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Abstract— We study control of constrained linear systems
when faced with only partial statistical information about the
disturbance processes affecting the system dynamics and the
sensor measurements. Specifically, given a finite collection of
disturbance realizations, we consider the problem of designing a
stabilizing control policy with provable safety and performance
guarantees in face of the inevitable mismatch between the
true and the empirical distributions. We capture this discrep-
ancy using Wasserstein ambiguity sets, and we formulate a
distributionally robust (DR) optimal control problem, which
provides guarantees on the expected cost, safety, and stability
of the system. To solve this problem, we first present new
results for DR optimization of quadratic objectives using convex
programming, showing that strong duality holds under mild
conditions. Then, by combining our results with the system
level parametrization (SLP) of linear feedback policies, we
show that the design problem can be reduced to a semidefinite
optimization problem (SDP).

I. INTRODUCTION

As modern engineered systems become increasingly com-
plex and interconnected, classical control methods based on
stochastic optimization face the challenge of overcoming the
lack of a precise statistical description of the uncertainty.
In fact, the probability distribution of the uncertainty is
generally unknown and only indirectly observable through a
finite number of independent samples. In addition, replacing
the true distribution with a nominal estimate in the spirit
of certainty equivalence often proves unsatisfactory; the
optimization process amplifies any statistical error in the
distribution inferred from data, resulting in solutions that are
prone to yielding poor out-of-sample performance [1]–[3].

Motivated by these observations, the paradigm of distri-
butionally robust optimization (DRO) considers a minimax
stochastic optimization problem over a neighborhood of the
nominal distribution defined in terms of a distance in the
probability space. In this way, the solution becomes robust
to the most averse distribution that is sufficiently close to
the nominal distribution, while the degree of conservatism
of the underlying optimization can be regulated by adjusting
the radius of the ambiguity set.

While several alternatives have been proposed to measure
the discrepancy between probability distributions, including
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the Kullback–Leibler divergence and the total variation dis-
tance [4], recent literature has shown that working with
ambiguity sets defined using the Wasserstein metric [5] offers
a number of advantages in terms of expressivity, compu-
tational tractability, and statistical out-of-sample guarantees
[1]–[3]. Thanks to these properties, Wasserstein DRO has
found application in a wide variety of domains, ranging from
finance and machine learning to game theory, see, e.g., [2],
[3], [6]–[8].

Similarly, Wasserstein ambiguity sets have recently been
interfaced with the dynamic environments and continuous
actions spaces typical of control. In [9], the authors consider
a generalization of classical linear quadratic Gaussian (LQG)
control, where the noise distributions belong to Wasserstein
balls centered at nominal Gaussian distributions. Motivated
by the idea of leveraging uncertainty samples for data-driven
decision-making under general distributions, a parallel line
of research instead considers ambiguity sets centered at
nominal empirical distributions. Among other contributions
exploiting the greater expressivity provided by this data-
driven approach, [10]–[12] consider the design of tube-based
predictive control schemes, [13] and [14] address infinite-
horizon problems using dynamic programming, [15] and
[16] focus on filtering and state estimation problems. More
fundamentally, [17] and [18] provide exact characterizations
of how Wasserstein ambiguity sets propagate through the
system dynamics, shedding light on the role of feedback in
controlling shape and size of the ambiguity sets resulting
from distributional uncertainty.

Despite these advances, it remains unclear how the avail-
ability of samples can drive the design of a control policy
that guarantees safety and performance in face of distri-
butional uncertainty while simultaneously ensuring stability
of the closed-loop system. Motivated by this challenge,
we first establish novel strong duality results for DRO
of quadratic functions, which are routinely encountered in
control, by explicitly accounting for the (possibly bounded)
support of the uncertainty. Then, leveraging the system
level parametrization (SLP) of linear dynamic controllers
[19], we present a convex reformulation of the Distribu-
tionally Robust Infinite-horizon Controller (DRInC) syn-
thesis problem, which exploits a finite impulse response
(FIR) approximation of the system closed-loop maps. As
key advantages, our optimization-based approach guarantees
stability of the closed-loop interconnection by design, and
only requires one-shot offline computations. As such, our
solution bypasses the computational bottleneck that would
result by recomputing the optimal control policy online



according to a receding horizon strategy [10]–[12]. In fact,
as the complexity of the synthesis problem increases with
the number of considered uncertainty samples, solving the
policy optimization problem in real-time becomes prohibitive
whenever the nominal empirical distribution is estimated
using a sufficiently large number of uncertainty samples. Fur-
ther, differently from [13] and [14], which consider infinite-
horizon DRC in unconstrained scenarios, our approach nat-
urally extends to include satisfaction of probabilistic safety
constraints expressed as distributionally robust conditional
value-at-risk (CVaR) constraints. Lastly, the proposed op-
timization perspective allows us to seamlessly study the
partially observed setting, extending the recent results [9],
[20], [21] on output-feedback DRC to the infinite horizon
case. As we comment throughout the paper, our formulation
encompasses several control problems considered in the
literature, providing a unified perspective on stochastic and
robust control objectives.

II. PROBLEM STATEMENT

A. System dynamics and uncertainty description

We consider controllable and observable linear dynamical
systems described by the state-space equations:

xt+1 = Axt +But + wt , yt = Cxt + vt , (1)

where xt ∈ Rn, ut ∈ Rm, yt ∈ Rp, wt ∈ Rn and vt ∈
Rp are the system state, the control input, the observable
output, and the stochastic disturbances modeling process and
measurement noise, respectively. We study infinite-horizon
control when only partial statistical information about the
distribution of the joint disturbance process ξt = (wt, vt)
is available. Specifically, we assume availability of N ∈ N
independent observations ξ

(1)
T , . . . , ξ

(N)
T , where each sample

ξ
(i)
T = (w

(i)
T ,v

(i)
T ) = (w

(i)
0 , . . . , w

(i)
T , v

(i)
0 , . . . , v

(i)
T ) , (2)

constitutes a trajectory of length T ∈ N of wt and vt. As
no performance or safety guarantee can be established if
the samples in (2) are not representative of the asymptotic
statistics of w and v, we start by formulating the following
stationarity assumption, see, e.g., [22, p. 154].

Assumption 1: For all t ∈ N, the stochastic process that
generates the joint disturbance vector ξt = (wt, vt) is
stationary of order T , i.e., P(ξ0, . . . , ξT ) = P(ξt, . . . , ξt+T ).
We note that Assumption 1 subsumes the usual setting where
each realization of the disturbance processes is indepen-
dent and identically distributed, and more generally allows
modeling temporal correlation between samples that are
separated by up to T time steps. Further, as the order T can
theoretically be arbitrarily large, this assumption is relatively
mild, albeit, in practice, an upper bound on the order T is
often dictated by computational complexity concerns.

