
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Robust machine learning for neuroscientific inference

Steffen SCHNEIDER

Thèse n° 12 067

2024

Présentée le 17 janvier 2024

Prof. C. Petersen, président du jury
Prof. M. Mathis, Prof. M. Bethge, directeurs de thèse
Prof. A. Hyvärinen, rapporteur
Prof. A. Pouget, rapporteur
Prof. V. Cevher, rapporteur

Faculté des sciences de la vie
Chaire Fondation Bertarelli de Neuroscience Intégrative
Programme doctoral en neurosciences

L’art est fait pour troubler,

la science rassure.

– Georges Braque

Für meine Großmutter Thea Rinscheid,

und in Erinnerung an meine Großeltern

Herbert Rinscheid, Marianne & Norbert Schneider

Acknowledgements

Doing a PhD was quite a journey, and I was fortunate to meet a lot of amazing people
along the way. I want to firstly thank my two PhD advisors, Matthias Bethge and
Mackenzie Mathis.

When I first met Mackenzie during a short visit to her lab at the Rowland in 2019,
it was inspiring (and still is) to see her vision on studying adaptive behavior and the
energy that goes into pursuing her research program. I was the first PhD student to join
the lab, and hence experienced much of the process of building a research team from
the start. Over the years, I was fortunate to work with her on ambitious and long-term
projects, and I am grateful for the numerous hours of time she invested into mentoring
me. As someone good at programming but without any experience shipping software
to the research community, it was inspiring to see the amount of work it takes to make
scientific software (like DeepLabCut) successful, and the effort Mackenzie puts into
open software herself. Mackenzie profoundly influenced my own approach to science,
especially through to the rigor she applies when discussing research, and her great eye
for detail (I would have never imagined my PhD advisor helping to align elements in
my paper figures, among other examples).

I met Matthias a bit before Mackenzie when applying for PhD positions in 2018,
eventually writing my Master’s thesis in his lab – my first contact to domain adaptation
research. Back then, he was leading one of the few NeuroAI labs around the world. It
was interesting to see the organization structure of a bigger lab with multiple existing
collaborations tackling various aspects of neuroscience research merged with machine
learning. When I mentioned that I was interested in sensorimotor research (to study
adaptation from the perspective of ML and neuroscience), Matthias put me in touch
with Mackenzie, which was the start of the best PhD setup I could have possibly hoped
for. I thank him for his openness for collaboration, which was also implemented within
the lab culture and helped with getting started. I thank him for many inspirational
ideas, and also flexibility to explore and pursue my own. With the Tübingen AI Center
and ELLIS, Matthias also created a unique research environment in Tübingen and
beyond, which added a lot to my experience, and made this form of joint PhD possible.

Another very influential person that made my PhD journey enjoyable is my partner,
Luisa Eck. I am grateful for having her on my side, navigating academia is much
more manageable and enjoyable as a team. We also started collaborating at some point

robust machine learning ii

(potentially due to being each other’s only in-person contact during the COVID-19

pandemic) which became a lot of fun, and is still ongoing. Luisa taught me a lot
about doing science without a computer, and it was great to ponder about ML theory
together.

It also meant a lot to get appreciation and a good scientific discussion after pre-
senting my thesis work. I want to thank the members of my thesis committee, Carl
Petersen, Aapo Hyvärinen, Volkan Cevher and Alex Pouget for their time and effort
assessing and discussing my thesis. I want to thank Aapo, for all his inspiring work on
contrastive learning and identifiability that got me interested in the field in the first
place.

I also had a lot of luck in meeting the right supervisors, managers and mentors
before and during my PhD during multiple internships and research visits. I want to
thank Wieland Brendel, for mentoring me on a couple of projects in the first half of
my PhD, and introducing me to identifiability problems. I want to thank Alex Mathis
for a few fun collaborations, chats about neuroscience, and great BBQ. I want to thank
Michael Auli, for his mentorship during my AI residency at FAIR and his profound
influence on my approach to rigorous machine learning research. To Alexei Baevski,
for teaching me how to scale models and setting up ML experiments at scale. To Ronan
Collobert, for many great discussions and expert advice on speech recognition, the first
sequence modeling task I worked on. To Bernhard Schölkopf, for his advice and many
insightful discussions during my Amazon internship. To Peter Gehler, for his advice
on becoming a better software engineer. Thanks to Laurens van der Maaten and Ishan
Misra for introducing me to vision-language models during my internship project at
Meta in New York.

Many of my papers were written in collaborations. It is great to have worked
in labs with cultures supporting collaboration and an open mindset about it, and I
thank Matthias and Mackenzie for creating these environments. I want to thank all my
colleagues in the Bethge and Mathis labs: To Evgenia Rusak, for two fun projects on
robustness and adaptation, and for starting to collaborate with me right after I joined
as a PhD student. To Roland Zimmermann, for interesting discussions on ML theory.
To Matthias Kümmerer, for great discussions about math, eye movements and the best
cocktail bars around the world. And to Karan Desai and Julius Berner for the fun trips
to NYC, London and NOLA for testing these recommendations.

Thanks to all other collaborators over the past years: Jessy Lauer, Shaokai Ye, Yash
Sharma, Tom Biasi, Mert Yüksekgönül, George Pachitariu, Matthias Tangemann, Julius
von Kügelgen, Francesco Locatello, Thomas Brox, Alberto Chiappa, Maxime Vidal and
Ori Press and to everyone else in the Mathis and Bethge labs not explicitly listed for
being great colleagues and making me feel welcome while hopping between two labs.

On that note, I want to thank Heike König, Laure Blanc-Miéville and Alice Emery-
Goodman for helping me jump over the administrative hurdles during my PhD. Thanks
to Tuebingen AI, EPFL and the Rowland Institute at Harvard for hosting me, and thanks
to the Federal Ministry of Education and Research (through Tuebingen AI), the Swiss

robust machine learning iii

National Science Foundation, and Google for funding my PhD research.
A lot of work was done in collaboration with great undergraduate and Master’s

students. Thanks to Rodrigo González Laiz, Jin H Lee, Célia Benquet, Shubham
Krishna, Anastasiia Filippova, Mert Yüksekgönül, Khushdeep S. Mann, Xingying Chen
and Jan Hansen-Palmus for working with me. I learned a lot during this time, and the
positive and rewarding experience to work with students considerably influenced my
decision to continue with a career in academia.

Thanks to everyone in the open source community for writing and maintaining
the various packages and languages I used for my work: PyTorch, LaTeX, datajoint,
pgfplots/tikz, numpy, scipy, pandas, matplotlib, SLURM, Docker, Python and many
other occasionally used ones. Thanks to Léo Belzile, Gael Lederrey, Nicolas Tappy,
Mathias Payer and the tufte-latex contributors for writing the thesis templates I used as
the basis for this document.

Doing science would be half the fun without the chance to communicate it to the
public. I am very fortunate for everyone working with me on scaling KI macht Schule,
a small student project into a Germany-wide non-profit organization. I cannot possibly
name everyone of the 100+ people investing their spare time in science communication,
but want to especially thank Nicolas Berberich, Auguste Schulz, Leon Hetzel, Christian
Hölzer, Sarah Schönbrodt, Lothar Sebastian Krapp, Laura Helleckes, Jasper Albers,
Paul Pommer and Elena Natterer for their countless hours of pondering how we can
bring AI topics to schools. I also want to thank many other friends and peers not
explicitly listed here.

Becoming a scientist was certainly not a standard job choice I had on the radar
when I grew up. I want to thank my family and especially my parents. To my mum,
Sieglinde Schneider, for investing a lot of time in my education. To my dad, Andreas
Schneider, for getting me interested in engineering. To both of them, for always letting
me pursue my interests, with all the travel and moving this implied.

Preface

Prof. Mackenzie Weygandt Mathis, Ph.D.
Assistant Professor

Bertarelli Foundation Chair of Integrative Neuroscience
École Polytechnique Fédérale de Lausanne (EPFL)

December 21st, 2023

Adaptive behavior is a hallmark of biological intelligence, yet we do not fully
understand how the brain orchestrates this process. Moreover, the brain is impressively
robust and can rapidly learn—making it an exemplar system to understand biological
stability and flexibility, and ultimately imbue this into artificial systems. While reaching
this goal will certainly take a number of projects, people, and Ph.D. dissertations, it is
my great pleasure to write the preface for Mr. Steffen Schneider’s dissertation, which
marks a critical milestone in this quest.

In 2019, the year Steffen joined my group, I was a Rowland Fellow at Harvard
University, having started a group in 2017. I was determined to record from as many
neurons simultaneously as possible while mice carry out complex behaviors in order to
understand the neural basis of adaptive motor control. New microscopy techniques
were emerging that allow for hundreds to up to one thousand genetically-identified
neurons in cortex to be imaged, and—just as Steffen joined—there were new electrophys-
iological probes (Neuropixels) that allow for hundreds of neurons to be simultaneously
recorded at spiking resolution across the brain. Deep learning was also just starting
to impact data analysis in neuroscience: we could begin to markerlessly measure
movement with computer vision tools like our package DeepLabCut—DeepLabCut
provides neural networks that can be tailored to keypoints of interest with relatively
little annotation data thanks to transfer learning (Mathis & Mathis, 2020). In parallel,
new neural pre-processing of imaging and neural data were emerging. But, there was
still a significant effort needed to build data processing and analysis tools in order
to begin to answer fundamental questions about the causal neural basis of adaptive
behavior (not to mention a myriad of theoretical questions about how robust and
efficient deep learning was and/or needed to become in order to be deployable at
scale).

Therefore, it was my utmost pleasure to have Steffen join as my first Ph.D. student.

robust machine learning vi

He was keen to work at the interface of experimental neuroscience and machine
learning with myself and Prof. Matthias Bethge (Tübingen, DE), and proposed to work
on understanding robustness in brains and machines. Steffen joined as an ELLIS PhD
student. Over the next three years he spent time between our groups in Cambridge,
Tübingen and Geneva (my lab moved to the EPFL in 2020).1

To this end, Steffen has worked with me on building methods to help answer the
critical question of how neural circuits adapt to dynamically changing environments.
The basis is rooted in pioneering work building computational models that can account
for how humans can rapidly adapt to novel environmental perturbations (Todorov
& Jordan, 2002)—such as a velocity-dependent force field that pushes your hand off
course as you move a robotic handle in center-out reaches (Shadmehr & Mussa-Ivaldi,
1994). We aimed to study the biological mechanisms of this adaptation, thus I had
translated this to a mouse model (Mathis et al., 2017), and in my lab we study how
cortical circuits in mice change under these perturbations in a model-guided manner,
while others have pushed this in non-human primates (as Steffen and I reviewed in
a Dispatch (Mathis & Schneider, 2021)). At the time, multi-area recordings were rare,
and recording from animals during learning within a session meant you had few-to-no
repeated trials. This limited the type of analysis one could do and required considering
continuous time-series data more rigorously. Therefore, early on it was clear that new
methods for analyzing neural population dynamics would be increasingly critical.

Thus, the stage was primed for algorithmic innovation, and Steffen embarked on a
masterful course of merging rigorous neuroscience, machine learning, and mathemati-
cal theories to culminate in what is a remarkable dissertation yielding advances in both
machine learning robustness and neural analysis. He explored how robust methods
can be built and tested to impact scientific inference. Importantly, he worked on both
fundamental problems in scaling and creating robust machine learning algorithms, and
on methods for neuroscience data that often needed domain knowledge.

Under the direction of Prof. Bethge he has worked on “Improving robustness
against common corruptions by covariate shift adaptation” (Chapter 2, NeurIPS 2020),
“If your data distribution shifts, use self-learning” (Chapter 3, TMLR 2022), “RDumb:
A simple approach that questions our progress in continual test-time adaptation
(Chapter 4, NeurIPS 2023), and “Contrastive Learning Inverts the Data Generating
Process” (Chapter 6, ICML 2021). All of these works were fundamental machine
learning contributions.

In my group, as part of our collective quest to understand the circuit mechanisms of
adaptation, he made several key intellectual contributions. Together, we published “Pre-
training boosts out-of-domain robustness for pose estimation” (Chapter 5, WACV 2021),
“Learnable latent embeddings for joint behavioral and neural analysis” (Chapter 7,
Nature 2023), and “Identifiable attribution maps using regularized contrastive learning”
(Chapter 8, NeurIPS-W 2023). In particular, Chapters 7 and 8 represent phenomenal

1It also must be noted he completed his work also in the midst of a pandemic (COVID-19), which
made in person interactions difficult for several years, nonetheless he not only persisted, he excelled.

robust machine learning vii

work that he lead in my group (more below). Beyond the bounds of the dissertation
he provided co-author contributions to animal pose estimation: “Multi-animal pose
estimation, identification and tracking with DeepLabCut” (Nature Methods, 2022), “A
primer on motion capture with deep learning: Principles, pitfalls and perspectives”
(Neuron 2020), and in revision, “SuperAnimal pretrained pose estimation models for
behavioral analysis” (arXiv, 2023).

Chapter 7 introduces CEBRA, a new self-supervised learning algorithm for ob-
taining interpretable, Consistent EmBeddings of high-dimensional Recordings using
Auxiliary variables. Leveraging the framework of nonlinear ICA, it jointly uses behav-
ioral and neural data in a (supervised) hypothesis- or (self-supervised) discovery-driven
manner to produce consistent, high-performance latent spaces using a generalized
contrastive learning approach with new sampling schemes for both discrete and contin-
uous data. It allows for single and multi-session datasets to be leveraged, which would
be important when trials as limited. Steffen, I, and a great master’s student, Jin Lee,
worked tirelessly to validate its accuracy and demonstrate its utility for both large-scale
calcium and electrophysiology (Neuropixels) datasets, across sensory and motor tasks,
and in simple or complex behaviors across species—key examples from diverse areas
in neuroscience. Scientifically, the paper shows CEBRA can be used for the mapping
of space, uncovering complex kinematic features in somatosensory cortex, and rapid,
high-accuracy decoding of natural movies from visual cortex, which was not easily
possible before. Since its publication in May 2023 has it been cited already 70 times
with 12k downloads of the code-base. Thus, it stands to be a landmark contribution
to the field, and will likely change our ability to quantify the neural basis of adaptive
behaviors in large-scale recordings.

I would like to also take this opportunity to thank the people who enriched the
work you will find within his dissertation and the funding agencies who supported it.
His co-advisor, Prof. Matthias Bethge, as well as amazing students and postdocs such
as Ms. Jin Lee, Mr. Rodrigo González Laiz, Ms. Anastasiia Filipova, Dr. Jessy Lauer,
and Mr. Shaokai Ye, who also published papers with him from my group. I thank the
Rowland Institute at Harvard, the Bertarelli Foundation, the Swiss National Science
Foundation, and Google for funding aspects of his work. Additionally, I would like to
thank his esteemed dissertation committee, Prof. Carl Petersen, Prof. Volkan Cehver,
Prof. Aapo Hyvärinen and Prof. Alexandre Pouget.

Collectively, the presented work is a testament to his intellectual prowess, his
unwavering commitment to excellence, and countless hours of deep thinking (and
coding!). As another of his defense examiners exclaimed (and I agree), it should
be required reading for anyone who works at the intersection of neuroscience and
machine learning! As one of his advisors, I can firmly say it was a joy to work with
him to ultimately produce nine papers together in the last four years. He also has
exceptional standards for data and code production, which meant I learned as much
from him as I humbly hoped he learned from me. In particular, working with him on
the development of CEBRA will continue to bookmark truly special years of learning

robust machine learning viii

and growth together, and stands as a highlight of my own career. For this I would also
like to take the opportunity to thank Steffen for joining my lab, working so hard on
such exciting problems with me, and being a wonderful person.

In closing, it is with great optimism and scholarly pride I get to introduce this
Ph.D. dissertation to the academic community. Steffen has not only met the rigorous
standards expected of a doctoral candidate but has exceeded them, leaving an indelible
mark on the landscape of neuroscience and machine learning. I am honored to have
played a role in his academic development and eagerly anticipate the impact he will
continue to make in the future.

robust machine learning ix

References

Mathis, M. W., Mathis, A., & Uchida, N. (2017). Somatosensory cortex plays an essential
role in forelimb motor adaptation in mice. Neuron, 93, 1493–1503.e6 (p. vi).

Mathis, M. W., & Schneider, S. (2021). Motor control: Neural correlates of optimal
feedback control theory. Current Biology, 31, R356–R358 (p. vi).

Mathis, M. W., & Mathis, A. (2020). Deep learning tools for the measurement of animal
behavior in neuroscience. Current Opinion in Neurobiology, 60, 1–11 (p. v).

Shadmehr, R., & Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics during
learning of a motor task. Journal of Neuroscience (p. vi).

Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor
coordination. Nature Neuroscience, 5, 1226–1235 (p. vi).

Summary
Modern neuroscience research is generating increasingly large datasets, from recording thou-
sands of neurons over long timescales to behavioral recordings of animals spanning weeks,
months, or even years. Despite a great variety in recording setups and experiments, analysis
goals are often shared. When studying biological systems, we want to probe and infer the
“hidden causes” underlying a phenomenon and their dynamics, though such dynamics can
have different underlying structures, and unroll on different time scales. Towards this goal,
we need robust methods for processing and analyzing data, and interpreting our findings to
inform subsequent experiments. In this thesis, I study the problem of supporting the scientific
discovery process by applying machine learning and statistical tools for data processing (§2–§5),
analysis (§6–§7), and informing subsequent experiments through interpretability (§8). For pro-
cessing, in §2 I introduce new evaluation paradigms for testing the performance of a computer
vision model under distribution shift at deployment time. In many realistic scenarios, a few
unlabeled samples from the target distribution are available in such scenarios. I leverage this
assumption to propose batch norm adaptation which considerably improves the error rates of
current machine vision models on the ImageNet-C and ImageNet-R datasets. I then extend the
methodology for test-time adaptation and empirically study the performance of self-learning
techniques in §3. I show that self-learning methods are effective at adapting models of all
kinds on a range of adaptation benchmarks. While more powerful than batch norm adaptation,
self-learning techniques are prone to collapse during long adaptation spans. In §4, I study this
problem in-depth, and show through a simple baseline that the only effective solution right
now is to perform periodic resetting of the model. In §5, I study the robustness problem in
the context of pose estimation, and assert that pre-training is crucial for out-of-distribution
performance. For analysis, in §6, I study the effectiveness of current self-supervised learning
approaches for representation learning, and show that through building of specialized loss
functions we can use contrastive learning to solve non-linear independent component analysis
for different assumptions on the latent distribution of a dataset. In §7 I design such a loss
function, a generalized variant of the InfoNCE loss, and apply the algorithm to several open
neuroscience datasets. The method, CEBRA, can perform scientific discovery and hypothesis
testing within a single algorithmic framework to jointly model behavioral and neural data.
Finally, I extend this model to allow interpretability and propose an identifiable approach to
generating attribution maps in §8. This method is able to attribute latent and observable factors
back into the original signal space. Such methods can close the loop to informing data collection
for the next iteration of experiments by proposing worthwhile interventions. This work is a
step towards more reliably using machine learning methods for science, where reproducibility
and robustness is of even greater interest than in engineering applications.

Keywords: robustness, adaptation, computer vision, self-supervised learning, identifiability, neurosci-
entific inference, neural population analysis, interpretable machine learning

Zusammenfassung
Datensätze in den Neurowissenschaften sind in den letzten Jahren immer größer geworden
und wachsen weiterhin. Wir können die Aktivität von tausenden Neuronen über lange Zeit-
skalen messen und das Verhalten von Versuchstieren über Wochen, Monate oder sogar Jahre
aufzeichnen. Während das Format der Daten stark variieren kann, gibt es gemeinsame Ziele
bei der Analyse: Den aufgezeichneten Signalen wird die Existenz latenter (nicht messbarer)
Variablen zugrunde gelegt. Es gilt, Struktur und Dynamik dieser Variablen bestmöglich zu
modellieren. In dieser Arbeit beschäftige ich mich mit verschiedenen Facetten ebendiesen
Problems: Wie kann modernes maschinelles Lernen eingesetzt werden, um Datenverarbeitung
(§2–§5), Datenanalyse (§6–§7), und die Generierung neuer Hypothesen zur Aufzeichnung
kommender Datensätze durch interpretierbare Methoden (§8) zu ermöglichen und zu beschle-
unigen? Zur Verarbeitung entwickle ich neue Ansätze zur robusten Bildklassifizierung durch
Adaption während des laufenden Betriebs (§2). Die dabei zugrundeliegende Annahme, dass
einige nicht annotierte Beispiele aus dem Testdatensatz vorhanden sind, trifft auf viele Probleme
in den Neurowissenschaften zu. “Batch Norm Adaptation” verbessert zahlreiche Modelle auf
den ImageNet-C und ImageNet-R Datensätzen. In §3 erweitere ich diese Methodik um die
Verwendung von “Self-learning” und zeige die Anwendbarkeit auf eine noch größere Klasse an
Modellen. Dabei demonstriere ich in §4 auch aktuelle Grenzen von Self-learning: Über längere
Zeiträume degradiert die Genauigkeit teils bis auf Zufallsniveau, oder ist nicht nennenswert
höher als beim periodischen Zurücksetzen des Modells auf den Anfangszustand. In §5 betra-
chte ich die Rolle von Pre-Training und Adaption im Kontext der robusten Erkennung von
Tierposen. Ich zeige, dass die Wahl des Pre-Trainings unabdingbar für eine hohe Genauigkeit
außerhalb der Trainingsverteilung ist. Für die Analyse stelle ich zunächst in §6 eine neue Theo-
rie zur Verbindung von Contrastive Learning und nichtlinearer Unabhängigkeitsanalyse vor
– diese ermöglicht es, durch Wahl der Fehlerfunktion bestimmte Annahmen über die dem
Datensatz zugrundeliegenden latenten Variablen zu berücksichtigen. In §7 konstruiere ich eine
solche Fehlerfunktion, welche die InfoNCE Funktion generalisiert. Diese wende ich auf ver-
schiedene öffentlich verfügbare neurowissenschaftliche Datensätze an. Die Methode “CEBRA”
kann zur explorativen Datenanalyse oder zum Testen neurowissenschaftlicher Hypothesen
gleichermaßen angewandt werden. Sie erlaubt die Modellierung multimodaler Datensätze,
in den Neurowissenschaften oftmals die Kombination aus Neuronenaktivität und Verhalten.
Zuletzt erweitere ich diese Methode in §8 um eine bessere Interpretierbarkeit: “Attribution
maps” mit Identifizierbarkeitsgarantien erlauben die Erklärung der rekonstruierten Faktoren
im ursprünglichen Signalraum. Diese Arbeit stellt einen Schritt zum vermehrten Einsatz mod-
erner Methoden des Maschinellen Lernens in der (neuro-) wissenschaftlichen Anwendung
dar. Verglichen mit anderen technischen Anwendungen von maschinellem Lernen ist es hier
ungleich wichtiger, robuste, reproduzierbare und erklärbare Algorithmen einzusetzen.

Stichworte: Robustheit, Adaptation, Maschinelles Sehen, selbstüberwachtes Lernen, Identifizier-
barkeit, Neurowissenschaftliche Datenanalyse, Interpretierbares Maschinelles Lernen

Contents

Acknowledgements i
Preface v
Summary xi
Zusammenfassung xiii
List of Figures xvii
List of Tables xxi

1 Introduction 1

2 Improving robustness against common corruptions by covariate shift adaptation 21

3 If your data distribution shifts, use self-learning 37

4 RDumb: A simple approach that questions our progress in continual test-time adaptation
65

5 Pretraining boosts out-of-domain robustness for pose estimation 81

6 Contrastive Learning Inverts the Data Generating Process 97

7 Learnable latent embeddings for joint behavioral and neural analysis 113

8 Identifiable attribution maps using regularized contrastive learning 175

9 Discussion 191

A Improving robustness against common corruptions by covariate shift adaptation 205

B If your data distribution shifts, use self-learning 235

C RDumb: A simple approach that questions our progress in continual test-time adaptation
263

D Pretraining boosts out-of-domain robustness for pose estimation 273

E Contrastive Learning Inverts the Data Generating Process 289

F Learnable latent embeddings for joint behavioral and neural analysis 307

G Identifiable attribution maps using regularized contrastive learning 313

Bibliography 319

Index 357

Photographic credits 361

Curriculum Vitae 363

List of Figures

1.1 Growth of recording capabilities in neuroscience over the recent years 2

1.2 The multi-step process from a hypothesis to conclusion in scientific inference 4

1.3 Landscape of recording techniques in neuroscience 8

1.4 Landscape of recording techniques in neuroscience 9

1.5 Relation between activity patterns measured in lab environments, and during natural
behaviors 10

1.6 Visualization of the “behavior space”, spanning various experimental paradigms 12

1.7 Overview of topics covered in this dissertation 18

2.1 Sample size vs. performance tradeoff in terms of the mean corruption error on IN-C for
ResNet-50 and AugMix 27

2.2 Batch norm adaptation across 25 model architectures in the torchvision library 27

2.3 The Wasserstein metric between optimal source (IN) and target (IN-C) statistics correlates
well with top-1 errors 30

2.4 Batch size vs. performance trade-off for IN, IN-V2, ObjectNet, IN-R 31

2.5 The Wasserstein bound suggests small optimal N for most parameters and qualitatively
explains our empirical observation 32

3.1 Self-learning improves models derived with various pre-training tasks 39

3.2 Two point model for pseudo-labeling and entropy minimization, for synthetic data and
CIFAR10-C 58

4.1 Continuously Changing Corruptions show limitations of existing TTA methods 67

4.2 Contruction of the CCC benchmark dataset for continual test-time adaptation 69

4.3 Adaptation performance of all evaluated models depending on the number of observed
samples 73

4.4 TTA using a ViT backbone 75

4.5 Analysis of ETA learning dynamics 77

4.6 Analysis of entropy minimization collapse on synthetic and real data 79

5.1 Transfer Learning boosts performance, especially on out-of-domain data 82

5.2 Horse-10 dataset overview 83

robust machine learning xviii

5.3 Transfer Learning boosts performance, especially on out-of-domain data 85

5.4 Generalization across species 90

5.5 Training randomly initialized networks longer cannot rescue out-of-domain performance
91

5.6 Measuring the impact of common image corruptions on pose estimation (Horse-C) 92

5.7 Impact of test time normalization 93

5.8 Impact of distribution shift introduced by horse identities and common corruptions 94

6.1 Assumed generative process, and model training using contrastive learning with the
InfoNCE loss 99

6.2 Varying degrees of violation of the uniformity assumption for the marginal distribution
108

6.3 Dataset visualization for 3DIdent 110

7.1 Use of CEBRA for consistent and interpretable embeddings 115

7.2 CEBRA produced consistent, highly decodable embeddings 116

7.3 Overview of datasets, synthetic data, & original pi-VAE implementation vs. modified
conv-pi-VAE 119

7.4 Hyperparameter changes on visualization and consistency 121

7.5 Additional metrics used for benchmarking consistency 122

7.6 Hypothesis- and discovery-driven analysis with CEBRA 123

7.7 Hypothesis testing with CEBRA 125

7.8 Persistence across dimensions 126

7.9 Multi-session training and rapid decoding 127

7.10 Forelimb movement behavior in a primate 129

7.11 Somatosensory cortex decoding from primate recordings 130

7.12 Spikes and calcium signalling show similar CEBRA embeddings 132

7.13 CEBRA produces consistent, highly decodable embeddings 133

7.14 Spikes and calcium signaling reveal similar embeddings 134

7.15 Decoding of natural video features from mouse visual cortical areas 136

7.16 The contrastive learning data sampling scheme used in CEBRA. 155

8.1 Identifiable attribution maps for time-series data 177

8.2 RegCL and supervised baselines vs. number of latent factors 181

9.1 The identifiability gap 203

A.1 Wasserstein distance, normalized Wasserstein distance and Jeffrey divergence estimated
among source and target statistics between different network layers. 208

A.2 Normalized Wasserstein distance and Jeffrey divergence across corruptions and layers in
a ResNet-50. 209

A.3 Adaptation improves baseline mCE across all 25 model architectures in the torchvision
library, often on the order of 10% points 216

robust machine learning xix

A.4 Results on the individual corruptions of IN-C for the vanilla trained ResNet-50 and
the AugMix model with and without adaptation. Adaptation reduces the error on all
corruptions. 216

A.5 tSNE embeddings of the Wasserstein distances between BN statistics 217

A.6 Left: Performance for all the considered ResNet-50 variants based on the sample batch
size. The optimal N is chosen according to the mCE on the holdout corruptions. Right:
Best choice for N depending on the input batchsize n. Note that in general for high values
n, the model is generally more robust to the choice of N. 219

A.7 Effects of batch size n and pseudo batch size N for the various considered models 219

A.8 Overview of different parametrizations of the model 228

B.1 Two point model with momentum 238

B.2 Two point model without momentum 239

B.3 Two point model with momentum, different initialization 239

B.4 Severity-wise mean corruption error for different IN models 246

B.5 Evolution of error during online adaptation for EfficientNet-L2 250

B.6 Top-1 error for the different IN-D domains for a ResNet50 and training with RPLq=0.8

and ENT 255

B.7 Systematic predictions of a vanilla ResNet50 on IN-D for different domains 256

C.1 Theoretical analysis of adaptation under distribution shift 264

C.2 Analysis of entropy minimization collapse on real data 265

C.3 Visualization of smooth transitions in CCC 268

C.4 Adaptation performance of all evaluated models using a ResNet-50 backbone 268

C.5 (a) When tested on an infinite concatenation of severity 5 noises, Tent does not collapse
even after seeing 100M CIFAR scale images. (b) Tent does not collapse to chance level
when tested on a long term variant of CIFAR10-C gradual. (c) CIFAR10-C exhibits great
variations between individual corruptions, similar to ImageNet-C. 270

D.1 CKA comparison of representations for task-training vs. ImageNet trained (no task
training) for ResNet-50 277

D.2 CKA comparison of representations when trained from scratch vs. from ImageNet
initialization 278

D.3 Noise corruptions for all five different severities 279

D.4 Blur corruptions for all five different severities 279

D.5 Weather corruptions for all five different severities 281

D.6 Digital corruptions for all five different severities 282

D.7 Speed Benchmarking for MobileNetV2s, ResNets and EfficientNets 287

List of Tables

1.1 An overview of dimensionality reduction algorithms commonly used in neuroscience 13

2.1 Adaptation improves mCE and Top1 accuracy on IN-C for different models and surpasses
the previous state of the art without adaptation 28

2.2 Improvements from adapting the BN parameters vanish for models trained with weakly
supervised pre-training. 29

2.3 Fixup and GN trained models perform better than non-adapted BN models but worse
than adapted BN models. 30

2.4 GN and Fixup achieve the best results on ObjectNet (ON). After shuffling IN-C cor-
ruptions, BN adaptation does no longer decrease the error. Adaptation improves the
performance of a vanilla ResNet50 on IN-R. 31

2.5 Adaptation improves the performance of robust models on IN-R 31

3.1 Self-learning decreases the error on ImageNet-scale robustness datasets 46

3.2 Self-learning decreases the error on small-scale datasets, also for models pre-trained with
data augmentation and domain adaptation. 48

3.3 Unlike batch norm adaptation, self-learning adapts large-scale models trained on external
data. 49

3.4 Self-learning outperforms other test-time-adaptation techniques on IN-C. 50

3.5 Self-learning can further be improved when combining it with other techniques. 50

3.6 Vision Transformers can be adapted with self-learning. 51

3.7 RPL (ENT) performs better on IN-C (CIFAR10-C). 52

3.8 RPL performs best without a threshold. 52

3.9 RPL performs best with instantaneous updates (ResNet50). 53

3.10 RPL performs best when affine BN parameters are adapted (ResNet50). 53

3.11 Comparison of BatchNorm and GroupNorm layers for adaptation. 54

3.12 Our expanded analysis confirms hyperparameter choices from the literature. 55

3.13 Self-learning leads to an increased ECE compared to the unadapted model. 55

3.14 Self-learning leads to slightly decreased accuracy on the source dataset (clean IN). 56

3.15 Self-learning decreases the top1 error on IN-D domains with strong initial performance,
but fails to improve performance on challenging domains. 59

robust machine learning xxii

4.1 Mean accuracy of ResNet-50 models on CIN-C, CIN-3DCC and CCC 74

4.2 Mean accuracy of different backbone architectures on CCC-Medium 75

4.3 Mean accuracy of different backbone architectures on CCC-Hard 76

4.4 Accuracy of our method for different resetting times on CIN-C-Holdout 76

4.5 Average accuracy on all of CCC splits on a variety of H0 values 76

5.1 average PCK@0.3 (%) 89

5.2 PCK@0.3 for several bodyparts and architectures on within domain horses 89

5.3 PCK@0.3 for several bodyparts and architectures on out-of-domain horses 90

6.1 Identifiability up to affine transformations on a synthetic dataset 106

6.2 Identifiability up to generalized permutations on a synthetic dataset 107

6.3 MCC on KITTI Masks 109

6.4 Identifiability up to affine transformations on the test set of 3DIdent 111

8.1 Comparison of attribution methods, and combinations of training/regularization schemes
180

8.2 Contrastive learning can estimate attribution maps w.r.t. latent factors 181

A.1 Mapping between 9 ambiguous ON classes and the possible correspondences in IN 212

A.2 Overview of different models with parameter counts 213

A.3 AlexNet top1 errors on ImageNet-C 214

A.4 After converting the checkpoints from TensorFlow to Pytorch, we notice a slight degrada-
tion in performance on the IN val set. 215

A.5 Adaptation improves the performance of the ResNet50 and the ResNet101 model but
hurts the performance of the ResNet152 model. 215

A.6 Estimating top-1 error of unseen corruptions within the different corruption classes 218

A.7 Test mCE for various batch sizes vs. pseudo batch sizes 220

A.8 Test mCE for various batch sizes vs. pseudo batch sizes (part 2) 220

A.9 Test mCE for various batch sizes vs. pseudo batch sizes (part 3) 221

B.1 Model checkpoints used for our experiments. References: 1Croce et al. (2020), 2He et al.
(2016c), 3Huang et al. (2017), 4Xie et al. (2017), 5Hendrycks et al. (2020a), 6Mahajan
et al. (2018), 7Xie et al. (2020a), 8Caron et al. (2021b) 242

B.2 AlexNet top1 errors on ImageNet-C 243

B.3 mCE in % on the IN-C dev set for ENT and RPL for different numbers of training
epochs when adapting the affine batch norm parameters of a ResNet50 model. 244

B.4 mCE on the IN-C dev set for different learning rates for EfficientNet-L2 244

B.5 mCE in % on IN-C dev for entropy minimization for different learning rates and training
epochs for ResNeXt101 245

B.6 mCE in % on IN-C dev for robust pseudo-labeling for different learning rates and training
epochs for ResNeXt10 245

B.7 Best hyperparameters for all models on IN-C 245

B.8 Detailed results for each corruption along with mean corruption error on IN-C 247

robust machine learning xxiii

B.9 Detailed results for each corruption along with mean corruption error on CIFAR10-C
248

B.10 Detailed results for the UDA methods 248

B.11 ImageNet-C dev set mCE in %, vanilla ResNet50, batch size 96. We report the best score
across a maximum of six adaptation epochs. 249

B.12 Comparison of hard-pseudo labeling and robust pseudo-labeling to Test-Time Training
249

B.13 Detailed results for our comparison to MT3 (Bartler et al., 2022) 250

B.14 ImageNet-C dev set mCE for various batch sizes with linear learning rate scaling
(ResNet50, RPL). 250

B.15 ImageNet-C performance for three seeds on a ResNet50 for ENT and RPL. 250

B.16 Statistics of one-to-many mappings from IN-D to ImageNet. 251

B.17 mDE in % on IN-D for different model selection strategies. 252

B.18 Top-1 error on IN-D in % as obtained by robust ResNet50 model 253

B.19 Top1 error on IN-D in % as obtained by state-of-the-art robust ResNet50 models and
batch norm adaptation 253

B.20 Top-1 error on IN-D in % as obtained by state-of-the-art robust ResNet50 models and
RPLq=0.8 254

B.21 Top-1 error on IN-D in % as obtained by state-of-the-art robust ResNet50 models and
ENT 254

B.22 mDE on IN-D in % as obtained by robust ResNet50 models with a baseline evaluation,
batch norm adaptation, RPLq=0.8 and ENT 254

B.23 Top-1 error (↘) on IN-D in % for EfficientNet-L2 255

B.24 top-1 error on IN and different IN-D domains for different settings 256

B.25 top-1 error on IN-D by AlexNet which was used for normalization. 257

B.26 Self-learning can improve performance on the WILDS benchmark if a systematic shift is
present 259

B.27 mCE in % on the IN-C dev set for ENT and RPL for different numbers of training
epochs when adapting the affine batch norm parameters of a BigTransfer ResNet50 model.
260

B.28 mCE in % on the IN-C dev set for ENT and RPL for different numbers of training
epochs when adapting the affine batch norm parameters of a BigTransfer ResNet50 model.
260

B.29 Test-time adaptation marginally improves over self-ensembling 261

C.1 CCC traversal length statistics, for each CCC split. 267

C.2 Accuracy of EATA on CIN-C holdout noises for different values of the weight regularizer
loss. 267

C.3 Accuracy of EATA on CIN-C holdout noises for different values of the Fisher alpha. 269

C.4 Accuracy of EATA on CCC-Medium using a ViT backbone, for different values of the
regularizer, β. 269

robust machine learning xxiv

D.1 PCK@0.3 (%) for several bodyparts and all evaluated architectures on within domain
horses. 276

D.2 PCK@0.3 (%) for several bodyparts and all architectures on out-of-domain horses. 276

D.3 Test performance on cow when trained on 90% of cow data 278

D.4 Test performance on sheep when trained on 90% of sheep data 278

D.5 Summary results for evaluation of all models on the Horse-C dataset 281

D.6 Full result table on Horse-C. All results are averaged across the three validation splits.
“none” denotes the uncorrupted Horse-10 dataset. Best viewed in the digital version.
283

D.7 Improvements using batch norm adaptation on the Horse-C Noise and Blur corruption
subsets for a pre-trained ResNet50 model. 284

D.8 Improvements using batch norm adaptation on the Horse-C Weather and Digital corrup-
tions subsets for a pre-trained ResNet50 model. 285

D.9 Small improvements by using batch adaptation on the identity shift task for a pre-trained
ResNet50 model. Note that the o.o.d. performance is still substantially worse (higher
normalized error) than the within-domain performance. 286

E.1 Identifiability up to affine transformations on the training set of 3DIdent 302

F.1 Consistency statistics 308

F.2 Decoding statistics 308

F.3 Statistics for Allen Neuropixels dataset, 1 Frame window 309

F.4 Statistics for Allen Neuropixels dataset, 10 Frame window 310

F.5 Statistics for Allen Neuropixels dataset, 1 Frame window 311

F.6 Statistics for Allen Neuropixels dataset, mean frame error, 10 frames 312

G.1 Results for fitting an ANOVA on all combination of factors. 315

G.2 Post-hoc test for the combination of attribution method and training method. 316

G.3 Posthoc test for the combination of attribution method and regularization scheme. 317

1
Introduction

“How does the brain generate adaptive, intelligent behavior?” might
be one of the most interesting scientific questions besides the understanding of the
universe in physics, and the origins of life in biology. The scientific endeavor towards
solving this question is highly interdisciplinary, and investigates the brain at very
different temporal and spatial scales: Single neuron activity informs us about the basic
building blocks of neural circuits. Brain-level studies give us a birds-eye understanding
of which brain areas are relevant in a particular task. The predominant paradigm
in neuroscientific investigation for decades has been the study of brain function in
controlled environments, with clear ways to causally test relationships. Yet, the brain
is capable of incredibly complex tasks and behaviors – and in recent years, a second
emerging way of doing neuroscience was the incorporation of increasingly large
datasets. Advances in technology enabled this new paradigm of leveraging large scale
data recordings in for scientific discovery in neuroscience.

Many fundamental, basic scientific questions about the brain remain unsolved to
date: How does the brain parse a hierarchically organized visual scene, how are objects
encoded along the visual processing hierarchy, and which brain areas are involved?
Which algorithm is used for planning and navigation in a complex environment, and
how is a complex motor plan formed and finally executed? What is the learning
algorithm used to acquire new knowledge, build internal models of the world, and how
does it relate to the objective functions, architectural implementations and algorithms
we study in machine learning today? While many fundamental insights towards
addressing such questions in neuroscience were generated by close examination of
properties of single synapses, cells, and smaller populations of neurons, neuroscience
has unprecedented methods for data collection, and further advances in how we process
and analyze data promise to accelerate scientific discovery.

robust machine learning 2

1960 1980 2000 2020

1
10

100
1k

10k
100k

1M
10M

100M
1B

10B
100B

S
im

ul
ta

ne
ou

sl
y

re
co

rd
ed

ne
ur

on
s

Electro-
physiology

Optical
imaging

C. elegans

Zebrafish (larva)

Mouse

Macaque

Human

Figure 1.1: Growth of recording capabilities
in neuroscience over the recent years. Figure
adapted from Urai et al. (2022a) (CC-BY), ex-
tended from Stevenson and Kording (2011).

Data acquisition and analysis

needs in the life sciences have
grown exponentially in recent years due
to new recording paradigms, better hard-
ware systems and imaging techniques.
Particularly in neuroscience, we are now
able to record from thousands of neu-
rons during increasingly complex tasks
through electrode arrays with hundreds
of recording sites (Jun et al., 2017; May-
nard et al., 1997; Steinmetz et al., 2021)
and powerful optical imaging techniques
(Denk et al., 1990; Grewe et al., 2010;
Sofroniew et al., 2016; Svoboda et al.,
1997), some of which are applicable in
freely moving animals (Ghosh et al., 2011;
Lecoq et al., 2023). The high-dimensional
neural recordings are paired with behav-
ioral data acquired by modern micro-
scopes or camera data processed by high-throughput computer vision systems (Mathis
et al., 2018, 2020; Nath et al., 2019).

The number of simultaneously recordable neurons continues to grow exponentially
(Fig. 1.1), which bears tremendous opportunities for scientific discovery in neuro-
science (Stevenson & Kording, 2011). Larger scale recordings bear the opportunity
to investigate coding of information in neuron populations, spatially closely related,
as well as distributed distributed across multiple areas in the brain: As Urai et al.
(2022a) review, insights about sparse and distributed representations, examples for
neural computations that are only detectable at the population level, computation of
low-dimensional neural manifolds for representing behavior, and the orchestration of
activity cross large network architectures were only possible by larger scale recordings
of activity. As data recording methods become increasingly capable and complex, our
current bottleneck are robust, interpretable and reproducible algorithms that are able
to help us model and understand the resulting datasets.

Moving towards large-scale and high-throughput recording and analysis pipelines is
already common and established in other fields like high energy physics and astronomy:
Research projects in these areas require the interplay of theoretical, experimental and
computational approaches. Research collaborations like the Large Hadron Collider
(LHC) at CERN, or the Event Horizon Telescope (EHT) aim to record large amounts
of raw data, paired with computational approaches to filter, process and model these
datasets for testing scientific hypotheses. Yet, a key difference between neuroscience
and physics is our lack of equations and theories describing the functioning brain.
Killcoyne and Boyle (2009) assert that “life sciences research is, by nature, borderline

robust machine learning 3

chaotic”.
In physics, scientists record large datasets for different reasons: in the LHC, the

events of interest are rare, and long recording times along with filtering algorithms
are necessary to detect these events. In contrast, the EHT’s result in 2022 was to create
an image of a black hole by fusing data1 recorded over hours of recording times in
the years 2009–2017, which are then combined using theory-grounded computational
approaches (Akiyama et al., 2019). In both cases, robust processing algorithms are
crucial for successful application of computational approaches. While in the filtering
case, non-robust approaches could fail to detect a positive event, or produce false alarms,
in the latter case a non-robust approach could yield wrong downstream conclusions in
the further analysis of the phenomenon. In physics, fortunately, a lot of theory backs
these computational approaches, and in many cases, exact equations are known for
informing and testing the employed models.

This is less the case in the life sciences. We are also interested in observing complex
dynamical systems like the brain and improving our understanding of them through
observation and intervention. Computational approaches based on machine learning
promise to vastly increase our data processing capabilities, and are urgently required
in the light of our increasingly powerful recording techniques. Yet, compared to our
precise physical understanding of a microscope, camera system or an electrode array
which are used to acquire data, modern machine learning tools and their behavior on
real world datasets are relatively poorly understood. ML models typically lack guaran-
tees for producing accurate outputs, can collapse into failure modes under distribution
shift (Geirhos et al., 2020), cannot be easily adapted to a particular experiment or setup
and can yield hard-to-reproduce results. It is therefore worthwhile to both empirically
and theoretically investigate the behavior of modern ML tools, and equip algorithms
with model architectures, objective functions and optimization procedures that aid the
interpretability and understanding of these algorithms. As Wilson et al. (2014) argue,
“software is just another kind of experimental apparatus and should be built, checked,
and used as carefully as any physical apparatus”.

If we succeed at improving robustness and interpretability of our ML tools, they can
enter the scientific discovery process at multiple stages. To aid the further discussion,
we focus on different phases of scientific discovery in the life sciences (Figure 1.2): (1)
data collection, (2) data processing and (3) data analysis. These three phases are often
closely interwoven, or even interdependent. In all three phases, machine learning has
enormous potential to accelerate and scale up the process of scientific discovery in an
area of increasingly growing datasets.

In the following, I present progress on machine learning systems for the data
processing and data analysis phase, and close the loop to inform the data collection
process of successive experiments by utilizing explainable AI methods. I aim to
address the key question how modern machine learning methods and new statistical

1The EHT produces multiple peta-bytes (PB) of data, https://eventhorizontelescope.org/faq/how-
much-data-recorded-during-observation-and-how-it-transferred-central-processing

robust machine learning 4

Hypothesis

testing

Cameras, Sensors,

microscopes, ...

Imaging, sequencing,

video recordings, ...

Post-processing, ROI

identification, cell

segmentation, ...

Data processing
Data analysis

Data collection

Hypothesis
Dimensionality

reduction,

modeling

Figure 1.2: The process from a hypothesis to conclusion in scientific inference is a multi-step
process comprising data collection, processing and analysis. Machine learning or statistical
algorithms can assist at every step of this process if the right methods are available to ensure
robustness of the models used.

techniques can accelerate our progress in understanding brain function at the system
and population level: How can we more robustly preprocess data to arrive at large scale
datasets for investigation? How can we use new statistical tools to study the interplay
between neural activity and behavior during complex tasks, with many confounding
factors? How can we inform next experimental interventions from these statistical
insights?

For data processing, I propose methods for robust learning which are applicable
to biological imaging and to many other real-world technical applications involving
image and video acquisitions systems. I focus on building methods that separate their
training and deployment phases, and are adaptable to changing world conditions and
setups during deployment. For data analysis, I equip machine learning systems with
identifiability guarantees, allowing data to be modeled and statistically analyzed in
more reproducible ways. I specifically focus on techniques whose theoretical guarantees
hold empirically in realistic evaluation scenarios and on real datasets. To close the
loop to data collection, I build algorithms with theoretical guarantees that allow for
post-hoc explainability to inform scientists on new experiments and/or influence the
data collection process on the fly. As with our data analysis techniques, these theoretical
guarantees should be tested on synthetic and real world datasets.

Approaches to understanding intelligent behavior

Modern neuroscience and artificial intelligence share a lot of history, and are of
comparable age: “Modern neuroscience” as a separate scientific discipline emerged in
the mid 20th century, the term “artificial intelligence” was first coined at Dartmouth
college in 1956 (McCarthy et al., 2006)2. While there were some overlaps between

2The proposal started with, “The study is to proceed on the basis of the conjecture that every aspect
of learning or any other feature of intelligence can in principle be so precisely described that a machine

robust machine learning 5

the fields throughout their history, and some neuroscientific insights informed AI
research at a rather high level (e.g., the NeoCognitron by Fukushima, 1980), both fields
developed mostly independently and with separate focus. Today, machine learning
became an important component in many signal processing systems, and in this section
we examine how it can also be beneficial for data analysis in neuroscience, to generate
new scientific insights. Today, both fields are in interesting stages:

Neuroscience grew massively in scale and availability of data, and the applicable
experimental procedures for collecting data. Scientific collaboration projects like the
International Brain Laboratory or the Allen Institute’s OpenScope project released
highly standardized large scale datasets comprised of 10,000-100,000s of neurons3 (de
Vries et al., 2020; International Brain Lab et al., 2023; Siegle et al., 2021a). We are already
able to perform whole brain recordings of neural activity in smaller model animals
like C.elegans (Nguyen et al., 2016; Schrödel et al., 2013), zebrafish larvae (Ahrens et al.,
2013; Cong et al., 2017; Kim et al., 2017; Symvoulidis et al., 2017) and move towards
whole brain recordings in drosophila (Aimon et al., 2019; Mann et al., 2017), cf. Urai
et al. (2022a) for an extended review. While these advances in the scale of recording
methods do not replace investigation of single neuron properties and characteristics at
the cell level, they certainly open interesting avenues for analyses that were not possible
before.

Machine learning experienced many breakthrough moments since the success of
convolutional networks on the ImageNet benchmark (Deng et al., 2009a). After the
individual success of deep learning with specialized architectures in speech, vision, and
natural language processing, the transformer architecture and attention mechanism
(Vaswani et al., 2017) demonstrated the first proof of concept of a single, replicated
building block that could excel on all disciplines with little domain-specific changes.
With the transition to foundation models (Bommasani et al., 2021) – models pre-trained
on vasts amount of data, which excel then on a variety of downstream applications with
only little additional training samples – we are now at a stage were intelligent agents
can productively interact with humans during activities like writing, programming,
and creative work.

Interestingly, despite this sharp increase in data and simulation capability, it remains
an open problem of how and why biological and artificial systems exhibit complex and
intelligent behaviors. Our understanding of intelligent systems is still very limited, and
the tools to explore and study it at the present scale are lagging behind. Despite being
able to fully observe whole model animals, or measure the activity of every single
neuron while a foundation model generates a complex response, we are unable to pin
down the computational principles underlying this behavior. New computational tools
for processing and analysis of experimental data are urgently needed.

can be made to simulate it. An attempt will be made to find how to make machines use language, form
abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves.”

3For a sense of scale, the IBL dataset is comprised of recordings from 116 mice, with 295,501 units
(before sorting), two Neuropixels insertions per session International Brain Laboratory (2023).

robust machine learning 6

How can neuroscience benefit from machine learning?

Neuroscientific data analysis traditionally operated across different spatial scales and
timescales. When “modern neuroscience” formed in the 1960s, it was heavily influenced
by the principles of reductionism, a well-known approach in physics. Abi-Rached and
Rose (2010) characterize the field of modern neuroscience as a “hybrid of hybrids”,
merging lines of work from previously separated disciplines. In contrast to the more
distinct fields of psychology, anatomy and neurology which existed well before, Kandel
(1982) asserted that a feature of this “modern neuroscience” is its “common purpose”
towards the understanding of complex sensory and behavioral phenomena from
different angles of investigation.

Many works from this early era of modern neuroscience were concerned with
studying the contribution of individual building blocks – neurons, synapses, axons,
glia cells, etc. – and connecting them to principles of brain function. A multitude of
works emerged that studied the properties of individual neurons in a variety of tasks.
Firing properties of individual cells were modeled based on single-unit activity in the
well-known experiments from Hodgkin and Huxley (1952) in the squid giant axon.
Such models of single-cell physiology remain influential till today. In vision, many
experiments strived towards identifying single-neuron properties in various visual
areas, beginning with Hubel and Wiesel (1959) who found cortical neurons tuned to
particular angles of grating stimuli in the cortex of cats, and later studied the spatial
arrangement within cortical columns (Hubel & Wiesel, 1963).

From single neurons to population dynamics

Despite these success stories of investigating single neuron properties, the importance
of examining the population level activity was acknowledged since the 1960s. As Moore
et al. (1966) note, “observation of multiple units can reveal details of interconnections
and functional interactions”. Certain phenomena cannot be explained by single neuron
activity alone, but an orchestration of activity among multiple neurons which makes
up the neural code. A fundamental challenge in neural information processing are the
various sources of noise in a biological system – a problem well-studied in information
theory, which is concerned with transmitting information optimally across a noisy
channel. Consequently, neural coding was hypothesized to follow such optimality
principles (Barlow et al., 1961). Later works were successful in making predictions
in how e.g. visual coding and filters merge through these principles: Olshausen and
Field (1996a, 1996b) showed that response properties of simple-cells neurons were
optimal in terms of information compressing under a noise model. This gives rise
to a population code that collectively explains how visual stimuli are encoded across
neuron populations using a sparse code. Likewise, while being based on single-neuron
measurements, emergence of place-cells (O’Keefe & Dostrovsky, 1971) and grid-cells
(Hafting et al., 2005a) can be explained through optimality principles on the population

robust machine learning 7

level. This even allows theoretical predictions of firing properties of such cells in
different experimental settings, e.g., in 3D environments (Mathis et al., 2015).

Other interesting examples of population codes can be studied in sensorimotor
learning. Compared to the previous examples focused on perception and representation
of the environment, sensorimotor learning is an interesting field of study for closed-loop
experiments between the subject and the experimental environment (for a review, cf.
Wolpert et al., 2011). Many phenomena in sensorimotor learning can be explained by
principles of optimal control (Todorov, 2004), which raises the question how and where
individual computational components are implemented. Strides towards this question
require analysis of neuron populations across brain areas, e.g. through theory-informed
inhibition experiments (Takei et al., 2021, see Mathis and Schneider, 2021 for a summary)
to investigate how theory maps onto individual regions. A finer dissection requires
the analysis of population dynamics: Analyzing activity with the assumption of an
underlying lower-dimensional representation can aid the understanding of seemingly
complex single-unit activity, as Churchland et al. (2012a) show for a reaching task.

Evolution of recording methods

Recording techniques in the neurosciences made substantial progress over the years,
and influenced the kind of insights that could be generated (Stevenson & Kording,
2011). Electrodes for recording single neuron activity are used since the 1950s (Hubel,
1957).The tretrode (Recce, 1989) became popular as an extension to single electrodes,
allowing to record from a few electrodes simultaneously. Especially for longer-term
recordings in primates, larger electrode arrays like the Utah array were introduced
(Maynard et al., 1997; Nordhausen et al., 1996), allowing to record from up to 100

recording sites. These recording techniques are still used up to date, despite known
limitations, e.g. the impact on surrounding tissue due to the used materials (Patel
et al., 2023). Modern electrodes increasingly build on flexible and more bio-compatible
materials, allowing longer term recordings (Hong & Lieber, 2019; Tang et al., 2023).
Electrode-based solutions continue to increase in scale and recording sites: It is now
possible to record from a few hundred recording channels using electrode arrays like
Neuropixels (Jun et al., 2017). Neuropixel probes can be inserted at various locations in
the brain, including measurement with multiple simultaneously inserted probes.

Besides methods directly recording electrical signals, measuring proxies for infor-
mation processing through optical methods was investigated since the 1990s (Svoboda
et al., 1997) using two-photon microscopy (Denk & Svoboda, 1997; Denk et al., 1990).
Such recording methods can be used for whole brain imaging of small organisms
as discussed before, or multi-area recordings in e.g. rodents (Sofroniew et al., 2016).
The calcium concentration within a neuron is used as a proxy for its activity, and
indicators like GCaMP (Tian et al., 2009) are used to measure changes in the cells
calcium concentration via fluorescence microscopy.(calcium imaging!GCaMP) With
suitable microscopes, the indicators are excited using light and the fluorescence in case

robust machine learning 8

Figure 1.3: A. Overview of recording techniques to measure connectivity in the brain at different
time scales and spatial scales. Reproduced from Bassett and Sporns (2017) with permission
from Springer Nature.

of calcium concentration in the cell is recorded in form of a video or photon counts.
Depending on the technique, the activation energy for the indicator is delivered via a
single photons (short wavelength light), two photons as longer wavelength (Denk &
Svoboda, 1997; Denk et al., 1990) or, more recently, three photons. The resulting video
recording is first segmented into individual regions and then “deconvolved”: Calcium
indicators have decay times in the range of multiple seconds, effectively low-pass
filtering the underlying activity. Such recording methods can also be headmounted on
rodents, allowing to record freely moving behavior along side optical recording: Lecoq
et al. (2023) review the current state of the field, including single photon (Ghosh et al.,
2011), two photon (Sawinski et al., 2009) and three photon (Klioutchnikov et al., 2020;
Zhao et al., 2023) variants of such “miniscopes” (Ghosh et al., 2011).

Besides electrophysiology and optical imaging as popular invasive recording tech-
niques, a breadth of other recording techniques exists not covered here – Figure 1.3
visualizes recording methods for connectivity across time and spatial scales. Figure 1.4
depicts the range of functional recording methods, and means for interventions, across
maximum recording length and the number of recordable units.

There are still many open computational challenges in neural recordings: Extracel-
lular recordings need post-hoc processing which identify signals from individual cells.
While a variety of spike-sorting algorithms exist, there is disagreement on the choice
and application of these algorithms, and we need ground-truth datasets (e.g, paired
with patched intracellular recordings, Neher and Sakmann (1976)) for the design and
evaluation of robust algorithms (Harris et al., 2016). Likewise, optical signals often need
to be post-processed with de-convolution algorithms, and for optimal design of such
algorithms, paired ground-truth across different brain regions is needed (Rupprecht

robust machine learning 9

Figure 1.4: Overview of recording and stimulation techniques across recording timescales
and channel number. References: Araki et al. (2019), Chiang et al. (2020), Chung et al. (2019),
Ferlauto et al. (2021), Guan et al. (2019), Jun et al. (2017), Kozai et al. (2012), Liu et al. (2019,
2020a), Luan et al. (2017), Minev et al. (2015), Park et al. (2017, 2021), Song et al. (2020b),
Tybrandt et al. (2018), and Yu et al. (2016). Figure and references reproduced from Hong et al.
(2021), CC-BY.

et al., 2021).

The role of behavior in neuroscience

Neuroscience needs well-designed behavior paradigms: The aforementioned reduction-
ist approach to neuroscience traditionally dismisses the importance of experimental
design (Krakauer et al., 2017a). Behavioral design has important implications on the
observable neural activity during an experiment, and its relevance to make conclusions
about activity during naturalistic behavior: The activities observed during a lab experi-
ment (left column in Figure 1.5) will generally be a subset of neural activity patterns we
can observe during natural behavior (A). Carefully designed behavioral tasks allow to
investigate a subset of natural behavior within a laboratory environment (B). However,

robust machine learning 10

Figure 1.5: Relation between activity patterns measured in lab environments, and during
natural behaviors. Reprinted from Krakauer et al. (2017a) with permission from Elsevier, also
see Photographic credits.

it is also possible to design experiments yielding to neural activity with no meaningful
relationship to activity we can expect during natural behavior (C). Finally, ambiguity is
possible: Some experiments might give rise to ambiguity in the space of neural activity
(D), others in the space of natural behaviors (E).

Ideally, like with neural data, we require data collection and processing methods for
capturing as much behavioral information as possible. Advances in machine learning
enabled a lot of progress in this area: A mainstream approach today is markerless
tracking of animals using pose estimation tools (Mathis et al., 2018). On smaller model
organisms, microscopes that allow whole-body tracking of animals and simultaneous
recording of behavior and neural activity are becoming feasible (Cong et al., 2017;
Nguyen et al., 2016; Symvoulidis et al., 2017), and virtual reality environment allow
closed-loop and fine-grained control of the experimental environment.

Monitoring high dimensional animal behavior relies on machine learning techniques
to digitize videos and other forms of raw recordings. Advances in computer vision and
core machine learning – e.g. in robustness, or data efficiency – therefore often directly
translates into advances in these algorithms (e.g., Mathis et al. (2020)).

Neuroscience needs new analysis methods

Right now, the field is increasingly moving towards naturalistic stimuli and tasks, and
it has been suspected that this will give rise to different behavior in the neural code
than the activity generated by standardized and stereotypical stimuli like gratings in
vision science, or constrained behaviors in sensorimotor tasks.

robust machine learning 11

Why do we work with constrained stimuli and behaviors? Controlled experimental
conditions are an effective way of abstracting noise and unwanted processes, and
allow clear scientific investigation of a phenomenon. From a standpoint of causal
inference, all variables with potential influences on the process are fixed to a constant
value, and only the variable under investigation is intervened upon. Consequently,
established analysis methods like linear regression, generalized linear models, or linear
dimensionality reduction algorithms like principal or independent component analysis
are often sufficient to obtain insightful conclusions from such datasets.

However, since task, environment, and the brain form a dynamical system and
interact with each other, fixing these experimental variables naturally also constrains
the complexity of the generated behavior during the experiment, and potentially also
the neural population code we can observe (Krakauer et al., 2017a). The more variables
change over the course of an experiment, and the more naturalistic this variation,
arguable the more diverse is the signaling activity we can measure.

How to move forward? We should both continue to investigate clearly controlled
behaviors with classical statistical methods, but extend our experimental repertoire by
moving to more naturalistic and complex behaviors and stimuli (Mathis and Mathis,
2020; Figure 1.6). The latter requires the introduction of analysis tools that can deal
with this growing complexity of behaviors and neural activity, and allow to dissect
their relationship post-hoc. This mandates the development of suitable processing and
analysis algorithms which allow to understand and model the growing complexity
of such datasets. Ideally, these algorithms also move beyond static and post-hoc data
analysis, but can be integrated into closed-loop experimental systems (Hausmann et al.,
2021).

Presently, especially the neuroscience community, is utilizing linear tools for model-
ing of the relationship between neural and behavioral data. Table 1.1 shows a summary
of different algorithms currently used for representation learning and data analysis. An
immediate observation is the focus on linear methods in most cases. A common theme
is the use of generative models which perform representation learning by learning to
reconstruct the original data (typically, neural activity, e.g., spikes or spiking rates of
neurons).

A common approach is to input neural activity into an algorithm, compute factors
from the input neural activity, and then reconstruct the activity from these discovered
factors. This approach is applicable in both linear and non-linear ways: For instance, a
principal component analysis (PCA), and variants thereof, map input neural activity
onto vectors that explain the main axes of variance in the data. Such models can be
interpreted as mapping neural activity onto a factor space, before projecting it back
onto the neural activity. When reconstruction of neural activity is the goal, the quality
of the representation can suffer in settings with recording noise.

Modern self-supervised representation learning methods can offer to circumvent
this problem, by separating the processes of data generation and representation learning,
and offer a potential improvement over auto-encoding approaches. In particular,

robust machine learning 12

Figure 1.6: The “Behavior space” discussed by Mathis and Mathis (2020) spanning various
experimental paradigms. The move towards natural behaviors is possible due to modern
processing methods for behavioral recordings. Reproduced from Mathis and Mathis (2020),
with permission from Elsevier.

auto-encoding approaches and generative models require to reconstruct the observed
data, including the observed noise (Zhou & Wei, 2020). In contrast, self-supervised
approaches merely learn an encoder model which maps activity into a latent space.
Such an approach might be favorable in cases where reconstructing data is hard (e.g.,
because of limited data size).

What can machine learning offer to neuroscience?

The brain is a highly distributed processing system, which makes it particularly
interesting to study properties of the neural population code – within and across
different areas in the brain. If we look at how large machine learning models are built
currently, single-neuron properties rarely play a role. Activity vectors, not scalars, are

robust machine learning 13

Table 1.1: An overview of dimensionality reduction algorithms commonly used in neuroscience.
Current algorithms can be categorized based on how they connect samples across time points
(i.e., assumptions about modeling the trajectories), the assumed mapping function between
latent variables and neural activity, assumptions about the observed neural activity, and whether
they are computed on single trial data, or averages across recording sessions. I will later propose
CEBRA (Chapter 7), which is the only technique not leveraging an explicit generative model,
making it invariant to exact observation of the data. References for the displayed methods,
from top to bottom: 1Pearson (1901) and Roweis and Ghahramani (1999) 2Kobak et al. (2016a)
3Churchland et al. (2012a) 4Smith and Brown (2003) 5Macke et al. (2011) 6Sani et al. (2021)
7Gao et al. (2016b) 8Petreska et al. (2011) 9Linderman et al. (2017) and Zoltowski et al. (2020)
10Durstewitz (2017) 11Pandarinath et al. (2018a) 12She and Wu (2020) 13Yu et al. (2008a) 14Rutten
et al. (2020) 15Zhao and Park (2017) 16Wu et al. (2017). Reprinted and minimally adapted from
Hurwitz et al. (2021) with permission from Elsevier.

Model Trajectories Mapping Function Observation Single-trial

PCA/FA1 Static Linear Gaussian No
dPCA2 Static Linear Gaussian No
jPCA3 Linear Linear Gaussian No
LDS4 Linear Linear Gaussian Yes
PLDS5 Linear Linear Poisson Yes
PSID6 Linear Linear Gaussian Yes
PfLDS7 Linear Neural Network Poisson Yes
SLDS8 Switching Linear Linear Gaussian Yes
RSLDS9 Recurrent Switching Linear Linear Gaussian Yes
PLRNN-SSM10 Piecewise linear RNN Linear Gaussian Yes
LFADS11 RNN Linear Poisson Yes
GP-RNN12 RNN Gaussian Process Poisson/Gaussian Yes
GPFA13 Gaussian Process Linear Gaussian Yes
GPFADS14 Gaussian Process Linear Gaussian Yes
vLGP15 Gaussian Process Linear Poisson Yes
P-GPLVM16 Gaussian Process Gaussian Process Poisson Yes

the fundamental building blocks for representing information in these systems.
In deep learning models, every synaptic weight, and all activity vectors are available

in any given point in time. Yet, there is no automatic analysis tool yet that allows to
to precisely characterize why and how, e.g., a large language model is performing a
particular task. Likely, even the ability to record full-brain activity and behavior in a
living organism would not allow us to actually fuel our understanding of the brain, and
we can assert a bottleneck in the development of modern computational tools. It is likely
that Jonas and Kording (2017) would reach similar conclusions today if they decided to
understand a GPU running a transformer model instead of a microprocessor4.

Our current lack of understanding of intelligent behavior in such “fully observable”
systems is a possible indication that a lack of recording techniques in neuroscience is no
longer a primary bottleneck for scientific discovery – data processing and in particular
data analysis is. We have public datasets available comprised of 10,000–100,000 of
neurons, which are arguably not exhaustively analyzed by their primary publications

4In their study “Could a Neuroscientist Understand a Microprocessor?”, Jonas and Kording (2017)
assessed the effectiveness of data analysis practices by studying a microprocessor using commonly used
neuroscientific analysis tools.

robust machine learning 14

de Vries et al. (2020) and International Brain Lab et al. (2023). Some of these projects
draw an analogy to the scientific discovery process in physics which I covered in the
introduction5. Centralized institutions collect and publish large datasets, and it is upon
computationally focused research groups to re-analyse and draw additional insights
from these datasets. For that, new methods are needed.

Some of the tremendous progress that happened in computer vision, natural lan-
guage and speech processing was also transferred to neuroscience. The most prominent
application is in data processing, where computer vision algorithms are routinely
used to digitize behavioral recordings, segment neurons in optical imaging data, track
animals and control experimental equipment in closed loop setups (e.g. Kane et al.,
2020; Symvoulidis et al., 2017), spike-sort neurons after large scale electrophysiological
recording, apply super resolution to microscopy images or deconvolved calcium activity
into signals more similar to spiking rates, to name only a few applications.

A central motivation in this work is to work on two major roadblocks for the
application of statistical and machine learning approaches for scientific inference: The
robustness of algorithms, and their theoretical grounding required for data analysis.
I will examine here which machine learning techniques can be used to aid scientific
discovery in neuroscience.

Statistics vs. Machine Learning

An important distinction in the design of algorithms is their categorization into statistics
or machine learning. I explore examples for both cases. Ij (2018) summarize: “Statistics
draws population inferences from a sample, and machine learning finds generalizable
predictive patterns.”. We can make the following distinction:

In machine learning, the computational focus is to build a model (during a training
phase) which can then be applied to new incoming data. A good machine learning
model will be able to make predictions within its application scope. In the context
of scientific inference, machine learning systems are prominently used in the data
processing phase. For instance, detecting objects or keypoints in a video stream,
proposing regions of interest in a microscopy image, or for spike sorting. The machine
learning system as such does not directly aid in the analysis of the data: Instead, it
cuts the complexity (e.g., poses are a very compact and low-dimensional representation
of behavior), improves the signal-to-noise ratio (e.g., during spike sorting), or simply
speeds up the data processing phase.

In statistics, the computational focus is on the analysis of the dataset. Statistical
models are typically precisely theoretically grounded, and have clear underlying
assumptions for their validity. Ideally, it is also testable whether a dataset sufficiently
meets these assumptions. As a product of these assumptions and the dataset the
method is applied to, we obtain an outcome that either increases or decreases our

5The OpenScope program initiated by the Allen Institute make this analogy explicit by claiming to be
“the first astronomical observatory in Neuroscience”

robust machine learning 15

confidence in the hypothesis motivating our original experiment. This clear theoretical
grounding of a statistical technique allows discussion of its results and findings by
examining if assumptions are suitable for the dataset at hand. If the assumptions (e.g.,
an assumed probability distribution) are met, the behavior of the method should be
predefined.

This distinction between statistical methods and machine learning tools is useful to
distinguish design goals for either category: In machine learning, it is sufficient if the
resulting algorithm can be tested like other physical systems – as Wilson et al. (2014)
state, such systems can be regarded as part of the experimental apparatus. For statistical
analysis, however, we require tools that are grounded in theoretical assumptions about
the data that is being analysed. In return, during evaluation of a study, it is possible to
criticize the methodology as such (e.g., because dataset and assumptions do not match),
but not the correctness of the statistical method in case the assumptions are met.

Core machine learning vs. applied machine learning

While sometimes, computational methodology can be co-developed with a study, mod-
ern machine learning tools and their increasing complexity require tools to be studied
individually, also beyond the context of a particular study. This allows benchmarking
of proposed approaches, and comparisons to prior state of the art not with respect to a
particular dataset under investigation, but on a previously agreed set of benchmark
problems.

To name one example, spike-sorting is a problem that is very relevant in many
processing pipelines for electrophysiology. Yet, building a spike sorting algorithm
specifically designed on a per-experiment basis based on the needs for a particular
study is not necessarily desirable: Such an algorithm would need to undergo testing
and validation, and will finally most likely not transfer to studies. Instead, recent
work (Magland et al., 2020) started collecting and curating a variety of datasets. Now,
without connection to a particular neuroscientific research question, it is possible to
focus on the design and evaluation of a suitable method. The resulting method will –
ideally, given a sufficient breadth of data in the benchmark dataset – be applicable to a
variety of applications.

Some core machine learning problems relevant for the scope of the present work
are robustification of machine learning methods, adaptation to distribution shifts at
deployment time, and self-supervised learning. Within these disciplines, we study the
behavior of learning algorithms on pre-defined benchmarks. For the robustification
and adaptation works, the most relevant benchmarks are on vision datasets, but
the developed techniques in principle also transfer to other fields and applications.
For self-supervised representation learning, prior work in disentanglement was most
relevant.

robust machine learning 16

The importance of robust and adaptive data processing systems

In machine learning, a classical setup to benchmark and evaluate computer vision
systems for robustness is adversarial robustness, and the robustness to (systematic)
distribution shifts in the data. For applications in the sciences, robustness concerns
over adversarial robustness are less prominent than the robustness concerns when it
comes to systematic drift in the data distribution, often also called batch effects (for a
review in the context of omics in biology, see Goh et al., 2017). Hence, I opt to primarily
focus on investigating the robustness of ML models on systematic distribution shifts,
either with synthetically induced shifts, or by selecting suitable images.

Just prior to the work on this dissertation, first benchmarks appeared on ImageNet
scale (e.g. ImageNet-C, Hendrycks and Dietterich, 2019a) which offered the possibility
to rigorously evaluate algorithms in a setup offering a proxy for real-world performance.
Other benchmarks included ImageNet-R (Hendrycks et al., 2020a) and ImageNet-D,
which I introduce in Chapter 3. Such benchmarks aim to address the reliability of a
trained machine learning system at time of deployment. One trained on a large dataset,
how does the model perform on data that systematically deviates from the training
dataset, and how can we mitigate negative effects on model performance?

Contrastive and self-supervised representation learning

Analysis of high dimensional datasets hinges on learning suitable representations of
the data. As Bengio et al. (2013) state in their review, “[in] the case of probabilistic
models, a good representation is often one that captures the posterior distribution
of the underlying explanatory factors for the observed input”. Within representation
learning, a central theme for this dissertation is to leverage self-supervised learning6

algorithms, specifically contrastive learning.
An early successful variant of contrastive learning was the noise contrastive esti-

mation (NCE) algorithm introduced by Gutmann and Hyvärinen (2010): The NCE
objective contrasts positive against negative pairs, and casts this as a binary classification
problem. Positive pairs are samples in the data should have a similar representation,
negative pairs are samples in the data that should have a more dissimilar representation.
How this notion of similarity is incorporated into the learning algorithm depends on
the problem setting.7

Contrastive learning was popularized in applied machine learning. The hierarchical

6I will avoid the acronym “SSL” due to ambiguity between semi-supervised and self-supervised
learning.

7The relation between noise-contrastive estimation (NCE) and InfoNCE is similar to the relation
between the binary cross-entropy and the softmax cross-entropy. Noise contrastive estimation using a
single negative example minimizes the expectation of

−
[
log σ(ψ(x, x+)) + log σ(−ψ(x, x−))

]
over triple (x, x+, x−) in the dataset, with σ(y) = 1/(1 + exp(−y)) denoting the sigmoid, sometimes with
weighting coefficients between both losses, and varying number of samples depending on the exact work.

robust machine learning 17

softmax formulation of the word2vec algorithm by Mikolov et al. (2013) suffered from
the problem of marginalizing over a large set of classes (words in the dictionary). A
convenient solution was to replace the exact classification problem by the sampling
of a few indicative “negative examples”. With that, the supervised classification
problem became a contrastive learning problem which yielded similarly well-suited
representations while being computationally more efficient (Mikolov et al., 2013). In
this example, a positive pair would be formed by taking a sequence of words, and
predicting the word in the center from the surrounding context, while for a negative
sampling we would pair the context with a random word from our dictionary.

Later, this idea was generalized to continual data in speech processing. Oord et al.
(2018) introduced the InfoNCE objective for “contrastive predictive coding” which
performed next token prediction on continuous data using an RNN model. Schneider
et al. (2019) performed next token prediction using convolutional networks and the NCE
loss on raw speech signals, and showed how self-supervised learning can reduce the
need for labeled speech data drastically by at least two orders of magnitude. Following
work leveraged the InfoNCE loss with transformer networks (Baevski et al., 2020c) for
further drastic improvements in data efficiency and downstream performance. Initially,
the “next token prediction” tasks were also proposed for applications in vision (Oord
et al., 2018), and later scaled to ImageNet size (Hénaff et al., 2020). Another approach
by Misra and van der Maaten (2019) leveraged the NCE loss and demonstrated how
self-supervised learning can outperform supervised pre-training for object detection
tasks. They used augmented versions of the reference image to form positive pairs, in
contrast to prior work which attempted at predicting the transformation (e.g., given an
image, predicting the rotation of an image). Chen et al. (2020a) extended this approach
further, and were the first to demonstrate a self-supervised pre-training approach to
achieve state of the art performance on ImageNet.

Self-supervised learning evolved in various directions in the following years. One
example is the development of non-contrastive approaches, which continued to use
augmented views of images to obtain representations. DINO (Caron et al., 2021b) used
a self-learning approach (similar to pseudo-labeling) on such augmented image pairs,
and learned feature representations with favorable properties for k-nearest-neighbor
readouts, and for decoding objects. Besides their algorithmic contributions, such works
are particularly relevant for data pre-processing in the context of neuroscience: For
instance, in Chapter 7 my colleagues and I leverage a pre-trained DINO model for
extracting relevant visual features from naturalistic scenes. While today, a pre-dominant
scheme for pre-training is next-token prediction via masking in both language Radford
et al., 2019, vision He et al., 2021 and videos Tong et al., 2022, contrastive learning is

InfoNCE minimizes the expectation of

− log
exp ψ(x, x+)

∑x−∈N exp ψ(x, x−)
,

over triples (x, x+, N), in some formulations including the positive pair in the denominator.

robust machine learning 18

still a state-of-the-art approach for multi-modal representation learning in models like
contrastive image-language pre-training (CLIP; Radford et al., 2021).

Contrastive learning received popularity for identifiable representation learning.
Time contrastive learning (TCL; Hyvarinen and Morioka, 2016) was shown to solve
the independent component analysis (ICA) problem for stationary time-series, and
permutation contrastive learning (PCL) could achieve a similar feat also for non-
stationary time-series (Hyvarinen & Morioka, 2017). It was later shown that both
approaches could be unified by introducing “auxiliary variables” used to condition
the training process (Hyvarinen et al., 2019). Leveraging auxiliary variables8 during
contrastive learning is an interesting alternative (or rather, generalization) to using
time-information, especially for scientific applications.

Dissertation outline

Data processing

Data analysis

ML Fundamentals Neuroscientific application

BatchNorm [§2]
Self-learning [§3]

Continual TTA [§4]

Pre-training for
pose estimation [§5]

Contrastive Learn-
ing for ICA [§6]

CEBRA [§7]
xCEBRA [§8]

Figure 1.7: Overview of topics covered in this dissertation. We distinguish between methods for
data processing and analysis as outlined in the introduction, and for both stages of the scientific
discovery pipeline, investigate algorithms from two angles: ML fundamentals are chapters
primarily written for machine learning audiences, but on problems relevant to neuroscientific
inference. These insights can then be applied to neuroscience, as depicted in the right column.

In the light of the enormous potential of modern methodology in neuroscience, how
can we speed up scientific discovery? This dissertation addresses the gaps in making
data processing algorithms more robust and deployable in neuroscientific application
scenarios, and proposes new statistical tools for the analysis of neuroscience datasets
(and beyond). Figure 1.7 gives a birds-eye view on the categorization of covered topics,
which I will discuss in more details in the following sections.

8As Hyvarinen et al. (2019) state, “Let us note that the existence of labels does not mean a nonlinear
ICA model is not interesting, because our interest might not be in classifying the data using these labels,
but rather in understanding the structure of the data [...]. In particular, with scientific data, the main goal
is usually to understand its structure; if the labels correspond to different treatments, or experimental
conditions, the classification problem in itself may not be of great interest.”

robust machine learning 19

Robust vision for scientific data processing.

Chapter 2 introduces an evaluation framework for robustness after test-time adaptation
along with a simple yet effective method for boosting robustness scores of trained
computer vision models. Building on this technique, Chapter 3 considers a family of
optimization techniques that use self-learning to further improve test-time adaptation
results. I show that test-time adaptation is highly effective at a range of tasks under
static distribution shifts. While the aforementioned tasks are carried out in static eval-
uation scenarios, real-world algorithms often operate under changing environmental
conditions which can yield collapse of the previously introduced algorithms. Chapter 4

proposes a new benchmark dataset for long-timescale evaluation scenarios, highlights
limitations of existing test-time adaptation methods, and proposes a simple baseline
method to overcome them. Computer vision is highly relevant for its application
to pose estimation for digitizing poses of animals, e.g. during behavioral studies in
neuroscience. Chapter 5 studies how transfer learning and adaptation techniques can
be used on these tasks.

Neuroscientific data analysis using contrastive learning.

Moving from data acquisition to data analysis and modeling, Chapter 6 studies con-
trastive learning and builds a new connection between InfoNCE minimization and
non-linear ICA. This allows for the design of new contrastive learning objectives with
desirable statistical properties for identifiability. In neuroscience, such techniques are
highly relevant for the post-processing steps of both behavioral data (e.g., acquired
during pose estimation) and neural data (e.g., electrophysiology or calcium imaging
data). Chapter 7 develops a generalized formulation of contrastive learning unifying
self-supervised and supervised contrastive learning with discrete, continuous or mixed
labels.

Closing the loop to infer and influence data collection.

Finally, we aim to close the loop and inform the data collection process through
analysis mechanisms. Following analysis, we want to attribute descriptions about the
underlying data structure back into the signal space, and onto brain areas, neurons,
etc. Insight about areas and neurons involved in a computation allows to design
interventions and form hypotheses for subsequent experiments. Interpretable machine
learning effectively closes the loop from analysis back to hypothesis formation. For this
purpose, in Chapter 8 I propose a technique for estimating attribution maps for data
analysis algorithms using a new regularized contrastive learning objective.

Additional related work conducted

Some additional work, especially on applications of machine learning algorithms for
data preprocessing was done besides this dissertation, but not included. For a primer

robust machine learning 20

on pose estimation and their applications in neuroscience, see Mathis et al. (2020).
For considerations on compositional generalization and object-centric representation
learning, see Tangemann et al. (2023). For work on multi-animal pose estimation, see
Lauer et al. (2022). For ongoing work towards animal and keypoint-agnostic pose
estimation models, see Ye et al. (2023a). This includes the application of self-learning
approaches for test-time adaptation.

2
Improving robustness against com-
mon corruptions by covariate shift
adaptation

The following pages contain the postprint version of the published paper

Steffen Schneider∗, Evgenia Rusak∗, Luisa Eck, Oliver Bringmann†, Wieland
Brendel† and Matthias Bethge†. “Improving robustness against common
corruptions by covariate shift adaptation.” Advances in Neural Information
Processing Systems 33 (2020): 11539-11551.

A short version of the paper was also previously selected for a contributed talk (top 5%)
at the Workshop on Uncertainty & Robustness in Deep Learning (UDL) at ICML 2020

1.

Author contributions StS conceived the project and proposed the original formulation
of batch norm adaptation, WB suggested the partial adaptation setting. StS and ER
implemented and conducted the experiments with input from WB and MB. StS prepared
visualizations and analysis with input from ER and WB. StS and LE conducted the
theoretical analysis. ER, WB, StS and MB wrote the manuscript, all authors participated
in reviewing and editing. ∗StS and ER contributed equally to the project. †WB, MB and
OB contributed equally to advising the project.

1https://sites.google.com/view/udlworkshop2020

robust machine learning 22

Summary

Today’s state-of-the-art machine vision models are vulnerable to image corruptions
like blurring or compression artefacts, limiting their performance in many real-world
applications. We here argue that popular benchmarks to measure model robustness
against common corruptions (like ImageNet-C) underestimate model robustness in
many (but not all) application scenarios. The key insight is that in many scenarios,
multiple unlabeled examples of the corruptions are available and can be used for
unsupervised online adaptation. Replacing the activation statistics estimated by batch
normalization on the training set with the statistics of the corrupted images consistently
improves the robustness across 25 different popular computer vision models. Using
the corrected statistics, ResNet-50 reaches 62.2% mCE on ImageNet-C compared to
76.7% without adaptation. With the more robust DeepAugment+AugMix model, we
improve the state of the art achieved by a ResNet50 model up to date from 53.6% mCE
to 45.4% mCE. Even adapting to a single sample improves robustness for the ResNet-50

and AugMix models, and 32 samples are sufficient to improve the current state of
the art for a ResNet-50 architecture. We argue that results with adapted statistics
should be included whenever reporting scores in corruption benchmarks and other
out-of-distribution generalization settings.

Introduction

Deep neural networks (DNNs) are known to perform well in the independent and
identically distributed (i.i.d.) setting when the test and training data are sampled from
the same distribution. However, for many applications this assumption does not hold.
In medical imaging, X-ray images or histology slides will differ from the training data
if different acquisition systems are being used. In quality assessment, the images might
differ from the training data if lighting conditions change or if dirt particles accumulate
on the camera. Autonomous cars may face rare weather conditions like sandstorms or
big hailstones. While human vision is quite robust to those deviations (Geirhos et al.,
2018b), modern machine vision models are often sensitive to such image corruptions.

We argue that current evaluations of model robustness underestimate performance
in many (but not all) real-world scenarios. So far, popular image corruption bench-
marks like ImageNet-C [IN-C; Hendrycks and Dietterich, 2019a] focus only on ad hoc
scenarios in which the tested model has zero prior knowledge about the corruptions it
encounters during test time, even if it encounters the same corruption multiple times.
In the example of medical images or quality assurance, the image corruptions do not
change from sample to sample but are continuously present over a potentially large
number of samples. Similarly, autonomous cars will face the same weather condition
over a continuous stream of inputs during the same sand- or hailstorm. These (unla-
beled) observations can allow recognition models to adapt to the change in the input
distribution.

robust machine learning 23

Such unsupervised adaptation mechanisms are studied in the field of domain
adaptation (DA), which is concerned with adapting models trained on one domain
(the source, here clean images) to another for which only unlabeled samples exist (the
target, here the corrupted images). Tools and methods from domain adaptation are
thus directly applicable to increase model robustness against common corruptions,
but so far no results on popular benchmarks have been reported. The overall goal of
this work is to encourage stronger interactions between the currently disjoint fields of
domain adaptation and robustness towards common corruptions.

We here focus on one popular technique in DA, namely adapting batch normal-
ization [BN; Ioffe and Szegedy, 2015] statistics (Cariucci et al., 2017; Li et al., 2017;
Schneider et al., 2018). In computer vision, BN is a popular technique for speeding up
training and is present in almost all current state-of-the-art image recognition models.
BN estimates the statistics of activations for the training dataset and uses them to
normalize intermediate activations in the network.

By design, activation statistics obtained during training time do not reflect the statis-
tics of the test distribution when testing in out-of-distribution settings like corrupted
images. We investigate and corroborate the hypothesis that high-level distributional
shifts from clean to corrupted images largely manifest themselves in a difference of
first and second order moments in the internal representations of a deep network,
which can be mitigated by adapting BN statistics, i.e. by estimating the BN statistics on
the corrupted images. We demonstrate that this simple adaptation alone can greatly
increase recognition performance on corrupted images.

Our contributions can be summarized as follows:

• We suggest to augment current benchmarks for common corruptions with two
additional performance metrics that measure robustness after partial and full
unsupervised adaptation to the corrupted images.

• We draw connections to domain adaptation and show that even adapting to a
single corrupted sample improves the baseline performance of a ResNet-50 model
trained on IN from 76.7% mCE to 71.4%. Robustness increases with more samples
for adaptation and converges to a mCE of 62.2%.

• We show that the robustness of a variety of vanilla models trained on ImageNet
[IN; Deng et al., 2009a; Russakovsky et al., 2015] substantially increases after
adaptation, sometimes approaching the current state-of-the-art performance on
IN-C without adaptation.

• Similarly, we show that the robustness of state-of-the-art ResNet-50 models on
IN-C consistently increases when adapted statistics are used. We surpass the best
non-adapted model (52.3% mCE) by almost 7.0% points.

• We show results on several popular image datasets and discuss both the generality
and limitations of our approach.

robust machine learning 24

• We demonstrate that the performance degradation of a non-adapted model can
be well predicted from the Wasserstein distance between the source and target
statistics. We propose a simple theoretical model for bounding the Wasserstein
distance based on the adaptation parameters.

Measuring robustness against common corruptions

The ImageNet-C benchmark (Hendrycks & Dietterich, 2019a) consists of 15 test cor-
ruptions and four hold-out corruptions which are applied with five different severity
levels to the 50 000.0 test images of the ilsvrc2012 subset of ImageNet (Deng et al.,
2009a). During evaluation, model responses are assumed to be conditioned only on
single samples, and are not allowed to adapt to e.g. a batch of samples from the same
corruption. We call this the ad hoc or non-adaptive scenario. The main performance
metric on IN-C is the mean corruption error (mCE), which is obtained by normalizing
the model’s top-1 errors with the top-1 errors of AlexNet (Krizhevsky et al., 2012a)
across the C = 15 test corruptions and S = 5 severities (cf. Hendrycks and Dietterich,
2019a):

mCE(model) =
1
C

C

∑
c=1

∑S
s=1 errmodel

c,s

∑S
s=1 errAlexNet

c,s
. (2.1)

Note that mCE reflects only one possible averaging scheme over the IN-C corruption
types. We additionally report the overall top-1 accuracies and report results for all
individual corruptions in the supplementary material and the project repository.

In many application scenarios, this ad hoc evaluation is too restrictive. Instead,
often many unlabeled samples with similar corruptions are available, which can allow
models to adapt to the shifted data distribution. To reflect such scenarios, we propose
to also benchmark the robustness of adapted models. To this end, we split the 50 000.0
validation samples with the same corruption and severity into batches with n samples
each and allow the model to condition its responses on the complete batch of images.
We then compute mCE and top-1 accuracy in the usual way.

We consider three scenarios: In the ad hoc scenario, we set n = 1 which is the
typically considered setting. In the full adaptation scenario, we set n = 50 000.0, meaning
the model may adapt to the full set of unlabeled samples with the same corruption type
before evaluation. In the partial adaptation scenario, we set n = 8 to test how efficiently
models can adapt to a relatively small number of unlabeled samples.

Correcting Batch Normalization statistics as a strong baseline for reduc-
ing covariate shift induced by common corruptions

We propose to use a well-known tool from domain adaptation—adapting batch normal-
ization statistics (Cariucci et al., 2017; Li et al., 2017)—as a simple baseline to increase
robustness against image corruptions in the adaptive evaluation scenarios. IN trained

robust machine learning 25

models typically make use of batch normalization [BN; Ioffe and Szegedy, 2015] for
faster convergence and improved stability during training. Within a BN layer, first and
second order statistics µc, σ2

c of the activation tensors zc are estimated across the spatial
dimensions and samples for each feature map c. The activations are then normalized by
subtracting the mean µc and dividing by σ2

c . During training, µc and σ2
c are estimated

per batch. During evaluation, µc and σ2
c are estimated over the whole training dataset,

typically using exponential averaging (Paszke et al., 2017).
Using the BN statistics obtained during training for testing makes the model

decisions deterministic but is also problematic if the input distribution changes. If the
activation statistics µc, σ2

c change for samples from the test domain, then the activations
of feature map c are no longer normalized to zero mean and unit variance, breaking a
crucial assumption that all downstream layers depend on. Mathematically, this covariate
shift2 can be formalized as follows:

Definition 1 (Covariate Shift, cf. Schölkopf et al., 2012; Sugiyama and Kawanabe, 2012).
There exists covariate shift between a source distribution with density ps : X ×Y → R+ and a
target distribution with density pt : X × Y → R+, written as ps(x, y) = ps(x)ps(y|x) and
pt(x, y) = pt(x)pt(y|x), if ps(y|x) = pt(y|x) and ps(x) ̸= pt(x) where y ∈ Y denotes the
class label.

Removal of covariate shift. If covariate shift (Def. 1) only causes differences in the first
and second order moments of the feature activations z = f (x), it can be removed by
applying normalization:

p

(
f (x)−Es[f (x)]√

Vs[f (x)]

∣∣∣x) ps(x) ≈ p

(
f (x)−Et[f (x)]√

Vt[f (x)]

∣∣∣x) pt(x). (2.2)

Reducing the covariate shift in models with batch normalization is particularly
straightforward: it suffices to estimate the BN statistics µt, σ2

t on (unlabeled) samples
from the test data available for adaptation. If the number of available samples n is
too small, the estimated statistics would be too unreliable. We therefore leverage the
statistics µs, σ2

s already computed on the training dataset as a prior and infer the test
statistics for each test batch as follows,

µ̄ =
N

N + n
µs +

n
N + n

µt, σ̄2 =
N

N + n
σ2

s +
n

N + n
σ2

t . (2.3)

The hyperparameter N controls the trade-off between source and estimated target
statistics and has the intuitive interpretation of a pseudo sample size (p. 117, Bishop, 2006)

2Note that our notion of internal covariate shift differs from previous work (Ioffe & Szegedy, 2015;
Santurkar et al., 2018): In i.i.d. training settings, Ioffe and Szegedy (2015) hypothesized that covariate shift
introduced by changing lower layers in the network is reduced by BN, explaining the empirical success of
the method. We do not provide evidence for this line of research in this work: Instead, we focus on the
covariate shift introduced (by design) in datasets such as IN-C, and provide evidence for the hypothesis
that high-level domain shifts in the input partly manifests in shifts and scaling of internal activations.

robust machine learning 26

for samples from the training set. The case N → ∞ ignores the test set statistics and is
equivalent to the standard ad hoc scenario while N = 0 ignores the training statistics.
Supported by empirical and theoretical results (see results section and appendix), we
suggest using N ∈ [8, 128] for practical applications with small n < 32.

Experimental Setup

Models. We consider a large range of models (cf. Table 2, Notes on the experimental
setup, Full list of used models) and evaluate pre-trained variants of DenseNet (Huang
et al., 2017), GoogLeNet (Szegedy et al., 2015), Inception and GoogLeNet (Szegedy
et al., 2016), MNASnet (Tan et al., 2019), MobileNet (Sandler et al., 2018a), ResNet (He
et al., 2016c), ResNeXt (Xie et al., 2017), ShuffleNet (Ma et al., 2018), VGG (Simonyan
& Zisserman, 2015) and Wide Residual Network [WRN, Zagoruyko and Komodakis,
2016] from the torchvision library (Marcel & Rodriguez, 2010). All models are trained
on the ilsvrc2012 subset of IN comprised of 1.2 million images in the training and a
total of 1000.0 classes (Deng et al., 2009a; Russakovsky et al., 2015). We also consider a
ResNeXt-101 variant pre-trained on a 3.5 billion image dataset and then fine-tuned on
the IN training set (Mahajan et al., 2018). We evaluate 3 models from the SimCLRv2

framework (Chen et al., 2020c). We additionally evaluate the four leading methods from
the ImageNet-C leaderboard, namely Stylized ImageNet training [SIN; Geirhos et al.,
2019], adversarial noise training [ANT; Rusak et al., 2020] as well as a combination of
ANT and SIN (Rusak et al., 2020), optimized data augmentation using AutoAugment
[AugMix; Cubuk et al., 2019; Hendrycks et al., 2020b] and Assemble Net (Lee et al.,
2020). For partial adaptation, we choose N ∈ {20, · · · , 210} and select the optimal value
on the holdout corruption mCE.

Datasets. ImageNet-C [IN-C; Hendrycks and Dietterich, 2019a] is comprised of cor-
rupted versions of the 50 000.0 images in the IN validation set. The dataset offers five
severities per corruption type, for a total of 15 “test” and 4 “holdout” corruptions.
ImageNet-A [IN-A; Hendrycks et al., 2019b] consists of unmodified real-world images
which yield chance level classification performance in IN trained ResNet-50 models.
ImageNet-V2 [IN-V2; Recht et al., 2020] aims to mimic the test distribution of IN, with
slight differences in image selection strategies. ObjectNet [ON; Barbu et al., 2019] is
a test set containing 50 000.0 images like IN organized in 313 object classes with 109

unambiguously overlapping IN classes. ImageNet-R [IN-R; Hendrycks et al., 2020a]
contains 30 000.0 images with various artistic renditions of 200 classes of the original
IN dataset. Additional information on the used models and datasets can be found
in the appendix, “Notes on the experimental setup”. For IN, we resize all images
to 256× 256px and take the center 224× 224px crop. For IN-C, images are already
cropped. We also center and re-scale the color values with µRGB = [0.485, 0.456, 0.406]
and σ = [0.229, 0.224, 0.225].

robust machine learning 27

Figure 2.1: Sample size vs. performance tradeoff in terms of the mean corruption error (mCE)
on IN-C for ResNet-50 and AugMix (AM). Black line corresponds to (non-adapted) ResNet50

state-of-the-art performance of DeepAug+AugMix.

Figure 2.2: Across 25 model architectures in the torchvision library, the baseline mCE (◦)
improves with adaptation (•), often on the order of 10 points. Best viewed in color.

Results

Adaptation boosts robustness of a vanilla trained ResNet-50 model. We consider the pre-
trained ResNet-50 architecture from the torchvision library and adapt the running
mean and variance on all corruptions and severities of IN-C for different batch sizes.
The results are displayed in Fig. 2.1 where different line styles of the green lines show
the number of pseudo-samples N indicating the influence of the prior given by the
training statistics. With N = 16, we see that even adapting to a single sample can
suffice to increase robustness, suggesting that even the ad hoc evaluation scenario can
benefit from adaptation. If the training statistics are not used as a prior (N = 0), then it
takes around 8 samples to surpass the performance of the non-adapted baseline model
(76.7% mCE). After around 16 to 32 samples, the performance quickly converges to
62.2% mCE, considerably improving the baseline result. These results highlight the

robust machine learning 28

Table 2.1: Adaptation improves mCE (lower is better) and Top1 accuracy (higher is better) on
IN-C for different models and surpasses the previous state of the art without adaptation. We
consider n = 8 for partial adaptation.

IN-C mCE (↘) Top1 accuracy (↗)
w/o partial full w/o partial full

Model adapt adapt adapt ∆ adapt adapt adapt ∆

Vanilla ResNet-50 76.7 65.0 62.2 (−14.5) 39.2 48.6 50.7 (+11.5)

SIN 3 69.3 61.5 59.5 (−9.8) 45.2 51.6 53.1 (+7.9)
ANT 4 63.4 56.1 53.6 (−9.8) 50.4 56.1 58.0 (+7.6)
ANT+SIN 5 60.7 55.3 53.6 (−7.0) 52.6 56.8 58.0 (+5.4)
AugMix [AM]6 65.3 55.4 51.0 (−14.3) 48.3 56.3 59.8 (+11.4)
Assemble Net 7 52.3 – 50.1 (−1.2) 59.2 – 60.8 (+1.5)
DeepAug8 60.4 52.3 49.4 (−10.9) 52.6 59.0 61.2 (+8.6)
DeepAug+AM9 53.6 48.4 45.4 (−8.2) 58.1 62.2 64.5 (+6.4)

DeepAug+AM+RNXt101
10 44.5 40.7 38.0 (−6.6) 65.2 68.2 70.3 (+5.1)

practical applicability of batch norm adaptation in basically all application scenarios,
independent of the number of available test samples.

Adaptation consistently improves corruption robustness across IN trained models. To evaluate
the interaction between architecture and BN adaptation, we evaluate all 25 pre-trained
models in the torchvision package and visualize the results in Fig. 2.2. All models
are evaluated with N = 0 and n = 2000.0. We group models into different families
based on their architecture and observe consistent improvements in mCE for all of
these families, typically on the order of 10% points. We observe that in both evaluation
modes, DenseNets (Huang et al., 2017) exhibit higher corruption robustness despite
having a comparable or even smaller number of trainable parameters than ResNets
which are usually considered as the relevant baseline architecture. A take-away from
this study is thus that model architecture alone plays a significant role for corruption
robustness and the ResNet architecture might not be the optimal choice for practical
applications.

Adaptation yields new state of the art on IN-C for robust models. We now investigate if BN
adaptation also improves the most robust models on IN-C. The results are displayed
in Table 2.1. All models are adapted using n = 50 000.0 (vanilla) or n = 4096.0 (all
other models) and N = 0. The performance of all models is considerably higher
whenever the BN statistics are adapted. The DeepAugment+AugMix reaches a new
state of the art on IN-C for a ResNet-50 architecture of 45.4% mCE. Evaluating the
performance of AugMix over the number of samples for adaptation (Fig. 2.1, we find
that as little as eight samples are sufficient to improve over AssembleNet (Lee et al.,
2020), the current state-of-the-art ResNet-50 model on IN-C without adaptation. We
have included additional results in the appendix, “Additional results”.

robust machine learning 29

Table 2.2: Improvements from adapting the BN parameters vanish for models trained with
weakly supervised pre-training.

IN-C mCE (↘)
ResNeXt101 BN BN+adapt

32x8d, IN 66.6 56.7 (−9.9)
32x8d, IG-3.5B 51.7 51.6 (−0.1)
32x48d, IG-3.5B 45.7 47.3 (+1.6)

Analysis and Ablation Studies

Severity of covariate shift correlates with performance degradation. The relationship between
the performance degradation on IN-C and the covariate shift suggests an unsupervised
way of estimating the classification performance of a model on a new corruption.
Taking the normalized Wasserstein distance (cf. appendix, “Distances and divergences
for quantifying domain shift”) between the statistics of the source and target domains11

computed on all samples with the same corruption and severity and averaged across
all network layers, we find a correlation with the top-1 error (Fig. 2.3 i–iii) of both non-
adapted (i) and fully adapted model (ii) on IN-C corruptions. Within single corruption
categories (noise, blur, weather, and digital), the relationship between top-1 error and
Wasserstein distance is particularly striking: using linear regression, the top-1 accuracy
of hold-out corruptions can be estimated with around 1–2% absolute mean deviation (cf.
appendix, “Error prediction based on the Wasserstein distance”) within a corruption,
and with around 5–15% absolute mean deviation when the estimate is computed on the
holdout corruption of each category (see Fig. 2.3, typically, a systematic offset remains).
In Fig. 2.3(iv–v), we display the Wasserstein distance across individual layers and
observe that the covariate shift is particularly present in early and late downsampling
layers of the ResNet-50.

Large scale pre-training alleviates the need for adaptation. Computer vision models based
on the ResNeXt architecture (Xie et al., 2017) pretrained on a much larger dataset com-
prised of 3.5× 109 Instagram images (IG-3.5B) achieve a 45.7% mCE on IN-C (Mahajan
et al., 2018; Orhan, 2019). We re-evaluate these models with our proposed paradigm
and summarize the results in Table 2.2. While we see improvements for the small
model pre-trained on IN, these improvements vanish once the model is trained on the
full IG-3.5B dataset. This observation also holds for the largest model, suggesting that
training on very large datasets might alleviate the need for covariate shift adaptation.

Group Normalization and Fixup Initialization performs better than non-adapted batch norm
models, but worse than batch norm with covariate shift adaptation. So far, we considered

11For computing the Wasserstein metric we make the simplifying assumption that the empirical mean
and covariances fully parametrize the respective distributions.

robust machine learning 30

Figure 2.3: The Wasserstein metric between optimal source (IN) and target (IN-C) statistics
correlates well with top-1 errors (i) of non-adapted models on IN-C, (ii) of adapted models on IN-
C, indicating that even after reducing covariate shift, the metric is predictive of the remaining
source–target mismatch (iii) IN-C adapted models on IN, the reverse case of (i). Holdout
corruptions can be used to get a linear estimate on the prediction error of test corruptions
(tables). We depict input and downsample (iv) as well as bottleneck layers (v) and notice the
largest shift in early and late downsampling layers. The metric is either averaged across layers
(i–iii) or across corruptions (iv–v).

Table 2.3: Fixup and GN trained models perform better than non-adapted BN models but worse
than adapted BN models.

IN-C mCE (↘)
Model Fixup GN BN BN+adapt

ResNet-50 72.0 72.4 76.7 62.2
ResNet-101 68.2 67.6 69.0 59.1
ResNet-152 67.6 65.4 69.3 58.0

image classification models with BN layers and concluded that using training dataset
statistics in BN generally degrades model performance in out-of-distribution evaluation
settings. We now consider models trained without BN and study the impact on
corruption robustness, similar to Galloway et al. (2019).

First, using Fixup initialization (Zhang et al., 2019) alleviates the need for BN
layers. We train a ResNet-50 model on IN for 100 epochs to obtain a top-1 error of
24.2% and top-5 error of 7.6% (compared to 27.6% reported by Zhang et al. (2019)
with shorter training, and the 23.9% obtained by our ResNet-50 baseline trained with
BN). The model obtains an IN-C mCE of 72.0% compared to 76.7% mCE of the vanilla
ResNet-50 model and 62.2% mCE of our adapted ResNet-50 model (cf. Table 2.3).
Additionally, we train a ResNet-101 and a ResNet-152 with Fixup initialization with
similar results. Second, GroupNorm [GN; Wu and He, 2018] has been proposed as a

robust machine learning 31

Figure 2.4: Batch size vs. performance trade-off for different natural image datasets with no
covariate shift (IN, IN-V2), complex and shuffled covariate shift (ObjectNet), complex and
systematic covariate shift (ImageNet-R). Straight black lines show baseline performance (no
adaptation). ImageNet plotted for reference.

Table 2.4: GN and Fixup achieve the best
results on ObjectNet (ON). After shuf-
fling IN-C corruptions, BN adaptation does
no longer decrease the error. Adapta-
tion improves the performance of a vanilla
ResNet50 on IN-R.

ON Mixed IN-C IN-R
ResNet50 top-1 top-5 top-1 top-5 top-1

BN w/o adapt 78.2 60.9 61.1 40.8 63.8
BN w/ adapt 76.0 58.9 60.9 40.3 59.9
GroupNorm 70.8 49.8 57.3 36.0 61.2
Fixup 71.5 51.4 56.8 35.4 65.0

Table 2.5: Adaptation improves the perfor-
mance (top-1 error) of robust models on
IN-R (n=2048).

Model base adapt ∆

ResNet50 63.8 59.9 -3.9
SIN 58.6 54.2 -4.4
ANT 61.0 58.0 -3.0
ANT+SIN 53.8 52.0 -1.8
AugMix (AM) 59.0 55.8 -3.2
DeepAug (DAug) 57.8 52.5 -5.3
DAug+AM 53.2 48.9 -4.3

DAug+AM+RNXt101 47.9 44.0 -3.9

batch-size independent normalization technique. We train a ResNet-50, a ResNet-101

and a ResNet-152 architecture for 100 epochs and evaluate them on IN-C and find
results very similar to Fixup.

Results on other datasets: IN-A, IN-V2, ObjectNet, IN-R We use N = 0 and vary n in all
ablation studies in this subsection. The technique does not work for the case of “natural
adversarial examples” of IN-A (Hendrycks et al., 2019b) and the error rate stays above
99%, suggesting that the covariate shift introduced in IN-A by design is more severe
compared to the covariate shift of IN-C and can not be corrected by merely calculating
the correct BN statistics. We are not able to increase performance neither on IN nor
on IN-V2, since in these datasets, no domain shift is present by design (see Fig. 2.4).
For ON, the performance increases slightly when computing statistics on more than 64

samples. In Table 2.4 (first and second column), we observe that the GroupNorm and
Fixup models perform better than our BN adaptation scheme: while there is a dataset
shift in ON compared to IN, BN adaptation is only helpful for systematic shifts across

robust machine learning 32

multiple inputs and this assumption is violated on ON. As a control experiment, we
sample a dataset “Mixed IN-C” where we shuffle the corruptions and severities. In
Table 2.4 (third and fourth column), we now observe that BN adaptation expectedly
no longer improves performance. On IN-R, we achieve better results for the adapted
model compared to the non-adapted model as well as the GroupNorm and Fixup
models, see Table 2.4 (last column). Additionally, on IN-R, we decrease the top-1 error
for a wide range of models through adaptation (see Table 2.5). For IN-R, we observe
performance improvements for the vanilla trained ResNet50 when using a sample size
of larger than 32 samples for calculating the statistics (Fig. 2.4, right-most plot).

0.0 5.0σ2
t /σ

2
s

0.0

1.0

µ
t
−
µ
s

minN L
(n = 8)

0.0 5.0σ2
t /σ

2
s

minN U
(n = 8)

102

Batchsize n

0.0

0.6

√ L

102

Batchsize n

61.22

98.11

m
C

E

100

102

Figure 2.5: The bound suggests small
optimal N for most parameters (i) and
qualitatively explains our empirical
observation (ii).

A model for correcting covariate shift effects. We eval-
uate how the batch size for estimating the statistics
at test time affects the performance on IN, IN-V2,
ON and IN-R in Fig. 2.4. As expected, for IN the
adaptation to test time statistics converges to the
performance of the train time statistics in the limit
of large batch sizes, see Fig. 2.4 middle. For IN-
V2, we find similar results, see Fig. 2.4 left. This
observation shows that (i) there is no systematic
covariate shift between the IN train set and the
IN-V2 validation set that could be corrected by
using the correct statistics and (ii) is further evi-
dence for the i.i.d. setting pursued by the authors
of IN-V2. In case of ON (Fig. 2.4 right), we see
slight improvements when using a batch size bigger than 128.

Choosing the number of pseudo-samples N offers an intuitive trade-off between
estimating accurate target statistics (low N) and relying on the source statistics (large
N). We propose a simple model to investigate optimal choices for N, disregarding all
special structure of DNNs, and focusing on the statistical error introduced by estimating
µ̂t and σ̂2

t from a limited number of samples n. To this end, we estimate upper (U) and
lower (L) bounds of the expected squared Wasserstein distance W2

2 as a function of
N and the covariate shift which provides good empirical fits between the estimated
W and empirical performance for ResNet-50 for different N (Fig. 2.5; bottom row).
Choosing N such that L or U are minimized (Fig. 2.5; example in top row) qualitatively
matches the values we find, see appendix, “Analytical error model” for all details.

Proposition 1 (Bounds on the expected value of the Wasserstein distance between target
and combined estimated target and source statistics). We denote the source statistics as
µs, σ2

s , the true target statistics as µt, σ2
t and the biased estimates of the target statistics as

µ̂t, σ̂2
t . For normalization, we take a convex combination of the source statistics and estimated

target statistics as discussed in Eq. 2.3. At a confidence level 1− α, the expectation value of the
Wasserstein distance W2

2 (µ̄, σ̄, µt, σt) between ideal and estimated target statistics w.r.t. to the
distribution of sample mean µ̂t and sample variance σ̂2

t is bounded from above and below with

robust machine learning 33

L ≤ E[W2
2] ≤ U, where

L =

(
σt −

√
N

N + n
σ2

s +
n− 1
N + n

σ2
t

)2

+
N2

(N + n)2 (µt − µs)
2 +

n
(N + n)2 σ2

t

U = L + σ5
t

(n− 1)
2(N + n)2

(
N

N + n
σ2

s +
1

N + n
χ2

1−α/2,n−1σ2
t

)−3/2

The quantity χ2
1−α/2,n−1 denotes the left tail value of a chi square distribution with n− 1 degrees

of freedom, defined as P
(

X ≤ χ2
1−α/2,n−1

)
= α/2 for X ∼ χ2

n−1. Proof: See Appendix,
Analytical error model.

