
Using Gaming Footage
as a Source of Internet Latency Information
Catalina Alvarez

EPFL
Switzerland

catalina.alvarezinostroza@epfl.ch

Katerina Argyraki
EPFL

Switzerland
katerina.argyraki@epfl.ch

ABSTRACT
Keeping track of Internet latency is a classic measurement problem.
Open measurement platforms like RIPE Atlas are a great solution,
but they also face challenges: preventing network overload that may
result from uncontrolled active measurements, and maintaining the
involved devices, which are typically contributed by volunteers and
non-profit organizations, and tend to lag behind the state of the art
in terms of features and performance. We explore gaming footage
as a new source of real-time, publicly available, passive latency
measurements, which have the potential to complement open mea-
surement platforms. We show that it is feasible to mine this source
of information by presenting Tero, a system that continuously
downloads gaming footage from the Twitch streaming platform, ex-
tracts latency measurements from it, and converts them to latency
distributions per geographical location. Our data-sets and source
code are publicly available at https://nal-epfl.github.io/tero-project.

KEYWORDS
Internet Performance; Passive Measurement; Social Media

1 INTRODUCTION
Keeping track of the Internet latency1 experienced by end-users
around the world is a classic network-measurement problem [17,
19, 25]. Significant progress was made with the creation of open
measurement platforms like RIPE Atlas [3] which provide geo-
graphically distributed, publicly accessible devices that can carry
out active measurements. One challenge faced by such platforms
is preventing network overload that may result from uncontrolled
active measurements, typically with strict quota on the number and
rate of measurements initiated by a single user [20]. Another chal-
lenge is the overhead of maintaining the involved devices, which are
typically contributed by volunteers and non-profit organizations,
and tend to lag behind the state of the art in terms of features and
performance [52]. When a company needs to track Internet latency,
it avoids these challenges by implementing proprietary passive mea-
surements, which leverage the company’s existing infrastructure
that needs to be maintained anyway as part of its business [17, 48].
This work is part of a quest for measurements that combine features
from both of these worlds: they are passive and do not require the
maintenance of special measurement infrastructure; but they are
also publicly available, hence can be used to complement existing
open measurement platforms and contribute to the transparency
of Internet performance.

We explore gaming footage as a source of Internet latency in-
formation. We think that this is a promising approach for three
1The round-trip time (RTT) between an end-user’s device and a server that responds
to the end-user’s requests.

reasons: (1) Players care about latency [38], so they have an in-
centive to use latency-optimized devices that contribute minimal
overhead to end-to-end latency. (2) Many online video games dis-
play on screen the latency between play-station and game server.
(3) Live game streaming is on the rise, yielding plenty of publicly
available gaming footage that contains latency numbers.

We have built a system, called Tero, which periodically down-
loads such footage, extracts the latency numbers, and produces
an almost-real-time analysis of Internet latency per geographi-
cal location. Our data-sets and source code are publicly available
at https://nal-epfl.github.io/tero-project/. The current prototype
downloads footage from the Twitch2 streaming platform, chosen for
its ubiquity [42], easy-to-access data, and focus on live content. Fol-
lowing Twitch’s Terms of Service3, we neither access video streams
nor crawl streamer profiles (or any other web pages); we obtain
gaming footage through Twitch’s Content Distribution Network
(CDN)4 and related metadata through its Developer Application
Programming Interface (API)5. We deployed the first version of
Tero on May 25th, 2021, and since then we have collected latency
measurements from 150 thousand users streaming 9 different video
games.

What was challenging about designing Tero?
(1) Associating footagewith geographic location: Gaming footage

does not include location, and Twitch makes it hard for a streamer
to disclose their location in their streaming account. To overcome
this, Tero tries to identify each streamer’s social-media profile, by
leveraging the voluntary connections that a streamer often draws
between their profile and streaming account; it then uses natural
language processing (NLP) to extract location information from
the social-media profile; and maps each piece of footage to a broad
geographical location (city, region, or country).

(2) Interpreting the latency numbers: When a player experiences
a latency increase, this may be due to a network or end-point
problem, or because the player changed their location (potentially
without updating their social-media profile), or they started playing
on a different server (to interact with a different group of players).
To interpret a latency increase, Tero relies on player habits, the
characteristics of the latency increase itself, and whether it overlaps
with increases experienced by other streamers mapped to the same
geographical location. For example, League-of-Legends players
from the UK tend to play either on the Western European (EUW) or
on the North American (NA) server; so, if a streamer that has been
mapped to London transitions from a period of stable latency to
another period of stable-but-higher latency and the latency increase
2https://www.twitch.tv/
3https://www.twitch.tv/p/en/legal/terms-of-service/
4https://dev.twitch.tv/docs/api/reference/#get-streams
5https://dev.twitch.tv/docs/api/

1

https://nal-epfl.github.io/tero-project
https://nal-epfl.github.io/tero-project/
https://www.twitch.tv/
https://www.twitch.tv/p/en/legal/terms-of-service/
https://dev.twitch.tv/docs/api/reference/#get-streams
https://dev.twitch.tv/docs/api/

Accepted Manuscript, 2023 Catalina Alvarez and Katerina Argyraki

is consistent with switching from the EUW to NA server, then Tero
interprets this latency increase is a likely server change.

(3) To a large extent, Tero is a carefully designed combination of
existing techniques and tools. Yet several problems that we expected
to be trivial turned out to be challenging in our context. For example,
we expected the extraction of latency numbers from gaming footage
to be a trivial application of Optical Character Recognition (OCR).
However, games typically display latency in low resolution (75 dpi
on average), and we found state-of-the-art OCR to experience word-
level error rates as high as 23.97% (consistent with [16]). In the end,
to achieve reasonable accuracy, Tero needs to complement OCR
with knowledge of each game’s user interface (e.g., it is unlikely that
latency is displayed in the middle of the screen) and conservative
assumptions about the latency itself (e.g., it is unlikely that latency
dropped from 110ms to 10ms; it is more likely that a drop-down
menu covered the most significant digit).

The rest of the paper is organized as follows: We start with back-
ground and limitations (§2). Then we describe Tero (§3), evaluate its
accuracy (§4), and summarize our findings (§5). Finally, we discuss
a future direction (§6) and related work (§8), and we conclude (§9).

Ethical considerations. Our work does raise ethical issues,
because it uses data posted on streaming and social-media platforms.
We went through the formal evaluation process of our institution’s
Ethical Review Board and obtained their approval. We discuss the
relevant privacy risks and legal considerations in §7.

2 BACKGROUND AND LIMITATIONS
2.1 Video Games and Streaming
We now summarize the elements of online video games and stream-
ing that are relevant to this work.

Latency sensitivity. Latency can significantly affect gaming
experience: In virtual reality (VR) games, the minimum latency
increase that players can perceive is in the range of 8 to 15ms [32].
In traditional non-VR First Person Shooter games, players display
similar latency sensitivity, while the minimum latency increase that
affects performance is 25ms, with more skilled players suffering
more [30].

Latency-driven design. Due to their latency sensitivity, games
are typically designed tominimize latency overhead: they follow the
client-server model, with the client (the play-station) doing most of
the computation and rendering, sending only small updates to the
server. Given that players care about their latency [38], many games
now display on-screen measurements of the latency between client
and server; this latency is measured at the server (in a proprietary
manner, presumably at the application layer), and it is meant to
capture the round-trip time (RTT) between client and server. A
game provider typically deploys several servers around the world,
and players may interact only if they play on the same server.
Moreover, a game provider typically divides the world in game-
regions, and it assigns players from each game-region to the “closest”
server (the one that is expected to minimize their latency). Hence,
two players playing the same game from the same game-region
typically play on the same server. However, this is not guaranteed
to be the case, because a player may occasionally join a server other
than the one assigned to their game-region (in order to interact

with a particular player crowd, even if the resulting latency is sub-
optimal).

Twitch thumbnails.Many players are also “streamers,” i.e., they
broadcast video of themselves playing online video games, typically
in real-time. The most popular streaming platform is Twitch, with
an average of 1.2 million active daily users, covering more than 70%
of the video-game streaming market [42]. Twitch makes gaming
footage publicly available and download-able from their CDN in
the form of thumbnails, i.e., images extracted from the videos. For
each streaming session, a new thumbnail is generated every 5
minutes (with variations that can reach up to a minute). These
thumbnails, obtained through Twitch’s CDN, are the source of
latency information that we study in this paper.

2.2 Limitations
Our work is subject to the following limitations—all fundamental,
except for the last one, which is due to a Twitch-specific policy:

Lack of latency definition.We do not know how each game
server computes the latency number that it displays to a gamer,
e.g., whether it is measured at the application or network layer,
or whether it is a sample RTT or a moving average. We can make
educated guesses (by reverse-engineering the measurements we
observe when we play), but we have no ground truth.

Lack of control overmeasurement points.All measurements
are performed at game servers, whose location and numbers are
outside our control.

Lack of topology information. At best, we geolocate each
streamer at the granularity of a city. Hence, we do not know the
networks or technologies underlying each measurement.

Susceptibility to false descriptions. To geolocate a streamer,
we rely on the streamer’s own description of their location; if that
is false, then our conclusion will also be incorrect.

Streamer bias. Tero’s latency information comes from stream-
ers, which makes it biased in two ways: it comes from geographic
locations where streaming is popular; it comes from end-users with
a stronger incentive for good Internet connectivity than the average
player, not to mention the average end-user. Hence, we cannot use
Tero to reason about Internet latency in general; we can only use it
to reason about lower bounds.

Sparse per-streamer data. Even though streamers publicly
broadcast their game, Twitch forbids viewers from storing the
videos (they make available only one thumbnail per streamer every
5 minutes). In principle, we can overcome this, e.g., by extracting
the latency information directly from the broadcasted stream (as
opposed to the thumbnails). We have not taken this step yet, be-
cause we wanted to be absolutely certain that we violated neither
the letter nor the spirit of Twitch’s Terms of Service. However,
we are optimistic that we will find a legal way to obtain denser
per-streamer data. For the moment, even though we have sparse
data per streamer, we compensate by combining data from multiple
streamers (playing from the same geographical location).

3 SYSTEM DESIGN
Tero consists of a download module (App. §A) that continuously
downloads thumbnails from Twitch’s CDN; a locationmodule (§3.1)
that groups streamers per geographical location; an image-processing

2

Using Gaming Footage
as a Source of Internet Latency Information Accepted Manuscript, 2023

module (§3.2) that extracts latency measurements from thumbnails;
and a data-analysismodule (§3.3) that cleans the data and computes
latency statistics. We describe only the aspects of these modules
that we think are non-obvious, and we provide additional infor-
mation needed for reproducing our results in the Appendix. We
describe our implementation in App. §B and list the games currently
processed in App. §C.

3.1 Location
The location module takes as input a streamer’s profile (obtained
through Twitch’s Developer API), and it outputs the streamer’s
location in the form of a {city, region, country} tuple. Both the input
and output consist solely of publicly available information.

For a small fraction (0.97%) of the streamers, Tero extracts their
(likely) location directly from their profile: A Twitch profile in-
cludes a field called “description,” which is unstructured text that
the streamer uses to introduce themselves to their audience. Some
streamers embed location information in their description, e.g.,
“Join us in Detroit!”

For the rest, Tero tries to find a social profile, by leveraging the
voluntary connections that a streamer often draws between their
social profile and streamer account: (1) A streamer typically adds
to their social profile an explicit link to their streamer account,
as part of advertising. (2) Some streamers use the same username
across social-media and streaming platforms. The latter may be just
human habit, but there is also an economic incentive: a streamer’s
username is part of their brand, so it makes sense to create a social
presence with that username. Tero leverages these connections as
follows: (1) Given a streamer account 𝐴, it looks for a social profile
with the same username as𝐴. (2) If it finds such a profile 𝑃 , it checks
whether 𝑃 includes an explicit link to𝐴; if yes, it associates 𝑃 and𝐴.
Our current prototype considers Twitter and Steam6 social profiles,
because, to the best of our knowledge, they are the most popular
ones with streamers.

Given a Twitch description or a social profile, Tero tries to ex-
tract a location tuple, using a combination of the most popular
publicly available NLP tools (Table 3). CLIFF[13], Xponents[57],
and Mordecai[18] are geocoding tools: they take as input unstruc-
tured text, extract from it the parts that describe location, and map
each location description to an actual location (this last step is called
geoparsing). The remaining tools perform only geoparsing, but have
higher geoparsing accuracy than the geocoding tools. We experi-
mentally found that Tero achieves higher accuracy by combining
all these tools than using any subset of them. In particular, Tero
accepts location 𝐿 when (1) the output of a tool passes a conser-
vative filter (see App. D.1), (2) at least two of the underlying tools
output 𝐿, or (3) at least one tool outputs 𝐿 and at least one more tool
outputs a more general location that is compatible with 𝐿 (e.g. one
tool outputs "Los Angeles, USA" and another outputs "California,
USA"). We describe location extraction in more detail in App. §D.
We decided against state-of-the-art solutions like [1], because they
are specifically trained for English and do not typically release their
models (meaning that we would have to train them from scratch).

6https://store.steampowered.com/

3.1.1 Streamers with multiple locations. Occasionally, Tero extracts
different location tuples for the same streamer (at different points
in time). At first, we thought that this was an error; however, in
all such cases that have occurred so far, upon manual inspection,
it turned out that the streamer was indeed advertising a new lo-
cation (presumably because they moved), and a location change
was consistent with their latency measurements. Hence, Tero may
maintain multiple locations per streamer, in which case it treats
each {streamer, location} tuple as a distinct end-point during data
analysis.