Throughout the paper, we denote by Ξ ⊆ Rd, with
d = (n+ p)(T +1), the support of the unknown probability
distribution P, and we make the following assumption.

Assumption 2: The support set Ξ = {ξ ∈ Rd : Hξ ≤ h}
is full-dimensional, that is, Ξ contains a d-dimensional ball
with strictly positive radius.

We mainly focus on the case where Ξ is a compact polyhe-
dron. Nevertheless, as we will highlight in the following, our
results naturally extend to the most studied case Ξ = Rd.

Remark 1: Reconstructing w
(i)
T and v

(i)
T online, that is,

given the corresponding input and output signals (u
(i)
T ,y

(i)
T )

only, is in general not possible. Still, the samples in (2) can
be reconstructed from a series of offline experiments con-
ducted in a laboratory environment, where the availability of
additional sensors allows measuring the entire state trajectory
x
(i)
T of the system. Alternatively, if w and v represent the

effect of complex physical phenomena, e.g., wind gusts and
turbulences, and sensor inaccuracy, respectively, the samples
in (2) can also be generated using high-fidelity simulators.

B. Control objectives, policies, and uncertainty propagation

We consider the problem of designing offline a stabilizing
feedback policy that retains probabilistic safety and perfor-
mance guarantees over an infinite horizon. Specifically, given
D ⪰ 0, we measure the control cost that a policy u = π(y)
incurs whenever the joint disturbance sequence ξ realizes as:

J(π, ξ) = lim
T ′→∞

1

T ′

T ′∑
t=0

[
x⊤t u⊤t

]
D

[
xt
ut

]
,

and we define polytopic safe sets X ⊆ Rn and U ⊆ Rm for
the system state and input signals, respectively, as:

X = {x ∈ Rn : gx(x) = max
j∈[Jx]

G⊤
xjx+ gxj ≤ 0 , Jx ∈ N} ,

U = {u ∈ Rm : gu(u) = max
j∈[Ju]

G⊤
uju+ guj ≤ 0 , Ju ∈ N} ,

where [Jx] denotes the set {1, . . . , Jx} ⊂ N and similarly for
[Ju]. Then, given a safety parameter γ ∈ (0, 1) to control
the level of acceptable constraint violations, we formulate
the following chance constrained stochastic optimization
problem:

π⋆ = argmin
π

EP [J(π, ξ)] (3a)

subject to CVaRP
γ(max{gx(xt(ξ)), gu(ut(ξ))})≤0 , (3b)

where CVaR constraints are defined according to

CVaRP
γ(g(ξ)) = inf

τ∈R
τ +

1

γ
EP[max{g(ξ)− τ, 0}] , (4)

for any measurable function g : Rd → R. We note that,
besides implying that P[xt ∈ X , ut ∈ U ] ≥ 1 − γ, (3b)
also accounts for the expected amount of constraint violation
in the γ percent of cases where any such violation occurs.
As such, the CVaR formulation reflects the observation that,
in most control applications, severe breaches of the safety
constraints often have far more detrimental consequences
than mild violations. As the probability distribution P is
fundamentally unknown, however, we cannot address the
decision problem (3) directly, and we instead rely on the
following approximations.

First, we construct the empirical probability distribution

P̂ =
1

N

N∑
i=1

δ
ξ
(i)
T

, (5)



where δ
ξ
(i)
T

denotes the Dirac delta distribution at ξ
(i)
T . In

order to immunize against any error in P̂, we replace the
nominal objective (3a) with the minimization of the worst-
case expected loss over the set of distributions Bϵ(P̂) ⊆
P(Ξ) that are supported on Ξ and are sufficiently close to
the empirical estimate P̂.1 More formally, we define

Bϵ(P̂) = {Q ∈ P(Ξ) :W (P̂,Q) ≤ ϵ} , (6)

where ϵ ≥ 0 is the radius of the ambiguity set Bϵ(P̂), and
W (P̂,Q) is the Wasserstein distance between P̂ and Q, i.e.,

W (P̂,Q) = inf
π∈Π

∫
Ξ2

∥ξ − ξ′∥22 π(dξ, dξ
′) , (7)

where Π denotes the set of joint probability distributions of ξ
and ξ′ with marginal distributions P̂ and Q, respectively [1],
[2]. In (7), the decision variable π encodes a transportation
plan for moving a mass distribution described by P̂ to a
distribution described by Q. Thus, Bϵ(P̂) can be interpreted
as the set of distributions onto which P̂ can be reshaped at a
cost of at most ϵ, where the cost of moving a unit probability
from ξ to ξ′ is given by ∥ξ − ξ′∥22.

Second, since dynamic programming solutions are gener-
ally computationally intractable, we restrict our attention to
policies π ∈ ΠL that are linear in the past observations y,
that is, u = π(y) = K(z)y for some real-rational proper
transfer function K(z). Besides computational advantages,
our choice is supported by recent advances in DRC, which
show that linear policies are globally optimal for a general-
ization of the classical unconstrained LQG problem, where
the noise distributions belong to a Wasserstein ambiguity set
(6), centered at a nominal Gaussian distribution P̂ [9].

We are now in a position to state our problem of interest
as:

inf
π∈ΠL

sup
Q∈Bϵ(P̂)

EQ [J(π, ξ)] (8a)

subject to sup
Q∈Bϵ(P̂)

CVaRQ
γ (gt(ξ)) ≤ 0 , ∀t ∈ N , (8b)

where gt(ξ) = max{gx(xt(ξ)), gu(ut(ξ))} for compactness.
Note that the worst-case distributions in (8a) and (8b) may
not coincide. Despite the fact that in practice the uncertainty
distribution is unique, the formulation in (8) proves necessary
to ensure safety for all distributions in Bϵ(P̂) and not simply
for the one maximizing the expected control cost.

C. Expressivity of the problem formulation and related work

The solution to the DRO problem (8) depends on the ra-
dius ϵ defining (6). In particular, we argue that (8) generalizes

1It is well-known that solving (3) upon naively replacing P with P̂, that
is, setting ϵ to zero in (6), may lead to decisions that are unsafe or exhibit
poor out-of-sample performance, as the optimization process often amplifies
any estimation error in P̂. Instead, for any β > 0, if P is light-tailed
and the radius ϵ is chosen as a sublinearly growing function of log(1/β)

N
,

then results from measure concentration theory ensure that P lie inside
the ambiguity set (6) with confidence 1 − β, see, [23, Theorem 2] and
[2, Theorem 18]. Therefore, in this case, any solution to (8) retains finite-
samples probabilistic guarantees in terms of out-of-samples control cost and
constraint satisfaction.

classical H2 and H∞ control problems, which correspond to
the limit cases of ϵ approaching 0 and ∞, respectively.