Related Work

The IN-C benchmark (Hendrycks & Dietterich, 2019a) has been extended to MNIST (Mu
& Gilmer, 2019), several object detection datasets (Michaelis et al., 2019b) and image
segmentation (Kamann & Rother, 2019) reflecting the interest of the robustness com-
munity. Most proposals for improving robustness involve special training protocols,
requiring time and additional resources. This includes data augmentation like Gaussian
noise (Ford et al., 2019), optimized mixtures of data augmentations in conjunction with
a consistency loss (Hendrycks et al., 2020b), training on stylized images (Geirhos et al.,
2019; Michaelis et al., 2019b; Mikołajczyk & Grochowski, 2018) or against adversarial
noise distributions (Rusak et al., 2020). Other approaches tweak the architecture, e.g.
by adding shift-equivariance with an anti-aliasing module, (Zhang, 2019) or assemble
different training techniques (Lee et al., 2020).

Unsupervised domain adaptation (DA) is a form of transductive inference where
additional information about the test dataset is used to adapt a model to the test
distribution. Adapting feature statistics was proposed by Sun et al. (2017) and follow
up work evaluated the performance of adapting BN parameters in unsupervised
(Cariucci et al., 2017; Li et al., 2017) and supervised DA settings (Schneider et al.,
2018). As an application example in medical imaging, Bug et al. (2017) show that
adaptive normalization is useful for removing domain shifts on histopathological data.
More involved methods for DA include self-supervised domain adaptation on single
examples (Sun et al., 2019b) and pseudo-labeling French et al. (2017). Xie et al. (2020a)
achieve the state of the art on IN-C with pseudo-labeling. In work concurrent to
ours, Wang et al. (2020a) also show BN adaptation results on IN-C. They also perform
experiments on CIFAR10-C and CIFAR100-C and explore other domain adaptation
techniques.

Robustness scores obtained by adversarial training can be improved when separate
BN or GroupNorm layers are used for clean and adversarial images (Xie & Yuille, 2020).
The expressive power of adapting only affine BN parameters BN parameters was shown
in multi-task (Rebuffi et al., 2017) and DA contexts (Schneider et al., 2018) and holds

robust machine learning 34

even for fine-tuning randomly initialized ResNets (Frankle et al., 2020). Concurrent
work shows additional evidence that BN adaptation yields increased performance on
ImageNet-C (Nado et al., 2020).

Discussion and Conclusion

We showed that reducing covariate shift induced by common image corruptions im-
proves the robustness of computer vision models trained with BN layers, typically by
10–15% points (mCE) on IN-C. Current state-of-the-art models on IN-C can benefit from
adaptation, sometimes drastically like AugMix (−14.0% points mCE). This observation
underlines that current benchmark results on IN-C underestimate the corruption robust-
ness that can be reached in many application scenarios where additional (unlabeled)
samples are available for adaptation.

Robustness against common corruptions improves even if models are adapted only
to a single sample, suggesting that BN adaptation should always be used whenever we
expect machine vision algorithms to encounter out-of-domain samples. Most further
improvements can be reaped by adapting to 32 to 64 samples, after which additional
improvements are minor.

Our empirical results suggest that the performance degradation on corrupted
images can mostly be explained by the difference in feature-wise first and second order
moments. While this might sound trivial, the performance could also degrade because
models mostly extract features susceptible to common corruptions (Geirhos et al., 2020),
which could not be fixed without substantially adapting the model weights. The fact
that model robustness increases after correcting the BN statistics suggests that the
features upon which the models rely on are still present in the corrupted images. The
opposite is true in other out-of-domain datasets like IN-A or ObjectNet where our
simple adaptation scheme does not substantially improve performance, suggesting that
here the main problem is in the features that models have learned to use for prediction.

Batch Norm itself is not the reason why models are susceptible to common corrup-
tions. While alternatives like Group Normalization and Fixup initialization slightly
increase robustness, the adapted BN models are still substantially more robust. This
suggests that non-BN models still experience an internal covariate shift on corrupted
images, but one that is now absorbed by the model parameters instead of being exposed
in the BN layers, making it harder to fix.

Large-scale pre-training on orders of magnitude more data (like IG-3.5B) can
remove the first- and second-order covariate shift between clean and corrupted image
samples, at least partially explaining why models trained with weakly supervised
training (Mahajan et al., 2018) generalize so well to IN-C.

Current corruption benchmarks emphasize ad hoc scenarios and thus focus and
bias future research efforts on these constraints. Unfortunately, the ad hoc scenario does
not accurately reflect the information available in many machine vision applications
like classifiers in medical computer vision or visual quality inspection algorithms,

robust machine learning 35

which typically encounter a similar corruption continuously and could benefit from
adaptation. This work is meant to spark more research in this direction by suggesting
two suitable evaluation metrics—which we strongly suggest to include in all future
evaluations on IN-C—as well as by highlighting the potential that even a fairly simple
adaptation mechanism can have for increasing model robustness. We envision future
work to also adopt and evaluate more powerful domain adaptation methods on IN-C
and to develop new adaptation methods specifically designed to increase robustness
against common corruptions.

Broader Impact

The primary goal of this paper is to increase the robustness of machine vision models
against common corruptions and to spur further progress in this area. Increasing the
robustness of machine vision systems can enhance their reliability and safety, which
can potentially contribute to a large range of use cases including autonomous driving,
manufacturing automation, surveillance systems, health care and others. Each of these
uses may have a broad range of societal implications: autonomous driving can increase
mobility of the elderly and enhance safety, but could also enable more autonomous
weapon systems. Manufacturing automation can increase resource efficiency and
reduce costs for goods, but may also increase societal tension through job losses or
increase consumption and thus waste. Of particular concern (besides surveillance) is
the use of generative vision models for spreading misinformation or for creating an
information environment of uncertainty and mistrust.

We encourage further work to understand the limitations of machine vision models
in out-of-distribution generalization settings. More robust models carry the potential
risk of automation bias, i.e., an undue trust in vision models. However, even if models
are robust to common corruptions, they might still quickly fail on slightly different
perturbations like surface reflections. Understanding under what conditions model
decisions can be deemed reliable or not is still an open research question that deserves
further attention.

Acknowledgements

We thank Julian Bitterwolf, Roland S. Zimmermann, Lukas Schott, Mackenzie W.
Mathis, Alexander Mathis, Asim Iqbal, David Klindt, Robert Geirhos, other members
of the Bethge and Mathis labs and four anonymous reviewers for helpful suggestions
for improving our manuscript and providing ideas for additional ablation studies. We
thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS)
for supporting E.R. and St.S.; St.S. acknowledges his membership in the European
Laboratory for Learning and Intelligent Systems (ELLIS) PhD program. This work was
supported by the German Federal Ministry of Education and Research (BMBF) through
the Tübingen AI Center (FKZ: 01IS18039A), by the Deutsche Forschungsgemeinschaft

robust machine learning 36

(DFG) in the priority program 1835 under grant BR2321/5-2 and by SFB 1233, Robust
Vision: Inference Principles and Neural Mechanisms (TP3), project number: 276693517.
The authors declare no conflicts of interests.

3
If your data distribution shifts, use
self-learning

The following pages contain the postprint version of the published paper

Evgenia Rusak∗, Steffen Schneider∗, George Pachitariu, Luisa Eck, Peter
Vincent Gehler, Oliver Bringmann, Wieland Brendel†, and Matthias Bethge†.
“If your data distribution shifts, use self-learning.” Transactions on Machine
Learning Research (2022).

A short version of the paper was also previously selected for a contributed talk at the
Weasul Workshop at ICML 2021.

Author Contributions The following list of contributions is reproduced from the respec-
tive section in the published paper. StS and ER conceived the project with suggestions
from MB and WB. ER ran initial experiments. StS performed large scale experiments on
ImageNet-C,R,A with support from PG, ER and WB. ER performed domain adaptation
and CIFAR experiments with suggestions from StS. ER implemented all baselines
that have been included as comparisons in the manuscript. GP ran DINO adaptation,
WILDS, and self-ensembling experiments with suggestions from ER & StS. ER devel-
oped the ImageNet-D dataset with suggestions from StS and WB, and performed the
large scale experiments on ImageNet-D. LE and StS developed the theoretical model,
ER contributed the CIFAR-C experiments. WB, ER and StS wrote the initial manuscript
with help from all authors. ER wrote an extensive related work section. ER reviewed
and edited the manuscript in the course of the author-reviewer discussion period. ∗StS
and ER contributed equally to the project. †WB and MB contributed equally to advising
the project.

robust machine learning 38

Summary

We demonstrate that self-learning techniques like entropy minimization and pseudo-
labeling are simple and effective at improving performance of a deployed computer
vision model under systematic domain shifts. We conduct a wide range of large-scale
experiments and show consistent improvements irrespective of the model architecture,
the pre-training technique or the type of distribution shift. At the same time, self-
learning is simple to use in practice because it does not require knowledge or access to
the original training data or scheme, is robust to hyperparameter choices, is straight-
forward to implement and requires only a few adaptation epochs. This makes self-
learning techniques highly attractive for any practitioner who applies machine learning
algorithms in the real world. We present state-of-the-art adaptation results on CIFAR10-
C (8.5% error), ImageNet-C (22.0% mCE), ImageNet-R (17.4% error) and ImageNet-A
(14.8% error), theoretically study the dynamics of self-supervised adaptation methods
and propose a new classification dataset (ImageNet-D) which is challenging even with
adaptation.

Introduction

Deep Neural Networks (DNNs) can reach human-level performance in complex cog-
nitive tasks (Berner et al., 2019; Brown et al., 2020; He et al., 2016a) if the distribution
of the test data is sufficiently similar to the training data. However, DNNs are known
to struggle if the distribution of the test data is shifted relatively to the training data
(Dodge & Karam, 2017; Geirhos et al., 2018b).

Two largely distinct communities aim to increase the performance of models under
test-time distribution shifts: The robustness community generally considers ImageNet-
scale datasets and evaluates models in an ad-hoc scenario. Models are trained on a
clean source dataset like ImageNet (Deng et al., 2009a), using heavy data augmentation
(Geirhos et al., 2019; Hendrycks et al., 2020a; Rusak et al., 2020) and/or large-scale
pre-training (Mahajan et al., 2018; Xie et al., 2020a). The trained models are not
adapted in any way to test-time distribution shifts. This evaluation scenario is relevant
for applications in which very different distribution shifts are encountered in an
unpredictable order, and hence misses out on the gains of adaptation to unlabeled
samples of the target distribution.

The unsupervised domain adaptation (UDA) community often considers smaller-scale
datasets and assumes that both the source and the (unlabeled) target dataset are known.
Models are trained on both datasets, e.g., with an adversarial objective (Ganin et al.,
2016; Hoffman et al., 2018; Tzeng et al., 2017), before evaluation on the target domain
data. This evaluation scenario provides optimal conditions for adaptation, but the
reliance on the source dataset makes UDA more computationally expensive, more
impractical and prevents the use of pre-trained models for which the source dataset is
unknown or simply too large. We refer the reader to Farahani et al. (2021) for a review

robust machine learning 39

Figure 3.1: Robustness and adaptation to new datasets has traditionally been achieved by
robust pre-training (with hand-selected/data-driven augmentation strategies, or additional
data), unsupervised domain adaptation (with access to unlabeled samples from the test set),
or, more recently, self-supervised learning methods. We show that on top of these different
pre-training tasks, it is always possible (irrespective of architecture, model size or pre-training
algorithm) to further adapt models to the target domain with simple self-learning techniques.

of UDA.
In this work, we consider the source-free domain adaptation setting, a middle ground

between the classical ad-hoc robustness setting and UDA in which models can adapt
to the target distribution but without using the source dataset (Kim et al., 2021; Kundu
et al., 2020; Li et al., 2020a; Liang et al., 2020). This evaluation scenario is interesting
for many practitioners and applications as an extension of the ad-hoc robustness
scenario. It evaluates the possible performance of a deployed model on a systematic,
unseen distribution shift at inference time: an embedded computer vision system in an
autonomous car should adapt to changes without being trained on all available training
data; an image-based quality control software may not necessarily open-source the
images it has been trained on, but still has to be adapted to the lighting conditions at
the operation location; a computer vision system in a hospital should perform robustly
when tested on a scanner different from the one used for producing the training
images—importantly, it might not be known at development time which scanner the
vision system will be tested on, and it might be prohibited to share images from many
hospitals to run UDA.

Can self-learning methods like pseudo-labeling and entropy-minimization also be used
in this source-free domain adaptation setting?1 To answer this question, we perform an
extensive study of several self-learning variants, and find consistent and substantial
gains in test-time performance across several robustness and out-of-domain benchmarks
and a wide range of models and pre-training methods, including models trained with
UDA methods that do not use self-learning, see Figure 3.1. We also find that self-
learning outperforms state-of-the-art source-free domain adaptation methods, namely

1Self-learning was defined by Tsypkin (1968) to denote “learning when there is no external indication
concerning the correctness of the response of the automatic system to the presented patterns”. We opted to
use this term to name the superset of pseudo-labeling, entropy minimization and self-supervised learning
variants to highlight the fact these methods do not require ground truth labels for adaptation.

robust machine learning 40

Test-Time Training which is based on a self-supervised auxiliary objective and continual
training (Sun et al., 2019b), test-time entropy minimization (Wang et al., 2020a), Meta
Test-Time Training (Bartler et al., 2022), and (gradient-free) BatchNorm adaptation
(Nado et al., 2020; Schneider et al., 2020a), and can be improved with additional
techniques such as diversity regularization (Mummadi et al., 2021). We perform a
large number of ablations to study important design choices for self-learning methods
in source-free domain adaptation. Furthermore, we show that a variant of pseudo-
labeling with a robust loss function consistently outperforms entropy minimization on
ImageNet-scale datasets.

We begin by positioning our work in the existing literature (§ 3) and proceed with
an overview of various self-learning variants that have been applied over the past
years, and propose a new technique for robust pseudo-labeling (§ 3). We then outline a
rigorous experimental protocol that aims to highlight the strengths (and shortcomings)
of various self-learning methods. We test various model architectures, with different
pre-training schemes covering the most important models in unsupervised domain
adaptation, robustness, and large-scale pre-training (§ 3). Using this protocol, we show
the effectiveness of self-learning across architectures, models and pre-training schemes
(§ 8). We proceed with an in-depth analysis of self-learning, both empirical (§ 3) and
theoretical (§ 3). Since the outlined results on ImageNet-C (22.0% mCE), ImageNet-R
(17.4% error) and ImageNet-A (14.8%) approach clean performance (11.6% error for
our baseline), we propose ImageNet-D as a new benchmark, which we analyse in § 3.
We conclude by proposing a set of best practices for evaluating test-time adaptation
techniques in the future to ensure scientific rigor and to enable fair model and method
comparisons (§ 3).

Related Work

Test-Time Adaptation The main question we ask in this work is whether self-learning
methods such as entropy minimization and different variants of pseudo-labeling
can improve the performance of models when adapted at test-time to data with a
distribution shift relative to the training data. Our work is most similar to test-time
entropy minimization (TENT; Wang et al., 2020a) since entropy minimization is one
of our studied test-time adaptation techniques. The conceptual difference between
our experiments and Wang et al. (2020a) is that Wang et al. (2020a) compare TENT to
UDA while we argue that UDA can be regarded as a pretraining step, and self-learning
can be used on top of any checkpoint pretrained with UDA. Wang et al. (2020a) study
the effectiveness of entropy minimization across different models, datasets and tasks.
We expand upon their experimental setup and show that entropy minimization is
effective across a large range of model architectures (convolutional neural networks,
Vision Transformers (Caron et al., 2021b; Dosovitskiy et al., 2021)), sizes (ResNet50 to
EfficientNet-L2 (Tan & Le, 2019; Xie et al., 2020a)), and are orthogonal to robustification
(e.g., DeepAugment (Hendrycks et al., 2020a)) and other pre-training schemes. Finally,

robust machine learning 41

we perform a large hyperparameter study for test-time entropy minimization, and
thereby further improve upon the results reported by Wang et al. (2020a).

We also compare our self-learning results to gradient-free adaptation of batch
normalization (BN; Ioffe and Szegedy, 2015) statistics (BN adapt; Schneider et al.,
2020a) who proposed re-estimating the BN statistics on the shifted data distribution.

In Test-Time Training (TTT; Sun et al., 2019b), the softmax cross-entropy loss is
combined with a rotation prediction task (Gidaris et al., 2018) during pretraining on
the source dataset. At test-time, the model is fine-tuned on the unlabeled test data with
the self-supervised task. Sun et al. (2019b) report results when adapting to a single
test example, and also for online adaptation where the model successively adapts to a
stream of data, where the data can either come from the same or a gradually changing
distribution. We added a detailed comparison to Sun et al. (2019b) in Appendix “Self-
learning outperforms Test-Time Training (Sun et al., 2019b)”. Liu et al. (2021) (TTT+++)
replace the rotation prediction task with SimCLR (Chen et al., 2020a), and find this
modification improves performance.

Eastwood et al. (2022) propose Feature Restoration where the approximate feature
distribution under the target data is realigned with the feature distribution under
source data. Eastwood et al. (2022) report results on CIFAR10 (among other datasets)
for a ResNet18 architecture which allows us to include their method as a baseline. In a
concurrent publication, Niu et al. (2022a) propose an anti-forgetting test-time adaptation
method called EATA, which combine sample-efficient entropy minimization with anti-
forgetting weight regularization. They report accuracy numbers on ImageNet-C for
a ResNet50 which we include as a baseline. Mummadi et al. (2021) introduce a novel
loss to stabilize entropy minimization by replacing the entropy by a non-saturating
surrogate and a diversity regularizer based on batch-wise entropy maximization that
prevents convergence to trivial collapsed solutions. To partially undo the distribution
shift at test time, they additionally propose to add an input transformation module to
the model. Mummadi et al. (2021) report results on the highest severity of ImageNet-
C for a ResNet50 which we include as a comparison to our results. We note that
Mummadi et al. (2021) constitute concurrent unpublished work.

Meta Test-Time Training (MT3; Bartler et al., 2022) combine meta-learning, self-
supervision and test-time training to adapt a model trained on clean CIFAR10 (Krizhevsky,
Hinton, et al., 2009) to CIFAR10-C (Hendrycks & Dietterich, 2019a). We added a detailed
comparison to Bartler et al. (2022) in the Appendix, “Comparison to Meta Test-Time
Training (Bartler et al., 2022)”.

The following papers also consider the setting of test-time adaptation, but are
not used as direct baselines in our work, because they study other datasets or tasks.
Azimi et al. (2022) show performance improvements when using test-time adaptation
on video data. They show adaptation results for the popular test-time adaptation
techniques of BN adaptation (Schneider et al., 2020a), Test-Time Training (Sun et al.,
2019b) and test-time entropy minimization (Wang et al., 2020a). MEMO (Zhang et al.,
2021) maximizes the prediction consistency of different augmented copies regarding

robust machine learning 42

a given test sample. We do not consider the single-sample adaptation setting, and
comparing our self-learning techniques to MEMO is not a fair setting for MEMO;
unsurprisingly, techniques benefiting from multiple samples such as TENT (Wang
et al., 2020a) outperform MEMO. AdaContrast by Chen et al. (2022) combines pseudo-
labeling with other techniques, such as self-supervised contrastive learning on the
target domain, soft k-nearest neighbors voting to stabilize the pseudo-labels, as well
as consistency and diversity regularization. A direct comparison with their results is
difficult because they evaluate on VISDA-C and DomainNet, and so we would need to
train our methods on either of the datasets and perform a full hyperparameter search
for a fair comparison. We do have one point of comparison: in their paper, Chen
et al. (2022) perform better than TENT (Wang et al., 2020a). However, we note that
Chen et al. (2022) used the default hyperparameters of TENT and did not perform
hyperparameter tuning on the new dataset, thus, we would expect the performance of
properly tuned TENT to be better than reported in the paper. We expect the additional
changes of AdaContrast to further improve upon our simple self-learning baselines.
Our work is conceptually similar to virtual adversarial domain adaptation in the
fine-tuning phase of DIRT-T (Shu et al., 2018). In contrast to DIRT-T, our objective
is simpler and we scale the approach to considerably larger datasets on ImageNet
scale. Iwasawa and Matsuo (2021) propose a test-time adaptation algorithm for the task
of domain generalization based on computing the distance of each test sample and
pseudo-prototypes for each class. Kumar et al. (2020) study the setting of self-learning
for gradual domain adaptation. They find that self-learning works better if the data
distribution changes slowly. The gradual domain adaptation setting differs from ours:
instead of a gradual shift over time, we focus on a fixed shift at test time.

Self-learning for domain adaptation Xie et al. (2020b) introduce “In-N-Out” which uses
auxiliary information to boost both in- and out-of-distribution performance. AdaMatch
(Berthelot et al., 2021) builds upon FixMatch (Sohn et al., 2020) and can be used for
the tasks of unsupervised domain adaptation, semi-supervised learning and semi-
supervised domain adaptation as a general-purpose algorithm. Prabhu et al. (2021)
propose SENTRY, an algorithm based on judging the predictive consistency of samples
from the target domain under different image transformations. Zou et al. (2019) show
that different types of confidence regularization can improve the performance of self-
learning. A theoretically motivated framework for self-learning in domain adaptation
based on consistency regularization has been proposed by Wei et al. (2020) and then
extended by Cai et al. (2021).

The main differences from these works to ours are that they 1) utilize both source
and target data during training (i.e., the classical UDA setup) whereas we only require
access to unlabeled target data (source-free setup), 2) train their models from scratch
whereas we adapt pretrained checkpoints to the unlabeled target data, and 3) are
oftentimes more complicated (also in terms of the number of hyperparameters) than
our approach due to using more than one term in the objective function. We would

robust machine learning 43

like to highlight that utilizing source data should always result in better performance
compared to not using source data. Our contribution is to show that self-learning can
still be very beneficial with a small compute budget and no access to source data. Our
setup targets “deployed systems”, e.g., a self-driving car or a detection algorithm in
a production line which adapts to the distribution shift “on-the-fly” and cannot (or
should not) be retrained from scratch for every new domain shift.

Model selection Gulrajani and Lopez-Paz (2021) show that model selection for hyperpa-
rameter tuning is non-trivial for the task of domain generalization, and propose model
selection criteria under which models should be selected for this task. Following their
spirit, we identify a model selection criterion for test-time adaptation, and rigorously
use it in all our experiments. We outperform state-of-the-art techniques which did not
disclose their hyperparameter selection protocols.

Self-learning for Test-Time Adaptation

Tsypkin (1968) defines self-learning as “learning when there is no external indication
concerning the correctness of the response of the automatic system to the presented
patterns”, and thus, we use this term as a superset of different variants of pseudo-
labeling and entropy minimization to highlight that these methods can be used for
adaptation to unlabeled data. Different versions of self-learning have been used in both
unsupervised domain adaptation (French et al., 2017; Shu et al., 2018), self-supervised
representation learning (Caron et al., 2021b), and in semi-supervised learning (Xie et al.,
2020a). In a typical self-learning setting, a teacher network ft trained on the source
domain predicts labels on the target domain. Then, a student model fs is fine-tuned on
the predicted labels.

In the following, let ft(x) denote the logits for sample x and let pt(j|x) ≡ σj(ft(x))
denote the probability for class j obtained from a softmax function σj(·). Similarly,
fs(x) and ps(j|x) denote the logits and probabilities for the student model fs. For all
techniques, one can optionally only admit samples where the probability maxj pt(j|x)
exceeds some threshold. We consider three popular variants of self-learning: Pseudo-
labeling with hard or soft labels, as well as entropy minimization.

Hard Pseudo-Labeling (Galstyan & Cohen, 2007; Lee, 2013a). We generate labels using the
teacher and train the student on pseudo-labels i using the softmax cross-entropy loss,

ℓH(x) := − log ps(i|x), i = argmaxj pt(j|x) (3.1)

Usually, only samples with a confidence above a certain threshold are considered
for training the student. We test several thresholds but note that thresholding means
discarding a potentially large portion of the data which leads to a performance decrease
in itself. The teacher is updated after each epoch.

robust machine learning 44

Soft Pseudo-Labeling (Galstyan & Cohen, 2007; Lee, 2013a). In contrast to the hard
pseudo-labeling variant, we here train the student on class probabilities predicted by
the teacher,

ℓS(x) := −∑
j

pt(j|x) log ps(j|x). (3.2)

Soft pseudo-labeling is typically not used in conjunction with thresholding, since it
already incorporates the certainty of the model. The teacher is updated after each
epoch.

Entropy Minimization (ENT; Grandvalet and Bengio, 2004; Wang et al., 2020a). This
variant is similar to soft pseudo-labeling, but we no longer differentiate between a
teacher and student network. It corresponds to an “instantaneous” update of the
teacher. The training objective becomes

ℓE(x) := −∑
j

ps(j|x) log ps(j|x). (3.3)

Intuitively, self-learning with entropy minimization leads to a sharpening of the output
distribution for each sample, making the model more confident in its predictions.

Robust Pseudo-Labeling (RPL). Virtually all introduced self-learning variants use the
softmax cross-entropy classification objective. However, the softmax cross-entropy loss
has been shown to be sensitive to label noise (Zhang et al., 2017; Zhang & Sabuncu,
2018). In the setting of domain adaptation, inaccuracies in the teacher predictions and,
thus, the labels for the student, are inescapable, with severe repercussions for training
stability and hyperparameter sensitivity as we show in the results.

As a straight-forward solution to this problem, we propose to replace the cross-
entropy loss by a robust classification loss designed to withstand certain amounts of
label noise (Ghosh et al., 2017; Shu et al., 2020; Song et al., 2020a; Zhang & Sabuncu,
2018). A popular candidate is the Generalized Cross Entropy (GCE) loss which combines
the noise-tolerant Mean Absolute Error (MAE) loss (Ghosh et al., 2017) with the CE
loss. We only consider the hard labels and use the robust GCE loss as the training loss
for the student,

i = argmaxj pt(j|x), ℓGCE(x, i) := q−1(1− ps(i|x)q), (3.4)

with q ∈ (0, 1]. For the limit case q→ 0, the GCE loss approaches the CE loss and for
q = 1, the GCE loss is the MAE loss (Zhang & Sabuncu, 2018). We test updating the
teacher both after every update step of the student (RPL) and once per epoch (RPLep).

Adaptation parameters. Following Wang et al. (2020a), we only adapt the affine scale
and shift parameters γ and β following the batch normalization layers (Ioffe & Szegedy,

robust machine learning 45

2015) in most of our experiments. We verify that this type of adaptation works better
than full model adaptation for large models in an ablation study in Section 3.

Additional regularization in self-learning Different regularization terms have been pro-
posed as a means to stabilize entropy minimization. Niu et al. (2022a) propose an
anti-forgetting weight regularization term, Chen et al. (2022), Liang et al. (2020), and
Mummadi et al. (2021) add a diversity regularizer, and Chen et al. (2022) use an addi-
tional consistency regularizer. These methods show improved performance with these
regularization terms over simple entropy minimization, but also introduce additional
hyperparameters, the tuning of which significantly increases compute requirements.
In this work, we do not experiment with additional regularization, as the main point
of our analysis is to show that pure self-learning is effective at improving the perfor-
mance over the unadapted model across model architectures/sizes and pre-training
schemes. For practitioners, we note that regularization terms can further improve the
performance if the new hyperparameters are tuned properly.

Experiment design

Datasets. ImageNet-C (IN-C; Hendrycks and Dietterich, 2019a) contains corrupted
versions of the 50 000 images in the ImageNet validation set. There are fifteen test
and four hold-out corruptions, and there are five severity levels for each corruption.
The established metric to report model performance on IN-C is the mean Corruption
Error (mCE) where the error is normalized by the AlexNet error, and averaged over
all corruptions and severity levels, see Eq. B.11, Appendix, “Definition of the mean
Corruption Error (mCE)”. ImageNet-R (IN-R; Hendrycks et al., 2020a) contains 30 000
images with artistic renditions of 200 classes of the ImageNet dataset. ImageNet-A
(IN-A; Hendrycks et al., 2019b) is composed of 7500 unmodified real-world images on
which standard ImageNet-trained ResNet50 (He et al., 2016c) models yield chance level
performance. CIFAR10 (Krizhevsky, Hinton, et al., 2009) and STL10 (Coates et al., 2011)
are small-scale image recognition datasets with 10 classes each, and training sets of
50 000/5000 images and test sets of 10 000/8000 images, respectively. The digit datasets
MNIST (Deng, 2012) and MNIST-M (Ganin et al., 2016) both have 60 000 training and
10 000 test images.

Hyperparameters. The different self-learning variants have a range of hyperparameters
such as the learning rate or the stopping criterion. Our goal is to give a realistic
estimation on the performance to be expected in practice. To this end, we optimize
hyperparameters for each variant of pseudo-labeling on a hold-out set of IN-C that
contains four types of image corruptions (“speckle noise”, “Gaussian blur”, “saturate”
and “spatter”) with five different strengths each, following the procedure suggested in
Hendrycks and Dietterich (2019a). We refer to the hold-out set of IN-C as our dev set.
On the small-scale datasets, we use the hold-out set of CIFAR10-C for hyperparameter

robust machine learning 46

Table 3.1: Self-learning decreases the error on ImageNet-scale robustness datasets. Robust
pseudo-labeling generally outperforms entropy minimization.

number of w/o adapt w/ adapt (∆) w/ adapt (∆)
mCE [%] on IN-C test (↘) parameters RPL ENT

ResNet50 vanilla1 2.6× 107
76.7 50.5 (-26.2) 51.6 (-25.1)

ResNet50 DAug+AM 2 2.6× 107
53.6 41.7 (-11.9) 42.6 (-11.0)

DenseNet161 vanilla 3 2.8× 107
66.4 47.0 (-19.4) 47.7 (-18.7)

ResNeXt10132×8d vanilla4 8.8× 107
66.6 43.2 (-23.4) 44.3 (-22.3)

ResNeXt10132×8d DAug+AM2 8.8× 107
44.5 34.8 (-9.7) 35.5 (-9.0)

ResNeXt10132×8d IG-3.5B5 8.8× 107
51.7 40.9 (-10.8) 40.8 (-10.9)

EfficientNet-L2 Noisy Student6 4.8× 108
28.3 22.0 (-6.3) 23.0 (-5.3)

top1 error [%] on IN-R (↘)
ResNet50 vanilla1 2.6× 107

63.8 54.1 (-9.7) 56.1 (-7.7)
EfficientNet-L2 Noisy Student6 4.8× 108

23.5 17.4 (-6.1) 19.7 (-3.8)

top1 error [%] on ImageNet-A (↘)
EfficientNet-L2 Noisy Student6 4.8× 108

16.5 14.8 (-1.7) 15.5 (-1.0)
1He et al., 2016c 2Hendrycks et al., 2020a 3Huang et al., 2017

4Xie et al., 2017
5Mahajan et al., 2018

6Xie
et al., 2020a

tuning. On all other datasets, we use the hyperparameters obtained on the hold-out
sets of IN-C (for large-scale datasets) or CIFAR10-C (on small-scale datasets).

Models for ImageNet-scale datasets. We consider five popular model architectures:
ResNet50 (He et al., 2016c), DenseNet161 (Huang et al., 2017), ResNeXt101 (Xie et al.,
2017), EfficientNet-L2 (Tan & Le, 2019), and the Vision Transformer (ViT; Dosovitskiy
et al., 2021) (see the Appendix, “Details on all hyperparameters we tested for different
models” for details on the used models). For ResNet50, DenseNet and ResNeXt101,
we include a simple vanilla version trained on ImageNet only. For ResNet50 and
ResNeXt101, we additionally include a state-of-the-art robust version trained with
DeepAugment and Augmix (DAug+AM; Hendrycks et al., 2020a)2. For the ResNeXt
model, we also include a version that was trained on 3.5 billion weakly labeled images
(IG-3.5B; Mahajan et al., 2018). For EfficientNet-L2 we select the current state of the
art on IN-C which was trained on 300 million images from JFT-300M (Chollet, 2017;
Hinton et al., 2014) using a noisy student-teacher protocol (Xie et al., 2020a). Finally,
for the ViT, we use the model pretrained with DINO (Caron et al., 2021b). We validate
the ImageNet and IN-C performance of all considered models and match the originally
reported scores (Schneider et al., 2020a). For EfficientNet-L2, we match ImageNet top-1
accuracy up to 0.1% points, and IN-C up to 0.6% points mCE.

Models for CIFAR10/ MNIST-scale datasets. For CIFAR10-C experiments, we use three
WideResNets (WRN; Zagoruyko and Komodakis, 2016): the first one is trained on

2see leaderboard at github.com/hendrycks/robustness

github.com/hendrycks/robustness

robust machine learning 47

clean CIFAR10 and has a depth of 28 and a width of 10, the second one is trained with
CIFAR10 with the AugMix protocol (Hendrycks et al., 2020b) and has a depth of 40

and a width of 2, and the third one has a depth of 26 layers, and is pre-trained on
clean CIFAR10 using the default training code from https://github.com/kuangliu/
pytorch-cifar. We used this code-base to also train the ResNet18 and the ResNet50

models on CIFAR10. The remaining small-scale models are trained with UDA methods.
We propose to regard any UDA method which requires joint training with source
and target data as a pre-training step, similar to regular pre-training on ImageNet,
and use self-learning on top of the final checkpoint. We consider two popular UDA
methods: self-supervised domain adaptation (UDA-SS; Sun et al., 2019a) and Domain-
Adversarial Training of Neural Networks (DANN; Ganin et al., 2016). In UDA-SS, the
authors seek to align the representations of both domains by performing an auxiliary
self-supervised task on both domains simultaneously. In all UDA-SS experiments, we
use a WideResNet with a depth of 26 and a width of 16. In DANN, the authors learn
a domain-invariant embedding by optimizing a minimax objective. For all DANN
experiments except for MNIST→MNIST-M, we use the same WRN architecture as
above. For the MNIST→MNIST-M experiment, the training with the larger model
diverged and we used a smaller WideResNet version with a width of 2. We note that
DANN training involves optimizing a minimax objective and is generally harder to
tune.

Self-learning universally improves models

Self-learning is a powerful learning scheme, and in the following section we show
that it allows to perform test-time adaptation on robustified models, models obtained
with large-scale pre-training, as well as (already) domain adapted models across a
wide range of datasets and distribution shifts. Our main results on large-scale and
small-scale datasets are shown in Tables 3.1 and 3.2. These summary tables show final
results, and all experiments use the hyperparameters we determined separately on the
dev set. The self-learning loss function, i.e. soft- or hard-pseudo-labeling / entropy
minimization / robust pseudo-labeling, is a hyperparameter itself, and thus, in Tables
3.1 and 3.2, we show the overall best results. Results for the other loss functions can be
found in Section 3 and in the Appendix, “Detailed and additional Results on IN-C”.

Self-learning successfully adapts ImageNet-scale models across different model architectures
on IN-C, IN-A and IN-R (Table 3.1) . We adapt the vanilla ResNet50, ResNeXt101 and
DenseNet161 models to IN-C and decrease the mCE by over 19 percent points in all
models. Further, self-learning works for models irrespective of their size: Self-learning
substantially improves the performance of the ResNet50 and the ResNext101 trained
with DAug+AM, on IN-C by 11.9 and 9.7 percent points, respectively. Finally, we further
improve the current state of the art model on IN-C—the EfficientNet-L2 Noisy Student
model—and report a new state-of-the-art result of 22% mCE (which corresponds to a

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar

robust machine learning 48

Table 3.2: Self-learning decreases the error on small-scale datasets, for models pre-trained using
data augmentation and unsupervised domain adaptation. Entropy minimization outperforms
robust pseudo-labeling.

top1 error [%] on CIFAR10-C (↘) parameters RPL ENT

WRN-28-10 vanilla (Zagoruyko & Komodakis, 2016) 3.6× 107
26.5 13.7 (-12.8) 13.3 (-13.2)

WRN-40-2 AM (Hendrycks et al., 2020b) 2.2× 106
11.2 9.0 (-2.2) 8.5 (-2.7)

WRN-26-1-GN (Bartler et al., 2022) 1.5× 106
18.6 18.0 (-0.6) 18.4 (0.2)

WRN-26-1-BN (Zagoruyko & Komodakis, 2016) 1.5× 106
25.8 15.1 (-10.7) 13.1 (-12.7)

WRN-26-16 vanilla (Zagoruyko & Komodakis, 2016) 9.3× 107
24.2 11.8 (-12.4) 11.2 (-13.0)

WRN-26-16 UDA-SS (Sun et al., 2019a) 9.3× 107
27.7 18.2 (-9.5) 16.7 (-11.0)

WRN-26-16 DANN (Ganin et al., 2016) 9.3× 107
29.7 28.6 (-1.1) 28.5 (-1.2)

UDA CIFAR10→STL10, top1 error on target [%](↘)
WRN-26-16 UDA-SS (Sun et al., 2019a) 9.3× 107

28.7 22.9 (-5.8) 21.8 (-6.9)
WRN-26-16 DANN (Ganin et al., 2016) 9.3× 107

25.0 24.0 (-1.0) 23.9 (-1.1)

UDA MNIST→MNIST-M, top1 error on target [%](↘)
WRN-26-16 UDA-SS (Sun et al., 2019a) 9.3× 107

4.8 2.4 (-2.4) 2.0 (-2.8)
WRN-26-2 DANN (Ganin et al., 2016) 1.5× 106

11.4 5.2 (-6.2) 5.1 (-6.3)

top1 error of 17.1%) on this benchmark with test-time adaptation (compared to 28%
mCE without adaptation).

Self-learning is not limited to the distribution shifts in IN-C like compression
artefacts or blur. On IN-R, a dataset with renditions, self-learning improves both the
vanilla ResNet50 and the EfficientNet-L2 model, the latter of which improves from
23.5% to a new state of the art of 17.4% top-1 error. For a vanilla ResNet50, we improve
the top-1 error from 63.8% (Hendrycks et al., 2020a) to 54.1%. On IN-A, adapting the
EfficientNet-L2 model using self-learning decreases the top-1 error from 16.5% (Xie
et al., 2020a) to 14.8% top-1 error, again constituting a new state of the art with test-time
adaptation on this dataset. Self-learning can also be used in an online adaptation
setting, where the model continually adapts to new samples on IN-C in Fig. B.5(i) or
IN-R Fig. B.5(ii), Appendix B.

Adapting a ResNet50 on IN-A with RPL increases the error from 0% to 0.13%
(chance level: 0.1%). Thus, an unadapted ResNet50 has 0% accuracy on IN-A by design
and this error “is increased” to chance-level with self-learning. Since all labels on
ImageNet-A are wrong by design, predicting wrong labels as pseudo-labels does not
lead to improvements beyond restoring chance-level performance.

The finding that self-learning can be effective across model architectures has also
been made by Wang et al. (2020a) who show improved adaptation performance on
CIFAR100-C for architectures based on self-attention (Zhao et al., 2020a) and equi-
librium solving (Bai et al., 2020), and also by Mummadi et al. (2021) who showed
adaptation results for TENT and TENT+ which combines entropy minimization with a
diversity regularizer for a DenseNet121 (Huang et al., 2017), a MobileNetV2 (Sandler
et al., 2018a), a ResNeXt50 (Xie et al., 2017), and a robust model trained with DAug+AM
on IN-C and IN-R.

The improvements of self-learning are very stable: In Table B.15, Appendix B, we

robust machine learning 49

show the averaged results across three different seeds for a ResNet50 model adapted
with ENT and RPL. The unbiased std is roughly two orders of magnitude lower than
any improvement we report in our paper, showcasing the robustness of our results to
random initialization.

Self-learning improves robustified and domain adapted models on small-scale datasets (Table
3.2). We test common domain adaptation techniques like DANN (Ganin et al., 2016)
and UDA-SS (Sun et al., 2019a), and show that self-learning is effective at further tuning
such models to the target domain. We suggest to view unsupervised source/target
domain adaptation as a step comparable to pre-training under corruptions, rather
than an adaptation technique specifically tuned to the target set—indeed, we can
achieve error rates using, e.g., DANN + target adaptation previously only possible
with source/target based pseudo-labeling, across different common domain adaptation
benchmarks.

For the UDA-SS experiments, we additionally trained a vanilla version with the
same architecture using the widely used training code for CIFAR10 at https://github.
com/kuangliu/pytorch-cifar (1.9k forks, 4.8k stars), and find that the vanilla trained
model performs better both with and without adaptation compared to the UDA-SS
model. We think that the UDA-SS model would need hyperparameter tuning; we
did not perform any tuning for this model, especially because the authors provided
scripts with hyperparameters they found to be optimal for different setups. In addition,
the clean accuracy of the vanilla model on CIFAR10 (96.5%) is much higher than the
average clean accuracy of the UDA-SS model (82.6%), which may explain or imply
generally higher robustness under distribution shift (Miller et al., 2021). The finding
that self-learning is more effective in the vanilla model compared to the UDA-SS model
points towards the hypothesis that the network weights of the vanilla model trained on
the source distribution are sufficiently general and can be tuned successfully using only
the affine BN statistics, while the weights of the UDA-SS model are already co-adapted
to both the source and the target distribution, and thus, self-learning is less effective.

Self-learning also decreases the error on CIFAR10-C of the Wide ResNet model
trained with AugMix (AM, Hendrycks et al., 2020b) and reaches a new state of the art
on CIFAR10-C of 8.5% top1 error with test-time adaptation.

Table 3.3: Unlike batch norm adaptation, self-learning adapts large-scale models trained on
external data.

mCE, test [%] (↘) w/o adapt BN adapt RPL

ResNeXt101 vanilla 66.6 56.8 43.2
ResNeXt101 IG-3.5B 51.7 51.8 40.9

Self-learning also improves large pre-trained models (Table 3.3). Unlike BatchNorm adap-
tation (Schneider et al., 2020a), we show that self-learning transfers well to models

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar

robust machine learning 50

Table 3.4: Self-learning outperforms other test-time-adaptation techniques on IN-C.

mCE [%] on IN-C test (↘) w/o adapt BN Adapt TENT EATA(lifelong) RPL ENT

ResNet50 76.7 62.2 53.5 51.2 50.5 51.6

pre-trained on a large amount of unlabeled data: self-learning decreases the mCE
on IN-C of the ResNeXt101 trained on 3.5 billion weakly labeled samples (IG-3.5B,
Mahajan et al., 2018) from 51.7% to 40.9%.

Self-learning outperforms other test-time adaptation techniques on IN-C (Tables 3.4 and 3.5).
The main point of our paper is showing that self-learning is effective across datasets,
model sizes and pretraining methods. Here, we analyze whether our simple techniques
can compete with other state-of-the-art adaptation methods. Overall, we find that
self-learning outperforms several state-of-the-art techniques, but underperforms in
some cases, especially when self-learning is combined with other techniques.

By rigorous and fair model selection, we are able to improve upon TENT (Wang
et al., 2020a), and find that RPL performs better than entropy minimization on IN-C. We
also compare to BN adaptation (Schneider et al., 2020a), and find that 1) self-learning
further improves the performance upon BN adapt, and 2) self-learning improves
performance of a model pretrained on a large amount of data (Mahajan et al., 2018)
(Table 3.3) which is a setting where BN adapt failed.

ENT and RPL outperform the recently published EATA method (Niu et al., 2022a).
In EATA, high entropy samples are excluded from optimization, and a regularization
term is added to prevent the model from forgetting the source distribution. EATA
requires tuning of two additional parameters: the threshold for high entropy samples
to be discarded and the regularization trade-off parameter β.

RPL, ENT and simple hard PL outperform TTT (Sun et al., 2019b); in particular, note
that TTT requires a special loss function at training time, while our approach is agnostic
to the pre-training phase. A detailed comparison to TTT is included in the Appendix,
“Self-learning outperforms Test-Time Training (Sun et al., 2019b)”. Mummadi et al.
(2021) (SLR) is unpublished work and performs better than ENT and RPL on the
highest severity of IN-C. SLR is an extension of entropy minimization where the

Table 3.5: Self-learning can further be improved when combining it with other techniques.

literature results our results
w/o adapt w/ adapt w/o adapt w/ adapt (RPL) w/ adapt (ENT)

top1 error [%] on IN-C test, sev. 5(↘)
TTT, ResNet18 (Sun et al., 2019b) 86.6 66.3 85.4 61.9 62.8
SLR, ResNet50 (Mummadi et al., 2021) 82.0 (46.9) 82.0 54.6 54.7

top1 error [%] on CIFAR10-C (↘)
MT3, WRN-26-1-GN (Bartler et al., 2022) 35.7 24.4 18.6 18.4 18.0
TTT+++, ResNet50 (Liu et al., 2021) 29.1 9.8 24.9 14.6 12.4
BUFR, ResNet18 (Eastwood et al., 2022) 42.4 10.6 25.5 13.4 12.9

robust machine learning 51

entropy minimization loss is replaced with a version to ensure non-vanishing gradients
of high confidence samples, as well as a diversity regularizer; in addition, a trainable
module is prepended to the network to partially undo the distribution shift. Mummadi
et al. (2021) introduce the hyperparameters δ as the trade-off parameter between their
two losses, as well as κ as the momentum in their diversity regularization term. The
success of SLR over ENT and RPL shows the promise of extending self-learning
methods by additional objectives, and corroborates our findings on the effectiveness of
self-learning.

We also compare our approach to Meta Test-Time Training (MT3, Bartler et al., 2022),
which combines meta-learning, self-supervision and test-time training for test-time
adaptation. We find that both ENT and RPL perform better than MT3: using the same
architecture as Bartler et al. (2022), our best error on CIFAR10-C is 18.0% compared to
their best result of 24.4%. When exchanging GroupNorm layers (Wu & He, 2018) for BN
layers, the error further reduces to 13.1% (Table 3.11). We thus find that self-learning
is more effective when adapting affine BN parameters instead of GN layers, which
is consistent with the findings in Schneider et al. (2020a). We included a detailed
comparison to Bartler et al. (2022) in the Appendix, “Comparison to Meta Test-Time
Training (Bartler et al., 2022).”

TTT+++ (Liu et al., 2021) outperforms both ENT and RPL on CIFAR10-C. Since Liu
et al. (2021) do not report results on IN-C, it is impossible to judge whether their gains
would generalize, although they do report much better results compared to TENT on
Visda-C, so TTT+++ might also be effective on IN-C. Similar to TTT, TTT+++ requires a
special loss function during pretraining and thus, cannot be used as an out-of-the-box
adaptation technique on top of any pretrained checkpoint.

Bottom-Up Feature Restoration (BUFR; Eastwood et al., 2022) outperforms self-
learning on CIFAR10-C. The authors note that BUFR is applicable to dataset shifts
with measurement shifts which stem from measurement artefacts, but not applicable to
more complicated shifts where learning new features would be necessary.

Table 3.6: Vision Transformers can be adapted with self-learning.

w/o adapt w/ adapt w/ adapt w/ adapt w/ adapt
mCE on IN-C test [%] (↘) affine layers bottleneck layers lin. layers all weights
ViT-S/16 62.3 51.8 46.8 45.2 43.5

Self-supervised methods based on self-learning allow out-of-the-box test-time adaptation (Table
3.6). The recently published DINO method (Caron et al., 2021b) is another variant of
self-supervised learning that has proven to be effective for unsupervised representation
learning. At the core, the method uses soft pseudo-labeling. Here, we test whether
a model trained with DINO on the source dataset can be test-time adapted on IN-C
using DINO to further improve out-of-distribution performance. We highlight that we
specifically test the self-supervised DINO objective for its practicality as a test-time
adaptation method, and did not switch the DINO objective for ENT or RPL to do test-

robust machine learning 52

time adaptation. Since the used model is a vision transformer model, we test different
choices of adaptation parameters and find considerable performance improvements
in all cases, yielding an mCE of 43.5% mCE at a parameter count comparable to a
ResNet50 model. For adapting the affine layers, we follow Houlsby et al. (2019).

Understanding test-time adaptation with self-learning

In the following section, we show ablations and interesting insights of using self-
learning for test-time adaptation. If not specified otherwise, all ablations are run on the
hold-out corruptions of IN-C (our dev set) with a vanilla ResNet50.

Robust pseudo-labeling outperforms entropy minimization on large-scale datasets while the
reverse is true on small-scale datasets (Table 3.7). We find that robust pseudo-labeling
consistently improves over entropy minimization on IN-C, while entropy minimization
performs better on smaller scale data (CIFAR10, STL10, MNIST). The finding highlights
the importance of testing both algorithms on new datasets. The improvement is
typically on the order of one percent point.

Table 3.7: RPL (ENT) performs better on IN-C (CIFAR10-C).

mCE, IN-C dev err, C10-C
ResNet50 ResNeXt-101 EffNet-L2 WRN-40

ENT 50.0 ± 0.04 43.0 22.2 8.5
RPL 48.9 ± 0.02 42.0 21.3 9.0

Robust pseudo-labeling allows usage of the full dataset without a threshold (Table 3.8). Clas-
sical hard labeling needs a confidence threshold (T) for best performance, thereby
reducing the dataset size, while best performance for RPL is reached for full dataset
training with a threshold T of 0.0. We corroborate the results of Wang et al. (2020a)
who showed that TENT outperforms standard hard labeling with a threshold on the
highest severity of CIFAR10-C and CIFAR100-C. We show that this result transfers to
IN-C, for a variety of thresholds and pseudo-labeling variants.

Table 3.8: RPL performs best without a threshold.

threshold 0.0 0.5 0.9

mCE on IN-C dev [%]
no adapt 69.5
soft PL 60.1
hard PL 53.8 51.9 52.4
RPL 49.7 49.9 51.8

robust machine learning 53

Short update intervals are crucial for fast adaptation (Table 3.9). Having established that
RPL generally performs better than soft- and hard-labeling, we vary the update interval
for the teacher. We find that instant updates are most effective. In entropy minimization,
the update interval is instant per default.

Table 3.9: RPL performs best with instantaneous updates (ResNet50).

Update interval (RPL) w/o adapt none epoch instant

mCE, IN-C dev [%] 69.5 54.0 49.7 49.2

Adaptation of only affine layers is important in CNNs (Table 3.10). On IN-C, adapting only
the affine parameters after the normalization layers (i.e., the rescaling and shift parame-
ters β and γ) works better on a ResNet50 architecture than adapting all parameters or
only the last layer. We indicate the number of adapted parameters in brackets. Note
that for Vision Transformers, full model adaptation works better than affine adaptation
(see Table 3.6). We also noticed that on convolutional models with a smaller parameter
count like ResNet18, full model adaptation is possible. Wang et al. (2020a) also used
the affine BN parameters for test-time adaptation with TENT, and report that last layer
optimization can improve performance but degrades with further optimization. They
suggest that full model optimization does not improve performance at all. In contrast,
we find gains with full model adaptation, but stronger gains with adaptation of only
affine parameters.

Table 3.10: RPL performs best when affine BN parameters are adapted (ResNet50).

Mechanism w/o adapt last layer full model affine

mCE, IN-C dev [%] 69.5 60.2 51.5 48.9
adapted parameters 0 2M 22.6M 5.3k

Affine BN parameters work better for test-time adaptation compared to GN parameters. (Table
3.11). Schneider et al. (2020a) showed that models with batch normalization layers
are less robust to distribution shift compared to models with group normalization
(Wu & He, 2018) layers. However, after adapting BN statistics, the adapted model
outperformed the non-adapted GN model. Here, we show that these results also hold
for test-time adaptation when adapting a model with GN or BN layers. We show
that a WideResNet-26-1 (WRN-26-1) vanilla model with BN layers pretrained on clean
CIFAR10 has a much higher error on CIFAR10-C than the same model with GN layers,
but it has a much lower error after adaptation. The full results for the WRN-26-1
model can be found in the Appendix, “Comparison to Meta Test-Time Training (Bartler
et al., 2022)”. Further, we test the pretrained BigTransfer (Kolesnikov et al., 2020)
models which have GN layers, and find only small improvements with RPL , and no

robust machine learning 54

improvements with ENT. There are no pretrained weights released for the BigTransfer
models which have BN layers, thus, a comparison similar to the WRN-26-1 model
is not possible. A more detailed discussion on our BigTransfer results as well as a
hyperparameter selection study can be found in the Appendix, “Small improvements
on BigTransfer models with Group normalization layers”.

Table 3.11: Self-learning works better in models with BN layers compared to models with GN
layers, although un-adapted models with GN are more stable under distribution shift compared
to models with BN layers.

number of w/o adapt w/ adapt (∆) w/ adapt (∆)
top1 error [%] on CIFAR10-C (↘) parameters RPL ENT

WRN-26-1-BN (Zagoruyko & Komodakis, 2016) 1.5× 106
25.8 15.1 (-10.7) 13.1 (-12.7)

WRN-26-1-GN (Bartler et al., 2022) 1.5× 106
18.6 18.4 (-0.2) 18.0 (-0.6)

mCE [%] on IN-C test (↘)
ResNet50 BigTransfer (Kolesnikov et al., 2020) 2.6× 107

55.0 54.4 (-0.6) 56.4 (+1.4)

Hyperparameters obtained on corruption datasets transfer well to real world datasets. When
evaluating models, we select the hyperparameters discussed above (the learning rate
and the epoch used for early stopping are the most critical ones) on the dev set (full
results in Appendix B). We note that this technique transfers well to IN-R and -A,
highlighting the practical value of corruption robustness datasets for adapting models
on real distribution shifts.

Learning rate and number of training epochs are important hyperparameters We tune the
learning rate as well as the number of training epochs for all models, except for
the EfficientNet-L2 model where we only train for one epoch due to computational
constraints. In Tables B.3, B.4, B.5, and B.6 in the Appendix, “Detailed results for
tuning epochs and learning rates”, we show that both ENT and RPL collapse after a
certain number of epochs, showing the inherent instability of pseudo-labeling. While
Wang et al. (2020a) trained their model only for one epoch with one learning rate, we
rigorously perform a full hyperparameter selection on a hold-out set (our dev set), and
use the optimal hyperparameters on all tested datasets. We believe that this kind of
experimental rigor is essential in order to be able to properly compare methods.

Our analysis confirms hyperparameter choices from the literature Having searched over a
broad space of hyperparameters and self-learning algorithms, we identified ENT and
RPL as the best performing variants across different model sizes, architectures and
pretraining techniques. We summarize the most important hyperparameter choices
in Table 3.12 and compare them to those used in the literature when applying self-
learning for test-time adaptation. Wang et al. (2020a) identified that on CIFAR-C,
entropy minimization outperforms hard PL, and found that affine adaptation of BN
parameters works better than full model adaptation, and adapted to the full dataset

robust machine learning 55

since TENT does not have a threshold in contrast to hard PL. EATA (Niu et al., 2022a)
and SRL (Mummadi et al., 2021) are extensions of TENT, and thus, followed their
hyperparameter choices. EATA does not adapt to the full dataset as they do not adapt
to very similar samples or samples with high entropy values. MEMO (Zhang et al.,
2021) adapts to a single sample and adapts all model weights. It would be interesting
to study whether the performance of MEMO can be improved when adapting only
affine BN parameters.

Table 3.12: Our expanded analysis confirms hyperparameter choices from the literature.

Method short updates adapt affine params use BN instead of GN adapt to full dataset
TENT (Wang et al., 2020a) ✓ ✓ ✓ ✓
EATA (Niu et al., 2022a) ✓ ✓ ✓ ✗
SRL (Mummadi et al., 2021) ✓ ✓ ✓ ✓
MEMO (Zhang et al., 2021) ✗ ✓ ✓ ✗
RPL/ENT(ours) ✓ ✓ ✓ ✓

Pure self-learning hurts calibration, (Table 3.13) Eastwood et al. (2022) show that ap-
proaches based on entropy minimization and pseudo-labeling hurt calibration due to
the objective of confidence maximization. We corroborate their results and report the
Expected Calibration Error (ECE; Naeini et al., 2015) when adapting a vanilla ResNet50

model with RPL and ENT. We report the mean ECE (lower is better) and standard
deviation across corruptions (and severities) below. We observe that both methods
increase ECE compared to the unadapted model. The increase in ECE is higher for
more severe corruptions which can be explained by a successively stronger distribution
shift compared to the source dataset.

Table 3.13: Self-learning leads to an increased ECE compared to the unadapted model.

adaptation IN-C full IN-C sev 1 IN-C sev 2 IN-C sev 3 IN-C sev 4 IN-C sev 5

w/o adapt 2.3 ± 0.8 2.3± 0.3 2.1± 0.3 2.1± 0.3 2.2± 0.4 2.9± 1.6
RPL 10.6± 7.3 6.6± 0.5 7.9± 1.5 8.9± 2.1 11.2± 3.3 18.7± 12.6
ENT 10.6± 7.3 6.6± 0.5 7.9± 1.5 8.9± 2.1 11.2± 3.3 18.7± 12.6

Self-learning leads to slightly decreased accuracy on the source dataset (Table 3.14) To judge
the forgetting effect on the source distribution, we calculated the accuracy on clean
ImageNet for our adapted ENT and RPL checkpoints. We note that success of self-
learning can partially be attributed to correcting the BN statistics of the vanilla model
with respect to the distribution shift (Schneider et al., 2020a). Thus, we only wish to
examine the effect of fine-tuning of the affine BN parameters to the target distribution
with respect to the source distribution. Thus, we again correct the mismatched statistics
to the source dataset when calculating the accuracy.

We report the mean and standard deviation across corruptions (and severities)
below. We observe that both ENT and RPL lead to a decrease in performance on

robust machine learning 56

the source dataset, an effect which has also been observed by Niu et al. (2022a). The
decrease in performance is higher for more severe corruptions which can be explained
by a increasingly stronger distribution shift compared to the source dataset. We find
that the effect of forgetting is less pronounced in RPL compared to ENT.

Table 3.14: Self-learning leads to slightly decreased accuracy on the source dataset (clean IN).

model top1 accuracy on ImageNet val [%]
w/o adapt 74.2
RPL adapted to IN-C (avg over corruptions, sev. 1) 74.7± 0.6
RPL adapted to IN-C (avg over corruptions, sev. 2) 73.9± 0.9
RPL adapted to IN-C (avg over corruptions, sev. 3) 73.0± 1.3
RPL adapted to IN-C (avg over corruptions, sev. 4) 71.8± 1.8
RPL adapted to IN-C (avg over corruptions, sev. 5) 69.8± 3.0

ENT adapted to IN-C (avg over corruptions, sev. 1) 74.3± 0.6
ENT adapted to IN-C (avg over corruptions, sev. 2) 73.2± 1.1
ENT adapted to IN-C (avg over corruptions, sev. 3) 72.3± 1.7
ENT adapted to IN-C (avg over corruptions, sev. 4) 70.7± 2.3
ENT adapted to IN-C (avg over corruptions, sev. 5) 68.0± 3.9

Additional experiments and ablation studies, as well as detailed results for all
models and datasets can be found in the Appendix, “Detailed and additional Results
on IN-C”. We discuss additional proof-of-concept implementations on the WILDS
benchmark (Koh et al., 2021), BigTransfer (BiT; Chen et al., 2020c) models and on self-
learning based UDA models in the Appendix, “Additional experiments”. On WILDS,
self-learning is effective for the Camelyon17 task with a systematic shift between train,
validation and test sets (each set is comprised of different hospitals), while self-learning
fails to improve on tasks with mixed domains, such as on the RxRx1 and the FMoW
tasks.These results support our claim that self-learning is effective, while showing the
important limitation when applied to more diverse shifts.

A simple model of stability in self-learning

We observed that different self-learning schemes are optimal for small-scale vs. large-
scale datasets and varying amount of classes. We reconsider the used loss functions,
and unify them into

ℓ(x) = −∑
j

σj

(
ft(x)

τt

)
log
(

σj

(
fs(x)

τs

))
,

ft(x) =

{
f(x), entropy minimization

sg(f(x)), pseudo-labeling.

(3.5)

where we introduced student and teacher temperature τs and τt as parameters in the
softmax function and the stop gradient operation sg. To study the learning dynamics,

robust machine learning 57

we consider a linear student network fs = ws ∈ Rd and a linear teacher network
ft = wt ∈ Rd which are trained on N data points {xi}N

i=1 with a binary cross-entropy
loss function L defined as

L = −
N

∑
i=1

ℓ(xi)

= −
N

∑
i=1

(
σt(x⊤i wt) log σs(x⊤i ws) + σt(−x⊤i wt) log σs(−x⊤i ws)

)
,

where σt(z) =
1

1 + e−z/τt
and σs(z) =

1
1 + e−z/τs

.

(3.6)

With stop gradient, student and teacher evolve in time according to

ẇs = −∇wsL
(
ws, wt) , ẇt = α(ws −wt), (3.7)

where α is the learning rate of the teacher. Without stop gradient, student and teacher
are set equal to each other (following the instant updates we found to perform empiri-
cally best), and they evolve as

ẇ = −∇wL(w), where ws = wt = w. (3.8)

We restrict the theoretical analysis to the time evolution of the components of ws,t

in direction of two data points xk and xl , ys,t
k ≡ x⊤k ws,t and ys,t

l ≡ x⊤l ws,t. All other
components ys,t

i with i ̸= k, l are neglected to reduce the dimensionality of the equation
system. It turns out that the resulting model captures the neural network dynamics
quite well despite the drastic simplification of taking only two data points into account
(see Figure 3.2 for a comparison of the model vs. self-learning on the CIFAR-C dataset).
We obtain the dynamics:

with stop gradient: ẏs
k = −x⊤k ∇ws (ℓ(xk) + ℓ(xl)) ,

ẏs
l = −x⊤l ∇ws (ℓ(xk) + ℓ(xl)) ,

ẏt
k = α(yt

k − ys
k), ẏt

l = α(yt
l − ys

l),

without stop gradient: ẏk = −x⊤k ∇w (ℓ(xk) + ℓ(xl)) ,

ẏl = −x⊤l ∇w (ℓ(xk) + ℓ(xl)) .

(3.9)

With this setup in place, we can derive

Proposition 1 (Collapse in the two-point model). The student and teacher networks ws

and wt trained with stop gradient do not collapse to the trivial representation ∀x : x⊤ws =

0, x⊤wt = 0 if τs > τt. The network w trained without stop gradient does not collapse if
τs > τt/2. Proof. see § B.

We validate the proposition on a simulated two datapoint toy dataset, as well as on
the CIFAR-C dataset (Figure 3.2). In general, the size and location of the region where

robust machine learning 58

−2 −1 0 1
−2

−1

0

1
lo

g
1
0
τ s

PL
Two points

Error
0%
50%
100%

−2 −1 0 1

−2

−1

0

1
CIFAR-C

Error
≤BAS
>BAS

−2 −1 0 1

log10 τt

−2

−1

0

1

lo
g

1
0
τ s

ENT
τt = 2τs
τt = τs

−1 0 1

log10 τt

−1

0

1

Figure 3.2: For the two point model, we show accuracy, and for the CIFAR10-C simulation, we
show improvement (yellow) vs. degradation (purple) over the non-adapted baseline (BAS).
An important convergence criterion for pseudo-labeling (top row) and entropy minimization
(bottom row) is the ratio of student and teacher temperatures; it lies at τs = τt for PL, and
2τs = τt for ENT. Despite the simplicity of the two-point model, the general convergence
regions transfer to CIFAR10-C.

collapse is observed in the simulated model also depends on the initial conditions,
the learning rate and the optimization procedure. An in depth discussion, as well
as additional simulations are given in the Appendix, “A two-point model of self-
learning”.

Entropy minimization with standard temperatures (τs = τt = 1) and hard pseudo-
labeling (τt → 0) are hence stable. The two-point learning dynamics vanish for soft
pseudo-labeling with τs = τt, suggesting that one would have to analyze a more
complex model with more data points. While this does not directly imply that the
learning is unstable at this point, we empirically observe that both entropy minimization
and hard labeling outperform soft-labeling in practice.

The finding aligns with empirical work: For instance, Caron et al. (2021b) fixed
τs and varied τt during training, and empirically found an upper bound for τt above
which the training was no longer stable. It also aligns with our findings suggesting that

robust machine learning 59

Table 3.15: Self-learning decreases the top1 error on IN-D domains with strong initial perfor-
mance, but fails to improve performance on challenging domains.

domain Real Painting Clipart Sketch Infograph Quickdraw ImageNet
adapt w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o
model

EffNet-L2 Noisy Student 29.2 27.9 42.7 40.9 45.0 37.9 56.4 51.5 77.9 94.3 98.4 99.4 11.6
ResNet50 DAug+AM 39.2 36.5 58.7 53.4 68.4 57.0 75.2 61.3 88.1 83.2 98.2 99.1 23.3
ResNet50 vanilla 40.1 37.3 65.1 57.8 76.0 63.6 82.0 73.0 89.6 85.1 99.2 99.8 23.9

hard-labeling tends to outperform soft-labeling approaches, and soft-labeling performs
best when selecting lower teacher temperatures.

In practice, the result suggests that student temperatures should always exceed the
teacher temperatures for pseudo-labeling, and student temperatures should always exceed half
the teacher temperature for entropy minimization, which narrows the search space for
hyperparameter optimization considerably.

Adapting models on a wider range of distribution shifts reveals limita-
tions of robustification and adaptation methods

Robustness datasets on ImageNet-scale have so far been limited to a few selected
domains (image corruptions in IN-C, image renditions in IN-R, difficult images for
ResNet50 classifiers in IN-A). In order to test our approach on a wider range of complex
distribution shifts, we re-purpose the dataset from the Visual Domain Adaptation Chal-
lenge 2019 (DomainNet; Saenko et al., 2019) as an additional robustness benchmark.

Creation of ImageNet-D The original DomainNet dataset comes with six image styles:
“Clipart”, “Real”, “Infograph”, “Painting”, “Quickdraw” and “Sketch”, and has 345
classes in total, out of which 164 overlap with ImageNet. We map these 164 DomainNet
classes to 463 ImageNet classes, e.g., for an image from the “bird” class in DomainNet,
we accept all 39 bird classes in ImageNet as valid predictions. ImageNet also has
ambiguous classes, e.g., it has separate classes for “cellular telephone” and “dial
phone”. For these cases, we accept both predictions as valid. In this sense, the
mapping from DomainNet to ImageNet is a one-to-many mapping. We refer to the
smaller version of DomainNet that is now compatible with ImageNet-trained models
as ImageNet-D (IN-D). The benefit of IN-D over DomainNet is this re-mapping to
ImageNet classes which allows robustness researchers to easily benchmark on this
dataset, without the need of re-training a model (as is common in UDA). We show
example images from IN-D in Table 3.15. The detailed evaluation protocol on IN-D,
our label-mapping procedure from DomainNet to ImageNet along with justifications

robust machine learning 60

for our design choices and additional analysis are outlined in the Appendix, “Detailed
and additional Results on IN-D”.

The most similar robustness dataset to IN-D is IN-R which contains renditions
of ImageNet classes, such as art, cartoons, deviantart, graffiti, embroidery, graphics
and others. The benefit of IN-D over IN-R is that in IN-D, the images are separated
according to the domain allowing for studying of systematic domain shifts, while in
IN-R, the different domains are not distinguished. ImageNet-Sketch (Wang et al., 2019)
is a dataset similar to the “Sketch” domain of IN-D.

More robust models perform better on IN-D. To test whether self-learning is helpful
for more complex distribution shifts, we adapt a vanilla ResNet50, several robust
IN-C models and the EfficientNet-L2 Noisy Student model on IN-D. We use the same
hyperparameters we obtained on IN-C dev for all our IN-D experiments3. We show
our main results in Table 3.15. Comparing the performance of the vanilla ResNet50

model to its robust DAug+AM variant, we find that the DAug+AM model performs
better on all domains, with the most significant gains on the “Clipart”, “Painting” and
“Sketch” domains. We show detailed results for all domains and all tested models in
the Appendix, “Detailed results for robust ResNet50 models on IN-D”, along with
results on IN-C and IN-R for comparison. We find that the best performing models on
IN-D are also the strongest ones on IN-C and IN-R which indicates good generalization
capabilities of the techniques combined for these models, given the large differences
between the three considered datasets. The Spearman’s rank correlation coefficient
between IN-C and IN-D (averaged over all domains) is 0.54, and 0.73 between IN-R
and IN-D. Thus, the errors on IN-R are strongly correlated to errors on IN-D which can
be explained by the similarity of IN-D and IN-R. We show Spearman’s rank correlation
cofficients for the individual domains versus IN-C/IN-R in Fig. B.7 in the Appendix,
“Detailed results on the error analysis on IN-D”, and find correlation values above
0.8 between IN-R and IN-D for all domains except for the “Real” domain where the
coefficient is almost zero. Further, we find that even the best models perform 20 to
30 percentage points worse on IN-D compared to their performance on IN-C or IN-R,
indicating that IN-D might be a more challenging benchmark.

All models struggle with some domains of IN-D. The EfficientNet-L2 Noisy Student model
obtains the best results on most domains. However, we note that the overall error
rates are surprisingly high compared to the model’s strong performance on the other
considered datasets (IN-A: 14.8% top-1 error, IN-R: 17.4% top-1 error, IN-C: 22.0% mCE).
Even on the “Real” domain closest to clean ImageNet where the EfficientNet-L2 model
has a top-1 error of 11.6%, the model only reaches a top-1 error of 29.2%. Self-learning
decreases the top-1 error on all domains except for “Infograph” and “Quickdraw”.

3In regards to hyperparameter selection, we performed a control experiment where we selected
hyperparameters with leave-one-out cross validation—this selection scheme actually performed worse
than IN-C parameter selection (see Appendix, “Leave-one-out-cross-validation”).

robust machine learning 61

We note that both domains have very high error rates from the beginning and thus
hypothesize that the produced pseudo-labels are of low quality.

Error analysis on IN-D. We investigate the errors a ResNet50 model makes on IN-D
by analyzing the most frequently predicted classes for different domains to reveal
systematic errors indicative of the encountered distribution shifts. We find most
errors interpretable: the classifier assigns the label “comic book” to images from the
“Clipart” or “Painting” domains, “website” to images from the “Infograph” domain,
and “envelope” to images from the “Sketch” domain. Thus, the classifier predicts
the domain rather than the class. We find no systematic errors on the “Real” domain
which is expected since this domain should be similar to ImageNet. Detailed results on
the most frequently predicted classes for different domains can be found in Fig. B.7
(Appendix, “Detailed results on the error analysis on IN-D”).

IN-D should be used as an additional robustness benchmark. While the error rates on IN-C,
-R and -A are at a well-acceptable level for our largest EfficientNet-L2 model after
adaptation, IN-D performance is consistently worse for all models. We propose to
move from isolated benchmark settings like IN-R (single domain) to benchmarks more
common in domain adaptation (like DomainNet) and make IN-D publicly available as
an easy to use dataset for this purpose.

Best practices and evaluation in test-time adaptation

Based on our results as well as our discussion on previous work, we arrive at several
proposals on how test-time adaptation should be evaluated in future work to ensure
scientific rigor:

1. Cross-validation: We propose using the hold-out set of IN-C for model selection of
all relevant hyperparameters, and then using these hyperparameters for testing
on different datasets.

2. Comparison to simple baselines: With proper hyperparameter tuning, very simple
baselines can perform on par with sophisticated approaches. This insight is
also discussed by Gulrajani and Lopez-Paz (2021) for the setting of domain
generalization and by Rusak et al. (2020) for robustness to common corruptions.

3. Using more robust models: Test-time adaptation can further improve upon robust
models, which were pre-trained with more data or with UDA, or using protocols
to increase robustness. A test-time adaptation method will be much more relevant
to practitioners if it can improve upon the most robust model they can find for
their task.

robust machine learning 62

4. Important hyperparameters: We identify several important hyperparameters which
affect the final performance in a crucial way, and thus, should be tuned to ensure
fair comparisons:

• Number of adaptation epochs and learning rate: The final performance crucially
depends on both of these parameters for all models and all methods that we
have studied.

• Adaptation parameters While adaptation of affine batch normalization pa-
rameters works best for adaptation of CNNs, full adaptation performs best
for ViTs. Therefore, it is important to benchmark test-time adaptation for
different model architectures and adaptation parameters.

Conclusion

We evaluated and analysed how self-learning, an essential component in many unsuper-
vised domain adaptation and self-supervised pre-training techniques, can be applied
for adaptation to both small and large-scale image recognition problems common in
robustness research. We demonstrated new state-of-the-art adaptation results with the
EfficientNet-L2 model on the benchmarks ImageNet-C, -R, and -A, and introduced
a new benchmark dataset (ImageNet-D) which remains challenging even after adap-
tation. Our theoretical analysis shows the influence of the temperature parameter in
the self-learning loss function on the training stability and provides guidelines how
to choose a suitable value. Based on our extensive experiments, we formulate best
practices for future research on test-time adaptation. Across the large diversity of
(systematic) distribution shifts, architectures and pre-training methods we tested in this
paper, we found that self-learning almost universally improved test-time performance.
An important limitation of current self-learning methods is the observed instability over
longer adaptation time frames. While we mitigate this issue through model selection
(and show its robustness across synthetic and natural distribution shifts), this might
not universally hold across distribution shifts encountered in practice. Concurrent
work, e.g. Niu et al. (2022a) tackle this problem through modifications of self-learning
algorithms, and we think this direction will be important to continue to explore in
future work. That being said, we hope that our results encourage both researchers and
practitioners to experiment with self-learning if their data distribution shifts.

Reproducibility Statement

We attempted to make our work as reproducible as possible: We mostly used pre-
trained models which are publicly available and we denoted the URL addresses of
all used checkpoints; for the checkpoints that were necessary to retrain, we report
the Github directories with the source code and used an official or verified reference

robust machine learning 63

implementation when available. We report all used hyperparameters in the Appendix
and released the code.

Software and Data

Code for reproducing results of this paper is available at https://github.com/bethgelab/
robustness.

Acknowledgements

We thank Roland S. Zimmermann, Yi Zhu, Raghavan Manmatha, Matthias Kümmerer,
Matthias Tangemann, Bernhard Schölkopf, Justin Gilmer, Shubham Krishna, Julian
Bitterwolf, Berkay Kicanaoglu and Mohammadreza Zolfaghari for helpful discussions
on pseudo labeling and feedback on our paper draft. We thank Yasser Jadidi and Alex
Smola for support in the setup of our compute infrastructure. We thank the anonymous
reviewers from TMLR and our Action Editor for their constructive feedback.

We thank the International Max Planck Research School for Intelligent Systems
(IMPRS-IS) for supporting E.R. and St.S.; St.S. acknowledges his membership in the
European Laboratory for Learning and Intelligent Systems (ELLIS) PhD program. This
work was supported by the German Federal Ministry of Education and Research (BMBF)
through the Tübingen AI Center (FKZ: 01IS18039A), by the Deutsche Forschungsge-
meinschaft (DFG) in the priority program 1835 under grant BR2321/5-2 and in the
SFB 1233, Robust Vision: Inference Principles and Neural Mechanisms (TP3), project
number: 276693517. WB acknowledges financial support via an Emmy Noether Grant
funded by the German Research Foundation (DFG) under grant no. BR 6382/1-1 and
via the Open Philantropy Foundation funded by the Good Ventures Foundation. WB is
a member of the Machine Learning Cluster of Excellence, EXC number 2064/1 – Project
number 390727645.

https://github.com/bethgelab/robustness
https://github.com/bethgelab/robustness

4
RDumb: A simple approach that
questions our progress in continual
test-time adaptation

The following pages contain the postprint version of the paper

Ori Press, Steffen Schneider, Matthias Kümmerer†, and Matthias Bethge†.
“RDumb: A simple approach that questions our progress in continual test-
time adaptation.” Advances in Neural Information Processing Systems 36 (2023)

A short version of an earlier version of the paper was previously presented at the
Principles of Distribution Shift (PODS) workshop at ICML 2022. A short version of the
CCC dataset what presented at the Shift Happens Workshop at ICML 2022.

Author Contributions The order below is determined by contribution among the re-
spective category. Conceptualization, RDumb: OP with input from all authors; Concep-
tualization, CCC: StS, MB, MK; Methodology: OP, StS; Software: OP; Data Curation:
OP; Investigation: OP; Formal analysis: MK, StS, OP; Visualization: StS, OP with input
from all authors; Writing, Original Draft: OP, StS, MK; Writing, Review & Editing: all
authors; Supervision: MB, MK, StS. †MB and MK contributed equally to advising the
project.

robust machine learning 66

Summary

Test-Time Adaptation (TTA) allows to update pretrained models to changing data dis-
tributions at deployment time. While early work tested these algorithms for individual
fixed distribution shifts, recent work proposed and applied methods for continual adap-
tation over long timescales. To examine the reported progress in the field, we propose
the Continuously Changing Corruptions (CCC) benchmark to measure asymptotic
performance of TTA techniques. We find that eventually all but one state-of-the-art
methods collapse and perform worse than a non-adapting model, including models
specifically proposed to be robust to performance collapse. In addition, we introduce
a simple baseline, RDumb1, that periodically resets the model to its pretrained state.
RDumb performs better or on par with the previously proposed state-of-the-art in all
considered benchmarks. Our results show that previous TTA approaches are neither
effective at regularizing adaptation to avoid collapse nor able to outperform a simplistic
resetting strategy.

Introduction

Biological vision is remarkably robust at adapting to continually changing environ-
ments. Imagine cycling through the forest on a cloudy day and observing the world
around you: You will encounter a wide variety of animals and objects, and be able
to recognize them without effort. Even as the weather changes, rain sets in, or you
start cycling faster, the human visual system effortlessly adapts and robustly estimates
the surroundings (Van de Ven & Tolias, 2019). Equipping machine vision with similar
capabilities is a long-standing and unsolved challenge, with numerous applications in
autonomous driving, medical imaging, and quality control, to name a few.

Techniques for improving the robustness to domain shifts of ImageNet-scale (Rus-
sakovsky et al., 2015) classification models include pre-training of large models on
diverse and/or large-scale datasets (Mahajan et al., 2018; Radford et al., 2021; Xie et al.,
2020a) and robustification of smaller models by specifically designed data augmenta-
tion (Hendrycks et al., 2020b, 2020a; Rusak et al., 2020). While these techniques are
applied during training time, recent work (Goyal et al., 2022; Mummadi et al., 2021;
Nado et al., 2020; Niu et al., 2022b; Rusak et al., 2021; Schneider et al., 2020a; Wang
et al., 2020b; Wang et al., 2022) explored possibilities of further adapting models by
Test-Time Adaptation (TTA). Such methods continuously update a given pretrained
model exclusively using their input data, without having access to its labels. Test-time
entropy minimization (TENT; Wang et al., 2020b) has become a foundation for state-
of-the-art TTA methods. Given an input stream of images, Tent updates a pretrained
classification model by minimizing the entropy of its outputs, thereby continuously
increasing the model’s confidence in its predictions for every input image.

1The name is inspired by the name and methodology of GDumb (Prabhu, Torr and Dokania, 2022) in
continual learning.

robust machine learning 67

Select Noise Pairs

Randomized

Crop + Flip

Random

Sampling

N images N images
One CCC transition: N x L images

ImageNet Val

Apply

Noise

CCC(a) C

7500k images

50k images

N
50k

Pre-trained

CoTTA

ETA

RDumb

(ours)

Ac
cu

ra
cy

 [%
]

CIN-C

Steps

CCC

Ac
cu

ra
cy

 [%
]

Ac
cu

ra
cy

 [%
]

(b)

Steps

Steps

CIN-C

750k images

Compute trajectory

(Length L)

Zoom Blur

Shot Noise

Gaussian Noise

Snow

Elastic Transform

Fog

JPEG Compression

Impulse Noise

Contrast

Pixelate

Brightness

Motion Blur

Glass Blur

Frost

Defocus Blur

Figure 4.1: Continuously Changing Corruptions show limitations of existing TTA methods. (a)
Comparison between ImageNet-Val, CIN-C and CCC. The proposed version of CCC is 10×
longer than CIN-C and could naturally be extended even further without repeating images.
CCC consists of sequences of smooth transitions from one ImageNet-C noise to another one.
For each such pair, we construct a trajectory continuously interpolating from one pure noise
to the other pure noise such that baseline accuracy is kept constant. For each point along the
trajectory, we sample a batch of 1k, 2k, or 5k images from ImageNet-Val, randomly crop and
flip it and apply the noise combination. (b) Due to its short length and high variability in
difficulty, CIN-C (top) is unable to reveal the collapse of methods such as ETA and CoTTA,
while CCC (middle and bottom) can.

Previous TTA work (Goyal et al., 2022; Mummadi et al., 2021; Nado et al., 2020;
Rusak et al., 2021; Schneider et al., 2020a; Wang et al., 2020b; Zhang et al., 2022)
evaluate their models on ImageNet-C (Hendrycks & Dietterich, 2019a) or smaller scale
image classification benchmarks (Krizhevsky, Hinton, et al., 2009; LeCun et al., 2010).
ImageNet-C consists of 75 copies of the ImageNet validation set, wherein each copy
is corrupted according to 15 different noises at 5 different severity levels. When TTA
models are evaluated on ImageNet-C, they are adapted on each noise and severity
combination individually starting from their pretrained weights. Such a one-time
adaptation approach is of little relevance when it comes to deploying TTA models in
realistic scenarios. Instead, stable performance over a long run time after deployment
is the desirable goal.

TTA methods are by design readily applicable to this setting and recently the field
has started to move towards testing TTA models in continual adaptation settings (Gong
et al., 2022; Niu et al., 2022b; Wang et al., 2022). Strikingly, this revealed that the
dominant TTA approach Tent (Wang et al., 2020b) decreases in accuracy over time,
eventually being less accurate than a non-adapting, pretrained model (Niu et al., 2022b;

robust machine learning 68

Wang et al., 2022). In this work, we refer to any model whose classification accuracy
falls below that of a non-adapting, pretrained model, as having “collapsed”.

This collapsing behaviour of Tent shows that it cannot be used in continual adapta-
tion over long time scales without modifications. While previous benchmarking of TTA
methods already managed to reveal the collapse of Tent, our work shows that in fact
all current TTA methods collapse sooner or later, including methods with explicit built-in
anti-collapse strategies.

Since current benchmarks have not been sufficient to detect collapse in several
models, we introduce an image classification benchmark designed to thoroughly
evaluate TTA models for their long-term behavior. Our benchmark, Continuously
Changing Corruptions (CCC), tests models on their ability to adapt to image corruptions
that are constantly changing, much like when fog turns to rain or day turns to night.
CCC allows us to easily control different factors that could affect the ability of a given
method to continuously adapt: the corruptions and their order, the difficulty of the
images themselves, and the speed at which corruptions transition. Most importantly,
the length of our benchmark is ten times longer than that of previous benchmarks, and
more diverse by including all kinds of combinations of corruptions (see Figure 4.1a).
Using CCC, we discover that seven recently published state-of-the-art TTA methods are
less accurate than a non-adapting, pretrained model. While Tent was already shown
to collapse (Gong et al., 2022; Niu et al., 2022b; Wang et al., 2022), we show that this
problem is not specific to Tent, and that many other methods – including specifically
designed continual adaptation methods – collapse as well.

Finally, we propose “RDumb” 2 as a minimalist baseline mechanism that simply
Resets the model to its pretrained weights at regular intervals. Previous work employs
more sophisticated methods combining entropy minimization with various regulariza-
tion approaches, yet we show that RDumb is superior on both existing benchmarks and
ours (CCC). Our results call the progress made in continual TTA so far into question,
and provide a richer set of benchmarks for realistic evaluation of future methods.

Our contributions are:

• We introduce the continual adaptation benchmark CCC. We show that previous
benchmarks are too short to meaningfully assess long-term continual adaptation
behaviour, and are too uncontrolled to assess the short-term learning dynamics.

• Using CCC, we show that the performances of all but one current TTA meth-
ods drop below a non-adapting, pre-trained baseline when trained over long
timescales.

• We propose “RDumb” as a baseline and show that it outperforms all previous
methods with a minimalist resetting strategy.

2The name was inspired by GDumb (Prabhu et al., 2020).

robust machine learning 69

(a) (b)

Figure 4.2: (a) Each corruption of CCC consists of applying two ImageNet-C corruptions
at different severities. We extend the individual severities to be more fine-grained than in
ImageNet-C, allowing for smoother noise changes, and exponentially more (noise, severity)
combinations. The corners are enlarged for easier viewing, zoom in for greater detail. (b)
Sample dataset sequences with a constant baseline accuracy. The sequences start from the left
where Motion Blur is zeroed out, and end at the top with Gaussian noise zeroed out. The colors
red, orange, and yellow correspond to trajectories in CCC-Easy, CCC-Medium and CCC-Hard,
respectively.

CCC: Towards Infinite Testing with Continuously Changing Corruptions

Until recently, it was common to evaluate TTA methods only on datasets on individual
domain shifts such as the corruptions of ImageNet-C (Hendrycks & Dietterich, 2019a).
However, the world is steadily changing and recently the community started moving
towards continual adaptation, i.e., evaluating methods with respect to their ability to
adapt to ongoing domain shifts (Niu et al., 2022b; Sun et al., 2019b; Wang et al., 2022).

The dominant method of evaluating continual adaptation on ImageNet scale is to
concatenate the top severity datasets of the 15 ImageNet-C corruptions into one big
dataset. We refer to the variant of this dataset introduced by Wang et al. (2022) as
Concatenated ImageNet-C (CIN-C). CIN-C was used to demonstrate the collapse of Tent
and the stability of recent TTA methods by Gong et al. (2022), Niu et al. (2022b), and
Wang et al. (2022).

In Figure 4.1b, we evaluate a range of TTA methods on CIN-C and notice three
potential problems: Firstly, ETA (Niu et al., 2022b) appears to be stable and better than
a non-adapting, pretrained baseline, but is revealed to collapse when tested on CCC.
Additionally, while CoTTA (Wang et al., 2022) clearly goes down in performance, it is
not yet clear whether it collapses or stabilizes above or below baseline performance.
Fundamentally, CIN-C turns out to be too short to yield reliable, conclusive results.

robust machine learning 70

Secondly, assessing adaptation dynamics is further obscured by the considerable
variations of the baseline performance among the different corruptions in CIN-C. This
is not only a factor that affects adaptation itself (shown by Niu et al. (2022b) and Wang
et al. (2020b)), it also leads to substantial fluctuations in performance across multiple
runs, making it difficult to obtain a clear and reliable assessment. Finally, CIN-C
features exclusively abrupt transitions between different corruption types. In contrast,
in the real world, domain changes may often be smooth and subtle with varying speeds:
day to night, rain to sunshine, or the accumulation of dust on a camera. Therefore,
it is important to also probe TTA methods on continual domain changes that are not
tied to a specific point in time and thus constitute a relevant test for stable continual
adaptation.

Here we propose a new benchmark, Continuously Changing Corruptions (CCC), to
address these issues. CCC solves the issues of benchmark length, uncontrolled baseline
difficulty, and transition smoothness in a simple and effective manner. Firstly, the
length issue is remedied because the individual runs of CCC are constructed by a
generation process which can generate very long datasets without reusing images. In
this work we use runs of 7.5M images, which is 10 times as long as CIN-C. If required to
compare methods in future work (where collapse is even slower), it is straightforward
to generate even longer benchmarks within the CCC framework. Secondly, since both
(Niu et al., 2022b; Wang et al., 2020b) have shown that dataset difficulty is a confounder
when studying adaptation, the difficulty of individual benchmark runs is kept stable.
Additionally, we examine three different difficulty levels to ensure a comprehensive
yet controlled evaluation. Finally, CCC exhibits smooth domain shifts: it applies two
corruptions to each image. Over time, the severity of one corruption is smoothly
increased while the severity of the other is decreased, maintaining the desired difficulty.
We also study three different speeds for applying this process. We will now outline the
generation procedure of the dataset.

Continuously changing image corruptions To allow smooth transitions between corrup-
tions, we introduce a more fine-grained severity level system to the ImageNet-C dataset.
We interpolate the parameters of the original corruptions (integer-valued severities from
1 to 5) to finer grained severity levels from 0 to 5 in steps of 0.25. We apply two different
ImageNet-C corruptions to each image, such that we can decrease the severity of one
corruption while increasing the severity of another one. Hence, the corruptions of CCC
are given by quadruples (c1, s1, c2, s2), where c1 and c2 are ImageNet-C corruption
types and s1 and s2 are severity levels. When applying such a corruption, we first apply
c1 and then c2 at their respective severities (see Figure 4.2a).

Calibration to desired baseline accuracy In order to control baseline accuracy, we need to
know how difficult each combination of 2 noises and their respective severities is. To
that end, we first select a subset of 5,000 images from the ImageNet validation set. For
each corruption (c1, s1, c2, s2), we corrupt all 5,000 images accordingly and evaluate the

robust machine learning 71

resulting images with a pre-trained ResNet-50 (He et al., 2016a). The resulting accuracy
is what we refer to as baseline accuracy and what we use for controlling difficulty. In
total, we evaluate more than 463 million corrupted images. Previous work, (Hendrycks
& Dietterich, 2019b), measures normalized accuracy using AlexNet (Krizhevsky et al.,
2012b), which is less pertinent in present-day contexts. In addition, the accuracy of
non-adapting Vision Transformers are stable on CCC as well (Figure 4.4).

Generating Benchmark Runs Having calibrated the corruptions pairs, we prepare bench-
mark runs with different baseline accuracies, transition speeds, and noise orderings.
We pick 3 different baseline accuracies: 34%, 17%, and 2% (CCC-Easy, CCC-Medium,
CCC-Hard respectively). For each one of the difficulties, we select a further 3 transition
speeds: 1k, 2k, 5k. Lastly, for each difficulty and transition speed combination we use 3

different noise orderings, determined by 3 random seeds. To generate each run, we
first select the initial corruption at the severity which according to our calibration is
closest to the desired baseline accuracy. We then transition to the second corruption of
the noise ordering by repeatedly either decreasing the severity of the first noise by 0.25

or increasing the severity of the second noise by 0.25 such that the baseline accuracy
is as close to the target as possible (see Figure 4.2). In each step along each path,
we sample 1k, 2k, or 5k images from the ImageNet validation set depending on the
desired transition speed. Each image is randomly cropped and flipped for increasing
the diversity of the dataset, and then corrupted.

Once the path from the initial to the second corruption is finished, the process
is repeated for transitioning to the third corruption and so on (for more details see
Appendix, “Path Finding Algorithm”). In the end, we have 3 difficulties consisting of 9

benchmark runs each. CCC-Medium at a speed of 2k corresponds roughly to CIN-C’s
difficulty and transition speed.

RDumb: Turning your model off and on again

Continual test-time adaptation needs to successfully adapt models over arbitrarily long
timescales during deployment. Resetting a model to its initial weights at fixed intervals
fulfills this criterion by design, yet allows to benefit from adaptation over short time
scales. Surprisingly, such an approach has never been tried before (see Appendix,
“Novelty of Resetting” for more discussion).

Regarding the choice of the adaptation loss, we build on the weighted entropy used
in ETA (Niu et al., 2022b). For a stream of input images x1, x2, . . . , we compute class
probabilities yt = fΘt(xt) and optimize the loss function

L(yt; yt−1) =

(
1[(| cos(yt, yt−1)| < ϵ) ∧ (H(yt) < H0)]

exp(H(yt)− H0)

)
H(yt) (4.1)

which weights the entropy H(yt) = −y⊤t (log yt) of each prediction using the similarity

robust machine learning 72

to averaged previously predicted class probabilities, yt = (y1 + · · · + yt)/t, and a
comparison to a fixed entropy threshold H0. cos(u, v) refers to the cosine similarity
between vectors u and v. At each step, (part of) the weights Θt are updated using the
Adam optimizer (Kingma & Ba, 2014). At every T-th step, Θt is reset to the baseline
weights Θ0. We use ϵ = 0.05 and H0 = 0.4 × ln 103 following Niu et al. (2022b),
and select T = 1000 based on the holdout noises in IN-C (see section “Optimal reset
intervals”).

Experiment Setup

We benchmark RDumb alongside a range of recently published TTA models. For all
models, we use a batch size of 64. In all models, the BatchNorm statistics are estimated
on the fly, and the affine shift and scale parameters are optimized according to a
model-specific strategy outlined below.

• BatchNorm (BN) Adaptation (Nado et al., 2020; Schneider et al., 2020a) estimates
the BatchNorm statistics (mean and variance) separately for each batch at test
time. The affine transformation parameters are not adapted.

• Tent (Wang et al., 2020a) optimizes the entropy objective on the test set in order
to update the scale and shift parameters of BatchNorm (in addition to learning
the statistics).

• Robust Pseudo-Labeling (RPL) (Rusak et al., 2021) uses a teacher-student ap-
proach in combination with a label noise resistant loss.

• Conjugate Pseudo Labels (CPL) (Goyal et al., 2022) use meta learning to learn
the optimal adaptation objective function across a class of possible functions.

• Soft Likelihood Ratio (SLR) (Mummadi et al., 2021) uses a loss function that is
similar to entropy, but without vanishing gradients. Anti-Collapse Mechanism: An
additional loss is used to encourage the model to have uniform predictions over
the classes, and the last layer of the network is kept frozen.

• Continual Test Time Adaptation (CoTTA) (Wang et al., 2022) uses a teacher
student approach in combination with augmentations. Anti-Collapse Mechanism:
Every iteration, 0.1% of the weights are reset back to their pretrained values.

• Efficient Test Time Adaptation (EATA) (Niu et al., 2022b) uses 2 weighing
functions to weigh its outputs: the first based on their entropy (lower entropy
outputs get a higher weight), the second based on diversity (outputs that are
similar to seen before outputs are excluded). Anti-Collapse Mechanism: An L2

regularizer loss is used to encourage the model’s weights to stay close to their
initial values.

robust machine learning 73

(a) (b)

Figure 4.3: Adaptation performance of all evaluated models depending on the number of
observed samples so far. (a) CIN-C. Model performances are averaged over the 10 runs of the
benchmark. (b) CCC. Model performances are averaged over the 27 runs of the three difficulty
levels. See Appendix, “CCC Plots”, Figure C.4 for separate plots for CCC Easy, Medium and
Hard.

• EATA Without Weight Regularization (ETA) For completeness, we also test ETA,
which is EATA but without the regularizer loss, proposed in (Niu et al., 2022b).

• RDumb is our proposed baseline to mitigate collapse via resetting. We reset
every T = 1, 000 steps, as determined by a hyperparameter search on the holdout
set (Section “Optimal reset intervals”).

Following the original implementations, Tent, ETA, EATA, and RDumb use SGD
with a learning rate of 2.5 · 10−4. RPL uses SGD with a learning rate of 5 · 10−4. SLR
uses the Adam optimizer with a learning rate of 6 · 10−4. CoTTA uses SGD with a
learning rate of 0.01, and CPL uses SGD with a learning rate of 0.001.

Results

CCC reveals collapse during continual adaptation, unlike CIN-C. For three models that were
evaluated, evaluation on CIN-C yielded inconclusive or inaccurate results in detecting
collapse: CoTTA collapses on CCC, while CIN-C shows it to be on a downward trend,
but end performance still outperformed the baseline (Figure 4.3a). Additionally, ETA
shows no signs of collapse on CIN-C, while collapsing very clearly on CCC (Figure 4.3b,
more precisely on CCC-Medium and CCC-Hard, see Appendix Figure C.4). When
tested using ViT backbones, EATA is better than the pretrained model on CIN-C (Figure
4.4a), but worse than the pretrained model on CCC (Figure 4.4b, Table 4.2,4.3). Lastly,
SLR on CIN-C appears to be somewhat stable, but only at around 10% accuracy. CCC

robust machine learning 74

Table 4.1: Mean accuracy of ResNet-50 models on CIN-C, CIN-3DCC and CCC. For each CCC
split (Easy, Medium, and Hard), a mean of 9 runs is taken. For the CIN-C and CIN-3DCC
experiments, the accuracy reported is the mean of 10 different noise permutations. Grey
indicates collapse. 1Nado et al. (2020) and Schneider et al. (2020a).

Adaptation method CIN-C CIN-3DCC CCC-Easy CCC-Medium CCC-Hard Average

Pretrained (He et al., 2016a) 18.0 ± 0.0 31.5 ± 0.0 34.1 ± 0.22 17.3 ± 0.21 1.5 ± 0.02 20.5
BN1

31.5 ± 0.02 35.7 ± 0.02 42.6 ± 0.39 27.9 ± 0.74 6.8 ± 0.31 28.9
Tent (Wang et al., 2020b) 15.6 ± 3.5 24.4 ± 3.5 3.9 ± 0.58 1.4 ±0.17 0.51 ± 0.07 9.2
RPL (Rusak et al., 2021) 21.8 ± 3.6 30.0 ± 3.6 7.5 ± 0.83 2.7 ± 0.36 0.67 ± 0.14 12.5
SLR (Mummadi et al., 2021) 12.4 ± 7.7 12.2 ± 7.7 22.2 ± 18.4 7.7 ± 9.0 0.66 ± 0.57 11.0
CPL (Goyal et al., 2022) 3.0 ± 3.3 5.7 ± 3.3 0.41 ± 0.06 0.22 ± 0.03 0.14 ± 0.01 1.9
CoTTA (Wang et al., 2022) 34.0 ± 0.68 37.6 ± 0.68 14.9 ± 0.88 7.7 ± 0.43 1.1 ± 0.16 19.1
EATA (Niu et al., 2022b) 41.8 ± 0.98 43.6 ± 0.98 48.2 ± 0.6 35.4 ±1.0 8.7 ±0.8 35.5
ETA (Niu et al., 2022b) 43.8 ± 0.33 42.7 ± 0.33 41.4 ± 0.95 1.1 ± 0.43 0.23 ± 0.05 25.8
RDumb (ours) 46.5 ± 0.15 45.2 ± 0.15 49.3 ± 0.88 38.9 ± 1.4 9.6 ± 1.6 37.9

reveals this to be only partly true: on CCC-Hard, SLR is not stable and collapses to
nearly chance accuracy. In summary, models evaluated on CCC show clear limits,
which are impossible to see on CIN-C because of the high difficulty variance between
runs, and its short length.

RDumb is a strong baseline for continual adaptation. RDumb outperforms all previous
methods on both established benchmarks (CIN-C, CIN-3DCC) as well as our continual
adaptation benchmark, CCC (Table 4.1 and Figure 4.3). Concretely, we outperform
EATA and increase accuracy by more than 11% on CIN-C (improving from 41.8% points
to 46.5% points), and by almost 7% when averaged all evaluation datasets. While not
able to outperform RDumb, we note that EATA is also a strong method for preventing
collapse except for the counterexample in Table 4.2.

The results transfer to Imagenet-3D Common Corruptions. To further demonstrate the
effectiveness of our method, we show results on Imagenet-3DCC (Kar et al., 2022),
which features 12 types of corruptions, which take the geometry and distances between
objects into account when applied to an image.

Similarly to CIN-C, we test our models on 10 different permutations of concatena-
tions of all the noises of IN-3DCC, which we call CIN-3DCC. As in the case of CIN-C
and CCC, RDumb outperforms all previous methods (Table 4.1).

The results transfer to Vision Transformers. To further validate our claims, we test both
EATA and our method with a Vision Transformer (ViT) (Dosovitskiy et al., 2021)
backbone (Figure 4.4). The difference in average accuracy between our method and
EATA is larger when using a ViT, as compared to a ResNet-50: on CIN-C and CCC the
gap is 10.9% points and 11.7% points respectively. Additionally, EATA’s accuracy on

robust machine learning 75

(a) (b)

Figure 4.4: TTA using a ViT backbone: (a) On CIN-C, EATA is better than the pretrained
baseline (44.4% points vs 40.1% points). (b) On CCC-Medium, EATA is worse than the
pretrained baseline (38.5% points vs 42.0% points). RDumb (ours) is consistently better than
both EATA and the baseline.

Table 4.2: Mean accuracy of different backbone architectures on CCC-Medium. Accuracy
reported is an average across 9 runs. Backbones used: (Dosovitskiy et al., 2021; He et al.,
2016a; Liu et al., 2022; Tu et al., 2022; Xie et al., 2017), †: AugMix (Hendrycks et al., 2020b), ‡:
DeepAugment (Hendrycks et al., 2020a). Grey indicates collapse.

M
eth

od

RN1
8

RN3
4

RN5
0

RN5
0
†

RN5
0

†‡

RNXt10
1

†‡

ViT-B
1
6

M
ax

ViT-T

Sw
in

ViT-T

Pretrained 12.2 17.3 17.3 27.9 38.9 47.8 42.0 45.1 33.2
EATA 26.8 30.8 35.4 46.5 52.3 58.5 38.5 47.1 35.6
RDumb 32.5 37.2 38.9 47.0 51.9 58.4 50.2 49.9 36.5

CCC is below that of a pretrained, non-adapting model 3. This collapse can only be
seen by using CCC, and not when evaluating on CIN-C.

RDumb allows adaptation of a variety of architectures without tuning. We evaluate RDumb
and EATA across a range of popular backbone architectures. Out of the nine architec-
tures evaluated (see Table 4.2,4.3), RDumb outperformed EATA by an average margin
of 4.5% points on seven of them, and worse by an average margin of only 0.25% points
on the remaining two.

3Increasing the regularizer parameter value does not help stabilize the model, see Appendix, “EATA
Implementation and Ablations”.

robust machine learning 76

Table 4.3: Mean accuracy of different backbone architectures on CCC-Hard. Accuracy reported
is an average across 9 runs. Backbones used: (Dosovitskiy et al., 2021; He et al., 2016a; Liu et al.,
2022; Tu et al., 2022; Xie et al., 2017), †: AugMix (Hendrycks et al., 2020b), ‡: DeepAugment
(Hendrycks et al., 2020a). Grey indicates collapse.

M
eth

od

RN1
8

RN3
4

RN5
0

RN5
0
†

RN5
0

†‡

RNXt10
1

†‡

ViT-B
1
6

M
ax

ViT-T

Sw
in

ViT-T

Pretrained 0.82 1.3 1.5 5.6 24.3 15.6 22.0 22.0 9.3
EATA 6.4 7.6 8.7 17.7 30.3 36.3 8.6 15.4 8.6
RDumb 8.3 10.7 9.6 14.7 29.9 35.6 23.8 22.0 8.0

Table 4.4: Accuracy of our method for different resetting times on CIN-C-Holdout

T (steps) 125 250 500 1000 1500 2000

Acc. [%] 42.1 44.4 46.0 46.7 46.5 46.4

Analysis and Ablations

Optimal reset intervals. To determine the optimal reset interval, we run ETA with reset
intervals T ∈ [125, 250, 500, 1000, 1500, 2000] on CIN-C using the IN-C holdout noises.
We concatenate the 4 holdout noises at severity 5 as our base test set. This base test set
is repeated until the model sees 750k images, which is equal to the length of CIN-C.
We do this for every permutation of the 4 holdout corruptions. On this holdout set, we
find that the optimal T is equal to 1,000.

RDumb is less sensitive to hyperparameters. An added benefit to our method is that it is
less sensitive to hyperparameters than EATA. We conduct a simple hyperparameter
search of the E0 parameter—the hyperparameter that controls how many outputs
get filtered out because of their high entropy. Our method consistently outperforms
EATA across every hyperparameter tested (Table 4.5), and for the highest value, 0.7,
EATA collapses to almost chance accuracy on all splits, while our method does not.
In addition, RDumb’s performance benefits from finetuning (H0 = {0.2, 0.3}), while
EATA is not able to improve.

Table 4.5: Average accuracy on all of CCC splits on a variety of H0 values. For all other
experiments in this paper we use H0 = 0.4× ln(103), as in (Niu et al., 2022b).

H0 × ln 103
0.1 0.2 0.3 0.4 0.5 0.6 0.7

EATA 27.8 27.9 29.9 30.8 28.7 28.0 0.33

RDumb (ours) 31.6 32.9 33.1 32.6 30.7 25.7 16.8

robust machine learning 77

RDumb is effective because ETA reaches maximum adaptation performance fast. ETA is
quick to adapt to new noises from scratch. On each of the holdout set noises and
severities, ETA reaches its maximum accuracy after seeing only about 12,500 samples,
which is about 200 adaptation steps (Figure 4.5a). After that, accuracy decays at a
pace slower than its initial increase. Therefore, when resetting and readapting from
scratch, only a few steps with substantially suboptimal predictions are encountered
before performance is again close to optimal.

Adaptation Steps

N
or

m
al

iz
ed

 A
cc

ur
ac

y
[%

]

Observed samples

Ac
cu

ra
cy

 [%
]

(b)

ETA + Resetting (Rdumb)
ETA + Regularization (EATA)

ETA (base model)

Observed Samples

(a)

Figure 4.5: (a) ETA’s normalized accuracy over time, on the ImageNet-C holdout noises and
each of their severities. For every noise in the holdout set, ETA reaches its maximum accuracy
very quickly. (b) Rdumb shares ETA’s property of fast adaptation, while regularization in EATA
slows adaptation.

Comparing resetting to regularization. Previous works typically optimize two loss terms:
one loss encourages adaptation on unseen data, another loss regularizes the model to
prevent collapse. Having to optimize two losses should be harder than optimizing just
one – we see evidence for this in short term adaptation on CIN-C (Figure 4.5b): ETA
and EATA optimize the same loss, but EATA additionally optimizes an anti-collapse
loss. Consequently, ETA beats EATA by 2% points on CIN-C.

Collapse Analysis. We now investigate potential causes and effects of the observed
collapse behavior. We propose a theoretical model, fully specified in Appendix C,
which can explain both collapsing and non-collapsing runs. The model consists of a
batch norm layer followed by a linear layer trained with the Tent objective. Within
this model, we can present two scenarios. In the first, the model successfully adapts
and plateaus at high accuracy (Figure C.1a). In the second, we see early adaptation
which is then followed by collapse (Figure 4.6a,C.1a). The properties of noise in the
data influence whether we observe the case of successful or unsuccessful adaptation.

Interestingly, the model predicts that the magnitude of weights increases over
the course of optimization; this signature of entropy minimization can be found in
both the theoretical model and a real experiment using RDumb without resetting on
CCC-Medium (Figure 4.6). Unfortunately, weight explosion happens only after model

robust machine learning 78

performance is already collapsed (Figure C.2b). The effect is observable across all layers
(Figure 4.6c,C.2).

Discussion and Related Work

Domain Adaptation. In practice, the data distribution at deployment is different from
training, and hence the task of domain adaptation, i.e., the task of adapting models
to different target distributions has received a lot of attention (Geirhos et al., 2018a;
Hendrycks et al., 2020b; Lee, 2013a; Liang et al., 2021; Rusak et al., 2020; Sun et al.,
2019b; Wang et al., 2020b). The methods on domain adaptation split into different
categories based on what information is assumed to be available during adaptation.
While some methods assume access to labeled data for the target distribution (Motiian
et al., 2017; Yue et al., 2021), unsupervised domain adaptation methods assume that the
model has access to labeled source data and unlabeled target data at adaptation time
(Ganin et al., 2016; Lee, 2013a; Liang et al., 2021; Sun et al., 2019a). Most useful for
practical applications is the case of test-time adaptation, where the task is to adapt to
the target data on the fly, without having access to the full target distribution, or the
original training distribution (Nado et al., 2020; Niu et al., 2022b; Rusak et al., 2021;
Schneider et al., 2020a; Sun et al., 2019b; Wang et al., 2020b; Zhang et al., 2022).

In addition to the division made above, one can further distinguish what assump-
tions are made about how the target domain is changing. Many academic benchmarks
focus on one-time distribution shifts. However, in practical applications, the target
distribution can easily change perpetually over time, e.g., due to changing weather
and lightness conditions, or due to sensor corruptions. Therefore, the latter setting
of continual adaptation has been receiving increasing attention recently. The earliest
example of adapting a classifier to an evolving target domain that we are aware of
is (Hoffman et al., 2014), which learn a series of transformations to keep the data
representation similar over time. (Ganin et al., 2016; Tzeng et al., 2017; Wulfmeier
et al., 2018) use an adversarial domain adaptation approach for this. (Bobu et al.,
2018) pointed out that two of these approaches can be prone to catastrophic forgetting
(Ratcliff, 1990). To deal with this, different solutions have been proposed (Abnar et al.,
2021; Bobu et al., 2018; Liu et al., 2020b; Mummadi et al., 2021; Niu et al., 2022b; Wang
et al., 2022).

