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Abstract—Solid-State Transformers with Input-Series/Output-
Parallel configuration offer a convenient solution for AC/DC
conversion due to their scalability and modularity. In this configu-
ration, each module experiences a second-order harmonic ripple
caused by local single-phase AC/DC conversion. To neutralize
this ripple, Active Power Filters can be installed, eliminating the
need for oversized DC-bus capacitances. However, the presence
of multiple APFs, working at the same time, can lead to dynamic
interactions and potential instability due to the coupling between
different ISOP SST modules. This study examines the mutual
dynamics arising from multiple APFs in ISOP SSTs. It is
shown that ensuring stability for the operation of a single APF
does not automatically guarantee the overall stability when all
APFs are simultaneously enabled. To study this phenomenon, an
analysis approach based on the Generalized Nyquist Criterion
for Multi-Input/Multi-Output systems is derived. Through the
proposed approach, the closed-loop stability only needs to be
verified towards two equivalent SST impedances that intrinsically
considers the mutual coupling. This provides a simple design
and verification tool for the APF controller, and the results are
validated experimentally using a single-phase ISOP SST.

Index Terms—Input-Series/Output-Parallel (ISOP), Solid-
State Transformer (SST), Active Power Filter (APF), Multi-
Input/Multi-Output (MIMO) Stability.

I. INTRODUCTION

SOLID State Transformers (SSTs) have recently emerged
as a promising solution to offer efficient, reliable, and

flexible power conversion in many different application ar-
eas, ranging from renewable energy integration to industrial
applications and traction [1]–[6]. They are aimed at offering
the same characteristics as conventional power transformers
(e.g., voltage/current scaling, galvanic insulation, etc...) with
the improved benefits offered by power electronics in terms of
enhanced controllability and increased flexibility, and with the
possibility to be employed not only for AC/AC conversion,
but also in DC/DC and hybrid AC/DC systems.

Among various SST configurations, the Input-Series/Output
Parallel (ISOP) architecture has attracted significant attention
thanks to its scalability and modularity. In an ISOP SST,
multiple modules are connected in series on the primary side to
achieve high voltage ratings, and in parallel on the secondary
side to achieve high current ratings [1], [2], [4]–[6].
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In case of AC/DC conversion, each ISOP SST module typi-
cally incorporates a dedicated single-phase AC/DC conversion
stage. However, as known, their operation introduces a power
oscillation at twice the AC line frequency, that could adversely
affect the DC-bus voltage of each module and, in single-phase
configurations, may even propagate to the secondary side of
the overall converter [7].

The mitigation of the second-order harmonic could be
accomplished by installing large capacitor banks or employing
LC trap filters, that could potentially completely eliminate the
ripple. However, due to the relatively low frequency of the
oscillating power (e.g., 100Hz, 120Hz, or 33.3Hz for AC
systems operating at 50Hz, 60Hz, or 16.7Hz, respectively),
these passive solutions result in increased system bulkiness,
thereby impacting the overall dimensions, weight, and, conse-
quently, power density of the converter [8].

An alternative approach consists in employing Active Power
Filters (APFs) as supplementary power electronic conversion
structures that are controlled to counteract the power ripple
resulting from the single-phase AC/DC conversion [9]–[13]
(see Fig. 1). In the presence of APFs, there is no need to
size the DC bus capacitors of the ISOP SST modules for
second-order harmonic ripple suppression. Instead, they can
be downsized to enhance the overall system’s compactness.

Each APF can be designed to locally counteract the second-
order harmonic voltage of the module where it is installed,
employing a closed-loop control selectively acting on a sin-
gle frequency of interest. However, in the context of ISOP

APF
DC

DC

AC

DC
AC

DC
AC

DC

v
D

C
,1

+

−

APF
DC

DC

v
D

C
,2

+

−

APF
DC

DC

v
D

C
,N

+

−

v
D

C
,out

+

−

iAPF,N

APF

APF

APF

vr

ZSST

vDC,1
+

−

vDC,2
+

−

vDC,N
+

−

iAPF,1

iAPF,2

Fig. 1. Schematic representation of an ISOP SST equipped with Active Power
Filters (left) and modeling of the SST as a Multi-Input/Multi-Output Thevenin
equivalent circuit seen from the DC-bus ports (right).
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configurations, it is important to note that all the modules
of the SST are intricately interconnected, creating dynamic
coupling effects. This means that the SST effectively behaves
as a dynamical interconnection network, and each APF may
affect not only the module where it is installed, but also all
the others [14].

This mutual interaction among the SST modules has been
explored in [14], primarily focusing on its impact on the
steady-state operating conditions. It has been shown that
the coupling between the SST modules may lead to some
resonances in the system and, when only a subset of the APFs
is in operation, the effects on some DC-bus voltages may be
even worse than in case when all APFs are inoperative.

This work goes a step further and puts its emphasis on the
dynamical performance aspects and on their implication for
the system stability. In what follows, it is demonstrated that
ensuring the stable closed-loop operation of each individual
APF alone is insufficient to guarantee overall system stability
when multiple APFs operate concurrently. Instead, it becomes
imperative to establish more stringent requirements for the
closed-loop system as a whole.

In the proposed approach, the ISOP SST is analyzed
as a Multi-Input/Multi-Output (MIMO) dynamical system,
and the mutual interactions between different modules are
mathematically formulated through an equivalent impedance
matrix. Then, based on the Generalized Nyquist Criterion
(GNC), a simplified approach is developed to assess the
overall system stability, which relies on the analysis of the
APF controller when interacting in feedback with only two
equivalent impedances, that are inherently including the impact
of mutual coupling effects within the SST.

