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Abstract. On the one hand, the web needs to be secured from malicious
activities such as bots or DoS attacks; on the other hand, such needs
ideally should not justify services tracking people’s activities on the web.
Anonymous tokens provide a nice tradeoff between allowing an issuer
to ensure that a user has been vetted and protecting the users’ privacy.
However, in some cases, whether or not a token is issued reveals a lot
of information to an adversary about the strategies used to distinguish
honest users from bots or attackers.

In this work, we focus on designing an anonymous token protocol be-
tween a client and an issuer (also a verifier) that enables the issuer to
support its fraud detection mechanisms while preserving users’ privacy.
This is done by allowing the issuer to embed a hidden (from the client)
metadata bit into the tokens. We first study an existing protocol from
CRYPTO 2020 which is an extension of Privacy Pass from PoPETs 2018;
that protocol aimed to provide support for a hidden metadata bit, but
provided a somewhat restricted security notion. We demonstrate a new
attack, showing that this is a weakness of the protocol, not just the defi-
nition. In particular, the metadata bit hiding is weak in the setting where
the attacker can redeem some tokens and get feedback on whether the
bit extraction succeeded.

We then revisit the formalism of anonymous tokens with private meta-
data bit, consider the more natural notion, and design a scheme which
achieves it. In order to design this new secure protocol, we base our con-
struction on algebraic MACs instead of PRFs. Our security definitions
capture a realistic threat model where adversaries could, through direct
feedback or side channels, learn the embedded bit when the token is
redeemed. Finally, we compare our protocol with one of the CRYPTO
2020 protocols. We obtain 20% more efficient performance.

1 Introduction

There has been significant industry interest recently in anonymous tokens, in-
cluding Google’s Trust Tokens (TT) [25] and Cloudflare’s Privacy Pass (PP) [13].
These protocols are used to transfer trust signals without compromising users’
privacy. Anonymous tokens define a protocol between three types of parties: a
client, an issuer, and a redeemer. The client wishes to obtain tokens from an



issuer and then present them to a redeemer. The issuer determines the trust-
worthiness of clients and issues tokens; and the redeemer (a.k.a. the verifier)
verifies the tokens. These systems are anonymous in that the token issuance and
redemption are unlinkable, in the sense that the issuer and redeemer cannot
tell which of the issued tokens was used in any given redemption. In the above
systems, we consider an issuer and a redeemer which are controlled by the same
entity, so these two parties are assumed to share a secret key.

PP was specifically designed in the context of CDNs to assess the trustwor-
thiness of a client at the edge before the client is granted (or denied) access to a
web server. In the typical use case, the client is required to solve a CAPTCHA
before it accesses a web server for the first time. If the CAPTCHA is success-
fully solved, the client is given a set of tokens to redeem the next time it visits
the web server. At subsequent visits the server checks that the user’s token is
valid and has not previously been used, and if so allows the client to bypass the
CAPTCHA and directly access the content. This allows for a better experience
for the user since they only have to complete the CAPTCHA once, even if they
are accessing the webserver over Tor or a VPN. Because of the unlinkability, it
does so without helping the web server to track the user across different visits.

Even though CAPTCHA is one way to detect bad actors, there are more ad-
vanced techniques to assess how trustworthy the client is, for example based on
machine learning algorithms for fraud detection. Typically, such fraud detection
algorithms are run on the issuer side; when these algorithms determine that a
client is likely to be malicious, the issuer should refuse to issue it any tokens.
However, such feedback allows a fraudulent client to improve their methods to
bypass the fraud detection. Ideally the issuer would instead embed a bit (to indi-
cate if the client is malicious or trusted) inside the token which would be hidden
from the client and only recovered by the redeemer during the redemption. That
way, the malicious client would not find out that its fraudulent activity has been
detected until it tries to redeem the token. This would make this type of attack
on the fraud detection algorithms significantly more cumbersome.

Behind anonymous tokens with private metadata bit, there are three desired
security and privacy requirements: unforgeability (to prevent malicious clients
from forging valid tokens), unlinkability (to prevent a malicious server and re-
deemer from linking the tokens they issued with those that are redeemed), and
privacy of embedded metadata bit (to prevent the clients from learning immedi-
ately if they were identified as malicious actors). More specifically, the metadata
bit is a covert channel between issuer and redeemer, who as described above
will share a key. If this channel were allowed to convey unlimited information,
unlinkability would be meaningless, so the protocols must ensure that the em-
bedded signal is only a single bit and no more. Such covert channel with one
bit is used to communicate whether or not the issued token should be accepted
without revealing the decision to the client until it attempts a redemption.

The initial proposal for including a private metadata bit built directly on the
PP protocol where the client picks an arbitrary message t and masks it to hide it
from the issuer (i.e., the issuer blindly “signs” the t), and then the client unmasks
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the signature on t. This idea naturally extends to support private metadata bits
with PP: the issuer would choose two PP issuing keys and generate a token
under one key or the other depending on the bit it wished to encode.

Because PP is based on an oblivious pseudo random function, a token gen-
erated under either key was indistinguishable from random so the client was
unable to determine the bit from looking at a correctly generated token. How-
ever, this protocol had significant weaknesses; a malicious client can easily make
malformed token requests (e.g. keep using the same message t), and then tell
from the responses whether the tokens issued encode the same metadata bit.
This means that the attacker has to make one request for which he can predict
the resulting bit (e.g. by using a genuine user device or by behaving badly enough
that it will be guaranteed to be detected as fraudulent), and then it can make
an incorrectly formed token request and directly tell from the (invalid) token it
receives whether the attacker was attempting to issue a token with metadata
bit 0 or 1. This problem essentially comes from the fact that the PP allows the
client to pick the messages to be signed arbitrarily. In our design, messages are
jointly generated by the client and the issuer so we can ensure they are random.

Two recent papers [16,15] and [22] aim to address this problem and to for-
mally define and construct anonymous tokens with private metadata bit. The
latter is a more generic version of the former where the protocols can accept
public metadata as well as the private metadata bit. The authors in these works
identify the problem as being that the tokens are deterministic; they propose new
randomized protocols. These proposals address the issues above and guarantee
that an adversary who can maliciously interact with the token issuing server
cannot learn anything about the private metadata bits encoded in the tokens.

However, these schemes still have some counter intuitive properties. In par-
ticular, in their protocol, there are two notions for a token validity : “validity from
verification”, where the adversary gets feedback on whether the token verifies
correctly, and “validity from extraction”, where the adversary gets feedback on
whether there is an embedded bit or not without revealing the bit (if it exists).
Their definition of privacy for the metadata bit allows the adversary to learn at
redemption whether a token is “valid from verification”, but not following the
other notion. Contrarily, the unforgeability notion is based on the existence of
an embedded bit. And this is not just a property of the definition: we will show
that the proposed schemes have the property that if the redemption service re-
veals whether a bit is embedded during the token redemption, the adversary can
use only a few malicious interactions with the issuing and redemption service to
learn information about the hidden bits embedded in a large batch of tokens.

This separation may make sense in some contexts, where we can guarantee
that the adversary gets no feedback at all from the redemption server on whether
its token was accepted and what the included bit was. In other cases however, this
seems to be a nontrivial weakness. For example, in the CDN application above,
the adversary will clearly get feedback on the bit if it is used to determine
whether it will be allowed to access the web content. A private metadata bit
protocol with this type of weakness would allow the adversary to make many
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attempts to bypass the fraud detection and thus acquire many tokens, then
make a few redemption requests and identify exactly which of the remaining
unredeemed tokens successfully avoided the fraud detection. Those tokens could
then be collected and, for example, used to mount a DDOS attack.

Thus, it is clear that in at least some settings, we would like a token system
which provides stronger guarantees. Moreover, identifying all sources of feedback
is challenging. It seems likely that if a new primitive for anonymous tokens is
released, it will at some point be used in settings where the adversary can get
feedback on the encoded bit, whether or not the security definition allows for
that. Thus, the best solution would be the one that provides the most natural
security guarantees - an adversary interacting with an issuer and a redeemer
may learn the bits encoded in the tokens it redeems, but nothing else.

That leaves us with the following questions: Is such a definition efficiently
realizable? What is the overhead as compared to the solutions described above?

Our Contributions. In the rest of the paper, we begin by summarizing the pri-
vate metadata bit proposals PMBT of [16,15], describing the known weakness in
detail, and explaining an additional attack. Then we present our more natural se-
curity definitions. Finally, we present ATHM, a new construction for anonymous
tokens with private metadata bit which we show satisfies our definitions. We
analyze the efficiency of ATHM in section 5 and show that, surprisingly, ATHM
is faster than PMBT (1.3 ms vs 1.6 ms). Finally, we show the flexibility of our
approach by demonstrating that it extends easily to allow for tokens including
public metadata visible to both issuer/redeemer and client.

Our Techniques. As mentioned above, the initial privacy pass protocol was based
around oblivious pseudorandom functions (OPRFs). The proposals of [16,15,22],
as described above, identify the problem as that OPRFs are deterministic, and
attempt to address it by making the protocol randomized. However, once we rec-
ognize that we do not in fact need a deterministic function, we can ask whether it
makes sense to base this primitive around OPRFs, whose defining characteristic
is that they are deterministic. Moreover, the obliviousness property of OPRFs
turns out to be not a very good fit for hiding the metadata bit.

This begs the question: Is there a better primitive to start from if we want
to encode hidden data in anonymous tokens?

For this, we turn to authentication primitives like MACs. Since we need pri-
vacy, we look at anonymous credentials, which allow issuers to certify attributes
which can later be presented unlinkably [10,3]. Specifically, we borrow from keyed
verification anonymous credentials (KVAC) [6,7], where the credential issuer and
verifier share a secret key, and from constructions based on algebraic MACs.

KVAC directly gives us a protocol for blindly issuing credentials, in which
an issuer issues a MAC on a set of attributes, some of which are only known to
the client. At a high level we can apply this as follows: in token issuance, the
client chooses a random nonce, and the issuer uses blind issuance to give a MAC
on a pair of messages consisting of the nonce and the hidden bit. If we use the
first construction from [6], MACGGM, that gives a construction in elliptic curve

4



groups where tokens consist of the nonce and two additional group elements,
which is roughly comparable with PMBT, and only twice as long as PP. But, if
we consider the blind issuance protocol from [6], it would be roughly twice as
expensive as the issuance for PMBT, and 4 times the cost of PP.3 It also does not
directly provide metadata privacy as that is not a property generally considered
in the credentials setting. Technically then, we are left with two questions: 1)
Can we optimize the MACGGM based issuance protocol to the point where it is
competitive with PP or PMBT? and 2) If the client does not know one of the
attributes in the credential, do the protocols still work? Can we prove that this
attribute will not be leaked to the client?

We address the first of these questions with a very careful optimization of
the blind issuance protocol to get a result with comparable cost to PMBT. If
we wanted to directly reduce to MAC security, we would need the request to
include something from which we could extract the nonce in Zp which will be
the message for the MAC. Extracting messages in Zp is extremely expensive.4

Moreover, the blind issuance protocol in [6] has the client form an ElGamal
encryption of the message to be signed, which would result in a client-to-server
message twice as long as in PP or PMBT, even before the proofs are added.
Instead, we design an optimized blind issuance protocol and prove in the generic
group model that the resulting token scheme is unforgeable.

Unlinkability follows in a straightforward way from the privacy of the KVAC
scheme. Privacy of the metadata bit is more challenging, as there is no analog in
the KVAC context. First, we note that the blind issuance protocol works even
if the client does not know one of the messages, and the verifier (the issuance
server) can simply verify with both possible bit messages, and output the bit for
which the MAC verifies. Intuitively, we also might hope to get privacy for the
metadata bit because MACGGM has some pseudorandomness properties: the
basic MAC on a message pair (m0,m1) is (U, (x+ ym0 + zm1)U), where U is a
random group element, and (x, y, z) are the secret key. DDH then guarantees that
this will look like a random pair of messages. However, proving that this satisfies
the metadata bit privacy property, where the adversary can interact maliciously
with issuance and redemption oracles is significantly more challenging. Here, we
again prove security in the generic group model.

Related Work. Beyond the works on anonymous tokens mentioned above, the
most closely related work is in anonymous credentials. While there are also works
based on RSA groups (beginning with [3,4]) and based on pairings, we focus
here on works that can be implemented in prime order elliptic curve groups,
since those provide the best efficiency. In that setting, besides MACGGM, there
is one other proposal for a MAC based anonymous credential scheme [8] which
is more expensive than MACGGM.

3 We provide a more precise analysis in Appendix C.
4 [6] addresses this by making non-standard assumptions about the extraction prop-
erties of Fiat-Shamir.
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In addition, there are several anonymous credential constructions in elliptic
curve groups that take a blind-signature based approach [18,1,24]. It is not clear
how to add private issuer values (like the metadata bit) in these schemes, but
even if we consider the simpler setting where the bit is known to the user, these
schemes have several downsides: First, token redemption is significantly more
expensive (4x for [18] or [24], and 8x for [1]). In a setting like the CDN application
where we will be using tokens to decrease spam/prevent DDOS attacks, we want
the cost to verify tokens to be as low as possible. Secondly, they all require a
multi-round issuance protocol, with two round trips between the user and issuer.
This requires that the token issuance server to be stateful, and in fact if the issuer
can be tricked into completing a protocol in two different ways, then his secret
key will be leaked. This means that implementing a token issuer requires careful
state management, including storage per client session. In a setting where there
are many many clients, many of which may be untrusted or on flaky connections,
this can be quite expensive.

2 PMBT: a Case Study

We begin with [16] (and its full version [15]) and investigate the shortcom-
ings as well as a new attack. There are two main constructions in these works
called Private Metadata Bit Tokens (PMBT) and CMBT. For PMBT, the authors
acknowledge that Verify returning always true is not meaningful and then an-
nounced their new protocol named CMBT in the full version of their paper [15].
Before the description of protocols, we borrow the interface of anonymous tokens
(AT) with private metadata bit and its security and privacy requirements.

2.1 AT Interface and Security

- (crs, td) ← AT.Setup(1λ) sets up a common reference string crs and a trap-
door td with security parameter λ.

- (pp, sk) ← AT.KeyGen(crs) generates the public parameters pp and a secret
key sk from crs.

- {σ,⊥} ← ⟨AT.Client(pp, t),AT.IssueToken(sk, b)⟩ is an interactive token gen-
eration protocol between a client (also called a user) and the issuer. The
client inputs are a string t along with the public parameters, and the issuer
inputs are the secret key sk and a metadata bit b. The protocol outputs a
token (also referred to as signature) σ for the client or ⊥.

- bool ← AT.Verify(sk, t, σ) (run by the redeemer) verifies a token σ with tag
t and returns a boolean value to indicate if the token was valid.

- ind ← AT.ReadBit(sk, t, σ) (run by the redeemer) extracts the metadata bit
b from a token (t, σ) and returns b if it succeeds or ⊥ if it fails.

The issuance protocol is interactive between the user and the issuer. In [16], it
is assumed to be a user-to-issuer-to-user protocol (2-move, user-initiated). The
security properties of an AT scheme are unforgeability, unlinkability, and privacy
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of the metadata bit. They are formally (re)defined in section 3. Unforgeability
ensures that no adversary can forge “valid” (in the sense that AT.ReadBit does
not give an error) tokens. Privacy ensures that no adversary can read a hidden
bit, even with access to a “validity” (in the sense of AT.Verify) oracle.

PMBT.Client(X0, X1, t) PMBT.IssueToken((x0, y0), (x1, y1), b)
input: (X0, X1, t) input: (x0, y0), (x1, y1), b
output: σ output: {}
r ←$ Z∗

p

T := Ht(t)
T ′ := r−1T

T ′

s←$ {0, 1}λ
S′ := Hs(T

′, s)
W ′ := xbT

′ + ybS
′

π ← Π.Prove((X0, X1, T
′, S′,W ′), (xb, yb))

(s,W ′, π)

S′ := Hs(T
′, s)

if not Π.Verify((X0, X1, T
′, S′,W ′), π) then return ⊥

S := rS′

W := rW ′

output: σ := (S,W )

Fig. 1. PMBT token issuance protocol as given in [16, Fig 8, p 325]

We recall the PMBT issuance protocol in Figure 1. As specified in [16], Verify
always returns true and ReadBit returns b ∈ {0, 1} such that W = xbHt(t)+ ybS
when it exists or ⊥ otherwise.

2.2 Potential Attack for PMBT

In this section, we describe new attacks on PMBT. The authors of PMBT [16]
already acknowledge that, given (Si,Wi) tokens (at least two) which are gener-
ated with the same tag ti = t and the same bit bi = b, the client can generate
many other tokens (S,W ) with the same tag t by making a weighed average: for
scalars αi such that

∑
i αi = 1, compute W =

∑
i αiWi and S =

∑
i αiSi to get

W = xbHt(t) + ybS. This is not considered to be a forgery because tokens with
the same tag are considered as the same one. When the bi’s are not necessarily
the same, the obtained token is valid (in the sense that ReadBit would read a
bit) if and only if all bi’s are the same. So, a validity oracle could be used to
check hidden bits equality. This is not considered to be a metadata bit privacy
attack as the adversary has no access to this type of validity oracle. However, it
can be considered as a side-channel attack.
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New attack. In a new attack, we consider an adversary who gets one token
(t1, S1,W1) with a known bit b1. Then, the adversary selects a fresh t∗ and makes
a challenge query by using Ht(t

∗)−Ht(t1) in the place of T in the protocol with
an unknown challenge bit b∗. The adversary would get (S∗,W ∗) satisfying

W ∗ = xb∗(Ht(t
∗)−Ht(t1)) + yb∗S

∗

Then, setting W2 = W ∗ +W1 and S2 = S∗ + S1 gives

W2 = xb∗Ht(t
∗) + yb∗S2 + (xb1 − xb∗)Ht(t1) + (yb1 − yb∗)S1

(S2,W2) with tag t∗ would encode a bit (which would be b∗) if and only if b1 = b∗

(except with the negligible probability that (xb1−xb∗)Ht(t1)+(yb1−yb∗)S1 = 0).
Hence, the ability to learn whether ReadBit runs successfully on a chosen token
breaks privacy of the hidden bit. Note that the two tokens use different tags.

