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Abstract

Financial criteria in architectural design evaluation are limited to cost performance. Here, 

I introduce a method – Automated Design Appraisal (ADA) – to predict the market price 

of a generated building design concept within a local urban context. Integrating ADA 

with 3D building performance simulations enables financial impact assessment that 

exceeds the spatial resolution of previous work. Within an integrated impact assessment, 

ADA measures the direct and localized effect of urban development. To demonstrate its 

practical utility, I study local devaluation risk due to nearby development associated with 

changes to visual landscape quality. The results shed light on the relationship between 

amenities and property value, identifying clusters of properties physically exposed or 

financially sensitive to local land-use change. Beyond its application as a financial 

sensitivity tool, ADA serves as a blueprint for architectural design optimization 

procedures, in which economic performance is evaluated based on learned preferences 

derived from financial market data. 
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1 1 Introduction

2 In architectural design optimization, computer generated designs are iteratively evaluated with 

3 respect to building performance criteria. While building design concepts are commonly assessed 

4 for engineering performance, including structural resilience[1], environmental quality[2], [3] and 

5 energy performance[4], [5], as well as for cost performance, including material usage[6] and 

6 sustainability goals[7], [8], current approaches have stopped short of considering the financial 

7 value of a given design directly, or more broadly speaking the preference thereof. The limited 

8 feedback between building design and real estate valuation models can be attributed to a lack of 

9 availability of simulations and pricing models with similarly specified attributes and parameters, 

10 in part due to the traditional separation of disciplines.

11 Most current studies in real estate economics utilize valuation models in specific 

12 geographic regions to infer the marginal price effect, or the price premium, of a given performance 

13 metric, including environmental amenities such as streetscape[9], waterscape[10], viewshed[11], 

14 building morphology[12], greenery[13], daylighting[14], visual quality[15], and landcover[16]. 

15 Yet, to our knowledge, no study has utilized these fitted models to predict the price of newly 

16 generated building and urban designs. This would require incorporating pricing models within a 

17 generative design or optimization framework or within a risk framework to assess the impact of 

18 attribute persistence: An example for the latter would be whether a desirable lake-view is exposed 

19 to future obstructions. The challenge arises from the need to additionally generate new building 

20 designs, and, for risk assessment studies, to compute the exposure to urban development or land-

21 use change. While parametric design and building simulation are central to architectural design 

22 optimization[17], limited access to relevant transaction data and model parameters, hampers 

23 efforts to evaluate the preference or value of a generated design, as well its impact on the local 

24 context. 
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25 To overcome these challenges, this paper introduces an integrated workflow, an augmented 

26 valuation model called Automated Design Appraisal (ADA). The ADA algorithm incorporates 

27 computational design techniques to generate a city model based on design parameters; geometric 

28 computing to simulate building performance; and finally, a fitted econometric model that predicts 

29 the value of a building’s design. The output is a single value representing the weighted economic 

30 preference of the individual attributes defining a single building design concept and its surrounding 

31 context. As a structured approach, ADA can be incorporated within various design analytic 

32 frameworks, including design optimization, or risk and impact assessment, by perturbing the initial 

33 design parameters and subsequently quantifying the effect size of an altered design scenario. 

34 To demonstrate its usefulness, this paper implements ADA within the context of a visual 

35 impact and risk assessment. It presents results from two case-studies in Lausanne, Switzerland; (1) 

36 the impact due to a single proposed development and (2) the potential value at risk due to nearby 

37 land-use changes across an entire commune. Importantly, the effect size is assessed not only at the 

38 point of alteration, but also for nearby buildings to capture the imposed cost of a generated design, 

39 or put another way, the risk of neighbor property devaluation. The results illustrate the theoretical 

40 space of localized costs imposed on the neighborhood due to simulated design scenarios. 

41 To assess both direct and localized effect sizes, it is important to choose an appropriate 

42 building performance metric by which to benchmark one urban design against another. Of the 

43 environmental performance metrics, a building’s view or visual landscape is particularly relevant 

44 as high-quality views are considered inherently important to home prices[18], [19]. Moreover, 

45 visual obstructions and the subsequent risk of devaluation are primary drivers of objection to 

46 proposed developments by community members – a sentiment typically referred to as NIMBYism 

47 (not in my backyard)[20]. We therefore use a building’s Visual Capital (VC), a value that 

48 evaluates building level visual landscape quality, in our case study. VC is as an income derived, 

49 non-linear weighting of the visible share of landscape elements[21], and, importantly, is derived 
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50 directly from 3D building geometries and is thus sensitive to nearby design changes to the urban 

51 environment. Additionally, we fit a pricing model trained on transaction data, provided by Wüest 

52 Partner, learning the preferences for VC and other covariates, and subsequently apply this model 

53 to gauge the magnitude of change in predicted price with respect to changes in VC across our 

54 design scenarios.

55 The proposed methodology and impact analysis can be further extended to examine the 

56 cost/benefit of proposed urban infrastructure, optimized greenery layouts, as well as its effect on 

57 other location-based attributes. The proposed design appraisal offers insights into the direct gain 

58 and social acceptance of design choices, making it a tool for site-selection and feasibility 

59 assessments. Additionaly, future design optimization studies can leverage ADA, by converting 

60 performance metrics into financial metrics, to aggregate building objectives into a single value, 

61 producing a preference ranking of the ‘optimized’ set of designs. 

62 2 Literature Review 

63 2.1 Economic Performance Metrics 

64 In the context of architectural design, economic performance has been described as the evaluation 

65 of revenue, cost, and profitability [17]. Commonly used economic performance metrics focus on 

66 a cost minimization objective, such as the cost of pedestrian walking routes [8], or the cost of 

67 lighting & heating (or space efficiency) [6], [22]. For example, Nagy et al utilize a profit metric to 

68 explore modular design solutions at the urban scale [23]. Using pre-defined values for selling price 

69 and project cost for each modular unit type, a generative design procedure produces a set of profit-

70 optimized solutions. However, the approach has specific limitations: When a fixed selling price is 

71 applied, it overlooks the significance of the unique spatial qualities within the proposed design. 
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72 This can contradict the proven value of the design itself [12]. In addition, the potential cost imposed 

73 on neighbors as a result of new development [24] remains unexplored. 