If ϵ = 0, the Wasserstein ball Bϵ(P̂) reduces to the
singleton {P̂} and the supremum disappears. This gives
a simple Monte-Carlo-based control design problem [24],
[25]. Moreover, because J(π, ξ) is quadratic, the result-
ing optimal controller is the LQG designed for PN =
N (Eξ∼P̂[ξ], varξ∼P̂[ξ]) in the absence of constraints [26].
Indeed, because both the dynamics and the controller are
linear, one has2

EPN [J(π, ξ)] = EP̂ [J(π, ξ)] ,

which means that the argminπ of both expectations is also
the same.

If ϵ is very large and Ξ is compact, (8) can also be seen
as a generalization of H∞ synthesis methods [26], [27]. In
fact, in the limit case of ϵ → ∞ and no matter how P̂ is
constructed, (6) contains all distributions P(Ξ) supported
on Ξ, including the degenerate distribution taking value at
the most-averse ξ almost surely.

Intermediate values of ϵ instead yield solutions that lever-
age the observations (2) to trade-off robustness to adversarial
perturbations or distribution shifts against performance under
distributions in a neighborhood of P̂.

We conclude this section by remarking that, differently
from [9], we do not assume that the nominal distribution
P̂ is Gaussian, and instead use the empirical estimate (5)
to provide greater design flexibility. In fact, if P is, e.g.,
bimodal, then the Wasserstein distance between P and its
closest Gaussian distribution G will generally be larger than
the Wasserstein distance between P and its empirical estimate
P̂. In turn, this implies that a larger radius ϵ needs to be used
to ensure that P ∈ Bϵ(G) with high probability, leading to a
more conservative design.

III. BACKGROUND

In this section, we recall useful technical preliminaries,
and we discuss the design assumptions that will allow us
to compute an approximate solution to (8) through convex
programming. In particular, we start by reviewing the system
level approach to controller synthesis [19], and then present
recent duality results from the DRO literature [3].

A. System level synthesis

The system level synthesis framework provides a con-
vex parameterization of the non-convex set of internally
stabilizing controllers K(z), allowing one to reformulate
many control problems as optimization over the closed-loop
responses Φxw(z),Φxv(z),Φuw(z) and Φuv(z) that map w
and v to x and u. To define these maps, we first combine
the linear output feedback policy u = K(z)y with the z
transform of the state dynamics in (1) to obtain:

(zI − (A+BK(z)C))x = w +BK(z)v .

2Both expectations are equal to the same linear transformation of the first
and second moments of P̂ and PN , which are equal.



Then, since the transfer matrix (zI − (A + BK(z)C)) is
invertible for any proper controller K(z), we have[
x
u

]
=

[
Φxw(z) Φxv(z)
Φuw(z) Φuv(z)

] [
w
v

]
= Φξ(z)ξ ,

=

[
(zI − (A+BK(z)C))−1 Φxw(z)BK(z)

K(z)CΦxw(z) Φuw(z) + zK(z)

]
ξ .

In particular, we note that causality of K(z) implies causality
of Φuv and strict causality of Φxw,Φxv and Φuw. Further,
one can show that the affine subspace defined by[

zI −A −B
]
Φξ(z) =

[
I 0

]
, (9a)

Φξ(z)

[
zI −A
−C

]
=

[
I
0

]
, (9b)

characterizes all and only the system responses Φξ(z) that
are achievable by an internally stabilizing controller K(z)
[19]. Despite the fact that (9) defines a convex feasible
set, minimizing a given convex objective with respect to
the closed-loop transfer matrix Φξ(z) =

∑∞
k=0 Φ(k)z

−k

proves challenging, as the resulting optimization problem re-
mains infinite dimensional. Therefore, to recover tractability
and following [19], [28], we rely on a FIR approximation
of Φξ(z), i.e., we restrict our attention to the truncated
system response ΦT

ξ (z) =
∑T
k=0 Φ(k)z

−k. We remark
that controllability and observability of (1) ensure that (9)
admits a FIR solution [19, Theorem 4]. At the same time,
since Φξ(z) represents a stable map, the effect of this FIR
approximation becomes negligible if T is sufficiently large;
for the case of LQR regulators, for instance, it was shown
that the performance degradation relative to the solution to
the infinite-horizon problem decays exponentially with T ,
see [29, Section 5].

According to the discussed FIR approximation, we let:

Φx = [Φxw(T ), . . . ,Φxw(0),Φxv(T ), . . . ,Φxv(0)] ,

Φu = [Φuw(T ), . . . ,Φuw(0),Φuv(T ), . . . ,Φuv(0)] ,

and we define Φ = [Φ⊤
x ,Φ

⊤
u ]

⊤ for compactness. With this
notation in place, for any t ≥ T , we have that:

xt = Φxξt−T :t , ut = Φuξt−T :t , (10)

where ξt−T :t = [wt−T , . . . , wt, vt−T , . . . , vt]
⊤ collects the

last T+1 realizations of the process and measurement noises.
The following proposition, for which we provide a proof

in Appendix A for the sake of comprehensiveness, shows
how to implement a controller that achieves a given pair of
system responses Φx and Φu.

Proposition 1: If the closed loop map Φ is achievable, the
corresponding control policy π(Φ) can be implemented as
a linear system with dynamics

δt = −Φxϕt−T :t, ut = Φuϕt−T :t +Φuv(0)Cδt, (11)

where ϕt−T :t = [δ⊤t−T+1, . . . , δ
⊤
t−1, 02n, y

⊤
t−T , . . . , y

⊤
t ]

⊤.

B. A stationarity control problem
As we consider an infinite horizon control problem, we

focus on the steady state behavior of the system, and we are
instead less interested in the transient behavior [30]. Moti-
vated by this and to take full advantage of the stationarity
properties of ξt in Assumption 1, we focus on designing an
optimal safe controller to operate the system for t ≥ T only.
In this setting, we proceed to show that the distributionally
robust worst-case control cost and CVaR constraints admit
finite-dimensional representations

Assumption 3: The system is initialized by an external
controller with x0, . . . , xT−1 ∈ X and u0, . . . , uT−1 ∈ U .

We therefore redefine the optimization cost J in (8a) as

JT (π(Φ), ξ) = lim
T ′→∞

1

T ′−T

T ′∑
t=T

ξ⊤t−T :tΦ
⊤DΦξt−T :t .

Note that due to the stationarity of Q (see Assumption 1),
JT satisfies

EQJ(π(Φ), ξ)

= lim
T ′→∞

E ξ0:R∼Q...
ξT ′−T :T ′∼Q

1

T ′−T

T ′∑
t=T

ξ⊤t−T :tΦ
⊤DΦξt−T :t,

= EξT∼Qξ
⊤
TΦ

⊤DΦξT . (12)

The problem statement (8) for DRInC synthesis can be
reformulated as finding the optimal FIR map Φ⋆ of length
T + 1 given by

Φ⋆ = argmin
Φ achievable

sup
Q∈Bϵ(P̂)

EξT∼Qξ
⊤
TΦ

⊤DΦξT , (13)

while satisfying the achievability constraints (9) as well as
conditional value-at-risk constraints

sup
Q∈Bϵ(P̂)

CVaRξT∼Q
1−γ (G⊤

j ΦξT + gj) ≤ 0,∀j∈ [J ], (14)

where J = Jx+Ju and [J ] = {1, . . . , J} enumerates all the
constraints on [x⊤, u⊤], which are defined by

G =

[
Gx 0
0 Gu

]
, g =

[
gx
gu

]
.

