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Abstract

Euclidean lattices are mathematical objects of increasing interest in the �elds of cryptography and
error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation
to understand how e�cient they are in terms of being able to pack spheres. We study this by
establishing a formula for the average number of lattice points of random Euclidean lattices inside a
measurable subset of a real vector space, given the constraint that all the lattices are invariant under
a prescribed �nite group of symmetries.

The thesis includes the discussion on what could be the appropriate probability space of random
lattices with prescribed symmetries, when it is possible to derive an integration formula on these spaces
and �nally, and what the integration formula is given these conditions. The thesis then proceeds with
an outline of recent applications of these integration formulas for the lattice packing problem. The
techniques used involve number theory, representation theory, geometry and dynamics which the
reader is introduced to in the text.

Resumé

Les réseaux euclidiens sont des objets mathématiques qui suscitent de plus en plus d'intérêt, no-
tamment dans les domaines de la cryptographie et des codes correcteurs d'erreurs. Cette thèse de
doctorat étudie les réseaux de grande dimension, avec la motivation de comprendre leur e�cacité en
terme d'empilement de sphères. Nous étudions cela en établissant une formule pour le nombre moyen
de points de réseaux euclidiens aléatoires à l'intérieur d'un sous-ensemble mesurable d'un espace vec-
toriel réel, étant donnée la contrainte que tous les réseaux soient invariants par un groupe �ni de
symétries prescrites.

La thèse inclut une discussion sur quel espace de probabilité pourrait être l'espace approprié de
réseaux aléatoires avec des symétries prescrites, sur quand il est possible de dériver une formule
d'intégration sur ces espaces, et en�n sur quelle est la formule d'intégration compte tenu de ces
conditions. L'article se poursuit par un aperçu des applications récentes de ces formules d'intégration
aux empilements de sphères issus de réseaux. Les techniques utilisées font appel à la théorie des
nombres, à la théorie des représentations, à la géométrie et à la dynamique, auxquelles le lecteur est
initié à travers le texte.
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Chapter 1

Introduction

The fundamental problem of communication is that of reproducing at one point, either
exactly or approximately, a message selected at another point - Claude Shannon, 1944

The theory of error-correcting codes attempts to mitigate this fundamental problem. At its most
basic level, a code is a discrete subset of a space that encodes information to be communicated on
an error-prone channel. Codes are point distributions in vector spaces, graphs or manifolds, often
with the desirable property that the points be optimally arranged so as to minimize the chance of an
error-correcting algorithm to confuse two di�erent points.

Sphere packings with high packing densities are sought after as error-correcting codes in the regime
when codes are subsets of points in Rd and errors are random Gaussian vectors added randomly to
the information. This is known as the Additive White Gaussian Noise (AWGN) model of error-
propagation. Lattices are of high interest because of their simpler code descriptions and the ease of
understanding [ELZ05].

Finding the densest sphere packing in d = 3 is at least a four centuries old problem going all the
way back to Kepler and is very fundamental to understanding crystal structures of physical materials.
This was solved by Hales using computer-assisted methods [Slo98].

Here is a quote from [CE03] about other dimensions:

For d ≥ 4, the problem remains unsolved. Upper and lower bounds on the density are
known, but they di�er by an exponential factor as d → ∞. Each dimension seems to have
its own peculiarities, and it does not seem likely that a single, simple construction will give
the best packing in every dimension.

The problem for d = 8, 24 is now famously solved due to the work of Viazovska and others [Via17;
CKMRV17]. Other dimensions remain out of reach and even the lower bounds and upper bounds
di�er exponentially as d → ∞.

All the known asymptotic lower bounds on sphere packing densities are existence results of lattices.
In fact, even more speci�cally, all such existence results are the application of some variation of the
probabilistic method, where a random lattice among a large collection of lattices is shown to have the
desirable property by the virtue of their statistical distribution.

There is computational evidence to believe that the best sphere packings are not lattice packings
in high dimensions. Nonetheless, lattice packing arrangements with high packing densities connect
with many areas in mathematics such as string theory, harmonic analysis, hyperbolic geometry, �nite
groups, error-correcting codes and some very beautiful areas of number theory like elliptic curves,
modular forms, �nite �elds, etc [CS13].

In general, studying random lattices in high dimensions is also of interest from the point of view
of cryptography, especially serving as the source of computational complexity in preventing post-
quantum attacks against secret-sharing [MR09].

1.1 Lower bounds on lattice packing densities

Consider Rd with the standard inner product. A lattice Λ ⊆ Rd is a discrete subgroup such that the
quotient space Rd/Λ has a �nite induced volume which we henceforth will call the covolume of Λ.

6



1.1. LOWER BOUNDS ON LATTICE PACKING DENSITIES 7

Throughout this thesis, we only mean lattices to denote these Euclidean lattices1.
A more simple but equivalent idea of a lattice is that it is a set

Λ = Zv1 + Zv2 + · · ·+ Zvd,

for some d vectors v1, v2, . . . , vd ∈ Rd. If we were to write instead take Λ′ = Zw1 + · · ·+Zwd for some
other basis of vectors w1, . . . , wd ∈ Rd, we must get the relation that Λ′ = Λ will be the same lattice
if and only if

wi =

d∑
j=1

aijvj , for some aij ∈ Z

and the aij form a matrix whose inverse also has integer entries. Such a matrix [aij ] must have
determinant ±1. The covolume of the lattice Λ in this point of view is the volume of a d-dimensional
parallelepiped that the vectors v1, . . . , vd span or in other words, the absolute value of a matrix whose
columns are v1 . . . vd.

Given a lattice Λ, choose r = rpack and consider the open balls {Br (v)}v∈Λ, which implies that
for any v1, v2 ∈ Λ, Br(v1)∩Br(v2) ̸= ∅ ⇒ v1 = v2. Here rpack is the packing radius of the lattice, i.e.,
half of the length of the shortest non-zero vector.

This setup of spheres is called a lattice sphere packing, or simply lattice packing inside (Rd, ⟨ , ⟩).
Packing density of a lattice packing is

∆(Λ) = lim
R→∞

µ
(
BR(0) ∩

(⊔
v∈Λ Br(v)

))
µ (BR(0))

=
µ(Brpack(0))

µ(Rd/Λ)
. (1.1)

If we denote SL(V ) to be the group of all unimodular linear transformations on V , we can now
de�ne

cd = sup {µ (gBr(0)) | r > 0, g ∈ SL(V ) and gBr(0) ∩ Λ0 = {0}} .

This quantity cd is related to the de�nition in Equation (1.1) by

1
2d
cd = sup

Λ⊆Rd,
Λ a lattice

∆(Λ).

It then follows that for any lattice Λ ⊆ Rd, ∆(Λ) ≥ 1
2d
cd. The exact value of cd is known only for

d ∈ {1, 2, 3, 4, 5, 6, 7, 8, 24}. Figure 1.1 is a visualization of the fact that c2 = 2π√
3
.

The goal of this thesis has been to improve and generalise the asymptotic lower bounds on the
sphere packing problem. Table 1.1 displays some known lower bounds on the lattice packing problem.
The list is non-exhaustive since some individual dimensions have explicit lattice constructions that
work very nicely for packing. However, these are currently the best known lower bounds for very
large dimensions d, let's say when d > 400. The common theme among all the results mentioned in
Table 1.1 is the usage of probabilistic methods and Siegel transforms. That is, the proof techniques
involve showing the existence of a well-rounded lattice by considering a large collection of random
lattices.

Also, not all bounds mentioned in Table 1.1 are valid for all dimensions. To �nd which bound
applies to given dimension could be computationally challenging as one would have to �gure out the
best way to express the dimension d as one of the parameters given in the table2. Nevertheless, one
could still estimate what is the asymptotic al growth in each of those lower bounds with d.

One additional remark about Table 1.1 is that these are lower bounds on the lattice packing
problem and yet turn out to be the best lower bounds on the sphere packing problem. It is completely
unclear why should asking for the densest arrangement of spheres in high dimensions lead to the
lattice arrangements, nonetheless �nding provably better non-lattice packings in high dimensions is
currently an open problem.

1There is a more general notion of a lattice in an algebraic group as discussed in Section 2.1.3. We will never use
the word lattice to discuss those for the sake of clarity.

2In the case of d = 2φ(n), one is lead to the notorious inverse-phi problem.
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(a) The largest ball that can avoid all non-zero
points of some unit covolume lattice in two di-
mensions has volume equal to 2π√

3
. Any bigger

disk around the origin will contain at least one
non-zero point in any given unit covolume lattice.

(b) The honeycomb lattice or the hexagonal circle
packing is the densest arrangement of equal balls
in two dimensions. The packing density is π√

12
.

Figure 1.1: The hexagonal circle packing.

Bound Dimensions covered Due to Reference

cd ≥ 2 Any d ≥ 1 Minkowski, Hlawka [Hla43]
cd ≥ 2d

e(1−e−d)
Any d ≥ 1 Rogers [Rog47]

c4n ≥ 24n
e(1−e−n) d = 4n, n ≥ 1 Vance [Van11]

c2φ(n) ≥ n d = 2φ(k) for some k ∈ Z≥1 Venkatesh [Ven13]
c2 dimD ≥ #G0 d = 2[D : Q] for some Q-division algebra, G. [Gar23]

G0 ⊆ D× is any �nite subgroup
cn dimD ≥ #G0n

e(1−e−n) d = n[D : Q] for some Q-division algebra, G.,Serban [GS22]
G0 ⊆ D× is any �nite subgroup

Table 1.1: Comparison of some lower bounds on cd

1.2 Probability space of lattices and Siegel transforms

Let us introduce this proof technique to the reader by demonstrating the Minkowski-Hlawka lower
bound from Table 1.1. Let SLd(R) denote the group of unimodular square matrices of size d. Then the
equivalence of the two de�nitions of lattices as given in the preceding section imply that the following
is a surjective map onto unit covolume lattices in Rd.

g 7→ gZd, g ∈ SLd(R).

This informs us that the space of unit covolume lattices is in bijection with SLd(R)/ SLd(Z). This
has the structure of a smooth (d2 − 1)-dimensional manifold. On this space, there is a very natural
description of a measure due to the general theory of Haar measure on locally compact groups (see
Section 2.1.1). What this means is that there is a natural way to compute volumes of reasonably
de�ned subsets A ⊆ SLd(R)/ SLd(Z) and hence we can wonder if we can compute probabilities of
some random events happening in the space of unit covolume lattices. Such a probabilistic modelling
is however only meaningful when the total event space SLd(R)/ SLd(Z) has probability 1.

What is special in this situation is the following theorem that can perhaps be attributed to Siegel.

Theorem 1.1. There exists a unique measure on SLd(R)/ SLd(Z) that is invariant under the left-
SLd(R) action on this space and furthermore, this measure yields a �nite total volume.

Hence, up to rescaling this natural choice of measure coming from Theorem 1.1, we can assume
that the total volume of SLd(R)/ SLd(Z) is 1 and we can talk about random lattices.

Figure 1.2 is an attempt to show one such random event of interest. Figure 1.2a and Figure 1.2b
are the cases when only the origin lies inside a ball, whereas Figure 1.2c shows the case when there are
non-trivial points. We want to �nd the probability of how likely is that the ball has only the origin in
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its intersection with the lattice. See also Figure 1.3 for a region in the upper half-plane corresponding
to the lattices that we want to favour.

(a) (b) (c)

Figure 1.2: Some two dimensional lattices. We try to study how many points of a randomly chosen
lattice are inside a ball centered at the origin.

Figure 1.3: To each point (x0, y0) in the region {x+ iy, y > 0}, it is standard to associate the lattice[ 1√
y0

x0√
y0

0
√
y0

]
Z2. In this picture, the green area depicts the region that corresponds to lattices that

intersect with a ball of radius R = 0.99 with only the origin in the interior and the grey area denotes
a fundamental region under SL2(Z)-action on the upper half plane. With R = 1, one gets the famous
Ford circle arrangement.

Consider a function f : Rd → R that is the indicator function of a ball. That is

f(x) =

{
1 |x| < R

0 otherwise
,

for some R > 0. Then, one can de�ne a random variable valid on the probability space SLd(R)/ SLd(Z)
given as follows

SLd(R)/ SLd(Z) → R

g 7→
∑
v∈Zd

f(gv).

This construction, which we will call the Siegel transform3, was considered by Siegel. It changes a
function on the Euclidean space Rd to a function on the space of lattices SLd(R)/ SLd(Z). Siegel
transform has connections to some very interesting problems in number theory [BG19; ACM19]. See
Figure 1.4 for a visualization in the case of d = 2.

Then, one can state the following theorem from [Sie45] which computes the expected value of the
Siegel transform among random lattices.

3This de�nition might di�er slightly from the ones in literature where sometimes the Siegel transform denotes the
sum over only the primitive lattice points in gZd or sometimes only over non-zero points in the lattice.
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(a) Radius R = 1.22. (b) Radius R = 1.45. (c) Radius R = 1.99.

Figure 1.4: When taking Siegel transforms of the indicator function of an origin centered ball of radius
R > 0 in two dimensions, the Siegel transform can be seen as a function on the upper half-plane since
in this case, the Siegel transform is invariant under rotating the lattice. One can then plot the Siegel
transform in a fundamental domain with respect to SL2(Z)-action. Here, we plot the Siegel transforms
for three di�erent values of R. The odd numbers indicate the values taken by the Siegel transform,
or equivalently the lattice point counts for each of the corresponding regions. For simplicity, not all
the regions are marked.

Theorem 1.2. Suppose f : Rd → R is a compactly supported bounded measurable function. Then,
the following holds.

∫
SLd(R)/ SLd(Z)

 ∑
v∈gZd

f(v)

 dg = f(0) +

∫
Rd

f(x)dx,

where the dx on the right hand side is the usual Lebesgue measure on Rd and dg is the unique SLd(R)-
invariant probability measure on SLd(R)/ SLd(Z).

With this, one can show that cd ≥ 2 from Table 1.1 by the following simple arguments. Suppose
that cd = 2 − ε for some ε > 0. This means that a ball of volume 2 − ε at the origin will have at
least one non-zero point in a unit covolume lattice. Now, note that the number of lattice points for
a random lattice gZd in a ball centered at the origin is always an odd number. Indeed, the non-zero
points come in pairs due to ±1 symmetries. Now, Theorem 1.2 tells us that the ball should have 3− ε
lattice points on average. Hence, at least one of those random lattices has a Siegel transform equal to
1. This contradicts that cd = 2− ε.

1.3 Lattices with additional symmetries

The preceding argument about ±1 symmetries is what has been leveraged so far to create improve-
ments given in Table 1.1.

In the table, the result due to Venkatesh [Ven13] is the best known lower bound asymptotically.
From Mertens' theorem, we know that n

φ(n) can be as big as O(log log n) = O(log log d). This happens
for the subsequence of dimensions d = 2φ(k) where k = p1p2 . . . pk where {p1, p2, . . . } are prime num-
bers indexed increasingly. Hence, along a sequence of dimensions, the lower bound due to Venkatesh
is better than any linear bound and has a growth of O(d log log d).

Let us sketch how the result follows. Let K = Q(µn) be a cyclotomic number �eld and let ⟨µn⟩ be
the �nite group of torsional units in O∗

K . Consider KR = K ⊗Q R. The moduli space of OK-lattices
of a �xed (and �nite) covolume in K⊕t

R is then denoted by SLt(KR)/ SLt(OK) (although t = 2 works
for obtaining the bound). It turns out that we can prove Siegel's mean value theorem, Theorem 1.2,
for the number �eld K.

Theorem 1.3. [Ven13]
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Let d = 2φ(n) and K = Q(µn). Suppose f : K2
R → R is a compactly supported bounded measurable

function. Then the following holds.

∫
SL2(KR)/ SL2(OK)

 ∑
v∈gO⊕2

K \{0}

f(v)

 dg =

∫
Rd

f(x)dx,

where the dx on the right hand side is that Lebesgue measure on Rd that makes O⊕2
K ⊆ K2

R ≃ Rd of
unit covolume and dg is the unique SL2(KR)-invariant probability measure on SL2(KR)/ SL2(Od).

Now if f is the indicator function of a ball whose volume is n − ε and is invariant under these
cyclic symmetries (such a ball exists due to �averaging�), there must exist one g ∈ SL2(OK) such that∑

v∈gO⊕2
K \{0} f(v) = 0. This gO⊕2

K is the lattice that we desire.

The main tool that seemed to help get the O(n log log n) lower bound on cn was the exploitation of
a large group of symmetries acting on each lattice point in the lattices inside the homogeneous space
SL2(KR)/ SL2(OK). This leads to the natural question, can one increase the group of symmetries from
a cyclic group to an arbitrary �nite group and does it lead to any improvements on sphere packing
densities?

This is the main research question motivating the thesis. Using tools from representation theory
and number theory, it is possible to de�ne spaces of lattices invariant under a �nite group G and also
describe analogues of Theorem 1.3 for such spaces of lattices. This is covered in Chapter 5.

In the paper [Gar23], I explored this scenario to get the following generalisation of [Ven13].

Theorem 1.4. [Gar23]
Let D be a �nite-dimensional division algebra over Q. Let O ⊆ D be an order and G0 ⊆ O be a

�nite group embedded in the multiplicative group of D. Then with d = 2dimQ D, we have

cd ≥ #G0.

Since a number �eld is also a division algebra over Q, we recover the result of Venkatesh by setting
D = Q(µn), the nth cyclotomic �eld, O to be the ring of integers in Q(µn) and the nth cyclotomic
�eld and G0 = ⟨µn⟩. Hence, Venkatesh's construction can be recovered from this theorem.

However, because of the additional freedom that the division rings give us, we can adjust our
parameters and go slightly beyond some of the lower bounds provided in [Ven13]. Additional points
that this theorem can provide have resulted in improvements on the best packing densities in less than
astronomical number of dimensions. For example, one of the sequences that can be produced using
this theorem has the following comparison.

Theorem 1.5. [Gar23]
There exists a sequence of dimensions {di}∞i=1 such that we have cdi ≥ 3di(log log di)

7
24 and the

lattices that achieve this bound in each dimension are symmetric under the linear action of a non-
commutative �nite group.

Figure 1.5 compares the novel sequence with the older sequence.

1.4 What about other groups of symmetries?

Since all the �nite subgroups of division algebras over Q are completely classi�ed [Ami55], it is possible
to exhaust all options for this setup and it could be concluded that by just using these groups, it is
impossible to go beyond an O(n log log n) improvement on the lower bounds available on ct. So, this
is all that could be done with �nite groups embedded in division algebras using these techniques.

To use groups other than �nite subgroups of division algebras, one would need integration formulas
similar to Theorem 1.3. This is a goal that has been achieved, as much as it seemed possible, in this
doctoral thesis. The details are in Chapter 5, but the results are brie�y written below.

Let G be a �nite group with a Q-representation V = VQ. Suppose V admits the following decom-
position as Q[G]-modules

V = V ⊕t1
1 ⊕ V ⊕t2

2 ⊕ · · · ⊕ V ⊕tk
k , (1.2)
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Figure 1.5: The sequence of Venkatesh is better after d ∼ 1.98×1046 than the sequence obtained from

Theorem 1.5 and outperforms any linear bound on cd since it grows at O(d(log log d)
7
24 ).

where each Vi is an irreducible Q[G]-representation. Then, for each Vi, there exists a division algebra
Di = EndQ[G] Vi, the ring of G-linear endomorphisms of Vi. This Di acts on Vi to make Vi ≃ Dni

i for
some index ni which we call the matrix index of Vi.

Then, starting with a G-invariant lattice Λ ⊆ V ⊗R (there must exist at least one), we can identify
G(R)/Γ as a collection of G-invariant lattices where

G(Q) = SLt1(D1)⊕ · · · ⊕ SLtk(Dk),

Γ = {g ∈ G(Q) | gΛ = Λ}.

Then, due to a theorem of Borel and Harish-Chandra (or otherwise, using the reduction theory in
Chapter 4), we �nd out that the space G(R)/Γ can be endowed a probability measure. And thus, we
can state the following theorem.

Theorem 1.6. Suppose VQ be a Q[G]-representation whose decomposition into irreducibles is given by
Equation (1.2). Furthermore, suppose that for each Vi, the matrix index ni and the number of copies
ti satis�es ni < ti.

Then, we have that the expected value of the Siegel transform is �nite on G(R)/Γand equals∫
G(R)/Γ

∑
v∈gΛ

f(v)

 dg =
∑

(W1,...,Wk)∈L1×···×Lk

1

H(W⊥
1 ) . . . H(W⊥

k )

∫
(W⊥

1 )R×···×(W⊥
k )R

f(w)dw,

where
Li = {W ⊆ Dni

i | W is a right D-module}
and for each Wi ∈ Li, H(W⊥

i ) is the height of W⊥
i , a positive real number associated to Wi de�ned

in De�nition 5.11 and Theorem 5.12.
Here, the measure on G(R)/Γ is the unique left-G(R) invariant probability measure and on the right

is the restriction, on the subspaces (W⊥
1 )R × · · · × (W⊥

k )R, of the Lebesgue measure on VR = V ⊗ R
scaled so that Λ ⊆ VR is unit covolume.

Perhaps the easiest case that is not already a �nite group inside a Q-division ring is a �nite group
that has a matrix index n = 2, that is, it can be embedded into 2 × 2 matrices over a division ring.
Such �nite subgroups are also classi�ed completely [Ban88].
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One example of such a group is the dihedral group D2n. An irreducible representation of this
group over Q is the action on the cyclotomic �eld Q(µn) with ⟨µn⟩ ≃ Z/nZ and Galois conjugation
µn 7→ µ−1

n . The division algebra D = EndQ[D2n] Q(µn) = Q(µn + µ−1
n ) is the totally real sub�eld

inside Q(µn) and then we can think of the action as 2× 2 matrices over D acting on Q(µn) ≃ D2.
But already the integration formulas for such situations make lattice packing results di�cult. For

instance, if we consider G to be such a group that can be embedded in 2×2 matrices over a Q-division
algebra such that the G-action on V1 = D2 makes V1 an irreducible Q[G]-representation, then taking
t ≥ 3 copies of V1 lets us use Theorem 1.6. We state the following corollary for t = 3 which potentially
might help us in getting a lower bound on the 6 dimQ D-dimensional lattice packing problem.

Corollary 1.7. De�ne VQ = V ⊕3
1 and G,D as in the preceding discussion. Then V admits a left

action of M3(Dop) that commutes with the left action of G. Fix a G-invariant lattice Λ ⊆ V , let's say
by taking points in V ≃ D⊕(2×3) lying in an order O ⊆ D. De�ne the groups

G(Q) = SL3(Dop),Γ = {g ∈ G(Q) | gΛ = Λ}.

Then for a ball B ⊆ VR = V ⊗ R of radius R de�ned with respect to a quadratic form that makes
Λ ⊆ VR unit covolume, we have∫

G(R)/Γ
(#B ∩ Λ)dg = 1 + Z(3; LGr(1, 2, D)) · V (3d)R2d + V (6d)R6d,

where d = dimQ D, Z(3,LGr(1, 2, D)) ∈ R>0 is a constant de�ned in Equation (5.6) and V (n) = π
n
2

(n/2)!

is the volume of a Euclidean unit ball in n dimensions.

One can see that as d = dimQ D increases, we have one additional term in this situation other than
1 and V (6d)R6d = vol(B) which is exponentially bigger than vol(B). Hence, overall the mean value of
the Siegel transform is much bigger than 1 + vol(B) and this is a major limitation in this case. Also,
in the situation of the n = 1 case, we had a very favourable property that the Siegel transform would
take values in {1,#G+ 1, 2 ·#G+ 1, . . . } which could be leveraged to make probabilistic arguments
and this may not be the case in this more general situation as there might be some lattice points with
small G-orbits. These considerations make the n > 1 case di�cult to analyse.

Despite this, the integration formula of Theorem 1.6 is of independent interest. One such appli-
cation has been the study of higher moments of the lattice point counts of OK-lattices. Consider
G = Z

nZ , the cyclic group of order n. Then the nth cyclotomic number �eld K = Q(µn) is an irre-
ducible representation of G over Q. One can then consider V = Kt as a G-representation. A very
obvious choice of G-invariant lattices is then the lattice Λ = Ot

K ⊆ Kt. One can also endow on
VR = K ⊗ Rt the following positive de�nite real quadratic form on KR taken t-fold times

⟨x, y⟩ = ∆
− 2

[K:Q]

K tr(xy), (1.3)

where ∆K is the discriminant of K as a number �eld. This choice of the quadratic form makes Λ ⊆ VR
of unit covolume.

If we take a function f : VR → R that is the indicator function of a ball with respect to the norm
mentioned above, then we can use the theory developed in Chapter 5 to get the following theorem.

Theorem 1.8. Let n < t and let g : Kt×n
R → R be a compactly supported Riemann-integrable function

de�ned as
g(x1, . . . , xn) = f(x1)f(x2) . . . f(xn), x1, x2, . . . ., xn ∈ Kt

R.

Equip Kt
R with the measure as discussed around Equation (1.3). Then, putting the Haar probability

measure on SLt(KR)/ SLt(OK), we have that

∫
SLt(KR)/ SLt(OK)

 ∑
v∈γOt×n

K

g(v)

 dγ = g(0) +

n∑
m=1

∑
D∈Mm×n(K)
rank(D)=m

D is row reduced echelon

D(D)−t

∫
x∈Kt×m

R

g(xD)dx,

(1.4)
where D(D) is the index of the sublattice {C ∈ M1×m(OK) | C ·D ∈ M1×n(OK)} in M1×m(OK).
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This formula has recently also been shown in this more speci�c case by somewhat di�erent methods
by [Kim19; Hug23]. In Section 6.3, we talk about how Theorem 1.8 can be leveraged to prove that
behaviour of point counts for these random OK-lattices partially follows the Poisson distribution.
Achieving this result involved dealing with tight upper bounds on the error terms on the right side
of Equation (1.4), but under a somewhat relaxed condition of t ≥ Ω(n3 log log n). This generalised a
result of Rogers [Rog56] for the case of the full space SLt(R)/ SLt(Z) in an orthogonal direction and
required inventing some novel ideas in the geometry of numbers to deal with in�nite order units in
O∗

K .
The research on the higher moments point counts for OK-lattice already captures the intricacies

that would potentially arise in attempts to leverage Theorem 1.6 to work for general �nite groups G.

