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Abstract— Accurate real-time estimation of the gait phase
(GP) is crucial for many control methods in exoskeletons and
prostheses. A class of approaches to GP estimation construct the
phase portrait of a segment or joint angle, and use the normal-
ized polar angle of this diagram to estimate the GP. Although
several studies have investigated such methods, quantitative
information regarding their performance is sparse. In this
work, we assess the performance of 3 portrait-based methods in
flat and inclined steady walking conditions, using quantitative
metrics of accuracy, repeatability and linearity. Two methods
use portraits of the hip angle versus angular velocity (AVP),
and hip angle versus integral of the angle (IAP). In a novel
third method, a linear transformation is applied to the portrait
to improve its circularity (CSP). An independent heel-strike
(HS) detection algorithm is employed in all algorithms, rather
than assuming HSs to occur at a constant point on the portrait.
The novel method shows improvements in all metrics, notably
significant root-mean-square error reductions compared to IAP
(-3%, p < 0.001) and AVP (-2.4%, p < 0.001) in slope, and
AVP (-1.61%, p = 0.0015) in flat walking. A non-negligible
inter-subject variability is observed between phase angles at HS
(equivalent to up to 8.4% of error in the GP), highlighting the
importance of explicit HS detection for portrait-based methods.

I. INTRODUCTION
Progress in the Gait Cycle (GC) is usually quantified by

a number starting from 0 Heel-Strike (HS) and linearly in-
creasing to 1 at the next ipsilateral HS. This parameterization
of the GC, also known as "Gait Phase (GP)" or "percent gait
cycle", is useful in various applications, both in analysis (e.g.,
gait assessment) and synthesis (e.g., control of exoskeletons
and prostheses), since it facilitates comparison and gen-
eralization of profiles across gaits, independent from the
duration. For gait analysis this value is typically calculated
post hoc, by normalizing the time elapsed since HS over the
GC duration. For synthesis applications, however, calculating
the instantaneous value of the GP is often necessary in real-
time, which is not trivial since it requires an exact knowledge
of the duration of the current GC before it ends.

Numerous methods have been proposed for the real-time
estimation of the GP. The basic approach is to detect the
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HS and normalize the elapsed time since this event over an
estimated duration of the GC, which can either be assumed
to be a constant [1] or equal to the average duration of the
recent strides [2]. While under controlled conditions such
as walking on a treadmill at a steady pace, these methods
can provide a good estimation, they are not reliable in more
realistic scenarios where the GC duration varies.

In another approach, adaptive frequency oscillators
(AFOs) are used to calculate the GP [3], [4]. Thanks to
the continuous estimation of the gait frequency by the AFO,
these methods can handle pace variations; however, in case
of rapid changes or a continuously fluctuating pace, the
convergence rate of the AFO might not be sufficient to keep
the synchronization. Data-driven and machine-learning-based
methods have also been utilized to estimate the GP [5], [6],
but the accuracy of these methods is dependent on their
training, and hence their performance is not guaranteed for
gaits they have not been trained for.

Other methods inspired by the legged robotics literature
attempt to find a state variable of the system that inherently
captures progression in the GC, referred to as a "phase vari-
able" [7]. By relying directly on the instantaneous changes
of the phase variable, these methods have the potential to
swiftly adapt to changes in pace and even sudden pertur-
bations of gait such as stumbling [8], without the need for
a learning/adaptation period or gait-specific tuning. In order
to uniquely represent the GC progression at each instant, a
phase variable should be strictly monotonic over each cycle.
A commonly used phase variable is the polar angle of the
Phase Portrait (PP) plot constructed from a joint or segment
angle as input [9]. Because of the periodicity of gait, these
PPs form closed curves; thus, with an appropriate choice
of the input, the polar angle of the portrait satisfies the
monotonicity requirement.

Numerous studies have investigated the performance of
PPs constructed from different input variables in terms of
properties such as linearity and piece-wise-monotonicity [9],
or robust parameterization of the kinematics under walking
perturbations [8], [10] and in different walking conditions
[11]. However, the GP estimation performance of these
methods has rarely been directly assessed. Furthermore, the
start of the GC (i.e. the HS event) has commonly been
assumed to occur at a constant polar angle in previous works
[12], but a recent study has suggested that this assumption
can lead to errors of up to about 20% [13].