We highlight that while (8a) is an infimum problem,
the minimum in (13) is attained. Indeed, as Ξ is full-
dimensional per Assumption 2, there is always a distri-
bution Q̂ such that EQ̂J(π(Φ), ξ) is strongly convex in
Φ (e.g., an empirical distribution containing samples that
form a basis for Rd). Moreover, since EQ̂J(π(Φ), ξ) ≤
supQ∈Bϵ(P̂) EQJ(π(Φ), ξ) by definition, the supremum in
(13) is strongly convex and the minimizer Φ⋆ is attainable.
However, both the control cost grow quadratically, which
can render supQ∈Bϵ(P̂) EQ [J(π(Φ), ξ)] unattainable [3]3. In

3The ratio between the growth rates of the loss function and the transport
cost is crucial in DRO problems. If the control cost grows faster than the
transport cost, the adversary can make the control cost diverge by moving an
infinitesimal amount of mass very far away from the empirical distribution.
Reversely, if the control cost grows slower, there is always be a point at
which it is not worth for the adversary to keep moving and the supremum
is attained. This is the case for the constraints, as their cost grows linearly.



what follows, we use the recent advances in DRO theory
presented in [3] to reformulate the control design problem
as a finite-dimensional and tractable problem.

C. Strong duality for DRO of piecewise linear objectives

The minimization (13) subject to (14) is infinite-
dimensional and therefore cannot be directly solved. The
next proposition, which serves as a starting point for our
derivations in Section IV, shows how DRO of piecewise
linear objectives can be recast as a finite-dimensional convex
program.

Proposition 2: Let aj ∈ Rd and bj ∈ R constitute a piece-
wise linear cost with J pieces. If Assumption 2 holds and
ϵ > 0, then the risk:

sup
Q∈Bϵ

EξT∼Q max
j∈[J]

a⊤j ξT + bj , (15)

can be equivalently computed as:

inf
λ≥0,κij≥0

λϵ+
1

N

∑
i∈[N ]

s(i) , subject to (16a)

s(i) ≥ bj+
∥aj∥22
4λ

− a⊤j ξ
(i)
T (16b)

+
1

4λ
κ⊤ijHH

⊤κij−
1

2λ
a⊤j H

⊤κij +
(
Hξ

(i)
T + h

)⊤
κij ,

for all i = 1, . . . , N and j = 1, . . . , J .
Proof: This proposition is a direct consequence of [3,

Proposition 2.12]. For the sake of clarity, we report detailed
derivations in Appendix C.
Proposition 2 uses strong duality to establish an equivalence
between (16) and (15). In particular, the decision variables
λ and κij in (16) correspond to the Lagrange multipliers
associated with the constraints Q ∈ Bϵ and ξT ∈ Ξ,
respectively. The optimal value of λ can thus be interpreted
as the shadow cost of robustification, i.e., the amount by
which the risk EξT∼Q maxj∈[J] a

⊤
j ξT +bj increases for each

unit increase of ϵ. The variables s(i) instead represent the
empirical Lagrangian for each sample.

IV. MAIN RESULTS

In this section, we present our main results. Motivated by
the observation that the operational costs of engineering ap-
plications usually relate to energy consumption and are thus
often modeled using quadratic functions, we first extend the
results of Proposition 2 beyond piecewise linear objectives.

A. Non-convexity challenges

While [3, Proposition 2.12] holds for general transport
costs and no matter if Ξ is bounded or not, this strong
duality result does not directly apply to (13), as the objective
J(π(Φ), ξ) is not piece-wise concave. An extension of
current state-of-the-art results in DRO is therefore required
to minimize a risk of the form

R(Q) := sup
Q∈Bϵ

EξT∼Q ξ⊤TQξT . (17)

where Ξ does not necessarily equal Rd and Q ⪰ 0.

We start by observing that if the loss is not concave
with respect to ξT , then the optimization problem in (17)
may not be convex. In fact, while [2] shows that there is a
hidden convexity when Ξ = Rd, this result does not hold
in general. To illustrate this point, consider for example
the situation drawn in Fig. 1. One can observe that if the
constraint Q ∈ Bϵ(δ) is active, then the problem (17)
amounts to a Quadratically Constrained Quadratic Program
(QCQP), which admits a tight convex relaxation as a Semi-
Definite Program (SDP) [31]. Conversely, however, when
the constraint Q ∈ Bϵ(δ) is not active, the adversary must
maximize a convex Quadratic Program (QP), which is not
convex.

Ξ

O
εε′

ℓ

ξ

δ Q Q′

local optimum
with ε′

Fig. 1. Illustration of two worst-case distributions Q ∈ Bϵ(δ) and Q′ ∈
Bϵ′ (δ) in different Wasserstein balls around the Dirac delta distribution.
The support ξ is represented by the horizontal blue line above the ξ axis,
and the left-most Dirac distribution represents a local minima in Bϵ′ (δ) for
the risk R(Q) in (17).

Whether the constraint Q ∈ Bϵ(δ) is active or not depends
on the value taken at the optimum by its Lagrange multiplier
λ, which represents the shadow cost of robustification. The
following proposition provides a sufficient condition for the
constraint to be active by generalizing the example shown in
Fig. 1 to Rd.

Proposition 3: Let ∂Ξ = {ξ : max
k∈[nH ]

Hkξ − hk = 0},

where nH is the number of rows in H , denote the boundary
of Ξ. If

1

N

∑
i∈[N ]

min
ξ̃∈∂Ξ

∥∥∥ξ(i)T − ξ̃
∥∥∥2
2
> ϵ , (18)

that is, if the average squared distance between the samples
and the border ∂Ξ of the support Ξ is strictly greater than
epsilon, then the optimal shadow cost of robustification λ⋆

is greater than λmax(Q) for any Q ∈ Rd×d.
Proof: The proof is given in Appendix D.

Proposition 3 shows that λ is contingent on the radius ϵ, the
support Ξ, and the realizations ξ(i). The radius ϵ is usually
small, as the samples should be approximating the real
distribution well enough, which means that the condition (18)
is often satisfied. In the next section, we utilize the inequality
λ⋆ ≥ λmax(Q) to propose a strong dual formulation for (17).

