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Abstract— The growing demand for online gait phase (GP)
estimation, driven by advancements in exoskeletons and pros-
theses, has prompted numerous approaches in the literature.
Some approaches explicitly use time, while others rely on
state variables to estimate the GP. In this article, we study
two novel GP estimation methods: a State-based Method (SM)
which employs the phase portrait of the hip angle (similar
to previous methods), but uses a stretching transformation to
reduce the nonlinearity of the estimated GP; and a Time-based
Method (TM) that utilizes feature recognition on the hip angle
signal to update the estimated cadence twice per gait cycle.
The methods were tested across various speeds and slopes,
encompassing steady and transient walking conditions. The
results demonstrated the ability of both methods to estimate
the GP in a range of conditions. The TM outperformed the
SM, exhibiting a root-mean-squared error below 3% compared
to 8.5% for the SM. However, the TM exhibited diminished
performance during speed transitions, whereas the SM per-
formed consistently in steady and transient conditions. The
SM displayed a better performance in inclined walking and
demonstrated higher linearity at faster speeds. Through the
assessment of these methods in diverse conditions, this study
lays the groundwork for further advancements in GP estimation
methods and their application in assistive controllers.

I. INTRODUCTION

Among the various configurations of lower-limb exoskele-
tons for partial assistance in endurance augmentation appli-
cations, single-joint devices are more common. The targeted
joint is usually either the hip [1] or the ankle [2], given the
major contribution of these joints to positive power genera-
tion in gait [3]. Thanks to the more proximal location of the
hip joint, hip exoskeletons have fewer constraints in terms of
design and weight. Moreover, due to differences in muscle
characteristics, the hip joint requires a higher metabolic
cost to produce similar mechanical power compared to the
ankle [4]. This fact further highlights the potential of hip
exoskeletons for metabolic savings. In order to enable their
users to utilize the assistance, proper synchronization with
the Gait Cycle (GC) of the user is essential.

An independent variable is often used to synchronize
actuation events in controllers designed specifically for
walking [5]. This synchronization is usually time-based,
which requires the detection of discrete events such as heel
strike (HS) or toe off. The detected event can be used to
trigger the playback of a pre-defined actuation signal [6].
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To have a more granular control over the synchronization,
however, the continuous Gait Phase (GP) can be calculated
by normalizing the elapsed time since the detected event
over the GC duration. This enables using torque profiles,
which are predefined maps giving torques as a function of
the GP. Control strategies based on such synchronization
approaches have shown promise in reducing the metabolic
cost of walking at constant speeds, when adapted with proper
timing and sufficient power [2], [7]. To obtain the GP in this
manner, the average GC duration is typically estimated as the
mean of a moving window of recent GC durations [8], [9].
A consequence of this approach is the inherent dependence
on past GCs and events, which can lead to errors in case of
variations and irregularities in gait. In particular, time-based
strategies can encounter difficulties in transient states such
as changing gait speed and walking up or down a varying
slope [5].

As an alternative, methods relying on the state variables of
the system have been proposed. A state variable that changes
monotonically over each GC, also known as a phase variable,
can be used to estimate the GP. Phase variables may have
the potential to robustly parameterize the GC in real-time
and better handle transient phases [10], since they mainly
exploit the present state of the system. Selection of the phase
variable is not trivial, since a perfect estimation of the GP
necessitates linearity with respect to time, in addition to strict
monotonicity.

The neuroscience literature indicates that muscle afferents
of the hip joint are important for modulating gait even at
the more distal joints in mammalian locomotion [11]. This
physiological role points to potential of the hip joint angle
and its dependent variables as candidate phase variables.
However, the direct mapping from the hip joint angle to the
GP loses uniqueness over the full GC, since its trajectory
is only piecewise-monotonic. To resolve this problem, Phase
Portraits (PPs) can be utilized, which also incorporate the
time derivative of a state variable. By including information
regarding the value and the rate of change of the state
variable, the polar angle of the PP can thus create a unique
mapping over the entire GC.