3.1.2 Errors. The location module may extract an incorrect loca-
tion for a streamer for two reasons: the underlying geocoding/geop-
arsing tools make a mistake, or the streamer themselves advertise
an incorrect location. We estimate the error rate due to the former
to 1.46 ± 0.07% (§4.2), but we have no way of estimating the latter.
However, the latency measurements of streamers playing from the
same location tend to fall into clusters (§3.3.3). Hence, one approach
to reducing these errors would be to reject latency measurements
that fall outside the clusters for the corresponding location. We
do not take this step, but the users of our data-set have all the
information needed to take it.

3.2 Image Processing
The image-processingmodule takes as input a thumbnail (a streamer’s
screenshot), and it outputs the latency displayed in the thumbnail.
For a complete description, please see App. §E.

Our first attempt was to use Optical Character Recognition (OCR)
out of the box. An OCR engine takes as input an image and iden-
tifies all the alphanumeric characters in it. So, we simply passed
the thumbnail as input to an OCR engine and post-processed its
output to extract numbers. We tried the three most popular publicly
available OCR engines: Tesseract7, EasyOCR8, and PaddleOCR9.

This yielded insufficient accuracy: First, games display latency in
low resolution (75 dpi on average), and this causes the OCR engines
to make mistakes, e.g., mistake 8 for “B” or “S”, 0 for “O”, 4 for
“A”. Second, it occasionally happens that the displayed latency is
partially or fully covered, e.g., by an open menu, in which case OCR
may work perfectly and still produce output that is incorrect in our
context. Because of these two issues, the most accurate OCR engine
extracted a correct latency number from 86.32% of the thumbnails
we tested it with, while the three engines were complementary
(they made mistakes on partially overlapping sets of thumbnails).

To improve accuracy, Tero leverages knowledge of each game’s
user interface as follows: (1) It considers the area where each game
typically displays latency (e.g., top right corner) and crops around
it to create an image that is significantly smaller than the original
thumbnail and is most likely to include the displayed latency. (2) It
passes this smaller image as input to all three OCR engines. (3) It
post-processes the output of each OCR engine, using game-specific
heuristics, to extract the latency. For example, if multiple characters
are extracted from a region where we expected a single latency
digit, Tero tries to determine which one looks most like a latency
digit, and which one(s) look most like other elements that the

7https://github.com/tesseract-ocr/tesseract
8https://github.com/JaidedAI/EasyOCR
9https://github.com/PaddlePaddle/PaddleOCR

3

https://store.steampowered.com/
https://github.com/tesseract-ocr/tesseract
https://github.com/JaidedAI/EasyOCR
https://github.com/PaddlePaddle/PaddleOCR

Accepted Manuscript, 2023 Catalina Alvarez and Katerina Argyraki

StableLen
Minimum time one must play
on the same server before switching

LatGap Perceivable latency difference threshold
MaxSpikes Maximum proportion of spikes/points allowed

Table 1: Tero’s configurable parameters.

specific game is likely to display at that region (e.g., “ms” right after
the latency digits, or “ping” or “latency” right before them). (4) It
compares the (post-processed) output of the three OCR engines; if
at least two of them agree, their output is accepted as the “primary”
latency for the corresponding thumbnail; if exactly two engines
agree, Tero keeps the third engine’s output as an “alternative.” In
the data-analysis phase, if the primary latency is incompatible with
the rest of the data, and the alternative is not, we use the alternative
(§3.3.2).

3.2.1 Errors. The image-processing module may extract incorrect
latency in two ways: through digit confusion (e.g., “42ms” is read as
“12ms”) and through digit drop (e.g., “41ms” is read as “1ms”). We
evaluate it in detail in §4.2, but, in summary, it produces incorrect
latency for 3.7% of the thumbnails, and 68.42% of these errors are
digit drops.

3.3 Data Analysis
The data-analysis module continuously reads the output of the
location and image-processing modules and performs the follow-
ing processing: (1) It organizes its input into “streams” (§3.3.1).
(2) It identifies and corrects or discards “anomalies,” i.e., transient
changes in a streamer’s latency measurements that cannot be ex-
plained as location or server changes, hence need to be treated as
noise (§3.3.2). (3) It computes a latency distribution for each {loca-
tion, game} tuple, which is meant to capture the latency experienced
when playing game from location, on the primary server for that
location (§3.3.3).

We initially sought to extract useful information from anomalies,
e.g., use them to detect network problems in real-time. We still
think that that is a promising direction, however, it requires more
information about the underlying network topology than Tero cur-
rently has. Hence, for the moment, Tero either corrects or discards
anomalies.

Table 1 states Tero’s configurable parameters, and we show how
their values affect the results in App. §I.

3.3.1 Streams. A stream is a sequence of {timestamp, latency} tu-
ples that represent the latency experienced by one streamer, playing
one game. The first (resp. last) timestamp of a stream corresponds
roughly to the moment when the streamer comes online (resp. goes
offline). Two consecutive timestamps are at least 5 min apart (be-
cause Twitch posts thumbnails from a streamer’s video every 5
min); they may be more than 5 min apart, when the streamer is
online but not streaming (e.g., taking a break or interacting with
their audience). We assume that a streamer may switch servers
but not location mid-stream; they may change location in between
streams.

Each stream is further divided into same-QoE segments (or simply
segments): subsets of the stream, whose latency measurements are
within LatGap—a configurable parameter, equal to the minimum
latency difference that is perceivable by human users. In this work,

we use LatGap = 15ms (unless otherwise noted), which is the
upper bound of the latency difference that is currently perceivable
by players [32]. A single, long-lasting segment indicates a streamer
playing from one location, on one server, and without any technical
problem that significantly affected latency.

Each segment 𝑆 is classified as stable if 𝑆 includes at least StableLen
points, and as unstable otherwise. Fig. 1 illustrates stable (solid gray
boxes) and unstable (checkered boxes) segments. StableLen is a
configurable, game-dependent parameter, equal to the minimum
amount of time a player must play on a single server before switch-
ing to another one.

A stream yields a first picture of the streamer’s experience: fewer
segments indicate fewer changes in perceivable latency; more stable
segments indicate longer play without perceivable latency changes.
If a streamer has experienced only unstable segments, Tero discards
all their data, because this is likely a streamer with a problematic
play-station and/or Internet connection.

3.3.2 Anomalies. In summary, to detect anomalies, Tero stitches
together all the same-QoE segments experienced by one streamer
playing one game; and it looks for unstable segments with signif-
icantly higher or lower latency measurements than their stable
neighbors.

We did try to use state-of-the-art anomaly detection and change-
point detection out of the box, but they did not work well on our
data. The former did not allow us to reason about “explainable”
anomalies, like server and location changes (App. §J). We also tried
the PELT changepoint detection algorithm [26], but it did not com-
plete in useful time. We think the reason is that incorrect latency
measurements resulting from image-processing errors create weird
probability distributions that throw the algorithm off. However, we
should note that Tero’s anomaly-detection algorithm is a simple
form of changepoint detection with extra steps for detecting and
fixing image-processing errors.

Tero distinguishes between glitches (latency decreases) and spikes
(latency increases), and it uses slightly different detection algo-
rithms for the two. The reason is that they typically occur for
different reasons and have different features: Glitches are typically
the result of image-processing error and, in particular, digit drop.
For example, a streamer’s true displayed latency is “45ms,” but the
“4” is hidden by an open menu, causing OCR to read “5ms”. Hence,
a glitch typically takes the form of a sharp latency drop followed
by a sharp increase. In contrast, spikes typically consist of correctly
extracted latency measurements that are the result of the streamer
being affected by some technical problem, e.g., network congestion
or server overload. Hence, a spike typically takes the form of a rela-
tively smoother increase followed by a similar decrease. Of course,
it is possible that a spike is also the result of image-processing error,
e.g., “15ms” is misread as “75ms.”

Tero flags an unstable segment as a glitch when its maximum
latency is lower by at least LatGap than the minimum latency of
its two closest stable segments on each side (Fig. 1a).

Tero detects spikes iteratively: In the first iteration, it flags an
unstable segment as a spike if its minimum latency exceeds by at
least LatGap themaximum latency of its two closest stable segments
on each side (second red triangle in Fig. 1b). In the second iteration,
it flags an unstable segment as a spike if its minimum latency

4

Using Gaming Footage
as a Source of Internet Latency Information Accepted Manuscript, 2023

(a) Glitch detection.

1

2

(b) Spike detection.

1

2

(c) Spike merging.

1

2

(d) Cleanup.

Figure 1: Stream division into stable (solid) and unstable (checkered) segments. Glitch and spike detection.

exceeds by at least LatGap the maximum latency of one neighbor,
while the other neighbor was previously flagged as a spike (first
red triangle in Fig. 1b). It repeats these iterations until no new
spike is found, at which point it merges consecutive spikes (Fig. 1c).
Finally, it cleans up: it revisits each unstable segment 𝑆 that has
not been flagged as a spike; if 𝑆 ’s latency measurements are within
LatGap from the measurements of the closest stable segment (on
either side), 𝑆 is left as is and un-flagged (green square in Fig. 1d);
otherwise, 𝑆 is discarded (red cross in Fig. 1d).

The very last step of this process—the discarding—may seem
unnecessary, so, we explain: If glitches did not exist, an unstable
segment would be either a spike or the result of a stable segment
being interrupted by a spike. E.g., in Fig. 1d, stable segment 1 is
interrupted by a spike (red triangle) and that yields an unstable seg-
ment (green square) that essentially “belongs” with stable segment
1. However, glitches introduce a third kind of unstable segment. E.g.,
in Fig. 1d, the segment marked with a red cross would have been sta-
ble if a glitch had not caused the removal of latency measurements,
reducing its length and making it unstable. Any segment of this
kind—that is neither a spike nor the result of a spike interrupting a
stable segment—may be the result of a glitch, hence, most likely an
image-processing error.

Tero tries to correct each segment 𝑆 that has been flagged as a
glitch or spike by replacing its latency measurements with their al-
ternative values (§3.2). If 𝑆 remains unstable after the correction, or
if the correction is not possible (because 𝑆 ’s latency measurements
contain no alternative values), then 𝑆 is discarded.

Tero also looks for shared anomalies: overlapping spikes that
affected streamers playing from the same geographical location,
hence may indicate an underlying technical problem in shared
infrastructure. To do so, it adapts the statistical test from Schulman
et al. [41]: it identifies candidate sets of spikes, and it determines
that they form one shared anomaly if they were too many to have
been independent with any reasonable probability. We describe
how we adapt the test to our context in App. §F.

One difference from Schulman et al. [41] is that they consider
end-users with known IP addresses, so they have higher-quality
information for grouping end-users in relevant aggregates. In con-
trast, we know only a {city, region, country} tuple per streamer.
Our best bet is to group streamers per game and region, because
streamers from the same region typically play on the same server,
and because these streamers are likely to share some network in-
frastructure. Recall that a “region” is the largest sub-division in a
country, e.g., a US state, a Swiss canton, or a French province. So, it
is reasonable to expect that streamers playing from the same region

0 10 20 30 40 50 60 70 80
Latency [ms]

California (US)

Ontario (CA)

São Paulo (BR)

Buenos Aires (AR)

Catalunya (ES)

Île-de-France (FR)

Coverage
<25% 25-50% 50-75% >75%

Figure 2: Examples of latency clusters. Each circle’s size is
proportional to the percentage of streamers inside the corre-
sponding cluster.

(e.g., Alabama, or the canton of Geneva) and on the same server
(e.g., a server in Chicago, or Amsterdam) share some network in-
frastructure. If this expectation is wrong, Tero will fail to identify
any true shared anomalies, but it will not identify any false shared
anomalies—not if the statistical test is correct.

3.3.3 Latency Distributions. In summary, to compute latency dis-
tributions, Tero looks for streamers that yield “high-quality” (see
next paragraph) latency information; and considers their latency
when playing on a primary server and from a single location.

A streamer yields “high-quality” latency information when less
than a fraction MaxSpikes of their latency measurements belong
to spikes. This is a heuristic that resulted from experience: We
found that streamers with an unusual number of spikes typically
engage in game mislabeling (changing games without changing
labels, leading the image-processing module to read data from the
wrong part of the screen); or add custom elements to the screen
(e.g., a clock or a subscriber counter) that are easily confused with
latency values. The results we show in this paper were obtained for
MaxSpikes = 50%, derived as follows: We look for streamers who
appear to experience technical problems that do not affect other
streamers. More specifically, we look for streamers that, if elimi-
nated from the data-set, minimize (in their location) the number of
spikes that are not shared.

Tero identifies possible location and server changes as follows:
(1) It considers only high-quality streamers, and it clusters each

streamer’s stable segments into similar-latency clusters: (a) It dis-
cards the streamer’s spikes. (b) It clusters the remaining segments,
such that: two segments belong to different clusters only if all their

5

Accepted Manuscript, 2023 Catalina Alvarez and Katerina Argyraki

latency measurements differ by at least LatGap. (c) It annotates a
cluster with weight𝑤 when it includes𝑤% of the streamer’s latency
measurements.

(2) It classifies each streamer as static or mobile, depending on
how many clusters they have: a streamer is static if they have
one cluster with weight at least MinWeight = 80%; otherwise, the
streamer is mobile, which means that they may have played from
multiple locations and/or on multiple servers.

(3) It uses the static streamers to identify similar-latency clusters
for each {location, game} tuple. In particular, it considers only the
highest-weight cluster from each streamer who has been located to
location and is playing game; and merges these clusters such that:
two clusters are not merged only if all their latency measurements
differ by at least LatGap. Fig. 2 shows examples of latency clusters
for various locations. We observe that most locations have only one
or two clusters that are heavier than 10%. In the appendix (App. §G,
Fig. 14), we show additional examples that illustrate how clusters
change when using different merging criteria.