The rest of the paper is structured as follows. First, Sec-
tion II introduces the mathematical model of the ISOP SST as
an equivalent MIMO system. Then, the closed-loop stability
analysis is discussed in Section III, which first deals with the
isolated operation of a single APF, and then examines the
simultaneous operation of all units. The stability analysis using
the GNC and the simplified approach are also explained in the
same Section. Afterwards, Section IV presents the analyzed
setup and provides an example how the equivalent impedances
of an ISOP SST can be evaluated using a simplified equivalent
circuit. The experimental validation of the proposed approach
is presented in Section V. It is proven and verified that even
when an APF is stable when operating independently from
others, some instabilities may occur when multiple units are
operating at once, which can be predicted by the proposed
analysis approach. Finally Section VI summarizes the conclu-
sions of this work.

II. MATHEMATICAL MODEL

The analyzed architecture is an ISOP SST composed of N
identical conversion modules. Each module is composed of
an AC/DC conversion stage, a local DC-bus capacitance, and
an isolated DC/DC conversion stage. An APF is connected
in parallel to the DC-bus terminals of each module. The
schematic representation of the circuit is shown in Fig. 1.

In what follows, the DC-bus voltage of each floating module
of the SST is denoted as vDC,k (with k = 1, . . . , N ), while
the output voltage of the overall SST, which is common to
all modules in the ISOP configuration, is denoted as vDC,out.
In absence of any APF, the DC-bus of any k-th conversion
module is affected by a second-order harmonic ripple, and the
corresponding voltage is denoted as vr,k.

By installing an APF on the k-th SST module, it is possible
to inject a controlled current iAPF,k on the corresponding DC-
bus. This current can be used to affect the DC-bus voltage
vDC,k in a way to contrast the second-order harmonic ripple
and make vDC,k differ from vr,k. However, due to the mutual
coupling existing between different modules in the ISOP
configuration (which is mainly due to the effect of the DC/DC
conversion stages), the current iAPF,k can also alter the DC-
bus voltages of the other SST modules vDC,h (with h ̸= k).

In the linear approximation, the relationship between the
DC-bus voltages and the APF currents can be expressed in
the Laplace domain as:

vDC,1

vDC,2

...
vDC,N


︸ ︷︷ ︸
vDC(s)

=


vr,1
vr,2

...
vr,N


︸ ︷︷ ︸
vr(s)

−


Z1,1 Z1,2 · · · Z1,N

Z2,1 Z2,2 · · · Z2,N

...
...

. . .
...

ZN,1 ZN,2 · · ·ZN,N


︸ ︷︷ ︸

ZSST (s)

·


iAPF,1

iAPF,2

...
iAPF,N


︸ ︷︷ ︸
iAPF (s)

(1)

where the explicit dependence on the Laplace complex
variable s has been omitted for notation compactness.
The expression (1) can be interpreted as a Multi-Input/Multi-
Output (MIMO) Thevenin equivalent of the ISOP SST, seen
from DC-bus terminals of each module, as schematically
represented in the right plot of Fig. 1.

The impedance Zk,h(s) identifies the effect of the APF
current iAPF,k(s) on the DC-bus voltage vDC,h(s). In the
reasonable assumption that all SST modules are identical, it
results that:

Zk,k(s) = ZA(s) (with k = 1, . . . , N) (2)
Zk,h(s) = ZM (s) (with k, h = 1, . . . , N, and k ̸= h) (3)

where the impedance ZA(s) represents a self-induced con-
tribution of each module, while ZM (s) identifies the mu-
tual influence of different modules. Therefore, the equivalent
impedance matrix ZSST (s) is symmetric, and equal to:

ZSST (s) =


ZA ZM · · · ZM

ZM ZA · · · ZM

...
...

. . .
...

ZM ZM · · · ZA

 (4)

III. STABILITY ANALYSIS

As previously mentioned, the role of each APF is to
absorb a controlled current from the corresponding DC-bus
terminals, in a way to contrast the second-order harmonic
ripple introduced by the AC/DC conversion stages. In absence
of a centralized control, the current iAPF,k is computed only
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from the measured DC-bus voltage vDC,k. In linearity, the
relationship can be expressed in the Laplace domain as:

iAPF,k(s) = YAPF (s) · vDC,k(s) (5)

The controller transfer function YAPF (s) can be interpreted
as an equivalent admittance connected in parallel to the DC-
bus terminals of the k-th SST module. If YAPF (jω) has an
infinite magnitude at the frequency 2ωAC of the harmonic
injection, the APF would mimic the effect of an ideal trap
filter, and the corresponding voltage ripple vDC(j2ωAC) can
be perfectly neutralized in steady-state conditions. On the
contrary, the APF should have negligible effect at all other
frequencies, and it should especially have no influence on the
DC voltage. Therefore, YAPF (s) can be realized to include a
resonant behavior at 2ωAC , and to be zero for ω = 0.

A. Stability of a single Active Power Filter
When a single APF is enabled, it results that:

vDC,k(s) = vr,k(s)− ZA(s) · iAPF,k(s) =

= vr,k(s)− ZA(s) · YAPF (s) · vDC,k(s)
(6)

meaning that the voltage vDC,k on the corresponding DC-bus
terminals is given by

vDC,k(s) =
1

1 + ZA(s) · YAPF (s)︸ ︷︷ ︸
SAPF (s)

· vr,k(s) (7)

Therefore, the stability of a single APF connected to the SST
can be analyzed from the poles of the sensitivity function
SAPF (s) = 1/[1 + ZA(s) · YAPF (s)]. As known, this can
be done by studying the open loop transfer function L(s) =
ZA(s) · YAPF (s) through the Nyquist stability criterion. By
knowing the impedance ZA(s), the APF controller YAPF (s)
can be designed to achieve the desired performances while
providing acceptable gain and phase margins.