State-based methods using the polar angle of the PP have
been shown to robustly represent the phase of human gait
during non-steady walking conditions [10] [12]. In previous
work, Villareal and Gregg [12] compared three portrait-based
phase variables in terms of their ability to parameterize the
kinematics under normal and perturbed walking. The phase
variable calculated from the PP of the thigh angle versus its
integral was shown to be a better alternative for real-time
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control applications to parameterize the GC. However, the
angle profiles often contain a DC offset component, which
leads to a drift in the integral. The DC offset itself can
also shift the center of the portrait away from the origin. In
addition, the angle trajectories are not perfectly sinusoidal,
resulting in oblateness of the PPs. Shifting and scaling of
the coordinates have been used to deal with the offset and
oblateness, respectively [13] but the shape of the obtained
PPs were still elliptical.

In another study, we proposed applying a linear trans-
formation to the PP to reduce its ellipticity, which led to
improvements in the accuracy of the GP estimation [14].
However, the estimation quality was only tested in steady
walking and at one speed, and two other phase-portrait-
based methods were used as controls. In this article, we
investigate the performance of this novel state-based method
in a variety of steady and transient walking conditions, and
compare it to a new time-based approach capable of adapting
to transient states. Both methods rely on the hip joint angle
for synchronization; the state-based method by constructing
a PP, and the time-based method by detecting events to
estimate the GC duration. Inspired by the advantages of
using the integral of signals observed in past studies [12],
we use the first and second time integrals of the hip angle
in our methods. The GP estimation performance is tested
in walking at a variety of speeds and inclinations, and also
during the transition phases between them. We hypothesized
that the time-based method would provide a more accurate
and linear estimation, whereas the state-based method would
perform better in transition phases.

II. METHODS

A. GP Estimation

1) State-based Method (SM): In a dynamical system, the
standard PP of a state variable x is formed by plotting
the variable versus its time derivative, ẋ. In our state-based
method, we construct the PP from the first- and second-
order time integrals of the hip flexion/extension angle, θh
(henceforth "hip angle"). To ensure centering of the PP
around the origin, each integration is followed by a high-
pass filter to remove the integration drift. Then, similar to
previous works, a scaling factor is used to obtain similar
ranges for x and ẋ, calculated as:

α =
xMax − xmin

ẋMax − ẋmin
(1)

where xMax and ẋMax are the upper bounds of x and ẋ
respectively, and xmin and ẋmin are their lower bounds. As
shown in the previous work [14], the PP generated using
this procedure has a tilted elliptical shape that is stretched
along the main diagonal, resulting in nonlinearity of the
GP estimation. A stretching transformation along the anti-
diagonal is therefore introduced to mitigate this effect, using
a 2D transformation matrix T as in:(

xT

ẋT

)
= T

(
x
ẋ

)
(2)

where the subscript T denotes the final PP coordinates after
the transformation. The following generalized transformation
matrix was used for stretching:

T =

[
1+k
2

1−k
2

1−k
2

1+k
2

]
(3)

Where k controls the degree of expansion and contraction.
The value of k in this study was determined as 2.5 through
a pilot experiment involving one subject under conditions
matching the final protocol, where k was manually adjusted
to increase circularity of the PPs.

Finally, the polar angle of the PP (ϕ) is given by:

ϕ(t) = atan2(xT (t), α ẋT (t)) (4)

The GP (denoted by pGC) is then obtained by calculating
the difference between the current value of the polar angle
and its value at the moment of HS, ϕHS , and normalizing
to get a percentage:

pGC(t) =
|ϕ(t)− ϕHS |

2π
× 100% (5)

This method is summarized in Fig. 1A.
2) Time-based Method (TM): In this method, we use

feature recognition of the hip angle signal to regularly update
the estimated duration of the GC. The estimation exploits
the sine-like shape of the hip angle trajectory, and works by
detecting the peaks and troughs of the signal in each GC,
and calculating the time duration between two consecutive
peaks or troughs. In order to facilitate the real-time feature
detection and avoid errors due to short-term oscillations, the
second-order time integral of θh is used instead of the angle
itself, similar to the SM. The GC period estimation is thus
updated according to one of the following:

TGC [k] = tpeak[n]− tpeak[n− 1] (6)