(4) It considers each mobile streamer who has been located to
location and is playing game; if a pair of subsequent stable segments
belong to different latency clusters (identified in Step 3), it marks
the transition from one to the other as an end-point change. When
an end-point change happens within the same stream, it is consid-
ered a server change (because we assume that a streamer will not
change locations mid-stream). When an end-point change spans
two subsequent streams, it is considered a possible location change.

To compute a latency distribution for {location, game}, Tero con-
siders only streamers located in location and with no possible loca-
tion changes. More specifically, it considers: (a) The static streamers.
(b) From each mobile streamer, the latency measurements that be-
long to the highest-weight latency cluster for location and game.

Finally, for each resulting latency distribution, Tero also com-
putes a version that is normalized by the corrected distance [44] (see
next paragraph) between location and the corresponding “primary
server,” i.e., the one where users from location are most likely to play
game. We obtain all the server locations at the granularity of city or
region (App. §C). We do so based on developer reports [24, 37, 53],
community information [2, 36], and articles posts from gaming-
specific news media [31, 34].

In most cases, the choice of the primary server is straightforward.
E.g., there is one League of Legends server in Europe (in Amster-
dam), and all players from Europe are supposed to play there. There
are a few cases, however, where the choice is ambiguous. E.g., Call
of Duty has 10 servers in North America and 8 servers in Europe,
and players are assigned to servers based on measurements per-
formed when they join the game. In these cases, we pick the server
with the smallest corrected distance from location.

The “corrected distance” between a streamer and a server con-
sists of two components: (1) The geodesic distance between the
geometric centers of the streamer and server locations. E.g., if a
streamer located in Athens is playing on an Amsterdam server, the
first component is the geodesic distance between the geometric
centers of Athens and Amsterdam. (2) The average distance of any
point in the streamer’s location from the location’s geometric cen-
ter. E.g., for a streamer located in Athens, the second component
is the average distance of any point in Athens from Athens’ geo-
metric center. The second component is especially important when

Games Genshin Impact, League of Legends
Bottleneck bandwidth 1Gbps, 100 Mbps
Bottleneck queue size 50, 500, 1000, 5000 packets

Traffic sources 2 UDP flows (50% BD each), 8 TCP flows
(10% BD each, staggered by 5sec)

Experiment duration 5 minutes (2 with traffic)
Repetitions 5 per condition

Table 2: Parameters for experimental evaluation.

Test

Control

Router Switch2 Switch1

Figure 3: Testbed for experimental evaluation.

streamer and server are in the same location. E.g., if a streamer
located in Amsterdam is playing on an Amsterdam server, then
considering only the first component would yield a distance of
0. Ideally, the second component would consider how streamers
are geographically distributed within Amsterdam, but we don’t
have this kind of information; considering the average distance to
Amsterdam’s geometric center is our best alternative.

4 EVALUATION
In this section, we answer two questions: how well does the latency
reported by games follow the network-layer latency between the
corresponding client and server? how often does Tero extract a
wrong location or latency?

4.1 Gaming vs Network Latency
We use the term gaming latency to refer to the latency displayed as
part of a game (which is meant to capture the application-layer RTT
between game server and play-station). We use the term network
latency to refer to the network-layer RTT between two devices.

In summary, we find that the gaming latency closely follows
network latency; when the network is severely congested, gaming
latency tends to lag behind by a few seconds, i.e., when network
latency increases, gaming latency takes a few seconds to reflect the
increase.

When designing the experiments that led to these conclusions,
we had to address two challenges: (a) We could not risk disturb-
ing other players and potentially breaking competitive integrity,
hence we restricted ourselves to 2 of the games supported by Tero
(Table 2), which are single-player or have a single-player practice/-
training mode. (b) Game servers do not typically respond to any
type of probing packet, hence we could not directly measure net-
work latency. Moreover, a game server typically communicates with
a play-station through periodic updates, hence we could not rely
on the timing of the server’s packet arrivals to infer information
about latency.

We used the topology in Fig. 3: We connected two play-stations,
“Control” and “Test,” to the same game server. The two play-stations
share a common path to the game server, except that the path from
Test includes an additional network bottleneck (between Router and

6

Using Gaming Footage
as a Source of Internet Latency Information Accepted Manuscript, 2023

Switch2) that is under our control. To create background traffic for
the bottleneck, we used generator/sink devices connected directly to
Router and Switch2 and iperf310. The two play-stations are desktop
computers with similar specifications: Test has an RTX 3070 GPU,
16 GB of RAM, and an AMD Ryzen 7 5800 processor, while Control
has the same GPU, 32 GB of RAM, and an AMD Ryzen 9 3900X
processor. The switches are off-the-shelf TP-Link 1Gb switches.
The router is a MikroTik RouterBoard RB750GR3 hEX running
RouterOS.

We experimented with a variety of network conditions, causing
the bottleneck’s network latency to vary from 0.4ms to 590ms. More
specifically, for each game, we ran 8 experiments, repeating each
experiment 5 times. Each experiment lasts 5 minutes: 2 minutes
of “start-up,” without background traffic; 1 minute with UDP back-
ground traffic; 1 minute with mixed UDP+TCP background traffic;
and 1 minute of “die-down,” again without background traffic. Dur-
ing start-up, we observe whether Control and Test see the same
gaming latency; if not, we abort the experiment. Die-down allows
the gaming latency to stabilize again after congestion ends. Across
experiments, we varied the bottleneck bandwidth, the bottleneck
queue size, and the volume of background traffic as specified in
Table 2. During each experiment, we collected (5 times per second)
the gaming latency displayed at each play-station, and wemeasured
the network latency of the bottleneck link.

We assessed the difference between gaming and network latency
as follows: First, we computed an adjusted gaming latency as the
gaming latency displayed at Test minus the gaming latency dis-
played at Control at time 𝑡 ; and we compared it to the network
latency of the bottleneck also measured at time 𝑡 . Fig. 4 shows the
difference between these two quantities, per experiment and per
game; the x-axis represents experiment index, and experiments
are sorted by the worst network latency they created. We see that,
at worst, the 95th percentile of the difference between network
and gaming latency was 8.5ms. Next, we focused on the specific
moments in time when the difference was worse (above 4ms): They
all corresponded to the beginning or end of background traffic,
i.e., when network latency sharply increased or decreased. In all
cases, the difference went back to 4ms or less within a few seconds.
We posit that this “lag” between network and gaming latency is
because gaming latency is computed as an average over a window
of a few seconds, hence takes as much time to reflect a sharp change
in network latency.

We also assessed whether the number of players on a server
significantly affects the difference between gaming and network
latency; we did not find any evidence that this is the case. We do
not know the number of active players on a server, hence we used
the number of active streamers playing on that server as a proxy.
We focused on California, US, which is the region with the highest
number of streamers in our data-set. We observed how the latency
distribution computed by Tero for California and for different games
changes as a function of the number of active streamers. In general,
more active streamers does not imply higher gaming latency. E.g.,
for League of Legends, on a typical day, gaming latency is highest
(average: 61ms, 95th percentile: 78ms) at 16:00 UTC, when the
number of active streamers is 1,700, and it is lowest (average: 57ms,

10https://iperf.fr/iperf-download.php

7 11 17 23 34 59 70 589
Max bottleneck latency [ms]

0

2

4

6

8

 L
at

en
cy

 d
iff

er
en

ce
 [m

s]

Genshin Impact (15 ± 1.5ms)
League of Legends (37 ± 1.4ms)

Figure 4: Difference between gaming and network latency. At
the top, next to each game name, in parentheses, the average
and standard deviation of the gaming latency displayed at
Control.

% extracted Error rate
CLIFF 0.44% 33.4 ± 1.04%
Xponents 3.55% 36.27 ± 0.96%
Mordecai 0.81% 23 ± 0.50%
CLIFF++ 63.99% 3.6 ± 0.31%
Xponents++ 41.85% 2.87 ± 0.29%
Mordecai++ 17.94% 2.43 ± 0.12%
Twitch Comb. 1.91% 3.47 ± 0.27%
Twitter-Twitch mapping 1.96% 1.6 ± 0.33%
Nominatim 70.83% 7.93 ± 1.05%
Geonames 69.55% 11.87 ± 0.47%
Twitter Comb. 70.77% 1.91 ± 0.29%
Tero 2.5 % 1.46 ± 0.07%

Table 3: Extraction and error rates of location techniques.
“Tool++” indicates Tool augmented with a conservative filter
that we designed (App. §D.1) to improve extraction and error
rates. “Comb.” indicates the combination of tools used on
Twitch descriptions (App. §D.2) and Twitter locations (App.
§D.3), respectively.

95th percentile: 78ms) at 21:00 UTC, when the number of active
streamers is two times higher (3,530). We hypothesize that gaming
latency is higher during the day simply because the network is
more loaded.

4.2 Error Rates
4.2.1 Location. Tero identified a location for 2.77% (722 thousand
out of 26 million) of the streamers that were active during the con-
sidered time period; of the identified locations, we estimate that
1.46±0.07% are incorrect due to errors of the underlying tools or in-
correct mapping between Twitch accounts and Twitter profiles. To
estimate this error rate, as well as the error rates of the underlying
techniques, we inspected manually hundreds of input/output pairs
from each technique. The most common reason for not locating a
streamer or locating them incorrectly is that they advertise their

7

https://iperf.fr/iperf-download.php

Accepted Manuscript, 2023 Catalina Alvarez and Katerina Argyraki

50 100 150 200 250
Latency [ms]

0

5

10

%
 o

f t
ot

al
Correct
Missing

Incorrect

(a) Latency measurements that are correctly extracted,
incorrectly extracted, and missed by image-processing.

50 100 150
Latency [ms]

0

10

20

30

40

%
 o

f t
ot

al

Discarded Missed

(b) Incorrect latency measurements that are discarded
and missed by data-analysis.

Figure 5: Image-processing and data-analysis errors.

Measurements
not extracted

Incorrect
measurements

EasyOCR 5.75 ± 0.38% 8.31 ± 0.73%
PaddleOCR 5.84 ± 0.33% 9.96 ± 0.75%
Tesseract 15.52 ± 0.57% 8.77 ± 0.26%
Tero 28.37 ± 0.47% 3.7 ± 0.40%

Table 4: Miss and error rates of OCR engines and their com-
bination.

location in an informal way that confuses geocoding/geoparsing
tools (e.g., “I live in Denmarkian but have roots in Iran”). Table 3
summarizes the results. We describe our estimation method in App.
§H.1.

4.2.2 Image Processing. We estimate that Tero fails to extract a
latency measurement from 28.37% ± 0.47% of the downloaded
thumbnails (that include a visible measurement); we estimate that
3.7% ± 0.4% of the measurements it extracts are incorrect. To esti-
mate these error rates, as well as the error rate of the underlying
OCR engines, we inspected manually thousands of thumbnails and
the measurements extracted from them. Table 4 summarizes the
results. We describe our estimation method in App. §H.2.

(a) Typical latency display. (b) Latency font too light.

(c) Latency partially hidden. (d) Latency replaced by clock.

Figure 6: Examples of OCR input.

A valid concern about both missed (not extracted) and incor-
rect latency measurements is that they may introduce bias. E.g.,
one could imagine that Tero fails to extract correct measurements
due to particularly low image resolution resulting from network
problems, in which case missing/incorrect measurements would be
correlated with high-latency measurements. To address this con-
cern, we compared the estimated distribution of both missed and
incorrect latency measurements against the estimated distribution
of the correctly extracted latency measurements (Fig. 5a), and we
found no indication of such bias.

In fact, the most common reason for missed measurements is that
their font color is too close to that of the background (Fig. 6b), while
the most common reason for incorrect measurements is digit drop
as a result of the measurement being partially hidden by on-screen
elements (Fig. 6c). Side note: The trickiest error we encountered
was a streamer who modified their UI and made it display the
current time exactly at the place where it normally displays latency
(Fig. 6d).

4.2.3 Data Analysis. Of the incorrect latency measurements pro-
duced by image-processing, some are detected and corrected/dis-
carded during data-analysis, as part of anomaly detection (§3.3.2);
the question is how many escape. We assess that anomaly detection
misses about 30% of the incorrect latency measurements. However,
the reason these are missed is that they are close enough to their
neighbors (within LatGap) that they do not constitute an anomaly
(e.g., 101 is misread as 107). Hence, they do not significantly impact
our regional latency analysis (which excludes anomalies).

We also assess that 25.87% ± 0.67 of the detected glitches do
not actually include incorrect latency measurements, hence may be
“false positives” (correct latency measurements that should not have
been discarded). We think that these are true latency decreases due
to a location or server change, but they ended up in unstable seg-
ments because the streamer interrupted their game. Our estimation
method is in App. §H.3.

Finally, we would like to relate one instance where we were able
to map shared anomalies to a probable cause. During 5 particular
days (starting Nov 16, 2022), we detected an extraordinary number
of shared spikes (669) in many geographical locations, and they all
concerned one game. It turned out that a new version of the game
was released exactly on Nov 16 [22], which makes it possible that
the game servers themselves or their network connections were
overloaded.

8

Using Gaming Footage
as a Source of Internet Latency Information Accepted Manuscript, 2023

AS AF EU NA SA OC0

15

30

45

60

%
 o

f t
ot

al
Tero
Internet users

Population

Figure 7: Distribution of Tero’s users, Internet users, and
global population by continent [5].