In this article, three phase-portrait-based approaches to
GP estimation using the hip flexion/extension angle ("hip
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Fig. 1. (A) Illustration of the PP used to estimate the GP. Note that
the polar radius of the curve rotates clockwise. (B) Applying a stretching
transformation to the original PP to make it more circular.

angle" for short) are compared. The choice of hip angle was
motivated by previous results showing its suitability (in terms
of monotonic and linear behavior) for the PP methods [8].
In the first approach, the portrait is constructed from the
hip flexion/extension angle and its time derivative (angular
velocity), while in the second approach the PP is generated
from the hip angle and its integral. Using the integral in
the second approach is inspired by past studies highlighting
the improved linearity of its response [10]. In the third
approach, a novel modification is applied to the PP to reduce
its ellipticity. A systematic assessment of the quality of GP
estimation using these methods is performed in terms of
accuracy, repeatability, and linearity. We hypothesize that
the second method will offer better accuracy compared to
the first, and that the novel method will outperform the first
two. Furthermore, we examine the assumption of a constant
polar angle at HS by checking the distribution of polar angles
at the moments of HS.

II. METHODS

A. GP Estimation

The first step in phase-portrait-based approaches to the
estimation of the GP is to construct a PP, which consists
of a plot representing a state variable, x, against its time-
derivative, ẋ. Due to the periodicity of gait, this PP will form
a closed curve. By adding offsets to x and ẋ to zero-center
them, the closed curve will encircle the origin and therefore
its polar radius will cover a full orbit over each GC. Thus,
by normalizing the angle traversed since the moment of HS
over 2π rad, the GP (pGC) can be estimated as a continuous
value in the 0–1 range:

pGC(t) =
|ϕ(t)− ϕHS |

2π
(1)

where ϕ(t) is the instantaneous polar angle of the PP, and
ϕHS is the polar angle at which the last ipsilateral HS
occurred (Fig. 1A). To reduce the ellipticity of the closed
curve, ẋ is linearly scaled so as to have a similar range
to x. Reducing the ellipticity decreases the variation in the
traversed polar angle ϕ given a constant traversed arc length
on the PP, which results in a more linear estimated GP. The
zero-centering offsets for x and ẋ and the scaling factor are

respectively calculated as:

Xoffset = −xMax + xmin

2
(2)

Yoffset = − ẋMax + ẋmin

2
(3)

α =
xMax − xmin

ẋMax − ẋmin
(4)

where xMax and ẋMax are the upper bounds of x and ẋ
respectively, and xmin and ẋmin are their lower bounds.

The fundamental approach explained above is common to
all of the phase-portrait-based estimation methods presented
in the literature and studied in this work. The differences
between individual methods lie in the details of PP con-
struction. These details are described below for the methods
investigated in this article.

1) Angle-Velocity Portrait (AVP) method: In the first
approach tested in this study, x is considered to be the hip
angle, θh, and ẋ is the hip angular velocity, θ̇h. Since in
practice θ̇h is estimated via numerical differentiation of the
hip angle sampled at a high rate, it is prone to high-frequency
noise. Therefore, it is low-pass-filtered using a first-order IIR
filter (fc = 1.6Hz) before construction of the PP. Note that
the delay induced by the filter would distort the circularity
of the PP if it were a perfect circle, but here the distortion
is not expected to have a significant effect since the PP is
already elliptical.