74 The few studies that have focused on evaluating the preference of a generated design 

75 primarily leverage satisfaction questionnaires [25]–[27].  Such stated preference approaches only 

76 describes the hypothetical preference which itself may be biased[28]. In contrast, revealed 

77 preference methods, such as the determining the willingness to pay by regressing attributes on 

78 transaction prices, describe actual economic decisions [29], are considered a superior method to 

79 measure preference. 

80 Thus, the current study contributes to the literature in two ways: it provides a new method 

81 that leverages revealed preferences using real estate transaction data to ascribe economic value of 

82 newly proposed designs, and it simultaneously estimates the economic impact of a design solution 

83 on its immediate urban surrounding. It thus allows to assess the devaluation risk due to land-use 

84 change.

85

86 2.2 Devaluation Risk

87 Devaluation risk, or potential decrease in the value of a property, is a major concern to property 

88 owners and lenders. Previous work primarily focused on the devaluation due to climate change 

89 [30]. Typically, the effects of physical risks are estimated by using historical financial and 

90 environmental data; where natural disaster shocks, such as flooding [31]–[35] and wildfires [36], 

91 are used to show persistent negative impacts on housing values. To understand the future and 

92 potential impact of climate change on real estate, the generation of hazard exposure maps is 

93 essential. For example, high resolution flood hazard maps for the year 2020-2050 [37] enabled 

94 subsequent studies to assess whether residential properties are over-priced relative to their flood 

95 exposure [38].
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96 Among the risks to real estate owners is property devaluation due to local land-use change 

97 [20]. For example, Thibodeau shows that the development of a high-rise building had a negative 

98 effect on the property values of adjacent neighbors (< 2,500 meters) [24]. At such a local scale, it 

99 is possible to compute exposure maps by leveraging computational design, urban analytics, and 

100 micro-climate simulation methods, including energy modeling [4], solar irradiation [39] , 

101 daylighting [3], and visibility [40]. Past studies have leveraged these simulations and applied the 

102 hedonic pricing model [29] to assess the marginal price effect of micro-climate performance on 

103 real estate valuation [15], [41]–[43]. Yet, unlike the future flood risk projections example, local 

104 risk evaluation methods stop short of examining the sensitivity of a set of building valuations 

105 across future urban design scenarios. Thus, this paper extends the literature by taking advantage 

106 of a key feature of geometric data, that differentiates it over other urban data types: it’s mutability. 

107 Specifically, a sensitivity analysis which can be applied to generate new design scenarios and to 

108 automatically assess the impact of design perturbation on property values. 

109 2.3 Visibility Simulation and Visual Capital

110 Of the factors that drive property devaluation risk, visual impact resulting from land-use change is 

111 of particular concern to NIMBYs [20], [24]. This concern is driven by the significant influence of 

112 attractive views  on property values [11], [18], [43], [44] and the localized effect of visual 

113 obstructions [24]. Views encapsulate an abstract summary of the urban environment from a single 

114 perspective, making it easier for individuals to notice changes in the landscape aesthetics compared 

115 to aspects such as noise or air pollution. Yet, despite the importance and attention  paid to visual 

116 impact assessment[45] and visual landscape research more broadly[43], access to a structured 3D 

117 approach to evaluate visual landscape at the building-level has only been achieved recently, in the 

118 form of the Visual Capital (VC) index [21]. 
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119 The computation of the VC index is composed of three essential parts: (1), the viewpoint 

120 visual share simulation, (2) a set of aggregation functions defining building view-metrics, and (3) 

121 a machine learning model that predicts net-income, with the latter serving as a proxy for economic 

122 preference based on the concept of amenity-based income sorting [46], [47]. The viewpoint visual 

123 share simulation leverages the raycasting algorithm originating from a set of façade points to 

124 determine the ‘visible’ part of a 3D city model, and recording the attributes of the intersected ray, 

125 including distance, obstructions, and landcover category. The generated viewpoint visual share 

126 dataset indicates what landcover categories are visible and in what proportion from a single 

127 viewpoint, before being aggregated to the building-level. Specifically, viewpoints are grouped by 

128 their associated building and a series of aggregation functions are mapped, resulting in a set of 57 

129 view-metrics describing the spatial composition and configuration of visible landcover elements 

130 for each building. View-metrics include average sky exposure, maximum visual share of nature, 

131 visual access to lake-view, balance of elements in distance, richness of panorama, among others.  

132 A neural network then estimates that weighted importance of these building view-metrics in 

133 predicting the commune average net-income. And finally, applying the fitted model to out of 

134 sample visual share data produces a building’s VC index.

135 Unlike other view-based building performance metrics, VC is a single value and can be 

136 easily integrated within pricing models to determine the price-amenity gradient. In addition, it can 

137 easily be derived for newly generated design scenarios, thus providing a direct link between design 

138 performance evaluation (the view) and pricing.

139 3 Material and Methods 

140 Automated Design Appraisal (ADA) is the application of a fitted pricing model to evaluate the 

141 economic preference of multiple design metrics. We demonstrate the applicability of ADA by 

142 integrating it within a devaluation risk assessment focused on the potential visual impact of a 
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143 simulated urban development. The workflow includes three parts: (1) pricing model (2) design 

144 simulation and (3) parametric design generator. To identify the potential financial impact, we 

145 measure the difference in predicted price between the simulated urban design scenarios (alt) and 

146 the as-built design scenario (ref).