This attacks generalizes, applies to the CMBT fix, and to other schemes as
discussed in Appendix A.

3 Anonymous Tokens Revisited

3.1 AT Interface

We revisit the interface of AT and update the security notions as follows. We
deviate from the previous definitions in three ways: first of all, there is a unique
AT.ReadBit algorithm (and no extra AT.Verify) which returns the hidden bit
or ⊥ if invalid. Second, the client no longer chooses the t input in the issuing
protocol. Instead, a unique nonce t is returned to the client. Finally, we added,
for completeness, the optional public metadata m attribute. For protocols not
allowing it, input m is ignored in algorithms and games.5

- cpp ← AT.Setup(1λ) sets up the common public parameters cpp from the
security parameter λ. cpp typically contains a group description, its order,
and a generator.6 cpp is input to all other algorithms and omitted for more
readability.

- (pk, sk) ← AT.KeyGen(cpp) generates the public key pk and the secret key
sk of the token issuer, with cpp as input.

- ⟨t, σ,⊥⟩ ← ⟨AT.Client(pk,m),AT.IssueToken(sk, b,m)⟩ is the interactive to-
ken issuance protocol between a client and an issuer. The client inputs the
issuer’s public key pk and the public metadata m. The issuer inputs their
secret key sk, a metadata bit b ∈ {0, 1}, and m. (Both participants are as-
sumed to agree on m.) The protocol outputs a token (t, σ) composed of a
tag t and a token σ for the client and nothing (⊥) for the issuer.
The elements m, b, and t are called attributes and can be optionally offered
by the protocol. The attribute t is a nonce; b is the issuer’s private metadata
bit; m is a public metadata (on which both participants must agree).

5 A protocol with this m option is available in Appendix B.1.
6 In the common reference string model, the CRS cpp comes with a trapdoor td.
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As we focus on a round-trip protocol which is initiated by the client (2-move,
client-initiated), we can specify it by three algorithms:
• AT.ClientQuery(pk,m)→ (query, st) //Client sends query to issuer
• AT.IssueToken(sk, b,m, query)→ resp //Issuer replies with resp
• AT.ClientFinal(st, resp)→ (t, σ) //Client locally computes token

- ind← AT.ReadBit(sk,m, t, σ) extracts a bit b from a token σ with attributes
(m, t). It outputs b if it succeeds and an error ⊥ if it fails, in which case we
say the token is invalid.

When we run these algorithms in the order they have been introduced and we
obtain ind = b, we say that the protocol is correct.

The security properties of an AT scheme are unforgeability, unlinkability,
and privacy of metadata bit. Unforgeability implies that an adversary cannot
create valid tokens with modified attributes on an existing token. More precisely,
if the issuer is invoked nb,m times for each attribute (b,m), then, for no (b,m)
the adversary can exhibit nb,m+1 valid tokens with pairwise different tags t. The
adversary has access to a ReadBit(sk, ·, ·) oracle and can choose the bit b to be
hidden in the token by the issuer. Unlinkability implies that a malicious issuer
cannot link a redeemed token with one of the issuing sessions. The malicious
issuer can maliciously set up the public parameters. Privacy of metadata means
that a malicious client cannot guess the metadata bit hidden during a issuing
session, even with access to an oracle for checking if a token is valid (but without
access to an oracle which extracts the bit).

3.2 Unforgeability

The one-more unforgeability game (OMUF) is defined in Figure 2. This is the
same as in Kreuter et al. [16] except for a modification in the quantifiers7 and
for the modification in the interface: having the token verification and the bit
extraction in the same algorithm and oracle. Notably, (t, σ) making AT.Verify
return true and AT.ReadBit return ⊥ would not exist any more as there is no
AT.Verify. Those differences do not change the security notion.

Definition 1. In the OMUF game8 in Figure 2, we define the advantage of an
adversary A by

AdvOMUF
A (λ) = Pr[win]

We say that AT is OMUF-secure if for any PPT adversary A, the advantage is
a negligible function.

7 In their OMUF security definition, the first condition says that both q0 ≤ ℓ AND
q1 ≤ ℓ where qb is the number of oracle queries with bit b. Suppose, the adversary
made 10 queries with b = 0 (q0 = 10) and 1000 queries with b = 1 (q1 = 1000). If
the adversary forges 11 tokens with b = 0, for this to succeed as a forgery, ℓ must be
at least 1000. If it is not, this does not succeed.

8 For protocols with no public metadata m, the variables nb,m in the game shall be
changed to nb and input m shall be removed from AT algorithms.
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Game OMUF(1λ):
1: AT.Setup(1λ)→ cpp
2: AT.KeyGen(cpp)→ (pk, sk)
3: initialize nb,m ← 0 for all (b,m)
4: AOsign,Oread(cpp, pk)→ b,m, (ti, σi)
5: if #{ti} ≤ nb,m then abort ▷ this

counts the number of pairwise differ-
ent ti values

6: for each i do
7: if AT.ReadBit(sk, ti,m, σi) ̸= b

then abort
8: end for
9: adversary wins

Oracle Osign(b,m, query):
10: increment nb,m

11: AT.IssueToken(sk, b,m, query)→ resp
12: return resp

Oracle Oread(m, t, σ)
13: return AT.ReadBit(sk,m, t, σ)

Fig. 2. One-More UnForgeability Game with Public Metadata m

3.3 Unlinkability

The unlinkability game (UNLINK) is defined in Figure 3. This is the same as
in Kreuter et al. [16] except for the modification in the interface: the tag t is
output instead of being an arbitrarily selected input by the client and the public
metadata m must be the same for all challenge tokens.

Definition 2. In the UNLINK game in Figure 3, we define the advantage of an
adversary A = (A1,A2,A3) for parameter n by

AdvUNLINKA,n (λ) = Pr[win]

We say that AT is κ-UNLINK-secure if for any PPT adversary A and any integer
n, the advantage bounded by κ

n plus a negligible function.

The issuer knows which bit is hidden during an issuing session and can extract
the hidden bit during redeem. Hence, we should only consider unlinkability when
the bits are the same.

If an adversary (1) puts nb tokens with bit b for each b in Q with total of
n =

∑
b nb tokens; (2) it draws and reads the bit b in outi∗ ; (3) it outputs i at

random among indices where it put the token with b = b∗, then the adversary
wins with probability

∑
b
nb

n ×
1
nb

= 2
n . So, we focus on 2-UNLINK security.

3.4 Privacy of the Metadata Bit

The privacy of the metadata bit game (PMB) is defined in Figure 4 with a chal-
lenge bit b∗. This is the same as in Kreuter et al. [16] except for the modification
in the interface: the verify oracle is implemented by checking if AT.ReadBit does
not return ⊥. We also modified to have a single access to Ochal and to give
access to Oread until the challenge is released. In the case of [16], the separa-
tion between AT.Verify and AT.ReadBit allowed Overify to return true although
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Game UNLINKn(1
λ):

1: AT.Setup(1λ)→ cpp
2: initialize Qquery,Qfinal ← ∅
3: A1(cpp)→ (pk, state1)

4: AOquery,Ofinal
2 (state1)→

(Q, (respi)i∈Q), state2)
5: if Q ̸⊆ Qquery −Qfinal then abort
6: if #Q < n then abort
7: for all i ∈ Q do
8: outi ← AT.ClientFinal(sti, respi)
9: if outi = ⊥ then abort
10: end for
11: if #{mi; i ∈ Q} > 1 then abort ▷

the mi must all be the same
12: i∗ ←$Q
13: pick a random permutation φ of Q
14: A3(state2, outi∗ , (outφ(i))i∈Q)→ i
15: win iff i = i∗

Oracle Oquery(i,m):
16: if i ∈ Qquery then return
17: insert i in Qquery

18: mi ← m
19: AT.ClientQuery(pk,mi)→ queryi, sti
20: return queryi

Oracle Ofinal(i, resp):
21: if i ∈ Qfinal or i ̸∈ Qquery then return
22: insert i in Qfinal

23: return AT.ClientFinal(sti, resp)

Fig. 3. Unlinkability Game

AT.ReadBit would return ⊥. Our interface does not allow it any more so the
adversary has more information.

Definition 3. In the PMB game in Figure 4, we define the advantage of an
adversary A by

AdvPMB
A (λ) = Pr[PMB1 → 1]− Pr[PMB0 → 1]

We say that AT is PMB-secure if for any PPT adversary A, the advantage
is a negligible function.

4 ATHM: Anonymous Tokens with Hidden Metadata

Instead of relying on a deterministic PRF, we construct a protocol which is based
on a randomized algebraic MAC, like in keyed-verification anonymous credentials
[6,7] and Signal’s private group management in group chats [8,9]. A valid MAC
for an input b with a nonce t and a secret key (x, y, z) is a pair σ = (P,Q) such
that Q = (x + by + tz)P . In our scheme, a token with a hidden bit b will be
a pair (t, σ) such that σ is a valid MAC for the attributes (b, t) with a secret
key (x, y, z). In Appendix B.1, we present variants and extensions of ATHM to
introduce public metadata m or other MAC algorithms.

4.1 The ATHM Components

Our scheme uses as a building block a simulatable non-interactive proof Π2.
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Game PMBb∗(1
λ):

1: AT.Setup(1λ)→ cpp
2: AT.KeyGen(cpp)→ (pk, sk)
3: flag← false
4: return AOsign,Ochal,Oread,Ovalid(cpp, pk)

Oracle Oread(m, t, σ):
5: if flag and m = m∗ then return ⊥
6: return AT.ReadBit(sk,m, t, σ)

Oracle Ovalid(m, t, σ)
7: bool← AT.ReadBit(sk,m, t, σ) ̸= ⊥
8: return bool

Oracle Osign(b,m, query):
9: AT.IssueToken(sk, b,m, query)→ resp
10: return resp

Oracle Ochal(m, query):
11: if flag then return ⊥
12: flag← true
13: m∗ ← m
14: AT.IssueToken(sk, b∗,m∗, query) →

resp
15: return resp

Fig. 4. Privacy of the Metadata Bit Game

Setup algorithm. Setup is composed of two phases. The Setup0 algorithm gen-
erates an (additive) group, of prime order p, and a generator G. The Setup2
algorithm selects common parameters cpp2 for Π2.

Setup(1λ):
1: Setup0(1

λ)→ (gp, p,G) ▷ group setup
2: Setup2(gp, p,G)→ cpp2 ▷ Π2 setup
3: cpp← (gp, p,G, cpp2)

Our proposed Π2 scheme requires Setup2 to select uniformly a random non-zero
group element cpp2 = H. (See subsection 4.3.)

The KeyGen algorithm. Key generation is composed of several phases.

KeyGen(cpp):
1: KeyGen0(cpp)→ (pk0, sk0)
2: KeyGen2(cpp, pk0, sk0)→ (pk2, sk2) ▷ Π2 key generation
3: pk← (pk0, pk2)
4: sk← (sk0, sk2)

In KeyGen0, the issuer selects three secrets sk0 = (x, y, z) ∈ Zp×(Z∗
p)

2 uniformly
(y, z ̸= 0) and sets pk0 = Z = zG.

Our proposed Π2 scheme requires KeyGen2 to add in pk2 Pedersen commit-
ments [19] Cx = xG + rxH, Cy = yG + ryH, together with a Schnorr proof
of knowledge [20] of z such that Z = zG. Clients must verify this proof before
starting the issuance protocol, but this is done once for all. (See subsection 4.3.)

The token issuance protocol. The user has public parameters. The server’s input
is the secret (x, y, z) and a bit b to hide inside the token. The protocol works as
depicted in Figure 5: the client selects a random tag share tC and a random mask
r ∈ Zp and sends T = tCZ + rG to the issuer. The issuer selects a random tag
share tS and generates a pair (U, V ) such that (U, V −rU) is a valid MAC for tag
t = tC + tS and metadata b with key (x, y, z). For this, the issuer selects U = dG
for a random d ∈ Z∗

p and V = d(xG + byG + tSzG + T ). Π2 proves that the
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(U, V, tS) triplet was correctly generated and that b ∈ {0, 1}. Then, (U, V, tS , π)
is returned. The client computes (U, V − rU). To make it unlinkable, the pair is
multiplied by a random mask c to obtain another pair σ = (P,Q).

ATHM.Client(G,Z) ATHM.IssueToken((x, y, z), b)
input: (G,Z) input: (x, y, z), b
tC , r ←$ Zp

T := tCZ + rG

T

tS ←$ Zp

d←$ Z∗
p

U := dG
V := d(xG+ byG+ tSzG+ T )

π ← Π2.Prove(b, d, sk0, sk2;U, V, tS , T, cpp, pk)

U, V, tS , π

if not Π2.Verify(π, U, V, tS , T, cpp, pk) then return ⊥
if U = 0 then return ⊥
c←$ Z∗

p

P := cU
Q := c(V − rU)
t := tC + tS
σ := (P,Q)
output: (t, σ)

Fig. 5. ATHM token issuance protocol.

The proof Π2 is a Fiat-Shamir transform of an OR proof of two Schnorr
proofs for b = 0 and b = 1. It is specified in subsection 4.3.

The ReadBit algorithm. The redemption of (t, P,Q) with (x, y, z) checks P ̸= 0
and looks for which b ∈ {0, 1}, the equality Q = (x + by + tz)P is satisfied. It
returns that bit (it must be unique) or an error if there is none.

Rationales. MACGGM (see subsection 4.2) ensures OMUF security. It uses two
attributes to carry the tag t and hidden bit b. We observe that it is necessary
that the issuer contributes to t. If the client could decide t = tC , then PMB
security could be broken by getting a challenge with tag t∗ then issuing a token
with same tag t = t∗ and taking the weighted average of both. The obtained
token is valid if and only if b∗ is equal to the bit b put in the second token.

We can also observe that it is necessary to have tC , r, and c. Without any
of them, the malicious issuer can easily break UNLINK security by linking an
issued token with a redeemed token.

The same goes with the proof Π2 which plays two roles. First, it proves that
the used sk corresponds to pk. Without Π2, the issuer could use a set of different
sk’s and make a selection of sk in this set which would play the role of a marker
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in the token. Second, Π2 proves that either b = 0 or b = 1, thus b only contains
one bit. Without Π2, the issuer could use more than one bit inside b and use
this as a marker to link tokens to redeem to clients requesting a token. So, Π2

is necessary for UNLINK security. The client must also verify U ̸= 0, because
U = 0 could be used by the issuer to mark a token.

Beware of double spending. Note that for this protocol, tag t needs to be a nonce
as in other protocols [15], [16] i.e. the redeemer should check against double-
spending of a token with the same t. Otherwise, it is easy to transform a valid
token with tag t into another valid token with the same tag t: let σ = (P,Q) be
a signature on t. Then the client can forge another signature σ′ = (c′P, c′Q) on
t for a random c′.

4.2 The MAC Building Block

Our security results will be based on the security of an algebraic MAC. The
simplest one is the MACGGM algorithm [6] defined as follows: given a secret
(x, y, z) ∈ Z3

p, a valid authentication for (b, t) ∈ Z2
p is a pair σ = (P,Q) such

that Q = (x + by + tz)P . For this MAC to be secure, it is important that no
adversary can find any linear relation between the random values of P . Hence,
P is selected at random by the issuer.

The security of MACGGM was proven in the generic group model (GGM) [6].
So, we use the same model to prove the security of ATHM. However, our con-
struction generalizes to other MAC algorithms which can be proven in the stan-
dard model, and we use non-GGM security for this generalization, as shown in
Appendix B.2.

4.3 The Simulatable Proof Building Block

As already mentioned, setup and key generation for the π proof is specified in
Figure 6. The setup essentially sets up an additional generator H to make a
Pedersen commitment [19]. Key generation computes Pedersen commitments
Cx on x and Cy on y together with a Schnorr proof [20] with Fiat-Shamir
transform [14] for the knowledge of z such that Z = zG. Clients are assumed to
verify that pk is correct by running once the Verify2 algorithm.

On a high level, the proof π first commits to b by releasing a Pedersen commit-
ment [19] C = bCy +µH, then performs an OR proof [11]: a proof of knowledge
for µ such that either C = µH or C = Cy + µH. Finally, it performs a proof of
knowledge for (d′, ρ, w) such that −G = d′U , −(Cx+C+ tSZ+T ) = d′V +ρH,
and −T = d′V + wG. The link with d is that d′ = − 1

d . Hence

∃(d′, ρ, w) d′

U
V
V

+ ρ

 0
H
0

+ w

 0
0
G

 = −

 G
Cx + C + tSZ + T

T

 (1)
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Setup2(gp, p,G):
1: td2 ←$ Z∗

p

2: H ← td2.G
3: cpp2 ← H
4: return cpp2

KeyGen2(cpp, pk0, sk0):
5: (gp, p,G,H)← cpp
6: Z ← pk0
7: (x, y, z)← sk0
8: rx, ry ←$ Zp

9: Cx ← xG+ rxH
10: Cy ← yG+ ryH

11: ρz ←$ Zp

12: Γz ← ρzG
13: ε← Hash(G,H,Z, Γz)
14: az ← ρz + εzg
15: sk2 ← (rx, ry)
16: pk2 ← (Cx, Cy, ε, az)
17: return (pk2, sk2)

Verify2(cpp, pk):
18: (gp, p,G,H)← cpp
19: (Z,Cx, Cy, ε, az)← pk
20: Γz ← azG− εZ
21: return 1ε=Hash(G,H,Z,Γz)

Fig. 6. Initialization of Π2.

where ρ = −(rx + bry + µ) and w = x + by + tSz. The proof follows standard
NIZK techniques, with (generalized) Schnorr proof [20], OR proof [11], and Fiat-
Shamir transform [14].

We will use two properties of Π2: that we can simulate the proof on any entry
by programming the random oracle, and that we have a straightline extractor
for (x, y, z, b, d) in the generic group model. We will prove these properties in
the security analysis.

To construct Prove, we merge this OR proof with the AND proofs with
statement given in Equation 1 and we transform into a non-interactive proof.
We formally define the algorithms in Π2 below.

Prove. The algorithm Prove(b, d, sk0, sk2;U, V, tS , T, cpp, pk) parses different el-
ements, picks µ, sets C = bCy + µH, d′ = − 1

d , ρ = −(rx + bry + µ), and
w = x+ by + tSz.