5 RESULTS
5.1 Basic Data Properties
Volume. Between May 25th, 2021 and May 1st, 2023, Tero pro-
cessed 205 million thumbnails from 9 online video games. It ex-
tracted 64.6 million latency measurements. After filtering out anom-
alies, it retained 58.03 million measurements for further analysis,
distributed across 150 thousand users from 195 countries, and span-
ning 3,903,121 streams.

Coverage.The geographical distribution of our streamers closely
follows the distribution of Twitch users [59], which is concentrated
in the Americas, Europe, and particular areas of Asia such as South
Korea and Japan. If we exclude Asia, this distribution follows the
one of Internet users (Fig.7). Our coverage of the Asian continent
suffers despite the fact that gaming is popular there, because Twitch
faces significant competition from Chinese and Indian streaming
platforms [23, 55, 56]; we hope to improve by incorporating them.

The skew-ness of the geographic distribution is reflected in tem-
poral coverage: In the locations where Twitch users are concen-
trated, we have data points as much as 70% of the time (this number
is from California, US). However, there are also locations with only
a few sporadic data points. In total, if we separate the data per
game, we have enough data (at least 50 users) to compute latency
distributions in 74 countries, 143 regions, and 90 cities.

When multiple streamers play from the same location, their
latency measurements are randomly distributed over time (it is not
the case that Twitch produces thumbnails in bursts). To confirm
this, we grouped latency measurements per location and 5-minute
interval, and computed an “uneven-ness” score for each group:
the Wasserstein distance [27] between the uniform distribution
and the actual distribution of points across time, normalized by
the Wasserstein distance between the uniform distribution and the
most uneven distribution (all points happening at the same time).
Fig. 8 shows the resulting uneven-ness CDFs; each curve/color
corresponds to a different number of streamers active per 5-minute
interval. We see that, even when we have 3 active streamers per
interval, uneven-ness leans toward a uniform distribution 80% of
the time.

5.2 Regional Latency
We start by comparing the latency distributions that we obtain for
different geographical locations and the same game. Such a compar-
ison makes sense in our context, even if the corresponding physical

0.00 0.25 0.50 0.75 1.00
Uneven-ness score

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Pr
ob

.

3
4

5
10

15
20

Figure 8: Uneven-ness score depending on the number of
streamers per 5-minute interval.

distances differ significantly: it shows the latency experienced by
some of the most latency optimized Internet users around the world,
when they access the same service (play the same game on their
closest server).

We plot each latency distribution as a boxplot that marks the
5th, 25th, 50th, 75th, and 95th percentiles. This differs slightly from
a traditional boxplot, which marks the minimum and maximum
values (excluding outliers) instead of the 5th and 95th percentiles.
We chose this representation, because we expect up to 3.7% of the
data points in a latency distribution to be incorrect due to image-
processing error (§4.2.2). Hence, we want to conservatively exclude
at least the 3.7% lowest and 3.7% highest data points from each
distribution.

Fig. 9 shows the latency distributions for League of Legends
and a set of geographic locations selected as follows: 9a includes
the locations with the best and worst median latency from the US,
Latin America, Europe, and Asia; 9b includes the locations with
the best and worst median distance-normalized latency from the
same places. To ensure that the distributions are comparable, we
produced them using latency measurements from the same number
of streamers (50 per location); for locations where we have data
from more streamers, we randomly sampled 50. In both graphs,
the x-axis represents absolute latency in ms. Each box is annotated
with the name of the location, the location of the primary server,
and the average corrected distance (§3.3.3) between the server and
the streamers (whose latency measurements contributed to the
distribution). E.g., when we write “Turkey-Istanbul (371 km),” 371
km is the average corrected distance between the server’s location
(Istanbul) and the locations of all the streamers playing from Turkey.

There is a strong correlation between better latency and shorter
physical distance to the game server (as expected), however, there
are also significant differences in latency that cannot be justified
by distance. Not surprisingly, the best latency corresponds to 4
locations that are less than 500 km away from their primary servers
(the top 4 in Fig. 9a). However: the average corrected distance
between Turkey (3rd from the top in Fig. 9b) and its primary server
in Istanbul is only 371 km, yet its 75th percentile latency is, at 25ms,
the same as Brazil’s (4th in Fig. 9b), which is at double the distance
from its primary server in Sao Paulo. Bolivia (4th from the bottom in
Fig. 9a) is 1,900 km away from its primary server in Santiago, yet its
75th percentile latency is, at 100ms, the same as Hawaii’s (bottom in
Fig. 9a), which is 6,800 km away from its primary server in Chicago.
Greece and Saudi Arabia (2nd and 3rd from the bottom in Fig. 9a)

9

Accepted Manuscript, 2023 Catalina Alvarez and Katerina Argyraki

0 25 50 75 100 125 150 175 200
Latency [ms]

Asia-Best

US-Best

EU-Best

Latam-Best

Latam-Worst

EU-Worst

Asia-Worst

US-Worst

(a) Locations with best and worst absolute latency.

0 25 50 75 100 125 150 175 200
Latency [ms]

US-Worst

EU-Worst

Asia-Worst

Latam-Worst

EU-Best

Asia-Best

US-Best

Latam-Best

(b) Locations with best and worst distance-normalized latency.

Figure 9: League-of-Legends absolute latency for different geographical locations.

10 20 30 40 50 60
Latency [ms]

District of Columbia (US)

Georgia (US)

Kentucky (US)

Minnesota (US)

Missouri (US)

North Carolina (US)

Ontario (CA)

Pennsylvania (US)

Tennessee (US)

Virginia (US)

(a) 500 KM < X < 1,000 KM

10 20 30 40 50 60 70
Latency [ms]

Georgia (US)

Massachusetts (US)

New Jersey (US)

North Carolina (US)

Oklahoma (US)

Pennsylvania (US)

Texas (US)

(b) 1,000 KM < X < 1,500 KM

Figure 10: League-of-Legends absolute latency for US states in the same “doughnut”.

10 20 30 40 50
Latency [ms]

Austria

Denmark

France

Germany

Italy

Poland

Switzerland

United Kingdom

(a) 500 KM < X < 1,000 KM

20 25 30 35 40 45
Latency [ms]

France

Italy

Poland

Spain

(b) 1,000 KM < X < 1,500 KM

Figure 11: League-of-Legends absolute latency for EU countries in the same “doughnut”.

have similar physical distances from their primary servers, yet
their 75th percentile latency differs by around 25 ms (a significant
difference for latency-sensitive applications).

We observed the most surprising latency differences in North
America. Fig. 10 shows the latency distributions of different US
states11 that fall within the same 500-km-thick “doughnut,” cen-
tered at the primary server in Chicago. Consider first Fig. 10a, which

11Georgia and North Carolina include streamers located in both doughnuts. For each
of these states, we compute two different latency distributions, one per doughnut.

covers states 500–1000 km away from the primary server: the high-
est 75th percentile latency is around 60ms (District of Columbia),
while the lowest is around 15ms (Missouri and Ontario, Canada).
Now consider Fig. 10b, which covers states 1000–1500 km away
from the primary server: the highest 75th percentile latency again
exceeds 45ms (North Carolina), while the lowest is around 21ms
(Texas). So: states that fall in the same 500-km-thick doughnut differ
by as much as 30ms in their 75th percentile—again, a significant
difference for latency-sensitive applications.

10

Using Gaming Footage
as a Source of Internet Latency Information Accepted Manuscript, 2023

We observed smaller latency differences in Europe. Fig. 11 shows
the latency distributions of different EU countries12 that fall within
the same 500-km-thick doughnut, centered at the primary server in
Amsterdam. In Fig. 11a, the highest 75th percentile latency exceeds
40ms (Poland), while the lowest is 15ms (Switzerland). At the same
time, some countries exhibit significantly bigger latency gaps across
streamers than others. E.g., in Fig. 11b, for Italy, the gap between
25th and 75th percentile latency exceeds 15ms, while for France
the same gap is around 5ms.

To consider possible explanations for these differences, one needs
the following context: League-of-Legends is hosted by the game
provider’s private cloud, which has points of presence in all the
major Internet eXchange Points (IXPs) and (at least in North Amer-
ica and Europe) peers with all the major eyeball ISPs. Hence, traffic
from a player to a League-of-Legends game server typically crosses
the player’s ISP to the closest peering point with the game provider,
then the game provider’s private backbone to the server. Hence,
when two states/countries or two streamers from the same country
experience significantly different latency to the same server, the dif-
ference must come either from (a) their eyeball ISPs or from (b) the
game provider’s backbone. We do not have data to assign probabili-
ties, but we posit that (b) is unlikely, especially when the two states
have similar distances to the game server, given that game-provider
backbones are particularly optimized for low latency.

We think that this kind of information can be useful to the
entities responsible for Internet infrastructure, as, at the very least,
it indicates states that may suffer from relatively poor residential
connectivity.

As a final note, Tero obtains latency distributions for two coun-
tries with no RIPE probes or any other kind of publicly available
measurements, to the best of our knowledge: El Salvador and Ja-
maica. Fig. 12 shows their latency distributions for League of Leg-
ends, compared against those of other locations that have similar
distance (±200 km) from the primary game server in Miami.

6 DISCUSSION: ANALYZING USER BEHAVIOR
We think that extracting publicly available latency measurements
from latency-sensitive applications is an interesting direction be-
cause it opens the door (to all researchers) for real-time analysis of
user behavior.

We take a small first step in this direction by studying how
latency spikes impact the attitude of the affected players: we study
the hypothesis that latency spikes (and the resulting degradation
in quality of experience) could be a reason why players decide to
change servers or abandon the game they are playing altogether.

We start from server changes: out of 196,019 {streamer, game} tu-
ples, 6,110 (3.12%) experience at least one server change (as detected
in §3.3.3). We limit our analysis to these tuples as they represent
scenarios where a player is able and willing to change servers. In
general, a player may be unable to change servers (e.g., due to their
location giving them access only to one server) or unwilling to
do so (e.g., to avoid changing playing partners). We consider each
game separately because it has been shown that different types of
video games elicit different responses to latency [10].

12France, Italy, and Poland have streamers in both doughnuts. For each of them, we
compute two different latency distributions.

We prepare our data for analysis as follows: (1) We consider all
streams from the selected streamers. (2) We discard any stream that
is shorter than the minimum time that a player must play until they
are allowed to change servers. (3) We consider streams with at least
one server change, and measure the median time to the first change;
then we truncate streams without a server change to this median
time. This step is necessary, because streams with server changes
are statistically longer than streams without server changes; and
we need them to be of comparable length in order to test on them
the hypothesis that latency spikes cause server changes. (4) We
annotate each stream-without-a-change with its number of spikes,
and each stream-with-a-change with its number of spikes before
the first change.

We rely on Probit regression models [21], which are a standard
statistics tool for assessing the effect of a “treatment” (in our case,
latency spikes) on a binary outcome (in our case, server change or
not). To assess the effect of different latency increases, we group
spikes by their size, starting from 8ms (the minimum latency change
that has been shown to be perceptible by human users [32]). Then
we fit a Probit model per game and spike size (in each case, our
“independent/predicting variable” is the number of spikes associ-
ated with each stream, and the “dependent variable” is whether the
stream includes a server change or not). Each model is a prediction
function that gives the probability of a server change given the
number of spikes. A typical way to summarize a model is the aver-
age “marginal effect,” which is the slope of the prediction function,
i.e., how the probability of the binary outcome changes when one
extra unit of the predicting variable is added.

Table. 5, at the top, shows the average marginal effect of the
number of spikes on the probability of a server change. E.g., for
League of Legends, adding one spike of 25ms or more increases the
probability of a player changing server by 0.48%. For each game, we
mark the highest marginal effect in bold. All effects are statistically
significant at 1%, except those marked with a *, which are significant
at 10%; empty cells indicate no statistically significant correlation.
“Significant at p%” means that: if server changes were independent
of spikes, the probability of observing what we observed (the given
spikes and server changes) would be p%.

So: The effect of spikes on server changes is small, but statistically
significant (a small but clear correlation does exist). E.g., for League
of Legends, one extra spike of 15ms or more in a stream yields
around 0.44% increase in the probability of the player changing
server. For some games, spike size has a bigger effect, e.g., for Call
of Duty Warzone, a player is 68% more likely to change server (a
change in probability from 0.41% to 0.69%) if the spikes are >30ms
instead of >15ms.

Then we consider game changes, i.e., we study the hypothesis
that spikes may cause players to change games, looking for a better
quality of experience. To determine when streamers change games,
every 30 minutes we fetch from Twitch all information about on-
going streams (including the game currently being streamed). We
cross-reference this data with our latency measurements and obtain
relevant game changes: for all streamers included in our data-set,
we look for instances in which the streamer changes from (or to) a
game included in our data-set. Out of all the streams included in
our data-set (4,280,654), 2,274,761 (53.14%) contain a game change

11

Accepted Manuscript, 2023 Catalina Alvarez and Katerina Argyraki

40 60 80 100
Latency [ms]

El Salvador
Chiapas-MX
Tabasco-MX

Veracruz-MX
Tamaulipas-MX
Campeche-MX
Magdalena-CO

Caribe-CO
Atlántico-CO

Bolívar-CO
Francisco Morazán-HN

Costa Rica
Nicaragua

(a) El Salvador.

20 40 60
Latency [ms]

Jamaica

Quintana Roo-MX

Yucatán-MX

(b) Jamaica.

Figure 12: League-of-Legends absolute latency for locations at a similar distance (±200 km)
as El Salvador (left) and Jamaica (right) from the Miami game server.