Test-time adaptation methods have classically been applied in the setting of one-
time domain change, but can be readily applied in the setting of continual adaptation,
and some recent methods have been explicitly designed and tested with continual
adaptation in mind (Niu et al., 2022b; Wang et al., 2020b; Wang et al., 2022). Because
TTA methods use only test data and don’t alter the training procedure, they are
particularly easy to apply and have been shown to be superior to other domain
adaptation approaches (Geirhos et al., 2018a; Nado et al., 2020; Rusak et al., 2020;
Schneider et al., 2020a), Therefore, we focus only on TTA methods, which we discussed
in more detail in Section 4.

robust machine learning 79

Figure 4.6: Analysis of entropy minimization collapse on synthetic and real data. Learning
dynamics in terms of accuracy and weight magnitude are shown in (a) for a two layer toy
model consisting of batch norm and linear layer (b). Consistent with the theoretical analysis, we
find that the adaptation weights in all layers increase over time continually (c), even long after
the collapse as indicated by Accuracy on CCC-Medium has happened. Refer to Figure C.1–C.2
and Appendix C for additional properties of the toy model (a–b) and a zoomed-in view on (c).

Continual Adaptation Benchmarks. While continually changing datasets are used in
the continual learning literature, e.g. (Feng et al., 2019; Han et al., 2021; Lomonaco &
Maltoni, 2017; Shi et al., 2020; Sun et al., 2020; Yu et al., 2020), they have been used in
TTA benchmarks only very recently. In contrast to all previous benchmarks, we want
to evaluate how continual adaptation methods change over long periods of time, when
the noise changes in a continuous manner. The longest datasets for TTA were made up
of hundreds of thousands of labeled images in total, while we adapt to 7.5M images per
run. Other datasets are comprised of short video clips (Lomonaco & Maltoni, 2017; Shi
et al., 2020; Sun et al., 2020) 10-20 seconds in length. Besides maximizing its length, we
set out to create a dataset that is well calibrated and closely related to the well-known
ImageNet-C dataset. Additionally, with our noise synthesis, we can guarantee a wide
variety of noises in each one of our evaluation runs, we can control the speed at which
the noise changes, and we can control the difficulty of the generated noise. Lastly, CCC
accounts for different adaptation speeds, as demonstrated by (Rusak et al., 2021) and
(Mummadi et al., 2021). They showed that training their methods on ImageNet-C for
more than one epoch leads to better performance.

Conclusion

TTA techniques are increasingly applied to continual adaptation settings. Yet, we show
that all current TTA techniques collapse in some continual adaptation settings, even-
tually performing worse than even non-adapting models. And while some methods
are stable in some situations, they are still outperformed by our simplistic baseline
“RDumb”, which avoids collapse by resetting the model to its pretrained state period-
ically. These observations were made possible by our new benchmark for continual

robust machine learning 80

adaptation (CCC), which was carefully designed for the precise assessment of long and
short term adaptation behaviour of TTA methods and we envision it to be a helpful
tool for the development of new, more stable adaptation methods.

Acknowledgements

We thank Evgenia Rusak, Çağatay Yıldız, Shyamgopal Karthik, and Ofir Press for
helpful discussions and feedback on the manuscript.

We thank the International Max Planck Research School for Intelligent Systems
(IMPRS-IS) for supporting OP and StS; StS acknowledges his membership in the
European Laboratory for Learning and Intelligent Systems (ELLIS) PhD program.
StS was supported by a Google Research PhD Fellowship (StS). MB is a member
of the Machine Learning Cluster of Excellence, EXC number 2064/1 – Project No
390727645 and acknowledges support by the German Research Foundation (DFG): SFB
1233, Robust Vision: Inference Principles and Neural Mechanisms, TP 4, Project No:
276693517.

The authors declare no conflicts of interests.

5
Pretraining boosts out-of-domain ro-
bustness for pose estimation

The following pages contain the postprint version of the published paper

Alexander Mathis∗, Thomas Biasi∗, Steffen Schneider, Mert Yuksekgonul,
Byron Rogers, Matthias Bethge, and Mackenzie W. Mathis. “Pretraining
boosts out-of-domain robustness for pose estimation.” In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1859-1868.
2021.

Author Contributions StS designed the Horse-C benchmark and led the investigation
on the respective part of the paper. StS implemented and conducted experiments
on batch norm adaptation on Horse-10 and Horse-C, including formal analysis and
visualization, and participated in editing the original draft of the paper.

robust machine learning 82

Train
Test (within domain)

MobileNetV2-0.35
ResNet-50MobileNetV2-1 EfficientNet-B3

EfficientNet-B0

w/transfer learning
trained from scratch

Test (out of domain),
trained from scratch

Test (out of domain),
w/ transfer learning

Transfer learning (using pretrained ImageNet models),
gives a 2X boost on out-of-domain data vs. from scratch training

Figure 5.1: Transfer Learning boosts performance, especially on out-of-domain data. Normal-
ized pose estimation error vs. ImageNet Top 1% accuracy with different backbones. While
training from scratch reaches the same task performance as fine-tuning, the networks remain
less robust as demonstrated by poor accuracy on out-of-domain horses. Mean ± SEM, 3

shuffles.

Summary

Neural networks are highly effective tools for pose estimation. However, as in other
computer vision tasks, robustness to out-of-domain data remains a challenge, especially
for small training sets that are common for real-world applications. Here, we probe
the generalization ability with three architecture classes (MobileNetV2s, ResNets, and
EfficientNets) for pose estimation. We developed a dataset of 30 horses that allowed
for both “within-domain” and “out-of-domain” (unseen horse) benchmarking—this
is a crucial test for robustness that current human pose estimation benchmarks do
not directly address. We show that better ImageNet-performing architectures perform
better on both within- and out-of-domain data if they are first pretrained on ImageNet.
We additionally show that better ImageNet models generalize better across animal
species. Furthermore, we introduce Horse-C, a new benchmark for common corruptions
for pose estimation, and confirm that pretraining increases performance in this domain
shift context as well. Overall, our results demonstrate that transfer learning is beneficial
for out-of-domain robustness.

Introduction

Pose estimation is an important tool for measuring behavior, and thus widely used in
technology, medicine and biology (Bachmann et al., 2015; Maceira-Elvira et al., 2019;
Mathis & Mathis, 2020; Ostrek et al., 2019). Due to innovations in both deep learning
algorithms (Cao et al., 2017; Cheng et al., 2020; He et al., 2017; Insafutdinov et al., 2017;

robust machine learning 83

Figure 5.2: Horse Dataset: Example frames for each Thoroughbred horse in the dataset. The
videos vary in horse color, background, lighting conditions, and relative horse size. The sunlight
variation between each video added to the complexity of the learning challenge, as well as the
handlers often wearing horse-leg-colored clothing. Some horses were in direct sunlight while
others had the light behind them, and others were walking into and out of shadows, which
was particularly problematic with a dataset dominated by dark colored coats. To illustrate the
Horse-10 task we arranged the horses according to one split: the ten leftmost horses were used
for train/test within-domain, and the rest are the out-of-domain held out horses.

Kreiss et al., 2019; Ning et al., 2020) and large-scale datasets (Andriluka et al., 2014,
2018; Lin et al., 2014) pose estimation on humans has become very powerful. However,
typical human pose estimation benchmarks, such as MPII pose and COCO (Andriluka
et al., 2014, 2018; Lin et al., 2014), contain many different individuals (>10k) in different
contexts, but only very few example postures per individual. In real world applications
of pose estimation, users often want to create customized networks that estimate the
location of user-defined bodyparts by only labeling a few hundred frames on a small
subset of individuals, yet want this to generalize to new individuals (Maceira-Elvira
et al., 2019; Mathis & Mathis, 2020; Ostrek et al., 2019; Sanakoyeu et al., 2020). Thus,
one naturally asks the following question: Assume you have trained an algorithm that
performs with high accuracy on a given (individual) animal for the whole repertoire of
movement—how well will it generalize to different individuals that have slightly or
dramatically different appearances? Unlike in common human pose estimation bench-
marks, here the setting is that datasets have many (annotated) poses per individual
(>200) but only a few individuals (≈10).

To allow the field to tackle this challenge, we developed a novel benchmark com-
prising 30 diverse Thoroughbred horses, for which 22 body parts were labeled by an
expert in 8114 frames (Dataset available at http://horse10.deeplabcut.org). Horses
have various coat colors and the “in-the-wild” aspect of the collected data at various
Thoroughbred farms added additional complexity. With this dataset we could directly

http://horse10.deeplabcut.org

robust machine learning 84

test the effect of pretraining on out-of-domain data. Here we report two key insights:
(1) ImageNet performance predicts generalization for both within domain and on
out-of-domain data for pose estimation; (2) While we confirm that task-training can
catch up with fine-tuning pretrained models given sufficiently large training sets (He
et al., 2018), we show this is not the case for out-of-domain data (Figure 5.1). Thus,
transfer learning improves robustness and generalization. Furthermore, we contrast
the domain shift inherent in this dataset with domain shift induced by common image
corruptions (Hendrycks & Dietterich, 2019b; Michaelis et al., 2019a), and we find
pretraining on ImageNet also improves robustness against those corruptions.

Related Work

Pose and keypoint estimation

Typical human pose estimation benchmarks, such as MPII pose and COCO (Andriluka
et al., 2014, 2018; Lin et al., 2014) contain many different individuals (> 10k) in different
contexts, but only very few example postures per individual. Along similar lines, but
for animals, Cao et al. created a dataset comprising a few thousand images for five
domestic animals with one pose per individual (Cao et al., 2019). There are also papers
for facial keypoints in horses (Rashid et al., 2017) and sheep (Hewitt & Mahmoud,
2019; Yang et al., 2016) and recently a large scale dataset featuring 21.9k faces from
334 diverse species was introduced (Khan et al., 2020). Our work adds a dataset
comprising multiple different postures per individual (>200) and comprising 30 diverse
race horses, for which 22 body parts were labeled by an expert in 8114 frames. This
pose estimation dataset allowed us to address within and out of domain generalization.
Our dataset could be important for further testing and developing recent work for
domain adapation in animal pose estimation on a real-world dataset (Li et al., 2020b;
Mu et al., 2020; Sanakoyeu et al., 2020).

Transfer learning

Transfer learning has become accepted wisdom: fine-tuning pretrained weights of large
scale models yields best results (Yosinski2014; Donahue et al., 2014; Kümmerer et al.,
2016; Li et al., 2019; Mathis et al., 2018; Zhuang et al., 2019). He et al. nudged the field to
rethink this accepted wisdom by demonstrating that for various tasks, directly training
on the task-data can match performance (He et al., 2018). We confirm this result, but
show that on held-out individuals (“out-of-domain”) this is not the case. Raghu et
al. showed that for target medical tasks (with little similarity to ImageNet) transfer
learning offers little benefit over lightweight architectures (Raghu et al., 2019). Kornblith
et al. showed for many object recognition tasks, that better ImageNet performance leads
to better performance on these other benchmarks (Kornblith et al., 2019b). We show
that this is also true for pose-estimation both for within-domain and out-of-domain

robust machine learning 85

50% training data5% training data

Normalized distance
(nose to eye)

0.3 normalized error
0.5 normalized error

X = MobileNetV2 0.35
+ = EfficientNet B6

A B D
Train
Test (within domain)
Test (out of domain)

C

Figure 5.3: Transfer Learning boosts performance, especially on out-of-domain data. A:
Illustration of normalized error metric, i.e. measured as a fraction of the distance from nose to
eye (which is approximately 30 cm on a horse). B: Normalized Error vs. Network performance
as ranked by the Top 1 % accuracy on ImageNet (order by increasing ImageNet performance:
MobileNetV2-0.35, MobileNetV2-0.5, MobileNetV2-0.75, MobileNetV2-1.0, ResNet-50, ResNet-
101, EfficientNets B0 to B6). The faint lines indicate data for the three splits. Test data is in
red, train is blue, grey is out-of-domain data C: Same as B but with 50 % training fraction. D:
Example frames with human annotated body parts vs. predicted body parts for MobileNetV2-
0.35 and EfficientNet-B6 architectures with ImageNet pretraining on out-of-domain horses.

data (on different horses, and for different species) as well as for corruption resilience.
What is the limit of transfer learning? Would ever larger data sets give better

generalization? Interestingly, it appears to strongly depend on what task the network
was pretrained on. Recent work by Mahajan et al. showed that pretraining for large-
scale hashtag predictions on Instagram data (3.5 billion images) improves classification,
while at the same time possibly harming localization performance for tasks like object
detection, instance segmentation, and keypoint detection (Mahajan et al., 2018). This
highlights the importance of the task, rather than the sheer size as a crucial factor.
Further corroborating this insight, Li et al. showed that pretraining on large-scale object
detection task can improve performance for tasks that require fine, spatial information
like segmentation (Li et al., 2019). Thus, one interesting future direction to boost
robustness could be to utilize networks pretrained on OpenImages, which contains
bounding boxes for 15 million instances and close to 2 million images (Kuznetsova
et al., 2018).

Robustness

Studying robustness to common image corruptions based on benchmarks such as
ImageNet-C (Hendrycks & Dietterich, 2019b; Michaelis et al., 2019a; Schneider et
al., 2020b) is a fruitful avenue for making deep learning more robust. Apart from
evaluating our pose estimation algorithms on novel horses (domain-shift), we also
investigate the robustness with respect to image corruptions. Hendrycks et al. study
robustness to out-of distribution data on CIFAR 10, CIFAR 100 and TinyImageNet (but
not pose estimation). The authors report that pretraining is important for adversarial
robustness (Hendrycks et al., 2019a). Shah et al. found that pose estimation algorithms

robust machine learning 86

are highly robust against adversarial attacks (Shah et al., 2019), but neither directly test
out-of-domain robustness on different individuals, nor robustness to common image
corruptions as we do in this study.

Data and Methods

Datasets and evaluation metrics

We developed a novel horse data set comprising 8114 frames across 30 different horses
captured for 4-10 seconds with a GoPro camera (Resolution: 1920× 1080, Frame Rate:
60 FPS), which we call Horse-30 (Figure 5.2). We downsampled the frames by a factor
of 15% to speed-up the benchmarking process (288× 162 pixels; one video was down-
sampled to 30%). We annotated 22 previously established anatomical landmarks for
equines (Anderson & McIlwraith, 2004; Magnusson & Thafvellin, 1990). The following
22 body parts were labeled in 8114 frames: Nose, Eye, Nearknee, Nearfrontfetlock,
Nearfrontfoot, Offknee, Offfrontfetlock, Offfrontfoot, Shoulder, Midshoulder, Elbow,
Girth, Wither, Nearhindhock, Nearhindfetlock, Nearhindfoot, Hip, Stifle, Offhindhock,
Offhindfetlock, Offhindfoot, Ischium. We used the DeepLabCut 2.0 toolbox (Nath et al.,
2019) for labeling. We created 3 splits that contain 10 randomly selected training horses
each (referred to as Horse-10). For each training set we took a subset of 5 % (≈160
frames), and 50 % (≈ 1470 frames) of the frames for training, and then evaluated the
performance on the training, test, and unseen (defined as “out-of-domain”) horses (i.e.
the other horses that were not in the given split of Horse-10). As the horses could vary
dramatically in size across frames, due to the “in-the-wild” variation in distance from
the camera, we normalized the raw pixel errors by the eye-to-nose distance and report
the fraction of this distance (normalized error) as well as percent correct keypoint
metric (Andriluka et al., 2014); we used a matching threshold of 30 % of the head
segment length (nose to eye per horse; see Figure 5.3A).

For the generalization experiments, we also tested on the Animal Pose dataset (Cao
et al., 2019) to test the generality of our findings (Figure 5.4). We extracted all single
animal images from this dataset, giving us 1091 cat, 1176 dog, 486 horse, 237 cow, and
214 sheep images. To note, we corrected errors in ground truth labels for the dog’s (in
about 10 % of frames). Because nearly all images in this dataset are twice the size of the
Horse-10 data, we also downsampled the images by a factor of 2 before training and
testing. Given the lack of a consistent eye-to-nose distance across the dataset due to the
varying orientations, we normalized as follows: the raw pixel errors were normalized
by the square root of the bounding box area for each individual. For training the
various architectures, the best schedules from cross validation on Horse-10 were used
(see Section 3.2).

We also applied common image corruptions (Hendrycks & Dietterich, 2019b) to the
Horse-10 dataset, yielding a variant of the benchmark which we refer to as Horse-C.
Horse-C images are corrupted with 15 forms of digital transforms, blurring filters,

robust machine learning 87

point-wise noise or simulated weather conditions. All conditions are applied following
the evaluation protocol and implementation by Michaelis et al. (Michaelis et al., 2019a).
In total, we arrived at 75 variants of the dataset (15 different corruptions at 5 different
severities), yielding over 600k images.

Architectures and Training Parameters

We utilized the pose estimation toolbox called DeepLabCut (Insafutdinov et al., 2016;
Mathis et al., 2018; Nath et al., 2019), and added MobileNetV2 (Sandler et al., 2018b)
and EfficientNet backbones (Tan & Le, 2019) to the ResNets (He et al., 2016d) that
were present, as well as adding imgaug for data augmentation (Jung et al., 2020). The
TensorFlow (Abadi et al., 2016)-based network architectures could be easily exchanged
while keeping data loading, training, and evaluation consistent. The feature detectors
in DeepLabCut consist of a backbone followed by deconvolutional layers to predict
pose scoremaps and location refinement maps (offsets), which can then be used for
predicting the pose while also providing a confidence score. As previously, for the
ResNet backbones we utilize an output stride of 16 and then upsample the filter banks
with deconvolutions by a factor of two to predict the heatmaps and location-refinement
at 1/8-th of the original image size scale (Insafutdinov et al., 2016; Mathis et al., 2018).
For MobileNetV2 (Sandler et al., 2018b), we configured the output-stride as 16 (by
changing the last stride 2 convolution to stride 1).

We utilized four variants of MobileNetV2 with different expansion ratios (0.35, 0.5,
0.75 and 1) as this ratio modulates the ImageNet accuracy from 60.3 % to 71.8 %, and
pretrained models on ImageNet from TensorFlow (Abadi et al., 2016; Sandler et al.,
2018b).

The baseline EfficientNet model was designed by Tan et al. (Tan & Le, 2019) through
a neural architecture search to optimize for accuracy and inverse FLOPS. From B0

to B6, compound scaling is used to increase the width, depth, and resolution of the
network, which directly corresponds to an increase in ImageNet performance (Tan &
Le, 2019). We used the AutoAugment pretrained checkpoints from TensorFlow as well
as adapted the EfficientNet’s output-stride to 16 (by changing the (otherwise) last stride
2 convolution to stride 1).

The training loss is defined as the cross entropy loss for the scoremaps and the
location refinement error via a Huber loss with weight 0.05 (Mathis et al., 2018). The
loss is minimized via ADAM with batch size 8 (Kingma & Ba, 2014). For training, a
cosine learning rate schedule, as in (Kornblith et al., 2019b) with ADAM optimizer
and batchsize 8 was used; we also performed augmentation, using imgaug (Jung et al.,
2020), with random cropping and rotations. Initial learning rates and decay target
points were cross-validated for MobileNetV2 0.35 and 1.0, ResNet-50, EfficientNet B0,
B3, and B5 for the pretrained and from scratch models (see Supplementary Material).
For each model that was not cross validated (MobileNetV2 0.5 and 0.75, ResNet-101,
EfficientNet B1, B2, B4, B6), the best performing training parameters from the most

robust machine learning 88

similar cross validated model was used (i.e. the cross validated EfficientNet-B0 schedule
was used for EfficientNet-B1; see Supplementary Material). For MobileNetV2s, we
trained the batch normalization layers too (this had little effect on task performance
for MobileNetV2-0.35). Pretrained models were trained for 30k iterations (as they
converged), while models from scratch were trained for 180k iterations. From scratch
variants of the architectures used He-initialization (He et al., 2015), while all pretrained
networks were initialized from their ImageNet trained weights.

Cross Validation of Learning Schedules

To fairly compare the pose estimation networks with different backbones, we cross-
validated the learning schedules. For models with pretraining and from scratch, we
cross validated the cosine learning rate schedules by performing a grid search of
potential initial learning rates and decay targets to optimize their performance on out
of domain data. Given that our main result is that while task-training can catch up
with fine-tuning pretrained models given sufficiently large training sets on within-
domain-data (consistent with (He et al., 2018)), we will show that this is not the case for
out-of-domain data. Thus, in order to give models trained from scratch the best shot,
we optimized the performance on out of domain data. Tables in the Supplementary
Material describe the various initial learning rates explored during cross validation as
well as the best learning schedules for each model.

Similarity Analysis

To elucidate the differences between pretrained models and models trained from scratch,
we analyze the representational similarity between the variants. We use linear centered
kernel alignment (CKA) (Kornblith et al., 2019a) to compare the image representations
at various depths in the backbone networks. The results were aggregated with respect
to the similarity of representations of within domain images versus out of domain
images, and averaged over the three shuffles.

Results

To test within and out-of-domain performance we created a new dataset of 30 different
Thoroughbreds that are led by different humans, resulting in a dataset of 8114 images
with 22 labeled body parts each. These videos differ strongly in horse appearance,
context, and background (Figure 5.2). Thus, this dataset is ideal for testing robustness
and out-of-sample generalization. We created 3 splits containing 10 random horses
each, and then varied the amount of training data from these 10 horses (referred to as
Horse-10, see Methods). As the horses could vary dramatically in size across frames,
due to the “in-the-wild” variation in distance from the camera, we used a normalized
pixel error; i.e. we normalized the raw pixel errors by the eye-to-nose distance and
report the fraction within this distance (see Methods).

robust machine learning 89

Table 5.1: average PCK@0.3 (%)

Models Within Domain Out-of-D.

MobileNetV2-0.35 95.2 63.5
MobileNetV2-0.5 97.1 70.4
MobileNetV2-0.75 97.8 73.0
MobileNetV2-1 98.8 77.6
ResNet-50 99.8 81.3
ResNet-101 99.9 84.3
EfficientNet-B0 99.9 81.6
EfficientNet-B1 99.9 84.5
EfficientNet-B2 99.9 84.3
EfficientNet-B3 99.9 86.6
EfficientNet-B4 99.9 86.9
EfficientNet-B5 99.9 87.7
EfficientNet-B6 99.9 88.4

Table 5.2: PCK@0.3 (%) for several bodyparts and architectures on within domain horses
(FF=front foot; HF = Hind foot; HH = Hind Hock).

Nose Eye Shoulder Wither Elbow NearFF OffFF Hip NearHH NearHF OffHF

MobileNetV2 0.35 90.7 94.1 97.6 96.9 96.7 92.3 93.7 96.4 94.1 94.2 92.5
MobileNetV2 0.5 94.1 96.1 99.2 98.3 98.0 93.8 95.4 96.7 97.2 97.2 97.0
MobileNetV2 0.75 96.0 97.5 99.2 98.0 99.0 96.6 96.8 98.8 97.6 98.0 97.4
MobileNetV2 1.0 97.7 98.8 99.7 99.1 99.0 97.6 97.3 99.4 98.4 98.5 98.9
ResNet 50 99.9 100.0 99.8 99.9 99.8 99.8 99.6 99.9 99.9 99.6 99.8
ResNet 101 99.9 100.0 99.9 99.8 99.9 99.8 99.7 99.8 99.9 99.7 99.9
EfficientNet-B0 99.7 99.9 100.0 99.9 100.0 99.6 99.5 100.0 99.9 99.7 99.7
EfficientNet-B1 99.8 99.9 100.0 99.8 99.9 99.5 99.8 100.0 99.8 99.8 99.8
EfficientNet-B2 99.9 99.9 100.0 99.9 100.0 99.8 99.7 99.9 99.8 99.7 99.7
EfficientNet-B3 99.9 99.9 99.9 99.9 99.9 99.7 99.6 99.7 99.8 99.6 99.9
EfficientNet-B4 100.0 100.0 99.9 99.8 99.9 99.6 99.7 99.9 99.7 99.8 99.8
EfficientNet-B5 99.9 99.9 100.0 99.9 100.0 99.7 99.8 99.6 99.8 99.8 99.9
EfficientNet-B6 99.9 99.9 99.9 99.8 100.0 99.8 99.9 99.8 99.8 99.7 99.8

ImageNet performance vs task performance

To probe the impact of ImageNet performance on pose estimation robustness, we se-
lected modern convolutional architectures as backbones with a wide range of ImageNet
performance (see Methods; 13 models spanning from 60% to 84% ImageNet perfor-
mance). To fairly compare the MobileNetV2, ResNet and EfficientNet backbones, we
cross validated the learning schedules for each model (see Methods). In total, we found
that all ImageNet-pretrained architectures exhibited strong performance on Horse-10

within domain, i.e. low average errors, and high average percent correct key points
(aPCK; Figure 5.3, Table 5.1). Performance on Horse-10 within domain also closely
matched performance on Horse-30 (see Supplementary Material). Next, we directly
compared the ImageNet performance to their respective performance on this pose
estimation task. We found Top-1% ImageNet accuracy correlates with pose estimation
test error (linear fit for test: slope −0.33%, R2 = 0.93, p = 1.4× 10−7; Figure 5.3).
Results for different bodyparts are displayed in Table 5.2.

robust machine learning 90

Figure 5.4: Generalization Across Species. Normalized pose estimation error vs. ImageNet Top
1% accuracy with different backbones (as in Figure 5.1), but for 10 additional out-of-domain
tests. Training on either a single species or four species while holding one species (either cow
or sheep) out.

Generalization to novel horses

Next, we evaluated the performance of the networks on different horses in different
contexts, i.e. out-of-domain horses (Figures 5.3A-C). Most strikingly, on out-of-domain
horses, the relationship between ImageNet performance and performance on Horse-10

was even stronger. This can be quantified by comparing the linear regression slope
for out-of-domain test data: −0.93% pose-estimation improvement per percentage
point of ImageNet performance, R2 = 0.93, p = 9× 10−8 vs. within-domain test data
−0.33%, R2 = 0.93, p = 1.4× 10−7 (for 50% training data). Results for several different
bodyparts of the full 22 are displayed in Table 5.3, highlighting that better models also
generalized better in a bodypart specific way. In other words, less powerful models
overfit more on the training data.

Generalization across species

Does the improved generalization to novel individuals also hold for a more difficult out-
of-domain generalization, namely, across species? Thus, we turned to a pose-estimation

Table 5.3: PCK@0.3 (%) for several bodyparts and architectures on out-of-domain horses
(FF=front foot; HF = Hind foot; HH = Hind Hock).

Nose Eye Shoulder Wither Elbow NearFF OffFF Hip NearHH NearHF OffHF

MobileNetV2 0.35 45.6 53.1 65.5 68.0 69.1 56.4 57.6 65.9 65.9 60.5 62.5
MobileNetV2 0.5 52.7 61.0 76.7 69.7 78.3 62.9 65.4 73.6 70.8 68.1 69.7
MobileNetV2 0.75 54.2 65.6 78.3 73.2 80.5 67.3 68.9 80.0 74.1 70.5 70.2
MobileNetV2 1.0 59.0 67.2 83.8 79.7 84.0 70.1 72.1 82.0 79.9 76.0 76.7
ResNet 50 68.2 73.6 85.4 85.8 88.1 72.6 70.2 89.2 85.7 77.0 74.1
ResNet 101 67.7 72.4 87.6 86.0 89.0 79.9 78.0 92.6 87.2 83.4 80.0
EfficientNet-B0 60.3 62.5 84.9 84.6 87.2 77.0 75.4 86.7 86.7 79.6 79.4
EfficientNet-B1 67.4 71.5 85.9 85.7 89.6 80.0 81.1 86.7 88.4 81.8 81.6
EfficientNet-B2 68.7 74.8 84.5 85.2 89.2 79.7 80.9 88.1 88.0 82.3 81.7
EfficientNet-B3 71.7 76.6 88.6 88.7 92.0 80.4 81.8 90.6 90.8 85.0 83.6
EfficientNet-B4 71.1 75.8 88.1 87.4 91.8 83.3 82.9 90.8 90.3 86.7 85.5
EfficientNet-B5 74.8 79.5 89.6 89.5 93.5 82.2 84.1 91.8 90.9 86.6 85.2
EfficientNet-B6 74.7 79.7 90.3 89.8 92.8 83.6 84.4 92.1 92.1 87.8 85.3

robust machine learning 91

Figure 5.5: Training randomly initialized networks longer cannot rescue out-of-domain per-
formance. Top Row: Best performing (cross-validated) learning schedules used for train-
ing. Middle: Normalized error vs. training iterations for MobileNetV2-0.35, ResNet-50 and
EfficientNet-B0 using 50% of the training data. Test errors when training from scratch (solid lines)
closely match the transfer learning (dashed lines) performance after many iterations. Crucially,
out-of-domain testing does not approach performance for pretrained network (stars). Bottom
Row: Same as Middle but using 5% of the training data; note, however, for just 5% training data,
the test errors do not approach the test error of pretrained models for larger models.

dataset comprising multiple species. We evaluated the performance of the various
architectures on the Animal Pose dataset from Cao et. al (Cao et al., 2019). Here, images
and poses of horses, dogs, sheep, cats, and cows allow us to test performance across
animal classes. Using ImageNet pretraining and the cross validated schedules from
our Horse-10 experiments, we trained on individual animal classes or multiple animal
classes (holding out sheep/ cows) and examined how the architectures generalized
to sheep/cows, respectively (Figure 5.4). For both cows and sheep, better ImageNet
architectures, trained on the pose data of other animal classes performed better, in
most cases. We mused that this improved generalization could be a consequence of
the ImageNet pretraining or the architectures themselves. Therefore, we turned to
Horse-10 and trained the different architectures directly on horse pose estimation from
scratch.

Task-based training from scratch

To assess the impact of ImageNet pretraining we also trained several architectures from
scratch. Thereby we could directly test if the increased slope for out-of-domain perfor-
mance across networks was merely a result of more powerful network architectures. He

robust machine learning 92

Figure 5.6: Measuring the impact of common image corruptions on pose estimation (Horse-C):
We adapt the image corruptions considered by Hendrycks et al. and contrast the impact of
common image corruptions with that of out of domain evaluation.

et al. demonstrated that training Mask R-CNN with ResNet backbones directly on the
COCO object detection, instance segmentation and key point detection tasks, catches-up
with the performance of ImageNet-pretrained variants if training for substantially
more iterations than typical training schedules (He et al., 2018). However, due to the
nature of these tasks, they could not test this relationship on out-of-domain data. For
fine-tuning from ImageNet pretrained models, we trained for 30k iterations (as the loss
had flattened; see Figure 5.5). First, we searched for best performing schedules for
training from scratch while substantially increasing the training time (6X longer). We
found that cosine decay with restart was the best for out-of-domain performance (see
Methods; Figure 5.5).

Using this schedule, and consistent with He et al. (He et al., 2018), we found that
randomly initialized networks could closely match the performance of pretrained net-
works, given enough data and time (Figure 5.5). As expected, for smaller training sets
(5 % training data; 160 images), this was not the case (Figure 5.5). While task-training
could therefore match the performance of pretrained networks given enough training
data, this was not the case for novel horses (out-of-domain data). The trained from-
scratch networks never caught up and indeed plateaued early (Figure 5.5; Figure 5.1).
Quantitatively, we also found that for stronger networks (ResNets and EfficientNets)
generalization was worse if trained from scratch (Figure 5.1). Interestingly that was not
the case for the lightweight models, i.e. MobileNetV2s (cf. (Raghu et al., 2019)).

Network similarity analysis

We hypothesized that the differences in generalization are due to more invariant
representations in networks with higher ImageNet-performance using Centered Kernel
Alignment (CKA) (Kornblith et al., 2019a). We first verified that the representations
change with task training (Supplementary Material Figure 1). We compared the
representations of within-domain and out-of-domain images across networks trained
from ImageNet vs. from scratch. We found that early blocks are similar for from scratch

robust machine learning 93

60 65 70 75 80
ImageNet Top-1 accuracy

0.2

0.4

0.6

0.8

1.0

1.2 Different identity

Batchnorm
fixed
adaptive

Model
transfer
scratch

60 65 70 75 80
ImageNet Top-1 accuracy

0.06

0.08

0.10

0.12

0.14
No

rm
al

ize
d

Er
ro

r (
Te

st
)

Same identity

Figure 5.7: Impact of test time normalization. Models trained with adaptive BN layers slightly
outperform our baseline models for the MobileNetV2 and ResNet architecture out-of-domain
evaluation. Lines with alpha transparency represent fixed models (vs. adapted). We show
mean ± SEM computed across 3 data splits.

vs transfer learning for both sets of horses. In later layers, the representations diverge,
but comparisons between within-domain and out of domain trends were inconclusive
as to why e.g., EfficientNets generalize better (Supplementary Material Figure 2).

Horse-C: Robustness to image corruptions

To elucidate the difficulty of the Horse-10 benchmark, we more broadly evaluate
pose estimation performance under different forms of domain shift (Figure 5.6). Re-
cently, Schneider, Rusak et al. demonstrated that simple unsupervised domain adapta-
tion methods can greatly enhance the performance on corruption robustness bench-
marks (Schneider et al., 2020b). We therefore settled on a full adaptation evaluation
protocol: We re-trained MobileNetV2 0.35 and 1.0, ResNet50, as well as EfficientNet
B0 and B3 with batch normalization enabled. During evaluation we then re-computed
separate batch norm statistics for each horse and corruption type.

We use batch norm adaptation (Schneider et al., 2020b) during our evaluation on
Horse-C. On clean out-of-domain data, we see improvements for MobileNetV2s and
ResNets when using pre-trained networks, and for all models when training models
from scratch (Figure 5.7). On common corruptions, utilizing adaptation is crucial to
final performance (see full results in Supplementary Material). In the batch norm
adapted models, we compared four test conditions comprised of within-domain and
out-of domain for both original (clean) and corrupted images (Figure 5.6). First, we find
that even with batch norm adapted models, Horse-C is as hard as Horse-10; namely
performance is significantly affected on corrupted data (Figure 5.8). Secondly, we
find the corruption plus “out-of-domain” identity, is even harder—the performance
degradation induced by different horse identities is on the same order of magnitude

robust machine learning 94

60 65 70 75 80
ImageNet Top-1 accuracy

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Different identity

60 65 70 75 80
ImageNet Top-1 accuracy

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
Er

ro
r (

Te
st

)
Same identity

Corruption
corrupted
clean

Model
transfer
scratch

Figure 5.8: Impact of distribution shift introduced by horse identities and common corruptions.
We tested within identity (i.e., equivalent to within-domain in Horse-10 (left), or out-of-domain
identity (right). Lines with alpha transparency represent corrupted images, whereas solid is the
original (clean) image. We show mean ± SEM across 3 splits for clean images, and across 3

splits, 15 corruptions and 5 severities for corrupted images.

as the mean error induced on the corrupted dataset. Finally, and consistent with our
other results, we found a performance gain by using pretrained networks (Figure 5.8).

Discussion and conclusions

We developed a novel pose estimation benchmark for out-of-domain robustness (Horse-
10), and for testing common image corruptions on pose estimation (Horse-C). The data
and benchmarks are available at http://horse10.deeplabcut.org. Furthermore, we report
two key findings: (1) pretrained-ImageNet networks offer known advantages: shorter
training times, and less data requirements, as well as a novel advantage: robustness on
out-of-domain data, and (2) pretained networks that have higher ImageNet performance
lead to better generalization. Collectively, this sheds a new light on the inductive biases
of “better ImageNet architectures” for visual tasks to be particularly beneficial for
robustness.

We introduced novel DeepLabCut model variants, part of https://github.com/
DeepLabCut/DeepLabCut, that can achieve high accuracy, but with higher inference
speed (up to double) than the original ResNet backbone (see Supplementary Material
for an inference speed benchmark).

In summary, transfer learning offers multiple advantages. Not only does pretraining
networks on ImageNet allow for using smaller datasets and shorter training time
(Figure 5.5), it also strongly improves robustness and generalization, especially for more
powerful, over-parameterized models. In fact, we found a strong correlation between
generalization and ImageNet accuracy (Figure 5.3). While we found a significant
advantage (>2X boost) of using pretrained networks vs. from scratch for out-of-

http://horse10.deeplabcut.org
https://github.com/DeepLabCut/DeepLabCut
https://github.com/DeepLabCut/DeepLabCut

robust machine learning 95

domain robustness, there is still a 3-fold difference in performance between within
domain and out of domain (Figure 5.1). We believe that this work demonstrates
that transfer learning approaches are powerful to build robust architectures, and are
particularly important for further developing performance improvements on real-world
datasets, such as Horse-10 and derived benchmarks such as Horse-C. Furthermore,
by sharing our animal pose robustness benchmark dataset, we also believe that the
community can collectively work towards closing the gap.

Acknowledgements

Funding was provided by a Rowland Fellowship (MWM), CZI EOSS Grant (MWM &
AM), the Bertarelli Foundation (MWM) and the German Federal Ministry of Education
and Research (BMBF) through the Tübingen AI Center (FKZ: 01IS18039A; StS & MB).
St.S. thanks the International Max Planck Research School for Intelligent Systems and
acknowledges his membership in the European Laboratory for Learning and Intelligent
Systems (ELLIS) PhD program. We thank Maxime Vidal for ground truth corrections
to the Animal Pose dataset.

6
Contrastive Learning Inverts the Data
Generating Process

The following pages contain the postprint version of the published paper

Roland S. Zimmermann∗, Yash Sharma∗, Steffen Schneider∗, Matthias Bethge†,
and Wieland Brendel†. “Contrastive learning inverts the data generating
process.” In International Conference on Machine Learning, pp. 12979-12990.
PMLR, 2021.

A short version of the paper was presented in the NeurIPS 2020 workshop “Self-
Supervised Learning – Theory and Practice”.

Author Contributions The project was initiated by WB. RSZ, StS and WB jointly derived
the theory. RSZ and YS implemented and executed the experiments. The 3DIdent
dataset was created by RSZ with feedback from StS, YS, WB and MB. RSZ, YS, StS and
WB contributed to the final version of the manuscript. ∗RSZ, YS and StS contributed
equally to the project. †WB and MB contributed equally to advising the project.

robust machine learning 98

Summary

Contrastive learning has recently seen tremendous success in self-supervised learning.
So far, however, it is largely unclear why the learned representations generalize so
effectively to a large variety of downstream tasks. We here prove that feedforward
models trained with objectives belonging to the commonly used InfoNCE family learn
to implicitly invert the underlying generative model of the observed data. While the
proofs make certain statistical assumptions about the generative model, we observe
empirically that our findings hold even if these assumptions are severely violated. Our
theory highlights a fundamental connection between contrastive learning, generative
modeling, and nonlinear independent component analysis, thereby furthering our un-
derstanding of the learned representations as well as providing a theoretical foundation
to derive more effective contrastive losses.

Introduction

With the availability of large collections of unlabeled data, recent work has led to
significant advances in self-supervised learning. In particular, contrastive methods have
been tremendously successful in learning representations for visual and sequential
data (Bachman et al., 2019; Baevski et al., 2020a, 2020c; Chen et al., 2020a; He et al.,
2020a; Hénaff, 2020; Hjelm et al., 2019; Logeswaran & Lee, 2018; Oord et al., 2018;
Ravanelli et al., 2020; Schneider et al., 2019; Tian et al., 2019; Wu et al., 2018). While
a number of explanations have been provided as to why contrastive learning leads
to such informative representations, existing theoretical predictions and empirical
observations appear to be at odds with each other (Bachman et al., 2019; Saunshi et al.,
2019; Tian et al., 2019; Wu et al., 2020).

In a nutshell, contrastive methods aim to learn representations where related
samples are aligned (positive pairs, e.g. augmentations of the same image), while
unrelated samples are separated (negative pairs) (Chen et al., 2020a). Intuitively,
this leads to invariance to irrelevant details or transformations (by decreasing the
distance between positive pairs), while preserving a sufficient amount of information
about the input for solving downstream tasks (by increasing the distance between
negative pairs) (Tian et al., 2020). This intuition has recently been made more precise
by (Wang & Isola, 2020), showing that a commonly used contrastive loss from the
InfoNCE family (Chen et al., 2020a; Gutmann & Hyvärinen, 2012; Oord et al., 2018)
asymptotically converges to a sum of two losses: an alignment loss that pulls together
the representations of positive pairs, and a uniformity loss that maximizes the entropy
of the learned latent distribution.

We show that an encoder learned with a contrastive loss from the InfoNCE family
can recover the true generative factors of variation (up to rotations) if the process that
generated the data fulfills a few weak statistical assumptions. This theory bridges the
gap between contrastive learning, nonlinear independent component analysis (ICA) and

robust machine learning 99

f

Unobservable
Latent Space Z

Reconstructed
Latent Space Z’ = AZ

U
nk

no
w

n
G

en
er

at
iv

e
Pr

oc
es

s g

Positive x+

Unobservable Learned by − f(x) f(x+) + log
{x+x- ... }1

exp(f (x) f (x))L =
attract repel

Conditional Density of Positive Samples
Uniformly Distributed Negative Samples

Uniformly Distributed Anchor

, ,
Negatives x- x-

, , ...1 2

Figure 6.1: We analyze the setup of contrastive learning, in which a feature encoder f is trained
with the InfoNCE objective (Chen et al., 2020a; Gutmann & Hyvärinen, 2012; Oord et al., 2018)
using positive samples (green) and negative samples (orange). We assume the observations
are generated by an (unknown) injective generative model g that maps unobservable latent
variables from a hypersphere to observations in another manifold. Under these assumptions,
the feature encoder f implictly learns to invert the ground-truth generative process g up to
linear transformations, i.e., f = Ag−1 with an orthogonal matrix A, if f minimizes the InfoNCE
objective.

generative modeling (see Fig. 6.1). Our theory reveals implicit assumptions encoded
in the InfoNCE objective about the generative process underlying the data. If these
assumptions are violated, we show a principled way of deriving alternative contrastive
objectives based on assumptions regarding the positive pair distribution. We verify our
theoretical findings with controlled experiments, providing evidence that our theory
holds true in practice, even if the assumptions on the ground-truth generative model
are partially violated.

To the best of our knowledge, our work is the first to analyze under what circum-
stances representation learning methods used in practice provably represent the data
in terms of its underlying factors of variation. Our theoretical and empirical results
suggest that the success of contrastive learning in many practical applications is due to
an implicit and approximate inversion of the data generating process, which explains
why the learned representations are useful in a wide range of downstream tasks.

In summary, our contributions are:

• We establish a theoretical connection between the InfoNCE family of objectives,
which is commonly used in self-supervised learning, and nonlinear ICA. We
show that training with InfoNCE inverts the data generating process if certain
statistical assumptions on the data generating process hold.

• We empirically verify our predictions when the assumed theoretical conditions
are fulfilled. In addition, we show successful inversion of the data generating
process even if these theoretical assumptions are partially violated.

• We build on top of the CLEVR rendering pipeline (Johnson et al., 2017b) to
generate a more visually complex disentanglement benchmark, called 3DIdent,

robust machine learning 100

that contains hallmarks of natural environments (shadows, different lighting
conditions, a 3D object, etc.). We demonstrate that a contrastive loss derived from
our theoretical framework can identify the ground-truth factors of such complex,
high-resolution images.

Related Work

Contrastive Learning Despite the success of contrastive learning (CL), our understand-
ing of the learned representations remains limited, as existing theoretical explanations
yield partially contradictory predictions. One way to theoretically motivate CL is to
refer to the InfoMax principle (Linsker, 1988), which corresponds to maximizing the
mutual information (MI) between different views (Bachman et al., 2019; Chen et al.,
2020a; Hjelm et al., 2019; Oord et al., 2018; Tian et al., 2020). However, as optimizing a
tighter bound on the MI can produce worse representations (Tschannen et al., 2020), it
is not clear how accurate this motivation describes the behavior of CL.

Another approach aims to explain the success by introducing latent classes (Saunshi
et al., 2019). While this theory has some appeal, there exists a gap between empirical
observations and its predictions, e.g. the prediction that an excessive number of negative
samples decreases performance does not corroborate with empirical results (Chen et al.,
2020a; He et al., 2020a; Tian et al., 2019; Wu et al., 2018). However, recent work has
suggested some empirical evidence for said theoretical prediction, namely, issues with
the commonly used sampling strategy for negative samples, and have proposed ways
to mitigate said issues as well (Chuang et al., 2020; Robinson et al., 2020).

More recently, the behavior of CL has been analyzed from the perspective of
alignment and uniformity properties of representations, demonstrating that these two
properties are correlated with downstream performance (Wang & Isola, 2020). We build
on these results to make a connection to cross-entropy minimization from which we
can derive identifiability results.

Nonlinear ICA Independent Components Analysis (ICA) attempts to find the underly-
ing sources for multidimensional data. In the nonlinear case, said sources correspond
to a well-defined nonlinear generative model g, which is assumed to be invertible (i.e.,
injective) (Hyvärinen et al., 2001; Jutten et al., 2010). In other words, nonlinear ICA
solves a demixing problem: Given observed data x = g(z), it aims to find a model f
that equals the inverse generative model g−1, which allows for the original sources z to
be recovered.

Hyvärinen et al. (2019a) show that the nonlinear demixing problem can be solved
as long as the independent components are conditionally mutually independent with
respect to some auxiliary variable. The authors further provide practical estimation
methods for solving the nonlinear ICA problem (Hyvärinen & Morioka, 2016, 2017),
similar in spirit to noise contrastive estimation (NCE; Gutmann and Hyvärinen, 2012).
Recent work has generalized this contribution to VAEs (Khemakhem et al., 2020b;

robust machine learning 101

Klindt et al., 2021a; Locatello et al., 2020), as well as (invertible-by-construction) energy-
based models (Khemakhem et al., 2020c). We here extend this line of work to more
general feed-forward networks trained using InfoNCE (Oord et al., 2018).

In a similar vein, Roeder et al. (2020b) build on the work of Hyvärinen et al. (2019a)
to show that for a model family which includes InfoNCE, distribution matching implies
parameter matching. In contrast, we associate the learned latent representation with the
ground-truth generative factors, showing under what conditions the data generating
process is inverted, and thus, the true latent factors are recovered.

Theory

We will show a connection between contrastive learning and identifiability in the form
of nonlinear ICA. For this, we introduce a feature encoder f that maps observations x
to representations. We consider the widely used InfoNCE loss, which often assumes L2

normalized representations (Bachman et al., 2019; Chen et al., 2020a; He et al., 2020b;
Tian et al., 2019; Wu et al., 2018),

Lcontr(f ; τ, M) := E
(x,x̃)∼ppos

{x−i }M
i=1

i.i.d.∼ pdata

− log
e f (x)T f (x̃)/τ

e f (x)T f (x̃)/τ +
M
∑

i=1
e f (x)T f (x−i)/τ

 . (6.1)

Here M ∈ Z+ is a fixed number of negative samples, pdata is the distribution of all
observations and ppos is the distribution of positive pairs. This loss was motivated by
the InfoMax principle (Linsker, 1988), and has been shown to be effective by many
recent representation learning methods (Bachman et al., 2019; Baevski et al., 2020c;
Chen et al., 2020a; He et al., 2020a; Hjelm et al., 2019; Logeswaran & Lee, 2018; Tian
et al., 2019; Wu et al., 2018). Our theoretical results also hold for a loss function whose
denominator only consists of the second summand across the negative samples (e.g.,
the SimCLR loss (Chen et al., 2020a)).

In the spirit of existing literature on nonlinear ICA (Gutmann & Hyvärinen, 2012;
Harmeling et al., 2003; Hyvärinen & Morioka, 2016, 2017; Hyvärinen & Pajunen, 1999;
Hyvärinen et al., 2019a; Khemakhem et al., 2020b; Sprekeler et al., 2014), we assume
that the observations x ∈ X are generated by an invertible (i.e., injective) generative
process g : Z → X , where X ⊆ RK is the space of observations and Z ⊆ RN with
N ≤ K denotes the space of latent factors. Influenced by the commonly used feature
normalization in InfoNCE, we further assume that Z is the unit hypersphere SN−1 (see
Appx. E). Additionally, we assume that the ground-truth marginal distribution of the
latents of the generative process is uniform and that the conditional distribution (under

robust machine learning 102

which positive pairs have high density) is a von Mises-Fisher (vMF) distribution:

p(z) = |Z|−1, p(z|z̃) = C−1
p eκz⊤z̃ with (6.2)

Cp : =
∫

eκz⊤z̃ dz̃ = const., x = g(z), x̃ = g(z̃).

Given these assumptions, we will show that if f minimizes the contrastive loss
Lcontr, then f solves the demixing problem, i.e., inverts g up to orthogonal linear
transformations.

Our theoretical approach consists of three steps: (1) We demonstrate that Lcontr

can be interpreted as the cross-entropy between the (conditional) ground-truth and
inferred latent distribution. (2) Next, we show that encoders minimizing Lcontr maintain
distance, i.e., two latent vectors with distance α in the ground-truth generative model
are mapped to points with the same distance α in the inferred representation. (3)
Finally, we leverage distance preservation to show that minimizers of Lcontr invert
the generative process up to orthogonal transformations. Detailed proofs are given in
Appx. E.

Additionally, we will present similar results for general convex bodies in RN and
more general similarity measures, see Sec. 6. For this, the detailed proofs are given in
Appx. E.

Contrastive learning is related to cross-entropy minimization

From the perspective of nonlinear ICA, we are interested in understanding how the
representations f (x) which minimize the contrastive loss Lcontr (defined in Eq. (6.1))
are related to the ground-truth source signals z. To study this relationship, we focus
on the map h = f ◦ g between the recovered source signals h(z) and the true source
signals z. Note that this is merely for mathematical convenience; it does not necessitate
knowledge regarding neither g nor the ground-truth factors during learning (beyond
the assumptions stated in the theorems).

A core insight is a connection between the contrastive loss and the cross-entropy
between the ground-truth latent distribution and a certain model distribution. For this,
we expand the theoretical results obtained by Wang and Isola (2020):

Theorem 3 (Lcontr converges to the cross-entropy between latent distributions). If the
ground-truth marginal distribution p is uniform, then for fixed τ > 0, as the number of negative
samples M→ ∞, the (normalized) contrastive loss converges to

lim
M→∞

Lcontr(f ; τ, M)− log M + log |Z| =

E
z∼p(z)

[H(p(·|z), qh(·|z))]
(6.3)

where H is the cross-entropy between the ground-truth conditional distribution p over positive

robust machine learning 103

pairs and a conditional distribution qh parameterized by the model f ,

qh(z̃|z) = Ch(z)−1eh(z̃)Th(z)/τ

with Ch(z) : =
∫

eh(z̃)Th(z)/τ dz̃,
(6.4)

where Ch(z) ∈ R+ is the partition function of qh (see Appx. E).

Next, we show that the minimizers h∗ of the cross-entropy (6.4) are isometries in
the sense that κz⊤z̃ = h∗(z)⊤h∗(z̃) for all z and z̃. In other words, they preserve the
dot product between z and z̃.

Proposition 4 (Minimizers of the cross-entropy maintain the dot product). Let Z =

SN−1, τ > 0 and consider the ground-truth conditional distribution of the form p(z̃|z) =

C−1
p exp(κz̃⊤z). Let h map onto a hypersphere with radius

√
τκ.1 Consider the conditional

distribution qh parameterized by the model, as defined above in Theorem 3, where the hypothesis
class for h (and thus f) is assumed to be sufficiently flexible such that p(z̃|z) and qh(z̃|z) can
match. If h is a minimizer of the cross-entropy Ep(z̃|z)[− log qh(z̃|z)], then p(z̃|z) = qh(z̃|z)
and ∀z, z̃ : κz⊤z̃ = h(z)⊤h(z̃).

Contrastive learning identifies ground-truth factors on the hypersphere

From the strong geometric property of isometry, we can now deduce a key property of
the minimizers h∗:

Proposition 5 (Extension of the Mazur-Ulam theorem to hyperspheres and the dot
product). Let Z = SN−1 and Z ′ = SN−1

r be the hyperspheres with radius 1 and r > 0,
respectively. If h : RN → Z ′ is differentiable in the vicinity of Z and its restriction to Z
maintains the dot product up to a constant factor, i.e., ∀z, z̃ ∈ Z : r2z⊤z̃ = h(z)⊤h(z̃), then h
is an orthogonal linear transformation scaled by r for all z ∈ Z .

In the last step, we combine the previous propositions to derive our main result: the
minimizers of the contrastive loss Lcontr solve the demixing problem of nonlinear ICA
up to linear transformations, i.e., they identify the original sources z for observations
g(z) up to orthogonal linear transformations. For a hyperspherical space Z these
correspond to combinations of permutations, rotations and sign flips.

Theorem 4. Let Z = SN−1, the ground-truth marginal be uniform, and the conditional a vMF
distribution (cf. Eq. 6.2). Let the restriction of the mixing function g to Z be injective and h be
differentiable in a vicinity of Z . If the assumed form of qh, as defined above, matches that of p,
and if f is differentiable and minimizes the CL loss as defined in Eq. (6.1), then for fixed τ > 0
and M→ ∞, h = f ◦ g is linear, i.e., f recovers the latent sources up to an orthogonal linear
transformation and a constant scaling factor.

1Note that in practice this can be implemented as a learnable rescaling operation as the last operation
of the network f .

robust machine learning 104

Note that we do not assume knowledge of the ground-truth generative model g; we
only make assumptions about the conditional and marginal distribution of the latents.
On real data, it is unlikely that the assumed model distribution qh can exactly match
the ground-truth conditional. We do, however, provide empirical evidence that h is still
an affine transformation even if there is a severe mismatch, see Sec. 6.

Contrastive learning identifies ground-truth factors on convex bodies in RN

While the previous theoretical results require Z to be a hypersphere, we will now show
a similar theorem for the more general case of Z being a convex body in RN . Note that
the hyperrectangle [a1, b1]× . . .× [aN , bN] is an example of such a convex body.

We follow a similar three step proof strategy as for the hyperspherical case before:
(1) We begin again by showing that a properly chosen contrastive loss on convex
bodies corresponds to the cross-entropy between the ground-truth conditional and
a distribution parametrized by the encoder. For this step, we additionally extend
the results of Wang and Isola (2020) to this latent space and loss function. (2) Next,
we derive that minimizers of the loss function are isometries of the latent space.
Importantly, we do not limit ourselves to a specific metric, thus the result is applicable
to a family of contrastive objectives. (3) Finally, we show that these minimizers must be
affine transformations. For a special family of conditional distributions (rotationally
asymmetric generalized normal distributions (Subbotin, 1923)), we can further narrow
the class of solutions to permutations and sign-flips. For the detailed proofs, see
Appx. E.

As earlier, we assume that the ground-truth marginal distribution of the latents is
uniform. However, we now assume that the conditional distribution is exponential:

p(z) = |Z|−1, p(z|z̃) = C−1
p e−δ(z,z̃) with

Cp(z) : =
∫

e−δ(z,z̃) dz̃, x = g(z), x̃ = g(z̃),
(6.5)

where δ is a metric induced by a norm (see Appx. E).
To reflect the differences between this conditional distribution and the one assumed

for the hyperspherical case, we need to introduce an adjusted version of the contrastive
loss in (6.1):

Definition 1 (Lδ-contr objective). Let δ : Z ×Z → R be a metric on Z . We define the general
InfoNCE loss, which uses δ as a similarity measure, as

Lδ-contr(f ; τ, M) := E
(x,x̃)∼ppos

{x−i }M
i=1

i.i.d.∼ pdata

[
− log

e−δ(f (x), f (x̃))/τ

e–δ(f (x), f (x̃))/τ+
M
∑

i=1
e–δ(f (x), f (x–

i))/τ

]
. (6.6)

Note that this is a generalization of the InfoNCE criterion in Eq. (6.1). In contrast to

robust machine learning 105

the objective above, the representations are no longer assumed to be L2 normalized,
and the dot-product is replaced with a more general similarity measure δ.

Analogous to the previously demonstrated case for the hypersphere, for convex
bodies Z , minimizers of the adjusted Lδ-contr objective solve the demixing problem of
nonlinear ICA up to invertible linear transformations:

Theorem 7. Let Z be a convex body in RN , h = f ◦ g : Z → Z , and δ be a metric or a
semi-metric (cf. Lemma 4 in Appx. E), induced by a norm. Further, let the ground-truth
marginal distribution be uniform and the conditional distribution be as Eq. (6.5). Let the mixing
function g be differentiable and injective. If the assumed form of qh matches that of p, i.e.,

qh(z̃|z) = C−1
q (z)e−δ(h(z̃),h(z))/τ

with Cq(z) : =
∫

e−δ(h(z̃),h(z))/τ dz̃,
(6.7)

and if f is differentiable and minimizes the Lδ-contr objective in Eq. (6.6) for M → ∞, we
find that h = f ◦ g is invertible and affine, i.e., we recover the latent sources up to affine
transformations.

Note that the model distribution qh, which is implicitly described by the choice of
the objective, must be of the same form as the ground-truth distribution p, i.e., both
must be based on the same metric. Thus, identifying different ground-truth conditional
distributions requires different contrastive Lδ-contr objectives. This result can be seen
as a generalized version of Theorem 4, as it is valid for any convex body Z ⊆ RN ,
allowing for a larger variety of conditional distributions.

Finally, under the mild restriction that the ground-truth conditional distribution
is based on an Lp similarity measure for p ≥ 1, p ̸= 2, h identifies the ground-truth
generative factors up to generalized permutations. A generalized permutation matrix A
is a combination of a permutation and element-wise sign-flips, i.e., ∀z : (Az)i = ffizœ(i)

with αi = ±1 and σ being a permutation.

Theorem 8. Let Z be a convex body in RN , h : Z → Z , and δ be an Lα metric or semi-metric
(cf. Lemma 4 in Appx. E) for α ≥ 1, α ̸= 2. Further, let the ground-truth marginal distribution
be uniform and the conditional distribution be as Eq. (6.5), and let the mixing function g be
differentiable and invertible. If the assumed form of qh(·|z) matches that of p(·|z), i.e., both
use the same metric δ up to a constant scaling factor, and if f is differentiable and minimizes
the Lδ-contr objective in Eq. (6.6) for M→ ∞, we find that h = f ◦ g is a composition of input
independent permutations, sign flips and rescaling.

Experiments

Validation of theoretical claim

We validate our theoretical claims under both perfectly matching and violated condi-
tions regarding the ground-truth marginal and conditional distributions. We consider

robust machine learning 106

Table 6.1: Identifiability up to affine transformations. Mean ± standard deviation over 5 random
seeds. Note that only the first row corresponds to a setting that matches (✓) our theoretical
assumptions, while the others show results for violated assumptions (✗; see column M.). Note
that the identity score only depends on the ground-truth space and the marginal distribution
defined for the generative process, while the supervised score additionally depends on the
space assumed by the model.

Generative process g Model f R2 Score [%]
Space p(·) p(·|·) Space qh(·|·) M. Identity Supervised Unsupervised

Sphere Uniform vMF(κ=1) Sphere vMF(κ=1) ✓ 66.98± 2.79 99.71± 0.05 99.42± 0.05
Sphere Uniform vMF(κ=10) Sphere vMF(κ=1) ✗ 99.86± 0.01
Sphere Uniform Laplace(λ=0.05) Sphere vMF(κ=1) ✗ 99.91± 0.01
Sphere Uniform Normal(σ=0.05) Sphere vMF(κ=1) ✗ 99.86± 0.00

Box Uniform Normal(σ=0.05) Unbounded Normal ✗ 67.93± 7.40 99.78± 0.06 99.60± 0.02
Box Uniform Laplace(λ=0.05) Unbounded Normal ✗ 99.64± 0.02
Box Uniform Laplace(λ=0.05) Unbounded GenNorm(β=3) ✗ 99.70± 0.02
Box Uniform Normal(σ=0.05) Unbounded GenNorm(β=3) ✗ 99.69± 0.02

Sphere Normal(σ=1) Laplace(λ=0.05) Sphere vMF(κ=1) ✗ 63.37± 2.41 99.70± 0.07 99.02± 0.01
Sphere Normal(σ=1) Normal(σ=0.05) Sphere vMF(κ=1) ✗ 99.02± 0.02

Unbounded Laplace(λ=1) Normal(σ=1) Unbounded Normal ✗ 62.49± 1.65 99.65± 0.04 98.13± 0.14
Unbounded Normal(σ=1) Normal(σ=1) Unbounded Normal ✗ 63.57± 2.30 99.61± 0.17 98.76± 0.03

source signals of dimensionality N = 10, and sample pairs of source signals in two
steps: First, we sample from the marginal p(z). For this, we consider both uniform
distributions which match our assumptions and non-uniform distributions (e.g., a
normal distribution) which violate them. Second, we generate the positive pair by
sampling from a conditional distribution p(z̃|z). Here, we consider matches with our
assumptions on the conditional distribution (von Mises-Fisher for Z = SN−1) as well
as violations (e.g. normal, Laplace or generalized normal distribution for Z = SN−1).
Further, we consider spaces beyond the hypersphere, such as the bounded box (which
is a convex body) and the unbounded RN .

We generate the observations with a multi-layer perceptron (MLP), following previ-
ous work (Hyvärinen & Morioka, 2016, 2017). Specifically, we use three hidden layers
with leaky ReLU units and random weights; to ensure that the MLP g is invertible, we
control the condition number of the weight matrices. For our feature encoder f , we also
use an MLP with leaky ReLU units, where the assumed space is denoted by the nor-
malization, or lack thereof, of the encoding. Namely, for the hypersphere (denoted as
Sphere) and the hyperrectangle (denoted as Box) we apply an L2 and L∞ normalization,
respectively. For flexibility in practice, we parameterize the normalization magnitude of
the Box, including it as part of the encoder’s learnable parameters. On the hypersphere
we optimize Lcontr and on the hyperrectangle as well as the unbounded space we
optimize Lδ-contr. For further details, see Appx. E.

To test for identifiability up to affine transformations, we fit a linear regression
between the ground-truth and recovered sources and report the coefficient of determi-
nation (R2). To test for identifiability up to generalized permutations, we leverage the
mean correlation coefficient (MCC), as used in previous work (Hyvärinen & Morioka,
2016, 2017). For further details, see Appx. E.

We evaluate both identifiability metrics for three different model types. First,

robust machine learning 107

Table 6.2: Identifiability up to generalized permutations, averaged over 5 runs. Note that while
Theorem 8 requires the model latent space to be a convex body and p(·|·) = qh(·|·), we find
that empirically either is sufficient. The results are grouped in four blocks corresponding to
different types and degrees of violation of assumptions of our theory showing identifiability up
to permutations: (1) no violation, violation of the assumptions on either the (2) space or (3) the
conditional distribution, or (4) both.

Generative process g Model f MCC Score [%]
Space p(·) p(·|·) Space qh(·|·) M. Identity Supervised Unsupervised

Box Uniform Laplace(λ=0.05) Box Laplace ✓ 46.55± 1.34 99.93± 0.03 98.62± 0.05
Box Uniform GenNorm(β=3; λ=0.05) Box GenNorm(β=3) ✓ 99.90± 0.06

Box Uniform Normal(σ=0.05) Box Normal ✗ 99.77± 0.01
Box Uniform Laplace(λ=0.05) Box Normal ✗ 99.76± 0.02
Box Uniform GenNorm(β=3; λ=0.05) Box Laplace ✗ 98.80± 0.02

Box Uniform Laplace(λ=0.05) Unbounded Laplace ✗ 99.97± 0.03 98.57± 0.02
Box Uniform GenNorm(β=3; λ=0.05) Unbounded GenNorm(β=3) ✗ 99.85± 0.01

Box Uniform Normal(σ=0.05) Unbounded Normal ✗ 58.26± 3.00
Box Uniform Laplace(λ=0.05) Unbounded Normal ✗ 59.67± 2.33
Box Uniform Normal(σ=0.05) Unbounded GenNorm(β=3) ✗ 43.80± 2.15

we ensure that the problem requires nonlinear demixing by considering the identity
function for model f , which amounts to scoring the observations against the sources
(Identity Model). Second, we ensure that the problem is solvable within our model class
by training our model f with supervision, minimizing the mean-squared error between
f (g(z)) and z (Supervised Model). Third, we fit our model without supervision using
a contrastive loss (Unsupervised Model).

Tables 6.1 and 6.2 show results evaluating identifiability up to affine transformations
and generalized permutations, respectively. When assumptions match (see column M.),
CL recovers a score close to the empirical upper bound. Mismatches in assumptions
on the marginal and conditional do not lead to a significant drop in performance with
respect to affine identifiability, but do for permutation identifiability compared to the
empirical upper bound. In many practical scenarios, we use the learned representations
to solve a downstream task, thus, identifiability up to affine transformations is often
sufficient. However, for applications where identification of the individual generative
factors is desirable, some knowledge of the underlying generative process is required
to choose an appropriate loss function and feature normalization. Interestingly, we
find that for convex bodies, we obtain identifiability up to permutation even in the
case of a normal conditional, which likely is due to the axis-aligned box geometry of
the latent domain. Finally, note that the drop in performance for identifiability up
to permutations in the last group of Tab. 6.2 is a natural consequence of either the
ground-truth or the assumed conditional being rotationally symmetric, e.g., a normal
distribution, in an unbounded space. Here, rotated versions of the latent space are
indistinguishable and, thus, the model cannot align the axes of the reconstruction with
that of the ground-truth latent space, resulting in a lower score.

To zoom in on how violations of the uniform marginal assumption influence the
identifiability achieved by a model in practice, we perform an ablation on the marginal
distribution by interpolating between the theoretically assumed uniform distribution

robust machine learning 108

0.05

25.00

50.00

75.00

100.00

2−6 2−2 22 26 210

Concentration 1/σ2

2.57

25.00

50.00

75.00

100.00
>0.99 >0.95R² [%]

Box

2−6 2−2 22 26

Concentration κ

>0.99 >0.95 Transport [%]
Sphere

Figure 6.2: Varying degrees of violation of the uniformity assumption for the marginal distri-
bution. The figure shows the R2 score measuring identifiability up to linear transformations
(black) as well as the difference between the used marginal and assumed uniform distribution
in terms of probability mass (blue) as a function of the marginal’s concentration. The black
dotted line indicates the concentration of the used conditional distribution.

and highly locally concentrated distributions. In particular, we consider two cases: (1)
a sphere (S9) with a vMF marginal around its north pole for different concentration
parameters κ; (2) a box ([0, 1]10) with a normal marginal around the box’s center
for different standard deviations σ. For both cases, Fig. 6.2 shows the R2 score as
a function of the concentration κ and 1/σ2 respectively (black). As a reference, the
concentration of the used conditional distribution is highlighted as a dashed line. In
addition, we also display the probability mass (0–100%) that needs to be moved for
converting the used marginal distribution (i.e., vMF or normal) into the assumed
uniform marginal distribution (blue) as an intuitive measure of the mismatch (i.e.,
1
2

∫
|p(z)−puni|dz). While, we observe significant robustness to mismatch, in both

cases, we see performance drop drastically once the marginal distribution is more
concentrated than the conditional distribution of positive pairs. In such scenarios,
positive pairs are indistinguishable from negative pairs.

Extensions to image data

Previous studies have demonstrated that representation learning using contrastive
learning scales well to complex natural image data (Chen et al., 2020c, 2020a; Hénaff,
2020). Unfortunately, the true generative factors of natural images are inaccessible, thus
we cannot evaluate identifiability scores.

We consider two alternatives. First, we evaluate on the recently proposed benchmark
KITTI Masks (Klindt et al., 2021a), which is composed of segmentation masks of natural
videos. Second, we contribute a novel benchmark (3DIdent; cf. Fig. 6.3) which features
aspects of natural scenes, e.g. a complex 3D object and different lighting conditions,

robust machine learning 109

Table 6.3: KITTI Masks. Mean ± standard deviation over 10 random seeds. ∆t indicates the
average temporal distance of frames used.

Model Model Space MCC [%]

∆t = 0.05s

SlowVAE Unbounded 66.1 ± 4.5
Laplace Unbounded 77.1 ± 1.0
Laplace Box 74.1 ± 4.4
Normal Unbounded 58.3 ± 5.4
Normal Box 59.9 ± 5.5

∆t = 0.15s

SlowVAE Unbounded 79.6 ± 5.8
Laplace Unbounded 79.4 ± 1.9
Laplace Box 80.9 ± 3.8
Normal Unbounded 60.2 ± 8.7
Normal Box 68.4 ± 6.7

while still providing access to the continuous ground-truth factors. For further details,
see Appx. E. 3DIdent is available at zenodo.org/record/4502485.

KITTI Masks KITTI Masks (Klindt et al., 2021a) is composed of pedestrian seg-
mentation masks extracted from an autonomous driving vision benchmark KITTI-
MOTS (Geiger et al., 2012), with natural shapes and continuous natural transitions.
We compare to SlowVAE (Klindt et al., 2021a), the state-of-the-art on the considered
dataset. In our experiments, we use the same training hyperparameters (for details see
Appx. E) and (encoder) architecture as Klindt et al. (2021a). The positive pairs consist
of nearby frames with a time separation ∆t.

As argued and shown in Klindt et al. (2021a), the transitions in the ground-truth
latents between nearby frames is sparse. Unsurprisingly then, Table 6.3 shows that
assuming a Laplace conditional as opposed to a normal conditional in the contrastive
loss leads to better identification of the underlying factors of variation. SlowVAE also
assumes a Laplace conditional (Klindt et al., 2021a) but appears to struggle if the frames
of a positive pair are too similar (∆t = 0.05s). This degradation in performance is likely
due to the limited expressiveness of the decoder deployed in SlowVAE.

3DIdent

Dataset description We build on (Johnson et al., 2017b) and use the Blender rendering
engine (Blender Online Community, 2021) to create visually complex 3D images (see
Fig. 6.3). Each image in the dataset shows a colored 3D object which is located and
rotated above a colored ground in a 3D space. Additionally, each scene contains a
colored spotlight focused on the object and located on a half-circle around the scene.
The observations are encoded with an RGB color space, and the spatial resolution is
224× 224 pixels.

https://zenodo.org/record/4502485/

robust machine learning 110

m
in

m
ax

La
te

nt
 v

al
ue

Position (X, Y, Z) Rotation (φ, θ, ψ) Color HueSpotlight

Figure 6.3: 3DIdent. Influence of the latent factors z on the renderings x. Each column
corresponds to a traversal in one of the ten latent dimensions while the other dimensions are
kept fixed.

The images are rendered based on a 10-dimensional latent, where: (1) three dimen-
sions describe the XYZ position, (2) three dimensions describe the rotation of the object
in Euler angles, (3) two dimensions describe the color of the object and the ground
of the scene, respectively, and (4) two dimensions describe the position and color of
the spotlight. We use the HSV color space to describe the color of the object and the
ground with only one latent each by having the latent factor control the hue value. For
more details on the dataset see Sec. E.

The dataset contains 250 000 observation-latent pairs where the latents are uni-
formly sampled from the hyperrectangle Z . To sample positive pairs (z, z̃) we first
sample a value z̃′ from the data conditional p(z̃′|z), and then use nearest-neighbor
matching2 implemented by FAISS (Johnson et al., 2017a) to find the latent z̃ closest
to z̃′ (in L2 distance) for which there exists an image rendering. In addition, unlike
previous work (Locatello et al., 2019b), we create a hold-out test set with 25 000 distinct
observation-latent pairs.

Experiments and Results We train a convolutional feature encoder f composed of a
ResNet18 architecture (He et al., 2016b) and an additional fully-connected layer, with
a LeakyReLU nonlinearity as the hidden activation. For more details, see Appx. E.
Following the same methodology as in Sec. 6, i) depending on the assumed space, the
output of the feature encoder is normalized accordingly and ii) in addition to the CL
models, we also train a supervised model to serve as an upper bound on performance.
We consider normal and Laplace distributions for positive pairs. Note, that due to the
finite dataset size we only sample from an approximation of these distributions.

As in Tables 6.1 and 6.2, the results in Table 6.4 demonstrate that CL reaches

2We used an Inverted File Index (IVF) with Hierarchical Navigable Small World (HNSW) graph
exploration for fast indexing.

robust machine learning 111

Table 6.4: Identifiability up to affine transformations on the test set of 3DIdent. Mean ±
standard deviation over 3 random seeds. As earlier, only the first row corresponds to a setting
that matches the theoretical assumptions for linear identifiability; the others show distinct
violations. Supervised training with unbounded space achieves scores of R2 = (98.67± 0.03)%
and MCC = (99.33± 0.01)%. The last row refers to using the image augmentations suggested
by Chen et al. (2020a) to generate positive image pairs. For performance on the training set, see
Appx. Table E.1.

Dataset Model f Identity [%] Unsupervised [%]
p(·|·) Space qh(·|·) M. R2 R2 MCC

Normal Box Normal ✓ 5.25± 1.20 96.73± 0.10 98.31± 0.04
Normal Unbounded Normal ✗ 96.43± 0.03 54.94± 0.02
Laplace Box Normal ✗ 96.87± 0.08 98.38± 0.03
Normal Sphere vMF ✗ 65.74± 0.01 42.44± 3.27
Augm. Sphere vMF ✗ 45.51± 1.43 46.34± 1.59

scores close to the topline (supervised) performance, and mismatches between the
assumed and ground-truth conditional distribution do not harm the performance
significantly. However, if the hypothesis class of the encoder is too restrictive to model
the ground-truth conditional distribution, we observe a clear drop in performance, i.e.,
mapping a box onto a sphere. Note, that this corresponds to the InfoNCE objective
for L2-normalized representations, commonly used for self-supervised representation
learning (Bachman et al., 2019; Chen et al., 2020a; He et al., 2020b; Tian et al., 2019; Wu
et al., 2018). Finally, the last result shows that leveraging image augmentations (Chen et
al., 2020a) as opposed to sampling from a specified conditional distribution of positive
pairs p(·|·) results in a performance drop. For details on the experiment, see Appx.
Sec. E. We explain this with the greater mismatch between the conditional distribution
assumed by the model and the conditional distribution induced by the augmentations.
In all, we demonstrate validation of our theoretical claims even for generative processes
with higher visual complexity than those considered in Sec. 6.

Conclusion

We showed that objectives belonging to the InfoNCE family, the basis for a number
of state-of-the-art techniques in self-supervised representation learning, can uncover
the true generative factors of variation underlying the observational data. To succeed,
these objectives implicitly encode a few weak assumptions about the statistical nature
of the underlying generative factors. While these assumptions will likely not be exactly
matched in practice, we showed empirically that the underlying factors of variation are
identified even if theoretical assumptions are severely violated.

Our theoretical and empirical results suggest that the representations found with
contrastive learning implicitly (and approximately) invert the generative process of
the data. This could explain why the learned representations are so useful in many
downstream tasks. It is known that a decisive aspect of contrastive learning is the right

robust machine learning 112

choice of augmentations that form a positive pair. We hope that our framework might
prove useful for clarifying the ways in which certain augmentations affect the learned
representations, and for finding improved augmentation schemes.

Furthermore, our work opens avenues for constructing more effective contrastive
losses. As we demonstrate, imposing a contrastive loss informed by characteristics of
the latent space can considerably facilitate inferring the correct semantic descriptors,
and thus boost performance in downstream tasks. While our framework already allows
for a variety of conditional distributions, it is an interesting open question how to
adapt it to marginal distributions beyond the uniform implicitly encoded in InfoNCE.
Also, future work may extend our theoretical framework by incorporating additional
assumptions about our visual world, such as compositionality, hierarchy or objectness.
Accounting for such inductive biases holds enormous promise in forming the basis for
the next generation of self-supervised learning algorithms.

Taken together, we lay a strong theoretical foundation for not only understanding
but extending the success of state-of-the-art self-supervised learning techniques.

Acknowledgements

We thank Muhammad Waleed Gondal, Ivan Ustyuzhaninov, David Klindt, Lukas
Schott, Luisa Eck, and Kartik Ahuja for helpful discussions. We thank Bozidar Antic,
Shubham Krishna and Jugoslav Stojcheski for ideas regarding the design of 3DIdent.
We thank the International Max Planck Research School for Intelligent Systems (IMPRS-
IS) for supporting RSZ, YS and StS. StS acknowledges his membership in the European
Laboratory for Learning and Intelligent Systems (ELLIS) PhD program. We acknowl-
edge support from the German Federal Ministry of Education and Research (BMBF)
through the Competence Center for Machine Learning (TUE.AI, FKZ 01IS18039A) and
the Bernstein Computational Neuroscience Program Tübingen (FKZ: 01GQ1002). WB
acknowledges support via his Emmy Noether Research Group funded by the German
Science Foundation (DFG) under grant no. BR 6382/1-1 as well as support by Open
Philantropy and the Good Ventures Foundation. MB and WB acknowledge funding
from the MICrONS program of the Intelligence Advanced Research Projects Activ-
ity (IARPA) via Department of Interior/Interior Business Center (DoI/IBC) contract
number D16PC00003.

7
Learnable latent embeddings for joint
behavioral and neural analysis

The following pages contain the postprint version of the published paper

Steffen Schneider∗, Jin Hwa Lee∗, and Mackenzie Weygandt Mathis. “Learn-
able latent embeddings for joint behavioural and neural analysis.” Nature
(2023): 1-9.

An extended abstract version of the work was also presented at COSYNE 2023, Mon-
treal.

Author Contributions Conceptualization: MWM, StS; Methodology: StS, JHL, MWM;
Software: StS, JHL; Theory: StS; Formal analysis: StS, JHL; Investigation: StS, JHL; Data
Curation: JHL, StS; Writing-Original Draft: MWM; Writing-Editing: MWM, StS, JHL.
∗StS and JHL contributed equally to the project.

robust machine learning 114

Summary

Mapping behavioural actions to neural activity is a fundamental goal of neuroscience.
As our ability to record large neural and behavioural data increases, there is growing
interest in modelling neural dynamics during adaptive behaviours to probe neural
representations. In particular, although neural latent embeddings can reveal underlying
correlates of behaviour, we lack nonlinear techniques that can explicitly and flexibly
leverage joint behaviour and neural data to uncover neural dynamics. Here, we fill this
gap with a new encoding method, CEBRA, that jointly uses behavioural and neural data
in a (supervised) hypothesis- or (self-supervised) discovery-driven manner to produce
both consistent and high-performance latent spaces. We show that consistency can be
used as a metric for uncovering meaningful differences, and the inferred latents can be
used for decoding. We validate its accuracy and demonstrate our tool’s utility for both
calcium and electrophysiology datasets, across sensory and motor tasks and in simple
or complex behaviours across species. It allows leverage of single- and multi-session
datasets for hypothesis testing or can be used label free. Lastly, we show that CEBRA
can be used for the mapping of space, uncovering complex kinematic features, for the
production of consistent latent spaces across two-photon and Neuropixels data, and
can provide rapid, high-accuracy decoding of natural videos from visual cortex.

Introduction

A central quest in neuroscience is the neural origin of behavior (Krakauer et al., 2017b;
Urai et al., 2022b). Yet, we are still limited in both the number of neurons and length
of time we can record from behaving animals in a session. Therefore, we need new
methods that can combine data across animals and sessions with minimal assumptions,
and generate interpretable neural embedding spaces (Jazayeri & Ostojic, 2021; Urai
et al., 2022b). Current tools for representation learning are either linear, or if non-
linear they typically rely on generative models, and they do not yield consistent
embeddings across animals (or repeated runs of the algorithm). Here, we combine
recent advances in non-linear disentangled representation learning and self-supervised
learning to develop a new dimensionality reduction method that can be applied jointly
to behavioral and neural recordings to reveal meaningful lower dimensional neural
population dynamics (Humphries, 2021; Jazayeri & Ostojic, 2021; Zhou & Wei, 2020).

From data visualization (clustering) to discovering latent spaces that explain neural
variance, dimensionality reduction of behavior or neural data has been impactful in
neuroscience. For example, complex 3D forelimb reaching can be reduced to only
8–12 dimensions (Okorokova et al., 2020; Vargas-Irwin et al., 2010), and the low
dimensional embeddings reveal some robust aspects of movements (e.g., PCA-based
manifolds where the neural state space can easily be constrained and is stable across
time (Churchland et al., 2012b; Gallego et al., 2018; Yu et al., 2008b)). Linear methods
such as PCA are often used to increase interpretability, but this comes at the cost

robust machine learning 115

Figure 7.1: Use of CEBRA for consistent and interpretable embeddings. (a): CEBRA allows for
self-supervised, supervised, and hybrid approaches for both hypothesis-driven and discovery-
driven analysis. Overview of pipeline: collect data (e.g., pairs of behavior (or time) and neural
data (x,y)), determine positive and negative pairs, train CEBRA, and produce embeddings.
W1, ...W4 represent the neural network weights. (b): Left: True 2D latent, where each point is
mapped to spiking rate of 100 neurons. Middle: CEBRA embedding after linear regression to
the true latent. Right: Reconstruction score is R2 of linear regression between the true latent
and resulting embedding from each method. The “behavior label” is a 1D random variable
sampled from uniform distribution of [0, 2π] that is assigned to each time bin of synthetic
neural data, visualized by the color map. The orange line is the median, and each black dot is
an individual run (n=100). CEBRA-Behavior shows significantly higher reconstruction score
compare to pi-VAE, tSNE and UMAP (one-way ANOVA, F(4, 495)=251, p=1.12× 10−117 with
post hoc Tukey’s honest significant difference p<0.001). (c): Rat hippocampus data derived
from Grosmark and Buzsáki (2016). Electrophysiology data were collected while a rat traversed
a 1.6m linear track “leftwards” or “rightwards”. (d): We benchmarked CEBRA against conv-pi-
VAE (both with labels and without), autoLFADS, tSNE, and unsupervised UMAP. Note, for
performance against the original pi-VAE see Extended Data Fig. 7.3. We plot the three latents
(all CEBRA embedding figures show the first three latents).The dimensionality of the latent
space is set to the minimum and equivalent dimension per method (3D for CEBRA and 2D for
others) for fair comparison. Note, higher dimensions for CEBRA can yield higher consistency
values (see Extended Data Fig. 7.9). (e): Correlation matrices show R2 values after fitting a
linear model between behavior-aligned embeddings of pairs of rats, one as the target and the
other as the source (mean, n=10 runs). Parameters were picked by optimization of average run
consistency across rats.

robust machine learning 116

Figure 7.2: CEBRA produced consistent, highly decodable embeddings (a): Additional rat
data shown for all algorithms we benchmarked (see Methods). For CEBRA-Behavior, we used
temperature 1, time offset 10, batch size 512 and 10k training steps. For CEBRA-Time, we used
temperature 2.25, time offset 10, batch size 512 and 4k training steps. For UMAP, we used
the cosine metric and min_dist of 0.99 and n_neighbors of 31. For tSNE we used cosine metric
and perplexity of 29. For conv-pi-VAE, we trained 1000 epochs with learning rate 2.5× 10−4.
For autoLFADS we used the in-built ray-tune framework for finding optimal hyperparameters.
CEBRA was trained with output latent 3D (the minimum) and all other methods were trained
with a 2D latent.

robust machine learning 117

of performance (Urai et al., 2022b). UMAP (McInnes et al., 2018) and tSNE (Van
Der Maaten et al., 2009) are excellent non-linear methods, but they lack the ability to
explicitly use time information, which is always available in neural recordings, and they
are not directly as interpretable as PCA. Non-linear methods are desirable to use for
high performance decoding, but often lack identifiability: the desirable property that
true model parameters can be determined, up to a known indeterminacy (Hyvärinen
et al., 2019b; Roeder et al., 2020a). This is critical as it ensures that the learned
representations are uniquely determined and thus facilitates consistency across animals
and/or sessions.

There is recent evidence that label-guided VAEs could improve interpretabil-
ity (Klindt et al., 2021b; Sani et al., 2020; Zhou & Wei, 2020). Namely, by using
behavioral variables, such algorithms can learn to project future behavior onto past neu-
ral activity (Sani et al., 2020), or explicitly use label-priors to shape the embedding (Zhou
& Wei, 2020). However, these methods still have restrictive explicit assumptions on
the underlying statistics of the data, and they do not guarantee consistent neural
embeddings across animals (Pandarinath et al., 2018b; Prince et al., 2021; Zhou & Wei,
2020), which limits their generalizability as well as interpretability (and thereby affects
accurate decoding across animals).

We address these open challenges with CEBRA, a new self-supervised learning
algorithm for obtaining interpretable, Consistent EmBeddings of high-dimensional
Recordings using Auxiliary variables. Our method combines ideas from non-linear
independent component analysis (ICA) with contrastive learning (Gutmann & Hyväri-
nen, 2012; Hyvärinen et al., 2019b; Khosla et al., 2020; Oord et al., 2018), a powerful
self-supervised learning scheme, to generate latent embeddings conditioned on be-
havior (auxiliary variables) and/or time. CEBRA uses a novel data sampling scheme
to train a neural network encoder with a contrastive optimization objective to shape
the embedding space. It also can generate embeddings across multiple subjects, and
cope with distribution shifts between experimental sessions, subjects, and recording
modalities. Importantly, our method neither relies on data augmentation (as does
SimCLR (Chen et al., 2020b)), nor on a specific generative model that would limit its
range of use.

Results

Joint behavioral and neural embeddings

We propose a framework for jointly trained latent embeddings. CEBRA leverages user-
defined labels (supervised, hypothesis-driven), or time-only labels (self-supervised,
discovery-driven; Fig. 7.1a, Suppl. Note 1) to obtain consistent embeddings of neural
activity that can be used for both visualization of data and downstream tasks like
decoding. Specifically, it is an instantiation of non-linear ICA based on contrastive
learning (Hyvärinen et al., 2019b). Contrastive learning is a technique that leverages

robust machine learning 118

contrasting samples (positive and negative) against each other to find attributes in
common and those that separate them. We can use discrete and continuous variables
and/or time to shape the distribution of positive and negative pairs, and then use a non-
linear encoder (here, a convolutional neural network (CNN), but can be another type of
model) trained with a novel contrastive learning objective. The encoder features form a
low-dimensional embedding of the data (Fig. 7.1a). Generating consistent embeddings
is highly desirable and closely linked to identifiability in non-linear ICA (Hälvä et al.,
2021; Hyvärinen et al., 2019b). Theoretical work has shown that using contrastive
learning with auxiliary variables is identifiable for bijective neural networks using a
noise contrastive estimation (NCE) loss (Hyvärinen et al., 2019b), and that with an
InfoNCE loss this bijectivity assumption can sometimes be removed (Zimmermann
et al., 2021a) (see also Suppl. Note 2). InfoNCE minimization can be viewed as a
classification problem where given a reference sample, the correct positive pair needs
to be distinguished from multiple negative pairs.

CEBRA optimizes neural networks f, f′ that map neural activity to an embedding
space of a defined dimension (Fig. 7.1a). Pairs of data (x, y) are mapped to this
embedding space, and then compared with a similarity measure ϕ(·, ·). Abbreviating
this process with ψ(x, y) = ϕ(f(x), f′(y))/τ with a temperature hyperparameter τ, the
full criterion to optimize is

E
x∼p(x), y+∼p(y|x)

y1,...,yn∼q(y|x)

[
−ψ(x, y+) + log

n

∑
i=1

eψ(x,yi)

]
,

which, depending on the dataset size, can be optimized with algorithms for either
batch or stochastic gradient descent.

In contrast to other contrastive learning algorithms, the positive pair distribution
p and the negative pair distribution q can be systematically designed and allows the
use of time, behavior, and other auxiliary information to shape the geometry of the
embedding space. If only discrete labels are used, this training scheme is conceptually
similar to supervised contrastive learning (Khosla et al., 2020).

CEBRA can leverage continuous behavioral (kinematics, actions) as well as other
discrete variables (trial ID, rewards, brain-area ID, etc.). Additionally, user-defined
information about desired invariances in the embedding is used (across animals,
sessions, etc.), allowing flexible ways of analyzing data. We group this information
into task-irrelevant and task-relevant variables, and these can be leveraged in different
contexts. For example, to investigate trial-to-trial variability or learning across trials,
information like a trial ID would be considered a task-relevant variable. On the contrary,
if we aim to build a robust brain machine interface that should be invariant to such
short-term changes, we would include trial information as a task-irrelevant variable
and obtain an embedding space which no longer carries this information. Crucially, this
allows for inferring latent embeddings without explicitly modeling the data generating
process (as done in pi-VAE (Zhou & Wei, 2020) and LFADS (Pandarinath et al., 2018b)).

robust machine learning 119

Omitting the generative model and replacing it by a contrastive learning algorithm
facilitates broader applicability without modifications.

Robust and decodable latent embeddings

We first demonstrate that CEBRA significantly outperforms tSNE, UMAP, autoL-
FADS (Keshtkaran et al., 2022) and pi-VAE (the latter was shown to outperform PCA,
autoLFADS, demixed-PCA, and pfLDS (Zhou & Wei, 2020) on some tasks) at recon-
structing ground truth synthetic data (one-way ANOVA, F(4, 495)=251, p=1.12× 10−117;
Fig. 7.1b, Extended Data Fig. 7.3a, b).

Figure 7.3: Overview of datasets, synthetic data, & original pi-VAE implementation vs. modi-
fied conv-pi-VAE. (ab): We generated synthetic datasets similar to Fig. 7.1b with additional
variations in the noise distributions in the generative process. We benchmarked the reconstruc-
tion score of the true latent using CEBRA and pi-VAE (100 seeds) on the generated synthetic
datasets. CEBRA showed higher and less variable reconstruction scores than pi-VAE in all
noise types. (b) Example visualization of the reconstructed latents from CEBRA and pi-VAE on
different synthetic dataset types. (c): we benchmarked and demonstrate the abilities of CEBRA
on four datasets. Rat-based electrophysiology data (Grosmark & Buzsáki, 2016), where the
animal transversed a 1.6m linear track “leftwards” or “rightwards”. Two mouse-based datasets:
one 2-photon calcium imaging passively viewing dataset (de Vries et al., 2020), and one with
the same stimulus but recorded with Neuropixels (Siegle et al., 2021b). A monkey-based electro-
physiology dataset of center out reaching from Chowdhury et al. (Chowdhury et al., 2020), and
processed to trial data as in (Pei et al., 2021a). (d): Conv-pi-VAE showed improved performance,
both with labels (Wilcoxon signed-rank test, p=0.0341) and without labels Wilcoxon signed-rank
test, p=0.0005). Example runs/embeddings the consistency across rats, with (e): consistency
across rats, from target to source, as computed in Fig. 7.1.

We then turned to a hippocampus dataset that was used to benchmark neural
embedding algorithms (Grosmark & Buzsáki, 2016; Zhou & Wei, 2020) (Extended
Data Fig. 7.3c, Suppl. Note 1). To note, we first significantly improved pi-VAE by
adding a CNN thereby allowing this model to leverage multiple time steps, and

robust machine learning 120

used this for further benchmarking (Extended Data Fig. 7.3d-e). To test our methods,
we first consider the correlation of the resulting embedding space across subjects
(does it produce similar latent spaces?), and the correlation across repeated runs of
the algorithm (how consistent are the results?). We found that CEBRA significantly
outperformed other algorithms at producing consistent embeddings, and it produced
visually informative embeddings (Fig. 7.1c-e, Extended Data Figs. 7.4, 7.2; for each
embedding a single point represents the neural population activity over a specified
time bin).

When using CEBRA-Behavior, the consistency of the resulting embedding space
across subjects is significantly higher compared to autoLFADS and conv-pi-VAE with,
or without test-time labels (one-way ANOVA F(25.4) p=1.92× 10−16, Table S1; Fig. 7.1d,
e). Qualitatively, it can be appreciated that both CEBRA-Behavior and -Time have
similar output embeddings, while the latents from conv-pi-VAE with label priors or
without labels are not consistent (CEBRA does not need test-time labels), suggesting
that the label prior strongly shapes the output embedding structure of conv-pi-VAE.
We also considered correlations across repeated runs of the algorithm and found higher
consistency and lower variability with CEBRA (Extended Data Fig. 7.5).

Hypothesis- and discovery-driven analyses

One of the advantages of CEBRA is its collective flexibility, limited assumptions, and
ability to test hypotheses. For the hippocampus, one can hypothesize that these
neurons represent space (Huxter et al., 2003; Moser et al., 2008), and therefore the
behavioral label could be position, or velocity (Fig.7.6a). Also considering structure in
the behavioral data could help refine which behavioral labels to use jointly with neural
data (Fig. 7.6b). Conversely, for the sake of argument, we could have an alternative
hypothesis; i.e., hippocampus does not map space, just the direction of travel, or some
other feature. Using the same model, but hypothesis-free and using time for selecting
the contrastive pairs is also possible, and/or a hybrid thereof (Fig. 7.6a, b).

We trained hypothesis-guided (supervised), time-only (self-supervised), or hybrid
models across a range of input dimensions and embedded the neural latents into a 3D
space for visualization. Qualitatively, we find that position-based model produces a
highly smooth embedding that reveals the position of the animal—namely, there is a
continuous “loop” of latent dynamics around the track (Fig. 7.6b). This is consistent
with what is known about the hippocampus (Grosmark & Buzsáki, 2016) and in
particular reveals the topology of the linear track with direction specificity. Whereas
shuffling the labels, which breaks the correlation between neural activity and direction
and position, produces an unstructured embedding (Fig. 7.6b).

CEBRA-Time produces an embedding that more closely resembles that of position
(Fig. 7.6b). This also suggests that time contrastive learning captured the major latent
space structure, independent of any label input, reinforcing that CEBRA can serve
both discovery and hypothesis-driven questions (and running both variants can be

robust machine learning 121

Figure 7.4: Hyperparameter changes on visualization and consistency. (a): Temperature has
the largest effect on visualization (vs. consistency) of the embedding as shown by a range
from 0.1 to 3.21 (highest consistency for Rat 1), as can be appreciated in 3D (top) and post
FastICA into a 2D embedding (middle). Bottom row shows the corresponding change on mean
consistency, and in b, the variance can be noted. Orange line denotes the median and black dots
are individual runs (subject consistency: 10 runs with 3 comparisons per rat; run consistency:
10 runs, each compared to 9 remaining runs).

robust machine learning 122

Figure 7.5: Additional metrics used for benchmarking consistency. Comparisons of all
algorithms along different metrics for Rats 1, 2, 3, 4. The orange line is median across n=10

runs, black circles denote individual runs. Each run is the average over three non-overlapping
test splits.

robust machine learning 123

Figure 7.6: Hypothesis- and discovery-driven analysis with CEBRA. (a): CEBRA can be used
in any of three modes: hypothesis-driven mode, discovery-driven mode, or hybrid mode, which
allows for weaker priors on the latent embedding. (b): Left to right, CEBRA on behavioral
data using position as a label, CEBRA-Time, CEBRA-Behavior (on neural data) with position
hypothesis, CEBRA-Hybrid (a five-dimensional space was used, in which 3D is first guided
by both behavior+time and the final 2D is guided by time) and shuffled (erroneous). (c):
Embeddings with position (P) only, direction (D) only and P+D only, and shuffled position only,
direction only and P+D only, for hypothesis testing. The loss function can be used as a metric
for embedding quality. (d): Left, we utilized either hypothesis-driven P+D or shuffle (erroneous)
to decode the position of the rat, which yielded a large difference in decoding performance:
P+D R2=73.35% versus -49.90% for shuffled, and median absolute error 5.8 versus 44.7 cm.
Purple line represents decoding from the 3D hypothesis-based latent space; dashed line is
shuffled. Right, performance across additional methods (orange bars indicate the median of
individual runs (n=10), indicated by black circles. Each run is averaged over three splits of the
dataset). MC, Monte Carlo. (e): Schematic showing how persistent cohomology is computed.
Each data point is thickened to a ball of gradually expanding radius (r) while tracking the
birth and death of “cycles” in each dimension. Prominent lifespans, indicated by pink and
purple arrows, are considered to determine Betti numbers. (f): Top, visualization of neural
embeddings computed with different input dimensions. Bottom, related persistent cohomology
lifespan diagrams. (g): Betti numbers from shuffled embeddings (sh.) and across increasing
dimensions (dim.) of CEBRA, and the topology-preserving circular coordinates using the first
cocycle from persistent cohomology analysis (Methods).

robust machine learning 124

informative). The hybrid design, whose goal is to disentangle the latent to subspaces
that are relevant to the given behavioral and the residual temporal variance and noise,
showed a similarly structured embedding space as behavior (Fig. 7.6b).

To quantify how CEBRA can disentangle which variable had the largest influence
on the embedding, we tested for encoding position, direction, and combinations thereof
(Fig. 7.6c). We find that position plus direction is the most informative label (Dombeck
et al., 2010) (Fig. 7.6c, and Extended Data Fig. 7.7a-d). This is evident in the embedding
and the value of the loss function upon convergence, which serves as an additional
“goodness of fit” metric to select the best labels; i.e., which label(s) produce the lowest
loss at the same point in training (Extended Data Fig. 7.7e). Note that erroneous
(shuffled) labels converge to considerably higher loss values.

To measure performance we consider how well can we decode behavior from the
embeddings. As an additional baseline we performed linear dimensionality reduction
with PCA. We used a k-nearest-neighbor (kNN) decoder for position and direction and
measured the reconstruction error. We find CEBRA-Behavior has significantly better
decoding performance (Fig. 7.6d, and Suppl. Video 1), compared to pi-VAE and our
conv-pi-VAE (one-way ANOVA F=131, p=3.6× 10−24), and CEBRA-Time compared
to unsupervised methods (autoLFADS, tSNE, UMAP, PCA; one-way ANOVA F=1983,
p=6× 10−50; see also Table S2). Zhou & Wei (Zhou & Wei, 2020) reported a median
absolute decoding error of 12 cm error, while we can achieve ≈5 cm (Fig. 7.6d). CEBRA
therefore allows for high performance decoding while ensuring consistent embeddings.

Co-homology as a metric for robust embeddings

CEBRA can be trained across a range of dimensions and models can be selected based
on decoding, goodness of fit, and consistency. Yet, we also sought to find a principled
approach to verify the robustness of embeddings, which might yield insight into neural
computations (Chaudhuri et al., 2019; Curto, 2016) (Fig. 7.6e). We used algebraic
topology to measure the persistent co-homology, for comparing if learned latent spaces
are equivalent. While it is not required to project embeddings onto a sphere, this has the
advantage that there are default Betti numbers (for a d-dimensional uniform embedding,
H0 = 1, H1 = 0, · · · , Hd−1 = 1, i.e., 1,0,1 for the 2-sphere). We used the distance from
the unity line (and thresholded based on a computed null shuffled distribution in Births
vs. Deaths to compute Betti numbers; Extended Data Fig. 7.8). Using CEBRA-Behavior
or -Time we find a ring topology (1,1,0; Fig. 7.6f), as one would expect from a linear
track for place cells. We then computed the Eilenberg-MacLane coordinates for the
identified co-cycle (H1) for each model (de Silva et al., 2009; Gardner et al., 2022)—this
allowed us to map each time-point to topology-preserving coordinates—and indeed
we find that the ring topology for the CEBRA models matches space (position) across
dimensions (Fig. 7.6g, Extended Data Fig. 7.8). Note, this topology differs from (1,0,1);
i.e., Betti numbers for a uniformly covered sphere, which in our setting would indicate
a random embedding as found by shuffling (Fig. 7.6g).

robust machine learning 125

Figure 7.7: Hypothesis testing with CEBRA (a): Example data from a hippocampus recording
session (Rat 1). We tested possible relationships between three experimental variables (rat
location, velocity, movement direction) and the neural recordings (120 neurons, not shown). (b):
Relationship between velocity and position. (c): We trained CEBRA with three-dimensional
outputs on every single experimental variable (main diagonal) and every combination of two
variables. All variables are treated as “continuous” in this experiment. We compared original
to shuffled variables (shuffling is done by permuting all samples over the time dimension) as a
control. We projected the original three dimensional space onto the first principal components.
We show the minimum value of the InfoNCE loss on the trained embedding for all combinations
in the confusion matrix (lower number is better). Either velocity or direction, paired with
position information is needed for maximum structure in the embedding (highlighted, colored),
yielding lowest InfoNCE error. (d): Using an eight-dimensional CEBRA embedding did not
qualitatively alter the results. We again report the first two principal components as well as
InfoNCE training error upon convergence, and find non-trivial embeddings with lowest training
error for combinations of direction/velocity and position. (e): The InfoNCE metric can serve as
the goodness of fit metric, both for hypothesis testing and identifying decodable embeddings.
We trained CEBRA in discovery-driven mode with 32 latent dimensions. We compared the
InfoNCE loss (left, middle) between various hypotheses. Low InfoNCE was correlated with low
decoding error (right).

robust machine learning 126

Figure 7.8: Persistence across dimensions (a): For each dimension of CEBRA-Behavior embed-
ding from the rat hippocampus dataset Betti numbers were computed by applying persistent
co-homology. The colored dots are lifespans observed in hypothesis based CEBRA-Behavior.
To rule out noisy lifespans, we set a threshold (colored diagonal lines) as maximum lifespan
based on 500 seeds of shuffled-CEBRA embedding for each dimension. (b): The topology
preserving circular coordinates using the first co-cycle from persistent co-homology analysis on
the CEBRA embedding of each dimension is shown (see Methods). The colors indicate position
and direction of the rat at the corresponding CEBRA embedding points. (c): The radial angle of
each embedding point obtained from (b) and the corresponding position and direction of the
rat.

Multi-session, multi-animal CEBRA

CEBRA can also be used to jointly train across sessions and different animals, which
can be highly advantageous when there is limited access to simultaneously recorded
neurons, or when looking for animal-invariant features in the neural data. We trained
CEBRA across animals within each multi-animal dataset and find this joint embedding
allows for even more consistent embeddings across subjects (Extended Data Fig. 7.9a-c;
one-sided, paired T-tests, Allen data: (-5.80), p=5.99× 10−5; Hippocampus: (-2.22),
p=0.024).

robust machine learning 127

Figure 7.9: Multi-session training and rapid decoding (a): Top: hippocampus dataset, single
animal vs. multi-animal training shows an increase in consistency across animals. Bottom:
same for Allen dataset, 4 mice. (b): consistency matrix single vs. multi-session training for
hippocampus (32D embedding) and Allen data (128D embedding) respectively. Consistency
is reported at the point in training where the average position decoding error is less than
14 cm (corresponds to 7 cm error for rat 1), and a decoding accuracy of 60% on the Allen
dataset. (c): Comparison of decoding metrics for single or multi-session training at various
consistency levels (averaged across all 12 comparisons). Models were trained for 5,000 (single)
or 10,000 (multi-session) steps with a 0.003 learning rate; batch size was 7,200 samples per
session. Multi-session training requires longer training or higher learning rates to obtain the
same accuracy due to the 4-fold larger batch size, but converges to same decoding accuracy.
We plot points at intervals of 500 steps (n=10 seeds); training progresses from lower right to
upper left corner within both plots. (d): We demonstrate that we could also adapt to an unseen
dataset; here, 3 rats were used for pretraining, and rat #4 was used as a held-out test. The grey
lines indicate models trained from scratch (random initialization). We also tested fine-tuning
only the input embedding (first layer) or the full model, as the diagram, left, describes. We
measured the average time (mean ± STD) to adapt 100 steps (0.65 ± 0.13 sec) and 500 steps
(3.07 ± 0.61 sec) on 40 repeated experiments.

robust machine learning 128

While consistency increased, it is not a priori clear that decoding from “pseudo-
subjects” would be equally good, as there could be session or animal specific informa-
tion that is lost in pseudo-decoding (as decoding is usually performed within session).
Alternatively, if this joint latent space was as high-performance as the single subject,
this would suggest that CEBRA is able to produce robust latent spaces across subjects.
Indeed, we find no loss in decoding performance (Extended Data Fig. 7.9c).

It is also possible to rapidly decode from a new session that is unseen during
training, which is an attractive setting for brain machine interface deployment. We
show that by pretraining on a subset of the subjects, we can apply and rapidly adapt
CEBRA-Behavior on unseen data (i.e., it runs at 50–100 steps/second, and positional
decoding error already decreased by 10 cm after adapting the pretrained network for
one step). Lastly, we can achieve a lower error more rapidly compared to training
fully on the unseen individual (Extended Data Fig. 7.9d). Collectively, this shows that
CEBRA can rapidly produce high-performance, consistent and robust latent spaces.

Discovering latent dynamics during a motor task

We next consider an eight direction “center-out” reaching task paired with electro-
physiology recordings in somatosensory cortex (S1) of a primate (Chowdhury et al.,
2020) (Fig. 7.10a). The monkey performed active movements and in a subset of tri-
als experienced randomized bumps that caused a passive limb movement. CEBRA
produced highly informative visualisations of the data compared to other methods
(Fig. 7.10b), and CEBRA-Behavior can be used in order to test encoding properties
of S1. Using position or time information showed embeddings with clear positional
encoding (Fig. 7.10c, d, and Extended Data Fig. 7.11a-c).

To then test how directional information and active vs. passive movements in-
fluence population dynamics in S1 (Chowdhury et al., 2020; London & Miller, 2013;
Prud’homme & Kalaska, 1994), we trained embedding spaces with directional informa-
tion and then either separated the trials into active and passive for training (Fig. 7.10e),
or trained jointly and post-hoc plotted separately (Fig. 7.10f). We find striking simi-
larities that suggest active vs. passive strongly influences the neural latent space: the
embeddings for active trials show a clear start and stop, while for passive trials it shows
a continuous trajectory through the embedding, independently of how they are trained.
This finding is confirmed in embeddings that used only the continuous position of the
end-effector as the behavioral label (Fig. 7.10g). Notably, direction is a less prominent
feature (Fig. 7.10g), although they are entangled parameters in this task.

Next, since position and active or passive trial type appear robust in the embeddings,
we further explored the decodability of the embeddings. Both position and trial type
were readily decodable from 8D+ embeddings with a kNN decoder trained on position-
only, but directional information was not as decodable (Fig. 7.10h). Here too the loss
function is informative for hypothesis testing (Extended Data Fig. 7.11d-f). Notably,
we could recover the hand trajectory with an R2 of 88% (concatenated across 26 held-

robust machine learning 129

Figure 7.10: Forelimb movement behavior in a primate. (a): The monkey makes either active or
passive movements in eight directions. Data derived from area 2 of primary S1 from Chowdhury
et al. (2020). Cartoon from https://scidraw.io. (b): Embeddings of active trials generated with
4D CEBRA-Behavior, 4D CEBRA-Time, 4D autoLFADS, 4D conv-pi-VAE variants, 2D tSNE
and 2D UMAP. The embeddings of trials (n=364) for each direction are post hoc averaged. (c):
CEBRA-Behavior trained with (x,y) position of the hand. Left, color coded to x position; right,
color coded to y position. (d): CEBRA-Time with no external behavior variables. Color coded
as in c. (e): CEBRA-Behavior embedding trained using a 4D latent space, with discrete target
direction as behavior labels, trained and plotted separately for active and passive trials. (f):
CEBRA-Behavior embedding trained using a 4D latent space, with discrete target direction and
active and passive trials as auxiliary labels plotted separately, active versus passive trials. (g):
CEBRA-Behavior embedding trained with a 4D latent space using active and passive trials with
continuous (x,y) position as auxiliary labels plotted separately, active versus passive trials. The
trajectory of each direction is averaged across trials (n=18–30 each, per direction) over time.
Each trajectory represents 600 ms from -100 ms before the start of the movement. (h): Left to
right, decoding performance of: position using CEBRA-Behavior trained with (x,y) position
(active trials); target direction using CEBRA-Behavior trained with target direction (active trials);
and active versus passive accuracy (Acc.) using CEBRA-Behavior trained with both active
and passive movements. In each case we trained and evaluated five seeds, represented by
black dots; orange line represents the median. (i), Decoded trajectory of hand position using
CEBRA-Behavior trained on active trial with (x,y) position of the hand. The grey line represents
a true trajectory and the red line represents a decoded trajectory.

https://scidraw.io

robust machine learning 130

out test trials, Fig. 7.10i) using a 16D CEBRA-Behavior model trained on position
(Fig. 7.10i). For comparison, a L1 regression using all neurons achieved R2 74%, and
16D conv-pi-VAE achieved R2 82%. We also tested CEBRA on an additional monkey
dataset (mc_maze) presented in the Neural Latent Benchmark (Pei et al., 2021c), where
it achieves state-of-the-art decoding performance (Extended Data Fig. 7.11).

Figure 7.11: Somatosensory cortex decoding from primate recordings (a): We compare CEBRA-
Behavior with the cosine similarity and embeddings on the sphere reproduced from Fig. 7.10b
(left) against CEBRA-Behavior trained with the MSE loss and unnormalized embeddings. The
embeddings of trials (n=364) of each direction were post-hoc averaged. (b): CEBRA-Behavior
trained with x,y position of the hand. Left panel is color-coded to changes in x position and
right panel is color-coded to changes in y position. (c): CEBRA-Time without any external
behavior variables. As in b, left and right are color-coded to x and y position, respectively. (d):
Decoding performance of on target direction using CEBRA-Behavior, conv-pi-VAE and a linear
classifier. CEBRA-Behavior shows significantly higher decoding performance than the linear
classifier (one-way ANOVA, F(2,75)=3.37, p<0.05 with Post Hoc Tukey HSD p<0.05). (e): Loss
(InfoNCE) vs. training iteration for CEBRA-Behavior with position, direction, active or passive,
and position+direction labels (and shuffled labels) for all trials (left) or only active trials (right),
or active trials with a MSE loss. (f): Additional decoding performance results on position and
direction-trained CEBRA models with all trial types. For each case, we trained and evaluated 5

seeds represented by black dots and the orange line represents the median. (g): Results on the
mc-maze benchmark.

robust machine learning 131

Consistent embeddings across recording modalities

CEBRA is agnostic to the recording modality of neural data. But do different modal-
ities produce similar latent embeddings? Understanding the relationship of calcium
signaling and electrophysiology is a debated topic, yet an underlying assumption is
that they inherently encode related, yet not identical, information. Although there are
a wealth of excellent tools aimed at inferring spike trains from calcium data, currently
the pseudo-R2 of algorithms on paired spiking and calcium data tops out at around
0.6 (Berens et al., 2018). Nonetheless, it is clear that recording with either modality has
lead to similar global conclusions—for example, grid cells can be uncovered in spiking
or calcium signals (Gardner et al., 2022; Hafting et al., 2005b), reward prediction errors
can be found in dopamine neurons across species and recording modalities (Cohen et
al., 2012; Menegas et al., 2015; Schultz et al., 1997), and visual cortex shows orientation
tuning across species and modalities (Hubel & Wiesel, 1977; Niell et al., 2008; Ringach
et al., 2016).