The issuer (prover) picks e1−b, a1−b, rµ, rd, rρ, rw at random and computes
Cb = rµH, C1−b = a1−bH − e1−b(C − (1− b)Cy), Cd

Cρ

Cw

 = rd

U
V
V

+ rρ

 0
H
0

+ rw

 0
0
G


e = Hash(G,H,Cx, Cy, Z, U, V, tS , T, C,C0, C1, Cd, Cρ, Cw), eb = e − e1−b, ab =
rµ + ebµ, and (ad, aρ, aw) = (rd, rρ, rw) + e(d′, ρ, w). Finally, the output is

π = (C, e0, e1, a0, a1, ad, aρ, aw)

Verify. The algorithm Verify(π, U, V, tS , T, cpp, pk) parses π, cpp, and pk, com-
putes C0 = a0H − e0C, C1 = a1H − e1(C − Cy), e = e0 + e1, Cd

Cρ

Cw

 = ad

U
V
V

+ aρ

 0
H
0

+ aw

 0
0
G

+ e

 G
Cx + C + tSZ + T

T
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then verifies e = Hash(G,H,Cx, Cy, Z, U, V, tS , T, C,C0, C1, Cd, Cρ, Cw).

5 Performance

Implementation. We implemented our construction as given in Figure 5 in
Rust (version 1.66.0). We use the Ristretto group using curve25519-dalek li-
brary. We use RistrettoBasePointTable struct (which is a precomputed table
for multiplications with the group generator G) to accelerate the scalar mul-
tiplications (PMBT implementation does not use these tables). We use two of
these tables: one for G and one for H which requires 60 KB of memory for
constant time cryptography and up to 4 times speed up. For OR proofs and
verification, we did not rely on any external library, meaning we implemented
it in pure Rust. We did not use multi-scalar multiplication. It is available at
https://github.com/Microsoft/MacTok.

We benchmarked the implementation on a machine with Intel(R) i7-1185G7
3.00GHz CPU. Our benchmarks excludes the key generation (because it is gener-
ated only once for all). They include client blinded message generation, server’s
computation of MACs (blindly, along with the proof Π2.Prove), client’s unblind-
ing (along with the Π2.Verify2), and server’s redemption. It takes 1.3 ms whereas
PMBT takes 1.6 ms for the same operations 9. We note that we disabled SIMD
optimizations (which allows curve25519-dalek to run faster curve operations) in
both ATHM and PMBT due to the unstable version (1.66.0-nightly) of the Rust
compiler that does not allow building PMBT. When we run our ATHM protocol
with SIMD optimization, we get 0.9 ms of running time.

Theoretical Complexity. We also computed the number of scalar multiplications
to compare ATHM with PMBT and observed that ATHM computes 29 scalar
multiplication whereas PMBT computes 31 multiplications in total, for bench-
marked operations (client and server side computations including redemption
along with the proof and verification).

In ATHM, the issuer computes 11 scalar multiplications during issuance (one
for C, 7 for the proof, and 3 for the ATHM protocol). The client computes 17
scalar multiplications (one for tSZ, 11 for the proof, and 5 for ATHM). The
total is 28 multiplications. 10 Furthermore, the number of transmission is of 4
group elements (C in the proof and (T,U, V ) in the proof) and 8 integers (tS in
ATHM and the 7 elements of π). The total is 12.11 For redeem, the number of
multiplications is 1 and the token length is 3 (t, P , and Q). For key generation,
the issuer computes 2 multiplications (1 for Z and 1 for pk2) and the client
computes 2 multiplications for the Π2 verification. The public key contains 5
elements (1 for Z and 4 for pk2).

9 PMBT code is available at https://github.com/mmaker/anonymous-tokens
10 In this count, we took the computation of (1− b)Cy as free. Furthermore, the com-

putation of rdV and adV are done twice but count for a single operation.
11 By setting tS = Hash(U), the issuer would not have to send tS any longer and save

the transmission of one Zp element.
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As a comparison, in PMBT, for issuance, the issuer computes 12 multiplica-
tions in total and the client computes 15 multiplications. In total, the number
of multiplications is 27 for issuance. The number of transmissions is 2 group
elements and 7 scalars. The total is 9. The redemption needs 4 multiplication
with a token length 2 group elements. For key generation, the issuer computes
4 multiplication. The public key contains 4 elements.

We provide a complexity comparison in Table 1. We compute the number
of scalar multiplications for both participants during issuance, and the amount
of communication between them (G stands for group elements, Zp stands for
integers, and h stands for hashes), and the same for redeem. We added KVAC
reduced to two attributes t and b, as presented in Appendix C. Note that PP
does not have hidden bit metadata, PMBT uses a weaker PMB security notion,
and KVAC does not ensure PMB security.

Table 1. Complexity comparison

Issuance Redemption Total
Client Server Comm. Server Comm. Comp. Comm.

ATHM 17× 11× 4G+ 7Zp 1× 2G+ 1Zp 29× 6G+ 8Zp

PP 2× 7× 2G+ 1Zp + 1h 1× 1G+ 1h 10× 3G+ 1Zp + 2h

PMBT 15× 12× 2G+ 7Zp 4× 2G+ 1Zp 31× 4G+ 8Zp

KVAC 35× 30× 7G+ 12Zp 1× 2G+ 1Zp 66× 9G+ 13Zp

BLOR 11× 7× 5G+ 6Zp 6× 3G+ 4Zp 24× 8G+ 10Zp

We also include BLOR [2] (that we named from the initials of the authors).
This protocol has a different model: public verifiability but hidden metadata.
This means that anyone can check whether a token hides a hidden bit but only
the issuer can determine which bit is hidden. Besides, the issuance protocol has
an additional move. So the protocol implies that the issuer is a stateful server.

6 Security Proof for ATHM in the Generic Group Model

We consider ATHM as specified in section 4, i.e. with MACGGM, no Text, and
with the nonce t and private metadata bit b attributes. (See Appendix B for Text

and other options.) Considering more attributes would work the same. We prove
OMUF, 2-UNLINK, and PMB security in the generic group and random oracle
models. The security of MACGGM without generic groups is an open problem,
so the GGM seems to be unavoidable here. It also helps to build a straightline
extractor for Π2 (in UNLINK). The random oracle is used in the simulation of
Π2 (in OMUF and PMB) and in the soundness of Π2 (in UNLINK).

We first discuss about the Generic Group Model (GGM). We adopt the model
by Maurer [17] which models a lower-level interface to the generic group. In this
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model, all group operations are outsourced to an external oracle which also keeps
the group element values in registers which cannot be read by the adversary. Ini-
tially, the setup GGMSetup sets a register Mem[1] set to a “base” group element
from the setup: the generator G. Other registersMem[·] are initialized to 0. These
registers are given an address that the adversary or the game can use. The adver-
sary uses addresses as references when a group operation is requested but never
sees the element value itself. Actually, the oracle only computes subtractions
GGMSub (from which we can do additions, scalar multiplications, inversion, and
get the neutral element) and comparisons GGMCmp (whether or not the group
elements referred to by two addresses are equal):

Oracle GGMSetup(λ):
1: Setup0(1

λ)→ (gp, p,G)
2: initialize Mem[·] = 0
3: Mem[1]← G
4: return p

Oracle GGMSub(i, j, k):
5: Mem[k]← Mem[i]−Mem[j]
6: return

Oracle GGMCmp(i, j):
7: return 1Mem[i]=Mem[j]

Clearly, the only oracle leaking information about group element values is
the comparison oracle GGMCmp. The main task of the proof is to simulate this
oracle to reduce it to a trivial game.

The Maurer generic group model [17] does not allow to efficiently hash group
elements or to build dictionaries with group elements as a key, which is essential
in generic algorithms such as Pollard Rho or Baby-Step Giant-Step. Manag-
ing to do so essentially reduces to simulating the original Shoup generic group
model [21]. In the Shoup model, the adversary has access to the encryption of
the group element values and can interact with an oracle to subtract encrypted
elements. An ideal deterministic encryption is set up at the beginning of the
game. To simulate the Shoup model with qsub calls to the subtraction oracle, we

need qGGMCmp =
qsub(qsub−1)

2 calls to GGMCmp.

Overview of our proofs in GGM. In our security proofs, we need to distinguish
registers which are visible by the adversary from others which are used by the
game or other oracles. For that, we imagine an interface between the GGM ora-
cles and a querier who is either the game/oracles or the adversary. The interface
controls access privileges, depending on whether the query comes from the ad-
versary or not. For convenience, we partition the memory Mem into three arrays
of registers: base elements Base[·], working registers R[·] for the adversary, and
private registers Rpriv[·] for the game/oracles. GGMSub(i, j, k) queries which are
from the game or oracles should use a k address pointing to the Rpriv array. The
interface would make the i address of Mem[i] correspond to a register address
i′ in one of the three arrays, depending on i, and likewise for Mem[j]. For in-
stance, the partition could be defined by address i corresponding to the register
at address ⌊ i3⌋ in one of the three arrays, depending on i mod 3.

Elements which are new for the adversary (in the sense that they are pro-
vided by the game or oracles) are stored in the Base array. Namely, setup stores
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Base[1] = G at the beginning of the game. A variable dim keeps the number
of assigned base elements (i.e. dim = 1 after setup). The Rpriv array is not ac-
cessible by the adversary (i.e., the interface does not allow a GGMSub(i, j, k)
or GGMCmp(i, j) query from the adversary with any input address i, j, k corre-
sponding to Rpriv). The Base array is a write-once array which is readable but
not writable except by a new Reveal(i) system call (i.e. the inputs i and j in any
GGMSub(i, j, k) or GGMCmp(i, j) query can point to the Base array, but not k).
The new system call Reveal(i), which is not accessible by the adversary, incre-
ments the value of dim and assigns Base[dim] to Mem[i]. The idea is that Mem[i]
corresponds to a Rpriv[i′] result from a computation by the game/oracles which
should be returned to the adversary. Hence, Reveal is the only access which is
writing inside Base. It is write-once: we make sure that elements are not overwrit-
ten. So we have dim “base” elements in the Base array. Actually, “base” should
be understood in the sense of linear algebra: it is intended that every element in
Base are “linearly free”. Any vanishing linear combination would imply solving
a discrete logarithm problem.

The adversary can work in the R[·] array and can read in the Base[·] array.
Given an adversary A in this model, we can define another adversary B who
does the same as A but follows step by step the oracles queries made by A
to GGMSub in order to express every R[i′] as a known linear combination of
the base elements. Initially, B defines vectors Vec[·] from Z∞ (i.e., sequences
of eventually null integers, but only the first dim coordinates can be nonzero)
which are initialized to the zero vector. Upon a query GGMSub(i, j, k) by A, B
forwards the query and does an additional task: first, it defines vectors vi and
vj corresponding to input i and j. If address i is pointing to R[i′], we define
vi = Vec[i′]. If address i is pointing to Base[i′], we define vi = (0, . . . , 0, 1, 0, . . .)
with 1 at coordinate i′. The same is done with vj . Note that k must point to
some R[k′]. Hence, B affects Vec[k′] ← (vi − vj) mod p. With these operations,
we easily prove by induction that at every step of the game, we have

R[i′] =

dim∑
ℓ=1

Vec[i′]ℓ · Base[ℓ]

So, from now on, we assume without loss of generality that all adversaries fol-
low this approach to express group elements as a linear combination of “base”
elements. We call linearization the transform of A to B.

When the server is modelled by the game, the base elements consist of G
and H from setup, Z, Cx, and Cy from key generation, and every (U, V ) pair
returned by the issuer, as well as a C value from π.

In the next transform, which we call algebraic transform, each secret scalar
value such as td2, x, y, z, rx, ry, di, etc are associated to a formal variable t̄d2, x̄
and so on. Let Var be the tuple of variables and Val be the corresponding tuple
of scalar values. Each base element Base[ℓ] will be associated to a multivariate
scalar function PBase

ℓ (Var) satisfying the fundamental property that Base[ℓ] =
PBase
ℓ (Val).G. The function will be known by B (only Val remains unknown).
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Then, B will define a formal multivariate function

PR
i′ (Var) =

dim∑
ℓ=1

Vec[i′]ℓ · PBase
ℓ (Var)

and extend the fundamental property to R[i′] = PR
i′ (Val).G thanks to the linear

expression. Those functions will appear to be low-degree polynomials. The goal
of this transformation is to be able to simulate OCmp by simply comparing the
polynomials. The simulation is not perfect because some polynomials may be
different and still evaluate to the same scalar, but this will occur with negligible
probability thanks to the Schwartz-Zippel lemma.

6.1 OMUF Security in GGM and ROM

Theorem 1. For every A playing OMUF in the generic group and random or-
acle models and making n oracle calls to Osign, if Π2 is perfectly simulatable, we
have

AdvOMUF ≤ (2(n+ 1 + qOread
) + qGGMCmp + 1)× n+ 2

p
+

n

p
+

qHash
p6

where n, qOread
, qGGMCmp, and qHash are the number of queries to Osign, Oread,

GGMCmp, and to the random oracle.

By doing qGGMCmp queries, the adversary can compute the discrete logarithm z
of Z with success probability qGGMCmp/p. Then, with n = 1 query, the adversary
gets one valid token (b, t, P,Q). For any δ, the token (b, t + δ, P,Q + δzP ) is
valid too. Thus, the OMUF game succeeds with advantage qGGMCmp/p. Hence,
our bound is tight.

Proof. We consider an adversary A playing the OMUF game. Without loss of
generality, we assume thatA either aborts, or returns (bj , tj , Pj , Qj) tuples which
are all valid, with pairwise different tj , same bj = b, and the total number equals
to nb + 1.

Eliminating π. Before applying the GGM transforms, we first reduce to a game
Γ1 where Osign no longer computes a proof π. Instead, a proof

π = (C, e0, e1, a0, a1, ad, aρ, aw)

is simulated by the adversary. As only the adversary needs to query the random
oracle, this oracle can be simulated by the adversary by lazy sampling. This
gives the opportunity to program the oracle too.

To simulate the proof, the adversary picks V = (C, e0, e1, a0, ad, a1, aρ, aw)
in G× Z7

p uniformly at random. After selecting π, the adversary can follow the
Π2.Verify algorithm to compute C0, C1, e, Cd, Cρ, Cw. Then, the adversary forms
the input to the random oracle

q = (G,H,Cx, Cy, Z, U, V, tS , T, C,C0, C1, Cd, Cρ, Cw)
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If q is already queried to Hash, the simulation fails and the game aborts. However,
since π was randomly picked, this should happen with probability limited to qHash

p6 .

In the way the normal proof is generated (see subsection 4.3), what is ran-
domly selected is W = (µ, e1−b, a1−b, rµ, rd, rρ, rw, e) where e = Hash(q), but
there is a one-to-one mapping between V and W. So, π is well distributed but
the link with the random oracle is missing. Since Hash(q) was not queried be-
fore, the adversary can program the random oracle with Hash(q) = e. Hence, the
proof becomes valid. Except in the failure case, the proof is perfect.

AdvOMUF ≤ AdvΓ1 +
qHash
p6

Finally, oracles no longer use H, Cx, Cy. We can reduce to a game where Setup2
and KeyGen2 are skipped. The adversary can run them and select H, Cx, and
Cy randomly. This simulation is perfect. Hence we can now assume that the
remaining Γ 1 game applies to a variant of ATHM with no H, Cx, Cy, and π.

In the ith query to Osign, we let (b, query) = (bi, Ti) denote the input and
(Ui, Vi, tS,i) denote the output.

Uniform secret values. Our next transform consists of modifying the game Γ1

into a game Γ2 in which y and z in KeyGen and every d in Osign queries are
uniformly selected in Zp instead of Z∗

p. The failure case is when one random
selection draws zero. By using the difference lemma, we obtain

AdvΓ1 ≤ AdvΓ2 +
n+ 2

p

GGM transforms. We apply the linearization transform in the GGM with base
elements (G,Z, (Ui, Vi)i). For each group element A = R[i′], the adversary gets
a vector Vec[i′] = (aG, aZ , (aUi

, aVi
)i, 0, 0, . . .) such that

A = aG.G+ aZ .Z +
∑
i

(aUi
.Ui + aVi

.Vi)

The adversary has access to group elements in R[·] and Base[·]. For each of those
element, the adversary knows a corresponding vector which we denote by VecA.

We then apply the algebraic transform in the GGM with the secret scalar val-
ues Val = (x, y, z, (di)i) corresponding to the formal variables Var = (x̄, ȳ, z̄, (d̄i)i).
We recursively define the polynomials PBase

ℓ (Var) and PR
i′ (Var). For convenience,

we denote PolA(Var) the polynomial associated to each group element A for
which the adversary has access. Clearly, we can set PolG(Var) = 1, PolZ(Var) = z̄,
PolUi

(Var) = d̄i to ensure the fundamental property for these base elements. To
define PolVi

(Var), we assume that PolTi
(Var) is defined (it is by linear combina-

tion of previous base elements) and we define

PolVi(Var) = d̄i(x̄+ biȳ + tS,iz̄) + d̄i.PolTi(Var)

By induction, for every group element A which is accessible by the adversary, we
have A = PolA(Val).G. The formal polynomial PolA is known by the adversary
but Val remains secret.

We prove by induction the following fact.
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Fact 1 For each A accessible by the adversary after q queries to Osign, the PolA
polynomial has total degree bounded by q + 1. Furthermore, every partial degree
is bounded by 1. Monomials are square-free.

Indeed, after q = 0 queries, the largest degree is for PolZ(Var) = z̄. Making a new
query to Osign multiplies PolTi

(Var) by a fresh d̄i and adds a degree-2 polynomial
d̄i.(x̄+ biȳ + tS,iz̄).

We can now use out GGM transforms to start the simulation of the GGMCmp
oracle. First observe that queries to this oracle are only made by the adversary,
and by the game calling < AT.ReadBit either in the Oread or in the final ver-
ification of the forged tokens. By abuse of notation we define the polynomials
associated to A and B in the query (A,B) to the oracle by the game. For a token
(P,Q), which is provided by the adversary, we have PolA(Var) = PolQ(Var) and
PolB(Var) = (x̄+ bȳ + tz̄)PolP (Var), with b and t provided by the adversary.