1.4.1 André Weil's generalisation of Siegel mean value theorem

Lastly, before getting into the integration formulas, it must be noted that the Siegel mean value
theorem was vastly generalised by André Weil in [Wei58], almost ten years after Rogers published the
higher moment formulas [Rog56]. Weil's setup works for any semisimple algebraic group acting on an
a�ne variety. From that point of view, Rogers' results are Weil's integration formulas for the case of
the group SLd acting on Ad×n. Our work can also be put into the framework of Weil in a similar way.

However, to come from Weil's setup to these speci�c cases would still require identi�cation of
orbits and would still require showing that the integral formula does not diverge to in�nity, as done in
Chapter 5. The only thing that Weil's theory could save us with is the reduction theory in Chapter 4,
but since our G-invariant lattices naturally take us to division algebras and we need to integrate over
Siegel domains, it is not without value to write out explicitly these Siegel domains for the reduction
theory and the integration coordinates in this division algebra case.



Chapter 2

Preliminaries

In this section, we will discuss some material that will be used in the course of the thesis. The reader
who is well-versed with these topics can freely move to the next chapter.

This expository material assumes the knowledge of basic group theoretical and topological notions.

2.1 Measure on quotient spaces of arithmetic groups

2.1.1 Haar measure

Some classical facts about the Haar measure are presented below without proofs. See [Nac76] for the
details.

Every locally compact Hausdor� topological group G admits a measure dg which satis�es the
following properties.

1. For any Borel set A ⊆ G,
∫
A
dg =

∫
hA

dg for any h ∈ G.

2. For any compact set K ⊂ G,
∫
K
dg < ∞.

3. For any Borel set A ⊆ G, ∫
A

dg = inf
U⊇A

U open

∫
U

dg.

4. For any open set A ⊆ G, ∫
A

dg = sup
K⊆A

K compact

∫
K

dg.

The last two properties de�ne what is called a Borel measure on any topological space. Property
1 is called the left-invariance of the measure dg. An analogous property of right-invariance can be
de�ned. A measure satisfying all of the above properties is called a (left-invariant) Haar measure on G.
Remarkably, a Haar measure is unique up to an action of a positive scalar. Hence, any two measures
satisfying the above axioms will have to be proportional to each other.

The right multiplication of h ∈ G on G takes a Haar measure dg to another Haar measure Rh∗(dg) =
∆G(h)dg, where ∆G(h) ∈ R>0. The assignment h 7→ ∆G(h) is a continuous group homomorphism
from G to R∗. This function ∆G is called the modular function of the group G. If G admits a Haar
measure that is both left-invariant and right-invariant, then ∆G shall be identically 1 on G. Such a
group is called a unimodular group.

Also, remember that a discrete group is also locally compact and Hausdor�. It has a counting
measure, which is a Haar measure that is both left and right invariant. Hence, the modular function
on a discrete group is always trivial.

Here is an important theorem that will come to our aid multiple times.

Theorem 2.1. Suppose G is a locally compact Hausdor� topological group and H ⊂ G is a closed
subgroup. Then H is also a locally compact Hausdor� topological group. With this, the following two
conditions are equivalent.

15
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1. The modular function on ∆G : G → R when restricted to H is equal to the modular function
∆H → R.

2. The topological space G/H can be endowed with a unique (up to multiplication) Borel measure
that is invariant under the left G-action on G/H.

Proof. See [Nac76].

2.1.2 Algebraic Groups

Let us present an overview of the topic of algebraic groups. Note that the de�nitions here are ex-
tremely stripped down versions that do not capture the intricacies of the general theory. For in-depth
understanding, the reader may refer to [Bor19; Bor12].

De�nition 2.2. A linear algebraic group is a subgroup G of SLn(C) for some n ≥ 1 that is given as
a zero set of some polynomials in the matrix entries Xij : SLn(C) → C.

We say that G is an algebraic k-group for a sub�eld k ⊆ C if the ideal of the vanishing polynomials
that de�ne G has generators in the ring k[Xij ]1≤i,j≤n.

For a subring R ⊆ C, we denote G(R) to be the set of solutions of the polynomials in SLn(R). We
call G(R) to be the R-points of G.

Remark 2.3. The de�nitions of what really an algebraic group is are a bit outside the scope of our
discussions. We work with very basic de�nitions to outline a general theory to get the overarching
picture. Eventually our interests are going to be limited to very concrete algebraic groups.

For an in-depth discussion on these subtleties, see [Mor15, �A1].

Example 2.4. The group GLn(C) can be embedded in SLn+1(C) as per the following map:

g 7→
[

g 0n×1

01×n det(g)−1

]
.

The image can easily be described as the zero set of some polynomials. Hence, it is an example of an
algebraic group. In this sense, the group GLn(R) and GLn(Z) hold the obvious meanings as above.

So, in this framework, whenever we write GLn(C) as an algebraic group, we secretly mean that it
is embedded in SLn+1(C). In more technical terms, this gives GLn a structure of an a�ne algebraic
variety and this is the algebraic structure that we care about on GLn.

Example 2.5. Every �nite group G can be seen as an algebraic group.

Since SLn(C) and SLn(R) are Lie groups, and closed subgroups of Lie groups are also Lie groups
(according to the classically known closed subgroup theorem, see [Kna13]). In general, this is also
true for G(R) and G(C) for an algebraic group G.

We also have a notion of algebraic morphisms.

De�nition 2.6. For algebraic groups G and H, a group homomorphism f : G → H is a morphism of
algebraic groups if the individual matrix entries of f(X) ∈ H can be expressed as functions that are
C-polynomials in the entries (Xij)1≤i,j≤r of X. If those polynomials can actually be allowed to have
coe�cients in a subring R ⊆ C, then the morphism f will be called an R-morphism.

An R-morphism from G → GLd(C) is called a d-dimensional R-representation. 1-dimensional
R-representations are called R-characters.

Let us present an interesting lemma that could aid the reader in putting these concepts together.

Lemma 2.7. Suppose G is an algebraic group and let there be an arbitrary Q-character χ : G →
GL1(C). Then χ(G(Z)) ⊆ {−1, 1}. Furthermore, if G(R) is connected as a Lie group, then χ(G(Z)) =
{1}.

Proof. Clearly, image of G(Z) under χ will be a subgroup of GL1(Q). Now, we identify GL1(Q) =
{
[
t 0
0 1/t

]
, t ∈ Q}. Observe that since χ is a Q-morphism, t(X) can be expressed as a Q-polynomial in

the entries of X ∈ G(Z) which are integers. The coe�cients of these polynomials are rational and will
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have a least common denominator N and therefore t ∈ 1
NZ ⊂ Q∗. However, the only multiplicatively

closed subgroups of 1
NZ are {−1, 1} and {1}.

For the latter statement, observe that Q-morphisms are continuous functions and therefore, take
connected sets to connected sets. Hence, χ(GR) is a connected subset of GL1(R) and must be entirely
contained in the identity component of GL1(R). This χ(g) ̸= −1 for any g ∈ G(Z).

The group of all Q-characters of an algebraic group G is denoted as X(G).

2.1.3 Theorem of Borel and Harish-Chandra

Observe that both SLd(Z) and SLd(R) are unimodular groups. For SLd(Z), this follows since it is
discrete and for SLd(R), this is a consequence of the fact that the modular function is a homomorphism
SLd(R) → R∗ which must be trivial since SLd(R) can be generated by commutators in the group.

The following is a classical theorem, due to Siegel [Sie45].

Theorem 2.8. With respect to any left SLd(R)-invariant Haar measure on SLd(R)/ SLd (Z) given by
Theorem 2.1, the volume of SLd(R)/ SLd(Z) is �nite.

The fact that SLd(R)/SLd(Z) has a �nite volume makes it a probability space up to rescaling of
the measure appropriately. In analogy with the �niteness of the Haar measure on SLd(R)/ SLd(Z),
the question we would like to ask is the following. As we will later see, answering this question will
be important while addressing the existence of random lattices.

Question 2.9. For a given Q-algebraic group G ⊆ SLd(C), does the quotient space G(R)/G(Z) admit
a �nite left G(R)-invariant measure?

Here is an obstruction that must be navigated while attempting this question.

Proposition 2.10. Suppose χ : G → GL1(C) is a Q-character such that χ|G(R) : G(R) → R∗ takes
non-trivial values in a neighbourhood of identity. Let G(R)0 ⊂ G(R) be the identity component of the
Lie group G(R) and G(Z)0 = G(Z) ∩ G(R)0. Then G(R)0/G(Z)0 cannot have a �nite volume with
respect to the Haar measure on G0.

Proof. Suppose that there is a �nite Haar measure µ on G(R)0/G(Z)0. By Lemma 2.7, we know that
χ : G(R)0 → R∗ descends to become a continuous surjective function χ : G(R)0/G(Z)0 → R∗. This
surjective function can be used to push a Borel measure on R∗ by taking the measure of a Borel set
E ⊂ R∗ to be µ(χ−1(E)). This gives us a �nite measure on R∗. However, by the left-invariance of
µ, the measure induced must be left-invariant under multiplication in R∗ (since χ is surjective). This
means that the usual Haar measure on R∗ equips it with the structure of a �nite topological measure
group, which is clearly false.1

What Borel and Harish-Chandra proved in their 1962 work is that morally speaking, this is the
only obstruction. The precise version of their statements is the following.

Theorem 2.12. [BH62]
Let G be an algebraic group de�ned over Q. Then G(R)/G(Z) has a �nite invariant measure if and

only if X(G0) = {1}, where G0 ⊆ G is the connected component of identity in the Zariski topology.

Remark 2.13. As a subgroup of SLr+1(C), the Zariski connected components and the usual connected
components are the same for G.

1One can also prove the following lemma using the proof of Proposition 2.10.

Lemma 2.11. If a connected Lie group G contains a discrete group Γ such that G/Γ has a �nite Haar measure, then

G must be unimodular.

Proof. Since Γ is discrete, the modular function ∆Γ : Γ → R∗ is trivial. If ∆G is non-trivial, it is surjective on R∗
>0 and

therefore ∆G : G/Γ → R∗ is a continuous surjective function that can be used to induce an absurd measure on R∗.
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2.1.4 Arithmetic subgroups

Observe that Theorem 2.12 discusses the quotient space G(R)/G(Z). The way we de�ned G(Z) in
De�nition 2.2, it depends critically on how G ⊆ SLn(C) embeds. This means that this is not an
elegant formulation since we have to constantly keep track of the embedding while talking about
G(Z). It is therefore more satisfying to replace G(Z) with a broader class of groups that we will call
arithmetic subgroups. Here are some de�nitions to get us into this theory.

De�nition 2.14. For a �eld k ⊆ C, we say that a C-vector space V has a k-structure if there exists
a vector space Vk over k such that V = Vk ⊗k C.

The k-vector space Vk is said to be the k-structure of V .

In this thesis, we will always talk about vector spaces with an underlying Q-structure.

Remark 2.15. Let V be a �nite-dimensional C-vector space with a Q-structure VQ. Let v1, . . . , vn be
a Q-basis of VQ. This gives us an identi�cation

GL(V ) ≃ GLn(C).

We can embed GLn(C) ⊆ SLn+1(C) like in Example 2.4. Then, the rational points GLn(Q) naturally
identify with the group

GL(VQ) = GL(V ) ∩ EndQ VQ.

Note that if we change the Q-basis, the homomorphism GL(V ) → SLn+1(C) might change by a con-
jugation but as a Q-algebraic group de�ned in SLn+1(C), GL(VQ) is still the same since the de�ning
polynomials whose zero set is the Q-group GL(V ) are still the same. If the basis is a C-basis of V but
not a Q-basis of VQ, the rational points GL(VQ) will not be the set of points GLn(Q).

De�nition 2.16. Let V be a �nite dimensional vector space with a Q-structure and let G ⊆ SLn(C)
be an algebraic group for some n ≥ 1.

We say that G has a Q-respresentation on V if there exists a Q-homomorphism of algebraic groups
π : G → GL(V ).

We say that a Q-representation π is faithful if it is an injective map such that π(G) is itself a
Q-algebraic group and π : G → π(G) is a Q-isomorphism of Q-algebraic groups.

Remark 2.17. In the de�nition of what a faithful representation π : G → GL(V ) is, it would have
been enough to say that it is an injective Q-morphism. It follows from [Bor12, �1.4] that π(G), the
image of a Q-morphism of algebraic groups, is closed. Then, the injectivity implies that a reverse map
exists, which one can show to be Q-algebraic using that algebraic groups are smooth2 [Bor12, �1.2 ].
We skip these details because it will be too far from the goals of this thesis.

The following de�nition is from [Bor19, �7.11].

De�nition 2.18. A subgroup Γ ⊆ G(Q) is said to be an arithmetic subgroup if there exists a �nite-
dimensional vector space V with a Q-structure VQ, a lattice Λ ⊆ VQ of maximal Z-rank and a faithful
Q-representation π : G → GL(V ) such that Γ is commensurable with the group {g ∈ G(Q) | π(g)Λ =
Λ} ⊆ G.

Remark 2.19. The reader is advised to be a little prudent here about the lattice Λ. Although it is
de�ned as a subset of VQ, what we really want is that it is a lattice in the sense that it is a discrete
subgroup Λ ⊆ VR = VQ ⊗Q R with �nite covolume.

One can also clear this ambiguity by de�ning lattices as Z-modules of maximal rank in a Q-vector
space.

Here, commensurable is in the sense of the following de�nition.

De�nition 2.20. For any group G, two subgroups H1, H2 ⊆ G are said to be commensurable with
each other if [H1 : H1 ∩H2] < ∞ and [H2 : H1 ∩H2] < ∞.

2This is similar to how a smooth map admits a partial inverse locally around the identity, and then using the group
structure it could be extended globally.
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Remark 2.21. Observe that G(Z) as de�ned in De�nition 2.2 is naturally an arithmetic subgroup.
Furthmore, SLd(Z) ⊆ SLd(C) is also an arithmetic group.

The beauty of the above de�nition allows us to make elegant statements like the following propo-
sition. Note that in the statement of the proposition, we do not make any mention of where G embeds
into while it is de�ned.

Proposition 2.22. Suppose G is a Q-algebraic group. Then any two arithmetic groups Γ and Γ′ are
commensurable.

Proof. Let G ⊆ SLn(C) be the embedding that de�nes G as an algebraic Q-group. It is su�cient to
show that G(Z) is commensurable with Γ since being commensurable is an equivalence relation.

Suppose that we have a faithful representation π : G → GL(V ) for a V being a vector space with
a Q-structure VQ. Let Λ ⊆ VQ be a lattice of maximal Z-rank and let Γ be commensurable with

Γ0 = {g ∈ G | gΛ = Λ}.

We will show that G(Z) is commensurable with Γ0. Let v1, . . . , vm be a Z-basis of Λ making the
identi�cation VQ ≃ Qm and Λ ≃ Zm. Then, we can identify GL(V ) as an algebraic subgroup of
SLm+1(C) as in Example 2.4 such that π(g) acts on V by just using the top-left m × m matrix
entries. The matrix entries of π(g) ∈ SLm+1(C) are then some Q-polynomials in the entries of g.
Most importantly, in this identi�cation π(Γ0) ⊆ SLm+1(Z).

Let Xi,j be the matrix entries of Mn(C). By doing some change of variables, we can �nd polyno-
mials Qp,q ∈ Q[Xi,j ]1≤i,j≤n such that

Qp,q(g − In) = (π(g)− Im+1)p,q, ∀ g ∈ G

where In ∈ Mn(C), Im+1 ∈ Mm+1(C) are identity matrices and the right side above is the (p, q)th
matrix coordinate of π(g)− Im+1 ∈ Mm+1(C).

Observe that Qp,q have no constant terms because π(In) = Im+1. Since all the coe�cients of Qp,q

are rational, there must exist some N ∈ Z≥1 independent of p, q such that N ·Qp,q ∈ Z[Xi,j ]1≤i,j≤n.
Because there is no constant term in Qp,q, if g ∈ G ∩ SLn(Z) is such that g − In ≡ 0 (mod N), then
Qp,q(g − In) ∈ Z for all p, q which means that π(g) ∈ SLm+1(Z).

In particular, this implies that the congruence subgroup {g ∈ G(Z) | g ≡ In (mod N)} leaves the
lattice Λ invariant and is therefore contained in G(Z)∩Γ0. Since the index of this congruence subgroup
in G(Z) is at most #SLn(Z/NZ), we get that it is �nite index in G(Z). This implies that G(Z) ∩ Γ0

is �nite index in G(Z).
Because π−1 : π(G) → SLn(C) is also a Q-morphism, we could interchange the roles of G(Z) and

Γ0 and conclude similarly that G(Z) ∩ Γ0 has �nite index in Γ0.

With this, we can state the following version of Theorem 2.12.

Theorem 2.23. [BH62]
Let G be a Q-algebraic group satisfying the conditions of Theorem 2.12. Then, for any arithmetic

subgroup Γ ⊆ G(C), with respect to any left G(R)-invariant Haar measure on G(R)/Γ, the volume is
�nite.

Proof. (assuming Theorem 2.12) Suppose that G(R)/Γ has �nite volume with respect to the measure
mentioned in the statement. Then, for any other arithmetic group Γ′, we observe that

[Γ : Γ ∩ Γ′] vol (G(R)/Γ) = [Γ′ : Γ ∩ Γ′] vol(G(R)/Γ′).

Hence, �niteness of volume with respect to all arithmetic groups follows once we have �niteness with
respect to a single arithmetic group.

2.1.5 Special linear groups

Observe �rstly that Theorem 2.8 follows from Theorem 2.12. Indeed, SLd has the structure of a
Q-algebraic group and the following claim shows that it admits no Q-characters.
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Proposition 2.24. SLd(C) is connected and XQ(SLd) = {1}.

Proof. The part about connectedness is very well-known, so we skip it.
If χ : SLd → GL1 is a rational character, then it must be trivial on a commutator [g1, g2] =

g1g2g
−1
1 g−1

2 for g1, g2 ∈ SLd(C). Hence, if we show that SLd(C) is generated by the commutators
[g1, g2], we show that there are no rational characters3 on SLd.

The upcoming proposition then settles the proof.

Proposition 2.25. For any �eld k, the group SLd(k) can be generated by commutators within the
group.

Proof. It is su�cient to verify that the elementary matrices can be written as commutators. We leave
this for the reader to verify.

2.2 Semisimple algebra

In this section, we will talk about semisimple algebras. First let us begin with the de�nition of what
an algebra is.

De�nition 2.26. Let k be a �eld. A k-algebra is a k-vector space such that it is also a ring. It is
unital if there is unit 1A ∈ A. It is associative if associativity is satis�ed. It is �nite-dimensional if
dimk A < ∞.

Throughout this text, we will use the word k-algebra when we actually mean a �nite-dimensional
associative unital k-algebra. Also, we always assume that A ̸= {0}.

Remark 2.27. Whenever we have an algebra A over a �eld k, k 7→ k · 1A is an embedding of k into
A.

2.2.1 Division algebras

Here is a formal introduction to the main character of our story.

De�nition 2.28. A division algebra over k is a k-algebra D such that for every x ∈ D \ {0}, there is
an x−1 ∈ D \ {0} with

x · x−1 = x−1 · x = 1D.

Example 2.29. Every �eld extension K/k is a k-division algebra.

Example 2.30. One very good example is H, the ring of Hamiltonian quaternions. It is a division
algebra over R (but not over C). It is non-commutative.

Over R, the division algebras are not very interesting. Over Q, however we have in�nitely many
division algebras even if we exclude all the number �elds. This is the playground that interests us.

For now, we will talk about some properties of various algebras that are relevant to us. We will
discuss about division algebras more speci�cally in the upcoming section.

2.2.2 Simple algebra

De�nition 2.31. For any ring A that may or may not be commutative, we denote Mn1×n2(A) to be
n1 × n2 matrices with entries in A. We have the multiplication map

Mn1×n2
(A)×Mn2×n3

(A) → Mn1×n3
(A)

(C,D) 7→

(
(i, j) 7→

n2∑
r=1

CirDrj

)
.

The algebra Mn(A) = Mn×n(A) is called a matrix algebra over A and n will be called the matrix
index of this matrix algebra.

3In fact, this will show that there are no homomorphisms SLd(C) → A for an abelian group A that are non-trivial.
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Remark 2.32. Given a k-algebra A, we will often abuse notations and write An when we actually
mean Mn×1(A) on which Mn(A) can multiply on the left.

We are going to be interested in matrix algebras over division rings in our work. There is a very
�simple� property for such rings.

De�nition 2.33. A ring R is called simple if it has no two sided ideals other than 0 and R. That is,
for any x ∈ R \ {0}, we get RxR = R.

Let us write a very brief proof that indeed we have the property we de�ned above.

Lemma 2.34. Suppose D is a k-division ring. Then Mn(D) is a simple k-algebra.

Proof. Let x ∈ Mn(D) \ {0}. Since division is allowed, we can multiply elementary matrices on the
left and right of x to get a reduced form that has only {0, 1} on the diagonal and zeroes elsewhere. By
multiplying diagonal matrices with {0, 1}-entries, we can reach a diagonal matrix whose only non-zero
entry is a 1 on the diagonal somewhere. Finally by using permutation matrices and taking linear
combinations, we can reach the identity matrix. This completes the proof.

The following is a well-known theorem which says that Mn(D) is the only possible example of a
simple k-algebra. One can �nd proofs and more information in [Ser77] and [Pie12].

Theorem 2.35. (Artin-Wedderburn)
Suppose A is a simple algebra over a �eld k. Then for some k-division algebras D and some n ≥ 1,

A ≃ Mn(D).

2.2.3 Central simple algebra

De�nition 2.36. Let A be a k-algebra and by Z(A) ⊆ A, we denote the centre of A which is de�ned
to be the subring

Z(A) = {x ∈ A | xy = yx, ∀y ∈ A}.

Lemma 2.37. The centre of a simple algebra is always a �eld.

Proof. It is su�cient to see that the centre of Mn(D), where D is a division algebra, is simply the set
of scalar matrices with entries in Z(D). Since Z(D) is always a �eld, we are done.

De�nition 2.38. We say that a k-algebra is central if Z(A) = k.

Example 2.39. Examples of central simple k-algebras are Mn(k). Any simple algebra A over a �eld
k is central simple over the �eld Z(A).

The following is a very important result in this theory.

Theorem 2.40. (Skolem-Noether)
Every k-automorphism of a central simple k-algebra is an inner automorphism.
That is, whenever A is a central simple k-algebra and whenever φ : A → A is a k-linear automor-

phism, then there exists some a ∈ A∗ such that

φ(x) = a−1xa, ∀x ∈ A.

Proof. We refer the reader to [Pie12, �12.6].
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2.2.4 Semisimple algebra

We are interested in a slightly broader class of algebras which are de�ned below.

De�nition 2.41. A k-algebra is semisimple if it is a direct sum of �nitely many simple algebras.
That is, as k-algebras

A ≃ A1 ⊕A2 ⊕ · · · ⊕An,

for some A1, . . . , An simple k-algebras. We can call each of these factors Ai the simple factors in A.

The following is a reformulation of Theorem 2.35.

Theorem 2.42. (Artin-Wedderburn)
Suppose A is a semisimple algebra over a �eld k. Then for some �nite-dimensional k-division

algebras D1, D2, . . . , Dk and natural numbers n1, . . . , nk, we get the isomorphism

A ≃ Mn1(D1)⊕ · · · ⊕Mnk
(Dk). (2.1)

If A is simple, k = 1.

The right side of Equation (2.1) is always semisimple for any choice of �nitely many �nite-
dimensional k-division algebras. Thus, any reader who is not familiar with these objects could take
the de�nition of semisimple k-algebras as the object on the right side. Furthermore, all the semisimple
algebras considered here will always be �nite-dimensional, so we will not explicitly mention it every
time in the context of semisimple algebras.

2.2.5 Real semisimple algebras

In Theorem 2.42, we can also exploit some additional structure given by the following theorem which
tells us what the division algebras are.

Theorem 2.43. (Frobenius)
The only �nite-dimensional R-divison algebras (up to isomorphism) are R, C and H.

The three R-division algebras all have a special �conjugation� involution that is compatible with
the canonical inclusion R ↪→ C ↪→ H. The map ( ) : H → H given as a+ ib+ jc+kd 7→ a− ib− jc−kd
(a, b, c, d ∈ R and i, j, k canonically span H) satis�es that for any x, y ∈ H we have x.y = y.x. When
restricted to C, this is the usual complex conjugation and when restricted to R, this is the identity
map. Another important property is that for any a+ib+jc+kd = x ∈ H, xx = a2+b2+c2+d2 ∈ R≥0.

The two theorems stated above give rise to the following corollary.

Corollary 2.44. Any semisimple R-algebra is isomorphic to the product of matrix algebras over R,
C and H.

Matrix algebras over R, C and H are well understood. One important property is that the conju-
gation map de�ned above can be extended to a �conjugate transpose� involution on such matrices by
simply de�ning the mapping [xij ]

∗ = [xji]. With this, we can also de�ne a positive de�nite quadratic
form on these matrix algebras by sending a 7→ tr(a∗a).

On a given �nite-dimensional algebra over R, it is possible to de�ne the trace map trA : A → R and
the norm map NA : A → R as the trace and the determinant of the matrix of the left-multiplication
operation induced by any element (the functions trA and NA do not depend of the choice of the basis
used to construct these left-multiplication matrices). Similarly, it is also possible to generalise the
above involution simply by taking direct sums of the respective involutions for matrix rings over R,C
or H. We will omit the subscripts in trA and NA when A is clear from the context.

Corollary 2.45. Any semisimple R-algebra A admits an involution ( )∗ : A → A such that the
following conditions are satis�ed.

� For any a, b ∈ A, we have (ab)∗ = b∗a∗.

� The form a 7→ tr(a∗a) is a positive de�nite quadratic form on A. That is, it is always non-
negative and is zero only when a = 0.
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Proof. Simply take the direct sum of the �conjugate transpose� operation de�ned above on each matrix
component of the semisimple algebra A. It is then to be seen that the trace function on A is a sum of
traces on the right side of Equation (2.1), when they are realised as real matrix algebras. For instance,
we must see M1(C) as a 2-dimensional matrix algebra under the mapping a+ ib 7→

[
a −b
b a

]
.

Let a ∈ A ≃
⊕

i Mni
(Di), where Di are division R-algebras. Let La : A → A be the left multiplica-

tion map of a for an algebra A. Then La =
⊕

i Lai
where ai ∈ Mni

(Di) and trA(a) =
∑

i trMni
(Di)(ai).

Hence, with the de�nition of a 7→ a∗ as de�ned above, we get trA(a∗a) =
∑

i trMni
(Di)(a

∗
i ai) ≥ 0.

De�nition 2.46. Any involution A → A satisfying the two properties of Corollary 2.45 is said to be
a positive involution on A.