B. Stability of multiple Active Power Filters
By considering the case where all APFs are enabled, the

vector iAPF (s) in (1) can be expressed as:
iAPF,1

iAPF,2

...
iAPF,N


︸ ︷︷ ︸

iAPF (s)

=


YAPF 0 · · · 0
0 YAPF · · · 0
...

...
. . .

...
0 0 · · ·YAPF


︸ ︷︷ ︸

Y APF (s)

·


vDC,1

vDC,2

...
vDC,N


︸ ︷︷ ︸

vDC(s)

(8)

By combining (1) and (8), it can be derived that:

vDC(s) = vr(s)−ZSST (s) · iAPF (s) =
= vr(s)−ZSST (s) · Y APF (s) · vDC(s)

(9)

which can be rearranged to get

vDC(s) =
[
I +ZSST (s) · Y APF (s)

]−1︸ ︷︷ ︸
S(s)

·vr(s) (10)

The expression (10) is the MIMO counterpart of (7), and the
open-loop transfer matrix L(s) = ZSST (s) ·Y APF (s) affects
the stability by determining the poles of the sensitivity matrix
S(s) =

[
I + ZSST (s) · Y APF (s)

]−1
. Since (10) is a matrix

expression, it means that all the N installed APFs interact with
the SST and can potentially influence one another.

Given the symmetry property (4) of ZSST (s), it can be
proven that the sensitivity matrix also shows a similar sym-
metry, and can be expressed as:

S(s) =


SA SM · · · SM

SM SA · · · SM

...
...

. . .
...

SM SM · · · SA

 (11)

with SA(s) and SM (s) being expressed as in (12)-(13).
To guarantee the stability of the SST with the simultaneous

functioning of all APFs, both SA(s) and SM (s) should be
stable. However, as can be seen from (12)-(13), their expres-
sions depend on both ZA(s) and ZM (s). Only if ZM (s) = 0
(i.e., in absence of any mutual interaction), then SM (s) = 0
and the expression of SA(s) is equivalent to (7), meaning
that the ISOP SST behaves as N independent modules that
can be studied individually. In all other cases, the mutual
influence of the modules cannot be neglected, and this means
that guaranteeing the stability of a single APF in operation
(which is assessed from (7)) is not enough to automatically
guarantee the stability of the system with N APFs. Indeed,
dynamically interactions may arise between different modules
through the effect of the mutual inductance ZM (s).

C. Stability Analysis with the Generalized Nyquist Criterion

The expressions (12)-(13) can be used to evaluate the
stability of the SST with all the APFs in operation. However,
those expressions are way too complicated to be used for
the design of the APF controller YAPF (s). Therefore, an
alternative approach is developed in the following.

By considering the coupling of the SST and of all the
APFs as a MIMO dynamical system, the stability can be as-
sessed by applying the Generalized Nyquist Criterion (GNC).
Among different equivalent formulations of the GNC, the one
used in this work is based on the evaluation of the eigenvalues
of the loop gain transfer matrix L(s) = ZSST (s) · Y APF (s)
(which, it is worth emphasizing, are N transfer functions

SA(s) =
[YAPFZA + (N − 2) · YAPFZM + 1]

[1 + YAPFZA] · [YAPFZA + (N − 2) · YAPFZM + 1]− (N − 1) · [YAPFZM ]2
(12)

SM (s) =
−[YAPFZM ]

[1 + YAPFZA] · [YAPFZA + (N − 2) · YAPFZM + 1]− (N − 1) · [YAPFZM ]2
(13)

(the explicit dependence of ZA, ZM and YAPF on the Laplace complex variable s has been omitted for notation compactness)
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depending on the Laplace complex variable s, sometimes
referred to as eigenloci) [16].

To be more specific, the GNC states that the stability of the
closed-loop system S(s) =

[
I +ZSST (s) · Y APF (s)

]−1
can

be assessed by observing the Nyquist plot of the eigenvalues
of L(s). Since L(s) does not have poles with positive real
part, if the Nyquist plot of all its eigenvalues do not encircle
the critical point (−1 + j0) of the complex plane, then the
closed-loop system S(s) is stable [16].

Considering that Y APF (s), as expressed in (8), is a diagonal
matrix with all terms being equal, the eigenvalues of the open-
loop transfer matrix L(s) = ZSST (s) · Y APF (s) can be
easily found from the eigenvalues of the impedance matrix
ZSST (s). Indeed, if Zλ(s) is used to denote an arbitrarily
chosen eigenvalue of Z(s) and xλ(s) is a corresponding
eigenvector, then, by definition:

ZSST · xλ = Zλ · xλ (14)

and, if the same vector xλ(s) is multiplied by L(s), by
combining (8) with (14), it results:

L · xλ = ZSST · Y APF · xλ =

= Zλ · YAPF · xλ = Lλ · xλ

(15)
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Fig. 2. The Power Electronics Traction Transformer (PETT), analyzed as
example of an ISOP SST: Top) Circuit Topology; Bottom) Experimental setup.

This means that Lλ(s) = Zλ(s) ·YAPF (s) is an eigenvalue of
L(s) corresponding to the same eigenvector xλ(s). In other
words, L(s) and ZSST (s) have the same eigenvectors, and
their eigenvalues are just weighted by the transfer function
YAPF (s) of the APF controller.