If the call to the comparison oracle is made by the adversary, the polynomials
have degree bounded by q + 1 so we obtain the result. Otherwise, the call must
come from the usage of AT.ReadBit in either the game of the Oread oracle, which
multiply a degree-(q+1)-bounded polynomial by a degree-1 polynomial x̄+bȳ+
tz̄. So, the degree is bounded by q + 2. The values in Val are uniform in Zp. By
using the Schwartz-Zippel lemma and the bound on the degree of polynomials,
we have the following fact.

Fact 2 Let q be the number of Osign queries before an input (A,B) is presented
for the first time to a comparison oracle. Except with a probability bounded by
q+2
p , we have A = B if and only if PolA = PolB.

The adversary, game, or Oread oracle can simulate that comparison oracle
by checking equality between PolA = PolB . Hence, by induction, using hybrids,
we reduce to a game Γ3 where no access to the comparison oracle is made, and
for every final (b, t, P,Q) output, we have PolQ(Var) = (x̄ + bȳ + tz̄)PolP (Var)
(in winning cases). The total number of comparisons is bounded by 2(n + 1 +
qOread

)+qGGMCmp, where qOread
is the number of calls to Oread by the adversary and

qGGMCmp is the number of calls to the comparison by the adversary. We obtain

|AdvΓ2 − AdvΓ3 | ≤ (2(n+ 1 + qOread
) + qGGMCmp)×

n+ 2

p

In Γ3, no query to GGMCmp is made. So no information aboutMem leaks. Hence,
secret values become useless and the game becomes linear.

Analyzing the linear game. We now focus on one of the nb+1 final (b, t, P,Q) pro-
duced byA in winning cases. Since the tokens are assumed to be valid and thanks
to our previous transforms, we know that PolQ(Var) = (x̄+ bȳ+ tz̄)PolP (Var). A
is only making scalar linear combinations of G,Z, and the Ui and Vi. We write

P = aG.G+ aZ .Z +
∑
i

(aUi .Ui + aVi .Vi)

Q = bG.G+ bZ .Z +
∑
i

(bUi
.Ui + bVi

.Vi)

= (x+ by + tz)P
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Thanks to Fact 1, the partial degree of PolQ in z̄ is bounded by 1. We can see
from the last equation PolQ = PolP × (x̄+ bȳ + tz̄)) that aZ = 0.

PolP has constant term aG. From the last equation, PolQ has aG as a coeffi-
cient of monomial x̄. However, no monomial x̄ can appear in the linear expression
of PolQ. (For instance, PolVi

is always a multiple of d̄i.) Hence, aG = 0.
Similarly, x̄+ bȳ + tz̄ has no constant term so we must have bG = 0.
By inspecting the monomial z̄ we now obtain that bZ = 0.
Hence,

P =
∑
i

(aUi .Ui + aVi .Vi)

Q =
∑
i

(bUi
.Ui + bVi

.Vi)

= (x+ by + tz)P

Given a polynomial and a variable ū, we say that ū appears if the partial
degree in ū is at least 1. We have the following fact.

Fact 3 d̄i appears in PolP if and only if it appears in PolQ.

Since the partial degree of PolQ in x̄ is at most 1 due to Fact 1, the partial degree
of PolP in x̄ must be zero. Hence, a monomial µ is in PolP if and only if the
monomial x̄µ is in PolQ.

In the ith oracle call to Osign, we have

PolVi
= d̄i(x̄+ biȳ) + tS,id̄iz̄ + d̄i × PolTi

with tS,i sampled as a fresh uniform scalar. Note that d̄i cannot appear in PolTi

because it is formed before sampling di. PolTi
may have the monomial z̄ (it is

actually supposed to) but PolTi
is set before sampling tS,i. Hence, except with

probability 1
p , the d̄iz̄ monomial is present in PolVi

. We deduce what follows.

Fact 4 For any i, the monomial d̄iz̄ has a nonzero coefficient in PolVi
, except

with probability 1
p .

We reduce to a game Γ4 where d̄iz̄ never has a zero coefficient in PolVi
for

every i. We have

AdvΓ3 ≤ AdvΓ4 +
n

p

Fact 5 In Γ4, among all group elements given to A, the monomial d̄iz̄ has a
nonzero coefficient in PolVi

and only in PolVi
.

Indeed, even though it could be put in a PolTj for j > i, the monomial would
be multiplied by d̄j and thus d̄iz̄ would not appear as a standalone monomial
in PolVj

. Coming back to the representation of a final P and Q, we deduce that
aVi

= 0 for every i (as we cannot have d̄iz̄
2 in PolQ). By writing PolUi

= d̄i,
PolP is linear in every d̄i. This implies that no monomial in a final PolQ can be
divisible by any d̄id̄i′ .
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We have PolVi
= (x̄+ biȳ + tS,iz̄)d̄i + d̄iPolTi

. For every i such that bVi
̸= 0,

we deduce that no d̄i′ appear in PolTi
. Hence, for every i such that bVi

̸= 0, we
have that Ti must be a known linear combination of G and Z. We write Ti =
tC,iZ+riG. Hence, PolVi = d̄i(x̄+biȳ+(tC,i+ tS,i)z̄). By writing ti = tC,i+ tS,i,
we have

PolP =
∑
i

aUi
.d̄i

PolQ =
∑
i

(bUi
+ bVi

(x̄+ biȳ + tiz̄ + ri))d̄i

= PolP × (x̄+ bȳ + tz̄))

By inspecting d̄i we can further see that we must have bUi
= −bVi

ri and aUi
=

bVi . Hence, P =
∑

i aUiUi and Q =
∑

i aUi(Vi − riUi).
We say that the ith query is well formed if PolTi is a linear combination of

PolG and PolZ (i.e. that PolTi
is a polynomial in z̄ with degree bounded by 1:

PolTi
= tC,iz̄ + ri). For each well formed query we can define ti = tC,i + tS,i.

It follows that for every i such that aUi
̸= 0, we have that the ith query is well

formed and that bi = b and ti = t. This proves that for any valid (b, t, P,Q),
(P,Q) is a known linear combination of all (Ui, Vi−riUi) for well-formed queries
satisfying (b, t) = (bi, ti). Since P is nonzero, there exists i such that the ith
query is well formed and (b, t) = (bi, ti). Hence, the number of pairwise different
t cannot exceed nb. We deduce there is no winning case in Γ4.

We can wrap up by collecting all Adv overheads to get an upper bound for
AdvOMUF. ⊓⊔

6.2 UNLINK Security in GGM and ROM

Theorem 2. ATHM is 2-UNLINK-secure in the generic group and random ora-
cle models. More precisely, for any n, given an UNLINKn-adversary A, we have

AdvUNLINKA ≤ 2

n
+

3 + n+ qGGMCmp + 3qHash
p

where qGGMCmp and qHash are the number of queries to the GGMCmp oracle and
the random oracle.

Perfect 2-UNLINK security is when the advantage is bounded by 2
n . By doing

qGGMCmp queries, the adversary can compute the discrete logarithm td2 of H with
success probability qGGMCmp/p. If it succeeds, the adversary can select n pairwise
different secrets xi and use the secret (xi, y, z) in the ith query. Thanks to td2,
the Pedersen commitment Cx can equivocate to a commitment to xi for each i.
So, the proof Π2 can be made and verified. Then, each token can be uniquely
recognized and the game succeeds with advantage 1. If the discrete logarithm
fails, hiding the bit b = i mod 2 and a random guess works with advantage 2

n .
So, the UNLINKn game succeeds with advantage roughly 2

n + qGGMCmp/p. Hence,
our bound is tight.
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Incidentally, if the setup is maliciously done and the server gets td2, it is
enough to run the above UNLINK attack. So unlinkability relies on a trusted
setup. On the other hand, a malicious setup is only useful for a malicious server:
it only harms unlinkability.

Proof. We start with an adversaryA = (A1,A2,A3) playing the UNLINKn game.
To win the game, there must exist Osign queries. We assume that AT.ClientQuery
verifies pk during at least one query and aborts if not valid. Hence, we could add
after the selection of pk by A1 an explicit verification of pk with abort if not
valid. So, we can assume without loss of generality that pk is valid.

ROM. We first reduce to a game Γ1 in which for every verification of pk (right
after A1 produces pk) and every final verification of π (in every AT.ClientFinal
instance at the end of the game, i.e. excluding those in Ofinal), the Hash query
which is made to compute the challenge ε or e was done by the adversary be-
fore the verification. Clearly, if this is not the case, the probability that the
corresponding verification succeeds is exactly 1

p . Hence,

AdvUNLINKA ≤ AdvΓ1

A +
1 + n

p

Hence, we will be able to discuss on when the query was done by the first time
by the adversary, when the challenge was unknown and the input to the hash
were committed.

GGM. We modify the Ofinal oracle so that it would return tC , r, and c for the
issuance session which is finalized and the token revealed. As it gives more infor-
mation, the winning probability does not decrease. It further helps in the GGM
transform by removing from the base elements the group elements provided by
the client in the revealed sessions. Hence, we only take as base elements the
values of G, H, and Ti from the Oquery responses which have not been finalized.
Note that the basis contains independent and uniform elements (with nonzero
G and H). We apply the linearization with the remaining basis.

Next, we reduce to a game Γ2 in which every group equation check in every
verification of pk (right after A1 produces pk) and every group equation check
in the final verifications of π (in every AT.ClientFinal instance at the end of the
game) are replaced by their corresponding vectorial check. A failure case would
give a non-trivial linear relation between base elements, which would solve the
discrete logarithm problem. Such success happens with probability bounded by
qGGMCmp+1

p in GGM [17].

AdvΓ1

A ≤ AdvΓ2

A +
1

p
+

qGGMCmp + 1

p

Extraction of the secret. We first extract x, rx, y, ry, z from A1 as follows. We
use the generic group model and the linearization transform. In GGM, the base
elements for A1 are G and H. So, the elements made by A2 such as Cx, Cy, and
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Z have a linear expression in G and H. Such linearization step clearly extracts
x, rx, y, ry, z, rz such that Cx = xG+ rxH, Cy = yG+ ryH, and Z = zG+ rzH.
We only have to prove that rz = 0 except with negligible probability. When
rz = 0 we say that Z is proportional to G by abuse of language.

Thanks to the verification condition, we have ε = Hash(query) with query =
(G,H,Z, Γz) and Γz + εZ = azG. Due to the Γ2 reduction, we deduce that
Γz + εZ is proportional to G in the vectorial sense.

We reduce to a game Γ3 in which for every hash query of form (G,H,A,B)
by A1 with B + Hash(G,H,A,B)A proportional to G, then A and B are also
proportional to G. We analyze the probability of the failure case. The first time
(G,H,A,B) is queried to the random oracle, A and B are committed and the
hash Hash(G,H,A,B) is random and uniform. Hence, the probability of the
failure case is bounded by 1

p . Hence

AdvΓ2

A ≤ AdvΓ3

A +
qHash
p

In our case, Γz + Hash(G,H,Z, Γz)Z is proportional to G. Hence, both Z and
Γz are proportional to G in Γ3. In Γ3, we can now assume that sk is extracted
and that (pk, sk) is valid.

Extraction of b. For every AT.ClientFinal instance, the input resp from A2 parses
as resp = (U, V, tS , π) and πi = (C, e0, e1, a0, a1, ad, aρ, aw). Following the verifi-
cation procedure of π defines C0, C1, e, Cd, Cρ, Cw and the query

q = (G,H,Cx, Cy, Z, U, V, tS , T, C,C0, C1, Cd, Cρ, Cw)

to Hash. We want to extract b and d from it.

Thanks to the verification condition, we have e = Hash(q) with C0 = a0H −
e0C and C1 = a1H−e1(C−Cy). Due to the Γ2 reduction, these last two relations
hold in a vectorial sense.

We reduce to a game Γ4 in which for every hash query of the form of q
by A2 with neither C nor C − Cy being proportional to H, with C0 being a
linear combination of H and C, and with C1 being a linear combination of H
and C − Cy, we have Hash(q) ̸= e′0 + e′1 where C0 = a′0H − e′0C and C1 =
a′1H − e′1(C − Cy) are the unique linear relations. Clearly, the failure case has
probability bounded by 1

p for each Hash query. Hence

AdvΓ3

A ≤ AdvΓ4

A +
qHash
p

In our case, we have e = Hash(q) with C0 = a0H−e0C and C1 = a1H−e1(C−
Cy) and the query Hash(q) was made. So, either C or C − Cy is proportional
to H, which gives b. (If both C and C − Cy are proportional to H, we select b
arbitrarily.) In Γ4, we can now assume that b and µ such that C = bCy + µH
are extracted for each final AT.ClientFinal instance.
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Extraction of (d′, ρ, w). We continue the analysis of the AT.ClientFinal instance
by observing that we must have Cd

Cρ

Cw

− e

 G
Cx + C + tSZ + T

T

 ∈ 〈U
V
V

 ,

 0
H
0

 ,

 0
0
G

〉

in a vectorial sense, which we write V1 − eV2 ∈ ⟨V3,V4,V5⟩ for short, where
⟨V3,V4,V5⟩ denotes the linear span of V3,V4,V5. We reduce to a game Γ5 in which
for every hash query of the form of q by A2 with V1 − Hash(q)V2 ∈ ⟨V3,V4,V5⟩,
then V2 ∈ ⟨V3,V4,V5⟩. We analyze the probability of the failure case. Again, the
probability of the failure case is bounded by 1

p . Hence

AdvΓ4

A ≤ AdvΓ5

A +
qHash
p

Since V1 − Hash(q)V2 ∈ ⟨V3,V4,V5⟩ and Hash(q) was queried before verifi-
cation, we deduce that V2 ∈ ⟨V3,V4,V5⟩. Hence we can write −V2 = d′V3 +
ρV4 + wV5, which is Equation 1. We easily deduce d such that U = dG and
V = d((x+ by + tSz)G+ T ).

Information theoretic argument. The rest of the proof is an information theoretic
argument for which complexities do not matter. Given (x, y, z, Ti, Ui, Vi, ti,S , πi)
we can uniquely determine bi. The variables ti,C and ri are uniform but linked by
Ti = ti,CZ+riG and ci is still independent and uniform. Since ti = ti,C+ti,S and
Pi = ciUi, we have that (ti, Pi)|(x, y, z, Ti, Ui, Vi, ti,S , πi) is uniformly distributed
as a pair composed of a scalar and a nonzero group element. Hence, whenever
A2 returns Q and the list of respi, it determines the values of the bi but the
(ti, Pi) to be released are still uniform. After permutation, (tσ(i), Pσ(i), Qσ(i))
has a value of Qσ(i) which is imposed by Qσ(i) = (x + bσ(i)y + tσ(i)z)Pσ(i) so
brings bσ(i) as only information.

This reduces to the following game: the adversary chooses a list of bits (bi)i∈Q
with #Q ≥ n, the game selects a random i∗ and a random permutation σ then
provides bi∗ and (bσ(i))i∈Q to the adversary, and the adversary finally makes a
guess i and win if and only if i = i∗. If the adversary puts n0 zeros and n1

ones, the adversary can only win with probability 1
n0

when it is a zero (which

happens with probability n0

n0+n1
), and with probability 1

n1
when it is a one (which

happens with probability n1

n0+n1
). Overall, the adversary wins with probability

2
n0+n1

which is at most 2
n since n0 + n1 = #Q ≥ n. ⊓⊔

6.3 PMB Security in GGM and ROM

Theorem 3. For every A playing PMB in the generic group model and making
n oracle calls to Osign, if Π2 is perfectly simulatable, we have

AdvPMB ≤ 2(2(n+ 1 + qOread
) + qGGMCmp + 1)× n+ 2

p
+

qHash
p6
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where qOread
, qGGMCmp, and qHash are the number of queries to Oread, GGMCmp,

and to the random oracle.

Again, the bound is tight. By computing the logarithm of Z, an adversary can
modify an existing valid token to make it a valid token with a chosen t. Two
tokens with same t can be combined into a single token which is valid if and
only if the hidden bits are equal. Then we have a similar attack as the one we
presented on PMBT.

Proof. We now consider an adversary A playing the PMBb∗ game.
The only new element in the generic group model treatment is that there is

a new variable b̄∗ appearing in polynomials. This variable appears as soon as A
queries Ochal. It appears as a term of form PolVi∗ = (x̄+ b̄∗ȳ+ tS,i∗ z̄+PolTi∗ )d̄i∗ ,
where i∗ is the index number of the O query for the Ochal query.

We treat the variable b̄∗ differently than others from Var (as b̄∗ takes random
values in {0, 1} instead of random values in Zp like other variables.) For each
polynomial PolA(b̄

∗,Var) in which b̄∗ appears, we can make two partial evalu-
ations PolA(0,Var) and PolA(1,Var) corresponding to b̄∗ = 0 and b̄∗ = 1. We
obtain two polynomials with no b̄∗ variable. Hence, this increase the number of
polynomials by a factor at most 2.

We first proceed like for OMUF security with games Γ1 to have no π in
the return from the issuer and Γ2 to sample secrets in Zp. The transition to
Γ3 to get rid of the GGMCmp oracle (and thus of the Oread and Ovalid oracles)
is also using hybrid arguments but is more complicated. Oracles are simulated
in the order they are called. For the simulation of GGMCmp and Oread until
the challenge is made, it works like for OMUF security. After the challenge is
made, the GGMCmp(A,B) made by the adversary are simulated by answering
1 if and only if there exists β ∈ {0, 1} such that PolA − PolB vanishes in the
partial evaluation b̄∗ = β. To simulate Ovalid(t, P,Q) (which is the last one to
use GGMCmp), the answer is 1 if and only if there exists b, β ∈ {0, 1} such that
PolQ− (x̄+ bȳ+ tz̄)×PolP vanishes in the partial evaluation b̄∗ = β. In the first
case, we prove the following variant of Fact 2.

Fact 6 Let q is the number of Osign queries (including Ochal) before an input
(A,B) is presented for the first time to the GGMCmp oracle. We assume that the
call is made by the adversary. Except with a probability bounded by q+2

p , we have

A = B if and only if PolA(0,Var) = PolB(0,Var) or PolA(1,Var) = PolB(1,Var).