147

148 3.1 Pricing Model

149 To analyze the relationship between the design attributes of a generated design scenario and real 

150 estate sale transactions, I use the hedonic pricing model. The commonly used approach in real 

151 estate economics literature quantifies the revealed preference, or the buyer’s willingness to pay, 

152 for a given characteristic. These building characteristics includes immutable attributes, including 

153 year of transaction, year of construction, etc., as well as mutable attributes, which are the variables 

154 of interest within parametric design and design evaluation. Eq. 1 presents the functional form of 

155 the specified model,

156 ln (𝑃)𝑖 = 𝛽0 + 𝛽1(𝑉𝐶)𝑖 + 𝛽3(L)𝑖 + 𝛽4(M)𝑖 + 𝛽5(S)𝑖 + 𝛽6(T)𝑖 + ε𝑖 (1)

157 where the dependent variable ln(P) is the natural logarithm of the transacted sales prices for 

158 building observation i. In this paper we are interested in quantifying the price sensitivity with 

159 respect to visual impact, thus we use Visual Capital (VC) as the variable of interest. L is a vector 

160 of exogenous location characteristic, including the log-scaled distance to water bodies. M is a 

161 vector of neighborhood level characteristics, such as macro-location[48]. T is a vector representing 

162 time fixed effects, i.e. year of transaction, and ε𝑖 is a vector of the unobservable characteristics. 

163 Given the importance of water-bodies on property valuation and on VC, we further limit the 

164 training sample to transactions of buildings located within agglomerations in proximity to a major 

165 lake, i.e. Biel/Bienne, Zurich, Lausanne, Geneva, Vevey–Montreux, Luzern, Thun, Neuchatel, and 
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166 Zug. To control for differences between these urban regions of Switzerland, we condition a 

167 building’s VC on agglomeration identity. Transaction data, including 7,651 sales transactions from 

168 years 2008 to 2017, and exogenous data points were provided and anonymized by Wüest Partner 

169 in compliance with Swiss privacy laws. 

170

171 3.2 Design Simulation

172 A building’s design performance is measured with respect to its visual landscape quality. 

173 3.2.1 City Model

174 To evaluate a building’s visual landscape, I first construct a Digital Twin, or 3D city model, using 

175 three separate publicly available databases: representing terrain, buildings, and vegetation [49]–

176 [51]. The composed city model provides a 3D digital representation of the building stock and is 

177 used as the reference scenario (ref). Importantly, due to the mutability of 3D data we can 

178 subsequently alter the input geometries to represent design changes. The swissBUILDING3D 

179 database provides separate 3D geometries for a building’s facade and roof, which allowing the 

180 modification of the height of an individual building, e.g. add a story, without distorting the roof. 

181 The altered design parameters thus lead to a slightly modified city model (alt). To represent 

182 different design scenarios, I compile a set of structured design alterations that can be compared 

183 against one another and against the reference scenario.

184 3.2.2 Performance Metrics

185 Using the compiled city model, a viewpoint visual share dataset is generated and subsequently 

186 used to compute a range of view-metrics and the Visual Capital index, as described in Swietek et 

187 al [21]. Specifically, I compute viewpoints for 𝐽 buildings (𝐵) indexed by 𝑗. The 𝑗-th building has 
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188 𝑛 viewpoints (𝐵𝑗𝑛) situated on its façade, spaced apart by 8 meters across each floor. Importantly, 

189 only exterior walls are considered. For instance, in the case of two buildings joined by an interior 

190 wall (e.g. row of townhomes) they are considered as single joint structure. For each viewpoint 𝐵𝑗𝑛

191  𝑤𝑖𝑡ℎ 𝑛 = 1,2,…,𝑛, a 120-degree view cone composed of 2600 rays is cast outward and the 

192 endpoint of intersection within the city model is recorded. The count of rays intersecting the same 

193 𝑙 = 1,2,…,20 landcover categories at 𝑑 = 1,2,…,4 distance categories are summed and divided by 

194 the total number of rays(i.e. 2600), generating the visual proportions for 𝐵𝑗𝑛 denoted by 𝑧𝑙𝑑. Visible 

195 proportions of landcover data for building j are thus represented by a (𝑛𝑥20𝑥4) array, denoted by 

196 𝑍𝑗. The values are derived from the swissTLM3D, COPERNICUS databases, describing whether 

197 the view is obstructed by a façade, roof, or vegetation; as well as the distance to visual elements. 

198 This procedure is referred to as the viewpoint visual share simulation, or visibility analysis. Next, 

199 the generated viewpoint visual share dataset is used to aggregate the land-use proportion viewpoint 

200 values to building level view metrics (for details see [21]). This results in 57 view metrics 

201 describing the visual landscape for a given building, e.g. maximum share of lake-view, sky 

202 exposure, etc. Lastly, to generate the Visual Capital index, I apply the pre-trained neural network, 

203 from Swietek et al, to the newly constructed vector of view-metrics.

204

205
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206 Figure 1 (a) Abstract schematic of the proposed Automated Design Appraisal algorithm: step 1.) define the set of design parameters 

207 of interest; step 2.) update buildings within 3D city model according to design parameters, thereby creating an alternative design 

208 scenario; step 3.) compute building performance metrics using building and micro-climate simulations – in this paper, we utilize 

209 a viewpoint visual share visibility simulation to generate a set of view-metrics and subsequently calculate the visual landscape 

210 quality, i.e. Visual Capital; step 4.) update vector of building attributes to include new performance metrics; step 5.) use fitted 

211 model to predict price of building with updated performance metrics. (b) Abstract schematic showing the application of ADA for 

212 a visual impact assessment in Lausanne. The proposed development, shown in red, represents the point of modification within a 

213 reference 3D city model. The spatial distribution of price impact, computed via ADA, is shown, with darker red representing greater 

214 impact on a building’s predicted price. 

215 3.3 Integrated Impact Assessment

216 The determinants of risk are the degree of exposure and sensitivity to a given hazard[52]. In the 

217 context of this paper, a hazard is a proposed building development that may obstruct the view and 

218 degrade the visual landscape quality of nearby buildings. As such, I propose two case-studies: an 

219 impact assessment of a single hazard, and of multiple hazards. 

