

From Probability Graphical Models to Dynamic Networks

A Bayesian perspective on Smooth Best Estimate of Trajectory with applications in Geodetic Engineering

Jospin L.V., Layahe J., Skaloud J. ESO – CRYOS – ENAC - EPFL

ESO - CRYOS - ENAC - EPFL

A quick word about myself

- Background in computer vision, software engineering and statistical modelling.
- Working at EPFL, in the Environnement Sensing Observatory (ESO), a part of the CRYOS Lab in the ENAC faculty.
- Working on modelling new sensors in the factor graph optimization toolkit developed by ESO: Dynamic Network.

1

Table of content

- Motivation flying a lightweight hyperspectral camera with a drone
- Bayesian vs Frequentist, what is the difference
- Bayesian modelling probability distributions as graphs
- A practical example modelling a push-broom hyperspectral camera mapping campaign
- Some preliminary results

ESO - CRYOS - ENAC - EPFL

EPFL

Challenges in mapping with lightweight hyperspectral sensors

EPFL Hundreds of tie points, no redundancy

Bayesian vs Frequentist

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)} = \frac{P(D|H)P(H)}{\int P(D|H)P(H)dH} = \frac{P(D,H)}{P(D)}$$

Frequentist interpretation (set and measure theory)

Bayesian interpretation (information theory)

H Initial information about hypothesis

D Data measurements

H|D Refined knowledge with new evidences

ESO - CRYOS - ENAC - EPFL

Bayesian modelling – Probabilistic Graphical Models (PGM)

Conditional dependence of y on x in the prior

Conditional dependence of y on x and x on y in the prior

Building a probability distribution from a PGM

Directed PGM:

$$p(v_1,...,v_n) = \prod_{i=1}^n p(v_i|parents(v_i))$$

Undirected PGM:

$$p(v_1,...,v_n) = \prod_{i=1}^n f(v_i, connected(v_i))$$

The Kalman Filter vs Conditional Random Field

Factor graphs - modelling joint distributions

EPFL

Modelling a factor graph – Bundle adjustment example

Modelling a push-broom hyperspectral camera

Simulated data for experiments

- Simulate a basic flight
- Based on quadcopter dynamic
- Basic normal noise models for sensors (GPS/INS)
- Simulated 1000 tie points distribution on random terrain
- Factor graph built with normal position prior based on GPS, normal speed priors based on INS and tie points observations

EPFL

Some preliminary results

ESO - CRYOS - ENAC - EPFL

Next steps

- Initial testing on simulated data supported the stability and accuracy of the proposed approach.
- Models hyperparameters and additional priors needs to be fine-tuned on real data.
- A flight campaign, with drone, helicopter and plane flights, is scheduled for 2024.
- We are open for collaborations if the project is relevant for your own research!

ESO - CRYOS - ENAC - EPFL

Trying out Dynamic Network (DN)

- DN is our implementation of factor graph optimization, based on the library ROAMFREE, for geodetic engineering applications (so far for photogrametry and lidar flights optimization, hyperspectral coming soon).
- Publicly available at https://odyn.epfl.ch/app_direct/odyn/

Thank you

 École polytechnique fédérale de Lausanne