

Tutorial

Symmetry in Shapes Theory and Practice

Niloy Mitra Maksim Ovsjanikov
ஃIC． ÉCOLE POLYTECHNIQUE

ParisTech

Mark Pauly

FÉDÉRALE DE LAUSANNE

Michael Wand Duygu Ceylan
リリリリ FÉDÉRALE DE LAUSANNE

E

Geometry

$\gamma \varepsilon \omega \mu \varepsilon \tau \rho i ́ \alpha$

$$
\text { geo }=\text { earth }
$$

metria $=$ measure

"The branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space."

Symmetry

$\sigma v \mu \mu \varepsilon \tau \rho i ́ \alpha$

1. "similarity, correspondence, or balance among systems or parts of a system
2. "an exact correspondence in position or form about a given point, line, or plane"
3. "beauty or harmony of form based on a proportionate arrangement of parts"

Symmetry

Symmetry

Symmetry

Group Theory

- Mathematical language of symmetry

Transformations

Symmetry Groups

Symmetry as invariance to transformations

$$
\begin{aligned}
& \text { Rotation by } \frac{360^{\circ}}{5}=72^{\circ} \\
& 2 \cdot \frac{360^{\circ}}{5}=144^{\circ} \\
& 3 \cdot \frac{360^{\circ}}{5}=216^{\circ} \\
& 4 \cdot \frac{360^{\circ}}{5}=288^{\circ} \\
& 5 \cdot \frac{360^{\circ}}{5}=360^{\circ}=0^{\circ} \\
& \downarrow
\end{aligned}
$$

Cyclic Group C_{5}

Symmetry Groups

Symmetry as invariance to transformations

$$
\begin{aligned}
\text { Rotation by } \frac{360^{\circ}}{5} & =72^{\circ} \\
2 \cdot \frac{360^{\circ}}{5} & =144^{\circ}
\end{aligned}
$$

$$
3 \cdot \frac{360^{\circ}}{5}=216^{\circ}
$$

Reflection

$$
4 \cdot \frac{360^{\circ}}{5}=288^{\circ}
$$

$$
5 \cdot \frac{360^{\circ}}{5}=360^{\circ}=0^{\circ}
$$

$$
\downarrow
$$

Dihedral Group D_{5}

Symmetry Groups

Group Generators \quad Dihedral Group D_{5}

Symmetry Groups

Group Axioms

Dihedral Group D_{5}

- Closure $\quad a, b \in G \rightarrow a \cdot b \in G$

$$
a \cdot b=\operatorname{Ref} . \mathrm{A} \cdot \operatorname{Ref} . \mathrm{B}=\operatorname{Rot} .288^{\circ}
$$

Symmetry Groups

Group Axioms

Dihedral Group D_{5}

- Closure $\quad a, b \in G \rightarrow a \cdot b \in G$
- Associative $\quad a, b, c \in G \rightarrow(a \cdot b) \cdot c=a \cdot(b \cdot c)$

Symmetry Groups

Group Axioms

Dihedral Group D_{5}

- Closure $\quad a, b \in G \rightarrow a \cdot b \in G$
- Associative $\quad a, b, c \in G \rightarrow(a \cdot b) \cdot c=a \cdot(b \cdot c)$
- Identity $\quad \exists 1 \in G \rightarrow \forall a \in G: 1 \cdot a=a \cdot 1=a$

Symmetry Groups

Group Axioms

Dihedral Group D_{5}

- Closure $\quad a, b \in G \rightarrow a \cdot b \in G$
- Associative $\quad a, b, c \in G \rightarrow(a \cdot b) \cdot c=a \cdot(b \cdot c)$
- Identity $\quad \exists 1 \in G \rightarrow \forall a \in G: 1 \cdot a=a \cdot 1=a$
- Inverse $\quad \forall a \in G \exists b \rightarrow a \cdot b=b \cdot a=1$

Rot. 72°

Rot. 288°

Symmetry Groups

dihedral group D_{5}

cyclic group C_{3}

infinite group $O(2)$

Symmetry Groups

Group Generators

Rot + Trans

Rot + Scale

Rot \times Trans

Trans \times Trans

Rot \times Scale

Patterns

1D - Frieze Groups

$T+$ glide reflection (GR)

horizontal reflection (HR)

2D - Wallpaper Groups

Symmetry Groups?

Metal Foam

Human Brain

Antibody

Spiral Galaxy

Roof Construction

Design by F. Gehry

Classification

Global vs. Partial

(a) complete symmetry group on parts of a shape

(b) partial translational symmetry

(c) partial rotational symmetry

Classification

Global vs. Partial

Exact vs. Approximate

Classification

Global vs. Partial

Exact vs. Approximate
Intrinsic vs. Extrinsic

Understanding Geometry

Understanding Geometry

Symmetry encodes Redundancy

Symmetry \& Information

Symmetry is Absence of information

"100 Random Points"
"A $10 x 10$ Regular Grid of Points"

Symmetry \& Information

Symmetry is Absence of information

\rightarrow structure discovery by minimizing representation cost

Symmetry \& Information

Symmetry is Absence of information

\rightarrow structure discovery by minimizing representation cost

