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Abstract—Literature on linear induction motors (LIMs) has
proposed several approaches to model the behavior of such
devices for different applications. In terms of accuracy and
fidelity, field analysis-based models are the most relevant. Closed-
form or numerical solutions can be derived, based on the
complexity of the model and the underlying hypotheses. In
terms of simplicity, equivalent circuit-based models are the most
effective, since they can be easily integrated into optimization
frameworks. To the best of the authors’ knowledge, the literature
has not yet provided a computationally efficient LIM analytical
model that considers the main characteristics of this type of
motor altogether (i.e. finite motor length, magnetomotive force
(mmf) space harmonics, slot effect, edge effect, and tail effect)
and that is numerically and experimentally validated, especially
at high speed (i.e. v ≃ 100m s

−1). Within this context, this paper
proposes a field analysis-based pseudo-three-dimensional model
of LIMs that explicitly takes into account the above-mentioned
effects. The derived closed-form solution makes the model com-
putationally more effective than traditional f.e.m. models and,
therefore, suitable to be coupled with optimization frameworks
for optimal LIM design. The performance and accuracy of the
proposed model are assessed through numerical simulations and
experimental measurements, carried out by means of a dedicated
test bench.

Index Terms—Linear induction motors, Transportation, Mag-
netic vector potentials, Magnetic levitation, Modeling.

I. INTRODUCTION

L INEAR induction motors (LIMs) have been known for a
long time, especially in industrial applications requiring

linear actuation [1]. Although not commonly used, they have
been intensively studied for high-speed (i.e. v ≃ 100m s−1)
transportation applications [2]–[8]. A possible transportation
application where LIMs are considered to be a potential
candidate for the propulsion system is the Hyperloop [9]–[11].
As known, the Hyperloop concept envisages near-sonic speed
transportation of people or freights, realized through capsules
propelled by energy-efficient systems, into partially depres-
surized infrastructures, with the main goal of disrupting intra-
continental flights by increasing the energy efficiency of long-
distance journeys [12]. LIMs have recently regained attention
from the scientific community for such types of applications
mainly because of their construction simplicity, infrastructure
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passivity (i.e. rails do not need to be electrified or magne-
tized), contact-less thrust and levitation force generation [5].
However, due to: (i) the inherently large air gap necessary
to guarantee the safety of the capsule at high speed, (ii) the
effect of finite motor length on the developed thrust, (iii) the
non-magnetic reaction rail, the efficiency and power factor
of such electrical machines are considerably lower than the
traditional rotating counterparts. Proper mathematical models
and optimization frameworks are therefore fundamental for the
optimal design of these devices since they allow to determine
the configurations that maximize certain metrics, such as thrust
density, lift density, power factor, or a combination of them
[13].
Current literature on LIM models has proposed several model-
ing approaches that can be categorized into: 1) field analysis-
based models, whose governing equations can be either solved
numerically (f.e.m.) or via closed-form solutions with adequate
hypotheses (analytical), and 2) equivalent circuit-based mod-
els. Field analysis-based models with closed-form solutions are
the most appealing from the authors’ point of view because
they allow to accurately model most LIM characteristics while
reducing the computational complexity compared to numerical
solutions (f.e.m.-based). To the best of the authors’ knowl-
edge, the vast majority of field analysis-based models with
closed-form solutions found in the literature use Fourier series
decomposition methods to solve the governing differential
equations [7], [14], [15]. One of the main hypotheses of
such an approach is the assumption of a constant air gap
along the entire domain (i.e. even outside the LIM edges),
which implies an infinite primary length with the windings
distributed along a limited section [16], [17]. Because of
this hypothesis, the magnitude of the electromagnetic fields
computed at the motor’s rear is higher than reality (see Fig. 1),
and, therefore, the computed LIM longitudinal and normal
forces are overestimated. The error of the calculated forces
becomes significantly relevant as speed increases and can
reach values of 40% or more for speed of 20m s−1, as shown
in [17].
Moreover, to the best of the authors’ knowledge, the litera-
ture on LIMs lacks computationally efficient models that are
experimentally validated at high speed (v ≃ 100m s−1). To
overcome these limits, this work proposes a pseudo-three-
dimensional field analysis-based model of a double-sided
linear induction motor (DSLIM) where the field-based dif-
ferential equations have been solved analytically by imposing
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Fig. 1. Effect of the infinite iron at the LIM rear on the magnetic flux density.
COMSOL f.e.m. simulation: Pair of poles: 3, τp = 4.5 cm, Number of slots
per pole per phase (NSPP): 1, δ = 3.5mm, ϵ = 2mm, vm = 120m s

−1,
fs = 1323Hz. See Section III for parameters description.

proper modeling assumptions. The proposed model explicitly
considers the following characteristics altogether:

• Finite motor length (extremity effect).
• Finite motor width (edge effect).
• Windings harmonics.
• Slots effect.
• Effect of the electromagnetic fields at the rear of the

motor (hereafter referred to as tail effect).

The presented model proves to be largely more efficient in
terms of computation complexity than f.e.m. simulations, and
has been numerically and experimentally validated through
comparison with f.e.m. simulations and measurements using
a custom-made test bench capable of reaching speeds up
to 100m s−1. The paper is structured as follows: Section II
discusses the state of the art on LIMs modeling and lists
the work contributions. It describes the main related works
found in literature, their advantages, and their disadvantages.
Section III describes the proposed model of a DSLIM, starting
from framework definition, hypotheses, differential equations
formulation, and solution. Section IV presents the numerical
and experimental validation of the model through comparisons
with f.e.m. models and measurements carried out on a custom-
made test bench. Section V summarises the proposed analyt-
ical model and the results of the numerical and experimental
validation.

