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Abstract

Curvilinear structures are frequently observed in a variety of domains and are essential for

comprehending neural circuits, detecting fractures in materials, and determining road and

irrigation canal networks. It can be costly and time-consuming to manually extract these

structures, so automated systems are required for faster and more accurate analysis. Recently

deep learning-based approaches that rely solely on deep neural networks are being used for

automatic delineation of such structures. However, preserving the topology of the curvilinear

structures, which is essential for downstream applications, is a significant challenge. Fur-

thermore, deep learning models require vast quantities of precisely annotated data, which

is difficult to acquire, especially for 3D data. Commonly used pixel-wise loss functions can-

not capture the topology of curvilinear structures and deep networks that are trained with

such losses are prone to imprecisions in the annotations. In this thesis, we propose topology-

aware loss functions to tackle these problems and improve the topology of the reconstructions.

We begin by introducing a connectivity-oriented loss function for extracting network-like

structures from 2D images. We express the connectivity of curvilinear structures in terms of

disconnections that they create between background regions of the image. Our loss function is

designed to prevent such unwanted connections between background regions, and therefore

close the gaps in predicted structures. Then, we focus on using Persistent Homology (PH) to

improve the topological quality of the reconstructions. We propose a new filtration technique

by fusing two existing approaches: filtration by thresholding and height function. With the

proposed technique, we include location information of topological errors and increase the

descriptive power of PH. In order to tackle imprecise annotations, we propose an active

contour model based loss function. We treat annotations as contour models and allow them

to deform themselves over correct centerlines during training while preserving the topology of

the structure. Our final contribution is extending the aforementioned connectivity-oriented

loss function to work with 3D data as well. We achieve this by computing the loss on 2D

projections. With this method, we also reduce the annotation effort required to provide

training data. We demonstrate, in experiments on 2D (satellite images of roads and irrigation

canals) and 3D (Magnetic Resonance Angiography, Two-Photon Microscopy) datasets, that

our loss functions significantly improve the topological quality of the reconstructions.
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Zusammenfassung
Kurvilineare Strukturen werden häufig in verschiedenen Bereichen beobachtet und sind

wesentlich für das Verständnis neuronaler Schaltkreise, der Erkennung von Brüchen in Mate-

rialien sowie der Bestimmung von Straßen- und Bewässerungskanalsystemen. Es kann teuer

und zeitaufwändig sein, diese Strukturen manuell zu extrahieren, daher sind automatisierte

Systeme erforderlich, um eine schnellere und genauere Analyse zu ermöglichen. In letzter Zeit

werden Deep-Learning-basierte Ansätze, die ausschließlich auf tiefen neuronalen Netzwerken

basieren, für die automatische Abgrenzung solcher Strukturen verwendet. Die Erhaltung der

Topologie der kurvilinearen Strukturen, die für nachgelagerte Anwendungen wesentlich ist,

stellt jedoch eine große Herausforderung dar. Ferner benötigen Deep-Learning-Modelle große

Mengen präzise annotierter Daten, die insbesondere für 3D-Daten schwer zu beschaffen sind.

Häufig verwendete pixelweise Verlustfunktionen können die Topologie von kurvilinearen

Strukturen nicht erfassen, und tiefe Netzwerke, die mit solchen Verlusten trainiert werden, nei-

gen zu Ungenauigkeiten in den Annotationen. In dieser Arbeit schlagen wir topologiebewusste

Verlustfunktionen vor, um diese Probleme zu lösen und die Topologie der Rekonstruktionen zu

verbessern. Wir fangen damit an, eine verbindungsorientierte Verlustfunktion zur Extraktion

netzwerkähnlicher Strukturen aus 2D-Bildern einzuführen. Wir drücken die Verbindungen von

kurvilinearen Strukturen in Bezug auf Unterbrechungen aus, die sie zwischen Hintergrundre-

gionen des Bildes erzeugen. Unsere Verlustfunktion ist darauf ausgelegt, diese unerwünschten

Verbindungen zwischen Hintergrundregionen zu verhindern und die Lücken in den vorherge-

sagten Strukturen zu schließen. Anschließend konzentrieren wir uns darauf, die topologische

Qualität der Rekonstruktionen mithilfe der Persistent Homology (PH) zu verbessern. Wir

schlagen eine neue Filtrationstechnik vor, indem wir zwei bestehende Ansätze kombinieren:

Filtration durch Schwellenwertbildung und Höhenfunktion. Mit der vorgeschlagenen Tech-

nik erfassen wir auch die Positionsinformationen der topologischen Fehler und erhöhen die

beschreibende Kraft der PH. Um ungenaue Annotationen zu bewältigen, schlagen wir eine Ver-

lustfunktion basierend auf einem aktiven Konturmodell vor. Wir behandeln Annotationen als

Konturmodelle und erlauben ihnen, sich während des Trainings entlang korrekter Mittellinien

zu verformen, wobei die Topologie der Struktur erhalten bleibt. Unser letzter Beitrag besteht

darin, die zuvor erwähnte verbindungsorientierte Verlustfunktion auch für 3D-Daten zu er-

weitern. Dies erreichen wir, indem wir den Verlust auf 2D-Projektionen berechnen. Mit dieser

Methode reduzieren wir auch den Annotationsaufwand zur Bereitstellung von Trainingsdaten.

In Experimenten mit 2D-Datensätzen (Satellitenbilder von Straßen und Bewässerungskanä-

len) und 3D-Datensätzen (Magnetresonanzangiographie, Zweiphotonenmikroskopie) zeigen
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wir, dass unsere Verlustfunktionen die topologische Qualität der Rekonstruktionen deutlich

verbessern.

Schlüsselwörter: Computer Vision, Deep Learning, Abgrenzung, Kurvilinearen Strukturen,

Konnektivität, Topologie
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Résumé
Les structures curvilignes sont fréquemment observées dans divers domaines et sont essen-

tielles pour comprendre les circuits neuronaux, détecter les fissures dans les matériaux, et

identifier les réseaux routiers et de canaux d’irrigation. L’extraction manuelle de ces struc-

tures peut être coûteuse et chronophage, d’où la nécessité de systèmes automatisés pour

une analyse plus rapide et plus précise. Récemment, des approches basées sur l’apprentis-

sage profond qui reposent uniquement sur des réseaux de neurones artificiels profonds sont

utilisées pour la délimitation automatique de telles structures. Cependant, préserver la topo-

logie des structures curvilignes, qui est essentielle pour les applications en aval, est un défi

important. De plus, les modèles d’apprentissage profond nécessitent d’énormes quantités

de données précisément annotées, ce qui est difficile à obtenir, surtout pour les données en

3D. Les fonctions de coût basées sur les pixels couramment utilisés ne peuvent pas capturer

la topologie des structures curvilignes et les réseaux profonds qui sont entrainés avec cette

forme de supervision sont sujets à des imprécisions dans leurs prédictions. Dans cette thèse,

nous proposons des fonctions de coût sensible à la topologie pour résoudre ces problèmes et

améliorer la topologie des reconstructions. Nous commençons par introduire une fonction

de coût basée sur la connectivité pour extraire la structure de réseaux à partir d’images 2D.

Nous exprimons la connectivité des structures curvilignes en termes de déconnexions qu’elles

créent entre les régions de l’arrière-plan de l’image. Notre fonction de coût est conçue pour

empêcher ces connexions indésirables entre des régions de l’arrière-plan, et donc de combler

les lacunes dans les structures prédites. Ensuite, nous nous concentrons sur l’utilisation de

l’homologie persistante (HP) pour améliorer la qualité topologique des reconstructions. Nous

proposons une nouvelle technique de filtration en fusionnant deux approches existantes : la

filtration par seuillage et la fonction de hauteur. Avec la technique proposée, nous incluons

l’information de localisation des erreurs topologiques et augmentons le pouvoir descriptif

de l’HP. Afin de faire face aux annotations imprécises, nous proposons une fonction de coût

basée sur un modèle de contour actif. Nous traitons les annotations comme des modèles de

contour et les laissons se déformer elles-mêmes sur les lignes médianes correctes pendant

l’entraînement tout en préservant la topologie de la structure. Notre dernière contribution est

d’étendre la fonction de coût basée sur la connectivité mentionnée ci-dessus pour travailler

également avec des données 3D. Nous y parvenons en calculant le coût sur des projections

2D. Avec cette méthode, nous réduisons également l’effort d’annotation nécessaire pour four-

nir des données d’entraînement. Nous démontrons, dans des expériences sur des jeux de

données 2D (images satellites de routes et de canaux d’irrigation) et 3D (Angiographie par
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Résonance Magnétique, Microscopie à Deux Photons), que nos fonctions de perte améliorent

significativement la qualité topologique des reconstructions.

Mots-clés : Vision par ordinateur, Apprentissage profond, Délimitation, Structures curvilignes,

Connectivité

viii



Contents
Acknowledgements i

Abstract (English/Français/Deutsch) iii

List of Figures 5

List of Tables 9

1 Introduction 11

1.1 Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Automated Delineation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.2 Graph-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.3 Embedding Topological Information in Loss Function . . . . . . . . . . . 13

1.1.4 Persistent Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Promoting Connectivity of Network-like Structures by Enforcing Region Separation 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Connectivity-oriented loss functions . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Connectivity-oriented neural architectures . . . . . . . . . . . . . . . . . . 21

2.2.3 Affinity learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Regression Loss: LMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Connectivity Loss: LT OPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Network Architecture and Training Details . . . . . . . . . . . . . . . . . . 28

2.4.4 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.5 Comperative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.6 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Enforcing Connectivity of 3D Linear Structures Using Their 2D Projections 41

ix



Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Delineation of 3D linear Structures . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Topology-Aware Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Connectivity loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Projected Connectively Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Total Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.3 Architectures and Baselines. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.5 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Persistent Homology with Improved Locality Information for more Effective Delin-

eation 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Losses Designed to Enforce Topological Correctness. . . . . . . . . . . . . 53

4.2.2 Losses that rely on Persistent Homology . . . . . . . . . . . . . . . . . . . 53

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Persistent Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Training Deep Networks using PH . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.3 Accounting for the Location of Topological Features during Filtration . . 56

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Correlation to the Number of Topological Errors . . . . . . . . . . . . . . 59

4.4.2 Performance in Training Deep Networks . . . . . . . . . . . . . . . . . . . 59

4.4.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Adjusting The Ground Truth Annotations for Connectivity-Based Learning to Delin-

eate 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Automated Delineation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Handling Noisy Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 Deformable Contour Models . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Standard Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Overview of our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Annotations as Network Snakes . . . . . . . . . . . . . . . . . . . . . . . . 75

x



Contents

5.3.4 Computing the Gradients of the Loss Function . . . . . . . . . . . . . . . 75

5.3.5 Speeding Things Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.3 Architectures and Training Details . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.4 Label Correction Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.5 Comparative Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.6 Perfectly Accurate Annotations . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.7 Increasing Annotation Inaccuracy . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.8 Reducing Annotation Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.9 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Conclusion 91

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 102

Curriculum Vitae 103

xi





List of Figures

1.1 Difficulties of annotating data. Most annotation tools take several points on

the curvilinear structure as an input from the annotator and then use a tracing

algorithm which connects these points while minimising a cost function which

depends on the length of the path and voxel intensities along the path. (a) Inten-

sity changes in the curvilinear structures, as it can be seen inside the red circle,

renders it almost impossible to determine the centerlines. Furthermore, such

changes deteriorates the performance of the tracing algorithms. (b) Annotation

tools do not always trace the centerlines. It can create shortcuts which plague

the annotations with deviations from the actual centerline. . . . . . . . . . . . . 12

2.1 We enforce road connectivity by penalizing connections between background

regions. (a) Input image and ground truth. (b) A distance map predicted by a

U-Net trained without our connectivity loss, and its skeletonization, thickened

for visibility. Note that, even though there is a gap between road pixels P1 and P2,

they remain connected both in the ground truth and in the prediction, because

alternative paths exist in the loopy road network. By contrast, background

regions A and B connect in the prediction, but not in the ground truth. (c) A

distance map predicted by a U-Net trained using our disconnectivity loss and

its skeletonization. Our loss function penalizes connections between A and B ,

preventing gaps in the predicted road. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Handling a potential misalignment between the ground-truth and predicted

networks in the image of Fig. 2.1. The lines have been thickened for better

visibility. This misalignment makes imposing connectivity constraints on the

pixels belonging to the ground-truth centerline impractical. Instead, we only

require that background regions far away from the roads and delimited by a

dashed line be disconnected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



List of Figures

2.3 Computing Ldisc. We first tile the ground truth annotation and the distance

map computed by our network (1). We use the ground-truth roads to segment

each tile into separate regions (2). When there are unwarranted gaps in the

distance map, there is a least one path connecting disjoint regions such that

the minimum distance map value along that path is not particularly small. We

therefore take the cost of the path to be that minimum value (3) and we add to

our loss function a term that is the maximum such value for all paths connecting

points in the two distinct regions (4). This penalizes paths such as the one shown

here and therefore promotes the road graph connectivity. . . . . . . . . . . . . . 23

2.4 Comparative results on the RoadTracer dataset. For our results, we overlaid the

graphs on the inferred distance maps. . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Comparative results on the DeepGlobe dataset. For the results of our method, we

overlaid graphs on the inferred distance maps. . . . . . . . . . . . . . . . . . . . 33

2.6 Comparative results on the Canals dataset. For the results of our method, we

overlaid graphs on the inferred distance maps. . . . . . . . . . . . . . . . . . . . 34

2.7 Qualitative results on the Massachusetts dataset. For our method, we overlaid

graphs on the inferred distance maps. . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Effect of changing α in Eq. 2.2 on the distance map the neural network outputs.

As α increases, the road map becomes more complete until α becomes so large

that it promotes spurious connections even where no roads are present in the

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 Effect of changing β in Eq. 2.4 on the distance map the neural network outputs.

As β is increases, the predictions become more precise. It reduces false positive

roads until β becomes so large that it creates disconnections on actual roads. . 36

2.10 A comparison between the results obtained with the CE and MSE losses, on the

RoadTracer data set. For the results, we overlaid graphs on the inferred distance

maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 The intuition behind LTOPO. (a) In a perfect distance map, any path connecting pixels

on the opposite sides of an annotation line (dashed, magenta) crosses a zero-valued

pixel (red circle). (b) If a distance map has erroneously high-valued pixels along the

annotation line, the maximin path (violet) between the same pixels crosses one of them

(red circle). (c) The connectivity-oriented loss LTOPO is a sum of the smallest values

crossed by maximin paths connecting pixels from different background regions. The

background regions are computed by first dilating the annotation (dilated annotation

shown in white), to accommodate possible annotation inaccuracy. . . . . . . . . . . . 44

2



List of Figures

3.2 Disconnections in 3D linear structures appear in at least two out of three orthogonal

projections, unless the structure is occluded. . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Median and quartiles over five training runs of scores attained by networks trained with

different loss functions. Minimizing our topology-aware loss results in significantly

higher score values than minimizing hte baselines. . . . . . . . . . . . . . . . . . . . 47

3.4 Qualitative comparison of the test results in three different datasets. The connectivity

improves significantly when our approach is used. . . . . . . . . . . . . . . . . . . . 48

4.1 2D and 3D delineation. (a) Aerial image and slice of a microscopy stack. (b) A network

trained using a standard homology-based loss yields road and neurite interruptions.

(c) One trained using our localized loss is more topologically accurate and produces

predictions that closely resemble the ground truth (d). . . . . . . . . . . . . . . . . . . 53

4.2 Filtration. When the distance map shown on the left is filtered by thresholding, the loop

h emerges at scale bh and is filled at scale d h . This gives rise to the point (bh ,d h) in the

persistence diagram shown on the right. Here, thresholding means retaining all pixels

whose value is lower than the threshold. . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Comparing filtration functions on synthetic data. The binary ground truth road anno-

tation (top-left in each table part) contains four loops, marked with cyan dashed lines.

We synthesized a predicted class affinity map (bottom-left in each part) by extending

one road to the left and interrupting another. In consequence, loop B and D from the

ground truth are joined into B’ in the prediction, and A is split into A’ and E’. For each

filtration method, we show binary masks resulting from filtration at different scales,

pairs of persistence diagrams, and their optimal matches. . . . . . . . . . . . . . . . . 57

4.4 Sensitivity of the topological loss term C to the number of injected errors (a) Ground

truth distance maps of road networks. (b) Distance maps corrupted by introducing

false roads and interruptions. We randomly injected one error at a time, obtaining

corrupt distance maps with 30 errors. We repeated this simulation 10 times. (c,d) The

cumulative distribution function of change in the loss term in response to injecting one

error. In (c), C is evaluated using the filtration by thresholding distance maps, whereas in

(d) we use our filtration. The probability of decreasing the existing loss term by injecting

additional errors is around 0.4, whereas for our loss term it drops to 0.2. We conclude

that our loss term is more monotonic with respect to the error number. . . . . . . . . 59

4.5 Qualitative results on the Massachusetts dataset. . . . . . . . . . . . . . . . . . . 64

4.6 Comparative results on the RTracer dataset. . . . . . . . . . . . . . . . . . . . . . 65

4.7 Comparative results on the 3D Neurons dataset. . . . . . . . . . . . . . . . . . . 66

3



List of Figures

5.1 Our approach. To account for annotation inaccuracies during training, we jointly train

the network and adjust the annotations while preserving their topology. . . . . . . . . 70

5.2 Correcting an inaccurate annotation. (a) A microscopy scan of a neurite with an

inaccurate annotation overlaid in white. (b) Distance map predicted by the deep net.

Ideally, the pixels crossed by the centerline should have value zero (dark color). In

practice, this is not always the case. There are non-zero values in the area indicated by

the red arrow, presumably because the neurite is hardly visible there. Nevertheless, the

distance map is sufficiently good to adjust the annotation. The adjusted annotation

is shown in (c) and (d). This network retrained with adjusted annotations can now

generate a better distance map even where the neurite is barely visible. . . . . . . . . 70

5.3 The three approaches to training described in Sec. 5.3.4 and 5.3.5. In SnakeFull, the

training objective is also used as the objective of the snake. This makes some gradient

components vanish, simplifying gradient computation, but results in snake updates

that are costly to compute. SnakeFast can accommodate an arbitrary snake objective,

which makes it faster than SnakeFull, even though it requires backpropagation through

a sequence of snake updates. In SnakeSimple, the backpropagation over the snake

updates is simply omitted. This approach is the fastest. We analyze the accuracy vs.

speed tradeoff induced by these three methods in section 5.4. . . . . . . . . . . . . . 77

5.4 Compared behavior of SnakeSimple, SnakeFast, and SnakeFull on a synthetic 2D exam-

ple. (Left column) At the bottom, distance map and corresponding annotation. At the

top, we simulated an unwarranted break in the distance map (horizontal yellow line)

and shifted the annotation by several pixels. (Other Columns) In three separate runs,

we performed 100 Gradient Descent using either SnakeFull, SnakeFast, or SnakeSimple.

In the top row, we show the corrected annotation and the updated distance maps. The

bottom row depicts the differences between the updated maps and the ground-truth

one. We also indicate the computation times. SnakeFull removes the interruption in the

distance map but the computation is slow. SnakeFast is much faster and fills the gap

in the distance map almost as well. SnakeSimple is even faster but yields a corrected

annotation that is too short, as highlighted by the red arrow. . . . . . . . . . . . . . . 78

5.5 Test predictions of different methods on three data sets. The green ellipses denote

areas where training with the original annotations results in unwarranted breaks in the

delineations whereas our approach does not. . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Qualitative comparison of the results of SnakeFast to existing methods of training with

noisy labels. The green ellipses denote areas where baselines result in unwarranted

breaks in the delineations at test time whereas our approach does not. . . . . . . . . . 83

5.7 Results of training with the precise annotations of the Synthetic data set. When the

annotations are precise, SnakeFast performs as well as training with the OrigAnnot. . 85

4



List of Figures

5.8 Annotation Deformation Levels. The deformation magnitude increases from left to

right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.9 Increasing the amount of deformation. APLS and TLTS scores as a function of the

deformation level. The OrigAnnot scores decrease fast whereas those of SnakeFast

decrease much more slowly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.10 Coarse Annotations (a) Training image of a neurite (b) Distance map obtained from

original annotation overlaid in red (c) Distance map obtained from coarse annotation

overlaid in red. Coarse annotations are obtained by connecting neurite end points and

bifurcations with straight lines, and are easier to perform than full annotations. . . . . 87

5.11 Results of training a UNet with OrigAnnot and SnakeFast on the Neurons data set with

easy annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5





List of Tables

2.1 Comparative results on the RoadTracer dataset [6]. Our loss function makes

even the simple UNet attain state of the art performance. Computing the loss in

windows results in improvement of four out of five performance criteria. The re-

sults for our method are means and standard deviations over three independent

training runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Comparative results on the DeepGlobe dataset. Our loss function improves

the performance of both UNet and DRU in terms of all the metrics, with DRU

attaining the state-of-the-art performance. The results for our method are again

means and variances over three independent training runs. . . . . . . . . . . . 30

2.3 Comparative results on the Canals dataset. Our loss function boosts the perfor-

mance of both UNet and DRU in terms of all the five metrics. The results for

our method are means and standard deviations over three independent training

runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Comparative results on the on the Massachusetts dataset. Using our loss function

combined with UNet outperforms [48] on all metrics. For a fair comparison, we

used the same UNet architecture as in [48]. . . . . . . . . . . . . . . . . . . . . . 31

2.5 Impact of changing the value al pha that balances LMSE against LTOPO in Eq. 2.2,

using UNet+TOPO-win on the RoadTracer dataset. The window size is fixed to

64x64 and β to 0.1. The corresponding results are depicted qualitatively by

Fig. 2.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Impact of changing the value ofβ that balances the connectivity and dis-connectivity

components of our loss in Eq. 2.4, using UNet+TOPO-win on the RoadTracer

dataset. The corresponding results are depicted qualitatively by Fig. 2.9. The

bottom part of the table features the performance measures obtained when not

using the LMSE loss. They are lower, which shows that balancing the connectivity

and dis-connectivity components of LTOPO is not enough to ensure maximum

performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7



List of Tables

2.7 The impact of window size on performance. Results of experiments on the

RoadTracer dataset. α is fixed to 1e −3 and β to 0.1. UNet+TOPO-win is used in

all experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 The impact of changing the window size on performance. Results of experiments

on the DeepGlobe dataset. α is fixed to 1e −3 and β to 0.1. UNet+TOPO-win is

used in all experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9 Comparison of Cross Entropy and Mean Square Error. Results of experiments on

the RoadTracer dataset [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Comparative results. A UNet trained with our loss function outperforms existing

methods by a considerable margin in terms of the topology-aware metrics. The

improvement in terms of the pixel-wise metrics is smaller but still there on

average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 We varied α to investigate its impact on the test performance in Neurons dataset.