B. Tight convex relaxation for DRO of quadratic objectives

In this section, we present a convex upper bound for (17),
and prove that it becomes tight if λ is greater than λmax(Q),
the largest eigenvalue of Q.



Lemma 4: Let Q ∈ Rd×d be a symmetric and positive
definite matrix. Under Assumption 2, if ϵ > 0 and if Ξ is
bounded, the risk (17) satisfies

R(Q) ≤ inf
λ≥0,µi≥0,
ψi≥−µi
α≥0

λϵ+
1

N

∑
i∈[N ]

s(i) , (19a)

subject to ,∀i ∈ [N ] :s(i)−h⊤ψi+λ∥ξ(i)T ∥22 ⋆ ⋆

2λξ
(i)
T +H⊤ψi 4(λI−Q) ⋆
H⊤µi 0 4Q

⪰0, (19b)

[
α ⋆

H⊤µi λI −Q

]
⪰ 0. (19c)

Moreover, (19a) holds with equality and (19c) is inactive if
the optimum λ⋆ of λ satisfies λ⋆I ≻ Q.

Proof: This result is obtained by taking the limit of (16)
when the number J of pieces tends to infinity. The detailed
derivations are presented in Appendix E.

We stress that our results continue to hold even if H = 0
and h = 0, that is, if Ξ = Rd. In this case, (19) simplifies
substantially.

Corollary 5: Lemma 4 also holds if Ξ = Rd and (19)
simplifies into

R(Q) = inf
λ≥0

λϵ+
1

N

∑
i∈[N ]

s(i) , (20a)

subject to

[
s(i)+λ∥ξ(i)T ∥22 ⋆

λξ
(i)
T λI −Q

]
⪰0. (20b)

Proof: If Ξ = Rd, the problem (13) falls into the
assumptions of [2, Theorem 11]. Additionally, we observe
that, when H = 0 and h = 0, (20b) has the same Schur
complement as (19b) and (19c) is always satisfied.

To understand the effect of having restricted our attention
to distributions with bounded support, it is of interest to
compare (19) with (20). In both problems, the presence of
the term λI−Q in (19b) and (20b) implies that any feasible
solution has a shadow cost λ greater or equal than λmax(Q).
On the other hand, for (20b) to be feasible, λ should be
large enough to guarantee s(i) + λ∥ξ(i)T ∥22 ≥ 0, whereas the
presence of the additional term −h⊤ψi in the top-left entry
of (19b) softens this requirement, demonstrating the helpful
contribution of the bounded support.

C. Convex formulation of DRInC design

Our results of Section IV-B does not directly allow us
to solve (13), as (12) shows that Q depends quadratically
on Φ and may also be rank deficient. In this subsection,
we mitigate the issues associated with quadratic matrix
inequalities by employing a Schur complement, and we
address singularity concerns by examining the behavior of
the system as Q approaches singularity, showing that this
limit remains well-behaved.

Lemma 6: Under Assumption 2, if ϵ > 0 and Ξ is
bounded, the optimal closed loop map Φ⋆ in (13) is given

by

Φ⋆ = arg
Φ

min
Φ achievable,Q

lim
η→0

R(Q+ |η|I) , (21a)

subject to

[
Q ⋆

D
1
2Φ I

]
⪰ 0 . (21b)

Proof: The proof can be found in Appendix F
We continue our derivations by presenting an equivalent

convex reformulation of the safety constraints in (14). In
particular, in the next proposition, we embed the function
max{· − τ, 0} in (4) as a (J + 1)th constraint.

Lemma 7: Under Assumption 2 and if ϵ > 0, the con-
straints (14) can be reformulated as the following convex
LMIs

ρϵ+
γ − 1

γ
τ +

1

N

∑
i∈[N ]

ζ(i) ≤ 0 , ρ ≥ 0 , (22a)

∀i ∈ [N ] ,∀j ∈ [J + 1] : κij ≥ 0 , (22b)[
ζ(i)− 1

γ(G
⊤
j Φξ

(i)
T +gj)−(Hξ

(i)
T +h)⊤κij ⋆

1
γΦ

⊤Gj−H⊤κij 4ργ2I

]
⪰0,

(22c)

where GJ+1 = 0 and gJ+1 = τ .
Proof: The proof can be found in Appendix G.

Leveraging Lemmas 4, (6), and (7), we are now ready to
reformulate (13) subject to (14) as SDP.

Theorem 8: Under Assumption 2 and if ϵ > 0, the closed
loop map given by

Φ⋆ = argmin
Φ achievable

inf
Q,s(i),ζ(i),τ,
λ≥0,ρ≥0,α≥0,
µi≥0,κij≥0,
ψi≥−µi

λϵ+
1

N

∑
i∈[N ]

s(i) ,

subject to

(21b), (22a),
(19b), (19c), ∀i∈ [N ],

(22c), ∀i∈ [N ], j∈ [J+1],

is stable and satisfies the safety constraints (14). Moreover,
it optimizes (13) if Ξ is bounded and the optimizer λ⋆ is
greater than λmax

(
Φ⋆⊤DΦ⋆

)
.

Proof: We first highlight that Φ is FIR and therefore
stable by definition. Second, the safety constraints (14) are
equivalent to (22), as shown in Lemma 7. Third, consider
a closed loop map Φ̂, which optimizes the expectation of
ξ⊤T Φ̂

⊤DΦ̂ξT + |η|∥ξT ∥22 for η ̸= 0. With Q = Φ⊤DΦ +
|η|I ≻ 0, Lemma 4 shows that R(Φ⊤DΦ) is tightly upper-
bounded by (19). Fourth and finally, as shown in Lemma 6,
taking the limit η → 0 yields Φ̂ → Φ⋆ from (13), which
concludes the proof.
We remark that the reformulation proposed in Theorem 8
is exact whenever the true shadow cost of robustification
λ is greater or equal than λmax(Q), a condition which is
always satisfied for sufficiently small ϵ as per Proposition 3.
When λ is lower than λmax(Q), the solution computed using
Theorem 8 may instead be suboptimal. Nevertheless, our
solution retains safety and stability guarantees in face of the



uncertain distribution, since neither (22) nor the achievability
constraints depend on λ.

V. CONCLUSION

We have presented an end-to-end synthesis method from
a collection of a finite number of disturbance realizations to
the design of a stabilizing linear policy with DR safety and
performance guarantees. Our approach consists in estimating
an empirical distribution using samples of the uncertainty,
and then computing a feedback policy that safely minimizes
the worst-case expected cost over all distributions within a
Wasserstein ball around the nominal estimate through the
solution of an SDP. We have shown that, as the radius of
this ambiguity set varies, our problem statement recovers
classical control formulations. To address the resulting op-
timal control problem, we have established a novel tight
convex relaxation for DRO of quadratic objectives, and we
have combined our results with the system level synthesis
framework, presenting conditions under which our design
method is non-conservative.