II. STATE OF THE ART

This section presents the main works on LIMs modeling
existing in the current literature. The section is divided into
two main subsections, one per model category, as done in the
paper introduction.

A. Field analysis-based models

Field analysis-based models can be divided into two sub-
categories based on the methods used to solve the differential
equations governing the system.

1) Analytical models: Among all field analysis-based mod-
els of LIMs, the ones based on the direct solution of field
equations are the oldest. One of the main advantages of such
models is the phenomenological understanding of the system,
since the solutions are directly derived from fundamental
electromagnetic differential equations suitably coupled with
hypotheses that allow for the analytical integration [4]. Most
of the models found in the literature are 1D (i.e. fields vary in
one direction only) or 2D, where effects such as finite motor
height along the transverse direction or slots effect on the field
distribution are considered by applying correction coefficients
or not considered at all [4], [5].
The authors of [16], [18], [19] propose one-dimensional and
two-dimensional models of DSLIMs operating at very high
speed (i.e. v ≃ 150m s−1). In [18] particular focus is on
extremity effect1 and ways to compensate for it. Despite
their clarity in the explanation of the extremity effect, these
models ignore the effect of slots/teeth alternation in the air gap
and the magnetomotive force (mmf) harmonics introduced by
windings. A pseudo-3D derivation is performed by adding a
correction factor to the reaction rail conductivity.
The slots effect, i.e. the effect of slots and teeth alternation
on the air gap field distribution is approximated in [5], [20]
by using Carter’s coefficient to derive the expression of the
equivalent air gap [21]. In both models, the primary winding
current is decomposed into a sum of its harmonics. Such an
approach allows to include the effect of winding harmonics on
the developed thrust. The transverse edge effect and slot effect
are approximated by introducing correction coefficients.
Closed-form solution of the magnetic vector potential for a
single-sided LIM is derived in [15], [17] through a Fourier
series decomposition method. In [17] the LIM winding is
modeled as a distribution of infinitely long wires carrying
current and the solution of the magnetic vector potential in the
reaction rail and in the air gap is derived by imposing boundary
conditions on the electromagnetic fields (i.e. continuity of
both the magnetic flux density normal component and the
magnetic field tangential component). Although the derived
model is simple and computationally efficient, the assumptions
of slot-less and constant air gap along the entire Fourier series
period imply large errors in the computed thrust and lift (up to
40% at 20m s−1) compared to f.e.m. models, which increase
significantly at high speed.

2) Finite element method-based models: F.e.m. is definitely
the most recently adopted technique for electrical motor mod-
eling since the numerical solution of the system’s differential
equations allows to attain a high-fidelity analysis with no
approximation of the underlying physics. In the field of LIMs
design, the need for f.e.m. is justified by the complexity of
the system, whose effects (e.g. skin effect in the reaction rail,
flux leakages) cannot be entirely considered through an exact
analytical formulation.
The authors of [22] propose a complete 3D f.e.m. model of

1Extremity effect is the direct consequence of finite motor length and
it leads to magnetic field perturbations at the motor entry, due to the
incoming reaction rail. This phenomenon is therefore responsible for the LIMs
performance degradation (i.e. thrust and efficiency), particularly relevant at
high speed.
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a LIM with particular attention to thrust calculation. How-
ever, since the computation time to solve these models is
extremely high (e.g. between 74 and 120 hours for a time
domain simulation of 2 pairs of poles LIM with approximately
250000 mesh elements [22]), such a technique cannot be
efficiently integrated into an optimization framework with a
multi-dimensional solution space.
The authors of [23] propose a novel method to identify an
equivalent electrical circuit of a tubular LIM from f.e.m.
models, for both static and dynamic operating conditions.
This type of approach can be used to analyze the motor
characteristics once the design has been already fixed.
Peculiar LIM arrangements, such as double-stator LIMs, are
easily analyzed through f.e.m. models, as proposed in [24]
where the authors investigate the coupling effect of a double-
stator LIM with respect to the supply connection type of the
two parts.
The effect of the stator winding arrangement on the magnetic
flux density is studied in [25]. The authors use f.e.m. models
to assess which winding arrangement is the best option in
terms of magnetic flux density maximization for Maglev
transportation applications.
As emerged from the literature review, f.e.m. is a more
useful method for a-posteriori analysis rather than design
optimization because of its high computation complexity and,
therefore, simulation time.