The results show that setting this coefficient too-low or too-high perturbed

performance, and its optimal value is in the order of 1e −3. . . . . . . . . . . . . 49

3.3 We varied β to investigate its impact on the test performance in Neurons dataset.

According to all the performance measures, the best results are obtained for

β= 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Validation results on the Massachusetts dataset. Our loss function outperforms

all PH-based loss functions. We report means and standard deviations over three

independent training runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Our loss function outperforms all PH-based loss functions on the RTracer dataset.

We report means and standard deviations over cities from the test set. . . . . . 63

4.3 Comparative results on the Neurons dataset. Our loss outperforms all the base-

lines. We report means and standard deviations over three independent training

runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Comparative results on the Brain dataset. Our loss outperforms all PH-based

losses. Means and standard deviations over three independent training runs as

presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Impact of changing the learning coefficient of localized PH loss on the Mas-

sachusetts dataset. The window size is fixed to 64x64. . . . . . . . . . . . . . . . 66

4.6 Impact of changing the window size when computing our localized loss on the

Massachusetts dataset. The learning coefficient is fixed to 1e-2. . . . . . . . . . 67

8



List of Tables

4.7 Performances of different height functions used for localized PH loss on the

Massachusetts dataset. The learning coefficient is fixed to 1e-2 and window size

to 64x64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Performance of deep nets trained with different loss functions on our three data

sets and the time needed for single training iteration. . . . . . . . . . . . . . . . 81

5.2 Performance of a UNet trained with the OrigAnnot and with SnakeFast on the

Synthetic data set with precise annotations. . . . . . . . . . . . . . . . . . . . . . 84

5.3 Performance of UNet trained using SnakeFast and OrigAnnot on the Neurons

data set with very coarse annotations. Performance of UNet trained using the

precise annotations shown for reference. . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Performance of UNet trained using SnakeFast on the Neurons data set when

varying the elasticity and spring term coefficients. . . . . . . . . . . . . . . . . . 88

5.5 Performance of UNet trained using SnakeFast on the Neurons data set when

varying the inverse stepsize, together with the number of snake updates used in

every training iteration and the resulting iteration time. . . . . . . . . . . . . . . 88

5.6 Performance of deep nets trained with MAE and MSE costs on the Neurons data

set and the time needed for single training iteration. . . . . . . . . . . . . . . . . 89

9





1 Introduction

Curvilinear structures are ubiquitous in nature, appearing on a wide range of scales, from

microscale to macroscale. They are observable in numerous contexts, including biomedical

images, satellite images, geological images, and others. The reconstruction of neural circuits

in the brain, the detection of fractures in materials, and the extraction of road and irrigation

canal networks from satellite images all rely heavily on these structures.

Reconstruction of curvilinear structures is a critical task in many different domains. Neurons

are the fundamental building blocks of the nervous system, and their morphology plays

a crucial role in understanding the underlying neural circuitry. Delineation of neurons in

microscopy images is essential for studying their morphology, connectivity, and function.

Road and canal networks are essential for transportation planning, urban development, and

disaster management. Delineation of road networks in satellite data is necessary for automatic

road extraction, updating of road maps, and real-time traffic monitoring. However, manual

extraction of these structures can be very expensive and time consuming. Furthermore,

especially in 3D data, annotation tools for manual extraction, are not always easy to use or

accurate. Automated systems for delineation is essential for better and quicker analysis of

curvilinear structures. Hence, this task has been a longstanding challenge in Computer Vision

field.

1.1 Existing Methods

In this section, we summarise existing delineation methods, and topology-aware approaches

for this task.

1.1.1 Automated Delineation

In the early years, deformable models [37, 15], manually designing filters that respond strongly

to tubular structures [36, 57], feeding hand-designed features into boosted trees [12], support

vector machines [50], and GradientBoost [95] were used for automated delineation. With the
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(a) (b)

Figure 1.1: Difficulties of annotating data. Most annotation tools take several points on
the curvilinear structure as an input from the annotator and then use a tracing algorithm
which connects these points while minimising a cost function which depends on the length
of the path and voxel intensities along the path. (a) Intensity changes in the curvilinear
structures, as it can be seen inside the red circle, renders it almost impossible to determine
the centerlines. Furthermore, such changes deteriorates the performance of the tracing
algorithms. (b) Annotation tools do not always trace the centerlines. It can create shortcuts
which plague the annotations with deviations from the actual centerline.

advancement of neural networks, convolutional networks replaced these methods, and most

of the recently used models rely solely on deep networks [25, 71, 7, 103, 48]. When properly

trained, deep neural networks perform at their highest level. However, they require a large

amount of data to be trained properly. Finding reliable annotated data, particularly in 3D, is

difficult. It is seldom offered in adequate amounts in practice. Furthermore, the annotated

data that does exist is rarely precise since it is difficult to manually annotate curvilinear

structures as illustrated in Fig. 1.1. Unfortunately, performance of deep networks depends

significantly on the precision of the annotations. The fact that most deep networks are trained

by optimizing cross entropy or differentiable intersection-over-union loss can be largely

attributed to this. Both are sensitive to even little centerline shifts of the linear structures

since they are pixel-wise measurements. This is somewhat addressed in [71] by adding a loss

component that takes into account the network output’s global statistics, but the cross entropy

still plays a significant role in the total loss. Similarly in [49], the approach focuses on adding a

topology-preserving term but still relies on precise annotation.

Another main challenge in curvilinear structure delineation is to preserve the topology of

the structure during the delineation process. Curvilinear structures often form complex

networks with branches, loops, and intersections. Preserving the topology of such structures

is crucial for downstream applications. However, most of the current practices cannot capture

the topology of these structures successfully. The majority of the currently used methods
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rely on neural networks, such as UNet [81], to extract binary masks from images indicating

which pixels/voxels are a part of the curvilinear structure and which are not. They regrettably

cannot ensure that the connection of the created masks matches the connectivity of the actual

network-like structures. This is thus because these models are taught to minimise losses that

do not explicitly require topological consistency, such as cross-entropy and mean square error.

Networks trained with per-pixel losses produce binary masks plagued with topological errors

like disconnections, missed junctions, and false positive connections when the annotations

do not exactly match the imaged structures, which is always the case with manual image

annotations.

1.1.2 Graph-Based Models

Insufficiency of standard models to capture topology, can be addressed by combining a convo-

lutional encoder with a decoder that instead of outputting a pixel-wise binary mask, displays

network-like structures as a graph [6, 62, 26]. The graph is expanded repeatedly through-

out inference time, with each step including the neural network adding a new node to the

graph while taking current graph state and image data into consideration. These graph-based

approaches make it simple to avoid overly punishing extracted curvilinear structures that

marginally deviate from their ground truth, as opposed to the approach based on expressing a

road map as a binary mask, and to account for existing connection while building the graph.

Training these models is more challenging and unstable than training convolutional networks

due to the non-differentiability of the node insertion procedure. Furthermore, since the in-

serted nodes are conditioned on the previous states of the graph, heuristic methods must be

used in case the reconstructed graph is deviated significantly from the ground truth.

1.1.3 Embedding Topological Information in Loss Function

In this thesis, we are aiming to introduce loss functions that can teach the topology of the

curvilinear structures to standard delineation models. Topology-aware loss functions aim to

preserve the topology of curvilinear structures during the delineation process by ensuring

that the resulting reconstruction is a valid graph with correct topology. Topology-aware loss

functions go beyond pixel-wise classification accuracy by encoding topological information

of the structures in the loss function itself. The main challenge with such loss functions is to

capture topological differences with a differentiable function.

A number of topology-aware losses have been proposed in the recent literature. Li et al. [61]

propose to use connectivity information between neighboring pixel-pairs. With this additional

supervision, local connectivity can be enforced but it is still prone to noise in the annota-

tions. In [71], a pre-trained VGG [84] is used to compare the shape features of the predicted

probability map and the ground truth. This comparison is then used as additional guidance

for the delineation model. However, this approach is heavily based on the assumption that

the pre-trained model can highlight topological differences between the prediction and the
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ground truth. In reality, there is no guarantee that it can highlight all of them. Other loss

functions which explicitly evaluate the topology have been proposed for biomedical and

satellite road data. A connectivity-oriented loss function [13, 39] optimizes Rand index of a

segmentation map in order to prevent topological errors, but it cannot capture disconnections

if there are loops in the data. Another way of comparing topologies is to introduce a differen-

tiable skeletonization algorithm [83] instead of the standard non-differentable method. This

allows the loss function to be computed on graphs instead of probability maps, hence, the

topologies of prediction and ground truth can be compared effectively.

1.1.4 Persistent Homology

Persistent Homology (PH) [32, 33, 108] is an well-established topological descriptor which can

be used for describing and comparing topologies. By using a filtration function with a tunable

parameter, PH extracts connected components (0-homology class), loops (1-homology class)

and voids (2-homology class) from the data. Each topological structure is born and dies at a

particular value of the tunable parameter. The topology of the object is then represented by

persistence diagram which is a diagram of birth and death times of all the homology classes

found in the object. Extracted persistence diagrams can be used to find topological similarities

across two objects. This approach has been effectively used to train deep networks for a variety

of tasks such as delineation [48], image segmentation [48, 28, 27] and crowd counting [1].

Recently, it has been shown that persistence diagrams can be computed for grayscale images

by using thresholding as a filtration function [48, 28, 40, 60, 19]. They can be incorporated into

a loss function to train a deep network, since they are differentiable with respect to pixel/voxel

values. In [27], a loss is used to enforce the desired the Betti number, number of homology

classes appearing in the persistence diagram, on the prediction. This approach has been

further extended to a loss function that maximise the similarity of prediction and ground truth

persistence diagrams computed on binary maps [48]. However, none of these approaches use

the full potential of PH because they cannot use the location information of topological errors

effectively.

1.2 Contribution

In this thesis, we are introducing topology-aware loss functions that provides reconstructions

of network-like structures in 2D and 3D data with better topologies than current practices.

• In chapter 2, we introduce a 2D connectivity-oriented loss which expresses connectivity

of curvilinear structures in terms of disconnection of two background regions seperated

by these structures in the groundtruth.

• In chapter 3, a topology-aware loss function based on Persistent Homology is proposed.

We are improving the effectiveness of PH on training deep networks by including the
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location information with a new filtration technique.

• In chapter 4, we introduce a loss function that accounts for annotation inaccuracies. We

tackle this problem by treating the annotations as active contour models and allowing

them to deform over correct centerlines while preserving the topology.

• In chapter 5, we extend the connectivity-oriented loss function introduced in chapter

2, originally limited to two-dimensional images, to also work with three-dimensional

scans. We attain this extension by using the loss on two-dimensional projections of the

three-dimensional scans.
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2 Promoting Connectivity of Network-
like Structures by Enforcing Region
Separation

In this chapter, we propose a novel, connectivity-oriented loss function for training deep

convolutional networks to reconstruct network-like structures, like roads and irrigation canals,

from aerial images. The main idea behind our loss is to express the connectivity of roads,

or canals, in terms of disconnections that they create between background regions of the

image. In simple terms, a gap in the predicted road causes two background regions, that

lie on the opposite sides of a ground truth road, to touch in prediction. Our loss function is

designed to prevent such unwanted connections between background regions, and therefore

close the gaps in predicted roads. It also prevents predicting false positive roads and canals

by penalizing unwarranted disconnections of background regions. In order to capture even

short, dead-ending road segments, we evaluate the loss in small image crops. We show, in

experiments on two standard road benchmarks and a new data set of irrigation canals, that

convnets trained with our loss function recover road connectivity so well that it suffices to

skeletonize their output to produce state of the art maps. A distinct advantage of our approach

is that the loss can be plugged in to any existing training setup without further modifications.

This work appeared in [75].

Oner, D., Kozinski, M., Citraro, L., Dadap, N. C., Konings, A. G., and Fua, P. Promoting Connec-

tivity of Network-Like Structures by Enforcing Region Separation. IEEE Transactions on Pattern

Analysis and Machine Intelligence 2021.

2.1 Introduction

Reconstruction of road networks from aerial images is a classic computer vision problem [3,

93, 79, 35], which remains actively studied to this day [25, 66, 62, 6, 7, 26, 70, 103]. By contrast,

the reconstruction of drainage canals has so far remained out of focus of most of the vision

community. However, it is of practical importance for hydrologic analysis [72, 59], which is
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becoming even more crucial at the time of rapid climate change. Due to their network-like

structure, canals are amenable to reconstruction by the same algorithms as roads, and we

address these two problems jointly. Most of the existing approaches [25, 71, 7, 103] rely on

convolutional networks to extract from images binary masks denoting which pixels belong

to roads and which do not. Unfortunately, they do not guarantee that the connectivity of the

produced masks corresponds to that of the real road network. This is because these methods

are trained to minimize losses, such as cross-entropy and mean squared error, that do not

explicitly enforce topological consistency. When the annotations do not perfectly coincide

with the imaged structures, which is always the case of satellite image annotations, networks

trained with the per-pixel losses produce binary masks plagued by topological errors, such as

road interruptions, missed junctions, and false positive connections.

In recent literature, this problem has been addressed by combining a convolutional encoder

with a decoder that represents a network of roads as a graph, as opposed to a binary mask [6,

62, 26]. At inference time, the graph is grown iteratively: At each step, the neural network

adds a new node to the graph by taking image features and the current state of the graph into

account. By contrast to the approach based on representing a road map as a binary mask,

these graph-based methods make it easy to prevent excessively penalizing predicted roads

that deviate slightly from their ground truth models, and to account for existing connectivity

when growing the graph. However, the non-differentiability of the node insertion operation

makes training these networks more difficult and brittle than training convnets.

In this chapter, we show that connectivity of road and drainage canal networks can be en-

forced directly on a convolutional neural net, in a fully differentiable manner, and without

the need to represent the graph explicitly. This allows end-to-end training and results in

increased performance. Our approach involves relaxing the usual requirement of coinci-

dence of annotated and predicted foreground pixels. Instead, we require that predictions

contain uninterrupted sequences of foreground pixels that can deviate by a few pixels from the

ground-truth annotations. This enforces connectivity while dealing with possibly imprecise

annotations.

The difficulty is to express this requirement in the form of a differentiable loss function that

can be used to train a deep network. The central idea of our approach is to forgo enforcing

connectivity of the pixels annotated as centers of roads or canals, which may not coincide

with true roads or canals. Instead, we express the connectivity of the annotated structures in

terms of the disconnections that they create between regions annotated as background. More

precisely, we require that two regions separated by a line in the ground truth, are also separated

in the prediction. As shown in Fig. 2.1, this effectively enforces continuity of the predicted

road or canal networks. By requiring that connected components of pixels annotated as

background remain connected in the prediction, we prevent predicting false positive road

or canal segments. In other words, we re-purpose the differentiable machinery proposed in

the MALIS segmentation algorithm [13, 39] to enforce the dis-connectivity of image regions

separated by a road. To capture dead-ending segments, we compute our loss in small image
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(a) (b) (c)

Figure 2.1: We enforce road connectivity by penalizing connections between background
regions. (a) Input image and ground truth. (b) A distance map predicted by a U-Net trained
without our connectivity loss, and its skeletonization, thickened for visibility. Note that, even
though there is a gap between road pixels P1 and P2, they remain connected both in the
ground truth and in the prediction, because alternative paths exist in the loopy road network.
By contrast, background regions A and B connect in the prediction, but not in the ground
truth. (c) A distance map predicted by a U-Net trained using our disconnectivity loss and its
skeletonization. Our loss function penalizes connections between A and B , preventing gaps
in the predicted road.

windows, which are likely to be subdivided even by short road and canal sections.

Our contribution therefore is a novel approach to enforcing global connectivity of reconstruc-

tions of network-like structures from images. It can be used to boost the performance of any

road delineation deep network, without having to change the network itself. This is in stark

contrast to the graph networks that do require changing both the network architecture and

the training procedure. We demonstrate on both roads and drainage canals, that a simple

U-Net [81] trained with our loss function, and combined with a standard skeletonization algo-

rithm, attains state of the art performance in terms of the connectivity of the reconstructed

networks.
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2.2 Related Work

The existing approaches to reconstruction of networks of drainage canals rely on dedicated

sensing modalities, like multi-spectral imaging and lidar [94, 51], and require extensive user

interaction. We show that the canals can be reconstructed from visual spectrum satellite

images and with little required correction, just like roads.

Many existing road segmentation algorithms rely on convnets [25, 7, 71, 103, 70] and all of them

face the same difficulty: Training them by minimizing a cross-entropy loss, which is a local,

pixel-wise measure, does not guarantee that their output preserves the global connectivity of

road networks. Training the network to multi-task and to find not only the road centerline but

also its spatial extent [25, 7, 61], its orientation [7, 61], or edges [61], mitigates the problem but

does not explicitly enforce better connectivity. We instead propose to explicitly define the loss

function to evaluate the connectivity.

2.2.1 Connectivity-oriented loss functions

Ours is not the first attempt to make a convnet capture connectivity of linear structures in

images by incorporating connectivity-oriented terms in the loss function. One existing ap-

proach [61] is to use the connectivity between neighboring pixel pairs as an additional source

of supervision. This enforces the local connectivity of the ground truth on the prediction, but

does not handle annotation misalignment. By contrast, our method focuses on long-range

connectivity of roads with possibly misaligned annotations. Another approach [71] is to intro-

duce a perceptual loss function that depends on the statistical differences between features

computed by forwarding either the ground truth or the prediction through a pre-trained neural

network. While this loss is indeed non-local, and has been shown to improve the connectivity

of the predictions, it does not model connectivity explicitly. Instead, it heavily relies on the

assumption, that a pre-trained neural network implicitly captures some topological properties

of the input. By contrast, our loss function models connectivity explicitly.

Loss functions explicitly evaluating the topology of the predicted masks have been proposed

for medical image segmentation [28, 48]. However, strictly topological techniques are focused

on counting loops and connected components in the data, irrespectively of their spatial posi-

tion, and cannot distinguish between different branching patterns. That makes topological

methods a good choice when the segmented object has a relatively simple topology, like the

aortic valve, but not well suited for roads, which exhibit complex branching patterns and form

numerous loops. In [48], this limitation is overcome by evaluating the topological loss only in

small image patches, which generalizes this method to more complex topologies, including

roads. By contrast, our topological loss can handle complex loopy structures even without

the patch-wise approach. However, we will see that using it boosts its performance especially

when there are dead-ending roads and increases its numerical stability.
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2.2.2 Connectivity-oriented neural architectures

Problems with connectivity can be addressed by designing predictors that output graphs

instead of per-pixel masks, and explicitly decide about the presence of connections between

map nodes. This can be done as a post-processing step by generating a pool of potential

additional connections and training a classifier to decide which of the candidates should be

inserted into the network [66, 70]. A drawback of this approach is that it is not end-to-end

trainable.

A more elegant alternative is to use graph neural networks to predict the road graphs directly

from the images [6, 62, 26]. This approach has certain disadvantages. Inference consists in a

sequence of non-differentiable node insertion operations, which makes such networks slower

than convnets. They are also more difficult to train, because node insertion is conditioned

on the current state of the graph, and heuristics are needed to decide what is the optimal

operation when the graph built so far is inconsistent with the ground truth. In our experimental

evaluation, we show that a simple convnet can outperform these approaches when trained

with our loss function and post-processed with a vanilla skeletonization. However, we still

think that predicting graphs from images has merit, and the idea could be applied on top of a

convnet trained with our loss.