We aimed to formally study whether CEBRA could capture the same neural popu-
lation dynamics either from spikes or calcium imaging. We utilized a dataset from the
Allen Brain Observatory where mice passively watched three movies repeatedly. We
focused on paired data from 10 repeats of “Natural Movie 1” where neural data were
recorded with either Neuropixels probes or via calcium imaging with a 2-photon (2P)
microscope (from separate mice) (de Vries et al., 2020; Siegle et al., 2021b). Note, the
data we considered thus far have goal-driven actions of the animals (such as running
down a linear track or reaching to targets), yet this visual cortex dataset is collected
during passive viewing (Fig. 7.12a).

We used the movie features as “behavior” labels by extracting the high-level visual
features from the movie on a frame-by-frame basis using DINO, a powerful vision
transformer (Caron et al., 2021a). Those were then used to sample the neural data
with feature-labels (Fig. 7.12b). Next, we used Neuropixels data or calcium (2P) data
(each with multi-session training) in order to generate (from 8D to 128D) latent spaces
from varying number of neurons recorded from V1 (Fig. 7.12c, d). The visualization
of CEBRA-Behavior showed trajectories that smoothly capture the video with either
modality with an increasing number of neurons. This is reflected quantitatively in the
consistency metric (Fig. 7.12e). Strikingly, CEBRA-Time nicely captured the 10 repeats
of the movie (Extended Data Fig. 7.13). This result demonstrates that there is a highly
consistent latent space independent of the recording method.

Next, we stacked the neurons from different mice and modalities and then sampled
random subsets of V1 neurons to construct a pseudo-mouse. We did not find that joint
training lowered consistency within modality (Extended Data Fig. 7.14a, b), and overall
we found considerable improvement in consistency with joint training (Fig. 7.12f-h).

Using CEBRA-Behavior or -Time we trained models on four higher visual areas
(HVAs) and one posterior parietal cortex (PPC) area and measured the consistency
with and without joint training, and within or across areas. Our results show that with

robust machine learning 132

Figure 7.12: Spikes and calcium signalling show similar CEBRA embeddings. (a): CEBRA-
Behavior can use frame-by-frame video features as a label of sensory input to extract the
neural latent space of the visual cortex of mice watching a video. Cartoon from https://
scidraw.io. (b): tSNE visualization of the DINO features of video frames from four different
DINO configurations (latent size, model size), all showing continuous evolution of video
frames over time. (c,d): Visualization of trained 8D latent CEBRA-Behavior embeddings with
Neuropixels (NP) data (c) or calcium imaging (2P) (d). Numbers above each embedding
indicate neurons subsampled from the multi-session concatenated dataset. Color map as in b.
(e): Linear consistency between embeddings trained with either calcium imaging or Neuropixels
data (n=10–1,000 neurons, across n=5 shuffles of neural data; mean values ± s.e.m.). (f,g):
Visualization of CEBRA-Behavior embedding (8D) trained jointly with Neuropixels (f) and
calcium imaging (g). Color map as in (b). (h): Linear consistency between embeddings of
calcium imaging and Neuropixels trained jointly using a multi-session CEBRA model (n=10–
1000 neurons, across n=5 shuffles of neural data; mean values ± s.e.m.). (i): Diagram of mouse
primary visual cortex (V1, VISp) and higher visual areas. (j): CEBRA-Behavior 32D model
jointly trained with 2P+NP incorporating 400 neurons, followed by measurement of consistency
within or across areas (2P versus NP) across two unique sets of disjoint neurons for three seeds
and averaged. (k): Models trained as in h, with intra-V1 consistency measurement versus all
interarea versus V1 comparison. Purple dots indicate mean of V1 intra-V1 consistency (across
n=120 runs) and inter-V1 consistency (n=120 runs). Intra-V1 consistency is significantly higher
than interarea consistency (one-sided Welch’s t-test, t(12.30)=4.55, p=0.00019).

joint training intra-area consistency is higher vs. other areas (Fig. 7.12i-k), suggesting
that with CEBRA we are not removing biological differences across areas (that have
known differences in decodability and feature representations (Esfahany et al., 2018;
Jin & Glickfeld, 2020)). Moreover, we test within modality and find a similar effect with
CEBRA-Behavior or -Time within recording modality (Extended Data Fig. 7.14c-f).

https://scidraw.io
https://scidraw.io

robust machine learning 133

Figure 7.13: CEBRA produces consistent, highly decodable embeddings (a): Additional 4

sessions with the most neurons in the Allen visual dataset calcium recording shown for all
algorithms we benchmarked (see Methods). For CEBRA-Behavior and CEBRA-Time, we used
temperature 1, time offset 10, batch size 128 and 10k training steps. For UMAP, we used a
cosine metric and n_neighbors 15 and min_dist 0.1. For tSNE, we used a cosine metric and
perplexity 30. For conv-pi-VAE, we trained with 600 epochs, a batch size of 200 and a learning
rate 5× 10−4. LFADS was trained with ray-tune parameter selection and the resulting factors
were transformed with PCA to generate the visualization. All methods used 10 time bins input.
CEBRA was trained with 3D latent and all other methods were obtained with an equivalent 2D
latent dimension. To align for visualization, we aligned to mouse 1, except for conv-pi-VAE
without labels and for autoLFADS, which visually looked best when aligned to mouse 4.

robust machine learning 134

Figure 7.14: Spikes and calcium signaling reveal similar embeddings (a): Consistency
between the single modality embedding and jointly trained embedding from CEBRA. In
higher dimensions, the embedding from single recording modality and the jointly trained
embedding became highly consistent with more neurons. (b): Consistency of embeddings from
two recording modalities, when a single modality was trained independently and/or jointly
trained. The consistency significantly improved with joint training. In higher dimensions, the
consistency between single modality embeddings improved as well, which shows that CEBRA
can find ’common latents’ in two different recording methods (that is theoretically meant to
have same information) even without joint training (yet, joint training improves consistency).
This data is also presented in Fig. 7.12e, h, but here plotted together to show improvement with
joint training.

robust machine learning 135

Figure 7.14 (continued): (c-f): Consistency across modalities and areas for CEBRA-Behavior
and -Time (as computed in Fig. 7.12i-k). The purple dots indicate mean of intra-V1 scores and
inter-V1 scores (inter-V1 vs intra-V1 Welch’s t-test; 2P (Behavior): T(10.6)=1.52, p=0.081, 2P
(Time): T(44.3)=4.26 ,p=0.0005, NP (Behavior): T(11.6)=2.83, p=0.0085, NP (Time): T(8.9)=15.51,
p<0.00001) (g): CEBRA + kNN decoding performance (see Methods) of CEBRA embeddings of
different output embedding dimensions, from calcium (2P) data or Neuropixels, as denoted.(h):
Decoding accuracy measured by considering predicted frame being within 1 sec difference to
true frame as correct prediction using CEBRA (2P only), jointly trained (2P+NP), or a baseline
population vector kNN decoder (using the time window 33 ms (single frame), or 330 ms (10

frame receptive field)). (i): Single frame performance and quantification using CEBRA 1 frame
receptive field (NP data), or baseline models. (j): As a control experiment we shuffled DINO
features: CEBRA-Behavior used the DINO features as behavior labels and CEBRA-Shuffled
used the shuffled DINO features. We shuffled the frame order of DINO features within a
repeat. Same shuffled order was use for all repeats. Color code is frame number from the
movie. The prediction is considered as true if the predicted frame is within 1 sec from the true
frame, and the accuracy (%) is noted next to the embedding. For Mice ID 1-4: 337, 353, 397, 475

neurons were recorded, respectively. (k): Decoding performance from 2P data from different
visual cortical areas from different layers (2/3, 4, 5/6), as denoted, using a 10 frame window
CEBRA-Behavior model using DINO features with 128 output dimension.

Decoding of natural movies from visual cortex

We performed V1 decoding analysis using CEBRA models that are either joint-modality
trained, single-modality trained, or with a baseline population vector then paired with
a simple kNN or naive Bayes decoder. We aimed to see if we could decode on a frame-
by-frame basis the natural movie the mice watched. We used the last movie repeat
as a held-out test set and nine repeats as the training set. We could achieve greater
than 95% decoding accuracy, which is significantly better than the baseline decoding
methods (naive Bayes or kNN) for Neuropixels recordings, and joint training CEBRA
outperformed Neuropixels-only CEBRA based training (single frame: one-way ANOVA,
F(3,197)=5.88, p=0.0007, Tables S3, S4, S5, Fig. 7.15a-d, Extended Data Fig. 7.14g, h).
Accuracy was defined as the fraction of correct frames within a 1-second window or by
the correct scene being identified. Frame-by-frame results also showed reduced frame
ID errors (one-way ANOVA, F(3,16)=20.22, p=1.09× 10−5, n=1000 neurons, Table S6)
which can be appreciated in Fig. 7.15e, f, Extended Data Fig. 7.14i, and Suppl. Video
2. The DINO features themselves did not drive performance, as shuffling the features
showed poor decoding (Extended Data Fig. 7.14j).

Lastly, we tested decoding from other HVAs and PPC using DINO features. Overall,
decoding from V1 had the highest performance and PPC (VISrl) the lowest (Fig. 7.15g,
Extended Data Fig. 7.14k). Given the high decoding performance of CEBRA, we tested
if there was a particular V1 layer that was most informative. We leveraged CEBRA-
Behavior by training models on each category and find that layer 2/3 and layer 5/6

show significantly higher decoding performance compared to layer 4 (one-way ANOVA,
F(2,12)=9.88, p=0.003; Fig. 7.15h). Given the known cortical connectivity, this suggests
that the non-thalamic input layers make frame information more explicit, perhaps via

robust machine learning 136

feedback or predictive processing.

Figure 7.15: Decoding of natural video features from mouse visual cortical areas. (a):
Schematic of the CEBRA encoder and kNN (or naive Bayes) decoder. (b): Examples of original
frames (top row) and frames decoded from CEBRA embedding of V1 calcium recording using
kNN decoding (bottom row). The last repeat among ten was used as the held-out test. (c):
Decoding accuracy measured by considering a predicted frame being within 1s of the true frame
as a correct prediction using CEBRA (NP only), jointly trained (2P+NP) or a baseline population
vector plus kNN or naive Bayes decoder using either a one-frame (33ms) receptive field (left) or
ten frames (330ms) (right); results shown for Neuropixels dataset (V1 data); for each neuron
number we have n=5 shuffles, mean ± s.e.m. (d): Decoding accuracy measured by correct scene
prediction using either CEBRA (NP only), jointly trained (2P+NP) or baseline population vector
plus kNN or Bayes decoder using a one-frame (33ms) receptive field (V1 data); n=5 shuffles
per neuron number, mean ± s.e.m. (e): Single-frame ground truth frame ID versus predicted
frame ID for Neuropixels using a CEBRA-Behaviour model trained with a 330ms receptive field
(1,000 V1 neurons across mice used). (f): Mean absolute error of the correct frame index; shown
for baseline and CEBRA models as computed in (c)–(e). (g): Diagram of the cortical areas
considered and decoding performance from CEBRA (NP only), ten-frame receptive field; n=3

shuffles for each area and number of neurons, mean ± s.e.m. (h): V1 decoding performance
versus layer category using 900 neurons with a 330ms receptive field CEBRA-Behavior model;
n=5 shuffles for each layer, mean ± s.e.m.

Discussion

CEBRA is a new non-linear dimensionality reduction method to explicitly leverage
behavior labels and/or time in order to discover latent neural embeddings. The unique
property of CEBRA is the extension and generalization of the standard InfoNCE ob-
jective by introducing a variety of different sampling strategies tuned for usage of the
algorithm in the experimental sciences and for analysis of time series datasets, and it
can be used for supervised and self-supervised analysis and thereby directly allows
for hypothesis- and discovery-driven science. It produces both consistent embeddings
across subjects (thus revealing common structure) and can find the dimensionality of

robust machine learning 137

neural spaces that are topologically robust. While there remains a gap in understanding
how these latent spaces map to neural-level computations, we believe this tool provides
an advance in our ability to map behavior to neural populations. Moreover, pretrained
CEBRA models can be used for decoding in new animals within tens of steps (millisec-
onds); we can thereby get equal or better performance compared to training on the
unseen animal alone.

Dimensionality reduction is often tightly linked to data visualization, and here we
make an empirical argument that ultimately this is only useful when you are getting
consistent results, and discovering robust features. Unsupervised tSNE and UMAP
are examples of algorithms widely used in life sciences for discovery-based analysis.
However, they do not leverage time, and for neural recordings, this is always available
and can be used. Even more critical is that concatenating data from different animals
can lead to shifted clusters with tSNE or UMAP due to inherent small changes across
animals or in how the data was collected. CEBRA allows the user to remove this
unwanted variance and discover robust latents that are invariant to animal ID, sessions,
or any-other-user-defined nuisance variable. Collectively, we believe CEBRA will
become a complement to (or replacement for) these methods such that, at minimum,
the structure of time in the neural code is leveraged, and robustness is prioritized.

Methods

Datasets

Artificial Spiking Dataset Synthetic spiking data for benchmarking in Fig. 7.1 was
adopted from Zhou and Wei (2020). The continuous 1D behavior variable c ∈ [0, 2π)

was sampled uniformly in the interval [0, 2π). The true 2D latent variable z ∈ R2

was then sampled from a Gaussian distribution N (µ(c), Σ(c)) with mean µ(c) =

(c, 2 sin c)⊤ and covariance Σ(c) = diag(0.6− 0.3| sin c|, 0.3| sin c|). After sampling, the
2D latent variable z was mapped to spiking rates of 100 neurons by applying four
randomly initialized RealNVP (Dinh et al., 2016) blocks. Poisson noise was then applied
(Zhou & Wei, 2020) to map firing rates onto spike counts. The final dataset consisted of
1.5× 104 data points for 100 neurons ([number of samples, number of neurons]), and
was split into train (80%) and validation (20%) sets. We quantified consistency across
the entire dataset for all methods. The additional synthetic data, presented in Extended
Data Fig. 1, was generated by varying the noise distribution in the above generative
process. Beside Poisson noise, we used additive truncated ([0, 1000]) Gaussian noise
with standard deviation 1 and additive uniform noise defined in [0, 2) which was
applied to the spiking rate. We also adapted the Poisson spiking by simulating neurons
with a refractory period. For this, we scaled the spiking rates to an average rate of
110Hz. We sample inter-spike intervals from an exponential distribution with the given
rate and add a refractory period of 10ms.

robust machine learning 138

Rat Hippocampus Dataset We used the dataset presented in Grosmark and Buzsáki
(2016). In brief, bilaterally implanted silicon-probes recorded multi-cellular electrophys-
iological data from the CA1 hippocampus areas from each of four male Long-Evans
rats. During a given session, each rat independently ran on a 1.6 meter long linear
track, where they were rewarded with water at each end of the track. The numbers of
recorded putative pyramidal neurons for each rat ranged between 48 to 120. Here, we
processed the data like Zhou and Wei (2020). Specifically, the spikes were binned into
25ms time windows. The position and running direction (left or right) of the rat was
encoded into a 3D vector, which consisted of the continuous position value and two
binary values indicating right or left direction. Recordings from each rat was parsed
into trials (a round trip from one end of the track as a trial) and then split into a train,
validation, and test set with a k=3 nested cross-validation scheme for the decoding
task.

Macaque Dataset We used the dataset presented in Chowdhury et al. (2020). In brief,
electrophysiological recordings were performed in Area 2 of somatosensory cortex (S1)
in a rhesus macaque (monkey) during a center-out reaching task with a manipulandum.
Specifically, the monkey performed an eight direction reaching task where on 50% of
trials they actively made center-out movements to a presented target. The remaining
trials were “passive” trials, where an unexpected 2N force bump was given to the
manipulandum towards one of the eight target directions during a holding period.
The trials were aligned as by Pei et al. (2021a), and we used the data from -100ms and
500ms from the movement onset. We used 1ms time bins and convolved the data with
a Gaussian kernel with standard deviation of 40ms.

Mouse Visual Cortex Datasets We utilized the Allen Institute 2-photon calcium imaging
and Neuropixels data recorded from five mouse visual cortical areas (VISp, VISl,
VISal, VISam, VISpm) and one posterior parietal cortex (PPC)-like area (VISrl) during
presentation of a black-and-white movie with 30 Hz frame rate, as presented previously
(Deitch et al., 2021; de Vries et al., 2020; Siegle et al., 2021b). For calcium imaging (2P),
we used the processed dataset by de Vries et al. (2020) with a sampling rate of 30 Hz,
aligned to the video frames. We considered the recordings from excitatory neurons
(Emx1-IRES-Cre, Slc17a7-IRES2-Cre, Cux2-CreERT2, Rorb-IRES2-Cre, Scnn1a-Tg3-Cre,
Nr5a1-Cre, Rbp4-Cre_KL100, Fezf2-CreER, Tlx3-Cre_PL56) in the “Visual Coding-2P”
dataset. Ten repeats of the first movie (Movie 1) were shown in all session types (A,B,C)
for each mouse and we used the neurons that were recorded in all three session types,
found by using the cell registration (de Vries et al., 2020). The Neuropixels recordings
were obtained from the “Brain Observatory 1.1” dataset (Siegle et al., 2021b). We used
the pre-processed spike-timings and binned them to a sampling frequency of 120 Hz,
aligned with the movie timestamps (i.e., exactly 4 bins are aligned with each frame).
The dataset contains recordings for 10 repeats, and we used the same Movie 1 that
was used for the 2P recordings. For the analysis of consistency across the visual and

robust machine learning 139

PPC cortical areas, we used a disjoint set of neurons for each seed to avoid higher
intra-consistency due to overlapping neuron identities. We made 3 disjoint set of
neurons by only considering neurons from session A (for 2P data) and non-overlapping
random sampling for each seed.

CEBRA Model Framework

Notation We will use x, y as general placeholder variables, and denote the multidimen-
sional, time-varying signal as sst, parameterized by the time t. The multidimensional,
continuous context variable ct contains additional information about the experimental
condition and additional recordings, similar to the discrete categorical variable kt.

The exact composition of ss, c and k depends on the experimental context. CEBRA
is agnostic to the exact signal types; with the default parameterizations, sst and ct can
have up to an order of hundred or thousand dimensions. For even higher dimensional
datasets (e.g. raw video, audio, ...) other optimized deep learning tools can be used for
feature extraction prior to the application of CEBRA.

Applicable problem setup We refer to x ∈ X as the reference sample, and to y ∈ Y as a
corresponding positive or negative sample. Together, (x, y) form a positive or negative
pair, based on the distribution y is sampled from. We denote the distribution and
density function of x as p(x), the conditional distribution and density of the positive
sample y given x as p(x|y) and the conditional distribution and density of the negative
sample y given x as q(y|x).

After sampling—and no matter whether we are considering a positive or neg-
ative pair—both samples x ∈ RD and y ∈ RD′ are encoded by feature extractors
f : X 7→ Z and f′ : Y 7→ Z. The feature extractors map both samples from signal
space X ⊆ RD, Y ⊆ RD′ into a common embedding space Z ⊆ RE. The design and
parameterization of the feature extractor is chosen by the user of the algorithm. Note
that the spaces X and Y and their corresponding feature extractors can be the same
(which is the case for single-session experiments in this work), but that this is not a
strict requirement within the CEBRA framework (e.g., in multi-session training across
animals or modalities, X and Y are selected to be signals from different mice or modal-
ities, respectively). It is also possible to include the context variable (e.g., behavior) into
X, or it is possible to set x to the context variable, and y to the signal variable.

Given two encoded samples, a similarity measure ϕ : Z× Z 7→ R assigns a score
to a pair of embeddings. The similarity measure needs to assign a higher score to
more similar pairs of points, and have an upper bound. For this work, we consider the
dot product between normalized feature vectors, ϕ(z, z′) = z⊤z′/τ, in most analyses
(latents on a hypersphere), or the negative mean squared error, ϕ(z, z′) = −∥z− z′∥2/τ

(latents in Euclidean space). Both metrics can be scaled by a temperature parameter
τ which is either fixed, or jointly learned with the network. Other Lp norms and
other similarity metrics, or even a trainable neural network (a so-called projection

robust machine learning 140

head commonly used in contrastive learning algorithms, cf. Chen et al. (2020b) and
Hyvärinen et al. (2019b)), are possible choices within the CEBRA software package.
The exact choice of ϕ shapes the properties of the embedding space, and encodes
assumptions about the distributions p and q.

The technique requires paired data recordings, e.g. as common in aligned time-
series. The signal sst, continuous context ct and discrete context kt are synced in
their time-point t. How the reference, positive and negative samples are constructed
from these available signals is a configuration choice made by the algorithm user, and
depends on the scientific question to investigate.

Optimization Given the feature encoders f and f′ for the different sample types, as
well as the similarity measure ϕ, we introduce the shorthand ψ(x, y) = ϕ(f(x), f′(y)).
The objective function can then be compactly written as:

∫
x∈X

dxp(x)

-
∫

y∈Y

dyp(y|x)ψ(x, y) + log
∫

y∈Y

dyq(y|x)eψ(x,y)

 . (7.1)

We approximate this objective (Chapter 6, Wang and Isola, 2020; Zimmermann
et al., 2021a) by drawing a single positive example y+, and multiple negative examples yi

from the distributions outlined above, and minimize the loss function

E
x∼p(x), y+∼p(y|x)

y1,...,yn∼q(y|x)

[
−ψ(x, y+) + log

n

∑
i=1

eψ(x,yi)

]
, (7.2)

with a gradient-based optimization algorithm. The number of negative samples is a
hyperparameter of the algorithm and larger batch sizes are generally preferable.

For sufficiently small datasets as used in this paper, both positive and negative
samples are drawn from all available samples in the dataset. This is in contrast to
the common practice in many contrastive learning frameworks, where a mini-batch
of samples is drawn first, which are then grouped into positive and negative pairs.
Allowing to access the whole dataset to form the pairs gives a better approximation of
the respective distributions p(y|x) and q(y|x), and considerably improves the quality
of the obtained embeddings. If the dataset is small enough to fit into the GPU memory,
CEBRA can be optimized with batch gradient descent, i.e., use the whole dataset at
each optimizer step.

Goodness of fit Comparing the loss value—at both the absolute value and relative
value across models at the same point in training time—can be used to determine the
goodness of fit. Practically, this means one can find which hypothesis best fits one’s data,
in the case of using CEBRA-Behavior. Specifically, let us denote the objective in Eq. 7.1
as Lasympt and its approximation in Eq. 7.2 with a batch size of n as Ln. In the limit of

robust machine learning 141

many samples, the objective converge up to a constant, Lasympt = limn→∞[Ln − log n]
(cf. Suppl. Note 2, and Wang and Isola, 2020).

The objective has also two trivial solutions: The first one is obtained for a constant
ψ(x, y) = ψ, which yields a value of Ln = log n. This solution can be obtained when
the labels are not related to the signal (e.g., with shuffled labels). It is typically not
obtained during regular training because the network is initialized randomly, causing
the initial embedding points to be randomly distributed in space.

If the embedding points are distributed uniformly in space, and ϕ is selected such
that E[ϕ(x, y)] = 0, we will also get a value that is approximately Ln = log n. The value
can be readily estimated by computing ϕ(u, v) for randomly distributed points.

The minimizer of Eq. 7.1 is also clearly defined as −DKL(p∥q) and depends on the
positive and negative distribution. For discovery-driven (time contrastive) learning,
this value is impossible to estimate because it would require access to the underlying
conditional distribution of the latents. However, for training with predefined positive
and negative distributions, this quantity can be again numerically estimated.

Interesting values of the loss function when fitting a CEBRA model are therefore

−DKL(p∥q) ≤ Ln − log n ≤ 0 (7.3)

where Ln − log n is the goodness of fit (lower is better) of the CEBRA model. Note that
the metric is independent of the batch size used for training.

Sampling Selection of the sampling scheme is CEBRA’s key feature to adapt embed-
ding spaces to different datasets and recording setups. The conditional distributions
p(y|x) for positive samples and q(y|x) for negative samples as well as the marginal
distribution p(x) for reference samples are specified by the user. CEBRA offers a
set of pre-defined sampling techniques, but customized variants can be specified to
implement additional, domain specific distributions. This form of training allows to
use the context variables to shape the properties of the embedding space, as outlined
in the graphical model in Suppl. Note 1.

Through the choice of sampling technique, various use cases can be built into the
algorithm: For instance, by forcing the positive and negative distributions to sample
uniform across a factor, the model will become invariant to this factor, as including it
would yield in a sub-optimal value of the objective function.

When considering different sampling mechanisms, we distinguish between single-
session and multi-session datasets: A single-session dataset consists of samples sst,
which are associated to one or more context variables ct and/or kt. These context
variables allow to impose structure on the marginal and conditional distribution used
for obtaining the embedding. Multi-session datasets consist of multiple single-session
datasets. The dimension of context variables ct and/or kt must be shared across all
sessions, while the dimension of the signal sst can vary. In such a setting, CEBRA
allows to learn a shared embedding space for signals from all sessions.

robust machine learning 142

For single-session datasets, sampling is done in two steps: First, based on a speci-
fied “index” (the user-defined context variable ct and/or kt), locations t are sampled
for reference, positive and negative samples. The algorithm differentiates between
categorical (k) and continuous (c) variables for this purpose.

In the simplest case, negative sampling (q) returns a random sample from the em-
pirical distribution, by returning a randomly chosen index from the dataset. Optionally,
with a categorical context variable kt ∈ [K], negative sampling can be performed to
approximate a uniform distribution of samples over this context variable. If this is
performed for both the negative and positive samples, the resulting embedding will
become invariant with respect to the variable kt. Sampling is performed in this case by
computing the cumulative histogram of kt, and sampling uniformly over k using the
transformation theory for probability densities.

For positive pairs, different options exist based on the availability of continuous
and discrete context variables. For a discrete context variable kt ∈ [K] with K possible
values, sampling from the conditional distribution is done by filtering the whole dataset
for the value kt of the reference sample, and uniformly selecting a positive sample with
the same value. For a continuous context variable ct, we use a set of time offsets ∆ to
specify the distribution. Given the time offsets, the empirical distribution P(ct+τ|ct)

for a particular choice of τ ∈ ∆ can be computed from the dataset: We build up a set
D = {t ∈ [T], τ ∈ ∆ : ct − ct+τ}, sample a d uniformly from D, and obtain the sample
that is closest to the reference sample modified by this distance d from the dataset
(x + d). It is possible to combine a continuous variable ct with a categorical variable kt

for mixed sampling. On top of the continual sampling step above, it is ensured that
both samples in the positive pair share the same value kt.

It is crucial that the context samples c and the norm used in the algorithm match in
some way; for simple context variables with predictable conditional distributions (e.g.,
a one or two-dimensional position of a moving animal, which can be most likely well
described by a Gaussian conditional distribution based on the previous sample). An
additional alternative is to use CEBRA also to pre-process the original context samples c
and use the embedded context samples with the metric used for CEBRA training. This
scheme is especially useful for higher dimensional behavioral data, or even complex
inputs like video.

We next consider the multi-session case, where signals ss(i)t ∈ Rni come from N
different sessions i ∈ [N] with session-dependent dimensionality ni. Importantly, the
corresponding continuous context variables c(i)t ∈ Rm share the same dimensionality m,
which makes it possible to relate samples across sessions. The multi-session setup is
similar to mixed session sampling (if we treat the session ID as a categorical variable
k(i)t := i for all time steps t in session i). The conditional distribution for both negative
and positive pairs is uniformly sampled across sessions, irrespective of session length.
Multi session mixed sampling or multi session discrete sampling can be implemented
analogously.

Besides the outlined sampling scheme, CEBRA is flexible to incorporate more

robust machine learning 143

specialized sampling schemes. For instance, mixed single session sampling could
be extended to additionally incorporate a dimension the algorithm should become
invariant to. This would add an additional step of uniform sampling with regard to to
this desired discrete variable (e.g., via ancestral sampling).

Choice of reference and positive and negative samples Depending on the exact application,
the contrastive learning step can be performed by explicitly including or excluding
the context variable: The reference sample x can contain information from the signal
sst, but also from the experimental conditions, behavioral recordings, or other context
variables. The positive and negative samples y are set to the signal variable sst.

Theoretical guarantees for linear identifiability of CEBRA models Identifiability describes
the property of an algorithm to give a consistent estimate for the model parameters
given that the data distributions match. We here apply the relaxed notion of linear
identifiability that was previously discussed and used by Hyvärinen et al. (2019b) and
Roeder et al. (2020a): After training two encoder models f and f′, the models are linear
identifiable if f(x) = Lf(x) where L is a linear projection.

When applying CEBRA, three cases are of potential interest. First, when applying
discovery-driven CEBRA, will two models estimated on comparable experimental data
agree in their inferred representation? Second, under which assumptions about the data
will we be able to discover the true latent distribution? Third, in the hypothesis-driven
or hybrid application of CEBRA, is the algorithm guaranteed to give a meaningful
(non-standard) latent space when we can find signal within the data?

For the first case, we note that the CEBRA objective with a cosine similarity metric
follows the canonical discriminative form for which Roeder et al. (2020a) showed
linear identifiability: For sufficiently diverse datasets, two CEBRA models trained to
convergence on the same dataset will be consistent up to linear transformations. Note
that consistency of CEBRA is independent of the exact data distribution: The diversity
condition merely requires that for any set of samples {y1, . . . , yd} from the negative dis-
tribution q(·|x), the matrices [· · · f′(yi)− f′(yi) · · ·]di=1 and the matrix [· · · f(xi) · · ·]d+1

i=1
are invertible (i.e., the embeddings are sufficiently diverse). Alternatively, we can derive
linear identifiability from assumptions about the data distribution: If the ground truth
latents are sufficiently diverse (i.e., vary in all directions under the distributions p
and q), and the model is sufficiently parameterized to fit the data, we will also obtain
consistency up to a linear transformation. See Suppl. Note 2 for a full formal discussion
and proofs.

For the second case, additional assumptions are required regarding the exact form
of the data generating distribution. Within the scope of this work, we consider ground
truth latents distributed on the hypersphere or Euclidean space. The metric then needs
to match assumptions about the variation of the ground truth latents over time. In
discovery-driven CEBRA, using the dot product as the similarity measure then encodes
the assumption that latents vary according to a von-Mises-Fisher distribution, while

robust machine learning 144

the mean squared error encodes an assumption that latents vary according to a Normal
distribution. More broadly, if we assume that the latents have a uniform marginal
distribution (which can be ensured by designing un-biased experiments), the similarity
measure should be chosen as the log-likelihood of the conditional distribution over time.
In this case, CEBRA identifies the data generating distribution up to affine transforms
(in the most general case).

This result also explains the empirically high performance of CEBRA for decoding
applications: If trained for decoding (using the variable to decode for informing the
conditional distribution), it is trivial to select matching conditional distributions, as
both quantities are directly selected by the user. CEBRA then “identifies” the context
variable up to a linear transformation.

For the third case, we are interested in the hypothesis testing capabilities. We
can show that if a mapping exists between the context variable and the signal space,
CEBRA will recover this relationship and yield a meaningful embedding, which is also
decodable. However, if such a mapping does not exist, we can show that CEBRA will
instead learn a default embedding which is the uniform distribution of points on the
hypersphere.

CEBRA models

We chose X = Y to be the neural signal with varying amounts of recorded neurons
and channels based on the dataset. We used three types of encoder models based on
the required receptive field; a receptive field of one sample was used on the synthetic
dataset experiments (Fig. 7.1b), a receptive field of 10 samples in all other experiments
(rat, monkey, mouse) except for the Neuropixels dataset, where a receptive field of 40

samples is used due to the 4 times higher sampling rate of the dataset.
All feature encoders are parameterized by the number of neurons (input dimension),

a hidden dimension to control the model size and capacity, as well as their output
(embedding) dimension. For the model with the receptive field of one, a four layer
MLP was used. The first and second layers map their respective inputs to the hidden
dimension, while the third layer introduces a bottleneck and maps to half the hidden
dimension. The final layer maps to the requested output dimension. For the model
with receptive field of 10, a convolutional network with five time convolutional layers
was used. The first layer had kernel size 2, the next three layers had kernel size 3

and used skip connections. The final layer had kernel size 3 and mapped the hidden
dimensions to the output dimension. For the model with receptive field 40, we first
preprocessed the signal by concatenating a 2× downsampled version of the signal
with a learnable downsample operation implemented as a convolutional layer with
kernel size 4 and stride 2, directly followed (without activation function in between)
by another convolutional layer with kernel size 3 and stride 2. After these first layers,
the signal is subsampled by a factor of 4. Afterwards, similar to the receptive field
10 model, we apply three layers with kernel size 3 and skip connections, and a final

robust machine learning 145

layer with kernel size 3. In all models, Gaussian error linear unit activation functions
(GELU; Hendrycks and Gimpel, 2016a) were applied after each layer except the last.
The feature vector was normalized after the last layer, unless a mean squared error
(MSE) based similarity metric was used (as in Extended Data Fig 7.11).

Our implementation of the InfoNCE criterion received a mini-batch (or the full
dataset) of size n × d for each of the reference, positive, and negative samples. n
dot-product similarities are computed between reference and positive samples, n× n
dot-product similarities are computed between reference and negative samples. The
similarities were scaled with the inverse of the temperature parameter τ.

from torch import einsum, logsumexp, no_grad

def info_nce(ref, pos, neg, τ = 1.0):
pos_dist = einsum("nd,nd->n", ref, pos) / τ

neg_dist = einsum("nd,md->nm", ref, neg) / τ

with no_grad():
c, _ = neg_dist.max(dim=1)

pos_dist = pos_dist - c.detach()
neg_dist = neg_dist - c.detach()
pos_loss = -pos_dist.mean()
neg_loss = logsumexp(neg_dist, dim=1).mean()
return pos_loss + neg_loss

Alternatively, a learnable temperature can be used. For a numerically stable implemen-
tation, we store the log inverse temperature α = − log τ as a parameter of the loss func-
tion. At each step, we scale the distances in the loss function with min(exp α, 1/τmin).
The additional parameter τmin is a lower bound on the temperature. The inverse
temperature used for scaling the distances in the loss will hence lie in (0, 1/τmin].

CEBRA Model parameters used In the main figures we used the default parameters (see
https://cebra.ai/docs/api.html) for fitting CEBRA unless otherwise stated in the text
(such as dimension, which varied and is noted in figures), or below.
Synthetic data: model_architecture=’offset1-model-mse’, conditional=’delta’, delta=0.1,
distance=’euclidean’, batch_size=512, learning_rate=1e-4.
Rat hippocampus: model_architecture=’offset10-model’, time_offsets=10, batch_size=512.
Rat Behavioral Data: model_architecture=’offset10-model-mse’, distance=’euclidean’,
time_offsets=10, batch_size=512.
Primate S1: model_architecture=’offset10-model’, time_offsets=10, batch_size=512.
Allen datasets (2P): model_architecture=’offset10-model’, time_offsets=10, batch_size=512.
Allen datasets (NP): model_architecture=’offset40-model-4x-subsample’, time_offsets=10,
batch_size=512.

CEBRA API and example usage The Python implementation of CEBRA is written in
PyTorch (Paszke et al., 2019b) and NumPy (Walt et al., 2011) and provides an API
which is fully compatible with scikit-learn (Pedregosa et al., 2011), a commonly used

https://cebra.ai/docs/api.html

robust machine learning 146

package for machine learning. This allows to use scikit-learn tools for hyperparameter
selection and downstream processing of the embeddings, e.g., decoding. CEBRA can
be used as a drop-in replacement in existing data pipelines for algorithms like tSNE,
UMAP, PCA or FastICA. Both CPU and GPU implementations are available.

Using the previously introduced notations, suppose we have a dataset containing
signals sst, continuous context variables ct and discrete context variables kt for all time
steps t,

import numpy as np
N = 500
s = np.zeros((N, 55), dtype=float)
k = np.zeros((N,), dtype=int)
c = np.zeros((N, 10), dtype=float)

along with a second session of data,

s2 = np.zeros((N, 75), dtype=float)
c2 = np.zeros((N, 10), dtype=float)
assert c2.shape[1] == c.shape[1]

and note that the number of samples as well as the dimension in ss′ does not need
to match ss. Session alignment leverages the fact that the second dimension of c and
c′ match. With this dataset in place, different variants of CEBRA can be applied as
follows:

import cebra
model = cebra.CEBRA(

output_dimension=8,
num_hidden_units=32,
batch_size=1024,
learning_rate=3e-4,
max_iterations=1000

)

The training mode to use is determined automatically based on what combination
of data is passed to the algorithm:

time contrastive learning
model.fit(s)
discrete behavior contrastive learning
model.fit(s, k)
continuous behavior contrastive learning
model.fit(s, c)
mixed behavior contrastive learning
model.fit(s, c, k)
multi-session training
model.fit([s, s2], [c, c2])
adapt to new session
model.fit(s, c)
model.fit(s2, c2, adapt = True)

robust machine learning 147

Since CEBRA is a parametric method training a neural network internally, it is
possible to embed new data points after fitting the model:

s_test = np.zeros((N, 55), dtype=float)
obtain and plot embedding
z = model.transform(s_test)
plt.scatter(z[:, 0], z[:, 1])
plt.show()

Besides this simple-to-use API for end users, our implementation of CEBRA is a
modular software library including a plugin system, allowing more advanced users to
easily add additional model implementations, similarity functions, datasets and data
loaders, and distributions for sampling positive and negative pairs.

Consistency of embeddings across runs, subjects, sessions, recording modalities, and
areas

To measure the consistency of the embeddings, we used the R2 score of the linear
regression (including an intercept) between the embeddings from different subjects (or
sessions). Secondly, pi-VAE, which we benchmarked and improved (Extended Data
Fig. 7.3), demonstrated a theoretical guarantee that it can reconstruct the true latent
space up to an affine transformation. To measure across runs, we measured the R2

score of the linear regression between embeddings across 10 runs of the algorithms,
yielding 90 comparisons. The runs were done with the same hyperparameters, model,
and training setup.

For the rat hippocampus data, the number of neurons recorded were different
across subjects. The behavior setting was the same: the rats moved in a 1.6 meter long
track, and for analysis the behavior data was binned into 100 bins with equal size for
each direction (leftwards, rightwards). We computed averaged feature vectors for each
bin by averaging all normalized CEBRA embeddings for a given bin, and re-normalized
the average to lie on the hypersphere. If a bin does not contain any sample, it was filled
by samples from the two adjacent bins. CEBRA was trained with latent dimension 3

(the minimum) such that it is constrained to lie only on a 2-sphere (making this “3D”
space equivalent to 2D Euclidean space). All other methods were trained with 2 latent
dimensions in Euclidean space. Note that n + 1 dimensions of CEBRA is equivalent to
n dimensions of other methods that we compared, since the feature space of CEBRA is
normalized (i.e., the feature vectors are normalized to have unit length).

For Allen visual data where the number of behavioral data points are the same
across different sessions (i.e., fixed length of video stimuli), we directly computed
the R2 score of linear regression between embeddings from different sessions and the
modalities. We surveyed 3, 4, 8, 32, 64, 128 latent dimensions with CEBRA.

To compare the consistency of embeddings between or within the areas we consid-
ered, we computed intra-area and inter-area consistency within the same recording
modality (2P or NP). Within the same modality, we sampled 400 neurons from each area.

robust machine learning 148

We trained one CEBRA model per area, and computed the linear consistency between
all pairs of embeddings. For the intra-area comparison, we sampled an additional 400

disjoint neurons. For each area, we trained two CEBRA models on these two sets of
neurons, and computed their linear consistency. We repeated this process three times.

For comparisons across modalities (2P and NP), we sampled 400 neurons from each
modality (which are disjoint, as above, because one set was sampled from 2P recordings
and the other set from the NP recordings). We trained a multi-session CEBRA model
with one encoder for 2P, and one encoder for NP in the same embedding space. For an
intra-area comparison, we computed the linear consistency between the the NP and
2P decoder from the same area. For an inter-area comparison, we computed the linear
consistency between the NP encoder from one area and the 2P encoder from another
area and again considered all combinations of areas. We repeated this process three
times.

For the comparison of single- and multi-session training (Extended Data Fig. 7.9),
we computed embeddings using encoder models with 8, 16, . . . , 128 hidden units
for varying the model size, and benchmark 8, 16, . . . , 128 latent dimensions. Hy-
perparameters, except for number of optimization steps, were selected according to
validation set decoding R2 (rat) or accuracy (Allen). Consistency is reported at the
point in training where the position decoding error is less than 7 cm for the first rat in
the hippocampus dataset, and a decoding accuracy of 60% on the Allen dataset. For
single-session training, four embeddings were trained independently on each of the
individual animals, while for multi-session the embeddings were trained jointly on all
sessions. For multi-session training, the same number of samples was drawn from each
session to learn an embedding invariant to the session ID. The consistency vs. decoding
error trade-off (Extended Data Fig. 7.9c) was reported as the average consistency across
all 12 comparisons (Extended Data Fig. 7.9b) vs. the average decoding performance
across all rats and data splits.

Model Comparisons

pi-VAE parameter selection, and modifications to pi-VAE The original implementation of
pi-VAE used a single time bin spiking rate as a input. Thus, we modified their code
to allow for larger time bin inputs and found that time window input with receptive
field of 10 time bins (250 ms) gave a higher consistency across subjects and better
preserved the qualitative structure of the embedding (thereby outperforming the results
presented by Zhou and Wei (2020); see Extended Data Fig. 7.3). To do this, we used the
same encoder neural network architecture as we used for CEBRA, and modified the
decoder to a 2D output (we call our modified version conv-pi-VAE). Note, we used this
modified pi-VAE for all the experiments except for the synthetic setting, where there is
no time dimension, thus the original implementation is sufficient.

The original implementation reported a median absolute error of 12 cm on rat 1 (the
animal they considered most in the work), and our implementation of time windowed

robust machine learning 149

input with 10 bins resulted in a median absolute error of 11 cm (Fig. 7.6). For hyperpa-
rameters, we tested different epochs between 600 (the published value used) and 1000,
and learning rate between 1.0× 10−6 and 5.0× 10−4 via a grid search. We fixed the
hyperparameters to be those that gave the highest consistency across subjects, which
were training epochs of 1000 and learning rate 2.5× 10−4. All other hyperparameters
were kept as in the original implementation (Zhou & Wei, 2020). Note, that the original
paper demonstrated that pi-VAE is fairly robust across different hyperparameters. For
decoding (Fig. 7.6) we considered both a simple kNN decoder (that we use for CEBRA)
and the computationally more expensive Monte Carlo sampling method originally
proposed for pi-VAE (Zhou & Wei, 2020). Our implementation of conv-pi-VAE can be
found at: https://github.com/AdaptiveMotorControlLab/CEBRA.

autoLFADS parameter selection AutoLFADS (Keshtkaran et al., 2022) includes a hyper-
parameter selection and tuning protocol, which we used, and we used the original
implementation (https://github.com/snel-repo/autolfads-tf2/, https://github.com/
neurallatents/nlb_tools/tree/main/examples/baselines/autolfads). For the rat hip-
pocampus dataset, we chopped the continuous spiking rate (25ms bin size) into 250ms
length segments with 225ms overlap between the segments to match the training setup
for CEBRA, UMAP, tSNE and piVAE. We used Population Based Training (PBT) for
hyperparameter searches and we constrained the search range to default values given
in the original script (initial learning rate between 1.0× 10−5 and 5.0× 10−3, dropout
rate between 0.0 and 0.6, coordinated dropout rate between 0.01 and 0.7, L2 generator
weight between 1.0× 10−4 and 1.0, L2 controller weight between 1.0× 10−4 and 1.0
and KL controller weight between 1.0× 10−6 and 1.0× 10−4 and KL initial condition
weight between 1.0× 10−6 and 1.0×−3). The negative log-likelihood metric was used
to select the best hyperparameters. Each generation of PBT consisted of 25 training
epochs and we trained for maximum 5000 epochs with batch size 100 while executing
early-stopping after awaiting 50 epochs. PBT search was done using 20 parallel workers
on each rat.

UMAP parameter selection For UMAP (McInnes et al., 2018), following the parameter
guide (umap-learn.readthedocs.io/), we focused on tuning the number of neighbors
(n_neighbors) and minimum distance (min_dist). The n_components parameter was
fixed to 2 and we used a cosine metric to make a fair comparison with CEBRA, which
also used the cosine distance metric for learning. We performed a grid search with
100 total hyperparameter values in the range of [2, 200] for n_neighbors and range of
[0.0001, 0.99] for min_dist. The highest consistency across runs in the rat hippocampus
dataset was achieved with min_dist of 0.0001 and n_neighbors of 24. For the other
datasets in Extended Data Fig. 7.2, we used the default value of n_neighbors as 15 and
min_dist as 0.1.

https://github.com/AdaptiveMotorControlLab/CEBRA
https://github.com/snel-repo/autolfads-tf2/
https://github.com/neurallatents/nlb_tools/tree/main/examples/baselines/autolfads
https://github.com/neurallatents/nlb_tools/tree/main/examples/baselines/autolfads
umap-learn.readthedocs.io/

robust machine learning 150

tSNE parameter selection For tSNE (Van Der Maaten et al., 2009), we used the imple-
mentation in openTSNE (Poličar et al., 2019). We performed a sweep on perplexity in
the range of [5, 50] and early_exaggeration in the range [12, 32] following the parameter
guide, while fixing n_components as 2 and used a cosine metric, to fairly compare
to UMAP and CEBRA. We use PCA initialization to improve the run consistency of
tSNE (Kobak & Linderman, 2021). The highest consistency across runs in the rat
hippocampus dataset was achieved with perplexity of 10 and early_exaggeration of
16.44. For the other datasets in Extended Data Fig. 7.2, we used the default value of
perplexity of 30 and early_exaggeration of 12.

Decoding Analysis

We primarily used a simple k-Nearest Neighbors (kNN) algorithm, which is a non-
parametric supervised learning method, as a decoding method for CEBRA. We used
the implementation in scikit-learn (Pedregosa et al., 2011). We used a kNN regressor for
continuous value regression and a kNN classifier for discrete label classification, using
uniform weights on distances of k-nearest neighbors. For the embeddings obtained
with cosine metrics, we used cosine distance metrics for kNN and Euclidean distance
metrics for the embeddings obtained in Euclidean space.

For the rat hippocampus data, a kNN regressor, as implemented in scikit-learn (Pe-
dregosa et al., 2011), was used to decode the position, and a kNN classifier to decode
the direction. The number of neighbors was searched over the range {1, 4, 9, 16, 25}
and we used the cosine distance metric. We used the R2 score of predicted position
and direction vector on the validation set as a metric to choose the best n_neighbors
parameter. We report the median absolute error (MAE) for the positional decoding on
the test set. For pi-VAE, we additionally evaluate decoding quality using the originally
proposed decoding method based on Monte Carlo sampling, using the settings from
the original paper (Zhou & Wei, 2020). For autoLFADS, using their default Ridge
regression decoder (Keshtkaran et al., 2022) performed worse than our kNN decoder,
which is why we reported all results for the kNN decoder. Note, UMAP, tSNE and
CEBRA-Time were trained using the full dataset without label information when learn-
ing the embedding, and we used the above split only for training and cross-validation
of the decoder.

For the direction decoding within the monkey dataset, we used a Ridge classi-
fier (Pedregosa et al., 2011) as a baseline. The regularization hyperparameter was
searched over [10−6, 102]. For CEBRA, we used a kNN classifier for decoding direction
with k searched over the range [1, 2500]. For conv-pi-VAE, we searched for the best
learning rate over [1.0× 10−5, 1.0× 10−3]. For position decoding, we used Lasso (Pe-
dregosa et al., 2011) as a baseline. The regularization hyperparameter was searched over
[10−6, 102]. For conv-pi-VAE, we used 600 epochs and searched for the best learning
rates over [5× 10−4, 2.5× 10−4, 0.125× 10−4, 5× 10−5], via a grid of (x,y) space in 1 cm
bin for each axis as the sampling process for decoding. For CEBRA, we used the kNN

robust machine learning 151

regression, and the number of neighbors k was again searched over [1, 2500].
For the Allen Institute datasets, we performed decoding (frame number or scene

classification) for each frame from Movie 1. Here, we used a kNN classifier (Pedregosa
et al., 2011) with a population vector kNN as a baseline, similar to the decoding of
orientation grating as performed in (de Vries et al., 2020). For CEBRA, we used the
same kNN classifier method on the CEBRA features. In both cases, the number of
neighbors k was searched over a range of [1, 100] in an exponential fashion. We used
the neural data recorded during the first 8 repeats as the train set, and the 9th repeat
for validation to choose the hyperparameter, and the last repeat as the test set to report
the decoding accuracy. We also used a Gaussian Naive Bayes decoder (Pedregosa et al.,
2011) to test linear decoding from the CEBRA model and neural population vector.
Here, we assumed uniform priors over frame number and searched over a range of
[10−10, 103] in an exponential manner for smoothingvar hyperparameter.

For layer specific decoding we used data from excitatory neurons in area VISp:
layer 2/3 [Emx1-IRES-Cre, Slc17a7-IRES2-Cre]; layer 4 [Cux2-CreERT2, Rorb-IRES2-Cre,
Scnn1a-Tg3-Cre]; layer 5/6 [Nr5a1-Cre, Rbp4-Cre_KL100, Fezf2-CreER, Tlx3-Cre_PL56,
Ntrsr1-cre].

Neural Latent Benchmark (NLB)

We tested CEBRA on the following task from the NLB Benchmark (Pei et al., 2021c):
mc-maze 20 ms https://eval.ai/web/challenges/challenge-page/1256/leaderboard/
3183.We trained the offset10-model with 48 output dimensions and (128, 256, 512)
hidden units, as presented throughout the paper. We trained in total 48 models by
additionally varying temperature (0.0001, 0.004) and time offsets (1,2). We performed
smoothing of the input neural data using a Gaussian kernel with 50ms standard
deviation. Lastly, we took 45 embeddings from the trained models picked by the
validation score, aligned the embeddings (using the Procrustes method (Schönemann,
1966)), and averaged the embeddings.

Topological Analysis

For the persistent co-homology analysis, we utilized ripser.py (Tralie et al., 2018b).
For the hippocampus dataset we used 1,000 randomly sampled points from CEBRA-
Behavior trained with temperature 1, time offset 10 and mini-batch size 512 for 10k
training steps on the full dataset, and then analyzed up to the 2D co-homology.
Maximum distance considered for filtration was set to infinity. To decide the number
of co-cycles in each co-homology dimension with a significant lifespan, we trained 500

CEBRA embeddings with shuffled labels, similar to the approach by Gardner et al.
(2022). We took the maximum lifespan of each dimension across these 500 runs as a
threshold to determine robust Betti numbers. We surveyed the Betti numbers of CEBRA
embeddings across 3, 8, 16, 32, and 64 latent dimensions.

https://eval.ai/web/challenges/challenge-page/1256/leaderboard/3183
https://eval.ai/web/challenges/challenge-page/1256/leaderboard/3183

robust machine learning 152

Next, we used DREiMac (Tralie et al., 2018a) to obtain topology-preserving circular
coordinates (radial angle) of the first co-cycle (H1) from the persistent co-homology
analysis. Similar to above, we used 1,000 randomly sampled points from the CEBRA-
Behavior models of embedding dimensions 3, 8, 16, 32 and 64.

Behavior Embeddings for Video Datasets

High dimensional inputs, such as videos, need further pre-processing for effective use
with CEBRA. Firstly, we used the recently presented DINO model (Caron et al., 2021a)
to embed video frames into a 768-dimensional feature space. Specifically, we used the
pretrained ViT/8 vision transformer model, which was trained by a self-supervised
learning objective on the ImageNet database. This model is particularly well-suited for
video analysis, and among the state-of-the-art models for embedding natural images
into a space appropriate for k-nearest neighbour search (Caron et al., 2021a), a desired
property to make the dataset compatible with CEBRA. We obtained a normalized
feature vector for each video frame, which was then used as the continuous behavior
variable for all further CEBRA experiments.

For scene labels, 3 individuals labeled each video frame using 8 candidate descrip-
tive labels allowing multi-label classes. We took the majority vote of the 3 individuals
to decide the label of each frame. In case of multi-labels, we considered this as a new
class label. The above procedure resulted in 10 classes of frame annotation.

Acknowledgments

The authors thank Luisa Eck, Célia Benquet, Matthias Bethge, Alexander Mathis,
Roland S. Zimmermann, Jakob Macke, Dmitry Kobak, Dylan Paiton, Jessy Lauer, Ro-
drigo González, and Gary Kane for discussions and feedback on earlier versions of the
manuscript or code, and the Tübingen AI Center for computing resources. Funding
was provided by SNSF grant no. 310030_201057, a Novartis Foundation for Medical-
Biological Research Young Investigator Grant to MWM; Google PhD Fellowship to
StS; the German Academic Exchange Service (DAAD) to JHL. StS acknowledges the
IMPRS-IS Tübingen and ELLIS PhD program, and JHL thanks the TUM Program in
Neuroengineering. MWM is the Bertarelli Foundation Chair of Integrative Neuro-
science.

Conflicts

StS and MWM have filed a patent pertaining to the method presented in this work
(filing no. 63/302,670). The authors declare no additional conflicts of interest. The
funders had no role in the conceptualization, design, data collection, analysis, decision
to publish, or preparation of the manuscript.

robust machine learning 153

Data Availability

Hippocampus dataset: https://crcns.org/data-sets/hc/hc-11/about-hc-11 and we
used the preprocessing script from https://github.com/zhd96/pi-vae/blob/main/
code/rat_preprocess_data.py.
Primate dataset: https://gui.dandiarchive.org/#/dandiset/000127.
Allen Institute dataset: Neuropixels data are at https://allensdk.readthedocs.io/en/
latest/visual_coding_neuropixels.html. The pre-processed 2P recordings are available
at https://github.com/zivlab/visual_drift/tree/main/data.
As examples with CEBRA, packaged datasets are available at https://github.com/
AdaptiveMotorControlLab/CEBRA.

Supplementary Note 1

On identifiability and consistency

When learning (non-linear) representations of a dataset, it is highly desirable that
embedding algorithms generate consistent embedding spaces. Multiple runs of the
algorithm on the same data, multiple runs of the algorithm on data produced in the
same way, etc., should generate embedding spaces with a meaningful relation to each
other. This “meaningful relation” between algorithm runs can be formalized using
tools from identifiability in non-linear independent component analysis (ICA). Suppose
we are given two models f′ and f∗ trained on the same dataset, and the performance of
these models matches in the sense that they represent the same probability distribution
p′ = p∗. Identifiability then entails that both models are the same up to some known
class of transformations (e.g., linear or affine transformations, rotations, permutations
and sign-flips, etc.).

For example, one option for parameterizing the distributions is as p′(y|x, y1 . . . yn) =

exp(f(x)⊤f′(y))/ ∑i exp(f(x)⊤f′(yi)) and respectively for p̃′ defined respectively with
f̃ and f̃′. Roeder et al. (2020a) show that if the two distributions match contrastive
learning models produce consistent embedding spaces, and it is possible to find a
linear mapping L between the feature spaces, i.e., Lf(x) = f̃(x) for all x in the dataset.
Other theoretical work has shown that contrastive learning with auxiliary variables is
identifiable for bijective neural networks using the noise contrastive estimation (NCE)
loss (Hyvärinen et al., 2019b), and that with an InfoNCE loss this bijectivity assumption
can be removed for certain distributions (Zimmermann et al., 2021a). We will adapt the
underlying proofs to our setup in Suppl. Note 2, and give a high-level outline below.

We will consider two important points in both the context of discovery and hy-
pothesis driven training of CEBRA models. Firstly, when applying discovery-driven
CEBRA, will two models estimated on comparable experimental data agree in their
inferred representation? Second, under which assumptions about the data will we be
able able to discover the true latent distribution?

https://crcns.org/data-sets/hc/hc-11/about-hc-11
https://github.com/zhd96/pi-vae/blob/main/code/rat_preprocess_data.py
https://github.com/zhd96/pi-vae/blob/main/code/rat_preprocess_data.py
https://gui.dandiarchive.org/#/dandiset/000127
https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html
https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html
https://github.com/zivlab/visual_drift/tree/main/data
https://github.com/AdaptiveMotorControlLab/CEBRA
https://github.com/AdaptiveMotorControlLab/CEBRA

robust machine learning 154

Consistency: For consistency across embedding spaces, we require a dataset
with a sufficient amount of variability in time. Intuitively, to estimate a d dimensional
embedding that is consistent across runs, points sampled from the embedding via the
negative distribution q need to vary in at least d directions for each possible reference
sample in the dataset. Interestingly, consistency is mostly independent from the data
generating process (i.e., the data modality of the recording) and merely requires a
sufficiently varying dataset, as well as a choice of feature encoder that passes this
variability on to the embedding space.

For example, consider the reaching dataset in Fig. 3 where we showed embeddings
that vary in two dimensions (the direction and distance from the center). In this
case, the sampling process needs to be designed such that for each reference point
we can draw from the dataset, the embedding of the negative samples will vary in
at least two directions. This is clearly the case for our training setup: The neurons
encode both position and direction information, this information is transformed by the
feature encoder, and the resulting embedding varies in at least two directions when the
negative distribution samples uniformly across the dataset.

For the first property, we can leverage previous results on the consistency of
contrastive learning models over multiple runs (Roeder et al., 2020a). Consider the
case where we train multiple CEBRA models on data originating from the same data
distribution, and consider that we can train these models to full convergence. It is then
guaranteed that the embedding spaces will agree up to a linear indeterminacy. In other
words, it will always be possible to transform one embedding space into the other by
applying a linear transformation. Linear consistency of representations is interesting
when we consider linear downstream processing of the inferred embedding space, as
is common in neuroscience (Urai et al., 2022b). Such a downstream algorithm (e.g.,
a linear regression or general linear model) will yield the same performance across
different CEBRA models.

Recovering the ground-truth latents: Note that this notion of consistency
only makes a statement about the inferred latent representation (and identifiability)
across multiple runs of the algorithm, but not yet about the relation between this latent
representation and the true underlying latent variables that generated the data. This
is the second property mentioned above, and requires additional assumptions about
the data generating process to resolve the ambiguity of what a “latent” underlying
a given dataset actually entails. The assumptions concern the injectivity of the data
generating process and the positive distribution p. While for discovery driven training,
p is an empirical property of the dataset, hypothesis driven training allows to precisely
define p based on the observed auxiliary variables. The same theory applies to both
cases. Importantly, as for consistency, note that these results are independent from the
actual modality of the data and other properties of the signal space we consider. The
assumptions are all with respect to the underlying latent distribution.

For the analyses in this paper, the theory for linear identifiability of the underlying
latents applies: For time-contrastive training, it is required that the underlying latent

robust machine learning 155

xt xt̃xt′

f(xt)

f(·)

ct

reference

f(xt̃)

f(·)

ct̃

negative

f(xt′)

f(·)

ct′

positive
p q

attract repel

Figure 7.16: The contrastive learning data sampling scheme used in CEBRA.

distribution is uniform (e.g., there is no inherent bias in the experimental data), and
that latents of nearby time steps vary according to a distribution of the form p(v|u) =
exp(ϕ(u, v)), where u and v are the latents underlying the signal variables x and y.
If these conditions are met, the true underlying latents are recovered up to a linear
transformation. For hypothesis testing where the user actually specifies the distribution
p, this requirement can be easily validated and met.

Relationship between consistency, identifiability, and the sampling

mechanism: The CEBRA software package allows for other choices of similarity
measures (potentially learnable), which allows to derive guarantees also for these cases.
In the most general case, we pick ϕ as a trainable neural network that factorizes into
individual components, ϕ(x, y) := ∑i ϕi(yi, x) where each ϕi is an individually trained
neural network. For sufficiently variable distributions, this allows to recover the under-
lying latents up to permutations and point-wise non-linear, bijective transformations.

Likewise, it is possible to modify the encoding networks f and f′ for x and y,
respectively. While our experiments used one network f = f′ with x and y representing
neural data, it is well possible to encode different aspects of the dataset and/or to break
the symmetry between the two encoding networks and to train a separate network
for each of f and f′. For example, neural data y could be encoded using f′, and
behavior x could be encoded using f. It would also be possible to use a composition of
neural and behavioral data for x. In these cases, if f and f′ are parameterized as two
individual neural networks and ϕ is defined as the dot-product as before, if y|x follows
a conditionally exponential distribution, we are able to recover all sufficient statistics of
this distribution up to a linear transformation.

Examples: As an example of the aforementioned results, let us consider the rat
hippocampus dataset used in Fig. 1 and 2. The auxiliary information in this dataset is
the position, velocity, and direction of the rat on the linear track.

We can apply different sampling schemes for investigating this dataset. For example,
we can apply discovery-driven, time-contrastive learning. In this setup, we sample
time steps uniformly from the dataset to arrive at our reference samples. Given a
time offset ∆ (that informs the algorithm about the time-scale of interest), we obtain

robust machine learning 156

positive samples. The resulting batch will be composed of samples sst for the reference,
ss(t+∆) for the positive, and ss(ti) with uniformly sampled time steps t1, . . . , tn for the
negative samples. This corresponds to an approximation of the distribution p(ut+∆|ut)

of how the latents vary over the course of time. If sufficient variation is present in the
dataset along d latent directions, CEBRA models will become, after training, consistent
across runs. If additionally the true distribution p(ut+∆|ut) follows, e.g., a Gaussian
distribution, CEBRA will identify the ground truth latents.

In comparison, our so-called hypothesis-driven, behavior-label guided contrastive
learning approach would leverage the continuous position information as well as
the movement direction of the rat. In the Methods, we denoted the continuous
variable as ct and the discrete variables as kt. To arrive at a behavior contrastive
embedding using this auxiliary information, we would build a set of differences. If the
variables are independent (or should reflect this in the embedding), we build one set
D = {ct+∆ − ct}T

t=1. For a reference sample at time step t, we sample d ∼ D uniformly,
and apply this difference to the position ct at step t. We then pick the point closest to
ct + d and matching the discrete variable kt as the positive sample.

A lot of variations of this sampling process are possible to embed desirable proper-
ties and test hypotheses about the dataset. For instance, consider the primate reaching
dataset: Here, ct could be selected as the x/y position in space, and the discrete label
kt could denote the reaching direction. However, the 2D differences ct+∆ − ct will
depend on kt: A reaching direction towards the left will have most variance in negative
x-direction [−1, 0]⊤, a reaching direction towards the top will have most variance in
positive y-direction [0, 1]⊤. One way to work around this issue is to consider a polar
representation of the position and direction and apply the scheme outlined above.
Another alternative is to build the set of differences conditional on the direction kt,
i.e., D(k) = {ct+∆ − ct}t:kt=k. The sampling process is almost analogous to the rat
hippocampus example above: We would sample a time step t, look up the discrete
variable kt, but then only sample from D(kt) to reflect the conditioning on the direction.

Finally, e.g., for very complex movements, it is simple to adapt additional pre-
processing schemes. These could involve other deep learning algorithms like DINO
used for pre-processing video data in the Allen dataset (to convert pixel data without a
meaningful metric into an embedding space with desirable distance properties); they
could also involve simpler processing, such as computing the principal component
analysis of a higher dimensional dataset, and using the behavior data in this space.

Many other variations are possible. While the most common use cases are reflected
in the CEBRA software toolbox and high-level API and readily usable, more customized
use cases can be easily added by the user thanks to a straightforward extension
mechanism.

robust machine learning 157

Improving pi-VAE

Zhou et al (Zhou & Wei, 2020) demonstrate that pi-VAE outperforms LFADS (Pandari-
nath et al., 2018b), demixed-PCA (Kobak et al., 2016b), UMAP (McInnes et al., 2018),
PCA, and pfLDS (Gao et al., 2016a) using the rat and/or primate datasets (Extended
Data Fig. 1). We improved the performance of pi-VAE by modifying the encoder, which
allows for longer time inputs (Extended Data Fig. 1), and this improved version is used
throughout, unless noted.

Comparison to autoLFADS

The overall goal of CEBRA and LFADS is different. In LFADS/autoLFADS (Keshtkaran
et al., 2022; Pandarinath et al., 2018b) the primary goal is to build high performance
spiking rate predictions and downstream decoding, which are excellent tasks for
auto-encoders. It is important to note that LFADS assumes a data generating process
that is Poisson, as does pi-VAE (Zhou & Wei, 2020), and requires trial-data. A major
assumption in LFADS is that from the derived factors there is a linear projection to
the neural rate predictions. In contrast, as we show, CEBRA can be used on many
data types, from spiking neural data, calcium imaging, or behavior-only (such as
from pose estimation tools, see Fig. 2b), and CEBRA does not require trials. Another
consideration is that one cannot use theoretically-motivated goodness of fit metrics
for finding latent embedding spaces that best fit the data. While this issue is partly
addressed during parameter selection in autoLFADS, it also requires a substantial
computational overhead for hyperparameter tuning. Thus, while LFADS is excellent at
several spike-prediction tasks (Pei et al., 2021a), it is not fully suitable for the range of
settings that can be used with CEBRA.

Utilizing CEBRA across contexts

Within our framework, we assume that independent latent variables are combined by a
non-linear bijective mixing function to produce neural activity. The latent variables are
assumed to change over time, or be correlated to the observed auxiliary variables used
to train CEBRA. No additional special structure, or implicit generative models during
training are needed.

CEBRA allows for minimizing the impact of selected features on the embedding,
while testing the role of others. For example, suppose you have neural data from
four different animals, each from the hippocampus while the animal navigated a
linear track. You hypothesize that the hippocampus encodes a continuous mapping
of space along the track. In this scenario the animal ID is not important, but the
spatial location of the animal is. Here, the user can specify to obtain an embedding
that is invariant to the animal ID, but should incorporate the position information.
Another amendable scenario is a hypothesis-free, discovery-driven approach (akin to
unsupervised clustering). Here too, CEBRA can be used, with only time as the input

robust machine learning 158

(Fig. 1). Collectively, CEBRA can be used for both visualization of data and latent-space
based embedding of neural activity for downstream tasks like decoding.

The flexibility in choosing different auxiliary variables during data analysis allows
users to leverage the same algorithm for a variety of applications on a given dataset:
Discovery-driven analysis by purely self-supervised learning with time-contrastive
learning, hypothesis-driven analysis by comparing embedding quality derived from
different behavioral variables, or replacing supervised decoding algorithms, e.g., in
brain-machine-interface contexts.

Supplementary Note 2

Here we provide theoretical results for consistency and identifiability of models trained
within the CEBRA framework. We proceed by showing properties of the InfoNCE
loss (Prop. 2), and use them as the basis for showing that encoders trained on this
loss function will become bijective under mild assumptions (Prop. 3). We then revisit
existing theory on contrastive learning, and show that CEBRA falls into a category of
models for which we can obtain theoretical guarantees on both consistency (Prop 4)
across different model runs and identifiability of the ground truth latent distribution for
both the discovery-driven (time-contrastive) learning mode (Prop. 3) and the hypothesis-
driven mode (Prop. 8). Our results leverage theory by Hyvärinen et al. (2019b), Roeder
et al. (2020a), Wang and Isola (2020), and Zimmermann et al. (2021a).

It should be noted that while consistency results between model runs do not require
strong assumptions about the underlying data generating process, understanding the
relation between the embedding space given by CEBRA and the underlying ground
truth data generating process naturally requires such assumptions. However, compared
to assumptions in generative models (e.g., VAEs), these assumptions concern the
relationship between the ground-truth latent variables, rather than making statements
about the signal space.

Notation, data generation, and learning algorithm

We will use the notation presented in the Methods Section. We additionally introduce
the latents u and v underlying the samples x and y. We will interchangeably use the
distributions pD, p and q for either the latents u and v or their respective samples
x and y depending on their arguments (we will show after Proposition 2 that this
treatment is also formally correct due to the training setup considered here). Definitions,
propositions and theorems adapted from other works are cited and denoted by upper-
case letters and are otherwise adapted to our notation.

Definition 2 (Data generating process and encoder). Let u ∈ Rd, v ∈ Rd′ denote latents
corresponding to the samples x ∈ RD and y ∈ RD′ in the respective signal space which are
generated according to two differentiable and injective mixing functions g : Rd 7→ RD and

robust machine learning 159

g′ : Rd′ 7→ RD′ ,
x = g(u), y = g′(v) (7.4)

and there exist optimal differentiable encoders f : RD 7→ RE and f′ : RD′ 7→ RE such that

f (g(u))i = ui f ′(g′(v))j = vj. (7.5)

We will refer to the composition of the data generators and the encoders as h = f ◦ g and
h′ = f′ ◦ g′. In setups where two models are trained on potentially different mixing functions,
we denote the second data generator, feature encoder, and the composition of both as h̃ = f̃ ◦ g̃
and h̃′ = f̃′ ◦ g̃′.

We consider a marginal distribution pD(·), the positive sample conditional dis-
tribution p(·|·) and the negative conditional distribution q(·|·). Reference samples u
from the (true) latent space are mapped to signal space by the injective function g,
positive/negative samples v from the (potentially different latent space) are mapped to
(a possibly different) signal space y by the injective function g′. The encoder f is applied
to x and the encoder f′ is applied to y to recover the respective latents underlying x
and y. The similarity measure is denoted as ϕ with f(x) and f′(y) as its arguments.
Note that ϕ does not need to be a fixed function and can also be parameterized by a
learnable neural network. As in the Methods, we denote ψ(x, y) = ϕ(f(x), f′(y)) and
additionally introduce ψ(u, v) := ϕ(h(u), h′(v)) without additional subscripts, as the
desired shortcut will be clear from the context and its arguments.

Note that this is a very general setup. We typically would assume that the number
of dimensions in the (shared) latent space is the same, d = d′, and could further assume
that the number of dimensions E of the embedding space is also matching.

We recall the contrastive objective in the limit of unlimited samples from the main
text:

Definition 3 (Generalized InfoNCE objective). In the limit of unlimited negative samples,
the InfoNCE objective is a functional

L[ψ]asympt =
∫

pD(x)
[

log
∫

q(y|x)eψ(x,y)dy−
∫

p(y|x)ψ(x, y)dy
]

dx, (7.6)

depending on the positive sample conditional density p(y|x), the negative sample density q(y|x),
the marginal density pD(x) and the embedding similarity ψ as defined above.

We call this objective “generalized” as it extends the original definition of the
InfoNCE loss used in the literature. Oord et al. (2018) introduced an objective where
the marginal (there: prior) pD and the negative sample distribution q matched, which
influences the types of functions that can be learned. The discussion of the objective by
Wang and Isola (2020) makes stronger assumptions about the nature of the conditional
distribution p for the positive pair, and only considers uniform choices for the marginal
pD and negative conditional q.

robust machine learning 160

Overall, in CEBRA, the key difference to prior uses of the InfoNCE objective is the
ability to control the properties of the embedding space through p and q and ϕ, and
leverage this to retrieve the discovery-driven, hypothesis-driven, and hybrid modes as
demonstrated in the main text. In fact, for hypothesis-driven training, the distributions
used for sampling do not even need to be connected to the underlying data generating
process—instead, varying p and testing to enforce various neighbourhood relations on
the neural data is used as a tool to discover meaningful relations between the auxiliary
variables (e.g., behavior) and signal (e.g., neural activity). In the same manner, p and q
can be selected such that a particular factor is sampled uniformly, to enforce invariance
(e.g. across a subject, or a modality variable).

The loss optimized in practice acts on a limited number of negative samples in each
mini-batch:

Definition 4 (Generalized InfoNCE objective with limited batch size). For a fixed number
of negative samples n, the InfoNCE objective is the functional

L[ψ]n = E
x∼pD(x), y+∼p(y|x)

y1,...,yn∼q(y|x)

[
−ψ(x, y+) + log

n

∑
i=1

eψ(x,yi)

]
,

depending on the positive sample conditional density p(y|x), the negative sample density q(y|x),
the marginal density pD(x) and the embedding similarity ψ as defined above.

Both losses can be related due to Theorem 1 by Wang and Isola (2020). In the limit
of unlimited samples n→ ∞, we obtain for the batch size n:

L[ψ]asympt = lim
n→∞

(L[ψ]n − log n) . (7.7)

For a sufficiently large batch size, we can leverage the quantity L[ψ]n − log n as a
goodness of fit measure (as outlined in the Methods) that estimates the distance from a
“default” embedding. When comparing models with equal batch size n, note that the
InfoNCE loss can also directly serve as this metric.

Minimizers of the generalized InfoNCE loss

In this section, we show that optimizing the generalized InfoNCE objective from
Def. 3 yields the unique minimizer ψ(x, y) = C(x) + log p(y|x)/q(y|x) or equivalently
ψ(u, v) = C′(u) + log p(v|u)/q(v|u) up to an arbitrary constant function C′(u) than
can depend on the latents of the reference latents. In this regard, the InfoNCE loss
is more flexible than the standard noise constrastive estimation (NCE) loss which
has a similar minimizer, but is limited to C(x) = C′(u) = 0. The minimum loss
value is the negative Kullbach-Leibler divergence between the positive and negative
distributions. To obtain non-trivial solutions, it is therefore important that p and q differ
in a non-trivial way (which is the case for both time-contrastive and behavior-contrastive
sampling outlined in the context of CEBRA).

robust machine learning 161

Proposition 2. Let p(·|·) be the conditional distribution of the positive samples, q(·|·) the
conditional distribution of the negative samples and pD(·) the marginal distribution of the
reference samples. The generalized InfoNCE objective (Def. 3) is convex in ψ with the unique
minimizer

ψ∗(x, y) = log
p(y|x)
q(y|x) + C(x), with L[ψ∗]asympt = −DKL(p(·|·)∥q(·|·)) (7.8)

on the support of pD, where C : Rd → R is an arbitrary mapping.

Proof. We rewrite the objective as

L[ψ]asympt =
∫

pD(x)
[

log
∫

q(y|x)eψ(x,y)dy−
∫

p(y|x)ψ(x, y)dy
]

dx, (7.9)

and we can compute the first-order functional derivative (using the method discussed
in Cahill 2014

1)

δL[ψ][h]asympt

=
d
dϵ
L[ψ + ϵh]

∣∣
ϵ=0

=
∫

pD(x)
[

1
Zψ(x)

∫
q(y|x)eψ(x,y)h(x, y)dy−

∫
p(y|x)h(x, y)dy

]
dx,

with Zψ(x) =
∫

q(y′|x)eψ(x,y′)dy′.

(7.10)

The first-order functional derivative vanishes for all functions h(x, y) whenever

pD(x)
[

1
Zψ(x)

q(y|x)eψ(x,y) − p(y|x)
]
= 0. (7.11)

This is the case iff at any point (x, y), either pD(x) = 0 or

Zψ(x) =
q(y|x)
p(y|x) eψ(x,y). (7.12)

Since the left hand side of Eq. (7.12) is independent of y, the right hand side must be
independent of y as well. Hence all functions ψ∗(x, y) which are solutions to Eq. (7.12)
are of the form

ψ∗(x, y) = log
p(y|x)
q(y|x) + C(x), (7.13)

where C is an arbitrary function depending only on x and not on y. Then by definition
of Zψ(x),

Zψ(x) =
∫

q(y′|x)eψ(x,y′)dy′ = eC(x) (7.14)

1http://quantum.phys.unm.edu/523-14/ch15.pdf

http://quantum.phys.unm.edu/523-14/ch15.pdf

robust machine learning 162

which is consistent when inserted into Eq. (7.12). Therefore the minimizers of L[ψ]asympt
form a convex connected setM,

M =

{
ψ∗ : ψ∗(x, y) =

log p(y|x)
q(y|x) + C(x) if pD(x) ̸= 0

f (x, y) if pD(x) = 0

}}
, (7.15)

where C, f are arbitrary functions. It can be checked that all minima achieve the same
value L[ψ∗] given by

L[ψ∗]asympt = −
∫

pD(x)
∫

p(y|x) log
p(y|x)
q(y|x) dy

= −
∫

pD(x)DKL [p(·|x)||q(·|x)] dx ≤ 0.
(7.16)

It is left to show that the objective function is convex. The second-order functional
derivative is given by

δ2L[ψ][h]asympt =
d2

dϵ2L[ψ + ϵh]
∣∣
ϵ=0

=
d
dϵ

∫
p(x)

[
1

Zψ+ϵh(x)

∫
q(y|x)eψ(x,y)+ϵh(x,y)h(x, y)dy−

∫
p(y|x)h(x, y)dy

] ∣∣∣∣
ϵ=0

=
∫

p(x)
[
Eg(y|x)

[
h(x, y)2]−Eg(y|x) [h(x, y)]2

]
,

with g(y|x) = 1
Zψ(x)

q(y|x)eψ(x,y), and
∫

g(y|x)dy = 1.

(7.17)
Since g(y|x) is a probability density function, we can apply Jensen’s inequality to the
convex function A→ A2 for the random variable A := h(x, y) to obtain

Eg(y|x)
[
h(x, y)2]− (Eg(y|x) [h(x, y)]

)2
≥ 0

⇒ δ2L[ψ][h]asympt =
∫

p(x)
[

Eg(y|x)
[
h(x, y)2]− (Eg(y|x) [h(x, y)]

)2
]
≥ 0.

(7.18)

and it follows that the InfoNCE loss is convex in ψ.
To prove uniqueness of the minimum: Note that since the mapping A → A2 is

not affine, a necessary and sufficient condition for equality is A to be constant, which
holds iff h(x, y) = h(x, y′) := h(x) for all y. The objective is hence strictly convex for all
variations involving a variation in y, and the second derivative vanishes for variations
that only depend on x. Variations that only depend on x are represented by the function
C which appeared in the set of minimizersM.

Note that the difference between the minimizer of the NCE loss and the InfoNCE
loss is the additional constant function C depending on the reference sample, which
makes the loss function more flexible. Another common formulation of the InfoNCE

robust machine learning 163

minimizer in the literature is given as ψ(x, y) = log p(x, y)/(pD(x)pD(y)) which is a
special case of our more general solution if C(x) = − log pD(x), the negative distribu-
tion is chosen to be the marginal, q = pD, and the learning setup is symmetric.

Let us also confirm that our interchangeable use of the latents (u, v) and signal
variables (x, y) is formally correct; due to the transformation theorem for any distribu-
tion pu(u) = px(g(u))det Jg(u) and respectively for v, g′, y. At the minimizer, we then
arrive at

log
p(y|x)
q(y|x) + C(x) = log

p(y|x)pD(x)
q(y|x)pD(x)

+ C(x) (7.19)

= log
p(v|u)pD(u)det Jg(u)det Jg′(v)
q(v|u)pD(u)det Jg(u)det Jg′(v)

+ C′(u) (7.20)

= log
p(v|u)
q(v|u) + C′(u), with C(g(u)) = C′(u), (7.21)

i.e., the minimizer can be equivalently written in terms of the latents and the signal
variables.

Minimizers of the InfoNCE loss become bijective

A property that allows us to weaken some of the conditions given by Hyvärinen et al.
(2019b), Zimmermann et al. (2021a) and Roeder et al. (2020a) is the observation that the
composition of data generating process and feature encoder becomes bijective for the
optimal value of the generalized InfoNCE objective. We introduce the following:

Definition 5 (Diversity condition for bijectivity). The sampling process composed of distri-
butions p and q is sufficiently diverse if their log-likelihoods satisfy

rank

([
∂2 log p(v|u)

∂ui∂vj

]
i∈[d],j∈[d]

−
[

∂2 log q(v|u)
∂ui∂vj

]
i∈[d],j∈[d]

)
= d, (7.22)

for all u in the support of the marginal distribution pD and d = d′.

Def. 5 is a mild condition on the distributions p and q: Intuitively, the condition
requires that for all samples u, we can sample positive samples v that sufficiently
vary in all d latent directions, which would be independent from the samples given
by the negative distribution q. Suppose q is chosen to be uniform; then the condition
is fulfilled for common choices like a Normal distribution with log p(v|u) = Z(u)−
(u − v)⊤Σ(u − v) (where rank(−Σ) = d) or a von Mises-Fisher distribution with
log p(v|u) = Z(u) + κu⊤v (where rank κI = d).

We make two additional observations: Firstly, for simple distributions q that do
not depend on u, the diversity assumption only affects the positive distribution p as
the second term vanishes. Secondly, if p and q are selected to train the network to
become invariant to one factor vi with p(v|u) = p(vi)p(vi|u) and q(v|u) = p(vi)q(vi|u),

robust machine learning 164

the distributions p(vi) will cancel out in the condition, and reduce the rank by one
dimension (which is as intended, as the factor should be discarded during training).

From this diversity condition, we can derive bijectivity of the composition h = f ◦ g
of the data generating process and feature encoder:

Proposition 3. Assume that:

1. ψ with ψ(u, v) = ϕ(h(u), h′(v)) is a minimizer of the InfoNCE objective (Def. 3) in a
learning setup as outlined in Def 2.

2. The distributions p and q satisfy the diversity condition for bijectivity (Def. 5).

Then h and h′ are bijective on the support of pD.

Proof. By Proposition 2, the minimizer of the InfoNCE loss on the support of pD is

ψ(u, v) = log
p(v|u)
q(v|u) + C(u) (7.23)

For ψ, we compute the second derivatives and arrange them in matrix form as[
∂2ψ(u, v)

∂ui∂vj

]
i∈[d],j∈[d]

= J⊤(u)P(h(u), h′(v))J′(v) (7.24)

where we used the shorthand P(a, b)ij := ∂2ϕ(a, b)/∂aibj. J is the Jacobi matrix of h,
and J′ is the Jacobi matrix of h′. For the right hand side of the previous equation, we
note that

rank(J⊤(u)P(h(u), h′(v))J′(v))

≤min{rank J(u), rank J′(v), rank P(h(u), h′(v))},
(7.25)

and the rank of the left hand side is given by inserting Eq. 7.23 into the diversity
assumption (2):

rank
[

∂2ψ(u, v)
∂ui∂vj

]
i∈[d],j∈[d]

= rank

([
∂2(log p(v|u)− log q(v|u) + C(u))

∂ui∂vj

]
i∈[d],j∈[d]

)
= d.

Combining both results gives

rank(J⊤(u)P(h(u), h′(v))J′(v)) = d

≤min{rank J(u), rank J′(v), rank P(h(u), h′(v))},
(7.26)

and implies

rank J(v) = rank J′(u) = rank P(h(u), h′(v)) = d. (7.27)

robust machine learning 165

Then, both Jacobi matrices have full rank on the support of pD, hence h and h′ are
bijective, concluding the proof.

Notably, this result is independent of the particular choice of the (potentially
learnable) similarity measure ϕ. The similarity measure is implicitly constrained by the
requirement that ψ needs to match the log-likelihood ratio of p and q up to a constant.

CEBRA models are consistent

We proceed by showing that CEBRA models are consistent under weak assumptions on
the data distribution. Consistency entails that the embedding spaces of two different
models can be mapped onto each other by some known transformation. In this subsec-
tion, we consider the class of linear transformations and in the following subsection we
will discuss alternative transformations. We denote two independently trained CEBRA
models as {f, f′} and {f̃, f̃′}, and make statements about when linear transformations
exist such that f = Lf̃ and f′ = Mf̃′ for two full rank matrices L and M.

We begin by recalling the Canonical Discriminative Form and Diversity Condition
in Roeder et al. (2020a), adapted to our notation:

Definition A (Canonical Discriminative Form, Roeder et al. (2020a)). Given a data
distribution pD(x, y, S) with random variables x and y and a set S containing the possible
values of y given x,

pD(y|x, S) > 0⇐⇒ y ∈ S, (7.28)

a generalized discriminative model family may be defined by its parameterization of the probabil-
ity of the target variable y conditioned on an observed variable x and the set S that contains not
only the true target label y, but also a collection of distractors y′:

pf,f′(y|x, S) =
exp(f(x)⊤f′(y))

∑y′∈S exp(f(x)⊤f′(y′))
. (7.29)

Note that the feature extractors f and f′ could be two separate networks, as we
already discussed in Suppl. Note 1. Roeder et al. (2020a) consider f to be a “data
encoder” and f′ to be a “context encoder”. This is in contrast to the setup by Hyvärinen
et al. (2019b) which we will revisit in the context of recovering the data generating
factors, where f(x) would play the role of an auxiliary variable while f′ is the feature
encoder later used in downstream tasks and analysis.

In CEBRA, the choice and role of both functions can be configured, which is why
we will discuss theoretical guarantees for both use cases. We proceed by re-stating two
diversity conditions needed for f or f′ to become consistent:

Definition B (Diversity conditions for consistency, Roeder et al. (2020a)). Let Z(x, S) :=
− log ∑y′∈S exp(f(x)⊤f′(y′)). Assume that for the encoders (f, f′, f̃, f̃′) for which it holds that
pf,f′ = pf̃,f̃′

robust machine learning 166

1. for any given y, there exist M + 1 tuples {(x(i), S(i))}M+1
i=1 , such that pD(x(i), y, S(i)) >

0, and such that the ((M+ 1)× (M+ 1)) matrices M and M̃ are invertible, where M con-
sists of columns [−Z(x(i), S(i)); f(x(i))], and M̃ consists of columns [−Z(x(i), S(i)); f̃(x(i))],

2. for any given x, by repeated sampling S ∼ pD(S|x) and picking two points yA, yB ∈ S,

we can construct a set of M distinct tuples (y(i)
A , y(i)

B)
M

i=1 such that the matrices L and
L̃ are invertible, where L consists of columns (f′(yA(i))− f′(yB(i))), and L̃ consists of
columns (f̃′(yA(i))− f̃′(yB(i)), i ∈ 1, . . . , M.

With the diversity condition in place, we recall Theorem 1 from Roeder et al. (2020a),
adapted to our notation:

Theorem A (Roeder et al. (2020a)). Under the diversity condition (Def. B), models following
the canonical discriminative form (Def. A) are linearly identifiable. That is, for any encoders
{f, f′}, and {f̃, f̃′} it holds that

pf,f′ = pf̃,f̃′ =⇒ f(x) = Lf̃(x), f′(y) = Lf̃′(y) (7.30)

for all samples (x, y) in the support of the data distribution.

Proof. See Theorem 1, Roeder et al. (2020a), where we replaced the equivalence condi-
tion on the right hand side by inserting its definition for clarity.

We can leverage this result as CEBRA falls into the class of models models described
in Definition A:

Proposition 4 (CEBRA models are consistent.). Assume that two CEBRA models are
trained on data from the same latent data distribution, and denote the feature encoders of the
trained models as f, f′ and f̃, f̃′. Further assume that for both models, the similarity measure ϕ

is the dot-product similarity and ψ minimizes the generalized InfoNCE loss. Finally assume
that the diversity condition (Def. B) holds. Then the feature encoders f, f′ are consistent up to a
linear transformation, and f(x) = Lf̃(x), f′(y) = L′f̃′(y), for linear transformations L, L′ for
any pair of points x, y in the support of the data distribution.

Proof. The generalized InfoNCE objective with limited samples (Def. 4) can be written
as

E
x∼p(x), y+∼p(y|x)

y1,...,yn∼q(y|x)

[log p(y+|x, S)],
(7.31)

with

log p(y+|x, S) = − log
exp ψ(x, y+)

∑n
i=1 exp ψ(x, yi)

= − log
exp(f(x)⊤f′(y+)/τ)

∑n
i=1 exp(f(x)⊤f′(yi)/τ)

(7.32)

which matches the canonical discriminative form (Def. A) with encoders f(·) and f′(·)/τ.
The composition of the set S := {yi}N

i=1 is given by the distribution pD(x)q(y|x) and S

robust machine learning 167

fulfills Def. B by assumption. At the minimizer, the values of the loss functions match,
from which it follows that pf,f′ = pf̃,f̃′ . Hence, we apply Theorem A to find that f and f′

are consistent up to a linear transform, concluding the proof.

It is worth noting that this result also holds for datasets with limited samples, i.e.,
the objective in Def. 4, as long as the dataset fulfills the diversity condition (Def. B).
Checking the diversity condition as well as matching distributions for the two CEBRA
models is possible in practice using only the dataset and the trained model.

Both diversity conditions from Roeder et al. (2020a) depend on the variability of the
ground truth latent distribution (and the presence of this variability after mapping the
latents to signal space), and on the properties of the encoders f and f′. While Roeder
et al. (2020a) already discuss that in practice, a randomized neural network will fulfill
the diversity conditions, with our diversity criterion for bijectivity (Def. 5) and the
bijectivity of f and f′ that follows, we can strengthen this argument and ensure that
both conditions hold upon convergence for minimizers of the generalized InfoNCE
objective:

Proposition 5. Assume that the encoders (f, f′, f̃, f̃′) and hence also the compositions of data
generator and encoders (h, h′, h̃, h̃′) minimize the InfoNCE objective. Assume that upon
convergence, the diversity condition for bijectivity (Def. 5) holds. Then, h(u) = h(u) and
h′(v) = Bh̃′(v) for all latents u, v in the support of the data distribution for two full-rank
matrices , B.

Proof. Both models share the minimizer

h(u)⊤h′(v) = h̃(u)⊤h̃′(v) = log
p(v|u)
q(v|u) + C(u) (7.33)

and we have

h(u)⊤h′(v) = h̃(u)⊤h̃′(v) (7.34)

taking derivatives with respect to v, and then to u, we arrive at

J(u)⊤J′(v) = J̃(u)⊤J̃′(v) (7.35)

where all Jacobian matrices have full rank due to Prop. 3. We can hence derive

J′(v) = (J(u)−⊤J̃(u)⊤)J̃′(v) J(u)⊤ = J̃(u)⊤(J̃′(v)J′(v)−1) (7.36)

J′(v) = (u)J̃′(v) J(u)⊤ = J̃(u)⊤B(v) (7.37)

for some full rank matrices (u) and B(v). Because the left hand side do not depend on
the argument of and B, both matrices need to be constant, leaving

J′(v) = J̃′(v) J(u)⊤ = J̃(u)⊤B (7.38)

robust machine learning 168

from which it follows that

h(u) = B−1h̃(u) h′(v) = h̃′(v). (7.39)

concluding the proof.

Note that the previous proposition applies even when the data generating functions
(i.e., the datasets) between the model run differ, and merely the latent distributions
match. In this case, the same latent u0 can be mapped to different points x0 and x̃0 and
the resulting embedding points would still satisfy f(u0) = f̃(u0). For this reason, the
proposition is written w.r.t. the composition h̃ of data generating process and encoder.
If the data generating processes match, it is clear that Eq. 7.39 can be equivalently
written as f(x) = B−1f̃(x), f′(y) = f̃′(y), which matches the statement by Roeder et al.
(2020a) (but for our modified diversity condition).

For symmetric encoders, we can give the following result:

Proposition 6. Assume that the encoders f = f′, f̃ = f̃′ are shared, and −ϕ is a norm,
ϕ(a, b) = −∥a− b∥. Assume that the model minimizes the InfoNCE loss and assume that the
co-domain of f, f′ is a normed space over Rd. Then h = Lh̃.

Proof. We write the data in terms of the underlying latents x = g(u) and y = g′(v). At
the minimizer of the InfoNCE loss it then holds that

∥h(u)− h(v)∥+ C(u) = ∥h̃(u)− h̃(v)∥+ C̃(u). (7.40)

for all points in the dataset. Inserting v = u gives C(u) = C̃(u). Because h, h̃ bijective,
we define points a = h̃(u) and b = h̃(v), and it holds

∥h(h̃−1(a))− h(h̃−1(b))∥ = ∥a− b∥. (7.41)

Due to the Mazur–Ulam theorem, the map h ◦ h̃−1 is then affine, concluding the
proof.

Note that all results in this section are also independent of the mixing functions g
and g′. This means that consistency can be guaranteed irrespective of the exact data modality
and generative process, as long as the underlying latent distribution matches. This is given
in well-controlled experiments (as one assumes when e.g., repeating experiments).

CEBRA models recover the ground-truth latents

In contrast to the identifiability results in the previous section (which made a connection
between two models trained on the same or similar data distribution), in this section
we will make a connection between the ground truth model and the model trained on the
data. To make this connection, assumptions are needed about the ground truth model.

robust machine learning 169

As introduced in Def. 2, we will denote the ground truth model(s) as g and g′,
and data from these models is then encoded with f and f′, respectively. Our goal
is to understand properties of their composition h = g ◦ f and h′ = g′ ◦ f′, and
when this composition reduces to an affine or linear transformation. Based on the
property of the model (especially the similarity measure), other guarantees are possible.
Towards the end of this subsection we will discuss CEBRA model setups where
we obtain guarantees up to permutations and sign-flips and point-wise non-linear
transformations by leveraging existing contrastive learning theory (Hyvärinen et al.,
2019b; Zimmermann et al., 2021a). We base our theory on the identifiability proofs of
contrastive learning given by Hyvärinen et al. (2019b) and Zimmermann et al. (2021a),
and give new proofs to complete the theory for the most important usage modes in
CEBRA. Note that the theory also extends to settings not explicitly demonstrated in
this paper, but integrated into the CEBRA software package (e.g., trainable similarity
functions ϕ).

One key property of CEBRA is its distinction of discovery-driven and hypothesis-
driven training (or hybrid training, which is a combination of both where the feature
encoders need to minimize both the time-contrastive and behavior-contrastive ob-
jectives). For time- and behavior-contrastive learning, similar theory applies. A key
difference is that in time-contrastive (discovery-driven) learning, an underlying distribu-
tion of the latents is inherent to the dataset and “given” by the temporal variation in the
data. If it is desirable to recover the ground truth latents, the similarity measure needs
to be suitable to allow full InfoNCE minimization, e.g., by model selection on basis of
the InfoNCE or goodness of fit metric. Note that a cosine similarity measure is already
quite flexible for a wide range of distributions and a good default, and also note that
InfoNCE minimization is known to be empirically robust to minor violations between
the model assumptions and ground-truth conditional distribution (Zimmermann et al.,
2021a). For hypothesis-driven learning, CEBRA will always be able to find a suitable
learning setup that recovers the auxiliary variables: The positive and negative sample
distributions can be chosen and selected such that the propositions in this section
will hold. Even if empirical distributions are used (e.g., the “time delta” distribution
outlined in the Methods), it is possible to check that this distribution matches the
similarity measure of the model.

Because we make statements about the relationship between continual and discrete
context variables (ct and kt) and the signal space (sst) for each time-point t, we will
again use this notation from the Methods; we use the variable names introduced in
Def. 2 to denote the underlying ground-truth latents, and the samples fed to the model
(which can, but do not necessarily need to, equal to the signal). We start our discussion
with discovery-driven training of CEBRA using time information:

Proposition 7 (Discovery-driven CEBRA). Assume the learning setup in Def. 2, and that
the ground-truth latents u1, . . . , uT for each time point follow a uniform marginal distribution
and the change between subsequent time steps is given by the conditional distribution of the

robust machine learning 170

form

p(ut+∆t|ut) =
1

Z(ut)
exp δ(ut+∆t, ut) (7.42)

where δ is either a (scaled) dot product (and ut ∈ Sn−1 ⊂ Rd lies on the (n− 1)-sphere Sn−1)
or an arbitrary semi-metric (and ut ∈ U ⊂ Rd lies in a convex body U). Assume that the
data generating process g with sst = g(ut) is injective. Assume we train a symmetric CEBRA
model with encoder f = f′ and the similarity measure including a fixed temperature τ > 0 is
set to or sufficiently flexible such that ϕ = δ for all arguments. Then h = h′ = g ◦ f is affine.

Proof. For δ being the dot product, the result follows from the proof of Theorem 2 in
Zimmermann et al. (2021a). For δ being a semi-metric, the result follows from the proof
of Theorem 5 in Zimmermann et al. (2021a).

We will next consider the hypothesis-driven mode in CEBRA. Here, we either
choose a parametric or non-parametric positive distribution p to shape the embedding
space. Our goal is find an embedding space reflecting the auxiliary variable, in case
there is a meaningful relationship between the signal and this variable.

Naturally, the actual signal will depend on additional latents that we do not record
as auxiliary information. The full data generating process can be written as

sst = g(ct, kt, zt) (7.43)

where zt are additional latent sources not observed during training. Since g is an
injective function, it follows that sst = sst′ implies ct = ct′ , kt = kt′ , zt = zt′ . Applying
hypothesis-driven learning in this setup will force an embedding space representing c
and k, but not z. We can denote the set G(c, k) := {z ∈ Z : g(c, k, z)} which contains
all points in signal space corresponding to a particular set of auxiliary variables c, k.
Because g is injective, there exists a function g̃, which will retrieve the original auxiliary
variables: g̃(g(c, k, z)) = (c, k)⊤.

Proposition 8 (Hypothesis-driven CEBRA). Assume a partially observable data generating
process, where

y = g′(c, v) (7.44)

with g′ injective and with c as an observable context variable, and v as a latent. As in Prop. 3
assume that c lies on a hypersphere if ϕ is the dot-product similarity, and on a convex body
if −ϕ is a semi-metric. Then the minimizer of the InfoNCE loss trained with a distribution
p(c|c̃) = exp(ϕ(c, c̃))/Z(c̃) and a uniform marginal and negative distribution q = pD will
yield a h that recovers c up to an affine transformation.

Proof. h is the composition g ◦ f. Per assumption, the similarity function ϕ is sufficiently
flexible such that

ϕ(h(c, z), h(c̃, z)) = log p(c, c̃) + C(c̃) ∀z. (7.45)

robust machine learning 171

Because g is injective, g(c, z) = g(c′, z′) implies that c = c′ and z = z′ and there exists
a function g̃ such that g̃(g(c, z)) = c for all z. It remains to show that f = Lg̃ at the
minimizer for a full-rank matrix L. By comparing arguments on the left hand side and
right and side, and inserting the form of p, solutions of Eq. 7.45 need to simplify to

ϕ(h(c), h(c̃)) = ϕ(c, c̃) + C(c̃) (7.46)

By symmetry of ϕ, C(c̃) = 0 vanishes. Then the result follows again from Theorem 2 in
Zimmermann et al. (2021a) for ϕ being the dot-product similarity, and from Theorem 5

in Zimmermann et al. (2021a) for −ϕ being a semi-metric.

With our results from Prop. 2 and Prop. 3, it is also possible for us to extend the
results for distributions fulfilling the diversity condition for bijectivity (Def. 5). The
following proposition enables a statement about distribution where the data generating
process and/or feature encoder differs between the reference and positive/negative
pairs. An example used in the main text is multi-session training, or training across
data modalities. We first need to strengthen the assumption about the positive and
negative distributions from Def. 5. Again assume that the latent dimensions d = d′

match.

Definition 6 (Strong assumption of diversity for bijectivity). The sampling process with
distributions p and q satisfies[

∂2 log p(v|u)
∂ui∂vj

]
i∈[d],j∈[d]

−
[

∂2 log q(v|u)
∂ui∂vj

]
i∈[d],j∈[d]

= L (7.47)

for some full-rank matrix L ∈ Rd×d for all u ∈ Rd in the support of the marginal distribution
pD.

Note that Def. 6 is a special case of the diversity condition for bijectivity in Def. 5.
The stronger condition still covers important distributions like a Gaussian conditional,
even with an additional mean and covariance p(v|u) = exp(−(u− v− µ)⊤Σ−1(u−
v− µ)). Likewise, it would cover van Mises-Fisher (vMF) distributions, even with
a rotated reference sample and p(v|u) = exp(κu⊤Qv). We will cover these selected
special cases using the stronger diversity assumption below.

Proposition 9. Consider a data generating process with uniform marginal and positive/negative
distributions satisfying Def. 6. Assume the data is generated by mixing functions g : Rd 7→ RD

and g′ ∈ Rd 7→ RD′ and encoded into a shared E-dimensional embedding space with two
separate encoders f : RD 7→ RE and f′ : RD′ 7→ RE and assume that ϕ is the dot-product.
Then there are d dimensions in h, and d dimensions in h′ which represent the latents up to an
affine transform.

Proof. Let us again denote the compositions h = g ◦ f : Rd 7→ RE and h′ = g′ ◦ f′ :
Rd 7→ RE and let us denote the Jacobian matrices as J : Rd 7→ RE×d and J′ : Rd 7→ RE×d,

robust machine learning 172

respectively. Without loss of generality (the indices can be arbitrarily permuted), let
us split each h into two parts, with h1 := [h1, . . . , hd]

⊤ and h2 := [hd+1, . . . , hE]
⊤ (in

case E > d), and respectively for h′. At the minimizer of the InfoNCE loss, we get the
condition

h(u)⊤h′(v)/τ = log
p(v|u)
q(v|u) + C(u). (7.48)

We take the derivative w.r.t. v on both sides, with gives

J′(v)⊤h(u)/τ =
∂

∂v

[
log

p(v|u)
q(v|u)

]
, (7.49)

with J′ denoting the Jacobian matrix of h′. We now take the derivative w.r.t. u on both
sides, with gives

J(u)⊤J′(v)/τ =
∂2

∂u∂v

[
log

p(v|u)
q(v|u)

]
. (7.50)

and by assumption we can insert Def. 6 and re-arrange to

J(u)J′(v)⊤ = τL (7.51)

for some full-rank matrix L ∈ Rd×d. Note that when E > d this condition is under-
constrained. Without loss of generality, let us split the Jacobian matrices into two
parts:

J(u) := [J1(u); 0] J′(v) := [J′1(v); J′2(v)] (7.52)

where J1 : Rd 7→ Rd×d, J′1 : Rd 7→ Rd×d, J′2 : Rd 7→ R(E−d)×d. This allows to re-write the
condition as

J1(u)J′1(v)
⊤ = τL (7.53)

which is no longer underconstrained. This equation is valid for any u, v in the support
of the marginal and the positive/negative distribution, which is why the left hand side
cannot depend on u and v, leaving the final form of the Jacobians:

J(u) := [J1; 0] J′(v) := [J′1; a(v)], (7.54)

where a : Rd 7→ R(E−d)×d is an arbitrary function that ensures that Eq. 7.48 can hold. It
follows that h1 and h′1 are affine transforms, h2 is a constant, and h′2 will be a potentially
non-linear transform to match the InfoNCE minimizer, concluding the proof.

We next discuss two special cases that are of interest to users of CEBRA and
demonstrate that the previous result is more flexible than the results presented in
Zimmermann et al. (2021a). Consider a setup where we have a constant “offset”
between the latents vs. having a perfectly symmetric p. We are still able to recover the
underlying latents for both vMF and Normal conditional distributions:

robust machine learning 173

Corollary 1. The aforementioned result holds for vMF distributions with a constant offset
between u and v on the hypersphere, parameterized by a rotation matrix Q, with log p(v|u) =
κu⊤Qv. Assume d = d′ = k and assume the domain and co-domain of h, h′ is the unit sphere.

Proof. The distributions satisfies constancy of the second derivative, and the condition
on the Jacobian matrices is

J1J′⊤1 = (τκ)Q (7.55)

and since all vectors h(a) = J⊤a need to be normalized and Q is orthogonal, we can
consider any column qi and the corresponding vector ai of J1

J1ai = (τκ)qi ⇒ ∥J1ai∥2 = (τκ)∥qi∥2 ⇒ 1 = (τκ)1 (7.56)

and it follows τ = 1/κ.

Corollary 2. The aforementioned result holds for a Gaussian distribution with a constant offset
between u and v parameterized, with log p(v|u) = ∥u− v− µ∥2. Assume d = d′ = k.

Proof. We rewrite the log-conditional as

log p(v|u) = −∥(u− v)− µ∥2 (7.57)

= −∥u− v∥2 − ∥µ∥2 + 2(u− v)⊤µ (7.58)

= −∥u∥2 − ∥v∥2 − ∥µ∥2 + 2u⊤µ + 2v⊤µ + 2u⊤v (7.59)

(7.60)

which gives, at the minimizer of the InfoNCE objective,

h(u)⊤h′(v)/τ = 2u⊤v + (−∥v∥2 + 2v⊤µ) + (−∥u∥2 + 2u⊤µ + C(u)) (7.61)

and we recover

h1(u) = J1u, (7.62)

h′1(v) = J′1v, (7.63)

C(u) = ∥u∥2 − 2u⊤µ (7.64)

h′2(v) = −∥v∥2 + 2v⊤µ. (7.65)

While the above results extended the theory of Zimmermann et al. (2021a) to
training setups within the CEBRA library and used in the main text (training with
dot-product and negative mean squared error as the similarity measure and sampling
procedure), we can also leverage previous results from Hyvärinen et al. (2019b) to
further extend the families of possible distributions.

robust machine learning 174

Firstly, for conditional exponential family distributions within an ICA framework,
the dot-product similarity can be used in conjunction with non-symmetric encoders f,
f′ (i.e., two separate networks) to recover the components up to a linear indeterminacy.
We recall Definition 1 from Hyvärinen et al. (2019b):

Definition C (Conditionally exponential distributions (Def. 1 from Hyvärinen et al.
(2019b))). A random variable (independent component) vi is conditionally exponential of order
k given random vector x if its conditional probability density function can be given in the form

p(vi|x) =
Qi(vi)

Zi(x)
exp

[
k

∑
j=1

q̃ij(vi)λij(x)

]
(7.66)

almost everywhere in the support of x, with q̃ij, λij, Qi, and Zi scalar-valued functions. The
sufficient statistics q̃ij are assumed linearly independent (over j, for each fixed i).

We observe a similar functional form as used in Prop. 9. Values of q̃ij(vi) would be
represented by f′, and values in λij(x) would be represented by f. As in the previous
proposition, more dimensions in f, f′ as latent variables are required (E > d) for
representing conditional distributions of the conditional exponential form. In this
setup, Theorem 3 from Hyvärinen et al. (2019b) implies in our context that the sufficient
statistics of the latents can be recovered up to a linear transformation.

Secondly, for arbitrary conditional distributions, as long as variability conditions
are satisfied within an ICA framework, contrastive learning can recover the underlying
components up to a permutation and point-wise invertible transformation (Hyvärinen
et al., 2019b). Using this mode applies when a similarity measure ϕ which gives

ψ(u, v) :=
E

∑
i=1

ϕi(h′i(v), h(u)) (7.67)

or w.r.t. to the signal variables,

ψ(x, y) =
E

∑
i=1

ϕi(f ′i (y), f(x)), (7.68)

is used within the CEBRA framework. In this case, Theorem 1 in Hyvärinen et al.
(2019b) applies and gives an identifiability guarantee of h to recover the ground truth
latents v up to permutations and component-wise non-linear transformations.

8
Identifiable attribution maps using
regularized contrastive learning

The following pages contain the postprint version the NeurIPS 2023 workshop paper

Steffen Schneider, Rodrigo González Laiz, Markus Frey, and Mackenzie
Weygandt Mathis. “Identifiable attribution maps using regularized con-
trastive learning.” NeurIPS 2023 workshop on self-supervised learning – theory
and practice.

An extended abstract version of the work was presented at COSYNE 2023, Montreal.

Author Contributions Conceptualization: StS, MWM; Methodology: StS, MWM, RG;
Software: RG, StS; Theory: StS; Formal analysis: StS, RG, MF; Investigation: RG, StS,
MF; Data Curation: StS, RG, MF; Writing-Original Draft: StS, MWM; Writing-Editing:
all authors.

robust machine learning 176

Summary

Gradient-based attribution methods aim to explain decisions of deep learning models,
but so far lack identifiability guarantees. Here, we propose a method to generate
attribution maps with identifiability guarantees by developing a regularized contrastive
learning algorithm trained on time series data with continuous target labels. We
show theoretically that our formulation of hybrid contrastive learning has favorable
properties for identifying the Jacobian matrix of the data generating process, and is
unable to overfit to random training distributions. Empirically, we demonstrate robust
approximation of the ground-truth attribution map on synthetic data, and significant
improvements across previous attribution methods based on feature ablation, Shapley
values, and other gradient-based methods. Our work constitutes a first example of
identifiable inference of attribution maps, and opens avenues for improving future
attribution tools and better understanding neural dynamics and neural networks.

Introduction

Distilling knowledge from data is a core tenet of science. After pre-processing raw
data, we want to abstract relationships in the experimentally observed data to observed
variables. In the case of neuroscience this could be the raw neural signal and the
behavior of the animal (Jazayeri & Ostojic, 2021; Urai et al., 2022b). Often times linear
methods (such as GLMs (McCullagh & Nelder, 1972)) are used for interpretability,
even though the underlying data did not necessarily arise from linear processes. Yet,
non-linear methods are difficult to interpret (Breen et al., 2018; Samek et al., 2019).

In machine learning, especially in computer vision, many algorithms exist for
explaining the decisions of trained (non-linear) neural networks, often on classification
tasks (Ancona et al., 2017; Lundberg & Lee, 2017; Montavon et al., 2015; Samek et al.,
2019; Shrikumar et al., 2016; Simonyan et al., 2013; Sundararajan et al., 2017). In
particular, gradient-based attribution methods have shown empirical success, but can
be computationally costly and/or lack theoretical grounding (Lundberg & Lee, 2017;
Simonyan et al., 2013), which ultimately limits their utility and scope in scientific
applications that benefit from theoretical guarantees.