B. Equivalent circuit models

Equivalent circuit-based models (ECMs) are the most com-
mon models in the literature and practical applications. Be-
cause of their simplicity, ECMs are useful models that can
be integrated into control system simulations, dynamic motor
simulations, and design-oriented optimization problems, where
metrics such as power factor, efficiency, thrust, or a combi-
nation of them are the objective functions, as described in
[13]. However, it is not always possible to correctly account
for every effect of a LIM through this type of model, and,
therefore, several hypotheses have to be made to simplify the
analysis (e.g. three-phase supply, sinusoidal distribution of air
gap mmf, slot-less primary,...).
Duncan proposes an equivalent circuit based on traditional
rotating induction machine circuits [26]. The extremity effect
is accounted for by introducing a dimensionless coefficient
that models the reduction of thrust with the increase of the
velocity. Duncan’s model has been lately improved in [27] by
adding the expression of the reaction rail leakage inductance.
Alternatively, [28] provides a T-model equivalent circuit of
single-side LIMs where the longitudinal extremity effect and
the transversal edge effect are taken into account through
compensation coefficients derived from the magnetic vector
potential differential equation solved in the air gap. The
proposed ECM neglects the effect of the primary slots and
the space harmonics introduced by the winding configuration
and has been experimentally validated at relatively low speed
(i.e. up to 12m s−1).
Core losses and flux leakages in the primary iron can be
modeled via dedicated magnetic equivalent circuit models,

similarly to what is done in [29], [30]. Although these ECMs
are conceived for rotating induction machines, they can be
adapted to their linear counterparts. However, the computa-
tion of the LIM transverse force, which is fundamental for
applications that target the lift of payloads, is only possible
by using a field analysis-based model, which is the approach
the proposed model relies on.

C. Paper’s contribution

This paper proposes a computationally efficient pseudo-
three-dimensional analytical model of a DSLIM where the
magnetic vector potential differential equations have been
solved through a complex Fourier series decomposition
method. The model groups together the main characteristics
of LIMs found in literature and extends the validity of the
results to high speeds (i.e. v ≃ 100m s−1). In particular, it
proposes a compensation related to the effect of the hypotheses
of slot-less and constant air gap (typical for all analytical
models solved through Fourier series decomposition methods
[5], [17], [20]). The validation of the proposed model through
comparisons with f.e.m. and experimental measurements is
carried out and presented.

III. ANALYTICAL MODEL DESCRIPTION

A. Model geometry

The proposed DSLIM model takes inspiration from [17]
for the resolution of the system’s differential equations. Fig. 2
shows the reference frame of the model as well as the realistic
geometry of half DSLIM. According to the hypotheses listed
hereafter, the model refers to the simplified DSLIM geometry
shown in Fig. 3a. However, the compensation for some of
the simplifications introduced by the hypotheses, as presented
later, will bridge the gap between the simplified and the
realistic model.
The direction of movement is along the x̂ axis and the winding
conductors are along the ẑ axis only, and so is the magnetic
vector potential A⃗ = Az(x, y)ẑ. In steady state, the magnetic
vector potential Az(x, y) in the air gap and in the reaction rail
can be described by a single differential equation [31], [32]:

∇2Az(x, y) = µσ

(
jωAz(x, y)− vm

∂Az(x, y)

∂x

)
(1)

where Az(x, y) is the magnetic vector potential ẑ component,
vm is the LIM velocity, µ and σ are the magnetic permeability
and conductivity of the considered medium. This differential

 

Fig. 2. Realistic half-DSLIM geometry and reference frame.
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Fig. 3. Simplified half-LIM geometry. (a) Fourier series representation. (b)
Winding detail.

equation is valid in general and will be solved in three different
regions, denoted by the following notation:

1: Primary y ≥ δ +
ϵ

2
→ Az(x, y) = Aµz(x, y)

2: Air gap
ϵ

2
≤ y ≤ δ +

ϵ

2
→ Az(x, y) = Aδz(x, y)

3: Reaction rail 0 ≤ y ≤ ϵ

2
→ Az(x, y) = Aρz(x, y)

B. Model hypotheses

1) Primary iron dimensions along x̂ and ŷ axis are infinite.
2) The two sides of the DSLIM have a symmetric supply.

Therefore, the study can be carried out on half motor and
results multiplied by two.

3) Air gap δ is constant and slot-less.
4) Stator winding is represented as a sequence of infinite

wires along the ẑ axis distributed in the air gap, as shown
in Fig. 3b. Each wire carries the current nwkI0k (current
expressed in rms value), where nwk is the number of
conductor turns in the kth LIM slot.

5) The reaction rail is homogeneous with constant relative
permeability µr, permittivity ϵAl, electrical conductivity
σ, and thickness ϵ.

6) The primary has infinite magnetic permeability µfe.
As a consequence, iron saturation is neglected and the
superposition principle can be applied2.

7) The study is performed in steady-state conditions (i.e. in
the frequency domain, with phasors).

The model’s results are expressed in terms of electromagnetic
field distributions, and longitudinal and transverse forces at
different slip operating points.

C. Source magnetic vector potential

With reference to Fig. 3b, and similarly to [32], the input
source of the model is represented by the algebraic sum of

2The hypothesis is justified assuming that the iron core is designed such that
the intensity of the magnetic flux density at null speed is below the saturation
level of the considered ferromagnetic material (e.g. between 1.5T and 2.4T
as shown in [33], [34]). At high speed, the intensity of the magnetic flux
density decreases.

the magnetic vector potentials generated by each wire in the
air gap, in the absence of iron and reaction rail. According to
hypotheses 4, 6, 7, and the Biot-Savart law [35], the magnetic
vector potential generated by a generic sequence of infinite
wires carrying a current phasor nwkI0k can be expressed as:

A
s
z(x, y) =

∑
k

−nwkI0kµ0

2
√
2π

ln

(
(x− x0k)

2
+ (y − y0k)