Lemma 2.47. Suppose ( )∗ : A → A is a positive involution. Then

� 1∗A = 1A.

� If u ∈ A is a zero non-divisor4, then (u∗)−1 = (u−1)∗.

� For u ∈ A, tr(u) = tr(u∗).

� The inner product induced by the positive de�nite quadratic form x 7→ tr(x∗x) is ⟨x, y⟩ = tr(x∗y).

Proof. The proofs are very enjoyable, so we leave all of them for the reader except for the third one,
which is below.

For the third part, we must use the fact that in a semisimple R-algebra, the trace induced by the
left-multiplication map and the right-multiplication map are the same5. To see this, it is su�cient to
verify this on the three types of simple components of the semisimple R-algebra, because the trace
map is just the sum of those individual trace maps as we saw in the Corollary 2.45. For such a
simple R-algebra, this fact is related to the observation that trace of a matrix is equal to trace of the
transpose for a real matrix.

Now observe that right-multiplication by u∗ is the same as left-multiplication by u preceded
and succeeded by the anti-homomorphism ( )∗. Hence, the right-multiplication by u∗ is the left-
multiplication by u operation up to conjugation by ( )∗ operation. Since trace is invariant under
conjugation by the linear map ( )∗, the trace of the two maps are equal from the claim in the previous
paragraph.

The notions of symmetric and positive de�niteness can also be de�ned for (A, ( )∗).

De�nition 2.48. Given a �nite-dimensional semisimple R-algebra and an involution ( )∗ as men-
tioned in Corollary 2.45, we shall call an element a ∈ A

� Symmetric, if a∗ = a.

� Positive de�nite, if x 7→ tr(x∗ax) is a positive de�nite quadratic form on A.

Lemma 2.49. The following holds.

� For any unit a ∈ A, a∗a is always symmetric and positive de�nite.

� If a ∈ A is positive de�nite, then a is a zero non-divisor and tr(a) > 0.

Proof. The �rst is a trivial veri�cation.
For the second, note that if a is a zero divisor then there exists some non-zero x ∈ A such that

ax = 0 ⇒ tr(x∗ax) = 0 which contradicts the positive de�niteness of a. Finally tr(a) = tr(1∗Aa1A) >
0.

4In a �nite-dimensional algebra over a �eld k, being a zero non-divisor is equivalent to being a unit and is also
equivalent to the left/right multiplication map being full-rank.

5Caution: This is only valid for semisimple algebras. In general, it is not true that the left-trace and the right-trace
agree.



24 CHAPTER 2. PRELIMINARIES

Remark 2.50. Another notion of positive de�niteness and symmetry that comes to mind is the
following. For any a ∈ A, you could call it positive de�nite if the left-multiplication matrix with
respect to a basis of A is positive de�nite and symmetric if it is symmetric. This notion is actually
compatible with the current notion, but is much less elegant.

The above notions give us an opportunity to describe the following folklore lemma. It is often
called the �norm-trace� inequality.

Lemma 2.51. Consider a f.d. semisimple R-algebra A with a positive involution ( )∗. Let a ∈ A be
a symmetric positive de�nite element and let d = dimR A. Then N(a) > 0, tr(a) > 0 and

1

d
tr(a) ≥ N(a)

1
d .

Proof. This is just the arithmetic-geometric means inequality. Let us elaborate how.
We know that x 7→ tr(x∗y) is an inner product onA. With respect to this, construct an orthonormal

basis e1, e2, . . . , ed. Set aij = tr(e∗i aej) which are the matrix entries of left-multiplication by a with
respect to the basis {ei}di=1, i.e. for {ri}di=1 ⊆ Rd, a(

∑
i riei) =

∑
i(
∑

j aijrj)ei. Since a is symmetric,
we get that aij = aji. Furthermore, by the positive de�niteness of x 7→ tr(x∗ax), the matrix aij can
be seen to be positive de�nite as a real matrix by substituting x =

∑d
i=1 xiei.

Hence, using the spectral theorem for real positive de�nite symmetric matrices, aij is diagonalisable
matrix with respect to an orthonormal change of basis and has real and positive eigenvalues (i.e. the
diagonal entries). Then trace is the sum of those eigenvalues and the norm is the product. The
inequality is then exactly the arithmetic-geometric inequality on those eigenvalues.

The following is a technical lemma that we will need eventually. The reader may skip this lemma
and refer to it later when it is needed while proving Theorem 4.13.

Lemma 2.52. For the setting of Lemma 2.51, let c be a positive constant and let K be the set of all
symmetric positive de�nite a ∈ A such that

N(a)
1
d ≤ 1

d
tr(a) ≤ cN(a)

1
d .

Then the following set is relatively compact in A (with respect to the Euclidean topology as an R-vector
space). {

a

tr(a)
| a ∈ K

}
.

Proof. What we will show is that there exist constants c′1, c
′
2 > 0 depending only on c such that for

any x ∈ A,

c′1 ≤
tr
(
x∗
(

a
tr(a)

)
x
)

tr(x∗x)
≤ c′2.

This will imply our claim, since in general, the set of symmetric positive de�nite matrices A ∈
Md(R) that satisfy

c′1 ≤ tr(xTAx)

tr(xTx)
≤ c′2,∀ x ∈ Rn \ {0}

is relatively compact in Md(R), where d = dimR A. Indeed, this condition is just enforcing that all
the eigenvalues of A must be in the compact set [c′1, c

′
2].

The statement is really about eigenvalues, as we will see. Using the spectral theorem, we know
that there exists a basis {ei}di=1 of A such that ei are orthonormal with respect to x 7→ tr(x∗x) and
the matrix tr(e∗i aej) is a diagonal matrix. Let {λi}di=1 be those diagonal entries with the assumption
that

0 < λ1 ≤ λ2 ≤ · · · ≤ λd.
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Then, we have that if x =
∑d

i=1 xiei, then tr(x∗x) =
∑d

i=1 x
2
i and tr(x∗ax) =

∑
i=1 λix

2
i . On the

other hand, N(a) =
∏d

i=1 λi and tr(a) =
∑d

i=1 λi.
From the assumption, we already know that

1

d

d∑
i=1

λi ≤ cλ
1
d
1 λ

1
d
2 . . . λ

1
d

d ≤ cλ
1
d
1 λ

1
d

d λ
1
d

d . . . λ
1
d

d = cλd

(
λ1

λd

) 1
d

.

Division on both sides by cλd tells us that

1

cd
≤ 1

cd

(
d−1∑
i=1

λi

λd
+ 1

)
≤
(
λ1

λd

) 1
d

,

and consequently that λd ≤ (cd)dλ1. Let c′ = cddd+1, then

λ1 ≤ tr(a) =

d∑
i=1

λi ≤ dλd ≤ c′λ1.

This tells us that the trace is roughly proportional to the smallest eigenvalue. From this, we learn
that

tr(x∗x) =

d∑
i=1

x2
i =

1

λ1

d∑
i=1

λ1x
2
i ≤ 1

λ1

d∑
i=1

λix
2
i =

1

λ1
tr(x∗ax) ≤ c′

tr(x∗ax)

tr(a)
,

whereas

tr(x∗x) ≥ 1

λd

d∑
i=1

λix
2
i =

1

λd
tr(x∗ax) ≥ d

c′
1

λ1
tr(x∗ax) ≥

(
d

c′

)
tr(x∗ax)

tr(a)
.

This is what was needed.

Remark 2.53. Note that {a/ tr(A) | a ∈ K} ⊆ {a ∈ A | tr(a) = 1}.
The relatively compact set {a/ tr(a) | a ∈ K} can be made to lie in A∗, the open set of invertible

elements in A. In particular, this means that the norm of these elements is bounded away from 0,
since A∗ = {a ∈ A | N(a) ̸= 0}.

Corollary 2.54. For the setting of Lemma 2.51, let c be a positive constant and let K be the set of
all symmetric positive de�nite a ∈ A such that

N(a)
1
d ≤ 1

d
tr(a) ≤ cN(a)

1
d .

Then the following holds for some constants C1, C2 > 0.

C1 tr(x
∗x) tr(a) ≤ tr (x∗ax) ≤ C2 tr(x

∗x) tr(a).

2.2.6 Orders in semisimple rings

De�nition 2.55. Let AQ be a Q-algebra. Then an additive subgroup O ⊆ AQ is called an order of
AQ if the following properties hold.

� It is a �nitely generated abelian group.

� It is discretely embedded in AR = A⊗Q R under the Euclidean topology.

� It is closed under multiplication, that is a, b ∈ O ⇒ ab ∈ O.

� 1A ∈ O.

� The Q-span of all the points in O is A. This is equivalent to saying that O is not contained in
any proper vector subspace of A. In particular, we have rankZ O = dimQ A.
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Remark 2.56. The de�nition of what an order is varies through literature. Sometimes the condition
1A ∈ O is denoted in a more speci�c type of order called a unital order.

Example 2.57. Z ⊂ Q is an order.

Example 2.58. If K is a number �eld, then K ⊗Q R is a semisimple algebra in which OK , the ring
of integers in K is an order.

When O ⊆ A is an order, Mk(O) is an order within Mk(A). We can refer to O as the �integral
points of A� and elements of Mk(O) as �integral matrices� in Mk(A).

Remark 2.59. This notion of �integral matrices� can be reconciled with common sense in the following
way. Since O spans A, we can make a basis of A from elements of O. Extending this basis to a basis
of Ak, we can recognize the algebra Mk(A) as an algebra of real matrices acting on Ak. Under
this identi�cation, the elements of Mk(O) are exactly those elements of Mk(A) whose entries as real
matrices are integers.

Making this more precise, denote d = dimQ A. Then there exists a faithful Q-algebra morphism
π : Mk(A) → Mkd(Q) that maps Mk(O) inside Mkd(Z). In fact, we see that Mk(O) = π−1(Mkd(Z))
because if π(m) ∈ Mkd(Z), mei ∈ Ok when ei = (0, . . . , 0, 1A, 0, . . . , 0) ∈ Ok. We will exploit this
representation π a few times throughout the text.

Lemma 2.60. Let O ⊆ A be an order inside a semisimple algebra. Thenm ∈ Mk(O) ⇒ N(m), tr(m) ∈
Z.

Proof. Identify EndR(Mk(A)) ≃ M[A:R]k2(R) with respect to a basis Mk(A) made by using a Z-basis
of O ⊂ A written k2 times (once for each matrix element of Mk(A)).

With this, Mk(O) is the Z-span of this basis and hence integral matrices have integer entries under
the left-multiplication map. Hence, norm and trace are integers.

Corollary 2.61. If m ∈ Mk(A) and π is the representation from Remark 2.59, then NMk(A)(m) =

[detπ(m)]k and trMk(A)(m) = k trace(π(m)).

Proof. To get this, we must identify Mk(A) ≃ (Ak)⊕k as a left Mk(A)-module and use the basis
mentioned in Remark 2.59.

2.3 More on division rings

2.3.1 Linear algebra with division rings

Proposition 2.62. Finitely generated left division ring modules are vector spaces over the division
ring.

Proof. We skip this proof as it is boring. Basically, all linear algebra of vector spaces of �elds gener-
alises to division rings as long as we keep track of left multiplication and right multiplication.

Here is a matrix decomposition lemma that will be useful for us.

Lemma 2.63. For any ω ∈ Mn1×n2
(D), we can uniquely write

ω = c · f, (2.2)

where c ∈ Mn1×m(D) and f ∈ Mm×n2
(D) such that

1. m is the D-rank of right D-module in Mn1×1(D) generated by the columns of ω.

2. f is in column reduced echelon form. This means that for each column in the matrix

(a) the top-most entry is 1,

(b) this top-most entry is in a row strictly below that of any row which contains the top-most
entry of a column to the left of the column,
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(c) the row containing the top-most entry has zeroes at all the positions except where there is
a 1.

Proof. This is exactly like the rank-factorization in standard linear algebra. Here are the details.
Let ω1, ω2, . . . , ωn2

∈ Mn1×1(D) be the columns of the matrix ω. Suppose that

V1 = ω1 ·D,

V2 = ω1 ·D + ω2 ·D,

V3 = ω1 ·D + ω2 ·D + ω3 ·D,

...

Then, we have that for each i ∈ {1, . . . , n}, the di�erence of the right D-ranks of Vi and Vi−1 is either
0 or 1. This depends exactly on whether or not ωi can be written as a right-D linear combination of
ω1, ω2, . . . , ωi−1 or not.

Let I be the set of indices i such that ωi cannot be written as a linear combination of the
ω1, . . . , ωi−1. Then, clearly #I = m and the right D-span of {ωi}i∈I is also the right D-span of
{ωi}i=1,...,n. Then, c ∈ Mn1×m(D) is the matrix made from the columns {ωi}i∈I arranged left to
right with increasing i and f ∈ Mm×n2

(D) is the matrix whose ith row contains appropriate coe�-
cients to satisfy Equation (2.2).

The uniqueness follows from the column-reduced echelon form of f , which implies that the columns
of c must be of the form outlined above.

2.3.2 Division rings in �nite group representations

Let G be a �nite group as before and let Q[G] be the group ring of G. For the uninitiated, we de�ne
a group ring below.

De�nition 2.64. For a group G and a �eld k, the group ring k[G] is the ring of functions

k[G] = {f : G → k},

under the convolution product de�ned as

f1 · f2(g) =
∑

g1g2=g

f1(g1)f2(g2), ∀ f1, f2 ∈ k[G].

Any n-dimensional G representation over Q could be seen as a group homomorphism G → GLn(Q)
which extends to a linear map Q[G] → Mn(Q). This makes the representation a module over Q[G].
Therefore, in the literature, Q[G]-modules or Q[G]-representations actually mean just representations
of G over Q. The notation allows us to talk about Q-vector spaces without identifying a basis. We
will henceforth use this terminology for representations of G over Q.

De�nition 2.65. For a Q[G]-representation W , we denote EndQ[G] W to be the endomorphisms of
W that commute with the G-action on W .

In general, for a left R-module V where R is a ring, we denote EndR V to be the ring of R-linear
endomorphisms of V .

De�nition 2.66. A Q[G]-module V is said to be irreducible if there are no Q[G]-submodules W ⊆ V ,
W ̸= 0, V .

The following proposal clari�es why division algebras are such a central object of study in this
research.

Proposition 2.67. Let W be an irreducible Q[G]-module. Then, the ring EndQ[G] W is an associative
division ring which is non-commutative in general.

Proof. EndQ[G] W is clearly associative. We need to show that every non-zero element has an inverse.
Let a ∈ EndQ[G] W . Then ker a is a Q[G]-submodule of W . By irreducibility, we must have that ker a
is either W or 0. This happens exactly when a is zero or an invertible linear map. It then follows that
the inverse must also lie in EndQ[G] W , since aEndQ[G] W = EndQ W .
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Theorem 2.68. Any �nite dimensional Q[G]-module VQ has a decomposition of the form

VQ ≃ (V1)
⊕r1
Q ⊕ · · · ⊕ (Vk)

⊕rk
Q , (2.3)

where (Vi)Q are irreducible Q[G]-modules and Vi is not isomorphic to Vj for i ̸= j.

Proof. This classical theorem is due to Maschke. The idea is basically that in characteristic 0 (or more
generally when #G is invertible in the base �eld), we are allowed to average over the group G.

The decomposition of Equation (2.3) is not unique. However, decomposition into the bigger (albeit,
not necessarily irreducible) blocks (Vi)

ri
Q exists canonically [cf. Ser77]. In fact, the following proposition

shows that a large class of automorphisms act on this decomposition.

Proposition 2.69. The decomposition of EndQ[G](V ) happens as the following.

EndQ[G](V ) = Mr1

(
EndQ[G] V1

)
⊕Mr2

(
EndQ[G] V2

)
⊕ · · · ⊕Mrk

(
EndQ[G] Vk

)
.

Proof. Observe that any Q[G]-linear map from Vi to Vj for i ̸= j must be trivial due to irreducibility.
Indeed, the kernel of such a map cannot be trivial since it would imply that Vi and Vj are isomorphic
and hence, the kernel must be all of Vi.

So, the only maps from V to V are those that map ri copies of Vi to itself for each i = 1 . . . k.
This gives us the matrix algebras above.

Corollary 2.70. The ring EndQ[G] V is semisimple.

Each EndQ[G] Vi = Di is a division algebra because of Proposition 2.67. Then, we get that Vi is a
�nitely generated left Di-module over Q. This implies from Proposition 2.62 that Vi ≃ Dni .

De�nition 2.71. For an irreducible Q[G]-representation VQ, we call the EndQ[G]-rank of VQ the
matrix index of VQ.

We will now try to make sense of this matrix index by introducing the following concept.

De�nition 2.72. Let R be any ring. Then we denote Rop to be the division algebra with the same
set of elements as R and the multiplication given by

(r1, r2) 7→ r2r1,∀ r1, r2 ∈ R.

Remark 2.73. It is clear that Mn(Dop) acting on the left on Dn is tacitly just Mn(D) acting on
D1×n on the right.

With this, we can observe that the ni appearing in V ≃ Dni has another interpretation. The
Artin-Wedderburn decomposition of Q[G] is

Q[G] ≃ Mn1(D1)⊕Mn2(D2)⊕ · · · ⊕Mnk
(Dk),

for some k, where D1, D2, . . . are Q-division algebras. Each of the matrix algebras over division rings
above corresponds to an irreducible representation of G over Q on which Q[G] acts upon as a ring
of matrices over a division ring. The corresponding ni is then the matrix index of the irreducible
representation associated to the ith factor.

To make things more precise, if VQ is an irreducible Q[G]-module, D = EndG VQ is a Q-division
algebra whereas the image of Q[G] in EndVQ must lie in

EndEndG VQ VQ ≃ EndD Dn ≃ Mn(Dop).

Hence, if VQ has a decomposition as in Equation (2.3), then Q[G] maps into the space⊕
i

Mni((Di)op),

where Di = EndG Vi as usual.
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2.3.3 Tensoring a division algebra with reals

We are interested in evaluating D ⊗Q R. Let F = Z(D) be the centre of the division ring D. Then,
[D : F ] is always a perfect square (see [Jac09] ), which we denote to be n2 in the discussion below.

For this, consider the following chain of isomorphisms.

D ⊗Q R ≃ (D ⊗F F )⊗Q R
≃ D ⊗F (F ⊗Q R).

Now, suppose F has rF real embeddings {σ1, σ2, . . . , σrF } and cF pairs of complex embeddings
{{τ1, τ1}, . . . , {τcF , τ cF }}, then it is well known that the following is an R-algebra isomorphism.

F ⊗Q R ∼−→ R⊕rF ⊕ C⊕cF

x⊗ 1 7→ (σ1(x), . . . , σrF (x), τ1(x), . . . , τcF (x)) .

Hence, we write that

D ⊗Q R ≃ (

rF⊕
i=1

D ⊗σi(F ) R)⊕ (

cF⊕
i=1

D ⊗τi(F ) C).

Now, for any τi, D ⊗τi(F ) C is a simple C-algebra6 and is therefore isomorphic to Mn(C). On the
other hand, depending on F and σi, D ⊗σi(F ) R is either isomorphic to Mn(R) or Mn/2(H), that is,
either D ⊗σi(F ) R splits or does not split respectively. This gives us the following few propositions.

Proposition 2.74. When n is odd, we get the following isomorphism.

D ⊗Q R ≃ Mn(R)⊕rF ⊕Mn(C)⊕cF .

Proof. Clearly, since n is odd Mn/2(H) cannot exist!

Proposition 2.75. When F/Q is a Galois, then either all the embeddings are real or they are all
complex. Hence, when F is Galois and at least one strictly complex Q-embedding of F exists, then

D ⊗Q R ≃ Mn(C)⊕(
[F :Q]

2 ).

We can also consider the case of D ⊗Q C in a very similar fashion.

Proposition 2.76.
D ⊗Q C ≃ Mn(C)⊕[F :Q].

Proof. Observe that for a number �eld F , if {σ1, σ2, . . . , σ[F ;Q]} are all the embeddings F ↪→ C over
Q, then the following map is an isomorphism.

F ⊗Q C ∼−→ C⊕[F :Q]

x⊗ 1 7→
(
σ1(x), . . . , σ[F :Q](x)

)
.

Then, we get that

D ⊗Q C ≃ (D ⊗F F )⊗Q C
≃ D ⊗Q (F ⊗Q R)

≃
[K:Q]⊕
i=1

D ⊗σi(F ) C

≃
[K:Q]⊕
i=1

Mn(C).

6Extending scalars preserves simplicity.
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2.3.4 Cyclic division algebras

Theorem 2.43 allows only 3 �nite dimensional R-division algebras, namely R,C and H. The only non-
trivial and non-commutative extension of R is H. However, over Q, the story is completely di�erent.
There are in�nitely many �nite dimensional Q-division algebras apart from the �nite �eld extensions
of Q. All of these division algebras have the form of a cyclic division algebra.

We now give the construction of cyclic division algebras below. For a thorough introduction, one
can refer to [Jac09], for instance. For a gentler introduction, read [For73].

De�nition 2.77. We de�ne a cyclic Q-division algebra as the quadruplet D = (E,F, σ, γ), where

1. F is a number �eld over Q,

2. E/F is a cyclic extension of degree n, i.e. the �eld extension E/F is Galois and the Galois
group is cyclic,

3. σ is a generator of the cyclic group Gal(E/F ) and

4. γ ∈ F ∗, with the property that the multiplicative order of γ in the group F ∗/NE
F (E∗) is exactly

n. That is, γk /∈ NE
F (E∗) for any k ∈ {1, 2, . . . , n−1} and γn = NE

F (x) for some x ∈ E∗. When
this happens, we say that γ ∈ F ∗ is a non-norm element. Note that γn = NE

F (γ).

Consider a formal element b that does not commute with E and satis�es bn = γ. As an E-module,
D is de�ned as per the isomorphism

D ≃ E ⊕ Eb⊕ Eb2 ⊕ · · · ⊕ Ebn−1, (2.4)

which can be given the structure of an F -algebra by implementing the rule

bl = σ(l)b for all l ∈ E. (2.5)

If we identify D ≃ En according to the identi�cation (2.4), then for g = (g0, g1, . . . , gn−1), we observe
that for some x0 ∈ E, we get the following from repeatedly using Equation (2.5).

gb =(g0 + g1b+ g2b
2 + · · ·+ gn−1b

n−1)x0

=



x0

σ(x0)
σ2(x0)

σ3(x0)
σ4(x0)

. . .
σn−1(x0)





g0
g1
...

gn−1


,

whereas multiplying by b on the right looks like

gb =(g0 + g1b+ g2b
2 + · · ·+ gn−1b

n−1)b

=



γ
1

1
1

1
. . .

1





g0
g1
...

gn−1


.
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Extending this to the right multiplication by some y = y0 + y1b+ · · ·+ yn−1b
n−1, we write that

gy =g(y0 + y1b+ y2b
2 + · · ·+ ynb

n−1)

=g(y0 + bσ−1(y1) + b2σ−2(y2) + b3σ−3(y3) + · · ·+ bn−1σ−n+1(yn−1))

=



y0 γσ(yn−1) γσ2(yn−2) γσ3(yn−3) γσn−2(y2) γσn−1(y1)
y1 σ(y0) γσ2(yn−1) γσ3(yn−2) γσn−2(y3) γσn−1(y2)
y2 σ(y1) σ2(y0) γσ3(yn−1) . . . γσn−2(y4) γσn−1(y3)
y3 σ(y2) σ2(y1) σ3(y0) γσn−2(y5) γσn−1(y4)
y4 σ(y3) σ2(y2) σ3(y1) γσn−2(y6) γσn−1(y5)

...
. . .

yn−1 σ(yn−2) σ2(yn−3) σ3(yn−4) σn−2(y1) σn−1(y0)





g0
g1
...

gn−1


.

Since this is a matrix representation of the right multiplication, we get from the above matrix a map
Dop → Mn(E).

Clearly, F lies in the centre Z(D). In fact, after some matrix computations, one can see that F is
the centre.

Remark 2.78. From the identi�cation in Equation (2.4), it is clear that dimF (D) = n2.

Remark 2.79. If only the �rst three conditions are satis�ed in the de�nition without condition 4, then
we simply call D a cyclic Q-algebra. A cyclic Q-algebra is a division algebra if and only if condition
4 is satis�ed. That is, (E,F, σ, γ) is a division algebra if and only if γ is a non-norm element.

Let us consider some examples.

Example 2.80. Consider D = (Q[i],Q, σ,−1), where σ : Q[i] → Q[i] is the unique non-trivial Galois
automorphism. Here n = 2 and since N

Q[i]
Q (a+ ib) = a2 + b2 ≥ 0 for any a, b ∈ Q, −1 is not a norm

of any element in Q[i]∗.
This division algebra �ts inside the quaternion group {±1,±i,±j,±ij}, where j ̸= i such that

j2 = −1.

Example 2.81. This example is from [Lam01], but is also mentioned in [Ami55]. This is the smallest
odd order non-commutative group that can �t inside a division algebra.

Take E = Q[ζ21], the 21st cyclotomic �eld. We know that [E : Q] = 12. Take σ ∈ Gal(E/Q)
de�ned by ζ21 7→ ζ1621 . Then the order of σ in Gal(E/Q) ≃ (Z/21Z)∗ is 3. Take F = E⟨σ⟩, that is, the
�eld of those elements of E that are �xed under σ. Clearly, [E : F ] = 3 and [F : Q] = 4. We declare
ζ721 to be the non-norm element γ . The fact that this works is explained in [For73].

This makes D = (E,F, σ, γ) a 9-dimension division algebra over F and 36-dimensional division
algebra over Q. In [Lam01], we see that this division algebra �ts a �nite group G of 63 elements,
which is generated by the non-commutative formal element b and ζ321.

G is in fact full-span inside D. To see this, observe that b3 = γ = ζ721 and ζ721ζ
3
21 = ζ1021 which is

primitive and generates all the powers of ζ21. The Q-span of those powers is E and along with b, it
generates D.

As we have mentioned, division algbras over Q are completely classi�ed. Indeed, the following is
the theorem which explains this.

Theorem 2.82. (Albert, Brauer, Hasse, Noether)
All division algebras over Q are cyclic division algebras.

The proof of Theorem 2.82 is well outside the scope of the thesis, but [Pie12] contains a detailed
account.



Chapter 3

Random lattices with prescribed

symmetries

Let G be a �nite group acting on a �nite dimensional real vector space Rd. We want to consider all
the full-span lattices Λ ⊆ Rd that are invariant under the action of G. Hence, we assume that there
must exist at least one such lattice Λ. This restricts our G-action in the following way.