2.2.3 Affinity learning

To enforce region connectivity, we use the maximin formulation of MALIS [13, 39], a connectivity-

oriented approach to segmenting cells in electron microscopy images of neural tissue. It relies

on the observation, that the predicted strength of connection between a pair of pixels can

be expressed as the lowest value that needs to be crossed when traveling between the pixels

in the prediction. If this value equals θ, thresholding the prediction with θ′ < θ produces a

connected component containing both pixels. Thresholding the prediction with θ′′ > θ breaks

the connection between the pixels. Formally, θ is called a maximin cost of a pixel pair, and

MALIS incorporates it into a differentiable loss term which is maximized for all pairs of pixels

that belong to the same annotated cell, and minimized for all pairs of pixels from different

cells. Recently, MALIS has been further perfected by constraining the maximin cost of a pair of

end points belonging to the same cell to originate from a pixel located at the same cell as the

end points [39], which stabilizes training at its early iterations.

We could have used MALIS to enforce the connectivity of road or canal pixels in the output of a

segmentation network. However, we will see in the results section that it is less effective. This is

for two reasons. First, both roads and canals often form loops and even if a connection between

two road pixels is missed, they may still be connected via a different path. As illustrated by

Fig. 2.1, there is a gap between pixels P1 and P2. Yet they are still connected to each other.

Hence, this disconnection cannot be fixed simply by enforcing connectivity of any road pixel

pairs. Second, road and canal annotations usually take the form of one-pixel-thick centerline

delineations that are rarely precise. Strictly enforcing the connectivity of pixels annotated as
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Figure 2.2: Handling a potential misalignment between the ground-truth and predicted
networks in the image of Fig. 2.1. The lines have been thickened for better visibility. This
misalignment makes imposing connectivity constraints on the pixels belonging to the ground-
truth centerline impractical. Instead, we only require that background regions far away from
the roads and delimited by a dashed line be disconnected.

roads, but not overlapping with true roads, would confuse the network and negatively impact

its precision. In particular, topologically correct predictions could still be penalized, when

misaligned with the ground truth, as illustrated by Fig. 2.2. We therefore use MALIS to enforce

the disconnections between background regions, separated by road annotations, and at a

distance of at least 10 pixel from them. The dashed blue lines in Fig. 2.2 materialize their

boundaries.

2.3 Method

Given a training set of N aerial images {xi }1≤i≤N and corresponding ground-truth binary

masks {yi }1≤i≤N representing the roads or drainage canals in these images, we want to train

a deep network fΘ(·), with weights Θ, that takes an image x as input and returns a distance
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Computing Ldisc.
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Figure 2.3: Computing Ldisc. We first tile the ground truth annotation and the distance map
computed by our network (1). We use the ground-truth roads to segment each tile into separate
regions (2). When there are unwarranted gaps in the distance map, there is a least one path
connecting disjoint regions such that the minimum distance map value along that path is not
particularly small. We therefore take the cost of the path to be that minimum value (3) and
we add to our loss function a term that is the maximum such value for all paths connecting
points in the two distinct regions (4). This penalizes paths such as the one shown here and
therefore promotes the road graph connectivity.

map ŷ , consistent with the ground-truth. Our goal is to ensure that ŷ represents the same

connectivity as y . To this end, we minimize

R(Θ) =∑
i

L
(
yi , fΘ(xi )

)
, (2.1)

L(y, ŷ) = LMSE(y, ŷ)+αLTOPO(y, ŷ) , (2.2)

with respect to the network weightsΘ. Here the loss function L is the sum of two terms LMSE

and LTOPO, and α is a parameter of the method that we set empirically using a validation set.

LMSE is a regression loss, used to train the network to predict the distance from each pixel

to the center of the closest road or canal as in [85]. This lets us penalize the deviation of the

predicted road center from its annotated position more gently than when using the more

standard cross entropy. Allowing for these deviations enables the connectivity-oriented LTOPO

to force the network to predict uninterrupted roads and canals even if they do not coincide

perfectly with the annotations. We describe both terms below in more detail.
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2.3.1 Regression Loss: LMSE

We define LMSE as the Euclidean norm of the difference between the predicted distance map

ŷ and the distance map yD generated from the ground truth binary mask y

LMSE(y, ŷ) = ∑
p∈I

(
ŷ[p]−min(yD [p],Dmax)

)2, (2.3)

where X [p] denotes the value of image X at pixel p, I is the set of pixel indices in the input

image. The magnitude of the ground truth distance map for pixels that are far away from

foreground structures can be large, and we found it advantageous to cap the ground truth

distance at Dmax = 20 pixels, found empirically.

LMSE can be used by itself to train the network. As shown in Fig. 2.1, this gives good results

in terms of per-pixel precision but the resulting binary masks feature many unwarranted

interruptions. To prevent this, we now turn to the second term of Eq. 2.2.

2.3.2 Connectivity Loss: LT OPO

LTOPO is the topology term that we adapt from [39] to penalize, in a differentiable manner,

unwanted interruptions and false connections in the output distance maps. Since, as explained

in section 2.2.3, directly penalizing the interruptions and false connections of the foreground

is ineffective in our task, we formulate our loss function in terms of connectivity of the

background regions. This indirect approach to enforcing connectivity is the main contribution.

As shown in Fig. 2.1, an erroneous break in a predicted road causes two background regions,

separated by a road in the ground truth mask y , to touch in the distance map ŷ produced by

the network. The first component of our loss, Ldisc, penalizes such contacts. Similarly, a false

positive road divides a small crop of the predicted distance map into two background regions,

while the same crop of the ground truth distance map contains a single connected component

of the background. Such errors are penalized by the second component of our loss, Lconn. The

full topological loss takes the form

LTOPO(y, f (x)) = Ldisc
(
y, f (x)

)+βLconn
(
y, f (x)

)
, (2.4)

where β is a parameter of the loss that balances the effects of these two terms. We introduce

Ldisc and Lconn below.

Maximin Dis-Connectivity.

As illustrated in Fig. 2.1, in order to discourage interruptions of a predicted road, we identify

all pairs of background regions that the road separates in the ground truth, and penalize

connections between these regions in the predicted distance map. To that end, we follow

the maximin approach of Turaga et al. [13]. Intuitively, since the value of a road or canal

pixel in a correct distance map should be small, and the background pixels should be large,
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two background pixels in an image can be considered connected if there exists a path of

large-valued pixels between them. The ‘strength’ of this connection, can be evaluated as the

value of the smallest pixel on the path with the largest smallest pixel of all paths connecting

the end points. This path is depicted as the violet line in box 3 in Fig. 2.3, and its smallest pixel

is encircled in blue. Therefore, for each pair of pixels that are separated by a road or canal in

the ground truth, we make Ldisc express the ‘strength’ of the connection between them. As a

result, minimizing Ldisc ensures the dis-connectivity of regions on the opposite sides of roads

and canals and, indirectly, improves the connectivity of roads and canals.

The detailed computation of Ldisc is depicted in Fig. 2.3. We first dilate the centerline anno-

tations by 5 pixels, which corresponds to the largest displacement between the image and

the annotation that we have observed in our training data. We can therefore assume all the

road pixels belong to this dilated region, which we denote as R and which can also contain

non-road pixels. Let B be the set of background regions, that is, connected components in

the remainder of the image. Let us consider two pixels q ∈ A and r ∈ B such that A,B ∈ B

and A ̸= B . Intuitively, q and r lie on different sides of an annotated road. Since road pixels

should receive low predictions, a path π connecting q and r crosses a predicted road in the

distance map ŷ if, for at least one point p along the path, ŷ[p] is close to zero. We there-

fore define the cost of path π in the predicted distance map ŷ as c(π, ŷ) = minp∈π ŷ[p], and

measure the ‘connectivity’ between background pixels q and r, in terms of the maximin cost

dmaximin(ŷ , q, r) = maxπ∈Π(q,r) c(π, ŷ), where Π(q, r) is the set of all paths connecting q and r.

We enforce road connectivity by minimizing the maximin cost for all pairs of pixels that are

separated by a road in the ground truth. To that end, we define our connectivity-enforcing

loss as

Ldisc(y, ŷ) = ∑
A,B∈B, A ̸=B

∑
q∈A,r∈B

dmaximin(ŷ , q, r)2 . (2.5)

When computed naively, the loss, Eq. 2.5, requires summing costs over pairs of pixels, which

would be computationally expensive. However, Turaga et al. [13, 39] have shown that, because

dmaximin(ŷ , q, r) is equal to the value of the smallest pixel that has to be visited when traveling

between q and r in the prediction ŷ , Ldisc can be computed efficiently as a sum over pixels, as

opposed to pixel pairs, as

Ldisc(y, ŷ) = ∑
p∈R

wp ŷ[p]2 , (2.6)

where wp counts the pairs of pixels whose maximin cost is equal to ŷ[p]. Formally, we denote

the maximin path between a pair of pixels q, r by π(q, r) and define

wp = ∑
A,B∈B, A ̸=B

∑
q∈A,r∈B

1
[
p = arg min

ρ∈π(q,r)
ŷ[ρ]

]
, (2.7)

where 1[·] is the indicator function. The algorithm for computing the wp ’s is based on the

Kruskal’s maximum spanning tree algorithm, and we refer the reader to [39] for details. Fol-

lowing [39], we constrain the computation of the loss Ldisc to the dilated road regions R. This

speeds up convergence in the early stages of the training, when path minima may be found
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far away from true roads.

Penalizing False Connections

We could take LTOPO to simply be Ldisc but we have observed that this results in many false

positive road segments and that this behavior is difficult to counteract only by balancing the

regression and connectivity losses with the coefficient α in Eq. 2.2. To remedy this, we also

enforce connectivity of background regions, which prevents false positive roads, as

Lconn(y, ŷ) = ∑
A∈B

∑
p∈A

vp (ŷ[p]− yD [p])2 , (2.8)

where vp is the number of pairs of pixels q, r ∈ A, for which p is the smallest pixel on the

maximin path between q and r, and is computed similarly to wp , and yD [p] is the value of

the ground truth distance map at pixel p. Like Ldisc, the formulation of Lconn has been used

before in [39], and our innovation here is that we apply both of these losses to background

regions, in order to indirectly enforce the correct connectivity of foreground roads and canals.

Introducing Sliding Windows.

We can compute LTOPO as described above on the whole image. However, when we do that,

almost all pixels are assigned weights w = 0 in Eq. 2.6 and a single road pixel gets a weight equal

to the product of the size of the connected components that the road should separate. This is

because, in the presence of a an evident road interruption, all maximin paths go through this

interruption. This might seem desirable in theory, but in practice it makes learning unstable.

Since only a small minority of pixels generate extremely large gradients, no error signal is

distributed among the remaining ones.

To overcome this problem we compute LTOPO independently for 64×64 image patches that

cover the image, and sum the results. This ensures that at least one road pixel per window is

taken into account and that its weight is not larger than N 2/4, where N is the number of pixels

in the window. As shown in Fig. 2.3, this also lets us handle dead-ending roads that do not

separate the global map into disjoint areas.

2.4 Experiments

We now describe the dataset we have tested our approach on, the baselines to which we

compare our results, and the metrics we used to assess the quality of the reconstructions.

We then demonstrate that our new loss improves the results of networks that rely solely on

conventional losses and substantially outperform recently proposed road reconstruction

methods.
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2.4.1 Datasets

We performed experiments on three publicly available datasets.

• RoadTracer. A recently published dataset of high-resolution satellite images covering

urban areas of forty cities in six different countries [6]. As in [6, 62, 103, 70], fifteen cities

are used as a test set, and the remaining twenty five as a training set. The ground truth

was generated using OpenStreetMap.

• DeepGlobe. Aerial images of rural areas in Thailand, Indonesia and India [30]. The

dataset comprises around 8500 images. For a fair comparison to [7], we use the same

split with 4695 training and 1530 test images, but no validation images.

• Canals. Aerial images of water drainage canals in rural areas of Malaysia [87]. The

dataset comprises a single 9768×10718 ortho-photo. We use a crop of size 2630×1576

pixels for testing and the rest for training purposes.

• Massachusetts. The Massachusetts dataset [68] features both urban and rural neigh-

borhoods, with many different kinds of roads ranging from small paths to highways.

For a fair comparison to [48], we split the data into three equal folds and performed a

three-way cross validation.

Together, these datasets exhibit a very large variation of terrain type, which makes them an

exhaustive benchmark for aerial road and drainage canal network reconstruction.

2.4.2 Baselines

We compare the results of our algorithm to the following state-of-the-art methods.

• Segmentation. A baseline algorithm from [6], combining segmentation, thresholding,

skeletonization, and conversion of the skeleton to a graph. Road network reconstruc-

tions for the RoadTracer dataset were made available online by the authors [5].

• RoadTracer. Iterative graph construction where node locations are selected by a CNN [6].

The road network reconstructions were released publicly by the authors [5].

• Seg-Path. A unified approach to segmenting linear structures and classifying potential

connections [70]. The road network reconstructions were provided to us by the authors.

• RCNNU-Net. Recursive image segmentation with post-processing for graph extrac-

tion [103]. The authors provided the probability maps.

• DeepRoad. Image segmentation followed by post-processing focused on fixing missing

connections [66]. The graphs for the RoadTracer dataset were published by the authors

of this data set [5].

27



Chapter 2. Promoting Connectivity of Network-like Structures by Enforcing Region
Separation

• PolyMapper. Reconstructing a map by sequential construction of closed polygons [62].

The graphs were provided to us by the authors.

• MultiBranch. A recursive architecture co-trained in road segmentation and orientation

estimation [7]. To obtain the road network reconstructions, we trained the network

using the code published by the authors.

• LinkNet. An encoder-decoder architecture [21] co-trained in segmentation and orien-

tation estimation [7]. We trained the network using the code made available by the

authors.

• PersHomo. It uses a loss function based on the concept of persistent homology from

mathematical topology [48]. The results for the Massachusetts data set were provided by

the authors.

• UNet. Our own implementation of U-Net [81] trained with mean squared error.

• DRU. A recurrent U-Net iteratively refining segmentation output [98], trained by us with

the mean squared error.

• MALA. A recent implementation of the MALIS loss to enforce the correct connectivity

when segmenting electron microscopy images of neural tissue [39].

2.4.3 Network Architecture and Training Details

We compare these baselines against three variants of our approach introduced in Section 4.3.

• UNet + TOPO-glo. A U-Net, trained with our connectivity loss computed in the full

image.

• UNet + TOPO-win. A U-Net, trained with our loss computed in windows of size 64×64

pixels.

• DRU + TOPO-win. A recurrent U-Net [98], trained with the windowed version of our

loss.

In the UNet experiments, we used the standard U-Net [81] architecture, with five blocks,

each with three sequences of convolution-ReLU-batch normalization. Max-pooling in 2×2

windows followed each of the blocks. The initial feature size was set to 32 and grew to 1024

in the smallest feature map in the network. We augmented the input data with vertical and

horizontal flips and random rotations.

In the experiments with DRU, we used a recurrent U-Net with the same architectural features

that we used in UNet experiments. There is a dual-gated recurrent unit in the bridge part of

the network [98]. During training, we used three recurrent iterations. After each recurrent

iteration, the output of the network is used as an additional channel to the input of the next
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iteration. For the first iteration, this additional channel is set to 0. During inference, we used

the output of the second iteration which produced the best results.

We trained the network with the ADAM algorithm [54], with the learning rate set to 1e −4.

We set the coefficients α= 1e −3 in Eq. 2.2 and β= 0.1 in Eq. 2.4. We justify these choices in

Section 2.4.6.

2.4.4 Performance Measures

Comparing connectivity of road reconstructions is difficult, because the reconstructions rarely

overlap with the ground truth, and often deviate from it significantly. There seems to be no

consensus concerning the single best evaluation technique in the existing literature – we have

found five different connectivity-oriented metrics in concurrently published recent work. To

provide exhaustive evaluation, we used all of them in our experiments.

• APLS Average Path Length Similarity, defined as an aggregation of relative length differ-

ence of shortest paths between pairs of corresponding points in the ground truth and

predicted maps [92].

• TLTS Statistics of lengths of shortest paths between corresponding pairs of end points

randomly selected in the predicted and ground-truth networks [99]. We report the

fraction of paths where the relative length difference is within 5%.

• JCT A junction score, evaluating the number of roads intersecting at each junction [6].

Consists of road recall, averaged over the intersections of the ground-truth and road

precision, averaged over the intersections of the prediction. We report the corresponding

F1 score.

• HM Compares the sets of graph locations accessible by traveling away from randomly

chosen pairs of corresponding points in both graphs [10]. We report the corresponding

F1-score.

• CCQ To complement the connectivity-oriented evaluation, we also computed the most

popular metric that measures spatial co-occurrence of annotated and predicted road

pixels, rather than connectivity. The Correctness, Completeness and Quality are equiv-

alent to precision, recall and intersection-over-union, where the definition of a true

positive has been relaxed from spatial coincidence of prediction and annotation to

co-occurrence within a distance of 5 pixels [100]. We report the Quality as our single-

number metric.

2.4.5 Comperative Results

We report the performance of our method on the RoadTracer, DeepGlobe, Canals , and Mas-

sachusetts datasets in Tabs. 2.1, 2.2, 2.3, and 2.4. For our own approach, we report an average
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Table 2.1: Comparative results on the RoadTracer dataset [6]. Our loss function makes even
the simple UNet attain state of the art performance. Computing the loss in windows results in
improvement of four out of five performance criteria. The results for our method are means
and standard deviations over three independent training runs.

Connectivity-oriented pixel-based

Method APLS TLTS JCT HM CCQ

Segmentation 62.5 33.0 78.2 69.4 54.4
RoadTracer 59.1 40.6 81.2 70.5 47.8
Seg-Path 68.1 46.5 75.4 67.6 54.0
RCNNU-Net 48.2 18.4 75.9 68.8 62.8
DeepRoad 24.6 6.4 51.4 46.8 43.6
PolyMapper 61.3 31.5 80.0 53.7 35.7
UNet 66.3 40.0 77.5 68.2 59.3
MALA 68.6 42.8 77.8 65.8 62.7

UNet+ TOPO-glo 71.9±1.7 46.2±2.1 84.7±2.3 70.8±1.2 63.5±1.8
UNet+ TOPO-win 75.4±1.6 49.6±1.4 82.6±0.6 75.9±1.5 68.4±0.4

Table 2.2: Comparative results on the DeepGlobe dataset. Our loss function improves the
performance of both UNet and DRU in terms of all the metrics, with DRU attaining the state-
of-the-art performance. The results for our method are again means and variances over three
independent training runs.

Connectivity-oriented pixel-based

Method APLS↑ TLTS↑ JCT↑ HM↑ CCQ↑
LinkNet 67.7 60.6 66.2 73.4 77.2
MultiBranch 70.8 65.2 71.1 75.6 79.4
UNet 62.3 59.9 66.4 72.7 68.8
DRU 75.2 65.4 67.2 76.6 80.1

UNet+ TOPO-win 75.4±1.4 70.3±0.7 71.3±0.8 80.1±0.3 77.4±1.9
DRU + TOPO-win 77.3±0.8 68.3±0.3 71.6±0.4 79.4±0.3 80.5±0.5

over three independent runs along with the corresponding standard deviations. The resulting

delineations are depicted qualitatively in Figs. 2.4, 2.5, 2.7, and 2.6. On average, DeepGlobe

features simpler roads with fewer opportunities for mistakes than RoadTracer and Canals.

As can be seen in Table 2.1, on the RoadTracer dataset, the non-windowed version of our

approach UNet+TOPO-glo performs very well compared to all the baselines and the windowed

version UNet+TOPO-win clearly outperforms all the baselines on all measures, save one. The

only exception is CCQ on the DeepGlobe dataset, in Tab. 2.2, which we attribute to the fact that

our loss is designed to enforce connectivity and CCQ does not measure it. This is remarkable

because many of the competing architectures rely on far more sophisticated networks than
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Table 2.3: Comparative results on the Canals dataset. Our loss function boosts the performance
of both UNet and DRU in terms of all the five metrics. The results for our method are means
and standard deviations over three independent training runs.

Connectivity-oriented pixel-based

Method APLS TLTS JCT HM CCQ

LinkNet 71.5 26.8 75.3 57.8 83.4
MultiBranch 77.6 33.1 77.5 63.2 84.2
UNet 70.9 30.3 76.4 61.4 81.4
DRU 71.4 32.7 76.9 62.1 80.3

UNet+ TOPO-win 76.2±0.1 35.8±0.1 79.3±0.3 63.5±0.1 84.9±0.3
DRU + TOPO-win 78.3±0.1 43.0±0.4 78.7±0.4 66.9±0.3 84.7±0.2

Table 2.4: Comparative results on the on the Massachusetts dataset. Using our loss function
combined with UNet outperforms [48] on all metrics. For a fair comparison, we used the same
UNet architecture as in [48].

Connectivity-oriented pixel-based

Method APLS TLTS JCT HM CCQ

PersHomo 58.9 36.8 73.9 60.7 62.3

UNet+TOPO-win 73.4±3.6 53.2±4.4 81.4±1.9 69.9±2.6 65.3±3.2

the simple U-Net we use. This demonstrates that our topological loss function does the

job it was designed to do. In particular, the fact that we outperform MALA, which enforce

road connectivity by directly using the MALIS loss, confirms our earlier claim that enforcing

dis-connectivity is more effective for complex road networks.