2) Integral of angle-Angle Portrait (IAP) method: In
addition to high-frequency noise, the θ̇h signal itself can
have short-term oscillatory behavior, notably at the moment
of HS due to the impact with the ground. These short-
term oscillations lead to non-monotonic behavior of ϕ and
therefore errors in GP estimation. To reduce the effect of
such oscillations, in the second approach we use

∫
θhdt and

θh as x and ẋ, respectively. Due to the inherent smoothing
caused by integration, the local oscillations are damped. To
remove the constant drift of

∫
θhdt, it is high-pass filtered

(first-order IIR, fc = 1Hz) prior to constructing the PP.
3) Circular Shaped Portrait (CSP) method: Despite the

re-scaling of ẋ to enforce a similar range on the horizontal
and vertical axes, the PP is still not circular due to θh not
having a perfectly sinusoidal profile. The ellipsoidal shape
of the PP induces variability in the rate of change of ϕ over
the course of a cycle, resulting in a nonlinear estimation of
GP. In this approach, we apply a stretching transformation
to the PP to further reduce its ellipticity (Fig. 1B), using a
linear transformation operation according to(

xT

ẋT

)
= T

(
x
ẋ

)
(5)

where T is the 2×2 transformation matrix, and the subscript
T denotes the transformed PP coordinates. Based on previous
observations, it was known that the PP are more stretched
along the X = Y diagonal. Therefore, we considered T to
be a general stretching matrix along X = −Y , defined as:

T = 0.5×
[
1 + k 1− k
1− k 1 + k

]
(6)



where k > 1 determines the magnitude of stretching. In this
study, we chose k = 2.3 by visually checking the circularity
of the transformed PPs obtained in a pilot experiment with
one subject walking at the same conditions as our final pro-
tocol. Note that the isotropic scaling by this matrix does not
have any effects on the GP estimation, since the polar angle
is invariant under such scaling. The same variables as the IAP
method were used as x and ẋ, on which the transformation
was applied. To the best of our knowledge, this method has
not previously been introduced in the literature.

As mentioned in the introduction, ϕHS has typically been
assumed to be constant in past studies using this method.
However, due to the natural variations in the gait pattern,we
hypothesize that HS can happen at different angles. In this
study, we detect the HS events and update ϕHS in each GC.
The HS detection algorithm first detects the landing prepa-
ration sub-phase of the swing leg from the zero-crossing of
the ipsilateral hip angular velocity, and then detects the HS
when the vertical trunk acceleration goes above 1.2m s−2

due to the impact with the ground. The thresholds were
experimentally found in pilot tests with 5 subjects walking
on the treadmill at slow, medium and fast speeds.

B. Experimental Protocol and Setup

A hip exoskeleton (e-Walk V1) was used for measurement
and real-time estimation. The device is attached to the
wearer at the waist and the thighs, using orthotic attachments
(Fig. 2A). Two BLDC motors with a 6:1 planetary reducer
mounted directly on the waist attachment actuate the hip
joints in the sagittal plane. The outputs of the motors are con-
nected to the thigh attachments via thin rectangular segments
made of carbon-fiber-reinforced polymer. The flexibility of
these segments in the transverse direction provides a passive
degree of freedom in the frontal plane, to avoid blocking the
abd/adduction in the range required for normal walking. The
encoders of the actuators measure the hip angles. Due to the
efficient and low-ratio reducers, the motors could be easily
back-driven by the wearer (back-driving torque < 0.6Nm
RMS for movements of up to 2Hz). The exoskeleton is also
equipped with an IMU (located near the lower-back) and a
pair of insole force sensors. The embedded computer of the
exoskeleton (BeagleBone Black, BeagleBoard.org Founda-
tion, USA) performed the processing and GP estimation. All
electronics and batteries are on-board, and the total weight
of the exoskeleton is 5 kg. Data acquisition from all of the
sensors, calculation of the GP values, and data logging were
performed at 500Hz.

Twenty healthy adults (3 females, 17 males; age: 21–59
years old, mean: 28.8± 9.3 years) participated in this study.
All subjects provided informed consent before participating
in the experiment. The protocol was approved by the local
ethics committee of the canton of Vaud (CER-VD).

The subjects donned the exoskeleton and walked on a
single-belt treadmill (T150-FMT-MED, Arsalis, Belgium)
installed on a custom tilt platform for adjusting the in-
clination (Fig. 2B). Two walking conditions were tested,
both at a constant speed of 1.1m s−1 and a duration of
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Fig. 2. The hip exoskeleton used for the measurement and estimation (A)
and the experimental setup (B).