Let v1, v2, . . . , vd ⊂ Λ be a basis of Rd. It is then clear that G will take each vector vi to a Z-linear
combination of the vi. Hence, we conclude that using this basis, G can actually get a homomorphism
G → GLd(Q). In other words, G can actually a�ord a d-dimensional Q-representation VQ such that
Rd ≃ VQ ⊗ R = VR.

Let us then try to construct the right candidate to study as our space of G-symmetric lattices in
VR.

3.1 The most general space of lattices

Let us start, without loss of generality, with a �nite group G that is a subgroup1 of SLd(Z). The most
immediate candidate then to have a space of G-invariant lattices is the following.

C1 = {gZd | g ∈ SLd(R), g−1hg ∈ SLd(Z) for each h ∈ G}.

Indeed, any such lattice Λ in the set above will have the property that hΛ = Λ for h ∈ G.
However, the condition given on g above does not de�ne a subgroup of SLd(R). That is, the

following is not a group in general.

G1 = {g ∈ SLd(R) | g−1hg ∈ SLd(Z) for each h ∈ G} ⊆ SLd(R). (3.1)

It is not clear how to proceed studying this space of lattices. This construction could be considered
in future works on this topic.

Here is an example of such a construction.

Example 3.1. Let I =
[

0 1
−1 0

]
and consider the group G = ⟨I⟩ ⊆ SL2(R). As a group, G is simply a

cyclic group of order 4.
We know that [

a b
c d

]−1

=

[
d −b
−c a

]
,

and the condition for membership in the set G1 de�ned in Equation (3.1) is that[
d −b
−c a

] [
0 1
−1 0

] [
a b
c d

]
∈ SL2(Z)

⇔
[
dc+ ab d2 + b2

−a2 − c2 −cd− ab

]
∈ SL2(Z).

1It is known [Ser09, App. 3] that for a �xed d, there are �nitely many choices of a group G.
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It is clear that SL2(Z) ⊆ G1. Furthermore, observe that G1 must be closed under multiplication by
rotation matrices on the left. That is[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
G1 ⊆ G1.

So we know that
SO(2) SL2(Z) ⊆ G1.

In fact, with a bit of work we can show that the above is an equality. Observe that we know that if
gZ2 is invariant under I and if v ∈ gZ2 is the shortest vector, then the closure of the square spanned
by v and Iv must not contain any lattice points in gZ2 (follows from a geometric argument left for the
reader). Hence gZ2 contains Z2 up to a rotation and therefore it gγ ∈ SO(2) for some γ ∈ SL2(Z).

3.2 Quotient spaces of Q-algebraic groups
We can instead consider the set

Caut = {gZd | g ∈ SLd(R), g−1hg ∈ G for each h ∈ G}.

And this is now the image of a subgroup of SLd(R) that is an algebraic Q-group. Namely, the
following is an algebraic group.

Gaut(R) = {g ∈ SLd(R), g−1hg ∈ G for each h ∈ G}. (3.2)

With this de�nition, we have that

Caut ≃ Gaut(R)/Gaut(Z).

Note that the following group is a subgroup with a �nite index in Gaut.

Gcom(R) = {g ∈ SLd(R), g−1hg = h for each h ∈ G}. (3.3)

To see that Gcom is a �nite index subgroup of Gaut, we observe that the quotient of the two subgroups
of SLd(R) will be some subgroup of automorphisms AutG of G. In fact, we will shortly describe this
subset a bit more.

With the choice of the algebraic group as Gcom, we can again de�ne the space of lattices to be

Ccom = {gZd | g ∈ SLd(R), g−1hg = h for each h ∈ G} ≃ Gcom(R)/Gcom(Z).

Both Caut and Ccom are interesting candidates to study as a space of G-symmetric lattices. They both
have a nice structure of a quotient of some smooth group modulo a discrete subgroup. This opens us
to the set of tools at our disposal from the preliminaries developed in Chapter 2.

Let us �rst see an example of the constructions Ccom and Caut.

Example 3.2. Consider the same setup as Example 3.1. As before, we have

I =
[

0 1
−1 0

]
,

and G = ⟨I⟩.
Note that [

a b
c d

]
I = I

[
a b
c d

]
⇒ c = −b, a = d.

What this implies is that the algebra

{A ∈ M2(R) | AI = IA} = R+ RI ≃ C.

Thus, the group Gcom(R) de�ned in Equation (3.3) is then simply

Gcom(R) ≃ {z ∈ C | ∥z∥ = 1}.



34 CHAPTER 3. RANDOM LATTICES WITH PRESCRIBED SYMMETRIES

Furthermore, Gcom(Z) = {±1,±I}.
On the other hand, if we were to consider the group Gaut in Equation (3.2), then things become

slightly di�erent. For any A ∈ SL2(R), A−1IA ∈ ⟨I⟩ ⇒ A−1IA = ±I. Then, the following vector
space

{A ∈ M2(R) | IA = −AI} = RJ + RK,

where
J =

[
1 0
0 −1

]
, K = [ 0 1

1 0 ] . (3.4)

With this setup, we get
Gaut(R) = Gcom(R) ⊔ Gcom(R) · J,

and
Gaut(Z) = {±1,±I,±J,±K}.

Coincidentally, in this case we have

C1 = Ccom = Caut,

even if G1,Gcom,Gaut are all di�erent.

Example 3.3. Let us show an example where C1 ̸= Ccom. Take the same group G = ⟨I⟩ as before
and let us change the representation to be the following.

Let π : G → GL3(R) be given by

π(I) = [ I 1 ] =

 1
−1

1

 .

In this case, we observe that

Gcom(R) =


 a cos θ a sin θ
−a sin θ a cos θ

1
a2

 | θ, a ∈ R, a ̸= 0

 .

But observe that

B =

1 1/2
1 1/2

1

 ∈ G1

is not inside Gcom(R) · SL3(Z). To see why, note that any A ∈ Gcom(R) SL3(Z) will correspond to
a lattice AZ3 which will be a direct sum Λ1 ⊕ aZ ⊆ R2 ⊕ R of two lattices, one 2-dimensional and
one 1-dimensional. However, the layers of the lattice generated by B in the xy-plane are alternating
between two a�ne lattices.

3.2.1 Representation theoretic viewpoint

Let VQ be Qd and let π : Q[G] → EndVQ be a Q-algebra homomorphism. This makes VQ a Q[G]-
module and V = VQ ⊗ C. Note that we have the map det : EndVQ → Q and we have the canonical
inclusion

EndG VQ = EndQ[G] VQ ⊆ EndVQ.

With this, we can write that the group from Equation (3.3) is nothing but

Gcom(Q) = {A ∈ EndQ[G] V | detA = 1},

and Gcom(R) is the corresponding set of real points.
We can simplify the de�nition of Gaut of Equation (3.2) in a similar way. Let σ ∈ AutG be an

automorphism of the �nite group G. We then de�ne

EndσG VQ = {A ∈ EndVQ | π(gσ)A = Aπ(g) for each g ∈ G}. (3.5)

It is clear that EndσG VQ is a vector space and also an EndG VQ-module. It satis�es

EndσG VQ · Endσ
′

G VQ ⊆ Endσ·σ
′

G VQ,∀ σ, σ′ ∈ AutG.
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Lemma 3.4.

dimQ EndσG VQ =

{
0 EndσG V = {0}
dimQ EndG VQ otherwise

.

Proof. Observe that being a Q-vector space implies that EndσG VQ ∩ GL(VQ) must be non-empty
whenever EndσG VQ ̸= {0}. When this happens, for Aσ ∈ EndσG VQ ∩ GL(VQ), the following is an
isomorphism of Q-vector spaces.

EndG VQ → EndσG VQ

x 7→ xAσ.

Lemma 3.4 inspires us to de�ne the following �nite group inside AutG.

AutV G = {σ ∈ AutG | EndσG VQ ̸= {0}}.

With this notation, we can rewrite Equation (3.2) as

Gaut(Q) =
⋃

σ∈AutV G

{A ∈ EndσGVQ |detA = 1}.

We then have the identi�cation
AutV G ≃ Gaut/Gcom.

Example 3.5. Let us consider the same group G = ⟨I⟩ as Example 3.1, 3.2 but this time, let us
change the representation to be 4-dimensional.

Let π : G → GL4(R) be given by

π(I) = [ I I ] =


1

−1
1

−1

 .

Let VQ = Qd. Then, we have that

EndG VQ =

{[
E F
G H

]
| E,F,G,H ∈ Q+QI

}
≃ M2(C).

So, after all, we get

Gcom(R) =
{[

E F
G H

]
| E,F,G,H ∈ R+ RI,det(EH − FG) = 1

}
.

As a Lie group, this is almost like SL2(C), except that it has a compact factor of S1 as a unit circle.
That is,

Gcom(R) ≃ SL2(C)× S1.

There is exactly one automorphism of the group G which is σ : I 7→ −I. We see that the following
matrix Aσ is invertible and must satisfy Aπ(I) = π(−I)A

Aσ =


1

−1
1

−1

 .

Then, if we follow the proof of Lemma 3.4, we see that

EndσG VQ = EndG VQ ·Aσ,

and
Gaut(R) = Gcom(R) ⊔ Gcom(R)Aσ.
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Here is a third candidate, again using the automorphism group AutV G. We can de�ne

ẼndGV =
∑

σ∈AutV G

EndσG V.

ẼndGV is a Q-subalgebra of EndQ V embedded via π.
We can then conjure up a new Q-algebraic group given as

Gtwist(Q) = SL(VQ) ∩ ẼndGV.

Observe that we still have the remarkable property that for every A ∈ Gtwist(R) and if Λ ⊆ VQ is
a lattice invariant under G-action, then

π(g)A · Λ = AΛ, ∀ g ∈ G.

Indeed, we can write A = Aσ1 +Aσ2 + . . . where Aσi ∈ Endσi

G V . Then for any g ∈ G, we have

π(g) ·A = Aσ1π(g
σ−1
1 ) +Aσ2π(g

σ−1
2 ) + · · · .

And this implies that the lattice AΛ ⊆ VR is preserved under the action of G. Thus, we get that the
following is also homogeneous space of G-invariant lattices:

Gtwist(R)/Γ,

where Γ = {A ∈ Gtwist(Q) | AΛ = Λ}.
Let us try to illustrate this with our running example.

Example 3.6. Suppose G ≃ ⟨I⟩ is the group from Example 3.1, 3.2 acting on R2 as before. Then,
observe that the ring

ẼndGV = EndG V ⊕ EndG V · J ≃ Q[I, J ],

where J is de�ned in Equation (3.4). This tells us that the ring ẼndGVQ is the ring of rational
quaternions. The real points of this ring form the Hamiltonian quaternion ring H. Hence, the group
Gtwist(R) would be isomorphic to the three dimensional sphere as a Lie group.

If we were to instead consider the action of G given in Example 3.5, then we would get that

Gtwist(R) ≃ SL2(H).

3.2.2 AutV G is not easy to understand

Observe the following.

Lemma 3.7. Let AutV G be as de�ned in Equation (3.5). There is a homomorphism of groups given
below.

AutV G → Aut (EndG VQ)

Inn (EndG VQ)
≃ Out(EndG VQ).

Here, Aut(EndG VQ), Out(EndG VQ) and Inn(EndG VQ) are the groups of automorphisms, inner au-
tomorphisms and outer automorphisms of EndG VQ respectively.

Proof. Note that for any σ ∈ AutV G, we have that any Aσ, Bσ ∈ EndσG V ∩GL(VQ) acts on EndG VQ
by

x 7→ A−1
σ xAσ.

Since y = A−1
σ Bσ ∈ EndG V , so in fact the automorphism de�ned above is well-de�ned upto an inner

automorphism.

We remind the reader that V has a decomposition of the form

VQ ≃ (V1)
⊕r1
Q ⊕ · · · ⊕ (Vk)

⊕rk
Q ,
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as in Theorem 2.68. Then using Proposition 2.69

EndG V ≃ Mr1(D1)⊕Mr2(D2)⊕ · · · ⊕Mrk(Dk),

where Di = EndG Vi is a division algebra by Proposition 2.67. Then, the group of automorphisms
Aut(EndG V ) is therefore the group of automorphisms of these products of matrix algebras. Hence,
the automorphism group itself can be written as a direct product of automorphism groups of each of
the simple factors given above. Any automorphism of a Q-algebra must automatically be Q-linear
and Theorem 2.40 tells us that the automorphisms that are linear over the centre are simply the inner
automorphisms.

For simplicity, let's assume for now that k = 1 and r1 = 1. Hence, we are in the case where
EndG VQ = D is a division algebra over Q. Observe that any automorphism that is Q-linear must
send Z(D) to itself and hence becomes a Galois automorphism of a number �eld. But in general, not
every Galois automorphism of Z(D) can be extended to an automorphism of D even when we have
the structure theorem Theorem 2.82 that classi�es all Q-division algebras [Han07].

On the other hand in the same setting when k = 1, AutG V could be as complicated as any �nite
group of Q-division algebra automorphisms of D. Indeed, recall that towards the end of Section 2.3.2,
we discussed that if V has a matrix index t then π : G → EndQ VQ maps into

π(Q[G]) ⊆ EndEndG VQ VQ ≃ Mt(D
op),

where D is the division algebra EndG VQ. In fact, this inclusion is surjective since Mt(D
op) is one of

the simple components inside Q[G]. Thus, we get that

AutQ (π(Q[G])) ≃ AutQ (Mt(D
op)) .

3.2.3 Finiteness of measure

Note that we want to create a probability space of lattices invariant under the action of G. From
the discussion above, we are in the domain of having the real points of a Q-algebraic group G(R)
modulo an arithmetic subgroup. Hence, using Theorem 2.12, we must have only those groups for
which XQ(G0) = {0}.

Since, we know that our subgroup satis�es

Gcom(Q) ⊆ EndG V,

we can identify it as a Q-subgroup of

GLr1(D1)⊕GLr2(D2)⊕ · · ·GLrk(Dk),

where Di = EndQ[G] Vi is the division ring coming from Vi.
In order to make sure that our measure space G(R)/G(Z) is a probability space, we are forced to

choose
G(1)(Q) = SLr1(D1)⊕ SLr2(D2)⊕ · · · SLrk(Dk),

which we get when we make all the reduced norms in each simple factor equal to 1. And indeed, due
to the discussion of Section 4.1, the homogeneous space of this group is of �nite covolume.

In line with the constructions Gtwist and Gaut, it is possible to make analogous constructions G(1)
twist

and G(1)
aut. We will not pursue those ideas due to the previously mentioned reasons.



Chapter 4

Integrating on SLt(D)

Here, we describe the special linear group over division algebra that we settled on as our algebraic
group candidate in Chapter 3. Recall what a reduced norm is from Remark 4.17.

De�nition 4.1. Let D be a Q-division algebra and t ≥ 1.
We denote SLt(D) to be the group of matrices Mt×t(D) with reduced norm equal to 1. This is the

set of Q-points algebraic group G, whose real points G(R) are SLt(DR).

We state the following proposition about these groups that will be important in classifying rational
orbits under the group action of SLt(D).

Lemma 4.2. Let Mt×n(D) be acted upon SLt(DR) from the left. Then this action is transitive on the
set of full-rank matrices when n < t.

Proof. What is being asked here is if the �rst n columns on the left are �xed to be a matrix in
Mt×n(D), can it be completed to create a matrix in SLt(D)? The answer is yes, since we can line up
some 1s on the diagonal except for the bottom right where we put a suitable rational number so that
the reduced norm 1 condition holds.

Remark 4.3. Lemma 4.2 will not work for n ≥ t. Indeed, for example when n = t, the SLt(D) action
will not be able to change the norm of a matrix in Mt×t(D).

4.1 Reduction theory

4.1.1 Cholesky decomposition

Let A be a semisimple R-algebra with a positive involution ( )∗. The algebraMk(A) is also a semisimple
R-algebra and the involution ( )∗ can be easily extended to Mk(A) via the mapping [aij ] 7→ [a∗ji]. We
will denote this involution with same notation ( )∗. With this, the meaning of positive de�nite and
symmetric matrices in Mk(A) is unambiguous. For clarity, we will distinguish between the norms and
traces of A and Mk(A) by using the notations trA,NA, trMk(A),NMk(A) whenever appropriate.

For any a ∈ Mk(A), we can create a bilinear form βa : Ak ×Ak → R as

βa(x, y) =

k∑
i,j=1

trA(x
∗
i aijyj).

The following lemma then shows that the conventional intuition of positive de�niteness is in accordance
with De�nition 2.48.

Lemma 4.4. An element a ∈ Mk(A) is positive de�nite if and only if βa is a positive de�nite quadratic
form on Ak as an R-vector space.

38
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Proof. By checking with appropriate basis elements, we conclude that trMk(A)(a) = k trA

(∑k
i=1 aii

)
for any a ∈ Mk(A). Now, if {x•p}kp=1 ⊆ Ak are the columns of the matrix x ∈ Mk(A), we get that

trMk(A)(x
∗ax) = k

k∑
p,q,r=1

trA(x
∗
prapqxqr)

= k

k∑
r=1

βa(x•p, x•p).

Hence, the above quadratic form is just kβa ⊕ · · · ⊕ kβa = kβ⊕k
a on the space Mk(A) ≃ (Ak)⊕k.

Therefore, βa is positive de�nite if and only if the above quadratic form is, which is exactly the
de�nition of a being positive de�nite as an element of A.

This lemma leads to the following decomposition for quadratic forms βa induced by symmetric
positive de�nite matrices a. What the upcoming theorem is really going to tell us is that the quadratic
form βa can be �diagonalised� up to a �triangular� change of basis.

When A = R, this is simply the Cholesky decomposition of real symmetric positive de�nite ma-
trices. In [Wei58], the theorem below is referred to as the Babylonian reduction theorem, perhaps
because it is spiritually similar to �completing the square� in a quadratic equation of one variable.

Theorem 4.5. Let a ∈ Mk(A) be a symmetric positive de�nite matrix. Then there is an upper
triangular matrix t ∈ Mk(A) with 1A on the diagonal entries, and a diagonal matrix d with symmetric
positive de�nite elements of A on the diagonal such that

a = t∗dt.

Proof. Writing explicitly in terms of A-valued matrix entries, what we want is to �nd d, t ∈ Mk(A)
such that

a11 a12 a1k
a21 a22 a2k

. . .
ak1 ak2 akk

 =


1A
t∗12 1A

...
. . .

t∗1k t∗2k 1A



d11

d22
. . .

dkk



1A t12 . . . t1k

1A t2k
. . .

1A



=


d11 d11t12 . . . d11t1k

t∗12d11 t∗21d11t12 + d22 t∗12d11t1k + d22t2k
...

. . .

t∗1kd11
∑k

i=1 t
∗
kidiitik

 . (4.1)

That is, in symbols

aij =

min(i,j)∑
r=1

t∗ridrrtrj .

Here, the diagonal entries tii = 1A.
This implies for i ≤ j, we get

dii =aii −
i−1∑
j=1

t∗jidjjtij . (4.2)

tij =d−1
ii

(
aij −

i−1∑
r=1

t∗ridrrtrj

)
. (4.3)

The two previous equations can be used to inductively generate the matrix elements dii and tij by
calculating them row-wise from top to bottom. But how do we know that d−1

ii will exist at every stage
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of the induction? Let us show this by induction on i. For i = 1, it is clear that a11 = d11 and a11 is
positive de�nite since for x ∈ A, trA(x∗a11x) = βa(x, 0, 0, . . . , 0) is non-negative and zero only when
x = 0.

For the general case, let 1 ≤ k′ ≤ k be an index and let us truncate Equation (4.1) at the top-left
k′ × k′ entries. Note that any upper triangular matrix t′ ∈ Mk′(A) with units in the diagonal entries
admits an inverse in Mk′(A). The entries of t′−1 will be some non-commutative polynomials in the
entries of t′ which one can �nd inductively via �forward substitution�.

With this, we can conclude that whenever we write a′ ∈ Mk′(A) that is symmetric and positive
de�nite and wherever a diagonal matrix d′ and a unit upper triangular matrix t′ exist so that a′ =
t′∗d′t′, the diagonal entries of d′ = t′∗

−1
a′t′−1 are automatically symmetric and positive de�nite. This

follows from d′ itself being symmetric and positive de�nite. The fact that d′ is symmetric is easy to
compute and to see positive de�niteness, observe that for any x, y ∈ Mk′(A), we get trMk(A)(x

∗d′y) =
trM ′

k(A)((t
′−1x)∗a′(t′−1y)). Hence, in particular the diagonal entries of d′ are invertible in A. Note

that this claim is valid for all k′ ≤ k and it will now aid us in induction.
Suppose that {dii}k

′

i=1 are positive de�nite. Then using Equation (4.2) and Equation (4.3), we
can compute d(k′+1)(k′+1) and {t(k′+1)j}j≥k′+1. Now note that this gives us a solution for 4.1 when

k is replaced by k′ + 1. Hence, each {dii}k
′+1

i=1 is symmetric and positive de�nite and in particular
d(k′+1)(k′+1) is invertible.

Remark 4.6. The decomposition above is unique because the elements dii and tij are completely
determined by Equation (4.1).

Remark 4.7. It is possible to view Ak as a (k dimR A)-dimensional vector space over R and all
the matrices in Mk(A) can be seen as block matrices with each entry aij being replaced by its left-
multiplication matrix as an element of A. From this point of view, Theorem 4.5 is the same thing as
the block matrix variant of the Cholesky decomposition.

A further improvement is possible here using the proposition below.

Proposition 4.8. Suppose that a ∈ A is a positive de�nite symmetric element. Then, there exists
another positive de�nite symmetric element b ∈ A such that b2 = a.

Proof. Just like in the proof of Lemma 2.52, using the spectral theorem for positive de�nite matrices,
we can construct a basis {e1, e2, . . . , ed} of A, orthonormal with respect to x 7→ tr(x∗x), such that the
matrix aij = tr(e∗i aej) is a diagonal matrix. Then the aii in the diagonal are the non-zero entries and
are positive.

Note that the map a 7→ aij is a faithful representation, since the matrix aij is just the left-
multiplication matrix with respect to the basis {ei}di=1. Moreover, in general b ∈ A is positive
de�nite if and only if the matrix bij = tr(e∗i bej) is positive de�nite and is symmetric if and only if
bij = (b∗)ij = b∗ji. In terms of this matrix representation, �nding b ∈ A such that b2 = a is the same as
showing that the diagonal matrix with diagonal entries

√
aii lies in the image of this representation.

To see this, note that there exists a polynomial f(x) ∈ R[X] such that f(aii) =
√
aii for i ∈

{1, 2, . . . , d}. Then put b = f(a) ∈ A and this satis�es all the requirements.

Corollary 4.9. For every positive de�nite symmetric element a ∈ A, you can write it as a = b∗b for
some positive de�nite symmetric b ∈ A.

Corollary 4.10. Every element a ∈ Mk(A) that is positive de�nite can be written in the form of

a = t∗b∗bt = p∗p,

where t ∈ Mk(A) is upper triangular with 1A on the diagonal, b ∈ Mk(A) is diagonal and p ∈ Mk(A)
is just upper triangular.

Proof. Use Theorem 4.5 and decompose a as t∗dt. Then each diagonal entry of d can be split as
dii = b∗iibii according to the previous corollary.
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4.1.2 Reduction theory of matrices over division algebras

For a positive de�nite symmetric quadratic form q : Rn → R, what is the set {q(x)}x∈Zn\{0}? There is
an enormous amount of literature and decades of mathematical research around this question. But one
important step before proceeding anywhere is to realise when two quadratic forms for any g ∈ GLn(Z),
{q(x)}x∈Zn\{0} = {q(g(x))}x∈Zn\{0}. Hence q and q ◦ g are essentially the same quadratic forms as far
as their values on integral points are concerned.

Reduction theory of quadratic forms generally refers to attempts at �nding some suitable repre-
sentative of a quadratic form modulo this equivalence. In this section, we will generalise the classical
Minkowski-Siegel reduction theory of quadratic forms to the case of the types of quadratic forms we
have talked about so far.

In our setting of division algebras, the integral points will be substituted by orders. We refer the
reader to Section 2.2.6 for the relevant de�nitions and examples.

Let us state a very important lemma that we will be using shortly to prove Theorem 4.13. This
is nothing but the classically known Minkowski lemma of lattice sphere packings. Eventually, we will
use this to establish our reduction theory results.

Lemma 4.11. Let V be a d-dimensional R-vector space and let Λ ⊂ V be a discrete subgroup of V
that is not contained in any proper subspace of V . Choose a Z-basis {vi}di=1 ⊆ Λ of Λ. Then there
exists a constant C > 0 depending only on Λ and V such that for any positive de�nite symmetric
quadratic form q : V → R

min
v∈Λ\{0}

q(v) ≤ C
(
det [q(vi, vj)]i,j=1,...,d

) 1
d

.

Proof. The constant C can be chosen as γd, where γd is the d-dimensional Hermite's constant. We
sketch a quick proof that C exists.

Let us �x a positive de�nite quadratic form q0 : V → R. Then for any q : V → R in the statement,
one can �nd an A ∈ GL(V ) such that q = q0 ◦A and we check that(

det [q(vi, vj)]
d
i,j=1

)
=
(
det [q0(vi, vj)]

d
i,j=1

)
(detA)

2
.

This means what we need to show is that there exists a constant C ′ > 0 such that

min
x∈Λ

q0(Ax) ≤ C ′ (detA)
2/d

.

If Br(0) is a ball of radius r around 0, let us de�ne

BA,r = A
(
Br(detA)−1/d (0)

)
,

which is the ball Br(0) after getting its radius scaled by (detA)−1/d and getting transformed by the
linear transformation A. Observe that vol(BA,r), which is the volume of BA,r measured in terms of
the measure induced on V with respect to q0, is independent of A and is equal to vol(Br(0)).

Then we claim that there is a choice of r > 0, such that for any A ∈ GL(V ), vol(BA,r/2) is
greater than vol(V/Λ), which is again measured in terms of q0. Then the projection map V → V/Λ
cannot map BA,r/2 injectively into V/Λ and if x1, x2 get mapped to the same point modulo Λ, then
x1 − x2 ∈ Λ ∩BA,r \ {0}. Therefore, with this choice of r, we get that(

ABr(detA)−1/d(0)
)
∩ Λ ⊋ {0}, for any A ∈ GL(V ).

This gives us that

min
x∈A−1Λ

q0(x) ≤ r2(detA)−2/d, for any A ∈ GL(V ).

This last inequality is essentially what we want.