As can be seen in Tables 2.2 and 2.3, UNet+TOPO-win also outperforms the baselines on

DeepGlobe and Canals. When we replace the simple U-Net by its more sophisticated DRU

version, the performance tends to improve further on most measures but not all, which shows

that our MALIS-based loss function can also boost the performance of more sophisticated

architectures.

To further confirm this effectiveness of our loss function, we compare in Tab. 2.4 our results to

those obtained by PersHomo on the Massachusetts dataset, which were given by the authors

of [48]. For a fair comparison, we used the same network implementation as them for these

experiments. It features two times fewer features in each layer than the UNet we used in all

other experiments. We also used the same data splits. We consistently outperform PersHomo,

mainly in TLTS and APLS. As illustrated in Fig. 2.7, this is due to the small disconnections that

PersHomo produces, which our loss suppresses more effectively.
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input Segmentation RoadTracer

Seg-Path RCNNU-Net DeepRoad

PolyMapper UNet-MSE UNet-CE

MALA UNet+TOPO-glo UNet+TOPO-win

Figure 2.4: Comparative results on the RoadTracer dataset. For our results, we overlaid the
graphs on the inferred distance maps.
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input LinkNet MultiBranch

UNet DRU UNet+TOPO-win DRU+TOPO-win

Figure 2.5: Comparative results on the DeepGlobe dataset. For the results of our method, we
overlaid graphs on the inferred distance maps.

2.4.6 Ablation Study

We run a number of ablation studies to investigate the impact of the hyper-parameters of our

method on performance.

Training Times

The performance gain delivered by our method comes at the cost of increased training time.

In the experiments with UNet, the time needed for a single training iteration grew from 1.12s

using only the simple MSE loss to 2.51s when using our MALIS-based loss. However, as the

testing procedure remains unchanged, there is no slowdown at test time.

Varying the Impact of the Connectivity Loss

Our loss function defined in Eq. 2.2 is the sum of the mean square error LMSE and the connec-

tivity term LTOPO weighted by a coefficient α. In order to evaluate the impact of changing α

on performance, we trained our UNet with different α on the standard split of the RoadTracer

dataset. We report the results in Tab. 2.5. Qualitative results are shown in Fig. 2.8. Setting α

too low or too high adversely affects performance and its optimal value is in the order of 1e −3.

The explanation of this phenomenon is provided in Fig. 2.8. For low values of α, the effect of
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input UNet DRU

LinkNet MultiBranch UNet+TOPO-win DRU+TOPO-win

Figure 2.6: Comparative results on the Canals dataset. For the results of our method, we
overlaid graphs on the inferred distance maps.

input PersHomo UNet+TOPO-win

Figure 2.7: Qualitative results on the Massachusetts dataset. For our method, we overlaid
graphs on the inferred distance maps.

the connectivity-oriented component of the loss function is negligible. When α is increased,

more and more connections are represented in the distance map. However, when α is set very

high, the network starts to privilege disconnecting background image regions, even with no

obvious roads in the input, creating false positive road segments.
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Table 2.5: Impact of changing the value al pha that balances LMSE against LTOPO in Eq. 2.2,
using UNet+TOPO-win on the RoadTracer dataset. The window size is fixed to 64x64 and β to
0.1. The corresponding results are depicted qualitatively by Fig. 2.8.

Connectivity-oriented pixel-based

α APLS TLTS JCT HM CCQ

1e-2 72.3 46.3 80.3 73.1 66.5
1e-3 75.8 49.7 82.8 76.0 68.6
1e-4 71.4 45.9 81.9 73.4 67.1
0.0 66.3 40.0 77.5 68.2 59.3

input ground-truth α= 1e −4

α= 1e −3 α= 1e −2 α= 1e −1

Figure 2.8: Effect of changing α in Eq. 2.2 on the distance map the neural network outputs. As
α increases, the road map becomes more complete until α becomes so large that it promotes
spurious connections even where no roads are present in the image.

Balancing Connectivity versus Dis-Connectivity

In Eq. 2.4, we introduced a loss term Lconn to prevent false positives and it is weighted by

parameter β. In the top part of Tab. 2.6, we report results obtained by varying β. Qualitative

results are shown in 2.9. The best ones are obtained for β = 0.1, meaning that the term

preventing disconnections has ten times more impact on the loss than the term preventing

false positive roads, which simply suggests that a balance between these two terms is required.
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Table 2.6: Impact of changing the value ofβ that balances the connectivity and dis-connectivity
components of our loss in Eq. 2.4, using UNet+TOPO-win on the RoadTracer dataset. The
corresponding results are depicted qualitatively by Fig. 2.9. The bottom part of the table
features the performance measures obtained when not using the LMSE loss. They are lower,
which shows that balancing the connectivity and dis-connectivity components of LTOPO is
not enough to ensure maximum performance.

Connectivity-oriented pixel-based

LMSE used? β APLS TLTS JCT HM CCQ

yes
1e-0 71.4 43.8 80.9 73.2 66.5
1e-1 75.8 49.7 82.8 76.0 68.6
1e-2 74.3 46.2 79.5 74.5 65.3

no
1e-0 60.6 35.2 71.0 62.3 56.4
1e-1 64.7 39.9 75.3 64.5 57.3
1e-2 61.2 36.6 72.4 61.9 54.9

Importance of LMSE

LTOPO has both a component enforcing road connectivity and one preventing false positive

road predictions. Hence, one might ask if the distance regression term LMSE is still needed. To

verify this, we ran experiments on the RoadTracer dataset. We turned off the LMSE term and

again varied β to balance the connectivity and dis-connectivity terms of LTOPO. The results

are presented in the bottom part of Tab. 2.6 and are clearly less good than those we obtained

when using LMSE. We attribute this to the fact that the gradient of LTOPO is sparse, even when

the loss is evaluated only in windows. When the two losses are used together, LMSE generates

dense gradients that are particularly useful away from the roads while LTOPO provides sparse

gradients focused on ensuring the correct connectivity.

input ground-truth β= 1e −2 β= 1e −1 β= 1e −0

Figure 2.9: Effect of changing β in Eq. 2.4 on the distance map the neural network outputs.
As β is increases, the predictions become more precise. It reduces false positive roads until β
becomes so large that it creates disconnections on actual roads.
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Varying the Window Size

The third, and last, hyper-parameter of our method is the window size. Computing the loss

in windows, or image crops, as opposed to globally in the entire image, has the advantage of

preventing accumulating all the error signal in a single pixel. The smaller the window, the

more evenly the gradient is distributed among road pixels. The windowed version of the

loss also enables enforcing connectivity of dead-ending roads, as small windows are often

subdivided even by dead-ending roads. Large window sizes do not have this effect, as roads

shorter than the window size end in the middle of the window, without splitting it into disjoint

tiles. To discover the optimal window size, we tested its effect on performance. The results,

presented in Tab 2.7 and 2.8, confirm that mid-size windows work best. Setting the window

size to 64×64 pixels resulted in the highest performance, and increasing or decreasing the

window decreases performance.

Table 2.7: The impact of window size on performance. Results of experiments on the Road-
Tracer dataset. α is fixed to 1e −3 and β to 0.1. UNet+TOPO-win is used in all experiments.

Connectivity-oriented pixel-based

Window Size APLS TLTS JCT HM CCQ

(16x16) 68.3 39.2 79.2 67.4 59.4
(32x32) 72.1 45.8 78.9 72.7 65.7
(64x64) 75.8 49.7 82.8 76.0 68.6
(128x128) 76.1 46.4 81.7 74.5 68.3

Table 2.8: The impact of changing the window size on performance. Results of experiments
on the DeepGlobe dataset. α is fixed to 1e −3 and β to 0.1. UNet+TOPO-win is used in all
experiments.

Connectivity-oriented pixel-based

Window Size APLS TLTS JCT HM CCQ

(32x32) 74.1 67.3 65.2 73.4 74.8
(64x64) 75.2 69.8 71.2 79.8 77.0
(128x128) 74.3 68.2 72.0 79.6 77.2

Comparing Mean Squared Error with Cross Entropy

Our loss function combines a connectivity-oriented term with mean squared error. This

combination outperforms a number of existing networks, trained with cross entropy. We

therefore investigated if just switching from the more common cross entropy to mean squared

error, without our connectivity-oriented loss, impacts the performance. We present the

results in Tab. 2.9. We conclude that solely switching from pixel classification to distance map

estimation does not warrant the increased connectivity, and it is our connectivity-oriented
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Table 2.9: Comparison of Cross Entropy and Mean Square Error. Results of experiments on the
RoadTracer dataset [6].

Connectivity-oriented pixel-based

Method APLS TLTS JCT HM CCQ

UNet-CE 60.4 30.6 79.2 74.2 63.3
UNet-MSE 66.3 40.0 77.5 68.2 59.3

UNet+TOPO-glo 72.5 46.3 84.7 70.3 63.8
UNet+TOPO-win 75.8 49.7 82.8 76.0 68.6

term that does it.

input UNet-CE

UNet-MSE UNet+TOPO-glo UNet+TOPO-win

Figure 2.10: A comparison between the results obtained with the CE and MSE losses, on the
RoadTracer data set. For the results, we overlaid graphs on the inferred distance maps.
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2.5 Conclusion

We have introduced a differentiable loss function that effectively enforces proper connectivity

on the output of binary segmentation ConvNets for the purpose of road network delineation.

Using this loss function to train a simple U-Net allows us to outperform far more sophisticated

architectures on challenging benchmark datasets. This suggests that we may not yet have

unleashed the full power of these simpler networks and that adding appropriate constraints

during training might be a way to do so.

We have so far limited ourselves to networks of roads and drainage canals, but networks

of linear structures are also pervasive in biomedical 3D imagery. They range from neural

structures to blood vessels and many others. In future work, we will therefore expand our

approach to handle 3D image stacks and address a much broader range of applications.

The difficulty we will have to overcome stems from the fact that, in 2D, linear structures cut

the image into disjoint regions, which is not the case anymore in 3D. Fortunately, we have

demonstrated in earlier work [55, 56] that it is possible to effectively train a 3D network using

only 2D annotations in planar volume slices in which the method described in this chapter

applies.
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3 Enforcing Connectivity of 3D Linear
Structures Using Their 2D Projections

Many biological and medical tasks require the delineation of 3D curvilinear structures such as

blood vessels and neurites from image volumes. This is typically done using neural networks

trained by minimizing voxel-wise loss functions that do not capture the topological properties

of these structures. As a result, the connectivity of the recovered structures is often wrong,

which lessens their usefulness. In this chapter, we propose to improve the 3D connectivity

of our results by minimizing a sum of topology-aware losses on their 2D projections. This

suffices to increase the accuracy and to reduce the annotation effort required to provide the

required annotated training data. This work appeared in [76].

Oner, D., Osman, H., Kozinski, M., and Fua, P. Enforcing Connectivity of 3D Linear Structures

Using Their 2D Projections. In Conference on Medical Image Computing and Computer

Assisted Intervention – MICCAI 2022.

3.1 Introduction

Delineating 3D curvilinear structures, such as veins and arteries visible in computed tomogra-

phy (CT) scans, or dendrites and axons revealed by light microscopy (LM) scans, is central

to many applications. State-of-the-art algorithms typically rely on deep networks trained

to classify each voxel as either foreground or background by minimizing a voxel-wise loss.

Networks trained this way are good at voxel classification but nevertheless prone to topo-

logical errors, such as unwarranted gaps in the linear structures and false interconnections

between them. This mostly occurs when vessels and neuronal projections appear as thin

but densely woven structures and misclassifying a few voxels can disrupt their connectivity

without much influence on voxel-wise accuracy. These errors greatly reduce the usefulness of

the resulting arborization models. Correcting them requires manual interventions, which is

very time consuming when performed on whole-brain microscopy scans or whole-organ CT

scans, especially at scales sufficiently large to produce statistically significant results.

In other words, networks trained by minimizing losses such as the Cross Entropy and the
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Mean Squared Error, which are sums of per-voxel terms independent of all other voxels,

struggle to learn patterns formed jointly by groups of voxels [49, 27, 75]. A promising approach

to addressing this issue is to develop topology-aware loss functions that evaluate patterns

emerging from predictions for multiple voxels. This includes perceptual losses [71], loss

functions based on persistent homology [49, 27], and a loss that enforces continuity of linear

structures by penalizing interconnections between background regions on their opposite

sides [75]. The latter has proved to be more effective for 2D images than the others but does

not naturally generalize to 3D volumes.

In this chapter, we start from the observation that continuity of a 3D linear structure implies

continuity of its 2D projections. Hence, we can use a topology-aware loss, such as the one

of [75], to penalize connectivity errors in 2D projections of the 3D predictions, thereby indi-

rectly penalizing the errors in the 3D originals. This also means that we can use 2D annotations,

which are much easier to obtain than full 3D ones, to train a 3D network. This is close in

spirit to the approach of [56] in which delineation networks are trained by minimizing a loss

function in maximum intensity projections of the predictions and the annotations.

We demonstrate the effectiveness of our approach for delineating neurons in light microscopy

scans and tracing blood vessels in Magnetic Resonance Angiography scans. Not only do we

produce topologically correct delineations, but we also reduce the annotation effort required

to train the networks.

3.2 Related Work

3.2.1 Delineation of 3D linear Structures

Over the years, many approaches to delineating 3D linear structures have been proposed.

They range from hand-designing filters that are sensitive to tubular structures [36, 58, 89]

to learning such filters [102, 12] using support vector machines [50], gradient boost [85], or

decision trees [90].

Neural networks have now become the dominant technique [69, 42, 63, 78, 45, 101]. They are

often trained by minimizing pixel-wise loss functions, such as the cross-entropy or the mean

square error. As a result, the delineations they produce often feature topological mistakes,

such as unwarranted gaps or false connections. This occurs because it often takes very

few mislabeled pixels to significantly alter the topology with little impact on the pixel-wise

accuracy.

3.2.2 Topology-Aware Loss Functions

Specialized solutions to this problem have been proposed in the form of loss functions com-

paring the topology of the predictions to that of the annotations. For example, the perceptual

loss [70] has been shown to be sensitive to topological differences between the prediction and
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the ground truth, but cannot be guaranteed to penalize all of them. Persistent Homology [32]

is an elegant approach to describing and comparing topological structures. It has been used

to define topology-oriented loss functions [48, 27, 16]. Unfortunately, computing this loss

is computationally intensive and error-prone because it does not account for the location

of topological structures. clDice [83] is a loss function that employs a soft skeletonization

algorithm to compare the topology of the prediction and the annotation, but it is designed for

volumetric segmentation, whereas we focus on tracing linear structures given their centerlines.

For delineation of 2D road networks, existing approaches are outperformed by the method

of [75] that repurposes the MALIS loss initially proposed to help better segment electron

microscopy scans [13, 39] to improve the topology of reconstructed loopy curvilinear networks.

Unfortunately, the algorithm of [75] can only operate in 2D. In this paper, we show how it can

nevertheless be exploited for 3D delineation in volumetric images.

3.3 Method

We train a deep network to regress the distance from each voxel of the input 3D image x to

the center of the nearest linear structure. We denote the predicted 3D distance map by y . The

annotations are given in the form of a graph with nodes in 3D space. We denote the set of

edges of this graph by E . From the annotation graph, we compute the truncated ground truth

distance map ŷ . For a voxel p, ŷ[p] = min((minϵ∈E dpϵ),dmax), where dpϵ is the distance from

p to the annotation edge ϵ, and dmax is the truncation distance set to 15 pixels.

A simple way to train our deep net is to minimize a Mean Squared Error loss LMSE(y , ŷ) for

all training images. As discussed in Section 3.2, minimizing such a voxel-wise loss does not

guarantee that connectivity is preserved because mislabeling only a few voxels is enough

to disrupt it. For 2D images, this problem has been addressed with a loss term LTOPO that

effectively enforces continuity of 2D linear structures [75]. Unfortunately, it is limited to

2D data by design and cannot be extended to 3D. To bypass this limitation, we leverage the

observation that continuity of 3D structures implies continuity of their 2D projections and

evaluate LTOPO on 2D projections of the 3D predicted and ground truth distance maps. We

introduce the 2D connectivity-oriented loss term and the technique to train 3D deep networks

on 2D projections in the following subsections.

3.3.1 Connectivity loss

In this section, we recall the intuition behind the connectivity-oriented loss term LTOPO of

[75]. We refer the reader to the original publication for a more detailed explanation. As

illustrated by Fig. 3.1(a), a path connecting pixels on opposite sides of a linear structure must

cross that structure and should therefore contain at least one pixel p such that the predicted

distance map y[p] = 0. If y contains erroneous disconnections, then it is possible to construct

a path that connects pixels on opposite sides of the structure, but only crosses pixels with
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A

B

(a) (b) (c)

Figure 3.1: The intuition behind LTOPO. (a) In a perfect distance map, any path connecting pixels on
the opposite sides of an annotation line (dashed, magenta) crosses a zero-valued pixel (red circle). (b) If
a distance map has erroneously high-valued pixels along the annotation line, the maximin path (violet)
between the same pixels crosses one of them (red circle). (c) The connectivity-oriented loss LTOPO is
a sum of the smallest values crossed by maximin paths connecting pixels from different background
regions. The background regions are computed by first dilating the annotation (dilated annotation
shown in white), to accommodate possible annotation inaccuracy.

predicted distance values larger than zero, as depicted by Fig. 3.1(b). In particular, a maximin

path, that is, the path with largest smallest pixel among all possible paths between the same

end points, is guaranteed to pass through an interruption of the linear structure, if it exists.

LTOPO minimizes the smallest pixel on the maximin path between each pair of end points that

belong to background regions on the opposite sides of annotated linear structures, shown in

Fig. 3.1(c). It has proven effective in enforcing connectivity of 2D linear structures, but cannot

be extended to 3D, because 3D linear structures do not subdivide 3D volumes into disjoint

background regions.

3.3.2 Projected Connectively Loss

The key observation underlying our approach is that 3D continuity of three-dimensional

curvilinear structure, represented as a depth-map, implies its continuity in 2D minimum-

intensity projections of the depth map. The reverse is not true: a projection of a discontinuous

3D depth-map might appear continuous if it is taken along the direction tangent to the linear

structure at discontinuity. However, even in such case, the discontinuity appears in other

projections, taken along directions orthogonal to the direction of the first projection, as shown

in Fig. 3.2. In general, given three orthogonal projections of a 3D volume, each discontinuity

appears in at least two of them, unless it is occluded by other linear structures. Hence, we

evaluate the topology-enforcing loss LTOPO on projections of the predicted and ground truth

distance maps along the principal directions. Let y i be the min-intensity projection of y along

direction i , where i can be one of the axes x, y , or z and the corresponding projection of ŷ be

ŷ i . We take our connectivity-enforcing loss to be

Lconn(y , ŷ) = ∑
i∈{x,y,z}

LTOPO(y i , ŷ i ), (3.1)
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where LTOPO is the 2D connectivity loss of [75] discussed above. This loss can easily be

differentiated with respect to the values of y , as the minimum-intensity projection is just a

column-wise min operation.

3.3.3 Total Loss

x

y
z

Figure 3.2: Disconnections
in 3D linear structures appear
in at least two out of three or-
thogonal projections, unless
the structure is occluded.

The total loss that we minimize can therefore be written as

L3D (y , ŷ) = LMSE(y , ŷ)+αLconn(y , ŷ), (3.2)

where α is a scalar that weighs the influence of the two terms.

As discussed above, LMSE can be simply computed as the mean

squared difference between the predicted and ground truth 3D

distance maps.

This is a perfectly valid choice when 3D annotations are avail-

able, but such annotations are typically hard to obtain. Fortu-

nately, it has been shown in [56] that one can train a network to

perform 3D volumetric delineation given only 2D annotations

in Maximum Intensity Projections. This saves time because

manually delineating in 2D is much easier than in 3D. Since we

impose our connectivity constraints on projections along the axes x, y , and z, it makes sense

to also provide annotations only for the corresponding projections of the input volume x, and

generate from them ground truth distance maps ŷx , ŷy , and ŷz . To replace the 3D ground

truth ŷ , that L3D requires, we can rewrite our total loss as

L2D (y , ŷx , ŷy , ŷz ) = ∑
i∈{x,y,z}

LMSE(y i , ŷi )+α ∑
i∈{x,y,z}

LTOPO(y i , ŷi ), (3.3)

where the Mean Squared Error is evaluated on the minimum-intensity projections of the pre-

dicted distance map and the distance map produced for the 2D annotation of data projection.

3.4 Experiments

3.4.1 Datasets

We tested our approach on three data sets. The Neurons comprises 14 light microscopy scans

of mouse brain, sized 250×250×250. We use 10 of them for training and 4 as a validation test.

Brain contains 13 light microscopy scans of mouse neurons, sized 216×238×151. We use

10 for training and 3 for validation. MRA is a publicly available set of Magnetic Resonance

Angiography brain scans [14]. We crop them to size 416×320×28 by removing their empty

margins, and use 31 annotated scans for training and 11 for validation. A sample image from

each data set can be found in Fig. 3.4.
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Table 3.1: Comparative results. A UNet trained with our loss function outperforms existing
methods by a considerable margin in terms of the topology-aware metrics. The improvement
in terms of the pixel-wise metrics is smaller but still there on average.