Server changes
Game N obs >8ms >10ms >15ms >20ms >25ms >30ms >35ms >40ms
League of Legends 16,587 0.0039 0.0043 0.0044 0.0046 0.0048 0.0047 0.0048 0.0048
Call of Duty Warzone 95,416 0.0025 0.0029 0.0041 0.0051 0.0061 0.0069 0.0076 0.0079
Genshin Impact 14,946 0.0059 0.0066 0.0069 0.0074 0.0069 0.0069 0.0067 0.0068
Teamfight Tactics 8,174 0.0053 0.0056 0.0074 0.0077 0.0082 0.0086 0.0086 0.0081
Dota 2 8,860 0.0038 0.0042 0.0049 0.0060 0.0063 0.0069 0.0063 0.0074
Among Us 1,351 0.0121 0.0130 0.0130 0.0103* 0.0164 - - -
Lost Ark 684 0.0041 0.0036 0.0044 0.0159 0.0156 0.0155 - -

Game changes
Game N obs >8ms >10ms >15ms >20ms >25ms >30ms >35ms >40ms
League of Legends 1,483,918 0.0229 0.0255 0.0280 0.0274 0.0271 0.0262 0.0251 0.0245
CoD Warzone 724,157 0.0092 0.0129 0.0174 0.0217 0.0245 0.0266 0.0281 0.0290
Genshin Impact 268,491 0.0358 0.0372 0.0405 0.0406 0.0414 0.0410 0.0405 0.0402
Teamfight Tactics 98,470 0.0218 0.0222 0.0252 0.0247 0.0247 0.0218 0.0212 0.0205
Dota 2 130,742 0.0132 0.0140 0.0162 0.0177 0.0178 0.0187 0.0184 0.0180
Among Us 9,816 0.0358 0.0382 0.0421 0.0434 0.0409 0.0458 0.0452 0.0458
Lost Ark 41,072 0.0129 0.0129 0.0171 0.0329 0.0337 0.0343 0.0302 0.0269

Table 5: Average marginal effects of the number of spikes on the presence of a server or game change.

with the required characteristics. We perform a similar analysis as
for server changes and show the results in Table. 5, at the bottom.

We see that the effect of spikes on game changes is an order of
magnitude higher than on server changes. In our opinion, the reason
behind this difference is that it is significantly easier to change
games than servers: First, depending on the player’s location, a
server change may be impossible or inconvenient due to language
or cultural barriers. Second, changing servers typically requires
menu navigation, while changing games is as easy as starting a
new game.

The magnitude of the effects we observe is consistent with state-
of-the-art research on the effect of latency on user behavior in
general. E.g., Nam et al. [33] studied why users stop watching
videos and found relationships comparable to ours, e.g., the number
of rebuffering events has a marginal effect on the abandonment rate
of 2.46%, which is close to the marginal effect of spikes on game
changes. Krishnan et al. [28] found that a delay of 1 second at the
start of a video increases the abandonment rate by 5.8%. Finally,
Google and Bing reported in a joint conference presentation that

an added delay of 200ms in response times yields a decrease of 0.4%
in user satisfaction.

Our preliminary study shows the potential of Tero—or any sys-
tem that collects measurements directly from network-sensitive
applications—to tie network metrics to user behavior. And while it
is reasonable to assume that latency spikes affect game retention,
we think it is interesting to put specific numbers on retention rate
as a function of latency.

7 DISCUSSION: ETHICAL CONSIDERATIONS
Tero touches three kinds of entities: the streamers whose latency
we extract; the streaming platforms that make the gaming footage
publicly available; and the social-media platforms that host the
streamers’ profiles.

We take extreme care to not even look for information that a
streamer did not clearly intend to share publicly. In particular, we
never try to localize a streamer at a granularity finer than a city.

12

Using Gaming Footage
as a Source of Internet Latency Information Accepted Manuscript, 2023

To minimize privacy risks for our streamers, we take the follow-
ing measures: (1) We store the minimum information required for
our system: approximate geographic location and latency measure-
ments from gaming footage. (2) We use consistent hashing to map
each streamer ID to a randomly generated ID; this is because we
need to remember that a location and a set of measurements be-
long to the same streamer, but we do not need to remember the
streamer’s actual ID. (3) We delete any intermediate information—
the actual streamer IDs, the downloaded profiles, and the down-
loaded thumbnails—as soon as we process it.

We also take extreme care to comply with the Terms of Service
of each streaming and/or social-media platform. In particular: As
mentioned in §1, to comply with Twitch’s Terms of Service, we
neither access video streams nor crawl streamer profiles; we ob-
tain gaming footage through Twitch’s CDN and related metadata
through its Developer API. Twitter allows13 to draw connections
between platforms that someone would “reasonably expect” for us
to make; we interpret this strictly and look only for explicit links
left by a user themselves from their own Twitter and/or Steam
account to their own Twitch account.

8 RELATEDWORK
To the best of our knowledge, our work is the first to extract la-
tency measurements from gaming footage. Closest in spirit is the
line of work that passively measures the transport-layer latency
of active TCP connections: Chen et al. [7] conduct their measure-
ments on a programmable switch, enabling real-time reaction by
the corresponding provider. Ruru [11] and Veal et al [58] conduct
similar measurements by leveraging certain parts of a TCP con-
nection, e.g., the SYN/SYN-ACK handshake and packet-ACK pairs
that share timestamps. Another related line of work gains insights
on Internet latency by leveraging proprietary passive measure-
ments [15, 17, 25, 43]. Choffnes et al. [8] develop a BitTorrent ex-
tension that enables them to monitor the BitTorrrent performance
experienced by end-users and detect interesting events.With all this
work, we share the goals of reasoning about latency in the face of
noise; however, each line of work faces distinct challenges (includ-
ing different kinds of noise). Our unique challenges are mapping
our streamers to geographical locations, extracting measurements
from their thumbnails, and handling the peculiar pattern of the
resulting data.

We view Tero as complementary to active measurement plat-
forms like RIPE Atlas[51], BISmark [52], Speedchecker14, Sam-
Knows15, and Mlab-hosted projects like NDT [14]. These enable
precise, controlled network-layer measurements, conducted on
dedicated servers and potentially on the devices of volunteering
end-users. In comparison, Tero yields significantly noisier mea-
surements; its contribution is that it reveals the application-layer
latency actually experienced by tens of thousands of streamers
around the world, without the need for dedicated, publicly avail-
able, or volunteered measurement infrastructure. We should also
mention Microsoft’s Odin [6] and Facebook’s platform described by

13Off-Twitter matching https://developer.twitter.com/en/developer-terms/agreement-
and-policy
14https://www.speedchecker.com/
15https://www.samknows.com/

Schlinker et al [48], which are great examples of precise, controlled,
albeit closed active-measurement platforms.

Many research projects leverage open active measurement plat-
forms like ours: Dang et al. [12] leverage Speedchecker data to study
end-user connectivity to different cloud providers, as well as end-
user latency as a function of data-center deployment and choice of
networking infrastructure. Swati et al. [46] leverage BISmark data
to identify and analyze correlated latency anomalies in access net-
works (we should clarify that they operate at a different scale, they
consider average latency per day). Høiland-Jørgensen et al. [19]
leverage NDT data to study the evolution of latency over years.
Schulman et al. [50] leverage PlanetLab [9] to deploy Thunderp-
ing, which measures the connectivity of residential Internet hosts
before, during, and after periods of severe weather. Padmanabhan
et al. [41] leverage the Thunderping data-set to identify correlated
instances of failures that are likely due to severe weather; as already
stated, we borrow their technique for identifying shared anomalies.

9 CONCLUSION
Gaming footage is a source of real-time, publicly available, passive
latency measurements that are directly contributed by tens of thou-
sands of some of the most latency-sensitive and latency-optimized
Internet users; we showed that it is feasible to mine this source of
information to complement the picture of Internet latency provided
by open measurement platforms.

ACKNOWLEDGMENTS
We would like to thank Ankit Singla for his valuable input and
support during the early stages of the work. We would also like to
thank our shepherd, Oliver Hohlfeld, and the anonymous reviewers
for their constructive feedback.

13

https://developer.twitter.com/en/developer-terms/agreement-and-policy
https://developer.twitter.com/en/developer-terms/agreement-and-policy
https://www.speedchecker.com/
https://www.samknows.com/

Accepted Manuscript, 2023 Catalina Alvarez and Katerina Argyraki

REFERENCES
[1] Beatrice Alex, Clare Llewellyn, Claire Grover, Jon Oberlander, and Richard Tobin.

2016. Homing in on Twitter users: evaluating an enhanced geoparser for user
profile locations. In Proceedings of the Tenth International Conference on Language
Resources and Evaluation (LREC’16). 3936–3944.

[2] What are the dota servers and can I ping them? [n. d.]. https:
//www.reddit.com/r/learndota2/comments/9zk8o3/what_are_the_dota_
servers_and_can_i_ping_them/. Accessed: 2023-05-23.

[3] RIPE Atlas. [n. d.]. https://atlas.ripe.net/. Accessed: 2023-08-31.
[4] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.

LOF: identifying density-based local outliers. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of data. 93–104.

[5] Internet Users by Country (2016). [n. d.]. https://www.internetlivestats.com/
internet-users-by-country/. Accessed: 2022-09-19.

[6] Matt Calder, Ryan Gao, Manuel Schröder, Ryan Stewart, Jitendra Padhye,
Ratul Mahajan, Ganesh Ananthanarayanan, and Ethan Katz-Bassett. 2018.
Odin:{Microsoft’s} Scalable {Fault-Tolerant} {CDN} Measurement System.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). 501–517.

[7] Xiaoqi Chen, Hyojoon Kim, Javed M Aman, Willie Chang, Mack Lee, and Jennifer
Rexford. 2020. Measuring TCP round-trip time in the data plane. In Proceedings
of the Workshop on Secure Programmable Network Infrastructure. 35–41.

[8] David R Choffnes, Fabián E Bustamante, and Zihui Ge. 2010. Crowdsourcing
service-level network event monitoring. In Proceedings of the ACM SIGCOMM
2010 Conference. 387–398.

[9] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, and Mic Bowman. 2003. Planetlab: an overlay testbed for broad-
coverage services. ACM SIGCOMM Computer Communication Review 33, 3 (2003),
3–12.

[10] Mark Claypool and Kajal Claypool. 2010. Latency can kill: precision and deadline
in online games. In Proceedings of the first annual ACM SIGMM conference on
Multimedia systems. 215–222.

[11] Richard Cziva, Christopher Lorier, and Dimitrios P Pezaros. 2017. Ruru: High-
speed, flow-level latency measurement and visualization of live internet traffic.
In Proceedings of the SIGCOMM Posters and Demos. 46–47.

[12] The Khang Dang, Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski,
Jörg Ott, and Jussi Kangasharju. 2021. Cloudy with a chance of short RTTs:
analyzing cloud connectivity in the internet. In Proceedings of the 21st ACM
Internet Measurement Conference. 62–79.

[13] Catherine D’Ignazio, Rahul Bhargava, Ethan Zuckerman, and Luisa Beck. 2014.
Cliff-clavin: Determining geographic focus for news articles. NewsKDD: Data
Science for News Publishing, at KDD 2014.

[14] Constantine Dovrolis, Krishna Gummadi, Aleksandar Kuzmanovic, and Sascha D
Meinrath. 2010. Measurement lab: Overview and an invitation to the research
community. ACM SIGCOMM Computer Communication Review 40, 3 (2010),
53–56.

[15] Ramakrishnan Durairajan, Sathiya Kumaran Mani, Joel Sommers, and Paul Bar-
ford. 2015. Time’s forgotten: Using ntp to understand internet latency. In Pro-
ceedings of the 14th ACM Workshop on Hot Topics in Networks. 1–7.

[16] Julian D Gilbey and Carola-Bibiane Schönlieb. 2021. An end-to-end Optical
Character Recognition approach for ultra-low-resolution printed text images.
arXiv preprint arXiv:2105.04515 (2021).

[17] Vasilis Giotsas andMarwan Fayed. 2021. “Look, Ma, no probes!” — Characterizing
CDNs’ latencies with passive measurement. https://blog.cloudflare.com/cdn-
latency-passive-measurement/.

[18] Andrew Halterman. 2017. Mordecai: Full Text Geoparsing and Event Geocoding.
The Journal of Open Source Software 2, 9 (2017).

[19] Toke Høiland-Jørgensen, Bengt Ahlgren, Per Hurtig, and Anna Brunstrom. 2016.
Measuring latency variation in the internet. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies. 473–480.

[20] Thomas Holterbach, Cristel Pelsser, Randy Bush, and Laurent Vanbever. 2015.
Quantifying interference between measurements on the RIPE Atlas platform. In
Proceedings of the 2015 Internet Measurement Conference. 437–443.

[21] Nick Huntington-Klein. 2021. The effect: An introduction to research design and
causality. CRC Press.

[22] Call Of Duty: Modern Warfare II and including DMZ Call Of
Duty: Warzone 2.0 Season 01: Everything you need to know. [n. d.].
https://www.callofduty.com/blog/2022/11/call-of-duty-modern-warfare-
II-warzone-2-0-season-01-overview-battle-pass-dmz. Accessed: 2023-05-27.

[23] For Gamers in India YouTube Is the Ultimate Live Streaming Platform.
[n. d.]. https://gadgets360.com/games/features/youtube-gaming-live-video-
game-streaming-india-gamers-ines-cha-2147975. Accessed: 2022-09-11.

[24] Server Issues and a new update! [n. d.]. https://www.innersloth.com/server-
issues-and-a-new-update/. Accessed: 2023-05-23.