2

R
2
0k

)
(2)

where x0k and y0k are the coordinates of the kth conductor
center and R0k its radius. Since each coil comprises two
conductors carrying opposite currents, the conductor radius
value disappears in the sum, and therefore its value does not
matter. According to hypothesis 6, the system is linear, and
therefore, the solution of (1) in the air gap can be derived as
the sum of the source magnetic potential vector As

z(x, y) and
the magnetic potential vector resulting from the interaction
between the LIM primary and the conducting reaction rail
Ar

δz(x, y). Hence:

Aδz(x, y) = As
z(x, y) +Ar

δz(x, y) (3)

D. Solution for the magnetic vector potential

To derive the magnetic vector potential in the primary, air
gap, and reaction rail, a resolution method for (1) adapted
from [15], [17], [32] for the case of DSLIM, is followed.
The solution is obtained through a complex Fourier series
decomposition, valid in the interval x ∈ [−L/2, L/2], where
L is the period of the Fourier series. The general solution of
(1) is:

Az(x, y) =

∞∑
n=−∞

ejλnx
(
βne

γny + Γne
−γny

)
(4)

where λn = 2πn
L , γn =

√
λ2
n − jµσ (ω + vmλn), and

ω = 2πfs, with fs being the supply frequency.
Depending on the considered region, (4) is re-written accord-
ingly:

1) Primary: electrical conductivity is zero, hence: γn = |λn|.
Moreover, for y → ∞, Aµz(x, y) → 0, and thus the
integration constant βn has to be 0.

2) Air gap: electrical conductivity is zero, hence: γn = |λn|.
Moreover, as shown in (3), the source magnetic vector
potential As

z(x, y) has to be added to (4).
3) Reaction rail: the general formulation of (4) is used.

The solution of (1) for the DSLIM of Fig.2 is then the
following:
Aµz(x, y) =

∑
n e

jλnx
Γµne

−|λn|y

Aδz(x, y) = A
s
z(x, y) +

∑
n e

jλnx
(
βδne

|λn|y
+ Γδne

−|λn|y
)

Aρz(x, y) =
∑

n e
jλnx

(
βρne

γny
+ Γρne

−γny
)

(5)
By imposing proper boundary conditions, as described here
below, the integration constants Γµn, βδn, Γδn, βρn, and Γρn

are determined.
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E. Boundary conditions

At the interface between two media, the following boundary
conditions are applied:

• Continuity of the magnetic flux density normal compo-
nent.

• Continuity of the magnetic field tangential component.
Furthermore, according to hypothesis 2, a symmetry of the
magnetic vector potential applies in the middle of the reaction
rail. The five equations needed to determine the integration
constants are therefore:

Bµy(x, yiron) = Bδy(x, yiron)

1
µfe

Bµx(x, yiron) =
1
µ0
Bδx(x, yiron)

Bδy(x, yrail) = Bρy(x, yrail)

1
µ0
Bδx(x, yrail) =

1
µr

Bρx(x, yrail)

lim
y→0

+ Aρz(x, y) = − lim
y→0

− Aρz(x, y)

(6)

Details on the solution of the boundary conditions are given
in the Appendix.

F. Magnetic flux density calculation

By applying B⃗ = ∇⃗ × A⃗ to (5), the distribution of the
magnetic flux density can be obtained. Of particular interest
are the distributions in the air gap and reaction rail. After some
development, one obtains:

Bδy(x, y) = B
s
y(x, y)− j

∑
n λne

jλnx
(
βδne

|λn|y
+ Γδne

−|λn|y
)

Bδx(x, y) = B
s
x(x, y) +

∑
n|λn|e

jλnx
(
βδne

|λn|y − Γδne
−|λn|y

)
Bρy(x, y) = −2j

∑
n λne

jλnx
βρn cosh (γny)

Bρx(x, y) = 2
∑

n γne
jλnx

βρn sinh (γny)
(7)

G. Forces calculation

Once the magnetic vector potential has been derived, the
force applied to the reaction rail can be calculated through the
integration of Maxwell’s stress tensor along the rail surface:

• Longitudinal force (thrust) along the x̂ axis, Fx.
• Transverse (or normal) force along the ŷ axis, Fy

Even though the transverse force cannot be used to generate
lift in a DSLIM (contrary to a SLIM), its calculation is of great
importance for the optimal design of the mechanical supports
of the motor. From the electromagnetic fields, forces can be
computed as follows:

Fx =
1

2µ0

∫ L/2

−L/2

ℜ
(
B∗

ρx

(
x,

ϵ

2

)
Bρy

(
x,

ϵ

2

))
dx (8)

Fy =
1

4µ0

∫ L/2

−L/2

(
|Bρy

(
x,

ϵ

2

)
|2 − |Bρx

(
x,

ϵ

2

)
|2
)
dx (9)

where the ∗ denotes the complex conjugate, and a factor 1
2

has to be added to transform the forces from peak to rms
values. By substituting (7) into (8) and (9) and after some

Fig. 4. DSLIM geometry in the yz plane. Symmetric primary-rail configu-
ration.

development, the final formulation of the electromagnetic
forces for one side of the DSLIM can be obtained:

Fx = 2Φ
∑
n

ℜ
[(
βρnγn sinh (ϑn)

)∗ (−jλnβρn cosh (ϑn)
)]

(10)

Fy = Φ
∑
n

(
|λnβρn cosh (ϑn)|

2 − |γnβρn sinh (ϑn)|
2
)

(11)

where Φ = Lhm/µ0, hm is the primary width along the ẑ axis,
and ϑn = 1

2γnϵ.