Pixel-wise Topology-aware

Dataset Methods Corr. Compl. Qual. APLS TLTS

Neurons

MSE-3D 96.6 93.5 90.5 77.4 81.7
MSE-2D 98.3 93.6 92.1 76.2 80.1
CE 97.3 96.7 94.2 71.0 81.2
Perc 97.6 96.7 94.5 76.6 84.1
PHomo 97.5 96.9 94.7 81.5 83.9
OURS-3D 98.3 96.7 95.1 87.1 89.6
OURS-2D s 97.8 96.3 94.3 91.6 87.4

Brain

MSE-3D 80.6 83.5 69.5 62.9 69.1
MSE-2D 78.4 83.5 67.9 65.6 71.8
CE 79.5 82.6 68.1 61.2 68.6
Perc 80.1 85.0 70.2 68.9 74.5
PHomo 81.3 84.8 71.0 69.4 75.2
OURS-3D 79.9 86.4 70.9 75.1 80.2
OURS-2D 80.3 85.5 70.7 76.3 81.2

MRA

MSE-3D 84.9 81.2 70.8 58.5 60.4
MSE-2D 83.0 82.3 70.3 58.7 59.6
CE 85.7 81.1 71.3 58.8 60.0
Perc 83.4 83.9 71.9 60.9 64.5
PHomo 85.3 83.5 72.8 62.1 65.2
OURS-3D 81.5 89.5 74.3 70.7 72.0
OURS-2D 80.3 87.3 71.8 70.5 71.9

3.4.2 Metrics

We use the following performance metrics. CCQ [100], correctness, completeness, and quality

are similar to precision, recall, and the F1 score, but predicted foreground voxels are counted

as true positives if they are closer than 3 voxels away from the ground truth ones. APLS [34]

is defined as the mean of relative length differences between shortest paths connecting cor-

responding pairs of randomly selected end points in the ground truth and predicted graphs.

TLTS [99] is the fraction of shortest paths in the prediction that are less than 15% longer or

shorter than the corresponding ground truth paths.

3.4.3 Architectures and Baselines.

In all experiments, we use a 3D U-Net [81] with three max-pooling layers and two convolutional

blocks. The first layer has 32 filters. Each convolution is followed by a batch-norm and dropout

with a probability of 0.1. We used a batch size of 4. For data augmentation, we randomly crop

volumes of size 96×96×96 and flip them over the three axes. The networks were trained for

50k iterations with Adam [54], with the learning rate of 1e−3 and weight decay of 1e−3. At test
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Figure 3.3: Median and quartiles over five training runs of scores attained by networks trained with
different loss functions. Minimizing our topology-aware loss results in significantly higher score values
than minimizing hte baselines.

time, the predicted distance map is thresholded at 2 and skeletonized to obtain centerlines.

To compute the TLTS and APLS, we extract graphs from the prediction and the ground-truth,

based on voxel connectivity.

As discussed in Section 3.3.3, we can train our network by minimizing either L3D in Eq. 3.2

or L2D in Eq. 3.3. Recall that computing L3D requires 3D annotations, while 2D annotations

suffice to compute L2D . We will refer to these approaches as OURS-3D and OURS-2D. We

compare the results we obtain in this way to:

• MSE-3D. LMSE between 3D predictions and ground truths.

• MSE-2D. LMSE between 2D ground truth and projected predictions [56].

• CE. 3D binary segmentation trained with Cross-Entropy (CE).

• Perc. A weighted sum of CE and a perceptual loss function that compares feature

maps computed for the ground truth and predicted distance maps [71]. To extract the

feature maps, we use a ResNet50 architecture pre-trained with 23 different biomedical

datasets [23].

• PHomo. A weighted sum of CE and a loss based on Persistent Homology [48].
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Figure 3.4: Qualitative comparison of the test results in three different datasets. The connectivity
improves significantly when our approach is used.

For Perc and PHomo, we use the weighing coefficients recommended in the original publica-

tions. For OURS-3D and OURS-2D, α is set to 1e −3 and β to 0.1. These values are selected
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empirically, based on the ablation study provided in Sec. 3.4.5. We used windows of size 48

pixel to calculate LTOPO.

3.4.4 Results

We provide qualitative results in Fig. 3.4 and quantitative ones in Table 3.1. Minimizing our

loss function consistently improves the APLS and TLTS by a significant margin compared to

minimizing pixel-wise losses. Additionally, our loss outperforms the topology-aware losses

Perc and PHomo. It also delivers a boost, albeit only on average, in terms of the CCQ. Box

plots in Fig. 3.3, show that these conclusions hold when variance of the scores is taken into

account.

On average, OURS-2D achieves performance that are slightly lower than those of comparable

performance to OURS-3D. However, annotating 2D slices instead of 3D stacks significantly

reduces the time required to annotate, as shown in the user study conducted in [55]. Thus,

when annotation effort is a concern, OURS-2D is an excellent alternative to OURS-3D.

3.4.5 Ablation Study

To investigate the impact of hyper-parameters of our method on performance, we run the

following ablation studies.

Varying the Impact of the Connectivity Loss

In order to evaluate the impact of changing α on performance, we trained our UNet with

different α on the standard split of the Neurons dataset. We report the results in Tab. 3.2.

For low values of α, the effect of the connectivity-oriented component of the loss function is

negligible. When α is increased, more and more connections are represented in the distance

map.

Table 3.2: We varied α to investigate its impact on the test performance in Neurons dataset.
The results show that setting this coefficient too-low or too-high perturbed performance, and
its optimal value is in the order of 1e −3.

Pixel-wise Topology-aware

α β Corr. Comp. Qual. APLS TLTS

1e-2
0.1

88.2 97.0 85.9 74.7 85.3
1e-3 98.3 96.7 95.1 87.1 89.6
1e-4 98.1 96.0 94.3 81.8 87.7
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Balancing Connectivity versus Dis-Connectivity

In Tab. 3.3, we report results obtained by varying β. The best scores are obtained for β= 0.1,

meaning that the term preventing disconnections has ten times more impact on the loss than

the term preventing false positive roads, which simply suggests that a balance between these

two terms is required.

Table 3.3: We varied β to investigate its impact on the test performance in Neurons dataset.
According to all the performance measures, the best results are obtained for β= 0.1.

Pixel-wise Topology-aware

α β Corr. Comp. Qual. APLS TLTS

1e-3
1 96.3 96.4 92.9 85.7 87.5
0.1 98.3 96.7 95.1 87.1 89.6
0.01 95.9 96.9 93.1 85.3 88.9

3.5 Conclusion

We proposed a loss function that enforces topological consistency in 2D projections. Training

a deep net with our loss greatly improves the 3D connectivity of its outputs and reduces the

annotation effort required to obtain training data. In our current implementation, we use

projection direction independently of the shape of the delineated structures. However, some

projections are more informative than others. To further improve delineation accuracy while

reducing the required annotation effort, we will develop algorithms for automatic selection of

the optimal projection direction for different parts of the volume, so that we can use less than

three projections.
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4 Persistent Homology with Improved
Locality Information for more Effec-
tive Delineation

Persistent Homology (PH) has been successfully used to train networks to detect curvilinear

structures and to improve the topological quality of their results. However, existing methods

are very global and ignore the location of topological features. In this chapter, we remedy this

by introducing a new filtration function that fuses two earlier approaches: thresholding-based

filtration, previously used to train deep networks to segment medical images, and filtration

with height functions, typically used to compare 2D and 3D shapes. We experimentally demon-

strate that deep networks trained using our PH-based loss function yield reconstructions of

road networks and neuronal processes that reflect ground-truth connectivity better than

networks trained with existing loss functions based on PH. This work appeared in [74].

Oner, D., Garin, A., Kozinski, M., Hess, K., and Fua, P. Persistent Homology with Improved

Locality Information for more Effective Delineation. IEEE Transactions on Pattern Analysis and

Machine Intelligence 2022.

4.1 Introduction

In many image segmentation tasks, the topology of the resulting mask is as important as, if not

more than, its pixel-wise accuracy. For example, a model of an aortic valve that does not form

a ring is biologically implausible. Similarly, networks of curvilinear structures—-be they roads

in aerial images, blood vessels in Computer Tomography (CT) scans, or dendrites and axons

in Light Microscopy (LM) image stacks—should not feature breaks that disrupt connectivity

or false connections between disjoint structures. Unfortunately, deep networks trained by

minimizing pixel-wise loss functions, such as the cross-entropy or the mean square error, are

subject to such mistakes. This is in part because it often takes very few mislabeled pixels to

alter the topology significantly with little impact on the pixel-wise accuracy. In other words,

it is possible for a network trained in this manner to deliver both a good pixel classification
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accuracy and an incorrect topology.

Specialized solutions to this problem have been proposed in the form of loss functions that

compare the topology of the prediction to that of the annotation. They are effective for

specific applications but do not naturally generalize. For example, the perceptual loss of [71]

penalizes topological differences between the prediction and the ground truth, but cannot be

guaranteed to detect them all. Similarly, minimizing the MALIS loss for segmenting electron

microscopy scans [13, 39] yields better region boundaries but does not penalize interruptions

in loopy linear structures. This has been addressed by [75] for delineation of 2D road networks

but the proposed solution is not applicable to 3D image stacks.

Persistent Homology (PH) [32], an elegant approach to describing and comparing topological

structure of data, offers the promise to address the connectivity problem in a generic way, both

for 2D and 3D images. Homology is the study of topological features in an object, such as its

connected components (0-homology classes), loops (1-homology classes), and closed surfaces

(2-homology classes). Persistent homology detects homology classes in objects filtered at

different scales. A homology class that appears at a particular scale and disappears at a larger

one is represented by a scale interval called the persistence interval. The set of persistence

intervals for all the homology classes characterizes the overall topology of the structure. It can

be represented by a persistence diagram. The similarity of these diagrams across two different

structures can then be used to quantify their topological similarity. This has been successfully

exploited to train deep networks for delineation [48], image segmentation [48, 28, 27] and

crowd counting [1].

We show that these methods fail to unleash the full power of persistent homology, because

they discard too much information about the structure of the prediction and the annotation

when encoding them in the form of persistence diagrams. As shown in Fig. 4.1, this can

result in networks that still fail to enforce the proper topology. To remedy this, we introduce a

new approach to computing persistence diagrams that increases their descriptive power, as

shown in Fig. 4.3. Our main contribution is a novel filtration technique that combines two

approaches to filtration commonly used in topological data analysis (TDA): thresholding-

based-filtration [28, 27, 48] and the height function [91]. It yields a loss function that can

be used for both 2D and 3D images and significantly improves performance compared to

state-of-the-art topological methods, as we will demonstrate in our experiments.

4.2 Related Work

Training a deep network that produces topologically correct segmentations has typically been

done by designing loss functions that, when minimized, favor plausible topology. In this

section, we briefly review first those that do not rely on Persistent Homology, and then those

that do.
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(a) (b) (c) (d)

Figure 4.1: 2D and 3D delineation. (a) Aerial image and slice of a microscopy stack. (b) A network
trained using a standard homology-based loss yields road and neurite interruptions. (c) One trained
using our localized loss is more topologically accurate and produces predictions that closely resemble
the ground truth (d).

4.2.1 Losses Designed to Enforce Topological Correctness.

Several such losses have been proposed already to go beyond pixel-wise classification accuracy

by encoding more global properties. In [61], the connectivity between neighboring pixel pairs

is used as an additional source of supervision. This approach has been shown to improve

connectivity, but since disconnections or false connections are not penalized explicitly, there

is no guarantee it captures all such errors. The perceptual loss of [71] is based on the assump-

tion that a pre-trained neural network can capture differences of connectivity between the

prediction and the ground-truth. However, even though it has been shown experimentally

to improve the topology of masks produced by a deep net, there is no guarantee that this as-

sumption holds in general. Making the Rand index of segmentations produced by the network

similar to that of ground truth ones [13, 39] helps when modeling tree-like structures, both in

2D and in 3D, but cannot prevent disconnections in loopy structures. This shortcoming has

been addressed by [75] by detecting disconnections of 2D loopy structures as interconnections

of background regions, but the proposed solution does not generalize to 3D.

4.2.2 Losses that rely on Persistent Homology

Persistent Homology (PH) [33, 108] is a well-established topological data descriptor. One of its

important applications is comparing the topological structures of binary images, for example

by enforcing the correct Betti number on binary masks resulting from inference in Markov

Random Fields [22]. More recently, it has been shown that persistence diagrams can also be

computed for grayscale images and differentiated with respect to the pixel values [48, 28, 40,

60, 19]. Hence, they can be incorporated into loss terms and used to train deep networks.

In this vein, a loss term that enforces a sequence of desired Betti numbers on the predicted
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segmentation was introduced in [28]. This approach was further extended to a loss function

that tends to equalize the Betti number of the prediction and the ground truth [27]. In a similar

vein, the loss term of [48] relies on comparing persistence diagrams of the prediction and the

ground truth, where the persistence diagrams are obtained by thresholding. As discussed in

the next section, for binary ground truth this results in degenerate persistence diagrams that

only encode the Betti number. Thus, this approach can be interpreted as equalizing the Betti

numbers of the prediction and the ground truth, as in [27]. This was improved upon in [96]

by applying PH to distance maps instead of binary annotations or class affinity maps. We

show in the next section that this makes the loss function better at detecting and penalizing

topological errors. Unfortunately, even this improved technique is susceptible to incorrectly

matching the persistence diagrams of the prediction and the ground truth because it throws

away location information. By incorporating such information into our diagrams, our method

makes them more informative and alleviates this problem.

It has also been proposed to detect disconnections in predicted 2D and 3D structures using

Discrete Morse Theory [49]. Topological features that are inconsistent with the ground truth

are then penalized in the loss function. However, when the annotations lack spatial precision,

which is often the case for neurite and road centerline annotation like the ones studied here,

ground-truth inaccuracies may confuse the network. By contrast, our technique allows for

considerable misalignment between the prediction and the ground truth.

4.3 Method

We first introduce Persistent Homology and its application to characterizing two-dimensional

images and three-dimensional image stacks. As PH provides global descriptors that ignore the

location of topological features, we then introduce our approach to accounting for it.

4.3.1 Persistent Homology

birth

d
e
a
th

bh dh bh

dh
hh h

persistence
diagram

filtered binary masks at different scalesinput

scale axis

0 1

Figure 4.2: Filtration. When the distance map shown on the left is filtered by thresholding, the loop
h emerges at scale bh and is filled at scale d h . This gives rise to the point (bh ,d h) in the persistence
diagram shown on the right. Here, thresholding means retaining all pixels whose value is lower than
the threshold.

In the interest of simplicity, we introduce PH for binary images and image stacks, where

homology classes are limited to connected components, loops, and closed surfaces. We refer

the interested reader to the review [33] for a more general treatment, applicable to non-image
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and higher-dimensional data.

At the heart of PH is detecting homology classes—connected components, loops, closed

surfaces—at many different scales. The ones that exist over a wide scale range are called

persistent and deemed more likely to represent true features, as opposed to sampling artifacts

or noise. Here, scale has a very specific meaning. It refers to the parameter of a filtration

function F that is applied to an image Y to produce topological objects called cubical complexes.

They arise when filtering images and their properties are described in [43, 11] for instance. A

reader not familiar with algebraic topology can think of them as binary masks. The masks

obtained for different scales form a sequence of inclusions, that is, for a pair of scale parameters

s1 < s2, the mask F (Y, s1) is entirely contained within the mask F (Y, s2). The simplest example

of a function for filtering grayscale images is thresholding, where the threshold acts as the

scale, as shown in Fig. 4.2.

As the scale changes, homology classes in the filtered cubical complex emerge and disap-

pear. To capture this, the scale range is sampled from small to large, the image is filtered

at the selected scale values, homology classes in the resulting binary masks are detected

algebraically [33], and correspondence is established between the homology classes found at

consecutive scales. For each class, this yields a pair (b,d), where b is the scale at which the

homology class appears and d the scale at which it disappears. We will refer to them as birth

and death times and to the interval [b,d ] as the persistence interval of the homology class. The

set PY = {(bh ,d h)}h∈HY , where HY is the set of all homology classes found in the filtered image

Y, is called the persistence diagram of Y, and was first introduced by [4]. In practice, we use the

Gudhi library [65] to compute persistence diagrams from images. Fig. 4.2 depicts the birth

and death of a specific homology class.

To compare images Y1 and Y2, one-to-one matching is performed between their persistence

diagrams, PY1 and PY2 , with the cost of matching a homology g ∈ HY1 to a homology h ∈ HY2

set to cg ,h = (bh −bg )2 + (d h −d g )2 and the cost of leaving an interval [b,d) unmatched is set

to the distance between the point (b,d) and the diagonal in R2. The optimal matching can

be found using the Hungarian algorithm. Its cost that we denote as C (Y1,Y2) quantifies the

topological discrepancy between Y1 and Y2 by penalizing differences between corresponding

homology classes and ones that only appear in either Y1 or Y2.

4.3.2 Training Deep Networks using PH

Let f be a network that associates to an input image X a segmentation mask Y = f (X) such that

for all pixels or voxels p ∈ Y, 0 ≤ Y[p] ≤ 1 and let Ŷ be the corresponding ground-truth mask. A

natural idea then is to train f by minimizing

Ltot(Y, Ŷ) = L(Y, Ŷ)+αC (Y, Ŷ) , (4.1)
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where L is the standard loss function, either the Mean Square Error, or the Cross Entropy, and

α is a hyper-parameter, which we set to 0.01 in practice. This is possible because C is sub-

differentiable with respect to its inputs when filtration is achieved by thresholding, as shown

in [48, 28, 60]. However, when the ground truth Ŷ is binary, as it often is, all structures emerge

at scale zero and disappear at scale one. Hence, as shown in Fig. 4.3(a) the persistence intervals

all are [0,1]. In other words, all points in a ground truth persistence diagram are located in

its upper-left corner, and the only difference between diagrams obtained for annotations

of different images is the number of points they contain. Unlike in classical applications of

PH [33], where persistence diagrams serve as rich topological descriptors, such diagrams

only encode the Betti number of the annotation. An approach to handling this difficulty is to

replace the binary ground truth by its distance transform that can be thresholded over a wide

range of threshold values to create different binary masks [96]. Unfortunately, computing the

persistence diagram of a ground truth distance transform still yields persistence diagrams in

which the topological features of the original, binary ground truth are spread along the ‘death’

axis but not along the ‘birth’ one: The distance value at the structures themselves is zero and,

as a result, all the loops of the ground truth mask appear as soon as the scale value becomes

positive. As shown in Fig. 4.3(b), this may lead to erroneous matches between persistence

diagrams, which encourages the deep network to produce wrong segmentations.

4.3.3 Accounting for the Location of Topological Features during Filtration

Our goal is therefore to prevent erroneous matches between topological features of the pre-

diction and of the ground truth. To this end, we want to use the features’ image location to

characterize them. However, re-defining the matching cost to include a position-dependent

term would be difficult, because topological features extend across the scale-space, and be-

cause there is no natural notion of distance between them. Hence, instead of modifying the

matching cost, we propose a new filtration function that distinguishes features at different

positions. We draw our inspiration from a filtration technique called the height function [91].

It was originally designed for three-dimensional meshes and can be applied to binary images

by assigning to each pixel a height value that is the coordinate of its projection along a se-

lected straight line. Filtration is carried out by forming binary masks made of pixels whose

height is smaller than the scale parameter [44]. As the scale is increased, the binary image

is revealed in scan-lines perpendicular to the height axis, one scan-line at a time. The birth

and death times are the heights of pixels responsible for the emergence and disappearing of

homology classes. As a result, the persistence diagram contains partial information about the

location of topological features. Moreover, both birth and death times of different homology

classes are distributed across scales. Additionally, it has been shown that a binary image can

be reconstructed from as few as four persistence diagrams obtained with height functions

with well-chosen directions [9]. A height function is only defined for binary images, but the

abovementioned result inspired us to extend its definition by combining it with thresholding

distance maps. Given a scale s, the value of the filtered binary mask at coordinates p is taken

56



4.3 Method

input filtered binary masks pers. diag.

p
re

d
ic

ti
o

n
gr

o
u

n
d

tr
u

th

(a) Filtration by thresholding binary ground truth and predicted class affinity maps. Note,
that all points in the ground truth persistence diagram (top-right) coincide. This results in
erroneous matches between the predicted and ground truth homology classes. Minimizing a
loss function based on such a filtration can magnify the errors.
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(b) Filtration by thresholding distance maps distributes the topological features of the
ground truth along the vertical but not the horizontal axis. This still results in erroneous
matching between the predicted and ground truth homology classes: Loop D’ in the predic-
tion emerges at a higher threshold than E’, causing a faulty matching of E’ to D.
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(c) Our localized filtration of distance maps distributes the persistence diagram of the
ground truth across the plane, promoting correct matches between predicted and ground
truth homology classes. The gray arrow represents the direction of the height axis used by
the filtration function.