[25] Yuchen Jin, Sundararajan Renganathan, Ganesh Ananthanarayanan, Junchen
Jiang, Venkata N Padmanabhan, Manuel Schroder, Matt Calder, and Arvind
Krishnamurthy. 2019. Zooming in on wide-area latencies to a global cloud

provider. In Proceedings of the ACM Special Interest Group on Data Communication.
104–116.

[26] Rebecca Killick, Paul Fearnhead, and Idris A Eckley. 2012. Optimal detection of
changepoints with a linear computational cost. J. Amer. Statist. Assoc. 107, 500
(2012), 1590–1598.

[27] Soheil Kolouri, Se Rim Park, Matthew Thorpe, Dejan Slepcev, and Gustavo K
Rohde. 2017. Optimal mass transport: Signal processing and machine-learning
applications. IEEE signal processing magazine 34, 4 (2017), 43–59.

[28] S Shunmuga Krishnan and Ramesh K Sitaraman. 2012. Video stream quality
impacts viewer behavior: inferring causality using quasi-experimental designs.
In Proceedings of the 2012 Internet Measurement Conference. 211–224.

[29] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In
Proceedings of the 2008 Eighth IEEE International Conference on Data Mining.
413–422.

[30] Shengmei Liu, Mark Claypool, Atsuo Kuwahara, James Scovell, and Jamie Sher-
man. 2021. L33t or N00b? How Player Skill Alters the Effects of Network Latency
on First Person Shooter Game Players. In Proceedings of the Workshop on Game
Systems (GameSys’ 21). 1–6.

[31] Apex Legends Server Locations. [n. d.]. https://netduma.com/blog/apex-legends-
server-locations/. Accessed: 2023-05-23.

[32] Katerina Mania, Bernard D Adelstein, Stephen R Ellis, and Michael I Hill. 2004.
Perceptual sensitivity to head tracking latency in virtual environments with
varying degrees of scene complexity. In Proceedings of the 1st Symposium on
Applied Perception in Graphics and Visualization. 39–47.

[33] Hyunwoo Nam, Henning Schulzrinne, Hyunwoo Nam, Kyung-Hwa Kim, Hen-
ning Schulzrinne, Martín Varela, Hyunwoo Nam, Henning Schulzrinne, Toni
Mäki, Hyunwoo Nam, et al. 2016. Youslow: What influences user abandonment
behavior for internet video? Columbia University Rcp (2016).

[34] Call of Duty:Warzone 2.0 Server Locations. [n. d.]. https://netduma.com/blog/call-
of-duty-warzone-2-0-server-locations/. Accessed: 2023-05-23.

[35] Game Durations League of Legends. 2023. https://www.leagueofgraphs.com/
stats/game-durations. Accessed: 2023-04-26.

[36] Servers: League of Legends. [n. d.]. https://leagueoflegends.fandom.com/wiki/
Servers. Accessed: 2023-05-23.

[37] League of Legends Regional Servers. [n. d.]. https://support-leagueoflegends.
riotgames.com/hc/en-us/articles/201751684-League-of-Legends-Regional-
Servers. Accessed: 2023-05-23.

[38] Manuel Oliveira and Tristan Henderson. 2003. What online gamers really think
of the Internet?. In Proceedings of the 2nd workshop on Network and system support
for games. 185–193.

[39] Warzone 2 Game Times Will Be Much Longer Than The Original.
[n. d.]. https://www.ggrecon.com/articles/warzone-2-game-times-will-be-much-
longer-than-the-original/. Accessed: 2023-04-26.

[40] Nobuyuki Otsu. 1979. A threshold selection method from gray-level histograms.
IEEE transactions on systems, man, and cybernetics 9, 1 (1979), 62–66.

[41] Ramakrishna Padmanabhan, Aaron Schulman, Alberto Dainotti, Dave Levin,
and Neil Spring. 2019. How to find correlated internet failures. In International
Conference on Passive and Active Network Measurement. 210–227.

[42] Streamlabs & Stream Hatchet Q1 2021 Live Streaming Industry Re-
port. [n. d.]. https://streamlabs.com/content-hub/post/streamlabs-and-stream-
hatchet-q1-2021-live-streaming-industry-report. Accessed: 2022-05-13.

[43] Philipp Richter, Ramakrishna Padmanabhan, Neil Spring, Arthur Berger, and
David Clark. 2018. Advancing the art of internet edge outage detection. In
Proceedings of the Internet Measurement Conference 2018. 350–363.

[44] A Rodriguez-Bachiller. 1983. Errors in the measurement of spatial distances
between discrete regions. Environment and Planning A 15, 6 (1983), 781–799.

[45] Peter J Rousseeuw and Katrien Van Driessen. 1999. A fast algorithm for the
minimum covariance determinant estimator. Technometrics 41, 3 (1999), 212–223.

[46] Swati Roy and Nick Feamster. 2013. Characterizing correlated latency anom-
alies in broadband access networks. In Proceedings of the ACM SIGCOMM 2013
conference on SIGCOMM. 525–526.

[47] Amazon EC2 Auto Scaling. [n. d.]. https://aws.amazon.com/ec2/autoscaling/.
Accessed: 2022-05-18.

[48] Brandon Schlinker, Italo Cunha, Yi-Ching Chiu, Srikanth Sundaresan, and Ethan
Katz-Bassett. 2019. Internet performance from facebook’s edge. In Proceedings of
the Internet Measurement Conference. 179–194.

[49] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly
detection in time series: a comprehensive evaluation. Proceedings of the VLDB
Endowment 15, 9 (2022), 1779–1797.

[50] Aaron Schulman and Neil Spring. 2011. Pingin’in the rain. In Proceedings of the
2011 ACM SIGCOMM conference on Internet measurement conference. 19–28.

[51] RIPE NCC Staff. 2015. Ripe atlas: A global internet measurement network. Internet
Protocol Journal 18, 3 (2015).

[52] Srikanth Sundaresan, Sam Burnett, Nick Feamster, and Walter De Donato. 2014.
{BISmark}: A Testbed for Deploying Measurements and Applications in Broad-
band Access Networks. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14). 383–394.

14

https://www.reddit.com/r/learndota2/comments/9zk8o3/what_are_the_dota_servers_and_can_i_ping_them/
https://www.reddit.com/r/learndota2/comments/9zk8o3/what_are_the_dota_servers_and_can_i_ping_them/
https://www.reddit.com/r/learndota2/comments/9zk8o3/what_are_the_dota_servers_and_can_i_ping_them/
https://atlas.ripe.net/
https://www.internetlivestats.com/internet-users-by-country/
https://www.internetlivestats.com/internet-users-by-country/
https://blog.cloudflare.com/cdn-latency-passive-measurement/
https://blog.cloudflare.com/cdn-latency-passive-measurement/
https://www.callofduty.com/blog/2022/11/call-of-duty-modern-warfare-II-warzone-2-0-season-01-overview-battle-pass-dmz
https://www.callofduty.com/blog/2022/11/call-of-duty-modern-warfare-II-warzone-2-0-season-01-overview-battle-pass-dmz
https://gadgets360.com/games/features/youtube-gaming-live-video-game-streaming-india-gamers-ines-cha-2147975
https://gadgets360.com/games/features/youtube-gaming-live-video-game-streaming-india-gamers-ines-cha-2147975
https://www.innersloth.com/server-issues-and-a-new-update/
https://www.innersloth.com/server-issues-and-a-new-update/
https://netduma.com/blog/apex-legends-server-locations/
https://netduma.com/blog/apex-legends-server-locations/
https://netduma.com/blog/call-of-duty-warzone-2-0-server-locations/
https://netduma.com/blog/call-of-duty-warzone-2-0-server-locations/
https://www.leagueofgraphs.com/stats/game-durations
https://www.leagueofgraphs.com/stats/game-durations
https://leagueoflegends.fandom.com/wiki/Servers
https://leagueoflegends.fandom.com/wiki/Servers
https://support-leagueoflegends.riotgames.com/hc/en-us/articles/201751684-League-of-Legends-Regional-Servers
https://support-leagueoflegends.riotgames.com/hc/en-us/articles/201751684-League-of-Legends-Regional-Servers
https://support-leagueoflegends.riotgames.com/hc/en-us/articles/201751684-League-of-Legends-Regional-Servers
https://www.ggrecon.com/articles/warzone-2-game-times-will-be-much-longer-than-the-original/
https://www.ggrecon.com/articles/warzone-2-game-times-will-be-much-longer-than-the-original/
https://streamlabs.com/content-hub/post/streamlabs-and-stream-hatchet-q1-2021-live-streaming-industry-report
https://streamlabs.com/content-hub/post/streamlabs-and-stream-hatchet-q1-2021-live-streaming-industry-report
https://aws.amazon.com/ec2/autoscaling/

Using Gaming Footage
as a Source of Internet Latency Information Accepted Manuscript, 2023

[53] About the Among Us servers. [n. d.]. https://innersloth.zendesk.com/hc/en-
us/articles/9686064498580-About-the-Among-Us-servers. Accessed: 2023-05-23.

[54] Improving the quality of the output. [n. d.]. https://tesseract-ocr.github.io/
tessdoc/ImproveQuality.html. Accessed: 2022-05-18.

[55] Guide to Live Streaming in China 2022. [n. d.]. https://seoagencychina.com/live-
streaming-marketing-guide-china/. Accessed: 2022-09-11.

[56] China Bans Twitch. [n. d.]. https://www.businessinsider.com/china-bans-twitch-
2018-9. Accessed: 2022-09-11.

[57] Marc Ubaldino. 2019. OpenSextant Xponents: Geotagging Toolkit for World-wide
Geography. https://opensextant.github.io/Xponents/. Accessed: 2023-03-15.

[58] Bryan Veal, Kang Li, and David Lowenthal. 2005. New methods for passive
estimation of TCP round-trip times. In International workshop on passive and
active network measurement. Springer, 121–134.

[59] Which 15 Countries Have The Most Twitch Viewers? [n. d.]. https://
visualsbyimpulse.com/countries-most-twitch-viewers-top-15/. Accessed: 2022-
09-11.

J APPENDIXES

A Download Module
The downloading module consists of a coordinator and multiple
parallel downloaders; the former detects when streamers start broad-
casting, while the latter download thumbnails from broadcasting
streamers. The reason for the split between the coordinator and
downloader roles is that downloading thumbnails is time-sensitive:
each streamer is assigned a URL, where their latest thumbnail is
posted every 5 minutes, overwriting the previous one; if Tero fails
to download a thumbnail before it is overwritten, it simply loses
the thumbnail. For this reason, we keep the downloaders as lean
as possible, delegating all tasks—state keeping, failure recovery,
etc.—but plain downloading to the coordinator.

The coordinator keeps a list of streamers and the last time it
checked each streamer’s status; and it periodically queries the
Twitch API to identify streamers who have started broadcasting;
given that Twitch rate-limits access to its API, the coordinator
issues these queries in a way that respects the rate limit. When
the coordinator detects that a streamer has started broadcasting, it
writes the corresponding URL (where the streamer’s thumbnails are
posted) in a Key-Value store for the downloaders to retrieve. Also,
the coordinator periodically checks the Key-Value store for signals
written by the downloaders that a previously active streamer has
gone offline. Finally, in case of a system crash, the coordinator is
in charge of recovering all the necessary state from the Key-Value
store.

A downloader retrieves URLs, written by the coordinator, from
the Key-Value store and periodically downloads thumbnails from
each URL. To do this, it keeps a list of all the URLs (that this down-
loader is in charge of) and the time when a new thumbnail will
become available at each one. When it is time to download a thumb-
nail, the downloader first issues a HEAD request, in order to obtain
the time when the next thumbnail will become available; it stores
the response in its list, downloads the thumbnail, and stores it in
an object store. If the streamer has gone offline, the URL redirects
to a generic offline URL; in that case, the downloader removes the
URL from its list and writes the streamer’s name in the Key-Value
store for the coordinator to retrieve.

To scale as the number of streamers grows, we use a simple
load-balancing approach: a downloader takes on a new streamer
whenever it becomes idle (there is no new thumbnail available

from any of its current streamers). A more sophisticated approach
would be to use CPU or memory utilization to identify overloaded
downloaders and split their load as, for example, AWS offers with
their Auto Scaling capability [47]. However, we found thumbnail
size—hence download time—to be so unpredictable, that Tero would
not benefit from such techniques.

B Implementation
We run Tero on one machine with 2 Intel Xeon E5-2680 v3 CPUs
(with 12 cores, 24 hyper-threads each), 256 GB of RAM, 2 Nvidia
Titan X Maxwell GPUs, and a 10Gbps connection. Our implementa-
tion follows a micro-service architecture to ensure easy migration
of parts—or potentially all—of the system, in case at some point
the resources available in our machine do not suffice anymore.
Hence, each module is a set of processes, each containerized and
periodically invoked by the PM2 process manager16. We use three
storage systems: (1) the Redis17 Key-Value store for inter-process
communication and to store streamer-location information; (2) an
S3-like distributed object store based on Ceph18 to store the thumb-
nails and the intermediate products of image-processing; and (3)
a MongoDB19 document store for the latency measurements and
analysis. For implementation details, see App. §B.

Inter-process communication: Processes that produce infor-
mation push it into the relevant store, and processes that consume
information pull it from the relevant store when they are ready. This
approachmakes sense because processing time varies significantly—
and sometimes unpredictably—across processes. For instance, the
processes of the location module invoke different external (Twitch,
Twitter, and Steam) APIs, each one with a different rate limit (im-
posed by the corresponding terms of service) and performance;
instead of pushing to each process a list of Twitch usernames to
locate, the latter are written to a Key-Value store, and each loca-
tion process pulls them at the rate imposed by the corresponding
API service terms and performance. Similarly, the processes of the
image-processing module invoke different OCR engines (Tesseract,
PaddleOCR, and EasyOCR), each one with different performance
sensitivity to input; so, the thumbnails are written in a Key-Value
store, and each image-processing process pulls a fixed-size batch
when ready. If the available thumbnails are fewer than the batch
size, no process pulls them, and this allows the slower processes to
make use of the shared resources and catch up.