5min: (i) treadmill at 0% inclination (condition Flat or
-F), and (ii) treadmill at an upward inclination of 10%
(condition Slope or -S). The first 15 seconds of walking in
each condition were used to calibrate the values of Xoffset,
Yoffset, and α (defined in Eqs. 2–4). The order of conditions
was randomized between the subjects. The GP estimation
using the three methods was performed in parallel on the
embedded computer of the exoskeleton.

C. Data analysis

Data analysis was performed using MATLAB (Mathworks
Inc., USA). Data for each subject was segmented into single
GCs based on the HSs detected during the experiment, which
were also validated against the foot load signals. The first
and last 10 strides of each condition were discarded from
the analysis to ensure steady-state walking. The segmentation
was performed separately for each leg based on the ipsilateral
HSs, but since the results were symmetric, only the left
side was used in the analysis. The true GP for each cycle
was calculated by normalizing the time since HS over the
entire duration of that GC and used as the ground truth
for error calculations. The following metrics were used for
performance assessment:

1) Root-Mean-Square Error (RMS-E): This metric, which
serves as a measure of accuracy, was calculated as the RMS
value of the error between the average GP profile (calculated
over all subjects and strides) of each method and the true GP.

2) RMS Standard Deviation (RMS-SD): This metric char-
acterizes the overall repeatability or variation in the GP
profiles estimated by each method for a given subject. It was
first calculated for each subject individually, by taking the
RMS value of the standard deviation of the single-stride GP
profiles. Then, the average was calculated over all subjects.

3) Mean Linearity (rmean): The Pearson correlation coeffi-
cient (r) was used as a metric of the linearity of the profiles.
The coefficient was first calculated between the estimated
and true GP for each single stride, and then the average
value was calculated over all strides and subjects.

Differences in metrics were tested for statistical signif-
icance by comparing the subject means between different
methods within each condition (Flat or Slope) using a
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Fig. 3. Mean estimated GP profiles for walking for the two conditions:
(A) Flat, (B) Slope. The shaded area around each line marks the standard
deviation of the profile.

repeated measures one-way ANOVA, followed by post-hoc
testing using Wilcoxon’s matched pairs signed rank test if
needed.

III. RESULTS

A. Estimated GP Profiles

The average estimated GP profiles for all methods are
shown in Fig. 3 and the performance metrics are presented in
Table I. The pairwise differences in performance between the
methods within each condition were significantly different in
terms of all metrics (p < 0.05), except for RMS-E between
IAP and CSP in Flat (p = 0.33), and RMS-SD between
AVP and IAP in Flat (p = 0.23). Overall, the performance
of the GP estimation for all of the methods was better in
terms of accuracy, repeatability and linearity in the Slope
condition. The CSP method outperformed AVP and IAP in
both conditions according to all of the metrics. Between
the other methods, IAP had a better linearity score in both
conditions, whereas in terms of accuracy and repeatability it
was only superior in the Flat condition.

B. HS Phase Angles

Since the PPs of the IAP and CSP methods only differ
in a linear transformation (inducing a slight shift in the
phase angle at HS), only the results of the AVP and IAP
methods are presented. The distribution of the mean phase
angles at HS between subjects are presented in Fig. 4A,
showing the inter-subject differences. As an example of the
intra-subject differences, the distribution of phase angles over

TABLE I
METRICS OF ACCURACY, REPEATABILITY AND LINEARITY OF THE

ESTIMATED GP FOR THE THREE METHODS. PAIRS OF METRICS THAT

ARE NOT SIGNIFICANTLY DIFFERENT HAVE BEEN MARKED WITH AN

IDENTICAL SUPERSCRIPT.