Future work will validate the effectiveness of our approach
by means of numerical simulations and real-world experi-
ments.
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APPENDIX

A. SLS controller implementation

From [19],

δ = (I − zΦxw(z))δ −Φxv(z)y,

u = zΦuw(z)δ +Φuv(z)y,



which means that at each timestep t ≥ T , one has

δt = δt −
T∑
k=1

Φxw(k)δt−k+1 −
T∑
k=1

Φxv(k)yt−k,

ut =

T∑
k=1

Φuw(k)δt−k+1 +

T∑
k=0

Φuv(k)yt−k. (23)

The achievability constraints (24) imply Φxw(1) = I and
Φuw(1) = Φuv(0)C, (see Appendix B). Hence, (23) can be
reformulated at as

δt = −
T−1∑
k=1

Φxw(k + 1)δt−k −
T∑
k=1

Φxv(k)yt−k,

ut = Φuv(0)Cδt +

T−1∑
k=1

Φuw(k + 1)δt−k +

T∑
k=0

Φuv(k)yt−k.

Writing this controller implementation in matrix form and
noting that Φxv(0) = 0 yields (11).

B. Infinite horizon Achievability

Proposition 9: The achievability constraints (9) are equiv-
alent to

[I, 0]Φ

[
Z−⊗In 0

0 Z−⊗Ip

]
= [A,B]Φ

[
Z+⊗In 0

0 Z+⊗Ip

]
+ [Z+

T+1⊗In,Z
+
T+1⊗0], (24a)

Φ

[
Z−⊗In

Z−⊗(0C)

]
=Φ

[
Z+⊗A
Z+⊗C

]
+

[
Z+
T+1⊗In

Z+
T+1⊗(0C)

]
, (24b)

where Z+ = [IT+1, 0], Z− = [0, IT+1] are in
R(T+1)×(T+2), and Z+

T+1 is the last row of Z+.
Proof: By treating Φx and Φu as FIR filters:

T∑
k=1

Φxw(k)z
−k+1−AΦxw(k)z−k−BΦuw(k)z

−k=I,

T∑
k=1

Φxv(k)z
−k+1−AΦxv(k)z−k−BΦuv(k)z

−k=BΦuv(0),

T∑
k=1

Φxw(k)z
−k+1−Φxw(k)Az

−k−Φxv(k)Cz
−k=I,

T∑
k=1

Φuw(k)z
−k+1−Φuw(k)Az

−k−Φuv(k)Cz
−k=Φuv(0)C,

which is equivalent to

Φxw(0)=0,Φxv(0)=0,Φuw(0)=0, (25a)
Φxw(1)=I,Φxv(1)=BΦuv(0),Φuw(1)=Φuv(0)C, (25b)
Φxw(k + 1)=AΦxw(k)+BΦuw(k) ,∀k = 1, . . . , T, (25c)
Φxv(k + 1)=AΦxv(k)+BΦuv(k) ,∀k = 1, . . . , T, (25d)
Φxw(k + 1)=Φxw(k)A+Φxv(k)C , ∀k = 1, . . . , T, (25e)
Φuw(k + 1)=Φuw(k)A+Φuv(k)C , ∀k = 1, . . . , T, (25f)
Φ(T + 1)=0, (25g)

∀k = 1, . . . , T and Φ(T+1) = 0. In matrix form, this yields

[I, 0]Φ




0 I . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . I 0 0
0 0 . . . 0 I 0
0 0 . . . 0 0 I

 0

0


0 I . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . I 0 0
0 0 . . . 0 I 0
0 0 . . . 0 0 I




︸︸
(25g)

︸ ︷︷ ︸
(25c)

︸︸
(25b)

︸︸
(25a)

︸︸
(25g)

︸ ︷︷ ︸
(25d)

︸︸
(25b)

︸︸
(25a)

=
[
[0, 0, . . . , 0, I, 0], [0, 0, . . . , 0, 0, 0]

]
+

[A,B]Φ




I 0 . . . 0 0 0
0 I . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . I 0 0
0 0 . . . 0 I 0

 0

0


I 0 . . . 0 0 0
0 I . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . I 0 0
0 0 . . . 0 I 0




︸︸
(25g)

︸ ︷︷ ︸
(25c)

︸︸
(25b)

︸︸
(25a)

︸︸
(25g)

︸ ︷︷ ︸
(25d)

︸︸
(25b)

︸︸
(25a)

,

and

Φ




0 I . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . I 0 0
0 0 . . . 0 I 0
0 0 . . . 0 0 I



0 0 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . 0 0 0
0 0 . . . 0 0 0
0 0 . . . 0 0 0




︸︸
(25g)

︸ ︷︷ ︸
(25e),(25f)

︸︸
(25b)

︸︸
(25a)

= Φ




A 0 . . . 0 0 0
0 A . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . A 0 0
0 0 . . . 0 A 0



C 0 . . . 0 0 0
0 C . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . C 0 0
0 0 . . . 0 C 0




︸︸
(25g)

︸ ︷︷ ︸
(25e),(25f)

︸︸
(25b)

︸︸
(25a)

+

[
0, 0, . . . , 0, I, 0
0, 0, . . . , 0, 0, 0

]
.

The matrices can be written in a compact form as (24), which
concludes the proof.

C. Proof of Proposition 2

The risk (15) is contingent on three mathematical objects:
1) A loss function max

j∈[J]
ℓj(ξT ) = max

j∈[J]
a⊤j ξT + bj ,

2) A transport cost c(ξT , ξ
(i)
T ) = ∥ξT − ξ

(i)
T ∥22,

3) and a support Ξ =
{
ξ : max

k∈[nH ]
fk(ξ) ≤ 0

}
, where nH

is the number of rows in H and fk(ξ) = Hkξ − hk.
Moreover, since the loss is concave and both the transport
cost and the support are convex, (15) shows strong duality



properties if and only if it is strictly feasible. The strict
feasibility is guaranteed by the full-dimensionality of Ξ and
the strict positivity of ϵ. The dual problem is given by [3] as

inf
λ≥0

λϵ+
1

N

N∑
i=0

s(i),

subject to sup
ξT∈Ξ

ℓ(ξT )− λc(ξT , ξ
(i)
T ) ≤ s(i) ,∀i ∈ [N ].