220 To measure the exposure of building j to changes in the urban form, we can iteratively 

221 perturb the underlying city model denoted by 𝑠𝑟𝑒𝑓 thereby creating a set of new design scenarios 

222 of length 𝑆, and measure the persistence of the performance values. The design evaluation 

223 procedure consisting of 𝑀 metrics (here 𝑚 = 1,2,…,57 view metrics) applied to building 𝑗 derived 

224 from the context of design scenario 𝑠, results in a 𝑀𝑥𝐽𝑥𝑆 matrix 𝑉𝑎𝑙𝑡 of design performance values. 

225 To express the impact or change in performance metrics in a given building,

226  𝛥𝑉 = 𝑉𝑎𝑙𝑡 ― 𝑉𝑟𝑒𝑓 (2)

227 Where Δ𝑉(𝑚) is a 𝐽𝑥𝑆 matrix and 𝑉𝑟𝑒𝑓(𝑚) is a vector of length j, describing the design 

228 performance values of metric 𝑚 in the as-built design scenario 𝑠𝑟𝑒𝑓across all included buildings 𝑗. 

229 To standardize the impact to represent the relative change, 
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230 𝛥𝑉𝑟𝑐 =
𝛥𝑉

𝑉𝑟𝑒𝑓 ―1 (3)

231 Thus, Δ𝑉(𝑚)𝑟𝑐
𝑗𝑠  describes the relative change in the value of metric 𝑚 for building 𝑗 due to the 

232 proposed project s. To express the maximally exposed metric, I take the metric with the largest 

233 change for each building and scenario

234 𝑀𝐸𝑉𝑀𝑗 =  𝑀𝑎𝑥𝑀 (𝛥𝑉(𝑚)𝑗𝑠) (4)

235 To derive the impact on predicted price Δ𝑌, I take the difference in the predicted prices of building 

236 𝑗. Where 𝑌 is a 𝐽𝑥𝑆 matrix. The predicted price is calculated by applying the previously 

237 development pricing model to the sample region with updated values for building performance 

238 values, 𝑉𝑎𝑙𝑡. Further, to identify the financial impact due to the effect on a building’s visual capital, 

239 I simplify the price impact equation by assuming no change across the other building’s attributes. 

240 Thus,

241 𝛥𝑌 = 𝑌𝑎𝑙𝑡 ― 𝑌𝑟𝑒𝑓 ≈ 𝛽𝑣𝑐𝛥𝑉(𝑉𝐶) +𝜀 (5)

242 3.3.1 Single Development

243 The first case study examines the potential visual impact of the Rasude Development within a 

244 .5km radius of a proposed 15-story office project near the Lausanne train station [53], [54]. Thus, 

245 one new design scenario 𝑠𝑎𝑙𝑡 is a modified city model containing the proposed Rasude 

246 Development. The proposed massing, containing three distinct structures[55], is designed in 

247 Rhinoceros 3D and added to 𝑠𝑟𝑒𝑓replacing the existing structures. Next, the design performance 

248 simulation with respect to a building’s visual landscape quality is initiated (described in section 

249 3.1.2) and spatial view metrics are calculated for both design scenarios.

250
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251 3.3.2 Regional Vulnerability

252 The second case study pertains to assessing the risk of multiple hazards, the spatial distribution of 

253 vulnerability to land-use changes within a sample region. Unlike the first case study, it incorporates 

254 multiple design scenarios and contrasts the potential gain in value of the up-zoned building to the 

255 potential losses in value of its neighboring buildings. Specifically, using the process iteratively 

256 modifies each building in a sample by adding 1 floor (i.e. 5 meters) to the existing building 

257 structure. Thus, in a sample region of 204 buildings index by j, this design augmentation results in 

258 204 alternate design scenarios indexed by 𝑠. Using this set of design scenarios, we next compute 

259 the visibility performance of buildings in the sample region. Importantly, for each iteration, we 

260 dynamically limit the sample region to the point of modification and its nearest 9 buildings. This 

261 helps to reduce the compute time, while maintaining the buildings expected to be most vulnerable 

262 to the change within a sample. As a result of this procedure, 2244 design performance simulation 

263 were executed: where in addition to the reference design scenario (no modifications), the 204 

264 buildings were modified and the visual impact of each modification was assessed either from the 

265 perspective of the modified building itself or from the perspective of each of the nearest 9 

266 neighboring buildings. This results in a sparse 𝐽𝑥𝑆 matrix Δ𝑉, where each design scenario 

267 corresponds to a specific modified building. Hence diagonal entries of the matrix of Δ𝑉 represent 

268 the impact of the modification on the building itself, or direct effect (𝐷𝐸). DE is a vector of size J 

269 that represent the increase (benefit) in a given metric at the modified site.

270 𝐷𝐸(𝑚) = 𝛥𝑉(𝑚), 𝑤ℎ𝑒𝑟𝑒 𝑠 = 𝑗 (6)

271 Whereas the off-diagonal entries represent the impact of a modification on nearby neighbors, 

272 defined as local effects (𝐿𝐸). 

273 𝐿𝐸(𝑚) = 𝛥𝑉(𝑚), 𝑤ℎ𝑒𝑟𝑒 𝑠 ≠ 𝑗 (7)
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274 As LE maintains a two-dimensional representation, we additionally compute a vector of 

275 cumulative local effects and exposure to local effects. Cumulative local effects (CLE) illustrative 

276 to collective impact of a single modification on its neighboring buildings. 

277 𝐶𝐿𝐸𝑠(𝑚) = ∑𝑗 Δ𝑉(𝑚)𝑠, 𝑤ℎ𝑒𝑟𝑒 𝑠 ≠ 𝑗 (8)

278 On the other hand, exposure to local effects (ELE; from the perspective of an unaltered neighbor) 

279 denotes the maximum change experienced across all design scenarios s. Put another way, this 

280 indicates the potential value at risk attributed to simulated land-use changes in the vicinity of a 

281 building. 