Method Condition RMS-E RMS-SD rmean

Flat (F) 9.70 1.97⊟ 0.9779AVP Slope (S) 5.78 1.74 0.9861
Flat (F) 8.42− 1.91⊟ 0.9867IAP Slope (S) 6.40 1.90 0.9892
Flat (F) 8.09− 1.67 0.9907CSP Slope (S) 3.40 1.58 0.9971

different strides of the same subject are also presented for a
representative participant in Fig. 4B. The distributions show
a non-negligible variation in the phase angles at HS on both
inter- and intra-subject levels. When normalized, the inter-
subject differences in ϕHS lead to a maximum error of 8.41%
(AVP-F), 3.98% (IAP-F), 6.78% (AVP-S), and 2.60% (IAP-
S) in GP estimation between the subjects. Similarly, the intra-
subject differences in ϕHS for the representative participant
can produce a maximum error of 7.93% (AVP-F), 2.75%
(IAP-F), 0.77% (AVP-S), and 1.14% (IAP-S).

C. Phase Portraits

The general trends between the PPs generated by the
three methods in Flat and Slope conditions were qualitatively
similar for each subject, but some marked distinctions existed
across subjects due to the inter-individual differences in
gait pattern. Hence, rather than the average PPs across
subjects, we present the PPs averaged over the strides of
one representative subject (Figs. 4C and 4D), which is more
indicative of the real shape of the single-stride portraits. As
expected, the AVP and IAP portraits have a more elliptic
shape, whereas the CSP portrait is more circular, thanks to
the stretching transformation.

IV. DISCUSSION

A. Overall Estimation Quality

Our results show that all of the three methods are capable
of estimating the GP in real-time with varying levels of
accuracy (RMS-E of less than 10% in the worst and less than
4% in the best case), corroborating the general suitability of
the hip angle as a phase variable for parameterizing the GC.

Even though the error levels remain relatively low on
average, none of the methods give a perfectly linear estima-
tion due to the deviation of the PPs from perfect circularity.
This also causes considerable local errors, most noticeable
in the late stance phase (∼ 60% of the GC) of the estimated
GP by the AVP method for Flat (Fig. 3A). Intuitively, this
can be explained by the fact that each of the stance and
swing periods geometrically cover half of the PP, while
temporally they account for 60% and 40% of the GC,
respectively. This discrepancy between the geometrical and
temporal proportions of the phases results in a lower rate of
change of the estimated GP in the stance phase. However, the
repeatability of the shape of the estimated profiles for each
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Fig. 4. Phase angles at HS and PPs for the different methods and conditions. (A) Distribution of the average phase angles at HS between all of the
subjects. (B) Distribution of the phase angles at HS between different strides for one subject. (C) Average PPs generated by each method for one subject
in the Flat condition. (D) Average PPs generated by each method for one subject in the Slope condition. Note that in (C) and (D), the shapes have been
arbitrarily scaled (isotropically) for better visibility. Also, flexion was taken to be the positive direction for the hip angle.

method (indicated by a narrow band of standard deviation
around the profiles in Fig. 3) suggests that using a constant
nonlinear mapping to generate a more linear estimation could
be feasible.

B. Comparison among Methods

The novel method presented in this work (CSP) showed
a clear improvement in the estimation performance in all
aspects of accuracy, repeatability and linearity. This improve-
ment in the performance is due to the more circular shape of
the PP, as can be observed in Fig. 4C–D. It is worth noting
that the transformation matrix was found heuristically in this
study; a more data-driven or analytical approach to the design
of the transformation matrix is likely to bring about further
improvements.

Between the two other methods, AVP has a more irregular
behavior in terms of accuracy; that is, in some regions it is
very accurate (e.g., during mid- to late-swing in Flat, and
early- to mid-stance in Slope), while in others it has a marked
deviation from the true GP. The IAP method, in contrast,
has a more uniform behavior in terms of error, due to fewer
anomalies in the shape of its PP. On the other hand, the more
elliptic shape of the IAP portrait leads to a quasi-periodic
increase and decrease in the slope of its estimated GP profile.