The direct implication works like in Fact 2 as the match happens for b̄∗ = b∗. We
now want to show the converse implication: if PolA − PolB vanishes for b̄∗ = β
with β ∈ {0, 1}, then we want to prove A = B.

Thanks to the generic group model, the adversary knows a linear combination
of provided group elements to obtain A−B. Let λi and µi be the coefficients of Ui

and Vi respectively. We let i be the largest index such that (λi, µi) ̸= (0, 0). The
partial derivative of PolA−B with respect to d̄i is λi + µi(x̄+ biȳ+ tS,iz̄+PolTi

)
(with bi replaced by b̄∗ in the i = i∗ case). Since PolA−B(β,Var) = 0, the partial
derivative vanishes for b̄∗ = β too:

λi + µi(x̄+ biȳ + tS,iz̄ + PolTi
(β,Var)) = 0
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The adversary knows how to express Ti as a linear combination of provided
group elements. We notice that the monomials x̄ and b̄∗x̄ are in no polynomial
of any group element. So, there is no way to make a Ti such that PolTi(β,Var)
has a monomial x̄. Hence, it cannot cancel x̄. This implies µi = 0 then λi = 0
which contradicts (λi, µi) ̸= (0, 0). We deduce that A − B has no Ui and Vi as
a component in the linear combination. Hence, it does not depend on b∗ and
the result is trivial: if PolA − PolB vanishes for b̄∗ = β, it vanishes with the
partial evaluation b̄∗ = b∗ too. Hence, we can apply Fact 2 and conclude. We
can simulate the first GGMCmp oracle call, if it is made by the adversary. We
now look at what happens it it is made by Ovalid.

To simulate Ovalid, we use the following fact.

Fact 7 Let q is the number of Osign queries (including Ochal) before a Ovalid(t, P,Q)
call is made for the first time. We assume there is no GGMCmp call before. Ex-
cept with a probability bounded by q+2

p , the oracle returns 1 if and only if there

exists b, β ∈ {0, 1} such that PolQ(β,Var) = (x̄+ bȳ + tz̄)PolP (β,Var).

The direct implication uses Fact 2 with β = b∗ and the right b which makes
(b, t, P,Q) valid. For the converse implication, we assume that the polynomial
equality is verified for a given (b, β) pair of bits.

We let aUi
, aVi

, bUi
, bVi

be the coefficients of Ui and Vi for P and of Ui and Vi

for Q. Let λi = bUi
− (x̄+ bȳ+ tz̄)aUi

and µi = bVi
− (x̄+ bȳ+ tz̄)aVi

. Like in the
previous case, let i be the largest index such that (λi, µi) is nonzero. The partial
derivative of PolQ − (x̄+ bȳ + tz̄)PolP in terms of d̄i is again λi + µi(x̄+ biȳ +
tS,iz̄ + PolTi

) (with bi replaced by b̄∗ in the i = i∗ case). We know it vanishes
when evaluated on b̄∗ = β. Clearly, aVi

must be zero (otherwise, x̄2 appears and
cannot vanish). The same argument about the monomial x̄ and also about the
monomial ȳ implies that (x̄+ bȳ)aUi = (x̄+ biȳ)bVi . Hence,

∂Pol∆
∂d̄i

(b̄∗,Var) = bUi + bVi

(
(bi − b)ȳ + (tS,i − t)z̄ + PolTi(b̄

∗,Var)
)

for ∆ = Q− (x+ by + tz)P . The adversary also knows a linear combination of
Ti in terms of the provided group elements. Let λ′

j and µ′
j be the coefficients of

Uj and Vj and let j be the largest index for which they are nonzero. The second
partial derivative gives

∂2PolA−B

∂d̄j ∂d̄i
(b̄∗,Var) = bUi

(
λj + µj(x̄+ bj ȳ + tj z̄ + PolTj

(b̄∗,Var))
)

which should vanish for b̄∗ = β. The same argument than before shows that x̄
cannot disappear. Hence, Ti cannot have components in Uj or Vj and does not
depend on b∗.

Knowing that Ti has no component is any previous Ui of Vi, we can go to the
second largest i such that (λi, µi) is nonzero and look at the partial derivative
with respect to d̄i (which we know does not appear in a subsequent Vi′). We
obtain the same result that Ti does not have any component in Uj or Vj . We
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analyze like this all components in every (Ui, Vi) of PolQ − (x̄ + bȳ + tz̄)PolP .
Since it vanished on b̄∗ = β, we cannot have any other component. Hence

PolQ−(x̄+bȳ+tz̄)PolP =
∑
i

(
bUi

+ bVi

(
(bi − b)ȳ + (tS,i − t)z̄ + PolTi

(b̄∗,Var)
))

d̄i

with bi∗ to be replaced by b̄∗. For all indices i of nonzero terms, we deduce that
b = bi and Ti is or form Ti = tC,iZ + riG. This boils down to

PolQ − (x̄+ bȳ + tz̄)PolP = bVi∗ (b̄
∗ − b)ȳd̄i∗ +

∑
i ̸=i∗

bVi
(bi − b)ȳd̄i

If bVi∗ = 0, this vanishing for b̄∗ = β implies vanishing for b̄∗ = b∗ too, so we can
apply Fact 2 to deduce that Q = (x + by + tz)P most of the cases. If bVi∗ ̸= 0,
this vanishing for b̄∗ = β implies b = β. We can then see that it vanishes for
b̄∗ = b∗ and b = b∗ too. We apply Fact 2 to deduce that Q = (x + βy + tz)P
most of the cases.

Using hybrids, we obtain

|Pr[PMBb∗ → 1]−Pr[Γ3,b∗ → 1]| ≤ (2(n+1+qOread
)+qGGMCmp+1)×n+ 2

p
+
qHash
p6

In the game Γ3, the oracles Overify, Oread, and GGMCmp are not used any more.
After getting rid of Overify and Oread, we obtain a game in which no informa-

tion about b∗ is given to the adversary. Thus,

Pr[Γ3,0 → 1] = Pr[Γ3,1 → 1]

⊓⊔

7 Conclusion

In our work, we studied the anonymous tokens with hidden metadata bit from
issuer to the verifier. We started our studies with a security weakness in a pro-
tocol from CRYPTO 2020 which is an extension of Privacy Pass from PoPETs
2018. The protocol is based on oblivious PRFs. We discussed the real-world im-
plications of the security notions defined in their protocol and showed that such
problems can be overcome with a new token protocol from algebraic MACs. We
defined the security with more natural and strong notions.

We believe algebraic MACs suit better in anonymous tokens with hidden bit
as a primitive. However, it is an open question to understand if there are other
OPRFs or another new primitive that would help designing anonymous tokens
with strong security and privacy guarantees.
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Tokens with Private Metadata Bit. https://eprint.iacr.org/2020/072.
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A More Attacks

We extend here the previously presented attack.

A.1 PMBT

The previous attack generalizes. We consider an adversary who collected n tokens
with distinct ti’s, (t1, S1,W1), . . . (tn, Sn,Wn), satisfying Wi = xbiH(ti) + ybiSi.
Assuming an oracle returning whether AT.ReadBit returns ⊥ or not, we describe
an attack allowing the adversary to check whether a subset of the collected
tokens hide the same bit or not. Let I be a subset of {1, . . . , n}. The adversary
chooses a random t∗ and runs the token request protocol one more time, but this
time uses T ∗ = H(t∗)−

∑
i∈I H(ti) instead of T ∗ = H(t∗), and obtains (S∗,W ∗)

such that W ∗ = xb∗T
∗ + yb∗S

∗. Now, the adversary attempts to redeem token
(t∗, S∗+

∑
Si,W

∗+
∑

Wi). This will be a valid token iff all of the bi for i ∈ I are
equal to b∗. If AT.ReadBit does not return ⊥, the adversary deduces that all bi for
i ∈ I are equal. If AT.ReadBit returns ⊥, the adversary may try again, because
it could still be the case that all bi are equal but that b∗ was not. Eventually,
the adversary infers information and can apply a cut-and-choose strategy.

As conclusion, the attack method does not violate the unforgeability game
by rule (that t’s must be different) and does not violate the privacy game by
rule (that there is no validity oracle). As acknowledged by the authors [16,
Section 6.1], having Verify returning always true and pushing the validity to
ReadBit not returning ⊥ is meaningless. They propose a way to enable token
verification in the CMBT scheme which is presented in the full version of the
paper [15, Appendix J].

A.2 The CMBT Fix

The CMBT protocol is presented in the eprint version of the paper [15]. We
summarize this protocol in Figure 7.

CMBT was updated12 on April 21, 2022 [15] as shown in Figure 7. A token
(S,W, W̃ ) is verified and reads bit b if W̃ = x̃Ht(t) + ỹS (verify part) and
W = xbHt(t) + ybS ̸= x1−bHt(t) + y1−bS (read part). Unforgeability is enforced
by the security of previous constructions. However, the privacy of metadata bit
is still in question when we do not separate Verify and ReadBit as we will detail
next.

Clearly, a linear combination attack with tokens sharing the same t will forge
new tokens making AT.Verify true and AT.ReadBit returning the common bit to
all tokens or ⊥ if there is no unanimous bit b. Hence, privacy is broken with
access to an oracle telling whether a token is well formed (in the sense of Verify).

12 In the January 13, 2021 version (20210113:200918) of the paper, W̃ ′ was returned
by the issuer without the π̃ proof, so a malicious issuer could hide a marker in it
and break unlinkability. The authors corrected the protocol on April 21, 2022 after
our disclosure.
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CMBT.Client(pp, t) CMBT.IssueToken(pp, sk, b)
input: (pp, t) input: pp, sk, b
output: σ output: {}
r ←$ Z∗

p

T := Ht(t)
T ′ := r−1T

T ′

(X0, X1, X̃) := pp
((x0, y0), (x1, y1), (x̃, ỹ)) := sk
s←$ {0, 1}λ, S′ := Hs(T

′, s)
W ′ := xbT

′ + ybS
′

W̃ ′ := x̃T ′ + ỹS′

π ← Π.Prove((X0, X1, T
′, S′,W ′), (b, xb, yb))

π̃ ← Π.Prove((X̃, T ′, S′, W̃ ′), (x̃, ỹ))

(s,W ′, W̃ ′, π, π̃)

(X0, X1, X̃) := pp
S′ := Hs(T

′, s)

if not Π.Verify((X0, X1, T
′, S′,W ′), π) or not Π.Verify((X̃, T ′, S′, W̃ ′), π̃) then return ⊥

S := rS′

W := rW ′, W̃ := rW̃ ′

output: σ := (S,W, W̃ )

Fig. 7. CMBT token issuance protocol as given in [15, Fig 22, p 55] (current version
20220421:171853).

As another attack, if a client engages in a protocol to issue three tokens
(ti, Si,Wi, W̃i), i = 1, 2, 3 with t1 = t2 and hidden metadata bits bi, respectively,
from the verification equations, the client can compute ∆S = S2 − S1, ∆W̃ =
W̃2 − W̃1 = ỹ∆S, and ∆W = W2 −W1. Let us now forge (t4, S4,W4, W̃4) =
(t3, S3+∆S,W3+∆W, W̃3+∆W̃ ). This is a token for which Verify returns true.
Note that this does not violate the unforgeability result because the security
game does not take as a valid forgery the creation of a new token with the same
tag t3 = t4. However, ReadBit returns a bit if and only if b1 = b2 = b3. In other
words, either this new token is taken as valid but returns no bit, or it is fully
valid and hides the same bit as all other tokens. Hence, having access to an oracle
telling whether a bit is returned or not breaks the privacy of the metadata bit.

We can draw the following conclusion: if a side channel attack gives access
to a validity oracle (i.e. whether AT.ReadBit returns ⊥ or not once it is known
that AT.Verify is true), we have an attack against the privacy of the metadata
bit b.

A.3 Anonymous Tokens with Public Metadata

Silde and Strand [22] design a protocol to add public metadata in Privacy Pass
while also extending it for a private metadata bit and for public verifiability of
the token. They consider a case study with the reporting phase in digital contact
tracing when a user reports proximity keys with an anonymous token from the

34



authority who has the positive test. To avoid changing credential secret keys
every day, they add the date in public metadata md of the token.

Their scheme with private metadata is adapted from CMBT. It has similar
problems as the ones we explained in the previous section. Moreover, the re-
demption scheme verifies validity and reads the hidden bit at the same time.
However, given two tokens (Si,Wi) (i = 1, 2) with the same (t,md, b), a combi-
nation of the two tokens is a valid token for (t,md, b) as well while two tokens
with the same (t,md) and different b, a combination is a token which reads no
bit. The PMB game for the privacy of the metadata bit is specified with a Overify

oracle but it is not clear what this oracle answers for this scheme. If Overify al-
ways returns true, this attack does not contradict the security result. However,
if Overify returns whether the token reads any bit (as it should do) then PMB
security is broken.

B ATHM: Anonymous Token with Hidden Metadata

The full version of ATHM includes several options. First of all, we add the public
metadata attribute m. It can, for instance, include a coarse expiration data. It
should be used carefully as it degrates unlinkability. A token with a hidden bit
b will be a tuple (t,m, σ) such that σ is a valid MAC for the attributes (b,m, t).

The objective of other options is to get rid of the dependency to the generic
group model and possibly have provable security in the standard model. For
that, one option is the choice of the MAC. A valid MAC for an input b, a public
metadata m, a nonce t, and a secret key (x⃗, y⃗, y⃗′, z⃗) is a pair σ = (P, Q⃗) such

that Q⃗ = (x⃗+ by⃗ +my⃗′ + tz⃗)P . As detailed below, several options can be made

for the MAC algorithm in which case the secrets x⃗, y⃗, y⃗′, and z⃗ will be vectors
of various dimension and structure with elements in Zp.

13

Finally, we also have options for the choice of proof schemes Π1 and Π2. The
proof Π1 is an extractable proof made by the client and Π2 is the simulatable
proof made by the issuer.

Options are summarized in Table 2.

B.1 The ATHM Components

Our scheme uses as a building block an extractable non-interactive proof Π1 and
a simulatable non-interactive proof Π2. Several options for Π1 and Π2 exist but
we focus on one in this section. They will be discussed in separate sections.

Setup algorithm. Setup is composed of three phases. The Setup0 algorithm gen-
erates an (additive) group, which is cyclic, of prime order p, and a generator
G. The crs string includes p, group parameters gp to be able to do operations
in the group, and the generator G. It also includes parameters for a proof Π1

13 If we multiply a vector with elements in Zp by a group element, we obtain a vector
with elements in the group.
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Table 2. Options for the ATHM Protocol. Non-standard models for provable security
are indicated by either an ad-hoc assumption, or the random-oracle model (ROM),
or the generic group model (GGM). In the Attributes menu, several options can be
selected.

Attributes MAC Π1 (Text) Π2 (π)

– Issuer private
metadata bit b

– Public metadata
m

– Nonce t

– MAC-GGM
– MAC-DDH

– no Text (GGM)
– Knowledge-

of-Exponent
(Assumption 3
or GGM)

– MPC-in-the-
Head (ROM)

– Fiat-Shamir
(ROM)

– Homomorphic
encryption

which are generated by Setup1 together with a trapdoor td1 for extraction and
parameters for Π2 which are generated by Setup2 together with a trapdoor td2.

Setup(1λ):
1: Setup0(1

λ)→ (gp, p,G) ▷ group setup
2: Setup1(gp, p,G)→ (crs1, td1) ▷ Π1 setup
3: Setup2(gp, p,G)→ (crs2, td2) ▷ Π2 setup
4: crs← (gp, p,G, crs1, crs2)
5: td← (td1, td2)

The KeyGen algorithm. Key generation is composed of several phases.

KeyGen(crs):
1: KeyGen0(crs)→ (pk0, sk0)
2: KeyGen1(crs, pk0)→ (pk1, sk1) ▷ Π1 key generation
3: KeyGen2(crs, pk0, sk0)→ (pk2, sk2) ▷ Π2 key generation
4: pk← (pk0, pk1, pk2)
5: sk← (sk0, sk1, sk2)

In KeyGen0, the issuer selects four secrets sk0 = (x⃗, y⃗, y⃗′, z⃗) with y⃗, y⃗′, z⃗ ̸= 0, and

sets pk0 = Z⃗ = z⃗G. The structure of those secrets depends on the choice of the
MAC algorithm. We denote by Ex, Ey, Ey′ , and Ez the respective domains of x⃗,

y⃗, y⃗′, and z, depending on the choice of the MAC algorithm. We will also need
the span Ēz of Ez.

The token issuance protocol. The user has public parameters. The server’s input
is the secret (x⃗, y⃗, y⃗′, z⃗), a bit b to hide inside the token, and an agreed public
metadata m to embed. The protocol works as depicted on Figure 8: the client
selects a random tag share tC and a random mask r⃗ ∈ Ēz and sends T⃗ =
tCZ⃗ + r⃗G to the issuer. The client must also send an extractable proof Text for
T⃗ . The issuer selects a random tag share tS and generates a pair (U, V⃗ ) such

that (U, V⃗ − r⃗U) is a valid MAC for tag t = tC + tS and metadata (b,m) with
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key (x⃗, y⃗, y⃗′, z⃗). For this, the issuer selects U = dG for a random d ∈ Z∗
p and

V⃗ = d(x⃗G + by⃗G + my⃗′G + tS z⃗G + T⃗ ). A NIZK proof Π2 must prove that

the (U, V⃗ , tS) triplet was correctly generated. Note that Π2 must prove that
b is a bit and that m was embedded. Both participants are assumed to have
agreed on m (alternately, one participant decides and sends m to the other).

Then, (U, V⃗ , tS , π) is returned. The client computes (U, V⃗ − r⃗U). To make it
unlinkable, the pair is multiplied by a random mask c to obtain another pair
σ = (P, Q⃗).