282 𝐸𝐿𝐸(𝑚)𝑗 = 𝑀𝑎𝑥𝑠(Δ𝑉(𝑚)𝑗), 𝑤ℎ𝑒𝑟𝑒 𝑠 ≠ 𝑗 (9)

283 Figure 2 illustrates the spatial distribution via impact maps portraying maxVSH: Sky, the 

284 maximum proportion of sky visible from a single viewpoint. Further, an abstract graph network 

285 represents the relationship considered across the impact assessment metrics: ref, DE, CLE, and 

286 ELE metrics.

287

288 Figure 2 Spatial distribution and abstract representation of the integrated impact assessment metrics used to visualize the 

289 distribution of impacts on maxVSH Sky, i.e. the maximum visible proportion of sky from a single viewpoint across all of a building’s 

290 viewpoints. Reference is the as-built condition of the city, Direct Effect (DE) express the gain in Sky Exposure as a result of the up 
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291 zoning, Cumulative Local Effects (CLE)  describes the gross cost imposed on its neighbors due up zoning at a given building, and 

292 Exposure to Local Effects (ELE) expresses the maximum potential loss across all of the unzoning scenarios tested. 

293 4 Results

294 4.1 Value of a View

295 We carry out a hedonic regression to understand the net effect of each included variable (see 

296 Methods) in predicting the sales transactions of included buildings. We are particularly interested 

297 in the coefficients for Visual Capital, as this learned parameter will drive variability across our 

298 integrated impact assessment tool. Table 1 shows parameter estimates across four pricing models 

299 where the natural logarithm of transacted prices is used as the dependent variable. We test four 

300 specified models (Table 1) to understand the interaction of Visual Capital across two different 

301 location-based scenarios, fitting VC independent (model 1 and 3) or dependent (model 2 and 4) on 

302 the agglomeration buildings are located in. In addition, each location-based model excludes (model 

303 1 and 2) or includes (model 3 and 4) agglomeration and a macro-location indices[48] provided by 

304 Wüest Partner. The difference between the first and second model (as well as between third and 

305 fourth model) helps identify the variable importance VC has across agglomerations. The third and 

306 fourth model additionally control for a set of important covariates, including a macro-location 

307 index which describes desirability across communes. Thus, the difference between the third and 

308 fourth model, highlights the spatial variability of VC after controlling for both building- and 

309 macro-level covariates. Importantly, the ranked coefficients for agglomeration-specific VC remain 

310 consistent whether macro-location indices are included or not. A similar trend is observed for all 

311 model coefficients when comparing the third and fourth models, with the one notable exception 

312 being the coefficient associated with the macro-location indicator. This suggests that part of the 

313 index is explained by agglomeration-specific VC. The fully specified model, shown in column (4), 

314 indicates that the model explains up to 81% of the variability in sales transactions, and, relevant to 
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315 this study, indicates that Visual Capital has a positive influence on price in the Lausanne 

316 agglomeration used for the two design scenarios. 

317 Table 1: Regression results across four models, where the dependent variable is the natural logarithm of the transacted price. 

318 Column (1) presents the regression results of the model that includes only the variable of interest, visual capital (VC). Column (2) 

319 presents the results of the model containing VC conditional on the agglomeration. Column (3) incorporates the fully specified 

320 model with an unconditional VC . Column (4) presents results for the fully specified model with VC conditioned on  lake-side 

321 agglomeration. Robust standard errors are shown in brackets and statistical significance is denoted at the following levels 

322 ***p < 0.01, **p < 0.05, *p < 0.1.

Parameters (1) (2) (3) (4)

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 -50.62*** [3.85] -46.92*** [3.48] -55.47*** [3.03] -61.87*** [2.79]

𝑉𝑖𝑠𝑢𝑎𝑙𝐶𝑎𝑝𝑖𝑡𝑎𝑙(𝑉𝐶) 1.62*** [0.04] - 0.27*** [0.03] -

VC: [Biel/Bienne] - 1.39*** [0.04] - 0.29*** [0.03]

VC: [Genève] - 1.54*** [0.04] - 0.37*** [0.03]

VC:[Lausanne] - 1.5*** [0.04] - 0.35*** [0.03]

VC: [Luzern] - 1.5*** [0.04] - 0.34*** [0.03]

VC: [Neuchâtel] - 1.42*** [0.04] - 0.3*** [0.03]

VC:[Thun] - 1.42*** [0.04] - 0.32*** [0.03]

VC: [Vevey–Montreux] - 1.49*** [0.04] - 0.33*** [0.02]

VC:[Zug] - 1.59*** [0.04] - 0.4*** [0.03]

VC:[Zürich] - 1.54*** [0.04] - 0.39*** [0.03]

𝑌𝑒𝑎𝑟𝑇𝑅𝐴𝑁𝑆𝐴𝐶𝑇𝐼𝑂𝑁 0.03*** [0.0] 0.03*** [0.0] 0.03*** [0.0] 0.03*** [0.0]

log 𝑉𝑜𝑙𝑢𝑚𝑒 - - 0.37*** [0.02] 0.39*** [0.02]

𝑁.𝑅𝑜𝑜𝑚𝑠 - - 0.06*** [0.0] 0.05*** [0.0]

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 - - 0.05*** [0.0] 0.05*** [0.0]

𝐹𝑖𝑡𝑜𝑢𝑡𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 - - 0.16*** [0.0] 0.14*** [0.0]

log 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝐸𝐴 - - -0.05*** [0.0] -0.08*** [0.0]

𝐴𝑔𝑒 - - 0.15 [0.33] 0.34 [0.3]

log 𝑃𝑙𝑜𝑡𝐴𝑟𝑒𝑎 - - 0.13*** [0.01] 0.18*** [0.01]
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Parameters (1) (2) (3) (4)

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 -50.62*** [3.85] -46.92*** [3.48] -55.47*** [3.03] -61.87*** [2.79]

𝑉𝑖𝑠𝑢𝑎𝑙𝐶𝑎𝑝𝑖𝑡𝑎𝑙(𝑉𝐶) 1.62*** [0.04] - 0.27*** [0.03] -

log 𝑀𝑎𝑐𝑟𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 - - 0.67*** [0.01] 0.4*** [0.01]

Adj. R-squared 0.21 0.36 0.76 0.81

Observations 7651 7651 7651 7651

R-squared 0.21 0.36 0.76 0.81

323

324 Figure 3 provides an illustration of the varying price effect of VC across lakeside 

325 agglomerations. Additionally, it shows the range of VC values used to train model 4. Lausanne, 

326 displayed in red, has the fourth largest coefficient, and third largest maximum VC range. 