Corollary 4.12. Let A be a �nite-dimensional real semisimple algebra and d = dimR A. Then there
exists a constant C > 0 depending only on k,O and A such that for all symmetric and positive de�nite
p ∈ Mk(A),

min
v∈Ok\{0}

βp(v) ≤ C N(p)
1
d .
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Proof. To see the result, we will need to �nd a relation between N(p) and the determinant q(vi, vj)
that appears in Lemma 4.11. Choose {vi}dki=1 as needed in Lemma 4.11 as a basis of Ak residing within
Ok (see Remark 2.59). We know that the inner product β1 : Ak → R induced by 1 = 1Mk(A) is also
symmetric and positive de�nite. Note that for any two vectors x, y ∈ AK , β1(x, py) = βp(x, y).

Now N(p) will be the determinant of the matrix q ∈ Mdk(R) which is de�ned as p(
∑dk

i=1 rivi) =∑dk
i=1(

∑dk
j=1 qijrj)vi for all {ri}dki=1 ⊆ R. This implies that βp(vi, vj) =

∑dk
r=1 qrjβ1(vi, vr) and conse-

quently that
det [βp(vi, vj)] = det [β1(vi, vj)] det [qij ] = det [β1(vi, vj)] N(p)k

following Corollary 2.61. We then get that for some C > 0,

min
v∈Ok\{0}

βp(v) ≤ C
(
det [β1(vi, vj)] N(p)k

) 1
dk .

Since det [β1(vi, vj)] depends only on k,O and A, we are done.

From now on, we will restrict our setting to the following. Instead of talking about a general
semisimple R-algebra, we will talk of when A is of the form1DR for some Q-division algebra D. We
will now also �x an order O ⊆ D ⊆ DR and they will be the �integral points� of DR.

The following theorem is now to be stated. It is a generalisation of the classical Minkowski-Siegel
reduction theorem as mentioned in [Wei58].

Theorem 4.13. Then, there exist constants C1, C2, C3 > 0 and a relatively compact set ω0 ⊆ DR
depending only on O, DR and k such that whenever there exists a positive de�nite symmetric element
a ∈ Mk(DR), there exists an m ∈ Mk(O) such that the following conditions are met.

1. |N(m)| < C3.

2. The Cholesky decomposition of m∗am = t∗dt satis�es

(a) dij

tr(dij)
lies in ω0.

(b) tr(dii) ≤ C1 tr(d(i+1)(i+1)).

(c) tr(t∗ijtij) ≤ C2.

Proof. The proof will be in several steps. First we will announce our candidate for m and then show
that it has the properties stated above.

Candidate for m:
The construction of m is given as follows. Let βa : Dk

R → R be the quadratic form associated to
a. We will choose the columns of m as elements of the lattice Ok ⊂ Dk

R in the following inductive
manner. Choose v1 ∈ Ok \ {0} such that

βa(v1) = min
v∈Ok\{0}

βa(v).

Inductively, let Vi = {v1a1 + v2a2 + · · · + viai | a1, . . . , ai ∈ D}. This is a Q-vector space for each i
lying in Dk, since O ⊆ D. Now choose vi+1 so that

βa(vi+1) = min
v∈Ok\Vi

βa(v).

But why does such a vi+1 always exist? To see that OK \Vi is non-empty, it is su�cient to observe
that dimQ Vi = [D : Q]i. This is because {v1, . . . , vi} are �linearly independent� over D. That is

v1a1 + v2a2 + · · ·+ viai = 0 ⇒ a1, a2, . . . , ai = 0,∀a1, . . . , ai ∈ D.

Indeed, if the equation holds and if we take the largest index i′ ∈ {1, . . . , i} such that ai′ ̸= 0, then
multiplying2 a−1

i′ on the right and slightly rearranging tells us that vi′ ∈ Vi′−1 (take V0 = {0}). Hence,
dimQ Vi+1 = dimQ Vi + [D : Q] always.

1Why is DR semisimple? The trace form (a, b) 7→ tr(ab) is clearly non-degenerate on D. It is classically known that
the trace form on a �nite-dimensional k-algebra is non-degenerate if and only if it is absolutely semisimple, i.e. A⊗k L
is semisimple for any �eld extension L of k.

2This is why we can only do this theorem for division algebras.
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Hence, the construction of vi and therefore of m is well-de�ned. Let us now prove the claimed
properties.

Proof of Condition 1:
For dimensional reasons, m will admit an inverse in Mk(DR) (but not necessarily in Mk(O)). Also,
by de�nition of vi, we have that

0 < βa(v1) ≤ βa(v2) ≤ βa(v3) ≤ · · · ≤ βa(vk).

Let m∗am = t∗dt be the Cholesky decomposition of m∗am ∈ Mk(DR) as guaranteed by Theo-
rem 4.5. Construct an auxilary linear map p ∈ Mk(DR) de�ned by

m∗pm = t∗


1

βa(v1)
d11

1
βa(v2)

d22
. . .

1
βa(vk)

dkk

 t. (4.4)

Then for any x ∈ Ok \ {0}, we claim that βp(x) ≥ 1. Let d′ be the �diagonal� matrix between t∗

and t in Equation (4.4). Indeed, suppose x ∈ Vi ∩ Ok and suppose that i is the largest such index in
{1, 2, . . . , k}. Then

βp(x) = βm∗pm(m−1x) = βt∗d′t(m
−1x) = βd′(tm−1x).

If ei ∈ Dk
R is the column vector with 1D on the ith �coordinate� and 0 elsewhere, we know that

mei = vi by design. By assumption, x ∈ Vi and hence, for some {aj}ij=1,

m−1x = m−1

 i∑
j=1

vjaj

 = e1a1 + e2a2 + · · ·+ eiai,

⇒tm−1x =

i∑
s=1

es

as +

i∑
j=s+1

tsjaj

 .

The last expression tells us that tm−1x as a column vector in Dk
R is supported in the top i entries

with a non-zero ith entry. Hence, it is clear that for such a vector tm−1x, we have

βd′(tm−1x) ≥ 1

βa(vi)
βd(tm

−1x) =
1

βa(vi)
βa(x),

and since βa(x) ≥ βa(vi) for x ∈ Ok ∩ Vi by de�nition, we get our claim that βp(x) ≥ 1.
Using the Minkowski lemma in the form of Corollary 4.12 and that N(t) = 1 since it is the

determinant of an upper triangular matrix, we get that for some constant C depending only on k,DR
and O,

1 ≤ C N(p) = C N(m)−2
k∏

i=1

NDR(dii)

βa(vi)d
,

which shows that

N(m)2 ≤ C

k∏
i=1

NDR(dii)

βa(vi)d
, (4.5)

where d = dimR DR. We can now show that each of the factors of the right side are bounded. To see
this, observe

βa(vi) = βa(mei) = βm∗am(ei) (4.6)

= βt∗dt(ei) = trDR(dii) +

i−1∑
j=1

trDR(t
∗
jidjjtji) ≥ trDR(dii).
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From the norm-trace inequality of Lemma 2.51, it follows that 1
dβa(vi) ≥ N(dii)

1
d , where d =

dimR DR. This implies that for another constant C ′ depending only on k,DR and O, we can have that
βa(vi)

d ≥ C ′ N(dii).
This tells us that overall the norm N(m) must be bounded. Hence, we get the �rst property of m

that we claimed.
Proof of Condition 2a:

For the next statement, notice that the left side of inequality in (4.5) is a positive integer and is

therefore ≥ 1 (the norm is non-zero since m is invertible). Since we saw that each factor
NDR (dii)

βa(vi)d
=

N
(

dii

βa(vi)

)
is bounded above by 1

C′ and since their product is bounded below by 1
C according to (4.5),

we get that

1

C
≤

k∏
j=1

N

(
djj

βa(vjj)

)
≤ N

(
dii

βa(vi)

)
1

(C ′)k−1
,

and so N
(

dii

βa(vi)

)
≥ C ′′ for some constant C ′′ > 0.

Hence, we can conclude the following by using Equation (4.6).

1

C ′′dd
N(dii) ≥

(
βa(vi)

d

)d

≥
(
tr(dii)

d

)d

≥ N(dii).

This makes dii satisfy the conditions of Lemma 2.52 and therefore we get the required conclusion
about the dii.

Proof of Condition 2b:
In particular, the last inequality implies from Corollary 2.54 that for some constant C ′′′ > 0,

C ′′′ tr(dii) ≥ βa(vi) ≥ tr(dii). (4.7)

Finally, since βa(vii) ≤ βa(vi+1,i+1), with this we get that

tr(dii) ≤ βa(vi) ≤ βa(vi+1,i+1) ≤ C ′′′ tr(di+1,i+1).

which is what we want.
Proof of Condition 2c:

Now let us obtain the condition on the tij , for i < j, we choose some u′
1, u

′
2, u

′
3, . . . , u

′
i ∈ O, to be

adjusted later, and set the vector u as de�ned by

u =



u1

u2

u3

u4

u5

...
uk


=



1D t12 t13 t14 t1k
1D t23 t24 . . . t2k

1D t34 t3k
1D

. . .





u′
1

u′
2

u′
3
...
u′
i

0
...
0
1D
0
...
0



. (4.8)

Here, the 1D on the �column vector� on the right is on the jth position from the top. With this
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now, observe that by the de�nition of vj , we have that

βa(vj) ≤βa(vj + v1u
′
1 + v2u

′
2 + · · ·+ viu

′
i)

=βa(mej +me1u
′
1 +me2u

′
2 + · · ·+meiu

′
i)

=βm∗am(ej + e1u
′
1 + e2u

′
2 + · · ·+ eiu

′
i)

=βt∗dt(ej + e1u
′
1 + e2u

′
2 + · · ·+ eiu

′
i)

=βd(tej + te1u
′
1 + te2u

′
2 + · · ·+ teiu

′
i)

=βd(u)

=

k∑
r=1

tr(u∗
rdrrur).

Using Equation (4.6), we get that

tr(djj) +

j−1∑
r=1

tr(t∗rjdrrtrj) ≤
k∑

r=1

tr(u∗
rdrrur).

From Equation (4.8), we get that the value of ur = trj for i < r ≤ j and thus, we can cancel those
terms and get the following.

i∑
r=1

tr(t∗rjdrrtrj) ≤
i∑

r=1

tr(u∗
rdrrur).

All of the terms on the left are positive. This implies that

tr(t∗ijdiitij) ≤
i∑

r=1

tr(u∗
rdrrur).

Now because Lemma 2.52 was true for each dii, and in particular, Corollary 2.54 is also true, we
get that for some constant C ′

0 > 0,

tr(t∗ijtij) tr(dii) ≤ C ′
0

i∑
r=1

tr(u∗
rur) tr(drr).

Combining this with the knowledge of Equation (4.7), we see that there is another constant C ′′
0 > 0

such that

tr(t∗ijtij)βa(vi) ≤ C ′′
0

i∑
r=1

tr(u∗
rur)βa(vr) ≤ βa(vi)

(
C ′′

0

i∑
r=1

tr(u∗
rur)

)

⇒ tr(t∗ijtij) ≤ C ′′
0

i∑
r=1

tr(u∗
rur).

This �nally implies that tr(t∗ijtij) is bounded by a value only depending on the ur. This in turn,
depends only the choice of u′

r. But we can adjust the u′
r inductively to make the RHS bounded for

whatever the tij are. Simply observe that

u1 =u′
1 + t12u

′
2 + t13u

′
3 + . . . + t1iu

′
i, + t1j ,

u2 = u′
2 + t23u

′
3 + . . . + t2iu

′
i, + t2j ,

...

ui = ui′ + tij .

For O ⊆ DR, there is a global constant K > 0 (i.e. the covering radius of O ⊆ DR) such that
for any x ∈ DR, there exists a d ∈ O such that tr((x + d)∗(x + d)) < K2. Using this principle, since
the leftmost term for each ur in the sum above is u′

r ∈ O, we can inductively choose each u′
r starting

from r = i to r = 1 so that tr(u∗
rur) ≤ K2 for each r. This way, we see that tr(t∗ijtij) is absolutely

bounded.
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Remark 4.14. The set ω0 can be assumed to be inside {d ∈ DR | tr(d) = 1}. This is because
tr(dii/ tr(dii)) = 1. Furthermore, ω0 can be chosen to be relatively compact inside D∗

R, the invertible
elements of DR. In particular, this means that {NDR(x)}x∈ω0 is bounded away from 0.

See Remark 2.53.

We can reformulate the above using the de�nition of a Siegel domain.

De�nition 4.15. Given a relatively compact set ω0 ⊆ DR and two constants C1, C2 > 0, then we
de�ne a Siegel domain

S = Sω0,C1,C2
={a ∈ Mk(DR) | a is symmetric positive de�nite (4.9)

whose Cholesky decomposition a = t∗dt satis�es

conditions (a), (b) and (c) of Theorem 4.13}.

In this context, what Theorem 4.13 tells us is that there exists a Siegel domain S such that, for any
positive de�nite symmetric a ∈ Mk(DR) an integral matrix m of bounded norm can make m∗am ∈ S.

However, we can do a small correction to replace m with m′b, where m′ is such that N(m′) = 1
and b is among �nitely many candidates in Mk(O). This will soon be useful while dealing with groups
in the upcoming parts.

Lemma 4.16. Given a constant C > 1, we can �nd �nitely many elements b1, b2, b3, . . . , bm ∈ Mk(D)
such that any b ∈ Mk(O) with 1 ≤ |N(b)| ≤ C can be written as b = b′bi for some i, with N(b′) = 1.

Proof. First, we will do this under the assumption that D = Q and O = Z. What we will really prove,
is that the set

Mt = {a ∈ Mk(Z) | det(a) = t} ⊆ GLk(Q)

for some �xed t ∈ Z is contained in �nitely many GLk(Z)-orbits of the left-action of it on GLk(Q).
Indeed, this is su�cient because if

⋃mt

i=1 GLk(Z)bti ⊇ Mt, then
⋃C

t=1{±bti}
mt
i=1 can be the set of repre-

sentatives we need (noting here that elements of GLk(Z) have determinant ±1).
Then we recall that there exists a Smith decomposition over Z, so that any b ∈ Mt can be written as

b = xdy for x, d, y ∈ Mk(Z) with det(x) = det(y) = 1 and d a diagonal matrix with det(d) =
∏k

i=1 dii =
t. Consider the projection map πt : Mk(Z) → Mk(Z/tZ) and choose representatives c1, c2, . . . , cmt ∈
GLk(Z) such that {πt(ci)}mt

i=1 = GLk(Z/tZ). Then clearly, for the y in the decomposition b = xdy,
πt(y) is also invertible, and therefore y = y′ci for some i ∈ {1, . . . ,mt} with πt(y

′) = 1GLk(Z/tZ).
Then �nally b = xdy = xdy′ci = (xdy′d−1)dci. Now we claim that dy′d−1 ∈ GLk(Z). Indeed,
(dy′d−1)ij = y′ijdii/djj , and for i ̸= j, y′ij is a multiple of t but djj divides t (since

∏k
i=1 dii = t).

Hence, setting bi = dci settles our claim for the case of D = Q and O = Z.
For the general setting, recall the faithful morphism π : Mk(O) → Mkd(Z), where d = [DR : Q],

as mentioned in Remark 2.59. Observe that π−1(GLkd(Q)) = GLk(D) and π−1(GLkd(Z)) = GLk(O).
We must keep in mind that an alternative description of GLk(O) is the set of units in Mk(O). Then
the following diagram commutes. The vertical maps are inclusions.

GLk(D)
π // GLkd(Q)

GLk(O)
π //

OO

GLkd(Z)

OO

Now note that for any b ∈ Mk(D) = π−1(Mkd(Z)), we have that N(b) = det(π(b))k from Corol-
lary 2.61. Hence, the condition 1 ≤ |N(b)| ≤ C translates to the requirement that 1 ≤ |det(π(b))| ≤
Ck. Therefore, it is clear that the set {π(b)}1≤N(b)≤C ⊂ GLkd(Q) is contained in �nitely many cosets
of GLkd(Z). Hence, we can �nd �nitely many b1, . . . , bn ∈ GLk(D) such that {π(b)}1≤N(b)≤C ⊆⋃n

i=1 GLkd(Z)π(bi). But note that π−1(GLkd(Z)π(bi)) = GLk(O)bi, because if π(bb−1
i ) ∈ GLkd(Z),

then bb−1
i ∈ GLk(O). Hence, we get that

{b ∈ Mk(O) | 1 ≤ |N(b)| ≤ C} ⊆
n⋃

i=1

GLk(O)bi

and therefore, {±bi}ni=1 is the set that we need.
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Remark 4.17. The function det ◦π : Mk(DR) → R seen above is often also called the reduced norm.
The usual norm N is just the kth power of the reduced norm.

Remark 4.18. Unlike Theorem 4.13, there is nothing special about being in a division algebra in
Lemma 4.16. This particular lemma can be suitably generalised by substituting DR with a semisimple
R-algebra A.

4.2 Integration coordinates

Recall that we want to consider the quotient space G(R)/Γ where

G(R) ={a ∈ Mt(DR) | N(a) = 1},
Γ ={a ∈ Mt(O) | N(a) = 1}.

We want to describe an integration on G(R) that is equal to integrating with respect to the Haar
measure up to scaling. For that, we will use an analogue of the Iwasawa decomposition for SLt(DR).
Optically, it might look very similar to the Iwasawa decomposition seen for SLt(R) but see Remark 4.22
for a clear di�erence where the analogy fails.

Let us �rst de�ne the following notations.

De�nition 4.19. We de�ne the following.

K = {κ ∈ G(R) | κ∗κ = 1Mk(A),N(κ) = 1},
A0 = {a ∈ G(R) | a is diagonal, aii invertible,N(aii) > 0},
N = {n ∈ G(R) | n is upper triangular with 1A on the diagonal entries}.

Topologically, G(R) is a Lie group and the groups K,A0, N are also Lie group topologies as closed
subgroups of G(R). Note that A0 ⊆ G(R), so a ∈ A0 ⇒ N(a) = 1.

Proposition 4.20. The following map is a surjective open map. As a smooth map, it is a submersion.

K ×A0 ×N → G(R)
(κ, a, n) 7→ κan.

Proof. First, let us see that this multiplication map is surjective.
For any g ∈ G(R), we know that g∗g ∈ Mt(DR) is a positive de�nite symmetric matrix. Con-

sequently, by Theorem 4.5 and Corollary 4.10, we have a decomposition g∗g = n∗a∗an = (an)∗an,
for n ∈ N and a being some diagonal matrix. Clearly N(a) = ±1 for this to hold, but since a can
be assumed to be positive de�nite in Corollary 4.10, we can ensure that N(aii) > 0 and so, a ∈ A0.
Now g(an)−1 = (g∗)−1(an)∗ which means that g(an)−1 is preserved under the �conjugate inverse�
automorphism, so it lies in K. So, g = κan for some κ ∈ K.

Using the following transportation scheme, we can see that the given map has a constant rank.
The following commutative diagram demonstrates that the rank at (κ, a, n) is the same as the rank
at (1, 1, 1), wherein the vertical arrows are the derivatives of the respective indicated maps and are
therefore isomorphisms of tangent spaces.

(
κκ′, a′a, (a−1n′a)n

)
T(κ,a,n)(K ×A0 ×N) // TκanG(R) κgan

(κ′, a′, n′)
_

OO

T(1,1,1)(K ×A0 ×N) //

OO

T1G(R)

OO

g
_

OO

To learn what the rank on (1, 1, 1) is, we note that on the level of Lie algebras the lower horizontal
map in the diagram, up to appropriate identi�cations, is just the addition map. More precisely, we can
make the identi�cation of T(1,1,1)(K×A0×N) ≃ T1K×T1A0×T1N and identifying T1G(R), T1K,T1A0

and T1N as subspaces of T1 GLt(DR) ≃ Mt(DR) as follows.
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T1G(R) = {g ∈ Mt(DR) | tr(g) = 0},
T1K = {κ ∈ Mt(DR) | κ∗ + κ = 0},
T1A0 = {a ∈ Mt(DR) | a is diagonal, tr(a) = 0},
T1N = {n ∈ Mt(DR) | n is strictly upper triangular }.

Since every traceless matrix inMt(DR) can be written as the sum of matrices in the three subspaces
above, the bottom map is surjective and hence overall, the given map is a submersion using the global
rank theorem of di�erential geometry as follows.

To see that it is an open map, it is su�cient to show that the image U1U2U3 ⊆ G of a basic open
set of the product topology U1×U2×U3 ⊆ K×A0×N is open3. For this goal, it is su�cient to show
this when U1 ×U2 ×U2 is a su�ciently small neighbourhood of the identity (1, 1, 1) ∈ K ×A0 ×N as
we can transport such a neighbourhood and a get a neighbourhood (κ, a, n) ∈ K×A0×N of the form
κU1 × U2a × (a−1U3a)n, whose image must be κU1U2U3an ⊆ GLt(A). For this, it is also su�cient
to show that the given multiplication map restricted to U1 × U2 × U3 is an open map for su�ciently
small U1, U2, U3.

We can use the constant rank theorem of di�erential geometry now. Let F : K × A0 × N →
G(R) be the given multiplication map. If U1, U2, U3 are su�ciently small, then there exists an open
neighbourhood U ′

1 ×U ′
2 ×U ′

3 ⊆ T1K ×T1A0 ×T1N of (0, 0, 0) with homeomorphisms ui : Ui → U ′
i for

i ∈ {1, 2, 3} and an open neighbourhood V ⊆ G(R) containing identity along with a homeomorphism
v : V → V ′ ⊆ T1G(R), V ′ containing 0, such that the map F |U1×U2×U3

= v−1 ◦ dF(e,e,e) ◦u, where the
map u = u1 × u2 × u3 : U1 × U2 × U3 → U ′

1 × U ′
2 × U ′

3. But dF(1,1,1) is an open map, because it is a
surjective linear map and hence, we are done.

Corollary 4.21. Let B = A0N = NA0 ⊂ G(R) be the closed subgroup of upper-triangular matrices.
Then the following is also an open surjective map.

K ×B →G(R)
(κ, b) 7→κb.

Proof. Surjectivity is clear from Proposition 4.20 if we write b = an for some n ∈ N and a ∈ A0.
To show that the map is open, the proof is very similar to Proposition 4.20 and we leave this to the
reader for veri�cation.

Remark 4.22. The map in Proposition 4.20 is generally not injective. Indeed, if κ′ ∈ K ∩ A0, then
(κκ′−1, κ′a, n) and (κ, a, n) are mapped to the same element κan ∈ G(R).

This is the only obstruction to injectivity. That's to say that, two elements of K × A0 × N have
the same image if and only if they are in the above situation.

Note that in the usual Iwasawa decomposition for SLt(R), the map is indeed injective since K∩A0 =
{1SLk(R)}.

We will now use the following proposition to settle some more technicalities about our decompo-
sition above.

Proposition 4.23. 1. K ⊂ G(R) is a compact group.

2. K ∩B = K ∩A0, which is also a compact subgroup of G(R).

Proof. 1. K is at most an index-2 subgroup of {a ∈ Mt(DR), a
∗a = 1Mk(R)}. The compactness of

this group follows from the following more general claim.

Let A be a semisimple algebra with a positive involution ∗, then the group {a ∈ A | a∗a = 1A}
must be a compact group in the induced topology from A. Indeed, it is a closed group that lives
inside the compact ball {a ∈ A | trA(a

∗a) ≤ [A : R]}.

3for any continuous map of topological spaces f : X → Y , f(
⋃

i∈I Ui) =
⋃

i∈I f(Ui).
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2. We see that if κ ∈ K ∩ A0N then κ = an has to be an upper triangular matrix such that
κ∗κ = 1G(R). As a matrix, what this means is that

1DR

1DR

. . .
1DR

 =


κ∗
11

κ∗
12 κ∗

22
...

. . .
κ∗
1t κ∗

2t κ∗
tt



κ11 κ12 . . . κ1t

κ22 κ2t

. . .
κtt



=


κ∗
11κ11 κ11κ12 . . . κ11κ1t

κ∗
12κ11 κ∗

12κ12 + κ∗
22κ22 κ∗

12κ1t + κ22κ2t

...
. . .

κ∗
1tκ11

∑t
i=1 κ

∗
tiκit

 .

We will show that κij = 0 for i < j. When i = 1, we see that κ∗
11κ11 = 1A, so κ11 is invertible

and therefore, from the �rst row above, we see that κ11κ1j = 0 ⇒ κ1j = 0 for j > 1. This makes
the entire �rst row of κ, except κ11 to be 0. This reduces the case to a (t − 1) × (t − 1) upper
triangular matrix satisfying the same matrix equality as above. Hence, we can show the rest of
the entries 0 by induction.

Now K ∩ A0 ≃ {a ∈ DR | a∗a = 1DR}⊕k as a topological group. From the discussion of the
previous part, it is compact.

One last piece of the puzzle describes something special about Haar measure on G.

Proposition 4.24. The group G(R) is unimodular. That is, a left-invariant Haar measure is also
right-invariant.

Proof. First, observe that the group GLt(DR) is unimodular.
GLt(DR) is an open subset of Mt(DR). This is because for any u ∈ GLt(DR) and u′ ∈ Mt(DR),

u+νu′ = u(1+νu−1u′) is invertible if ν ∈ R satis�es |ν|2 tr((u−1u′)∗(u−1u′)) < 1. Hence, any Lebesgue
measure da of Mt(DR) can be restricted to get a measure da on GLt(DR). Now set dg = |N(a)|−1da.
This measure is in fact both left and right invariant. Indeed, this is because the determinant of the
left-multiplication of a ∈ Mt(DR) is the same as that of the right-multiplication, both being equal to
|N(a)|.

Now on G(R) = SLt(DR), we can induce a Haar measure as follows. For any open set U ⊆ G,
consider the set (0, 1]U =

⋃
t∈(0,1] tU ⊆ GLt(DR) and de�ne µG(U) =

∫
(0,1]U

dg. This de�nes a Haar
measure on G that is both left-invariant and right-invariant.

We are now ready to describe a coordinate system to integrate some scaling of the Haar measure
on G(R). Here is a de�nition to set us up for the discourse.

De�nition 4.25. For any topological space X, we will denote the vector space of compactly supported
continuous R-functions on X as Cc(X).

Proposition 4.26. Let dκ, da, dn be Haar measures on K,A0, N respectively. Then the following is
a Haar measure on G(R).

Cc(G(R)) → R

f 7→
∫
N

∫
A0

∫
K

f(κan)

∏
i<j

|N(aii)|
|N(ajj)|

 dκdadn.

