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Introduction

The tension-tension fatigue behavior of angle-ply GFRP laminate is
studied in this work. The main objective is to develop an efficient
methodology to obtain time- and cycle-dependent properties
considering their interaction. Different aspects of time-dependent
deformation on fatigue behavior are discussed. The S-N curves are
adjusted according to the true stress state resulting from large
creep deformation under fatigue loading. Moreover, the effect of
fiber orientation on fatigue stiffness evolution is investigated. A
simple analysis is performed to exclude the stiffening effect due to
fiber orientation from the monitored fatigue stiffness evolution,
which provides the fatigue stiffness evolution due to pure fatigue
damage. An experimental methodology is proposed for time-
dependent properties to evaluate the effect of fatigue damage on
viscoelastic properties. DMA experiments were used to obtain the
time-dependent properties of the fatigue-damaged specimen.
Finally, this work presents the feasibility of extending the time-
temperature superposition principle to time-temperature-fatigue
damage superposition, aiming to predict the viscoelastic properties
depending on the fatigue damage level.

Methodology

Results

Cycle-dependent properties

Figure 3. Decomposition of fatigue stiffness evolution due
to fiber reorientation and fatigue damage high and low
stress levels at R-ratio of (a) R=0.1, (b) R=0.5, and (c) R=0.8
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Conclusion
For cycle-dependent properties, the S-N curves were underestimated
due to the increasing stress state under fatigue loading, i.e., resulting
from large creep deformation, especially for higher R-ratio and stress
levels. A simple analysis was performed to decompose the stiffening
effect due to fiber orientation from the fatigue damage stiffness
evolution, which provides more accurate residual stiffness models
representing the pure fatigue degradation. An experimental
methodology using DMA testing was suggested to evaluate the effect of
fatigue damage on viscoelastic properties. The results have shown the
feasibility of using the time-temperature superposition principle for
damaged material, which can provide viscoelastic properties depending
on the fatigue damage level. Finally, the evolution of DIC
measurements and failure surfaces has shown that depending on the R-
ratio, the damage distribution and failure modes could differ under
creep and fatigue-dominated loading.
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Figure 2. (a) Stress-strain for same the GFRP laminates
fabricated (b) S-N curves for R-ratio of 0.1, 0.5, and 0.8,
before (dashed lines and unfilled shapes) and after (solid
lines and filled shapes) stress adjustment
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Time-dependent properties

Damage initiation and propagation

Figure 5. The DIC measurements for longitudinal strain during
fatigue tests for R-ratios of 0.1 (top), 0.5 (middle) and 0.8
(bottom) as well as their failure modes

Figure 4. (a) Creep strain curves obtained from creep-
recovery tests for temperatures in the range of 25–75 °C
on (a) undamaged GFRP laminate, (b) Damaged specimens
cut from fatigue test of S0.46_R0.1 (The top-left position
in the DIC image), (c) Comparison of creep master curves

Figure 1. Flowchart for creep-fatigue interaction modeling
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Creep-fatigue interaction:
• Modeling time-dependent (viscoelastic)

properties in terms of fatigue damage level
under loading

• Modeling viscoelastic deformation effect
on cycle-dependent properties (fatigue
stiffness, strength)

Cycle-dependent properties:
❖ Fatigue testing for residual strength and

stiffness models considering viscoelastic
deformation and resulting fiber orientation

Time-dependent properties:
❖ DMA testing and TTSP for fatigue-damaged

material

❖ The S-N curves for fatigue testing of [±45]2s

GFRP laminates for R=0.1, 0.5 and 0.8 has been
modified for stress increase resulting from
viscoelastic deformation.

❖ Residual fatigue stiffness has been decomposed
for fatigue damage degradation and stiffening
effect due to fiber reorientation

❖ DMA Creep-recovery tests with 1 and 2 hours for

creep and recovery parts

❖ TTSP for the temperatures range from 25 to 75 °C

❖ Derivation of creep master curve for damaged and

undamaged material

❖ Correlation of fatigue damage levels and

accelerated creep behavior

❖ DMA Creep-recovery tests with 1 and 2 hours for

creep and recovery parts

❖ TTSP for the temperatures range from 25 to 75 °C

❖ Derivation of creep master curve for damaged and

undamaged material