Given the symmetry property (4), ZSST (s) only has two
distinct eigenvalues Zλ,1(s) and Zλ,2(s), expressed as:

Zλ,1(s) = ZA(s)− ZM (s) (16)
Zλ,2(s) = ZA(s) + (N − 1) · ZM (s) (17)

(with Zλ,1(s) having multiplicity (N − 1), and Zλ,2(s) hav-
ing multiplicity 1). The analytical derivation of (16)-(17) is
provided in the Appendix. As can be noted, Zλ,1(s) only
depends on the difference between ZA(s) and ZM (s), while
Zλ,2(s) also depends on the number of modules N of the ISOP
SST. This means that, the higher is the mutual impedance and
the number of modules, the stronger is the coupling existing
between different APFs in operation.

Therefore, from (15), the stability of the overall ISOP SST
with the presence of all N APFs can be assessed by analyzing
the Nyquist plot of the two open-loop transfer functions:

Lλ,1(s) = Zλ,1(s) · YAPF (s) (18)
Lλ,2(s) = Zλ,2(s) · YAPF (s) (19)

meaning that Zλ,1(s) and Zλ,2(s) behave as equivalent
impedances for the overall ISOP SST.

To summarize, the transfer function YAPF (s) should not
only be verified towards the impedance ZA(s) of a single SST
module, but also towards the equivalent impedances Zλ,1(s)
and Zλ,2(s) of the overall coupled system. If compared to
the analysis of (12)-(13), this approach drastically simplifies
the evaluation of the stability of the SST, which can also be
helpful in improving a more robust design.

IV. EVALUATION OF THE ISOP SST IMPEDANCES

A. Experimental Setup

The experimental setup adopted in this work is a single-
phase ISOP SST based on the low voltage prototype of the
Power Electronic Traction Transformer (PETT) described in
[5] and represented in Fig. 2. This converter is currently used
as a research platform to analyze and improve the design and
the control software development for ISOP SST converters.

The circuit architecture of the PETT, schematically repre-
sented in Fig. 2), is composed of N = 9 identical modules,
each of which includes a non-isolated AC/DC conversion stage
and a galvanically isolated DC/DC conversion stage.

In the considered setup, the isolated DC/DC conversion
stages are realized with an LLC Series Resonant Conversion
architecture, implemented with a half-bridge leg and a split-
capacitor. The primary-side half-bridge legs are operated in
open-loop with a 50% duty-cycle modulation at a frequency
slightly lower than the resonance frequency of the LLC tank,
in order to achieve soft-switching operation [4]–[6].

The AC/DC conversion stages are based on a full-bridge
architecture. They are operated in closed-loop to control the
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TABLE I
USED PARAMETERS OF THE PETT

Parameter Value
Rated Power P 8 kW
AC Grid Voltage (RMS) VAC,RMS 800V
AC Grid Frequency fAC 50Hz
Number of ISOP Modules N 9
Primary DC Voltage (single module) VDC 220V
Primary DC Capacitance (single module) Cp,LLC 375 µF
Secondary DC Voltage VDC,out 220V
Secondary DC Capacitance (equivalent) Cs,LLC 680 µF
LLC Resonant Inductance Lres 135 µH
LLC Resonant Capacitance Cres 60 µF
LLC Magnetizing Inductance Lmag 13mH
LLC Transformation Ratio N1/N2 1
AC/DC Switching Frequency fAC/DC 317Hz
DC/DC Switching Frequency fDC/DC 1.5 kHz
APF Apparent Power SAPF 1 kVA
APF Buck Inductance LAPF 200 µH
APF Buck Capacitance CAPF 360 µF
APF Buck Capacitor Voltage (DC offset) V ∗

C 160V
APF DC-bus Capacitance Cp,APF 120 µF
APF Switching Frequency fsw,APF 10 kHz

AC grid current in a way to transfer, with unitary power factor,
a desired power flow. The transferred power is itself obtained
from a closed-loop controller with the aim of stabilizing the
DC-bus voltage on the secondary side of the overall ISOP
SST. A phase shift pulse width modulation is implemented
to control the full-bridge converters. With this technique,
by shifting the carrier of the 9 modules by 1/9 of their
period, it is possible to improve the harmonic content of
the equivalent voltage generated on the AC side, despite the
relatively low switching frequency. At the same time, the
switching harmonics generated by the AC/DC converters on
the DC-bus currents of the 9 modules, once combined at
the parallel output of the ISOP structure, cancel one another,
meaning that the switching harmonics do not propagate to the
secondary side of the SST [4]–[7].

The parameters of the PETT are summarized in Table I.
A Buck-type second-order harmonic active power filter has

been installed in each of the 9 floating DC-buses of the PETT,
as represented in the circuit diagram of Fig. 2. The main
parameters of the APFs are also provided in Table I.

As described in [7], the presence of the APFs allowed
the reduction of the primary-side DC-bus capacitance of each
ISOP module from 4mF to 375 µF, and the reduction of the
secondary-side DC-bus capacitances from 2.35mF to 680 µF.
Indeed, thanks to the APFs, the DC-bus capacitances do not
need to be sized for the suppression of the second-order
harmonic ripple, and is instead only subject to the switching
harmonics produced by the conversion stages of the SST.

For all the further analysis, the 9 APFs have been controlled
to implement the same transfer function YAPF (s), and each
reference current iAPF,k has been computed based solely on
the measurement of the local DC-bus voltage vDC,k. This
current reference is then tracked by a low-level controller of
the buck-type circuit, which operates based on the control of
the instantaneous energy stored in the APF capacitor CAPF .