Proof. We use the following classically known lemma. See [Kna13] for a proof.

Lemma 4.27. Let G′ be a Lie group. Let S, T be closed subgroups such that S ∩ T is compact and
the multiplication S × T → G′ is an open map whose image is surjective (except possibly a measure
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0 subset of G′). Let ∆T and ∆G′ denote the modular functions of T and G′. Then the following is a
Haar measure on G′.

Cc(G′) → R

f 7→
∫
S×T

f(st)
∆T (t)

∆G′(t)
dsdt.

We will use this lemma twice. First with (G′, S, T ) = (G(R),K,B), which �ts due to Corollary 4.21
and Proposition 4.23, and then (G′, S, T ) = (B,A0, N) which �ts because A0 ∩ N = {1G(R)} and
(a, n) 7→ an is an open map. Then, we get that the following is a Haar integral for f ∈ Cc(G(R)).∫

K×B

f(κb)
∆B(b)

∆G(R)(b)
dκdb =

∫
B

(∫
K

f(κb)
∆B(b)

∆G(R)(b)
dκ

)
db

=

∫
N

∫
A0

(∫
K

f(κan)
∆B(an)

∆G(R)(an)
dκ

)
∆N (n)

∆B(n)
dadn

=

∫
N

∫
A0

∫
K

f(κan)∆B(a)dκdadn.

Here, for the last equality we have used that G(R) and N are unimodular, that is ∆G(R),∆N are
trivial. G(R) is unimodular by Proposition 4.24 and N is unimodular because it is nilpotent4. Finally,
we use the following identity that is classically known and also given in [Kna13].

∆B(a) = |detAdB(b)|,

where AdB : B → GL(T1B) is the adjoint representation of B. Identify

T1B = {m ∈ Mt(DR) | tr(m) = 0,m is upper triangular}.

Then, clearly (ama−1)ij = aiinija
−1
jj . Since determinant of right multiplication and left multiplication

on DR is the same, we get

∆B(a) =
∏
i<j

∣∣∣∣N(aii)

N(ajj)

∣∣∣∣ .

Let D(1)
R denote the kernel of N : D∗

R → R∗. In other words, D(1)
R is the set of unit norm elements

of DR.

De�nition 4.28. The group A0 as de�ned in De�nition 4.19 can be further decomposed as A0 =
A(1)AR where

A(1) = {a ∈ G(R) | i ̸= j ⇒ aij = 0,N(aii) = 1},
AR = {a′ ∈ G(R) | i ̸= j ⇒ a′ij = 0, a′ii ∈ R>0 ⊆ DR}.

Note that AR ∩A(1) = {1D}. This decomposition is simply a consequence of writing

aii = N(ai)
1/d
(
aiiN(aii)

−1/d
)
,

where d = [DR : R] so that aiiN(aii)
−1/d is of norm one.

Remark 4.29. The group AR is the identity component of a maximal Q-torus of G. This agrees with
Chapter 18.5 of [Mor15], where the Q-rank of SLt(D) is mentioned as (t − 1), which is exactly the
rank of this torus.

4Alternatively, one can check this through the identity ∆N (n) = | detAd(n)|.
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Corollary 4.30. Let dκ, da′, da, dn be Haar measures on K,AR, A(1), N respectively. Then, the
following is a Haar measure on G(R).

Cc(G(R)) → R

f 7→
∫
N

∫
A(1)

∫
AR

∫
K

f(κa′an)

∏
i<j

a′ii
a′jj

d

dκda′dadn.

Remark 4.31. It should be possible to generalise this treatment of Haar measure to the setting of a
general semisimple algebra A instead of DR by meaningfully de�ning groups like GLt(A), SLt(A) and
so on.

4.3 Integration on G(R)/Γ
Observe that Ok ⊆ Dk

R is a lattice that remains invariant under the action of elements of the group
Γ ⊆ G. Hence, we can make the following identi�cation of topological measure spaces.

G(R)/Γ ≃ {gOk | g ∈ G}.

We will shortly show that this measure space has a �nite measure by performing an explicit compu-
tation in terms of the integration coordinates de�ned above.

Recall that in Section 4.1, we de�ned a Siegel domain in De�nition 4.15. We will now make a
more useful version of a Siegel domain S∗ ⊂ G(R), one that we can �t inside G(R) and such that
S∗Γ = G(R). This S∗ shall be a Siegel domain of matrices, whereas the previous de�nition S was a
Siegel domain of quadratic forms.

De�nition 4.32. Let ω1 ⊆ D
(1)
R be a relatively compact set and let c1, c2 > 0. Also, let b1, b2, . . . , bm be

some elements of GLt(D). Recall the de�nition of K,A0, N and A(1), AR as de�ned in De�nition 4.19
and De�nition 4.28.

AR = {a ∈ GLt(DR) | a′ij = 0 for i ̸= j, a′ij ∈ R>0 ⊂ DR},

A(1)
ω1

= {a ∈ A(1) | aii ∈ ω1},
AR

c1 = {a′ ∈ AR | a′ii ∈ R>0 ⊆ DR, a
′
ii ≤ c1a

′
i+1,i+1},

AR
c1

= {a′ ∈ AR | a′ii ∈ R>0 ⊂ DR, a
′
ii ≤ c1a

′
i+1,i+1},

Nc2 = {n ∈ G | n is upper triangular with 1D on diagonals , tr(n∗
ijnij) < c2},

S1 = S1
ω1,c1,c2 = KA(1)

ω1
AR

c1
Nc2 ,

S∗ = S∗
ω1,c1,c2 =

(
m⋃
i=1

S1b−1
i

)
∩ G(R) =

m⋃
i=1

N(bi)
1
dt (KA(1)

ω1
AR

c1Nc2)b
−1
i .

Here, d = [D : Q].

We can now relate this to the previously discussed generalisation of Minkowski-Siegel, i.e. Theo-
rem 4.13.

Lemma 4.33. For some choice of ω1, c1, c2 in the de�nition above and for some choice of b1, b2, . . . , bm ∈
GLk(D), the set S∗ ⊆ G(R) from De�nition 4.32 satis�es S∗Γ = G(R). In other words, S∗ ⊆ G(R)
surjects via the map G(R) → G(R)/Γ.

Proof. What we want to really show is that for some choice of S∗, for every g ∈ G(R), there will exist
some b ∈ Γ such that gb ∈ S∗.

Let S = Sω0,C1,C2 ⊂ Mt(DR) be the set de�ned in Equation (4.9), where ω0, C1, C2 are chosen
such that they satisfy conditions of Theorem 4.13 for the given choice of DR,O and t. Consider the
map F : g 7→ g∗g. We claim that there is a choice of ω1, c1, c2 such that

Sω0,C1,C2
⊆ F (KA(1)

ω1
AR

c1
Nc2).
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Let C ′, C > 0 be such that C ′ ≥ N(h) ≥ C for all h ∈ ω0 (See Remark 4.14). Set

ω1 = {a ∈ D
(1)
R | a∗a

tr(a∗a) ∈ ω0}.

This is a compact set because a ∈ ω1 implies that

N

(
a∗a

tr(a∗a)

)
=

1

tr(a∗a)d
∈ N(ω0) ⇒ (C ′)

1
d ≤ tr(a∗a) ≤ C

1
d .

Now set c1 =
√

C1(C ′/C)
1
d and c2 = C2. Let t∗dt ∈ Sω0,C1,C2

where t∗dt is the Cholesky decompo-

sition, then t ∈ Nc2 . Write d = a′a uniquely for a′ ∈ AR and a ∈ A(1). Then

dii
tr(dii)

=
(a∗iiaii)(a

′
ii)

2

tr(a∗iiaii)(a
′
ii)

2
=

a∗iiaii
tr(a∗iiaii)

∈ ω0 ⇒ aii ∈ ω1,

tr(dii)

tr(di+1,i+1)
=

tr(a∗iiaii)(a
′
ii)

2

tr((ai+1,i+1)∗ai+1,i+1)(a′i+1,i+1)
2
≤ C

1
d

(C ′)
1
d

c21 = C1,

tr(t∗ijtij) ≤ c2 = C2.

Hence, t∗dt = F (κaa′t) for any κ ∈ K and the above choice of a ∈ A
(1)
ω1 , a

′ ∈ AR
c1

and this settles
the claim.

Now for any g ∈ G(R), we know from Theorem 4.13 that for some b ∈ Mk(O), we have b∗g∗gb ∈
S ⇒ b∗g∗gb ∈ KA

(1)
ω1 A

R
c1Nc2 ⇒ gb ∈ K(KA

(1)
ω1 A

R
c1Nc2) = KA

(1)
ω1 A

R
c1Nc2 . From Lemma 4.16, we know

that we can �nd �nitely many b1, b2, . . . , bm ∈ Mk(D) such that b = b′bi for some b′ ∈ Γ and for some
1 ≤ i ≤ m. This implies that gb′ ∈

⋃m
i=1(KA

(1)
ω1 A

R
c1
Nc2)b

−1
i .

Observe that N(gb′) = 1, whereas for

(κaa′n)b−1
i ∈ (KA(1)

ω1
AR

c1
Nc2)b

−1
i

we have

N(κaa′nb−1
i ) = N(a′)/N(bi).

So N(bi) > 0 and

(κaa′n)b−1
i ∈ (KA(1)

ω1
AR

c1
Nc2)b

−1
i ∩G = N(bi)

1
dk (KA(1)

ω1
AR

c1Nc2)b
−1
i .

Remark 4.34. Note that {bi}ni=1 lie in GLk(D). This means that for some N ∈ N, Nbi ∈ Mk(O).
We will use this in the proof of our integration formula in Chapter 5.

Now we are in a position to consider G(R)/Γ as a probability space.

Proposition 4.35. The space G(R)/Γ carries a unique probability measure that is left-invariant over
the action of G(R).

Proof. The Haar measure of G(R) restricts to left-invariant measure on G(R)/Γ since Γ is discrete
inside G(R). Since S∗ ⊆ G(R) surjects onto G(R)/Γ, it is su�cient to show that S∗ has a �nite
measure in G(R).

The set S∗ is just a union of �nitely many translates of S1. So let us show that S1 ⊆ G(R) has
�nite measure. This is to show that the following integral is convergent.

∫
Nc2

∫
A

(1)
ω1

∫
AR

c1

∫
K

∏
i<j

a′ii
a′jj

d

dκda′dadn.
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We can separate the variables in the above integral. Observe that all the integrals other than the
one over AR

c1 is over a compact set and so must be �nite. It simply remains to be shown that the
following integral is �nite.

∫
AR

c1

∏
i<j

a′ii
a′jj

d

da′.

The group AR is topologically isomorphic to (R>0)
t−1, but let us make this identi�cation in the

following slightly convoluted manner to make the integral easier for us.

AR → (R>0)
t−1

a′ → a′ii
a′(i+1)(i+1)

.

The above is an isomorphism of locally compact topological groups and therefore, the Haar measure
da′ can be replaced by a Haar measure of (R>0)

t−1. Write yi = a′ii/a
′
(i+1)(i+1) and now all that

remains is to see that the following is a �nite integral which is true whenever d ≥ 1.

∫ c1

0

∫ c1

0

· · ·
∫ c1

0

∏
i<j

ydi y
d
i+1 . . . y

d
j−1

 dy1
y1

dy2
y2

. . .
dyt−1

yt−1
.



Chapter 5

Integration formula for G-symmetric

lattices

We remind the reader that the idea is to consider random lattices that come with a prescribed group
of symmetries given by G.

We remind the reader of the setting we are working with. We work with a �nite group G acting
on VQ satisfying the decomposition given by Equation (2.3). In light of the discussions in Chapter 3,
we decided to focus on the space of lattices to be the quotient space of an arithmetic subgroup inside
the following algebraic group.

G(Q) =
∏

i=1..k

SLti(Di), where Di = EndQ[G](Vi)Q.

More speci�cally, we work with the representation of G(Q) with respect to the left action on the vector
space

VQ =

k⊕
i=1

D
⊕(ti×ni)
i ,

where ni is the matrix index of Vi as discussed in Section 2.3.2. Then, for a base lattice Λ ⊆ VQ, we
de�ne

Γ = {g ∈ G(Q) | gΛ = Λ},
and G(R)/Γ models a space of G-invariant lattices in VR where G acts on VQ and has a �nite G(R)-
invariant measure. Without loss of generality, we assume from now onwards that it has a probability
measure after scaling this �nite measure appropriately.

5.1 Siegel transforms

Suppose Cc(VR) is the space of compactly supported measurable functions on VR. For any f ∈ Cc(VR)
and for any lattice Λ ⊆ VR, we de�ne

Φf (Λ) =
∑
v∈Λ

f(v).

Φf is a function de�ned on a space of lattices, such as G(R)/Γ or SLd(R)/ SLd(Z). This function, or
some variants of this function, is known as the Siegel transform of f .

In general, Φf (Λ) as a function of Λ is not bounded. The lattice Λ could have arbitrarily short
vectors, which means more and more lattice points might lie in support of f making

∑
v∈Λ f(v)

arbitrarily large. However, one can still hope that the following integral is bounded.∫
G(R)/Γ

Φf (gΛ)dg, where Λ ⊆ VQ is a �xed lattice.

According to the following lemma, knowing the above integral basically amounts being able to
integrate f ∈ Cc(VR) on the orbits of G.

54
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Lemma 5.1. Suppose G is a unimodular Q-group with a Q-representation G → SL(VQ). Λ ⊆ VQ be
a lattice and let Γ ⊆ {g ∈ G(Q) | gΛ = Λ} be an arithmetic subgroup. Furthermore, suppose we have
that for any ω ∈ VQ, the stabilizer subgroup Gω ⊆ G is unimodular.

Then for any f ∈ Cc(VR), assuming that Φf is absolutely integrable on the space G(R)/Γ, we have∫
G(R)/Γ

Φf (gΛ)dg =
∑

Γω∈Γ\Λ

vol (Gω(R)/Γω)

∫
G(R)/Gω(R)

f(gω)dg. (5.1)

Here Γω is the stabilizer group of ω in Γ.

Proof. We want to decompose Λ into

Λ =
⊔

Γω∈Γ\Λ

{γω | γ ∈ Γ}.

So, we write that∫
G(R)/Γ

(∑
v∈Λ

f(gv)

)
dg =

∫
G(R)/Γ

∑
Γω∈Γ\Λ

∑
γ∈Γ/Γω

f(gγw)dg

=
∑

Γω∈Γ\Λ

∫
G(R)/Γ

∑
γ∈Γ/Γω

f(gγw)

 dg.

We then observe that the following inclusion of groups holds.

G(R)

Γ Gω(R)

Γω

Notice that in the last expression, the integration is happening over G(R)/Γω broken into two inte-
grations along the left dashed path in the diagram. We want to instead break it down into the path
on the right.

Since we have assumed that Gω is a unimodular algebraic group, we get that the homogeneous
space Gω(R)/Γω has a well-de�ned Haar measure on which we can unfold our integral as the following.∫

G(R)/Γ

(∑
v∈Λ

f(gv)

)
dg =

∑
Γω∈Γ\Λ

∫
γ1∈G(R)/Gω(R)

(∫
γ2∈Gω(R)/Γω

f(γ1γ2ω)dγ2

)
dγ1.

Now we know that γ2ω = ω. This gives us the expression that we need.

Remark 5.2. Weil considers the above integral, albeit in an adelic setting [Wei65]. There, the hypoth-
esis that Gω needs to be unimodular is dropped and is deduced by some more sophisticated machinery.
We do not need this in our methods.

Remark 5.3. Observe that for any v ∈ VQ, we have that for some N ∈ Z≥1, Nv ∈ Λ. Since scaling
commutes with action of G, it is clear that the sum over the groups Gω appearing above contains all
the stabilizers of rational points v ∈ VQ.

Remark 5.4. Note that if for two di�erent orbits ω1, ω2 ∈ Γ \ Λ, we have G(R)ω1 = G(R)ω2, then it
is clear that ∫

G(R)/Gω1
(R)

f(gω1)dω1 =

∫
G(R)/Gω2

(R)
f(gω2)dω1,
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which can be shown by doing a change of coordinates. Then we can rewrite Equation (5.1) as∫
G(R)/Γ

∑
v∈gΛ

f(v)

 dg =
∑

G(R)v∈{G(R)ω}ω∈Λ

cv

∫
G(R)v

f(x)dx,

for some constants cv that are formed from collecting together some terms.

Although the lemma is for a general algebraic group, for the case G(Q) = SLt(D), we must justify
that we can use Lemma 5.1. We will o�er the justi�cation later with Lemma 5.8.

5.1.1 Choice of base lattice: �niteness concerns

What should be the choice of our base lattice Λ? We are especially interested in the cases where this
integral is �nite. For this end, we state the following lemma.

Lemma 5.5. Suppose G is a semisimple Q-group with a Q-representation on VQ. Let Λ1 ⊆ VQ and
Λ2 ⊆ VQ be two lattices and

Γi = {g ∈ G(Q) | gΛi = Λi} for i = 1, 2.

Then suppose for all compactly supported functions f , we have∫
G(R)/Γ1

Φf (gΛ1)dg < ∞,∀ f ∈ Cc(VR)≥0.

Then we must also have ∫
G(R)/Γ2

Φf (gΛ2)dg < ∞,∀ f ∈ Cc(VR)≥0,

Proof. Observe that for some N ∈ Z≥1, we have that NΛ2 ⊆ Λ1. This implies that for any g ∈ G(R),∑
v∈Λ2

f(gv) ≤
∑
v∈Λ1

f( 1
N gv).

Also, we know that Γ1 ∩ Γ2 is �nite index in both Γ1 and Γ2 from Proposition 2.22. So, we get that∫
G(R)/Γ2

(∑
v∈Λ2

f(gv)

)
dg = 1

[Γ2:Γ1∩Γ2]

∫
G(R)/Γ1∩Γ2

(∑
v∈Λ2

f(gv)

)
dg

≤ 1
[Γ2:Γ1∩Γ2]

∫
G(R)/Γ1∩Γ2

(∑
v∈Λ1

f( 1
N gv)

)
dg

= [Γ1:Γ1∩Γ2]
[Γ2:Γ1∩Γ2]

∫
G(R)/Γ1

(∑
v∈Λ1

f( 1
N gv)

)
dg.

By hypothesis, this last expression is < ∞.

So, this implies that as long as we want to have �nite integrals, the choice of the base lattice Λ1

does not matter.
Later we will go on to describe what exactly does changing the base lattice do for integration

formula on the G-symmetric space of lattices.

5.2 Integration formula

5.2.1 Single irreducible representation

For �simplicity�, let us assume that the Q[G]-representation VQ has t powers of the same irreducible
representation WQ. Hence, as a Q[G]-representation, we assume that

VQ ≃ W⊕t
Q .
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Hence, we let D = EndQ[G] W be the corresponding Q-division algebra and consider the action of
G(Q) = SLt(D) on W⊕t. We can assume that W ≃ Dn for some n. In e�ect, we get

VQ ≃ W⊕t ≃ Dt×n.

Hence, we can identifyDt×n = Mt×n(D), that is t×nmatrices over the division ringD. The action
of SLt(D) on this is exactly the same as left-multiplication of a matrix in Mt×t(D) with Mt×n(D).

Following the discussion in Section 5.1.1, we are free to choose a base lattice as per our convenience.
While applying the results, we often take lattices coming from some orders in the division ring, but
the mean value theorems that we will see are more general!

5.2.2 The case of t = 1

When t = 1, we may not have a very nice formula like the one that will soon appear.
Here is an example to demonstrate the intricacies involved in this.

Example 5.6. Consider the action of the quaternion group

Q8 = {±1,±i,±j,±k}.

We look at the representation of the group via left multiplication on the 4-dimensional space of rational
Hamiltonian quaternions

HQ = {a+ bi+ cj + dk |a, b, c, d ∈ Q }.

Then HR = H are the usual Hamiltonian quaternions. We look at the Q8-invariant lattice HZ which is
the set of quaternions with integer coe�cients. Then the group SL1(H) is the group of unit quaternions
acting on the right via Hamiltonian quaternion multiplication (which is the same thing as SL1(Hop)
on the left but for simplicity, let us have the right action instead).

The space of Q8 invariant lattices that we are interested in is

{HZ · g | g ∈ SL1(H)}.

Then it is clear that for any α ∈ HZ, g SL1(H) is given by a three-sphere

{a+ bi+ cj + dk | a2 + b2 + c2 + d2 = ∥g∥}.

Therefore, this implies that the right hand side of the Siegel-Weil formula in Lemma 5.1 will reduce
to a sum over integrals on spheres of radius {

√
n}n∈Z≥0

.

In general, it is known that for any order O ⊆ D, the homogeneous space SL1(DR)/O∗ is compact
(cf. [Mor15]). This means that when t = 1, the space G(R)/Γ is compact and therefore, surely the
integral ∫

G(R)/Γ

(∑
v∈Λ

f(gv)

)
dg < ∞.

However, what is happening here is that the group G(R) = SL1(DR) is acting on D1×n
R for some

n ≥ 1 and if dimQ D = d, then SL1(DR) is a (d − 1)-dimensional Lie group acting on a space of dn
real dimensions. Hence, the right side of Equation (5.1) will be a sum over integrals of some varieties
of ≤ d− 1 real dimensions in the nd-dimensional Euclidean space VR.

It is not clear if we can say something more than this.

5.2.3 The case of t > 1

We will have to subdivide it into further cases.
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5.2.3.i When t > n

For this case, we can comfortably state a version of our Siegel mean value theorem for G-invariant
lattices for a single irreducible representation when the number of copies is at least 2 and also strictly
greater than the matrix index of the representation.

We �nd from Lemma 5.1 that if the left hand side exists, it must be given by Equation (5.1). So,
the question to ask is, what are the orbits G(R)ω for ω ∈ Λ? To answer this question, let us �rst
separate out the trivial orbit {0} = {G(R) · 0}. Then the rest can be answered through the upcoming
setup.

Let ω ∈ Λ ⊆ VQ ≃ Mt×n(D) be a matrix whose columns are ω1, ω2, . . . , ωn. Since n < t, we must
have that for some a1, a2, . . . , an ∈ DR, we get

ω1a1 + ω2a2 + · · ·+ ωnan = 0 ∈ Dt (5.2)

⇒ g · ω1a1 + g · ω2a2 + · · ·+ g · ωnan = 0 ∈ Dt, ∀ g ∈ G(R)

For a given ω1, . . . , ωn ∈ Dt, we collect all the coe�cients (a1, . . . , an) ∈ Dn satisfying the relation
in Equation (5.2). Note that these relations form a right-D submodule in Dn which we call Ann(ω).
We see that the if ω′ ∈ G(R)ω ∩ Λ, we must have Ann(ω) = Ann(ω′).

Lemma 5.7. The map ω 7→ Ann(ω) creates a bijection between orbits {G(R)ω}ω∈Λ and right D-
submodules of Dn.

Proof. It is clear that ω = 0 ⇔ Ann(ω) = Dn.
Assume that ω ̸= 0. Invoke the rank factorization mentioned in Lemma 2.63 and write ω = c · f .

We recall to the reader that this factorization is unique for a given ω ∈ Mt×n(O).
Here f ∈ Mm×n(D). We claim that the reduced matrix f completely determines the right D-

module Ann(ω). Indeed, if a ∈ Mn×1(D) satis�es

c · f · a = 0.

Then for any other ω′ which has the rank factorization ω′ = c′ · f , according to Lemma 4.2, we can
�nd some g ∈ G(R) such that gc = c1 ⇒ gω = ω1. Hence, we must �nd that

c1 · f · a = 0.

This implies that a ∈ Ann(ω) ⇒ a ∈ Ann(ω1).

The above proof also gives us an opportunity to show the following lemma.

Lemma 5.8. The group G(Q) = SLt(D) satis�es the conditions of Lemma 5.1.

Proof. We want to show that for any ω ∈ Mt×n(D), Gω(R) is unimodular. Due to Proposition 4.24,
we know that SLt(D) is unimodular. Also, due to Lemma 4.2, we know that SLt(D) acts transitively
on right D-submodules of a �xed rank m < t insider Dt.

It is clear that the orbit G(R)ω is in bijection with G(R)/Gω(R). Let W = Ann(ω) ⊆ Dn be the
right D-module associated to this orbit. Then, what Lemma 4.2 actually tells us is that G(R)ω is
bijectively mapped to a dense open set within the vector space

{[ω1, . . . , ωn] ∈ Mt×n(DR) | ω1a1 + · · ·+ ωnan = 0, ∀(a1, . . . , an) ∈ W ⊆ Dn}.

Furthermore, this bijection is a homeomorphism since the orbit G(R)ω is locally compact and any
vector space is also locally compact. Therefore, we know that the Lebesgue measure on this vector
space induces a bi-invariant Haar measure on G(R)/Gω(R) and hence, Gω(R) must be unimodular.

Here is a de�nition to get us started before the upcoming proposition.

De�nition 5.9. Let X be any set and ε > 0. For a function f : X → R, we de�ne the ε-dilate of

fε : X → R
x 7→ f(εx).
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Proposition 5.10. Let VQ = Dt×n and let G(Q) = SLn(D) be acting on left. Let Λ = Ot×n ⊆ VQ
be a lattice where O ⊆ D is an order inside our division ring. We thus have that Γ = SLt(O) is a
discrete subgroup in G(R) that preserves the lattice Λ.

Suppose that f : VR → R is a bounded and compactly supported function. Then, for any 0 < ε ≤ 1,
we have that ∫

G(R)/Γ

εd
∑
v∈gΛ

|f(εv)|

 dg

is uniformly bounded (independent of ε) from above by a function on G(R)/Γ whose integral is �nite.

Proof. Let 0 < ε ≤ 1 be a real number. As mentioned, we denote fε to the function x 7→ f(εx), and
let d = dimQ V .

Recall K,AR, A(1), N as discussed in Proposition 4.35. Let R > 0 be such that f is supported
inside BR(0) ⊂ VR where BR(0) is a ball invariant under the action of a compact group K. We can
create such a ball by averaging any quadratic form over K.

With this, we get that

∫
G(R)/Γ

εdΦfε(gΛ)dg = εd
∫
S∗

(∑
v∈Λ

fε(gv)

)
dg

≪ εd
∫
S∗

(
(gΛ) ∩BR/ε(0)

)
dg

≤εd
n∑

i=1

∫
S1

#
(
(gb−1

i Λ) ∩BR/ε(0)
)
dg

=

m∑
i=1

εd
∫
Nc2

∫
A

(1)
ω1

∫
AR

c1

∫
K

#
(
N(bi)

n
d (κa′aη)b−1

i Λ ∩BR/ε(0)
) ∏

i<j

(
a′ii
a′jj

)[D:Q]

dκda′dadη.