While the dual problem does not seem much simpler to solve
than the primal at first glance, we use [3, Proposition 2.12] to
reformulate it using convex conjugates. In our own notation,
this gives

inf
λ≥0 ,κijk≥0

λϵ+
1

N

∑
i∈[N ]

s(i), subject to ,∀i∈ [N ],∀j∈ [J ] :

s(i) ≥ (−ℓj)⋆(ζℓij) + λc⋆
(
ζcij
λ
, ξ̂

(i)
T

)
+
∑

k∈[nH ]

κijkf
⋆
k

(
ζfijk
κijk

)
,

ζℓij + ζcij +
∑

k∈[nH ]

ζfijk = 0, (26)

where (−ℓj)⋆ is the convex conjugate of the opposite of
ℓj , c⋆ is the convex conjugate of the transport cost c with
respect to the first argument, and f⋆k is the convex conjugate
of fk. Note that the case where λ = 0 is also well defined
in [3] despite the division. All three functions are either
linear or quadratic so their conjugates are well-known [32].
Both −ℓj and fk are linear so their convex conjugates are
bj and hk if the conjugates’ arguments are equal to −aj and
Hk, respectively, and infinite otherwise. The conjugate of the
transport cost is given by c⋆(ζ, ξ(i)T ) = 1

4ζ
⊤ζ − ζ⊤ξ

(i)
T .

In order to minimize (26), one must avoid infinite costs,
which adds constraints on λ, ζℓij , and ζfijk. This means that
(26) is equivalent to

inf
λ≥0 ,κijk≥0

λϵ+
1

N

∑
i∈[N ]

s(i) ≤ 0 , (27a)

subject to ,∀i ∈ [N ] ,∀j ∈ [J ] :

s(i) ≥ bj +
1

4λ
(ζcij)

⊤ζcij − ζcijξ
(i)
T +

∑
k∈[nH ]

κijkhk, (27b)

ζℓij + ζcij +
∑

k∈[nH ]

ζfijk= 0 , ζℓij=−aj , ζfijk=κijkHk. (27c)

To conclude the proof, we stack κijk for all k ∈ [nH ] into a
vector κij and plug the equality constraints (27c) into (27b)
to obtain (16).

D. Proof of Proposition 3

We first note that when Ξ is bounded, as mass cannot be
moved infinitely far away, the supremum of (17) is attained.
This means that Q⋆ = argmaxQ∈Bϵ

EξT∼Q ξ⊤TQξT exists.
Second, the limited average squared distance between the
samples and the border of Ξ implies that no distribution in
Bϵ(P̂) has mass only at the border of Ξ, as the trasport cost
would be greater than ϵ. This means that there exists a δ > 0
such that Q⋆ has an amount δ of mass more than

√
δ away

from the boundary of Ξ. Third and finally, let wmax(Q) be an
eigenvector of Q associated with λmax(Q). The distribution
Q⋆ satisfies

dR(Q)

dϵ
= lim
dϵ→0+

1

dϵ
sup

Q′∈Bdϵ(Q⋆)

Eξ′
T∼Q′

ξT∼Q⋆

ξ′T
⊤
Qξ′T−ξT

⊤QξT

= lim
dϵ→0+

1

dϵ
sup

Q′∈Bdϵ(Q⋆)

Eξ′
T∼Q′

ξT∼Q⋆

(ξ′T−ξT )
⊤Q(ξ′T−ξT )

− 2(ξ′T−ξT )
⊤QξT

≥ lim
dϵ→0+

1

dϵ
max

δ∥dξ∥2
2≤dϵ

δλmax(Q)∥dξ∥22, (28)

because moving δ of Q⋆’s mass by ∥dξ∥ ≤
√
δ−1dϵ in the

direction of ±wmax(Q) to obtain Q′ remains in Bdϵ(Q⋆) if
dϵ ≤ δ2, which is true at the limit dϵ → 0+. Hence, the
inequality (28) implies that

λ⋆ =
dR(Q)

dϵ
≥ lim
dϵ→0+

1

dϵ
λmax(Q)dϵ = λmax(Q),

which concludes the proof.

E. Proof of Lemma 4

In order to prove Lemma 4, we first need the following
proposition.

Proposition 10: Under the assumptions of Lemma 4, the
risk R(Q) defined in (17) satisfies

R(Q) ≤ inf
λ≥0,κi≥0

λϵ+
1

N

∑
i∈[N ]

s(i) , subject to (29a)

s(i) ≥ max
ξ̄∈Ξ

−ξ̄⊤(Q−λ−1Q2)ξ̄ − 2ξ̄⊤Qξ
(i)
T (29b)

+
1

4λ
κ⊤i HH

⊤κi−
1

λ
ξ̄⊤QH⊤κi +

(
Hξ

(i)
T +h

)⊤
κi ,

for all i = 1, . . . , N . Moreover, (19a) holds with equality if
the optimum λ⋆ of λ satisfies λ⋆I ⪰ Q.

Proof: The proof starts by linking the formulation
(15) for piece-wise affine costs to R(Q). To do so, we
approximate the quadratic cost using its tangents at each
point of a d-dimensional grid GJ ⊆ Ξ, composed of J points.
Because the approximation gets closer with more points, this
yields

ξ⊤TQξT = lim
J→∞

max
j∈[J]

2ξ⊤TQξj − ξ⊤j Qξj ,

where ξj is the jth element of GJ . In order to obtain a
formulation that fits (15), one must show that the limit
operator commutes with the supremum and the expectation.

We show the commutation of the limit with the dominated
convergence theorem [33] by finding bounds on the piece-
wise affine approximation error

∆J = ξ⊤TQξT −max
j∈[J]

2ξ⊤TQξj − ξ⊤j Qξj ,

= ξ⊤TQξT + min
j∈[J]

ξ⊤j Qξj − 2ξ⊤TQξj ,

= min
j∈[J]

(ξT − ξj)
⊤Q(ξT − ξj) .



Note that ∆J ≥ 0 because the tangents of a quadratic func-
tion are always below the curve. Moreover, the inequality
∆J ≤ λmax(Q)minj∈[J] ∥ξT−ξj∥22 is satisfied by definition.

Furthermore, the distance minj∈[J] ∥ξT − ξj∥22 between
any ξT ∈ Ξ and the closest point of the grid GJ ⊆ Ξ can
be bounded as

min
j∈[J]

∥ξT − ξj∥22 ≤ 2r(Ξ)
√
dJ− 1

d ,∀ξT ∈ Ξ ,

where r(Ξ) <∞ is the radius of a ball containing Ξ, which
is finite because Ξ is bounded. This gives the following
inequality

ξ⊤TQξT−∆QJ
− 1

d ≤ max
j∈[J]

2ξ⊤TQξj−ξ⊤j Qξj ≤ ξ⊤TQξT ,

where ∆Q = 2r(Ξ)
√
dλmax(Q). Finally, if all points of a

function satisfy an inequality, its supremum must satisfy i as
well, hence

R(Q)−∆QJ
− 1

d≤ sup
Q∈Bϵ

EξT∼Qmax
j∈[J]

2ξ⊤TQξj−ξ⊤jQξj≤R(Q).

The limit limJ→∞ R(Q)−∆QJ
− 1

d is equal to R(Q). There-
fore, the supremum of the piece-wise linear approximation
is squeezed into the equality

lim
J→∞

sup
Q∈Bϵ

EξT∼Q max
j∈[J]

2ξ⊤TQξj−ξ⊤j Qξj = R(Q).