Additional details about the hardware and the low-level control
software can be found in [5], [7].

B. Evaluation of the Equivalent Impedances

To analyze the system stability using the approach devel-
oped in this work, it is first necessary to know the impedance
matrix ZSST (s) of the ISOP SST.

To do that, it is possible to refer to the equivalent circuit
represented in Fig. 3. In this equivalent circuit, initially de-
veloped in [14], the AC/DC stages are modeled as simple
current sources injecting the second-order harmonic ripple to
the system, the DC load is modeled as a purely resistive
element, and the LLC conversion stages are modeled with a
Π circuit consisting of two shunt capacitors and an ohmic-
inductive branch.

Considering the split-capacitor configuration of the analyzed
system, the equivalent capacitances of each module are one
half of the installed capacitance at the primary-side and
secondary-side of the LLC converters. For the primary side,
the equivalent capacitance Cp takes also into account the
contribution of the local DC-bus capacitance of the APF.

The equivalent inductance and resistance of the LLC con-
verter identify the equivalent stored energy and the equivalent
losses of the DC/DC conversion stage, respectively [15]. For
a split-capacitor configuration they can be approximated as:

LDC ≈ Lres ·
(
πfres/fsw,DC/DC

)2
(20)

RDC ≈ Rres ·
(
π2/2

)
·
(
fres/fsw,DC/DC

)
(21)

with Rres taking into account the overall resistance of the LLC
converter, and fres = 1/(2π

√
LresCres) being the resonance

frequency of the converter [15]. In the considered setup,
LDC ≈ 1.85mH and RDC ≈ 1Ω.

The analytical expressions of ZA(s) and ZM (s) obtained
from the analysis of this equivalent circuit are reported in
(22)-(23). Fig. 4 shows the magnitude and phase diagrams of
the self-impedance ZA and of the mutual impedance ZM for
varying frequencies, obtained considering s = jω in (22)-(23).

It can be noted how both impedances show a resonant
behavior, caused by the interaction between the DC-bus ca-

RloadCp Cs

LDC RDC

ir,1iAPF,1 vDC,1

+

−

Cp Cs

LDC RDC

ir,2iAPF,2 vDC,2

+

−

Cp Cs

LDC RDC

ir,NiAPF,N vDC,N

+

−
ISOP
SST

vDC,out

+

−

A
PF 1

A
PF 2

A
PF N

Fig. 3. Simplified equivalent circuit to analyze the PETT as a MIMO system.
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pacitors and the equivalent inductance of the LLC converters.
Additionally, the phase diagram of ZA shows both positive
and negative values, indicating that for some frequencies the
system behavior is dominated by the DC-bus capacitors, while
for other frequencies it is dominated by the inductive behavior
of the LLC conversion stages.

For the considered system parameters, it can be verified
that the effect of different loading conditions (i.e., obtained
by varying Rload in (22)-(23)) is completely negligible above
10Hz, and therefore it does not play a significant role in the
following stability analysis.

From the knowledge of ZA(s) and ZM (s), using (16)-(17),
it is possible to compute the eigenvalues Zλ,1(s) and Zλ,2(s)
of the SST impedance matrix ZSST (s). Fig. 5 shows their
magnitude and phase diagrams for varying frequency, and
compares it to the corresponding diagrams of ZA(s).

As can be noted, while Zλ,1(s) closely resembles ZA(s)
for a wide frequency range (i.e., from around 20Hz on), the
eigenvalue Zλ,2(s) is sensibly different from ZA(s) until a
much higher frequency (i.e., around 200Hz). As shown in the
following, the sensible difference in the phase diagrams of
these equivalent impedances around 100Hz has a dominant
role on the stability of the closed loop system.

V. EXPERIMENTAL RESULTS

A. Analyzed Test Scenarios

According to the previous analysis, the stability of the
system when a single APF is operating can be assessed from
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Fig. 4. Magnitude and phase diagram of the self-impedance ZA(s) and of
the mutual impedance ZM (s) of the PETT for varying frequency, considering
nominal loading conditions and including the DC-bus capacitance of the APFs.

the open-loop transfer function LA(s) = ZA(s) · YAPF (s),
while the stability of the SST considering the simultaneous
operation of all APFs can be analyzed by referring to the two
open-loop transfer functions Lλ,1(s) = Zλ,1(s) ·YAPF (s) and
Lλ,2(s) = Zλ,2(s) · YAPF (s).

To validate the proposed approach and show the importance
of simultaneously observing the effect on LA(s), Lλ,1(s) and
Lλ,2(s), two test scenarios are analyzed in the following.

In the first test, all the APFs have been programmed to
emulate the transfer function:

YAPF,a(s) =
K1s

s2 + ω2
0

(24)

with K1 = 1.5 and ω0 = 2π · 100Hz.
In the second test, they have instead been programmed to

emulate the transfer function:

YAPF,b(s) =
s(K1 − sK2)

s2 + ω2
0

(25)

with K1 = 1.5, K2 = 8.6 · 10−3 and ω0 = 2π · 100Hz.
Both transfer functions include an ideal resonant term at the

frequency of 100Hz, in a way to provide an infinite gain to
ideally cancel out the second-order harmonic ripple introduced
by the AC/DC converters. They are both designed in a way that
their magnitudes rapidly decay by moving away from 100Hz,
in order to be very selective on a single frequency compo-
nent. However, compared to the transfer function YAPF,a(s)
provided in (24), the transfer function YAPF,b(s) given in (25)
also introduces a phase lag at the resonance frequency.
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Fig. 5. Magnitude and phase diagram of the eigenvalues Zλ,1(s) and Zλ,2(s)
of the SST impedances matrix ZSST (s) for varying frequency. The self-
inductance ZA(s) is also shown for comparison.