Failure recovery: If a process crashes, when it restarts it re-
ceives an index number from the coordinator so that the process
can read most of its previous state, discarding recently pulled data,
from a Key created using the index.

C Server Locations
Out of the 9 games currently processed by Tero, we were able to
find information about server locations for 8 of them. Tables 6-7
show server locations for these games, at the finest granularity
disclosed by the game provider, as well as the area of the world that
is served by each.

16https://pm2.keymetrics.io/
17https://redis.io/
18https://github.com/ceph/ceph
19https://www.mongodb.com/

15

https://innersloth.zendesk.com/hc/en-us/articles/9686064498580-About-the-Among-Us-servers
https://innersloth.zendesk.com/hc/en-us/articles/9686064498580-About-the-Among-Us-servers
https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html
https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html
https://seoagencychina.com/live-streaming-marketing-guide-china/
https://seoagencychina.com/live-streaming-marketing-guide-china/
https://www.businessinsider.com/china-bans-twitch-2018-9
https://www.businessinsider.com/china-bans-twitch-2018-9
https://opensextant.github.io/Xponents/
https://visualsbyimpulse.com/countries-most-twitch-viewers-top-15/
https://visualsbyimpulse.com/countries-most-twitch-viewers-top-15/
https://pm2.keymetrics.io/
https://redis.io/
https://github.com/ceph/ceph
https://www.mongodb.com/

Accepted Manuscript, 2023 Catalina Alvarez and Katerina Argyraki

Game Server location Area served

Le
ag
ue

of
Le
ge
nd

s,
Te
am

fig
ht

Ta
ct
ic
s

Amsterdam, Netherlands Europe
Chicago, Illinois US, Canada
Sao Paulo, Brazil Brazil
Miami, Florida Northern South America
Santiago, Chile Southern South America
Sydney, Australia Oceania
Istanbul, Turkey Middle East
Seoul, Korea Korea
Tokyo, Japan Japan

D
ot
a
2

Virginia, USA North America
Seattle, USA North America
Vienna, Austria Europe
Luxemburg Europe
Santiago, Chile South America
Lima, Peru South America
Dubai, Saudi Arabia Middle East
Sydney, Australia Oceania
Tokyo, Japan Asia

G
en
sh
in

Im
pa
ct Virginia, USA Americas

Frankfurt, Germany Europe and Middle East
Tokyo, Japan Asia

H
on

ka
i:

St
ar

Ra
il

Virginia, USA Americas
Frankfurt, Germany Europe and Middle East
Tokyo, Japan Asia

A
m
on

g
U
s California, USA Americas and Oceania

Texas, USA Americas and Oceania
Frankfurt, Germany Europe and Middle East
Tokyo, Japan Asia

Table 6: Server locations.

D Location: Underlying Tools
The location module combines geocoding and geoparsing tools.
Geocoding tools take as input generic text, identify in it location
information, and map the latter to a concrete location. Geoparsing
tools take as input text that describes location and map it to a
concrete location. So, geocoding tools can handle broader input
than geoparsing tools. However, geoparsing tools tend to perform
better when the input is restricted to location information.

D.1 Conservative Filter. Tero uses the following conservative filter:
accept a tool’s output location as valid if the input description
contains at least the country or region field of the output location.
For example, consider the description “Join us in Detroit”; CLIFF
extracts from it the location tuple (United States, Michigan, Detroit),
however, the input description contains neither ”United States” nor
”Michigan”; hence, CLIFF’s output is discarded (unnecessarily, in
this case). As another example, consider the description “From
Miami, Florida”; CLIFF extracts from it the location tuple (United
States, Florida,Miami), and the input description contains “Florida”;
hence, CLIFF’s output is accepted.

D.2 Twitch Descriptions. To process Twitch descriptions, Tero uses
CLIFF [13], Xponents [57], and Mordecai [18]. CLIFF is a tool that
extracts locations from news articles, but is in principle applicable

Server location Area served

Salt Lake City, USA North America
Los Angeles, USA North America
San Francisco, USA North America
Dallas, USA North America
St. Louis, USA North America
Colombus, USA North America
New York, USA North America
Chicago, USA North America
Washington, USA North America
Atlanta, USA North America
London, England Europe
Frankfurt, Germany Europe
Amsterdam, Netherlands Europe
Brussels, Belgium Europe
Paris, France Europe
Madrid, Spain Europe
Stockholm, Sweden Europe
Rome, Italy Europe
Santiago, Chile South America
Lima, Peru South America
Sao Paulo, Brazil South America
Riyadh, Saudi Arabia Middle East
Sydney, Australia Oceania
Tokyo, Japan Asia

Table 7: Server locations for Call of Duty: Warzone and Call
of Duty: Modern Warfare.

to any unstructured text. Xponents [57] is a library for general-
purpose extraction of locations from text. Mordecai is similar to
Xponents, however, it may output multiple results without indicat-
ing which one is likelier, making it hard to use on its own.

Tero processes each Twitch description as follows: (1) It passes
the description as input to CLIFF, Xponents, and Mordecai. (2) It
filters CLIFF’s and Xponents’ output using the conservative filter
described above (§D.1). (3) For output that does not pass the pre-
vious step, if at least two of the three tools yield the same output,
that output is accepted. Otherwise, (4) if a tool yields an output
that subsumes that of another tool, the more complete output of
the two is accepted.

We also leverage Twitch tags as a source of location. Until Feb
2023, Twitch defined a set of standardized tags20 that streamers
could use to inform viewers about their streams; among these tags,
there were country-level tags included. Starting March 2022 until
Twitch stopped supporting them on Feb, 28th, 2023, we gathered
information about all streams on Twitch every 30 minutes and keep
all streams that contain country-level tag information. We leverage
these tags to determine the location of users by looking at how sta-
ble the tags are over time: for each user, we check all their streams
in the selected time range and group all uninterrupted appearances
of the same country-level tag. In total, we obtain country tags for
1,065,877 users out of a total of 14,079,347 (7.57%). We use the tag

20https://help.twitch.tv/s/article/guide-to-tags?language=en_US

16

Using Gaming Footage
as a Source of Internet Latency Information Accepted Manuscript, 2023

information to recover some of the results discarded by the geocod-
ing systems: we accept values even when our heuristic decides to
discard them if there is tag information confirming that the country
was correctly geocoded. Using Twitch tags allows us to increase
the recovery rate of the geocoding systems by 9.41% while keeping
the error rate under 4%.

D.3 Twitter Profiles. Extracting location information from a Twit-
ter profile is easier (relative to a Twitch description) because the
former includes an explicit location field; however, the location
field itself is unstructured—allows free-style text—and this is why
we still need geoparsing. We researched the publicly available geop-
arsing tools, but did not find any that clearly outperformed the rest
(i.e., did better in extracting correct location information in the face
of name coincidences, typos, and irrelevant text); in the end, we
decided to combine the two most popular tools: Nominatim21 and
GeoNames22.

Tero processes each Twitter profile as follows: (1) It extracts
the content of the location field. (2) It passes the latter as input to
both Nominatim and GeoNames. (3) It compares the two outputs; if
they agree, or one subsumes the other, the more complete output is
accepted; otherwise, Tero processes the content of the location field
exactly as it processes a Twitch description. This last step works
well when the location field contains non-geographic references
(e.g. “Your heart, Chicago”).

E Image Processing: All the Steps
The image-processing module operates in four steps:

(1) Pre-processing prepares the input thumbnail for Optical
Character Recognition (OCR): (a) It crops around the area where
the corresponding game typically displays latency. (b) It performs
a set of standard tasks that render OCR more effective: converts
the image to black-and-white, up-scales, applies a Gaussian filter
to blur the edges and reduce noise, applies thresholding to separate
foreground and background, and runs several iterations of dilating
and eroding the image in order to merge disjoint regions [40, 54].

(2)OCR extracts characters from the pre-processed thumbnail. It
uses three OCR engines: Tesseract23, EasyOCR24, and PaddleOCR25.

(3) Cleanup filters and reconciles the OCR output: (a) It pro-
cesses the output of each OCR engine separately and filters out
characters that are not part of the latency measurement. (b) It com-
pares the (post-filtering) output of the three OCR engines: if at least
two of them agree, and their output is not 0, and their output has
up to 3 digits, their output is accepted; if exactly two of them agree,
the third engine’s output is kept as an alternative; if none agree,
their output is considered ambiguous and sent for “reprocessing.”
Side note: Some games show latency zero while the game is being
prepared, or the player is waiting for their next match. This value
is a placeholder, so it makes sense to discard it (which is what Tero
does).

21https://nominatim.org/
22http://www.geonames.org/
23https://github.com/tesseract-ocr/tesseract
24https://github.com/JaidedAI/EasyOCR
25https://github.com/PaddlePaddle/PaddleOCR

300 320 340 360 380 400
Time between thumbnails [s]

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Pr
ob

.

Figure 13: CDF of thumbnail inter-arrival time.

(4)Reprocessing repeats the OCR and cleanup steps but without
the pre-processing. If the outcome is again ambiguous, the input
thumbnail is discarded.

F Shared Anomalies: Statistical Test
For each {location, game} tuple, we estimate the probability that the
location experiences a spike (shared or not) as

𝑃𝑒 =
#𝑠𝑝𝑖𝑘𝑒𝑠

#𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
, (1)

where #measurements is the total number of latency measurements
from location and game across all time. To ensure that our data is
statistically significant, we consider only locations that fulfill the
following condition [41]):

#𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 × 𝑃𝑒 × (1 − 𝑃𝑒) ≥ 10. (2)

Then, for each identified spike 𝐸: (1) We consider all the stream-
ers with the same {location, game} tuple as the streamer who ex-
perienced spike 𝐸. (2) From these, we determine the number of
streamers 𝑁 who were streaming during spike 𝐸. We say that a
streamer was “streaming during a spike” if we collected at least
one latency measurement in the 12-minute window around the
spike. The value of 12 minutes comes from the fact that the 90th
percentile of time lapse between two consecutive thumbnails is 6
minutes (Fig. 13). (3) From these 𝑁 streamers, we determine the
number of streamers 𝐷 who experienced a spike in the 12-minute
window around spike 𝐸. (4) We compute the probability that 𝐷 out
of 𝑁 streamers experienced a spike independently:

𝑃𝑟 [𝐷 𝑠𝑝𝑖𝑘𝑒𝑠] =
(
𝑁

𝐷

)
𝑃𝑒 (1 − 𝑃𝑒)𝑁−𝐷 (3)

We consider the spikes to be part of the same shared anomaly if
𝑃𝐷 ≤ 0.01%.

G Examples of Latency Clusters
The examples are in Fig. 14. We indicate with color and size the
percentage of streamers out of the total in the location that are
included in each cluster; factor indicates the minimum distance
between points in order to be clustered separately; by default, it is
x1 LatGap.

H Estimation of Error Rates
H.1 Location Errors. (1) To assess the geocoding error rate, we
considered all streamers active between Nov 11th, 2022 and Mar
10th, 2023 (a pool of 9,472,272 unique users) and extracted those
with a description (a total of 4,796,609 users) to process with the
three geocoding systems. We randomly selected 500 results from

17

https://nominatim.org/
http://www.geonames.org/
https://github.com/tesseract-ocr/tesseract
https://github.com/JaidedAI/EasyOCR
https://github.com/PaddlePaddle/PaddleOCR

Accepted Manuscript, 2023 Catalina Alvarez and Katerina Argyraki

0 10 20 30 40 50 60 70 80
Latency [ms]

California (US)

Ontario (CA)

São Paulo (BR)

Buenos Aires (AR)

Catalunya (ES)

Île-de-France (FR)

Coverage
<25% 25-50% 50-75% >75%

(a) Factor ×0.5LatGap.

0 10 20 30 40 50 60 70 80
Latency [ms]

California (US)

Ontario (CA)

São Paulo (BR)

Buenos Aires (AR)

Catalunya (ES)

Île-de-France (FR)

Coverage
<25% 25-50% 50-75% >75%

(b) Factor ×1.5LatGap.

Figure 14: Examples of latency clusters for different geographical locations and merging thresholds. Both size and color indicate
the percentage of streamers inside each cluster. Each cluster is placed in the middle point between its border values.

each geocoding system andmanually check the output; we repeated
this process 3 times, and we report averages across the 3 exper-
iments. An output is considered correct if the location extracted
would be the same as the one extracted by a human; in the case of
Mordecai, as it outputs more than one result, the complete output
is considered correct if it contains at least one correct location. We
repeat the same experiment with the output of each system after
our heuristics (referred to as “SYSTEM++”). Table 3 summarizes the
results, showing the extraction (proportion of the input accepted)
and error rates. We note that all three systems have error rates
over 20%. Finally, we repeated the experiment, selecting 500 users
3 times, but only considering the users accepted at the end of the
process (“Twitch Comb.”), obtaining an error rate of 3.47 ± 0.27%.

(2) To assess the Twitch/Twitter mapping algorithm error rate,
we randomly selected 500 results from the pool of the 722 thousand
streamers located by Tero and manually checked the mapping;
we repeated this process 3 times. We see that Tero mapped to an
incorrect Twitter profile 1.6 ± 0.33% of the time.