TGC [k] = ttrough[n]− ttrough[n− 1] (7)

where TGC [k] is the estimated GC period, and tpeak[n] and
ttrough[n] denote the times of the peak and trough of the∫∫

θhdtdt signal in the nth GC, respectively. Note that the
index of the GC period (k) is different from the index of
the GC itself (n), since the period is updated twice per GC,
starting from the second GC. Therefore, k will be either
2(n− 1)− 1 or 2(n− 1). The GP is then calculated as:

pGC(t) =
t− tHS [n]

TGC [k]
+ po[k] (8)

where tHS [n] is the time of the most recent HS event, and
po[k] is a phase offset value used to prevent discontinuities
in the GP due to the discrete changes in TGC . At each update
of the period, po is therefore updated as follows:

po[k] =

(
tu[n]− tHS [n]

TGC [k − 1]
+ po[k − 1]

)
− tu[n]− tHS [n]

TGC [k]
(9)

where tu[n] is the time of the update (equal to either tpeak[n]
or ttrough[n]). This method is schematically illustrated in
Fig. 1B.



3 km/h
0%

4.5 km/h

0%

6 km/h

0%

4.5 km/h

5%

4.5 km/h

10%

4.5 km/h

15%

CS,0 CM,0

TS/M

CF,0 CM,5 CM,10 CM,15

TM/F T0/5 T5/10 T10/15

90 s 90 s 90 s 60 s 60 s 60 s

Phase 
Portrait

Stretching
Transform

+

Heel-strike
detection

Peak/trough
detection

Heel-strike
detection

+

+

(A)

(B)

(D)

(C)

Fig. 1. (A) Schematic diagram of the state-based method. FFoot denotes the ground reaction force signal sensed by the insole force sensors of the
exoskeleton. (B) Schematic diagram of the time-based method. (C) The experimental conditions, including the speed, treadmill inclination, and duration
of each condition. (D) The experimental setup, showing a subject walking on the treadmill while wearing the e-Walk V1 hip exoskeleton.

B. Experimental Setup and Protocol

A hip exoskeleton (e-Walk V1, Fig. 1D) is used for
implementing and testing the GP estimation. The device has
one active degree of freedom per leg (the flex./extension
movement), in addition to the passive freedom of the
abd./adduction movement due to the flexibility of the thigh
segments in this direction. The actuators are only used in
zero-torque mode in this study, in order to measure the
hip angles. A pair of insole pressure sensors measure the
foot contact information, which is used for HS detection
and gait segmentation. An embedded computer (BeagleBone
Black, BeagleBoard.org Foundation, USA) performs the data
acquisition, logging, and the GP estimation at a frequency
of 500Hz. The computer and batteries are mounted in a
box on the back of the exoskeleton. The total weight of
the exoskeleton is 5 kg. A programmable treadmill with ad-
justable inclination (N-Mill, Forcelink B.V., the Netherlands)
was used for all walking conditions.

Ten healthy young (aged 22–30, mean: 26.5± 2.7 years)
adults (6 females, 4 males) were recruited for the experimen-
tal validation. The experiment protocol was reviewed and
approved by the EPFL Human Research Ethics Committee.
All subjects provided informed consent before participating
in the experiments. In order to cover a wide range of walking
conditions, the treadmill was programmed with a profile
covering slow (S), medium (M), and fast (F) speeds (3, 4.5
and 6 km/h, respectively) on the flat treadmill, and three
inclinations (5, 10 and 15%) at the medium speed, as de-
picted in Fig. 1C, in the same chronological order. All speeds
and inclinations were covered in one continuous walking
session to also include the periods of transition between
them. Hence, there were 11 conditions in total: 6 steady

and 5 transition. The steady conditions are named CX,#,
where ‘X’ represents the speed (S/M/F) and ‘#’ represents the
inclination (0/5/10/15). The transition conditions are named
TA/B, where ‘A’ and ‘B’ show the condition before and after
the transition, respectively. For the speed transitions, only
the speed labels appear in the transition name, and only
the inclination numbers appear in the inclination transitions.
The GP estimation using the two methods was performed in
parallel on the embedded computer of the exoskeleton.