ZA(s) =
1

sCp +
1

sLDC +RDC +
1

(N − 1)/Zb(s) +N sCs + 1/Rload

with Zb(s) = sLDC +RDC +
1

sCp
(22)

ZM (s) = ZA(s)·
1/sCp

Zb(s)
· 1

(N − 1)/Zb(s) +N sCs + 1/Rload
· 1

sLDC +RDC +
1

(N − 1)/Zb(s) +N sCs + 1/Rload

(23)
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B. Results with YAPF,a(s)

Considering the expression of YAPF,a(s) provided in (24),
and the expressions of ZA(s), Zλ,1(s) and Zλ,2(s) found in
the previous section, the expressions of LA(s), Lλ,1(s) and
Lλ,2(s) can be easily computed. Their Bode diagrams and
Nyquist diagrams are represented in Fig. 6.

For representation clarity, only positive frequencies are
shown in the Nyquist diagram. Additionally, the presence of
the resonant term in YAPF,a(s) introduces a couple of poles
on the imaginary axis, and the the Nyquist plot is completed
through additional branches with infinite radius, represented
by the dashed traces in Fig. 6.

As can be noted from the Bode diagrams, all the open loop
transfer functions have a very small magnitude in all frequency
range, except in close proximity of 100Hz, which is in line
with the strict selectivity requirement of the APFs. This allows
to simplify the analysis by focusing on the phase behavior
close to the resonance, where the imaginary poles introduce a
−180◦ jump in the phase diagram.
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Fig. 6. Bode diagram (Top) and Nyquist diagram (Bottom) of the open-
loop transfer functions Lλ,1(s), Lλ,2(s) and LA(s), considering the APF
admittance YAPF,a(s) given in (24). In the Nyquist diagrams, only positive
frequencies are shown. The dashed lines represent the behavior at infinite
magnitude radius (obtained in proximity of poles on the imaginary axis).

By first focusing on the behavior of the system with a single
APF in operation, it can be noted that the phase diagram of
LA(s) is around 117◦ when approaching 100Hz, and then
jumps to −63◦. From the Nyquist diagram it can be seen that
the plot does not encircle the critical point −1+ j0, meaning
that the closed-loop system is asymptotically stable, with a
phase margin of around 180◦ − 63◦ = 117◦.

To prove this result, Fig. 7 shows the experimental wave-
forms collected during the activation of a single APF controller
(on the ISOP module 1). The left subplots of the figure show
the measured current iAPF,1 injected by the APF on the SST
module 1, the DC-bus voltage vDC,1 on the same module, the
DC-bus voltage vDC,2 on one of the other modules, and the
secondary-side voltage vDC,out of the overall SST. The right
subplots of Fig. 7, denoted with the superscript ∗⟨2⟩, show the
evolution of the magnitude of the harmonic components at
the 100Hz frequency, computed using a time-varying Fourier
decomposition in a moving time window of 50ms.

As can be noted, after the APF activation (at around 0.25 s),
the current iAPF,1 increases, while the ripple on vDC,1 is
counteracted, and the corresponding second-order harmonic
component is almost completely neutralized in around 3 s.
Relatively small effects can be seen on vDC,2 and vDC,out.

Fig. 8 shows the steady-state waveforms of the same vari-
ables (left plots), and the corresponding harmonic spectra
(right plots). As can be noted, the DC-bus voltage vDC,1

shows almost no harmonic ripple around 100Hz, thanks to
the operation of the APF. The presence of other harmonics
at relatively low frequency in vDC,1, vDC,2 and iAPF,1 is
primarily due to the low switching frequency of the AC/DC
converters (i.e., 317Hz). Thanks to the phase-shift modulation
of the AC/DC stages, these harmonics are not propagated to
the secondary-side of the SST [5]–[7]. However, it is worth
noting that their presence does not impact the stability analysis
presented in this work.

To investigate the system stability when all APFs are simul-
taneously enabled, the open-loop transfer functions Lλ,1(s)
and Lλ,2(s) can be analyzed in the same way, by referring to
the Bode diagrams and Nyquist diagrams of Fig. 6.

With the considered parameters, Lλ,1(s) shows a very
similar behavior to LA(s), and its phase diagram jumps
from around 121◦ to around −59◦ when crossing 100Hz,
providing a phase margin of around 180◦ − 59◦ = 121◦. On
the contrary, Lλ,2(s) shows a quite different phase behavior,
that jumps from around 31◦ to around −149◦ when crossing
100Hz , resulting in a smaller phase margin of just around
180◦−149◦ = 31◦. Nevertheless, also in this case the Nyquist
plot does not encircle the critical point (−1 + j0). Therefore,
since both Lλ,1(s) and Lλ,2(s) are stable, from the previous
analysis it can be inferred that, with the transfer function
YAPF,a(s), the system is asymptotically stable also when all
APFs are enabled at the same time.

To verify this result, Fig. 9 shows the experimental results
obtained by simultaneously activating all 9 APFs of the
system, while Fig. 10 shows the corresponding steady-state
waveforms and harmonic spectra. As can be noted, the system
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is asymptotically stable, and the second-order ripple on all
the DC-bus voltages is properly neutralized, showing only
some small residual components due to system non-idealities.
However, in this case, the dynamic response of the system is
slowed down compared to Fig. 7, and the steady state is only
reached after several seconds.