Contrastive learning recently showed promise in its performance for learning repre-
sentations while providing theoretical guarantees about its representations (Hyvarinen
et al., 2019; Hyvärinen and Morioka, 2016, Chapters 6–7). In this work, we aim to
unify the empirical performance of gradient-based attribution methods for generating
explanations of large scale datasets with complex non-linear relationships between their
variables. We propose a contrastive learning method that provably identifies an attribu-
tion map underlying the data. Our framework is depicted in Fig. 8.1, and contributes
the following: (1) We formulate an estimation algorithm for global attribution maps
based on contrastive learning; (2) We show identifiability guarantees for the (global)
attribution map and verify our theory on synthetic datasets.

robust machine learning 177

Figure 8.1: Identifiable attribution maps for time-series data. Using time-series data (such as
neural data recorded during navigation, as depicted), our inference framework estimates the
ground-truth Jacobian matrix Jg (i.e., g is the observed neural data linked to latents z and c,
where c is the explicit behavioral latent that would be linked to grid cells) by identifying the
inverse data generation process up to a linear indeterminacy L. Then, we estimate the Jacobian
Jf of the encoder by minimizing a generalized InfoNCE objective. Inverting this Jacobian J+f ,
which approximates Jg, allows us to construct the attribution map.

Identifiability of Attribution Maps with Regularized Contrastive Learn-
ing

Throughout the paper, we will use a notion of attribution maps grounded in the causal
structure of the data generating process. We assume that observations x ∈ X are
generated by an injective generative process (mixing function) g : Z → X , where
X ⊆ RD is the space of observations and Z ⊆ Rd is the space of latent factors and d
denotes the number of factors. We have d < D.

Definition 2 (Data generating process). We assume a non-linear ICA problem with a mixing
function g : Z → X mapping parts of the input factors z := [z1; . . . ; zG] ∈ Rd onto outputs,
xi = gi(z) = gi([zj]j∈Pi). Pi is an index set, and j ∈ Pi implies that factor zj ∈ Rdi is used to
generate the output xi. We further assume that maximally one of the parts is not observable.
All other parts are observable through bijective maps γi s.t. zi = γi(ci), where ci then denotes
an observable factor.

For application of attribution methods to g, we need additional structure in the data
generating process. Specifically, we are interested in how the factors z are connected
to the output variables x by means of any non-linear mapping. This gives rise to the
following definition of the attribution map:

Definition 3 (Ground-truth attribution maps). Let g be the mixing function. For all
x := g(z) in the support of p(z), the ground-truth attribution map A[g] has values

A[g]ij =

1 if
∂gi(z)

∂zj
̸= 0 ∃z ∈ Z

0 otherwise.
(8.1)

and is specified through the index sets P1, . . . , PG defined in Def. 2.

robust machine learning 178

Under these definitions, we aim to identify the attribution map using a suitable
representation learning algorithm. We require two components: First, the algorithm
needs to be able to identify the latent and observable factors of our data generation
process and it is well-studied that contrastive learning algorithms have this property
(Hyvarinen et al., 2019; Schneider et al., 2023; Zimmermann et al., 2021b). In the
following, let us call p the positive and q the negative sample distribution. We call
(x, x+) a positive pair, and all (x, x−i) negative pairs. The function f := [f1; . . . ; fG]

is the feature encoder that maps samples into an embedding space, and we apply
similarity metrics ϕi to the different parts of this feature encoder, abbreviated as
ψ(x, y) := ϕ(f(x), f(y)). The minimizer of the generalized InfoNCE (van den Oord
et al., 2018, Chapter 7) objective

LN [ψ] = E
x∼p(x), x+∼pi(x+|x),

x−1 ...x−N∼q(x−|x)

[
−ψ(x, x+i) + log

N

∑
j=1

eψ(x,x−j)

]
, (8.2)

is ψ(x, y) = log p(y|x)/q(y|x) + C(x) and identifies the ground truth latents up to a
linear transform for suitable choice of ϕ, p and q, f(≫ (z)) = Lz (Schneider et al., 2023).
Importantly, we can separate a meaningful fit from random data as expressed in:

Theorem 1. Assume ψ∗ is a minimizer of the generalized InfoNCE loss under the ICA problem
in Def. 2 for G = 1 parts in the limit N → ∞. Assume the observable factors c with z = γ(c)
are independent of z. Then, ψ∗ = const. is the trivial solution with limN→∞ LN [ψ

∗] = log N.

Proof Sketch. The minimizer of the contrastive learning objective is ψ(x, y) = log p(y|x)/q(y|x)+
C(x). Assume that the latents z are independent from the used labels c, then we have
ψ(x, y) = C(x) = ψ∗(x) independent of x. Inserting into the objective functions gives
L[ψ∗] = log N. The full proof is given in below, “Proof of Theorem 1”.

To identify the ground-truth attribution map, we apply this learning scheme to
each partition of the latent variables. In addition, we need to regularize the Jacobian
matrix (Hoffman et al., 2019) of the feature encoder to become minimal. With these
constraints, we obtain the objective function for Regularized Contrastive Learning
(RegCL) for all parts of the representation:

LN [ψ; λ] = E
x∼p(x),

x+∼pi(x+|x) ∀i∈[G]
x−1 ...x−N∼q(x−|x)

[
G

∑
i=1

(
− ψi(x, x+i) + log

N

∑
j=1

eψi(x,x−j)
)
+ λ∥Jf(x)∥2

F

]
. (8.3)

where Jf(x) is the Jacobian of the feature encoder f optimized as part of ψ, ∥ · ∥F

denotes the Frobenius norm and λ is a hyperparameter tuned based on the learning
dynamics. λ is tuned to the highest value possible that still allows the InfoNCE
component of the loss to stay at its minimum. Intuitively, this loss function solves G
non-linear ICA problems using the single feature encoder f — for observable zi = γi(ci)

robust machine learning 179

we leverage supervised contrastive learning with continuous labels (Chapter 7), for the
non-observable zG we apply time-contrastive learning using the time-series structure
(Hyvärinen & Morioka, 2016; Schneider et al., 2023).

Theorem 2. Consider a non-linear ICA problem with mixing function≫ mapping latent factors
z to a signal space such that x =≫ (z) according to Def. 2. Let Aij = 1{∃z : |∂gi(z)/∂zj| ̸=
0} be the entries of the global attribution map of the mixing function. Assume that in the limit
N → ∞, the differentiable feature encoder f minimizes the regularized contrastive loss (Eq. 8.3)
on p(z). Then, we identify the global attribution map through the pseudo-inverses J+f (x),

A = J+f (x)⊙ L(x), (8.4)

up to component-wise scaling L(x) of the entries.

Proof Sketch. The individual parts of the loss function result in ψ(x, x′) = log pi(z′i|zi)/q(z′i)
from which a linear indeterminacy follows, fi(g(z)) = Liz. We can express the result as
f(g(z)) = Lz where L is a block-diagonal matrix with zeros in its lower block triangular
part. Hence, L−1 will have the same property. It then follows that Jf(x)Jg(z) = L and
since Jf has minimum norm everywhere, J+f (x) is the Moore-Penrose pseudo-inverse of
Jg(z)L−1. Multiplication with L−1 does not alter the location of zero entries in Jg(z),
and hence thresholding J+f (x) across samples x in the dataset is an estimator of the
ground-truth attribution map. The full proof is given below, “Proof of Theorem 2”.

Experimental verification

Experiment setup To verify our theory, we generate a synthetic dataset following Def. 2,
cf. Appendix, “Synthetic data design” for details. We sample 10 different datasets
with 100,000 samples, each with a different mixing function≫. The mixing functions
consist of randomly initialized 3-layer MLPs (Hyvärinen & Morioka, 2016) and we
ensure injectivity by monitoring the condition number of each matrix layer, following
previous work (Hyvärinen & Morioka, 2016; Zimmermann et al., 2021b). Similar to
Schneider et al. (2023), the feature encoder f is an MLP with three layers followed by
GELU activations (Hendrycks & Gimpel, 2016b), and one layer followed by a scaled
tanh to decode the latents. We train on batches with 5,000 samples each. The first 2,500

training steps minimize the InfoNCE or supervised loss with λ = 0, we then ramp up λ

to its maximum value over the following 2,500 steps, and continue to train until 20,000

total steps. We compute the R2 for predicting the observable factors c from the feature
space after a linear regression, and ensure that this metric is close to 100% for both
our baseline and contrastive learning models to remove performance as a potential
confounder.

As a comparison to previous work, we vary the training method (hybrid contrastive,
supervised contrastive, standard supervised) and consider baseline methods for esti-
mating the attribution maps (neuron gradients, Mudrakarta et al., 2018; Simonyan et al.,

robust machine learning 180

Table 8.1: Comparison of attribution methods (rows), and combinations of train-
ing/regularization schemes (columns). Our proposed method uses regularized hybrid con-
trastive learning. Numbers average across different configurations of number of factors (4 to
9), for 10 different datasets. Sub- and superscript values denote the 95% confidence interval
obtained through bootstrapping (n=1,000).

supervised supervised contrastive hybrid contrastive
none regularized none regularized none regularized

attribution method (RegCL)

Neuron Gradient 79.281.0
77.4 93.094.5

91.5 80.682.4
78.8 86.789.0

84.6 79.281.0
77.5 88.090.1

85.8

Feature Ablation 83.184.8
81.3 88.590.0

87.0 84.085.6
82.1 84.786.5

82.8 82.984.5
81.3 85.286.9

83.4
Integrated Gradients 81.082.7

79.2 84.986.6
83.1 81.983.7

80.2 82.384.3
80.5 83.985.6

82.1 86.988.8
84.9

Shapley, shuffled 82.083.7
80.3 89.290.8

87.6 83.384.9
81.4 84.686.6

82.6 81.683.2
80.1 85.187.1

83.0

Shapley, zeros 81.082.8
79.3 84.986.8

83.1 82.083.7
80.2 82.484.3

80.4 81.683.4
79.9 83.285.0

81.2

J+f (ours) 76.978.7
74.9 92.994.5

91.5 77.579.4
75.5 86.188.3

83.8 87.989.5
86.3 98.298.9

97.4

2013, integrated gradients, Shrikumar et al., 2018; Sundararajan et al., 2017, Shapley
values, Lundberg and Lee, 2017; Shapley et al., 1953, and feature ablation, Molnar, 2022),
which are commonly used algorithms in scientific applications (Molnar, 2022; Samek
et al., 2019). To compute these attribution maps, we leveraged the open source library
captum (Kokhlikyan et al., 2020). We also compare regularized and non-regularized
training. Hyperparameters are identical between training setups, the regularizer λ, and
number of training steps are informed by the training dynamics.

Regularized, hybrid contrastive learning identifies the ground truth attribution map. Table 8.1
shows the AUC for recovering using combinations of training schemes (supervised,
supervised contrastive, hybrid contrastive), Jacobian regularization, and methods for
estimating attribution methods. We investigate the effect of the different factors with
an ordinary least squares (OLS) ANOVA (F=17.0, p<1e-5) followed by a Tukey HSD
posthoc test, see Appendix, “Statistical analysis” for statistical methods and full results.
Both the combination of regularized training followed by estimating the pseudo-inverse
(p<0.01), and combining regularized training with hybrid contrastive learning (p<0.001)
significantly outperform all considered baselines.

Contrastive learning is critical for large numbers of latent factors. The importance of
using hybrid contrastive learning (which can identify the latent factors) becomes most
apparent with an increasing number of latent factors, as we would expect in a realistic
dataset. Figure 8.2 shows the variation in performance as we keep the number of
observable factors fixed at 2 and vary the number of total latents from 4 to 9 variables.
Beyond this value, the drop in R2 becomes too large, prohibiting us to compute a
meaningful attribution map. Performance scales with the number of available training
samples, and we observed that increasing dataset size besides 100,000 samples allows
to work with even higher numbers of latents.

robust machine learning 181

4 5 6 7 8 9

Latent dimensionality

75

80

85

90

95

100
AU

C
[%

]

J+
f (ours)

Neuron Gradient
Feature Ablation

Integrated Gradients
Shapely Shuffle
w/o regularization

none reg.

Neuron Gradient 69.372.4
66.0 91.995.3

88.3

Feature Ablation 77.180.4
73.8 86.789.9

83.1
Integrated Gradient 77.579.6

75.4 86.889.9
83.4

Shapley shuffled 74.477.5
71.2 87.591.0

84.0
Shapley, zeros 75.878.7

72.6 85.388.6
82.0

J+f (ours) 84.286.7
81.2 99.299.8

98.4

Figure 8.2: RegCL (ours, black) and super-
vised baselines AUC vs.# of latent factors.

Table 8.2: Contrastive learning (CL) can es-
timate attribution maps w.r.t. latent factors:
Results for identifying the attribution map,
avg. across 10 seeds and 4–9 latents.

Hybrid contrastive learning allows attribution computation with latent factors. In contrast to
supervised algorithms, hybrid contrastive learning allows us to estimate the attribution
map with respect to latent factors, i.e., we treat z1 as the observable, and z2 as the latent
factor. With hybrid contrastive learning, we can continue to estimate the attribution
map at AUC=99.2% (Table 8.2).

Related Work

There are two main approaches to model understanding. The first approach is to use
interpretable models from the start, e.g., linear regression. The second approach is
to explain complex models using post-hoc interpretability methods. Unfortunately,
the first approach is often not feasible due to complex non-linearities in the data,
and therefore we focus on the second approach, making use of methods that will be
discussed below, such as saliency maps.

Depending on the type of explanation we want to obtain, there are different post-
hoc interpretability methods available in the literature (Samek et al., 2019). First, we
can differentiate between local and global explanations. Global explanations provide an
interpretable description of the behavior of the model as a whole. Local explanations pro-
vide a description of the model behavior in a specific neighborhood/for an individual
prediction.

In the case of local explanations, we can categorize the methods (non-extensively)

robust machine learning 182

in the following way:

Feature attribution methods are explanations where we assign a weight to each feature
in the input space that indicates its importance or effect. We can distinguish between:

• Perturbation based compute a relevance score by removing, masking or altering
the input, running a forward pass on the new input and measuring the difference
with the original input. Methods include LIME or SHAP (Lundberg & Lee, 2017;
Ribeiro et al., 2016).

• Gradient based methods locally evaluate the gradient ∂ f /∂xi or variations of it (e.g.,
absolute value of the gradient). Methods include Integrated Gradients, Smooth-
Grad, or Grad-CAM (Selvaraju et al., 2017; Smilkov et al., 2017; Sundararajan
et al., 2017).

• Propagation based methods decompose the prediction of the network going back-
ward (from output to input) following some propagation rules. Common methods
are Deep Taylor decomposition and Layer Relevance Propagation (LRP) (Bach
et al., 2015; Montavon et al., 2017).

Prototype-based methods are methods based on creating a prototype in the input domain
that is interpretable and representative of the abstract learned concept, such as activation
maximization (van den Oord et al., 2018). This is used to answer questions such as:
What type of input is easier to mis-classify?

For global explanations we can differentiate between:

• Meta-explanations methods aggregate and analyze a collection of multiple individ-
ual explanations to identify general patterns in the model behavior. A recent
example is SpRAy (Lapuschkin et al., 2019), which computes meta-explanations
by clustering individual heatmaps.

• Representation-based methods analyze intermediate representations of a neural
network. An example of this approach is network dissection (Bau et al., 2017),
which consists of evaluating the semantics of hidden units to determine the
model’s reliance on concepts that are semantically similar to humans. Another
example is TCAV (Kim et al., 2018), which measures the sensitivity of a model’s
prediction in terms of user-defined concepts.

• Model distillation methods create a simpler and more interpretable model that is
constructed such that it mimics the original model’s predictions. An example is
using decision trees (Bastani et al., 2017).

robust machine learning 183

Causal discovery and Identifiability The goal of causal discovery is to learn the causal
structure of the data, often represented as a Directed Acyclic Graph (DAG) (Pearl, 2009;
Peters et al., 2017). Importantly, there is a deep connection between causal discovery
and identifiability as both aim to infer the ground truth data generating process. As
a result, a growing number of studies are showcasing this connection (Morioka &
Hyvarinen, 2023; Reizinger et al., 2022).

Additional Discussion and Limitations

We demonstrated a theoretically grounded algorithm for estimating attribution maps
with identifiability guarantees. While we were able to demonstrate its performance on
synthetic datasets matching the theoretical conditions up to real-world data.

Our theoretical results currently hold for fully converged contrastive learning
models and true minimizers of the InfoNCE loss (van den Oord et al., 2018) in the limit
of infinite data. While Wang and Isola (2020) show favorable properties of contrastive
learning in limited data settings, which can be confirmed by our finite data experiments,
it is less straightforward to theoretically connect the quality of the attribution score to
the goodness of fit of the model. For the purpose of this work, we show that the R2 of
recovering the observable factors is a good indicator, and recommend comparing this
to the theoretically best result (of a supervised baseline).

In future work, the presented results should be extended and studied under various
violations of the data-distributions, and scaled to real-world datasets.

Conclusions

We proposed a novel approach for estimating attribution maps in time-series data
based on regularized, hybrid contrastive learning. Scientific inference in non-linear
problems requires identifiable attribution maps estimated for the data generating process.
We theoretically and empirically showed that contrastive learning can be leveraged
to estimate this map by inverting the data generating process. Our empirical results
demonstrate the importance of estimating all latent variables along with the observable
factors for effective estimation of the attribution map. In future extensions of this work,
we will apply our approach to real scientific data, e.g., for applications in neuroscience.
Even beyond, we think that our findings might spark future work in improving the
estimation of global explanations in vision, speech, and language.

Theory

We will now derive identifiability guarantees for the global attribution map under the
ICA model described in the main paper. Given a data generating process and a ground
truth global attribution map of the data generating process, we aim for a guarantee of

robust machine learning 184

the form
Ĵg = Jg ⊙ L (8.5)

for a suitable estimator Ĵg up to a matrix L that scales the ground truth derivatives in Jg

point-wise and will hence not affect the “real zeros” in the Jacobians relevant for Def. 3.
We use contrastive learning to obtain a feature encoder f which identifies the

ground-truth latents up to a linear indeterminacy. We structure this feature encoder to
reconstruct different parts of the latent representation in different dimensions of the
reconstructed latent space.

Then, we estimate the attribution map by computing the pseudo-inverse of the
feature encoder’s Jacobian, which is directly related to the Jacobian of the mixing
function. To obtain the correct pseudo-inverse, we need to obtain a minimum-Jacobian
solution of the feature encoding network. We hence introduce a new regularized
contrastive learning objective.

The underlying constrained optimization problem is

min
f
∥Jf(x)∥2

F s.t. ϕi(fi(x), fi(y)) = log
pi(y|x)
q(y|x) + Ci(x) ∀i ∈ [G], (8.6)

with the positive sample distribution pi and the negative sample distribution q. We
call (x, y+) the positive pair, and all (x, y−i) negative pairs. In the following we define
ψi(x, y) := ϕi(fi(x), fi(y)) where f := [f1; . . . ; fG] is the feature encoder and ϕi are
similarity metrics. We re-state the RegCL objective function which is a relaxation of
Eq. 8.6:

LN [ψ; λ] = E
x∼p(x),

y+∼pi(y|x) ∀i∈[G]
y−1 ...y−N∼q(y|x)

[
G

∑
i=1

(
− ψi(x, y+

i) + log
N

∑
j=1

eψi(x,y−j)
)
+ λ∥Jf(x)∥2

F

]
. (8.7)

In principle, this objective is able to identify an arbitrary amount of separate factor
groups (G), given sufficient capacity of the model. The choice of ψi for the individual
parts of the feature representation depends on the exact distribution underlying data
generation, and is discussed below.

Preliminaries

Before proving our results on identifiable attribution maps, it is useful to restate a
few known results from the literature, concerning properties of the InfoNCE loss.
Hyvarinen et al. (2019) showed that contrastive learning with auxiliary variables is
identifiable up to permutations or linear transformations for conditionally exponential
distributions. Zimmermann et al. (2021b) related this to identifiability for models
trained with the InfoNCE loss, and showed that assumptions about the data-generating
process can be incorporated in to the choice of loss function. Schneider et al. (2023) then
formulated a supervised contrastive learning objective based on selecting the positive

robust machine learning 185

and negative distributions in the generalized InfoNCE objective.
We will first re-state the minimizer of the InfoNCE loss (Def. 8.2) used in our

algorithm:

Proposition 2 (restated from Chapter 7, Schneider et al. (2023)). Let p(·|·) be the con-
ditional distribution of the positive samples, q(·|·) the conditional distribution of the negative
samples and p(·) the marginal distribution of the reference samples. The generalized InfoNCE
objective (Def. 8.2) is convex in ψ with the unique minimizer

ψ∗(x, y) = log
p(y|x)
q(y|x) + C(x), with LN [ψ

∗] = log N −DKL(p(·|·)∥q(·|·)) (8.8)

for N → ∞ on the support of p(x), where C : Rd → R is an arbitrary mapping.

Proof. See Chapter 7 and Schneider et al. (2023), but note that we added the batch size
N.

We also re-state

Proposition 3 (restated Proposition 6 in Schneider et al. (2023)). Assume the learning
setup in Def. 1 (Schneider et al., 2023), and that the ground-truth latents u1, . . . , uT for each
time point follow a uniform marginal distribution and the change between subsequent time steps
is given by the conditional distribution of the form

p(ut+∆t|ut) =
1

Z(ut)
exp δ(ut+∆t, ut) (8.9)

where δ is either a (scaled) dot product (and ut ∈ Sn−1 ⊂ Rd lies on the (n− 1)-sphere Sn−1)
or an arbitrary semi-metric (and ut ∈ U ⊂ Rd lies in a convex body U). Assume that the
data generating process g with sst = g(ut) is injective. Assume we train a symmetric CEBRA
(Schneider et al., 2023) model with encoder f = f′ and the similarity measure including a fixed
temperature τ > 0 is set to or sufficiently flexible such that ϕ = δ for all arguments. Then
h = h′ = g ◦ f is affine.

Proof. For δ being the dot product, the result follows from the proof of Theorem 2 in
Zimmermann et al. (2021b). For δ being a semi-metric, the result follows from the proof
of Theorem 5 in Zimmermann et al. (2021b).

Positive distributions for self-supervised and supervised contrastive learning

Self-supervised contrastive learning Up to one of the parts in the latent representation
z can be estimated using self-supervised learning by leveraging time information in
the signal. The underlying assumption is that latents vary over time according to a
distribution we can model with ψ. For instance, Brownian motion p(z(t+1)|z(t)) =

N (z(t+1) − z(t)|0, σ2I) can be estimated by selecting ϕ(x, y) = −∥x − y∥2. On the
hypersphere with a vMF conditional across timesteps, the dot product is a suitable

robust machine learning 186

choice for ϕ(x, y) = x⊤y. Due to Proposition 3, this training scheme is able to identify
the ground truth latents up to a linear indeterminacy.

Supervised contrastive learning For supervised contrastive learning, we uniformly sam-
ple a timestep (and hence, a sample x) from the dataset. This timestep is associated to
the label c, and we then sample c′ from the conditional distribution p(c′|c). We select
the nearest neighbour to c′ with the corresponding sample x′.

The conditional distribution p(c′|c) can be constructed as an empirical distribution:
For instance, if we assume non-stationarity, c(t−1) − c(t) can be computed across the
dataset. Let us call this distribution p̂(c′ − c). Then, sampling from p(c′|c) can take the
form of sampling c′ = c + ∆ with ∆ ∼ p̂(c′ − c).

If this approximation is correct under the underlying latent distribution, have we
have p(c′|c)det J−1

γ (c′) = p(z′|z). This means that the solutions of the supervised and
self-supervised contrastive learning solutions coincide.

Superposition of self-supervised and supervised contrastive learning Depending on the
assumptions about the ground truth data distribution, different estimation schemes
can be combined to obtain a latent representation. In the end, the feature encoder f
should identify the original latents z up to a linear transformation,

f(g(z)) = Lz. (8.10)

Our goal is to obtain block-structure in L, with zeros in the lower block triangular part
of the matrix.

This is possible by simultaneously solving multiple contrastive learning objectives,
which requires

fi(g(z)) = Liz. (8.11)

for each part i of the latent representation. Assume without loss of generality that we
apply self-supervised contrastive learning to the G-th part, and supervised contrastive
learning to all remaining parts. For supervised contrastive learning we then obtain

fi(g(z)) = Liz = L′izi. (8.12)

If all latents z satisfy the conditions for time-contrastive learning, we can then also
apply time-contrastive learning to the full representation, which gives us the following
constraints:

fi(g(z)) = Liz = L′izi ∀i ∈ [G− 1] (8.13)

f(g(z)) = Lz (8.14)

from which we can follow the matrix structure

f(g(z)) = diag(L1, . . . , LG) (8.15)

robust machine learning 187

In cases where this is not possible, note that it is always possible to treat all
contrastive learning problems separately, and learn separate regions of the feature
space in f. This gives the same result, but re-uses less of the representation (e.g.,
the self-supervised part of the representation would be learned separately from the
supervised part).

Consider a time-series dataset where p(zt|zt−1), i.e., all latents, follow Brownian
motion. We can then produce the solution

ψi(x, x′) :=ϕi(fi(x), fi(x′)) = log
p(c′i|ci)

q(c′i|ci)
i ∈ {1, . . . , G− 1} (8.16)

ψG(x, x′) :=
G

∑
i=1

ϕi(fi(x), fi(x′)) = log
p(z′|z)
q(z′|z) = log

p(z′G|zG)

q(z′G|zG)
+

G−1

∑
i=1

log
p(c′i|ci)|J−1

γi
(z′i)|

q(c′i|ci)|J−1
γi (z

′
i)|

(8.17)

in case our training distributions for supervised contrastive learning, p(ci|ci) are a
sufficiently good approximation of the variation in the ground truth latents, we can
select ψG(x, y) := ϕ(f(x), f(y)) to be trained on the whole feature space using self-
supervised learning, while all other objectives on ψi would solve supervised contrastive
losses. If this training setup is not possible, it would be required to parametrize
ψG(x, y) := ϕ(f(x), f(y)) as a separate part of the feature space.

While it is beyond the scope of the current work to thoroughly investigate the
trade-offs between the two methods, our verification experiments assume the former
case: The time contrastive objective is applied to the whole objective function, and the
behavior contrastive objective to the previous latent variable groups.

Proof of Theorem 1

An interesting property of contrastive learning algorithms is the natural definition of
a “goodness of fit” metric for the model. This goodness of fit can be derived from
the value of the InfoNCE metric which is bounded from below and above as follows
(Schneider et al., 2023):

log N − DKL(p||q) ≤ LN [ψ] ≤ log N. (8.18)

In scientific applications, we can leverage the distance to the trivial solution log N
as a quality measure for the model fit. Theorem 1 states that if during supervised
contrastive learning with labels c there is no meaningful relation between c and x, we
will observe a trivial solution with loss value at log N.

For the following proof, let us recall from Def. 2 that we can split the latents z that
fully define the data through the mixing function, x = g(z). We can split z into different
parts, z = [z1, . . . , zG] and assume that ci is the observable factor corresponding to the
i-th part. For notational brevity, we omit the i in the following formulation of the proof
without loss of generality.

robust machine learning 188

Proof of Theorem 1

Proof. Assume that the distribution p is informed by labels. In the most general case,
we can depict the sampling scheme for supervised contrastive learning with continuous
labels c and c′ and latents z and z′ with the following graphical model:

z z′

c c′

The reference sample x is linked to the observable factor/label c, and the conditional
p(c′|c) links both samples. In particular, z′ and hence x′ are selected based on c′ in the
dataset.

The distributions for positive and negative samples then factorize into

p(z′|z) =
∫ ∫

dc′dcp(z′|c′)p(c′|c)p(c|z) (8.19)

q(z′|z) =
∫ ∫

dc′dcp(z′|c′)q(c′|c)p(c|z) (8.20)

and note that only p(c′|c) and q(c′|c) are selected by the user of the algorithm, the
remaining distributions are empirical properties of the dataset.

We can compute the density ratio

p(z′|z)
q(z′|z) =

∫ ∫
dc′dcp(z′|c′)p(c′|c)p(c|z)∫ ∫
dc′dcp(z′|c′)q(c′|c)p(c|z) (8.21)

In the case where latents and observables are independent variables, we have p(z′|c′) =
p(z′) and p(c|z) = p(c). The equation then reduces to

=

∫ ∫
dc′dcp(z′)p(c′|c)p(c)∫ ∫
dc′dcp(z′)q(c′|c)p(c)

(8.22)

=
p(z′)

∫ ∫
dc′dcp(c′|c)p(c)

p(z′)
∫ ∫

dc′dcq(c′|c)p(c)
= 1. (8.23)

Consequently, the minimizer is ψ(x, y) = C(x) and we obtain the maximum value
of the loss with L[ψ] = log N in the limit of N → ∞. Note, for any symmetri-
cally parametrized similarity metric (like the cosine or Euclidean loss), it follows that
ψ(x, y) = ψ is constant, i.e., the function collapses onto a single point.

robust machine learning 189

Proof of Theorem 2

Proof. If f is a minimizer of the InfoNCE loss under the assumed generative model, it
follows that we part-wise identify the underlying latents,

f(g(z)) = Bz (8.24)

with some block diagonal matrix B. By taking the derivative w.r.t. z it follows that

Jf(x)Jg(z) = B. (8.25)

We need to show that at each point z in the factor space, we can recover Jg up to some
indeterminacy. We will re-arrange the equation to obtain

Jf(x)Jg(z)B−1 = I, (8.26)

Jf(x)J̃g(z) = I. (8.27)

It is clear that for each point in the support of p, Jf(x) is a left inverse of J̃g(z).

Jf(x) = J̃+g (z) + V, vi ∈ ker J̃g(z) (8.28)

Among these solutions, it is well-known that the minimum norm solution J∗ to

min
J(z)
∥J(z)∥2

F s.t. J(z)Jg(z) = I (8.29)

is the Moore-Penrose inverse, J∗(z) = J̃+g (z). By invoking assumption (2), we arrive at
this solution and have

Jf(x) = J̃+g (z) (8.30)

J+f (x) = J̃g(z) (8.31)

J+f (x) = Jg(z)B−1 (8.32)

Because B is block-diagonal with zeros in the off-diagonal blocks, this also applies to
B−1. It follows that

J+f (g(z)) ∝ Jg(z) (8.33)

concluding the proof.

9
Discussion

In an era of increasingly large datasets in neuroscience, it seems crucial
to develop robust machine learning tools. But why do we even need new ways of
processing and analyzing data?

Firstly, due to the nature of scientific questions posed in neuroscience: How does
neural activity relate to complex, naturalistic behaviors? How and where are highly
structured, yet noisy sensory signals – proprioception, visual scenes, speech, etc. –
parsed and processed to inform future actions? Many such fundamental questions in
neuroscience can likely only be addressed by placing animal models into complex and
naturalistic experimental environments, and performing recordings covering large parts
of their brain1. Structural and dynamical data needs to be integrated to reason about
their relationship, and ideally data from many experiments can be used and integrated
to enhance our understanding of how processing is distributed across various areas of
the brain. Methods that are able to parse and process large datasets can aid both in
hypothesis formation (discovery driven) during a data exploration phase, and be used
for providing evidence towards or against an existing hypothesis (hypothesis driven).

Secondly, much like we require physical understanding of the data acquisition
process through measurement instruments like electrodes, cameras, or the dynamics
of a calcium indicator, we need to advance our understanding of machine learning
algorithms to utilize them effectively and reliably in an experimental setup. We want to
analyze data recorded from complex experimental setups, usually without underlying
clear mathematical theories like e.g., in physics, and still be able to trust the data
processed and analyzed with our machine learning tools. The data complexity can arise
either from naturalistic behaviors (yielding high-dimensional behavioral recordings

1If these recordings are performed across multiple recording sessions, we additionally need to solve
the problem of data integration across these different sessions.

robust machine learning 192

with a lot of variability), the use of naturalistic stimuli (real world images/videos
instead of synthetic, hand-designed stimuli like gratings), and from the acquisition
systems used which record high-dimensional data (e.g., high resolution videos) at high
spatial and/or temporal frequencies.

Finally, large scale recordings and closed-loop design of experiments can potentially
speed up scientific discovery, and the kind of discoveries that are possible. When
experimental setups are constrained (by the areas to record from, the recording time,
etc.) in a classical hypothesis-driven approach to scientific inference, experimenters
need to employ heuristics based on their current incomplete knowledge of the system
behavior. With easier access to recordings, it is possible to find patterns that would have
been otherwise missed due to this a priori sub-selection of data. The dichotomy between
this form of data-driven and the typical form of hypothesis-driven research has been
extensively (and controversially) discussed, see Zalta (2020) for an overview. However,
Mazzocchi (2015) summarize that “[the] data-driven approach constitutes a novel tool
for scientific research”, and will supplement, rather than replacing the established,
hypothesis-driven way of conducting experiments. Yet, we can argue that data-driven
design of experiments allows a two-step process where a large dataset is first used
to find potentially interesting or even unexpected patterns in the data, followed by
employing the established toolbox of hypothesis-driven inference to investigate the
cause of an observed phenomenon. For instance, neuron populations in unexpected
areas could be discovered by such a data-driven approach and a suitable attribution
technique, followed by an experiment employing optogenetics, lesions, or other means
of interventions to causally study the role of these populations.

In the context of this motivation, I presented progress on machine learning systems
suitable for both the data processing (Chapters 2–5) and data analysis (Chapters 6–7)
phases, and for informing hypotheses relevant for the next data collection phase through
interpretable machine learning (Chapter 8). I investigated these algorithms from
the perspective of core machine learning on commonly used and newly constructed
benchmark datasets (Chapters 2–4,6), and in their application within the context on
actual neuroscience datasets (Chapters 7–8). In the following, I will discuss the key
findings in the light of the current research landscape.

The importance of robustness and adaptation for machine vision

In Chapters 2–5, I investigated the application of computer vision systems for data
processing. I started with core computer vision applications and benchmarks in
Chapters 2–4, while Chapter 5 showed the relevance of robustness and adaptation to a
scientific application of pose estimation algorithms.

When applying deep networks to image classification and other data processing
problems, it is crucial to ensure robustness to perturbations and other systematic shifts
at test-time. Sometimes, ad-hoc robustness2 is hard to achieve. In such cases, we fall

2With ad-hoc robustness, I refer to models that are by design robust to any possible perturbation,

robust machine learning 193

back to the model’s ability to adapt to a perturbation or distribution shift at test-time,
and to make this problem feasible, allow access to samples from the test-distribution.

I explored these topics from the perspective of both gradient-free (Chapter 2) and
gradient-based model adaptation (Chapters 3 and 4). I, along with my collaborators,
proposed new adaptation methods, datasets, and benchmarking setups. Availability of
suitable evaluation protocols and baseline methods is crucial to ensure the measurement
of progress in the field.

Batch norm adaptation presented in Chapter 2 showed the large discrepancy in the
evaluation of test-time adaptation tools based on the respective evaluation scenario.
In the context of applications in the life sciences, distribution shifts commonly occur
systematically, rather than abruptly changing between subsequent samples in a dataset.
This can be due to changes in the recording setup, camera systems and their perspective,
the light source during imaging, surroundings or image background, the reference
electrode during electrophysiological recordings, or also the identity of the animal. For
instance, Zhao et al. (2020b) discuss such fluctuations for retinal recordings based on
small variations in temperature, light conditions and expression levels of their used
biosensor. Goh et al. (2017) discuss these effects more broadly in biological data analysis.
The WILDS benchmark (Koh et al., 2020) which I used in Chapter 3 also have multiple
examples of biological datasets3. Adapting our evaluation protocol to acknowledge
this evaluation setup, and developing methods like Batch Norm adaptation targeted at
it, allowed consistent gains in classification performance.

While batch norm adaptation is crucial for the evaluation of models under system-
atic domain shift, it also fell short of adapting very large models, or models readily
trained on large, diverse datasets. In this context, I investigated self-learning objectives
that allowed to fine-tune the model during deployment. These techniques can success-
fully adapt models on all scales, regardless of their “history”, i.e., training or existing
adaptation objectives. While powerful, a very important limitation of these works is
their instability over longer adaptation timescales. Yet, and importantly, we saw that all
tested models – small or large in terms or parameters, and trained on small or large
scale datasets – could benefit from additional adaptation to their test domain. However,
in the light of the instability of these approaches it remains an open question whether
this gain in performance is worth the potential safety implications during deployment.

In subsequent work (Niu et al., 2022b; Wang et al., 2022), multiple attempts have
been made to mitigate this “collapse” behavior of self-learning objectives, but so far
with limited success: In Chapter 4, I critically examined the existing progress, and
demonstrated that a “memory-less” method based on periodic model resetting can
outperform or perform on-par with existing state-of-the-art approaches. Up to date, we
were unable to find a technique that is effective at adapting a pre-trained model while
keeping the history of knowledge of its adaptation path and meaningfully improves

or distribution shift, without access to further information or examples from the test distribution. See
Chapter 2 for an extensive discussion.

3Camelyon17: whole slide imaging, RxRx1: cell images, OGB-MolPCBA: molecular graphs

robust machine learning 194

over our baseline. Our work also again highlighted the importance of benchmark
design: Based on previous practices, it was in some cases not possible to detect the
collapsing behavior of certain algorithms on the established benchmarks. Our dataset,
CCC, extended these previous benchmarks by an order of magnitude in length4.

How do considerations of robustness and adaptation relate to real-world applica-
tions of vision algorithms? In Chapter 5, I studied this question in the context of an
application in pose estimation. In experimental recording setups, two big sources of
variation can be the recorded subject (i.e., the identity of an animal), and changes in the
recording setup itself through use of different cameras or their positioning, environmen-
tal conditions, etc. How to build models that perform favorably in these conditions? In
computer vision, a question was whether transfer learning from ImageNet-pretrained
weights is required for good downstream task performance. He et al. (2018) showed
that on downstream tasks like object recognition, training networks from scratch can
match transfer learning performance, if the optimization setup is carefully designed.

In Chapter 5 I investigated this finding for the case of evaluating ImageNet-
pretrained models for pose estimation. My colleagues and I designed two datasets,
Horse-10, and Horse-C, which introduce different distribution shifts, allowing us to
benchmark the performance of models within-domain (no corruption applied, train/test
animal identities match) and compare this to out-of-domain performance (by adding
image corruptions, varying the animal identity, or both). Our study replicates the
finding of He et al. (2018) for the in-domain data, but shows that for out-of-domain
robustness to either shift, pre-training makes a considerable difference.

This is relevant for the design of future models: Up to date, pose estimation
toolboxes like DeepLabCut use ImageNet pre-trained weights – however, potentially
other pre-training tasks can further improve over ImageNet pretraining. Current
work on “SuperAnimal models” (Ye et al., 2023a) investigates more general ways of
pre-training better suited for pose estimation.

It is an interesting question how the field of robustness and adaptation will evolve in
the era of foundation models. An effect I observed was that very large models obtained
by weakly supervised pre-training (Mahajan et al., 2018) or noisy student pre-training
(Xie et al., 2020a) considerably improved base model performance. While self-learning
was still effective at further improving model performance, other techniques like batch
norm adaptations had no additional effect on performance in these larger models.
Without dismissing work on adaptation, today the most effective (and pragmatic)
approach to achieving robust generalization is large-scale pre-training, covering as
many meaningful variations through large datasets and/or data augmentation as
possible. Some examples include CLIP (Radford et al., 2019) and noisy student training
(Xie et al., 2020a) which were however both trained on proprietary datasets. Replication

4CCC is also suitable for generating even longer benchmarking runs with identical methodology, and
the open source code base my colleagues and I released is suitable for such follow up studies. However, as
of now, the current length seemed sufficient for approximating the asymptotic behavior of the considered
algorithms.

robust machine learning 195

efforts like OpenCLIP (Cherti et al., 2023; Ilharco et al., 2021) also exists on datasets
like LAION-5B (Schuhmann et al., 2022).

Do foundation models alleviate the need for adaptation algorithms? Probably
not, for two reasons: Firstly, an obvious downside of such large models is higher
deployment cost, higher latency during inference, etc. The question of how task-
relevant knowledge can be distilled into smaller models in itself is tightly related to the
discussed class of adaptation methods, and smaller models are again more likely to
benefit from adaptation. Secondly, I showed that even such large models can benefit
from adaptation. Arguably, adaptation of models at test-time should always improve
model performance with the right objective, as it effectively focuses a model’s scope to
a more narrow task or domain. Thirdly, beyond the work presented here, also currently
employed large-language models (LLMs) are usually used in conjunction with further
fine-tuning, potentially continually when deployed alongside a feedback workflow.
This makes research on optimal adaptation mechanisms very relevant, and e.g. low
rank adaptation (LoRA; Hu et al., 2021) is widely used in this context.

To apply adaptation methods in outcome-sensitive domains like the life sciences
and health, further work is needed on objective functions suitable for adaptation on
long-time scales. Algorithms should be empirically, and ideally theoretically stable
also in the asymptotic limit of very long deployment times. As of now, usage of large
pre-trained models promises the largest gains in model robustness. If processing time
and memory requirements are not the main bottleneck, modern foundation models can
be considered the most pragmatic solution to obtaining robust predictions in practice.
The largest challenge in applying adaptation techniques in practice are their missing
safety guarantees: Truly continual robust adaptation is still not practically possible, and
if it is, only with marginal or no improvements over more naïve baseline algorithms.

The importance of identifiability for scientific inference

The second theme in this work, explored in Chapters 6–8, are the opportunities
of identifiable representation learning algorithms (e.g., self-supervised learning) for
applications in neuroscience. In contrast to the first theme, here the ML system is
not used to process the data. Instead, we aim to perform statistical inference, and
gain insights into the dataset, and/or evidence in favor or against our hypothesis.
Ideally, such data analysis can then lead to formation of new hypotheses, and inform
the collection of data in the next iteration of the experiment, or inform the design of
interventions.

Is identifiability strictly required for representation learning algorithms in this con-
text? On purely technical applications in speech, vision and language, the trend today
is towards large scale models that use objectives like next of sequence prediction (Rad-
ford et al., 2019) or denoising autoencoders (Devlin et al., 2019) using the transformer
architecture at scale (Vaswani et al., 2017). While some theory exists for identifiability
of e.g. a GPT model trained on sequences (Roeder et al., 2021), and identifiability for

robust machine learning 196

variational autoencoders is well-understood (Khemakhem et al., 2020a), it is less clear
on how to expand such results in masked auto-encoding frameworks for continuous
valued data5. The previous generation of self-supervised learning models was powered
by contrastive learning, which also became successful in supervised learning contexts
for classification (Khosla et al., 2020) and are still popular as multi-modal text-image
foundation models (Radford et al., 2021).

In Chapter 6, I investigated the connection of modern contrastive learning al-
gorithms trained with the InfoNCE objective to identifiability through the lens of
non-linear independent component analysis (ICA). Through the design of suitable
loss functions, we can influence the learned representation, and incorporate additional
assumptions about the data generating distribution. Building on earlier work (Hy-
varinen & Morioka, 2016, 2017; Hyvarinen et al., 2019; Wang & Isola, 2020), our work
connects the currently used InfoNCE metrics to assumptions about the data generating
process. I also discussed the empirical trade-offs under violations of these theoretical
assumptions. Notably, my colleagues and I were able to show that these identifiability
guarantees also hold when scaling models to ImageNet-sized datasets6.

For data analysis applications in science, it is crucial that algorithms satisfy such
identifiability guarantees, which hold in empirically relevant settings. This gives a
clean understanding of how assumptions translate into properties of the inferred
representations and models. These assumptions should closely match the realistic
recording settings as best as possible: For instance, if variability in spike statistics and
shapes is known to be present in a neural dataset, an algorithm should not assume an
overly simplified (e.g., Poisson) distribution for modeling.

Given the theoretical and empirical success of contrastive learning across various
disciplines in machine learning Chen et al. (2020a), Mikolov et al. (2013), and Schneider
et al. (2019), I derive loss functions specifically targeted at scientific inference in
Chapter 7, and provide identifiability guarantees for them. This translates into favorable
properties like consistency/reproducibility, and a clean definition of how “latents” and
their dimensionality are defined within this framework. These properties are essential
when applying non-linear algorithms to neuroscientific problems. In Chapter 8, I further
extend these guarantees towards the computation of attribution methods connecting
the latent and signal space for interpretability.

Identifiability for the purpose of interpretability under clear assumptions is also
connected to causal representation learning (Schölkopf et al., 2012). We are interested
in making inferences about the causal structure underlying the data generation, and
dissecting/modeling parts of it. A key question is the relation how elements in the

5One approach to translate from the continuous domain to the discrete is through quantization, as
demonstrated by Baevski et al. (2020b) for applications in speech processing.

6In our case, I proposed the “3DIdent” dataset which is comprised of 250,000 images at size 224×224px,
with controlled variations in the data-generating factors. In image space, there is a lot of interplay between
factors, as e.g. the position of the light source and rotation of the object jointly determine the shade
observable in the image. In addition, the data generating process is explicitly not using a neural net, but a
full rendering pipeline, making it a challenging problem to infer the data-generating factors that art input
to the pipeline.

robust machine learning 197

signal space (neurons, bodyparts, etc.) relate to latent variables inferred by our models.

As an example for the data-driven design of interventions, let us consider the use of
brain-machine interfaces to study population activity during learning and adaptation:
Sadtler et al. (2014) discuss how low dimensional subspaces of activity constrain
adaptations to new tasks. In their case, the “neural manifold” is obtained using PCA,
a linear method. On the considered scale of 100 recording channels this revealed a
10d subspace of interest in which different perturbations (within manifold vs. without
manifold) could be computed. These data-driven interventions were then applied in
subsequent experiments, and used to study learning dynamics over short (Golub et al.,
2018) and long (Oby et al., 2019) timescales.

While these studies used a 2D cursor control task using linear dimensionality
reduction and decoding algorithms, it would be very interesting to leverage non-linear
statistical tools to make such paradigms amendable to even more complex tasks. How
can we efficiently represent and perturb on manifolds modeled by a non-linear feature
encoder, vs. a PCA subspace? How can we compare and measure changes between
these latent embedding spaces, e.g., during learning? These are interesting avenues for
future investigation, and non-linear decoding algorithms offer the opportunity to work
towards these goals.

How can we encourage future algorithm development for identifiable representation
learning? Benchmarking in machine learning was arguably a key driver of success in
terms of methods development. The ability to specify desired properties of algorithms
in forms of benchmark data and evaluation metrics allows objective comparisons (if
agreement about benchmarks exist). Right now, existing neuroscience benchmarks for
latent variable and representation learning models mostly focus on modeling data in
its signal space (i.e., neural activity), e.g. in the benchmarks proposed by Pei et al.
(2021b), Schrimpf et al. (2018), and Turishcheva et al. (2023), which is reasonable given
the strong focus in the field towards generative models (see Introduction, Table 1.1,
or Hurwitz et al. (2021)). Contrastive learning and other self-supervised algorithms
allow to decouple the representation learning phase from the generation of neural
activity. This development puts more emphasis on the original problem – identifying
the latent representation – rather than modeling the neural activity (including task-
and/or representation irrelevant noise). In future benchmarks, we should increasingly
adopt metrics that quantify consistency, recovery of ground-truth factors on synthetic
data, and clear notions on metrics for comparing embedding spaces across subjects
or runs (see e.g., Williams et al., 2021). I made a few proposals in Chapter 7. Such
practices are already common in machine learning, including for the benchmarking
of generative models (Locatello et al., 2019a), and the synthetic and real benchmark
settings I discussed in Chapter 6–8. Progress in this area will ultimately also evolve the
fields agreement on what is considered a “latent space”, “neural manifold”, and will
broaden these terms based on the employed algorithms.

robust machine learning 198

Non-linear, interpretable algorithms for neuroscientific inference

Chapters 7 and 8 introduced non-linear, deep learning based algorithms for statistical
inference in neuroscience. Linking behavior and neural activity is a research question
that might be addressable with the wealth of data we are now able to record (Urai
et al., 2022a), and new algorithms are needed. The primary goal is not to solve a
downstream task (like in a vision, speech or language application in ML), but rather to
collect evidence in favor or against an hypothesis, or help to inform new hypotheses
and experiments based on analysis of experimental data.

The introduction of new analysis tools does not necessarily imply a change in
analysis practice: For instance, PCA is a very commonly used tool to study low
dimensional subspaces of neural activity (Roweis & Ghahramani, 1999). As data
becomes more complex, this approach might fall short of accurately capturing the
signals of interest. Yet, analysis practices on large datasets do not necessarily need to
change: Non-linear analysis tools can fulfill similar goals as e.g. their linear counter
parts – dimensionality reduction, regression, decoding, etc. – although the inner
working of these algorithms will be different, and is potentially more complex. For
instance, linear regression models can use neural activity, and predict the position
or pose of an animal. This allows us to obtain regression coefficients, which can be
tested against the null hypothesis of being zero. The fundamental information we
obtain from such a model is its goodness of fit (for instance, measured by the explained
variance, or R2), as well as defining if a certain neuron is meaningfully involved in
the regression (statistical test for non-zero slope). Hence, the fundamental information
from this model is: (1) How well can we reconstruct the observed behavior, given the
neural data? (2) Which neurons – under this model and mapping between neurons
and behavior – are influencing the behavioral variable in the decoding task?

This is informative, but as we want to scale the number of neurons from 10s or
100s to a 1000s or 10,000s distributed across brain areas, might lack explanatory power.
In these cases, we might be interested in either reducing the complexity from the
1000-10,000 dimensional space of activity vectors to a lower number of latents, or
replacing the linear analysis with and end-to-end non-linear analysis technique. The
fundamental information we would like to obtain from this more complex model does
not change: Which latents (and hence, neurons) are influencing the behavioral variable,
and how good is the model fit?

How can we enable such analysis on more complex datasets that require more pow-
erful models, and potentially non-linear analysis methods? In Chapter 7, I introduced
CEBRA, a non-linear contrastive learning algorithm suitable for self-supervised repre-
sentation on neural and behavioral data individually, and linking both data modalities
with a new variant of supervised contrastive learning.

CEBRA fulfills two goals: First, it is a dimensionality reduction tool which maps
high-dimensional recordings into lower dimensional embedding spaces. This use case
is most similar to linear algorithms like PCA (Pearson, 1901; Roweis & Ghahramani,

robust machine learning 199

1999) or FastICA (Hyvärinen & Oja, 2000). However, CEBRA as a non-linear algorithm
is substantially more flexible in how the data is reduced. Yet, compared to other non-
linear data visualization tools like tSNE (Van der Maaten & Hinton, 2008) or UMAP
(McInnes et al., 2018), the algorithm does not remove information from the original
signal to perform the reduction: All relevant latent information from the original data
is represented in the lower dimensional embedding space. In addition, its (linear)
identifiability guarantees yield consistent results across runs or subjects7. In the context
of large scale data, dimensionality reduction is most useful as it allows to broaden
the analysis scope of existing data analysis workflows: Consider analyses that were
previously executed on smaller datasets of e.g. 10s or 100s or neurons. For instance,
this includes computing tuning curves, decoding behavioral variables with regression
models, or visualizing principal components of the data. With non-linear methods,
the same analyses can now be done on orders of magnitude larger datasets by first
reducing these datasets to a lower dimensional space, and then performing similar
downstream analysis on the resulting latent dimensions.

In Chapter 8, I built on CEBRA and investigate options for computing attribution
maps with identifiability guarantees. Inferring information about how input neurons to
the networks are involved in the computation of a particular latent is useful to design
interventions for follow-up experiments. It is also interesting to view it as a non-linear
extension of statistical testing of each neurons’ individual contribution to a regression
variable we could perform with a linear model: For instance, in regression models,
of the form y = x1w1 + · · ·+ xnwn + b + ϵ we are interested in testing the coefficients
wi of each neuron for a significant deviation from wi = 0, our null hypothesis. In a
non-linear neural net with many layers, such a test is more involved – nevertheless, we
would like to address very similar questions, and quantify the contribution of each
neuron even for a more complicated non-linear interaction with a behavioral variable.

We want to perform statistical inference on the role of individual neurons, and their
computational function within their circuit. At the same time, we want to acknowledge
the complexity and non-linear nature of these systems. As in representation learning,
such feature attribution offer important insights about a biological system. Leveraging
non-linear representation learning tools in this space allows us to obtain individual
neuron’s roles in computations relevant to a particular latent dimension. In this context,
wrong attribution can at least yield false positive results, and at worst generate wrong
scientific conclusions. As with CEBRA, it is therefore necessary to theoretically and
empirically verify guarantees for such tools, and assess their limitations.

Linking behavior to its neural origins is (one of) the key quests in neuroscience, and
doing so under naturalistic conditions requires tools that can handle the complexity of
the real world. I advocated for the use of contrastive representation learning algorithms

7Crucially, such guarantees are testable on synthetic and real datasets. We can sample data according to
our algorithmic assumptions, and empirically test identifiability, also under violations of our assumptions.
On real data, identifiability translates into reproducible results as we repeat an analysis on the same
subject, or consider different subjects undergoing the same experimental setup.

robust machine learning 200

which do not rely on the requirement of accurately modeling the data through a
generative objective.

A current frontier in machine learning is the availability of generative modeling
algorithms based on the transformer architecture (Vaswani et al., 2017) and generative
pre-training (Radford et al., 2019). It is a compelling example, and alternative, to the
use of contrastive learning in the algorithms presented here. It will be certainly an
interesting avenue to explore such pre-training techniques in the context of neural data,
potentially also in the context of integrating data from various modalities (Bachmann
et al., 2022), and recording sessions.

Future work should continue to transfer the best available machine learning ap-
proaches to neuroscientific inference. An important distinction between a machine
learning application in vision, speech, or language compared to a scientific application
is the strong focus on guarantees for interpretability, reliability and robustness for a
scientific application. Such tools should be viewed as statistical methods, and less as
data processing tools, which I discussed before.

Summary

I contributed to two algorithmic areas useful for scientific inference: Firstly, to the
development of more robust and adaptable data processing systems in the context of
computer vision. I discussed the new benchmark paradigm of evaluating robustness
under partial or full availability of the test dataset, and studied the implications of this
evaluation paradigm. With these benchmarks, my colleagues and I could demonstrate
the effectiveness of gradient-free and gradient-based adaptation methods at deployment
time, and also hint towards the open problem of stable, continual adaptation over long
timescales. This work contributed to a now de-facto standard evaluation paradigm that
allows a more holistic performance evaluation of computer vision models in a variety
of deployment scenarios. While the presented work was carried out on benchmark
datasets common in the computer vision community, I showed how these insights
can be transferred to applications in pose estimation and medical image analysis in
multiple follow-up works.

Secondly, I proposed a new framework for identifiable representation learning
on biological data by leveraging contrastive learning. This work draws a connection
between contrastive learning in computer vision and the problem of non-linear ICA,
and leverages these machine learning insights to arrive at a new algorithmic formulation
suitable for scientific inference. Within a single algorithmic framework, my colleagues
and I demonstrated state-of-the art performance in computing consistent embedding
spaces for scientific data analysis, robust decoding of behavioral and sensory data from
brain areas across species and recording modalities, and the combination of discovery-
and hypothesis-driven data analysis. This work in data analysis will ease the transition
to analyzing the increasingly large and complex datasets generated in the life sciences,
aid with discovery-driven analysis of these large datasets, and potentially reduce the

robust machine learning 201

need for animal experimentation by more efficiently combining and exploiting the
datasets within a scientific experiment.

Outlook

Open data in neuroscience research: New opportunities for theoretical, computational,
and experimental collaboration

I distinguished between the data collection, processing and analysis phases. Often-
times, methods and applications for all three phases of scientific experimentation are
developed and executed under a ‘single PI’ model in many research labs. Historically,
a final publication would often only share the processed data that went into the final
analysis, and not the raw dataset in its state before the data processing phase. Sharing
such pre-processed datasets has its role in ensuring reproducibility, but does not allow
to perform explorative re-analysis of a dataset with a different hypothesis or purpose
in mind than the original study.

The lack of openly shared raw data might also be considered problematic from
an ethical standpoint, as reference experiments might be conducted multiple times,
unpublished negative results get replicated by multiple labs, etc. – in contrast, access
to raw data would allow to truly build on top of existing knowledge, and allow to
re-use existing raw data for use cases not originally envisioned or – especially if re-
analysis takes place much later – methodologically not possible at the time of the
primary publication. Today, we see shifts from this model, and initiatives in different
countries work towards encouraging or enforcing data sharing. This includes the data
sharing mandate adopted by the NIH8 in the US or the 3R (replacement, reduction
and refinement of animal experimentation) initiative in Switzerland9. Efforts like the
OpenScope or IBL publish large scale raw datasets, which allow re-analysis beyond
the primary publication, modeled after research collaborations in physics and other
sciences, where data collection is performed by a central entity, and then distributed.
Finally, platforms like Dandi10 facilitate data sharing without a cap on recording sizes11.

Data sharing is effectively a way to encourage a “division of labor” in neuroscience:
Theoreticians can propose experiments, centralized Observatories collect such experi-
ments and execute especially promising and relevant ideas with optimized technology,
and computationalists benefit from the availability of high quality data. This more
distributed effort to neuroscience has the potential of increasing the pace of the field,
increase interdisciplinary work. Machine learning worked under a similar model
for several years now: Datasets and technical artifacts were shared openly in many

8NIH Policy for Data Management and Sharing, effective January 25, 2023, https://grants.nih.gov/
grants/guide/notice-files/NOT-OD-21-013.html

9https://swiss3rcc.org/
10https://dandiarchive.org/
11As of October 10, 2023, the largest structural dataset on Dandi is Dandiset 118, “Light sheet imaging

of the human brain” at 364TB, and the largest functional dataset is the “IBL Brain Wide Map” at 34TB.

https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
https://swiss3rcc.org/
https://dandiarchive.org/

robust machine learning 202

instances, giving labs with smaller resources12 the opportunity to work on topics like
robustness, new benchmarks, analysis, and applications.

Does science need foundation models?

In recent years, “foundation models” (Bommasani et al., 2021) became an important
topic in the machine learning community. Foundation models are trained on large
amounts of data, and can then be flexibly adapted to a variety of tasks in a data-efficient
way. They are interesting in the context of neuroscience in (at least) three very different
ways.

Firstly, as an object of study themselves: Without dismissing previous leaps in the
development of models in speech, vision, and text, current foundation models might be
the first examples of “sufficiently intelligent” systems that are “worth studying”, similar
to the model organisms we use in neuroscience research. Foundation models are com-
monly built on top of the transformer architecture, a very versatile structure that allows
to solves problems in vision, speech and language using the same underlying model
architecture. The transformer architecture very much resembles currently theories of
how cortex is structured and replicated (Jones, 2000; Mathis, 2023; Mountcastle, 1957) –
and even though the substrate for computation, and most likely also the inner structure
of these models is completely different from the brain, their property of a common
scalable architecture is a very compelling result that has not been observed before.
So, what can we learn from foundation models? Machine learning’s primary focus is
typically less on model understanding, and more on actually replicating intelligence
in computers. As neuroscientists, it is an interesting challenge to understand how
large foundation models are actually working. They are interesting as a subject of
study, because they are fully observable: Experiments are cheap to run, and we are
able to observe any single neuron in the whole model. In this vein, they could also
be interesting testbeds for new analysis methods. Within our framework of collection,
processing and analysis, this effectively makes these models a subject of study, and
hence of data collection, the first step.

Secondly, as a tool for data processing: As we saw in the first chapters, larger
models tend to perform favorably in terms of their robustness properties on real world
downstream tasks like pose estimation and other computer vision tasks. Today, a
plethora of methods exist for pre-training models in the visual and other domains.
Using a large model often comes with the disadvantage of slower inference times,
but huge gains in their performance. As such, available computer vision foundation
models will have tremendous applications in object and animal detection, segmentation
and tracking, future approaches to pose estimation, and other forms for representing
behavior.

Finally, to aid data analysis: Especially models that work on the interface of text
and program code, foundation model could be regarded as tools to be integrated into

12in machine learning, this translates to compute resources

robust machine learning 203

Figure 9.1: We observe an identifiability gap between current methods (upper left) for explo-
rative analysis (unsupervised) and hypothesis testing (supervised). These methods operate
in the regime of highly structured and controlled experimental data, but at limited scale. In
contrast, modern machine learning methods (lower right) are trained on vast amounts of
unstructured data, but are not suited directly for scientific inference. I propose to close the
identifiability gap by non-linear algorithms inspired by modern ML methods, that fulfill and
go beyond the desiderata of classical inference algorithms when it comes to robustness and
interpretability. Some figure elements taken from https://scidraw.io.

data analysis pipelines, to perform suggestions on data pre-processing and ways to
setup analysis. Emerging approaches like AmadeusGPT (Ye et al., 2023b) use language
models to aid at designing behavioral analyses, and lower the entry barrier for advanced
data analysis. Other publicly available machine learning tools based on foundation
models like GPT-4 will continue to speed up the turnaround time for preparing and
improving data analysis tasks.

The identifiability gap: Frontiers in representation learning

While this work made progress towards using non-linear algorithms for analyzing
various neuroscience datasets, a lot of open problems in the design of such algorithms
remain. Here I will discuss two: The extension of algorithmic frameworks as presented
in Chapters 7 and 8, and the possibilities to leverage other recent developments in
machine learning research to build better models for neuroscience.

It remains an open problem to identify full dynamical systems based on interven-
tional and observational data. How can we extend identifiability guarantees towards
such setups, that ideally also capture hierarchical structure of signals, and the in-
teraction of data from many different modalities? A related interesting avenue lies
in building “digital twins” of large, multi-modal datasets. Recordings are often not
perfectly paired, number of neurons or body keypoints can vary across experimen-
tal sessions. Such datasets are also common in machine learning, and pre-training
approaches based on masking can naturally deal with such inconsistencies in a dataset.

Both approaches work towards closing the “Identifiability Gap” between data-
driven science, and the hypothesis-driven scientific method (Figure 9.1). A worthwhile

https://scidraw.io

robust machine learning 204

future avenue is to leverage the insights from machine learning to build algorithms
fulfilling the stricter requirements for scientific inference. This approach ideally yields
more powerful, unified ways to process, model, and analyzing data, allow to close
the loop, and enable the analysis of more complex and larger datasets. Such unified
frameworks for analysis, and the continued co-development of increasingly involved
experimental and computational techniques will help us to gradually unpack the
fundamental question posed at the very beginning of this work: How does the brain
generate adaptive, intelligent behavior?

A
Improving robustness against com-
mon corruptions by covariate shift
adaptation

Distances and divergences for quantifying domain shift

Besides analyzing the performance drop when evaluating a model using source statistics
on a target dataset, we consider the mismatch in model statistics directly. We first take
an ImageNet trained model and adapt it to each of the 95 conditions in IN-C. To obtain
a more exact estimate of the true statistics, we split the model into multiple stages with
only few BN layers per stage and apply the following simple algorithm1:

• Start with image inputs z0
n ← xn from the validation set to adapt to, for each

n ∈ [50000].

• Split the model into multiple stages, h(x) = (fm ◦ · · · ◦ f1)(x), where each module
fi can potentially contain one or multiple BN layers. We denote the number of
BN layers in the i-th module as bi.

• For each stage i ∈ [m], repeat bi times: zi
n ← fi(zi−1

n) for each n, and update the
BN statistics in module fi(zi−1

n).

• Return h with adapted statistics.

1Note that for simplicity, we do not reset the statistics of the remaining (bi − i) BN layers. This could
potentially be adapted in future work.

robust machine learning 206

Using this scheme, we get source statistics µs and Σs for each layer and µt and
Σt for each layer and corruption. In total, we get 96 different collections of statistics
across network layers (for IN and the 95 conditions in IN-C). For simplicity, we will
not further index the statistics. Note that all covariance matrices considered here are
diagonal, which is a further simplification. We expect that our domain shift estimates
could be improved by considering the full covariance matrices.

In the following, we will introduce three possible distances and divergences which
can be applied between source and target statistics to quantify the effect of common
corruptions induced covariate shift. We consider the Wasserstein distance, a normalized
version of the Wasserstein distance, and the Jeffrey divergence.

The Wasserstein distance

Given a baseline ResNet-50 model with source statistics µs, Σs on IN, the Wasserstein
distance (cf. Villani, 2008) between the train and test distribution with statistics µt, Σt is
given as

W2(ps, pt)
2 = ∥µs − µt∥2

2 + tr
(

Σs + Σt − 2
(

Σ1/2
t ΣsΣ

1/2
t

)1/2
)

. (A.1)

The source-normalized Wasserstein distance

When estimated for multiple layers across the network, the Wasserstein distance
between source and target depends on the overall magnitude of the statistics. Practically,
this means the metric is dominated by features with large magnitude (e.g. in the first
layer of a neural network, which receives larger inputs).

To mitigate this issue, we normalize both statistics with the source statistics and
define the normalized Wasserstein distance as

W̃2
2 = W2

2

(
Σ−1/2

s µs, I, Σ−1/2
s µt, Σ−1

s Σt

)
(A.2)

= Tr
(

I + ΣtΣ
−1
s − 2Σ1/2

t Σ−1/2
s

)
+ (µt − µs)

TΣ−1
s (µt − µs). (A.3)

In the uni-variate case, the normalized Wasserstein distance W̃2
2 is equal to the

Wasserstein distance W2
2 between source and target statistics divided by σ2

s :

W̃2
2 = W2

2

(
µs

σs
, 1,

µt

σs
,

σ2
t

σ2
s

)
= 1 +

σ2
t

σ2
s
− 2

σt

σs
+

(µt − µs)2

σ2
s

=
1
σ2

s
W2

2 (µs, σ2
s , µt, σ2

t). (A.4)

robust machine learning 207

The Jeffrey divergence

The Jeffrey divergence J(ps, pt) between source distribution ps and target distribution
pt is the symmetrized version of the Kullback-Leibler divergence DKL:

J(ps, pt) =
1
2
(DKL(ps∥pt) + DKL(pt∥ps)) (A.5)

The Kullback-Leibler divergence between the D-dimensional multivariate normal
source and target distributions is defined as

DKL(Nt∥Ns) =
1
2

(
Tr
(

Σ−1
s Σt

)
+ (µs − µt)

⊤Σ−1
s (µs − µt)− D + ln

(
det Σs

det Σt

))
. (A.6)

The Jeffrey divergence between the D-dimensional multivariate normal source and
target distributions then follows as

J(Nt,Ns) =
1
4

(
Tr
(

Σ−1
s Σt

)
+ Tr

(
Σ−1

t Σs

)
+ (µs − µt)

⊤
(

Σ−1
s + Σ−1

t

)
(µs − µt)− 2D

)
.

(A.7)

Summary statistics and quantification of covariate shift between different IN-C condi-
tions

Given the 95 distances/divergences between the baseline (IN) statistics and 95 IN-
C conditions, we first perform a layer-wise analysis of the statistics and depict the
results in Figure A.1. The unnormalized Wasserstein distance is sensitive to the
magnitude of the source statistics and hence differs qualitatively from the results on
the normalized Wasserstein distance and Jeffrey Divergence. We appreciate that the
most notable difference between source and target domains is visible in the ResNet-50

downsampling layers. All three metrics suggest that the shift is mainly present in the
first and final layers of the network, supporting the hypothesis that within the common
corruption dataset, we have both superficial covariate shift which can be corrected by
simple means (such as brightness or contrast variations) in the first layers, and also
more “high-level” domain shifts which can only be corrected in the later layers of the
network.

In Figure A.2, we more closely analyze this relationship for different common
corruptions. We can generally appreciate the increased measures as the corruption
severity increases.

robust machine learning 208

1.
0.

bn
1

1.
0.

bn
2

1.
0.

bn
3

1.
0

1.
1.

bn
1

1.
1.

bn
2

1.
1.

bn
3

1.
2.

bn
1

1.
2.

bn
2

1.
2.

bn
3

2.
0.

bn
1

2.
0.

bn
2

2.
0.

bn
3

2.
0

2.
1.

bn
1

2.
1.

bn
2

2.
1.

bn
3

2.
2.

bn
1

2.
2.

bn
2

2.
2.

bn
3

2.
3.

bn
1

2.
3.

bn
2

2.
3.

bn
3

3.
0.

bn
1

3.
0.

bn
2

3.
0.

bn
3

3.
0

3.
1.

bn
1

3.
1.

bn
2

3.
1.

bn
3

3.
2.

bn
1

3.
2.

bn
2

3.
2.

bn
3

3.
3.

bn
1

3.
3.

bn
2

3.
3.

bn
3

3.
4.

bn
1

3.
4.

bn
2

3.
4.

bn
3

3.
5.

bn
1

3.
5.

bn
2

3.
5.

bn
3

4.
0.

bn
1

4.
0.

bn
2

4.
0.

bn
3

4.
0

4.
1.

bn
1

4.
1.

bn
2

4.
1.

bn
3

4.
2.

bn
1

4.
2.

bn
2

4.
2.

bn
3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Wasserstein Distance

downsample
bottleneck 0
bottleneck 1
bottleneck 2

1.
0.

bn
1

1.
0.

bn
2

1.
0.

bn
3

1.
0

1.
1.

bn
1

1.
1.

bn
2

1.
1.

bn
3

1.
2.

bn
1

1.
2.

bn
2

1.
2.

bn
3

2.
0.

bn
1

2.
0.

bn
2

2.
0.

bn
3

2.
0

2.
1.

bn
1

2.
1.

bn
2

2.
1.

bn
3

2.
2.

bn
1

2.
2.

bn
2

2.
2.

bn
3

2.
3.

bn
1

2.
3.

bn
2

2.
3.

bn
3

3.
0.

bn
1

3.
0.

bn
2

3.
0.

bn
3

3.
0

3.
1.

bn
1

3.
1.

bn
2

3.
1.

bn
3

3.
2.

bn
1

3.
2.

bn
2

3.
2.

bn
3

3.
3.

bn
1

3.
3.

bn
2

3.
3.

bn
3

3.
4.

bn
1

3.
4.

bn
2

3.
4.

bn
3

3.
5.

bn
1

3.
5.

bn
2

3.
5.

bn
3

4.
0.

bn
1

4.
0.

bn
2

4.
0.

bn
3

4.
0

4.
1.

bn
1

4.
1.

bn
2

4.
1.

bn
3

4.
2.

bn
1

4.
2.

bn
2

4.
2.

bn
3

0

1

2

3

4

5

Wasserstein Distance (normalized)

downsample
bottleneck 0
bottleneck 1
bottleneck 2

1.
0.

bn
1

1.
0.

bn
2

1.
0.

bn
3

1.
0

1.
1.

bn
1

1.
1.

bn
2

1.
1.

bn
3

1.
2.

bn
1

1.
2.

bn
2

1.
2.

bn
3

2.
0.

bn
1

2.
0.

bn
2

2.
0.

bn
3

2.
0

2.
1.

bn
1

2.
1.

bn
2

2.
1.

bn
3

2.
2.

bn
1

2.
2.

bn
2

2.
2.

bn
3

2.
3.

bn
1

2.
3.

bn
2

2.
3.

bn
3

3.
0.

bn
1

3.
0.

bn
2

3.
0.

bn
3

3.
0

3.
1.

bn
1

3.
1.

bn
2

3.
1.

bn
3

3.
2.

bn
1

3.
2.

bn
2

3.
2.

bn
3

3.
3.

bn
1

3.
3.

bn
2

3.
3.

bn
3

3.
4.

bn
1

3.
4.

bn
2

3.
4.

bn
3

3.
5.

bn
1

3.
5.

bn
2

3.
5.

bn
3

4.
0.

bn
1

4.
0.

bn
2

4.
0.

bn
3

4.
0

4.
1.

bn
1

4.
1.

bn
2

4.
1.

bn
3

4.
2.

bn
1

4.
2.

bn
2

4.
2.

bn
3

0

10

20

30

40

50

60

Jeffrey Divergence

downsample
bottleneck 0
bottleneck 1
bottleneck 2

Figure A.1: Wasserstein distance, normalized Wasserstein distance and Jeffrey divergence
estimated among source and target statistics between different network layers. We report the
respective metric w.r.t. to the difference between baseline (IN) and target (IN-C) statistics
and show the value averaged across all corruptions. We note that for a ResNet-50 model,
downsampling layers contribute most to the overall error.

robust machine learning 209

br
igh

tn
es

s
co

nt
ra

st
de

foc
us

blu
r

ela
sti

c
tra

ns
for

m fog fro
st

ga
us

sia
n

blu
r

ga
us

sia
n

no
ise gla

ss
blu

r
im

pu
lse

no
ise

jpe
g

co
mpr

es
sio

n
mot

ion
blu

r
pix

ela
te

sa
tu

ra
te

sh
ot

no
ise sn
ow

sp
at

te
r

sp
ec

kle
no

ise zo
om

blu
r

1.0.bn1
1.0.bn2
1.0.bn3

1.0
1.1.bn1
1.1.bn2
1.1.bn3
1.2.bn1
1.2.bn2
1.2.bn3
2.0.bn1
2.0.bn2
2.0.bn3

2.0
2.1.bn1
2.1.bn2
2.1.bn3
2.2.bn1
2.2.bn2
2.2.bn3
2.3.bn1
2.3.bn2
2.3.bn3
3.0.bn1
3.0.bn2
3.0.bn3

3.0
3.1.bn1
3.1.bn2
3.1.bn3
3.2.bn1
3.2.bn2
3.2.bn3
3.3.bn1
3.3.bn2
3.3.bn3
3.4.bn1
3.4.bn2
3.4.bn3
3.5.bn1
3.5.bn2
3.5.bn3
4.0.bn1
4.0.bn2
4.0.bn3

4.0
4.1.bn1
4.1.bn2
4.1.bn3
4.2.bn1
4.2.bn2
4.2.bn3

Wasserstein Distance (normalized), across layers and corruptions

0
2
4
6
8
10
12

br
igh

tn
es

s
co

nt
ra

st
de

foc
us

blu
r

ela
sti

c
tra

ns
for

m fog fro
st

ga
us

sia
n

blu
r

ga
us

sia
n

no
ise gla

ss
blu

r
im

pu
lse

no
ise

jpe
g

co
mpr

es
sio

n
mot

ion
blu

r
pix

ela
te

sa
tu

ra
te

sh
ot

no
ise sn
ow

sp
at

te
r

sp
ec

kle
no

ise zo
om

blu
r
1.0.bn1
1.0.bn2
1.0.bn3

1.0
1.1.bn1
1.1.bn2
1.1.bn3
1.2.bn1
1.2.bn2
1.2.bn3
2.0.bn1
2.0.bn2
2.0.bn3

2.0
2.1.bn1
2.1.bn2
2.1.bn3
2.2.bn1
2.2.bn2
2.2.bn3
2.3.bn1
2.3.bn2
2.3.bn3
3.0.bn1
3.0.bn2
3.0.bn3

3.0
3.1.bn1
3.1.bn2
3.1.bn3
3.2.bn1
3.2.bn2
3.2.bn3
3.3.bn1
3.3.bn2
3.3.bn3
3.4.bn1
3.4.bn2
3.4.bn3
3.5.bn1
3.5.bn2
3.5.bn3
4.0.bn1
4.0.bn2
4.0.bn3

4.0
4.1.bn1
4.1.bn2
4.1.bn3
4.2.bn1
4.2.bn2
4.2.bn3

Jeffrey Divergence, across layers and corruptions

0

100

200

300

Figure A.2: Normalized Wasserstein distance and Jeffrey divergence across corruptions and
layers in a ResNet-50.

robust machine learning 210

Notes on the experimental setup

Practical considerations for implementing the method

Our method is conceptually very easy to implement. We generally recommend to
first explore the easier variant of the algorithm where N = 0, i.e., no source statistics
are used. As shown in our experiments, this setting works well if 100 or more target
samples are available.

In this case, implementing the method boils down to enabling the training mode for
all BN layers across the network. We will discuss this option along with two variants
important for application to practical problems: Using exponential moving averaging
(EMA) to collect target statistics across multiple batches, and using the source statistics
as a prior.

Example implementation in PyTorch and caveats We encourage authors of robust models
to always evaluate their models, and in particular baseline algorithms on both the train
and test set statistics. Implementation in both PyTorch, Tensorflow and other machine
learning libraries is straightforward and adds only minimal overhead. For PyTorch,
adaptation is possible by simply adding

def use_test_statistics(module):
if isinstance(module, nn._BatchNorm):

module.train()
model.eval()
model.apply(use_test_statistics)

before starting a model evaluation. For the adaptation to a full dataset, we provide a
reference implementation with the source code release of this paper. Also, in contrast
to the convention of not shuffling examples during test time, make sure to enable dataset
shuffling also during test time in order to compute the correct statistics marginalized over
class assignment.

Exponential moving averaging In practice, it might be beneficial to keep track of samples
already encountered and use a running mean and variance on the test set to normalize
new samples. We can confirm that this technique closely matches the full-dataset
adaptation case even when evaluating with batch size 1 and is well suited for settings
with less powerful hardware, or in general settings where access to the full batch of
samples is not possible. Variants of this technique include the adaptation of the decay
factor to discard statistics of samples encountered in the past (e.g. when the data
domain slowly drifts over time).

Notes on models

Note that we only re-evaluate existing model checkpoints, and hence do not perform
any hyperparameter tuning or adaptations to model training except for selecting the

robust machine learning 211

pseudo batchsize N for the source domain. Depending on the batch size and the
architecture, model evaluations are done on one to eight Nvidia RTX 2080 GPUs (i.e.,
using 12 to 96 GB of memory) or up to four Nvidia V100 GPUs (128 GB of memory).
Since we merely re-evaluate trained models, it is also possible to work on less powerful
hardware with less memory. In these cases, the aggregation of batch normalization
statistics has to be done across several batches using a variant of EMA.

Hyperparameter tuning

Our method is generally parameter-free if only target statistics should be considered
for normalization. This approach is generally preferred for larger batch sizes n and
should also be adapted in practice when a sufficient amount of samples is available.
For tuning N, we consider the pre-defined holdout corruptions in IN-C, including
speckle noise, saturation, Gaussian blur and spatter using a grid search across different
values for N.

Notes on datasets

In the main paper, we have used several datasets and provide more relevant information
here:

ImageNet-C (IN-C) For the evaluation on IN-C, we use the JPEG compressed images
from github.com/hendrycks/robustness as is advised by the authors to ensure repro-
ducibility. We note that Ford et al. (2019) report a decrease in performance when the
compressed JPEG files are used as opposed to applying the corruptions directly in
memory without compression artefacts.

ObjectNet (ON) We find that there are 9 classes with multiple possible mappings from
ON to IN (see the list in Table A.1); we discard these classes in our evaluation. Models
trained on IN experience a large performance drop on the order of 40–45% when tested
on ON. ON is an interesting test case for unsupervised domain adaptation since IN
and ON are likely sampled from different distributions. ON intentionally shows objects
from new viewpoints on new backgrounds.

ImageNet-V2 (IN-V2) There are three test sets in IN-V2 that differ in selection frequencies
of the MTurk workers. The selection frequency is given by the fraction of MTurk workers
who selected an image for its target class. For the “MatchedFrequency” dataset, images
were sampled according to the estimated selection frequency of sampling of the original
IN validation dataset. For the “Threshold0.7” variant of IN-V2, images were sampled
with a selection frequency of at least 0.7. The “TopImages” was sampled from images
with the highest selection frequency. Although all three test sets were sampled from
the same Flickr candidate pool and were labeled correctly and selected by more than

https://github.com/hendrycks/robustness

robust machine learning 212

70% of MTurk workers, the model accuracies on these datasets vary by 14%. The
authors observe a systematic accuracy drop when comparing model performance on
the original IN validation set and IN-V2 and attribute it to the distribution gap between
their datasets and the original IN dataset. They quantify the distribution gap by how
much the change from the original distribution to the new distribution affects the
considered model. Engstrom et al. analyze the creation process of IN-V2 and identify
statistical bias resulting from noisy readings of the selection frequency statistic as a
main source of dropping performance (Engstrom et al., 2020). After correcting the bias,
(Engstrom et al., 2020) find that the accuracy drop between IN and IN-V2 measures
only 3.6% ± 1.5% of the original 11.7% ± 1.0%.

Table A.1: Mapping between 9 ambiguous ON classes and the possible correspondences in IN.
Different IN classes are separated with a semicolon.

ON class IN classes

wheel wheel; paddlewheel, paddle wheel
helmet football helmet; crash helmet
chair barber chair; folding chair; rocking chair, rocker
still_camera Polaroid camera, Polaroid Land camera; reflex camera
alarm_clock analog clock; digital clock
tie bow tie, bow-tie, bowtie; Windsor tie
pen ballpoint, ballpoint pen, ballpen, Biro; quill, quill pen; fountain pen
bicycle mountain bike, all-terrain bike, off-roader; bicycle-built-for-two, tandem bicycle, tandem
skirt hoopskirt, crinoline; miniskirt, mini; overskirt

Overview of models in torchvision

In Table A.2, we provide a list of the models we evaluate in the main paper, along
with numbers of trainable parameters and BN parameters. Note that the fraction of
BN parameters is at most at 1% compared to all trainable parameters in all considered
models.

Baseline corruption errors

In Table A.3, we report the scores used for converting top-1 error into the mean
corruption error (mCE) metric proposed by Hendrycks and Dietterich (2019a).

Software stack

We use various open source software packages for our experiments, most notably
Docker (Merkel, 2014), scipy and numpy (Virtanen et al., 2020), GNU parallel (Tange,
2011), Tensorflow (Abadi et al., 2016), PyTorch (Paszke et al., 2017) and torchvision
(Marcel & Rodriguez, 2010).

robust machine learning 213

Table A.2: Overview of different models with parameter counts. We show the total number of
BN parameters, which is a sum of affine parameters.

Model Parameter Count BN Parameters Fraction (%)

densenet121 7.98× 106 8.36× 104 0.010
densenet161 2.87× 107 2.20× 105 0.008
densenet169 1.41× 107 1.58× 105 0.011
densenet201 2.00× 107 2.29× 105 0.011
googlenet 1.30× 107 1.51× 104 0.001
inception-v3 2.72× 107 3.62× 104 0.001
mnasnet0-5 2.22× 106 2.06× 104 0.009
mnasnet0-75 3.17× 106 2.98× 104 0.009
mnasnet1-0 4.38× 106 3.79× 104 0.009
mnasnet1-3 6.28× 106 4.88× 104 0.008
mobilenet-v2 3.50× 106 3.41× 104 0.010
resnet101 4.45× 107 1.05× 105 0.002
resnet152 6.02× 107 1.51× 105 0.003
resnet18 1.17× 107 9.60× 103 0.001
resnet34 2.18× 107 1.70× 104 0.001
resnet50 2.56× 107 5.31× 104 0.002
resnext101-32x8d 8.88× 107 2.03× 105 0.002
shufflenet-v2-x0-5 1.37× 106 7.95× 103 0.006
shufflenet-v2-x1-0 2.28× 106 1.62× 104 0.007
shufflenet-v2-x1-5 3.50× 106 2.34× 104 0.007
shufflenet-v2-x2-0 7.39× 106 3.37× 104 0.005
vgg11-bn 1.33× 108 5.50× 103 4.142× 10−5

vgg13-bn 1.33× 108 5.89× 103 4.425× 10−5

vgg16-bn 1.38× 108 8.45× 103 6.106× 10−5

vgg19-bn 1.44× 108 1.10× 104 7.662× 10−5

wide-resnet101-2 1.27× 108 1.38× 105 0.001
wide-resnet50-2 6.89× 107 6.82× 104 0.001

robust machine learning 214

Table A.3: AlexNet top1 errors on ImageNet-C

Category Corruption top1 error

Noise
Gaussian Noise 0.886428

Shot Noise 0.894468

Impulse Noise 0.922640

Blur

Defocus Blur 0.819880

Glass Blur 0.826268

Motion Blur 0.785948

Zoom Blur 0.798360

Weather

Snow 0.866816

Frost 0.826572

Fog 0.819324

Brightness 0.564592

Contrast 0.853204

Digital

Elastic Transform 0.646056

Pixelate 0.717840

JPEG Compression 0.606500

Hold-out Noise Speckle Noise 0.845388

Hold-out Digital Saturate 0.658248

Hold-out Blur Gaussian Blur 0.787108

Hold-out Weather Spatter 0.717512

robust machine learning 215

Table A.4: After converting the
checkpoints from TensorFlow to Py-
torch, we notice a slight degradation
in performance on the IN val set.

IN val top-1 accuracy in %.

Model TF PyTorch

SimCLRv2 ResNet50 76.3 75.6
SimCLRv2 ResNet101 78.2 77.5
SimCLRv2 ResNet152 79.3 78.6

Table A.5: Adaptation improves
the performance of the ResNet50

and the ResNet101 model but hurts
the performance of the ResNet152

model.

ImageNet-C (n=4096), mCE.

Model, adaptation: base adapt ∆

SimCLRv2 ResNet50 72.4 68.0 -4.2
SimCLRv2 ResNet101 66.6 65.1 -0.9
SimCLRv2 ResNet152 63.7 64.2 +0.5

Additional results

Performance of SimCLRv2 models

We evaluate the performance of 3 models from the SimCLRv2 framework with and
without batchnorm adaptation. We test a ResNet50, a ResNet101 and a ResNet152,
finetuned on 100% of IN training data. Since our code-base is in PyTorch, we use
the Pytorch-SimCLR-Converter (Lin, 2020 (accessed October 21, 2020)) to convert
the provided checkpoints from Tensorflow to PyTorch. We notice a slight decline
in performance when comparing the top-1 accuracy on the IN validation set, see
Table A.4. For preprocessing, we disable the usual PyTorch normalization and use the
PIL.Image.BICUBIC interpolation for resizing because this interpolation is used in the
TensorFlow code (instead of the default PIL.Image.BILINEAR in PyTorch).

The BN adaptation results for the converted models are shown in Table A.5. Adap-
tation improves the performance of the ResNet50 and the ResNet101 model, but hurts
the performance of the ResNet152 model.

Relationship between parameter count and IN-C improvements

In addition to Fig. 3 in the main paper, we show the relationship between parameter
count and IN-C mCE. In general, we see that the parameter counts correlates with
corruption robustness since larger models have smaller mCE values.

Per-corruption results on IN-C

We provide more detailed results on the individual corruptions of IN-C for the most
important models considered in our study in Fig. A.4. The results are shown for models
where the BN parameters are adapted on the full test sets. The adaptation consistently
improves the error rates on all corruptions for both vanilla and AugMix.

robust machine learning 216

Figure A.3: Adaptation (•) improves baseline (◦) mCE across all 25 model architectures in the
torchvision library, often on the order of 10% points. Best viewed in color.

Figure A.4: Results on the individual corruptions of IN-C for the vanilla trained ResNet-50

and the AugMix model with and without adaptation. Adaptation reduces the error on all
corruptions.

robust machine learning 217

Figure A.5: tSNE embeddings of the Wasserstein distances between BN statistics adapted on the
different corruptions. This plot shows evidence on the similarities between different corruption
types.

Qualitative analysis of similarities between common corruptions

In this analysis, we compute a tSNE embedding of the Wasserstein distances between
the adapted models and the non-adapted model from Fig. 2.3 of the main paper. The
results are displayed in Fig. A.5. We observe that the different corruption categories
indicated by the different colors are grouped together except for the ’digital’ category
(pink). This visualization shows that corruption categories mostly induce similar shifts
in the BN parameters. This might be an explanation why training a model on Gaussian
noise generalizes so well to other noise types as has been observed by Rusak et al.
(2020): By training on Gaussian noise, the BN statistics are adapted to the Gaussian
noise corruption and from Fig. A.5, we observe that these statistics are similar to the
BN statistics of other noises.

Error prediction based on the Wasserstein distance

In Fig. 2.3(i), we observe that the relationship between the Wasserstein distance and
the top-1 error on IN-C is strikingly linear in the considered range of the Wasserstein
distance. Similar corruptions and corruption types (indicated by color) exhibit similar
slope, allowing to approximate the expected top-1 error rate without any information
about the test domain itself. Using the split of the 19 corruptions into 15 test and 4

holdout corruptions (Hendrycks & Dietterich, 2019a), we compute a linear regression
model on the five data points we get for each of the holdout corruptions (corresponding
to the five severity levels), and use this model to predict the expected top-1 error
rates for the remaining corruptions within the corruption family. This scheme works

robust machine learning 218

particularly for the “well defined” corruption types such as noise and digital (4.14%
points absolute mean deviation from the real error. The full results are depicted in
Table A.6.

Table A.6: Estimating top-1 error of unseen corruptions within the different corruption classes.
We note that especially for well defined corruptions (like noise or digital corruptions), the
estimation scheme works well. We follow the categorization originally proposed by Hendrycks
and Dietterich (2019a).

test error holdout (train) error model
true pred |∆| true pred |∆| coef intercept

Fig. 2.3 (i)
blur 64.89 54.53 11.04 58.13 58.13 3.24 37.59 -0.70

digital 54.37 51.96 6.97 38.08 38.08 0.60 37.20 6.39

noise 73.29 69.68 5.84 64.51 64.51 0.65 24.66 1.68

weather 53.87 42.92 11.21 50.84 50.84 5.48 25.80 6.33

Fig. 2.3 (ii)
blur 55.68 53.28 5.65 57.38 57.38 4.01 42.74 -9.51

digital 41.53 39.80 4.14 31.05 31.05 0.34 23.44 11.09

noise 58.43 55.04 4.14 51.24 51.24 1.01 18.13 5.06

weather 43.84 36.16 7.80 41.63 41.63 4.32 17.80 10.91

Fig. 2.3 (iii)
blur 57.10 69.84 13.43 74.01 74.01 3.96 43.50 5.93

digital 46.16 38.06 12.97 36.22 36.22 10.52 4.94 32.01

noise 93.60 85.84 13.08 81.10 81.10 3.52 22.56 23.65

weather 43.74 36.90 8.98 44.05 44.05 6.20 23.29 3.87

Training details on the models trained with Fixup initialization and GroupNorm

In Table 2.3, we consider IN models trained with GroupNorm and Fixup initialization.
For these models, we consider the original reference implementations provided by
the authors. We train ResNet-50, ResNet-101 and ResNet-152 models with stochastic
gradient descent with momentum (learning rate 0.1, momentum 0.9), with batch size
256 and weight decay 1× 10−4 for 100 epochs.

We show the full results for considering different choices of N for ResNet-50,
Augmix, ANT, ANT+SIN and SIN models and display the result in Fig. A.7. We
observe a characteristic shape which we believe can be attributed to the way statistics
are estimated. We provide evidence for this view by proposing an analytical model
which we discuss in §A.

robust machine learning 219

Figure A.6: Left: Performance for all the considered ResNet-50 variants based on the sample
batch size. The optimal N is chosen according to the mCE on the holdout corruptions. Right:
Best choice for N depending on the input batchsize n. Note that in general for high values n,
the model is generally more robust to the choice of N.

Figure A.7: Effects of batch size n and pseudo batch size N for the various considered models.
We report mCE averaged across 15 test corruptions.

robust machine learning 220

Table A.7: Test mCE for various batch sizes (rows) vs. pseudo batch sizes (columns), part 1/3.

ResNet-50 1 2 4 8 16 32 64 128 256

1 117.76 98.78 81.06 72.80 71.39 72.72 74.28 75.36 75.99

2 98.11 89.92 80.13 72.36 69.63 70.39 72.39 74.16 75.32

4 81.10 78.45 74.70 70.27 67.48 67.69 69.77 72.19 74.10

8 71.56 70.74 69.44 67.56 65.60 65.02 66.70 69.41 72.07

16 66.82 66.52 66.06 65.32 64.29 63.32 63.81 66.19 69.24

32 64.51 64.39 64.19 63.87 63.38 62.72 62.21 63.22 65.94

64 63.33 63.28 63.19 63.05 62.81 62.43 61.95 61.68 62.90

128 62.78 62.75 62.69 62.62 62.50 62.29 62.00 61.56 61.42

256 62.51 62.49 62.44 62.41 62.32 62.22 62.01 61.73 61.35

512 62.36 62.36 62.33 62.29 62.26 62.17 62.06 61.90 61.62

AugMix 1 2 4 8 16 32 64 128 256

1 122.56 99.72 76.23 65.46 62.08 61.78 62.70 63.75 64.47

2 100.39 88.69 75.16 64.86 60.93 60.51 61.28 62.52 63.67

4 78.55 74.41 68.69 62.52 58.58 58.30 59.53 60.94 62.39

8 65.02 63.81 61.86 59.21 56.39 55.40 56.87 59.00 60.77

16 58.02 57.55 56.96 56.02 54.69 53.44 53.78 56.15 58.71

32 54.37 54.20 53.99 53.68 53.21 52.50 51.99 53.01 55.78

64 52.55 52.50 52.38 52.24 52.07 51.83 51.39 51.25 52.59

128 51.64 51.60 51.54 51.47 51.38 51.26 51.10 50.88 50.89

256 51.18 51.17 51.12 51.08 51.02 50.95 50.86 50.76 50.60

512 50.96 50.95 50.93 50.90 50.86 50.80 50.72 50.65 50.61

Table A.8: Test mCE for various batch sizes (rows) vs. pseudo batch sizes (columns), part 2/3.

ANT 1 2 4 8 16 32 64 128 256

1 116.10 93.58 72.31 62.28 60.07 60.73 61.75 62.48 62.90

2 93.88 83.74 72.01 62.69 58.97 59.10 60.44 61.67 62.44

4 74.51 71.06 66.34 61.15 57.55 57.03 58.51 60.29 61.64

8 63.65 62.50 60.74 58.43 56.04 55.02 56.10 58.22 60.20

16 58.37 57.87 57.14 56.11 54.77 53.67 53.76 55.61 58.06

32 55.78 55.54 55.20 54.66 53.91 53.06 52.50 53.18 55.35

64 54.51 54.41 54.21 53.88 53.42 52.84 52.23 51.94 52.87

128 53.92 53.85 53.71 53.53 53.28 52.85 52.29 51.80 51.65

256 53.66 53.61 53.50 53.37 53.20 52.96 52.54 52.04 51.60

512 53.53 53.49 53.41 53.33 53.21 53.02 52.78 52.38 51.90

ANT+SIN 1 2 4 8 16 32 64 128 256

1 108.24 84.75 67.42 59.91 58.15 58.49 59.24 59.85 60.23

2 87.60 78.40 68.32 60.63 57.54 57.47 58.33 59.23 59.87

4 71.12 68.32 64.31 59.78 56.63 56.06 57.01 58.24 59.23

8 62.23 61.38 59.98 57.93 55.69 54.59 55.30 56.79 58.21

16 57.83 57.51 57.00 56.17 54.96 53.76 53.61 54.92 56.68

32 55.62 55.51 55.33 54.96 54.38 53.55 52.80 53.13 54.73

64 54.57 54.49 54.40 54.25 53.98 53.51 52.84 52.36 52.89

128 54.02 53.98 53.95 53.85 53.72 53.49 53.07 52.53 52.12

256 53.76 53.74 53.71 53.67 53.59 53.47 53.23 52.85 52.33

512 53.64 53.63 53.60 53.57 53.51 53.45 53.35 53.12 52.75

robust machine learning 221

Table A.9: Test mCE for various batch sizes (rows) vs. pseudo batch sizes (columns), part 3/3.
DAug = DeepAugment, AM=AugMix.

SIN 1 2 4 8 16 32 64 128 256

1 119.11 94.43 74.93 67.03 65.43 66.08 67.16 68.04 68.62

2 98.85 88.62 76.99 67.88 64.23 64.42 65.72 67.02 67.99

4 81.35 78.10 73.38 67.84 63.49 62.47 63.76 65.48 66.94

8 70.92 69.94 68.38 66.02 63.14 61.09 61.45 63.35 65.35

16 65.29 64.97 64.48 63.68 62.39 60.78 59.90 60.92 63.16

32 62.34 62.25 62.08 61.80 61.36 60.55 59.55 59.26 60.65

64 60.84 60.80 60.74 60.61 60.47 60.15 59.67 58.96 58.93

128 60.07 60.04 60.02 59.96 59.87 59.77 59.57 59.18 58.64

256 59.68 59.66 59.64 59.62 59.59 59.53 59.43 59.27 58.97

512 59.48 59.47 59.46 59.44 59.42 59.40 59.33 59.26 59.11

DAug 1 2 4 8 16 32 64 128 256

8 65.37 63.87 61.37 58.11 54.48 52.17 52.33 54.18 56.36

DAug+AM 1 2 4 8 16 32 64 128 256

8 52.59 51.98 51.05 49.83 48.5 47.81 48.36 49.72 51.12

ResNext+DAug+AM 1 2 4 8 16 32 64 128 256

8 42.09 41.74 41.29 40.67 39.96 39.69 40.35 41.55 42.69

robust machine learning 222

Analytical error model

We first consider a univariate model and later discuss a simple extension to the
multivariate diagonal case. As highlighted in the main text, the model qualitatively
explains the overall characteristics of our experimental data. Note that we assume a
linear relationship between the Wasserstein distance and the error under domain shift,
as suggested by our empirical findings.

Univariate model. We denote the source statistics as µs, σ2
s , the true target statistics as

µt, σ2
t and the estimated target statistics as µ̂t, σ̂2

t . For normalization, we take a convex
combination of the source statistics and estimated target statistics:

µ̄ =
N

N + n
µs +

n
N + n

µ̂t, σ̄2 =
N

N + n
σ2

s +
n

N + n
σ̂2

t . (A.8)

We now analyze the trade-off between using an estimate closer to the source or closer
to the estimated target statistics. In the former case, the model will suffer under the
covariate shift present between target and source distribution. In the latter case, small
batch sizes n will yield unreliable estimates for the true target statistics, which might
hurt the performance even more than the source-target mismatch. Hence, we aim
to gain understanding in the trade-off between both options, and potential optimal
choices of N for a given sample size n.

As a metric of domain shift with good properties for our following derivation, we
leverage the Wasserstein distance. In the result section of the main paper and Table A.6,
we already established an empirical link between domain shift measured in terms
of the top-1 performance vs. the Wasserstein distance between model statistics and
observed a linear relationship for case of common corruptions.

Proposition 1 (Bounds on the expected value of the Wasserstein distance between target
and combined estimated target and source statistics). We denote the source statistics as
µs, σ2

s , the true target statistics as µt, σ2
t and the biased estimates of the target statistics as

µ̂t, σ̂2
t . For normalization, we take a convex combination of the source statistics and estimated

target statistics as discussed in Eq. A.8. At a confidence level 1− α, the expectation value of the
squared Wasserstein distance W2

2 (µ̄, σ̄, µt, σt) between ideal and estimated target statistics w.r.t.
to the distribution of sample mean µ̂t and sample variance σ̂2

t is bounded from above and below
with L ≤ E[W2

2] ≤ U, where

L =

(
σt −

√
N

N + n
σ2

s +
n− 1
N + n

σ2
t

)2

+
N2

(N + n)2 (µt − µs)
2 +

n
(N + n)2 σ2

t

U = L + σ5
t

(n− 1)
2(N + n)2

(
N

N + n
σ2

s +
1

N + n
χ2

1−α/2,n−1σ2
t

)−3/2
(A.9)

The quantity χ2
1−α/2,n−1 denotes the left tail value of a chi square distribution with n− 1 degrees

robust machine learning 223

of freedom, defined as P
(

X ≤ χ2
1−α/2,n−1

)
= α/2 for X ∼ χ2

n−1.

Proof sketch

We are interested in the expected value of the Wasserstein distance defined in (A.1)
between the target statistics µt, σ2

t and the mixed statistics µ̄, σ̄2 introduced above
in equation (A.8), taken with respect to the distribution of the sample moments µ̂t,
σ̂2

t . The expectation value itself cannot be evaluated in closed form because the
Wasserstein distance contains a term proportional to σ̄ being the square root of the
convex combination of target and source variance.

In Lemma 3, the square root term is bounded from above and below using Jensen’s
inequality and Hölder’s defect formula which is reviewed in Lemma 2. After having
bounded the problematic square root term, the proof of Proposition 1 reduces to
inserting the expectation values of sample mean and sample variance reviewed in
Lemma 1.

Prerequisites

Lemma 1 (Mean and variance of sample moments, following (Weisstein, 2020)). The
sample moments µ̂t, σ̂2

t are random variables depending on the sample size n.

µ̂t =
1
n

n

∑
j=1

xj, σ̂2
t =

1
n

n

∑
j=1

(xj − µ̂t)
2 with xj ∼ N

(
µt, σ2

t
)

. (A.10)

For brevity, we use the shorthand E[·] for all expectation values with respect to the distribution
of p(µ̂t, σ̂2

t |n). In particular, our computation uses mean and variance of µ̂t and σ̂2
t which are

well known for a normal target distribution:

µ̂t ∼ N
(

µt,
1
n

σ2
t

)
, E[µ̂t] = µt, V[µ̂t] =

1
n

σ2
t (A.11)

σ̂2
t

σ2
t /n

∼ χ2
n−1, E[σ̂2

t] =
n− 1

n
σ2

t , V[σ̂2
t] =

σ4
t

n2 V

[
σ̂2

t

σ2
t /n

]
=

σ4
t

n2 2(n− 1). (A.12)

The derivation of the variance V[σ̂2
t] in the last line uses the fact that the variance of a chi

square distributed variable with (n− 1) degrees of freedom is equal to 2(n− 1).

Lemma 2 (Hölder’s defect formula for concave functions in probabilistic notation,
following Becker (2012)). If the concave function f : [a, b] → R is twice continuously
differentiable and there are finite bounds m and M such that

−M ≤ f ′′(x) ≤ −m ≤ 0 ∀x ∈ [a, b], (A.13)

then the defect between Jensen’s inequality estimate f (E[X]) for a random variable X taking
values x ∈ [a, b] and the true expectation value E[f (X)] is bounded from above by a term

robust machine learning 224

proportional to the variance of X:

f (E[X])−E[f (X)] ≤ 1
2

MV[X]. (A.14)

Lemma 3 (Upper and lower bounds on the expectation value of σ̄). The expectation value
of the square root of the random variable σ̄2 defined as

σ̄2 =
N

N + n
σ2

s +
n

N + n
σ̂2

t , (A.15)

is bounded from above and below at a confidence level 1− α by√
E [σ̄2]− 1

2
MV[σ̄2] ≤ E

[√
σ̄2
]
≤
√

E [σ̄2] (A.16)√
E [σ̄2] =

√
N

N + n
σ2

s +
n− 1
N + n

σ2
t , (A.17)

1
2

MV[σ̄2] =
(n− 1)

4(N + n)2 σ4
t

(
N

N + n
σ2

s +
1

N + n
χ2

1−α/2,n−1σ2
t

)
. (A.18)

The quantity χ2
1−α/2,n−1 denotes the left tail value of a chi square distribution with n− 1 degrees

of freedom, defined as P
(

X ≤ χ2
1−α/2,n−1

)
= α/2 for X ∼ χ2

n−1.

Proof. The square root function is concave, therefore Jensen’s inequality implies the
upper bound

E
[√

σ̄2
]
≤
√

E[σ̄2]. (A.19)

The square root of the expectation value of σ̄2 is computed using the expectation value
of the sample variance as given in Lemma 1.

√
E[σ̄2] =

√
N

N + n
σ2

s +
n

N + n
n− 1

n
σ2

t =

√
N

N + n
σ2

s +
n− 1
N + n

σ2
t . (A.20)

To state a lower bound, we use Hölder’s defect formula in probabilistic notation
stated in Lemma 2. Hölder’s formula for concave functions requires that the random
variable σ̄2 can take values in the compact interval [a, b] and that the second derivative
of the square root function f (σ̄2) =

√
σ̄2, exists and is strictly smaller than zero in

[a, b]. Regarding the interval of σ̄2, we provide probabilistic upper and lower bounds.
The ratio of sample variance and true variance divided by n follows a chi square
distribution with n− 1 degrees of freedom. At confidence level 1− α, this ratio lies

robust machine learning 225

between χ2
1−α/2,n−1 and χ2

α/2,n−1 which are defined as follows:

χ2
1−α/2,n−1 ≤

σ̂2
t

σ2
t /n

≤ χ2
α/2,n−1, (A.21)

Pr(X ≤ χ2
1−α/2,n−1) =

α

2
, Pr(X ≥ χ2

α/2,n−1) =
α

2
. (A.22)

Then at the same confidence level, the sample variance itself lies between the two
quantiles multiplied by σ2

t /n,

χ2
1−α/2,n−1

σ2
t

n
≤ σ̂2

t ≤ χ2
α/2,n−1

σ2
t

n
, (A.23)

and the random variable σ̄2 lies in the interval

σ̄2 ∈ [a, b] with a =
N

N + n
σ2

s +
1

N + n
χ2

1−α/2,n−1σ2
t , (A.24)

and b =
N

N + n
σ2

s +
1

N + n
χ2

α/2,n−1σ2
t . (A.25)

The variances and chi square values are all positive and therefore both a and b are
positive as well, implying that the second derivative of the square root is strictly
negative in the interval [a, b].

f (σ̄2) =
√

σ̄2, f ′(σ̄2) =
1
2
(σ̄2)−1/2, f ′′(σ̄2) = −1

4
(σ̄2)−3/2 < 0 ∈ [a, b]. (A.26)

Consequently the second derivative is in the interval [M, m] at the given confidence
level:

−M ≤ f ′′(σ̄2) ≤ −m ≤ 0 for σ̄2 ∈ [a, b] with M =
1
4

a−3/2, m =
1
4

b−3/2. (A.27)

The defect formula (Lemma 2) states that the defect is bounded by√
E[σ̄2]−E[

√
σ̄2] ≤ 1

2
MV[σ̄2]. (A.28)

The constant M was computed above in (A.27), and the variance of σ̄2 is calculated in
the next lines, using the first and second moment of the sample variance as stated in 1.

V[σ̄2] = E[(σ̄2 −E[σ̄2])2] = E

[(
n

N + n
σ̂2

t −
n

N + n
n− 1

n
σ2

t

)2
]

=
n2

(N + n)2 E
[(

σ̂2
t −E[σ̂2

t
)2
]
=

n2

(N + n)2 V
[
σ̂2

t
]

=
n2

(N + n)2
2(n− 1)

n2 σ4
t =

2(n− 1)
(N + n)2 σ4

t .

(A.29)

robust machine learning 226

Inserting V[σ̄2] computed in (A.29) and M defined in (A.27) with a as defined in (A.24)
into the defect formula (A.28) yields the lower bound:√

E[σ̄2]− 1
2

MV[σ̄2] ≤ E[
√

σ̄2]√
E[σ̄2]− 1

2
MV[σ̄2]

=
√

E[σ̄2]− 1
2
· 1

4
a−3/2 2(n− 1)

(N + n)2 σ4
t

=
√

E[σ̄2]− (n− 1)
4(N + n)2 σ4

t

(
N

N + n
σ2

s +
1

N + n
χ2

1−α/2,n−1σ2
t

)−3/2

.

(A.30)

Assuming that source and target variance are of the same order of magnitude σ, the
defect will be of order of magnitude σ: The factor V[X] scales with σ4 and M with
σ−3.

Proof of Proposition 1

Proof. For two univariate normal distributions with moments µt, σ2
t and µ̄, σ̄2, the

Wasserstein distance as defined in (A.1) reduces to

W2
2 = σ2

t + σ̄2 − 2σ̄σt + (µ̄− µ)2. (A.31)

The expected value of the Wasserstein distance across many batches is given as

E[W2
2] = σ2

t + E[σ̄2]− 2E[σ̄]σt + E[(µt − µ̄)2]

= σ2
t +

N
N + n

σ2
s +

n
N + n

n− 1
n

σ2
t − 2σtE

[√
N

N + n
σ2

s +
n

N + n
σ̂2

t

]

+ E

[(
µt −

N
N + n

µs −
n

N + n
µ̂t

)2
] (A.32)

which can already serve as the basis for our numerical simulations. To arrive at a closed
form analytical solution, we invoke Lemma 3 to bound the expectation value E [σ̄] in
equation (A.32).

−2σt

√
E [σ̄2] ≤ −2σtE

[√
σ̄2
]
≤ −2σt

√
E [σ̄2]− 2σt

(
−1

2
MV[σ̄2]

)
(A.33)

Apart from the square root term bounded in equation (A.33) above, the expectation
value of the Wasserstein distance can be computed exactly. Hence the bounds on E [σ̄]

multiplied by a factor of (−2σ2
t) coming from equation (A.32) determine lower and

upper bounds L and U on the expected value of W2
2 :

L ≤ E
[
W2

2
]
≤ U = L + σt MV[σ̄2] (A.34)

robust machine learning 227

In the next lines, the lower bound is calculated:

L = σ2
t +

N
N + n

σ2
s +

n− 1
N + n

σ2
t − 2σt

√
E

[
N

N + n
σ2

s +
n− 1
N + n

σ2
t

]
+

(
µt −

N
N + n

µs

)2

− 2
(

µt −
N

N + n
µs

)
n

N + n
E[µ̂t] +

n2

(N + n)2

(
V[µ̂t] + (E[µ̂t])

2
)

= σ2
t +

N
N + n

σ2
s +

n− 1
N + n

σ2
t − 2σt

√
N

N + n
σ2

s +
n− 1
N + n

σ2
t

+

(
µt −

N
N + n

µs

)2

− 2
(

µt −
N

N + n
µs

)
n

N + n
µt +

n2

(N + n)2

(
1
n

σ2
t + µ2

t

)

=

(
σt −

√
N

N + n
σ2

s +
n− 1
N + n

σ2
t

)2

+

(
µt −

N
N + n

µs −
n

N + n
µt

)2

+
n

(N + n)2 σ2
t

=

(
σt −

√
N

N + n
σ2

s +
n− 1
N + n

σ2
t

)2

+
N2

(N + n)2 (µt − µs)
2 +

n
(N + n)2 σ2

t

(A.35)
After having derived the lower bound, the upper bound is the sum of the lower bound
and the defect term as computed in Lemma 3.