H. Slot-less air gap compensation

Since the air gap δ does not have any slots, as stated in
hypothesis 3, the air region between primary iron and the
reaction rail is smaller than reality. Therefore, the computed
forces are overestimated. To compensate for this effect, a
correction of the air gap through Carter’s coefficient is done, as
widely adopted in the literature [5], [13], [21]. With reference
to [34], [36], an equivalent air gap δe, that takes into account
the presence of slots, can be written as:

δe = Kcδ (12)

where Kc is Carter’s coefficient and can be expressed as [34]:

Kc =
τp

τp − kbn
(13)

where τp is the LIM pole pitch, and bn the slot width. The
coefficient k can be written as [34]:

k =
2

π

arctan(bn
2δ

)
− 2δ

bn
ln

√
1 +

(
bn
2δ

)2
 (14)

I. Edge effect compensation

As described in [36], the effect of the finite width of
the motor, and therefore the presence of the so-called ”end
windings” in the active region of the reaction rail, is called
edge effect. In turn, it implies an equivalent decrease in
the reaction rail electrical conductivity and can be analyzed
through rigorous field analysis. However, in the case of a
symmetrical configuration, as depicted in Fig. 4, a correction
coefficient for the reaction rail electrical conductivity can be
derived, as done in [37] and widely adopted in the literature
[5], [36]. The hypotheses used in [37] to derive the correction
coefficient are the following:

• The problem is formulated as the relative motion between
a magnetic field and a thin reaction rail.



IEEE TRANSACTION ON TRANSPORTATION ELECTRIFICATION 6

• The thickness of the reaction rail is considerably smaller
than the other dimensions.

• The traveling magnetic field varies sinusoidally in both
space and time.

• A symmetric primary-rail configuration (see Fig. 4) is
used.

With reference to Fig. 4, the so-called Russel-Northworthy
factor can be calculated as follows:

Kρ = 1− tanh (χ)

χ
(
1 + tanh (χ) tanh

(
π
τp

(
hr−hm

2

))) (15)

where hr is the reaction rail width along the ẑ axis, and
χ = (πhm)/

(
2τp

). Hence, the equivalent reaction rail electrical
conductivity σe can be calculated as:

σe = Kρσ (16)

Since the width of the primary has a greater impact than the
width of the reaction rail on the calculation of the correction
factor Kρ, the hypothesis of symmetrical primary-rail con-
figuration is used in the experimental validation discussed in
Section IV.

J. Constant air gap compensation

As stated in hypotheses 1 and 3 (hypotheses necessary for
the analytical solution of the magnetic vector potential in the
air region), the region at the rear of the primary is made of
iron with a constant air gap δ. Because of this assumption,
the electromagnetic field magnitude at the rear section of the
primary is higher than reality (i.e. case with air behind), as
shown in Fig. 1. This effect is called the tail effect and leads
to an overestimation of both thrust and normal force developed
by the motor. In particular, the overestimation of the normal
force is significant, especially at high speed. To overcome
this limitation, a compensation of the tail effect based on the
integration of the magnetic fields at the rear of the primary is
proposed.
The contribution to the overall forces coming from the rear part
of the LIM only can be numerically calculated by evaluating
the integrals (8) and (9) in the interval x ∈ [−L/2,−lmot/2],
where lmot is the length of the primary. Thanks to the linearity
of the model (hypothesis 6), these two contributions can be
then subtracted from the overall forces calculated through (10)
and (11) for any operating point. Fig. 5 shows the distributions
of normal force and thrust along the LIM for a single operating
point. The highlighted blue area is the contribution of the
rear part only, which is subtracted from the overall force.
Although this method neglects the contribution to the overall
forces coming from the rear part of the LIM in the case of
air behind the primary (because the compensation removes
the total contribution of the LIM rear), the numerical and
experimental validations prove the validity of the proposed
compensation.

IV. MODEL VALIDATION

In order to assess the validity and accuracy of the proposed
model, a joint validation through both f.e.m. simulations and

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Fig. 5. COMSOL simulations of the distributions of Normal force and thrust
for a single operating point (vm = 120m s

−1, fs = 1323Hz). The blue
area is the force integral evaluated at the rear section of the LIM which is
subtracted from the overall calculations of (10) and (11). The red area is the
real force integral evaluated at the rear section of the LIM that is neglected
with the proposed compensation method.

measurements via a dedicated test bench is carried out. The
DSLIM used for the validation of the model is a 3-pair poles
motor whose geometry is reported in Table I3. Hereafter, the
test bench and the f.e.m. models are described.

A. LIM test bench

A 3D view of the disk-shaped test bench used to experimen-
tally validate the analytical model is shown in Fig. 6, whereas
pictures of the real test bench are shown in Fig. 7. The rotating
disk has a sandwich structure with a diameter of 1.4m. It is
composed of a 2mm-thick AW-5005 (σ = 30.303MSm−1)
central aluminum disk held together by two 6mm-thick AW-
6082 (σ = 30.303MSm−1) aluminum hubs. The electrical
conductivity of the disk has been experimentally validated. A
curved DSLIM is installed on the bottom of the disk and a

3The hypothesis of absence of saturation in the primary iron has been
validated via COMSOL f.e.m. simulations for the DLSIM prototype geometry
and supply current density.

Fig. 6. LIM test bench 3D view.
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(a)

(b)

Fig. 7. Pictures of the test bench and DSLIM prototype. (a) Front view with
DSLIM installed. (b) Rear view with detail on half the DLSIM prototype.