ATHM.Client(G, Z⃗,m) ATHM.IssueToken((x⃗, y⃗, y⃗′, z⃗), b,m)

input: (G, Z⃗) input: (x⃗, y⃗, y⃗′, z⃗), b,m
tC ←$ Zp, r⃗ ←$ Ēz
T⃗ := tCZ⃗ + r⃗G[
T⃗ext := Π1.Prove(tC , r⃗; crs, pk, T⃗ )

]
T⃗
[
, T⃗ext

]
[if not Π1.Verify(T⃗ , T⃗ext, crs, pk, sk1) then return ⊥]

tS ←$ Zp, d←$ Z∗
p

U := dG

V⃗ := d(x⃗G+by⃗G+my⃗′G+tS z⃗G+T⃗ )

π ← Π2.Prove(b, d;U, V⃗ , tS ,m, T⃗ , crs, pk, sk0, sk2)

U, V⃗ , tS , π

if not Π2.Verify(π, U, V⃗ , tS ,m, T⃗ , crs, pk) then return ⊥
if U = 0 then return ⊥
c←$ Z∗

p

P := cU

Q⃗ := c(V⃗ − r⃗U)
t := tC + tS
σ := (P, Q⃗)
output: (t, σ)

Fig. 8. ATHM token issuance protocol.

About the extractable proof T⃗ext followingΠ1, there are several options which
are discussed in a subsequent section. The role of T⃗ext is to allow to formally prove
the security of ATHM without relying on the generic group model.

The NIZK proofΠ2 is a Fiat-Shamir transform of an OR proof of two Schnorr
proofs for b = 0 and b = 1. Variants without using a random oracle are possible
too.

The ReadBit algorithm. The redemption of (m, t, P, Q⃗) with (x⃗, y⃗, y⃗′, z⃗) checks

for which b ∈ {0, 1}, the equality Q⃗ = (x⃗+by⃗+my⃗′+ tz⃗)P is satisfied. Assuming
0 ̸∈ Ey ensures that b is unique. If b exists, it is returned. Otherwise, ⊥ is
returned.
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Note that for this protocol, tag t needs to be a nonce as in other protocols
[15], [16] i.e. the redeemer should check against double-spending of a token with
the same t. Otherwise, it is easy to transform a valid token with attributes
(b,m, t) into another valid token with the same attributes: let σ = (P, Q⃗). Then

the client can forge another token σ′ = (P ′, Q⃗′) by taking σ′ = c′.σ for any
c′ ∈ Z∗

p.

B.2 The MAC Building Block

Our security results will be based on the security of an algebraic MAC. The
simplest one is the MACGGM algorithm [6] defined as follows: given a secret
(x, y, y′, z) ∈ Z4

p, a valid authentication for (b,m, t) ∈ Z3
p is a pair σ = (P,Q)

such that Q = (x+ by+my′ + tz)P . For this MAC to be secure, it is important
that no adversary can find any linear relation between the random values of P .
Hence, P is selected at random by the issuer.

In MACDDH [6], we consider x⃗, y⃗, y⃗′, and z⃗ as vectors of a particular form:

x⃗ ∈ Ex = Z3
p, Ēz = {(α, β, 0);α, β ∈ Zp}, and y⃗, y⃗′, z⃗ ∈ Ey = Ey′ = Ez =

Ēz − {(0, 0, 0)}.
In general, we let x⃗ ∈ Ex, y⃗ ∈ Ey, y⃗′ ∈ Ey′ , z⃗ ∈ Ez. A MAC σ = (P, Q⃗) for

attributes (b,m, t) is valid if it satisfies Q⃗ = (x⃗+ by⃗ +my⃗′ + tz⃗)P .

We will assume that no adversary can forge a valid σ for a new (b, t,m) tuple
when given access to a MAC oracle and also that no adversary can distinguish
b ∈ {b0, b1} from a random valid tuple (t,m, σ) for this unknown b. The two
respective games are depicted on Figure 9 and Figure 10.

Game EF-CMA:
1: Setup0(1

λ)→ (gp, p,G)
2: pick x⃗ ←$ Ex, y⃗ ←$ Ey, y⃗′ ←$ Ey′ ,

z⃗ ←$ Ez
3: initialize i← 0
4: AOMAC,Overify(gp, p)→ (b,m, t, P, Q⃗)
5: if (b,m, t) is equal to some (bi,mi, ti)

then abort
6: win iff Overify(b,m, t, P, Q⃗)

Oracle OMAC(b,m, t):
7: increment i
8: set (bi,mi, ti)← (b,m, t)
9: pick a nonzero group element Pi

10: Q⃗i ← (x⃗+ biy⃗ +miy⃗′ + tiz⃗)Pi

11: return (Pi, Q⃗i)

Oracle Overify(b,m, t, P, Q⃗):
12: if P = 0 then return false
13: return whether Q⃗ = (x⃗+ by⃗ +my⃗′ +

tz⃗)P

Fig. 9. Forgeability Game for the MAC

We will make the two following assumptions. For MACGGM, they are proven
in the generic group model [6]. For MACDDH, they are proven under the DDH
assumption [6].
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Game IND-CMAb∗ :
1: flag← false
2: initialize i← 0
3: m∗ ← ⊥
4: Setup0(1

λ)→ (gp, p,G)
5: pick x⃗ ←$ Ex, y⃗ ←$ Ey, y⃗′ ←$ Ey′ ,

z⃗ ←$ Ez
6: return AOMAC,Ochal,Overify,Ovalid(gp, p)

Oracle OMAC(b,m, t):
7: if flag and (b,m, t) ∈ {(b∗0,m∗, t∗),

(b∗1,m
∗, t∗)} then return ⊥

8: increment i
9: (bi,mi, ti)← (b,m, t)
10: pick a nonzero group element P
11: Q⃗← (x⃗+ by⃗ +my⃗′ + tz⃗)P
12: return (P, Q⃗)

Oracle Ochal(b, b
′,m, t):

13: if flag or ∃i (bi,mi, ti) ∈
{(b,m, t), (b′,m, t)} then return ⊥

14: (b∗0, b
∗
1,m

∗, t∗)← (b, b′,m, t)
15: flag← true
16: pick a nonzero group element P ∗

17: Q⃗∗ ← (x⃗+ b∗b∗ y⃗ +m∗y⃗′ + t∗z⃗)P ∗

18: return (P ∗, Q⃗∗)

Oracle Overify(b,m, t, P, Q⃗):
19: if flag and b ∈ {b∗0, b∗1} and (t,m) =

(t∗,m∗) then return ⊥
20: if P = 0 then return false
21: return whether Q⃗ = (x⃗+ by⃗ +my⃗′ +

tz⃗)P

Oracle Ovalid(b0, b1,m, t, P, Q⃗)
22: if ¬flag then return ⊥
23: if (t,m) = (t∗,m∗) and {b0, b1} ≠
{b∗0, b∗1} then return ⊥

24: if P = 0 then return false
25: if Q⃗ = (x⃗ + b0y⃗ + my⃗′ + tz⃗)P then

return true
26: if Q⃗ = (x⃗ + b1y⃗ + my⃗′ + tz⃗)P then

return true
27: return false

Fig. 10. Pseudorandomness Games for the MAC
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Assumption 1 In the EF-CMA game on Figure 9, we define the advantage of
an adversary A by

AdvEF-CMA
A (λ) = Pr[win]

We assume that for any PPT adversary A, the advantage is a negligible function.

Assumption 2 In the IND-CMA game on Figure 10, we define the advantage
of an adversary A by

AdvIND-CMA
A (λ) = Pr[IND-CMA1 → 1]− Pr[IND-CMA0 → 1]

We assume that for any PPT adversary A, the advantage is a negligible function.

B.3 The Extractable Proof Building Block

The Π1 extractable proof is used in our analysis to formally prove security. We
require a straightline extraction of tC and r⃗ by using a trapdoor and a verification
algorithm which does not require the trapdoor. Namely, a dedicated algorithm
should be able to extract tC and r⃗ from a valid proof and the view of the client
and the issuer should be able to verify the proof. Furthermore, we need the
proof to be simulatable in a computationally indistinguishable manner by using
a trapdoor.

We propose several options for Π1.

– We use a construction from techniques of verifiable encryption, which has a
complexity cost but a security proven under standard assumptions. Namely,
we should encrypt the values tC and r⃗ with a public key, which can be
decrypted using a trapdoor only, and in a way that we can publicly verify
that it encrypts values satisfying T⃗ = tCZ⃗ + r⃗G.

– We use a simple Π1 scheme (i.e. the proof is computed and verified with a
very low complexity overhead) but an ad-hoc (non-standard) extractability
assumption.

– Use a trivial Π1 scheme (i.e. with a void Text and an always true verification)
and the generic group model.

Using verifiable encryption. Regarding the first approach, we can use the con-
struction by Takahashi and Zaverucha [23]. Namely, tC and r⃗ are shares among
several participants who run a multiparty computation protocol to compute
[tC ]Z⃗ + [r⃗]G, reveal it, and compare it to T⃗ . The execution is simulated. The
views are committed with an extractable commitment (for instance, a public-key
encryption scheme with a public key set up by Setup1 in the common reference
string crs1, extractable from the secret key in td1). Based on the commit values,
a challenge is computed using a random oracle. This challenge gives the index
of a participant whose view remains hidden but other commitments are opened.
The T⃗ext record consists of the commitments and the openings. Verification con-
sists of checking that the openings match their respective commit values, that
the opened views match and make their participant output true, and that the
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missing view is the one corresponding to the hash of the commit values through
the random oracle.

To extract from T⃗ext, we use the trapdoor which allows to extract all views
from the commit values. The views include all shares of tC and r⃗ which can thus
be reconstructed.

To forge T⃗ext, we can program the random oracle to predict the view not
to be revealed and make the corresponding participant malicious so that others
would output true.

The proposed verifiable encryption construction from [23] is secure from any
MPC-in-the-head zero-knowledge proof and an IND-CPA cryptosystem which is
binding. This can be instantiated with quite standard assumptions.

Using an ad-hoc knowledge-of exponent assumption. We consider a key genera-
tion KeyGen1 which sets an additional secret sk1 = θ for the issuer and reveals

pk1 = (Gext, Z⃗ext) to the client, with Gext = θG and Z⃗ext = θZ⃗. Then, we set

T⃗ext = tCZ⃗ext + r⃗Gext to be verified by T⃗ext = θT⃗ .

Simulating T⃗ext is trivial with the help of the trapdoor sk1 = θ.

For extraction, we need a knowledge-of-exponent-like assumption [12]: that

being able to make a valid (T⃗ , T⃗ext) pair with the knowledge of the client would

imply knowing a linear combination T⃗ = tCZ⃗ + r⃗G. In the standard knowledge-
of-exponent assumption, we do not have any oracle whereas in our case, we need
them. However, some oracles may break the knowledge-of-exponent assumption
as shown below. Thus, the difficulty is to show that our oracles do not break
this assumption. The oracle calls may help to provide other (T⃗ , T⃗ext) pairs to
the client, without the client knowing the linear combination. Our assumption
captures that the oracles somehow do not help for that. We formalize two types
of oracles.

An oracle is of Type I if there exists vectors of low-degree polynomials
f⃗1, . . . , f⃗n and scalars λ1, . . . , λn, for some integer n, such that the oracle is
defined as follows:

Oracle O(T⃗ , T⃗ext):

1: if T⃗ext ̸= θT⃗ then return ⊥
2: A⃗i ← f⃗i(aux)G+ λiT⃗ for i = 1, . . . , n
3: pick d←$ Zp at random

4: return (dA⃗1, . . . , dA⃗n)

The values θ and aux as well as the group parameters are used by the oracle.
What is crucial is that O is stateless, does not use θ or T⃗ext after Step 1, and
that it randomizes the output with a fresh d. Once the random coins for tS are
fixed, the issuer producing (U, V⃗ ) (without π) can be seen as a Type I oracle
which would represent Osign.

An oracle is of Type II if there exists a deterministic polynomially bounded
algorithm f⃗ returning a vector of scalars, such that the oracle is defined as
follows:

Oracle O(inp, P, Q⃗):
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1: compute s⃗← f⃗(inp, aux)

2: return whether Q⃗ = s⃗P

The value aux and the group parameters are used by the oracle. One crucial
property is that the output of the oracle is independent from the group element
representation. The Overify oracle can be seen as a Type II oracle.

We can now define the following game with an adversary A and an extractor
Extract:

1: Setup0(1
λ)→ (gp, p,G) ▷ set up the group parameters

2: pick aux1, aux2, . . .←$ Zp

3: Z⃗ ← G.L⃗(aux)
4: pick θ ←$ Z∗

p

5: Gext ← θG, Z⃗ext ← θZ⃗
6: run A(gp, p,G,Gext, Z⃗, Z⃗ext)→ (T⃗ , T⃗ext) with access to oracles of Type I and

Type II
7: set View to the view of A ▷ including inputs, coins, and oracle answers
8: run Extract(View)→ (tC , r⃗)

9: return whether T⃗ext = θT⃗ and tCZ⃗ + r⃗G ̸= T⃗

The game includes a uniform vector aux of secrets from Zp and a linear function

L⃗ to define Z⃗.
Our assumption for the extraction which we will prove shortly is as follows:

Assumption 3 For every PPT A, every linear L⃗, and every set of oracles of
Type I and Type II, there exists a polynomially bounded extractor Extract such
that the above game returns 1 with negligible probability.

Hence, Extract can extract tC and r⃗ on the fly from the view of A whenever
(T⃗ , T⃗ext) are valid pairs. With such an assumption, we can extract without
rewinding and without the coins of the oracles. Note that the syntax for the
extractor Π1.Extract is a bit different from the CRS model here: instead of ex-
tracting with the help of a trapdoor td1, we extract from the view View of the
adversary.

To illustrate the difficulty, we stress that the assumption cannot generalize to
any oracle. For instance, the oracle which uses more T⃗ext by returning a random
d multiplied by (T⃗ , T⃗ext) would give to the client a valid pair for which he cannot
know the scalar d. The variant of this counterexample which returns a secret x
(from aux) multiplied by the (T⃗ , T⃗ext) pair follows the same argument (unless x

leaks). Consequently, the Boolean oracle defined by O(i, P, Q⃗) returning the ith

bit of (xP, xQ⃗) with a secret x from aux makes the assumption invalid too.
So far, it is unknown how to prove Assumption 3 in the standard model. To

convince ourselves that it is a reasonable assumption, we prove it in the generic
model. However, our later security proofs will be in the standard model with the
extra assumption that Assumption 3 is true.

Proof of Assumption 3 in the generic group model. We prove our assumption in
the generic group model. We assume that all group operations that an adversary

42



can make are only addition, subtractions, and comparison of previously obtained
group elements. They are externalized with the values of group elements hidden.

In this model, an algorithm who knows the view of the adversary and who
runs the adversary algorithm step by step to pay attention to every group op-
eration is able to express any group element issued by the adversary as a linear
combination of group elements which are in the view. These elements are G,
Gext, Z⃗, Z⃗ext, and the outputs from the Type I oracles.

We let Var be a set of formal variables which represent the values in aux. We
represent each group element A produced by the adversary as a formal polyno-
mial PolA(θ̄,Var, d̄1, . . . , d̄q) in terms of secrets θ, aux, and each di which is se-
lected by the Type I oracles. The polynomial is such thatA = PolA(θ, aux, d1, . . . , dq)G.

Hence, PolG = 1, PolGext = θ̄, for the ith components Zi and Zext,i of Z⃗ and Z⃗ext,
we have PolZext,i = θ̄ × PolZi

. In the Type I oracles, we assume that the degree
of each fj is bounded by some δ. Each output Aj from the i-th oracle call can
be expressed as a polynomial which is multiple of d̄i. For this, we take the fj as
polynomials in Var (of degree bounded by δ).

By induction, every appearing group element is represented by a polynomial
of degree bounded by δ+qI , where qI is the number of queries to a Type I oracle.
Since aux is uniform, we notice that the probability that two group elements
which are represented by two different polynomials will match with a probability
bounded by δ+qI

p , due to the Schwartz-Zippel Lemma. As this is negligible, we
assume it does not occur. Hence two appearing group elements are equal if and
only if their polynomial representations are the same.

The first crucial observation is that the partial degree in θ of every polynomial
representation of any produced group element is bounded by 1. This is because
the known group elements are such that no fj uses θ. Since the polynomial

representation of T⃗ext has no θ2, to have the equation T⃗ext = θT⃗ satisfied, the
polynomial representation of T⃗ cannot have any θ. We thus assume that neither
the input T⃗ to oracle calls nor the final output T⃗ has any θ.

The second observation is that the outputs of the oracle calls have no θ
(since neither T⃗ nor fj has any) but are multiple of some di. The final T⃗ext must
be a linear combination of group elements in the view. Since none has any diθ
monomial, this means T⃗ must have no di inside. We know it must have no θ as
well. Hence, it is a linear combination of G and Z⃗ only. This linear combination
is T⃗ = tCZ⃗ + r⃗G.

By following step by step the group operations, and also doing the corre-
sponding polynomial operation, we obtain tC and r⃗. To lower the complexity of
extraction, we can even do operations modulo the monomials di that we know
will not appear in the end.

B.4 The Simulatable Proof Building Block

We adapt the Π2 proof here.