E[W2] ≥ U = L + σt MV[σ̄2]

= L + σt
1
4

(
N

N + n
σ2

s +
n

N + n
χ2

1−α/2,n−1
σ2

t
n

)−3/2 2(n− 1)
(N + n)2 σ4

t

= L +

(
N

N + n
σ2

s +
1

N + n
χ2

1−α/2,n−1σ2
t

)−3/2 (n− 1)
2(N + n)2 σ5

t .

(A.36)

Based on choices of the model parameters, the model qualitatively matches our
experimental results. We plot different choices in Fig. A.8.

Extension to multivariate distributions.

We now derive a multivariate variant that can be fit to data from a DNN. Due to
the estimation of running statistics in the network, we have access to a diagonal
approximation of the true covariance matrix.

We denote the diagonal covariance matrices with matrix elements σ2
i as

(Σt)ii = (σ2
t)i, (Σ̂t)ii = (σ̂2

t)i, (Σs)ii = (σ2
s)i (A.37)

and extend our definition of the statistics used for normalization to µ̄ and Σ̄:

µ̄ =
N

N + n
µs +

n
N + n

µ̂t, Σ̄ =
N

N + n
Σs +

n
N + n

Σ̂t. (A.38)

robust machine learning 228

(0.00, 0.03) (0.00, 0.05) (0.00, 0.08) (0.00, 0.10) (0.00, 0.13) (0.00, 0.15) (0.00, 0.18) (0.00, 0.20) (0.00, 0.23) (0.00, 0.25)

(0.01, 0.03) (0.01, 0.05) (0.01, 0.08) (0.01, 0.10) (0.01, 0.13) (0.01, 0.15) (0.01, 0.18) (0.01, 0.20) (0.01, 0.23) (0.01, 0.25)

(0.01, 0.03) (0.01, 0.05) (0.01, 0.08) (0.01, 0.10) (0.01, 0.13) (0.01, 0.15) (0.01, 0.18) (0.01, 0.20) (0.01, 0.23) (0.01, 0.25)

(0.02, 0.03) (0.02, 0.05) (0.02, 0.08) (0.02, 0.10) (0.02, 0.13) (0.02, 0.15) (0.02, 0.18) (0.02, 0.20) (0.02, 0.23) (0.02, 0.25)

(0.02, 0.03) (0.02, 0.05) (0.02, 0.08) (0.02, 0.10) (0.02, 0.13) (0.02, 0.15) (0.02, 0.18) (0.02, 0.20) (0.02, 0.23) (0.02, 0.25)

(0.03, 0.03) (0.03, 0.05) (0.03, 0.08) (0.03, 0.10) (0.03, 0.13) (0.03, 0.15) (0.03, 0.18) (0.03, 0.20) (0.03, 0.23) (0.03, 0.25)

(0.03, 0.03) (0.03, 0.05) (0.03, 0.08) (0.03, 0.10) (0.03, 0.13) (0.03, 0.15) (0.03, 0.18) (0.03, 0.20) (0.03, 0.23) (0.03, 0.25)

(0.04, 0.03) (0.04, 0.05) (0.04, 0.08) (0.04, 0.10) (0.04, 0.13) (0.04, 0.15) (0.04, 0.18) (0.04, 0.20) (0.04, 0.23) (0.04, 0.25)

(0.04, 0.03) (0.04, 0.05) (0.04, 0.08) (0.04, 0.10) (0.04, 0.13) (0.04, 0.15) (0.04, 0.18) (0.04, 0.20) (0.04, 0.23) (0.04, 0.25)

(0.05, 0.03) (0.05, 0.05) (0.05, 0.08) (0.05, 0.10) (0.05, 0.13) (0.05, 0.15) (0.05, 0.18) (0.05, 0.20) (0.05, 0.23) (0.05, 0.25)

Figure A.8: Overview of different parametrizations of the model. We denote each plot with
(µt − µs, σt/σs) and report the lower bound

√
L on the Wasserstein distance. Parametrizations

in columns four to seven produce qualitatively similar results we observed in our experiments,
assuming a linear relationship between the Wasserstein distance and the error rate.

robust machine learning 229

The Wasserstein distance between µ̄, Σ̄ and µt, Σt is then defined as

W2
2 = Tr Σt + Σ̄− 2Σ1/2

t Σ̄1/2 + (µt − µ̄)T(µt − µ̄)

=
D

∑
i=1

(σ2
t)i + (σ̄2)i − 2(σ̄)i(σt)i + ((µt)i − (µ̄t)i)

2 =
D

∑
i=1

(W2
2)i

(A.39)

Every component (W2
2)i in the sum above is bounded by the univariate bound discussed

above. The multivariate Wasserstein distance which sums over the diagonal covariance
matrix entries is then bounded by the sums over the individual bounds Li and Ui given
in (A.9).

Li ≤ (W2
2)i ≤ Ui ⇒

D

∑
i=1

Li ≤W2
2 ≤

D

∑
i=1

Ui. (A.40)

Limits of Proposition 1

Limit n → ∞ In the limit of infinite batch size n → ∞, upper and lower bounds on
the expected Wasserstein distance between µ̄, σ̄2 and µt, σ2

t both go to zero.

lim
n→∞

L = lim
n→∞

(
σt −

√
N

N + n
σ2

s +
n− 1
N + n

σ2
t

)2

+
N2

(N + n)2 (µt − µs)
2 +

n
(N + n)2 σ2

t

=(σt − σt)
2 = 0

lim
n→∞

U = lim
n→∞

L + lim
n→∞

σ5
t

(n− 1)
2(N + n)2

(
N

N + n
σ2

s +
1

N + n
χ2

1−α/2,n−1σ2
t

)−3/2

= 0.

(A.41)
The intuition behind this limit is that if a large number of samples from the target
domain is given, µ̂ and σ̂2 approximate the true target statistics very well. As µ̂ and σ̂2

dominate µ̄ and σ̄2 for large n, the expected Wasserstein distance has to vanish.

Limit N → ∞ In the opposite limit N → ∞, the expected value of the Wasserstein
distance reduces to the Wasserstein distance between source and target statistics.

lim
N→∞

µ̄ = µs, lim
N→∞

σ̄2 = σ2
s , (A.42)

⇒ lim
N→∞

E[W2
2] = σ2

t + σ2
s − 2σtσs + (µt − µs)

2 = W2
2
(
µs, σ2

s , µt, σ2
t
)

. (A.43)

Limiting case µt = µs and σ2
t = σ2

s When source and target domain coincide, and the
statistics σ2

s = σ2
t and µs = µt are known, then the source target mismatch is not an

error source.
However, one might assume that source and target domain are different even

though they actually coincide. In this case, proceeding with our proposed strategy and
using the statistics µ̄ and σ̄2, the bounds on the expected Wasserstein distance follow

robust machine learning 230

from setting σ2
t to σ2

s and µt to µs in Proposition 1.

µ̄ =
N

N + n
µt +

n
N + n

µ̂t, σ̄2 =
N

N + n
σ2

t +
n

N + n
σ̂2

t , L ≤ E[W2
2] ≤ U

L = σ2
t

(
2N2 + 4Nn− N + 2n2

(N + n)2 − 2

√
1− 1

N + n

)
,

U = L + σ2
t

n− 1
2(N + n)2

(
N + χ2

1−α/2,n−1

N + n

)−3/2

.

(A.44)

It could also be the case that the equality of source and target statistics is known but
the concrete values of the statistics are unknown. In our model, this amounts to setting
the number of pseudo samples N to zero and assuming that source and target statistics
are equal. Setting N = 0 in equation (A.44) and keeping n finite yields

L = 2σ2
t

(
1−

√
1− 1

n

)
, U = L + σ2

t
n− 1
2n2

(
χ2

1−α/2,n−1

n

)−3/2

. (A.45)

Bounds on the normalized Wasserstein distance

The Wasserstein distance (A.1) between the interpolating statistics µ̄, σ̄2 and the target
statistics can also be normalized by a factor of σ−2

s . Because σ−2
s is constant, the

bounds on the expectation value of the unnormalized Wasserstein distance discussed
in the previous subsections just have to be multiplied by σ−2

s to obtain bounds on the
normalized Wasserstein distance (A.3):

L
σ2

s
≤ W̃2

2 = W2
2

(
µ̄

σs
, ,

σ̄2

σ2
s

,
µt

σs
,

σ2
t

σ2
s

)
=

1
σ2

s
W2

2 (µ̄, σ̄2, µt, σ2
t) ≤

U
σ2

s
. (A.46)

robust machine learning 231

Full list of models evaluated on IN

The following lists contains all models we evaluated on various datasets with references
and links to the corresponding source code.

Torchvision models trained on IN

Weights were taken from https://github.com/pytorch/vision/tree/master/torchvision/
models

1. alexnet (Krizhevsky et al., 2012a)

2. densenet121 (Huang et al., 2017)

3. densenet161 (Huang et al., 2017)

4. densenet169 (Huang et al., 2017)

5. densenet201 (Huang et al., 2017)

6. densenet201 (Huang et al., 2017)

7. googlenet (Szegedy et al., 2015)

8. inception_v3 (Szegedy et al., 2016)

9. mnasnet0_5 (Tan et al., 2019)

10. mnasnet1_0 (Tan et al., 2019)

11. mobilenet_v2 (Sandler et al., 2018a)

12. resnet18 (He et al., 2016c)

13. resnet34 (He et al., 2016c)

14. resnet50 (He et al., 2016c)

15. resnet101 (He et al., 2016c)

16. resnet152 (He et al., 2016c)

17. resnext50_32x4d (Xie et al., 2017)

18. resnext101_32x8d (Xie et al., 2017)

19. shufflenet_v2_x0_5 (Ma et al., 2018)

20. shufflenet_v2_x1_0 (Ma et al., 2018)

21. vgg11_bn (Simonyan & Zisserman, 2015)

22. vgg13_bn (Simonyan & Zisserman, 2015)

23. vgg16_bn (Simonyan & Zisserman, 2015)

24. vgg19_bn (Simonyan & Zisserman, 2015)

25. wide_resnet101_2 (Zagoruyko & Komodakis, 2016)

26. wide_resnet50_2 (Zagoruyko & Komodakis, 2016)

https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models

robust machine learning 232

Robust ResNet50 models

1. resnet50 AugMix (Hendrycks et al., 2020b) https://github.com/google-research/augmix

2. resnet50 SIN+IN (Geirhos et al., 2019) https://github.com/rgeirhos/texture-vs-shape

3. resnet50 ANT (Rusak et al., 2020) https://github.com/bethgelab/game-of-noise

4. resnet50 ANT+SIN (Rusak et al., 2020) https://github.com/bethgelab/game-of-noise

5. resnet50 DeepAugment (Hendrycks et al., 2020a) https://github.com/hendrycks/imagenet-r

6. resnet50 DeepAugment+AugMix (Hendrycks et al., 2020a) https://github.com/hendrycks/
imagenet-r

SimCLRv2 models (Chen et al., 2020c)

We used the checkpoints from https://github.com/google-research/simclr and con-
verted them from TensorFlow to PyTorch with https://github.com/tonylins/simclr-converter,
commit ID: 139d3cb0bd0c64b5ad32aab810e0bd0a0dddaae0.

1. resnet50 FT100 SK=0 width=1

2. resnet101 FT100 SK=0 width=1

3. resnet152 FT100 SK=0 width=1

Robust ResNext models (Xie et al., 2017)

Note that the baseline resnext50_32x4d model trained on ImageNet is available as part
of the torchvision library.

1. resnext50_32x4d WSL (Mahajan et al., 2018) https://github.com/facebookresearch/WSL-Images/
blob/master/hubconf.py

2. resnext101_32x4d WSL (Mahajan et al., 2018) https://github.com/facebookresearch/
WSL-Images/blob/master/hubconf.py

3. resnext101_32x8d Deepaugment+AugMix (Hendrycks et al., 2020a) https://github.com/
hendrycks/imagenet-r

ResNet50 with Group Normalization (Wu & He, 2018)

Model weights and training code was taken from https://github.com/ppwwyyxx/
GroupNorm-reproduce

1. resnet50 GroupNorm

2. resnet101 GroupNorm

3. resnet152 GroupNorm

https://github.com/google-research/augmix
https://github.com/rgeirhos/texture-vs-shape
https://github.com/bethgelab/game-of-noise
https://github.com/bethgelab/game-of-noise
https://github.com/hendrycks/imagenet-r
https://github.com/hendrycks/imagenet-r
https://github.com/hendrycks/imagenet-r
https://github.com/google-research/simclr
https://github.com/tonylins/simclr-converter
https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py
https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py
https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py
https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py
https://github.com/hendrycks/imagenet-r
https://github.com/hendrycks/imagenet-r
https://github.com/ppwwyyxx/GroupNorm-reproduce
https://github.com/ppwwyyxx/GroupNorm-reproduce

robust machine learning 233

ResNet50 with Fixup initialization (Zhang et al., 2019)

Model weights and training code was taken from https://github.com/hongyi-zhang/
Fixup/tree/master/imagenet. For training, we keep all hyperparameters at their
default values and note that in particular the batchsize of 256 is a sensitive parameter.

1. resnet50 FixUp

2. resnet101 FixUp

3. resnet152 FixUp

https://github.com/hongyi-zhang/Fixup/tree/master/imagenet
https://github.com/hongyi-zhang/Fixup/tree/master/imagenet

B
If your data distribution shifts, use
self-learning

A two-point model of self-learning

Proof of Proposition 1

Learning dynamics with stop gradient. Computing the stop gradient evolution defined
in (3.7) explicitly yields

ẇs = −∇wsL =
1
τs

N

∑
i=1

(
σt(x⊤i wt)σs(−x⊤i ws)− σt(−x⊤i wt)σs(x⊤i ws)

)
xi

ẇt = α(ws −wt)

(B.1)

The second equality uses the well-known derivative of the sigmoid function, ∂zσ(z) =
σ(z)σ(−z).

The equation system of 2d nonlinear, coupled ODEs for ws ∈ Rd and wt ∈ Rd in
(B.1) is analytically difficult to analyze. Instead of studying the ODEs directly, we act
on them with the data points x⊤k , k = 1, . . . , N, and investigate the dynamics of the
components x⊤k ws,t ≡ ys,t

k :

ẏs
k =

1
τs

N

∑
i=1

(
x⊤i xk

) (
σt(yt

i)σs(−ys
i)− σt(−yt

i)σs(ys
i)
)

ẏt
k = α(ys

k − yt
k).

(B.2)

The learning rate of each mode ys
k is scaled by (x⊤k xi) which is much larger for i = k

robust machine learning 236

than for i ̸= k in high-dimensional spaces. In the two-point approximation, we consider
only the two (in absolute value) largest terms i = k, l for a given k in the sum in (B.2).
Any changes that ys,t

k (t) and ys,t
l (t) might induce in other modes ys,t

i (t) are neglected,
and so we are left with only four ODEs:

ẏs
k =

1
τs
∥xk∥2 (σt(yt

k)σs(−ys
k)− σt(−yt

k)σs(ys
k)
)

+
1
τs
(x⊤k xl)

(
σt(yt

l)σs(−ys
l)− σt(−yt

l)σs(ys
l)
)

,

ẏs
l =

1
τs
∥xl∥2 (σt(yt

l)σs(−ys
l)− σt(−yt

l)σs(ys
l)
)

+
1
τs
(x⊤k xl)

(
σt(yt

k)σs(−ys
k)− σt(−yt

k)σs(ys
k)
)

ẏt
k =α(ys

k − yt
k), ẏt

l = α(ys
l − yt

l).

(B.3)

The fixed points of (B.3) satisfy

ẏs
k = ẏs

l = ẏt
k = ẏt

l = 0. (B.4)

For α > 0, requiring ẏt
k = ẏt

l = 0 implies that ys
k = yt

k and ys
l = yt

l . For τs = τt, the two
remaining equations ẏs

k = ẏs
l = 0 vanish automatically so that there are no non-trivial

two-point learning dynamics. For τs ̸= τt, there is a fixed point at ys,t
k = ys,t

l = 0 since
at this point, each bracket in (B.3) vanishes individually:

σt(yk,l)σs(−yk,l)− σs(−yk,l)σt(yk,l)

∣∣∣∣
yk,l=0

=
1
4
− 1

4
= 0. (B.5)

At the fixed point ys,t
k = ys,t

l = 0, ws and wt are orthogonal to both xk and xl and hence
classification fails. If this fixed point is stable, ws and wt will stay at the fixed point
once they have reached it, i.e. the model collapses. The fixed point is stable when all
eigenvalues of the Jacobian J of the ODE system (B.3) evaluated at ys,t

k = ys,t
l = 0 are

negative. Two eigenvalues λ± are always negative, whereas the two other eigenvalues
λ̃± are positive if τs > τt:

J
∣∣∣∣
ys,t

k =ys,t
l =0

=

−∥xk∥2

4τ2
s

−(x⊤k xl)

4τ2
s

∥xk∥2

4τsτt

(x⊤k xl)
4τsτt

−(x⊤k xl)

4τ2
s

−∥xl∥2

4τ2
s

(x⊤k xl)
4τsτt

∥xl∥2

4τsτt

α 0 −α 0
0 α 0 −α

 ,

λ± = − 1
16τ2

s

(
A± +

√
A2
± + 32ατ2

s B(τs/τt − 1)
)
< 0,

λ̃± =
1

16τ2
s

(
−A± +

√
A2
± + 32ατ2

s B(τs/τt − 1)
)
> 0 if τs > τt, where

A± = 8ατ2
s ± B, B = ∥xk∥+ ∥xl∥+

√
(∥xk∥ − ∥xl∥)2 + 4(x⊤k xl)2

(B.6)

robust machine learning 237

To sum up, training with stop gradient and τs > τt avoids a collapse of the two-point
model to the trivial representation ys,t

k = ys,t
l = 0 since the fixed point is not stable in

this parameter regime.

Learning dynamics without stop gradient Without stop gradient, we set wt = ws ≡ w
which leads to an additional term in the gradient:

ẇ = −∇wL =
1
τs

N

∑
i=1

(
σt(x⊤i w)σs(−x⊤i w)− σt(−x⊤i w)σs(x⊤i w)

)
xi

+
1
τt

N

∑
i=1

σt(x⊤i w)σt(−x⊤i w)
(

log σs(x⊤i w)− log σs(−x⊤i w)
)

︸ ︷︷ ︸
=log ((1+eyi/τs)/(1+e−yi/τs))=yi/τs

xi.
(B.7)

As before, we focus on the evolution of the two components yk = w⊤xk and
yl = w⊤xl .

ẏk =∥xk∥2
(

1
τs

(σt(yk)σs(−yk)− σt(−yk)σs(yk)) +
1
τt

σt(yk)σt(−yk)yk

)
+ (x⊤k xl)

(
1
τs

(σt(yl)σs(−yl)− σt(−yl)σs(yl)) +
1

τsτt
σt(yl)σt(−yl)yl

)
ẏl =∥xl∥2

(
1
τs

(σt(yl)σs(−yl)− σt(−yl)σs(yl)) +
1
τt

σt(yl)σt(−yl)yl

)
+ (x⊤k xl)

(
1
τs

(σt(yk)σs(−yk)− σt(−yk)σs(yk)) +
1

τsτt
σt(yk)σt(−yk)yk

)
(B.8)

There is a fixed point at yk = yl = 0 where each bracket in (B.8) vanishes individually,

1
τs

(σt(yk,l)σs(−yk,l)− σt(−yk,l)σs(yk,l)) +
1

τsτt
σt(yk,l)σt(−yk,l)yk,l

∣∣∣∣
yk,l

= 0. (B.9)

The Jacobian of the ODE system in (B.8) and its eigenvalues evaluated at the fixed point
are given by

J
∣∣∣∣
yk=yl=0

=

 ∥xk∥2

4τs

(
2
τt
− 1

τs

)
(x⊤k xl)

4τs

(
2
τt
− 1

τs

)
(x⊤k xl)

4τs

(
2
τt
− 1

τs

)
∥xl∥2

4τs

(
2
τt
− 1

τs

)

λ1,2 =
1

8τs

(
2
τt
− 1

τs

)±√∥xk∥4 + ∥xl∥4 − 2∥xk∥2∥xl∥2 + 4(x⊤k xl)2︸ ︷︷ ︸
≤∥xk∥2+∥xl∥2

+∥xk∥2 + ∥xl∥2

︸ ︷︷ ︸

≥0 with equality if xk=±xl

.

(B.10)
Hence the fixed point is unstable when τs > τt/2 and thus the model without stop
gradient does not collapse onto yk = yl = 0 in this regime, concluding the proof.

robust machine learning 238

Simulation of the two-point model

For visualization purposes in the main paper, we set ws = wt = [0.5, 0.5]⊤ and train
the model using instant gradient updates on the dataset with points x1 = [1, 0] and
x2 = [0,−1] using SGD with learning rate 0.1 and momentum 0.9. We varied student
and teacher temperatures on a log-scale with 250 points from 10−3 to 10. Qualitatively
similar results can be obtained without momentum training, at higher learning rates
(most likely due to the implicit learning rate scaling introduced by the momentum
term).

Note that the temperature scales for observing the collapse effect depend on the
learning rate, and the exact training strategy—lower learning rates can empirically
prevent the model from collapsing and shift the convergence region. The result in
Figure 3.2 will hence depend on the exact choice of learning rate (which is currently
not considered in our continuous time evolution theory), while the predicted region
without collapse is robust to details of the optimization.

To visualize the impact of different hyperparameters, we show variants of the two
point model with different learning rates using gradient descent with (Figure B.1) and
without momentum (Figure B.2), and with different start conditions (Figure B.3), which
all influence the regions where the model degrades, but not the stable regions predicted
by our theory.

−2

−1

0

1

lo
g

1
0
τ s

PL
lr: 10
τt = 2τs
τt = τs

1 0.1 0.01 0.001

−2 −1 0 1

log10 τt

−2

−1

0

1

lo
g

1
0
τ s

ENT Error
0%
50%
100%

−2 −1 0 1

log10 τt

−2 −1 0 1

log10 τt

−2 −1 0 1

log10 τt

−2 −1 0 1

log10 τt

Figure B.1: Entropy minimization (top) Training two point model with momentum 0.9 and
different learning rates with initialization ws = wt = [0.5, 0.5]⊤.

robust machine learning 239

−2

−1

0

1

lo
g

1
0
τ s

PL
lr: 10
τt = 2τs
τt = τs

1 0.1 0.01 0.001

−2 −1 0 1

log10 τt

−2

−1

0

1

lo
g

1
0
τ s

ENT Error
0%
50%
100%

−2 −1 0 1

log10 τt

−2 −1 0 1

log10 τt

−2 −1 0 1

log10 τt

−2 −1 0 1

log10 τt

Figure B.2: Training a two point model without momentum and different learning rates with
initialization ws = wt = [0.5, 0.5]⊤. Note that especially for lower learning rates, longer training
would increase the size of the collapsed region.

−2

−1

0

1

lo
g

1
0
τ s

PL
lr: 10
τt = 2τs
τt = τs

1 0.1 0.01 0.001

−2 −1 0 1

log10 τt

−2

−1

0

1

lo
g

1
0
τ s

ENT Error
0%
50%
100%

−2 −1 0 1

log10 τt

−2 −1 0 1

log10 τt

−2 −1 0 1

log10 τt

−2 −1 0 1

log10 τt

Figure B.3: Training a two point model with momentum 0.9 and different learning rates with
initialization ws = wt = [0.6, 0.3]⊤.

robust machine learning 240

Additional information on used models

Details on all hyperparameters we tested for different models

For all models except EfficientNet-L2, we adapt the batch norm statistics to the test
domains following (Schneider et al., 2020a). We do not expect significant gains for
combining EfficientNet-L2 with batch norm adaptation: as demonstrated in (Schneider
et al., 2020a), models trained with large amounts of weakly labeled data do not seem to
benefit from batch norm adaptation.

ResNet50 models (IN-C) We use a vanilla ResNet50 model and compare soft- and hard-
labeling against entropy minimization and robust pseudo-labeling. To find optimal
hyperparameters for all methods, we perform an extensive evaluation and test (i)
three different adaptation mechanisms (ii) several learning rates 1.0× 10−4, 1.0× 10−3,
1.0× 10−2 and 5.0× 10−2, (iii) the number of training epochs and (iv) updating the
teacher after each epoch or each iteration. For all experiments, we use a batch size of
128. The hyperparameter search is performed on IN-C dev. We then use the optimal
hyperparameters to evaluate the methods on the IN-C test set.

ResNeXt101 models The ResNeXt101 model is considerably larger than the ResNet50

model and we therefore limit the number of ablation studies we perform for this
architecture. Besides a baseline, we include a state-of-the-art robust version trained
with DeepAugment+Augmix (DAug+AM, Hendrycks et al., 2020a) and a version that
was trained on 3.5 billion weakly labeled images (IG-3.5B, Mahajan et al., 2018). We
only test the two leading methods on the ResNeXt101 models (ENT and RPL). We
vary the learning rate in same interval as for the ResNet50 model but scale it down
linearly to account for the smaller batch size of 32. We only train the affine batch
normalization parameters because adapting only these parameters leads to the best
results on ResNet50 and is much more resource efficient than adapting all model
parameters. Again, the hyperparameter search is performed only on the development
corruptions of IN-C. We then use the optimal hyperparameters to evaluate the methods
on the IN-C test set.

EfficientNet-L2 models The current state of the art on IN, IN-C, IN-R and IN-A is an
EfficientNet-L2 trained on 300 million images from JFT-300M (Chollet, 2017; Hinton
et al., 2014) using a noisy student-teacher protocol (Xie et al., 2020a). We adapt this
model for only one epoch due to resource constraints. During the hyperparameter
search, we only evaluate three corruptions on the IN-C development set1 and test the
learning rates 4.6× 10−2, 4.6× 10−3, 4.6× 10−4 and 4.6× 10−5. We use the optimal

1We compare the results of computing the dev set on the 1, 3 and 5 severities versus the 1, 2, 3, 4 and 5
severities on our ResNeXt101 model in the Supplementary material.

robust machine learning 241

hyperparameters to evaluate ENT and RPL on the full IN-C test set (with all severity
levels).

UDA-SS models We trained the models using the scripts from the official code base at
https://github.com/yueatsprograms/uda_release. We used the provided scripts for
the cases: (a) source: CIFAR10, target: STL10 and (b) source: MNIST, target: MNIST-M.
For the case (c) source: CIFAR10, target: CIFAR10-C, we used the hyperparameters
from case (a) since this case seemed to be the closest match to the new setting. We
think that the baseline performance of the UDA-SS models can be further improved
with hyperparameter tuning.

DANN models To train models with the DANN-method, we used the PyTorch im-
plementation of this paper at https://github.com/fungtion/DANN_py3. The code
base only provides scripts and hyperparameters for the case (b) source: MNIST, target:
MNIST-M. For the cases (a) and (c), we used the same optimizer and trained the model
for 100 epochs. We think that the baseline performance of the DANN models can be
further improved with hyperparameter tuning.

Preprocessing For IN, IN-R, IN-A and IN-D, we resize all images to 256 × 256 px
and take the center 224× 224 px crop. The IN-C images are already rescaled and
cropped. We center and re-scale the color values with µRGB = [0.485, 0.456, 0.406] and
σRGB = [0.229, 0.224, 0.225]. For the EfficientNet-L2, we follow the procedure in Xie
et al. (2020a) and rescale all inputs to a resolution of 507× 507 px and then center-crop
them to 475× 475 px.

Full list of used models

ImageNet scale models ImageNet trained models (ResNet50, DenseNet161, ResNeXt)
are taken directly from torchvision (Marcel & Rodriguez, 2010). The model variants
trained with DeepAugment and AugMix augmentations (Hendrycks et al., 2020b, 2020a)
are taken from https://github.com/hendrycks/imagenet-r. The weakly-supervised
ResNeXt101 model is taken from the PyTorch Hub. For EfficientNet (Tan & Le, 2019),
we use the PyTorch re-implementation available at https://github.com/rwightman/
gen-efficientnet-pytorch. This is a verified re-implementation of the original work by
Xie et al. (2020a). We verify the performance on ImageNet, yielding a 88.23% top-1
accuracy and 98.546% top-5 accuracy which is within 0.2% points of the originally
reported result (Xie et al., 2020a). On ImageNet-C, our reproduced baseline achieves
28.9% mCE vs. 28.3% mCE originally reported by Xie et al. (2020a). As noted in the
re-implementation, this offset is possible due to minor differences in the pre-processing.
It is possible that our adaptation results would improve further when applied on the
original codebase by Xie et al..

https://github.com/yueatsprograms/uda_release
https://github.com/fungtion/DANN_py3
https://github.com/hendrycks/imagenet-r
https://github.com/rwightman/gen-efficientnet-pytorch
https://github.com/rwightman/gen-efficientnet-pytorch

robust machine learning 242

Table B.1: Model checkpoints used for our experiments. References: 1Croce et al. (2020), 2He
et al. (2016c), 3Huang et al. (2017), 4Xie et al. (2017), 5Hendrycks et al. (2020a), 6Mahajan et al.
(2018), 7Xie et al. (2020a), 8Caron et al. (2021b)

Model Source

WideResNet(28,10)1 https://github.com/RobustBench/robustbench/tree/master/robustbench
WideResNet(40,2)+AugMix1 https://github.com/RobustBench/robustbench/tree/master/robustbench

ResNet50
2 https://github.com/pytorch/vision/tree/master/torchvision/models

ResNeXt101, 32×8d2 https://github.com/pytorch/vision/tree/master/torchvision/models
DenseNet3 https://github.com/pytorch/vision/tree/master/torchvision/models
ResNeXt101, 32×8d4 https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/

ResNet50+DeepAugment+AugMix5 https://github.com/hendrycks/imagenet-r
ResNext101

5 https://github.com/hendrycks/imagenet-r
ResNext101 32×8d IG-3.5B6 https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py

Noisy Student EfficientNet-L2
7 https://github.com/rwightman/gen-efficientnet-pytorch

ViT-S/16
8 https://github.com/facebookresearch/dino

Small scale models We train the UDA-SS models using the original code base at https:
//github.com/yueatsprograms/uda_release, with the hyperparameters given in the
provided bash scripts. For our DANN experiments, we use the PyTorch implementation
at https://github.com/fungtion/DANN_py3. We use the hyperparameters in the
provided bash scripts.

The following Table B.1 contains all models we evaluated on various datasets with
references and links to the corresponding source code.

https://github.com/RobustBench/robustbench/tree/master/robustbench
https://github.com/RobustBench/robustbench/tree/master/robustbench
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
https://github.com/hendrycks/imagenet-r
https://github.com/hendrycks/imagenet-r
https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py
https://github.com/rwightman/gen-efficientnet-pytorch
https://github.com/facebookresearch/dino
https://github.com/yueatsprograms/uda_release
https://github.com/yueatsprograms/uda_release
https://github.com/fungtion/DANN_py3

robust machine learning 243

Category Corruption top1 error

Noise
Gaussian Noise 0.886428

Shot Noise 0.894468

Impulse Noise 0.922640

Blur

Defocus Blur 0.819880

Glass Blur 0.826268

Motion Blur 0.785948

Zoom Blur 0.798360

Weather

Snow 0.866816

Frost 0.826572

Fog 0.819324

Brightness 0.564592

Contrast 0.853204

Digital

Elastic Transform 0.646056

Pixelate 0.717840

JPEG Compression 0.606500

Hold-out Noise Speckle Noise 0.845388

Hold-out Digital Saturate 0.658248

Hold-out Blur Gaussian Blur 0.787108

Hold-out Weather Spatter 0.717512

Table B.2: AlexNet top1 errors on ImageNet-C

Detailed and additional Results on IN-C

Definition of the mean Corruption Error (mCE)

The established performance metric on IN-C is the mean Corruption Error (mCE),
which is obtained by normalizing the model’s top-1 errors with the top-1 errors of
AlexNet across the C=15 test corruptions and S=5 severities:

mCE(model) =
1
C

C

∑
c=1

∑S
s=1 errmodel

c,s

∑S
s=1 errAlexNet

c,s
. (B.11)

The AlexNet errors used for normalization are shown in Table B.2.

Detailed results for tuning epochs and learning rates

We tune the learning rate for all models and the number of training epochs for all
models except the EfficientNet-L2. In this section, we present detailed results for tuning
these hyperparameters for all considered models. The best hyperparameters that we
found in this analysis, are summarized in Table B.7.

robust machine learning 244

Table B.3: mCE in % on the IN-C dev set for ENT and RPL for different numbers of training
epochs when adapting the affine batch norm parameters of a ResNet50 model.

criterion ENT RPL
lr 10−4 10−3 10−2 10−4 10−3 10−2

epoch

0 60.2 60.2 60.2 60.2 60.2 60.2
1 54.3 50.0 72.5 57.4 51.1 52.5
2 52.4 50.9 96.5 55.8 49.6 57.4
3 51.5 51.0 112.9 54.6 49.2 64.2
4 51.0 52.4 124.1 53.7 49.0 71.0
5 50.7 53.5 131.2 52.9 48.9 76.3

Table B.4: mCE (↘) in % on the IN-C dev set for different learning rates for EfficientNet-L2.
We favor q = 0.8 over q = 0.7 due to slightly improved robustness to changes in the learning
rate in the worst case error setting.

lr (4.6 ×) base 10−3 10−4 10−5 10−6

ENT 25.5 87.8 25.3 22.2 24.1
RPLq=0.7 25.5 60.3 21.3 23.3 n/a
RPLq=0.8 25.5 58.2 21.4 23.4 n/a

Detailed results for all IN-C corruptions

We outline detailed results for all corruptions and models in Table B.8. Performance
across the severities in the dataset is depicted in Figure B.4. All detailed results
presented here are obtained by following the model selection protocol outlined in the
main text.

Detailed results for the CIFAR10-C and UDA adaptation

Ablation over the hyperparameter q for RPL

For RPL, we must choose the hyperparameter q. We performed an ablation study over
q and show results in Table B.11, demonstrating that RPL is robust to the choice of q,
with slight preference to higher values. Note: In the initial parameter sweep for this
paper, we only compared q = 0.7 and q = 0.8. Given the result in Table B.11, it could
be interesting to re-run the models in Table 1 of the main paper with q = 0.9, which
could yield another (small) improvement in mCE.

Self-learning outperforms Test-Time Training (Sun et al., 2019b)

Sun et al. (2019b) use a ResNet18 for their experiments on ImageNet and only evaluate
their method on severity 5 of IN-C. To enable a fair comparison, we trained a ResNet18

with both hard labeling and RPL and compare the efficacy of both methods to Test-Time
Training in Table B.12. For both hard labeling and RPL, we use the hyperparameters

robust machine learning 245

Table B.5: mCE in % on IN-C dev for en-
tropy minimization for different learning
rates and training epochs for ResNeXt101.
(div.=diverged)

ENT Baseline IG-3.5B DAug+AM
lr 2.5 × 1e-4 1e-3 5e-3 1e-4 1e-3 5e-3 1e-4 1e-3 5e-3
epoch

base 53.6 53.6 53.6 47.4 47.4 47.4 37.4 37.4 37.4
1 43.0 92.2 div. 40.9 40.4 58.6 35.4 46.4 div.
2 44.8 118.4 div. 39.8 41.5 69.5 35.5 90.8 div.
3 45.4 131.9 div. 39.3 42.6 76.1 35.5 122.5 div.
4 46.7 div. div. 39.1 44.2 84.3 35.6 133.8 div.

Table B.6: mCE in % on IN-C dev for ro-
bust pseudo-labeling for different learning
rates and training epochs for ResNeXt101.
(div.=diverged)

RPL Baseline IG-3.5B DAug+AM
lr 2.5× 1e-4 1e-3 5e-3 1e-4 1e-3 5e-3 1e-4 1e-3 5e-3
epoch

base 53.6 53.6 53.6 47.4 47.4 47.4 37.4 37.4 37.4
1 43.4 51.3 div. 45.0 39.9 43.6 35.3 35.1 79.1
2 42.3 63.2 div. 43.4 39.3 48.2 34.9 35.6 121.2
3 42.0 72.6 div. 42.4 39.4 52.9 34.7 40.1 133.5
4 42.0 72.6 div. 42.4 39.4 52.9 34.7 40.1 133.5

Table B.7: The best hyperparameters for all models that we found on IN-C. For all models, we
fine-tune only the affine batch normalization parameters and use q = 0.8 for RPL. The small
batchsize for the EfficientNet model is due to hardware limitations.

number of
Model Method Learning rate batch size epochs

vanilla ResNet50 ENT 1× 10−3
128 1

vanilla ResNet50 RPL 1× 10−3
128 5

vanilla ResNeXt101 ENT 2.5× 10−4
128 1

vanilla ResNeXt101 RPL 2.5× 10−4
128 4

IG-3.5B ResNeXt101 ENT 2.5× 10−4
128 4

IG-3.5B ResNeXt101 RPL 2.5× 10−3
128 2

DAug+AM ResNeXt101 ENT 2.5× 10−4
128 1

DAug+AM ResNeXt101 RPL 2.5× 10−4
128 4

EfficientNet-L2 ENT 4.6× 10−5
8 1

EfficientNet-L2 RPL 4.6× 10−4
8 1

we found for the vanilla ResNet50 model and thus, we expect even better results for
hyperparameters tuned on the vanilla ResNet18 model and following our general
hyperparameter search protocol.

While all methods (self-learning and TTT) improve the performance over a simple
vanilla ResNet18, we note that even the very simple baseline using hard labeling
already outperfoms Test-Time Training; further gains are possible with RPL. The result
highlights the importance of simple baselines (like self-learning) when proposing new
domain adaptation schemes. It is likely that many established DA techniques more
complex than the basic self-learning techniques considered in this work will even
further improve over TTT and other adaptation approaches developed exclusively in
robustness settings.

We report better accuracy numbers achieved with self-learning compared to online
TTT, but note that they adapt to a single test sample while we make use of batches of
data. Due to the single-image approach, they utilize GN instead of BN, and this may
explain the performance gap to a certain degree as we show that BN is more effective
for test-time adaptation compared to GN, even though the un-adapted BN models are

robust machine learning 246

1 2 3 4 5
Severity

20

40

60

80

m
CE

 [%
]

RN50

1 2 3 4 5
Severity

RNx101

1 2 3 4 5
Severity

RNx101 IG-3.5B

1 2 3 4 5
Severity

RNx101 DeepAug+Augmix

1 2 3 4 5
Severity

Noisy Student L2

ENT
RPL
Base

Figure B.4: Severity-wise mean corruption error (normalized using the average AlexNet baseline
error for each corruption) for ResNet50 (RN50), ResNext101 (RNx101) variants and the Noisy
Student L2 model. Especially for more robust models (DeepAugment+Augmix and Noisy
Student L2), most gains are obtained across higher severities 4 and 5. For weaker models, the
baseline variant (Base) is additionally substantially improved for smaller corruptions.

less robust compared to the un-adapted GN models, as also noted by Sun et al. (2019b).
Further, Sun et al. (2019b) optimize all model parameters while we only optimize the
affine BN parameters which works better.

Comparison to Meta Test-Time Training (Bartler et al., 2022)

Bartler et al. (2022) report an error of 24.4% as their top result on CIFAR10-C which is
far worse than our top results of 8.5% with an AugMix trained model, or 13.3% with
a vanilla trained model, but a different architecture: they used a WRN-26-1 while we
report results with a WRN-40-2. Thus, to make the comparison more fair, we tested
our approach on their model architecture.

A direct comparison is not straight-forward since Bartler et al. (2022) trained their
models using Keras while our code-base is in PyTorch. Therefore, we first trained a base-
line model in PyTorch on clean CIFAR10 using their architecture with the standard and
widely used CIFAR10 training code available at https://github.com/kuangliu/pytorch-
cifar (1.9k forks, 4.8k stars); the baseline test accuracy on clean CIFAR10 using the
architecture of Bartler et al. (2022) is at 94.3%. As a second step, we adapted the baseline
model with ENT and RPL on CIFAR10-C. Please see Table B.13 for our results. BN
adaptation is not possible for the model used by Bartler et al. (2022) since they use
GroupNorm instead of BatchNorm. Due to the usage of GroupNorm, it is not evident
whether the affine GroupNorm parameters should be adapted, or all model parameters.
Thus, we tested both, and report the results for both adaptation mechanisms.

We find that adaptation of affine GN layers works better than full model adaptation,
consistent with our results for the adaptation of BN layers. As the gains due to ENT
and RPL seem lower than for our WRN-40-2 architecture, we hypothesize that the issue
lies in the GN layers as the presence of GN instead of BN layers is the main difference
between our WRN-40-2 and the new WRN-26-1 model. Therefore, we trained another
WRN-26-1 model with BN layers instead of GN, and adapted this model using BN, ENT
and RPL. The baseline accuracy on clean CIFAR10 of WRN-26-1-BN is 95.04%. Indeed,
we find that adapting the model with BN instead of GN layers leads to much larger

robust machine learning 247

Table B.8: Detailed results for each corruption along with mean corruption error (mCE) as
reported in Table 3.1 in the main paper. We show (unnormalized) top-1 error rate averaged
across 15 test corruptions along with the mean corruption error (mCE: which is normalized).
Hyperparameter selection for both ENT and RPL was carried out on the dev corruptions as
outlined in the main text. Mismatch in baseline mCE for EfficientNet-L2 can be most likely
attributed to pre-processing differences between the original tensorflow implementation (Xie
et al., 2020a) and the PyTorch reimplementation we employ. We start with slightly weaker
baselines for ResNet50 and ResNext101 than (Schneider et al., 2020a): ResNet50 and ResNext101

results are slightly worse than previously reported results (typically 0.1% points) due to the
smaller batch size of 128 and 32. Smaller batch sizes impact the quality of re-estimated batch
norm statistics when computation is performed on the fly (Schneider et al., 2020a), which is of
no concern here due to the large gains obtained by pseudo-labeling.

gau
ss

sh
ot

im
pulse

defo
cu

s

glas
s

m
otio

n

zo
om

sn
ow

fro
st

fo
g

brig
ht

co
ntra

st

ela
sti

c

pixe
lat

e

jpeg m
CE

ResNet50

Baseline (Schneider et al., 2020a) 62.2
Baseline (ours) 57.2 59.5 60.0 61.4 62.3 51.3 49.5 54.6 54.1 39.3 29.1 46.7 41.4 38.2 41.8 62.8
ENT 45.5 45.5 46.8 48.4 48.7 40.0 40.3 42.0 46.6 33.2 28.1 42.4 35.2 32.2 35.1 51.6
RPL 44.2 44.4 45.5 47.0 47.4 38.8 39.2 40.7 46.2 32.5 27.7 42.7 34.6 31.6 34.4 50.5

ResNeXt101 Baseline
Baseline (Schneider et al., 2020a) 56.7
Baseline (ours) 52.8 54.1 54.0 55.4 56.8 46.7 46.6 48.5 49.4 36.6 25.4 42.8 37.8 32.5 36.7 56.8
ENT 40.5 39.5 41.4 41.6 43.0 34.1 34.5 35.0 39.4 28.5 24.0 33.8 30.3 27.2 30.5 44.3
RPL 39.4 38.9 39.8 40.3 41.0 33.4 33.8 34.6 38.7 28.0 23.7 31.4 29.8 26.8 30.0 43.2

ResNeXt101 IG-3.5B
Baseline (Schneider et al., 2020a) 51.6
Baseline (ours) 50.7 51.5 53.1 54.2 55.5 45.5 44.7 41.7 42.0 28.1 20.1 33.8 35.4 27.8 33.9 51.8
ENT 38.6 38.3 40.4 41.4 41.5 33.8 33.6 32.2 34.6 24.1 19.7 26.3 27.6 24.2 27.9 40.8
RPL 39.1 39.2 40.8 42.1 42.4 33.7 33.5 31.8 34.7 23.9 19.6 26.1 27.5 23.8 27.5 40.9

ResNeXt101 DeepAug+Augmix
Baseline (Schneider et al., 2020a) 38.0
Baseline (ours) 30.0 30.0 30.2 32.9 35.5 28.9 31.9 33.3 32.8 29.5 22.6 28.4 31.2 23.0 26.5 38.1
ENT 28.7 28.5 29.0 29.8 30.9 26.9 28.0 29.3 30.5 26.2 23.2 26.3 28.5 23.7 26.0 35.5
RPL 28.1 27.8 28.3 29.1 30.1 26.3 27.4 28.8 29.8 25.9 22.7 25.6 27.9 23.2 25.4 34.8

Noisy Student L2

Baseline (Xie et al., 2020a) 28.3
Baseline (ours) 21.6 22.0 20.5 23.9 40.5 19.8 23.2 22.8 26.9 21.0 15.2 21.2 24.8 17.9 18.6 28.9
ENT 18.5 18.7 17.4 18.8 23.4 16.9 18.8 17.1 19.6 16.8 14.1 16.6 19.6 15.8 16.5 23.0
RPL 17.8 18.0 17.0 18.1 21.4 16.4 17.9 16.4 18.7 15.7 13.6 15.6 19.2 15.0 15.6 22.0

gains, which is consistent with findings by Schneider et al. (2020a) who found that
BN adaptation outperforms non-adapted models trained with GN. Thus, we conclude
that self-learning techniques work better with models which have BN layers and less
well with models with GN layers. For both model types (with GN or with BN layers),
ENT works better than RPL which is consistent with our other results on small-scale
datasets.

Overall, our best result for the model architecture used by Bartler et al. (2022) (after
replacing GN layers with BN layers) et al. is 13.1% which is much lower than their best
result of 24.4%. Even when using GN layers, our best top-1 error is 18.0% which is
significantly lower than the best result of Bartler et al. (2022).

robust machine learning 248

Table B.9: Detailed results for each corruption along with mean error on CIFAR10-C as reported
in Table 3.2 in the main paper.

gau
ss

sh
ot

im
pulse

defo
cu

s

glas
s

m
otio

n

zo
om

sn
ow

fro
st

fo
g

brig
ht

co
ntra

st

ela
sti

c

pixe
lat

e

jpeg av
g

WRN-28-10 vanilla
Baseline 53.0 41.2 44.7 18.5 49.0 22.3 24.4 18.1 25.0 11.2 6.7 17.4 16.2 28.0 22.4 26.5
BN adapt 20.8 17.6 22.7 8.1 28.4 10.9 9.2 14.2 13.0 8.7 6.8 8.5 13.5 12.1 21.0 14.4
ENT 18.5 15.9 20.6 7.8 25.5 10.6 8.5 13.1 12.3 8.3 6.9 8.0 12.6 11.1 18.9 13.3
RPL 19.1 21.4 16.3 8.1 26.4 8.9 10.9 13.7 12.9 6.9 13.1 19.7 8.2 11.4 8.7 13.7

WRN-40-2 AM
Baseline 19.1 14.0 13.3 6.3 17.1 7.9 7.0 10.4 10.6 8.5 5.9 9.7 9.2 16.8 11.9 11.2
BN adapt 14.1 11.9 13.9 7.2 17.6 8.7 7.9 10.8 10.6 9.0 6.8 9.0 10.9 10.1 14.0 10.8
ENT 10.8 9.1 10.9 6.0 13.4 7.2 6.3 8.4 7.8 7.1 5.7 7.1 9.2 7.4 11.2 8.5
RPL 11.5 11.6 9.6 6.2 14.2 6.5 7.4 8.8 8.2 6.0 9.5 11.9 7.9 8.0 7.6 9.0

WRN-26-16 UDA-SS
Baseline 26.0 24.7 19.3 22.4 56.2 32.4 32.1 31.7 31.2 26.6 15.8 20.4 26.3 21.5 28.9 27.7
BN adapt 20.5 19.0 15.6 13.5 43.1 19.4 18.3 23.1 21.2 16.2 12.8 14.1 20.9 16.7 23.4 19.9
ENT 16.9 16.7 12.3 11.3 37.6 15.6 14.8 18.3 18.2 13.4 10.8 11.9 17.9 14.4 20.9 16.7
RPL 18.1 17.1 13.2 11.9 41.5 17.3 16.1 20.4 19.1 14.5 11.8 12.7 18.8 18.1 22.6 18.2

WRN-26-16 vanilla
Baseline 50.8 46.9 39.3 15.9 44.2 20.8 18.8 14.9 17.8 4.8 13.6 20.4 19.0 25.0 10.0 24.2
BN adapt 18.6 20.4 15.6 6.1 24.9 7.4 8.3 11.6 10.8 5.3 11.4 18.9 6.8 9.9 6.8 12.2
ENT 16.7 18.4 13.9 5.7 23.0 6.8 7.9 10.8 9.9 5.0 10.8 17.3 6.4 9.1 6.4 11.2
RPL 16.1 18.0 13.6 6.6 23.2 8.7 9.3 11.9 11.1 6.4 11.7 17.0 7.4 9.0 7.2 11.8

Table B.10: Detailed results for the UDA methods reported in Table 3.2 of the main paper.

Baseline BN adapt RPL ENT

UDA CIFAR10→STL10, top1 error on target [%](↘)
WRN-26-16 UDA-SS 28.7 24.6 22.9 21.8
WRN-26-16 DANN 25.0 25.0 24.0 23.9

UDA MNIST→MNIST-M, top1 error on target [%](↘)
WRN-26-16 UDA-SS 4.8 3.9 2.4 2.0
WRN-26-2 DANN 11.4 6.2 5.2 5.1

Effect of batch size and linear learning rate scaling

How is self-learning performance affected by batch size constraints? We compare the
effect of different batch sizes and linear learning rate scaling. In general, we found
that affine adaptation experiments on ResNet50 scale can be run with batch size 128

on a Nvidia V100 GPU (16GB), while only batch size 96 experiments are possible on
RTX 2080 GPUs.

The results in Table B.14 show that for a ResNet50 model, higher batch size yields a
generally better performance.

Performance over different seeds in a ResNet50 on ImageNet-C

To limit the amount of compute, we ran RPL and ENT for our vanilla ResNet50 model
three times with the optimal hyperparameters. The averaged results, displayed as

robust machine learning 249

Table B.11: ImageNet-C dev set mCE in %, vanilla ResNet50, batch size 96. We report the best
score across a maximum of six adaptation epochs.

q 0.5 0.6 0.7 0.8 0.9

mCE (dev) 49.5 49.3 49.2 49.2 49.1

Table B.12: Comparison of hard-pseudo labeling and robust pseudo-labeling to Test-Time
Training (Sun et al., 2019b): Top-1 error for a ResNet18 and severity 5 for all corruptions. Simple
hard pseudo-labeling already outperforms TTT, robust pseudo labeling over multiple epochs
yields additional gains.

ga
us

s

sh
ot

im
pu

ls
e

de
fo

cu
s

gl
as

s

m
ot

io
n

zo
om

sn
ow

fr
os

t

fo
g

br
ig

ht
co

nt
ra

st
el

as
tic

pi
xe

la
te

jp
eg

A
vg

vanilla ResNet18 98.8 98.2 99.0 88.6 91.3 88.8 82.4 89.1 83.5 85.7 48.7 96.6 83.2 76.9 70.4 85.4
Test-Time Training 73.7 71.4 73.1 76.3 93.4 71.3 66.6 64.4 81.3 52.4 41.7 64.7 55.7 52.2 55.7 66.3
hard PL, (1 epoch) 73.2 70.8 73.6 76.5 75.6 63.9 56.1 59.0 65.9 48.4 39.7 85.2 50.4 47.0 51.5 62.5
ENT(1 epoch) 72.8 69.8 73.2 77.2 75.7 63.1 55.5 58.0 68.1 48.0 39.8 92.7 49.6 46.4 51.3 62.8
RPL (4 epochs) 71.3 68.3 71.7 76.2 75.6 61.5 54.4 56.9 67.1 47.3 39.3 93.2 48.9 45.7 50.4 61.9

“mean (unbiased std)” are:

Self-learning as continuous test-time adaptation

We test our method on continuous test-time adaptation where the model adapts to a
continuous stream of data from the same domain. In Fig. B.5, we display the error of
the Noisy Student L2 model while it is being adapted to ImageNet-C and ImageNet-R.
The model performance improves as the model sees more data from the new domain.
We differentiate continuous test-time adaptation from the online test-time adaptation
setting (Zhang et al., 2021) where the model is adapted to each test sample individually,
and reset after each test sample.

robust machine learning 250

Table B.13: Detailed results for our comparison to MT3 (Bartler et al., 2022)

gau
ss

sh
ot

im
pulse

defo
cu

s

glas
s

m
otio

n

zo
om

sn
ow

fro
st

fo
g

brig
ht

co
ntra

st

ela
sti

c

pixe
lat

e

jpeg av
g

WRN-26-1-GN vanilla
Baseline (Bartler et al., 2022) 50.5 47.2 56.1 23.7 51.7 24.3 26.3 25.6 34.4 28.1 13.5 25.0 27.4 55.8 29.8 34.6
adapted (Bartler et al., 2022) 30.1 29.5 41.8 15.6 33.7 22.8 18.7 20.2 18.8 24.1 13.8 22.4 23.7 27.6 22.7 24.4

WRN-26-1-GN vanilla
Baseline [ours] 39.1 32.0 30.2 10.9 31.9 13.5 13.3 14.1 16.7 10.6 7.3 9.4 14.1 16.1 20.6 18.6
ENT [GN layers, ours] 41.6 30.7 32.8 9.7 30.9 11.8 11.4 13.5 14.9 10.0 7.2 8.9 13.2 13.3 19.8 18.0
RPL [GN layers, ours] 39.3 31.6 30.6 10.6 31.6 13.0 12.6 14.0 16.1 10.4 7.3 9.2 13.9 15.4 20.4 18.4
ENT [full model, ours] 61.2 46.0 37.6 9.1 30.2 11.1 10.4 13.1 14.4 10.0 7.2 8.7 13.1 11.9 19.7 20.3
RPL [full model, ours] 54.1 37.3 33.0 10.2 31.5 11.9 12.4 13.6 15.3 7.3 13.6 20.4 9.2 13.6 10.2 19.6

WRN-26-1-BN vanilla
Baseline [ours] 55.7 44.8 43.1 15.5 44.2 20.5 21.1 17.2 20.7 6.6 15.6 21.3 23.6 24.7 11.8 25.8
BN adapt [ours] 28.0 28.9 24.2 10.5 31.5 12.7 14.0 18.4 18.1 9.4 17.1 26.9 13.2 15.3 12.7 18.7
ENT [BN layers, ours] 17.9 19.6 14.9 8.1 23.2 9.1 10.4 13.1 13.2 7.2 13.2 18.0 9.9 10.5 8.9 13.1
RPL [BN layers, ours] 21.3 22.0 17.9 9.3 26.6 10.5 11.8 15.1 15.0 7.8 14.7 20.8 12.1 11.8 10.4 15.1

Table B.14: ImageNet-C dev set mCE for various batch sizes with linear learning rate scaling.
All results are computed for a vanilla ResNet50 model using RPL with q = 0.8, reporting the
best score across a maximium of six adaptation epochs.

batch size 16 32 64 80 96 128

learning rate (×10−3) 0.125 0.250 0.500 0.625 0.750 1

dev mCE 53.8 51.0 49.7 49.3 49.2 48.9

Table B.15: ImageNet-C performance for three seeds on a ResNet50 for ENT and RPL.

ResNet50 + self-learning mCE on IN-C dev [%] mCE on IN-C test [%]

ENT 50.0 (0.04) 51.6 (0.04)
RPL 48.9 (0.02) 50.5 (0.03)

0 1 2 3 4 5

Samples [×104]

22

24

26

28

m
C

E
[%

]

28.9

23.0
22.0

(i) ImageNet-C

Baseline

ENT

RPL

0 1 2 3

Samples [×104]

18

20

22

24

26

T
op

-1
E

rr
or

[%
]

23.5

19.7

17.4

(ii) ImageNet-R

Figure B.5: Evolution of error during online adaptation for EfficientNet-L2.

robust machine learning 251

Table B.16: Statistics of one-to-many mappings from IN-D to ImageNet.

Number of IN classes one 1 2 3 4 5 6 7 8 13 28 39 132

IN-D class is mapped to

Frequency of these mappings 102 32 13 3 5 1 1 2 1 2 1 1

Detailed and additional Results on IN-D

Detailed protocol for label mapping from DomainNet to ImageNet

The mapping was first done by comparing the class labels in DomainNet and the synset
labels on ImageNet. Afterwards, the resulting label maps were cleaned manually,
because simply comparing class label strings resulted in imperfect matches. For
example, images of the class “hot dog” in DomainNet were mapped to the class “dog”
in IN. Another issue is that IN synset labels of different animal species do not contain
the animal name in the text label, e.g., the class “orangutan, orang, orangutang, Pongo
pygmaeus” does not contain the word “monkey” and we had to add this class to the
hierarchical class “monkey” manually. We verified the mappings by investigating the
class-confusion matrix of the true DomainNet class and the predicted ImageNet classes
remapped to DomainNet on the “Real” domain, and checked that the predictions
lay on the main diagonal, indicating that ImageNet classes have not been forgotten.
The statistics for the mappings are shown in Table B.16. Most IN-D classes (102) are
mapped to one single ImageNet class. A few IN-D classes are mapped to more than 20

ImageNet classes: the IN-D classes “monkey” and “snake” are mapped to 28 ImageNet
monkey and snake species classes, the IN-D class “bird” is mapped to 39 ImageNet
bird species classes, and the IN-D class “dog” is mapped to 132 ImageNet dog breed
classes.

We have considered max-pooling predictions across all sub-classes according to the
ImageNet class hierarchy following the approach of Taori et al. (2020) for Youtube-BB
and ImageNet-Vid (Recht et al., 2020). However, Radford et al. (2021) note that the
resulting mappings are sometimes “much less than perfect”, thus, we decided to clean
the mappings ourselves to increase the mappings’ quality. The full dictionary of the
mappings will be released alongside the code.

Evaluation protocol on IN-D

The domains in IN-D differ in terms of their difficulty for the studied models. Therefore,
to calculate an aggregate score, we propose normalizing the error rates by the error
achieved by AlexNet on the respective domains to calculate the mean error, following
the approach in Hendrycks and Dietterich (2019a) for IN-C. This way, we obtain the
aggregate score mean Domain Error (mDE) by calculating the mean over different

robust machine learning 252

Table B.17: mDE in % on IN-D for different model selection strategies.

model model selection
L1outCV IN-C dev

ResNet50 RPLq=0.8 81.3 76.1
ResNet50 ENT 82.4 77.3
EfficientNet-L2 ENT 69.2 66.8
EfficientNet-L2 RPLq=0.8 69.1 67.2

domains,

DE f
d =

E f
d

EAlexNet
d

, mDE =
1
D

D

∑
d=1

E f
d , (B.12)

where E f
d is the top-1 error of a classifier f on domain d.

Leave-one-out-cross-validation For all IN-D results we report in this paper, we chose the
hyperparameters on the IN-C dev set. We tried a different model selection scheme on
IN-D as a control experiment with “Leave one out cross-validation” (L1outCV): with a
round-robin procedure, we choose the hyperparameters for the test domain on all other
domains. We select the same hyperparameters as when tuning on the “dev” set: For
the ResNet50 model, we select over the number of training epochs (with a maximum
of 7 training epochs) and search for the optimal learning rate in the set [0.01, 0.001,
0.0001]. For the EfficientNet-L2 model, we train only for one epoch as before and select
the optimal learning rate in the set [4.6× 10−3, 4.6× 10−4, 4.6× 10−5, 4.6× 10−6]. This
model selection leads to worse results both for the ResNet50 and the EfficientNet-L2

models, highlighting the robustness of our model selection process, see Table B.17.

Detailed results for robust ResNet50 models on IN-D

We show detailed results for all models on IN-D for vanilla evaluation (Table B.18) BN
adaptation (Table B.19), RPLq=0.8 (Table B.20) and ENT(Table B.21). For RPLq=0.8 and
ENT, we use the same hyperparameters that we chose on our IN-C ‘dev’ set. This
means we train the models for 5 epochs with RPLq=0.8 and for one epoch with ENT.

We evaluate the pre-trained and public checkpoints of SIN (Geirhos et al., 2019),
ANT (Rusak et al., 2020), ANT+SIN (Rusak et al., 2020), AugMix (Hendrycks et al.,
2020b), DeepAugment (Hendrycks et al., 2020a) and DeepAug+Augmix (Hendrycks
et al., 2020a) in the following tables.

The summary results for all models are shown in Table B.22.

We show the top-1 error for the different IN-D domains versus training epochs for
a vanilla ResNet50 in Fig. B.6. We indicate the epochs 1 and 5 at which we extract the
errors with dashed black lines.

robust machine learning 253

Table B.18: Top-1 error on IN-D in % as obtained by robust ResNet50 models. For reference, we
also show the mCE on IN-C and the top-1 error on IN-R. See main test for model references.

Model Clipart Infograph Painting Quickdraw Real Sketch mDE IN-C IN-R

vanilla 76.0 89.6 65.1 99.2 40.1 82.0 88.2 76.7 63.9
SIN 71.3 88.6 62.6 97.5 40.6 77.0 85.6 69.3 58.5
ANT 73.4 88.9 63.3 99.2 39.9 80.8 86.9 62.4 61.0
ANT+SIN 68.4 88.6 60.6 95.5 40.8 70.3 83.1 60.7 53.7
AugMix 70.8 88.6 62.1 99.1 39.0 78.5 85.4 65.3 58.9
DeepAugment 72.0 88.8 61.4 98.9 39.4 78.5 85.6 60.4 57.8
DeepAug+Augmix 68.4 88.1 58.7 98.2 39.2 75.2 83.4 53.6 53.2

Table B.19: Top1 error on IN-D in % as obtained by state-of-the-art robust ResNet50 models
and batch norm adaptation, with a batch size of 128. See main text for model references.

Model Clipart Infograph Painting Quickdraw Real Sketch mDE

vanilla 70.2 88.2 63.5 97.8 41.1 78.3 80.2
SIN 67.3 89.7 62.2 97.2 44.0 75.2 79.6
ANT 69.2 89.4 63.0 97.5 42.9 79.5 80.7
ANT+SIN 64.9 88.2 60.0 96.8 42.6 73.0 77.8
AugMix 66.9 88.1 61.2 97.1 40.4 75.0 78.4
DeepAugment 66.6 89.7 60.0 97.2 42.5 75.1 78.8
DeepAug+Augmix 61.9 85.7 57.5 95.3 40.2 69.2 74.9

Detailed results for the EfficientNet-L2 Noisy Student model on IN-D

We show the detailed results for the EfficientNet-L2 Noisy Student model on IN-D in
Table B.23.

Detailed results on the error analysis on IN-D

Analysing frequently predicted classes We analyze the most frequently predicted classes
on IN-D by a vanilla ResNet50 and show the results in Fig. B.7. The colors of the bars
indicate whether the predicted class is part of the IN-D dataset: “blue” indicates that
the class appear in the IN-D dataset, while “orange” means that the class is not present
in IN-D.

We make several interesting observations: First, we find most errors interpretable:
it makes sense that a ResNet50 assigns the label “comic book” to images from the
“Clipart” or “Painting” domains, or “website” to images from the “Infograph” domain,
or “envelope” to images from the “Sketch” domain. Second, on the hard domain
“Quickdraw”, the ResNet50 mostly predicts non-sensical classes that are not in IN-D,
mirroring its almost chance performance on this domain. Third, we find no systematic
errors on the “Real” domain which is expected since this domain should be similar to
IN.

Analyzing the correlation between the performance on IN-C/IN-R and IN-D We show the
Spearman’s rank correlation coefficients for errors on ImageNet-D correlated to errors

robust machine learning 254

Table B.20: Top-1 error on IN-D in % as obtained by state-of-the-art robust ResNet50 models
and RPLq=0.8. See main text for model references.

Model Clipart Infograph Painting Quickdraw Real Sketch mDE

vanilla 63.6 85.1 57.8 99.8 37.3 73.0 76.1
SIN 60.8 86.4 56.0 99.0 37.8 67.0 76.8
ANT 63.4 86.3 57.7 99.2 37.7 71.0 78.1
ANT+SIN 61.5 86.4 56.8 97.0 39.0 67.1 76.1
AugMix 59.7 83.4 54.1 98.2 35.6 70.1 74.6
DeepAugment 58.1 84.6 53.3 99.0 36.2 64.2 74.8
DeepAug+Augmix 57.0 83.2 53.4 99.1 36.5 61.3 72.6

Table B.21: Top-1 error on IN-D in % as obtained by state-of-the-art robust ResNet50 models
and ENT. See main text for references to the used models.

Model Clipart Infograph Painting Quickdraw Real Sketch mDE

vanilla 65.1 85.8 59.2 98.5 38.4 75.8 77.3
SIN 62.1 87.0 57.3 99.1 39.0 68.6 75.5
ANT 64.2 86.9 58.7 97.1 38.8 72.8 76.5
ANT+SIN 62.2 86.8 57.7 95.8 40.1 68.7 75.2
AugMix 60.2 84.6 55.8 97.6 36.8 72.0 74.4
DeepAugment 59.5 85.7 54.4 98.0 37.1 66.4 73.3
DeepAug+Augmix 58.4 84.3 54.7 98.5 38.1 63.6 72.7

on ImageNet-R and ImageNet-C for robust ResNet50 models in Fig. B.7. For this
correlation analysis, we take the error numbers from Table B.18. We find the correlation
to be high between most domains in IN-D and IN-R which is expected since the
distribution shift between IN-R and IN is similar to the distribution shift between IN-D
and ImageNet. The only domain where the Spearman’s rank correlation coefficient
is higher for IN-C is the “Real” domain which can be explained with IN-C being
closer to real-world data than IN-R. Thus, we find that the Spearman’s rank correlation
coefficient reflects the similarity between different datasets.

Filtering predictions on IN-D that cannot be mapped to ImageNet We perform a second
analysis: We filter the predicted labels according to whether they can be mapped to

Table B.22: mDE on IN-D in % as obtained by robust ResNet50 models with a baseline
evaluation, batch norm adaptation, RPLq=0.8 and ENT. See main text for model references.

mDE on IN-D (↘)
Model Baseline BN adapt RPLq=0.8 ENT

vanilla 88.2 80.2 76.1 77.3
SIN 85.6 79.6 76.8 75.5
ANT 86.9 80.7 78.1 76.5
ANT+SIN 83.1 77.8 76.1 75.2
AugMix 85.4 78.4 74.6 74.4
DeepAugment 85.6 78.8 74.8 73.3
DeepAugment+Augmix 83.4 74.9 72.6 72.7

robust machine learning 255

Figure B.6: Top-1 error for the different IN-D domains for a ResNet50 and training with
RPLq=0.8 and ENT. We indicate the epochs at which we extract the test errors by the dashed
black lines (epoch 1 for ENT and epoch 5 for RPLq=0.8).

Table B.23: Top-1 error (↘) on IN-D in % for EfficientNet-L2

Domain Baseline ENT RPL

Clipart 45.0 39.8 37.9
Infograph 77.9 91.3 94.3
Painting 42.7 41.7 40.9
Quickdraw 98.4 99.4 99.4
Real 29.2 28.7 27.9
Sketch 56.4 48.0 51.5
mDE 67.2 66.8 67.2

IN-D and report the filtered top-1 errors as well as the percentage of filtered out inputs
in Table B.24. We note that for the domains “infograph” and “quickdraw”, the ResNet50

predicts labels that cannot be mapped to IN-D in over 70% of all cases, highlighting the
hardness of these two domains.

Filtering labels and predictions on IN that cannot be mapped to ImageNet-D To test for
possible class-bias effects, we test the performance of a ResNet50 model on ImageNet
classes that can be mapped to IN-D and report the results in Table B.24.

First, we map IN labels to IN-D to make the setting as similar as possible to our
experiments on IN-D and report the top-1 error (12.1%). This error is significantly lower
compared to the top-1 error a ResNet50 obtains following the standard evaluation
protocol (23.9%). This can be explained by the simplification of the task: While in
IN there are 39 bird classes, these are all mapped to the same hierarchical class in

robust machine learning 256

Table B.24: top-1 error on IN and different IN-D domains for different settings: left column:
predicted labels that cannot be mapped to IN-D are filtered out, right column: percentage of
filtered out labels.

Dataset top-1 error on filtered labels in % percentage of rejected inputs

IN val 13.4 52.7
IN-D real 17.2 27.6
IN-D clipart 59.0 59.0
IN-D infograph 59.3 74.6
IN-D painting 39.5 42.4
IN-D quickdraw 96.7 76.1
IN-D sketch 65.6 47.9

Figure B.7: Systematic predictions of a vanilla ResNet50 on IN-D for different domains. The
colors of the bars indicate whether the predicted class is part of the IN-D dataset: “blue”
indicates that the class appear in the IN-D dataset, while “orange” means that the class is not
present in IN-D. The errors on IN-R are strongly correlated to errors on IN-D for most domains,
except for the “Real” domain.

IN-D. Therefore, the classes in IN-D are more dissimilar from each other than in IN.
Additionally, there are only 164 IN-D classes compared to the 1000 IN classes, raising
the chance level prediction.

If we further only accept predictions that can be mapped to IN-D, the top-1 error is
slightly increased to 13.4%. In total, about 52.7% of all images in the IN validation set
cannot be mapped to IN-D.

robust machine learning 257

Table B.25: top-1 error on IN-D by AlexNet which was used for normalization.

Dataset top-1 error in %

IN-D real 54.887

IN-D clipart 84.010

IN-D infograph 95.072

IN-D painting 79.080

IN-D quickdraw 99.745

IN-D sketch 91.189

Top-1 error on IN-D for AlexNet

We report the top-1 error numbers on different IN-D as achieved by AlexNet in
Table B.25. We used these numbers for normalization when calculating mDE.

robust machine learning 258

Additional experiments

Beyond ImageNet classes: Self-learning on WILDS

The WILDS benchmark (Koh et al., 2021) is comprised of ten tasks to test domain
generalization, subpopulation shift, and combinations thereof. In contrast to the setting
considered here, many of the datasets in WILDS mix several 10s or 100s domains
during test time.

The Camelyon17 dataset in WILDS contains histopathological images, with the
labels being binary indicators of whether the central 32×32 region contains any tumor
tissue; the domain identifies the hospital that the patch was taken from. Camelyon17

contains three different test splits with different domains and varying difficulty levels.
For evaluation, we took the pretrained checkpoint2 for a DenseNet121 model (Huang
et al., 2017) and verified the reported baseline performance numbers. We adapt
the models using ENT or RPL for a maximum of 10 epochs using learning rates
{3× 10−5, 3× 10−4, . . . 3× 10−1}. The best hyperparameter is selected according to
OOD Validation accuracy.

The RxRx1 dataset in WILDS contains RGB images of cells obtained by fluorescent
microscopy, with the labels indicating which of the 1,139 genetic treatments (including
no treatment) the cells received; the domain identifies the batch in which the imaging
experiment was run. The RxRx1 dataset contains three test splits, however, unlike
Camelyon17, in all of the splits the domains are mixed. For evaluation, we took
the pretrained checkpoint3 for a ResNet50 model and verified the reported baseline
performance numbers. We adapt the models using ENT or RPL for a maximum of 10

epochs using base learning rates {6.25× 10−6, 6.25× 10−5, . . . 6.25× 10−2}, which are
scaled to the admissible batch size for single GPU adaptation using linear scaling. The
best hyperparameter is selected according to OOD Validation accuracy.

The FMoW dataset in WILDS contains RGB satellite images, with the labels being
one of 62 building or land use categories; the domain specifies the year in which the
image was taken and its geographical region (Africa, the Americas, Oceania, Asia,
or Europe). The FMoW dataset contains four test splits for different time periods,
for which all regions are mixed together. For evaluation, we took the pretrained
checkpoint4 for a DenseNet121 model and verified the reported baseline performance
numbers. We adapt the models using ENT or RPL for a maximum of 10 epochs
using learning rates {5.0× 10−6, 5.0× 10−5, . . . 5.0× 10−2}. The best hyperparameter
is selected according to OOD Validation accuracy.

While we see improvements on Camelyon17, neither BN adaptation nor self-learning
can improve performance on RxRx1 or FMoW. Initial experiments on PovertyMap and
iWildsCam also do not show improvements with self-learning. We hypothesize that

2https://worksheets.codalab.org/worksheets/0x00d14c55993548a1823a710642f6d608, came-
lyon17_erm_densenet121_seed0

3https://worksheets.codalab.org/bundles/0x7d33860545b64acca5047396d42c0ea0

4https://worksheets.codalab.org/bundles/0x20182ee424504e4a916fe88c91afd5a2

https://worksheets.codalab.org/worksheets/0x00d14c55993548a1823a710642f6d608
https://worksheets.codalab.org/bundles/0x7d33860545b64acca5047396d42c0ea0
https://worksheets.codalab.org/bundles/0x20182ee424504e4a916fe88c91afd5a2

robust machine learning 259

Table B.26: Self-learning can improve performance on WILDS if a systematic shift is present—on
Camelyon17, the ood validation and test sets are different hospitals, for example. On datasets
like RxRx1 and FMoW, we do not see an improvement, most likely because the ood domains
are shuffled, and a limited amount of images exist for each test domain.

Top-1 accuracy [%]
Validation (ID) Validation (OOD) Test (OOD)

Camelyon17

Baseline 81.4 88.7 63.1
BN adapt 97.8 (+16.4) 90.9 (+2.2) 88.0 (+24.9)
ENT 97.6 (+16.2) 92.7 (+4.0) 91.6 (+28.5)
RPL 97.6 (+16.2) 93.0 (+4.3) 91.0 (+27.9)

RxRx1

Baseline 35.9 19.1 29.7
BN adapt 35.0 (-0.9) 19.1 (0.0) 29.4 (-0.3)
ENT 34.8 (-1.1) 19.2 (+0.1) 29.4 (-0.3)
RPL 34.8 (-1.1) 19.2 (+0.1) 29.4 (-0.3)

FMoW
Baseline 60.5 59.2 52.9
BN adapt 59.9 (-0.6) 57.6 (-1.6) 51.8 (-1.1)
ENT 59.9 (-0.6) 58.5 (-0.7) 52.2 (-0.7)
RPL 59.8 (-0.7) 58.6 (-0.6) 52.1 (-0.8)

the reason lies in the mixing of the domains: Both BN adaptation and our self-learning
methods work best on systematic domain shifts. These results support our claim that
self-learning is effective, while showing the important limitation when applied to more
diverse shifts.

Small improvements on BigTransfer models with Group normalization layers

We evaluated BigTransfer models (Kolesnikov et al., 2020) provided by the timm library
(Wightman, 2019). A difference to the ResNet50, ResNeXt101 and EfficientNet models
is the use of group normalization layers, which might influence the optimal method
for adaptation—for this evaluation, we followed our typical protocol as performed on
ResNet50 models, and used affine adaptation.

For affine adaptation, a distilled BigTransfer ResNet50 model improves from 49.6 %
to 48.4 % mCE on the ImageNet-C development set, and from 55.0 % to 54.4 % mCE
on the ImageNet-C test set when using RPL (q = 0.8) for adaptation, at learning rate
7.5× 10−4 at batch size 96 after a single adaptation epoch. Entropy minimization did
not further improve results on the ImageNet-C test set. An ablation over learning rates
and epochs on the dev set is shown in Table B.27, the final results are summarized in
Table B.28.

Can Self-Learning improve over Self-Learning based UDA?

An interesting question is whether test-time adaptation with self-learning can improve
upon self-learning based UDA methods. To investigate this question, we build upon

robust machine learning 260

Table B.27: mCE in % on the IN-C dev set for ENT and RPL for different numbers of training
epochs when adapting the affine batch norm parameters of a BigTransfer ResNet50 model.

criterion ENT RPL
lr, 7.5 × 10−5 10−4 10−3 10−5 10−4 10−3

epoch

0 49.63 49.63 49.63 49.63 49.63 49.63

1 49.44 50.42 52.59 49.54 48.89 48.95

2 49.26 50.27 56.47 49.47 48.35 50.77

3 49.08 52.18 60.06 49.39 48.93 51.45

4 48.91 52.03 60.50 49.31 50.01 51.53

5 48.80 51.97 62.91 49.24 49.96 51.34

6 48.83 52.10 62.96 49.16 49.71 51.19

7 48.83 52.10 62.96 49.16 49.71 51.19

Table B.28: mCE in % on the IN-C dev set for ENT and RPL for different numbers of training
epochs when adapting the affine batch norm parameters of a BigTransfer ResNet50 model.

dev mCE test mCE

Baseline 49.63 55.03

ENT 48.80 56.36

RPL 48.35 54.41

French et al. (2017) and their released code base at https://github.com/Britefury/
self-ensemble-visual-domain-adapt. We trained the Baseline models from scratch
using the provided shell scripts with the default hyperparameters and verified the
reported performance. For adaptation, we tested BN adaptation, ENT, RPL, as well
as continuing to train in exactly the setup of French et al. (2017), but without the
supervised loss. For the different losses, we adapt the models for a maximum of 10

epochs using learning rates {1× 10−5, 1× 10−4, . . . , 1× 10−1}.
Note that for this experiment, in contrast to any other result in this paper, we

purposefully do not perform proper hyperparameter selection based on a validation
dataset—instead we report the best accuracy across all tested epochs and learning rates
to give an upper bound on the achievable performance for test-time adaptation.

As highlighted in Table B.29, none of the four tested variants is able to meaningfully
improve over the baseline, corroborating our initial hypothesis that self-learning within
a full UDA setting is the optimal strategy, if dataset size and compute permits. On the
other hand, results like the teacher refinement step in DIRT-T (Shu et al., 2018) show
that with additional modifications in the loss function, it might be possible to improve
over standard UDA with additional adaptation at test time.

https://github.com/Britefury/self-ensemble-visual-domain-adapt
https://github.com/Britefury/self-ensemble-visual-domain-adapt

robust machine learning 261

Table B.29: Test-time adaptation marginally improves over self-ensembling.

Baseline BN adapt ENT RPL Self-ensembling loss
MNIST→SVHN
MT+TF 33.88 34.44 34.87 35.09 33.27

MT+CT* 32.62 34.11 34.25 34.21 33.36

MT+CT+TF 41.59 41.93 41.95 41.95 42.70

MT+CT+TFA 30.55 32.53 32.54 32.55 30.84

SVHN-specific aug. 97.05 96.82 96.91 96.87 97.12

MNIST→USPS
MT+TF 98.01 97.91 97.96 97.91 98.16

MT+CT* 88.34 88.39 88.54 88.39 88.44

MT+CT+TF 98.36 98.41 98.41 98.41 98.50

MT+CT+TFA 98.45 98.45 98.45 98.45 98.61

SVHN→MNIST
MT+TF 98.49 98.47 98.49 98.47 99.40

MT+CT* 88.34 88.36 88.36 88.36 89.36

MT+CT+TF 99.51 99.49 99.5 99.49 99.57

MT+CT+TFA 99.56 99.57 99.57 99.57 99.58

SVHN-specific aug. 99.52 99.49 99.5 99.49 99.65

USPS→MNIST
MT+TF 92.79 92.62 92.62 92.66 93.08

MT+CT* 99.11 99.13 99.14 99.13 99.21

MT+CT+TF 99.41 99.42 99.45 99.42 99.52

MT+CT+TFA 99.48 99.54 99.57 99.54 99.54

robust machine learning 262

Software stack

We use different open source software packages for our experiments, most notably
Docker (Merkel, 2014), scipy and numpy (Virtanen et al., 2020), GNU parallel (Tange,
2011), Tensorflow (Abadi et al., 2016), PyTorch (Paszke et al., 2017), timm (Wightman,
2019), Self-ensembling for visual domain adaptation (French et al., 2017), the WILDS
benchmark (Koh et al., 2021), and torchvision (Marcel & Rodriguez, 2010).

C
RDumb: A simple approach that
questions our progress in continual
test-time adaptation

2D Example Experiments and Analysis

In order to better understand collapse, we constructed a simple 2D Gaussian binary
classification example.

Data. The 2D datasets are constructed as follows: the data is sampled by drawing
sampled from two Gaussian blobs with identical variance corresponding to the two
classes N (µi, Σ). For the corrupted case, the data is then rotated by an angle θ and
combined with additional additive Gaussian noise N (0, Σcorrupt). Finally, both in the
clean and the corrupt data case, the data is rotated by an angle of −π

4 (which minimizes
the effect of the batch normalization in the model):

Y ∼ Ber(0.5)

X ∼ N (µY, Σ)

Xclean = R− π
4

X

Xcorrupt ∼ N (Rθc1
Xclean, R⊤− π

4
R⊤θc2

Σ̃Rθc2
R− π

4
)

with Σ =

(
σ1 0
0 σ2

)
, σ1 ≫ σ2

robust machine learning 264

clean

data

class 1

class 2

corrupt

data

clean data

corrupt data

(a) (b)

Figure C.1: Theoretical analysis of adaptation under distribution shift. Collapsing or non-
collapsing behavior of entropy minimization can be reproduced with a simple 2d Gaussian
binary classification example, a domain shift which slightly rotates the data and adds Gaussian
noise, and a model which consists of a batch norm layer followed by logistic regression. Top:
clean and corrupt data for two classes before (a) and after (b) batch norm. Middle: learning
dynamics of entropy minimization in the 2d adaptation parameter space starting from initial
parameters (yellow marker) over time. Bottom: accuracy, entropy, and size of adaptation
weights over time.

Σ̃ =

(
σ̃1 0
0 σ̃2

)
, σ̃2 ≥ σ̃1

Rθ =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)

Note that for the clean data, we allocate most of the variance to the class dimension,
σ1. On the corrupted data, we add noise primarily perpendicular to the class dimension
(σ̃2), which is the main defining factor whether or not we observe collapsing behavior.
θc1 ̸= θc2 serves to break the symmetry between signal and noise in the data, which
results in Tent starting to deviate towards the noise direction.

In our example, we parametrize this model as follows: In condition 1, µi = (±1, 0)
and Σ2 =

(
1 0
0 0.03

)
, θ = −π

9 and Σ2
corrupt = RT

θc

(
0.25 0

0 4

)
Rθc , where Rθc is the rotation

matrix for an angle of θc = −π
6 . In condition 2, everything is the same except for

Σ2
corrupt = RT

θc

(
0.25 0

0 25

)
Rθc . In both conditions, we sample 300 000 data points which are

equally distributed over both classes.

Model. The classification model consumes the dataset of shape N × 2 and consists of
a batchnorm layer (ϵ = 0) followed by a fully connected layer with two input channels,
one output channels, no bias term and a sigmoid nonlinearity. Because our data is
always centered, we do not learn the offset parameter of the affine adaptation in the

robust machine learning 265

(a) Accuracy on 
CCC Medium

First BatchNorm

layer

ResNet 
”Layer 1”

ResNet 
”Layer 4”

ResNet 
”Layer 3”

ResNet 
”Layer 2”

(a) Accuracy on 
CCC Medium

First BatchNorm

layer

ResNet 
”Layer 1”

ResNet 
”Layer 4”

ResNet 
”Layer 3”

ResNet 
”Layer 2”

gradient stepsgradient steps gradient steps gradient stepsgradient steps gradient steps

(b) Accuracy on 
CCC Medium

First BatchNorm

layer

ResNet 
”Layer 1”

ResNet 
”Layer 4”

ResNet 
”Layer 3”

ResNet 
”Layer 2”

Figure C.2: Analysis of entropy minimization collapse on real data. (a) Consistent with the
theoretical analysis in Figure C.1, we find that the adaptation weights in all layers increase over
time continually, even long after the collapse as indicated by Accuracy on CCC-Medium has
happened. (b) shows a zoomed-in view where this increase is not yet apparent, well after the
collapse.

batchnorm layer, but only the scale parameter.

Model training. The model is trained to minimize the binary cross-entropy on the
clean data. We use batch gradient descent on the whole 300,000 sample dataset with a
learning rate of 0.1 and no momentum. We decay the learning rate by a factor of 0.1
after 1000 and 2000 steps and stop training after 3000 steps.

Model Learning and Adaptation. We adapt the model on the corrupted data using Tent.
More precisely, we optimize the scale parameter of the batch norm layer to minimize the
entropy of the predictions using SGD with a learning rate of 0.01 and no momentum.
We process the whole dataset in one batch and adapt for 60 000 steps.

Results. In the toy model, simple cases emerge where the loss does not result in
collapse, or vice versa (Figure C.1a and Figure C.1b, respectively), mainly depending
on the relation of signal and noise variances and directions.

The toy example furthermore predicts that the adapted parameters of a model
should grow on the long run and indeed we were able to find exactly this effect when
running ETA on a ResNet50 on CCC-Medium (Figure C.2), suggesting that our minimal
setup successfully reproduces the relevant aspects of the large scale case. However,
the weight explosion becomes apparent only after the collapse happens, hence weight
regularization is not enough to avoid the collapse (Figure C.2(b)).

In the Figure C.1(a) example, we find the direction of high target domain perfor-
mance and stay there; in this case entropy minimization is stable. In the Figure C.1(b)
experiment, the domain shift adds more noise nearly orthogonal to the signal direction,
which entropy minimization tries to use for making high confidence predictions: we
still initially find the direction of high target domain performance, but traverse this
region and continue into a direction of low entropy and low accuracy. This shows

robust machine learning 266

that even in a linear example, entropy minimization can show initial performance
improvement and then collapse.

Path Finding Algorithm

Algorithm 1 describes the pseudo code of the algorithm used to generate CCC. The
algorithm is based on a set of Calibration Matrices, similar to the one shown in
Figure 4.2. There exists a matrix m for every (na, nb) pair, such that m[i][j] is equal to
accuracy of a pretrained ResNet-50 on the comination of noises (na, nb), and severities
(i/5, j/5). We will release the full set of matrices upon publication.

Additionally, Algorithm 2 uses a function MinValidPath(s1, s2): this function returns
the minimum path that starts at (s1, s2) and ends at (0, sj) for some sk. The cost of a
path is simply the average of all entries along the path. The minimum path is defined
as the path with a cost closest to ba in absolute terms. Lastly, a path is only valid if it
starts with s2 equal to 0, every transition either decreases s1 by 0.25, or increases s2 by
0.25, and stops once s1 is equal to 0.

Algorithm 1 Algorithm used to generate each split of CCC
Require: ba, k, T ▷ Baseline accuracy, transition speed, and total split size.

1: t = 0 ▷ Initialize the total images generated counter
2: c1, c2 ∼ Uniform({1 . . . 15}) ▷ Initialize the first two corruptions.
3: path← CalculatePath(c1, c2, ba) ▷ Calculate path along the noise pair with an average

accuracy closest to ba.
4: loop
5: s1, s2 ← path[p]
6: Subset ∼ Uniform(ImageNetVal)
7: apply (c1, s1, c2, s2) to Subset
8: save Subset
9: t← k

10: if t >= T then return
11: end if
12: if p = len(path)− 1 then
13: c1 ← c2
14: c2 ∼ Uniform({1 . . . 14})
15: path← CalculatePath(c1, c2, ba) ▷ Calculate new path along the new noise pair.
16: p← 0
17: else
18: p← p + 1 ▷ Move to the next severity combination
19: end if
20: end loop

The resulting dataset features transitions between two different noises like the ones
seen in Figure C.3 (a). We additionally plot the accuracy of a pretrained ResNet-50,
alongisde the severities of the different noises in Figure C.3 (b).

We additionally share the following metadata about the length of traversals in
CCC-Easy/Medium/Hard:

robust machine learning 267

Algorithm 2 CalculatePath
Require: c1, c2, ba ▷ The 2 noises, and the baseline accuracy

1: m← CalibrationMatrix[c1][c2]
2: MinPath, MinCost← MinValidPath(0, 0, m, ba)
3: for s1 ∈ 0.25, 0.5, 0.75, . . . , 5 do
4: m← MinValidPath(1, 0, m, ba)
5: MinPath, MinCost← MinValidPath(s1, 0, m, ba)
6: end for
7: return MinPath

Table C.1: CCC traversal length statistics, for each CCC split.

Min Max Mean Median

CCC-Easy 11 36 22.8 23

CCC-Medium 21 41 33.9 34

CCC-Hard 41 41 41 41

CCC Plots

EATA Implementation and Ablations

Our implementation of EATA differs from the official implementation. The reason
for this is that the official implementation uses clean ImageNet validation images to
calculate the Fisher vector matrix for its regularizer1. This stands in contradiction with
the method, which should not have access to the training distribution at test time.

Instead of using 2, 000 ImageNet validation images, we calculate the Fisher matrix
using the first 2, 000 images in our data stream. We conduct a hyperparameter search
on the weight regularizer tradeoff parameter β:

Table C.2: Accuracy of EATA on CIN-C holdout noises for different values of the weight
regularizer loss.

β 25 50 100 250 500 1000 1500 2000

Acc. [%] 46.5 46.9 47.1 46.7 46.1 45.6 44.8 44.0

Using the optimal value, 100 led to worse results than the default value, 2000, on
CCC:

In the end, we used the original value of 2000, as that was optimal on the CCC
dataset.

In addition, we conducted a hyperparameter search for EATA on a ViT backbone.
As shown in Figure 4.4, EATA performs worse than a pretrained, non adapting baseline
in this setting. To that end, we tried to stabilize the model by increasing the value of β,

1https://github.com/mr-eggplant/EATA/blob/f739b3668c/main.py#L144

https://github.com/mr-eggplant/EATA/blob/f739b3668c/main.py#L144

robust machine learning 268

(a) (b)

Figure C.3: (a) Visualization of CCC-Medium’s smooth transition between Zoom Blur to Snow.
Note: CCC additionally uses random flips and crops, which are not shown here. (b) As CCC
transitions between noises, the severities of the first noise (red), and the second noise (blue) go
up and down correspondingly, in order to keep the accuracy of a pretrained model stable.

(a) (b) (c)

Figure C.4: Adaptation performance of all evaluated models using a ResNet-50 backbone. (a)
CCC Easy. (b) CCC Medium. (c) CCC Hard. For all subplots, model performances are averaged
over the 9 runs of the respective difficulty level.

robust machine learning 269

Table C.3: Accuracy of EATA on CIN-C holdout noises for different values of the Fisher alpha.

CIN-C CCC-Easy CCC-Medium CCC-Hard CCC Avg

EATA-100 46.7 47.7 36.5 3.8 29.3
EATA-2000 41.8 48.2 35.4 8.7 30.8

Ours 46.5 49.3 38.9 9.6 32.6

the hyperparameter that controls the weight of the anti-forgetting regularizer. As with
the previous experiment, the original value of 2000 is optimal.

Table C.4: Accuracy of EATA on CCC-Medium using a ViT backbone, for different values of the
regularizer, β.

β 2000 3000 4000

Acc. [%] 38.5 27.8 16.5

Novelty of Resetting

Our work is the first to propose resetting to solve collapse in TTA methods. Notably,
while prior work (Niu et al., 2022b; Wang et al., 2020b; Zhang et al., 2022) has briefly
touched upon the concept of episodic resetting, the methodology and its application is
significantly distinct and unrelated to collapse in TTA.

• Tent (Wang et al., 2020b) mentions episodic in the context of overfitting to a single
sample in segmentation (similar to Zhang et al. (2022)’s overfitting to a single
sample). Resetting here is unrelated to collapse, as the paper doesn’t discuss
collapse at all.

• Although MEMO (Zhang et al., 2022) uses resetting, it does so because it overfits
to one image (and its augmentations) every step. MEMO doesn’t discuss collapse
or catastrophic forgetting. MEMO compares itself to a version of Tent that resets
after every step (which they call Tent + episodic resetting), because MEMO
without augmentations is similar to Tent + episodic resetting with a batch size
of 1. (Note: MEMO is outperformed by BN/Tent/ETA when using the standard
batch size of 64)

• EATA (Niu et al., 2022b) shows results for Tent + episodic resetting after every
step in its tables, but provides no reasoning or discussion for doing this. Tent +
episodic resetting is outperformed by regular Tent.

robust machine learning 270

CIFAR10 Experiments

We conduct CIFAR10 experiments to show the need for ImageNet scale benchmarks.
Tent, without an anti-collapse mechanism, does not collapse on CIFAR10-C, even after
seeing 100 million images Figure C.5a,b. Like ImageNet, CIFAR10-C’s noises also
exhibit high variance in difficulty (Figure C.5c).

(a) (c)(b)

Figure C.5: (a) When tested on an infinite concatenation of severity 5 noises, Tent does not
collapse even after seeing 100M CIFAR scale images. (b) Tent does not collapse to chance
level when tested on a long term variant of CIFAR10-C gradual. (c) CIFAR10-C exhibits great
variations between individual corruptions, similar to ImageNet-C.

Compute details

We conduct all experiments on Nvidia RTX 2080 TI GPUs with 12GB memory per
device. All experiments except our study on larger models were conducted on a single
GPU. For CoTTA experiments, we use data parallel training on 2 GPUs. A bulk of the
compute spent for this work was on computing baseline accuracies on the calibration
dataset, which contains 463M images.

Software and Dataset Licenses

Datasets

• ImageNet-C (Hendrycks & Dietterich, 2019b): Creative Commons Attribution 4.0
International,
https://zenodo.org/record/2235448

• ImageNet-C (Hendrycks & Dietterich, 2019b), code for generating corruptions:
Apache License 2.0
https://github.com/hendrycks/robustness

• ImageNet-3D-CC (Kar et al., 2022): CC-BY-NC 4.0 License
https://github.com/EPFL-VILAB/3DCommonCorruptions

https://zenodo.org/record/2235448
https://github.com/hendrycks/robustness
https://github.com/EPFL-VILAB/3DCommonCorruptions

robust machine learning 271

Models

• PyTorch’s (Paszke et al., 2019a) Backbones
https://pytorch.org/vision/stable/models.html

• Adaptive BN (Nado et al., 2020; Schneider et al., 2020a):
Apache License 2.0, https://github.com/bethgelab/robustness

• Tent (Wang et al., 2020b): MIT License,
https://github.com/DequanWang/tent

• RPL (Rusak et al., 2021): Apache License 2.0,
https://github.com/bethgelab/robustness

• CoTTA (Wang et al., 2022): MIT License,
https://github.com/qinenergy/cotta

• CPL (Goyal et al., 2022): MIT License,
https://github.com/locuslab/tta_conjugate

• EATA (Niu et al., 2022b): MIT License
https://github.com/mr-eggplant/EATA

https://pytorch.org/vision/stable/models.html
https://github.com/bethgelab/robustness
https://github.com/DequanWang/tent
https://github.com/bethgelab/robustness
https://github.com/qinenergy/cotta
https://github.com/locuslab/tta_conjugate
https://github.com/mr-eggplant/EATA

D
Pretraining boosts out-of-domain ro-
bustness for pose estimation

Additional information on the Horse-10 dataset

The table lists the following statistics: labeled frames, scale (nose-to-eye distance in
pixels), and whether a horse was within domain (w.d) or out-of-domain (o.o.d.) for
each shuffle.

Learning schedule cross validation

Because of the extensive resources required to cross validate all models, we only
underwent the search on MobileNetV2s 0.35 and 1.0, ResNet 50, and EfficientNets B0,
B3, and B5 for the pretraining and from scratch variants. For all other models, the
parameters from the most similar networks were used for training (i.e. EfficientNet-B1

used the parameters for EfficientNet-B0). The grid search started with the highest
possible initial learning rate that was numerically stable for each model; lower initial
learning rates were then tested to fine tune the schedule. Zero and nonzero decay target
levels were tested for each initial learning rate. In addition to the initial learning rates
and decay targets, we experimented with shortening the cosine decay and incorporating
restarts. All cross validation experiments were performed on the three splits with 50%
of the data for training.

For training, a cosine learning rate schedule, as in (Kornblith et al., 2019b) with
ADAM optimizer (Kingma & Ba, 2014) and batchsize 8 was used. For the learning
schedules we use the following abbreviations: Initial Learning Rates (ILR) and decay
target (DT).

robust machine learning 274

Horse Identifier samples nose-eye dist shuffle 1 shuffle 2 shuffle 3

BrownHorseinShadow 308 22.3 o.o.d o.o.d w.d.
BrownHorseintoshadow 289 17.4 o.o.d o.o.d o.o.d
Brownhorselight 306 15.57 o.o.d w.d. o.o.d
Brownhorseoutofshadow 341 16.22 o.o.d w.d. w.d.
ChestnutHorseLight 318 35.55 w.d. w.d. o.o.d
Chestnuthorseongrass 376 12.9 o.o.d w.d. w.d.
GreyHorseLightandShadow 356 14.41 w.d. w.d. o.o.d
GreyHorseNoShadowBadLight 286 16.46 w.d. o.o.d w.d.
TwoHorsesinvideobothmoving 181 13.84 o.o.d o.o.d w.d.
Twohorsesinvideoonemoving 252 16.51 w.d. w.d. w.d.
Sample1 174 24.78 o.o.d o.o.d o.o.d
Sample2 330 16.5 o.o.d o.o.d o.o.d
Sample3 342 16.08 o.o.d o.o.d o.o.d
Sample4 305 18.51 o.o.d o.o.d w.d.
Sample5 295 16.89 w.d. o.o.d o.o.d
Sample6 376 12.3 o.o.d o.o.d o.o.d
Sample7 262 18.52 w.d. o.o.d o.o.d
Sample8 388 12.5 w.d. w.d. o.o.d
Sample9 359 12.43 o.o.d o.o.d o.o.d
Sample10 235 25.18 o.o.d o.o.d o.o.d
Sample11 256 19.16 o.o.d w.d. o.o.d
Sample12 288 17.86 w.d. o.o.d w.d.
Sample13 244 25.78 w.d. w.d. w.d.
Sample14 168 25.55 o.o.d o.o.d o.o.d
Sample15 154 26.53 o.o.d o.o.d o.o.d
Sample16 212 15.43 o.o.d o.o.d o.o.d
Sample17 240 10.04 w.d. o.o.d o.o.d
Sample18 159 29.55 o.o.d w.d. o.o.d
Sample19 134 13.44 o.o.d o.o.d w.d.
Sample20 180 28.57 o.o.d o.o.d o.o.d

mean 270.47 18.89

STD 73.04 6.05

The tables below list the various initial learning rates explored during cross valida-
tion for each model with pretraining.

Model ILR

MobileNetV2-0.35 1e-2 5e-3 1e-3 5e-4
MobileNetV2-1.0 1e-2 5e-3 1e-3 5e-4
ResNet-50 1e-3 5e-4 1e-4 5e-5
EfficientNet-B0 2.5e-3 1e-3 7.5e-4 5e-4
EfficientNet-B3 1e-3 5e-4 1e-4 5e-5
EfficientNet-B5 5e-4 1e-4

For the ImageNet pretrained case, the learning rate schedule without restarts was
optimal on out of domain data, and the resulting optimal parameters are as follows:

robust machine learning 275

Models ILR & DT

MobileNetV2s 0.35, 0.5 1e-2 0

MobileNetV2s 0.75, 1.0 1e-2 1e-4
ResNets 50, 101 1e-4 1e-5
EfficientNets B0, B1 5e-4 1e-5
EfficientNets B2,B3,B4 5e-4 0

EfficientNets B5,B6 5e-4 1e-5

The initial learning rates explored for the from scratch models during cross valida-
tion are as follows:

Model ILR

MobileNetV2 0.35 1e-2 5e-3 1e-3 5e-4
MobileNetV2 1.0 1e-1 1e-2 1e-3 1e-4
ResNet 50 1e-3 5e-4 1e-4 5e-5
EfficientNet-B0 1e-3 5e-4 1e-4 5e-5
EfficientNet-B3 1e-3 5e-4 1e-4 5e-5

For models trained from scratch, we found that using restarts lead to the best
performance on out of domain data. The optimal learning rates found during the
search are as follows:

Models ILR & DT

MobileNetV2s 0.35, 0.5 5e-2 5e-3
MobileNetV2s 0.75, 1.0 1e-2 0

ResNet 50 5e-4 5e-5
EfficientNets B0, B3 1e-3 0

Baseline Performance on Horse-30

For comparison to Horse-10, we provide the train and test normalized errors for
models trained on Horse-30. Here, Horse-30 was split into 3 shuffles each containing
a train/test split of 50% of the horse images. Compared to Horse-10, we train these
models for twice as long (60,000 iterations) but with the same cross-validated cosine
schedules from Horse-10. Errors below are averaged over the three shuffles.

Horse-10 Errors Horse-30 Errors

Models Train Test Train Test

MobileNetV2 0.35 0.1342 0.1390 0.1545 0.1595

ResNet 50 0.0742 0.0815 0.0772 0.0825

EfficientNet-B4 0.0598 0.0686 0.0672 0.0750

robust machine learning 276

Performance (PCK per bodypart) for all networks on Horse-10

The tables below show the PCK for several bodyparts for all backbones that we
considered. They complete the abridged tables in the main text (Table 2 and 3) Thereby
the bodyparts are abbreviated as follows: (FF=front foot; HF = Hind foot; HH = Hind
Hock).

Table D.1: PCK@0.3 (%) for several bodyparts and all evaluated architectures on within domain
horses.

Nose Eye Shoulder Wither Elbow NearFF OffFF Hip NearHH NearHF OffHF

MobileNetV2 0.35 90.7 94.1 97.6 96.9 96.7 92.3 93.7 96.4 94.1 94.2 92.5
MobileNetV2 0.5 94.1 96.1 99.2 98.3 98.0 93.8 95.4 96.7 97.2 97.2 97.0
MobileNetV2 0.75 96.0 97.5 99.2 98.0 99.0 96.6 96.8 98.8 97.6 98.0 97.4
MobileNetV2 1.0 97.7 98.8 99.7 99.1 99.0 97.6 97.3 99.4 98.4 98.5 98.9
ResNet 50 99.9 100.0 99.8 99.9 99.8 99.8 99.6 99.9 99.9 99.6 99.8
ResNet 101 99.9 100.0 99.9 99.8 99.9 99.8 99.7 99.8 99.9 99.7 99.9
EfficientNet-B0 99.7 99.9 100.0 99.9 100.0 99.6 99.5 100.0 99.9 99.7 99.7
EfficientNet-B1 99.8 99.9 100.0 99.8 99.9 99.5 99.8 100.0 99.8 99.8 99.8
EfficientNet-B2 99.9 99.9 100.0 99.9 100.0 99.8 99.7 99.9 99.8 99.7 99.7
EfficientNet-B3 99.9 99.9 99.9 99.9 99.9 99.7 99.6 99.7 99.8 99.6 99.9
EfficientNet-B4 100.0 100.0 99.9 99.8 99.9 99.6 99.7 99.9 99.7 99.8 99.8
EfficientNet-B5 99.9 99.9 100.0 99.9 100.0 99.7 99.8 99.6 99.8 99.8 99.9
EfficientNet-B6 99.9 99.9 99.9 99.8 100.0 99.8 99.9 99.8 99.8 99.7 99.8

Table D.2: PCK@0.3 (%) for several bodyparts and all architectures on out-of-domain horses.

Nose Eye Shoulder Wither Elbow NearFF OffFF Hip NearHH NearHF OffHF

MobileNetV2 0.35 45.6 53.1 65.5 68.0 69.1 56.4 57.6 65.9 65.9 60.5 62.5
MobileNetV2 0.5 52.7 61.0 76.7 69.7 78.3 62.9 65.4 73.6 70.8 68.1 69.7
MobileNetV2 0.75 54.2 65.6 78.3 73.2 80.5 67.3 68.9 80.0 74.1 70.5 70.2
MobileNetV2 1.0 59.0 67.2 83.8 79.7 84.0 70.1 72.1 82.0 79.9 76.0 76.7
ResNet 50 68.2 73.6 85.4 85.8 88.1 72.6 70.2 89.2 85.7 77.0 74.1
ResNet 101 67.7 72.4 87.6 86.0 89.0 79.9 78.0 92.6 87.2 83.4 80.0
EfficientNet-B0 60.3 62.5 84.9 84.6 87.2 77.0 75.4 86.7 86.7 79.6 79.4
EfficientNet-B1 67.4 71.5 85.9 85.7 89.6 80.0 81.1 86.7 88.4 81.8 81.6
EfficientNet-B2 68.7 74.8 84.5 85.2 89.2 79.7 80.9 88.1 88.0 82.3 81.7
EfficientNet-B3 71.7 76.6 88.6 88.7 92.0 80.4 81.8 90.6 90.8 85.0 83.6
EfficientNet-B4 71.1 75.8 88.1 87.4 91.8 83.3 82.9 90.8 90.3 86.7 85.5
EfficientNet-B5 74.8 79.5 89.6 89.5 93.5 82.2 84.1 91.8 90.9 86.6 85.2
EfficientNet-B6 74.7 79.7 90.3 89.8 92.8 83.6 84.4 92.1 92.1 87.8 85.3

robust machine learning 277

CKA analysis of training & trained vs. from scratch networks

Figure D.1 shows a linear centered kernel alignment (CKA) (Kornblith et al., 2019a)
comparison of representations for task-training vs. ImageNet trained (no task training)
for ResNet-50

Figure D.1: CKA comparison of representations for task-training vs. ImageNet trained (no task
training) for ResNet-50. Left: Linear CKA on within domain horses (used for training) when
trained from scratch vs. plain ImageNet trained (no horse pose estimation task training). Right:
Same, but for Transfer Learning vs. from ImageNet. Matrices are the averages over the three
splits. In short, task training changes representations.

robust machine learning 278

Figure D.2: CKA comparison of representations when trained from scratch vs. from ImageNet
initialization. A: Top: Linear CKA between layers of individual networks of different depths
on within domain horses (used for training the models). Bottom: Same, but for out-of-domain
horses (not used in training). Matrices are the averages over the three splits. B: Quantification
of similarity ratio plotted against depth of the networks.

Results of within domain performance on Animal Pose

In Main Figure 4 we show the performance when we train on only 1 species and testing
on another (or all without cow/sheep vs. sheep.cow). Here, as a baseline we report the
performance within domain, i.e. for each out-of-domain test species (cow and sheep)
we trained on 90% of the cow data and tested on 10% cow data (see tables D.3 and D.4).

Table D.3: Test performance on cow when trained on 90% of cow data

Normalized Error

MobileNetV2 0.35 0.136

MobileNetV2 1.0 0.093

ResNet 50 0.062

EfficientNet-B0 0.060

EfficientNet-B3 0.054

Table D.4: Test performance on sheep when trained on 90% of sheep data

Normalized Error

MobileNetV2 0.35 0.385

MobileNetV2 1.0 0.248

ResNet 50 0.186

EfficientNet-B0 0.124

EfficientNet-B3 0.159

robust machine learning 279

Full results on Horse-C

We show the full set of results for the Horse-C benchmark. We compute the corrup-
tions proposed by Hendrycks et al. (Hendrycks & Dietterich, 2019b) using the image
corruptions library proposed by Michaelis et al. (Michaelis et al., 2019a).

The original Horse-30 dataset is processed once for each of the corruptions and
severities. In total, Horse-C is comprised of 75 evaluation settings with 8,114 images
each, yielding a total of 608,550 images. For a visual impression of the impact of
different corruptions and severities, see Figures D.3–D.6.

Figure D.3: Noise corruptions for all five different severities (1 to 5, left to right). Top to bottom:
Gaussian Noise, Shot Noise, Impulse Noise.

Figure D.4: Blur corruptions for all five different severities (1 to 5, left to right). Top to bottom:
Defocus Blur, Motion Blur, Zoom Blur

For evaluation, we consider MobileNetV2-0.35, MobileNetV2-1.0, ResNet-50 and
the B0 and B3 variants of EfficientNet. All models are either trained on Horse-10

from scratch or pre-trained on ImageNet and fine-tuned to Horse-10, using the three
validation splits used throughout the paper. In contrast to our other experiments,
we now fine-tune the BatchNorm layers for these models. For both the w.d. and
o.o.d. settings, this yields comparable performance, but enables us to use the batch
adaptation technique proposed by Schneider, Rusak et al. (Schneider et al., 2020b)
during evaluation on Horse-C, allowing a better estimate of model robustness.

On the clean data, using batch norm adaptation yields slightly improved perfor-

robust machine learning 280

mance for MobileNetV2s on clean within-domain data and deteriorates performance
for EfficientNet models. Performance on clean ood. data is improved of all model
variants when training from scratch, and improved for MobileNets and ResNets when
using pre-trained weights.

We evaluate the normalized errors for the non-adapted model (Base) and after
estimating corrected batch normalization statistics (Adapt). The corrected statistics
are estimated for each horse identity and corruption as proposed in (Schneider et al.,
2020b). We average the normalized metrics across shuffles (and horses as usual). We
present the full results for a pre-trained ResNet50 model for all four corruption classes
in Tables D.7 and D.8 and contrast this to the within-domain/out-of-domain evaluation
setting in Table D.9.