C. Data analysis

Since it was not possible to specify the duration of
transition between speeds and slopes on the treadmill, the
transition periods were detected in post-processing. For this
purpose, the wavelet transform was applied to the hip angle
to determine the dominant frequencies and the transition
periods. This method allowed to determine both the time
range and the duration of the transition periods. The data
for each subject was thus divided into 11 separate sections
(one per condition). Each section was then segmented into
single GCs based on HSs detected from the insole pressure
sensor signals. The segmentation was performed separately
for each leg using the ipsilateral insole pressure data, but
since the results were symmetric, only the left side was used
in the analysis. The true GP for each GC was calculated
by normalizing the time since HS over the real duration of
that GC and used as the ground truth for error calculations.
Also, the durations of the GCs were used to calculate the
true GC frequencies. All data analysis was performed using
MATLAB (Mathworks Inc., USA).

The following metrics were used for evaluating the GP
estimation performance under each condition.
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Fig. 2. Mean esitmated GP profiles estimated in the steady conditions: (A) CS,0, (B) CM,0, (C) CF,0, (D) CM,5, (E) CM,10, (F) CM,15. The shaded
area around each line marks the standard deviation of the profile.
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Fig. 3. Performance metrics of the GP estimation in different conditions:
(A) RMS-E and (B) CLL.

1) Root-Mean-Square Error (RMS-E): This metric, which
quantifies the accuracy of the estimation compared to the
ground truth, was calculated as the RMS value of the error
between the estimated and the true GP profiles in each stride,
and then averaged over all subjects and strides.

2) Curve Length Linearity (CLL): This metric which
characterizes the linearity of the estimated GP profiles, was
defined as the ratio of the curve length of the profile to the
distance between its starting and ending points. This score
is always greater than or equal to 1, and values closer to 1
indicate a better linearity of the GP estimate, with a score of
1 meaning perfect linearity. It was calculated for each stride
and was then averaged over all subjects and strides.

III. RESULTS AND DISCUSSION
A. Overall Evaluation

The GP profiles estimated by the two methods averaged
over each steady condition are presented in Fig. 2. In the

transition conditions, given the small number of strides and
their variability, averaging would not give a clear represen-
tation. Rather, the estimated GP curves over two transition
periods for a representative subject are shown in Fig. 5. The
performance metrics for all conditions are presented in Fig.
3 for a more quantitative comparison. Both the TM and SM
show an acceptable estimation accuracy with average RMS
errors under 3% and 8.5%, respectively (Fig. 3A), and the
TM has a considerably better performance in all conditions.
The TM also outperforms SM in terms of linearity, with a
CLL score consistently near 1 (Fig. 3B). This is expected,
since the GP profile estimated by the TM is piece-wise linear,
with slopes that may slightly vary due to the updating of the
GC duration.

B. Comparison across Steady Gaits

As can be seen in Fig. 2, the GP estimated by the TM
in steady conditions mostly overlaps with true GP with a
low deviation, which implies a high level of accuracy and
linearity. During each steady condition, the GC frequency
only varies within a small range and is therefore tracked
well by the TM (Figs. 4A and 4C).

The GP estimated by the SM shows higher stride-to-stride
variation compared to the TM. This is mostly caused by the
variations in the shape of the PP (see Figs. 4B and 4D, for
example), despite the use of the stretching transformation.
This indicates that a constant transformation matrix cannot
perfectly fit various subjects and walking conditions.

The SM shows better performance in terms of accuracy
and linearity with increasing slope, in agreement with results
we obtained in another study [14]. This improvement is likely
attributable to a lighter impact at HS, which decreases knot-
shaped local deformations of the PP occurring near heel-
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Fig. 4. Adaptation of the methods to different conditions for a representative subject: Actual versus estimated GC frequency of the TM in (A) flat and
(C) slope; Evolution of average PPs across steady and transition conditions in (B) flat and (D) slope.

strike. An improvement in the linearity of the SM estimation
is also observed with increasing speeds. Furthermore, the
highest estimation accuracy of the SM in flat walking is
observed in the fast speed. This improvement in linearity and
performance is partly due to a more balanced stance/swing
duration ratio at higher speeds [15]. Since geometrically
stance and swing correspond to roughly equal angle ranges
of the portrait, a more balanced duration ratio between them
causes a more uniform rate of change of the polar angle
over the GC. Furthermore, as can be observed in Fig. 4B,
the portrait of CS,0 is more irregular than CF,0 around the
border between the first and fourth quadrants. Speed seems
to have a stronger influence on the SM portraits than slope,
according to the variation between the portraits in Figs. 4B
and 4D, also reflected in the linearity trends in Fig. 3B.