C. Results with YAPF,b(s)

Similarly to the previous test case, the expressions of LA(s),
Lλ,1(s) and Lλ,2(s) can be immediately found from the
knowledge of the system equivalent impedances and of the
controller transfer function YAPF,b(s) given in (25). Their
Bode and Nyquist diagrams are represented in Fig. 11.

By observing the behavior of LA(s) it can be seen that,
once again, the magnitude of its frequency response is very
small for all frequencies, except in proximity of 100Hz. In

Fig. 7. Experimental results showing the activation of a single APF with the
equivalent admittance YAPF,a(s).

Fig. 8. Steady-state results following the activation of a single APF with the
equivalent admittance YAPF,a(s).

this case, when crossing the resonance frequencies, the phase
diagram jumps from around 42◦ to around −138◦, resulting
in a phase margin of around 180◦ − 138◦ = 42◦. Similarly
to the previous case, the Nyquist diagram of LA(s) does not
encircle the critical point (−1+ j0), meaning that the system
is asymptotically stable when a single APF is in operation.

To prove this result, Fig. 12 shows the experimental wave-
forms of the system collected during the activation of a
single APF implementing YAPF,b(s), while Fig. 13 shows the
corresponding steady-state waveforms and harmonic spectra.

As can be noted, the system is asymptotically stable and,
compared to Fig. 7, it even shows a faster dynamic response
after the activation, reaching steady state in around 1.5 s. The
faster performances of YAPF,b(s) compared to YAPF,a(s) can
be motivated by the presence of the phase lag in (25), which
compensate the phase lead of ZA(s).

Fig. 9. Experimental results showing the simultaneous activation of all APFs
with the equivalent admittance YAPF,a(s).

Fig. 10. Steady-state results following the simultaneous activation of all APFs
with the equivalent admittance YAPF,a(s).
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Fig. 11. Bode diagram (Top) and Nyquist diagram (Bottom) of the open-
loop transfer functions Lλ,1(s), Lλ,2(s) and LA(s), considering the APF
admittance YAPF,b(s) given in (25). In the Nyquist diagrams, only positive
frequencies are shown. The dashed lines represent the behavior at infinite
magnitude radius (obtained in proximity of poles on the imaginary axis).

Fig. 12. Experimental results showing the activation of a single APF with
the equivalent admittance YAPF,b(s).

The steady-state waveforms of Fig. 13 are also similar to
the ones of Fig. 8.

Therefore, from the results of Fig. 12 and Fig. 13, one
may erroneously assume that YAPF,b(s) would also be stable
when implemented in all modules. However, the frequency re-
sponses of Lλ,1(s) and Lλ,2(s) show a considerable difference
compared to the previous case. Indeed, while the frequency
response of Lλ,1(s) is similar to the one of LA(s) (jumping
from around 47◦ to around −133◦ when crossing 100Hz
with a phase margin of around 47◦), the frequency response
of Lλ,2(s) considerably differs in the phase diagram, which
jumps from around −44◦ to around −224◦ when crossing
100Hz, resulting in a negative phase margin of around −44◦.

As can be noted from the Nyquist diagram, while Lλ,1(s)
does not encircle the critical point (−1 + j0), Lλ,2(s) shows
one encirclement caused by the path of infinite radius. There-
fore, in this case, the stability analysis based on the eigenvalues
of the impedance matrix infers that the closed-loop system
with all APFs in simultaneous operation is unstable.

To verify this result, Fig. 14 shows the experimental
waveforms obtained during the simultaneous activation of all
APF units implementing the transfer function YAPF,b(s). To
safeguard the integrity of the laboratory equipment, this test
has been executed in light loading conditions (i.e., less than
1 kW). As can be noted, immediately after the activation of
the APFs (at around 0.25 s), the waveforms of vDC,1, vDC,2

and iAPF,1 start oscillating with an exponentially increasing
magnitude, proving the unstable behavior of the system, until
they reach the threshold levels causing their deactivation.

Despite this example has been intentionally designed to
emphasize the potential instabilities caused by the internal
couplings of the ISOP SST modules, it can be useful to warn
about the possible dangers in developing conclusions based on
the observation of a single APF unit working independently

Fig. 13. Steady-state results following the activation of a single APF with
the equivalent admittance YAPF,b(s).
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Fig. 14. Experimental results showing the simultaneous activation of all APFs
with the equivalent admittance YAPF,b(s).

from the others. Indeed, in attempt to improve the dynamic
behavior of a single APF, one could be tempted to add a phase
compensation based on the angle of ZA(s) in proximity of
ω0 (e.g., around 100Hz). However, by doing so, the phase
diagrams of Lλ,1(s) and Lλ,2(s) would also be affected,
potentially leading to destructive results.

Therefore, to guarantee a robust behavior, the APF con-
troller should be designed taking into account the mutual
coupling effects in the ISOP SST, which may be more or less
relevant according to the system topology and parameters.

It is also important to point out that, in practical imple-
mentation, the real transfer function YAPF (s) obtained by
the APFs can differ from the desired one implemented via
software, since it may be altered by other dynamical effects,
like the low-level controller and/or filters in the hardware
measurement chain. These effects, which have not been ex-
plicitly modeled in the previous analysis, may also need to be
considered to provide adequate stability margins to the system.

VI. CONCLUSIONS

ISOP SST converters suffer a second-order harmonic ripple
caused by a local single-phase AC/DC conversion on each
module. This ripple can be neutralized through active power
filters. However, when multiple APFs are connected to the sys-
tem, mutual interactions may arise between them, caused by
coupling between different modules of the ISOP configuration,
which could potentially lead to instability.