327

328 Figure 3: Price Effect of Visual Capital by agglomeration while holding the other model parameters constant. The black line 

329 represents the actual range of values used during model training. For comparison, Lausanne (the agglomeration used in the case 

330 studies), is shown in red. 

331 The remainder of the paper describes results from two case studies which apply the fitted 

332 pricing model: (1) the local visual impact on neighboring buildings due to a single proposed 
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333 development in central Lausanne, and (2) the visual capital at risk due to localized up-zoning in 

334 the commune of Saint-Sulpice. 

335

336 4.2 Single Hazard 

337 The proposed 15-story Rasude development negatively impacts the visual metrics of 50% of 

338 buildings within a 500m radius. To understand the extent of visual impact, the largest relative loss 

339 across all view-metrics – the maximally exposed view metric (MEVM) – is computed and 

340 summarized across all buildings. Figure 4 illustrates that approximately 65% of the buildings have 

341 a MEVM of less than 1% relative change and that impact on both MEVM and prices are highly 

342 concentrated. Figure 4b shows among the most common negatively exposed view-metrics is sky-

343 exposure, proportion of distant views (>1km), as well as the maximum share on water-body, 

344 industrial complexes, and nature, with each being impacted in some capacity for 20% of the 

345 sampled buildings. As expected, there are positive gains in view-metrics related to façade and near 

346 distance obstructions. Note, that the largest relative losses are for scarce view-metrics, such as 

347 distant views and water-bodies; and the largest absolute changes are for more abundant view-

348 metrics, such as sky-exposure. 

349 To understand how price impact is distributed, I compare the aggregate valuations across 

350 all buildings in the sample region. Figure 4c illustrates that 44% of aggregate value lost is held by 

351 only 4% of the neighbors. They individually have losses greater than 5%, where the most price 

352 sensitive building lost 16% of its original valuation. Nearly 40% of the building stock account for 

353 the majority or 63% of aggregate value lost, where each individual loss is between 0-5% of the 

354 initial valuation (Figure 4c). Interestingly, 8% of the buildings sampled gain value as a 

355 consequence of the change in urban form. An analysis of this building subset shows that they 

356 benefit from the development of the sky-line. Specifically, the minimal obstruction of positive 
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357 views with an increase in the visual complexity of the panorama, results in a gain in visual capital, 

358 and, in turn predicted price (Figure 4).

359

360 Figure 4: (a) ECDF of relative change of maximally exposed view-metric and predicted price for all buildings in the sample region. 

361 Maximum visual impact is defined as the maximum relative change across a building’s vector of view-metrics between the two 

362 design scenarios. Heavily skewed distribution indicates concentrated losses. (b) Summary of log fold changes of view-metrics for 

363 all buildings between two design scenarios, the design scenario with the proposed development versus the baseline, as-built 

364 condition. (c) Barplot of the proportion of aggregate value lost for each level of price sensitivity, relative to the sample share of 

365 corresponding buildings. (d) Dot plot comparing the exposed view-metrics of buildings with Positive and Negative price sensitivity, 

366 suggesting some building benefits from additions to the ‘Sky-Line’ (Panoramic and Element Richness). (e) Series of effect-size 

367 maps following the developed method: 4-view metrics (lake-view, nature view, far-distance, and sky-exposure). (f) Effect size map 

368 of the predicted price impact  the proposed development site has on neighboring buildings (development shown in black). (g) Top 

369 ranked view-metric contributing to price risk at a given building.

370 The spatial distribution of price impact expands radially from the proposed development 

371 site, yet, a disproportionate share of the aggregate losses is held by the adjacent neighbors to the 

372 north (Figure 4f). Figure 4e shows the spatial distribution of effect size for the sample regions for 

373 individual view metrics. As expected, the spatial pattern of exposure varies by view-metrics; 

374 contingent on the location and abundance of landcover elements. For instance, impacted lake-
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375 views are exclusively to the north of the development site (Lake Geneva is directly south on the 

376 development site); and impacted nature views are additionally found in pockets in the east and 

377 north west of the sample region (Jura Mountains to the west, Swiss Alps to the east, and French 

378 Alps to the South); whereas a radial impact zone appears for sky-exposure. Using the weighting 

379 importance of view-metric in estimating visual capital, Figure 4g depicts the metric most 

380 responsible for driving the change in predicted price. For examples changes to desirable visual 

381 qualities – e.g. lake-views, are the driving determinant for the high price impact region.  

382

383 4.3 Multi Hazard 

384 Results from the regional simulation of up-zoning each building in the commune of Saint-Sulpice 

385 by one additional floor confirm that neighboring buildings face devaluation risk caused by nearby 

386 developments, with estimates as high as 5% of value lost for individual buildings. Despite the 

387 predicted price exposure to local effect (ELE) of individual buildings, the direct effect (DE) of 

388 most simulated single-story additions results in aggregate housing price gain even after accounting 

389 for the cumulative local effects (CLE). 
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390

391 Figure 5 Barplot of the share of (a) altered buildings with newly gained or enlarged existing views (direct effects) of specific 

392 landcover elements.  (b) Share of exposed buildings with partial or full obstruction by view metric. (c) Spatial distribution of Lake-

393 View direct effects, relative direct effect ranks, local exposure, and relative exposure ranks. (d) Boxplot of the Price effect across 

394 all design scenario; including direct (DE), cumulative local (CLE), exposure (ELE), and net effect. (e) Spatial distribution of Price 

395 Effects (DE and ELE); illustrating spatial variability of the number of impacted building to a specific hazard and the count of 

396 hazards a building is exposed to (Visual Risk). (f) Correlation plot of price effect metric and Urban and Environmental form 

397 attributes, with correlation values shown for significant values 𝑝 < .05.