Figure 4.3: Comparing filtration functions on synthetic data. The binary ground truth road annota-
tion (top-left in each table part) contains four loops, marked with cyan dashed lines. We synthesized a
predicted class affinity map (bottom-left in each part) by extending one road to the left and interrupting
another. In consequence, loop B and D from the ground truth are joined into B’ in the prediction, and
A is split into A’ and E’. For each filtration method, we show binary masks resulting from filtration at
different scales, pairs of persistence diagrams, and their optimal matches.
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to be

F (Y, s)[p] = 1(Y[p]+ρ(p) < s) , (4.2)

where 1(·) evaluates to one if the condition in the bracket is satisfied and to zero otherwise. In

essence, this amounts to thresholding the sum of the height function ρ and the pixel values.

From the perspective of TDA, such combination of two filtration functions can be seen as a

line in the fibered barcode defined by [18].

In its simplest form, ρ is a linear function of pixel coordinates, and the region highlighted for

any s extends along a line perpendicular to the height axis, as shown in Fig. 4.3(c). But other

forms of ρ are also possible. We tested

• linear functions ρ(p) = w⊺p, where w is a two-vector hyper-parameter encoding the

orientation of the height axis and the slope of the height function;

• a scaled distance to a point q in the image, ρ(p) = a∥p−q∥2, where q and a are hyper-

parameters;

• the square of the height function ρ(p) = p⊺Wp, where W = w⊺w, and w is the hyper

parameter encoding the slope of the function and the orientation of the height axis;

The function ρ introduces localization information of the topological features into the persis-

tence diagram. This is illustrated by Fig. 4.3 where different values of the scale parameter make

homology classes appear in different parts of the image. But, because the scale parameter

must be a scalar, it can only pinpoint location of topological features in 2D or 3D images

along one direction. This could be addressed by evaluating the loss function many times for

many different orientations of the height axis, or more generally, for many different hyper-

parameters of ρ. This approach is legitimized by the theoretical result of [9] that states that four

well chosen filtration directions suffice to completely represent a binary image. The problem

of combining a number of different filtration functions is known in topological literature as

multipersistence [17]. But current multipersistence techniques are not easily plugged into

a deep learning framework for lack of results on their differentiability. Moreover, filtering

the data along multiple directions would considerably slow down the training. Instead, we

randomly draw the hyper-parameters of the height function at each training iteration. We

show in Sec. 4.4.3 that, in practice, the simple linear function performs best.

4.4 Experiments

We first demonstrate that our loss function correlates with the number of topological errors

better than standard PH-based losses. We then evaluate its performance in training deep

networks to delineate road networks and neuronal arborizations.
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(a) (b) (c) (d)

Figure 4.4: Sensitivity of the topological loss term C to the number of injected errors (a) Ground
truth distance maps of road networks. (b) Distance maps corrupted by introducing false roads and
interruptions. We randomly injected one error at a time, obtaining corrupt distance maps with 30
errors. We repeated this simulation 10 times. (c,d) The cumulative distribution function of change in
the loss term in response to injecting one error. In (c), C is evaluated using the filtration by thresholding
distance maps, whereas in (d) we use our filtration. The probability of decreasing the existing loss term
by injecting additional errors is around 0.4, whereas for our loss term it drops to 0.2. We conclude that
our loss term is more monotonic with respect to the error number.

4.4.1 Correlation to the Number of Topological Errors

We motivated our filtration technique by the fact that it introduces partial localization of

topological features into the persistence diagrams and better spreads the diagrams across

the plane. Here, we validate this on synthetic data to show that it correlates better with the

number of errors injected into a distance map than the baseline loss, which is based solely

on thresholding distance maps. To this end, we took two crops of ground truth road graphs

of the RTracer dataset [6] and generated faulty synthetic distance maps by injecting thirty

errors one at a time. They were selected randomly and with equal probability between a

road disconnection and a false interconnection. After each error injection, we evaluated the

topological loss term C of Eq. 4.1 using either filtration by thresholding distance maps or

our combined filtration. Ideally, we would expect C to increase every time an error is added.

Hence, we repeated the experiment ten times. For each crop, we plot the distribution of the

increment in C resulting from adding one error, when using the baseline loss in Fig. 4.4(c)

and ours in Fig. 4.4(d). The parts of the distributions shown in green correspond to positive

increments, which are what we expect, and those in red denote the negative ones, which are

essentially erroneous. Note that the red parts are far smaller when using our loss than the

baseline one.

4.4.2 Performance in Training Deep Networks

Having shown that our loss function captures topological correctness better than existing

PH-based methods, we now compare the performance of deep nets trained with our and
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existing losses.

Datasets

We experimented on four datasets.

• RTracer. A dataset of high-resolution satellite images covering urban areas of forty cities

in six countries [6]. The ground truth was obtained from OpenStreetMap. Like [6, 62,

103, 70], we used twenty five cities as the training set and the remaining fifteen as the

test set.

• Massachusetts. The Massachusetts dataset [68] features both urban and rural neigh-

borhoods, with many different kinds of roads ranging from small paths to highways.

For a fair comparison to [48], we split the data into three equal folds and performed a

three-way cross validation.

• Neurons. The dataset is a part of a proprietary 3D, 2-photon microscopy scan of a whole

mouse brain. It contains 14 stacks of size 250×250×200 voxels and a spatial resolution

of 1.0×0.3×0.3 µm. We used ten stacks for training and the remaining four for testing.

• Brain. The dataset contains two 3D images of neurons in a mouse brain. The axons and

dendrites have been outlined manually while viewing the sample under a microscope

and the image has been captured later. The sample deformed in the meantime, resulting

in a misalignment between the annotation and the image. To ensure that the test and

training data comes from the same distribution, we split the two scans into stacks

of 150×200×200 voxels and a spatial resolution of 1 µm, and randomly divided the

resulting data set into a training set of twelve stacks and a test set of ten scans.

Baselines

To test the impact of our proposed filtration functions, we used the standard U-Net architec-

ture [81], with four blocks, each with two sequences of convolution-ReLU-batch normalization.

Max-pooling in 2×2 windows followed each of the blocks. The initial feature size was set to 32

and grew to 512 in the smallest feature map in the network. We augmented the training data

with vertical and horizontal flips and random rotations, and used the ADAM algorithm [54]

with the learning rate set to 1e −4. We then used different version of the Ltot of Eq. 4.1 we

minimized to train the network. We tested the following as baselines:

• UNet-CE. L is the Cross Entropy loss for pixel classification and there is no topological

discrepancy loss, that is, α= 0.0. Binary masks are used as ground truth.

• UNet-MSE. L is the mean squared error of the truncated distance to the closest fore-

ground pixel, with no topological discrepancy loss.
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• Homo-Pre. L is the cross Entropy loss and we compute C by thresholding pixel classifi-

cation maps., as in [48, 28, 27].

• Homo-Reg. L is the mean squared error and we compute C by thresholding the truncated

distance maps, as in [96].

• Ours. L is the mean squared error and we compute C using our proposed filtration

function.

Based on the results of the ablation study on the Massachusetts data set, presented in Sec. 4.4.3,

in all our experiments with Homo-Pre, Homo-Reg, and Ours, we set α = 0.01 and compute

the loss in windows of size 64×64 pixels. Like [48], we limit the method to homology classes

order 1, that is, loops. This has two advantages. First, by convention, loops are created by the

borders of the window, making disconnections in dead-ending roads or neurites detected as

broken loops. Second, detection of homology classes is computationally expensive, and the

time grows cubically with the number of pixels. In our current setup, computing the loss for a

single window takes 0.5 seconds. Similarly to [48], we did not observe any performance gain

due to using homology classes of order 0—connected components—in addition to loops.

For completeness, we also compared our approach to recent techniques not relying on persis-

tent homology: Segmentation [6], RoadTracer [6], Seg-Path [70], RCNNU-Net [103], DeepRoad

[66], PolyMapper [62], DMT [49], and ConnLoss [75]. Segmentation, RoadTracer, RCNNU-Net,

and PolyMapper do not explicitly enforce topology constraints, while the others do and are

discussed in the related work section. The outputs of these methods were shared by the

authors directly with us or on the Internet, and we computed all the performance metrics.

Performance metrics

Comparing connectivity of segmentation masks is difficult, because the reconstructions rarely

overlap with the ground truth, and often deviate from it significantly. There seems to be no

consensus concerning the best evaluation technique; we found five connectivity-oriented

metrics in concurrently published recent work. To provide an exhaustive evaluation, we used

all of them.

• APLS. Average Path Length Similarity aggregates relative length differences of short-

est paths between pairs of corresponding points in the ground truth and predicted

maps [34].

• TLTS is a statistics of lengths of shortest paths between corresponding pairs of end

points randomly selected in the predicted and ground-truth networks [99]. We report

the fraction of paths with relative length difference within 5%.

• JCT. It is a junction score that considers the number of roads intersecting at each

junction [6]. It consists of road recall, averaged over the intersections of the ground-

truth and road precision, averaged over the intersections of the prediction. We report
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the corresponding F1 score.

• Betti. The Betti error [48] is an average absolute difference between the number of

topological structures seen in the ground truth and predicted delineations. We take

random patches sized 64×64 from predictions, compute the number of 1-homology

classes (loops) and compare the numbers computed for the prediction and the ground

truth. We average this difference over 10 trials. In practice, to compute the error we use

the code made publicly available by the authors.

• CCQ We complement the connectivity-oriented metrics with the most popular metric

that measures spatial co-occurrence of annotated and predicted road pixels. The Cor-

rectness, Completeness and Quality are equivalent to precision, recall and intersection-

over-union, with the definition of a true positive relaxed from spatial coincidence of

prediction and annotation to co-occurrence within a distance of 5 pixels [100]. We

report the Quality as our single-number metric.

Table 4.1: Validation results on the Massachusetts dataset. Our loss function outperforms all
PH-based loss functions. We report means and standard deviations over three independent
training runs.

Connectivity-oriented pixel-based

Method APLS ↑ TLTS↑ JCT↑ Betti↓ CCQ↑
UNet-CE 60.9±3.9 41.6±4.1 72.0±2.7 3.12±0.6 66.9±2.6
UNet-MSE 61.3±3.7 41.9±4.2 71.9±2.9 3.09±0.7 67.3±2.3

DMT 64.7±2.9 45.8±2.8 80.6±2.4 0.99±0.4 74.9±1.9
ConnLoss 73.4±3.6 53.2±4.4 81.4±1.9 1.29±0.5 75.8±2.2

Homo-Pre 62.5±1.9 42.1±1.9 74.2±1.7 1.28±0.3 69.3±1.9
Homo-Reg 65.0±2.2 45.6±1.8 76.9±1.9 1.09±0.2 71.8±2.1
Ours 68.7±1.2 50.6±2.3 79.2±2.6 0.90±0.3 74.9±1.8

Comparative Results

We present validation results for the Massachusetts data set in Tab. 4.1, and test results for the

RTracer data set in Tab. 4.2. Our method outperforms the other methods based on Persistent

Homology, which demonstrates that our approach to filtering is truly effective. It also outper-

forms the other 2D tracing algorithms targeted at handling aerial images, RoadTracer, Seg-Path,

DeepRoad, and PolyMapper, with the exception of ConnLoss that does marginally better. This

is presumably because ConnLoss explicitly penalizes each disconnection of the prediction,

whereas a persistence diagram is a lossy topological descriptor that may fail to penalize some

errors. However, ConnLoss does not naturally extend to 3D data, whereas our method does.

On the 3D Neurons data set, it outperforms the competing algorithms, as evidenced by the

test results shown in Tabs 4.3 and 4.4. The qualitative results for the Massachusetts data set

can be found in Fig. 4.5, the corresponding results for the RTracer data set in Fig. 4.6, and for
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Table 4.2: Our loss function outperforms all PH-based loss functions on the RTracer dataset.
We report means and standard deviations over cities from the test set.

Connectivity-oriented pixel-based

Method APLS ↑ TLTS↑ JCT↑ Betti↓ CCQ↑
UNet-CE 63.4±1.6 37.5±1.9 78.0±1.0 3.08±0.6 59.7±2.2
UNet-MSE 66.3±1.9 40.0±2.0 77.5±1.3 2.99±0.5 59.5±1.9

Segmentation 62.5±1.5 33.0±1.6 78.2±1.5 3.04±0.6 54.4±1.0
RoadTracer 59.1±0.8 40.6±1.5 81.2±1.6 2.85±0.7 47.8±1.6
Seg-Path 68.1±1.4 46.5±1.7 75.4±1.3 2.31±0.4 54.0±1.4
RCNNU-Net 48.2±1.6 18.4±1.9 75.9±1.4 3.25±0.7 62.8±1.5
DeepRoad 24.6±2.2 6.4±0.9 51.4±1.5 4.95±1.0 43.6±2.0
PolyMapper 61.3±2.3 31.5±1.9 80.0±1.2 2.90±0.4 35.7±1.4
ConnLoss 75.4±1.6 49.6±1.4 82.6±0.6 1.30±0.4 68.4±0.9

Homo-Pre 67.3±1.7 42.3±1.1 78.7±0.9 1.32±0.3 61.9±1.9
Homo-Reg 69.9±1.6 45.1±1.4 79.6±1.3 1.07±0.3 63.2±1.6
Ours 73.8±1.8 47.8±0.9 81.3±1.6 0.89±0.2 66.3±1.7

Table 4.3: Comparative results on the Neurons dataset. Our loss outperforms all the baselines.
We report means and standard deviations over three independent training runs.

Connectivity-oriented pixel-based

Method APLS ↑ TLTS↑ Betti↓ CCQ↑
UNet-CE 79.9±1.5 80.8±2.2 2.33±0.6 90.6±2.0
UNet-MSE 80.2±1.6 80.9±2.0 2.31±0.7 90.4±1.9

Homo-Pre 83.5±1.0 82.1±1.7 1.06±0.2 91.2±1.8
Homo-Reg 85.4±1.2 83.4±1.5 0.91±0.2 92.5±1.6
Ours 86.9±1.1 85.2±1.9 0.80±0.2 93.3±1.9

Table 4.4: Comparative results on the Brain dataset. Our loss outperforms all PH-based losses.
Means and standard deviations over three independent training runs as presented.

Connectivity-oriented pixel-based

Method APLS ↑ TLTS↑ Betti↓ CCQ↑
UNet-CE 65.8±1.8 63.6±1.3 2.89±0.4 70.4±1.9
UNet-MSE 66.0±1.6 63.9±1.4 2.92±0.5 70.6±1.8

Homo-Pre 67.6±1.5 65.3±1.0 1.39±0.2 71.5±1.4
Homo-Reg 70.5±1.5 68.8±0.9 1.22±0.3 72.6±1.3
Ours 73.4±1.4 70.1±1.1 1.06±0.2 73.2±1.2

the Neurons data set in Fig. 4.7. For each method, we display the thresholded predictions with

their skeletons overlaid in red. In the case of the 3D dataset, the images we show are maximum

intensity projections.
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4.4.3 Ablation Study

To investigate the impact of hyper-parameter choices on performance, we ran three ablation

studies.

Weighting the PH Loss

We varied the coefficient α in Eq. 4.1, while keeping the other parameters fixed. We report the

results in Tab. 4.5. The best results are achieved for α= 0.01, and the performance decreases

when α is set ten times higher or lower. This suggests that the standard Mean Square Loss

is still important for overall performance, which is not a surprise, as the gradient of our

input UNet-CE UNet-MSE

DMT ConnLoss Homo-Pre

Homo-Reg Ours

Figure 4.5: Qualitative results on the Massachusetts dataset.
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input MSE Segmentation

RoadTracer Seg-Path RCNNU-Net

DeepRoad PolyMapper ConnLoss

Homo-Pre Homo-Reg Ours

Figure 4.6: Comparative results on the RTracer dataset.
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input UNet-CE UNet-MSE

Homo-Pre Homo-Reg Ours

Figure 4.7: Comparative results on the 3D Neurons dataset.

Table 4.5: Impact of changing the learning coefficient of localized PH loss on the Massachusetts
dataset. The window size is fixed to 64x64.

Connectivity-oriented pixel-
based

α APLS TLTS JCT Betti CCQ

1e-3 64.9 46.0 77.1 1.21 72.3
1e-2 68.7 50.6 79.2 0.90 74.9
1e-1 67.1 48.9 77.8 0.94 74.6
1e-0 64.8 45.8 76.2 1.10 72.0

persistent-homology-based loss is sparse and concentrated at pixels critical for topological

correctness.

Window size

We changed the size of the window in which the persistent homology is computed. We report

the results in Tab. 4.6. Our method performs best when using large windows that contain

significant portions of the structures of interest. We could not try even larger ones because it

would have increased the time needed to detect the homologies and slowed down the training
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Table 4.6: Impact of changing the window size when computing our localized loss on the
Massachusetts dataset. The learning coefficient is fixed to 1e-2.

Connectivity-oriented pixel-
based

Window Size APLS TLTS JCT Betti CCQ

8x8 62.1 41.9 73.0 2.84 67.2
16x16 62.7 42.4 74.5 2.09 68.8
32x32 65.4 45.7 77.1 1.17 72.5
64x64 68.7 50.6 79.2 0.90 74.9

too much.

Table 4.7: Performances of different height functions used for localized PH loss on the Mas-
sachusetts dataset. The learning coefficient is fixed to 1e-2 and window size to 64x64

Connectivity-oriented pixel-
based

Height Function APLS TLTS JCT Betti CCQ

Dist. to a point 67.8 49.4 77.9 1.01 73.6
Random Linear 68.7 50.6 79.2 0.90 74.9
Fixed Linear 67.5 48.7 76.5 1.15 73.0
Square 64.2 45.1 76.3 1.32 70.3

Height Functions

We also evaluated the effect on performance of using different forms of function ρ in Eq. 4.2,

that ties homology birth and death times to image coordinates, distributing the points in the

persistence diagram. We present the results in Tab. 4.7. The distance to a random image point,

or the use of a quadratic instead of linear function of image coordinates do not result in higher

performance than the plain linear function.

4.5 Conclusion

We demonstrated a fault in the design of existing methods to employ Persistent Homology

to train deep networks in delineating curvilinear structutres: by using inadequate filtration

functions, they severely reduce the information content of the persistence diagrams, ham-

pering performance of the trained network. We proposed an improved approach, based on

combining filtration by thresholding with the height function, that increases the descriptive

power of the diagrams, and gives PH a place among the best-performing methods to train

topologically accurate deep networks.
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The proposed approach is limited by the need to randomly select the parameters of the height

function at each training iteration, because some orientations of the height axis might result in

a failure to detect topological errors, or provoke erroneous matches between the persistence

diagrams of the prediction and the ground truth. We therefore plan to investigate the use of

multipersistence [17] for less random and more effective supervision.

Another limitation stems from the fact that our loss function has sparse gradients that only

depend on values at pixels that are critical for emergence and disappearance of topological

features. This limits robustness and our future work will focus on developing topological

descriptors with more smooth gradients.

While our loss function improves the topological correctness of the segmentation masks, some

bio-medical applications require full confidence of correctness of anatomy models, which

current methods cannot guarantee. This also motivates us to investigate the use of topological

methods to highlight the regions of the segmentation masks that require manual correction,

thereby facilitating proof-reading of segmentation results.
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5 Adjusting The Ground Truth Annota-
tions for Connectivity-Based Learning
to Delineate

Deep learning-based approaches to delineating 3D structure depend on accurate annotations

to train the networks. Yet in practice, people, no matter how conscientious, have trouble

precisely delineating in 3D and on a large scale, in part because the data is often hard to

interpret visually and in part because the 3D interfaces are awkward to use.

We introduce a method that explicitly accounts for annotation inaccuracies. To this end, we

treat the annotations as active contour models that can deform themselves while preserving

their topology. This enables us to jointly train the network and correct potential errors in the

original annotations. The result is an approach that boosts performance of deep networks

trained with potentially inaccurate annotations. This work appeared in [73].

Oner, D., Citraro, L., Kozinski, M., and Fua, P. Adjusting the Ground Truth Annotations for

Connectivity-Based Learning to Delineate. In IEEE Transactions on Medical Imaging 2022.

5.1 Introduction

As in many areas of computer vision, deep networks now deliver state-of-the-art results for

delineation tasks, such as finding axons and dendrites in 3D light microscopy images. However,

their performance depends critically on the accuracy of the ground-truth data used to train

them. This is especially true when the delineation task is treated as a segmentation one and

the network is trained by minimizing the cross-entropy between the centerline predictions

and ground-truth annotations, which is one of the most popular paradigms.

In practice, these so-called ground-truth annotations are usually supplied manually by an

annotator who may not draw with the utmost accuracy and can therefore easily be a few voxels

off the true centerline. This is not a matter of carelessness but a consequence of 3D delineation

being truly difficult to do well on a large scale. As a result, inaccurate annotations are more the
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Figure 5.1: Our approach. To account for annotation inaccuracies during training, we jointly train the
network and adjust the annotations while preserving their topology.

rule than the exception and this adversely affects how well the networks ultimately perform.

One solution would be to have several annotators delineate the same data and combine their

delineations. However, this would turn an already tedious, slow, and expensive process into

an even slower and more expensive one that almost no one can afford.