Setup2. First of all, Setup2(gp, p,G) first selects θ′ ∈ Z∗
p and sets H = θ′.G,

crs2 = xH, and td2 = θ′. The role of H is to do a Pedersen commitment.
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KeyGen2. The algorithm KeyGen2(crs, Z⃗, sk0) parses crs = (gp, p,G, .,H) and

sk0 = (x⃗, y⃗, y⃗′, z⃗), picks r⃗x ∈ Ex, r⃗y ∈ Ey, r⃗y′ ∈ Ey′ , and computes C⃗x = x⃗G+r⃗xH,

C⃗y = y⃗G+ r⃗yH, and C⃗y′ = y⃗′G+ r⃗y′H.
Then, KeyGen2 computes a proof of knowledge for (x⃗, y⃗, z⃗, r⃗x, r⃗y). For this,

it picks random ρ⃗x, ρ⃗rx ∈ Ex, ρ⃗y, ρ⃗ry ∈ Ey, ρ⃗y′ , ρ⃗ry′ ∈ Ey′ , ρ⃗z ∈ Ez, computes

Γ⃗x = ρ⃗xG+ ρ⃗rxH, Γ⃗y = ρ⃗yG+ ρ⃗ryH, Γ⃗y′ = ρ⃗y′G+ ρ⃗ry′H, Γ⃗z = ρ⃗zG,

ε = Hash(G,H, C⃗x, C⃗y, C⃗y′ , Z⃗, Γ⃗x, Γ⃗y, Γ⃗y′ , Γ⃗z)

(⃗ax, a⃗rx , a⃗y, a⃗ry , a⃗y′ , a⃗ry′ , a⃗z) = (ρ⃗x, ρ⃗ry , ρ⃗y, ρ⃗ry , ρ⃗y′ , ρ⃗ry′ , ρ⃗z)+ε(x⃗, r⃗x, y⃗, r⃗y, y⃗′, r⃗y′ , z⃗),
and the proof is (ε, a⃗x, a⃗rx , a⃗y, a⃗ry , a⃗y′ , a⃗ry′ , a⃗z). Finally,

pk2 = (C⃗x, C⃗y, C⃗y′ , ε, a⃗x, a⃗rx , a⃗y, a⃗ry , a⃗y′ , a⃗ry′ , a⃗z)

and sk2 = (r⃗x, r⃗y, r⃗y′) are the output of KeyGen2.
To verify the proof (this must be done at least once for all), the client com-

putes Γ⃗x = a⃗xG+a⃗rxH−εC⃗x, Γ⃗y = a⃗yG+a⃗ryH−εC⃗y, Γ⃗y′ = a⃗y′G+a⃗ry′H−εC⃗y′ ,

Γ⃗z = a⃗zG− εZ⃗, and checks ε = Hash(G,H, C⃗x, C⃗y, C⃗y′ , Z⃗, Γ⃗x, Γ⃗y, Γ⃗y′ , Γ⃗z).

Prove. The algorithm Prove(b, d;U, V⃗ , tS ,m, T⃗ , crs, pk, sk0, sk2) parses different
elements and picks µ⃗, a⃗1−b, r⃗µ ∈ Ēy, e1−b, rd ∈ Zp, r⃗ρ, r⃗w ∈ E at random. Then,

it sets d′ = − 1
d , ρ⃗ = −(r⃗x+br⃗y+mr⃗y′ + µ⃗), w⃗ = x⃗+by⃗+my⃗′+tS z⃗ and computes

C⃗ = b.C⃗y +H.µ⃗, C⃗b = H.r⃗µ, C⃗1−b = H.⃗a1−b − e1−b(C⃗ − (1− b)C⃗y), Cd

C⃗ρ

C⃗w

 = rd

U

V⃗

V⃗

+

0 · · · 0
H.I
0.I

 r⃗ρ +

0 · · · 0
0.I
G.I

 r⃗w

where I is the identity matrix,

e = Hash(G,H, C⃗x, C⃗y, C⃗y′ , Z⃗, U, V⃗ , tS ,m, C⃗, C⃗0, C⃗1, Cd, C⃗ρ, C⃗w)

eb = e− e1−b, a⃗b = r⃗µ + ebµ⃗, and (ad, a⃗ρ, a⃗w) = (rd, r⃗ρ, r⃗w) + e(d′, ρ⃗, w⃗). Finally,

π = (C⃗, e0, e1, a⃗0, a⃗1, ad, a⃗ρ, a⃗w)

Verify. The algorithm Verify(π, U, V⃗ , tS ,m, T⃗ , crs, pk) computes C⃗0 = H.⃗a0 −
e0.C⃗, C⃗1 = H.⃗a1 − e1.(C⃗ − C⃗y), e = e0 + e1, Cd

C⃗ρ

C⃗w

 = ad

U

V⃗

V⃗

+

0 · · · 0
H.I
0.I

 a⃗ρ+

0 · · · 0
0.I
G.I

 a⃗w+e

 G

C⃗x + C⃗ +mC⃗y′ + tS .Z⃗ + T⃗

T⃗


then verifies the e = Hash(G,H, C⃗x, C⃗y, C⃗y′ , Z⃗, U, V⃗ , tS ,m, C⃗, C⃗0, C⃗1, Cd, C⃗ρ, C⃗w).
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SimKeyGen. The algorithm SimKeyGen(crs, Z⃗) parses crs to retrieve G and H.

It picks a fully random pk2, computes Γ⃗x, Γ⃗y, Γ⃗y′ , Γ⃗z like in verification, then
programs the random oracle to have a consistent Hash. The simulation is perfect.

Simulate. The algorithm Simulate(U, V⃗ , tS , T⃗ , crs, pk, td2) parses inputs. Then,

it picks a random proof π with same distribution, i.e. C⃗ ∈ G.Ēy, e0, e1, ad ∈
Zp, a⃗0, a⃗1 ∈ Ēy a⃗ρ, a⃗w ∈ E all uniform and independent. It can then proceed

as in Verify(π, U, V⃗ , tS , T⃗ , crs, pk) to compute C⃗0, C⃗1, Cd, C⃗ρ, C⃗w, then the hash.
Then, the random oracle is programmed to output the correct hash e = e0 + e1.
Programming may fail with probability at most qHash

p6 .

Special soundness of pk2. We can extract from a process issuing a valid pk2 a

single (C⃗x, C⃗y, C⃗y′ , Γ⃗x, Γ⃗y, Γ⃗y′) and the answers (⃗ax, a⃗rx , a⃗y, a⃗ry , a⃗y′ , a⃗ry′ ) to two
different challenges ε and ε+∆ε. From the equations in verification, we can then
set x⃗ = 1

∆ε∆a⃗x, r⃗x = 1
∆ε∆a⃗rx , y⃗ = 1

∆ε∆a⃗y, r⃗y = 1
∆ε∆a⃗ry , y⃗

′ = 1
∆ε∆a⃗y′ , r⃗y′ =

1
∆ε∆a⃗ry′ , and obtain C⃗x = G.x⃗+H.r⃗x, C⃗y = G.y⃗+H.r⃗y, and C⃗y′ = G.y⃗′+H.r⃗y′ .

Ideally, we should have an adaptive extractable proof in pk2 to extract the
secrets. Since we only need this in unlinkability and we should extract from the
initialization adversary A1 who is only setting up pk2, we keep the proof as it
is for simplicity. An adversary A1 succeeding to build a valid pk2 without being
extractable would have a probability of success that we denote by AdvEXTRACTA1

.

Special soundness of π. We assume that the secrets x⃗, y⃗, y⃗′, z⃗, r⃗x, r⃗y, r⃗y′ have

been correctly extracted. We consider an issuer who responds with (U, V⃗ , tS , π)

to a request T⃗ with a proof π which verifies, with probability larger than 1
p .

Hence, there exists a single (U, V⃗ , tS , C⃗, C⃗0, C⃗1, Cd, C⃗ρ, C⃗w) and the valid answer
(e0, e1, a⃗0, a⃗1, ad, a⃗ρ, a⃗w) to two different challenges e and e+∆e.

Thanks to the equations in verification, we obtain H.∆a⃗0 = ∆e0.C⃗, H.∆a⃗1 =

∆e1.(C⃗ − C⃗y), so C⃗ = H.∆(a⃗0+a⃗1)
∆e + ∆e1

∆e C⃗y. We also obtain G = −∆ad

∆e U ,

−(C⃗x + C⃗ +mC⃗y′ + tSZ⃗ + T⃗ ) = ∆ad

∆e V⃗ + 1
∆eH.∆a⃗ρ, −T⃗ = ∆ad

∆e V⃗ + 1
∆eG.∆a⃗w.

As G ̸= 0, we can invert and multiply the last three equations by d = − ∆e
∆ad

.

If ∆e1
∆e ̸= 1, we have ∆e0 ̸= 0 so we obtain C⃗ = 1

∆e0
H.∆a⃗0. Otherwise, we

obtain C⃗ = C⃗y +
1
∆eH.∆(⃗a0 + a⃗1). In any case, we obtain b, µ⃗, d, ρ⃗, w⃗ such that

C⃗ = b.C⃗y+H.µ⃗, U = d.G, V⃗ = d(C⃗x+ C⃗+mC⃗y′ + tSZ⃗+ T⃗ )+H.ρ⃗ = G.w⃗+d.T⃗ .

Given that C⃗x = G.x⃗ + H.r⃗x, C⃗y = G.y⃗ + H.r⃗y, C⃗y′ = G.y⃗′ + H.r⃗y′ , and

Z⃗ = G.z⃗, the equations in V⃗ give (x⃗+by⃗+my⃗′+tS z⃗− 1
d .w⃗)G+(r⃗x+br⃗y+mr⃗y′ +

µ⃗+ 1
d .ρ⃗)H = 0. Unless the issuer can compute the discrete logarithm of H, this

implies that we have 1
d w⃗ = x⃗+by⃗+my⃗′+tS z⃗ and −µ⃗− 1

d ρ⃗ = r⃗x+br⃗y+mr⃗y′+tS z⃗′.

These equations imply U = d.G and V⃗ = d(Gx⃗+bGy⃗+my⃗′+tSGz⃗+ T⃗ ). Thus, if
no such (b, d) exist with b ∈ {0, 1}, the proof succeeds with probability bounded
by 1

p plus the advantage of a discrete logarithm adversary.

The solution (b, d) such that b ∈ {0, 1}, U = d.G, and V⃗ = d(Gx⃗ + bGy⃗ +

my⃗′ + tSGz⃗ + T⃗ ) is unique when it exists. We let AdvSOUND
A be the probability
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that and adversary A succeeds to build a valid proof π when no solution exists.
Using the forking lemma, we obtain the answer to an alternate challenge with

probability
(AdvSOUND

A )2

4qHash
− 1

p . Using the above extraction method, we deduce the
discrete logarithm of H. This defines an adversary B such that

AdvSOUND
A ≤ 2

√
qHash

√
AdvDLOG

B +
1

p

Variant without ROM. The Fiat-Shamir relies on the random oracle model
(ROM). We can get rid of this assumption by following usual techniques [5]. For
instance, we can use an additive homomorphic encryption scheme. The client
would generate a key pair and sends the encryption key pk′ together with the
encryption Encpk′(e) of a random challenge e. Then, the server would do all op-
erations homomorphically to return and encrypted π. The client would decrypt
it.

B.5 Unforgeability

Theorem 4. Under Assumption 1, ATHM is OMUF-secure. More precisely,
given an OMUF-adversary A making q oracle calls to Osign and qHash calls to
the random oracle, there exists an EF-CMA-adversary B making q + 3 oracle
calls to OMAC such that

AdvOMUF
A ≤ AdvEF-CMA

B +
q + 1

p
+

qHash
p6

This result needs Π1.Extract to succeed if an only if Π1.Verify returns true
and Π2 to be perfectly simulatable with a trapdoor using Π2.SimKeyGen and
Π2.Simulate.

Proof. We start with an adversary A playing the one-more unforgerability game
against ATHM and we transform it into a sequence of adversaries playing other
games with the same success.

First of all, we change the game so that the issuer no longer sends a proof
π but rather make the adversary to set up Π2, generate the keys, and simulate
π perfectly. The simulation uses Π2.SimKeyGen and Π2.Simulate. We obtain an
adversary Adv0 playing a game Γ0 such that

AdvOMUF
A ≤ AdvΓ0

A0
+

qHash
p6

Then, we define a new adversary A1 who can use the extractable proof T⃗ext in
our scheme. Giving consistent T⃗ and T⃗ext proves the knowledge of tC and r⃗ with
a way to extract them. With a trapdoor td1 (in the CRS model), A1 can extract

(tC , r⃗) = Π1.Extract(td1, T⃗ext) (or (tC , r⃗) = Π1.Extract(View) with View being the
view of A in the model based on Assumption 3). Then, A1 can call a MAC oracle

to build (t, P, Q⃗) such that t and P are random and Q⃗ = (x⃗+ by⃗ +my⃗′ + tz⃗)P .
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Then, A1 sets tS = t − tC , U = P , and V⃗ = Q⃗ + r⃗U to return to the client
as written in Figure 11. Note that this requires to simulate the proof π based
on the trapdoor θ′ from td2 (or programming the random oracle). This way, an
attacker for our scheme transforms into a attacker in the Γ1 game in Figure 11.

The extraction procedureΠ1.Extract(td1, T⃗ext) fails iffΠ1.Verify(T⃗ , T⃗ext, G, Z⃗)
is false. As forging π is perfectly simulatable, A1 playing Γ1 perfectly simulates
A playing OMUF. If A wins, there exists a bit b such that there are more tj with
bj = b than oracle calls to Osign with bit b. Hence, there must exist one for which
tj does not match any O call with the bit b. Therefore, (bj ,mj , tj , σj) is a valid
forgery. Therefore, we have

AdvΓ0

A0
≤ AdvΓ1

A1

Adversary AO,Overify

1 (gp, p,G, Z⃗):
1: Setup1(gp, p,G)→ (crs1, td1)
2: Setup2(gp, p,G)→ (crs2, td2)
3: crs← (gp, p,G, crs1, crs2)
4: KeyGen1(crs, Z⃗)→ (pk1, sk1)
5: SimKeyGen(crs, Z⃗)→ pk2
6: pk← (crs, Z⃗, pk1, pk2)
7: run AOsign,Oread(crs, pk) →

(b,m, (t′j , σj)j)
8: find j such that for all i, (b,m, t′j) ̸=

(bi,mi, ti) (if none, return ⊥)
9: return (b,m, t′j , σj)

Subroutine Osign(b,m, query):
10: parse query→ (T⃗ , T⃗ext)
11: Π1.Extract(td1, sk1, T⃗ext)→ (tC , r⃗)
12: if extraction failed or T⃗ ̸= tCZ⃗ + r⃗G

then return ⊥
13: pick t←$ Zp

14: O(b,m, t)→ (P, Q⃗)
15: tS ← t− tC
16: U ← P
17: V⃗ ← Q⃗+ r⃗U
18: π ← Π2.Simulate(U, V⃗ , tS , crs, pk, td2)
19: return (U, V⃗ , tS , π)

Subroutine Oread(m, t, σ):
20: if Overify(0,m, t, σ) then return 0
21: if Overify(1,m, t, σ) then return 1
22: return ⊥

Game Γ1:
1: Setup0(1

λ)→ (gp, p,G)
2: pick x⃗ ←$ Ex, y ←$ Ey, y′ ←$ Ey′ ,

z ←$ Ez
3: set Z⃗ ← z⃗G
4: initialize i← 0
5: AO,Overify

1 (gp, p,G, Z⃗)→ (b,m, t, P, Q⃗)
6: if (b,m, t) is equal to some (bi,mi, ti)

then abort
7: win iff Overify(b,m, t, P, Q⃗)

Oracle O(b,m, t):
8: increment i
9: (bi,mi, ti)← (b,m, t)
10: pick a nonzero group element Pi

11: Q⃗i ← (x⃗+ biy⃗ +miy⃗′ + tiz⃗)Pi

12: return (Pi, Q⃗i)

Oracle Overify(b,m, t, P, Q⃗):
13: if P = 0 then return false
14: return whether Q⃗ = (x⃗+ by⃗ +my⃗′ +

tz⃗)P

Fig. 11. Unforgeability Step 1: A1 playing Γ1
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We now get rid of the selection of G and of the input Z⃗ to the adversary by a
change of variable G = PP0, Z⃗ = Q⃗Q0, x⃗ = x⃗x, y⃗ = y⃗y, y⃗′ = y⃗y′, z⃗ = x⃗x+ tt0.z⃗z,
which uses an initial MAC (bb0,mm0, tt0,PP0, Q⃗Q0) with secret (x⃗x, y⃗y, y⃗y′, z⃗z)
and input bb0 = 0, mm0 = 0, and tt0 = 1. We set bb = b

1+t , mm = m
1+t , tt =

t.tt0
1+t ,

PP = P and Q⃗Q = (1 + t)−1Q⃗ so that

x⃗x+ bb.y⃗y +mm.y⃗y′ + tt.z⃗z = (1 + t)−1(x⃗+ by⃗ +my⃗′ + tz⃗)

Thus, an adversaryA1 for Γ1 transforms into another adversary B in the EF-CMA
game as depicted in Figure 12.

Adversary BOMAC,Overify(gp, p):
1: bb0 ← 0
2: mm0 ← 0
3: tt0 ← 1
4: OMAC(bb0,mm0, tt0)→ (G, Z⃗)

5: run AO′,O′′

1 (gp, p,G, Z⃗) →
(b,m, t, P, Q⃗)

6: bb← b
1+t

7: mm← m
1+t

8: tt← t.tt0
1+t

9: PP← P
10: Q⃗Q← (1 + t)−1Q⃗

11: return (bb,mm, tt,PP, Q⃗Q)

Subroutine O′(b,m, t):
12: bb← b

1+t

13: mm← m
1+t

14: tt← t.tt0
1+t

15: OMAC(bb,mm, tt)→ (PP, Q⃗Q)
16: P ← PP
17: Q⃗← (1 + t)Q⃗Q
18: return (P, Q⃗)

Subroutine O′′(b,m, t, P, Q⃗):
19: bb← b

1+t

20: mm← m
1+t

21: tt← t.tt0
1+t

22: PP← P
23: Q⃗Q← (1 + t)−1Q⃗

24: return Overify(bb,mm, tt,PP, Q⃗Q)

Game EF-CMA:
1: Setup0(1

λ)→ (gp, p,G0)
2: pick x⃗x ←$ Ex, y⃗y ←$ Ey, y⃗y′ ←$ Ey′ ,

z⃗z←$ Ez
3: initialize i← 0
4: BOMAC,Overify(gp, p)→ (bb,mm, tt,PP, Q⃗Q)
5: if (bb,mm, tt) is equal to some

(bbi,mmi, tti) then abort

6: win iff Overify(bb,mm, tt,PP, Q⃗Q)

Oracle OMAC(bb,mm, tt):
7: increment i
8: (bbi,mmi, tti)← (bb,mm, tt)
9: pick a nonzero group element PPi

10: Q⃗Qi ← (x⃗x + bbi.y⃗y + mmi.y⃗y′ +
tti.z⃗z)PPi

11: return (PPi, Q⃗Qi)

Oracle Overify(bb,mm, tt,PP, Q⃗Q):
12: if PP = 0 then return false
13: return whether Q⃗Q = (x⃗x + bb.y⃗y +

mm.y⃗y′ + tt.z⃗z)PP

Fig. 12. Unforgeability Step 2: B playing EF-CMA
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Some rare failure event may happen: during the selection of tt0, we may
obtain z⃗ = xx+tt0.z⃗z = 0 making an invalid z⃗. Furthermore, during the selection
of any t, we may obtain t = −1 making the change of variable fail. However, by
the difference Lemma, we have

AdvΓ1

A1
≤ AdvEF-CMA

B +
q + 1

p

⊓⊔

B.6 Unlinkability

The role of the NIZK is important as it makes sure that the issuer must use
either b = 0 or b = 1 and therefore hides only one bit. Without the NIZK, the
issuer could use more than one bit with b and use this as a marker to link tokens
to redeem to clients requesting a token. So, the client must verify the NIZK
proof for unlinkability. The client must also verify U ̸= 0, because U = 0 could
be used by the issuer to mark a token.