The main contributions of this work are the analysis of
the dynamic interactions between the SST and the APFs
through a Multi-Input/Multi-Output system formulation and
the development of a simple and effective approach to assess
the stability, based on the Generalized Nyquist Criterion.

It has first been shown that guaranteeing the stability of
a single APF in operation is not enough to automatically
guarantee a stable behavior when multiple APFs are enabled

at once. Instead, the ISOP SST equipped with APFs should be
analyzed as a MIMO dynamical system, explicitly considering
the coupling among different modules.

Then, by using the GNC for MIMO dynamical systems, it
has been shown that the stability can be analyzed with respect
to two equivalent impedances of the system, computed as the
eigenvalues of the overall impedance matrix of the SST. These
equivalent impedances take into account both the self-induced
effect of a single module and the mutual interaction between
different modules in the ISOP configuration.

Therefore, the closed-loop stability of the overall ISOP SST
can be assessed by the simultaneous stability of the APFs with
respect to them. This provides a simple tool to analyze the
closed-loop behavior of the system, which can be helpful for
the design of the control algorithm of the APFs.

The results have been particularized and verified on a single-
phase ISOP SST prototype.

APPENDIX

This section describes the analytical derivation of the eigen-
values of ZSST (s), expressed by (16)-(17), and discusses
properties of the corresponding eigenvectors. For notation
compactness, in what follows, the dependence on the Laplace
complex variable s will be omitted.

The eigenvalues of ZSST can be found as the roots of its
characteristic polynomial, which can itself be computed as the
determinant of the matrix (ZλI − ZSST ) (with Zλ denoting
the unknown variable and I being the N×N identity matrix).

By using the expression (4) of ZSST , the characteristic
polynomial can be expressed as in (26).

As known, the determinant of a matrix is unaltered if some
of its rows are summed by linear combinations of other rows.
Then, the expression (26) can be transformed in the expression
(27) by subtracting the last row of the matrix from all the
previous (N − 1) rows.

In a similar way, the determinant of a matrix is unaltered
if some of its columns are summed by linear combinations
of other columns. Then, the expression (27) can be further
simplified and can be transformed in the expression (28) by
summing all the first (N − 1) columns to the last one.

Finally, the resulting matrix in (28) is a triangular matrix,
and its determinant can be computed by multiplying all its
diagonal terms, resulting in the expression of (29).

The roots of the characteristic polynomial of ZSST can be
found by equalizing (29) to zero and by solving in terms of
the unknown Zλ. The results are immediately found to be
Zλ,1 = (ZA −ZM ) and Zλ,2 = (ZA + (N − 1) ·ZM ), which
are the expressions of the eigenvalues provided in (16)-(17).

In particular, from (29), it can be seen that (ZA −ZM ) ap-
pears (N−1) times as the root of the characteristic polynomial,
meaning that the eigenvalue Zλ,1 has algebraic multiplicity
equal to (N − 1). On the contrary, (ZA + (N − 1) · ZM )
appears only once as the root of the characteristic polynomial,
and the eigenvalue Zλ,2 has algebraic multiplicity equal to 1.

Regarding Zλ,2, its geometric multiplicity will necessarily
be equal to 1 and, by direct substitution, it can be verified
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det(ZλI −ZSST ) = det


(Zλ − ZA) −ZM −ZM · · · −ZM

−ZM (Zλ − ZA) −ZM · · · −ZM

...
...

...
. . .

...
−ZM −ZM −ZM · · · (Zλ − ZA)

 = (26)

= det


(Zλ − ZA + ZM ) 0 0 · · · −(Zλ − ZA + ZM )

0 (Zλ − ZA + ZM ) 0 · · · −(Zλ − ZA + ZM )
...

...
...

. . .
...

−ZM −ZM −ZM · · · (Zλ − ZA)

 = (27)

= det


(Zλ − ZA + ZM ) 0 0 · · · 0

0 (Zλ − ZA + ZM ) 0 · · · 0
...

...
...

. . .
...

−ZM −ZM −ZM · · · (Zλ − ZA − (N − 1) · ZM )

 = (28)

=
(
Zλ − ZA + ZM

)N−1 ·
(
Zλ − ZA − (N − 1) · ZM

)
(29)

that the corresponding eigenvector is xλ,2 = [1, 1, 1, . . . , 1]T

(i.e., a N × 1 vector with all terms equal to 1). Indeed, by
multiplying ZSST by xλ,2, the k-th element of the resulting
vector will be equal to the sum of all elements in the k-th row
of ZSST , which is equal to (ZA + (N − 1) · ZM ).

Regarding Zλ,1, it can be verified that all the vectors
xλ,11 = [1,−1, 0, . . . , 0]T, xλ,12 = [1, 0,−1, . . . , 0]T, . . . ,
xλ,1N−1

= [1, 0, 0, . . . ,−1]T satisfy the definition (14) (i.e.,
all N × 1 vectors whose first element is equal to 1, with only
another element equal to −1, and with all other elements being
zero). Indeed, by multiplying ZSST by any of these vectors,
the first element of the result will be equal to (ZA − ZM ),
the element corresponding to the −1 value will be equal to
−(ZA + ZM ), and all other elements will be equal to zero.

Since all the (N−1) eigenvectors xλ,11 ,xλ,12 , . . . ,xλ,1N−1

are linearly independent, the geometric multiplicity of Zλ,1 is
equivalent to its algebraic multiplicity and equal to (N − 1).
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