�
���

(a) (b) (c) (d)

Figure 5.2: Correcting an inaccurate annotation. (a) A microscopy scan of a neurite with an inac-
curate annotation overlaid in white. (b) Distance map predicted by the deep net. Ideally, the pixels
crossed by the centerline should have value zero (dark color). In practice, this is not always the case.
There are non-zero values in the area indicated by the red arrow, presumably because the neurite is
hardly visible there. Nevertheless, the distance map is sufficiently good to adjust the annotation. The
adjusted annotation is shown in (c) and (d). This network retrained with adjusted annotations can now
generate a better distance map even where the neurite is barely visible.

We introduce a method that explicitly accounts for annotation inaccuracies and delivers the

same performance as if they were perfectly accurate. Our main insight is that the annotations

are usually imprecise more in terms of the 3D location of the centerlines than of the topology

of the graph they define. We can therefore treat them as deformable contours forming a graph
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that can be refined by moving its nodes while preserving its structure. We cast this approach

to training a deep network as a joint optimization over the network parameters and node

positions. We then show that we can eliminate the node variables from the optimization

problem, which can then be solved by minimizing a loss function. This loss function accounts

for the annotation’s lack of spatial precision. It can be minimized in the traditional manner

and the output of the re-trained network used to refine the annotation.

Fig. 5.1 depicts our approach and Fig. 5.2 showcases its behavior. We will demonstrate that it

brings substantial improvements when training networks to delineate neurons in two-photon

and confocal microscopy image stacks. Hence, our contribution is an automated approach

to better leveraging inaccurate training data, which, in our experience, represents the vast

majority of data available to practitioners.

5.2 Related Work

5.2.1 Automated Delineation

Automatic delineation of curvilinear structures has been an active research topic for decades.

It has evolved from manually designing filters that respond strongly to tubular structures [36,

58, 89] to feeding hand-designed features into boosted trees [102, 12], support vector ma-

chines [50], or GradientBoost [86], and finally to fully relying on neural networks [69, 41, 63,

78, 70].

The latter now routinely deliver the best performance when properly trained. However,

obtaining accurately annotated data, especially in 3D, is a challenge. In practice it is rarely

available in sufficient quantities. And what annotated data there is, is rarely accurate because

manually delineating 3D structures is challenging. Introducing a degree of self-supervision is

a way to address this difficulty [8, 31] but this does not detract from the fact that the training

would work even better if the available annotated data were accurate. This can be partially

ascribed to the fact that most current networks are trained by minimizing the standard cross

entropy or differentiable intersection-over-union loss [66]. As pixel-wise measures, both are

sensitive to even small misplacements of the linear structures’ centerlines. In [71], this is

partially addressed by introducing a loss component that accounts for global statistics of the

network output, but the cross entropy remains a key component of the overall loss. Similarly,

the method of [75] relies on introducing a topology-preserving term but still depends on the

annotation being accurate.

Accuracy can be improved by having several people annotate and combining their results

using robust statistics. This is effective but even more expensive than obtaining one set of

annotations and therefore out of reach for most practitioners. The problem can be partially

alleviated by annotating only in 2D projections of the 3D data volumes [77, 106, 56], which is

easier, but may result in even less precise annotations than those performed in 3D.
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A similar problem to the one we address here also arises in the context of two-dimensional

semantic boundary detection. The outlines one finds in annotated training sets are often

rather imprecise and training the networks to nevertheless discover contours that overlap

with them is an issue. In [104], training is reformulated as simultaneously optimizing the

parameters of a deep net and correcting the annotations by solving a mixed binary-continuous

optimization problem. However, unlike in our approach, preservation of annotation topology

is not warranted and the corrections may break the continuity of annotations. This is a major

problem when tracing neurons or blood vessels, because topology changes influence the

biological interpretation of the results. The same problem is addressed in [2] by proposing

a neural layer and a loss function that can be added on top of an edge detector and make it

possible to find more accurate contours than those in the annotations. However, because

the regions are represented in an implicit fashion, there is no more guarantee than in [104]

that the annotations’ connectivity will be preserved. Connectivity being at the heart of our

applications, we therefore chose to use explicit deformable models, such as those described

below.

5.2.2 Handling Noisy Annotations

Even though we know of no other algorithm that adjusts the geometry of centerline anno-

tations during training, explicitly accounting for the fact that the annotations are noisy has

received some attention. In [97], annotations produced by non-expert annotators are ac-

commodated by means of a dedicated distillation architecture and a noise-robust Dice loss.

In [20], a dedicated network architecture and a semi-supervised training routine encourage

equivariance to deformations to handle potential inaccuracies resulting from using a heuristic

annotation tool. In [107], annotation noise is handled by a quality assessment module that

discounts the loss in regions where the estimated label quality is low. Similarly, in [67], a

distillation training setup and architecture based on self-attention are used to suppress the

influence of erroneous labels on the trained network. In contrast to all these approaches,

ours explicitly distinguishes between inaccuracies in position and topological errors. Because

the former occur far more frequently than the latter, our loss function adjusts the centerline

locations, while preserving the topology of the annotations.

5.2.3 Deformable Contour Models

Deformable contours [53, 88, 38] were initially introduced as a means to semi-automatically

delineate simple contours while imposing smoothness constraints on the resulting outlines.

They were later generalized to model network structures [37, 15] that can deform while pre-

serving their topology. They are therefore well suited for refining our inaccurate annotations

under the assumption they are topologically correct but that their locations are imprecise.

More recent deformable contours rely on minimizing energy functions generated by deep

networks [64, 24, 97, 47], which enables end-to-end learning. Unlike in these methods, which
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rely on evolving the contour for segmenting the image at test time, our use of deformable

contours is limited to adjusting the annotations during training.

Active appearance models [29] enable modelling the appearance of imaged objects, in addition

to their shape. They can be learnt from coarse annotations, which are adjusted when fitting

the model to the data [80]. The level of detail of the active appearance model can then be

increased and, before the more detailed model is fitted to the data, it can be initialized with

the parameters of its less detailed version. In this work, we also adjust the annotation during

learning, but represent them as network snakes, and train a deep convolutional network,

instead of fitting an active appearance model.

5.3 Method

Given a set of microscopy stacks along with the corresponding and possibly imprecise center-

line annotations, we want to train a deep net to produce precise delineation. To this end, when

training the deep network, we adjust not only its weights but also the annotations themselves.

We first present the vanilla training procedure without annotation adjustment and explain

why it is sub-optimal when the annotations lack precision. We then formalize our training

procedure with adjustment.

5.3.1 Standard Training Procedure

Let us consider a set of N microscopy scans {Xi }1≤i≤N and corresponding centerline anno-

tations {ŷi }1≤i≤N , in the form of distance maps of the same size as the scans. Voxel p of

annotation ŷ, denoted ŷ[p], contains the distance from the center of p to the closest centerline.

Let F (·;Θ) be a deep network, with weightsΘ. It takes a scan Xi as input and return a volume

yi = F (Xi ;Θ), containing a delineation of centerlines visible in Xi . To keep the notation con-

cise, we omit the dependencies on yi onΘ. The traditional approach to learning the network

weights is to make yi as close as possible to ŷi by solving

Θ∗ = argminΘ
N∑

i=1
L

(
ŷi ,yi

)
, (5.1)

where the loss term L (ŷ,y) measures the voxel-wise difference between the annotation and

the prediction. In our experiments, we take L to be the Mean Square Error. This assumes that

the deviations of the annotations from actual centerline trajectories are small and unbiased.

In reality, they rarely are. Hence, the network learns to accommodate this uncertainty in the

annotations by blurring the predictions. At test time, this leads to breaking the continuity of

predictions wherever the image quality is compromised by high level of noise or low contrast

between the foreground and the background, as illustrated by Fig. 5.2.
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5.3.2 Overview of our Approach

The formulation of Eq. 5.1 assumes that the deviations of the annotations from reality are

small and unbiased. This work is predicated on the fact that they rarely are and that we must

allow for substantial non-Gaussian deviations from the original annotations. Thus, instead of

encoding the annotations in terms of volumes ŷi , we represent the annotated centerline Ci of

each Xi as a graph, with the set of vertices Vi and the set of edges Ei . Each vertex v ∈ Vi has

a 3D coordinate cv , and each edge (u, v) ∈ Ei represents a short line segment. This is shown

in Fig. 5.2 where the circles along the annotations denote the vertices. Let ci be the vector

formed by concatenating coordinates of all the vertices of Vi . To accommodate the possible

lack of precision of the annotations, we let ci change its initial value. Doing so changes the

shape of Ci but preserves its topology and can be used to explicitly model the deviation of the

annotated centerlines from their true position. In other words, the minimization problem can

be reformulated as finding

Θ∗,C∗ = argminΘ,C

N∑
i=1

L(ci ,yi )+R(ci ), (5.2)

where L =L
(
D(ci ),yi

)
;

C is the vector obtained by concatenating all the ci ; R is a regularization term that forces the

deformed centerlines to be smooth, and that we define in Sec. 5.3.3; L is the same MSE as in

Eq. 5.1; and D is a distance transform that creates a volume in which a voxel with coordinates

q is assigned its truncated distance to the closest edge of C . Formally, we write

D(c)[q]=min{δ(c, q),d}, (5.3)

where δ(c, q)= min
(u,v)∈E

min
0≤φ≤1

∥φcu + (1−φ)cv −q∥2, (5.4)

d is the threshold used to truncate the distance map, and the minimization over φ serves to

find the point on edge (u, v), that is closest to q .

Solving the problem of Eq. 5.2 means training the network to find centerlines that are smooth

and with the same topology as the annotations. This is what we want but, unfortunately, this

optimization problem involves two kinds of variables, the components of C andΘ respectively,

which are not commensurate in any way. In practice, this makes optimization difficult. We

address this problem by eliminating the C variables by rewriting Eq. 5.2 as

c∗i (yi ) = argminc L(ci ,yi )+R(ci ), (5.5)

Θ∗=argminΘ
N∑

i=1
L
(
c∗i (yi ),yi

)+R
(
c∗i (yi )

)
, (5.6)

In the following section, we describe our choice of R and the formulation of c∗i (yi ) that results

from it. Eq. 5.6 is a standard continuous optimization problem that we can solve using the

usual tools of the trade.
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5.3.3 Annotations as Network Snakes

We propose to represent each Ci as a network snake, and to take R to be a classical sum of

spring and elasticity terms [37, 15]. This regularization term takes the form

R(c) =α ∑
(u,v)∈E

∥cu − cv∥2 +β ∑
(u,v,w)∈T

∥cu −2cv + cw∥2, (5.7)

where α and β are hyper-parameters that balance the strength of the two terms, E is the set of

edges of C and T is the set of node triples (u, v, w) such that (u, v) ∈ E , (v, w) ∈ E , and v is a

node of order two, that is, not a junction of multiple snake branches. As shown in [37, 15], R

can be written as

R(ci ) = 1

2
cT

i Aci , (5.8)

where A is a sparse symmetric matrix. Given this quadratic formulation of R, we can use

the well-known semi-implicit scheme introduced to deform snakes, also known as active

contour models [53], to minimize Eq. 5.5. It involves initializing each snake c0
i to the manually

produced annotation and refining it by iteratively solving

(A+γI)ct+1
i = γct

i −
∂L

∂c
(ct

i ,yi ) (5.9)

for ct+1
i , where γ is a hyper-parameter known as the viscosity and is inversely proportional to

the step size in each iteration. We refer the reader to [53] for the complete derivation. Here we

only note, that when the iteration stabilizes, we have ∀i ,ct
i ≈ ct+1

i . We can therefore denote the

stable vector of node locations by c∗i , substitute ct+1
i ≈ ct

i ≈ c∗i in Eq. 5.9, and use the derivative

of Eq. 5.8, to write

∀i ,
∂R

∂c
(c∗i )+ ∂L

∂c
(c∗i ,yi ) ≈ 0, (5.10)

which means that c∗ minimizes R +L and is a solution of Eq. 5.5.

In practice, we solve Eq. 5.9 by inverting the matrix (A+γI) at the start of the training procedure

and then multiplying the right-hand-side of the equation by the inverse at each iteration.

Hence, we write

ct+1
i = (A+γI)−1(γct

i −
∂L

∂c
(ct

i ,yi )
)
. (5.11)

We perform the update or Eq. 5.11 for 0 ≤ t < T . We take T = 10 in our implementation, which

is sufficient for the process to stabilize, and denote the result of the last iteration by c∗i (yi ) = cT
i .

5.3.4 Computing the Gradients of the Loss Function

Performing the minimization in Eq. 5.6 requires computing at each iteration the gradient of

the loss with respect to the network output yi . To avoid cluttering the notation, we denote
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c∗(yi ) by c∗. The gradient can then be expressed as

∂

∂y

(
L(c∗i ,yi )+R(c∗i )

)
= ∂L

∂y
(c∗i ,yi )+ (∂L

∂c
(c∗i ,yi )+ ∂R

∂c
(c∗i )

)∂c∗i
∂y

(5.12)

≈ ∂L

∂y
(c∗i ,yi ),

where we used Eq. 5.10 to eliminate the second term. In other words, even though c∗ is

a function of yi , we do not need to compute its derivatives with respect to yi to train the

neural network. We only need those of L, and can treat c∗ as a constant when evaluating

them. Therefore, the only difference between using our approach and the standard one of

Section 5.3.1 is that instead of evaluating the loss using the original annotation c, we use its

optimized version c∗. We call this approach SnakeFull and it is depicted at the top of Fig. 5.3.

5.3.5 Speeding Things Up

We will show in Section 5.4 that SnakeFull performs well but is slow to train. The culprit is the

term ∂L
∂c in the update Eq. 5.11, which involves a time-consuming computation of the gradient

of a distance map. To speed things up, we introduce a faster approach that we call SnakeFast.

In it, we replace the term L in Eq. 5.5 by a simpler objective function S directly inspired by the

classical external snake energy [53]. We take it to be

S(c,y) = ∑
v∈V

(
y∗G

)
[cv ], (5.13)

where ∗G denotes a convolution with a Gaussian kernel and y[cv ] denotes the network output

at vertex v . S is very similar to the energies used in traditional network snake formulations [37,

15]. Importantly, S and its gradients are easy and fast to compute because doing so only

requires convolving y with a Gaussian kernel and sampling the result at the locations of the

snake nodes. Deforming the annotations then involves finding

c†
i (yi ) = argminc S(c,yi )+R(c), (5.14)

which means that the sum of distance values along the snake should be as low as possible

while preserving snake smoothness. As in Section 5.3.3, the snake update takes the form

ct+1
i = (A+γI)−1(γct

i −
∂S

∂c
(ct

i ,yi )
)
. (5.15)
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Figure 5.3: The three approaches to training described in Sec. 5.3.4 and 5.3.5. In SnakeFull, the training
objective is also used as the objective of the snake. This makes some gradient components vanish,
simplifying gradient computation, but results in snake updates that are costly to compute. SnakeFast
can accommodate an arbitrary snake objective, which makes it faster than SnakeFull, even though it
requires backpropagation through a sequence of snake updates. In SnakeSimple, the backpropagation
over the snake updates is simply omitted. This approach is the fastest. We analyze the accuracy vs.
speed tradeoff induced by these three methods in section 5.4.

In practice, we take c†
i (yi ) = cT

i , where T = 10, as in Section 5.3.3. Finally, we take the network

training objective to be

Θ∗ = argminΘ
∑

i
L(c†

i (yi ),yi ), (5.16)

where we still use the original L of Eq. 5.2. We do this because S only depends on a small

subset of voxels of y. Hence, it only provides a sparse supervisory signal and is not well suited

as the training objective for the network that produces a dense distance map. The gradient of
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Initial dist. map and

inaccurate annotation

Snake at convergence and dist. map after 100 GD iterations

SnakeFull SnakeFast SnakeSimple

@
@@I

GT dist. map and
accurate annotation

Difference between the GT dist. map and one after 100 GD iters

@
@@I

computation time [s]: 72 12 5.3

Figure 5.4: Compared behavior of SnakeSimple, SnakeFast, and SnakeFull on a synthetic 2D example.
(Left column) At the bottom, distance map and corresponding annotation. At the top, we simulated
an unwarranted break in the distance map (horizontal yellow line) and shifted the annotation by
several pixels. (Other Columns) In three separate runs, we performed 100 Gradient Descent using
either SnakeFull, SnakeFast, or SnakeSimple. In the top row, we show the corrected annotation and the
updated distance maps. The bottom row depicts the differences between the updated maps and the
ground-truth one. We also indicate the computation times. SnakeFull removes the interruption in the
distance map but the computation is slow. SnakeFast is much faster and fills the gap in the distance
map almost as well. SnakeSimple is even faster but yields a corrected annotation that is too short, as
highlighted by the red arrow.

the objective of Eq. 5.16 is

∂

∂y
L(c†,y) = ∂L

∂y
(c†,y)+ ∂L

∂c
(c†,y)

∂c†

∂y
. (5.17)

Because we minimized S instead of L in Eq. 5.14, we can no longer assume that the second

term is zero as we did in Section 5.3.4. Hence, to compute it during the minimization, we

backpropagate through the snake update procedure of Eq. 5.15, as depicted by the middle row

of Fig. 5.3. In practice, we use the autograd functionality of Pytorch to this end.

The non-zero second term of Eq. 5.17 helps guide the snake to a position where the data

loss L is low and ultimately influences the distance map that our deep network F outputs. It

could be argued that ignoring this term so that the networks focuses exclusively on fitting the

annotations would be preferable. To test this assertion, we implemented SnakeSimple, a third

variant or our approach in which we take the second term of Eq. 5.17 to be zero. SnakeSimple

78



5.4 Experiments

is even faster than SnakeFast. In essence, it is a simplified version of SnakeFull and SnakeFast

in which we successively optimize the network weights and then the snake position without

any direct interaction between these two optimization steps.

Fig. 5.4 uses a synthetic example to illustrates the differences between our three variants.

SnakeFast and SnakeFull yield similar results with the former being much faster whereas

SnakeSimple is even faster but prone to generating artifacts. We now turn to our experimental

results on real data that confirm this.

5.4 Experiments

5.4.1 Datasets

We tested our approach on the following data sets.

• The Neurons data set comprises fourteen two-photon microscopy 3D scans of fragments

of a mouse brain, with manually traced neurites. We use four volumes for testing and ten

for training, each of size 200×250×250 voxels and spatial resolution 0.3×0.3×1.0 µm.

• The Brain data set contains two 3D images of neurons in a mouse brain. They had been

outlined manually while viewing the sample under a microscope and the image was

captured later. The sample deformed in the meantime, exacerbating misalignment

between the annotation and the image. We use one stack of size 151×714×865 voxels

and a resolution of 1 µm for training and one of size 228×764×1360 for testing.

• The MRA is a publicly available set of Magnetic Resonance Angiography brain scans [14].

It consists of 42 annotated stacks, which we cropped to 416×320×128 voxels by removing

their empty margins. Their resolution is 0.5×0.5×0.6 mm. We randomly partitioned

the data into 31 training and 11 test volumes.

None of our data sets can be considered as perfectly annotated. All annotations were per-

formed as accurately as possible, but their precision is affected by the uneven distribution

of the dye, image noise, and generic difficulty of annotating 3D volumes. In Brain, the diffi-

culty is compounded by the fact that the annotation were performed live days before image

acquisition, and the sample deformed in the meantime.

5.4.2 Metrics

We used the following performance metrics.

• CCQ. Since standard segmentation metrics such as the F1 score [82] and precision-

recall break-even point [68] are very sensitive to misalignment of thin structures, we
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use the correctness-completeness-quality, which is specifically designed for linear struc-

tures [100]. Correctness corresponds to precision, completeness to recall, and quality

to the intersection-over-union. However, the notion of a true positive is relaxed from

perfect coincidence of the ground truth and the prediction to their co-occurrence within

a distance of d pixels. We used d = 3. Although it accounts for possible ground truth

misalignment, CCQ is still a voxel-wise metric, insensitive to topological errors, such as

short interruptions of neurites.

• APLS. The Average Path Length Similarity is defined as the aggregation of relative length

differences of shortest paths between pairs of corresponding end points, randomly

sampled in the reconstructed and predicted graphs. It was introduced to evaluate road

map reconstructions from aerial images [92] and aims to evaluate the connectivity of

the reconstructions, as opposed to their pixel-wise accuracy, which makes it a perfect

performance measure for our task.

• TLTS. The Too-Long-Too-Short is another performance criterion based on statistics of

relative lengths of shortest paths between corresponding pairs of end points in the

prediction and the ground truth [99]. We report the fraction of correct paths, that is,

predicted paths whose relative length difference to the corresponding ground truth

paths is lower than 15%.

5.4.3 Architectures and Training Details

Our contribution lies in the updating of the annotations and the loss function we use to achieve

it, which should improve performance independently of any specific network architecture. To

demonstrate this, we used two different architectures.

• UNet. A 3D UNet [81] with three max-pooling layers and two convolutional blocks. The

first layer has 64 filters. Each convolution layer is followed by a batch-normalization and

dropout with a probability of 0.15. During training, we randomly crop sub-volumes of

size 96×96×96 and flip them along each dimension with probability 0.5. We combine

them into batches of 8.