The issuer knows which bit is hidden during an issuing session and can extract
the hidden bit during redeem. Hence, we should only consider unlinkability when
the bits are the same.

Theorem 5. ATHM is 2-UNLINK-secure. More precisely, given an UNLINK-
adversary A making oracle calls to Oquery with index set Qquery, there exist an
adversary A′ making a valid pk2 without being extractable, #Qquery SOUND-
adversaries Bi against the NIZK and #Qquery distinguishers Di on Text such
that

AdvUNLINKA ≤ 2

n
+ AdvEXTRACTA′ +

∑
i∈Qquery

AdvSOUND
Bi

+
∑

i∈Qquery

AdvINDDi

The proof uses the fact that Π2 is sound and that Text can be simulated using a
trapdoor in a computationally indistinguishable manner.

Proof. We start with an adversaryA = (A1,A2,A3) playing the UNLINKn game.
We assume that AT.ClientQuery verifies pk, at least at the first time is it run.

Using the soundness of the proof of x⃗, r⃗x, y⃗, r⃗y, y⃗′, r⃗y′ in pk2 (based on that A1

is only running this unique proof), there is an extractor which extracts from
A′ those secrets, except with negligible probability AdvEXTRACTA′ . We reduce to a
game Γ0 in which this extraction succeeds. We have

AdvUNLINKA ≤ AdvΓ0

A + AdvEXTRACTA′

Second, we use the simulator of Π1 to simulate all T⃗ext and reduce to a
protocol using no T⃗ext. For that, we define distinguishers Di between a valid T⃗ext

and a simulated one. We obtain a game Γ1 with no Π1 and an adversary A0

such that
AdvΓ0

A ≤ AdvΓ1

A0
+

∑
i∈Qquery

AdvINDDi
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Then, we reduce to a game Γ in which for every i, the (mi, queryi, respi)

triplets, parsed as queryi = T⃗i and respi = (Ui, V⃗i, ti,S , πi), is such that there

exists (bi, di) such that bi ∈ {0, 1}, Ui = diG, and V⃗i = di(G.x⃗ + biG.y⃗ +

mi.y⃗′ + ti,SG.z⃗ + T⃗i). Note that (bi, di) is unique when it exists. Thanks to the
soundness of Π2, we have #Qquery adversaries Bi to build a valid proof when no
(bi, di) exists, such that

AdvΓ1

A0
≤ AdvΓA0

+
∑

i∈Qquery

AdvSOUND
Bi

We deduce that Q⃗i = (x⃗ + biy⃗ +miy⃗′ + tiz⃗)Pi with bi ∈ {0, 1} in the game Γ .
We also note that all mi (i ∈ Q) must be equal to a common m as required in
the UNLINK game.

The rest of the proof is an information theoretic argument for which complex-
ities do not matter. Given (x⃗, y⃗, y⃗′, z⃗, T⃗i, Ui, V⃗i, ti,S ,m, πi) we can uniquely de-

termine bi. We observe that (ti, Pi)|(x⃗, y⃗, y⃗′, z⃗, T⃗i, Ui, V⃗i, ti,S ,m, πi) is uniformly
distributed as a pair composed of a scalar and a nonzero group element. Hence,
whenever A2 returns Q and the list of respi, it determines the values of the bi but

the (ti, Pi) to be released are still uniform. After permutation, (tσ(i), Pσ(i), Q⃗σ(i))

has a value of Q⃗σ(i) which is imposed by Q⃗σ(i) = (x⃗+ bσ(i)y⃗+my⃗′ + tσ(i)z⃗)Pσ(i)

so brings bσ(i) as only information.
This reduces to the following game: the adversary chooses a list of bits (bi)i∈Q

with #Q ≥ n, the game selects a random i∗ and a random permutation σ then
provides bi∗ and (bσ(i))i∈Q to the adversary, and the adversary finally makes a
guess i and win if and only if i = i∗. If the adversary puts n0 zeros and n1

ones, the adversary can only win with probability 1
n0

when it is a zero (which

happens with probability n0

n0+n1
), and with probability 1

n1
when it is a one (which

happens with probability n1

n0+n1
). Overall, the adversary wins with probability

2
n0+n1

which is at most 2
n since n0 + n1 = #Q ≥ n. ⊓⊔

B.7 Privacy of Metadata

Theorem 6. Under Assumption 2, ATHM is PMB-secure. More precisely, given
an PMB-adversary A making q oracle calls to Osign and qHash calls to the random
oracle, there exists an IND-CMA-adversary B making q+3 oracle calls to OMAC

such that

AdvPMB
A ≤ AdvIND-CMA

B + 4
q + 1

p
+ 2

qHash
p6

This result needs Π1.Extract to be succeed if an only if Π1.Verify returns true
and Π2 to be perfectly simulatable with a trapdoor using Π2.SimKeyGen and
Π2.Simulate.

Proof. We start with an adversary A playing the PMB game against ATHM and
we transform it into a sequence of adversaries playing other games with same
success.
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We start by the same first step as in the proof of unforgeability. We define
an adversary A1 who runs A but simulates π in Π2. With a trapdoor td1 (in

the CRS model), A1 can also extract (tC , r⃗) = Π1.Extract(td1, T⃗ext). Then, A1

can call a MAC oracle to build (t, P, Q⃗) such that t and P are random and

Q⃗ = (x⃗+by⃗+my⃗′+ tz⃗)P . Then, A1 can set tS = t− tC , U = P , and V⃗ = Q⃗+ r⃗U
to return to A. More precisely, the adversary A1 is fully written in Figure 13.
This way, an adversary A for our scheme transforms into an adversary A1 in the
Γb∗ game in Figure 13.

The extraction procedure is such thatΠ1.Extract(td, T⃗ext) fails is equivalent to

Π1.Verify(T⃗ , T⃗ext, G, Z⃗) is false. As forging π is perfect, A1 playing Γb∗ perfectly
simulates A playing PMBb∗ .

AdvPMB
A ≤ AdvΓA1

+
qHash
p6

In the next step, we remove G, Z⃗, and pk2 as in the proof of unforgeability,
with the same change of variable. We define an adversary B plyaing the IND-CMA
game in Figure 14.

For B in IND-CMAb∗ to simulate A1 in Γb∗ , there are a few things which
can go wrong. Like in the previous proof, we can select the secrets such that
x⃗x + tt0.z⃗z = 0 or any t equal to −1 which make the change of variable fail.
This happens with probability at most q+1

p . We can also select t∗ = tt0 (with

probability 1
p ). Finally, any t in OMAC in Γb∗ can be selected equal to t∗ which

makes O′
MAC abort. This happens with probability at most q

p . By the difference
Lemma, we obtain

|Pr[Γb∗(A1)→ 1]− Pr[IND-CMAb∗(B)→ 1]| ≤ 2
q + 1

p

We deduce ∣∣∣AdvΓA1
− AdvIND-CMA

B

∣∣∣ ≤ 4
q + 1

p

⊓⊔

B.8 Extensions of ATHM

We could add public verifiability of tokens by using a pairing. This can only
be done with no private metadata (otherwise privacy is broken). We could also
consider batching too like in PMBT, so that the issuer could make a single
proof for a batch of responses. Clearly, algebraic MACs offer lots of flexibility
for extensions. This is left as future work.

C Straightforward Scheme from KVAC

We apply the construction from Chase et al. [6,7] to build a KVAC with only two
attributes:
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Adversary AOMAC,Ochal,Overify,Ovalid

1

(gp, p,G, Z):
1: Setup1(gp, p,G)→ (crs1, td1)
2: Setup2(gp, p,G)→ (crs2, td2)
3: crs← (gp, p,G, crs1, crs2)
4: KeyGen1(crs, Z⃗)→ (pk1, sk1)
5: Π2.SimKeyGen(crs, Z⃗)→ pk2
6: pk← (crs, Z, pk1, pk2)

7: return AOsign,O′
sign,Oread,Ovalid(crs, pk)

Subroutine Osign(b,m, query):
8: parse query = (T⃗ , T⃗ext)
9: Π1.Extract(td1, sk1, T⃗ext)→ (tC , r⃗)
10: if extraction failed or T⃗ ̸= tCZ⃗ + r⃗G

then return ⊥
11: pick t←$ Zp

12: OMAC(b,m, t)→ (P, Q⃗)
13: tS ← t− tC
14: U ← P
15: V⃗ ← Q⃗+ r⃗U
16: π ← Π2.Simulate(U, V⃗ , tS , crs, pk, td2)
17: return (U, V⃗ , tS , π)

Subroutine O′
sign(m, query):

18: parse query = (T⃗ , T⃗ext)
19: Extract(td1, sk1, T⃗ext)→ (tC , r⃗)
20: if extraction failed or T⃗ ̸= tCZ⃗ + r⃗G

then return ⊥
21: pick t←$ Zp

22: Ochal(m, t)→ (P, Q⃗)
23: tS ← t− tC
24: U ← P
25: V⃗ ← Q⃗+ r⃗U
26: π ← Π2.Simulate(U, V⃗ , tS , crs, pk, td2)
27: return (U, V⃗ , tS , π)

Subroutine Oread(m, t, σ):
28: if flag then return ⊥
29: if Overify(0,m, t, σ) then return 0
30: if Overify(1,m, t, σ) then return 1
31: return ⊥

Game Γb∗ :
1: Setup0(1

λ)→ (gp, p,G)
2: pick x⃗ ←$ Ex, y⃗ ←$ Ey, y⃗′ ←$ Ey′ ,

z⃗ ←$ Ez
3: set Z⃗ ← z⃗G
4: initialize i← 0, flag← false

5: return AOMAC,Ochal,Overify,Ovalid

1

(gp, p,G, Z⃗)

Oracle OMAC(b,m, t):
6: pick a nonzero group element P
7: Q⃗← (x⃗+ by⃗ +my⃗′ + tz⃗)P
8: return (P, Q⃗)

Oracle Ochal(m, t):
9: if flag then return ⊥
10: flag← true
11: (m∗, t∗)← (m, t)
12: OMAC(b

∗,m∗, t∗)→ (P ∗, Q⃗∗)
13: return (P ∗, Q⃗∗)

Oracle Overify(b,m, t, P, Q⃗):
14: if flag and b ∈ {0, 1} and (t,m) =

(t∗,m∗) then return ⊥
15: if P = 0 then return false
16: return whether Q⃗ = (x⃗+ by⃗ +my⃗′ +

tz⃗)P

Oracle Ovalid(t,m, P, Q⃗):
17: if P = 0 then return false
18: return whether ∃b ∈ {0, 1} Q⃗ =

(x⃗+ by⃗ +my⃗′ + tz⃗)P

Fig. 13. Privacy Step 1: A1 playing Γ
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Adversary BO′
MAC,O

′
chal,O

′
verify,O

′
valid(gp, p):

1: bb0 ← 0
2: mm0 ← 0
3: tt0 ← 1
4: O′

MAC(bb0,mm0, tt0)→ (G, Z⃗)

5: return AOMAC,Ochal,Overify,Ovalid

1

(gp, p,G, Z⃗)

Subroutine Overify(b,m, t, P, Q⃗):
6: bb← b

1+t
, mm← m

1+t
, tt← t.tt0

1+t

7: PP← P , Q⃗Q← (1 + t)−1Q⃗

8: return O′
verify(bb,mm, tt,PP, Q⃗Q)

Subroutine Ovalid(m, t, P, Q⃗):
9: bb← 0, bb′ ← 1

1+t

10: mm← m
1+t

, tt← t.tt0
1+t

11: PP← P , Q⃗Q← (1 + t)−1Q⃗

12: return O′
valid(bb, bb

′,mm, tt,PP, Q⃗Q)

Subroutine OMAC(b,m, t):
13: bb← b

1+t
, mm← m

1+t
, tt← t.tt0

1+t

14: O′
MAC(bb,mm, tt)→ (PP, Q⃗Q)

15: P ← PP, Q⃗← (1 + t)Q⃗Q
16: return (P, Q⃗)

Subroutine Ochal(m, t):
17: bb← 0, bb′ ← 1

1+t

18: mm← m
1+t

, tt← t.tt0
1+t

19: O′
chal(bb, bb

′,mm, tt)→ (PP, Q⃗Q)
20: P ← PP
21: Q⃗← (1 + t)Q⃗Q
22: return (P, Q⃗)

Game IND-CMAb∗ :
1: flag← false, mm∗ ← ⊥
2: Setup0(1

λ)→ (gp, p,G0)
3: pick x⃗x ←$ Ex, y⃗y ←$ Ey, y⃗y′ ←$ Ey′ ,

z⃗z←$ Ez
4: return BO′

MAC,O
′
chal,O

′
verify,O

′
valid(gp, p)

Oracle O′
verify(bb,mm, tt,PP, Q⃗Q):

5: if flag and bb ∈ {bb∗0, bb∗1} and
(mm, tt) = (mm∗, tt∗) then return ⊥

6: if PP = 0 then return false
7: return whether Q⃗Q = (x⃗x + bb.y⃗y +

mm.y⃗y′ + tt.z⃗z)PP

Oracle O′
valid(bb0, bb1,mm, tt,PP, Q⃗Q):

8: if ¬flag then return ⊥
9: if (tt,mm) = (tt∗,mm∗) and
{bb0, bb1} ≠ {bb∗0, bb∗1} then return
⊥

10: if PP = 0 then return false
11: if Q⃗Q = (x⃗x + bb0.y⃗y + mm.y⃗y′ +

tt.z⃗z)PP then return true

12: if Q⃗Q = (x⃗x + bb1.y⃗y + mm.y⃗y′ +
tt.z⃗z)PP then return true

13: return false

Oracle O′
MAC(bb,mm, tt):

14: if flag and (bb,mm, tt) ∈
{(bb0,mm∗, tt∗), (bb1,mm∗, tt∗)} then
return ⊥

15: increment i
16: (bbi,mmi, tti)← (bb,mm, tt)
17: pick a nonzero group element PPi

18: Q⃗Qi ← (x⃗x + bbi.y⃗y + mmi.y⃗y′ +
tti.z⃗z)PPi

19: return (PPi, Q⃗Qi)

Oracle O′
chal(bb, bb

′,mm, tt):
20: if flag or ∃i (bbi,mmi, tti) ∈
{(bb,mm, tt), (bb′,mm, tt)} then re-
turn ⊥

21: (bb∗0, bb
∗
1,mm∗, tt∗)← (bb, bb′,mm, tt)

22: flag← true
23: pick a nonzero group element PP∗

24: ⃗QQ∗ ← (x⃗x + bb∗b∗ y⃗y + mm∗y⃗y′ +
tt∗z⃗z)PP∗

25: return (PP∗, ⃗QQ∗)

Fig. 14. Privacy Step 2: B playing IND-CMA
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– t which should be known by the client only;
– b which should be known by the server only, and which should be a bit.

Note that the original KVAC construction does not consider server-private at-
tributes but it looks fairly straightforward to add it, except when it comes to
prove that they respect a specific format. Namely, the attribute b must be a bit.

The common group parameters include two generators G and H. Public
parameters include Y = yG, Z = zG, and a commitment Cx = xG+ rxH.

Essentially, the client first selects an ElGamal key pair (k,K),K = kG. Then,
the client encrypts tG into the ciphertext (T, T ′). It must come with a proof for
correct computation πc. Then, the server massages the encryption (T, T ′) of tG
to obtain an encryption (W,W ′) of V = d(x + by + tz)G which is returned
together with U = dG. It must come with a proof for correct computation πs.
The client then decrypts (W,W ′) to get V then rerandomizes (U, V ) to obtain
the tag (P,Q).

The proof πc must prove the knowledge of (t, r) such that

t

(
0
G

)
+ r

(
G
K

)
=

(
T
T ′

)
We estimate it to 3 multiplications for the client, 4 multiplications for the server,
and a proof of 3 scalars.

The proof πs must prove b ∈ {0, 1} and the knowledge of (x, y, z, rx,
1
d , r

′)
such that

x


G
0
0
0
0
G

+ y


0
G
0
0
0
bG

+ z


0
0
G
0
T
T ′

+ rx


H
0
0
0
0
0

+
1

d


0
0
0
U
−W
−W ′

+ r′


0
0
0
0
G
K

 =


Cx

Y
Z
G
0
0


There may be ways to optimize this proof. If we proceed like our construction
which releases C = bG+ µH, do the OR proof, then use C, we obtain

– for the OR proof: 12 multiplications for the client, 8 multiplications for the
server, and a proof including 1 group element and 4 scalars;

– for the rest of the proof: 13 multiplications for the client, 12 multiplications
for the server, and a proof including 5 scalars.

Further note that PMB security is not guaranteed by the KVAC construction.
On top of that, UNLINK security should also be revisited as we added a server-
private attribute which is not considered in the KVAC construction.
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KVAC.Client(G,H,Cx, Y, Z, t) KVAC.IssueToken(G,H, (x, y, z, rx), b)
private input: t private input: (x, y, z), b
k, r ←$ Zp

K := kG
T := rG
T ′ := tG+ rK
πc := Π1.Prove(t, r; . . .)

K,T, T ′, πc

Π1.Verify(πc, . . .)
d, r′ ←$ Zp

U := dG
W := dzT + dr′G
W ′ := d(x+ by)G+ dzT ′ + dr′K
πs := Π2.Prove(d, r

′, b; . . .)

U,W,W ′, πs

Π2.Verify(πs, . . .)
c←$ Z∗

p

P := cU
Q := c(W ′ − kW )
σ := (P,Q)
output: (t, σ)

Fig. 15. KVAC Construction with Private Attributes t and b.
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