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2A quick word about myself

● Background in computer vision, software engineering and statistical 
modelling.

● Working at EPFL, in the Environnement Sensing Observatory (ESO), 
a part of the CRYOS Lab in the ENAC faculty.

● Working on modelling new sensors in the factor graph optimization 
toolkit develloped by ESO : Dynamic Network.
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3Table of content

● Motivation – flying a lightweight hyperspectral camera with a drone
● Bayesian vs Frequentist, what is the difference
● Bayesian modelling – probability distributions as graphs
● A practical example – modelling a push-broom hyperspectral camera 

mapping campaign
● Some preliminary results



E
S

O
 –

 C
R

Y
O

S
 –

 E
N

A
C

 - 
E

P
FL

4Challenges in mapping with lightweight 
hyperspectral sensors
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5Hundreds of tie points, no redundancy
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6Bayesian vs Frequentist

P (H∣D) =
P (D∣H )P(H )

P (D)
=

P (D∣H )P (H )

∫P (D∣H )P (H )dH
=
P (D ,H )
P (D )

Frequentist interpretation 
(set and measure theory)

Bayesian interpretation
(information theory)

D

H∩D

Initial information about hypothesis

D Data measurements

H∣D Refined knowledge with new 
evidences

HH
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7Bayesian modelling – Probabilistic Graphical 
Models (PGM)

Observation Latent (unobserved) 
variables

Function Parameter

Conditional dependence of 
y on x in the prior

Conditional dependence of y 
on x and x on y in the prior
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8Building a probability distribution from a PGM

p(v1 , ... , vn) = ∏
i=1

n

f (vi , connected (v i))

p(v1 , ... , vn) = ∏
i=1

n

p (v i∣parents (v i))Directed PGM:

Undirected PGM:



E
S

O
 –

 C
R

Y
O

S
 –

 E
N

A
C

 - 
E

P
FL

9The Kalman Filter vs Conditional Random Field
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Kalman
Filter

Conditional 
Random 

Field



E
S

O
 –

 C
R

Y
O

S
 –

 E
N

A
C

 - 
E

P
FL

10Factor graphs – modelling joint distributions

Functions

Observed variables

Latent variables



E
S

O
 –

 C
R

Y
O

S
 –

 E
N

A
C

 - 
E

P
FL

11Modelling a factor graph – Bundle adjustment 
example

Image observations

Tie Points

GCP

Functions

Variables

GPS INS
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12Modelling a push-broom hyperspectral 
camera

u Horizontal pixel coordinates 
u represent a ray direction

v

Vertical pixel coordinates v 
represent time

The line of pixel on the sensor might be 
distorted and not represent a perfectly 
straight line in the physical world

Δ xh=a0+a1u+a2u
2+a3u

3+a4u
4+a5u

5

Δ yh=b0+b1u+b2u
2+b3u

3+b4u
4+b5u

5

ε=[u01 ]−[ f 0 ppx
0 f 0
0 0 1 ]( 1zc Γt [ xwywzw ]+[Δ xhΔ yh

0 ])

Γ t=(∇Γ i )vΓ i

ε∼Normal (0 ,σ )

Error is assumed to follow 
a normal distribution:
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13

● Simulate a basic flight
● Based on quadcopter dynamic
● Basic normal noise models for 

sensors (GPS/INS)
● Simulated 1000 tie points 

distribution on random terrain
● Factor graph built with normal 

position prior based on GPS, 
normal speed priors based on 
INS and tie points observations

Simulated data for experiments
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14Some preliminary results
Position error X Position error Y Position error Z

Orientation error X Orientation error Y Orientation error Z
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15Next steps

● Initial testing on simulated data supported the stability and accuracy of 
the proposed approach.

● Models hyperparameters and additional priors needs to be fine-tuned 
on real data.

● A flight campaign, with drone, helicopter and plane flights, is 
scheduled for 2024.

● We are open for collaborations if the project is relevant for your own 
research !



E
S

O
 –

 C
R

Y
O

S
 –

 E
N

A
C

 - 
E

P
FL

16Trying out Dynamic Network (DN)

● DN is our implementation of factor graph optimization, based on the 
library ROAMFREE, for geodetic engineering applications (so far for 
photogrametry and lidar flights optimization, hyperspectral coming 
soon).

● Publicly available at https://odyn.epfl.ch/app_direct/odyn/ 

https://odyn.epfl.ch/app_direct/odyn/


Thank you
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