398 For direct effects (DE) at the site of alteration, the majority of absolute gain is defined by 

399 the enlargement of already visible abundant landcovers: vegetation, sky, mid-distance (Figure 5a). 

400 The most common new views, or the landcover elements not visible prior to the alteration, are 

401 local roads, industrial areas, and agriculture. Of the exposed views: landcover area identified as 

402 local roads, industrial areas, and agriculture are most at risk of complete obstruction. Figure 5b 

403 shows that abundant view-metrics account for the majority of partial obstructions: including sky 

404 exposure and vegetation. The average loss of the maximally exposed view-metric (MEVM) is 

405 10%, whereas 15% of the sample risks completely losing its maximally exposed view-metric. 
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406 Additionally, potential visual impact is a function of the development’s location. Despite the large 

407 DE and CLE values, the majority of change is explained by abundant and negative sentiment; 

408 desirable views account for smaller proportion due to their scarce nature and as such exhibit spatial 

409 patterns in change. Figure 5c maps the spatial distribution of lake-view changes, showing that 

410 buildings along the shoreline enlarge their lake-view the most, and inland buildings have the 

411 greatest relative gain. Whereas the exposed lake-views are distributed in two distinct pockets on 

412 the west and eastern edges of the commune. Thus, even though changes to individual view-metrics 

413 provide insight to the extent of exposure, they alone do not describe the overall impact, as the 

414 importance of the metric, or sensitivity to change in value, have not been accounted for. The 

415 following section describe results in terms of price, which can be thought of as weighted 

416 combination of building performance metrics according to the learned market preferences. 

417

418 4.3.1 Price Risk

419 The automated design appraisal model (ADA) captures the price effect with respect to a given 

420 design change. The average direct effect of single floor additions in Saint-Sulpice result in a 4.4% 

421 price improvement, whereas the highest ranked building gains 12.5%. Interestingly, the rank of 

422 direct effect, or price gain, is weakly negatively correlated to both the rank cumulative local effects 

423 (CLE), i.e. social cost imposed, and exposure to local effects (ELE), or price vulnerability to local 

424 changes. Considering price change, the cumulative local effect (CLE) remains small compared to 

425 the direct effect (DE), i.e. price effect at the point of modification effect. Figure 5d shows that the 

426 vast majority of design scenarios are a net-positive for Saint-Sulpice, with only 5 locations where 

427 the DE is less than the cost imposed through visual obstructions to neighboring buildings. Figure 

428 5f maps the spatial distribution of price changes, showing several distinct pockets of buildings 

429 along the shoreline with the largest relative gain in value. Yet, the spatial distribution of value at 
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430 risk does not follow the same spatial pattern, with multiple clusters forming for both inward and 

431 outward impact Figure 5e. To examine the apparent spatial pattern found in the analysis, I 

432 subsequently examine the relationship of price impact with characteristics of the urban and natural 

433 form. Figure 5f illustrates the correlation between the price effect metrics and urban environmental 

434 form metrics, such as slope, building density, elevation, and spread. Although correlations are 

435 weak, they are significant, suggesting that, on average, urban form influences the price effect of 

436 simulated modifications. For example, buildings in low-density areas, greater distance to 

437 neighbors, correlates with larger benefits to alterations (DE) and smaller value at risk (ELE). 

438 It is additionally useful to understand the individual factors, in this case the view-metrics, 

439 driving the spatial patterns in both price gain (DE) and value at risk (ELE) within the region. To 

440 examine this, Figure 6 depicts the change in a common set of view-metrics from two properties: 

441 one from a region of high price gain (DE), and another from a region of high price vulnerability 

442 (ELE). The first property (EGID 796374), sees benefits from the alteration, such as a new lake-

443 view, and increased view of natures with little risk to its view-metrics from neighboring local 

444 development. However, the second property (EGID), has its 4% visual share of the lake at risk of 

445 obstruction due to a single neighbor’s alterations, moreover its view share of nature is at risk of 

446 obstruction by multiple potential local developments. 

447
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448

449 Figure 6: Change in top weighted view-metrics for 2 separate properties, EGID 796374 from a region of high price gain and EGID 

450 280091437 representing a region from high price risk. Points in grey represent the values for the reference scenario, or as-built 

451 condition; Blue points represent visual share value after alteration at the property; and the set of Red points represent the values 

452 after the modification it’s set of neighbors. Change in visual share (%) of view-metric is expressed for DE with green dashed line, 

453 and ELE with red dashed line. The relative change in listed in brackets. For example, the maximum visual share of water 

454 (maxVSH:Water) for EGID 280091437 in the reference scenario is ~2.3%; whereas it drops to .3% when EGID 280026324 builds 

455 up an addition floor, and rises to 8% when EGID 280091437 itself build up an additional floor. 

456 Summarizing the metrics driving price gain and risk, Figure 7 depicts the ranked feature 

457 importance for both price gain and risk across all buildings. For Saint-Sulpice, maxVSH of water-

458 bodies is the primary determinant of price gain for most site alterations (Figure 7a,b), and is a 

459 within the top 3 factors for nearly 60% of the building stock (Figure 7c). For price risk, due to the 

460 long coast, proportionately few buildings have exposed lake-views, thus metrics related to sky 

461 exposure, such as the maximum visual share of sky, are more commonly the primary determinant 

462 of price risk to single-story up-zoning in Saint-Sulpice (Figure 7d,f), with exception of properties 

463 along the coast, where the gained façade (within Neutral Sentiment index) and lost view of roofs 

464 play a bigger role (Figure 7e).
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465

466 Figure 7: Predictive importance rank of view-metrics in driving (a) price gain and (d) price risk as a proportion of buildings. (b+e) 

467 Maps illustrate the spatial distribution of the first ranked view-metric, and the spatial distribution of (c +f) of the view-metric with 

468 largest impact on price: (c) maximum visual share of water and (f) and maximum visual share of sky

469 5 Discussion

470 Integrating large scale geometric computing with econometric methods offers an opportunity to 

471 infer the price effect of a proposed design alteration. Hence: this paper extends the literature in 

472 two ways: First, it presents a novel approach to estimate the financial value of procedurally-

473 generated designs, which I refer to as Automated Design Appraisal (ADA). Second, it incorporates 

474 the ADA algorithm within a 3D urban design simulation to measure devaluation risks with respect 

475 to design changes. Further, focusing on the urban scale enables the quantification not just of the 

476 benefit of a given development at the site of modification, but also of the local vulnerability to the 

477 proposed development, i.e. the cost imposed on neighbors by the point of modification.

