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- A quick word about myself

* Background in computer vision, software engineering and statistical
modelling.

* Working at EPFL, in the Environnement Sensing Observatory (ESO),
a part of the CRYOS Lab in the ENAC faculty.

* Working on modelling new sensors in the factor graph optimization
toolkit develloped by ESO : Dynamic Network.
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Challenges in mapping
hyperspectral sensors
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Hundreds of tie
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=PFL  Bayesian vs Frequentist

p(iip) = PDIHIP(H) __P(DIH)P(H) _ P(D,H)
P(D) [ P(DIH)P(H)dH P(D)
Frequentist interpretation Bayesian interpretation
(set and measure theory) (information theory)
H H Initial information about hypothesis
HAD D Data measurements
D H|D Refined knowledge with new

evidences
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Bayesian modelling - Probabilistic Graphical
Models (PGM)

® © 1T [a

Observation Latent (unobserved) Function Parameter
variables
Conditional dependence of Conditional dependence of y

y on x in the prior on x and x on y in the prior
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=PFL  Building a probability distribution from a PGM

Directed PGM: p(vi,..,v.) = |1 p(v|parents(v,))
i=1

Undirected PGM: p(vl,...,vn) = f(V,-,COTlneCted(Vi))

i=1
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The Kalman Filter vs Conditional Random Field

Kalman
Filter

Conditional
Random
Field

Information propagates forward only
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Information propagates both ways

>
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Factor graphs - modelling joint distributions

Observed variables

Functions

Latent variables
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=PFL  Modelling a factor graph - Bundle adjustment

example
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=PFL - Modelling a push-broom hyperspectral
camera
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Simulated data for experiments

Simulate a basic flight L 120

Based on quadcopter dynamic |10

Basic normal noise models for 4 ”

sensors (GPS/INS) 0
T 40

Simulated 1000 tie points

distribution on random terrain

Factor graph built with normal
position prior based on GPS,
normal speed priors based on
INS and tie points observations
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Next steps

Initial testing on simulated data supported the stability and accuracy of
the proposed approach.

Models hyperparameters and additional priors needs to be fine-tuned
on real data.

A flight campaign, with drone, helicopter and plane flights, is
scheduled for 2024.

We are open for collaborations if the project is relevant for your own
research !
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=L Trying out Dynamic Network (DN)

* DN is our implementation of factor graph optimization, based on the
library ROAMFREE, for geodetic engineering applications (so far for
photogrametry and lidar flights optimization, hyperspectral coming
soon).

* Publicly available at https://odyn.epfl.ch/app_direct/odyn/
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