
remains competitive, and as long as switching public-cloud
providers remains a viable option for online services. Then
again, one might argue that a formal definition can only help:
If end-users can access all online services with good-enough
performance, and performance differences don’t significantly
affect QoE and service popularity, then a correct definition
will capture this reality and give us assurance that the Internet
is and will remain neutral.

Acknowledgments
We would like to thank the HotNets reviewers for their in-
sightful feedback.

Caching and Neutrality HotNets’23, November 28-29, 2023, Cambridge, Massachusetts

References
[1] Thomas Bonald, Léonce Mekinda, and Luca Muscariello. 2017. Fair

throughput allocation in Information-Centric Networks. Computer
Networks 125 (2017), 122–131. https://doi.org/10.1016/j.comnet.2017.
05.019 Softwarization and Caching in NGN.

[2] Hao Che, Ye Tung, and Zhijun Wang. 2002. Hierarchical Web caching
systems: modeling, design and experimental results. IEEE Journal on
Selected Areas in Communications 20, 7 (2002), 1305–1314. https:
//doi.org/10.1109/JSAC.2002.801752

[3] Weibo Chu, Mostafa Dehghan, John C.S. Lui, Don Towsley, and Zhi-Li
Zhang. 2018. Joint cache resource allocation and request routing for
in-network caching services. Computer Networks 131 (2018), 1–14.
https://doi.org/10.1016/j.comnet.2017.11.009

[4] Mostafa Dehghan, Weibo Chu, Philippe Nain, Don Towsley, and Zhi-Li
Zhang. 2019. Sharing Cache Resources Among Content Providers: A
Utility-Based Approach. IEEE/ACM Transactions on Networking 27, 2
(2019), 477–490. https://doi.org/10.1109/TNET.2018.2890512

[5] Mostafa Dehghan, Laurent Massoulié, Don Towsley, Daniel Sadoc
Menasché, and Y. C. Tay. 2019. A Utility Optimization Approach to
Network Cache Design. IEEE/ACM Transactions on Networking 27, 3
(2019), 1013–1027. https://doi.org/10.1109/TNET.2019.2913677

[6] Marcel Dischinger, Massimiliano Marcon, Saikat Guha, Krishna P.
Gummadi, Ratul Mahajan, and Stefan Saroiu. 2010. Glasnost: Enabling
End Users to Detect Traffic Differentiation. In Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementation
(NSDI’10). USENIX Association, USA, 27.

[7] Guilherme Domingues, Edmundo de Souza e Silva, Rosa M.M. Leão,
Daniel S. Menasché, and Don Towsley. 2017. Enabling opportunistic
search and placement in cache networks. Computer Networks 119
(2017), 17–34. https://doi.org/10.1016/j.comnet.2017.03.005

[8] Stratis Ioannidis and Edmund Yeh. 2016. Adaptive Caching Networks
with Optimality Guarantees. ACM SIGMETRICS Perform. Eval. Rev.
44, 1 (jun 2016), 113–124. https://doi.org/10.1145/2964791.2901467

[9] Bo Jiang, Philippe Nain, and Don Towsley. 2018. On the Con-
vergence of the TTL Approximation for an LRU Cache under In-
dependent Stationary Request Processes. ACM Trans. Model. Per-
form. Eval. Comput. Syst. 3, 4, Article 20 (sep 2018), 31 pages.
https://doi.org/10.1145/3239164

[10] Fangfan Li, Arian Akhavan Niaki, David Choffnes, Phillipa Gill, and
Alan Mislove. 2019. A Large-Scale Analysis of Deployed Traffic
Differentiation Practices. In Proceedings of the ACM Special Inter-
est Group on Data Communication (SIGCOMM ’19). Association
for Computing Machinery, New York, NY, USA, 130–144. https:
//doi.org/10.1145/3341302.3342092

[11] Yuezhou Liu, Yuanyuan Li, Qian Ma, Stratis Ioannidis, and Edmund
Yeh. 2021. Fair Caching Networks. ACM SIGMETRICS Perform.
Eval. Rev. 48, 3 (mar 2021), 89–90. https://doi.org/10.1145/3453953.
3453973

[12] Valentina Martina, Michele Garetto, and Emilio Leonardi. 2014. A uni-
fied approach to the performance analysis of caching systems. In IEEE
INFOCOM 2014 - IEEE Conference on Computer Communications.
2040–2048. https://doi.org/10.1109/INFOCOM.2014.6848145

[13] Nitish Panigrahy, Jian Li, Faheem Zafari, Don Towsley, and Paul Yu.
2021. A TTL-based Approach for Content Placement in Edge Networks.
1–21. https://doi.org/10.1007/978-3-030-92511-6_1

[14] Karthikeyan Shanmugam, Negin Golrezaei, Alexandros G. Dimakis,
Andreas F. Molisch, and Giuseppe Caire. 2013. FemtoCaching: Wire-
less Content Delivery Through Distributed Caching Helpers. IEEE
Transactions on Information Theory 59, 12 (2013), 8402–8413. https:
//doi.org/10.1109/TIT.2013.2281606

[15] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning:
An Introduction. A Bradford Book, Cambridge, MA, USA.

[16] William Uther. 2010. Markov Decision Processes. Springer US, Boston,
MA, 642–646. https://doi.org/10.1007/978-0-387-30164-8_512

[17] Edmund Yeh, Tracey Ho, Ying Cui, Michael Burd, Ran Liu, and Derek
Leong. 2014. VIP: A Framework for Joint Dynamic Forwarding and
Caching in Named Data Networks. In Proceedings of the 1st ACM
Conference on Information-Centric Networking (ACM-ICN ’14). As-
sociation for Computing Machinery, New York, NY, USA, 117–126.
https://doi.org/10.1145/2660129.2660151

https://doi.org/10.1016/j.comnet.2017.05.019
https://doi.org/10.1016/j.comnet.2017.05.019
https://doi.org/10.1109/JSAC.2002.801752
https://doi.org/10.1109/JSAC.2002.801752
https://doi.org/10.1016/j.comnet.2017.11.009
https://doi.org/10.1109/TNET.2018.2890512
https://doi.org/10.1109/TNET.2019.2913677
https://doi.org/10.1016/j.comnet.2017.03.005
https://doi.org/10.1145/2964791.2901467
https://doi.org/10.1145/3239164
https://doi.org/10.1145/3341302.3342092
https://doi.org/10.1145/3341302.3342092
https://doi.org/10.1145/3453953.3453973
https://doi.org/10.1145/3453953.3453973
https://doi.org/10.1109/INFOCOM.2014.6848145
https://doi.org/10.1007/978-3-030-92511-6_1
https://doi.org/10.1109/TIT.2013.2281606
https://doi.org/10.1109/TIT.2013.2281606
https://doi.org/10.1007/978-0-387-30164-8_512
https://doi.org/10.1145/2660129.2660151

	Abstract
	1 Introduction
	2 Then and Now
	3 Caching (Obviously) Matters
	4 A Neutral-Caching Theory?
	4.1 Fair Caching
	4.2 Neutrality as Long-term Fairness

	5 Discussion
	References