478 ADA relies on the assumption that the price of a building is the weighted sum of its 

479 individual attributes, also known as the hedonic price theory[29]. Though, unlike the vast hedonic 

480 pricing literature, this study takes the additional step to apply the fitted models to newly generated 
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481 building and urban designs. Utilizing computational design and large-scale 3D geodatabases, the 

482 as-built city model is systematically perturbed by altering design parameters, thereby creating new 

483 urban scenarios. A subsequent analysis of the price changes relative to the initial as-built 

484 conditions help to confirm that urban land-use change has localized impact affecting nearby 

485 neighbors to a greater extent. An important aspect of this approach is its interpretability. It is 

486 possible to not only explore the impact at the point of modification and nearby buildings; but also 

487 understand the determinants of the underlying risk. The latter is achieved by investigating the 

488 persistence of specific exposed building attributes– such as lake-view, nature-view, sky-exposure, 

489 etc.- and the aggregate valuation at risk due to these specific exposures. A common objection to 

490 local development is the immediate impact on visual landscape, which supports the use of Visual 

491 Capital in this study; however, future studies may extend this method by focusing on other 

492 environmental attributes, including noise pollution, thermal comfort, and air-quality, which are 

493 commonly used to raise objection to developments by the NIMBY movement, or more generally 

494 communities opposed to local development. Thus, this approach may prove beneficial to local 

495 communities interested in quantifying and communicating the visual and environmental impact in 

496 terms of local real estate valuation.  

497 A streamlined method to infer the price of computer-generated designs may provide further 

498 benefits: Generative Design tools may particularly benefit from ADA. Generative Design in 

499 architecture is an iterative design process that outputs feasible building designs under specified 

500 optimization functions. The proposed algorithm, ADA enables two new types of objective 

501 functions for architectural design optimization. First is optimizing valuation, whereby converting 

502 building attributes into monetary terms allows Generative Design procedures to (1) quantify the 

503 importance of non-market goods, e.g. environmental quality such as the view, and (2) weigh 

504 tradeoffs between seemingly disparate building attributes (e.g. visual quality and programming). 

505 The second opportunity, is optimizing for social cost or the cost imposed on its nearby neighbors. 
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506 It can be reasoned that developments which minimize the localized cost (whether gross cost or 

507 count of neighbors negatively impacted) also minimize the risk of local opposition. Evaluating the 

508 distribution effects- both direct and localized cost- could be particularly useful for urban planners 

509 and property developers who perform pre-development site selection and feasibility studies.

510 Although the method could be useful for both design optimization and distribution effect 

511 exploration, the approach does have its limitations. As with all hedonic analyses, inference is 

512 dependent on the specified model. Given that building attributes are highly correlated, results and 

513 parameter selection should be approached with care and scrutinized to assure meaningful 

514 interpretation. In this paper I study the distribution of price effects of urban development on visual 

515 impact. Thus, our results communicate price effects due to visual changes and ignore the changes 

516 from other environmental and economic changes that may arise simultaneously. Building upon 

517 this work, future studies can incorporate distribution effects stemming from changes to other 

518 environmental quality indicators: including noise pollution, thermal comfort, and air-quality.

519 Lastly, the measures of exposure and sensitivity are ultimately derived from 3D city 

520 models. Thus, the level of detail of the underlying 3D model will define the resolution of the 

521 building performance metrics. That is, information at a higher fidelity than that of the 3D model 

522 will not be included in the evaluation. For instance, building facades in this study are all considered 

523 to be the same, ignoring differences in construction materials and textures; lakes are also 

524 considered the same, ignoring difference in pollution and geometry. To build upon this limitation,  

525 future studies may incorporate images as a way to improve the fidelity of the automated visual 

526 impact assessment. 

527 6 Conclusion

528 Economic performance objectives within Architectural Design Optimization have remained 

529 challenging to implement, and have thus far been limited to cost minimization, ignoring economic 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4670069

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



27

530 preferences. In this paper, I introduce a novel approach to infer the financial value of a generated 

531 design. The proposed Automated Design Appraisal produces building-level price predictions using 

532 local-scale environmental performance simulations. Further, I integrate the algorithm within a 

533 visual impact framework to understand the property value at risk due to local development. 

534 Results from an impact assessment of a single proposed urban development indicate (1) 

535 losses are concentrated to neighbors closest to the point of modification and (2) a subset of 

536 buildings benefit from the development of the sky-line, confirming previous findings. Findings 

537 from a regional assessment show potential impact -both direct effects and localized costs- are a 

538 function of the local urban and environmental form. The spatial pattern of exposure varies by view-

539 metrics; contingent on the location and abundance of landcover elements. Yet, despite the 

540 devaluation risk to individual properties, moderate urban development (single-story up-zoning) is 

541 estimated to yield aggregate price benefits to low-density regions.

542 Automated Design Appraisal provides a scalable approach to incorporate economic 

543 performance within Architectural Design Optimization procedures. Doing so, enables evaluating 

544 generative urban design procedures with respect to both the (1) predicted price and (2) devaluation 

545 risk imposed on nearby neighbors. The approach enables future studies to integrate devaluation 

546 risk within automated real estate valuation models, reveal mispriced real estate with respect to 

547 their local exposure, and aid planners in local zoning and investment decisions.
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