C. Comparison in Speed Transitions

Contrary to our hypothesis, the TM had a better perfor-
mance even during speed transitions. Unlike conventional
time-based approaches, the TM updates its GC duration
estimation twice per stride without heavy dependence on
past behavior, thus enhancing its reactivity in transient states.
Nonetheless, the accuracy of the TM is more strongly
affected during speed transitions as compared to the SM
(Fig. 3A), due to the rapid changes in stride frequency as

shown in Fig. 4A. Increasing cadence during the transition
to higher speeds causes the HS to occur earlier and resets the
GP estimated by the TM prematurely (Fig. 5A). However,
this has no major impact on the linearity.

The SM is not significantly affected by speed changes,
and its performance in each transition condition is consistent
with the steady conditions before and after it (Fig. 3),
as also reflected in the evolution of the PPs in Fig. 4B.
A trend toward larger radius of the PP is also observed
with increasing speeds, echoing previous observations in the
literature [13].

D. Comparison in Slope Transitions
The TM outperformed the SM in slope transitions in terms

of both metrics (Fig. 3). As observed in Fig. 4C, there are
no significant and rapid changes in gait frequency during
slope transitions. Therefore, the gait frequency tracking of
the TM and thus its performance are not affected by slope
transitions. The TM can thus maintain a consistently good
performance (Fig. 3). Similar to the speed changes, the SM
is not negatively affected by the changes in slope either.
However, in slope transitions, its accuracy is closer to the
steady condition before the transition (Fig. 3A). Opposed to
the speed transition trends, the evolution of the PPs across
different slopes does not show any significant trend (Fig.
4D).
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Fig. 5. Estimated GP profiles in two representative transient phases: (A)
TS/M and (B) T10/15.

E. Limitations and Future Work

In this work, a treadmill was used for both steady and tran-
sitory walking. Due to the quick transition of the treadmill
between speeds and slopes, the number of transitory strides
was low. Therefore, the assessment of the performance in
transitions and the calculated metrics are less representative.
Experiments in overground walking could facilitate a bet-
ter assessment of the performances during transitions and
provide more samples, in addition to yielding more realistic
conditions representative of real-world behavior. The main
shortcoming of the SM is its reliance on a constant transfor-
mation matrix, whilst the raw PPs evolve between subjects
and conditions. An online adaptive transformation can thus
improve its performance. Although the TM can track the
GC frequency well overall, its performance declines during
rapid transitions involving significant changes in cadence.
This limitation can be mitigated by increasing the number of
update events within a single GC (currently two), enhancing
the sensitivity to changes in walking pattern.

IV. CONCLUSION

We proposed and tested two novel methods for GP estima-
tion, using state-based and time-based approaches. Compared
to previous state-based approaches, the SM was modified
by stretching the PP to obtain a more circular shape. As an
improvement to previous time-based approaches, the TM was
modified to update of the GC duration more frequently, en-
abling faster reaction to transitions. Both methods showed an
acceptable estimation performance in terms of accuracy and
linearity. The TM had a better performance in all conditions,
with RMS-E under 3% and CLL of 1, versus under 8.5%
and 1.02 for the SM. During steady walking, the TM had a
stable level of accuracy across different speeds and slopes.
The SM, on the other hand, displayed a markedly higher
accuracy and linearity at larger inclinations. Its linearity

also improved with increasing speeds. Despite its better
performance, the accuracy of the TM was negatively affected
during the speed transitions, due to its dependence on the GC
duration estimation. Slope transitions did not affect the TM.
The SM was not affected during the transitions, showing a
seamless shift between the performance of the steady states
before and after the transition.
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