TABLE I
DSLIM REFERENCE GEOMETRY.

Parameter Symbol Value

Pole pitch τp 0.045m
Number of pole pairs p 3
Ratio slot/tooth α 0.53
Rail thickness ϵ 0.002m
Nominal air gap δn 0.003m
Number of slot/pole/phase NSPP 1
Number of turns N 15
Supply nominal current I 10Arms
Number of phases m 3
Motor width hm 0.04m
Motor mass M 8 kg

driving induction motor (IM) is mounted on the disk shaft
for speed control (obtained through a Voltage Source Inverter
Movitrac LTP-B from SEW). The choice of a curved DSLIM

is made for two reasons:
• The curved-primary curved-rail configuration is equiva-

lent to the straight-primary straight-rail configuration in
terms of developed forces, as demonstrated in [38] via
f.e.m. simulations.

• As experimentally demonstrated in [39], contrary to
the straight-primary straight-rail configuration, a straight-
primary curved-rail configuration induces eddy currents
in the reaction rail at synchronous speed and, therefore,
generates forces that do not exist in the real configuration.

The bench is equipped with a 3-axis force sensor (K3D60a-
50N from Meßsysteme) to measure the LIM force components,
a National Instruments CompactRIO 9024 used to control the
driving IM and to acquire sensor data, an optical speed encoder
(EIL580-T from Baumer) to measure the disk rotation speed,
and a laser distance sensor (OM20 RS485 from Baumer) to
measure the air gap. The supply of the DSLIM is obtained
through a BRUSA DMC-544 voltage source inverter supplied
by a DC power source. Tables II and III list the installed
sensors and actuators with their measuring ranges and accura-
cies. Different air gap values can be set on the bench, starting
from a minimum value of 3mm. The air gap can be adjusted
according to the procedure described in algorithm 1.

TABLE II
TEST BENCH SENSOR SPECIFICATIONS.

Sensor Range Accuracy Description

K3D60a-50N ±50N 0.5% 3-axis force meas.
OM20 RS485 10mm 1 µm Air gap meas.
EIL580-T 3000 rpm 0.072

◦ Disk rotation speed encoder

TABLE III
TEST BENCH ACTUATORS.

Actuator and output Type Description

NI 9263 Analog OUT IM speed set point
NI 9474 Digital IO IM drive enable
Movitrac LTP-B Voltage Source Inverter IM drive
BRUSA DMC544 Voltage Source Inverter DSLIM drive

B. COMSOL model
A finite element 2D model has been developed in COMSOL

Multiphysics for the numerical validation of the proposed
analytical model. In this respect, as formulated in [40], the
magnetic fields (mf) interface of the AC/DC COMSOL module
has been used to numerically solve Poisson’s equation for the
magnetic vector potential in the frequency domain. To account
for the speed of the LIM, the Lorentz term (i.e. velocity
term) has been added to the current density formulation in the
stator [41]. The model mesh is mainly made of triangles and
quads, with 88000 elements and an average skewness element
quality of 0.899. The skewness is the default quality measure
in COMSOL and it is a measure of the equiangular skew of
the mesh elements. According to [42], it is defined as the
minimum of the following quantity:

Sk = 1−max

(
θ − θe

180− θe
,
θe − θ

θe

)
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Algorithm 1 Air gap adjustment
1: Unscrew the LIM sliding support.
2: Slide the LIM against the reaction rail until the primary

touches the disk. The air gap is now 0mm.
3: Set the zero position of the laser distance sensor.
4: Slide the LIM to the desired air gap with the aid of

calibrated steel spacers.
5: Fix the LIM sliding support.
6: Spin the disk through the driving IM at low speed (e.g.

20 rpm ≃ 1.5m s−1).
7: Measure the air gap through the laser distance sensor and

verify it corresponds to the nominal set value δn plus the
tolerance margin.

8: if δn − 0.5mm ≤ δ ≤ δn + 0.5mm then
9: The procedure is complete.

10: else
11: Unscrew the LIM sliding support.
12: Repeat procedure from point 4.
13: end if

where θ is the angle over a vertex, θe is the angle of the
corresponding vertex in an ideal element, and the minimum
is taken on all vertices of the element. The simulations are
carried out on the following machine:

• Laptop: Lenovo ThinkPad X1 Carbon Gen 9
• Processor: 11th Gen Intel(R) Core(TM) i7 − 1185G7
3GHz, 4 cores

• Installed Memory RAM: 32GB

C. Key Performance Indicators

The results comparison between the proposed analytical
model, the f.e.m. model, and the measurements is done by
comparing the longitudinal and transverse forces for different
operating points (i.e. slip points). In the following figures,
multiple curves are represented. Every curve represents a force
component as a function of the LIM velocity for a constant
supply frequency. The comparison relies on the following
metrics:

• Maximum error to capture the highest difference between
the results of the proposed LIM model versus the f.e.m.
benchmark and the experimental results.

• RMS error to quantify the average quality of the results
produced by the proposed LIM model versus the f.e.m.
benchmark and the experimental results. The RMSE is

computed as follows: RMSE =

√∑N
i (Xi−X̂i)

2

N

The maximum value of the forces at each supply frequency
has been used as a base for the normalization of the errors. In
what follows, the numerical and experimental validations are
treated separately for the sake of clarity.