We remind the reader that the relation d = nt[D : Q]. Since BR/ε(0) is chosen to be invariant
under K, we know that for any κ ∈ K,

#
(
N(bi)

n
d (κa′aη)b−1

i Λ ∩BR/ε(0)
)
= #

(
N(bi)

n
d (a′aη)b−1

i Λ ∩BR/ε(0)
)
.

Because of Remark 4.34, we know that there exists some N ∈ N such that b−1
i Λ ⊆ 1

NΛ for every
1 ≤ i ≤ n. Hence, this tells us that

#
(
N(bi)

n
d (a′aη)b−1

i Λ ∩BR/ε(0)
)
≪#

(
(a′aη)Λ ∩BR/ε(0)

)
.

Note that in this last step, we might have to move to a slightly bigger radius R. But this does not
a�ect anything.

Now consider the set

Y = {a′an(a′)−1 | a′ ∈ AR
c1 , a ∈ A(1)

ω1
, n ∈ Nc2} ⊆ G(R).

For y ∈ Y , note that yij = a′iiaiinij(a
′
jj)

−1. Hence, tr(y∗ijyij) =
(

a′
ii

a′
jj

)2
tr ((aiinij)

∗(aiinij)). Here,(
a′
ii

a′
jj

)
is a positive number bounded by cj−i

1 because of the construction of AR
c1 , and the other term

is bounded because it continuously depends on aiinij which lie in a compact set. Hence, overall the
set Y must lie inside a relatively compact set of G(R). Furthermore, the set Y is only dependent on
c1, c2 and ω1.

Now what do we want to do with this set Y ⊆ G(R)? Let R′ > 0 be a radius such that Y −1BR(0) ⊆
BR′(0) ⇒ Y −1BR/ε(0) ⊆ BR′/ε(0). Then we write that

#
(
(a′an)Λ ∩BR/ε(0)

)
=#

(
(a′an(a′)−1)a′Λ ∩BR/ε(0)

)
≤#

(
a′Λ ∩ Y −1BR/ε(0)

)
≤#

(
a′Λ ∩BR′/ε(0)

)
.
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At this point, we invoke the identi�cation Λ = Mt×n(O) ⊆ Mt×n(D) = VQ. With having to
possibly replace R′ with a bigger radius, we assume that the norm on VR ≃ DR

t×n is the one given by

(x1, . . . , xtn) 7→
∑
i,j

tr(x∗
ijxij).

Then the value of the last expression is equal to the number of integer solutions (x1, . . . , xtn) ∈
Mt×n(O) such that

t∑
i=1

n∑
j=1

a′ii
2
trDR(x

∗
ijxij) ≤

R′2

ε2
.

This is the number of points in a lattice intersecting with some ellipsoid. By considering a suitable
�axis-parallel cuboid� that contains this ellipsoid, an upper bound for the number of these lattice
points in the ellipsoid is the following quantity.

t∏
i=1

#

{
x ∈ On |

n∑
i=1

trDR(x
∗
i xi) ≤

R′2

a′ii
2ε2

}
.

Each term in the product is the number of points in a ball of radius R′/a′iiε in a d
t -dimensional

R-vector space. Hence, there exist constants B1, B2 > 0 depending only on O, D such that

#

{
x ∈ On |

n∑
i=1

trDR(x
∗
i xi) ≤

R′2

a′ii
2ε2

}
≤ B1 +B2

(
R′

a′iiε

) d
t

,

and therefore,∫
G(R)/Γ

εdΦfε(gΛ)dg

≪
m∑
i=1

εd
∫
Nc2

∫
A

(1)
ω1

∫
AR

c1

∫
K

(
t∏

i=1

(
B1 +B2

(
R′

a′iiε

) d
t

))∏
i<j

(
a′ii
a′jj

) d
nt

dκda′dadη

≪
∫
Nc2

∫
A

(1)
ω1

∫
AR

c1

∫
K

(
t∏

i=1

(
B1ε

d
t +B2

(
R′

a′ii

) d
t

))∏
i<j

(
a′ii
a′jj

) d
nt

dκda′dadη.

Now ε ≤ 1 ⇒ B1ε
d ≤ B1. Therefore, we can bound the integral above by

∫
Nc2

∫
A

(1)
ω1

∫
AR

c1

∫
K

(
t∏

i=1

(
B1 +B2

(
R′

a′ii

) d
t

))∏
i<j

(
a′ii
a′jj

) d
nt

dκda′dadη.

This last integral does not contain any appearance of ε. Note that for a decomposition of
g = κa′aη, the matrix a′ is unique. Therefore, some appropriate scaling of the function g 7→∏t

i=1

(
B1 +B2(R

′a′ii
−1

)
d
t

)
on a fundamental domain of G(R)/Γ is a dominating function of εdkΦfε

if we prove that the integral above is convergent.
The sets K,A

(1)
ω1 and Nc2 are compact and thus,

∫
K
dk
∫
Nc2

dn and
∫
A

(1)
ω1

da are �nite. Hence, we

just need to show the �niteness of

∫
AR

c1

(
t∏

i=1

(
B1 +B2

(
R′

a′ii

) d
t

))∏
i<j

(
a′ii
a′jj

) d
nt

da′. (5.3)

Let us �rst do this for the case t = 2, that is, when G = SL2(DR) and Γ = SL2(O). In that case,
AR ≃ R>0, and we can parametrize it as a′11 = a′22

−1
= s ∈ R. Since n < t, the only possible value is
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when n = 1. The condition a′11 ≤ c1a
′
22 is just saying that s2 ≤ c1. The measure da′ is 1

sds. So, the
integral becomes ∫ √

c1

0

(
B1 +B2

(
R′

s

) d
2

)(
B1 +B2(R

′s)
d
2

) s
d
2

(s−1)
d
2

ds

s

which is clearly �nite.
For the general n, t, here it goes. We will use the coordinates of integration from Proposition 4.35.

De�ne yi = a′ii/a
′
i+1,i+1 for i ∈ {1, . . . , t− 1}. Then we have

1 −1
1 −1

1 −1
. . .

1 −1
1 1 1 1 1 2





log a′11
log a′22
log a′33

...

log a′t−1,t−1


=



log y1
log y2
log y3
...

log yt−1


.

The last row is so because
∑t−1

i=1 log a
′
ii = 0. The inverse of the square matrix above is

1

t



t− 1 t− 2 t− 3 t− 4 1
−1 t− 2 t− 3 t− 4 . . . 1
−1 −2 t− 3 t− 4 1
−1 −2 −3 t− 4

...
...

−1 −2 −3 −4 . . . 1


=

[
Ii≤j −

j

t

]t−1

i,j=1

,

and the determinant is t.
Then we get from the above calculations that

a′ii
a′jj

=

j−1∏
r=i

yr

⇒
∏
i<j

a′ii
a′jj

=

t−1∏
j=1

y
j(t−j)
j .

From the matrix inverse, we get that for i ∈ {1, 2, . . . , t− 1},

a′ii = elog a′
ii = e

∑t−1
j=i log yj−

∑t−1
j=1

j
t log yj =

t−1∏
j=i

yj

t−1∏
j=1

y
− j

t
j

and

a′tt = e−
∑t−1

j=1
j
t log yj =

t−1∏
j=i

y
− j

t
j .

Finally, we replace the Haar measure da′ =
∏t−1

i=1
da′

ii

a′
ii

with
∏t−1

i=1
dyi

yi
. Indeed, such a change of measure

will only change our integration by a constant and we can do this without loss of generality.
Putting this all together, the integral (5.3) becomes

∫
0<yi≤c1

t−1∏
i=1

B1 +B2R
′ d
t

t−1∏
j=1

y
jd

t2

j

t−1∏
j=i

y
− d

t
j

B1 +B2R
′ d
t

t−1∏
j=i

y
jd

t2

j

t−1∏
j=1

y
jd(t−j)

nt
j

 t−1∏
i=1

dyi
yi

.

Then the �niteness of the integral can be shown by simply chasing the powers of each yi and
showing that it is greater than −1. Indeed, any integral

∫ c

0
ysdy is �nite if and only if s > −1.



62 CHAPTER 5. INTEGRATION FORMULA FOR G-SYMMETRIC LATTICES

Distributing the �rst product over subsets I ⊆ {1, 2, . . . , t− 1} gives us

=
∑

I⊆{1,2,...,t−1}

∫
0<yi≤c1

Bt−1
1

∏
i∈I

B2R
′ d
t
∏t−1

j=1 y
jd

t2

j

B1

∏t−1
j=i y

d
t
j

B2R
′ d
t

t−1∏
j=1

y
jd

t2

j +B1

t−1∏
j=1

y
jd(t−j)

nt
j

 t−1∏
i=1

dyi
yi

=
∑

I⊆{1,2,...,k−1}

∫
0<yi≤c1

Bt−1
1

(
B2R

′ d
t
∏t−1

j=1 y
jd

t2

j

)#I

B#I
1

∏t−1
j=1 y

d
t (#I≤j)
j

B2R
′ d
t

t−1∏
j=1

y
jd

t2

j +B1

t−1∏
j=1

y
jd(t−j)

nt
j

 t−1∏
i=1

dyi
yi

.

where we have I≤j = {i ∈ I | i ≤ j}. Now in the above expression, for each I ⊂ {1, 2, . . . , t− 1}, we
have an integration of a sum of two products of some powers of yj and some constant. As mentioned,
if we prove that the power of yj in each of those terms is > −1, then we are done. Note that the
power of a yj for j ∈ {1, 2, . . . , t− 1} in the two summands would be

jd

t2
(#I)− d

t
(#I≤j) +

jd

t2
+

jd(t− j)

nt
− 1,

and

jd

t2
(#I)− d

t
(#I≤j) +

jd(t− j)

nt
− 1.

Hence, it is su�cient to show that the latter is > −1 for each I ⊆ {1, 2, . . . , t− 1} and for each j.
So, we want that

dj

t

((
#I

t
− #I≤j

j

)
+

(t− j)

n

)
> 0.

Let us prove this last inequality. Let #I>j = #I −#I≤j . Then what we want is equivalent to

#I>j

t
> (t− j)

(
#I≤j

jt
− 1

n

)
⇔ #I>j > (t− j)

(
#I≤j

j
− t

n

)
.

Here is why this inequality is true. The left hand side is ≥ 0 clearly. On the other hand, #I≤j

j ≤ 1

clearly whereas t
n > 1 by assumption. So, the right side is always < 0.

We are now ready to state the integration formula below. But before that, we must de�ne the
following term which appears in the integration formula.

De�nition 5.11. Let WQ be a vector subspace inside the Q-space VQ. Then given an inner product
⟨ , ⟩ on VR and a maximal rank Z-lattice Λ ⊆ VQ, we denote the height of W to be

H(W ) = H(W ; Λ, ⟨ , ⟩) = vol

(
WR

WQ ∩ Λ

)
.

Here, the volume is taken with respect to ⟨ , ⟩ restricted to WR.

Theorem 5.12. Let G be a �nite group. Let W be an irreducible representation of G over Q and
D = EndQ[G] W and n be such that W ≃ Dn. Let t > n. Denote V = VQ = W⊕t, G(Q) = SLt(D),
Λ ⊆ VQ a lattice and

Γ = {g ∈ G(Q) | gΛ = Λ}.
Let VR be endowed with an inner product ⟨ , ⟩ that gives Λ unit covolume in VR. Let f ∈ Cc(VR).
Then we have that∫

G(R)/Γ

(∑
v∈Λ

f(gv)

)
dg = f(0) +

n∑
m=1

∑
W⊆Dn

W is a rank m right D-module

1

H(W⊥
Q )

∫
W⊥

R

f(w)dw,
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where on W⊥
R is de�ned as

{[ω1, . . . , ωn] ∈ Mt×n(DR) | ω1a1 + · · ·+ ωnan = 0, ∀(a1, . . . , an) ∈ W ⊆ Dn},

and the measure on any subspace of Dn×t
R is simply the restriction of ⟨ , ⟩ on that subspace.

Proof. First of all, by substituting ε = 1 in Proposition 5.10, we know that the left hand side is an
absolutely convergent integral. Then using Lemma 5.1 (which we can use because of Lemma 5.8) in
the form given in Remark 5.4, and incorporating the classi�cation of orbits from Lemma 5.7, we can
write that for some constants cW ,

∫
G(R)/Γ

 ∑
v∈Λ\{0}

f(gv)

 dg = f(0) +

n∑
m=1

∑
W⊆Dn

W is a rank m right D-module

cW

∫
W⊥

R

f(w)dw.

Now suppose that we replace the function f by the ε-dilate fε as de�ned in De�nition 5.9. Then
we get that

∫
G(R)/Γ

 ∑
v∈Λ\{0}

f(εgv)

 dg = f(0) +

n∑
m=1

ε−mt[D:Q]
∑

W⊆Dn

W is a rank m right D-module

cW

∫
W⊥

R

f(w)dw.

Multiplying by εd, we get

∫
G(R)/Γ

εd
∑

v∈Λ\{0}

f(εgv)

 dg = f(0) +

n∑
m=1

ε(n−m)t[D:Q]
∑

W⊆Dn

W is a rank m right D-module

cW

∫
W⊥

R

f(w)dw.

We will now show that the constants cW are H(W⊥
R )−1. Consider a right D-module W ⊆ Dn and

look at the function
fW = f · 1W⊥

R
,

that is, we restrict f to W⊥
R and replace its value with 0 everywhere outside of W⊥

R .
Now note that for a �xed g ∈ G(R), if we let ε → 0, then we know that for any lattice Λ ⊆ VQ, the

limit

εmt[D:Q]
∑
v∈gΛ

fW (εv) → 1

vol(
W⊥

R
Λ∩W⊥

Q
)

∫
W⊥

R

f(x)dx.

The right hand side is a constant that does not depend on Λ. So, this implies that as a function of
g ∈ G(R), the pointwise limit of the function

Λ 7→ εmt[K:Q]
∑
v∈gΛ

fW (εv) (5.4)

is a constant function. Since W⊥
Q is invariant under G(Q), we can use Proposition 5.10 with WQ

as the representation VQ mentioned therein. This tells us that for any ε ∈ (0, 1], the function in
Equation (5.4) is dominated by an integrable function on W⊥

R , we should be able to exchange the
limits in the integral. Hence, we get

lim
ε→0

∫
g∈G(R)/Γ

εmt[D:Q]
∑
v∈gΛ

fW (εv)

 dg =
1

H(W⊥
Q )

∫
W⊥

R

f(x)dx.

This tells us that the coe�cient cW is as claimed since for any other right D-submodule W1 ̸= W
inside Dn ∫

(W⊥
1 )R

fW (x)dx = 0,

since (W⊥
1 )R ∩W⊥

R is a zero measure set in (W⊥
1 )R.
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Remark 5.13. Recall the de�nition of an order from Section 2.2.6. Let O ⊆ DQ be an order inside
the division ring D. Equip DR with a Euclidean norm ⟨ , ⟩ and for any k ≥ 1, we assume that Dk

R
has the Euclidean norm ⟨ , ⟩⊕k.

If W ⊆ Dn is a right D-module of rank m, we observe that W⊥ ⊆ Dt×m

H(W⊥;O⊕(t×n); ⟨ , ⟩⊕(t×n)) = H(VW ;O⊕n; ⟨ , ⟩⊕n)t

where VW is the simpler version of W⊥ given by

{(b1, . . . , bn) ∈ Dn | b1a1 + · · ·+ bnan = 0, ∀(a1, . . . , an) ∈ W ⊆ Dn}. (5.5)

Remark 5.14. By Proposition 5.10, we �nd out that for any m ∈ {1, . . . , n}, the sum∑
W is a rank m right D-module

1

H(W⊥
Q )

< ∞.

This tells us that
#{W | W ⊆ Dn is a right D-module, H(W⊥

Q ) ≤ T} ≪ T.

Remark 5.15. Recall VW ⊆ Dn from Equation (5.5) de�ned for a right D-module W ⊆ Dn. It
creates a bijection between the right D-modules of rank m and left D-modules in Dn of rank n −m.
More precisely, it creates a bijection between the following two Q-varieties.

RGr(m,n,D) ≃ LGr(n−m,n,D),

where on the left we have the right-Grassmannian of rank-m right D-submodules in Dn and on the
right we have the left-Grassmannian of rank-(n−m) left D-submodules of Dn.

Suppose that f = 1B is the indicator function of a ball of radius R. Then the formula in Theo-
rem 5.12 is saying∫

G(R)/Γ

(∑
v∈Λ

f(gv)

)
dg = V (d)Rd +

n∑
m=1

V (dm
n )R

m
n dZ(t; LGr(n−m,n,D)),

where

Z(t; LGr(m,n,D)) =
∑

W∈LGr(m,n,D)

1

H(W )t
. (5.6)

This last quantity is the height zeta function of LGr(m,n,D). So, from Theorem 5.12, we can
actually conclude that this height zeta function in Equation (5.6) actually converges absolutely for
t ∈ {1, . . . , n− 1}. More particularly, it tells us that

#{V ∈ LGr(m,n,D), H(V ) ≤ T} ≪ T t. (5.7)

If one �xes m and n before instead, t can be set as n + 1 and we can obtain a result that somewhat
comes close to the true result of counting rational points of bounded height on Grassmannians where
the estimate on the point counts in Equation (5.7) is actually ≃ Tn as T → ∞. See [RZ13] where they
obtain these point counts by geometric elements generalised by the work of Schmidt [Sch67] (which
works when D is a number �eld) and also compare their results to Franke, Manin, Tschinkel [FMT89].

5.2.3.ii When 1 < t ≤ n

If the condition t > n or t = 1 is not satis�ed, the integral formula diverges for functions whose
support contains an open set.

For example, in the simplest case when D = Q, one can see Schmidt [Sch58].
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5.2.4 Multiple irreducible representations

Let VR = VQ ⊗ R and analogously de�ne (Vi)R = (Vi)Q ⊗ R. Recall that VQ has the decomposition of
Equation (2.3).

VQ ≃ (V1)
⊕t1
Q ⊕ · · · ⊕ (Vk)

⊕tk
Q . (5.8)

Suppose fi : (Vi)
⊕ti
R → R is a compactly supported continuous function and let f : VR → R be

de�ned as
f(v1, v2, . . . vk) = f1(v1)f(v2) . . . f(vk) where vi ∈ (Vi)

⊕ti
R . (5.9)

In light of the discussion of Section 5.1.1, we are allowed to choose a base lattice that provides a
convenient integration formula. We select a suitable lattice Λi ⊆ (Vi)

⊕ti
Q and de�ne

Λ = Λ1 ⊕ Λ2 ⊕ · · · ⊕ Λk,

which embeds into VQ using the decomposition above. We recall that we get the decomposition

G(Q) = SLt1(D1)⊕ · · · ⊕ SLtk(Dk),

where Di = EndG Vi is a division algebra.
Hence, we have the equality

∑
v∈Λ

f(gv) =
∏

i=1...k

( ∑
vi∈Λi

fi(givi)

)
(5.10)

for each (g1, . . . , gk) = g ∈ G(R) such that gi ∈ SLti(Di).
If we de�ne

Γi = {g ∈ Gi(Q) | gΛi = Λi},

we get that the group
Γ = Γ1 ⊕ · · · ⊕ Γk

is our arithmetic subgroup de�ned as

Γ = {g ∈ G(Q) | gΛ = Λ}.

Let ni =
dimQ Vi

dimQ Di
be the matrix index of the representation Vi. Then due to the preceding discussion

in Section 5.2.1, we are only able to evaluate the integral if for each i, either ti > ni or ti = 1.
Observe that the left hand side of Equation (5.10) is linear in f . Hence, if f is not necessarily of

the form given in Equation (5.9), but instead is a R-linear combination of such functions, we can still
have a result of this form. Approximating a function as a linear combination of variable separable
functions, we can generalise Theorem 5.12 as follows.

Theorem 5.16. Suppose VQ be a Q[G]-representation whose decomposition into irreducibles is given
by Equation (5.8). Furthermore, suppose that for each Vi, the matrix index ni and the number of
copies ti satisfy ni < ti.

Then for any f ∈ Cc(VR), one has

∫
G(R)/Γ

∑
v∈gΛ

f(v)

 dg =
∑

(W1,...,Wk)∈L1×···×Lk

1

H(W⊥
1 ) . . . H(W⊥

k )

∫
(W⊥

1 )R×···×(W⊥
k )R

f(w)dw,

where
Li = {W ⊆ Dni

i | W is a right D-module}.



Chapter 6

Applications to the lattice packing

problem

In this chapter, we will talk about results and applications of the general theory considered before.

6.1 Lattice sphere packings through division algebra

Consider Theorem 5.12 for the case n = 1. In this case, we get the following.

Theorem 6.1. [Gar23]
Let D be a Q-division algebra containing an order O ⊆ D. Let G(R) = SLt(DR) and Γ = SLt(O)

for some t ≥ 2. Let dg be the probability measure on G(R)/Γ that is left-invariant under G(R) action.
Then for any f ∈ Cc(Dt

R), we get

∫
G(R)/Γ

 ∑
v∈gOt\{0}

f(v)

 dg =

∫
Dt

R

f(x)dx,

where dx is a Lebesgue measure on Dt
R with respect to which Ot has a covolume of 1.

Remark 6.2. By an easy application of the dominated convergence theorem, one can take f to be
any Riemann integrable compactly supported function.

This can be used to prove the following lower bound on the sphere packing problem for certain
dimensions.

Proposition 6.3. Let O ⊆ D be an order in a division algebra and let G ⊆ D be a �nite multiplicative
subgroup of O. Then for any ε > 0, there exists a lattice packing in dimensions d = 2dimQ D whose
packing e�ciency is at least 1

2d
(#G)− ε.

Proof. What we will show is that there exists a positive de�nite quadratic form on D2
R and a covolume

one lattice Λ0 (with respect to this quadratic form), such that the ball BR(0) in this quadratic form
with a volume #G − ε, the lattice and the ball intersect only at {0}. If we prove this, then we get
that the balls BR/2(v1), BR/2(v2) are disjoint for any distinct v1, v2 ∈ Λ0 and hence,

⊔
v∈Λ0

BR/2(v)
forms a lattice packing whose packing e�ciency will be

volBR/2(0)

vol(D2
R/Λ0)

= 2−d(#G− ε).

Consider the left-action of G on D2
R via g.(v1, v2) = (v1g

−1, v2g
−1). This action is R-linear and

therefore, it is possible to start with any positive de�nite quadratic form on D2
R and average over G

and make it G-invariant. After appropriate scaling, the lattice O2 will have covolume one with respect
to the measure induced by this form. We �x this as the form on D2

R as mentioned above.
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Now let BR(0) be the ball of volume #G− ε and let f be the indicator function of BR(0). Then,
we get from Theorem 6.1 and Remark 6.2

∫
G(R)/Γ

 ∑
v∈gO2\{0}

f(v)

 dg =

∫
D2

R

f(x)dx = #G− ε.

However, note that for any g ∈ G(R), the lattice gO2 is G-invariant under the left-action de�ned
above. Furthermore, the G-orbit of any non-zero element of O2 is of size #G because O2 and G are
made of elements of the division algebraD. Therefore,

∑
v∈gO2\{0} f(v) lies in {0,#G, 2(#G), 3(#G), . . . }.

Since the average is strictly less than #G, we get that for some g0 ∈ G(R), Λ0 = g0O2 ∩BR(0) = {0}
and this is the required lattice.

A slight improvement in the above theorem can be made by Mahler's compactness theorem.

Theorem 6.4. Let (G,O, D) be as in Proposition 6.3. Then there exists a lattice packing in dimen-
sions d = 2dimQ D whose packing e�ciency is at least 1

2d
(#G).

Proof. Let Λn = gnO2 be a unit covolume lattice in D2
R whose packing e�ciency is better than

1
2d
(#G) − 1

n . Since all Λn are unit covolume and whose packing e�ciency is bounded below, we get
from Mahler's compactness that up to replacing gn with gnγn for some γn ∈ Γ, we can force {gn}n≥1

to be a relatively compact set in G(R) and therefore, it contains a convergent subsequence converging
to some point g ∈ G(R). Since packing e�ciency is a continuous function on G(R)/Γ, we get that gO2

is the required lattice.

Hence, this gives us a methodology of producing lower bounds for lattice packings. Any tuple
(G,O, D) gives us a packing from Proposition 6.3 which gives us a valid lower bound for the sphere
packing problem in dimension d = 2dimQ D.

Example 6.5. For n ≥ 3, put D = Q(µn), and O ⊂ D as its ring of integers, and G = ⟨µn⟩ ≃ Z
nZ .

Hence, for dimension d = 2φ(n), there is a lattice packing of packing e�ciency at least #G = n. This
gives us the lower bound in [Ven13].

Note that the following �tightening� can be done once we have a tuple (G,O, D). When D is a
Q-division algebra, the Q-span of G in D is also a division algebra. Indeed, denote Q⟨G⟩ ⊆ D as the
span1 of G, then any γ ∈ Q⟨G⟩ is an invertible Q-map. Therefore it will map Q⟨G⟩ to itself under
left-multiplication and therefore must map something to 1D. Let Z⟨G⟩ ⊆ O be the Z-span of G, then
we get that (G,Z⟨G⟩,Q⟨G⟩) is another tuple that �ts in Proposition 6.3.

Clearly, dimQ Q⟨G⟩ ≤ dimQ D. Therefore, we can get a packing in smaller dimension without
losing the packing e�ciency. Hence, to get tighter packings it is su�cient to consider the case where
the Q-span of G is precisely D. O can then be taken to be the Z-span of G.

6.1.1 Improved bounds

A detailed analysis of the improvements obtained are already available in [Gar23] and we will simply
restate the main ideas.

There exists a speci�c class of division algebras for which we can modestly improve on the bounds
obtained in [Ven13]. This works in the following way.

Proposition 6.6. Assume m is a positive integer such that 2 has odd order modulo m. Then the

algebra Q(ζm)⊗Q

(
−1,−1

Q

)
is a division algebra with center Q(ζm) and has a maximal Z[ζm]-order OK

with subgroup T∗ × Z
mZ ⊂ O×.

Proof. See [Ami55, Theorems 6a, 7].