C. Comparison among Conditions

All of the methods had a better performance in Slope in
all metrics. This difference can mostly be attributed to a
smoother behavior around HS in the Slope condition, which
was also evidenced by markedly less oscillatory behavior
of the hip angular velocity signal observed during data

analysis. This is also seen in the reduced variance of the
HS phase angles in Slope (see section IV-D). As can be
seen by comparing Figs. 3A and 3B, the main difference
between Flat and Slope profiles is due to the relatively
constant portion in the first 10% of the GC in the Flat
condition, creating a lag in the profiles. This results from the
nonsmooth shape of the PP after HS, which can sometimes
even lead to a momentarily non-monotonous behavior of
the phase angle (for a clear example, see the knot in the
4th quadrant of the AVP profile in Fig. 4C). Lastly, the
notable difference in performance between Flat and Slope
emphasizes the importance of testing gait detection and
estimation algorithms under different walking conditions.

D. Distribution of HS Phase Angles

As demonstrated in Fig. 4A–B, the variability in the phase
angles at HS on both the intra- and inter-subject levels is
non-negligible. Part of the intra-subject variability is due to
small variations in the timing of HS detection (on the order
of tens of milliseconds) with respect to the moment of impact
between different strides. Due to the jerky behavior around
impact, even small differences in timing in this period can
sometimes lead to noticeable differences in the phase angle.
This is evidenced by the fact that intra-subject variability is
higher in Flat, since the impact is stronger in this condition as
explained in IV-C. The angular velocity signal is especially
susceptible to oscillations caused by the impact due to
the amplifying effect of differentiation, which explains the
highest intra-subject variability occurring in AVP-Flat (AVP-
F in Fig. 4B). Inter-subject variations, on the other hand, are
more attributable to actual differences in gait pattern, which



was also observed in the inter-individual distinctions in PP
shapes. The range of variation between subjects was also
more significant than between the strides of the same subject.
Therefore, while the assumption of a constant phase angle
for HS might be acceptable for each subject, this assumption
is not likely to be generalizable among different individuals.

E. Implications for the Control of Assistive Devices

Since one of the main applications of real-time GP es-
timation is for the control of assistive devices, it is worth
paying special attention to the ramifications of our findings
for this use case. First, it was observed that even though
the overall estimation of the GP is fairly accurate, local
errors of up to around 20% can occur, particularly with the
AVP method. This suggests that care must be taken when
feeding the estimated GP from this method as an input to
a position or torque profile (which is the most common use
case control). For example, a torque profile consisting of a
narrow burst at late stance or early swing might be severely
distorted as a result of the local errors in GP.

Another important observation is the sensitivity of these
methods to impacts, manifested by the challenges due to
HS as discussed in sections IV-C and IV-D. This implies
that using these methods in conjunction with torque or
movement profiles that include abrupt changes can induce
undesirable interaction effects between the assistance and the
GP estimation. This is particularly likely if the hip joint is
directly affected by the control action.

F. Limitations

The main limitation of this work is the fact that only
one walking speed was tested, which was due to time
constraints for carrying out the experiments. Therefore, no
direct conclusions about the effect of walking speed on
the estimation performance can be drawn. Furthermore, we
only studied steady-state treadmill walking in this work, in
order to facilitate a systematic comparison. However, for
a more realistic assessment of the estimation quality, non-
steady overground walking with variable speeds, cadences
and terrains should also be studied. Finally, our sample
only included healthy and mostly young adults. It could
be of interest, particularly for more rehabilitation-oriented
applications, to also test the estimation performance with
persons with gait impairments and also older individuals,
since there might be systematic differences in their gait
patterns compared to the young and able-bodied population.

V. CONCLUSION

We presented a novel phase-portrait-based GP estimation
method using a stretching transformation to improve por-
trait circularity, and compared this method against conven-
tional portrait-based approaches by evaluating the estimation
according to quantitative metrics. Our method showed a
significantly improved estimation performance in terms of
accuracy, repeatability and linearity. The results also provide
insight into general strengths and limitations of the different
portrait-based methods. Different levels of accuracy were

observed depending on the subphases of the GC. All methods
performed remarkably better in inclined walking. The main
challenge was identified to be the sensitivity of these methods
to impact and jerky behavior. Lastly, our results highlight
the importance of explicit HS detection in portrait-based
methods.
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