D. Validation via f.e.m. COMSOL

Fig. 8 shows the comparison in terms of longitudinal force
(thrust) and normal force between the proposed analytical
model and the f.e.m. COMSOL model, whereas Fig. 9 shows
the maximum and RMS errors of the forces at each simulated

frequency. Since the COMSOL model used as a benchmark is
bi-dimensional, the compensation of the edge effect, as pre-
sented in Section III-I, is not applied. Therefore, the proposed
analytical model is reduced to its bi-dimensional formulation
(i.e. Kρ = 1). As shown in Fig. 8, the proposed analytical
model exhibits excellent accuracy throughout the whole speed
range for both force components. With respect to Fig. 9, one
can further notice the following:

• Maximum and RMS errors are bounded in every simula-
tion.

• RMS error, which is the most relevant metric for LIM
models performance computation, is of few % and
bounded to less than 3%.

Moreover, the simulation times of the analytical model and
COMSOL f.e.m. are reported in Table IV. As shown in the
table, one of the greatest advantages of the proposed analytical
model is its computation efficiency, which makes it possible to
be integrated into an optimization framework during the design
phase, whereas an f.e.m.-based optimization would require
much longer execution times and therefore be impractical.
Indeed, thanks to the computation efficiency of the proposed
model, a brute-force approach can be used to derive an optimal
LIM design in a short time by performing a parametric sweep
of the main design parameters (e.g. p, τp, ϵ, NSPP , hm ...).
The validation of the proposed analytical model has also been
carried out in terms of magnetic flux density distributions.
Fig. 10 shows the magnetic flux density distributions at the
primary and rail surfaces (i.e. y = δ + ϵ

2 and y = ϵ
2

respectively) for a single operating point, computed via the
proposed analytical model and COMSOL f.e.m.. As can be
noticed, the fields computed through the proposed analytical
model match the f.e.m. fields with excellent accuracy in the
primary region. As expected, however, the fields computed
via the analytical model are overestimated at the rear of
the primary. This overestimation is due to hypotheses 1 and
3 (i.e. constant air gap throughout the entire Fourier series
period), whose effect on the forces (i.e. the tail effect) has
been discussed in Section III-J, and a method to compensate
for it has been proposed.

TABLE IV
COMPARISON OF THE COMPUTATION TIMES FOR A DIFFERENT NUMBER

OF SUPPLY FREQUENCIES.

Simulation type Analytical COMSOL

Single supply frequency 3.3 s ≃ 0.5h
Full characteristic (15 frequencies) 25 s ≃ 3h

E. Validation via experimental measurements

Regarding the experimental validation of the proposed an-
alytical model, the following aspects have to be considered.

• The finite width of the DSLIM is taken into account
through the edge effect compensation presented in Sec-
tion III-I. This produces an equivalent increase of the
reaction rail resistivity of 55% if applied to the bench
geometry.
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Fig. 8. Longitudinal force Fx and normal force Fy comparisons between analytical model and COMSOL f.e.m. simulations.
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Fig. 9. Maximum and RMS errors between the analytical model and
COMSOL f.e.m. simulations.
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Fig. 10. Magnetic flux density y component distribution at the primary and
reaction rail surfaces. vm = 50m s

−1, fs = 500Hz. Comparison between
the proposed analytical model (blue) and COMSOL f.e.m. (red).

• Due to the irregularities of the 2mm-thick disk used as
reaction rail, the air gap cannot be guaranteed to be
constant. To overcome this issue, particularly relevant at
low speed, the analytical model simulations are computed
using an air gap interval centered around the nominal

value (i.e. δ = δn± 0.5mm). This ±0.5mm interval has
been measured via the laser sensor listed in Table II. The
interval is represented by the shaded areas in the result
figures.

• The measurements are carried out at 5 different supply
frequencies, with fs = 900Hz being the highest fre-
quency the BRUSA DMC544 is capable of supplying.

• Because of the limitations of the BRUSA DMC544, the
nominal current of 10Arms has been lowered to 7Arms

for fs ≥ 700Hz.
• Measurements are bounded at speeds around the syn-

chronous one because the DC source used to supply the
BRUSA DMC544 is not bi-directional (i.e. the max speed
reached at each supply frequency is such that the DC bus
power flow is not reverted).

• Every measurement point is the average over 10 s of
forces acquisition, corresponding to 8300 raw samples.

Fig. 11 shows the comparison between the measurements and
the proposed analytical model results with a nominal air gap
of 3mm. As can be seen, the measurements accurately follow
the results of the analytical model, especially in the proximity
of the synchronous speed, which is the highest-efficiency
working region (as known from classic induction machines
theory). Furthermore, to extend the model validity for different
configurations, the comparison has been carried out with a
larger air gap (i.e. δn = 4mm). Results are consistent with
the case of δn = 3mm, and can be seen in Fig. 12. Fig. 13
and Fig. 14 show the maximum and RMS errors of the forces
at each measured supply frequency in the case of δn = 3mm
and δn = 4mm respectively. From the error figures, one can
notice the following:

• Maximum and RMS errors are bounded in every simula-
tion.

• RMS error, which is the most relevant metric for LIM
models performance computation, is of few % and
bounded to less than 10%.
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Fig. 11. Longitudinal force Fx and normal force Fy comparisons between measurements (dots) and the proposed analytical model (solid) with δn = 3mm.
The shaded areas represent the air gap interval used in the simulations.
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Fig. 12. Longitudinal force Fx and normal force Fy comparisons between measurements (dots) and the proposed analytical model (solid) with δn = 4mm.
The shaded areas represent the air gap interval used in the simulations.
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Fig. 13. Maximum and RMS errors between the analytical model and
experimental measurements with δn = 3mm.