1Caution: This is not the group algebra of G. The group algebra of G over Q will almost never be a division algebra.
More precisely, this is the image of the group algebra under Q[G] → D induced from the inclusion G ↪→ D.
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For this particular set of division algebras, there is a slight improvement on the lattice packings
in [Ven13]. The division algebra in Proposition 6.6 is of Q-dimension 4 · φ(m) whereas the group
T∗ × Z

mZ ⊂ O×. is of size 24 · m. Hence, using Theorem 6.4, we arrive at a packing density of
1

28·φ 24 · m is a space of R-dimension 8 · φ(m) whenever m is a number such that the multiplicative
order of 2 modulo m is odd. Of course, this constrains our choice of m quite heavily.

To maximise the ration m/φ(m), we must make m highly composite but we can only choose among
the following set of primes whose density is known due to a theorem of Hasse [Has66].

Theorem 6.7. Hasse, `66
De�ne π2(x) as

π2(x) = #{p | 2 < p ≤ x is prime and p|(2m + 1) for some m ∈ Z≥0}
= #{p | 2 < p ≤ x is prime and ordp 2 is even}.

Then we have that

π2(x) =
17

24

x

log x
+ o

(
x

log x

)
.

Corollary 6.8. Using the prime number theorem, we get that if π(x) is the prime-counting function,
then the primes for which ordp 2 is odd follow the following growth.

π(x)− π2(x) =
7

24

x

log x
+ o

(
x

log x

)
.

Theorem 6.9. There exists a sequence of dimensions {di}∞i=1 such that for some C > 0, we have a
lattice with packing density ≥ 1

2di
· 3di(log log di)

7
24 .

Proof. We pick

m =
∏

p is prime
p≤x

2∤ordp 2

p.

Then observe that with this, we get that m is odd and ordm 2 is also odd. Using Proposition 6.6
and Theorem 6.4, we can obtain the statement by using Abel's summation formula which we skip
describing.

Attempting to plot this sequence gives the comparision obtained in Figure 1.5.
One important concluding remark here is that since all division algebras are classi�ed as cyclic

division algebras (see Section 2.3.4) and all �nite subgroups of cyclic division algebras are classi�ed by
[Ami55], one can check through all possible improvements that can be done on [Ven13] by employing
division algebras. This analysis leads to the conclusion that no asymptotic improvements beyond
O(n log logn) seem possible in packing density.

6.2 E�ective packings through division algebra

The packing result described in Section 6.1 shows that there exist lattices using division rings that
achieve sphere packings with good packing density. However, in coding theory, it is more useful to
have something beyond the existence of a lattice packing. One must �nd a way to generate a lattice
basis algorithmically or must have some explicit description of the lattices.

The lattices obtained in [Gar23] are non-constructive in the sense that the proof simply shows that
a certain point exists on the manifold G(R)/Γ which has the claimed packing density. In the paper
[GS22], we try to address this aspect of random lattice packings for coding theory applications.

Recall that we can assume that our division algebra is a cyclic division algebra, hence Z(D) = K
is a number �eld over Q.
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De�nition 6.10. An OK-order in D is a subring O of D having the same identity element and
such that O is a full OK-lattice in K, i.e., O is a �nitely generated OK-submodule of D such that
K · O = A.

A prime ideal of O is a proper two-sided ideal P in O such that K ·P = D and such that for every
pair of two sided ideals S, T in Λ, S · T ⊂ P implies S ⊂ P or T ⊂ P.

We now summarise some important facts about prime ideals in O.

Theorem 6.11. 1. For a Q-division algebra D with centre K, there is a bijection P ↔ P between
the set of primes of an OK-order O ⊆ D and of OK , given by

P = OK ∩P .

That is, the prime ideals of an OK-order O coincide with the maximal two-sided ideals of O.

2. If P is a prime ideal of O, then P = P∩OK is a non-zero prime of OK , and O /P is a �nite
dimensional simple algebra over the residue �eld OK /P.

3. For all but �nitely many primes P of OK , the quotient O /P is isomorphic to Mn(Fq), where
OK /P ≃ Fq. Here, n is the order of the division algebra, that is n2 = [D : Z(D)].

4. Let K = Z(D). Then, for all but �nitely many primes P ⊆ OK , the division algebra D is split
at P. That is, if KP is the P-adic completion of K, then

D ⊗K KP ≃ Mn(KP),

where n2 = [D : K]. When this happens, the corresponding prime P ⊆ O is also sometimes
called a splitting prime.

Proof. These are well-known results, see e.g. [Rei03, Theorems 17.3, 32.1].

Remark 6.12. The primes P ⊆ O such that O/P ≃ Mn(OK/P) are called unrami�ed primes. The
theorem above says that except for some �nitely many primes P, we have both unrami�ed and splitting
behaviour.

Using these results, we can de�ne following set of lattices. Let P ⊆ O be a prime such that O/P
is isomoprhic to Mn(Fq) and πP : O → Mn(Fq) be the projection modulo P map which we extend to
a map πP : Ot → Mn(Fq)

t . De�ne for any 1 ≤ k ≤ nt

CP = {C ⊆ Mn(Fq)
t | C is a Mn(Fq)-submodule ≃ (Fn

q )
⊕k}, (6.1)

LP = {βPπ−1
P (C) | C ∈ CP}, where βP = q−

1
m ·(1− k

nt ).

The point of having the factor βP is that for any unrami�ed prime P, LP is a collection of lattices
having unit covolume.

6.2.1 A lower bound on some lifts

Before coming to the main result in this section, let us set up few lemmas. The following two lemmas
provide a lower bound on an undesirable set of lifts modulo P.

The following de�nition and ensuing lemma can also be found in [Rei03, �9.13-14].

De�nition 6.13. Suppose A is a central simple L-algebra and K ⊆ L is a sub�eld such that [L : K] <
∞. Then for each a ∈ A, we de�ne the �relative reduced trace� trA/K : A → K and �relative reduced
norm� nrA/K : A → K as

trA/K = TL/K ◦ trA/L, nrA/K = NL/K ◦ nrA/L .

Lemma 6.14. When [L : K] < ∞ for any a ∈ A:

TA/K(a) =
√
[A : L] trA/K , NA/K(a) = nrA/K(a)

√
[A:L].
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Then, we can make the following commutative square.

Lemma 6.15. Let A be a division algebra over Q whose centre is K and [A : K] = n2. Let O ⊆ A
be a maximal order in the division algebra. Let P be a prime ideal of OK for which A splits and let
Fq = OK/P denote the residue �eld. Let P ⊆ O be the corresponding prime in O by the correspondence
in Theorem 6.11.

Then the following diagram commutes.

O OK

O /PO ∼= Mn(Fq) Fq,

πP

nrA/K

πP

det

Here, the vertical maps designate reduction modulo P.

Proof. First note that nrA/K(a) ∈ OK for each a ∈ O since nrA/K(a) ∈ K and OK is integrally
closed (see also [Rei03, �10.1]). The reduced norm nrA/K(a) may be computed as the determinant
of the corresponding matrix in Mn(E), where E is a splitting �eld for A (and is easily seen to be
independent of that choice). We may, in particular, choose E to be the P-adic completion K̂P since
by our assumption, we have A⊗K K̂P

∼= Mn(K̂P).

Lemma 6.16. With the same setting, let ( )∗ : AR → AR be a positive involution. If x ∈ O \ {0}
(which we may identify with its image in AR) is such that πP(x) is a non-invertible matrix, then

∥x∥ ≥
(√

[A : Q] N(a)
1

2[A:Q]

)
q

1√
[A:K][K:Q]

where a ∈ AR is symmetric positive de�nite and ∥x∥2 := T(x∗ax) on AR.

Proof. We get by Lemma 6.15 that P | nrA/K(x) and hence

NK/Q(P) | NK/Q ◦ nrA/K(x) ⇒ NK/Q(P) | nrA/Q(x) ⇒ NK/Q(P)
√

[A:K] | NA/Q(x).

The claim then follows from the norm-trace inequality (see Lemma 2.51).

Remark 6.17. By taking a =
∑

g∈G g∗g for a �nite group G ⊆ A∗, we obtain that the quadratic form
∥x∥2 := T(x∗ax) on AR is G-invariant.

6.2.2 Balanced codes

The following condition tells us that our codes described in Equation (6.1) have roughly equal incidence
among all vectors in the �nite vector space. This sort of condition is often called a "balanced" condition
in coding theory literature [Cam18].

Lemma 6.18. Let k be a �nite �eld. Let R be a f.d. semisimple k-algebra and V be a simple (left)
R-module of �nite dimension over k. Fix integers n1 ≤ n2 ≤ n3. Consider V ⊕n3 as an R-module and
consider the sets

U = {v ∈ V ⊕n3 | Rv ≃ V ⊕n1}, Cn2,n3
= {C ⊆ V ⊕n3 | C is an R-submodule, C ≃ V ⊕n2}.

Assuming that U is non-empty, then the number #{C ∈ Cn2,n3 | u ∈ C} is independent of u.

Proof. For each u ∈ U , C 7→ C/Ru is a bijection from {C ∈ Cn2,n3 | u ∈ C} to Cn2−n1,n3−n1 .
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6.2.3 Averaging over lifts of codes

The following is a result that was shown in [GS22].

Theorem 6.19. Let D be a Q-division algebra and DR = D ⊗Q R. Fix an order O ⊆ D and let
P ⊆ O be varying across unrami�ed split prime ideals in O.

Let f : (D ⊗ R)t → R be a compactly supported Riemann integrable function and t ≥ 2. Then the
set of lattices LP de�ned in Equation (6.1) satisfy

1

#LP

∑
Λ∈LP

 ∑
v∈Λ\{0}

f(v)

 #(O/P)→∞−−−−−−−−→
∫
Dt

R

f(x)dx,

given that the parameter k de�ned in Equation (6.1) lies in {nt− t+1, . . . , nt− 1}. Here, the integral
on the right is with respect to a Lebesgue measure that makes Ot ⊆ Dt

R unit covolume.

Proof. Let Fq ≃ OK/P. Let us de�ne UP = {v ∈ Mn(Fq)
⊕t | dimFq

(Mn(Fq)v) = n2}.
Now, let us show that the expected value of the following, taken as C ∈ LP, equals zero when

N(P) is large enough. ∑
x∈βPπ−1

P (C)\{0}
πP(xβ−1

P )/∈UP

f(x) =
∑

x∈π−1
P (C)\{0}

πP(x)/∈UP

f(βPx). (6.2)

If x ∈ O⊕t is such that πP(x) /∈ UP , then at least one of the O-coordinates will guarantee the
following lower bound from Lemma 6.16,

∥βPx∥ ≫ βP · q 1
nm = q

nk−n2t

n2mt · q 1
nm = q

1
nmt (k−(nt−t)),

which gets arbitrarily large as q → ∞. Indeed, our assumption on k implies that the exponent of q is
positive.

Since f is assumed to be compactly supported, we get for each individual lattice in LP that this
sum converges to 0 as N(P) → ∞.

Now we discuss the terms that remain. Recall CP de�ned in Equation (6.1). Observe that Lemma
6.18 forces that if πP(x) ∈ UP , then

#UP ·#{C ∈ CP | πP(x) ∈ C} ≃ #CP · qnt.

Here ≃ means that the ratio of both the quantities tends to 1 as q → ∞. Note that #CP = #LP.
Now let g : Mn(Fq)

⊕t → R+ denote the function g(c) =
∑

x∈π−1
P (c)\{0} f(βPx). We have that

EC∈CP

 ∑
c∈C ∩Up

g(c)

 =
∑
x∈UP

E (g(x)1C(x))

=
∑
x∈UP

g(x)
#{C ∈ CP | πP(x) ∈ C}

# CP
≃
∑
x∈UP

g(x)
qnk

#UP
. (6.3)

Note that we have an approximation of the Riemann integral of f as

lim
q→∞

∑
x∈O⊕t \{0}

βn2mt
P f(βPx) =

∫
Rn2mt

f(x)dx (6.4)

since βP → 0+ as N(P) = q becomes large. The ratio #UP
#Mn(Fq)t

→ 1, as q → ∞ so we can replace

qnt/#UP with qn(k−nt) which is exactly

βn2mt
P = q−

1
m ·(1− k

nt )·(n
2mt).

This completes the proof, because the contribution of the terms that are present in Equation (6.4)
but not in Equation (6.3) is a multiple of Equation (6.2), which is zero for q large enough.
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Hence, this tells us that the continuous average of Theorem 6.1 can be replaced by a discrete
average over a su�ciently large number up to some arbitrarily small error. The paper [GS22] then
contains a complete analysis of how large P could be taken for this to work. This lets us compute
the computational complexity of how long such a lattice generating algorithm will have to run for to
create these lattices from division rings. This has exponential running time so a lot more work needs
to be done in this direction.

Furthermore, the work in [GS22] also uni�es the lower bounds due to Rogers [Rog47], Vance
[Van11], Venkatesh [Ven13] and myself [Gar23] to create a general machinery to get lower bounds on
sphere packings in an arbitrary dimension. This therefore leads to a large class of lower bounds that
might be useful for improvements in individual dimensions.

6.2.4 Some words about Hecke points

The set of lattices in coding theory used to show these e�ective existence results are often the Hecke
points for the corresponding homogeneous space.

Let us brie�y discuss what Hecke points are using the following de�nition from [COU01]. Let G
be a connected almost simple simply-connected linear algebraic group de�ned over Q such that G(R)
is non-compact. Let Γ ⊆ G(Q) be a congruence subgroup. Then Theorem 2.12 implies that Γ\G(R)
has �nite volume.

De�nition 6.20. With the above setup, for a ∈ G(Q), let Tax = {[xΓaΓ] ∈ G(R)/Γ}.
The Hecke operator on L2(G(R)/Γ) is then de�ned to be the following.

Ta : L2(G(R)/Γ) →L2(G(R)/Γ)
f 7→Ta(f)

Ta(f)(x) =
1

|Tax|
∑

y∈Tax

f(y).

The points Tax are called Hecke points.

Let us give an example of the setup with Hecke points. Consider the map πp : Zn → Fn
p and then

consider the set

Lk
p = {βpπ

−1
p (C) | C ⊆ Fn

p ,dimFp
C = k},

where βp = p−(1−
k
n ) is a constant chosen so that each lattice in Lk

p has covolume 1 in Rn.
We can now consider this set a subset of

SLn(R)/ SLn(Z) = {gZn | g ∈ SLn(R)}.

Then, this set turns out to be the same as Tax for

x = In and a =

[
p

k−n
n Ik 0

0 p
k
n In−k

]
.

Rogers' original work [Rog47] can be thought of saying that these Hecke points equidistribute with
respect to Siegel transforms. But what is also true, because of the strong results about equidistribution,
is the fact that they equidistribute with respect to all test functions Cc(SLt(R)/ SLt(Z)). Note that a
Siegel transform is not a compactly supported function and therefore, equidistribution with respect
to test functions is not su�cient to say that the average of Siegel transforms over the Hecke points
converge to what the Siegel mean value theorem should give. If however one is able to use the
bounded convergence theorem and show that the averages over Hecke points do not explode, this
opens up another way to prove these theorems in the coding theory literature. Alternatively, this also
allows using these coding theory results to prove mean value theorems in the continuous setting.

Using the general methods of [COU01], it should follow that the set of lattices LP de�ned in
Equation (6.1) equidistribute as #O/P → ∞. This would involve using some S-arithmetic analogues
of our algebraic group G. Using that LP equidistribute in the space of G-symmetric lattices that we
consider, one can arrive at another proof of Theorem 1.6, if one establishes that the averages over
Hecke points do not diverge to in�nity by doing an analysis similar to [GSV23; GS22] for our division
algebra groups.
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6.3 Higher moments with OK-lattices

This is ongoing work [GSV23], and we will skip mentioning the proofs of the results in this section.
Siegel's mean value theorem [Sie45] answers the question of evaluating the average

∫
SLt(R)/ SLt(Z)

 ∑
v∈gZt

f(v)

 dg.

Analytic formulas for higher moments were found by Rogers [Rog55]. This gives an analytic
expression for the quantity ∫

SLt(R)/ SLt(Z)

 ∑
v∈gZt

f(v)

n

dg,

when n < t. Then in a subsequent paper, Rogers [Rog56] used these higher moments to show that
random lattices in SLt(R)/ SLt(Z) behave somewhat like a Poisson point process. Here is the exact
statement of this result.

Theorem 6.21. (Rogers, 1956) Let Λ ⊆ Rt be a random unit covolume lattice in SLt(R)/ SLt(Z)dg
and let S be a centrally symmetric Borel set of volume V . Consider the random variable

ρ(Λ) := # (S ∩ (Λ \ {0})) .

Then, provided the Z-rank t of the lattices satis�es t ≥ ⌈ 1
4n

2 + 3⌉, it follows that the n-th moment
of the number of non-zero lattice points in S satis�es

2n ·mn(
V
2 ) ≤ E[ρ(Λ)n] ≤ 2n ·mn(

V
2 ) + En,t · (V + 1)n−1,

where

mn(λ) = e−λ
∞∑
r=0

λr

r!
rn = EX∼P(λ)(X

n) (6.5)

is the nth moment of a Poisson distribution with parameter λ and where En,t is an error term decaying
exponentially as t increases:

En,t ≤ 2 · 3⌈
n2

4 ⌉ · (
√
3
2 )t + 21 · 5⌈

n2

4 ⌉ · ( 12 )
t.

Given a number �eld K, the statement of Theorem 5.12 can be used to create an analytic formula
for the expression ∫

SLt(KR)/ SLt(OK)

 ∑
v∈gOt

K

f(v)

n

dg,

for the case when n < t. This is Theorem 1.8 as given in the introduction.
As we mentioned before, such a result is also available in the context of OK-lattices and implicit in

the literature. For instance, S. Kim [Kim19] establishes an integral formula in the adelic language and
deduces convergence of the second moment. See also, e.g., [Wei65] and [Hug23, Theorem 1]. However,
what is new in our work is that the upper bounds on the higher moments are tight enough estimates
with which we could imply a Poisson-like behaviour.

On KR, we de�ne the following positive-de�nite real quadratic form on KR.

⟨x, y⟩ = ∆
− 2

[K:Q]

K tr(xy). (6.6)

Here ∆K is the absolute value of the discriminant of the number �eld K. Note that the quadratic form
makes OK into a lattice in KR and the normalisation in Equation (6.6) ensures it has unit covolume.
When multiple copies KR are considered, we will assume that the quadratic form is the sum of the
quadratic forms from Equation (6.6) on each copy. This quadratic form therefore de�nes a Lebesgue
measure on any number of copies of KR.

The theorem obtained in [GSV23] claims the following.
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Theorem 6.22. (In preparation)
Let K be any number �eld and let n be �xed. Let ωK be the root number of K, that is the number

of roots of unity present in K. Then there is an explicit constant t0(K,n) = OK(n3 log log n) such
that the n-th moment E[ρ(Λ)n] of the number of nonzero lattice points lying in an origin-centered ball
of volume V and a random unit covolume OK-lattice of rank t satis�es

ωn
K ·mn(

V
ωK

) ≤ E[ρ(Λ)n] ≤ ωn
K ·mn(

V
ωK

) + En,t,K · (V + 1)n−1

with the error term
En,t,K ≤ CK · t(n−2)/2 · e−εK ·(t−t0)

provided that t > t0(K,n). Here, mn is as de�ned in Equation (6.5) and the ball of volume V is with
respect to the Euclidean norm given in Equation (6.6). The constants CK , εK > 0 are uniform in the
rank t of the OK-lattices and can also be explicitly described.

In fact, height considerations allow us to prove stronger asymptotic results by increasing not just
the OK-rank of the lattices, but also the degree of the number �eld. More precisely, we show the
following theorem.

Theorem 6.23. (In preparation)
Let S denote any set of number �elds K such that the absolute Weil height of elements in K× \µK

has a strictly positive uniform lower bound on S. There are then for a given n explicit constants
t0(n,S) = OS(n

3 log logn) as well as explicit constants C, ε > 0, all uniform in S, such that for any
t > t0 and for any K ∈ S of degree d the n-th moment E[ρ(Λ)n] of the number of nonzero OK-lattice
points in an origin-centered ball of volume V and Λ in the space of unit covolume OK-lattices of rank
t satis�es

ωn
K ·mn(

V
ωK

) ≤ E[ρ(Λ)n] ≤ ωn
K ·mn(

V
ωK

) + En,t,K · (V + 1)n−1.

where the error term satis�es

En,t,K ≤ C · (td)(n−2)/2 · ωn2/4
K · Z(K, t, n) · e−ε·d(t−t0).

Here, ωK are the number of roots of unity in K, Z(K, t, n) denotes a �nite product of Dedekind zeta
values ζK at certain real values > 1 and mn is as in Equation (6.5).

Remark 6.24. Note that the terms (td)(n−2)/2·ωn2/4
K grow polynomially in t, d since ωK = O(d log log d)

and the error term indeed decays exponentially in the dimension of the lattices.

The height bound assumption on
⋃

K∈S K in Theorem 6.23 is in the literature referred to as the
Bogomolov property. A prototypical example of an in�nite tower satisfying the Bogomolov property
are the cyclotomic numbers Qcyc =

⋃
i≥2 Q(ζi), where ζi is the ith root of unity. Hence, the limiting

results of Theorem 6.23 in particular apply to lattices over cyclotomic integers of increasing degree
for �xed large enough rank.

We also partially prove in this result the necessity of the height bound assumption in Theorem
6.23, showing that for any �xed rank t, there exist number �elds Ki of arbitrarily large degree with
moments strictly larger than Poisson of mean V/ωKi

.
We refer the reader unfamiliar with heights and the Bogomolov property to the following section

for details and some examples of in�nite extensions with this property.

6.3.1 Mahler measures and the Bogomolov property

For an algebraic number α ∈ K×, recall that the Mahler measure (or non-normalised exponential Weil
height) is given by the product over the set of places MK of K:

HW (α) =
∏

v∈MK

max{1, |α|v}



6.3. HIGHER MOMENTS WITH OK-LATTICES 75

which will be more directly relevant for estimates in the Euclidean space associated to K. The two
coincide for algebraic integers and in general di�er by a denominator. We also recall that the absolute
Mahler measure (or exponential Weil height) of an algebraic number α is given by HW (α)

1
deg(α) and

we shall denote by
h(α) = 1

deg(α) log(HW (α)),

the Weil height of an algebraic number.

Remark 6.25. Note that the absolute Mahler measure and Weil heights are independent of the sub�eld
over which one is considering an algebraic integer. That is, if β ∈ K we have deg β = #{σ : Q(β) →
C} and

log (
∏

σ:K→C max{1, |σ(β)|})
[K : Q]

=
log
(∏

σ:Q(β)→C max{1, |σ(β)|}
)

[Q(β) : Q]
.

Lehmer's famous problem asks for a uniform lower bound for h(α) deg(α). We shall consider
algebraic numbers related to the stronger property:

De�nition 6.26. A subset S ⊂ Q is said to satisfy the Bogomolov property if there exists a constant
C > 0 such that

h(α) ≥ C

provided α ∈ S has in�nite multiplicative order.

We now recall some important examples from the literature when the Bogomolov property is
satis�ed. The �rst result is a bound due to Schinzel [Sch73].

Theorem 6.27. Assume that an algebraic number α of in�nite multiplicative order is contained in a
totally real �eld. Then, denoting by φ = 1+

√
5

2 the golden ratio, we have

h(α) ≥ 1

2
logφ ≈ 0.2406 . . . .

Moreover, the same is true for α in a CM2 �eld provided one (and equivalently, all) of its Archimedean
embeddings satisfy |α| ≠ 1.

We therefore get that Theorem 6.27 also applies to algebraic integers in CM �elds, however there
exist algebraic numbers which are not roots of unity but all of whose conjugates lie on the unit circle-in
fact the bound is violated for such numbers. We do, however, have for abelian extensions the bound
due to Amoroso�Dvornicich [AD00].

Theorem 6.28. Assume that an algebraic number α of in�nite multiplicative order is contained in
an abelian extension of Q. Then we have

h(α) ≥ log 5

12
≈ 0.1341 . . . .

Beyond these results, the Bogomolov property is well-studied and there are a number of subsets
of Q satisfying it leading to more towers of number �elds with the Bogomolov property. We refer the
reader to [MS21, Chapter 11] and [ADZ14] for more details.

We end our discussion with some height bounds that work for every number �eld, in particular,
we state E. Dobrowolski's asymptotic result [Dob79, Theorem 1].

Theorem 6.29. Let α be an algebraic integer of degree d, not zero or a root of unity, and let ε > 0.
Then for d ≥ d(ε), we have that

h(α) ≥ 1− ε

d
·
(
log log d

log d

)3

.

Moreover, P.Voutier [Vou96] showed that for any d ≥ 2, we may take

h(α) ≥ 1

4d
·
(
log log d

log d

)3

.

2CM stands for complex multiplication. Cyclotomic �elds are CM and so are quadratic extensions of Q.



Chapter 7

Conclusion

Let us give some ideas about future works.
One obvious project for the future is to attempt to demystify some of the other candidates of

lattices in Chapter 3. There may be some new types of homogeneous spaces of lattices there to
explore for lattice packings. Another place to look further may be the t = 1 case of Section 5.2.2.
Here, the Euclidean lattices are points on a compact manifold and the smaller value of t is useful to
have a smaller dimension of the space, however the integration formulas are complicated.

A very important problem is the project of derandomizing lattice packings. That is, instead of
giving a list of random lattices such that one of the lattices satis�es the Minkowski-Hlawka lower
bound, one would like to give an explicit lattice in polynomial time in terms of the dimension d that
has good packing density. One approach to do this derandomization is to pick pseudorandomly a
lattice among the collections of lattices given in Section 6.2.

Other than this, the appearance of the height zeta functions provides us with analytic formulae
involving these complicated objects. Height zeta functions are interesting because they are connected
with counting rational points of bounded height [FMT89] and are related to Eisenstein series of certain
algebraic groups. By playing around with the algebraic groups G and the representations V on which
the group acts, one might see height zeta functions of other varieties and exploring these analytic
formulae might be a useful in trying to prove their analytic continuity.

Additionally, the higher moment results for OK-lattices might lead to improvements in the lattice
covering problem. Recent progress in [ORW22], other than relying on the bounds in Kakeya-type
problems, also relies on Rogers' estimates on the probability of a random lattice being able to cover
all space, let's say with balls of a �xed radius R [Rog58]. It is worth exploring if an improvement on
this new result could be made by just restricting to OK-lattices and leveraging the extra symmetries.

So to conclude, the quest to improve lower bounds on lattice packings will continue beyond this
work and I hope that humanity concurs lattices sooner than later. Although Prof. Henry Cohn says
that the lack of clarity about high dimensional sphere packings is an embarrassment to humanity, it
could also be sometimes consoling to know that lattice packings will continue to intrigue mankind for
plenty of years to come and not just to pack spheres.
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