(3) We repeated the experiment from Step (2), evaluating the
location from Twitter field extraction, first using each geoparsing
system (Nominatim and GeoNames), and then combining their
outputs. Finally, we evaluated the whole process, from mapping
to location extraction, obtaining that the method (“Twitter-Twitch
e2e”) yields an incorrect location 1.91 ± 0.29% of the time.

(4) We combine all streamers located by both previous meth-
ods and repeat the experiment from Step (2). We obtain that Tero
incorrectly located a streamer 1.46 ± 0.06% of the time.

H.2 Image-Processing Errors. We start by checking the accuracy
of the chosen OCR engines: we randomly select 1,500 thumbnails
with latency and manually check the output from each OCR engine;
we repeat this three times and report averages. We report two
metrics: (1) missing values when the system fails to extract any
measurement when there is one available; (2) the system extracted
a measurement different in any way from the latency shown in
the thumbnail. Tesseract missed measurements from images and
incorrectly extracted values from 15.52 ± 0.57% and 8.77 ± 0.26%,
EasyOCR from 5.67% ± 0.38% and 8.31 ± 0.73%, and PaddleOCR
from 5.84% ± 0.33% and 9.96 ± 0.75%, respectively.

Then, we randomly selected 10,000 thumbnails processed by the
image-processing module and manually checked the Tero’s output
before the data cleaning step; we repeated this three times, and we
report averages across the three experiments: 34.97% ± 0.05% of
the considered thumbnails contained a latency measurement; Tero
failed to extract any measurement from 28.37%±0.47% of these, and
it extracted an incorrect measurement from 3.7% ± 0.4%. In most
cases (68.42%) where the output is incorrect, it consists of a single-
digit latency measurement; this happens when the other digit(s)
are blocked by on-screen elements (e.g., pointer or menus). Then,
we repeated the same experiment a second time only considering
images from which Tero extracted latency values, selecting 10,000
such thumbnails 3 times. Unsurprisingly, the error rate is similar at
3.3% ± 0.05%.

H.3 Data-Analysis Errors. To evaluate the performance of the
glitch detection system, we use the wrong results obtained from
the previous experiments. We see that 74.57% of the wrong results
were identified by our method; we manually inspect the remaining
glitches and plot the distribution of detected and undetected glitches
in Fig. 5b. We note that more than 50% of undetected glitches are
those that represent a digit confusion that only slightly changes
the value (e.g. 101 is misread as 107) and hence go unnoticed by our
method, as it relies on extreme changes to detect glitched values.

To study our false positive rate (correct values mislabeled as
glitches), we consider 1,000 glitches and manually check their value
against the labeling given by Tero: a glitch is correctly labeled if
the latency value determined by Tero was incorrect. We repeat
the experiment 3 times and report the average. Out of the glitches
selected, 32.9% ± 1.05 correspond to zero-value points correctly
detected; considering the remaining not-zero glitches, we obtain
that Tero incorrectly labels as glitches correct values 25.87% ± 0.67
of the time.

I Sensitivity to Parameters
We measured how LatGap and StableLen (§3.3) affect the results
of the data cleaning step. We compared the results obtained with
LatGap of 8, 15, and 25 ms and varying the StableLen from (the
minimum possible) 5 to 60 minutes.

18

Using Gaming Footage
as a Source of Internet Latency Information Accepted Manuscript, 2023

5 15 25 35 45 55
Stability threshold [min]

75

80

85

90

95

100

Pe
rc

en
ta

ge
 a

fte
r f

ilt
er

in
g

[%
]

0.0

0.5

1.0

1.5

2.0

2.5

Pe
rc

en
ta

ge
 o

ut
 o

f t
ot

al
 [%

]

Users Datapoints Spikes Glitches

(a)

5 15 25 35 45 55
Stable length [min]

10

30

50

70

90
8 ms 15 ms 25 ms

Si
gn

ifi
ca

nt
 s

pi
ke

s
[x

10
,0

00
]

(b)

0 20 40 60 80 100
Proportion of unstable points [%]

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

8ms
League of Legends

15ms
Genshin Impact

25ms
Dota 2

(c)

Figure 15: (a)(Left) Percentage of users and data points remaining after filtering depending on StableLen. (Right) Percentage out
of the total of points of spikes and glitches detected depending on StableLen. (b) Number of significant spikes detected depending
on StableLen and LatGap. (c) Distribution of the time users spend in an unstable (not spike) sequence depending on LatGap.

0 20 40 60 800.00

0.25

0.50

0.75

1.00

Cu
m

. P
ro

b.

% of spikes per user
(a)

5 15 25 35 45 55 65 75
0

20
40
60
80

100

0
7
14
21
28
35

Da
ta

po
in

ts
 d

isc
ar

de
d

[%
]

Datapoints

Spike proportion allowed [%]

Spikes

Sp
ik

es
 d

is
ca

rd
ed

 [%
]

(b)

0 5 25 50 75
Spike proportion allowed [%]

0

1000

2000

3000

Nu
m

be
r o

f s
pi

ke
s

Spikes [x10,000] Shared anomalies

(c)

Figure 16: (a) Distribution of the spike proportion (spikes over total not-glitched points) per user. (b) (Left) Proportion of
spikes discarded depending on MaxSpikes. (Right) Proportion of points discarded depending on MaxSpikes. (c) Number of spikes
and shared anomalies detected depending on MaxSpikes: all points and spikes from users with more spikes than allowed are
discarded as glitches.

We start by looking at the effect of StableLen. StableLen affects
two aspects of the technique: how many users we discard during
pre-processing (see §3.3) and how many consecutive points can be
considered spikes or glitches. Therefore, the choice of StableLen
presents a trade-off: short values allow us to keep more users at
the expense of not detecting some spikes (or, more importantly,
glitches); on the other hand, longer StableLen will both unneces-
sarily discard normal points and flag as spikes increases in latency
that are normal parts of gameplay. Fig. 15a show this trade-off for
League of Legends: on the left, we show the percentage of users and
data points after filtering users without a stable sequence, and, on
the right, the proportion of points considered spikes and glitches.
As we expected, both spikes and glitches increase with StableLen,
with spikes having a more pronounced increase. We also see that
the number of users discarded quickly increases with StableLen,
without the number of data points discarded increasing proportion-
ally; this implies that increasing StableLen discards users with a
low number of data points, heavily affecting the coverage of our
data-set.

Then, to decide the value of StableLen to use, we look at the spikes
detected. We say that a spike is “significant” (for a given threshold)
if it represents an increase of at least the threshold with respect to
the mean latency of the stream it is contained in. In Fig. 15b we

look at the effect of StableLen on the number of significant spikes
using three threshold values (8, 15, and 25) for two games, separated
by the LatGap value used. We find that the number of significant
spikes grows quickly for lower StableLen, slowing down around 25
minutes. This fact, in combination with the information that the
average match length is between 25 and 35 minutes [35, 39], lead
us to use 30 minutes as the StableLen for all games.

Then, we study the effect of varying LatGap. We study how
LatGap affects, for each user, the proportion of points that are
contained in “unstable” sequences that are not discarded as glitches
or marked as spikes: This metric shows how often we label as
unstable sequences that are likely to be normal. Fig. 15c shows the
CDF of the proportion of unstable sequences per user (for three
games) depending on LatGap; we note that for most games studied,
as long as LatGap exceeds 15ms, the proportion of stable points is
almost independent of LatGap.

We found that the processing time is almost independent of
parameters; this makes sense given that the data-analysis module
must process each latency measurement anyway, independently of
parameter values.

19

Accepted Manuscript, 2023 Catalina Alvarez and Katerina Argyraki

J Standard Anomaly Detection
We compare Tero’s detection algorithm to standard anomaly-detection
techniques. To choose the best anomaly-detection techniques, we
relied on a 2022 review [49]; due to the difficulty of obtaining
ground truth to train a model with, we limited ourselves to un-
supervised techniques. We selected one technique from each of
the three main categories of unsupervised anomaly-detection tech-
niques: Local Outlier Factor (LOF) from distance-based methods [4],
Isolation Forests (iForests) from isolation-based methods [29], and
Minimum Covariance Determinant (MCD) from distribution-based
methods [45].

LOF is a distance-based method similar to K-Nearest Neighbours
that compares the density (one over the average distance to the
K neighbors) of a given point with the density of its K neighbors;
LOF’s results are highly sensitive to the value K: in practice, K
controls the number of neighbors that need to be similar to a point
to consider it normal. MCD estimates a Gaussian distribution over
the data, but it can also be applied to unimodal, symmetric distribu-
tions. To detect anomalies, MCD assumes that the contamination
factor (the proportion of anomalous points present on the data-set)
is known beforehand; in practice, we simply try different values of
contamination in the range [0.01, 0.5]. iForests is an isolation-based
technique that works by detecting which points are farthest away
from the rest of the data by iteratively partitioning the points at ran-
dom. The method uses a score that measures how many partitions
are required to completely isolate a point from the rest: the more
separated from the rest of the data a point is, the fewer partitions
are required to isolate it. As is the case with MCD, iForests requires
a contamination factor; the authors of the original paper [29] sug-
gest a methodology to automatically determine a threshold for the
contamination, but in practice, we see that a threshold leads to
many “false anomalies”. To solve this issue we use a simple statisti-
cal rule: we only consider as real anomalies points with scores that
are outliers, determined using the inter-quartile range for outlier
detection; we vary K, the parameter that defines the decision range,
from 0.5 to 2.0.

We evaluate the performance of the state-of-the-art techniques
against our QoE-based technique, we look at the overlaps between
the spikes and glitches detected by the QoE-based method and
the state-of-the-art, using the same concept of “significance” (a
spike/glitch is significant if it is an increase/decrease of at least a
threshold from the mean of the stream the point belongs to); as
anomaly detection has no intrinsic concept of spikes or glitches,
we simply divide all anomalies across the mean. To make the com-
parison as fair as possible, we still consider spike (or glitch) points
“fixed” by using alternative values (see §3.3.2).

Fig. 18 (Fig. 17) shows the percentage of significant spikes (glitches)
separated by technique and classified into three categories: found
by the technique and the QoE-based technique, found exclusively
by anomaly detection, and found exclusively by QoE-based; the
error bands show the difference due to each technique’s param-
eter. We present the results obtained using a threshold of 15ms;
results with other thresholds are virtually identical, only showing
a difference of around 5% on the mean for all 3 techniques.

In the case of spikes, we note that all three techniques find spikes
that the QoE-based technique misses (at most 20% for iForests); the

MCD LOF iForests0

10

20

30

40

50

60

70

80

Only Anomaly Detection
 Common glitches Only QoE-based

%
 o

f a
ll

si
gn

ifi
ca

nt
 g

lit
ch

es

Figure 17: Percentage of significant glitches detected by anom-
aly detection techniques compared with our QoE-based tech-
nique.

MCD LOF iForests0

10

20

30

40

50

60

70

80
Only Anomaly Detection
Common spikes Only QoE-based

%
 o

f a
ll

si
gn

ifi
ca

nt
 s

pi
ke

s

Figure 18: Percentage of significant spikes detected by anom-
aly detection techniques compared with our QoE-based tech-
nique.

rest of the time, close to 70%, our technique is as good or better
than the state of the art. The results for glitches are reversed: in 2
out of 3 cases, anomaly detection marks as glitches more than 50%
more glitches than our QoE-based technique. First, we examine
the spikes not detected by our QoE-based technique and find that,
for the spikes, between 28% (in the case of LOF) and 91% (MCD)
of them, correspond to consecutive points with increased latency;
these types of points are most likely location changes (see §3.3.3) and
should not be considered as spikes. The remaining missed spikes
are isolated points; to assess why the QoE-based method missed
them, we measure the distance between the potential spikes and
their direct neighbors: we see that for all techniques, 70% of the
time, the distance is less than 1 QoE band, making the spike not “sig-
nificant enough” for the QoE-based technique to detect. We repeat

20

Using Gaming Footage
as a Source of Internet Latency Information Accepted Manuscript, 2023

the analysis for the undetected glitches and reach similar conclu-
sions: between 23% (LOF) and 71% (MCD) of the missed glitches are
consecutive points, making them likely location changes, and the
80% of the isolated points are separated from their direct neighbors
by less than LatGap, a drop that is not significant enough for the
QoE-based technique to flag as a glitch.

We explain the difference between the QoE-based technique
and the state-of-the-art by making three observations: First, the
state-of-the-art has no concept of “significant” changes, labeling a

point as a spike even if it is just slightly different from its neighbors
(e.g. a sequence of several 25ms points with one 27ms point will
lead to that point being considered a spike); second, the anomaly
detection techniques have no intrinsic mechanism allowing them to
distinguish server/location changes from anomalies. Third, we do
not have a way of knowing beforehand the number of anomalies per
user, which makes choosing appropriate parameters for anomaly
detection a challenging task as the same user will have a different
proportion of anomalies over time.

21

	Abstract
	1 Introduction
	2 Background and Limitations
	2.1 Video Games and Streaming
	2.2 Limitations

	3 System design
	3.1 Location
	3.2 Image Processing
	3.3 Data Analysis

	4 Evaluation
	4.1 Gaming vs Network Latency
	4.2 Error Rates

	5 Results
	5.1 Basic Data Properties
	5.2 Regional Latency

	6 Discussion: Analyzing User Behavior
	7 Discussion: Ethical Considerations
	8 Related work
	9 Conclusion
	Acknowledgments
	References
	J Appendixes
	Appendixes
	A Download Module
	B Implementation
	C Server Locations
	D Location: Underlying Tools
	E Image Processing: All the Steps
	F Shared Anomalies: Statistical Test
	G Examples of Latency Clusters
	H Estimation of Error Rates
	I Sensitivity to Parameters
	J Standard Anomaly Detection