• DRU. A recurrent architecture iteratively refining segmentation output 3 times [98]. The

first layer has 64 filters. Each convolution layer is followed by a group-normalization

and dropout with a probability of 0.15. During training, we randomly crop sub-volumes

of size 96×96×96 and flip them along each dimension with probability 0.5. We combine

them into batches of 4. To compute the loss function, we average the outputs of all

3 refinement steps. During testing, the output of the final step is used to evaluate

performance.

We trained both architectures in four different ways: by minimizing the Mean Squared Error

to the original annotations, which we will refer to as OrigAnnot, and by using the SnakeSimple,
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Table 5.1: Performance of deep nets trained with different loss functions on our three data sets
and the time needed for single training iteration.

Pixel-wise Topology-aware iter. t.

Method Corr. Compl. Qual. APLS TLTS s

Neurons

UNet–OrigAnnot 98.9 91.3 90.4 80.3 80.9 2.8
UNet–SnakeSimple 98.4 92.5 91.2 84.2 83.4 3.8
UNet–SnakeFull 99.0 94.4 93.5 89.3 85.9 18.9
UNet–SnakeFast 98.7 95.0 93.8 91.1 85.9 5.2

DRU– OrigAnnot 97.2 94.0 91.5 84.3 83.9 2.7
DRU– SnakeSimple 97.4 95.2 92.9 90.8 85.9 3.8
DRU– SnakeFull 96.9 96.9 94.1 91.8 89.3 19.1
DRU– SnakeFast 97.0 97.1 94.2 91.7 88.1 5.3

NR-Dice 97.7 97.0 94.8 81.0 83.6 2.8
QAM 94.5 98.8 93.5 87.3 84.5 4.2
DS6 97.5 97.0 94.7 83.8 84.1 5.8

Brain

UNet–OrigAnnot 81.8 83.5 70.4 65.8 63.6 2.8
UNet–SnakeSimple 83.0 83.9 71.6 70.4 68.8 3.4
UNet–SnakeFull 83.5 85.4 73.1 74.2 69.9 17.8
UNet–SnakeFast 83.1 85.5 72.9 73.9 70.2 4.9

DRU– OrigAnnot 82.1 86.5 72.8 68.9 69.5 2.7
DRU– SnakeSimple 83.2 87.7 74.5 73.8 74.6 3.5
DRU– SnakeFull 84.4 88.5 76.1 74.8 78.1 18.3
DRU– SnakeFast 84.2 88.9 76.2 75.1 77.7 5.1

NR-Dice 85.2 83.4 72.8 67.6 65.2 2.8
QAM 89.8 79.3 72.8 71.2 68.6 4.2
DS6 83.2 81.6 70.0 71.0 68.8 5.8

MRA

UNet–OrigAnnot 90.1 72.2 66.9 49.8 50.4 2.8
UNet–SnakeSimple 89.9 73.1 67.5 53.5 53.1 3.7
UNet–SnakeFull 90.2 73.5 68.0 55.6 55.0 18.5
UNet–SnakeFast 90.3 73.5 68.1 55.4 55.2 5.1

DRU– OrigAnnot 80.2 79.3 66.3 48.7 49.9 2.7
DRU– SnakeSimple 80.7 79.9 67.1 53.3 53.0 3.7
DRU– SnakeFull 80.9 80.5 67.6 55.6 55.2 18.8
DRU– SnakeFast 81.0 80.5 67.7 55.3 55.4 5.2

NR-Dice 85.5 77.3 68.3 50.2 53.8 2.8
QAM 80.2 80.1 66.8 54.3 54.2 4.2
DS6 82.0 80.3 68.1 55.0 54.9 5.8

SnakeFull, and SnakeFast variants of our approach, described in Sections 5.3.4 and depicted by

Fig. 5.3. In all cases, we used Adam [54] with the learning rate set to 1e −4, and a weight decay
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Figure 5.5: Test predictions of different methods on three data sets. The green ellipses denote areas
where training with the original annotations results in unwarranted breaks in the delineations whereas
our approach does not.
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Figure 5.6: Qualitative comparison of the results of SnakeFast to existing methods of training with
noisy labels. The green ellipses denote areas where baselines result in unwarranted breaks in the
delineations at test time whereas our approach does not.

of 1e −4. At test time, the predicted distance map were thresholded at 2 and skeletonized to

obtain centerlines. To compute the TLTS and APLS scores, we converted them into graphs.

5.4.4 Label Correction Baselines

As noted in section 5.2, we do not know of other methods that deform the annotation graph

during training, while maintaining its topology. However, there are methods designed to train

deep nets using noisy annotations, where the noise is understood as flipping some pixel labels.

In the following section, we compare our algorithm to three such methods:

• NR-Dice. A UNet trained with the Noise Robust Dice Loss proposed in [97].

• QAM. An architecture with an auxiliary deep network to recognize annotations that

might be wrong and downplay their importance during training [107].

• DS6. A Siamese architecture and a training routine dedicated to enforcing equivariance

of the network to deformations [20].
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Table 5.2: Performance of a UNet trained with the OrigAnnot and with SnakeFast on the
Synthetic data set with precise annotations.

Pixel-wise Topology-aware iter. t.

Arch. Method Corr. Compl. Qual. APLS TLTS s

UNet
OrigAnnot 86.9 86.5 77.2 92.8 89.0 2.8
SnakeFast 86.6 86.7 77.1 93.2 89.3 4.8

5.4.5 Comparative Evaluation.

We present example reconstructions in Fig. 5.5 and Fig. 5.6. As shown in Tab. 5.1, SnakeFull and

SnakeFast outperform OrigAnnot in CCQ terms by a small margin, and in APLS and TLTS terms

by a significantly larger one, which confirms that the main benefit of our loss is the improved

connectivity of the predictions. As can be seen in Fig 5.5, our approach to training yields

delineations with fewer unwarranted breaks and longer uninterrupted curvilinear segments.

On average UNet and DRU perform best when trained with SnakeFull and SnakeFast. However,

SnakeFast requires three times less time per training iteration. SnakeSimple delivers a further

20-30% speedup but incurs a clear performance drop. Crucially, these conclusions apply to

both the UNet and DRU architectures. In fact, the performance gain resulting from switching

from OrigAnnot to SnakeFast is larger than the one resulting from changing from the simpler

UNet to the more sophisticated DRU while retaining the standard OrigAnnot approach to

training.

In short, SnakeFast represents an excellent compromise between training time and perfor-

mance. This being said, at test time, the run-time is the same no matter how the network

was trained, because there is no alignment of annotations anymore. Hence, given sufficient

computational resources, SnakeFull is also a valid option.

The bottom third of each part of Tab. 5.1 measures the performance of the methods designed to

accommodate label noise, as described in Section 5.4.4. Because they don’t explicitly preserve

annotation topology and we do, UNet trained with SnakeFast outperform these methods in

terms of the topology-aware scores but not necessarily in terms of the pixel-aware ones, which

are note our main concern.

5.4.6 Perfectly Accurate Annotations

Having demonstrated that our loss function improves delineation results when the annotations

lack spatial precision in Sec. 5.4.5, we now investigate its behavior when the annotation is

precise. Since it is virtually impossible to precisely annotate 3D microscopy scans, we resort to

synthetic data set Synthetic, which we generated using the VascuSynth algorithm [46, 52] and

its implementation [105]. The images are generated from vascular graphs, which we use as
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input and annotation result of OrigAnnot result of SnakeFast

Figure 5.7: Results of training with the precise annotations of the Synthetic data set. When the

annotations are precise, SnakeFast performs as well as training with the OrigAnnot.

perfectly accurate annotations. We used twenty stacks for training and ten for testing, each

of size 400×400×400. Fig. 5.7 shows the maximum-intensity projection of a test stack. The

results, presented in Tab. 5.2, confirm that, for perfectly accurate annotations, our method

reduces to standard training with the MSE without incurring any performance drop.

5.4.7 Increasing Annotation Inaccuracy

Level 1 Level 2 Level 3

Figure 5.8: Annotation Deformation Levels. The deformation magnitude increases from left to right.

To investigate how increasing the level of inaccuracy of the annotations affects the perfor-

mance of a UNet trained with SnakeFast, we perturbed the annotations of the Synthetic data

set. We applied a random deformation field that varies slowly across space to each annotation

graph. We modulated its amplitude to change the level of inaccuracy. This produced three sets

of annotations, as depicted by Fig. 5.8. We trained the network on each of them and present

the results in Fig. 5.9. When the network is trained with SnakeFast, its connectivity-related

scores degrade much slower than when trained using OrigAnnot.
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Figure 5.9: Increasing the amount of deformation. APLS and TLTS scores as a function of the
deformation level. The OrigAnnot scores decrease fast whereas those of SnakeFast decrease much more
slowly.

Table 5.3: Performance of UNet trained using SnakeFast and OrigAnnot on the Neurons data
set with very coarse annotations. Performance of UNet trained using the precise annotations
shown for reference.

Pixel-wise Topology-aware

Annot. Method Corr. Compl. Qual. APLS TLTS

coarse
OrigAnnot 85.2 67.6 60.4 46.5 50.9
SnakeFast 97.6 87.0 85.3 66.8 73.5

precise
OrigAnnot 98.9 91.3 90.4 80.3 80.9
SnakeFast 98.7 95.0 93.8 91.1 85.9

5.4.8 Reducing Annotation Effort

The robustness of SnakeFast to deviations in the annotation inspired us to ask another ques-

tion: Can this loss function be used to train deep networks with annotations that are simplified

to the point where they become much easier, faster, and therefore cheaper to obtain? To an-

swer this, we trained the UNet with SnakeFast and OrigAnnot on the Neurons data set with very

coarse annotations. We obtained them by connecting neurite branching- and end-points with

straight lines, as shown in Fig. 5.10. The results are presented in Tab. 5.3. As expected, training

on the coarse annotations without adjusting them results in a significant performance drop as

compared to training on precise annotations. Switching from precise to coarse annotations

still incurs a performance drop when using SnakeFast, but a much smaller one than when

using the baseline. Visual inspection of the resulting segmentations, shown in Fg. 5.11, leads

us to conclude that, for tasks where a compromise between accuracy and annotation cost is

acceptable, using the easy annotations together with SnakeFast is a viable alternative to the

classical approach.
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(a) (b) (c)

Figure 5.10: Coarse Annotations (a) Training image of a neurite (b) Distance map obtained from
original annotation overlaid in red (c) Distance map obtained from coarse annotation overlaid in red.
Coarse annotations are obtained by connecting neurite end points and bifurcations with straight lines,
and are easier to perform than full annotations.

input OrigAnnot SnakeFast

Figure 5.11: Results of training a UNet with OrigAnnot and SnakeFast on the Neurons data set with
easy annotations.

5.4.9 Ablation Study

To investigate the impact of hyper-parameters of our method on performance, we run the

following ablation studies.
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Table 5.4: Performance of UNet trained using SnakeFast on the Neurons data set when varying
the elasticity and spring term coefficients.

Pixel-wise Topology-aware iter. t.

Corr. Compl. Qual. APLS TLTS s

α=1e-2

β=1e-4 99.0 94.5 93.5 88.1 84.8 5.2
β=1e-3 98.7 95.0 93.8 91.1 85.9 5.2
β=1e-2 98.4 94.0 92.7 85.1 84.3 5.2
β=1e-1 98.9 93.8 92.8 83.8 84.1 5.2

α=1e-4

β=1e-3

98.4 92.9 91.5 86.6 83.0 5.2
α=1e-3 99.0 94.2 93.4 85.3 84.4 5.2
α=1e-2 98.7 95.0 93.8 91.1 85.9 5.2
α=1e-1 98.7 94.3 93.1 79.8 82.5 5.2

Table 5.5: Performance of UNet trained using SnakeFast on the Neurons data set when varying
the inverse stepsize, together with the number of snake updates used in every training iteration
and the resulting iteration time.

Pixel-wise Topology-aware no steps iter. t.

Corr. Compl. Qual. APLS TLTS s

γ= 100 98.8 94.5 93.4 90.9 85.8 80 6.3
γ= 10 98.7 95.0 93.8 91.1 85.9 10 5.2
γ= 1 — the snake diverged — 10 5.2

Regularization terms

The regularization term R of Eq. 5.7 is the sum of a spring term, weighted by a coefficientα, and

an elasticity term, weighted by a coefficient β. To investigate their influence on performance,

we varied α and β and trained our UNet on the Neurons data set. The results are presented in

Tab. 5.4. The best results are attained with relatively low values of both terms. Higher values of

the spring term, originally proposed for closed contours, effectively reguralize loopy topologies,

but when used on tree-shaped structures, representing blood vessels and neuronal processes,

tend to shorten the reconstructed neurites and vessels. Higher values of the elasticity term

make it more difficult to fit irregular trajectories of neurites, like the ones shown in Fig. 5.5.

Step size for snake update

As explained in section 5.3.3, the snake update iteration has a parameter γ, called viscosity,

that acts as an inverse step size. We report the results of changing γ in Tab. 5.5. Low viscosity

results in large step size and can make the snake update procedure diverge, which we observed
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Table 5.6: Performance of deep nets trained with MAE and MSE costs on the Neurons data set
and the time needed for single training iteration.

Pixel-wise Topology-aware iter. t.

Cost Method Corr. Compl. Qual. APLS TLTS s

MAE
OrigAnnot 98.6 91.2 90.1 81.4 80.5 2.8
SnakeFast 98.8 94.6 93.4 89.9 85.8 5.2

MSE
OrigAnnot 98.9 91.3 90.4 80.3 80.9 2.8
SnakeFast 98.7 95.0 93.8 91.1 85.9 5.2

for γ= 1. On the other hand, high viscosity corresponds to small step size and increases the

risk that the snake does not converge within the preset number of iterations. With γ= 100, we

needed to increase the number of snake updates from 10 to 80 to ensure convergence. This

also increased the iteration time by one second. γ= 10 made the snake converge within 10

updates, while also resulting in marginally higher performance than γ= 100.

L1 vs L2 distance

We also verified the performance of a UNet trained with SnakeFast when changing the loss

data term from Mean Squared Error to Mean Absolute Error. The results, shown in Tab. 5.6

show very slight advantage of MSE, possibly due to a gradient profile that prioritizes penalizing

higher errors.

5.5 Conclusion

We have proposed a method that accounts for the inevitable inaccuracies in manual annota-

tions of curvilinear 3D structures, such as neurites and blood vessels, in 3D image stacks. It

leverages on the network snake formalism to define a loss function that simultaneously trains

the deep network to produce the delineation and adjusts the initially imprecise annotations.

Our approach does not depend on the specific network architecture we use. Hence, its

effectiveness suggests that handling such imprecisions may be even more important than

refining the network architecture, which is something that has been largely neglected in the

literature.

In future work, we will investigate the extension our approach to segmenting surfaces, like cell

membranes in electron microscopy scans.
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6 Conclusion

In this thesis, we propose topology-aware methods that reduces topological erros in recon-

struction of curvilinear structures from 2D and 3D images. In this chapter, we briefly present a

summary of the methods proposed in this thesis and discuss future research directions.

6.1 Summary

In chapter 2, we propose a differentiable loss function that successfully enforces proper

connection on the output of binary segmentation ConvNets for the purpose of delineating

the boundaries of the road and irrigation canal networks. Using this loss function to train a

simple UNet allows us to outperform considerably more sophisticated architectures on hard

benchmark datasets. This implies that we might not have fully realized the potential of these

simpler networks, and that one way to do so might be to introduce suitable constraints during

training.

In chapter 3, we showed a flaw in the way that existing techniques to train deep networks to

delineate curvilinear structures using persistent homology are designed: by using insufficient

filtration functions, they drastically reduce the information content of the persistence dia-

grams, which negatively affects the trained network’s performance. With our new method,

which combines filtration by thresholding and the height function, the persistence diagrams’

descriptive power is increased, and Persistent Homology is now one of the most effective

techniques for training topologically accurate deep networks.

In chapter 4, we have proposed a method that takes into account the inevitable inaccuracies

that are present in the manual annotation of curvilinear structures in 3D image stacks. Some

examples of these types of structures include neurites and blood vessels. We tackle this

issue by training the deep network to produce the delineation while concurrently adjusting

the annotations that were previously too imprecise. This is accomplished by leveraging the

network snake formalism, which defines a loss function. We demonstrate that the proposed

method outperforms baselines. Furthermore, we show that a deep network can be trained
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even with coarse annotations, hence, significantly reducing the annotation cost.

In chapter 5, we extend our work presented in chapter 2, so that it can work on 3D data as well.

We propose a loss function that enforces topological consistency using 2D projections. We

apply our topology-aware loss on multiple projections of predictions. When a deep network

is trained with our loss, the 3D connectivity of its outputs is significantly improved, and the

amount of annotation work that is required to obtain training data is significantly reduced.

Our work was aimed at ensuring correct connectivity of delineations produced by deep

learning algorithms. Connectivity is an inherently non-local property. As such, it cannot be

enforced by loss function like the cross entropy and the mean squared error, that evaluate

marginal distributions of the predicted variables. We therefore focused on developing new,

non-local, connectivity-oriented loss functions.

The main challenge associated to this task stems from the difficulty of evaluating the con-

nectivity in a way that is at the same time accurate, efficient, and differentiable. Facing this

challenge required us to make compromises. The projection-based loss function (chapter 2) is

not guaranteed to capture all the topological errors, the PH-based loss (chapter 3) captures

them stochasticaly, and running the snake-based loss of chapter 4 and connectivity loss of

chapter 2 requires larger computing resources than evaluating the classical loss functions. But

we had at least a partial success: Experimental results consistently show that deep networks

trained with our loss functions produce delineations with far more correct connectivity than

ones trained with local loss functions. Even when the networks make errors, they still produce

patterns of thin, connected structures, like the ones shown in Fig 2.8. This seemingly unim-

portant observation supports our initial hypothesis: to produce predictions with non-local

properties, like connectivity, deep networks need to be trained with non-local loss functions.

It also shows that deep convolutional networks have the capacity to learn to satisfy non-local

properties, if trained adequately. Moreover, it raises questions of scientific relevance that

have not been studied so far: given the limited receptive field of ConvNets, what are the

limits to their capacity of learning these non-local constraints? Do their designs constrain the

space of patterns that can be learned? Are there constraints that they cannot learn to satisfy?

Finally, even though the question of designing deep architectures that are suitable for learning

connectivity received some attention from the computer vision community, it is still not clear

what design aspects make them better in this task.

6.2 Future Work

Downstream tasks requires graphs instead of segmentation maps. Hence the end product of

the delineation task is a graph. Most common approach is to predict segmentation maps, then

apply thresoholding and skeletonization to get graphs. With the proposed methods, we are

trying to optimise the topology of the segmentation maps not the end product. Our method

presented in chapter 2, make use of spanning trees to find critical pixels that creates topological

errors. A promising future research direction would be to use the spanning trees to reconstruct
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graphs of the curvilinear structures. We discovered that difference between minimum and

maximum spanning trees of a distance map, gives a graph very similar to centerlines. However,

there are some unwanted branches that need to be pruned. Furthermore, spanning trees

cannot have loops by nature. Hence, networks with loops cannot be fully represented by a

tree. We can develop heuristic pruning and merging methods to remove such problems from

the spanning tree differences to obtain a proper graph for the centerlines. Most important

advantage of this approach is that we will be optimising the topology of the end product

thanks to the formulation of the proposed loss.

We already extended this work to a 3D topology-aware loss, however, another way to extend

this approach to 3D data, would be using watershed algorithm to find critical voxels instead of

spanning trees. By using watershed algorithm on distance maps, we can detect disconnections

along the 3D curvilinear structures.

In chapter 3, the proposed approach is limited by the need to randomly select the parameters

of the height function at each training iteration, because some orientations of the height axis

might result in a failure to detect topological errors, or provoke erroneous matches between the

persistence diagrams of the prediction and the ground truth. We plan to tackle this problem

by using 4D/5D persistence diagrams. In usual persistence diagrams, there are only two axes:

birth and death value. If we also incorporate the spatial coordinates of the critical pixels/voxels

into the diagram then the matching of homology classes will be more accurate and it will not

be affected by the randomly selected parameters.

Active contour models have an internal energy that is also minimised during the update pro-

cess. In traditional vision approaches, shape priors of the foreground object can be embedded

in this energy. In our approach presented in chapter 4, for all structures, we use a basic inter-

nal energy which promotes rigidity and smoothness. A better way to increase convergence

accuracy and speed of the contour model on centerlines would be using structure-specific

internal energies. We can even let the deep network learn the shape priors since the update

of contour model is differentiable. With this method, we can learn shape priors of different

curvilinear structures during training and these priors can assist further tasks such as manual

tracing with annotation tools. Furthermore, contour models can be projected on feature maps

of earlier layers of the deep networks to capture and promote the linear patterns. We can

create a curvilinear structure specific pooling operation similar to strided convolution where

the weights are learned by the contour model.

In our current implementation of the method proposed in chapter 5, projection direction is

used regardless of the delineated structure’s shape. Nevertheless, some projections are more

insightful than others. To further improve delineation accuracy while reducing the required

annotation effort, we can develop algorithms for automatic selection of the optimal projection

direction for various parts of the volume, thereby reducing the number of projections to fewer

than three and increase the number of captured topological errors.
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