For the ResNet50 model considered in detail, we find that batch normalization
helps most for noise and weather corruptions, where we typically found improvements
of 60− 90% and of 30− 70%, respectively. In contrast, blur corruptions and digital
corruptions (apart from contrast, defocus blur) saw more modest improvements. It is
notable that some of the corruptions—such as elastic transform or pixelation—likely
also impact the ground truth posture.

Batch norm adaptation slightly improves the prediction performance when evaluat-
ing on different horse identities, but fails to close the gap between the w.d. and ood.
setting. In contrast, batch adaptation considerably improves prediction performance on
all considered common corruptions.

In summary, we provide an extensive suite of benchmarks for pose estimation and
our experiments suggest that domain shift induced by different individuals is difficult
in nature (as it is difficult to fix). This further highlights the importance of benchmarks
such as Horse-10. Full results for other model variants are depicted in Table D.5 and
Table D.6. We report average scores on Horse-C all models in the main text.

robust machine learning 281

Table D.5: Summary results for evaluation of all models on the Horse-C dataset. Results
are averaged across all five severities and three validation splits of the data. Adaptive batch
normalization (adapt) is crucial for attaining good performance compared to fixing the statistics
during evaluation (base). Best viewed in the digital version.

Net Type mobilenet_v2_0.35 mobilenet_v2_1.0 resnet_50 efficientnet-b0 efficientnet-b3

Pretrained False True False True False True False True False True
Condition adapt base adapt base adapt base adapt base adapt base adapt base adapt base adapt base adapt base adapt base
Corruption

brightness 0.34 1.76 0.29 0.87 0.27 1.67 0.21 0.94 0.33 1.29 0.17 0.24 0.40 1.40 0.19 0.72 0.33 1.38 0.19 0.70

contrast 0.47 8.02 0.30 4.78 0.36 8.63 0.22 4.93 0.38 8.57 0.18 2.41 0.41 6.95 0.20 4.01 0.37 7.94 0.20 3.43

defocus_blur 0.81 3.22 0.69 2.20 0.61 3.51 0.66 3.35 0.83 3.44 0.60 1.54 0.67 2.05 0.51 2.54 0.71 2.64 0.54 2.01

elastic_transform 0.38 0.96 0.36 0.83 0.32 0.96 0.32 0.92 0.35 0.50 0.26 0.29 0.39 0.91 0.29 0.76 0.38 0.90 0.29 0.77

fog 1.57 6.62 0.41 1.55 1.17 7.20 0.30 2.23 1.09 7.51 0.26 0.56 1.63 5.31 0.27 1.15 1.28 6.80 0.25 1.11

frost 2.27 6.74 1.10 3.78 1.97 6.81 1.00 3.84 1.68 6.44 0.60 1.80 1.39 6.44 0.71 2.91 1.43 7.04 0.67 2.43

gaussian_noise 2.65 5.90 1.68 6.98 2.11 6.19 1.91 7.51 0.97 3.53 0.82 5.25 1.65 5.13 1.22 5.77 1.71 5.82 1.25 5.89

glass_blur 0.60 2.03 0.63 1.57 0.50 2.01 0.67 2.34 0.54 1.69 0.50 0.95 0.53 1.35 0.53 1.56 0.56 1.45 0.59 1.39

impulse_noise 2.36 5.75 1.73 6.88 1.86 6.07 1.91 7.46 0.83 3.47 0.81 5.56 1.45 4.83 0.89 5.46 1.46 5.80 0.86 5.71

jpeg_compression 0.64 1.32 0.52 1.12 0.50 1.49 0.48 1.30 0.39 0.62 0.34 0.39 0.51 1.10 0.43 1.06 0.47 1.13 0.45 1.00

motion_blur 0.83 2.81 0.68 1.84 0.73 2.99 0.68 2.69 0.80 2.29 0.56 1.08 0.68 1.88 0.56 1.72 0.66 2.07 0.56 1.66

none 0.30 0.88 0.26 0.72 0.25 0.87 0.20 0.73 0.27 0.40 0.17 0.19 0.33 0.84 0.18 0.66 0.30 0.83 0.18 0.66

pixelate 0.34 0.99 0.33 0.84 0.28 0.96 0.28 0.99 0.31 0.47 0.23 0.28 0.35 0.89 0.27 0.78 0.33 0.86 0.27 0.76

shot_noise 2.27 5.31 1.29 6.52 1.65 5.57 1.29 6.95 0.72 2.83 0.63 4.40 1.28 4.55 0.82 4.94 1.32 5.63 0.80 4.90

snow 0.89 4.14 0.82 2.55 0.75 4.38 0.76 3.55 0.71 4.89 0.46 1.69 0.70 3.51 0.53 1.75 0.63 4.32 0.51 1.79

zoom_blur 0.98 2.34 0.82 1.74 0.88 2.58 0.89 2.39 0.93 2.16 0.69 1.11 0.93 1.75 0.70 1.60 1.02 1.95 0.71 1.56

Figure D.5: Weather corruptions for all five different severities (1 to 5, left to right). Top to
bottom: Snow, Frost, Fog, Brightness

robust machine learning 282

Figure D.6: Digital corruptions for all five different severities (1 to 5, left to right). Top to
bottom: Contrast, Elastic Transform, Pixelate, Jpeg Compression

robust machine learning 283

Table D.6: Full result table on Horse-C. All results are averaged across the three validation
splits. “none” denotes the uncorrupted Horse-10 dataset. Best viewed in the digital version.

Net Type mobilenet_v2_0.35 mobilenet_v2_1.0 resnet_50 efficientnet-b0 efficientnet-b3

Pretrained False True False True False True False True False True
Condition adapt base adapt base adapt base adapt base adapt base adapt base adapt base adapt base adapt base adapt base

Corruption Severity

brightness 1 0.30 1.02 0.26 0.75 0.25 0.96 0.20 0.78 0.29 0.44 0.16 0.20 0.34 0.92 0.18 0.67 0.30 0.86 0.17 0.68

2 0.32 1.26 0.26 0.80 0.25 1.20 0.20 0.84 0.31 0.60 0.16 0.21 0.36 1.01 0.18 0.69 0.31 0.95 0.18 0.69

3 0.33 1.77 0.27 0.87 0.26 1.67 0.20 0.91 0.32 0.99 0.17 0.23 0.39 1.32 0.19 0.71 0.33 1.20 0.18 0.69

4 0.35 2.20 0.30 0.93 0.27 2.14 0.22 1.02 0.34 1.71 0.18 0.26 0.42 1.67 0.20 0.74 0.34 1.61 0.20 0.70

5 0.40 2.55 0.35 1.00 0.30 2.38 0.24 1.17 0.39 2.74 0.19 0.32 0.46 2.07 0.22 0.78 0.38 2.25 0.21 0.72

contrast 1 0.31 5.23 0.26 0.96 0.25 5.25 0.20 1.02 0.27 5.64 0.17 0.27 0.33 2.50 0.18 0.80 0.30 3.87 0.18 0.73

2 0.32 6.91 0.27 1.38 0.25 7.93 0.20 1.77 0.28 7.86 0.17 0.39 0.34 5.22 0.18 1.03 0.31 7.36 0.18 0.87

3 0.35 8.63 0.27 3.50 0.27 9.51 0.20 4.67 0.30 9.03 0.17 1.05 0.35 7.88 0.19 2.20 0.32 9.21 0.18 1.70

4 0.48 9.54 0.29 8.13 0.36 10.22 0.22 8.17 0.38 10.05 0.18 3.90 0.40 9.48 0.20 6.85 0.36 9.60 0.20 5.66

5 0.88 9.77 0.38 9.92 0.68 10.25 0.29 9.03 0.69 10.28 0.22 6.43 0.63 9.68 0.26 9.17 0.56 9.66 0.25 8.16

defocus_blur 1 0.36 1.11 0.32 0.89 0.30 1.09 0.26 1.00 0.33 0.64 0.24 0.31 0.38 0.97 0.23 0.78 0.34 0.91 0.23 0.77

2 0.41 1.48 0.39 1.14 0.35 1.39 0.31 1.50 0.39 1.11 0.29 0.40 0.42 1.11 0.28 1.02 0.39 1.05 0.28 0.91

3 0.65 3.21 0.59 1.92 0.50 3.08 0.52 3.23 0.63 3.23 0.47 0.94 0.58 1.78 0.44 2.31 0.58 2.06 0.44 1.56

4 1.03 4.59 0.87 2.96 0.76 5.30 0.86 4.97 1.09 5.36 0.82 2.26 0.84 2.69 0.66 3.69 0.92 3.65 0.69 2.75

5 1.60 5.69 1.28 4.11 1.12 6.69 1.36 6.06 1.72 6.83 1.19 3.77 1.13 3.68 0.96 4.88 1.30 5.52 1.05 4.05

elastic_transform 1 0.32 0.92 0.29 0.75 0.27 0.90 0.23 0.79 0.30 0.43 0.20 0.22 0.35 0.87 0.22 0.69 0.33 0.86 0.21 0.69

2 0.34 0.94 0.31 0.77 0.29 0.92 0.26 0.83 0.32 0.46 0.22 0.24 0.36 0.88 0.24 0.72 0.35 0.88 0.24 0.72

3 0.38 0.96 0.35 0.82 0.31 0.95 0.31 0.91 0.35 0.50 0.25 0.28 0.39 0.91 0.29 0.75 0.37 0.90 0.28 0.76

4 0.40 0.99 0.39 0.86 0.34 0.99 0.36 0.99 0.37 0.53 0.29 0.32 0.41 0.93 0.33 0.79 0.40 0.92 0.33 0.80

5 0.44 1.01 0.44 0.93 0.38 1.04 0.43 1.11 0.41 0.58 0.33 0.38 0.44 0.96 0.38 0.85 0.44 0.96 0.39 0.87

fog 1 0.87 5.11 0.34 0.96 0.65 5.27 0.24 1.11 0.60 5.78 0.20 0.28 0.89 3.46 0.21 0.81 0.71 4.76 0.21 0.76

2 1.26 6.42 0.36 1.21 0.94 6.93 0.26 1.57 0.82 7.33 0.22 0.33 1.30 4.89 0.23 0.96 1.03 6.53 0.22 0.86

3 1.74 7.10 0.41 1.59 1.29 7.82 0.29 2.38 1.18 8.03 0.26 0.48 1.80 5.91 0.26 1.20 1.40 7.45 0.24 1.06

4 1.81 6.97 0.43 1.64 1.34 7.67 0.32 2.47 1.24 7.97 0.28 0.56 1.89 5.82 0.28 1.21 1.47 7.35 0.26 1.15

5 2.17 7.49 0.51 2.33 1.65 8.29 0.40 3.60 1.60 8.46 0.36 1.13 2.27 6.45 0.35 1.58 1.77 7.93 0.32 1.74

frost 1 1.02 4.11 0.46 1.32 0.73 3.81 0.37 1.30 0.65 3.24 0.26 0.37 0.58 2.94 0.34 0.88 0.56 3.52 0.33 0.82

2 1.98 6.45 0.86 2.99 1.63 6.32 0.75 2.97 1.30 6.39 0.45 1.15 1.08 6.01 0.57 1.86 1.14 7.02 0.55 1.57

3 2.59 7.56 1.23 4.41 2.30 7.71 1.14 4.50 1.92 7.39 0.65 2.09 1.58 7.56 0.77 3.34 1.63 8.05 0.73 2.73

4 2.75 7.66 1.31 4.70 2.41 7.92 1.21 4.81 2.06 7.48 0.71 2.30 1.67 7.60 0.84 3.69 1.77 8.16 0.79 3.02

5 3.01 7.92 1.63 5.50 2.77 8.32 1.54 5.61 2.46 7.71 0.90 3.07 2.03 8.12 1.01 4.77 2.05 8.47 0.95 3.99

gaussian_noise 1 0.93 3.08 0.51 3.73 0.59 2.99 0.50 4.81 0.34 0.61 0.27 0.68 0.58 1.55 0.41 1.36 0.53 1.73 0.40 1.45

2 1.61 5.26 0.80 6.21 1.00 5.42 0.82 6.78 0.42 1.12 0.37 2.67 0.85 3.03 0.57 3.09 0.80 3.91 0.56 3.50

3 2.63 6.60 1.41 7.96 1.87 6.91 1.56 8.31 0.63 3.13 0.57 6.12 1.45 5.25 0.93 6.59 1.43 6.37 0.91 6.66

4 3.62 7.15 2.29 8.48 2.99 7.55 2.65 8.75 1.16 5.62 1.02 8.02 2.23 7.35 1.55 8.70 2.39 7.96 1.60 8.54

5 4.47 7.43 3.40 8.53 4.10 8.06 4.00 8.92 2.28 7.17 1.88 8.77 3.12 8.46 2.62 9.13 3.40 9.14 2.77 9.29

glass_blur 1 0.33 0.98 0.30 0.82 0.27 0.94 0.25 0.85 0.31 0.50 0.22 0.27 0.35 0.89 0.21 0.71 0.33 0.85 0.21 0.71

2 0.38 1.11 0.37 0.95 0.32 1.11 0.33 1.07 0.35 0.68 0.28 0.35 0.39 0.98 0.28 0.82 0.36 0.93 0.30 0.81

3 0.53 1.54 0.58 1.38 0.47 1.45 0.62 1.83 0.51 1.19 0.48 0.67 0.52 1.14 0.49 1.15 0.52 1.13 0.55 1.13

4 0.65 2.38 0.72 1.79 0.57 2.06 0.83 2.93 0.59 1.84 0.60 1.06 0.58 1.42 0.66 1.61 0.63 1.48 0.74 1.51

5 1.09 4.16 1.18 2.91 0.88 4.51 1.34 5.04 0.95 4.26 0.93 2.41 0.83 2.33 1.01 3.50 0.98 2.89 1.17 2.80

impulse_noise 1 0.92 2.86 0.56 3.69 0.58 2.80 0.56 4.72 0.38 0.76 0.36 1.43 0.63 1.66 0.33 1.12 0.56 2.08 0.31 1.05

2 1.53 5.19 0.85 6.26 1.00 5.37 0.94 6.95 0.47 1.50 0.47 3.89 0.89 3.17 0.47 2.92 0.82 4.55 0.43 3.50

3 2.10 6.26 1.21 7.45 1.44 6.53 1.42 7.95 0.57 2.69 0.58 5.74 1.18 4.45 0.62 5.56 1.12 5.87 0.57 5.83

4 3.18 7.06 2.36 8.42 2.61 7.55 2.67 8.75 0.99 5.38 0.97 7.98 1.90 6.82 1.12 8.60 1.93 7.60 1.06 8.76

5 4.07 7.38 3.64 8.58 3.68 8.07 3.95 8.93 1.76 6.99 1.68 8.78 2.67 8.07 1.90 9.10 2.84 8.90 1.94 9.38

jpeg_compression 1 0.45 1.05 0.35 0.88 0.37 1.09 0.33 0.96 0.31 0.45 0.24 0.28 0.40 0.92 0.29 0.77 0.37 0.93 0.29 0.77

2 0.53 1.12 0.41 0.95 0.42 1.18 0.37 1.05 0.35 0.48 0.27 0.31 0.45 0.95 0.34 0.83 0.41 0.98 0.35 0.83

3 0.66 1.16 0.51 1.03 0.49 1.25 0.43 1.14 0.37 0.50 0.30 0.33 0.48 1.01 0.39 0.91 0.44 1.07 0.39 0.91

4 0.75 1.45 0.61 1.25 0.58 1.66 0.56 1.49 0.42 0.70 0.38 0.44 0.57 1.23 0.49 1.17 0.53 1.27 0.53 1.11

5 0.80 1.81 0.71 1.51 0.62 2.26 0.70 1.86 0.51 0.95 0.52 0.57 0.63 1.37 0.65 1.62 0.58 1.39 0.68 1.38

motion_blur 1 0.39 1.15 0.34 0.86 0.34 1.11 0.30 0.98 0.37 0.60 0.26 0.35 0.41 1.02 0.28 0.80 0.38 0.97 0.27 0.81

2 0.51 1.54 0.44 1.02 0.45 1.49 0.41 1.31 0.48 0.95 0.36 0.48 0.49 1.20 0.38 0.98 0.46 1.16 0.38 0.96

3 0.73 2.69 0.61 1.47 0.63 2.59 0.60 2.27 0.70 1.90 0.51 0.77 0.64 1.67 0.53 1.41 0.61 1.69 0.53 1.36

4 1.10 3.94 0.88 2.46 0.96 4.39 0.91 3.90 1.05 3.47 0.74 1.46 0.85 2.46 0.73 2.29 0.84 2.77 0.73 2.17

5 1.44 4.73 1.11 3.41 1.26 5.38 1.17 4.97 1.38 4.52 0.95 2.32 1.03 3.06 0.88 3.14 1.03 3.75 0.88 3.01

pixelate 1 0.30 0.92 0.27 0.74 0.25 0.89 0.21 0.78 0.28 0.41 0.18 0.21 0.33 0.85 0.20 0.69 0.31 0.84 0.19 0.69

2 0.31 0.93 0.28 0.75 0.25 0.89 0.23 0.80 0.28 0.42 0.18 0.22 0.33 0.86 0.23 0.70 0.31 0.84 0.21 0.69

3 0.33 0.98 0.31 0.82 0.26 0.93 0.26 0.91 0.29 0.46 0.22 0.27 0.35 0.88 0.24 0.73 0.32 0.86 0.25 0.73

4 0.37 1.04 0.36 0.91 0.30 1.02 0.34 1.13 0.32 0.50 0.26 0.34 0.37 0.91 0.31 0.83 0.35 0.88 0.31 0.80

5 0.38 1.09 0.41 0.98 0.32 1.08 0.38 1.33 0.35 0.56 0.29 0.38 0.39 0.94 0.38 0.96 0.36 0.90 0.37 0.89

shot_noise 1 0.69 1.98 0.44 2.43 0.43 1.86 0.40 3.21 0.31 0.52 0.23 0.41 0.46 1.14 0.32 0.97 0.43 1.24 0.30 0.98

2 1.19 4.19 0.65 5.61 0.68 4.14 0.62 5.99 0.37 0.88 0.31 1.52 0.66 2.10 0.44 1.90 0.60 2.97 0.41 2.15

3 1.97 5.93 1.02 7.70 1.19 6.31 1.01 7.93 0.50 1.89 0.46 4.28 1.00 4.06 0.63 4.49 0.93 5.95 0.59 4.58

4 3.38 7.07 1.87 8.41 2.49 7.55 1.84 8.77 0.92 4.68 0.86 7.45 1.82 7.17 1.10 8.33 1.89 8.46 1.09 7.82

5 4.12 7.41 2.50 8.44 3.47 7.98 2.56 8.84 1.51 6.16 1.29 8.34 2.46 8.30 1.60 9.01 2.74 9.55 1.63 8.98

snow 1 0.49 1.51 0.47 1.09 0.41 1.67 0.41 1.30 0.41 1.21 0.30 0.44 0.45 1.20 0.36 0.87 0.42 1.30 0.33 0.81

2 0.74 3.60 0.71 2.38 0.63 4.19 0.70 3.51 0.61 5.65 0.43 1.38 0.60 2.60 0.51 1.42 0.55 3.73 0.48 1.34

3 0.85 3.89 0.77 2.16 0.72 4.32 0.70 3.12 0.66 4.64 0.45 1.27 0.69 2.78 0.51 1.38 0.61 3.71 0.50 1.44

4 1.20 5.37 1.06 3.23 1.02 5.56 0.98 4.61 0.94 6.10 0.59 2.53 0.91 4.58 0.63 2.13 0.81 5.61 0.62 2.42

5 1.15 6.35 1.07 3.92 0.97 6.18 1.03 5.23 0.91 6.85 0.54 2.82 0.83 6.39 0.63 2.93 0.75 7.23 0.63 2.93

zoom_blur 1 0.67 1.69 0.58 1.16 0.59 1.65 0.58 1.50 0.63 1.20 0.45 0.56 0.64 1.28 0.45 1.04 0.67 1.29 0.46 1.05

2 0.85 2.05 0.78 1.51 0.76 2.13 0.85 2.05 0.80 1.70 0.64 0.87 0.81 1.51 0.63 1.37 0.88 1.58 0.65 1.35

3 0.95 2.39 0.78 1.64 0.84 2.60 0.83 2.32 0.92 2.13 0.66 1.04 0.90 1.72 0.67 1.50 0.99 1.91 0.67 1.45

4 1.11 2.65 0.93 1.98 1.00 3.02 1.05 2.87 1.08 2.62 0.85 1.40 1.06 1.94 0.84 1.86 1.19 2.27 0.85 1.83

5 1.34 2.95 1.01 2.41 1.21 3.48 1.15 3.23 1.24 3.12 0.87 1.68 1.21 2.27 0.93 2.24 1.36 2.70 0.92 2.14

none (Horse-10) 0 0.30 0.88 0.26 0.72 0.25 0.87 0.20 0.73 0.27 0.40 0.17 0.19 0.33 0.84 0.18 0.66 0.30 0.83 0.18 0.66

robust machine learning 284

Table D.7: Improvements using batch norm adaptation on the Horse-C Noise and Blur corrup-
tion subsets for a pre-trained ResNet50 model.

Noise Base Adapt ∆abs ∆rel
Corruption Severity

Gaussian Noise 1 0.427 0.138 0.289 67.7%
2 2.187 0.201 1.986 90.8%
3 5.556 0.314 5.242 94.3%
4 7.843 0.649 7.194 91.7%
5 8.894 1.410 7.484 84.1%

Impulse Noise 1 1.079 0.201 0.878 81.4%
2 3.432 0.276 3.156 92.0%
3 5.393 0.360 5.033 93.3%
4 7.839 0.663 7.176 91.5%
5 8.923 1.339 7.584 85.0%

Shot Noise 1 0.191 0.114 0.077 40.3%
2 0.986 0.152 0.834 84.6%
3 3.618 0.244 3.374 93.3%
4 7.225 0.516 6.709 92.9%
5 8.365 0.894 7.471 89.3%

Blur Base Adapt ∆abs ∆rel
Corruption Severity

Defocus Blur 1 0.137 0.100 0.037 27.0%
2 0.169 0.127 0.042 24.9%
3 0.369 0.233 0.136 36.9%
4 1.569 0.446 1.123 71.6%
5 3.480 0.763 2.717 78.1%

Motion Blur 1 0.213 0.160 0.053 24.9%
2 0.290 0.224 0.066 22.8%
3 0.340 0.335 0.005 1.5%
4 0.864 0.501 0.363 42.0%
5 1.596 0.645 0.951 59.6%

Zoom Blur 1 0.331 0.288 0.043 13.0%
2 0.536 0.436 0.100 18.7%
3 0.654 0.467 0.187 28.6%
4 0.974 0.620 0.354 36.3%
5 1.217 0.640 0.577 47.4%

robust machine learning 285

Table D.8: Improvements using batch norm adaptation on the Horse-C Weather and Digital
corruptions subsets for a pre-trained ResNet50 model.

Weather Base Adapt ∆abs ∆rel
Corruption Severity

Brightness 1 0.120 0.084 0.036 30.0%
2 0.127 0.083 0.044 34.6%
3 0.141 0.084 0.057 40.4%
4 0.165 0.089 0.076 46.1%
5 0.205 0.097 0.108 52.7%

Fog 1 0.156 0.097 0.059 37.8%
2 0.191 0.107 0.084 44.0%
3 0.289 0.126 0.163 56.4%
4 0.330 0.137 0.193 58.5%
5 0.764 0.176 0.588 77.0%

Frost 1 0.193 0.125 0.068 35.2%
2 0.672 0.249 0.423 62.9%
3 1.447 0.393 1.054 72.8%
4 1.680 0.449 1.231 73.3%
5 2.375 0.573 1.802 75.9%

Snow 1 0.229 0.155 0.074 32.3%
2 0.737 0.252 0.485 65.8%
3 0.720 0.270 0.450 62.5%
4 1.873 0.386 1.487 79.4%
5 2.146 0.348 1.798 83.8%

Digital Base Adapt ∆abs ∆rel
Corruption Severity

Contrast 1 0.151 0.085 0.066 43.7%
2 0.211 0.084 0.127 60.2%
3 0.840 0.083 0.757 90.1%
4 3.700 0.085 3.615 97.7%
5 6.406 0.103 6.303 98.4%

Elastic Transform 1 0.121 0.092 0.029 24.0%
2 0.127 0.101 0.026 20.5%
3 0.139 0.116 0.023 16.5%
4 0.154 0.133 0.021 13.6%
5 0.175 0.157 0.018 10.3%

Jpeg Compression 1 0.136 0.108 0.028 20.6%
2 0.152 0.128 0.024 15.8%
3 0.170 0.138 0.032 18.8%
4 0.216 0.189 0.027 12.5%
5 0.305 0.276 0.029 9.5%

Pixelate 1 0.117 0.087 0.030 25.6%
2 0.117 0.089 0.028 23.9%
3 0.125 0.100 0.025 20.0%
4 0.142 0.112 0.030 21.1%
5 0.156 0.132 0.024 15.4%

robust machine learning 286

Table D.9: Small improvements by using batch adaptation on the identity shift task for a
pre-trained ResNet50 model. Note that the o.o.d. performance is still substantially worse
(higher normalized error) than the within-domain performance.

Base Adapt ∆abs ∆rel

Identity (wd) 0.115 0.086 0.029 25.2%
Identity (ood) 0.271 0.247 0.024 8.9%

robust machine learning 287

Inference Speed Benchmarking

We introduced new DeepLabCut variants that can achieve high accuracy but with
higher speed than the original ResNet backbone (Mathis et al., 2018). Here we pro-
vide a simple benchmark to document how fast the EfficientNet and MobileNetv2

backbones are (Figure D.7). We evaluated the inference speed for one video with
11, 178 frames at resolutions 512× 512, 256× 256 and 128× 128. We used batch sizes:
[1, 2, 4, 16, 32, 128, 256, 512], and ran all models for all 3 (training set shuffles) trained
with 50% of the data in a pseudo random order on a NVIDIA Titan RTX. We also
updated the inference code from its numpy implementation (Mathis & Warren, 2018)
to TensorFlow, which brings a 2− 10% gain in speed.

Figure D.7: Speed Benchmarking for MobileNetV2s, ResNets and EfficientNets: Inference speed
for videos of different dimensions for all the architectures. A-C: FPS vs. batchsize, with video
frame sizes as stated in the title. Three splits are shown for each network. MobileNetV2 gives a
more than 2X speed improvement (over ResNet-50) for offline processing and about 40% for
batchsize=1 on a Titan RTX GPU.

E
Contrastive Learning Inverts the Data
Generating Process

Extended Theory for Hyperspheres

Assumptions

Generative Process Let the generator g : RN → X with X ⊆ RK and K ≥ N. Further,
let the restriction of g to the space Z = SN−1 ⊂ RN be injective and g be differentiable
in the vicinity of Z . We assume that the marginal distribution p(z) over latent variables
z ∈ Z is uniform:

p(z) =
1
|Z| . (E.1)

Further, we assume that the conditional distribution over positive pairs p(z̃|z) is a von
Mises-Fisher (vMF) distribution

p(z̃|z) = C−1
p eκz⊤z̃ (E.2)

with Cp : =
∫

eκη⊤z̃ dz̃, (E.3)

where κ is a parameter controlling the width of the distribution and η is any vector on
the hypersphere. Finally, we assume that during training one has access to observations
x, which are samples from these distributions transformed by the generator function g.

Model Let f : X → SN−1
r , where SN−1

r denotes a hypersphere with radius r. The
parameters of this model are optimized using contrastive learning. We associate a

robust machine learning 290

conditional distribution qh(z̃|z) with our model f through h = f ◦ g and

qh(z̃|z) = C−1
q (z)eh(z̃)⊤h(z)/τ

with Cq(z) : =
∫

eh(z̃)⊤h(z)/τ dz̃,
(E.4)

where Cq(z) is the partition function and τ > 0 is a scale parameter.

Proofs for Theory section

We begin by recalling a result of Wang and Isola (2020), where the authors show an
asymptotic relation between the contrastive loss Lcontr and two loss functions, the
alignment loss Lalign and the uniformity loss Luni:

Proposition A (Asymptotics of Lcontr, Wang and Isola, 2020). For fixed τ > 0, as the
number of negative samples M→ ∞, the (normalized) contrastive loss converges to

lim
M→∞

Lcontr(f ; τ, M)− log M = Lalign(f ; τ) + Luni(f ; τ), (E.5)

where

Lalign(f ; τ) := − 1
τ

E
(z̃,z)∼p(z̃,z)

[
(f ◦ g)(z)T(f ◦ g)(z)

]
Luni(f ; τ) := E

z∼p(z)

[
log E

z̃∼p(z̃)

[
e(f ◦g)(z̃)T(f ◦g)(z)/τ

]]
.

(E.6)

Proof. See Theorem 1 of Wang and Isola (2020). Note that they originally formulated
the losses in terms of observations x and not in terms of the latent variables z. However,
this modified version simplifies notation in the following.

Based on this result, we show that the contrastive loss Lcontr asymptotically con-
verges to the cross-entropy between the ground-truth conditional p and our assumed
model conditional distribution qh, up to a constant. This is notable, because given the
correct model specification for qh, it is well-known that the cross-entropy is minimized
iff qh = p, i.e., the ground-truth conditional distribution and the model distribution
will match.

Theorem 3 (Lcontr converges to the cross-entropy between latent distributions). If the
ground-truth marginal distribution p is uniform, then for fixed τ > 0, as the number of negative
samples M→ ∞, the (normalized) contrastive loss converges to

lim
M→∞

Lcontr(f ; τ, M)− log M + log |Z| =

E
z∼p(z)

[H(p(·|z), qh(·|z))]
(E.7)

where H is the cross-entropy between the ground-truth conditional distribution p over positive

robust machine learning 291

pairs and a conditional distribution qh parameterized by the model f , and Ch(z) ∈ R+ is the
partition function of qh (see Appendix E):

qh(z̃|z) = Ch(z)−1eh(z̃)Th(z)/τ

with Ch(z) : =
∫

eh(z̃)Th(z)/τ dz̃.
(E.8)

Proof. The cross-entropy between the conditional distributions p and qh is given by

E
z∼p(z)

[H(p(·|z), qh(·|z))] (E.9)

= E
z∼p(z)

[
E

z̃∼p(z̃|z)
[− log qh(z̃|z)]

]
(E.10)

= E
z̃,z∼p(z̃,z)

[
− 1

τ
h(z̃)⊤h(z) + log Ch(z)

]
(E.11)

=− 1
τ

E
z̃,z∼p(z̃,z)

[
h(z̃)⊤h(z)

]
+ E

z∼p(z)
[log Ch(z)] . (E.12)

Using the definition of Ch in Eq. (E.8) we obtain

=− 1
τ

E
z̃,z∼p(z̃,z)

[
h(z̃)⊤h(z)

]
(E.13)

+ E
z∼p(z)

[
log

∫
Z

eh(z̃)⊤h(z)/τ dz̃
]

. (E.14)

By assumption the marginal distribution is uniform, i.e., p(z) = |Z|−1. We expand by
|Z||Z|−1 and estimate the integral by sampling from p(z) = |Z|−1, yielding

=− 1
τ

E
z̃,z∼p(z̃,z)

[
h(z̃)⊤h(z)

]
(E.15)

+ E
z∼p(z)

[
log |Z| E

z̃∼p(z̃)

[
eh(z̃)⊤h(z)/τ

]]
(E.16)

=− 1
τ

E
z̃,z∼p(z̃,z)

[
h(z̃)⊤h(z)

]
(E.17)

+ E
z∼p(z)

[
log E

z̃∼p(z̃)

[
eh(z̃)⊤h(z)/τ

]]
+ log |Z|. (E.18)

By inserting the definition h = f ◦ g,

=− 1
τ

E
z̃,z∼p(z̃,z)

[
(f ◦ g)(z̃)⊤(f ◦ g)(z)

]
(E.19)

+ E
z∼p(z)

[
log E

z̃∼p(z̃)

[
e(f ◦g)(z̃)⊤(f ◦g)(z)/τ

]]
(E.20)

+ log |Z|, (E.21)

robust machine learning 292

we can identify the losses introduced in Proposition A,

=Lalign(f ; τ) + Luni(f ; τ) + log |Z|, (E.22)

which recovers the original alignment term and the uniformity term for maximimizing
entropy by means of a von Mises-Fisher KDE up to the constant log |Z|. According to
Proposition A this equals

= lim
M→∞

Lcontr(f ; τ, M)− log M + log |Z|, (E.23)

which concludes the proof.

Proposition 4 (Minimizers of the cross-entropy maintain the dot product). Let Z =

SN−1, τ > 0 and consider the ground-truth conditional distribution of the form p(z̃|z) =

C−1
p exp(κz̃⊤z). Let h map onto a hypersphere with radius

√
τκ.1 Consider the conditional

distribution qh parameterized by the model, as defined above in Theorem 3, where the hypothesis
class for h is assumed to be sufficiently flexible such that p(z̃|z) and qh(z̃|z) can match.
If h is a minimizer of the cross-entropy Ep(z̃|z)[− log qh(z̃|z)], then p(z̃|z) = qh(z̃|z) and
∀z, z̃ : κz⊤z̃ = h(z)⊤h(z̃).
Proof. By assumption, qh(z̃|z) is powerful enough to match p(z̃|z) for the correct choice
of h — in particular, for h(z) =

√
τκz. The global minimum of the cross-entropy

between two distributions is reached if they match by value and have the same support.
Thus, this means

p(z̃|z) = qh(z̃|z). (E.24)

This expression also holds true for z̃ = z; additionally using that h maps from a unit
hypersphere to one with radius

√
τκ yields

p(z|z) = qh(z|z) (E.25)

⇔ C−1
p eκz⊤z = Ch(z)−1eh(z)⊤h(z)/τ (E.26)

⇔ C−1
p eκ = Ch(z)−1eκ (E.27)

⇔ Cp = Ch. (E.28)

As the normalization constants are identical we get for all z, z̃ ∈ Z

eκz⊤z̃ = eh(z)⊤h(z̃) ⇔ κz⊤z̃ = h(z)⊤h(z̃). (E.29)

Proposition 5 (Extension of the Mazur-Ulam theorem to hyperspheres and the dot
product). Let Z = SN−1 and Z ′ = SN−1

r be the hyperspheres with radius 1 and r > 0,
respectively. If h : RN → Z ′ is differentiable in the vicinity of Z and its restriction to Z

1Note that in practice this can be implemented as a learnable rescaling operation of the network f .

robust machine learning 293

maintains the dot product up to a constant factor, i.e., ∀z, z̃ ∈ Z : r2z⊤z̃ = h(z)⊤h(z̃), then h
is an orthogonal linear transformation scaled by r for all z ∈ Z .

Proof. First, we begin with the case r = 1. As h maintains the dot product we have:

∀z, z̃ ∈ Z : z⊤z̃ = h(z)⊤h(z̃). (E.30)

We consider the partial derivative w.r.t. z and obtain:

∀z, z̃ ∈ Z : z̃ = J⊤h (z)h(z̃). (E.31)

Taking the partial derivative w.r.t. z̃ yields

∀z, z̃ ∈ Z : I = J⊤h (z)Jh(z̃). (E.32)

We can now conclude

∀z, z̃ ∈ Z : Jh(z̃)−1 = J⊤h (z). (E.33)

which implies a constant Jacobian matrix Jh(z) = Jh as the identity holds on all points
in Z , and further that the Jacobian Jh is orthogonal. Hence, ∀z ∈ Z : h(z) = Jhz is an
orthogonal linear transformation.

Finally, for r ̸= 1 we can leverage the previous result by introducing h′(z) := h(z)/r.
For h′ the previous argument holds, implying that h′ is an orthogonal transformation.
Therefore, the restriction of h to Z is an orthogonal linear transformation scaled by
r2.

Taking all of this together, we can now prove Theorem 4:

Theorem 4. Let Z = SN−1, the ground-truth marginal be uniform, and the conditional a vMF
distribution (cf. Eq. 6.2). Let the restriction of the mixing function g to Z be injective and h be
differentiable in a vicinity of Z . If the assumed form of qh, as defined above, matches that of p,
and if f is differentiable and minimizes the CL loss as defined in Eq. (6.1), then for fixed τ > 0
and M→ ∞, h = f ◦ g is linear, i.e., f recovers the latent sources up to an orthogonal linear
transformation and a constant scaling factor.

Proof. As f minimzes the contrastive loss Lcontr we can apply Theorem 3 to see that
f also minimizes the cross-entropy between p(z̃|z) and qh(z̃|z) for any point z on Z .
This means, we can apply Proposition 4 to show that the concatenation h = f ◦ g is an
isometry with respect to the dot product. Finally, according to Proposition 5, h must
then be a composition of an orthogonal linear transformation and a constant scaling
factor. Thus, f recovers the latent sources up to orthogonal linear transformations,
concluding the proof.

robust machine learning 294

Extension of theory to subspaces of RN

Here, we show how one can generalize the theory above from Z = SN−1 to Z ⊆ RN .
Under mild assumptions regarding the ground-truth conditional distribution p and
the model distribution qh, we prove that all minimizers of the cross-entropy between
p and qh are linear functions, if Z is a convex body. Note that the hyperrectangle
[a1, b1]× . . .× [aN , bN] is an example of such a convex body.

Assumptions

First, we restate the core assumptions for this proof. The main difference to the
assumptions for the hyperspherical case above is that we assume different conditional
distributions: instead of rotation-invariant von Mises-Fisher distributions, we use
translation-invariant distributions (up to restrictions determined by the finite size of
the space) of the exponential family.

Generative process Let g : Z → X be an injective function between the two spaces Z ⊆
RN and X ⊆ RK with K ≥ N and where Z is a convex body (e.g., a hyperrectangle).
Further, let the marginal distribution be uniform, i.e., p(z) = |Z|−1. We assume that
the conditional distribution over positive pairs p(z̃|z) is an exponential distribution

p(z̃|z) = C−1
p (z)e−λδ(z̃,z)

with Cp(z) : =
∫

e−λδ(z,z̃) dz̃,
(E.34)

where λ > 0 a parameter controlling the width of the distribution and δ is a (semi-
)metric. If δ is a semi-metric, i.e., it does not fulfill the triangle inequality, there must
exist a metric δ′ such that δ can be written as the composition of a continuously
invertible map j : R≥0 → R≥0 with j(0) = 0 and the metric, i.e., δ = j ◦ δ′. Finally, we
assume that during training one has access to samples from both of these distributions.

Note that unlike for the hypersphere, when sampling positive pairs z, z̃ ∼ p(z)p(z̃|z),
it is no longer guaranteed that the marginal distributions of z and z̃ are the same. When
referencing the density functions – or using them in expectation values – p(·) will al-
ways denote the same marginal density, no matter if the argument is z or z̃. Specifically,
p(z̃) does not refer to

∫
p(z)p(z̃|z)dz.

Model Let Z ′ be a subset of RN that is a convex body and let f : X → Z ′ be the
model whose parameters are optimized. We associate a conditional distribution qh(z̃|z)
with our model f through

qh(z̃|z) = C−1
q (z)e−δ(h(z̃),h(z))/τ

with Cq(z) : =
∫

e−δ(h(z̃),h(z))/τ dz̃,
(E.35)

robust machine learning 295

where Cq(z) is the partition function and δ is defined above.

Minimizing the cross-entropy

In a first step, we show the analogue of Proposition A for Z being a convex body:

Proposition 6. For fixed τ > 0, as the number of negative samples M→ ∞, the Lδ-contr loss
converges to

lim
M→∞

Lδ-contr(f ; τ, M)− log M =

Lδ-align(f ; τ) + Lδ-uni(f ; τ),
(E.36)

where

Lδ-align(f ; τ) :=
1
τ

E
z∼p(z)

z̃∼p(z̃|z)

[δ(h(z̃), h(z)))]

Lδ-uni(f ; τ) := E
z∼p(z)

[
log
(

E
z̃∼p(z̃)

[
e−δ(h(z̃),h(z))/τ

])]
,

(E.37)

and Lδ-contr(f ; τ, M) is as defined in Eq. (6.6).

Proof. This proof is adapted from Wang and Isola (2020). By the Continuous Mapping
Theorem and the law of large numbers, for any x, x̃ and { x−i }M

i=1 it follows almost
surely

lim
M→∞

log
(

1
M

e−δ(f (x), f (x̃))/τ) +
1
M

M

∑
i=1

e−δ(f (x), f (x−i))/τ

)
= log

(
E

x−∼pdata

[
e−δ(f (x), f (x−))/τ

])
= log

(
E

z̃∼p(z̃)

[
e−δ(h(z),h(z̃))/τ

])
,

(E.38)

where in the last step we expressed the sample x and negative examples x− in terms of
their latent factors.

robust machine learning 296

We can now express the limit of the entire loss function as

lim
M→∞

Lδ-contr(f ; τ, M)− log M

=
1
τ

E
(x,x̃)∼ppos

[δ(f (x), f (x̃))]

+ lim
M→∞

E
(x,x̃)∼ppos

{x−i }M
i=1

i.i.d.∼ pdata

[
log
(

1
M

e−δ(f (x), f (x̃))/τ +
1
M

M

∑
i=1

e−δ(f (x), f (x−))/τ

)]

=
1
τ

E
(x,x̃)∼ppos

[δ(f (x), f (x̃))]

+ E
(x,x̃)∼ppos

{x−i }M
i=1

i.i.d.∼ pdata

[
lim

M→∞
log
(

1
M

e−δ(f (x), f (x̃))/τ +
1
M

M

∑
i=1

e−δ(f (x), f (x−i))/τ

)]
.

(E.39)

Note that as δ is a (semi-)metric, the expression e−δ(f (x), f (x̃)) is upper-bounded by 1.
Hence, according to the Dominated Convergence Theorem one can switch the limit
with the expectation value in the second step. Inserting the previous results yields

=
1
τ

E
(x,x̃)∼ppos

[δ(f (x), f (x̃))] + E
x∼pdata

[
log
(

E
x−∼pdata

[
e−δ(f (x), f (x−))/τ

])]
=

1
τ

E
z∼p(z)

z̃∼p(z̃|z)

[δ(h(z), h(z̃))] + E
z∼p(z)

[
log
(

E
z̃∼p(z̃)

[
e−δ(h(z),h(z̃))/τ

])]
= Lδ-align(f ; τ) + Lδ-uni(f ; τ).

(E.40)

Next, we derive a property similar to Theorem 3, which suggests a practical
method to find minimizers of the cross-entropy between the ground-truth p and model
conditional qh. This property is based on our previously introduced objective function
in Eq. (6.6), which is a modified version of the InfoNCE objective in Eq. (6.1).

Theorem 5. Let δ be a semi-metric and τ, λ > 0 and let the ground-truth marginal distribution
p be uniform. Consider a ground-truth conditional distribution p(z̃|z) = C−1

p (z) exp(−λδ(z̃, z))
and the model conditional distribution

qh(z̃|z) = C−1
h (z)e−δ(h(z̃),h(z))/τ

with Ch(z) : =
∫
Z

e−δ(h(z̃),h(z))/τdz̃.
(E.41)

robust machine learning 297

Then the cross-entropy between p and qh is given by

lim
M→∞

Lδ-contr(f ; τ, M)− log M + log |Z| =

E
z∼p(z)

[H(p(·|z), qh(·|z)] ,
(E.42)

which can be implemented by sampling data from the accessible distributions.
Proof. We use the definition of the cross-entropy to write

E
z∼p(z)

[H(p(·|z), qh(·|z)] (E.43)

= − E
z∼p(z)

[
E

z̃∼p(z̃|z)
[log(qh(z̃|z))]

]
. (E.44)

We insert the definition of qh and get

= − E
z∼p(z)

[
E

z̃∼p(z̃|z)

[
log(C−1

h (z))− 1
τ

δ(h(z̃), h(z)))
]]

(E.45)

= E
z∼p(z)

[
E

z̃∼p(z̃|z)

[
log(Ch(z)) +

1
τ

δ(h(z̃), h(z)))
]]

. (E.46)

As Ch(z) does not depend on z̃ it can be moved out of the inner expectation value,
yielding

= E
z∼p(z)

[
1
τ

E
z̃∼p(z̃|z)

[δ(h(z̃), h(z)))] + log(Ch(z))
]

, (E.47)

which can be written as

=
1
τ

E
z∼p(z)

z̃∼p(z̃|z)

[δ(h(z̃), h(z)))] + E
z∼p(z)

[log(Ch(z))] . (E.48)

Inserting the definition of Ch gives

=
1
τ

E
z∼p(z)

z̃∼p(z̃|z)

[δ(h(z̃), h(z)))] (E.49)

+ E
z∼p(z)

[
log
(∫

e−δ(h(z̃),h(z))/τdz̃
)]

. (E.50)

Next, the second term can be expanded by 1 = |Z||Z|−1, yielding

=
1
τ

E
z∼p(z)

z̃∼p(z̃|z)

[δ(h(z̃), h(z)))] (E.51)

+ E
z∼p(z)

[
log
(∫ |Z|
|Z| e

−δ(h(z̃),h(z))/τdz̃
)]

. (E.52)

robust machine learning 298

Finally, by using that the marginal is uniform, i.e., p(z) = |Z|−1, this can be simplified
as

=
1
τ

E
z∼p(z)

z̃∼p(z̃|z)

[δ(h(z̃), h(z)))] (E.53)

+ E
z∼p(z)

[
log
(

E
z̃∼p(z̃)

[
e−δ(h(z̃),h(z))/τ

])]
(E.54)

+ log |Z| (E.55)

= lim
M→∞

Lδ-contr(f ; τ, M)− log M + log p|Z|. (E.56)

Cross-entropy minimizers are isometries

Now we show a version of Proposition 4, that is generalized from hyperspherical spaces
to (subsets of) RN .

Proposition 7 (Minimizers of the cross-entropy are isometries). Let δ be a semi-metric.
Consider the conditional distributions of the form p(z̃|z) = C−1

p (z) exp(−δ(z̃, z)/λ) and

qh(z̃|z) = C−1
h (z)e−δ(h(z̃),h(z))/τ

with Ch(z) : =
∫
Z

e−δ(h(z̃),h(z))/τdz̃,
(E.57)

where the hypothesis class for h is assumed to be sufficiently flexible such that p(z̃|z) and qh(z̃|z)
can match for any point z. If h is a minimizer of the cross-entropy LCE = Ep(z̃|z)[− log qh(z̃|z)],
then h is an isometry, i.e., ∀z, z̃ ∈ Z : λτδ(z, z̃) = δ(h(z), h(z̃)).

Proof. Note that qh(z̃|z) is powerful enough to match p(z̃|z) for the correct choice of
h, e.g. the identity. The global minimum of cross-entropy between two distributions
is reached if they match by value and have the same support. Hence, if p is a regular
density, qh will be a regular density, i.e., qh is continuous and has only finite values
0 ≤ qh < ∞. As the two distributions match, this means

p(z̃|z) = qh(z̃|z). (E.58)

This expression also holds true for z̃ = z; additionally using the property δ(z, z) = 0
yields

p(z|z) = qh(z|z) (E.59)

⇔ C−1
p (z)e−δ(z,z)/λ = C−1

h (z)e−δ(h(z),h(z))/τ (E.60)

⇔ Cp(z) = Ch(z). (E.61)

robust machine learning 299

As the normalization constants are identical, we obtain for all z, z̃ ∈ Z

e−δ(z̃,z)/λ = e−δ(h∗(z̃),h∗(z))/τ (E.62)

⇔ δ(z̃, z) =
λ

τ
δ(h∗(z̃), h∗(z)). (E.63)

By introducing a new semi-metric δ′ := λτ−1δ, we can write this as δ(z̃, z) = δ′(h(z̃), h(z)),
which shows that h is an isometry. If there is no model mismatch, i.e., λ = τ, this
means δ(z, z̃) = δ(h(z), h(z̃)).

Note, that this result does not depend on the choice of Z but just on the class of
conditional distributions allowed.

Cross-entropy minimization identifies the ground-truth factors

Before we continue, let us recall a Theorem by Mankiewicz (1972):

Theorem C (Mankiewicz, 1972). Let X and Y be normed linear spaces and let V be a convex
body in X andW a convex body in Y . Then every surjective isometry between V andW can
be uniquely extended to an affine isometry between X and Y .
Proof. See Mankiewicz (1972).

In addition, it is known that isometries on closed spaces are bijective:

Lemma A. Assume h is an isometry of the closed space Z into itself, i.e., ∀z, z̃ : δ(z, z̃) =
δ(h(z), h(z̃)). Then h is bijective.

Proof. See Lemma (2.6) in Całka (1982) for surjectivity. We show the injectivity by
contradiction. Assume h is not injective. Then we can find a point z̃ ̸= z where
h(z) = h(z̃). But then δ(z, z̃) > δ(z, z) and δ(h(z), h(z̃)) = δ(h(z), h(z)) = 0 by the
properties of δ. Hence, h is injective.

Before continuing, we need to generalize the class of functions we consider as
distance measures:

Lemma 4. Let δ′ be a the composition of a continuously invertible function j : R≥0 → R≥0

with j(0) = 0 and a metric δ, i.e., δ′ := j ◦ δ. Then, (i) δ′ is a semi-metric and (ii) if a function
h : Rn → Rn is an isometry of a space with the semi-metric δ′, it is also an isometry of the
space with the metric δ.

Proof. (i) Let z, z̃ ∈ Z . Per assumption j must be strictly monotonically increasing on
R≥0. Since δ is a metric it follows δ(z, z̃) ≥ 0⇒ δ′(z, z̃) = j(δ(z, z̃)) ≥ 0, with equality
iff z = z̃. Furthermore, since δ is a metric it is symmetric in its arguments and, hence,
δ′ is symmetric in its arguments. Thus, δ′ is a semi-metric.

robust machine learning 300

(ii) h is an isometry of a space with the semi-metric δ′, allowing to derive that for
all z, z̃ ∈ Z ,

δ′(h(z), h(z̃)) = δ′(z, z̃) (E.64)

j(δ(h(z), h(z̃))) = j(δ(z, z̃)) (E.65)

and, applying the inverse j−1 which exists by assumption, yields

δ(h(z), h(z̃)) = δ(z, z̃), (E.66)

concluding the proof.

By combining the properties derived before we can show that h is an affine function:

Theorem 6. Let Z = Z ′ be a convex body in RN . Let the mixing function g be differentiable
and invertible. If the assumed form of qh as defined in Eq. (E.35) matches that of p, and if f is
differentiable and minimizes the cross-entropy between p and qh, then we find that h = f ◦ g is
affine, i.e., we recover the latent sources up to affine transformations.
Proof. According to Proposition 7 h is an isometry and qh is a regular probability
density function. If the distance δ used in the conditional distributions p and qh is a
semi-metric as in Lemma 4, it follows that h is also an isometry for a proper metric.
This also means that h is bijective according to Lemma A. Finally, Theorem C says that
h is an affine transformation.

We use the assumption that the marginal p(z) is uniform, to show

Theorem 7. Let Z be a convex body in RN , h = f ◦ g : Z → Z , and δ be a metric or a
semi-metric as defined in Lemma 4. Further, let the ground-truth marginal distribution be
uniform and the conditional distribution be as (6.5). Let the mixing function g be differentiable
and injective. If the assumed form of qh matches that of p, i.e.,

qh(z̃|z) = C−1
q (z)e−δ(h(z̃),h(z))/τ

with Cq(z) : =
∫

e−δ(h(z̃),h(z))/τ dz̃,
(E.67)

and if f is differentiable and minimizes the Lδ-contr objective in (6.6) for M→ ∞, we find that
h = f ◦ g is invertible and affine, i.e., we recover the latent sources up to affine transformations.
Proof. According to Theorem 5 h minimizes the cross-entropy between p and qh as
defined in Eq. (6.4). Then according to Theorem 6, h is an affine transformation.

This result can be seen as a generalized version of Theorem 4, as it is valid for
any convex body Z ⊆ RN and allows a larger variety of conditional distributions. A
missing step is to extend this theory beyond uniform marginal distributions. This will
be addressed in future work.

robust machine learning 301

Under some assumptions we can further narrow down possible forms of h, thus,
showing that h in fact solves the nonlinear ICA problem only up to permutations and
elementwise transformations.

For this, let us first repeat a result from Li and So (1994), that shows an important
property of isometric matrices:

Theorem D. Suppose 1 ≤ α ≤ ∞ and α ̸= 2. An n× n matrix A is an isometry of Lα-norm
if and only if A is a generalized permutation matrix, i.e., ∀z : (Az)i = ffizœ(i), with αi = ±2
and σ being a permutation.
Proof. See Li and So (1994). Note that this can also be concluded from the Banach-
Lamperti Theorem (Lamperti et al., 1958).

Leveraging this insight, we can finally show:

Theorem 8. Let Z be a convex body in RN , h : Z → Z , and δ be an Lα metric for α ≥ 1, α ̸= 2
or the α-th power of such an Lα metric. Further, let the ground-truth marginal distribution be
uniform and the conditional distribution be as in Eq. (6.5), and let the mixing function g be
differentiable and invertible. If the assumed form of qh(·|z) matches that of p(·|z), i.e., both
use the same metric δ up to a constant scaling factor, and if f is differentiable and minimizes
the Lδ-contr objective in Eq. (6.6) for M→ ∞ we find that h = f ◦ g is a composition of input
independent permutations, sign flips and rescalings.
Proof. First, we prove the case where both conditional distributions use exactly the
same metric. By Theorem 7 h is an affine transformation. Moreover, according to
Proposition 7 is an isometry. Thus, by Theorem D, h is a generalized permutation
matrix, i.e., a composition of permutations and sign flips.

Finally, for the case that δ matches the similarity measure in the ground-truth
conditional distribution defined in Eq. (6.5) (denoted as δ∗) only up to a constant
rescaling factor r, we know

∀z, z̃ : δ∗(z, z̃) = δ(h(z), h(z̃))

⇔ δ∗(z, z̃) = δ∗
(

1
r

h(z),
1
r

h(z̃)
)

.
(E.68)

Thus, 1
r h is a δ∗ isometry and the same argument as above holds, concluding the

proof.

Experimental details

For the experiments presented in Sec. 6 we train our feature encoder for 300 000
iterations with a batch size of 6144 utilizing Adam (Kingma & Ba, 2014) with a learning
rate of 10−4. Like Hyvärinen and Morioka (2016, 2017), for the mixing network, we i)

robust machine learning 302

Table E.1: Identifiability up to affine transformations on the training set of 3DIdent. Mean ±
standard deviation over 3 random seeds. As earlier, only the first row corresponds to a setting
that matches the theoretical assumptions for linear identifiability; the others show distinct
violations. Supervised training with unbounded space achieves scores of R2 = (99.98± 0.01)%
and MCC = (99.99± 0.01)%. The last row refers to using the SimCLR (Chen et al., 2020a)
augmentations to generate positive pairs. The last row refers to using the image augmentations
suggested by Chen et al. (2020a) to generate positive image pairs; for details see Sec. E. In
contrast to Table 6.4, the scores here are reported on the same data the models were trained on.

Dataset Model f Identity [%] Unsupervised [%]
p(·|·) Space qh(·|·) M. R2 R2 MCC

Normal Box Normal ✓ 5.35± 0.72 97.83± 0.13 98.85± 0.07
Normal Unbounded Normal ✗ 97.72± 0.02 55.90± 2.22
Laplace Box Normal ✗ 97.95± 0.05 98.94± 0.03
Normal Sphere vMF ✗ 66.73± 0.03 42.72± 3.20
Augm. Sphere vMF ✗ 45.94± 1.80 47.6± 1.45

use 0.2 for the angle of the negative slope2, ii) use L2 normalized weight matrices with
minimum condition number of 25 000 uniformly distributed samples. For the encoder,
we i) use the default (0.01) negative slope ii) use 6 hidden layers with dimensionality
[N · 10, N · 50, N · 50, N · 50, N · 50, N · 10] and iii) initialize the normalization magnitude
as 1. We sample 4096 latents from the marginal for evaluation. For MCC (Hyvärinen &
Morioka, 2016, 2017) we use the Pearson correlation coefficient3; we found there to be
no difference with Spearman4.

For the experiments presented in Sec. 6, we use the same architecture as the encoder
in (Klindt et al., 2021a). As in (Klindt et al., 2021a), we train for 300 000 iterations with
a batch size of 64 utilizing Adam (Kingma & Ba, 2014) with a learning rate of 10−4.
For evaluation, as in (Klindt et al., 2021a), we use 10 000 samples and the Spearman
correlation coefficient.

For the experiments presented in Sec. 6, we train the feature encoder for 200 000
iterations using Adam with a learning rate of 10−4. For the encoder we use a ResNet18

(He et al., 2016b) architecture followed by a single hidden layer with dimensionality
N · 10 and LeakyReLU activation function using the default (0.01) negative slope.
The scores on the training set are evaluated on 10% of the whole training set, 25 000
random samples. The test set consists of 25 000 samples not included in the training
set. For the last row of Tab. 6.4 and Tab. E.1 we used the best-working combination
of image augmentations found by Chen et al. (2020a) to sample positive pairs. To be
precise, we used a random crop and resize operation followed by a color distortion
augmentation. The random crops had a uniformly distributed size (between 8% and
100% of the original image area) and a random aspect ration (between 3/4 and 4/3);
subsequently, they were resized to the original image dimension (224× 224) again. The

2See e.g. https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
3See e.g. https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html
4See e.g. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html

https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html

robust machine learning 303

color distortion operation itself combined color jittering (i.e., random changes of the
brightness, contrast, saturation and hue) with color dropping (i.e., random grayscale
conversations). We used the same parameters for these augmentations as recommended
by Chen et al. (2020a).

The experiments in Sec. 6 took on the order of 5-10 hours on a GeForce RTX 2080 Ti
GPU, the experiments on KITTI Masks took 1.5 hours on a GeForce RTX 2080 Ti GPU
and those on 3DIdent took 28 hours on four GeForce RTX 2080 Ti GPUs. The creation
of the 3DIdent dataset additionally required approximately 150 hours of compute time
on a GeForce RTX 2080 Ti.

Details on 3DIdent

We build on the rendering pipeline of Johnson et al. (2017b) and use the Blender
engine (Blender Online Community, 2021), as of version 2.91.0, for image rendering.
The scenes depicted in the dataset show a rotated and translated object onto which
a spotlight is directed. The spotlight is located on a half-circle above the scene and
shines down. The scenes can be described by 10 parameters: the position of the object
along the X-, Y- and Z-axis, the rotation of the object described by Euler angles (3),
the position of the spotlight described by a polar angle, and the hue of the object, the
ground and the spotlight. The value range is [−3, 3] for all position parameters, and
is [−π/2, π/2] for the remaining parameters. The parameters are sampled from a
10-dimensional unit hyperrectangle, then rescaled to their corresponding value range.
This ensures that the variance of the latent factors is the same for all latent dimensions.

To ensure that the generative process is injective, we take two measures: First, we
use a non-rotationally symmetric object (Utah tea pot, Newell, 1975), thus the rotation
information is unambiguous. Second, we use different levels of color saturation for the
object, the spotlight and the ground (1.0, 0.8 and 0.6, respectively), thus the object is
always distinguishable from the ground.

Comparison to existing datasets

The proposed dataset contains high-resolution renderings of an object in a 3D scene.
It features some aspects of natural scenes, e.g. complex 3D objects, different lighting
conditions and continuous variables. Existing benchmarks (Burgess & Kim, 2018;
Dittadi et al., 2021; Gondal et al., 2019; Klindt et al., 2021a) for disentanglement in 3D
scenes differ in important aspects to 3DIdent.

KITTI Masks (Klindt et al., 2021a) only enables evaluating identification of the
two-dimensional position and scale of the object instance. In addition, the observed
segmentation masks are significantly lower resolution than examples in our dataset. 3D
Shapes (Burgess & Kim, 2018) and MPI3D (Gondal et al., 2019) are rendered at the same
resolution (64× 64) as KITTI Masks. Whereas the dataset contributed by (Dittadi et al.,
2021) is rendered at 2× that resolution (128× 128), our dataset is rendered at 3.5× that

robust machine learning 304

resolution (224× 224), the resolution at which natural image classification is typically
evaluated (Deng et al., 2009b). With that being said, we do note that KITTI Masks is
unique in containing frames of natural video, and we thus consider it complementary
to 3DIdent.

Burgess and Kim (2018), Dittadi et al. (2021), and Gondal et al. (2019) contribute
datasets which contain variable object rotations around one, one, and two rotation axes,
respectively, while 3DIdent contains variable object rotation around all three rotation
axes as well as variable lighting conditions. Furthermore, each of these datasets were
generated by sampling latent factors from an equidistant grid, thus only covering a
limited number values along each axis of variation, effectively resulting in a highly
coarse discretization of naturally continuous variables. As 3DIdent instead samples the
latent factors uniformly in the latent space, this better reflects the continuous nature of
the latent dimensions.

Effects of the Uniformity Loss

In previous work, Wang and Isola (2020) showed that a part of the contrastive (InfoNCE)
loss — the uniformity loss — effectively ensures that the encoded features are uniformly
distributed over a hypersphere. We now show that this part is crucial to ensure that
the mapping is bijective. More precisely, we demonstrate that if the distribution of
the encoded/reconstructed latents h(z) has the same support as the distribution of z,
and both distributions are regular, i.e., their densities are non-zero and finite, then the
transformation h is bijective.

First, we focus on the more general case of a map between manifolds:

Proposition 8. LetM,N be simply connected and oriented C1 manifolds without boundaries
and h :M→ N be a differentiable map. Further, let the random variable z ∈ M be distributed
according to z ∼ p(z) for a regular density function p, i.e., 0 < p < ∞. If the pushforward
p#h(z) of p through h is also a regular density, i.e., 0 < p#h < ∞, then h is a bijection.
Proof. We begin by showing by contradiction that the Jacobian determinant of h does
not vanish, i.e., |det Jh| > 0:

Suppose that the Jacobian determinant |det Jh| vanishes for some z ∈ M. Then
the inverse of the Jacobian determinant goes to infinity at this point and so does the
density of h(z) according to the well-known transformation of probability densities.
By assumption, both p and p#h must be regular density functions and, thus, be finite.
This contradicts the initial assumption and so the Jacobian determinant |det Jh| cannot
vanish.

Next, we show that the mapping h is proper. Note that a map is called proper
if pre-images of compact sets are compact (Ruzhansky & Sugimoto, 2015). Firstly, a
continuous mapping betweenM and N is also closed, i.e., pre-images of closed subsets
are also closed (Lee, 2013b). In addition, it is well-known that continuous functions

robust machine learning 305

on compact sets are bounded. Lastly, according to the Heine–Borel theorem, compact
subsets of RD are closed and bounded. Taken together, this shows that h is proper.

Finally, according to Theorem 2.1 in (Ruzhansky & Sugimoto, 2015) a proper h with
non-vanishing Jacobian determinant is bijective, concluding the proof.

This theorem directly applies to the case of hyperspheres, which are simply con-
nected and oriented manifolds without boundary. This yields:

Corollary 1. Let Z be a hypersphere and h : Z → Z be a differentiable map. Further, let the
marginal distribution p(z) of the variable z ∈ Z be a regular density function, i.e., 0 < p < ∞.
If the pushforward p#h of p through h is also a regular density, i.e., 0 < p#h < ∞, then h is a
bijection.

Therefore, we can conclude that a loss term ensuring that the encoded features are
distributed according to a regular density function, such as the uniformity term, makes
the map h bijective and prevents an information loss. Note that this does not assume
that the marginal distribution of the ground-truth latents p(z) is uniform but only that
it is regular and non-vanishing.

Note that while the proposition shows that the uniformity loss is sufficient to ensure
bijectivity, we can construct counterexamples if its assumptions (like differentiability)
are violated even in just a single point. For instance, the requirement of h being fully
differentiable is most likely violated in large unregularized neural networks with ReLU
nonlinearities. Here, one might need the full contrastive loss to ensure bijectivity of h.

F
Learnable latent embeddings for joint
behavioral and neural analysis

robust machine learning 308

Supplementary Tables

Table F.1: Consistency statistics related to Fig. 7.1. Data includes all rats (n=4, with 10 seeds
per model run averaged first); one-way ANOVA F(24.5) p = 1.92x10-16.

group 1 group 2 P-value Reject

CEBRA-Behavior CEBRA-Time 0.0108 True
CEBRA-Behavior conv-pi-VAE w/labels 0.0021 True
CEBRA-Behavior conv-pi-VAE without 0.0 True
CEBRA-Behavior tSNE 0.0 True
CEBRA-Behavior UMAP 0.0 True
CEBRA-Behavior autoLFADS 0.0 True

CEBRA-Time conv-pi-VAE w/labels 0.9988 False
CEBRA-Time conv-pi-VAE without 0.0001 True
CEBRA-Time tSNE .4808 False
CEBRA-Time UMAP 0.0 True
CEBRA-Time autoLFADS 0.1129 False

Table F.2: Decoding statistics related to Fig. 7.6. Data includes all rats (n=4); supervised
grouping one way ANOVA F(55) p=4.7e-31; self- and unsupervised, one way ANOVA F(14.7)
p = 1.53x10-10. Posthoc Tukey HSD Tests:

group 1 group 2 P-value Reject

CEBRA-Behavior conv-pi-VAE (MC decoding) 0.9 False
CEBRA-Behavior conv-pi-VAE (kNN) 0.001 True
CEBRA-Behavior pi-VAE (MC decoding) 0.001 True
CEBRA-Behavior pi-VAE (kNN) 0.001 True

CEBRA-Time autoLFADS 0.0 True
CEBRA-Time PCA 0.0 True
CEBRA-Time tSNE 0.0174 True
CEBRA-Time UMAP 0.0368 True

robust machine learning 309

Table F.3: Related to Fig. 7.15. One-way ANOVA F(3, 197)=5.88, p = 0.0007 and posthoc Tukey
HSD tests. Allen Neuropixels dataset, 1 Frame window (below 50 neurons all False):

neuron no. group 1 group 2 P-value Reject

50 baseline-bayes baseline-knn 0.0233 True
50 baseline-bayes CEBRA 0.8918 False
50 baseline-knn CEBRA 0.0055 True
50 baseline-bayes CEBRA-joint 0.8238 False
50 baseline-knn CEBRA-joint 0.004 True
50 CEBRA CEBRA-joint 0.9987 False

100 baseline-bayes baseline-knn 0.0 True
100 baseline-bayes CEBRA 0.0275 True
100 baseline-knn CEBRA 0.0132 True
100 baseline-bayes CEBRA-joint 0.9977 False
100 baseline-knn CEBRA-joint 0.0 True
100 CEBRA CEBRA-joint 0.0395 True

200 baseline-bayes baseline-knn 0.0005 True
200 baseline-bayes CEBRA 0.3703 False
200 baseline-knn CEBRA 0.0 True
200 baseline-bayes CEBRA-joint 0.0058 True
200 baseline-knn CEBRA-joint 0.0 True
200 CEBRA CEBRA-joint 0.1478 False

400 baseline-bayes baseline-knn 0.0044 True
400 baseline-bayes CEBRA 0.0336 True
400 baseline-knn CEBRA 0.0 True
400 baseline-bayes CEBRA-joint 0.0 True
400 baseline-knn CEBRA-joint 0.0 True
400 CEBRA CEBRA-joint 0.0 True

600 baseline-bayes baseline-knn 0.0125 True
600 baseline-bayes CEBRA 0.6063 False
600 baseline-knn CEBRA 0.001 True
600 baseline-bayes CEBRA-joint 0.0 True
600 baseline-knn CEBRA-joint 0.0 True
600 CEBRA CEBRA-joint 0.0 True

800 baseline-bayes baseline-knn 0.0006 True
800 baseline-bayes CEBRA 0.0008 True
800 baseline-knn CEBRA 0.0 True
800 baseline-bayes CEBRA-joint 0.0 True
800 baseline-knn CEBRA-joint 0.0 True
800 CEBRA CEBRA-joint 0 True

900 baseline-bayes baseline-knn 0.0004 True
900 baseline-bayes CEBRA 0.0048 True
900 baseline-knn CEBRA 0.0 True
900 baseline-bayes CEBRA-joint 0.0 True
900 baseline-knn CEBRA-joint 0.0 True
900 CEBRA CEBRA-joint 0.0 True

1000 baseline-bayes baseline-knn 0.0 True
1000 baseline-bayes CEBRA 0.0 True
1000 baseline-knn CEBRA 0.0 True
1000 baseline-bayes CEBRA-joint 0.0 True
1000 baseline-knn CEBRA-joint 0.0 True
1000 CEBRA CEBRA-joint 0.0019 True

robust machine learning 310

Table F.4: Related to Fig. 7.15. One-way ANOVA F(3, 197)=1.29, p=0.279 and posthoc Tukey
HSD tests. Allen Neuropixels dataset, 10 Frame window (< 30 neurons= all were False). Note,
here CEBRA vs. CEBRA-joint is not significant.

neuron no. group 1 group 2 P-value Reject

30 baseline-bayes baseline-knn 0.016 True
30 baseline-bayes CEBRA 0.1255 False
30 baseline-knn CEBRA 0.7083 False
30 baseline-bayes CEBRA-joint 0.0072 True
30 baseline-knn CEBRA-joint 0.9784 False
30 CEBRA CEBRA-joint 0.4762 False

50 baseline-bayes baseline-knn 0.0358 True
50 baseline-bayes CEBRA 0.324 False
50 baseline-knn CEBRA 0.5956 False
50 baseline-bayes CEBRA-joint 0.1296 False
50 baseline-knn CEBRA-joint 0.8989 False
50 CEBRA CEBRA-joint 0.9379 False

100 baseline-bayes baseline-knn 0.0 True
100 baseline-bayes CEBRA 0.2589 False
100 baseline-knn CEBRA 0.0002 True
100 baseline-bayes CEBRA-joint 0.372 False
100 baseline-knn CEBRA-joint 0.0001 True
100 CEBRA CEBRA-joint 0.9941 False

200 baseline-bayes baseline-knn 0.0 True
200 baseline-bayes CEBRA 0.9976 False
200 baseline-knn CEBRA 0.0 True
200 baseline-bayes CEBRA-joint 0.7999 False
200 baseline-knn CEBRA-joint 0.0 True
200 CEBRA CEBRA-joint 0.6964 False

400 baseline-bayes baseline-knn 0.0004 True
400 baseline-bayes CEBRA 0.2531 False
400 baseline-knn CEBRA 0.0 True
400 baseline-bayes CEBRA-joint 0.2166 False
400 baseline-knn CEBRA-joint 0.0 True
400 CEBRA CEBRA-joint 0.9996 False

600 baseline-bayes baseline-knn 0.0002 True
600 baseline-bayes CEBRA 0.2095 False
600 baseline-knn CEBRA 0.0 True
600 baseline-bayes CEBRA-joint 0.2884 False
600 baseline-knn CEBRA-joint 0.0 True
600 CEBRA CEBRA-joint 0.9967 False

800 baseline-bayes baseline-knn 0.0001 True
800 baseline-bayes CEBRA 0.3691 False
800 baseline-knn CEBRA 0.0 True
800 baseline-bayes CEBRA-joint 0.1668 False
800 baseline-knn CEBRA-joint 0.0 True
800 CEBRA CEBRA-joint 0.9524 False

900 baseline-bayes baseline-knn 0.0003 True
900 baseline-bayes CEBRA 0.3867 False
900 baseline-knn CEBRA 0.0 True
900 baseline-bayes CEBRA-joint 0.3522 False
900 baseline-knn CEBRA-joint 0.0 True
900 CEBRA CEBRA-joint 0.9999 False

1000 baseline-bayes baseline-knn 0.0018 True
1000 baseline-bayes CEBRA 0.4707 False
1000 baseline-knn CEBRA 0.0001 True
1000 baseline-bayes CEBRA-joint 0.3785 False
1000 baseline-knn CEBRA-joint 0.0001 True
1000 CEBRA CEBRA-joint 0.9981 False

robust machine learning 311

Table F.5: Related to Fig. 7.15 One-way ANOVA F(3, 197) = 15.73, p = 3.31x10-9 and posthoc
Tukey HSD test. Allen Neuropixels dataset, scene classification with 1 Frame window:

neuron no. group 1 group 2 P-value Reject

50 baseline-bayes baseline-knn 0.4575 False
50 baseline-bayes CEBRA 0.1986 False
50 baseline-knn CEBRA 0.9355 False
50 baseline-bayes CEBRA-joint 0.0 True
50 baseline-knn CEBRA-joint 0.0 True
50 CEBRA CEBRA-joint 0.0 True

100 baseline-bayes baseline-knn 0.0207 True
100 baseline-bayes CEBRA 0.0084 True
100 baseline-knn CEBRA 0.9694 False
100 baseline-bayes CEBRA-joint 0.0 True
100 baseline-knn CEBRA-joint 0.0 True
100 CEBRA CEBRA-joint 0.0 True

200 baseline-bayes baseline-knn 0.0106 True
200 baseline-bayes CEBRA 0.0001 True
200 baseline-knn CEBRA 0.1269 False
200 baseline-bayes CEBRA-joint 0.0 True
200 baseline-knn CEBRA-joint 0.0 True
200 CEBRA CEBRA-joint 0.0 True

400 baseline-bayes baseline-knn 0.0047 True
400 baseline-bayes CEBRA 0.0001 True
400 baseline-knn CEBRA 0.239 False
400 baseline-bayes CEBRA-joint 0.0 True
400 baseline-knn CEBRA-joint 0.0 True
400 CEBRA CEBRA-joint 0.0 True

600 baseline-bayes baseline-knn 0.0013 True
600 baseline-bayes CEBRA 0.0 True
600 baseline-knn CEBRA 0.0032 True
600 baseline-bayes CEBRA-joint 0.0 True
600 baseline-knn CEBRA-joint 0.0 True
600 CEBRA CEBRA-joint 0.0 True

800 baseline-bayes baseline-knn 0.0 True
800 baseline-bayes CEBRA 0.0 True
800 baseline-knn CEBRA 0.0 True
800 baseline-bayes CEBRA-joint 0.0 True
800 baseline-knn CEBRA-joint 0.0 True
800 CEBRA CEBRA-joint 0.0 True

900 baseline-bayes baseline-knn 0.0062 True
900 baseline-bayes CEBRA 0.0 True
900 baseline-knn CEBRA 0.0168 True
900 baseline-bayes CEBRA-joint 0.0 True
900 baseline-knn CEBRA-joint 0.0 True
900 CEBRA CEBRA-joint 0.0 True

1000 baseline-bayes baseline-knn 0.0002 True
1000 baseline-bayes CEBRA 0.0 True
1000 baseline-knn CEBRA 0.0 True
1000 baseline-bayes CEBRA-joint 0.0 True
1000 baseline-knn CEBRA-joint 0.0 True
1000 CEBRA CEBRA-joint 0.0 True

robust machine learning 312

Table F.6: Related to Fig. 7.15 One-way ANOVA (10 frame window, 1000 neurons) F(3, 16) =
20.22, p = 1.09x10-5 and posthoc Tukey HSD tests. Allen Neuropixels dataset, Mean frame error,
10 frames

neuron no. group 1 group 2 P-value Reject

1000 baseline-bayes baseline-knn 0.5277 False
1000 baseline-bayes CEBRA 0.0013 True
1000 baseline-knn CEBRA 0.0001 True
1000 baseline-bayes CEBRA-joint 0.0011 True
1000 baseline-knn CEBRA-joint 0.0001 True
1000 CEBRA CEBRA-joint 0.9996 False

G
Identifiable attribution maps using
regularized contrastive learning

Implementation notes

Obtaining the attribution map

Since J+f identifies Jg as derived in Theorem 2, we can obtain the final attribution map
according to Def. 3 using

Â = 1{max
x
|J+f (x)| > ϵ} (G.1)

where ϵ > 0 is a threshold that weights false-positive and false-negative predictions. In
practice, we found that the operation

Â = 1{∑
x
|J+f (x)|} > ϵ (G.2)

yields even better performance, and we will use this estimation method for all ex-
periments. In general, working on improved estimation methods taking into account
sources of estimation noise could be an interesting avenue for future work.

Synthetic data design

An essential aspect of our synthetic design lies in the definition of the mixing function
g which, consequently, defines the ground truth attribution map. We split the factors
z into two parts, z1 and z2. Figure G illustrates the two experimental configurations
employed in this work. In both settings z1 is connected both to x1 and x2 whereas z2

is only be connected to x2. The main difference is that in the first setting z2 = γ2(c2)

robust machine learning 314

whereas in the second setting z1 = γ1(c1).

z1

z2

c2

x1

x2 z1

z2

c1

x1

x2

(a) Graphical model for the data gen-
erating process where z2 is observed
through c2. The attribution map needs
to be computed with respect to z2, which
is inferred with supervised (contrastive)
learning. This is the experiment setting
for Table 8.1.

(b) Graphical model for the data gen-
erating process where z1 is observed
through c1. Since z2 is not observed, the
attribution map can only be estimated
through the time-contrastive component
in RegCL. This is the experiment setting
for Table 8.2.

Detailed experimental setup

In our experiments, we consider variations of three factors. Our theory predicts that the
combination of estimating the inverse of the feature encoder Jacobian with regularized
training allows to identify the ground truth attribution map. We test the following
factors and underline our proposed method:

Factor Possible values

Training mode Supervised, Supervised contrastive, Hybrid contrastive
Regularization Off, On (λ = 0.1)
Attribution map estimation Neuron gradient, integrated gradients, Shapley values, inverted Jacobian

Combinations of these factors can have positive effects on the output performance.
We therefore run all combinations of these factors with 10 seeds (i.e., different latents
and mixing functions) across different numbers of latent dimensions.

Statistical analysis

We fit an ANOVA on an ordinary least squares model using combinations of all
latent factors, see Table G.1. As a post-hoc test, we use a Tukey HSD test on the
statistically significant factors. See Table G.2 we show that hybrid contrastive learning
computing followed by computing the pseudo-inverse significantly outperforms all
other methods, and in Table G.3 we show that combining the pseudo-inverse on

robust machine learning 315

regularized trained models also significantly outperforms all other methods. Statistical
analysis is implemented using statsmodels1.

Table G.1: Results for fitting an ANOVA on all combination of factors.

sum sq df F PR(>F)

C(attribution method name) 807.50 5 6.14 0.00

C(dim Z1) 3286.82 5 24.98 0.00

C(method name) 1505.46 2 28.60 0.00

C(extension) 15722.40 1 597.37 0.00

C(attribution method name):C(dim Z1) 456.86 25 0.69 0.85

C(attribution method name):C(method name) 8747.26 10 33.24 0.00

C(dim Z1):C(method name) 270.05 10 1.03 0.41

C(attribution method name):C(extension) 6661.36 5 50.62 0.00

C(dim Z1):C(extension) 2647.68 5 20.12 0.00

C(method name):C(extension) 2813.94 2 53.46 0.00

C(attribution method name):C(dim Z1):C(method name) 463.75 50 0.35 1.00

C(attribution method name):C(dim Z1):C(extension) 672.62 25 1.02 0.43

C(attribution method name):C(method name):C(extension) 177.68 10 0.68 0.71

C(dim Z1):C(method name):C(extension) 237.40 10 0.90 0.51

C(attribution method name):C(dim Z1):C(method name):C(extension) 932.86 50 0.71 0.93

Residual 50059.50 1902 NaN NaN

1https://github.com/statsmodels/statsmodels/

robust machine learning 316

Table G.2: Post-hoc test for the combination of attribution method and training method.

group1 group2 meandiff p-adj lower upper reject

J+f :hybrid contrastive Jf:behavior contrastive 9.41 0.00 5.83 12.98 True
J+f :hybrid contrastive Jf:hybrid contrastive 9.51 0.00 5.93 13.08 True
J+f :hybrid contrastive Jf:supervised 6.97 0.00 3.40 10.55 True
J+f :hybrid contrastive J+f :behavior contrastive 11.29 0.00 7.71 14.87 True
J+f :hybrid contrastive integrated-gradients:hybrid contrastive -7.67 0.00 -11.75 -3.59 True
J+f :hybrid contrastive feature-ablation:supervised -7.23 0.00 -10.81 -3.66 True
J+f :hybrid contrastive feature-ablation:hybrid contrastive -9.00 0.00 -12.58 -5.42 True
J+f :hybrid contrastive feature-ablation:behavior contrastive -8.74 0.00 -12.32 -5.16 True
J+f :hybrid contrastive J+f :supervised -8.14 0.00 -11.72 -4.57 True
J+f :hybrid contrastive shapely-zeros:hybrid contrastive -10.68 0.00 -14.26 -7.10 True
J+f :hybrid contrastive shapely-shuffle:hybrid contrastive -9.71 0.00 -13.29 -6.13 True
J+f :hybrid contrastive shapely-shuffle:supervised -7.48 0.00 -11.06 -3.90 True
J+f :hybrid contrastive shapely-zeros:behavior contrastive -10.90 0.00 -14.47 -7.32 True
J+f :hybrid contrastive shapely-zeros:supervised -10.09 0.00 -13.66 -6.51 True
J+f :hybrid contrastive integrated-gradients:behavior contrastive -10.96 0.00 -14.54 -7.38 True
J+f :hybrid contrastive integrated-gradients:supervised -10.14 0.00 -13.72 -6.57 True
J+f :hybrid contrastive shapely-shuffle:behavior contrastive -9.13 0.00 -12.71 -5.55 True
Jf:supervised J+f :behavior contrastive -4.31 0.00 -7.89 -0.74 True
Jf:supervised shapely-zeros:hybrid contrastive -3.70 0.03 -7.28 -0.13 True
Jf:supervised shapely-zeros:behavior contrastive -3.92 0.02 -7.50 -0.35 True
Jf:supervised integrated-gradients:behavior contrastive -3.99 0.01 -7.56 -0.41 True
feature-ablation:supervised J+f :behavior contrastive 4.05 0.01 0.48 7.63 True
feature-ablation:supervised integrated-gradients:behavior contrastive -3.73 0.03 -7.30 -0.15 True
feature-ablation:supervised shapely-zeros:behavior contrastive -3.66 0.04 -7.24 -0.09 True
shapely-shuffle:supervised J+f :behavior contrastive 3.81 0.02 0.23 7.39 True

robust machine learning 317

Table G.3: Posthoc test for the combination of attribution method and regularization scheme.

group1 group2 meandiff p-adj lower upper reject

J+f :REG Jf:REG 3.16 0.00 0.58 5.75 True
J+f :REG shapely-zeros:REG -8.91 0.00 -11.50 -6.32 True
J+f :REG J+f :none -11.61 0.00 -14.20 -9.03 True
J+f :REG feature-ablation:REG -6.25 0.00 -8.84 -3.67 True
J+f :REG feature-ablation:none -9.06 0.00 -11.64 -6.47 True
J+f :REG integrated-gradients:REG -8.02 0.00 -10.70 -5.35 True
J+f :REG integrated-gradients:none -10.38 0.00 -13.06 -7.70 True
J+f :REG shapely-shuffle:REG -6.11 0.00 -8.69 -3.52 True
J+f :REG shapely-shuffle:none -10.10 0.00 -12.69 -7.51 True
J+f :REG Jf:none 12.75 0.00 10.17 15.34 True
J+f :REG shapely-zeros:none -10.86 0.00 -13.44 -8.27 True
Jf:REG shapely-zeros:REG -5.75 0.00 -8.33 -3.16 True
Jf:REG shapely-shuffle:REG -2.94 0.01 -5.53 -0.35 True
Jf:REG integrated-gradients:none -7.21 0.00 -9.89 -4.53 True
Jf:REG integrated-gradients:REG -4.86 0.00 -7.53 -2.18 True
Jf:REG feature-ablation:none -5.89 0.00 -8.48 -3.30 True
Jf:REG feature-ablation:REG -3.09 0.01 -5.68 -0.50 True
Jf:REG J+f :none -8.45 0.00 -11.04 -5.86 True
Jf:REG Jf:none -9.59 0.00 -12.18 -7.00 True
Jf:REG shapely-shuffle:none -6.93 0.00 -9.52 -4.35 True
Jf:REG shapely-zeros:none -7.69 0.00 -10.28 -5.10 True
shapely-shuffle:REG Jf:none 6.65 0.00 4.06 9.24 True
shapely-shuffle:REG shapely-zeros:none -4.75 0.00 -7.34 -2.16 True
shapely-shuffle:REG shapely-zeros:REG -2.81 0.02 -5.39 -0.22 True
shapely-shuffle:REG J+f :none 5.51 0.00 2.92 8.10 True
shapely-shuffle:REG integrated-gradients:none 4.27 0.00 1.59 6.95 True
shapely-shuffle:REG feature-ablation:none 2.95 0.01 0.36 5.54 True
shapely-shuffle:REG shapely-shuffle:none -3.99 0.00 -6.58 -1.41 True
feature-ablation:REG feature-ablation:none -2.80 0.02 -5.39 -0.21 True
feature-ablation:REG shapely-shuffle:none -3.84 0.00 -6.43 -1.26 True
feature-ablation:REG Jf:none 6.50 0.00 3.91 9.09 True
feature-ablation:REG shapely-zeros:REG -2.66 0.04 -5.24 -0.07 True
feature-ablation:REG integrated-gradients:none -4.12 0.00 -6.80 -1.44 True
feature-ablation:REG J+f :none 5.36 0.00 2.77 7.95 True
feature-ablation:REG shapely-zeros:none -4.60 0.00 -7.19 -2.01 True
integrated-gradients:REG J+f :none 3.59 0.00 0.92 6.27 True
integrated-gradients:REG shapely-zeros:none -2.83 0.03 -5.51 -0.16 True
integrated-gradients:REG Jf:none 4.73 0.00 2.06 7.41 True
shapely-zeros:REG Jf:none 3.84 0.00 1.26 6.43 True
shapely-zeros:REG J+f :none 2.70 0.03 0.11 5.29 True
feature-ablation:none Jf:none 3.70 0.00 1.11 6.29 True
shapely-shuffle:none Jf:none 2.66 0.04 0.07 5.24 True

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale
machine learning. 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), 265–283 (pp. 87, 212, 262).

Abi-Rached, J. M., & Rose, N. (2010). The birth of the neuromolecular gaze. History of
the human sciences, 23(1), 11–36 (p. 6).

Abnar, S., Berg, R. v. d., Ghiasi, G., Dehghani, M., Kalchbrenner, N., & Sedghi, H. (2021).
Gradual domain adaptation in the wild: When intermediate distributions are
absent. arXiv preprint arXiv:2106.06080 (p. 78).

Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M., & Keller, P. J. (2013). Whole-brain
functional imaging at cellular resolution using light-sheet microscopy. Nature
methods, 10(5), 413–420 (p. 5).

Aimon, S., Katsuki, T., Jia, T., Grosenick, L., Broxton, M., Deisseroth, K., Sejnowski, T. J.,
& Greenspan, R. J. (2019). Fast near-whole–brain imaging in adult drosophila
during responses to stimuli and behavior. PLoS biology, 17(2), e2006732 (p. 5).

Akiyama, K., Alberdi, A., Alef, W., Asada, K., Azulay, R., Baczko, A.-K., Ball, D.,
Baloković, M., Barrett, J., Bintley, D., et al. (2019). First m87 event horizon tele-
scope results. iv. imaging the central supermassive black hole. The Astrophysical
Journal Letters, 875(1), L4 (p. 3).

Ancona, M., Ceolini, E., Öztireli, C., & Gross, M. H. (2017). Towards better understand-
ing of gradient-based attribution methods for deep neural networks. Interna-
tional Conference on Learning Representations. https://api.semanticscholar.org/
CorpusID:3728967 (p. 176).

Anderson, T., & McIlwraith, C. (2004). Longitudinal development of equine conforma-
tion from weanling to age 3 years in the thoroughbred. Equine veterinary journal,
36(7), 563–570 (p. 86).

Andriluka, M., Iqbal, U., Insafutdinov, E., Pishchulin, L., Milan, A., Gall, J., & Schiele,
B. (2018). Posetrack: A benchmark for human pose estimation and tracking.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
5167–5176 (pp. 83, 84).

Andriluka, M., Pishchulin, L., Gehler, P., & Schiele, B. (2014). 2d human pose estimation:
New benchmark and state of the art analysis. Proceedings of the IEEE Conference

https://api.semanticscholar.org/CorpusID:3728967
https://api.semanticscholar.org/CorpusID:3728967

robust machine learning 320

on computer Vision and Pattern Recognition, 3686–3693. http://ieeexplore.ieee.
org/document/6909866/ (pp. 83, 84, 86).

Araki, T., Yoshida, F., Uemura, T., Noda, Y., Yoshimoto, S., Kaiju, T., Suzuki, T.,
Hamanaka, H., Baba, K., Hayakawa, H., et al. (2019). Long-term implantable,
flexible, and transparent neural interface based on ag/au core–shell nanowires.
Advanced Healthcare Materials, 8(10), 1900130 (p. 9).

Azimi, F., Palacio, S., Raue, F., Hees, J., Bertinetto, L., & Dengel, A. (2022). Self-
supervised test-time adaptation on video data. Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 3439–3448 (p. 41).

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W. (2015).
On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7), e0130140 (p. 182).

Bachman, P., Hjelm, R. D., & Buchwalter, W. (2019). Learning representations by
maximizing mutual information across views. In H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, & R. Garnett (Eds.), Advances in
neural information processing systems 32: Annual conference on neural information
processing systems 2019, neurips 2019, december 8-14, 2019, vancouver, bc, canada
(pp. 15509–15519). (Pp. 98, 100, 101, 111).

Bachmann, D., Weichert, F., & Rinkenauer, G. (2015). Evaluation of the leap motion
controller as a new contact-free pointing device. Sensors, 15(1), 214–233 (p. 82).

Bachmann, R., Mizrahi, D., Atanov, A., & Zamir, A. (2022). Multimae: Multi-modal
multi-task masked autoencoders. European Conference on Computer Vision, 348–
367 (p. 200).

Baevski, A., Schneider, S., & Auli, M. (2020a). Vq-wav2vec: Self-supervised learning of
discrete speech representations. 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020 (p. 98).

Baevski, A., Schneider, S., & Auli, M. (2020b). Vq-wav2vec: Self-supervised learning of
discrete speech representations. International Conference on Learning Representa-
tions (p. 196).

Baevski, A., Zhou, Y., Mohamed, A., & Auli, M. (2020c). Wav2vec 2.0: A framework for
self-supervised learning of speech representations. In H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, & H. Lin (Eds.), Advances in neural information processing
systems 33: Annual conference on neural information processing systems 2020, neurips
2020, december 6-12, 2020, virtual. (Pp. 17, 98, 101).

Bai, S., Koltun, V., & Kolter, J. Z. (2020). Multiscale deep equilibrium models. Advances
in Neural Information Processing Systems, 33, 5238–5250 (p. 48).

Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gutfreund, D., Tenenbaum, J., &
Katz, B. (2019). Objectnet: A large-scale bias-controlled dataset for pushing the
limits of object recognition models. Advances in Neural Information Processing
Systems 32 (p. 26).

Barlow, H. B., et al. (1961). Possible principles underlying the transformation of sensory
messages. Sensory communication, 1(01), 217–233 (p. 6).

http://ieeexplore.ieee.org/document/6909866/
http://ieeexplore.ieee.org/document/6909866/

robust machine learning 321

Bartler, A., Bühler, A., Wiewel, F., Döbler, M., & Yang, B. (2022). Mt3: Meta test-
time training for self-supervised test-time adaption. International Conference on
Artificial Intelligence and Statistics, 3080–3090 (pp. xxiii, 40, 41, 48, 50, 51, 53, 54,
246, 247, 250).

Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature neuroscience, 20(3),
353. https://www.nature.com/articles/nn.4502 (p. 8).

Bastani, O., Kim, C., & Bastani, H. (2017). Interpreting blackbox models via model
extraction. arXiv preprint arXiv:1705.08504 (p. 182).

Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A. (2017). Network dissection:
Quantifying interpretability of deep visual representations. Proceedings of the
IEEE conference on computer vision and pattern recognition, 6541–6549 (p. 182).

Becker, R. A. (2012). The variance drain and jensen’s inequality. 2012-004 (p. 223).
Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and

new perspectives. IEEE transactions on pattern analysis and machine intelligence,
35(8), 1798–1828 (p. 16).

Berens, P., Freeman, J., Deneux, T., Chenkov, N., McColgan, T., Speiser, A., Macke,
J. H., Turaga, S. C., Mineault, P. J., Rupprecht, P., Gerhard, S., Friedrich, R. W.,
Friedrich, J., Paninski, L., Pachitariu, M., Harris, K. D., Bolte, B., Machado,
T. A., Ringach, D. L., . . . Bethge, M. (2018). Community-based benchmarking
improves spike rate inference from two-photon calcium imaging data. PLoS
Computational Biology, 14 (p. 131).

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, D.,
Fischer, Q., Hashme, S., Hesse, C., et al. (2019). Dota 2 with large scale deep
reinforcement learning. ArXiv preprint, abs/1912.06680. https://arxiv.org/abs/
1912.06680 (p. 38).

Berthelot, D., Roelofs, R., Sohn, K., Carlini, N., & Kurakin, A. (2021). Adamatch: A
unified approach to semi-supervised learning and domain adaptation. (P. 42).

Bishop, C. M. (2006). Pattern recognition and machine learning (information science and
statistics). Springer-Verlag. (P. 25).

Blender Online Community. (2021). Blender - a 3d modelling and rendering package. Blender
Foundation. Blender Institute, Amsterdam. (Pp. 109, 303).

Bobu, A., Tzeng, E., Hoffman, J., & Darrell, T. (2018). Adapting to continuously shifting
domains. Workshop Track - ICLR 2018 (p. 78).

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein,
M. S., Bohg, J., Bosselut, A., Brunskill, E., et al. (2021). On the opportunities and
risks of foundation models. arXiv preprint arXiv:2108.07258 (pp. 5, 202).

Breen, R., Karlson, K. B., & Holm, A. (2018). Interpreting and understanding logits,
probits, and other nonlinear probability models. annual review of sociology, 44,
39–54 (p. 176).

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., . . .

https://www.nature.com/articles/nn.4502
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680

robust machine learning 322

Amodei, D. (2020). Language models are few-shot learners. In H. Larochelle, M.
Ranzato, R. Hadsell, M. Balcan, & H. Lin (Eds.), Advances in neural information
processing systems 33: Annual conference on neural information processing systems
2020, neurips 2020, december 6-12, 2020, virtual. https://proceedings.neurips.cc/
paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html (p. 38).

Bug, D., Schneider, S., Grote, A., Oswald, E., Feuerhake, F., Schüler, J., & Merhof, D.
(2017). Context-based normalization of histological stains using deep convolu-
tional features. In Deep learning in medical image analysis and multimodal learning
for clinical decision support. Springer. (P. 33).

Burgess, C., & Kim, H. (2018). 3d shapes dataset. (Pp. 303, 304).
Cai, T., Gao, R., Lee, J. D., & Lei, Q. (2021). A theory of label propagation for subpopu-

lation shift. arXiv preprint arXiv:2102.11203 (p. 42).
Całka, A. (1982). Local isometries of compact metric spaces. Proceedings of the American

Mathematical Society, 85(4), 643–647 (p. 299).
Cao, J., Tang, H., Fang, H.-S., Shen, X., Lu, C., & Tai, Y.-W. (2019). Cross-domain

adaptation for animal pose estimation. Proceedings of the IEEE International
Conference on Computer Vision, 9498–9507 (pp. 84, 86, 91).

Cao, Z., Simon, T., Wei, S.-E., & Sheikh, Y. (2017). Realtime multi-person 2d pose
estimation using part affinity fields. CVPR (p. 82).

Cariucci, F. M., Porzi, L., Caputo, B., Ricci, E., & Bulo, S. R. (2017). Autodial: Automatic
domain alignment layers. 2017 IEEE International Conference on Computer Vision
(ICCV) (pp. 23, 24, 33).

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., & Joulin, A.
(2021a). Emerging properties in self-supervised vision transformers. Proceedings
of the IEEE/CVF International Conference on Computer Vision, 9650–9660 (pp. 131,
152).

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., & Joulin, A.
(2021b). Emerging properties in self-supervised vision transformers. ArXiv
preprint, abs/2104.14294. https://arxiv.org/abs/2104.14294 (pp. xxii, 17, 40, 43,
46, 51, 58, 242).

Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A., & Fiete, I. R. (2019). The intrinsic
attractor manifold and population dynamics of a canonical cognitive circuit
across waking and sleep. Nature Neuroscience, 22, 1512–1520 (p. 124).

Chen, D., Wang, D., Darrell, T., & Ebrahimi, S. (2022). Contrastive test-time adaptation.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
295–305 (pp. 42, 45).

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020a). A simple framework for
contrastive learning of visual representations. International conference on machine
learning, 1597–1607 (pp. 17, 41, 98–101, 108, 111, 196, 302, 303).

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. E. (2020b). A simple framework for
contrastive learning of visual representations. ArXiv, abs/2002.05709 (pp. 117,
140).

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2104.14294

robust machine learning 323

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., & Hinton, G. (2020c). Big self-
supervised models are strong semi-supervised learners. CoRR, abs/2006.10029
(pp. 26, 56, 108, 232).

Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T. S., & Zhang, L. (2020). Higherhrnet:
Scale-aware representation learning for bottom-up human pose estimation.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
5386–5395 (p. 82).

Cherti, M., Beaumont, R., Wightman, R., Wortsman, M., Ilharco, G., Gordon, C., Schuh-
mann, C., Schmidt, L., & Jitsev, J. (2023). Reproducible scaling laws for con-
trastive language-image learning. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2818–2829 (p. 195).

Chiang, C.-H., Won, S. M., Orsborn, A. L., Yu, K. J., Trumpis, M., Bent, B., Wang, C.,
Xue, Y., Min, S., Woods, V., et al. (2020). Development of a neural interface
for high-definition, long-term recording in rodents and nonhuman primates.
Science translational medicine, 12(538), eaay4682 (p. 9).

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. 2017
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu,
HI, USA, July 21-26, 2017, 1800–1807. https://doi.org/10.1109/CVPR.2017.195

(pp. 46, 240).
Chowdhury, R. H., Glaser, J. I., & Miller, L. E. (2020). Area 2 of primary somatosensory

cortex encodes kinematics of the whole arm. ELife, 9, e48198 (pp. 119, 128, 129,
138).

Chuang, C., Robinson, J., Lin, Y., Torralba, A., & Jegelka, S. (2020). Debiased contrastive
learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, & H. Lin (Eds.),
Advances in neural information processing systems 33: Annual conference on neural
information processing systems 2020, neurips 2020, december 6-12, 2020, virtual.
(P. 100).

Chung, J. E., Joo, H. R., Fan, J. L., Liu, D. F., Barnett, A. H., Chen, S., Geaghan-Breiner, C.,
Karlsson, M. P., Karlsson, M., Lee, K. Y., et al. (2019). High-density, long-lasting,
and multi-region electrophysiological recordings using polymer electrode arrays.
Neuron, 101(1), 21–31 (p. 9).

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P.,
Ryu, S. I., & Shenoy, K. V. (2012a). Neural population dynamics during reaching.
Nature, 487(7405), 51–56 (pp. 7, 13).

Churchland, M., Cunningham, J., Kaufman, M., Foster, J., Nuyujukian, P., Ryu, S., &
Shenoy, K. V. (2012b). Neural population dynamics during reaching. Nature,
487, 51–56 (p. 114).

Coates, A., Ng, A., & Lee, H. (2011). An analysis of single-layer networks in unsuper-
vised feature learning. Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics (p. 45).

https://doi.org/10.1109/CVPR.2017.195

robust machine learning 324

Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., & Uchida, N. (2012). Neuron-type
specific signals for reward and punishment in the ventral tegmental area. Nature,
482, 85–88 (p. 131).

Cong, L., Wang, Z., Chai, Y., Hang, W., Shang, C., Yang, W., Bai, L., Du, J., Wang, K., &
Wen, Q. (2017). Rapid whole brain imaging of neural activity in freely behaving
larval zebrafish (danio rerio). Elife, 6, e28158 (pp. 5, 10).

Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N., Chiang,
M., Mittal, P., & Hein, M. (2020). Robustbench: A standardized adversarial
robustness benchmark. ArXiv preprint, abs/2010.09670. https://arxiv.org/abs/
2010.09670 (pp. xxii, 242).

Cubuk, E. D., Zoph, B., Mané, D., Vasudevan, V., & Le, Q. V. (2019). Autoaugment:
Learning augmentation policies from data. Conference on Computer Vision and
Pattern Recognition (CVPR) (p. 26).

Curto, C. (2016). What can topology tell us about the neural code. arXiv: Neurons and
Cognition (p. 124).

Deitch, D., Rubin, A., & Ziv, Y. (2021). Representational drift in the mouse visual cortex.
Current Biology, 31(19), 4327–4339 (p. 138).

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009a). Imagenet: A
large-scale hierarchical image database. Conference on computer vision and pattern
recognition (CVPR) (pp. 5, 23, 24, 26, 38).

Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Li, F. (2009b). Imagenet: A large-scale
hierarchical image database. 2009 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA,
248–255. https://doi.org/10.1109/CVPR.2009.5206848 (p. 304).

Deng, L. (2012). The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6), 141–142 (p. 45).

Denk, W., & Svoboda, K. (1997). Photon upmanship: Why multiphoton imaging is more
than a gimmick. Neuron, 18(3), 351–357 (pp. 7, 8).

Denk, W., Strickler, J. H., & Webb, W. W. (1990). Two-photon laser scanning fluorescence
microscopy. Science, 248(4951), 73–76 (pp. 2, 7, 8).

de Silva, V., Morozov, D., & Vejdemo-Johansson, M. (2009). Persistent cohomology and
circular coordinates. Discrete & Computational Geometry, 45, 737–759 (p. 124).

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–
4186. https://doi.org/10.18653/v1/N19-1423 (p. 195).

de Vries, S. E., Lecoq, J. A., Buice, M. A., Groblewski, P. A., Ocker, G. K., Oliver, M.,
Feng, D., Cain, N., Ledochowitsch, P., Millman, D., et al. (2020). A large-scale
standardized physiological survey reveals functional organization of the mouse
visual cortex. Nature Neuroscience, 23(1), 138–151 (pp. 5, 14, 119, 131, 138, 151).

https://arxiv.org/abs/2010.09670
https://arxiv.org/abs/2010.09670
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.18653/v1/N19-1423

robust machine learning 325

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv
preprint arXiv:1605.08803 (p. 137).

Dittadi, A., Träuble, F., Locatello, F., Wüthrich, M., Agrawal, V., Winther, O., Bauer, S., &
Schölkopf, B. (2021). On the transfer of disentangled representations in realistic
settings. International Conference on Learning Representations (ICLR) (pp. 303, 304).

Dodge, S. F., & Karam, L. J. (2017). A study and comparison of human and deep learning
recognition performance under visual distortions. International Conference on
Computer Communications and Networks, ICCCN 2017 (p. 38).

Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L., & Tank, D. W. (2010). Func-
tional imaging of hippocampal place cells at cellular resolution during virtual
navigation. Nature neuroscience, 13, 1433–1440 (p. 124).

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T. (2014).
DeCaf: A deep convolutional activation feature for generic visual recognition.
International conference on machine learning, 647–655. https://arxiv.org/abs/1310.
1531 (p. 84).

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2021). An image is
worth 16x16 words: Transformers for image recognition at scale. Proceedings of
the 36th International Conference on Machine Learning (pp. 40, 46, 74–76).

Durstewitz, D. (2017). A state space approach for piecewise-linear recurrent neural
networks for identifying computational dynamics from neural measurements.
PLoS computational biology, 13(6), e1005542 (p. 13).

Eastwood, C., Mason, I., Williams, C. K., & Schölkopf, B. (2022). Source-free adaptation
to measurement shift via bottom-up feature restoration. International Conference
on Learning Representations (ICLR) (pp. 41, 50, 51, 55).

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Steinhardt, J., & Madry, A. (2020).
Identifying statistical bias in dataset replication. CoRR, abs/2005.09619 (p. 212).

Esfahany, K., Siergiej, I., Zhao, Y., & Park, I. M. (2018). Organization of neural population
code in mouse visual system. eNeuro, 5 (p. 132).

Farahani, A., Voghoei, S., Rasheed, K., & Arabnia, H. R. (2021). A brief review of
domain adaptation. Advances in data science and information engineering, 877–894

(p. 38).
Feng, F., Chan, R. H., Shi, X., Zhang, Y., & She, Q. (2019). Challenges in task incremental

learning for assistive robotics. IEEE Access, 8, 3434–3441 (p. 79).
Ferlauto, L., Vagni, P., Fanelli, A., Zollinger, E. G., Monsorno, K., Paolicelli, R. C., &

Ghezzi, D. (2021). All-polymeric transient neural probe for prolonged in-vivo
electrophysiological recordings. Biomaterials, 274, 120889 (p. 9).

Ford, N., Gilmer, J., Carlini, N., & Cubuk, D. (2019). Adversarial examples are a natural
consequence of test error in noise. International Conference on Machine Learning
(ICML) (pp. 33, 211).

https://arxiv.org/abs/1310.1531
https://arxiv.org/abs/1310.1531

robust machine learning 326

Frankle, J., Schwab, D. J., & Morcos, A. S. (2020). Training batchnorm and only batch-
norm: On the expressive power of random features in cnns. CoRR, abs/2003.00152
(p. 34).

French, G., Mackiewicz, M., & Fisher, M. H. (2017). Self-ensembling for domain adapta-
tion. CoRR, abs/1706.05208 (pp. 33, 43, 260, 262).

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 36(4), 193–202 (p. 5).

Gallego, J. A., Perich, M. G., Naufel, S., Ethier, C., Solla, S. A., & Miller, L. E. (2018).
Cortical population activity within a preserved neural manifold underlies
multiple motor behaviors. Nature Communications, 9 (p. 114).

Galloway, A., Golubeva, A., Tanay, T., Moussa, M., & Taylor, G. W. (2019). Batch
normalization is a cause of adversarial vulnerability. CoRR, abs/1905.02161
(p. 30).

Galstyan, A., & Cohen, P. R. (2007). Empirical comparison of hard and soft label
propagation for relational classification. 17th international conference on Inductive
logic programming (pp. 43, 44).

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand,
M., & Lempitsky, V. (2016). Domain-adversarial training of neural networks.
The journal of machine learning research, 17(1), 2096–2030 (pp. 38, 45, 47–49, 78).

Gao, Y., Archer, E., Paninski, L., & Cunningham, J. P. (2016a). Linear dynamical neural
population models through nonlinear embeddings. NIPS (p. 157).

Gao, Y., Archer, E. W., Paninski, L., & Cunningham, J. P. (2016b). Linear dynamical
neural population models through nonlinear embeddings. Advances in neural
information processing systems, 29 (p. 13).

Gardner, R. J., Hermansen, E., Pachitariu, M., Burak, Y., Baas, N. A., Dunn, B. A., Moser,
M.-B., & Moser, E. I. (2022). Toroidal topology of population activity in grid
cells. Nature, 602(7895), 123–128. https://doi.org/10.1038/s41586-021-04268-7

(pp. 124, 131, 151).
Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving?

the KITTI vision benchmark suite. 2012 IEEE Conference on Computer Vision
and Pattern Recognition, Providence, RI, USA, June 16-21, 2012, 3354–3361. https:
//doi.org/10.1109/CVPR.2012.6248074 (p. 109).

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., &
Wichmann, F. A. (2020). Shortcut learning in deep neural networks. CoRR,
abs/2004.07780 (pp. 3, 34).

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Brendel, W.
(2018a). Imagenet-trained cnns are biased towards texture; increasing shape bias
improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (p. 78).

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Brendel, W.
(2019). Imagenet-trained CNNs are biased towards texture; increasing shape

https://doi.org/10.1038/s41586-021-04268-7
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074

robust machine learning 327

bias improves accuracy and robustness. International Conference on Learning
Representations (ICLR) (pp. 26, 33, 38, 232, 252).

Geirhos, R., Temme, C. R. M., Rauber, J., Schütt, H. H., Bethge, M., & Wichmann, F. A.
(2018b). Generalisation in humans and deep neural networks. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.),
Advances in neural information processing systems 31 (pp. 7538–7550). Curran
Associates, Inc. http://papers.nips.cc/paper/7982-generalisation-in-humans-
and-deep-neural-networks.pdf (pp. 22, 38).

Ghosh, A., Kumar, H., & Sastry, P. S. (2017). Robust loss functions under label noise for
deep neural networks. In S. P. Singh & S. Markovitch (Eds.), Proceedings of the
thirty-first AAAI conference on artificial intelligence, february 4-9, 2017, san francisco,
california, USA (pp. 1919–1925). AAAI Press. http://aaai.org/ocs/index.php/
AAAI/AAAI17/paper/view/14759 (p. 44).

Ghosh, K. K., Burns, L. D., Cocker, E. D., Nimmerjahn, A., Ziv, Y., El Gamal, A., &
Schnitzer, M. J. (2011). Miniaturized integration of a fluorescence microscope.
Nature methods, 8(10), 871 (pp. 2, 8).

Gidaris, S., Singh, P., & Komodakis, N. (2018). Unsupervised representation learning
by predicting image rotations. arXiv preprint arXiv:1803.07728 (p. 41).