V. CONCLUSION

In this paper, a computationally efficient pseudo-three-
dimensional model of a DSLIM, based on a Fourier series
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Fig. 14. Maximum and RMS errors between the analytical model and
experimental measurements with δn = 4mm.

decomposition method, has been proposed and its results vali-
dated through both COMSOL f.e.m. models and experimental
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results obtained with a dedicated test bench. The proposed
model explicitly considers the main characteristics of DSLIMs
(i.e. end effect, edge effect, slot effect, mmf space harmonics,
and tail effect), and is computationally efficient and very
accurate up to high speed (i.e. v ≃ 100m s−1). Indeed, the
comparison of the simulated forces with COMSOL f.e.m.
models has shown that maximum and RMS errors are always
bounded and that the RMS error is of few % and bounded
to 3%. Experimental results also confirmed the accuracy and
fidelity of the proposed analytical model throughout the whole
speed range of interest, with a maximum RMS error of 9%.
Moreover, the greatest advantage of the proposed analytical
model is its computation efficiency, which makes it possible
to be integrated into an optimization framework during the
design phase of the LIMs.

APPENDIX
BOUNDARY CONDITIONS SOLUTION

A resolution approach similar to what is done in [17] and
[32] is followed to solve the system of equations in (6). By
recalling that B⃗ = ∇⃗ × A⃗ and inserting (5) into the boundary
conditions system of equations, (6) becomes:

B
s
yna = −jλnΓµne

−|λn|a
+ jλn

(
βδne

|λn|a
+ Γδne

−|λn|a
)

B
s
xna = −|λn|

(
βδne

|λn|a − Γδne
−|λn|a

)
B

s
ynϵ = jλn

(
βδne

|λn| ϵ
2 + Γδne

−|λn| ϵ
2

)
− 2jλnβρn cosh (ϑn)

B
s
xnϵ = −|λn|

(
βδne

|λn| ϵ
2 − Γδne

−|λn| ϵ
2

)
+

2γn
µr

βρn sinh (ϑn)

βρn = Γρn

(17)
where a = ϵ

2 + δ. Similarly to [32], the Kronecker delta
operator (δnm) has been used to remove the x exponential in
the magnetic vector potential formulation of (5) and therefore
simplify the boundary condition equations.

δnm =
1

L

∫ L
2

−L
2

e(−jλmx)e(jλnx)dx (18)

Moreover, since (17) has to be satisfied for each harmonic
index n, the sum

∑
n can be removed. As a consequence of the

above-mentioned simplification, the Fourier series coefficients
of the x and y components of the magnetic flux density
field due to the source B⃗s(x, y) = ∇⃗ × As

z(x, y) have to be
calculated:

Bs
yna =

1

L

∫ L
2

−L
2

− ∂As
z(x, y)

∂x

∣∣∣∣
y=a

e(−jλnx)dx (19)

Bs
xna =

1

L

∫ L
2

−L
2

∂As
z(x, y)

∂y

∣∣∣∣
y=a

e(−jλnx)dx (20)

Bs
ynϵ =

1

L

∫ L
2

−L
2

− ∂As
z(x, y)

∂x

∣∣∣∣
y= ϵ

2

e(−jλnx)dx (21)

Bs
xnϵ =

1

L

∫ L
2

−L
2

∂As
z(x, y)

∂y

∣∣∣∣
y= ϵ

2

e(−jλnx)dx (22)

The system of equations (17) can be solved by numerically
evaluating the above integrals through a calculation tool such

as Matlab, or Mathematica. For the scope of this paper, only
the integration constants βδn, Γδn, and βρn are of interest
(as they are the only one appearing in the fields and force
formulations (7), (10), and (11)). Their expressions are the
following:

βδn = −
λn|λn| cosh (ϑn)

(
e
a|λn|

B
s
xna − e

ϵ
2
|λn|

B
s
xnϵ

)
Dn1

−
γn sinh (ϑn)

(
e
a|λn|

λnB
s
xna + je

ϵ
2
|λn||λn|B

s
ynϵ

)
Dn1

(23)

Γδn = −Dn2λn|λn| cosh (ϑn)
(
e

ϵ
2
|λn|

B
s
xna − e

a|λn|
B

s
xnϵ

)
+Dn2γn sinh (ϑn)

(
e

ϵ
2
|λn|

λnB
s
xna − je

a|λn||λn|B
s
ynϵ

)
(24)

βρn =
csch (ϑn)

Dn3(
−2e(

a+ ϵ
2 )λnB

s
xna + e

2aλnB̂
s
nϵ + e

ϵλnB̂
s∗
nϵ

)
(25)

where B̂s
nϵ = Bs

xnϵ + jBs
ynϵ, and:

Dn1 = λn|λn|
(
e2a|λn| − eϵ|λn|

)
|λn| cosh (ϑn)+

λn|λn|
(
e2a|λn| + eϵ|λn|

)
γn sinh (ϑn)

Dn2 =
e(a+

ϵ
2 )|λn|

Dn1

Dn3 = 2eϵλn (γn − λn coth (ϑn))+

2e2aλn (γn + λn coth (ϑn))
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