Goh, W. W. B., Wang, W., & Wong, L. (2017). Why batch effects matter in omics data,
and how to avoid them. Trends in biotechnology, 35(6), 498–507 (pp. 16, 193).

Golub, M. D., Sadtler, P. T., Oby, E. R., Quick, K. M., Ryu, S. I., Tyler-Kabara, E. C.,
Batista, A. P., Chase, S. M., & Yu, B. M. (2018). Learning by neural reassociation.
Nature neuroscience, 21(4), 607–616 (p. 197).

Gondal, M. W., Wuthrich, M., Miladinovic, D., Locatello, F., Breidt, M., Volchkov,
V., Akpo, J., Bachem, O., Schölkopf, B., & Bauer, S. (2019). On the transfer of
inductive bias from simulation to the real world: A new disentanglement dataset.
In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, &
R. Garnett (Eds.), Advances in neural information processing systems 32: Annual
conference on neural information processing systems 2019, neurips 2019, december
8-14, 2019, vancouver, bc, canada (pp. 15714–15725). (Pp. 303, 304).

Gong, T., Jeong, J., Kim, T., Kim, Y., Shin, J., & Lee, S.-J. (2022). Note: Robust continual
test-time adaptation against temporal correlation. Advances in Neural Information
Processing Systems (pp. 67–69).

Goyal, S., Sun, M., Raghunathan, A., & Kolter, Z. (2022). Test-time adaptation via
conjugate pseudo-labels. arXiv preprint arXiv:2207.09640 (pp. 66, 67, 72, 74, 271).

Grandvalet, Y., & Bengio, Y. (2004). Semi-supervised learning by entropy minimiza-
tion. Advances in Neural Information Processing Systems 17 [Neural Information
Processing Systems, NIPS 2004, December 13-18, 2004, Vancouver, British Columbia,
Canada], 529–536. https : / / proceedings . neurips . cc / paper / 2004 / hash /
96f2b50b5d3613adf9c27049b2a888c7-Abstract.html (p. 44).

http://papers.nips.cc/paper/7982-generalisation-in-humans-and-deep-neural-networks.pdf
http://papers.nips.cc/paper/7982-generalisation-in-humans-and-deep-neural-networks.pdf
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14759
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14759
https://proceedings.neurips.cc/paper/2004/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html

robust machine learning 328

Grewe, B. F., Langer, D., Kasper, H., Kampa, B. M., & Helmchen, F. (2010). High-speed
in vivo calcium imaging reveals neuronal network activity with near-millisecond
precision. Nature methods, 7(5), 399–405 (p. 2).

Grosmark, A. D., & Buzsáki, G. (2016). Diversity in neural firing dynamics supports
both rigid and learned hippocampal sequences. Science, 351(6280), 1440–1443

(pp. 115, 119, 120, 138).
Guan, S., Wang, J., Gu, X., Zhao, Y., Hou, R., Fan, H., Zou, L., Gao, L., Du, M., Li, C.,

et al. (2019). Elastocapillary self-assembled neurotassels for stable neural activity
recordings. Science advances, 5(3), eaav2842 (p. 9).

Gulrajani, I., & Lopez-Paz, D. (2021). In search of lost domain generalization. Proceedings
of the 36th International Conference on Machine Learning (pp. 43, 61).

Gutmann, M., & Hyvärinen, A. (2010). Noise-contrastive estimation: A new estima-
tion principle for unnormalized statistical models. Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 297–304 (p. 16).

Gutmann, M. U., & Hyvärinen, A. (2012). Noise-contrastive estimation of unnormalized
statistical models, with applications to natural image statistics. The Journal of
Machine Learning Research, 13, 307–361 (pp. 98–101, 117).

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005a). Microstructure
of a spatial map in the entorhinal cortex. Nature, 436(7052), 801–806 (p. 6).

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005b). Microstructure
of a spatial map in the entorhinal cortex. Nature, 436, 801–806 (p. 131).

Hälvä, H., Le Corff, S., Lehéricy, L., So, J., Zhu, Y., Gassiat, E., & Hyvärinen, A. (2021).
Disentangling identifiable features from noisy data with structured nonlinear
ica. Advances in Neural Information Processing Systems, 34, 1624–1633 (p. 118).

Han, J., Liang, X., Xu, H., Chen, K., Lanqing, H., Mao, J., Ye, C., Zhang, W., Li, Z., Liang,
X., et al. (2021). Soda10m: A large-scale 2d self/semi-supervised object detection
dataset for autonomous driving. Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2) (p. 79).

Harmeling, S., Ziehe, A., Kawanabe, M., & Müller, K.-R. (2003). Kernel-based nonlinear
blind source separation. Neural Computation, 15(5), 1089–1124 (p. 101).

Harris, K. D., Quiroga, R. Q., Freeman, J., & Smith, S. L. (2016). Improving data quality
in neuronal population recordings. Nature neuroscience, 19(9), 1165–1174 (p. 8).

Hausmann, S. B., Vargas, A. M., Mathis, A., & Mathis, M. W. (2021). Measuring
and modeling the motor system with machine learning. Current opinion in
neurobiology, 70, 11–23 (p. 11).

He, K., Chen, X., Xie, S., Li, Y., Doll’ar, P., & Girshick, R. B. (2021). Masked autoencoders
are scalable vision learners. 2022 ieee. CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 15979–15988 (p. 17).

He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. B. (2020a). Momentum contrast for unsu-
pervised visual representation learning. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020,
9726–9735. https://doi.org/10.1109/CVPR42600.2020.00975 (pp. 98, 100, 101).

https://doi.org/10.1109/CVPR42600.2020.00975

robust machine learning 329

He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. B. (2020b). Momentum contrast for unsu-
pervised visual representation learning. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020,
9726–9735. https://doi.org/10.1109/CVPR42600.2020.00975 (pp. 101, 111).

He, K., Girshick, R., & Dollár, P. (2018). Rethinking imagenet pre-training. arXiv preprint
arXiv:1811.08883 (pp. 84, 88, 92, 194).

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. Proceedings of the IEEE
international conference on computer vision, 2961–2969 (p. 82).

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. CoRR, abs/1502.01852. http:
//arxiv.org/abs/1502.01852 (p. 88).

He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016, 770–778. https://doi.org/10.1109/CVPR.2016.
90 (pp. 38, 71, 74–76).

He, K., Zhang, X., Ren, S., & Sun, J. (2016b). Deep residual learning for image recog-
nition. 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, 770–778. https://doi.org/10.1109/
CVPR.2016.90 (pp. 110, 302).

He, K., Zhang, X., Ren, S., & Sun, J. (2016c). Deep residual learning for image recognition.
Conference on computer vision and pattern recognition (CVPR) (pp. xxii, 26, 45, 46,
231, 242).

He, K., Zhang, X., Ren, S., & Sun, J. (2016d). Deep residual learning for image recogni-
tion. Proceedings of the IEEE conference on computer vision and pattern recognition,
770–778. https://arxiv.org/abs/1512.03385 (p. 87).

Hénaff, O. J. (2020). Data-efficient image recognition with contrastive predictive coding.
Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, 119, 4182–4192 (pp. 98, 108).

Hénaff, O. J., Srinivas, A., Fauw, J. D., Razavi, A., Doersch, C., Eslami, S. M. A., & van
den Oord, A. (2020). Data-efficient image recognition with contrastive predictive
coding. International conference on machine learning, 4182–4192 (p. 17).

Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai, R., Zhu,
T., Parajuli, S., Guo, M., et al. (2020a). The many faces of robustness: A critical
analysis of out-of-distribution generalization. CoRR, abs/2006.16241 (pp. xxii, 16,
26, 38, 40, 45, 46, 48, 66, 75, 76, 232, 240–242, 252).

Hendrycks, D., & Dietterich, T. (2019a). Benchmarking neural network robustness to
common corruptions and perturbations. International Conference on Learning
Representations (ICLR) (pp. 16, 22, 24, 26, 33, 41, 45, 67, 69, 212, 217, 218, 251).

Hendrycks, D., & Dietterich, T. (2019b). Benchmarking neural network robustness to
common corruptions and perturbations. arXiv preprint arXiv:1903.12261 (pp. 71,
84–86, 270, 279).

https://doi.org/10.1109/CVPR42600.2020.00975
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1512.03385

robust machine learning 330

Hendrycks, D., & Gimpel, K. (2016a). Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (p. 145).

Hendrycks, D., & Gimpel, K. (2016b). Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (p. 179).

Hendrycks, D., Lee, K., & Mazeika, M. (2019a). Using pre-training can improve model
robustness and uncertainty. ICML (p. 85).

Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer, J., & Lakshminarayanan, B.
(2020b). Augmix: A simple data processing method to improve robustness and
uncertainty. International Conference on Learning Representations (ICLR) (pp. 26,
33, 47–49, 66, 75, 76, 78, 232, 241, 252).

Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., & Song, D. (2019b). Natural adversarial
examples. CoRR, abs/1907.07174 (pp. 26, 31, 45).

Hewitt, C., & Mahmoud, M. (2019). Pose-informed face alignment for extreme head
pose variations in animals. 2019 8th International Conference on Affective Computing
and Intelligent Interaction (ACII), 1–6 (p. 84).

Hinton, G., Vinyals, O., & Dean, J. (2014). Distilling the knowledge in a neural network.
NIPS Deep Learning Workshop (pp. 46, 240).

Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A.,
& Bengio, Y. (2019). Learning deep representations by mutual information esti-
mation and maximization. 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (pp. 98, 100, 101).

Hodgkin, A. L., & Huxley, A. F. (1952). Currents carried by sodium and potassium
ions through the membrane of the giant axon of loligo. The Journal of physiology,
116(4), 449 (p. 6).

Hoffman, J., Darrell, T., & Saenko, K. (2014). Continuous manifold based adaptation for
evolving visual domains. Computer Vision and Pattern Recognition (CVPR) (p. 78).

Hoffman, J., Roberts, D. A., & Yaida, S. (2019). Robust learning with jacobian regular-
ization. arXiv preprint arXiv:1908.02729 (p. 178).

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., Efros, A., & Darrell, T.
(2018). Cycada: Cycle-consistent adversarial domain adaptation. International
conference on machine learning, 1989–1998 (p. 38).

Hong, G., & Lieber, C. M. (2019). Novel electrode technologies for neural recordings.
Nature Reviews Neuroscience, 20(6), 330–345 (p. 7).

Hong, J.-W., Yoon, C., Jo, K., Won, J. H., & Park, S. (2021). Recent advances in recording
and modulation technologies for next-generation neural interfaces. IScience,
24(12) (pp. 9, 361).

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo,
A., Attariyan, M., & Gelly, S. (2019). Parameter-efficient transfer learning for
NLP. Proceedings of the 36th International Conference on Machine Learning (p. 52).

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W., et al. (2021).
Lora: Low-rank adaptation of large language models. International Conference on
Learning Representations (p. 195).

robust machine learning 331

Huang, G., Liu, Z., & Weinberger, K. Q. (2017). Densely connected convolutional
networks. Conference on Computer Vision and Pattern Recognition (CVPR) (pp. xxii,
26, 28, 46, 48, 231, 242, 258).

Hubel, D. H. (1957). Tungsten microelectrode for recording from single units. Science,
125(3247), 549–550 (p. 7).

Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s
striate cortex. The Journal of physiology, 148(3), 574 (p. 6).

Hubel, D. H., & Wiesel, T. N. (1963). Shape and arrangement of columns in cat’s striate
cortex. The Journal of physiology, 165(3), 559 (p. 6).

Hubel, D. H., & Wiesel, T. N. (1977). Ferrier lecture - functional architecture of macaque
monkey visual cortex. Proceedings of the Royal Society of London. Series B. Biological
Sciences, 198, 1–59 (p. 131).

Humphries, M. D. (2021). Strong and weak principles of neural dimension reduction.
(P. 114).

Hurwitz, C., Kudryashova, N., Onken, A., & Hennig, M. H. (2021). Building population
models for large-scale neural recordings: Opportunities and pitfalls. Current
opinion in neurobiology, 70, 64–73 (pp. 13, 197).

Huxter, J. R., Burgess, N., & O’Keefe, J. (2003). Independent rate and temporal coding
in hippocampal pyramidal cells. Nature, 425, 828–832 (p. 120).

Hyvarinen, A., & Morioka, H. (2016). Unsupervised feature extraction by time-contrastive
learning and nonlinear ica. Advances in neural information processing systems, 29
(pp. 18, 196).

Hyvarinen, A., & Morioka, H. (2017). Nonlinear ica of temporally dependent stationary
sources. Artificial Intelligence and Statistics, 460–469 (pp. 18, 196).

Hyvarinen, A., Sasaki, H., & Turner, R. (2019). Nonlinear ica using auxiliary vari-
ables and generalized contrastive learning. The 22nd International Conference on
Artificial Intelligence and Statistics, 859–868 (pp. 18, 176, 178, 184, 196).

Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. Wiley
Interscience. (P. 100).

Hyvärinen, A., & Morioka, H. (2016). Unsupervised feature extraction by time-contrastive
learning and nonlinear ICA. In D. D. Lee, M. Sugiyama, U. von Luxburg, I.
Guyon, & R. Garnett (Eds.), Advances in neural information processing systems
29: Annual conference on neural information processing systems 2016, december 5-10,
2016, barcelona, spain (pp. 3765–3773). (Pp. 100, 101, 106, 176, 179, 301, 302).

Hyvärinen, A., & Morioka, H. (2017). Nonlinear ICA of temporally dependent stationary
sources. In A. Singh & X. (Zhu (Eds.), Proceedings of the 20th international
conference on artificial intelligence and statistics, AISTATS 2017, 20-22 april 2017,
fort lauderdale, fl, USA (pp. 460–469, Vol. 54). PMLR. (Pp. 100, 101, 106, 301, 302).

Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and
applications. Neural networks, 13(4-5), 411–430 (p. 199).

Hyvärinen, A., & Pajunen, P. (1999). Nonlinear independent component analysis:
Existence and uniqueness results. Neural Networks, 12(3), 429–439 (p. 101).

robust machine learning 332

Hyvärinen, A., Sasaki, H., & Turner, R. E. (2019a). Nonlinear ICA using auxiliary
variables and generalized contrastive learning. In K. Chaudhuri & M. Sugiyama
(Eds.), The 22nd international conference on artificial intelligence and statistics, AIS-
TATS 2019, 16-18 april 2019, naha, okinawa, japan (pp. 859–868, Vol. 89). PMLR.
(Pp. 100, 101).

Hyvärinen, A., Sasaki, H., & Turner, R. E. (2019b). Nonlinear ICA using auxiliary
variables and generalized contrastive learning. The 22nd International Conference
on Artificial Intelligence and Statistics, 89, 859–868. http://proceedings.mlr.press/
v89/hyvarinen19a.html (pp. 117, 118, 140, 143, 153, 158, 163, 165, 169, 173, 174).

Ij, H. (2018). Statistics versus machine learning. Nat Methods, 15(4), 233 (p. 14).
Ilharco, G., Wortsman, M., Wightman, R., Gordon, C., Carlini, N., Taori, R., Dave, A.,

Shankar, V., Namkoong, H., Miller, J., Hajishirzi, H., Farhadi, A., & Schmidt, L.
(2021, July). Openclip (Version 0.1) [If you use this software, please cite it as
below.]. Zenodo. https://doi.org/10.5281/zenodo.5143773 (p. 195).

Insafutdinov, E., Andriluka, M., Pishchulin, L., Tang, S., Levinkov, E., Andres, B.,
& Schiele, B. (2017). Arttrack: Articulated multi-person tracking in the wild.
CVPR’17. http://arxiv.org/abs/1612.01465 (p. 82).

Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., & Schiele, B. (2016). Deep-
erCut: A deeper, stronger, and faster multi-person pose estimation model.
European Conference on Computer Vision, 34–50. https://arxiv.org/abs/1605.03170

(p. 87).
International Brain Lab, Benson, B., Benson, J., Birman, D., Bonacchi, N., Carandini,

M., Catarino, J. A., Chapuis, G. A., Churchland, A. K., Dan, Y., et al. (2023). A
brain-wide map of neural activity during complex behaviour. bioRxiv, 2023–07

(pp. 5, 14).
International Brain Laboratory. (2023). Data release - Brainwide map - Q4 2022. https:

//doi.org/10.6084/m9.figshare.21400815.v6 (p. 5).
Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training

by reducing internal covariate shift. International Conference on Machine Learning
(ICLR) (pp. 23, 25, 41, 44).

Iwasawa, Y., & Matsuo, Y. (2021). Test-time classifier adjustment module for model-
agnostic domain generalization. Advances in Neural Information Processing Sys-
tems, 34, 2427–2440 (p. 42).

Jazayeri, M., & Ostojic, S. (2021). Interpreting neural computations by examining
intrinsic and embedding dimensionality of neural activity. Current Opinion in
Neurobiology, 70, 113–120 (pp. 114, 176).

Jin, M., & Glickfeld, L. L. (2020). Mouse higher visual areas provide both distributed
and specialized contributions to visually guided behaviors. Current Biology, 30,
4682–4692.e7 (p. 132).

Johnson, J., Douze, M., & Jégou, H. (2017a). Billion-scale similarity search with gpus.
arXiv preprint arXiv:1702.08734 (p. 110).

http://proceedings.mlr.press/v89/hyvarinen19a.html
http://proceedings.mlr.press/v89/hyvarinen19a.html
https://doi.org/10.5281/zenodo.5143773
http://arxiv.org/abs/1612.01465
https://arxiv.org/abs/1605.03170
https://doi.org/10.6084/m9.figshare.21400815.v6
https://doi.org/10.6084/m9.figshare.21400815.v6

robust machine learning 333

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., & Girshick,
R. B. (2017b). CLEVR: A diagnostic dataset for compositional language and
elementary visual reasoning. 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, 1988–1997. https:
//doi.org/10.1109/CVPR.2017.215 (pp. 99, 109, 303).

Jonas, E., & Kording, K. P. (2017). Could a neuroscientist understand a microprocessor?
PLoS computational biology, 13(1), e1005268 (p. 13).

Jones, E. G. (2000). Microcolumns in the cerebral cortex. Proceedings of the National
Academy of Sciences, 97(10), 5019–5021 (p. 202).

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., Lee,
A. K., Anastassiou, C. A., Andrei, A., Aydın, Ç., et al. (2017). Fully integrated
silicon probes for high-density recording of neural activity. Nature, 551(7679),
232–236 (pp. 2, 7, 9).

Jung, A. B., Wada, K., Crall, J., Tanaka, S., Graving, J., Reinders, C., Yadav, S., Banerjee,
J., Vecsei, G., Kraft, A., Rui, Z., Borovec, J., Vallentin, C., Zhydenko, S., Pfeiffer,
K., Cook, B., Fernández, I., De Rainville, F.-M., Weng, C.-H., . . . Laporte, M.,
et al. (2020). imgaug [Online; accessed 01-Feb-2020]. (P. 87).

Jutten, C., Babaie-Zadeh, M., & Karhunen, J. (2010). Nonlinear mixtures. Handbook of
Blind Source Separation, Independent Component Analysis and Applications, 549–592

(p. 100).
Kamann, C., & Rother, C. (2019). Benchmarking the robustness of semantic segmenta-

tion models. CoRR, abs/1908.05005 (p. 33).
Kandel, E. (1982). The origins of modern neuroscience. Annual review of Neuroscience,

5(1), 299–303 (p. 6).
Kane, G., Lopes, G., Sanders, J., Mathis, A., & Mathis, M. (2020). Real-time, low-latency

closed-loop feedback using markerless posture tracking. eLife (p. 14).
Kar, O. F., Yeo, T., Atanov, A., & Zamir, A. (2022). 3d common corruptions and data

augmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 18963–18974 (pp. 74, 270).

Keshtkaran, M. R., Sedler, A. R., Chowdhury, R. H., Tandon, R., Basrai, D., Nguyen,
S. L., Sohn, H., Jazayeri, M., Miller, L. E., & Pandarinath, C. (2022). A large-scale
neural network training framework for generalized estimation of single-trial
population dynamics. Nature Methods (pp. 119, 149, 150, 157).

Khan, M. H., McDonagh, J., Khan, S., Shahabuddin, M., Arora, A., Khan, F. S., Shao,
L., & Tzimiropoulos, G. (2020). Animalweb: A large-scale hierarchical dataset
of annotated animal faces. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 6939–6948 (p. 84).

Khemakhem, I., Kingma, D., Monti, R., & Hyvarinen, A. (2020a, 26–28 Aug). Variational
autoencoders and nonlinear ica: A unifying framework. In S. Chiappa & R.
Calandra (Eds.), Proceedings of the twenty third international conference on artificial
intelligence and statistics (pp. 2207–2217, Vol. 108). PMLR. https://proceedings.
mlr.press/v108/khemakhem20a.html (p. 196).

https://doi.org/10.1109/CVPR.2017.215
https://doi.org/10.1109/CVPR.2017.215
https://proceedings.mlr.press/v108/khemakhem20a.html
https://proceedings.mlr.press/v108/khemakhem20a.html

robust machine learning 334

Khemakhem, I., Kingma, D. P., Monti, R. P., & Hyvärinen, A. (2020b). Variational
autoencoders and nonlinear ICA: A unifying framework. In S. Chiappa &
R. Calandra (Eds.), The 23rd international conference on artificial intelligence and
statistics, AISTATS 2020, 26-28 august 2020, online [palermo, sicily, italy] (pp. 2207–
2217, Vol. 108). PMLR. (Pp. 100, 101).

Khemakhem, I., Monti, R. P., Kingma, D. P., & Hyvärinen, A. (2020c). Ice-beem: Iden-
tifiable conditional energy-based deep models based on nonlinear ICA. In H.
Larochelle, M. Ranzato, R. Hadsell, M. Balcan, & H. Lin (Eds.), Advances in
neural information processing systems 33: Annual conference on neural information
processing systems 2020, neurips 2020, december 6-12, 2020, virtual. (P. 101).

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu,
C., & Krishnan, D. (2020). Supervised contrastive learning. arXiv preprint
arXiv:2004.11362 (pp. 117, 118, 196).

Killcoyne, S., & Boyle, J. (2009). Managing chaos: Lessons learned developing software
in the life sciences. Computing in science & engineering, 11(6), 20–29 (p. 2).

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al. (2018). In-
terpretability beyond feature attribution: Quantitative testing with concept
activation vectors (tcav). International conference on machine learning, 2668–2677

(p. 182).
Kim, D. H., Kim, J., Marques, J. C., Grama, A., Hildebrand, D. G., Gu, W., Li, J. M., &

Robson, D. N. (2017). Pan-neuronal calcium imaging with cellular resolution in
freely swimming zebrafish. Nature methods, 14(11), 1107–1114 (p. 5).

Kim, Y., Cho, D., Han, K., Panda, P., & Hong, S. (2021). Domain adaptation without
source data. IEEE Transactions on Artificial Intelligence (p. 39).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (pp. 72, 87, 273, 301, 302).

Klindt, D., Schott, L., Sharma, Y., Ustyuzhaninov, I., Brendel, W., Bethge, M., & Paiton,
D. (2021a). Towards nonlinear disentanglement in natural data with temporal
sparse coding. International Conference on Learning Representations (ICLR) (pp. 100,
108, 109, 302, 303).

Klindt, D. A., Schott, L., Sharma, Y., Ustyuzhaninov, I., Brendel, W., Bethge, M., &
Paiton, D. (2021b). Towards nonlinear disentanglement in natural data with
temporal sparse coding. International Conference on Learning Representations.
https://openreview.net/forum?id=EbIDjBynYJ8 (p. 117).

Klioutchnikov, A., Wallace, D. J., Frosz, M. H., Zeltner, R., Sawinski, J., Pawlak, V.,
Voit, K.-M., Russell, P. S. J., & Kerr, J. N. (2020). Three-photon head-mounted
microscope for imaging deep cortical layers in freely moving rats. Nature methods,
17(5), 509–513 (p. 8).

Kobak, D., Brendel, W., Constantinidis, C., Feierstein, C. E., Kepecs, A., Mainen, Z. F.,
Qi, X.-L., Romo, R., Uchida, N., & Machens, C. K. (2016a). Demixed principal
component analysis of neural population data. elife, 5, e10989 (p. 13).

https://openreview.net/forum?id=EbIDjBynYJ8

robust machine learning 335

Kobak, D., Brendel, W., Constantinidis, C., Feierstein, C. E., Kepecs, A., Mainen, Z. F.,
Qi, X.-L., Romo, R., Uchida, N., & Machens, C. K. (2016b). Demixed principal
component analysis of neural population data. eLife, 5 (p. 157).

Kobak, D., & Linderman, G. C. (2021). Initialization is critical for preserving global
data structure in both t-sne and umap. Nature Biotechnology, 39(2), 156–157.
https://doi.org/10.1038/s41587-020-00809-z (p. 150).

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., Hu, W.,
Yasunaga, M., Phillips, R. L., Beery, S., et al. (2020). Wilds: A benchmark of
in-the-wild distribution shifts 2021. arXiv preprint arXiv:2012.07421 (p. 193).

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., Hu, W.,
Yasunaga, M., Phillips, R. L., Gao, I., Lee, T., David, E., Stavness, I., Guo, W.,
Earnshaw, B. A., Haque, I. S., Beery, S., Leskovec, J., Kundaje, A., . . . Liang, P.
(2021). WILDS: A benchmark of in-the-wild distribution shifts. International
Conference on Machine Learning (ICML) (pp. 56, 258, 262).

Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Alsallakh, B., Reynolds, J., Melnikov,
A., Kliushkina, N., Araya, C., Yan, S., et al. (2020). Captum: A unified and
generic model interpretability library for pytorch. arXiv preprint arXiv:2009.07896
(p. 180).

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., & Houlsby, N. (2020).
Big transfer (bit): General visual representation learning. Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
V 16, 491–507 (pp. 53, 54, 259).

Kornblith, S., Norouzi, M., Lee, H., & Hinton, G. (2019a). Similarity of neural network
representations revisited. arXiv preprint arXiv:1905.00414 (pp. 88, 92, 277).

Kornblith, S., Shlens, J., & Le, Q. V. (2019b). Do better imagenet models transfer better?
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2661–2671 (pp. 84, 87, 273).

Kozai, T. D. Y., Langhals, N. B., Patel, P. R., Deng, X., Zhang, H., Smith, K. L., Lahann,
J., Kotov, N. A., & Kipke, D. R. (2012). Ultrasmall implantable composite
microelectrodes with bioactive surfaces for chronic neural interfaces. Nature
materials, 11(12), 1065–1073 (p. 9).

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D.
(2017a). Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron,
93(3), 480–490. http://www.cell.com/neuron/references/S0896-6273(16)31040-
6 (pp. 9–11).

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D.
(2017b). Neuroscience needs behavior: Correcting a reductionist bias. Neuron,
93, 480–490 (p. 114).

Kreiss, S., Bertoni, L., & Alahi, A. (2019). Pifpaf: Composite fields for human pose
estimation. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 11977–11986 (p. 82).

https://doi.org/10.1038/s41587-020-00809-z
http://www.cell.com/neuron/references/S0896-6273(16)31040-6
http://www.cell.com/neuron/references/S0896-6273(16)31040-6

robust machine learning 336

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny
images (pp. 41, 45, 67).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012a). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems (pp. 1097–1105). (Pp. 24, 231).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012b). Imagenet classification with
deep convolutional neural networks. In P. L. Bartlett, F. C. N. Pereira, C. J. C.
Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information
processing systems 25: 26th annual conference on neural information processing systems
2012. proceedings of a meeting held december 3-6, 2012, lake tahoe, nevada, united
states (pp. 1106–1114). https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html (p. 71).

Kumar, A., Ma, T., & Liang, P. (2020). Understanding self-training for gradual domain
adaptation. International Conference on Machine Learning, 5468–5479 (p. 42).

Kümmerer, M., Wallis, T. S., & Bethge, M. (2016). Deepgaze ii: Reading fixations from
deep features trained on object recognition. arXiv preprint arXiv:1610.01563.
https://arxiv.org/abs/1610.01563 (p. 84).

Kundu, J. N., Venkat, N., Babu, R. V., et al. (2020). Universal source-free domain
adaptation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 4544–4553 (p. 39).

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S.,
Popov, S., Malloci, M., Duerig, T., et al. (2018). The open images dataset v4:
Unified image classification, object detection, and visual relationship detection
at scale. arXiv preprint arXiv:1811.00982 (p. 85).

Lamperti, J., et al. (1958). On the isometries of certain function-spaces. Pacific J. Math,
8(3), 459–466 (p. 301).

Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., & Müller, K.-R.
(2019). Unmasking clever hans predictors and assessing what machines really
learn. Nature communications, 10(1), 1–8 (p. 182).

Lauer, J., Zhou, M., Ye, S., Menegas, W., Schneider, S., Nath, T., Rahman, M. M., Di
Santo, V., Soberanes, D., Feng, G., et al. (2022). Multi-animal pose estimation,
identification and tracking with deeplabcut. Nature Methods, 19(4), 496–504

(p. 20).
Lecoq, J. A., Boehringer, R., & Grewe, B. F. (2023). Deep brain imaging on the move.

Nature Methods, 20(4), 495–496 (pp. 2, 8).
LeCun, Y., Cortes, C., & Burges, C. (2010). Mnist handwritten digit database. ATT Labs

[Online]. Available: http://yann.lecun.com/exdb/mnist, 2 (p. 67).
Lee, D.-H. (2013a). Pseudo-label: The simple and efficient semi-supervised learning

method for deep neural networks. ICML Workshop : Challenges in Representation
Learning (WREPL) (pp. 43, 44, 78).

Lee, J. M. (2013b). Smooth manifolds. In Introduction to smooth manifolds (pp. 606–607).
Springer. (P. 304).

https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://arxiv.org/abs/1610.01563

robust machine learning 337

Lee, J., Won, T., & Hong, K. (2020). Compounding the performance improvements of
assembled techniques in a convolutional neural network. CoRR, abs/2001.06268
(pp. 26, 28, 33).

Li, C.-K., & So, W. (1994). Isometries of ℓp-norm. The American Mathematical Monthly,
101(5), 452–453 (p. 301).

Li, H., Singh, B., Najibi, M., Wu, Z., & Davis, L. S. (2019). An analysis of pre-training
on object detection. arXiv preprint arXiv:1904.05871 (pp. 84, 85).

Li, R., Jiao, Q., Cao, W., Wong, H.-S., & Wu, S. (2020a). Model adaptation: Unsupervised
domain adaptation without source data. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (p. 39).

Li, S., Gunel, S., Ostrek, M., Ramdya, P., Fua, P., & Rhodin, H. (2020b). Deformation-
aware unpaired image translation for pose estimation on laboratory animals.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
13158–13168 (p. 84).

Li, Y., Wang, N., Shi, J., Liu, J., & Hou, X. (2017). Revisiting batch normalization for
practical domain adaptation. International Conference on Machine Learning (ICLR)
(pp. 23, 24, 33).

Liang, J., Hu, D., & Feng, J. (2020). Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. International Conference
on Machine Learning (pp. 39, 45).

Liang, J., Hu, D., Wang, Y., He, R., & Feng, J. (2021). Source data-absent unsupervised
domain adaptation through hypothesis transfer and labeling transfer. IEEE
Transactions on Pattern Analysis and Machine Intelligence (p. 78).

Lin, J. (2020 (accessed October 21, 2020)). A pytorch converter for simclr checkpoints
[Commit ID: 139d3cb0bd0c64b5ad32aab810e0bd0a0dddaae0]. https://github.
com/tonylins/simclr-converter (p. 215).

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick,
C. L. (2014). Microsoft coco: Common objects in context. European conference on
computer vision, 740–755 (pp. 83, 84).

Linderman, S., Johnson, M., Miller, A., Adams, R., Blei, D., & Paninski, L. (2017).
Bayesian learning and inference in recurrent switching linear dynamical systems.
Artificial Intelligence and Statistics, 914–922 (p. 13).

Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21(3), 105–117

(pp. 100, 101).
Liu, Y., Kothari, P., van Delft, B. G., Bellot-Gurlet, B., Mordan, T., & Alahi, A. (2021).

Ttt++: When does self-supervised test-time training fail or thrive? Thirty-Fifth
Conference on Neural Information Processing Systems (pp. 41, 50, 51).

Liu, Y., Li, J., Song, S., Kang, J., Tsao, Y., Chen, S., Mottini, V., McConnell, K., Xu, W.,
Zheng, Y.-Q., et al. (2020a). Morphing electronics enable neuromodulation in
growing tissue. Nature biotechnology, 38(9), 1031–1036 (p. 9).

Liu, Y., Liu, J., Chen, S., Lei, T., Kim, Y., Niu, S., Wang, H., Wang, X., Foudeh, A. M.,
Tok, J. B.-H., et al. (2019). Soft and elastic hydrogel-based microelectronics for

https://github.com/tonylins/simclr-converter
https://github.com/tonylins/simclr-converter

robust machine learning 338

localized low-voltage neuromodulation. Nature biomedical engineering, 3(1), 58–68

(p. 9).
Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang, Z., Dong,

L., Wei, F., & Guo, B. (2022). Swin transformer v2: Scaling up capacity and
resolution. International Conference on Computer Vision and Pattern Recognition
(CVPR) (pp. 75, 76).

Liu, Z., Miao, Z., Pan, X., Zhan, X., Lin, D., Yu, S. X., & Gong, B. (2020b). Open com-
pound domain adaptation. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 12406–12415 (p. 78).

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., & Bachem, O.
(2019a, September). Challenging common assumptions in the unsupervised
learning of disentangled representations. In K. Chaudhuri & R. Salakhutdinov
(Eds.), Proceedings of the 36th international conference on machine learning (pp. 4114–
4124, Vol. 97). PMLR. https://proceedings.mlr.press/v97/locatello19a.html
(p. 197).

Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf, B., & Bachem,
O. (2019b). Challenging common assumptions in the unsupervised learning
of disentangled representations. In K. Chaudhuri & R. Salakhutdinov (Eds.),
Proceedings of the 36th international conference on machine learning, ICML 2019, 9-15
june 2019, long beach, california, USA (pp. 4114–4124, Vol. 97). PMLR. (P. 110).

Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., & Tschannen, M. (2020).
Weakly-supervised disentanglement without compromises. Proceedings of the
37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, 119, 6348–6359 (p. 101).

Logeswaran, L., & Lee, H. (2018). An efficient framework for learning sentence rep-
resentations. 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings (pp. 98,
101).

Lomonaco, V., & Maltoni, D. (2017, 13–15 Nov). Core50: A new dataset and benchmark
for continuous object recognition. In S. Levine, V. Vanhoucke, & K. Goldberg
(Eds.), Proceedings of the 1st annual conference on robot learning (pp. 17–26, Vol. 78).
PMLR. https://proceedings.mlr.press/v78/lomonaco17a.html (p. 79).

London, B. M., & Miller, L. E. (2013). Responses of somatosensory area 2 neurons to
actively and passively generated limb movements. Journal of neurophysiology, 109
6, 1505–13 (p. 128).

Luan, L., Wei, X., Zhao, Z., Siegel, J. J., Potnis, O., Tuppen, C. A., Lin, S., Kazmi, S.,
Fowler, R. A., Holloway, S., et al. (2017). Ultraflexible nanoelectronic probes
form reliable, glial scar–free neural integration. Science advances, 3(2), e1601966

(p. 9).
Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predic-

tions. Advances in neural information processing systems, 30 (pp. 176, 180, 182).

https://proceedings.mlr.press/v97/locatello19a.html
https://proceedings.mlr.press/v78/lomonaco17a.html

robust machine learning 339

Ma, N., Zhang, X., Zheng, H.-T., & Sun, J. (2018). Shufflenet v2: Practical guidelines
for efficient cnn architecture design. Proceedings of the European Conference on
Computer Vision (ECCV) (pp. 26, 231).

Maceira-Elvira, P., Popa, T., Schmid, A.-C., & Hummel, F. C. (2019). Wearable technology
in stroke rehabilitation: Towards improved diagnosis and treatment of upper-
limb motor impairment. Journal of neuroengineering and rehabilitation, 16(1), 142

(pp. 82, 83).
Macke, J. H., Buesing, L., Cunningham, J. P., Yu, B. M., Shenoy, K. V., & Sahani, M.

(2011). Empirical models of spiking in neural populations. Advances in neural
information processing systems, 24 (p. 13).

Magland, J., Jun, J. J., Lovero, E., Morley, A. J., Hurwitz, C. L., Buccino, A. P., Garcia,
S., & Barnett, A. H. (2020). Spikeforest, reproducible web-facing ground-truth
validation of automated neural spike sorters. Elife, 9, e55167 (p. 15).

Magnusson, L.-E., & Thafvellin, B. (1990). Studies on the conformation and related
traits of standardbred trotters in sweden. Journal of Animal Physiology and Animal
Nutrition (Germany, FR) (p. 86).

Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., &
van der Maaten, L. (2018). Exploring the limits of weakly supervised pretraining.
Proceedings of the European Conference on Computer Vision (ECCV) (pp. xxii, 26, 29,
34, 38, 46, 50, 66, 85, 194, 232, 240, 242).

Mankiewicz, P. (1972). Extension of isometries in normed linear spaces. Bulletin de
l’Academie polonaise des sciences: Serie des sciences mathematiques, astronomiques et
physiques, 20(5), 367–+ (p. 299).

Mann, K., Gallen, C. L., & Clandinin, T. R. (2017). Whole-brain calcium imaging reveals
an intrinsic functional network in drosophila. Current Biology, 27(15), 2389–2396

(p. 5).
Marcel, S., & Rodriguez, Y. (2010). Torchvision the machine-vision package of torch.

ACM International Conference on Multimedia (pp. 26, 212, 241, 262).
Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., &

Bethge, M. (2018). Deeplabcut: Markerless pose estimation of user-defined body
parts with deep learning. Nature Neuroscience, 21(9), 1281–1289 (pp. 2, 10, 84, 87,
287).

Mathis, A., Schneider, S., Lauer, J., & Mathis, M. W. (2020). A primer on motion capture
with deep learning: Principles, pitfalls, and perspectives. Neuron, 108(1), 44–65

(pp. 2, 10, 20).
Mathis, A., Stemmler, M. B., & Herz, A. V. (2015). Probable nature of higher-dimensional

symmetries underlying mammalian grid-cell activity patterns. Elife, 4, e05979

(p. 7).
Mathis, A., & Warren, R. A. (2018). On the inference speed and video-compression

robustness of deeplabcut. BioRxiv. https://doi.org/10.1101/457242 (p. 287).
Mathis, M. W., & Schneider, S. (2021). Motor control: Neural correlates of optimal

feedback control theory. Current Biology, 31(7), R356–R358 (p. 7).

https://doi.org/10.1101/457242

robust machine learning 340

Mathis, M. W. (2023). The neocortical column as a universal template for perception
and world-model learning. Nature Reviews Neuroscience, 24(1), 3–3 (p. 202).

Mathis, M. W., & Mathis, A. (2020). Deep learning tools for the measurement of animal
behavior in neuroscience. Current Opinion in Neurobiology, 60, 1–11 (pp. 11, 12,
82, 83).

Maynard, E. M., Nordhausen, C. T., & Normann, R. A. (1997). The utah intracortical
electrode array: A recording structure for potential brain-computer interfaces.
Electroencephalography and clinical neurophysiology, 102(3), 228–239 (pp. 2, 7).

Mazzocchi, F. (2015). Could big data be the end of theory in science? a few remarks
on the epistemology of data-driven science. EMBO reports, 16(10), 1250–1255

(p. 192).
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the

dartmouth summer research project on artificial intelligence, august 31, 1955.
AI magazine, 27(4), 12–12 (p. 4).

McCullagh, P., & Nelder, J. A. (1972). Generalized linear models. Predictive Analytics.
https://api.semanticscholar.org/CorpusID:14154576 (p. 176).

McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (pp. 117,
149, 157, 199).

Menegas, W., Bergan, J. F., Ogawa, S. K., Isogai, Y., Venkataraju, K. U., Osten, P., Uchida,
N., & Watabe-Uchida, M. (2015). Dopamine neurons projecting to the posterior
striatum form an anatomically distinct subclass. eLife, 4 (p. 131).

Merkel, D. (2014). Docker: Lightweight linux containers for consistent development
and deployment. Linux J., 2014(239) (pp. 212, 262).

Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A. S., Bethge,
M., & Brendel, W. (2019a). Benchmarking robustness in object detection: Au-
tonomous driving when winter is coming. arXiv preprint arXiv:1907.07484 (pp. 84,
85, 87, 279).

Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A. S., Bethge,
M., & Brendel, W. (2019b). Benchmarking robustness in object detection: Au-
tonomous driving when winter is coming. CoRR, abs/1907.07484 (p. 33).

Mikołajczyk, A., & Grochowski, M. (2018). Data augmentation for improving deep learn-
ing in image classification problem. International Interdisciplinary PhD Workshop
(IIPhDW) (p. 33).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in
neural information processing systems, 26 (pp. 17, 196).

Miller, J. P., Taori, R., Raghunathan, A., Sagawa, S., Koh, P. W., Shankar, V., Liang, P.,
Carmon, Y., & Schmidt, L. (2021). Accuracy on the line: On the strong correlation
between out-of-distribution and in-distribution generalization. International
Conference on Machine Learning, 7721–7735 (p. 49).

https://api.semanticscholar.org/CorpusID:14154576

robust machine learning 341

Minev, I. R., Musienko, P., Hirsch, A., Barraud, Q., Wenger, N., Moraud, E. M., Gandar,
J., Capogrosso, M., Milekovic, T., Asboth, L., et al. (2015). Electronic dura mater
for long-term multimodal neural interfaces. Science, 347(6218), 159–163 (p. 9).

Misra, I., & van der Maaten, L. (2019). Self-supervised learning of pretext-invariant
representations. CoRR, abs/1912.01991 (p. 17).

Molnar, C. (2022). Interpretable machine learning: A guide for making black box models
explainable (2nd ed.). https://christophm.github.io/interpretable-ml-book
(p. 180).

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., & Müller, K.-R. (2015). Explain-
ing nonlinear classification decisions with deep taylor decomposition. Pattern
Recognit., 65, 211–222. https://api.semanticscholar.org/CorpusID:5731985

(p. 176).
Montavon, G., Lapuschkin, S., Binder, A., Samek, W., & Müller, K.-R. (2017). Explain-

ing nonlinear classification decisions with deep taylor decomposition. Pattern
recognition, 65, 211–222 (p. 182).

Moore, G. P., Perkel, D. H., & Segundo, J. P. (1966). Statistical analysis and functional
interpretation of neuronal spike data. Annual review of physiology, 28(1), 493–522

(p. 6).
Morioka, H., & Hyvarinen, A. (2023). Connectivity-contrastive learning: Combining

causal discovery and representation learning for multimodal data. International
Conference on Artificial Intelligence and Statistics, 3399–3426 (p. 183).

Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place cells, grid cells, and the brain’s
spatial representation system. Annual review of neuroscience, 31, 69–89 (p. 120).

Motiian, S., Jones, Q., Iranmanesh, S., & Doretto, G. (2017). Few-shot adversarial domain
adaptation. Advances in neural information processing systems, 30 (p. 78).

Mountcastle, V. B. (1957). Modality and topographic properties of single neurons of
cat’s somatic sensory cortex. Journal of neurophysiology, 20(4), 408–434 (p. 202).

Mu, J., Qiu, W., Hager, G. D., & Yuille, A. L. (2020). Learning from synthetic animals.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
12386–12395 (p. 84).

Mu, N., & Gilmer, J. (2019). MNIST-C: A robustness benchmark for computer vision.
CoRR, abs/1906.02337 (p. 33).

Mudrakarta, P. K., Taly, A., Sundararajan, M., & Dhamdhere, K. (2018). Did the model
understand the question? (P. 179).

Mummadi, C. K., Hutmacher, R., Rambach, K., Levinkov, E., Brox, T., & Metzen, J. H.
(2021). Test-time adaptation to distribution shift by confidence maximization
and input transformation. arXiv preprint arXiv:2106.14999 (pp. 40, 41, 45, 48, 50,
51, 55, 66, 67, 72, 74, 78, 79).

Nado, Z., Padhy, S., Sculley, D., D’Amour, A., Lakshminarayanan, B., & Snoek, J. (2020).
Evaluating prediction-time batch normalization for robustness under covariate
shift. CoRR, abs/2006.10963 (pp. 34, 40, 66, 67, 72, 74, 78, 271).

https://christophm.github.io/interpretable-ml-book
https://api.semanticscholar.org/CorpusID:5731985

robust machine learning 342

Naeini, M. P., Cooper, G., & Hauskrecht, M. (2015). Obtaining well calibrated prob-
abilities using bayesian binning. Twenty-Ninth AAAI Conference on Artificial
Intelligence (p. 55).

Nath, T., Mathis, A., Chen, A. C., Patel, A., Bethge, M., & Mathis, M. W. (2019). Using
deeplabcut for 3d markerless pose estimation across species and behaviors.
Nature Protocols, 14, 2152–2176 (pp. 2, 86, 87).

Neher, E., & Sakmann, B. (1976). Single-channel currents recorded from membrane of
denervated frog muscle fibres. Nature, 260(5554), 799–802 (p. 8).

Newell, M. E. (1975). The utilization of procedure models in digital image synthesis. [Doctoral
dissertation, The University of Utah] [AAI7529894]. The University of Utah.
(P. 303).

Nguyen, J. P., Shipley, F. B., Linder, A. N., Plummer, G. S., Liu, M., Setru, S. U.,
Shaevitz, J. W., & Leifer, A. M. (2016). Whole-brain calcium imaging with
cellular resolution in freely behaving caenorhabditis elegans. Proceedings of the
National Academy of Sciences, 113(8), E1074–E1081 (pp. 5, 10).

Niell, C. M., Stryker, M. P., & Keck, W. M. (2008). Highly selective receptive fields in
mouse visual cortex. The Journal of Neuroscience, 28, 7520–7536 (p. 131).

Ning, G., Pei, J., & Huang, H. (2020). Lighttrack: A generic framework for online top-
down human pose tracking. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 1034–1035 (p. 83).

Niu, S., Wu, J., Zhang, Y., Chen, Y., Zheng, S., Zhao, P., & Tan, M. (2022a). Efficient test-
time model adaptation without forgetting. Proceedings of the 39th International
Conference on Machine Learning (pp. 41, 45, 50, 55, 56, 62).

Niu, S., Wu, J., Zhang, Y., Chen, Y., Zheng, S., Zhao, P., & Tan, M. (2022b). Efficient
test-time model adaptation without forgetting. arXiv preprint arXiv:2204.02610
(pp. 66–74, 76, 78, 193, 269, 271).

Nordhausen, C. T., Maynard, E. M., & Normann, R. A. (1996). Single unit recording
capabilities of a 100 microelectrode array. Brain research, 726(1-2), 129–140 (p. 7).

Oby, E. R., Golub, M. D., Hennig, J. A., Degenhart, A. D., Tyler-Kabara, E. C., Yu,
B. M., Chase, S. M., & Batista, A. P. (2019). New neural activity patterns emerge
with long-term learning. Proceedings of the National Academy of Sciences, 116(30),
15210–15215 (p. 197).

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary
evidence from unit activity in the freely-moving rat. Brain research (p. 6).

Okorokova, E. V., Goodman, J. M., Hatsopoulos, N. G., & Bensmaia, S. J. (2020).
Decoding hand kinematics from population responses in sensorimotor cortex
during grasping. Journal of neural engineering (p. 114).

Olshausen, B. A., & Field, D. J. (1996a). Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381(6583), 607–
609 (p. 6).

Olshausen, B. A., & Field, D. J. (1996b). Natural image statistics and efficient coding.
Network: computation in neural systems, 7(2), 333 (p. 6).

robust machine learning 343

Oord, A. v. d., Li, Y., & Vinyals, O. (2018). Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748 (pp. 17, 98–101, 117, 159).

Orhan, A. E. (2019). Robustness properties of facebook’s resnext wsl models. CoRR,
abs/1907.07640 (p. 29).

Ostrek, M., Rhodin, H., Fua, P., Müller, E., & Spörri, J. (2019). Are existing monocular
computer vision-based 3d motion capture approaches ready for deployment?
a methodological study on the example of alpine skiing. Sensors, 19(19), 4323

(pp. 82, 83).
Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., Kao, J. C., Traut-

mann, E. M., Kaufman, M. T., Ryu, S. I., Hochberg, L. R., et al. (2018a). Inferring
single-trial neural population dynamics using sequential auto-encoders. Nature
methods, 15(10), 805–815 (p. 13).

Pandarinath, C., O’Shea, D. J., Collins, J., Józefowicz, R., Stavisky, S. D., Kao, J. C.,
Trautmann, E. M., Kaufman, M. T., Ryu, S. I., Hochberg, L. R., Henderson,
J. M., Shenoy, K. V., Abbott, L. F., & Sussillo, D. (2018b). Inferring single-trial
neural population dynamics using sequential auto-encoders. Nature methods, 15,
805–815 (pp. 117, 118, 157).

Park, S., Guo, Y., Jia, X., Choe, H. K., Grena, B., Kang, J., Park, J., Lu, C., Canales,
A., Chen, R., et al. (2017). One-step optogenetics with multifunctional flexible
polymer fibers. Nature neuroscience, 20(4), 612–619 (p. 9).

Park, S., Yuk, H., Zhao, R., Yim, Y. S., Woldeghebriel, E. W., Kang, J., Canales, A., Fink,
Y., Choi, G. B., Zhao, X., et al. (2021). Adaptive and multifunctional hydrogel
hybrid probes for long-term sensing and modulation of neural activity. Nature
communications, 12(1), 3435 (p. 9).

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in PyTorch. NIPS
Autodiff Workshop (pp. 25, 212, 262).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al. (2019a). Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing
systems, 32 (p. 271).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S.
(2019b). Pytorch: An imperative style, high-performance deep learning library.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R.
Garnett (Eds.), Advances in neural information processing systems 32 (pp. 8024–
8035). Curran Associates, Inc. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf (p. 145).

Patel, P. R., Welle, E. J., Letner, J. G., Shen, H., Bullard, A. J., Caldwell, C. M., Vega-
Medina, A., Richie, J. M., Thayer, H. E., Patil, P. G., et al. (2023). Utah array
characterization and histological analysis of a multi-year implant in non-human

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

robust machine learning 344

primate motor and sensory cortices. Journal of Neural Engineering, 20(1), 014001

(p. 7).
Pearl, J. (2009). Causality. Cambridge university press. (P. 183).
Pearson, K. (1901). Principal components analysis. The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science, 6(2), 559 (pp. 13, 198).
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Courna-
peau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12, 2825–2830 (pp. 145,
150, 151).

Pei, F., Ye, J., Zoltowski, D., Wu, A., Chowdhury, R. H., Sohn, H., O’Doherty, J. E.,
Shenoy, K. V., Kaufman, M. T., Churchland, M., et al. (2021a). Neural latents
benchmark’21: Evaluating latent variable models of neural population activity.
arXiv preprint arXiv:2109.04463 (pp. 119, 138, 157).

Pei, F., Ye, J., Zoltowski, D., Wu, A., Chowdhury, R. H., Sohn, H., O’Doherty, J. E.,
Shenoy, K. V., Kaufman, M. T., Churchland, M., et al. (2021b). Neural latents
benchmark’21: Evaluating latent variable models of neural population activity.
arXiv preprint arXiv:2109.04463 (p. 197).

Pei, F., Ye, J., Zoltowski, D., Wu, A., Chowdhury, R. H., Sohn, H., O’Doherty, J. E.,
Shenoy, K. V., Kaufman, M. T., Churchland, M., Jazayeri, M., Miller, L. E.,
Pillow, J., Park, I. M., Dyer, E. L., & Pandarinath, C. (2021c). Neural latents
benchmark ’21: Evaluating latent variable models of neural population activity.
https://doi.org/10.48550/ARXIV.2109.04463 (pp. 130, 151).

Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of causal inference: Foundations
and learning algorithms. The MIT Press. (P. 183).

Petreska, B., Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S., Shenoy, K. V., &
Sahani, M. (2011). Dynamical segmentation of single trials from population
neural data. Advances in neural information processing systems, 24 (p. 13).

Poličar, P. G., Stražar, M., & Zupan, B. (2019). Opentsne: A modular python library for
t-sne dimensionality reduction and embedding. bioRxiv. https://doi.org/10.
1101/731877 (p. 150).

Prabhu, A., Torr, P. H., & Dokania, P. K. (2020). Gdumb: A simple approach that
questions our progress in continual learning. Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16,
524–540 (p. 68).

Prabhu, V., Khare, S., Kartik, D., & Hoffman, J. (2021). Sentry: Selective entropy op-
timization via committee consistency for unsupervised domain adaptation.
Proceedings of the IEEE/CVF International Conference on Computer Vision, 8558–
8567 (p. 42).

Prince, L. Y., Bakhtiari, S., Gillon, C. J., & Richards, B. A. (2021). Parallel inference
of hierarchical latent dynamics in two-photon calcium imaging of neuronal
populations. bioRxiv (p. 117).

https://doi.org/10.48550/ARXIV.2109.04463
https://doi.org/10.1101/731877
https://doi.org/10.1101/731877

robust machine learning 345

Prud’homme, M. J., & Kalaska, J. F. (1994). Proprioceptive activity in primate pri-
mary somatosensory cortex during active arm reaching movements. Journal of
neurophysiology, 72 5, 2280–301 (p. 128).

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from
natural language supervision. International Conference on Machine Learning, 8748–
8763 (pp. 18, 66, 196, 251).

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language
models are unsupervised multitask learners. OpenAI blog, 1(8), 9 (pp. 17, 194,
195, 200).

Raghu, M., Zhang, C., Kleinberg, J., & Bengio, S. (2019). Transfusion: Understanding
transfer learning for medical imaging. Advances in Neural Information Processing
Systems, 3342–3352 (pp. 84, 92).

Rashid, M., Gu, X., & Jae Lee, Y. (2017). Interspecies knowledge transfer for facial
keypoint detection. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 6894–6903 (p. 84).

Ratcliff, R. (1990). Connectionist models of recognition memory: Constraints imposed
by learning and forgetting functions. Psychological review, 97(2), 285 (p. 78).

Ravanelli, M., Zhong, J., Pascual, S., Swietojanski, P., Monteiro, J., Trmal, J., & Bengio, Y.
(2020). Multi-task self-supervised learning for robust speech recognition. 2020
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP
2020, Barcelona, Spain, May 4-8, 2020, 6989–6993. https://doi.org/10 .1109/
ICASSP40776.2020.9053569 (p. 98).

Rebuffi, S.-A., Bilen, H., & Vedaldi, A. (2017). Learning multiple visual domains with
residual adapters. Advances in Neural Information Processing Systems (NIPS)
(p. 33).

Recce, M. (1989). The tetrode: A new technique for multi-unit extracellular recording.
Soc. Neurosci. Abstr., 15, 1250 (p. 7).

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2020). Do imagenet classifiers general-
ize to imagenet? Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 26, 251).

Reizinger, P., Sharma, Y., Bethge, M., Schölkopf, B., Huszár, F., & Brendel, W. (2022).
Jacobian-based causal discovery with nonlinear ica. Transactions on Machine
Learning Research (p. 183).

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). " why should i trust you?" explaining the
predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 1135–1144 (p. 182).

Ringach, D. L., Mineault, P. J., Tring, E., Olivas, N. D., García-Junco-Clemente, P., &
Trachtenberg, J. T. (2016). Spatial clustering of tuning in mouse primary visual
cortex. Nature Communications, 7 (p. 131).

Robinson, J., Chuang, C.-Y., Sra, S., & Jegelka, S. (2020). Contrastive learning with hard
negative samples. arXiv preprint arXiv:2010.04592 (p. 100).

https://doi.org/10.1109/ICASSP40776.2020.9053569
https://doi.org/10.1109/ICASSP40776.2020.9053569

robust machine learning 346

Roeder, G., Metz, L., & Kingma, D. P. (2020a). On linear identifiability of learned
representations. arXiv. https://doi.org/10.48550/ARXIV.2007.00810 (pp. 117,
143, 153, 154, 158, 163, 165–168).

Roeder, G., Metz, L., & Kingma, D. P. (2020b). On linear identifiability of learned
representations. arXiv preprint arXiv:2007.00810 (p. 101).

Roeder, G., Metz, L., & Kingma, D. (2021). On linear identifiability of learned represen-
tations. International Conference on Machine Learning, 9030–9039 (p. 195).

Roweis, S., & Ghahramani, Z. (1999). A unifying review of linear gaussian models.
Neural computation, 11(2), 305–345 (pp. 13, 198).

Rupprecht, P., Carta, S., Hoffmann, A., Echizen, M., Blot, A., Kwan, A. C., Dan, Y.,
Hofer, S. B., Kitamura, K., Helmchen, F., et al. (2021). A database and deep
learning toolbox for noise-optimized, generalized spike inference from calcium
imaging. Nature neuroscience, 24(9), 1324–1337 (p. 8).

Rusak, E., Schneider, S., Pachitariu, G., Eck, L., Gehler, P. V., Bringmann, O., Brendel,
W., & Bethge, M. (2021). If your data distribution shifts, use self-learning.
Transactions of Machine Learning Research (pp. 66, 67, 72, 74, 78, 79, 271).

Rusak, E., Schott, L., Zimmermann, R., Bitterwolf, J., Bringmann, O., Bethge, M., &
Brendel, W. (2020). Increasing the robustness of dnns against image corruptions
by playing the game of noise. CoRR, abs/2001.06057 (pp. 26, 33, 38, 61, 66, 78,
217, 232, 252).

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition
challenge. International journal of computer vision (IJCV) (pp. 23, 26, 66).

Rutten, V., Bernacchia, A., Sahani, M., & Hennequin, G. (2020). Non-reversible gaussian
processes for identifying latent dynamical structure in neural data. Advances in
neural information processing systems, 33, 9622–9632 (p. 13).

Ruzhansky, M., & Sugimoto, M. (2015). On global inversion of homogeneous maps.
Bulletin of Mathematical Sciences, 5(1), 13–18 (pp. 304, 305).

Sadtler, P. T., Quick, K. M., Golub, M. D., Chase, S. M., Ryu, S. I., Tyler-Kabara, E. C., Yu,
B. M., & Batista, A. P. (2014). Neural constraints on learning. Nature, 512(7515),
423–426 (p. 197).

Saenko, K., Peng, X., Usman, B., Saito, K., & Hu, P. (2019). Visual domain adaptation
challenge (visda-2019). http://ai.bu.edu/visda-2019/ (p. 59).

Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., & Müller, K.-R. (2019). Explainable
ai: Interpreting, explaining and visualizing deep learning (Vol. 11700). Springer
Nature. (Pp. 176, 180, 181).

Sanakoyeu, A., Khalidov, V., McCarthy, M. S., Vedaldi, A., & Neverova, N. (2020). Trans-
ferring dense pose to proximal animal classes. arXiv preprint arXiv:2003.00080
(pp. 83, 84).

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018a). Mobilenetv2:
Inverted residuals and linear bottlenecks. Conference on computer vision and
pattern recognition (CVPR) (pp. 26, 48, 231).

https://doi.org/10.48550/ARXIV.2007.00810
http://ai.bu.edu/visda-2019/

robust machine learning 347

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018b). Mobilenetv2:
Inverted residuals and linear bottlenecks. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 4510–4520 (p. 87).

Sani, O. G., Abbaspourazad, H., Wong, Y., Pesaran, B., & Shanechi, M. (2020). Mod-
eling behaviorally relevant neural dynamics enabled by preferential subspace
identification. Nature Neuroscience, 24, 140–149 (p. 117).

Sani, O. G., Abbaspourazad, H., Wong, Y. T., Pesaran, B., & Shanechi, M. M. (2021). Mod-
eling behaviorally relevant neural dynamics enabled by preferential subspace
identification. Nature Neuroscience, 24(1), 140–149 (p. 13).

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization
help optimization? Advances in Neural Information Processing Systems (NIPS)
(p. 25).

Saunshi, N., Plevrakis, O., Arora, S., Khodak, M., & Khandeparkar, H. (2019). A
theoretical analysis of contrastive unsupervised representation learning. In
K. Chaudhuri & R. Salakhutdinov (Eds.), Proceedings of the 36th international
conference on machine learning, ICML 2019, 9-15 june 2019, long beach, california,
USA (pp. 5628–5637, Vol. 97). PMLR. (Pp. 98, 100).

Sawinski, J., Wallace, D. J., Greenberg, D. S., Grossmann, S., Denk, W., & Kerr, J. N.
(2009). Visually evoked activity in cortical cells imaged in freely moving animals.
Proceedings of the National Academy of Sciences, 106(46), 19557–19562 (p. 8).

Schneider, S., Baevski, A., Collobert, R., & Auli, M. (2019). Wav2vec: Unsupervised
pre-training for speech recognition. CoRR, abs/1904.05862 (pp. 17, 98, 196).

Schneider, S., Ecker, A. S., Macke, J. H., & Bethge, M. (2018). Multi-task generaliza-
tion and adaptation between noisy digit datasets: An empirical study. Neural
Information Processing Systems (NeurIPS), Workshop on Continual Learning (pp. 23,
33).

Schneider, S., Lee, J. H., & Mathis, M. W. (2023). Learnable latent embeddings for joint
behavioural and neural analysis. Nature, 617, 360–368 (pp. 178, 179, 184, 185,
187, 361).

Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., & Bethge, M. (2020a).
Improving robustness against common corruptions by covariate shift adaptation.
Advances in neural information processing systems (pp. 40, 41, 46, 49–51, 53, 55, 66,
67, 72, 74, 78, 240, 247, 271).

Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., & Bethge, M. (2020b).
Removing covariate shift improves robustness against common corruptions.
Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS) (pp. 85,
93, 279, 280).

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., & Mooij, J. (2012). On
causal and anticausal learning. Proceedings of the 29th International Coference on
International Conference on Machine Learning, 459–466 (pp. 25, 196).

Schönemann, P. H. (1966). A generalized solution of the orthogonal procrustes problem.
Psychometrika, 31, 1–10 (p. 151).

robust machine learning 348

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., Kar, K.,
Bashivan, P., Prescott-Roy, J., Geiger, F., et al. (2018). Brain-score: Which artificial
neural network for object recognition is most brain-like? BioRxiv, 407007 (p. 197).

Schrödel, T., Prevedel, R., Aumayr, K., Zimmer, M., & Vaziri, A. (2013). Brain-wide
3d imaging of neuronal activity in caenorhabditis elegans with sculpted light.
Nature methods, 10(10), 1013–1020 (p. 5).

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C. W., Wightman, R., Cherti, M.,
Coombes, T., Katta, A., Mullis, C., Wortsman, M., Schramowski, P., Kundurthy,
S. R., Crowson, K., Schmidt, L., Kaczmarczyk, R., & Jitsev, J. (2022). LAION-5b:
An open large-scale dataset for training next generation image-text models.
Thirty-sixth Conference on Neural Information Processing Systems Datasets and Bench-
marks Track. https://openreview.net/forum?id=M3Y74vmsMcY (p. 195).

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and
reward. Science, 275, 1593–1599 (p. 131).

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-
cam: Visual explanations from deep networks via gradient-based localization.
Proceedings of the IEEE international conference on computer vision, 618–626 (p. 182).

Shah, S., Sharma, A., Jain, A., et al. (2019). On the robustness of human pose estimation.
arXiv preprint arXiv:1908.06401 (p. 86).

Shapley, L. S., et al. (1953). A value for n-person games (p. 180).
She, Q., & Wu, A. (2020). Neural dynamics discovery via gaussian process recurrent

neural networks. Uncertainty in Artificial Intelligence, 454–464 (p. 13).
Shi, X., Li, D., Zhao, P., Tian, Q., Tian, Y., Long, Q., Zhu, C., Song, J., Qiao, F., Song, L.,

Guo, Y., Wang, Z., Zhang, Y., Qin, B., Yang, W., Wang, F., Chan, R. H. M., & She,
Q. (2020). Are we ready for service robots? the OpenLORIS-Scene datasets for
lifelong SLAM. 2020 International Conference on Robotics and Automation (ICRA),
3139–3145 (p. 79).

Shrikumar, A., Greenside, P., Shcherbina, A., & Kundaje, A. (2016). Not just a black box:
Learning important features through propagating activation differences. ArXiv,
abs/1605.01713. https://api.semanticscholar.org/CorpusID:8564234 (p. 176).

Shrikumar, A., Su, J., & Kundaje, A. (2018). Computationally efficient measures of
internal neuron importance. (P. 180).

Shu, J., Zhao, Q., Chen, K., Xu, Z., & Meng, D. (2020). Learning adaptive loss for robust
learning with noisy labels. ArXiv preprint, abs/2002.06482. https://arxiv.org/
abs/2002.06482 (p. 44).

Shu, R., Bui, H. H., Narui, H., & Ermon, S. (2018). A DIRT-T approach to unsupervised
domain adaptation. 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
https://openreview.net/forum?id=H1q-TM-AW (pp. 42, 43, 260).

Siegle, J. H., Jia, X., Durand, S., Gale, S., Bennett, C., Graddis, N., Heller, G., Ramirez,
T. K., Choi, H., Luviano, J. A., et al. (2021a). Survey of spiking in the mouse
visual system reveals functional hierarchy. Nature, 592(7852), 86–92 (p. 5).

https://openreview.net/forum?id=M3Y74vmsMcY
https://api.semanticscholar.org/CorpusID:8564234
https://arxiv.org/abs/2002.06482
https://arxiv.org/abs/2002.06482
https://openreview.net/forum?id=H1q-TM-AW

robust machine learning 349

Siegle, J. H., Jia, X., Durand, S., Gale, S. D., Bennett, C., Graddis, N., Heller, G., Ramirez,
T., Choi, H., Luviano, J. A., Groblewski, P. A., Ahmed, R., Arkhipov, A., Bernard,
A., Billeh, Y. N., Brown, D., Buice, M. A., Cain, N., Caldejon, S., . . . Koch,
C. (2021b). Survey of spiking in the mouse visual system reveals functional
hierarchy. Nature (pp. 119, 131, 138).

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks:
Visualising image classification models and saliency maps. CoRR, abs/1312.6034
(pp. 176, 179).

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale
image recognition. International Conference on Learning Representations (ICLR)
(pp. 26, 231).

Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017). Smoothgrad:
Removing noise by adding noise. arXiv preprint arXiv:1706.03825 (p. 182).

Smith, A. C., & Brown, E. N. (2003). Estimating a state-space model from point process
observations. Neural computation, 15(5), 965–991 (p. 13).

Sofroniew, N. J., Flickinger, D., King, J., & Svoboda, K. (2016). A large field of view
two-photon mesoscope with subcellular resolution for in vivo imaging. elife, 5,
e14472 (pp. 2, 7).

Sohn, K., Berthelot, D., Li, C.-L., Zhang, Z., Carlini, N., Cubuk, E. D., Kurakin, A.,
Zhang, H., & Raffel, C. (2020). Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. NeurIPS (p. 42).

Song, H., Kim, M., Park, D., & Lee, J.-G. (2020a). Learning from noisy labels with deep
neural networks: A survey. ArXiv preprint, abs/2007.08199. https://arxiv.org/
abs/2007.08199 (p. 44).

Song, K.-I., Seo, H., Seong, D., Kim, S., Yu, K. J., Kim, Y.-C., Kim, J., Kwon, S. J., Han,
H.-S., Youn, I., et al. (2020b). Adaptive self-healing electronic epineurium for
chronic bidirectional neural interfaces. Nature communications, 11(1), 4195 (p. 9).

Sprekeler, H., Zito, T., & Wiskott, L. (2014). An extension of slow feature analysis for
nonlinear blind source separation. The Journal of Machine Learning Research, 15(1),
921–947 (p. 101).

Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., Beau,
M., Bhagat, J., Böhm, C., Broux, M., et al. (2021). Neuropixels 2.0: A miniaturized
high-density probe for stable, long-term brain recordings. Science, 372(6539),
eabf4588 (p. 2).

Stevenson, I. H., & Kording, K. P. (2011). How advances in neural recording affect data
analysis. Nature neuroscience, 14(2), 139–142 (pp. 2, 7).

Subbotin, M. F. (1923). On the law of frequency of error. Mat. Sb., 31(2), 296–301 (p. 104).
Sugiyama, M., & Kawanabe, M. (2012). Machine learning in non-stationary environments:

Introduction to covariate shift adaptation. MIT press. (P. 25).
Sun, B., Feng, J., & Saenko, K. (2017). Correlation alignment for unsupervised domain

adaptation. In Domain adaptation in computer vision applications (pp. 153–171).
Springer. (P. 33).

https://arxiv.org/abs/2007.08199
https://arxiv.org/abs/2007.08199

robust machine learning 350

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou,
Y., Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H., Timofeev, A.,
Ettinger, S., Krivokon, M., Gao, A., Joshi, A., . . . Anguelov, D. (2020). Scalability
in perception for autonomous driving: Waymo open dataset. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (p. 79).

Sun, Y., Tzeng, E., Darrell, T., & Efros, A. A. (2019a). Unsupervised domain adaptation
through self-supervision. ArXiv preprint, abs/1909.11825. https://arxiv.org/abs/
1909.11825 (pp. 47–49, 78).

Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A. A., & Hardt, M. (2019b). Test-time training
for out-of-distribution generalization. CoRR, abs/1909.13231 (pp. 33, 40, 41, 50,
69, 78, 244, 246, 249).

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks.
International Conference on Machine Learning. https://api.semanticscholar.org/
CorpusID:16747630 (pp. 176, 180, 182).

Svoboda, K., Denk, W., Kleinfeld, D., & Tank, D. W. (1997). In vivo dendritic calcium
dynamics in neocortical pyramidal neurons. Nature, 385(6612), 161–165 (pp. 2,
7).

Symvoulidis, P., Lauri, A., Stefanoiu, A., Cappetta, M., Schneider, S., Jia, H., Stelzl,
A., Koch, M., Perez, C. C., Myklatun, A., et al. (2017). Neubtracker—imaging
neurobehavioral dynamics in freely behaving fish. Nature methods, 14(11), 1079–
1082 (pp. 5, 10, 14).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan, D., Van-
houcke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Conference
on Computer Vision and Pattern Recognition (CVPR) (pp. 26, 231).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the
inception architecture for computer vision. Conference on computer vision and
pattern recognition (CVPR) (pp. 26, 231).

Takei, T., Lomber, S. G., Cook, D. J., & Scott, S. H. (2021). Transient deactivation of
dorsal premotor cortex or parietal area 5 impairs feedback control of the limb
in macaques. Current Biology, 31(7), 1476–1487 (p. 7).

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., & Le, Q. V. (2019).
Mnasnet: Platform-aware neural architecture search for mobile. Conference on
Computer Vision and Pattern Recognition (CVPR) (pp. 26, 231).

Tan, M., & Le, Q. V. (2019). Efficientnet: Rethinking model scaling for convolutional
neural networks. International Conference on Machine Learning (ICML) (pp. 40, 46,
87, 241).

Tang, X., Shen, H., Zhao, S., Li, N., & Liu, J. (2023). Flexible brain–computer interfaces.
Nature Electronics, 6(2), 109–118 (p. 7).

Tange, O. (2011). Gnu parallel - the command-line power tool. ;login: The USENIX
Magazine, 36(1), 42–47. http://www.gnu.org/s/parallel (pp. 212, 262).

https://arxiv.org/abs/1909.11825
https://arxiv.org/abs/1909.11825
https://api.semanticscholar.org/CorpusID:16747630
https://api.semanticscholar.org/CorpusID:16747630
http://www.gnu.org/s/parallel

robust machine learning 351

Tangemann, M., Schneider, S., Von Kügelgen, J., Locatello, F., Gehler, P. V., Brox,
T., Kuemmerer, M., Bethge, M., & Schölkopf, B. (2023). Unsupervised object
learning via common fate. 2nd Conference on Causal Learning and Reasoning (p. 20).

Taori, R., Dave, A., Shankar, V., Carlini, N., Recht, B., & Schmidt, L. (2020). Measuring
robustness to natural distribution shifts in image classification. Advances in
Neural Information Processing Systems, 33, 18583–18599 (p. 251).

Tian, L., Hires, S. A., Mao, T., Huber, D., Chiappe, M. E., Chalasani, S. H., Petreanu, L.,
Akerboom, J., McKinney, S. A., Schreiter, E. R., et al. (2009). Imaging neural
activity in worms, flies and mice with improved gcamp calcium indicators.
Nature methods, 6(12), 875–881 (p. 7).

Tian, Y., Krishnan, D., & Isola, P. (2019). Contrastive multiview coding. arXiv preprint
arXiv:1906.05849 (pp. 98, 100, 101, 111).

Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., & Isola, P. (2020). What makes for
good views for contrastive learning. (Pp. 98, 100).

Todorov, E. (2004). Optimality principles in sensorimotor control. Nature neuroscience,
7(9), 907–915 (p. 7).

Tong, Z., Song, Y., Wang, J., & Wang, L. (2022). Videomae: Masked autoencoders are
data-efficient learners for self-supervised video pre-training. Advances in neural
information processing systems, 35, 10078–10093 (p. 17).

Tralie, C., Mease, T., & J.Perea. (2018a). Dreimac: Dimension reduction with eilenberg-
maclane coordinates. GitHub. https://github.com/ctralie/DREiMac (p. 152).

Tralie, C., Saul, N., & Bar-On, R. (2018b). Ripser.py: A lean persistent homology library
for python. The Journal of Open Source Software, 3(29), 925. https://doi.org/10.
21105/joss.00925 (p. 151).

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S., & Lucic, M. (2020). On mutual
information maximization for representation learning. 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020 (p. 100).

Tsypkin, Y. (1968). Self-learning–what is it? IEEE Transactions on Automatic Control, 13(6),
608–612. https://doi.org/10.1109/TAC.1968.1099015 (pp. 39, 43).

Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A., & Li, Y. (2022). Maxvit:
Multi-axis vision transformer. Computer Vision–ECCV 2022: 17th European Confer-
ence, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXIV, 459–479 (pp. 75,
76).

Turishcheva, P., Fahey, P. G., Hansel, L., Froebe, R., Ponder, K., Vystrčilová, M., Willeke,
K. F., Bashiri, M., Wang, E., Ding, Z., et al. (2023). The dynamic sensorium
competition for predicting large-scale mouse visual cortex activity from videos.
arXiv preprint arXiv:2305.19654 (p. 197).

Tybrandt, K., Khodagholy, D., Dielacher, B., Stauffer, F., Renz, A. F., Buzsáki, G., &
Vörös, J. (2018). High-density stretchable electrode grids for chronic neural
recording. Advanced Materials, 30(15), 1706520 (p. 9).

https://github.com/ctralie/DREiMac
https://doi.org/10.21105/joss.00925
https://doi.org/10.21105/joss.00925
https://doi.org/10.1109/TAC.1968.1099015

robust machine learning 352

Tzeng, E., Hoffman, J., Saenko, K., & Darrell, T. (2017). Adversarial discriminative
domain adaptation. Proceedings of the IEEE conference on computer vision and
pattern recognition, 7167–7176 (pp. 38, 78).

Urai, A. E., Doiron, B., Leifer, A. M., & Churchland, A. K. (2022a). Large-scale neural
recordings call for new insights to link brain and behavior. Nature neuroscience,
25(1), 11–19 (pp. 2, 5, 198, 361).

Urai, A. E., Doiron, B., Leifer, A. M., & Churchland, A. K. (2022b). Large-scale neural
recordings call for new insights to link brain and behavior. Nature Neuroscience,
25, 11–19 (pp. 114, 117, 154, 176).

Van de Ven, G. M., & Tolias, A. S. (2019). Three scenarios for continual learning. arXiv
preprint arXiv:1904.07734 (p. 66).

van den Oord, A., Li, Y., & Vinyals, O. (2018). Representation learning with contrastive
predictive coding. ArXiv, abs/1807.03748 (pp. 178, 182, 183).

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal of machine
learning research, 9(11) (p. 199).

Van Der Maaten, L., Postma, E., Van den Herik, J., et al. (2009). Dimensionality reduction:
A comparative. J Mach Learn Res, 10(66-71), 13 (pp. 117, 150).

Vargas-Irwin, C. E., Shakhnarovich, G., Yadollahpour, P., Mislow, J. M., Black, M. J.,
& Donoghue, J. P. (2010). Decoding complete reach and grasp actions from
local primary motor cortex populations. Journal of neuroscience, 30(29), 9659–9669

(p. 114).
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,

& Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30 (pp. 5, 195, 200).

Villani, C. (2008). Optimal transport: Old and new (Vol. 338). Springer Science & Business
Media. (P. 206).

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett,
M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E.,
Kern, R., Larson, E., . . . Contributors, S. 1. 0. (2020). SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272.
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2 (pp. 212, 262).

Walt, S. v. d., Colbert, S. C., & Varoquaux, G. (2011). The numpy array: A structure
for efficient numerical computation. Computing in Science & Engineering, 13(2),
22–30 (p. 145).

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., & Darrell, T. (2020a). Fully test-time
adaptation by entropy minimization. CoRR, abs/2006.10726 (pp. 33, 40–42, 44, 48,
50, 52–55, 72).

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., & Darrell, T. (2020b). Tent: Fully test-
time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726 (pp. 66,
67, 70, 74, 78, 269, 271).

https://doi.org/https://doi.org/10.1038/s41592-019-0686-2

robust machine learning 353

Wang, H., Ge, S., Lipton, Z., & Xing, E. P. (2019). Learning robust global representations
by penalizing local predictive power. Advances in Neural Information Processing
Systems, 10506–10518 (p. 60).

Wang, Q., Fink, O., Van Gool, L., & Dai, D. (2022). Continual test-time domain adapta-
tion. arXiv preprint arXiv:2203.13591 (pp. 66–69, 72, 74, 78, 193, 271).

Wang, T., & Isola, P. (2020). Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, 119,
9929–9939 (pp. 98, 100, 102, 104, 140, 141, 158–160, 183, 196, 290, 295, 304).

Wei, C., Shen, K., Chen, Y., & Ma, T. (2020). Theoretical analysis of self-training with
deep networks on unlabeled data. ICLR (p. 42).

Weisstein, E. (2020). Standard deviation distribution. https://mathworld.wolfram.com/
StandardDeviationDistribution.html (p. 223).

Wightman, R. (2019). Pytorch image models. https://doi.org/10.5281/zenodo.4414861

(pp. 259, 262).
Williams, A. H., Kunz, E., Kornblith, S., & Linderman, S. (2021). Generalized shape

metrics on neural representations. Advances in Neural Information Processing
Systems, 34, 4738–4750 (p. 197).

Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis, M., Guy, R. T.,
Haddock, S. H., Huff, K. D., Mitchell, I. M., Plumbley, M. D., et al. (2014). Best
practices for scientific computing. PLoS biology, 12(1), e1001745 (pp. 3, 15).

Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor
learning. Nature reviews neuroscience, 12(12), 739–751 (p. 7).

Wu, A., Roy, N. A., Keeley, S., & Pillow, J. W. (2017). Gaussian process based nonlinear
latent structure discovery in multivariate spike train data. Advances in neural
information processing systems, 30 (p. 13).

Wu, M., Zhuang, C., Yamins, D., & Goodman, N. (2020). On the importance of views in
unsupervised representation learning (p. 98).

Wu, Y., & He, K. (2018). Group normalization. Proceedings of the European Conference on
Computer Vision (ECCV) (pp. 30, 51, 53, 232).

Wu, Z., Xiong, Y., Yu, S. X., & Lin, D. (2018). Unsupervised feature learning via non-
parametric instance discrimination. 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
3733–3742. https://doi.org/10.1109/CVPR.2018.00393 (pp. 98, 100, 101, 111).

Wulfmeier, M., Bewley, A., & Posner, I. (2018). Incremental adversarial domain adapta-
tion for continually changing environments. 2018 IEEE International conference
on robotics and automation (ICRA), 4489–4495 (p. 78).

Xie, C., & Yuille, A. L. (2020). Intriguing properties of adversarial training. International
Conference on Learning Representations (ICLR) (p. 33).

Xie, Q., Luong, M.-T., Hovy, E., & Le, Q. V. (2020a). Self-training with noisy student
improves imagenet classification. Proceedings of the IEEE/CVF Conference on

https://mathworld.wolfram.com/StandardDeviationDistribution.html
https://mathworld.wolfram.com/StandardDeviationDistribution.html
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.1109/CVPR.2018.00393

robust machine learning 354

Computer Vision and Pattern Recognition, 10687–10698 (pp. xxii, 33, 38, 40, 43, 46,
48, 66, 194, 240–242, 247).

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transfor-
mations for deep neural networks. Conference on computer vision and pattern
recognition (CVPR) (pp. xxii, 26, 29, 46, 48, 75, 76, 231, 232, 242).

Xie, S. M., Kumar, A., Jones, R., Khani, F., Ma, T., & Liang, P. (2020b). In-n-out: Pre-
training and self-training using auxiliary information for out-of-distribution
robustness. arXiv preprint arXiv:2012.04550 (p. 42).

Yang, H., Zhang, R., & Robinson, P. (2016). Human and sheep facial landmarks localisa-
tion by triplet interpolated features. 2016 IEEE Winter Conference on Applications
of Computer Vision (WACV), 1–8 (p. 84).

Ye, S., Filippova, A., Lauer, J., Vidal, M., Schneider, S., Qiu, T., Mathis, A., & Mathis,
M. W. (2023a). Superanimal models pretrained for plug-and-play analysis of
animal behavior. arXiv preprint arXiv:2203.07436 (pp. 20, 194).

Ye, S., Lauer, J., Zhou, M., Mathis, A., & Mathis, M. W. (2023b). Amadeusgpt: A natural
language interface for interactive animal behavioral analysis. Thirty-seventh
Conference on Neural Information Processing Systems. https://openreview.net/
forum?id=9AcG3Tsyoq (p. 203).

Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S., Shenoy, K. V., & Sahani, M. (2008a).
Gaussian-process factor analysis for low-dimensional single-trial analysis of
neural population activity. Advances in neural information processing systems, 21
(p. 13).

Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., & Sahani,
M. (2008b). Gaussian-process factor analysis for low-dimensional single-trial
analysis of neural population activity. Journal of neurophysiology, 102 1, 614–35

(p. 114).
Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., & Darrell, T.

(2020). Bdd100k: A diverse driving dataset for heterogeneous multitask learning.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (p. 79).

Yu, K. J., Kuzum, D., Hwang, S.-W., Kim, B. H., Juul, H., Kim, N. H., Won, S. M.,
Chiang, K., Trumpis, M., Richardson, A. G., et al. (2016). Bioresorbable silicon
electronics for transient spatiotemporal mapping of electrical activity from the
cerebral cortex. Nature materials, 15(7), 782–791 (p. 9).

Yue, X., Zheng, Z., Zhang, S., Gao, Y., Darrell, T., Keutzer, K., & Vincentelli, A. S. (2021).
Prototypical cross-domain self-supervised learning for few-shot unsupervised
domain adaptation. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 13834–13844 (p. 78).

Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. CoRR, abs/1605.07146
(pp. 26, 46, 48, 54, 231).

https://openreview.net/forum?id=9AcG3Tsyoq
https://openreview.net/forum?id=9AcG3Tsyoq

robust machine learning 355

Zalta, E. N. (Ed.). (2020). Scientific Research and Big Data. In The Stanford encyclopedia
of philosophy (Summer 2020). Metaphysics Research Lab, Stanford University.
(P. 192).

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep
learning requires rethinking generalization. 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. https://openreview.net/forum?id=Sy8gdB9xx (p. 44).

Zhang, H., Dauphin, Y. N., & Ma, T. (2019). Fixup initialization: Residual learning
without normalization. CoRR, abs/1901.09321 (pp. 30, 233).

Zhang, M., Levine, S., & Finn, C. (2021). Memo: Test time robustness via adaptation
and augmentation. arXiv preprint arXiv:2110.09506 (pp. 41, 55, 249).

Zhang, M., Levine, S., & Finn, C. (2022). Memo: Test time robustness via adaptation and
augmentation. Advances in Neural Information Processing Systems, 35, 38629–38642

(pp. 67, 78, 269).
Zhang, R. (2019). Making convolutional networks shift-invariant again. International

Conference on Machine Learning (ICML) (p. 33).
Zhang, Z., & Sabuncu, M. R. (2018). Generalized cross entropy loss for training deep

neural networks with noisy labels. In S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information
processing systems 31: Annual conference on neural information processing systems
2018, neurips 2018, december 3-8, 2018, montréal, canada (pp. 8792–8802). https://
proceedings.neurips.cc/paper/2018/hash/f2925f97bc13ad2852a7a551802feea0-
Abstract.html (p. 44).

Zhao, C., Chen, S., Zhang, L., Zhang, D., Wu, R., Hu, Y., Zeng, F., Li, Y., Wu, D., Yu,
F., et al. (2023). Miniature three-photon microscopy maximized for scattered
fluorescence collection. Nature Methods, 20(4), 617–622 (p. 8).

Zhao, H., Jia, J., & Koltun, V. (2020a). Exploring self-attention for image recognition.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
10076–10085 (p. 48).

Zhao, Y., & Park, I. M. (2017). Variational latent gaussian process for recovering single-
trial dynamics from population spike trains. Neural computation, 29(5), 1293–1316

(p. 13).
Zhao, Z., Klindt, D. A., Maia Chagas, A., Szatko, K. P., Rogerson, L., Protti, D. A.,

Behrens, C., Dalkara, D., Schubert, T., Bethge, M., et al. (2020b). The temporal
structure of the inner retina at a single glance. Scientific reports, 10(1), 4399

(p. 193).
Zhou, D., & Wei, X. (2020). Learning identifiable and interpretable latent models of

high-dimensional neural activity using pi-vae. Advances in Neural Information
Processing Systems 33. https://proceedings.neurips.cc/paper/2020/hash/
510f2318f324cf07fce24c3a4b89c771-Abstract.html (pp. 12, 114, 117–119, 124, 137,
138, 148–150, 157).

https://openreview.net/forum?id=Sy8gdB9xx
https://proceedings.neurips.cc/paper/2018/hash/f2925f97bc13ad2852a7a551802feea0-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f2925f97bc13ad2852a7a551802feea0-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f2925f97bc13ad2852a7a551802feea0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/510f2318f324cf07fce24c3a4b89c771-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/510f2318f324cf07fce24c3a4b89c771-Abstract.html

robust machine learning 356

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2019).
A comprehensive survey on transfer learning. arXiv preprint arXiv:1911.02685
(p. 84).

Zimmermann, R. S., Sharma, Y., Schneider, S., Bethge, M., & Brendel, W. (2021a).
Contrastive learning inverts the data generating process. Proceedings of the
38th International Conference on Machine Learning, 139, 12979–12990. http ://
proceedings.mlr.press/v139/zimmermann21a.html (pp. 118, 140, 153, 158, 163,
169–173).

Zimmermann, R. S., Sharma, Y., Schneider, S., Bethge, M., & Brendel, W. (2021b).
Contrastive learning inverts the data generating process. International Conference
on Machine Learning, 12979–12990 (pp. 178, 179, 184, 185).

Zoltowski, D., Pillow, J., & Linderman, S. (2020). A general recurrent state space
framework for modeling neural dynamics during decision-making. International
Conference on Machine Learning, 11680–11691 (p. 13).

Zou, Y., Yu, Z., Liu, X., Kumar, B., & Wang, J. (2019). Confidence regularized self-
training. Proceedings of the IEEE/CVF International Conference on Computer Vision,
5982–5991 (p. 42).

http://proceedings.mlr.press/v139/zimmermann21a.html
http://proceedings.mlr.press/v139/zimmermann21a.html

Index

3DIdent, 109

details, 303

adaptation, 24

batch norm adaptation, 78

continual, 68, 249

in pose estimation, 94

test-time adaptation, 40

alignment-uniformity, 100

Animal Pose, 86, 278

artificial spiking dataset, 137

attribution map, 177, 313

autoLFADS, 119

details, 149, 157

batch norm adaptation, 78

implementation, 210

batch normalization, 23

behavior-contrastive, 156

Betti numbers, 124

BigTransfer model, 259

Blender, 109

calcium imaging, 7, 8, 131

calibration, 55, 70

Canonical Discriminative Form, 165

causal discovery, 183

causality, 183

CEBRA, 114

API, 145

consistency, 153, 166

decoding, 150

identifiability, 153, 168

modeling details, 144

theory, 158

center-out reaching, 128

CIFAR, 45

co-homology, 124

collapse, 243

common corruptions
similarity, 217

computer vision
medical imaging applications, 33

pose estimation, 82

robustness, 22, 192

consistency, 153, 165

experimental details, 147

multi-session datasets, 126

consistent embeddings, 117

continual adaptation, 79, 249

Continuously changing corruptions
dataset construction, 266

contrastive learning, 16, 98, 195

bijectivity, 163, 304

identifiability, 103

interpretability, 177

regularization, 178

relation to cross-entropy, 103

theory, 290

Controlled evaluation, 266

convex body, 104

covariate shift, 25

robust machine learning 358

decoding
movies, 135

dimensionality reduction
generative models, 11

overview, 10

DINO, 17

application, 152

image embedding, 131

discovery-driven, 120

distribution shift
error model, 222

error prediction, 217

quantification, 205

diversity condition
bijectivity, 163

consistency, 165

strong assumption, 171

domain adaptation, 40

CIFAR10-C, 244

covariate shift, 25

domain shift
quantification, 205

DomainNet, 251

efficient coding, 6

empirical identifiability, 105

entropy minimization, 44, 66

evaluation
continual adaptation, 68

explainability, 176

explanations, 182

false positive fits, 187

feature attribution, 182

generalized InfoNCE, 118, 159

minimizer, 160

grid cells, 7

Hölder’s defect formula, 223

Horse-10, 86, 273

Horse-C, 87, 279

hybrid contrastive learning, 186

hypothesis-driven, 120

theory, 187

identifiability, 99, 153, 168, 195

empirical, 105

extended theory, 289

neuroscience, 117

theory, 290

identifiable VAE, 119

ImageNet variants, 16, 45

Continuously Changing
Corruptions, 69

ImageNet-A, 26, 45, 211

ImageNet-C, 24, 26, 45, 211

ImageNet-D, 251

ImageNet-R, 26, 45, 211

ImageNet-V2, 26, 211

ObjectNet, 26, 211

ImageNet-D
AlexNet baseline, 257

error analysis, 253

independent component analysis, 18,
100, 195

neuroscience, 117

inference
transductive, 33

InfoNCE, 17, 98

generalized, 118

interpretable machine learning, 176

isometry, 298, 301

iVAE, 119

Jeffrey divergence, 207

KITTI Masks, 109

LFADS, 119

macaque dataset, 138

machine learning
interpretability, 176

origins, 4

recent developments, 5

vs. statistics, 14

Mazur-Ulam theorem, 292

robust machine learning 359

mean corruption error, 24

baseline, 212, 243

meta test-time training, 246

model calibration, 55, 70

monkey, 128

mouse dataset, 138

movements
active and passive, 128

movie decoding, 135

multi-animal embeddings, 126

multi-session datasets, 126

neural decoding, 150

neural dynamics, 114

neural latent benchmark, 151

neuron population, 6

neuroscience
behavior in, 9

large scale recordings, 5

origins, 4

recording methods, 7

noise contrastive estimation, 16, 98

nonlinear ICA, 100, 118

explainability, 178

feature attribution, 178

observatory model, 13

overfitting, 187

persistence, 124

pi-VAE
details, 148, 157

piVAE, 119

population dynamics, 6

pose estimation, 82

adaptation, 94

architectures, 87

primate, 128

pseudo-labeling, 43

robust pseudo-labeling, 44

rat hippocampus dataset, 138

recording methods, 7

recording modalities, 131

regularized contrastive learning, 178

robustness, 22, 38, 86, 192

error model, 222

evaluation, 24

Sample moments, 223

self-learning, 39

collapse, 243

detailed error rates, 244

two-point model, 235

self-supervised learning, 16, 98

DINO, 17

sensorimotor learning, 7

Shapley value, 182

somatosensory cortex, 128

statistics
vs. machine learning, 14

STL, 45

supervised contrastive learning, 118,
186

test-time adaptation, 40, 67, 78

continual, 68

test-time training, 244

time-contrastive, 155

time-contrastive learning, 185

topological analysis, 151

transfer learning, 85

tSNE
details, 150

UMAP
details, 149

unsupervised domain adaptation, 23,
39, 40, 78, 259

variational autoencoder
iVAE, 119

video embeddings, 152

visual cortex, 135

Wasserstein distance, 206

WILDS, 258

word2vec, 17

Photographic credits

Figure 1.1 Adapted based on code from Urai et al. (2022a), licensed under CC-BY.

Figure 1.2 uses https://doi.org/10.5281/zenodo.3925903 by Luigi Petrucco and https:
//doi.org/10.5281/zenodo.3926119 by Agustin Carpaneto, both under CC-BY.

Figure 1.3: Reprinted from Nature neuroscience, 20(3), Bassett, D. S., and Sporns, O.
(2017), “Network neuroscience.” pp. 353-364. Reproduced with permission from
Springer Nature.

Figure 1.4 Reprinted from Hong et al. (2021), licensed under CC-BY.

Figure 1.5: Reprinted from Neuron 93(3), Krakauer, J. W., Ghazanfar, A. A., Gomez-
Marin, A., MacIver, M. A., and Poeppel, D., “Neuroscience needs behavior: correcting
a reductionist bias.” pp. 480-490, Copyright (2017), with permission from Elsevier.

Figure 1.6 Reprinted from Current Opinion in Neurobiology 60, Mathis, M.W., and
Mathis, A., “Deep learning tools for the measurement of animal behavior in neuro-
science.”. pp. 1-11. with permission from Elsevier.

All Figures and Tables in Chapter 7 and Appendix F Reprinted from Schneider et al. (2023),
which is an open access article distributed under the terms of the Creative Commons
CC BY license, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited. Publisher: Springer Nature.

https://doi.org/10.5281/zenodo.3925903
https://doi.org/10.5281/zenodo.3926119
https://doi.org/10.5281/zenodo.3926119

Curriculum Vitae
Steffen Schneider

Contact Information

Website stes.io
Email stes@hey.com

Google Scholar scholar.google.com/citations?user=KR5dj44AAAAJ

Github github.com/stes

Education

11/19 – 01/24 Ph. D. Candidate, Neuroscience, EPFL EDNE (since 01/2021)
and International Max Planck Research School for Intelligent
Systems Tübingen (via ELLIS PhD Program)

10/16 – 12/18 M. Sc. Neuroengineering, with high distinction, Technical
University Munich

10/13 – 09/16 B. Sc. Electrical Engineering, Information Technology & Com-
puter Engineering, with excellence, RWTH Aachen Univer-
sity

Research and Professional Experience

02/23 – now Co-Founder and CTO, Kinematik AI, LLC

04/21 – now Co-Founder and CEO (Geschäftsführer), KI macht Schule
gUG (haftungsbeschränkt)

https://stes.io
mailto:stes@hey.com
https://scholar.google.com/citations?user=KR5dj44AAAAJ
https://github.com/stes

robust machine learning 364

05/22 – 07/22 Research Scientist Intern, Computer Vision, FAIR at Meta AI,
New York

09/20 – 01/21 Applied Science Intern, Adaptation and object centric learn-
ing, Amazon Web Services, Tübingen

02/20 – 03/20 Visiting PhD student, The Rowland Institute at Harvard,
Cambridge, Massachusetts

10/18 – 09/19 AI Resident, Speech Recognition, Facebook AI Research,
Menlo Park, California

04/18 – 09/18 Master’s Thesis Student, International Max Planck Research
School & University of Tübingen

06/17 – 04/18 Research Assistant, Multivariate Data Analysis for Molec-
ular Imaging, Institute of Biological and Medical Imaging,
Helmholtz Zentrum Munich & Klinikum rechts der Isar, TU
Munich

05/16 – 02/18 Research Assistant, Medical Computer Vision, Institute of
Imaging & Computer Vision, RWTH Aachen University

03/17 – 05/17 Research Intern, Deep Learning and EEG Signal Analysis,
School of Computing, University of Kent and Data Science
Institute, Imperial College London

10/14 – 06/15 Teaching Assistant, Electrical Engineering, RWTH Aachen
University

Additional academic activities

Student supervision and mentoring

Theses Bethge Lab: Shubham Krishna, Jan Hansen-Palmus (as co-
supervisor), Khushdeep Singh Mann; Mathis Lab: Jin H Lee,
Rodrigo González, Anastasiia Filippova

Projects Bethge Lab: Shubham Krishna, Bozidar Antic, Jugoslav Sto-
jcheski; Mathis Lab: Célia Benquet, Xingying Chen, Pauline
Lauwers

Reviewing

Journals Cell (co-reviewing)

robust machine learning 365

Conferences NeurIPS 2021, ICLR 2022 (highlighted reviewer), ICLR 2023,
CVPR 2023, NeurIPS 2023, ICLR 2024, AISTATS 2024, CVPR
2024, TMLR

Workshops NeurIPS 2023 SSL; NeurIPS 2022 DistShift; ICML 2022

ShiftHappens; ICML 2021 UDL; BIA 2017, DLMIA 2017 and
DLMIA 2018 workshops at MICCAI 2017 and 2018

Selected Scientific Workshops and Meetings

06/2022 Co-Organizer and Panel Moderation, Shift Happens Work-
shop at ICML’22. (>200 participants)

02/2021 Lead Organizer, Tuebingen AI Symposium 2020 (130 partici-
pants)

07/2021 Panel Moderation, ELLIS PhD and Postdoc Summit

10/2021 Talk and Workshop on robust vision at the MSNE project
week, TU Munich

01/2020 Instructor, Introductory course on Quantum machine learn-
ing

06/2018 Co-Organizer, SmartStart Computational Neuroscience Re-
treat, Freiburg

09/2017 Co-Organizer, Biomodeling retreat, Barcelona

List of Publications

Articles in peer-reviewed journals and proceedings

2023 Learnable latent embeddings for joint behavioural and neural
analysis.
Nature, 2023.
Steffen Schneider*, Jin Hwa Lee*, and Mackenzie Weygandt
Mathis.

2023 Rdumb: A simple approach that questions our progress in
continual test-time adaptation.
Neural Information Processing Systems (NeurIPS), 2023.
Ori Press, Steffen Schneider, Matthias Kuemmerer, and
Matthias Bethge.

https://shift-happens-benchmark.github.io/
https://shift-happens-benchmark.github.io/
https://sites.google.com/view/tue-ai-symposium
https://ellis.eu/events/ellis-phd-and-postdoc-summit-c01d2544-0168-4a05-b7a0-87898e405312
https://www.ei.tum.de/ei/studium/msne/events/msne-project-week-102021/
https://www.ei.tum.de/ei/studium/msne/events/msne-project-week-102021/
https://sites.google.com/view/smartstartretreat2018/home
https://sites.google.com/view/smartstartretreat2018/home
https://stes.io/biomodels/

robust machine learning 366

2023 Unsupervised object learning via common fate.
Conference on Causal Learning and Reasoning (CLeaR),
2023.
Matthias Tangemann, Steffen Schneider, Julius von Kügelgen,
Francesco Locatello, Peter Gehler, Thomas Brox, Matthias
Kümmerer, Matthias Bethge, and Bernhard Schölkopf.

2022 If your data distribution shifts, use self-learning.
Transactions on Machine Learning Research, and contributed
talk at the ICML 2021 WeaSuL Workshop, 2022.
Evgenia Rusak*, Steffen Schneider*, George Pachitariu, Luisa
Eck, Peter Gehler, Oliver Bringmann, Wieland Brendel, and
Matthias Bethge.

2022 Multi-animal pose estimation, identification and tracking
with DeepLabCut.
Nature Methods 19, 496–504, 2022.
Jessy Lauer, Mu Zhou, Shaokai Ye, William Menegas,
Steffen Schneider, Tanmay Nath, Mohammed Mostafizur
Rahman, Valentina Di Santo, Daniel Soberanes, Guoping
Feng, Venkatesh N. Murthy, George Lauder, Catherine Dulac,
Mackenzie Weygandt Mathis, and Alexander Mathis.

2021 Contrastive learning inverts the data generating process.
International Conference on Machine Learning (ICML), 2021.
Roland Zimmermann*, Yash Sharma*, Steffen Schneider*,
Matthias Bethge, and Wieland Brendel.

2021 Pretraining boosts out-of-domain robustness for pose estima-
tion.
Winter Conference on Applications of Computer Vision
(WACV), 2021.
Alexander Mathis*, Thomas Biasi*, Steffen Schneider, Mert
Yüksekgönül, Byron Rogers, Matthias Bethge, and Mackenzie
Mathis.

2020 Improving robustness against common corruptions by covari-
ate shift adaptation.
Neural Information Processing Systems (NeurIPS), 2020; also
in: ICML UDL Workshop (oral, top 5%), 2020.
Steffen Schneider*, Evgenia Rusak*, Luisa Eck, Oliver Bring-
mann, Wieland Brendel, and Matthias Bethge.

robust machine learning 367

2020 A primer on motion capture with deep learning: Principles,
pitfalls and perspectives.
Neuron 108(1), 44–65, 2020.
Alexander Mathis, Steffen Schneider, Jessy Lauer, and
Mackenzie Mathis.

2020 vq-wav2vec: Self-supervised learning of discrete speech rep-
resentations.
International Conference on Learning Representations
(ICLR), 2020.
Alexei Baevski*, Steffen Schneider*, and Michael Auli.

2019 wav2vec: Unsupervised pre-training for speech recognition.
Interspeech, 2019.
Steffen Schneider, Alexei Baevski, Ronan Collobert, and
Michael Auli.

2019 Iron-sequestering nanocompartments as multiplexed electron
microscopy gene reporters.
ACS Nano 13 (7), 8114–8123, 2019.
Felix Sigmund, Susanne Pettinger, Massimo Kube,
Fabian Schneider, Martina Schifferer, Michaela Aichler,
Steffen Schneider, Axel Walch, Thomas Misgeld, Hendrik
Dietz, et al.

2017 Neubtracker — imaging neurobehavioral dynamics in freely
behaving fish.
Nature Methods 14 (11), 1079–1082, 2017.
Panagiotis Symvoulidis, Antonella Lauri, Anca Stefanoiu,
Michele Cappetta, Steffen Schneider, Hongbo Jia, Anja Stelzl,
Maximilian Koch, Carlos Cruz Perez, Ahne Myklatun, Sabine
Renninger, Andriy Chmyrov, Tobias Lasser, Vasilis Ntziachris-
tos Wolfgang Wurst, and Gil G Westmeyer.

Reviews

2021 Motor control: Neural correlates of optimal feedback control
theory.
Current Biology 31(7), R356-R358., 2021.
Mackenzie W Mathis and Steffen Schneider.

robust machine learning 368

Workshop publications and pre-prints

2023 Identifiable attribution maps using regularized contrastive
learning.
NeurIPS Workshop: Self-Supervised Learning - Theory and Prac-
tice, 2023.
Steffen Schneider, Rodrigo González Laiz, Markus Frey, and
Mackenzie W Mathis.

2022 SuperAnimal models pretrained for plug-and-play analysis
of animal behavior
CoRR abs/2203.07436, 2022.
Shaokai Ye, Anastasiia Filippova, Jessy Lauer, Maxime Vidal,
Steffen Schneider, Tian Qiu, Alexander Mathis, Mackenzie W
Mathis

2021 Out-of-distribution generalization of internal models is corre-
lated with reward.
Self-Supervision for Reinforcement Learning Workshop-ICLR 2021,
2021.
Khushdeep Singh Mann*, Steffen Schneider*, Alberto Chi-
appa, Jin Hwa Lee, Matthias Bethge, Alexander Mathis, and
Mackenzie W Mathis.

2020 On the relationship between adaptive and invariant represen-
tation learning.
NeurIPS 2020 Preregistration Workshop, 2020.
Steffen Schneider*, Shubham Krishna*, Luisa Eck, Macken-
zie W Mathis, and Matthias Bethge.

2018 Salad: A toolbox for semi-supervised adaptive learning
across domains.
NeurIPS Workshop on Machine Learning Open Source Software
(MLOSS), 2018.
Steffen Schneider, Alexander S. Ecker, Jakob H. Macke, and
Matthias Bethge.

2018 Multi-task generalization and adaptation between noisy digit
datasets: An empirical study.
NeurIPS Workshop on Continual Learning, 2018.
Steffen Schneider, Alexander S. Ecker, Jakob H. Macke, and
Matthias Bethge.

robust machine learning 369

2017 Context-based normalization of histological stains using deep
convolutional features.
3rd Workshop on Deep Learning in Medical Image Analysis
(DLMIA), 2017.
Daniel Bug*, Steffen Schneider*, Anne Grote, Eva Oswald,
Friedrich Feuerhake, Julia Schüler, and Dorit Merhof.

Software

GitHub https://github.com/stes

2023 CEBRA, a method for non-linear data analysis in neuro-
science, https://github.com/stes/cebra

2022 “Shift Happens” benchmark package for robust-
ness evaluation (result of ICML 2022 workshop)
github.com/shift-happens-benchmark/icml-2022/

2022 the DeepLabCut benchmark
https://benchmark.deeplabcut.org/

2021 robusta, a package for robustness and adaptation on Ima-
geNet scale
github.com/bethgelab/robustness

2020 wav2vec and vq-wav2vec, self-supervised pre-training for
speech recognition

2018 salad, a package for semi-supervised adaptive learning across
domains
domainadaptation.org

Patents

2022 Dimensionality reduction of time-series data, and systems
and devices that use the resultant embeddings. Patent pending,
filed on January 25, 2022.

https://github.com/stes/cebra
https://github.com/shift-happens-benchmark/icml-2022
https://benchmark.deeplabcut.org/
https://github.com/bethgelab/robustness
https://domainadaptation.org

	Acknowledgements
	Preface
	Summary
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Introduction
	Approaches to understanding intelligent behavior
	How can neuroscience benefit from machine learning?
	What can machine learning offer to neuroscience?
	Dissertation outline

	Improving robustness against common corruptions by covariate shift adaptation
	Summary
	Introduction
	Measuring robustness against common corruptions
	Correcting Batch Normalization statistics as a strong baseline for reducing covariate shift induced by common corruptions
	Experimental Setup
	Results
	Analysis and Ablation Studies
	Related Work
	Discussion and Conclusion

	If your data distribution shifts, use self-learning
	Summary
	Introduction
	Related Work
	Self-learning for Test-Time Adaptation
	Experiment design
	Self-learning universally improves models
	Understanding test-time adaptation with self-learning
	A simple model of stability in self-learning
	Adapting models on a wider range of distribution shifts reveals limitations of robustification and adaptation methods
	Best practices and evaluation in test-time adaptation
	Conclusion

	RDumb: A simple approach that questions our progress in continual test-time adaptation
	Summary
	Introduction
	CCC: Towards Infinite Testing with Continuously Changing Corruptions
	RDumb: Turning your model off and on again
	Experiment Setup
	Results
	Analysis and Ablations
	Discussion and Related Work
	Conclusion

	Pretraining boosts out-of-domain robustness for pose estimation
	Summary
	Introduction
	Related Work
	Data and Methods
	Results
	Discussion and conclusions

	Contrastive Learning Inverts the Data Generating Process
	Summary
	Introduction
	Related Work
	Theory
	Experiments
	Conclusion

	Learnable latent embeddings for joint behavioral and neural analysis
	Summary
	Introduction
	Results
	Discussion
	Methods
	Supplementary Note 1
	Supplementary Note 2

	Identifiable attribution maps using regularized contrastive learning
	Summary
	Introduction
	Identifiability of Attribution Maps with Regularized Contrastive Learning
	Experimental verification
	Related Work
	Additional Discussion and Limitations
	Conclusions
	Theory

	Discussion
	The importance of robustness and adaptation for machine vision
	The importance of identifiability for scientific inference
	Non-linear, interpretable algorithms for neuroscientific inference
	Summary
	Outlook

	Improving robustness against common corruptions by covariate shift adaptation
	Distances and divergences for quantifying domain shift
	Notes on the experimental setup
	Additional results
	Analytical error model
	Full list of models evaluated on IN

	If your data distribution shifts, use self-learning
	A two-point model of self-learning
	Additional information on used models
	Detailed and additional Results on IN-C
	Detailed and additional Results on IN-D
	Additional experiments
	Software stack

	RDumb: A simple approach that questions our progress in continual test-time adaptation
	2D Example Experiments and Analysis
	Path Finding Algorithm
	CCC Plots
	EATA Implementation and Ablations
	Novelty of Resetting
	CIFAR10 Experiments
	Compute details
	Software and Dataset Licenses

	Pretraining boosts out-of-domain robustness for pose estimation
	Additional information on the Horse-10 dataset
	Baseline Performance on Horse-30
	Performance (PCK per bodypart) for all networks on Horse-10
	CKA analysis of training & trained vs. from scratch networks
	Results of within domain performance on Animal Pose
	Full results on Horse-C
	Inference Speed Benchmarking

	Contrastive Learning Inverts the Data Generating Process
	Extended Theory for Hyperspheres
	Extension of theory to subspaces of RN
	Experimental details
	Details on 3DIdent
	Effects of the Uniformity Loss

	Learnable latent embeddings for joint behavioral and neural analysis
	Supplementary Tables

	Identifiable attribution maps using regularized contrastive learning
	Implementation notes

	Bibliography
	Index
	Photographic credits
	Curriculum Vitae
	Contact Information
	Education
	Research and Professional Experience
	Additional academic activities
	List of Publications