The second part of the proof aims at bringing the limit
back into the problem and evaluating it. Using the previous
result and Proposition 2 with aj = 2Qξj and bj = −ξ⊤j Qξj ,
we know that R(Q) as defined in (17) is equal to

lim
J→∞

inf
λ≥0,κij≥0

λϵ+
1

N

∑
i∈[N ]

s(i) , subject to

s(i) ≥ f(ξj , κij , λ) ,∀i ∈ [N ] ,∀j ∈ [J ] ,

where

f(ξ, κ, λ) = −ξ⊤Qξ+
1

λ
ξ⊤Q2ξ − 2ξ⊤Qξ

(i)
T

+
1

4λ
κ⊤HH⊤κ− 1

λ
ξ⊤QH⊤κ+

(
Hξ

(i)
T + h

)⊤
κ ,

Since there are only existence constraints for κij , one can
equivalently write

lim
J→∞

inf
λ≥0

λϵ+
1

N

∑
i∈[N ]

s(i) , subject to

s(i) ≥ min
κij≥0

f(ξj , κij , λ) ,∀i ∈ [N ] ,∀j ∈ [J ] ,

The constraint holding for all j means that there are infinitely
many constraints to satisfy. However, one can collapse all the
constraints for a given i into

s(i) ≥ max
j∈[J]

min
κij≥0

f(ξj , κij , λ) ,∀i ∈ [N ] ,

Interestingly, the cost does not depend on J . This means that
the limit can be moved into the constraint as

inf
λ≥0

λϵ+
1

N

∑
i∈[N ]

s(i) , subject to

s(i) ≥ lim
J→∞

max
j∈[J]

min
κij≥0

f(ξj , κij , λ) ,∀i ∈ [N ] ,

Due to the boundedness of Ξ, the grid GJ fills the entire set
when J tends to ∞. Hence, R(Q) is equal to

inf
λ≥0

λϵ+
1

N

∑
i∈[N ]

s(i) , subject to

s(i) ≥ max
ξ̄∈Ξ

min
κi≥0

f(ξ̄, κi, λ) ,∀i ∈ [N ] . (30a)

In general, one has maxξ̄∈Ξ minκi≥0 f(ξ̄, κi, λ) ≤
minκi≥0 maxξ̄∈Ξ f(ξ̄, κi, λ). This means that (29b) is a
stricter constraint than (30a), yielding a larger infimum.
Nevertheless, if f is not only convex in κ but also concave
in ξ, then Sion’s minimax theorem proves that the max and
min operators commute [34, Corollary 3.3]. This means that
if Q − λ−1Q2 ⪰ 0, (29b) and (30a) are equivalent, which
concludes the proof

Using Proposition 10, we are now ready to prove Lemma
4 by dualizing (29b) to remove the max operator, and by
using Schur’s complement to obtain linear inequalities. We
start by highlighting that (29b) contains the maximization of
the quadratic cost

− ξ̄⊤(Q− λ−1Q2)ξ̄︸ ︷︷ ︸
quadratic

− ξ̄⊤(2Qξ
(i)
T +λ−1QH⊤κi)︸ ︷︷ ︸

linear

+
1

4λ
κ⊤i HH

⊤κi +
(
Hξ

(i)
T + h

)⊤
κi︸ ︷︷ ︸

constant

,

subject to convex polytopic constraints H ξ̄ − h ≤ 0. The
dual problem is therefore given by [31] as

min
µi≥0

−µ⊤
i h+

(♣)︷ ︸︸ ︷
1

4λ
κ⊤iHH

⊤κi+
(
Hξ

(i)
T +h

)⊤
κi

+
1

4

∥∥∥H⊤µi−
1

λ
(HQ)⊤κi−2Qξ

(i)
T

∥∥∥2
Q2

, (31a)

subject to Pλ

(
H⊤µi−

1

λ
(HQ)⊤κi−2Qξ

(i)
T

)
= 0, (31b)

where ∥ · ∥2Q2
= ·⊤Q2 ·, Q2 = (Q − λ−1Q2)†, and Pλ is

the projection on null(Q†
2) = null(λI −Q). Note that Pλ =

I − (λI − Q)†(λI − Q) is symmetric, commutes with Q
and Q−1, and is equal to both its square and pseudo-inverse.
Since we are looking for an upper bound for R(Q) when
λ ≤ λmax(Q), we can replace (31b) by the stricter constraint

PλH
⊤µi = 0 , Pλ

(
2λξ

(i)
T +H⊤κi

)
= 0, (32)

as it leads to a larger minimum if Pλ ̸= 0 and as it is
equivalent for any λ > λmax(Q) because Pλ = 0. Moreover,
the last term of (31a) can be split as

1

4

∥∥∥2Qξ
(i)
T +

1

λ
(HQ)⊤κi

∥∥∥2
Q2

− 1

2

(
2Qξ

(i)
T +

1

λ
(HQ)⊤κi

)⊤
Q2H

⊤µi +
1

4
µ⊤iHQ2H

⊤µi ,



or equivalently,
1

4
(2λξ

(i)
T +H⊤κi)

⊤(λ2Q−1−λI)†(2λξ(i)T +H⊤κi) (33a)

− 1

2

(
2λξ

(i)
T +H⊤κi

)⊤
(λI −Q)†H⊤µi (33b)

+
1

4
µ⊤iHQ2H

⊤µi , (33c)

In order to obtain some simplifications, we use the fol-
lowing Woodbury-like identities:

(λ2Q−1−λI)† = 1

λ2

(
Q−1− 1

λ
I

)†

=

(
1

λ
Q−1− 1

λ
Q−1+

1

λ2
I

)(
Q−1− 1

λ
I

)†
=(λI−Q)†+

(
1

λ2
I− 1

λ
Q−1

)(
Q−1− 1

λ
I

)†
=(λI−Q)†− 1

λ
(I − Pλ) (34a)

Q2 = λQ−1(λI −Q)†, (34b)

= (I + λQ−1 − I)(λI −Q)†

= (λI −Q)† +Q−1(I − Pλ)

= (λI −Q)† +Q−1 − PλQ
−1Pλ. (34c)

We plug (34a), (34b), and (34c) into (33a), (33b), and (33c),
respectively, which gives

(33)=
1

4

∥∥∥2λξ(i)T +H⊤κi

∥∥∥2
(λI−Q)†

−

(♠)︷ ︸︸ ︷
1

4λ

∥∥∥2λξ(i)T +H⊤κi

∥∥∥2
2

+
1

4λ

∥∥∥2λξ(i)T +H⊤κi

∥∥∥2
Pλ

}
(⋆) (35a)

− 1

2

(
H⊤κi+2λξ

(i)
T

)⊤
(λI−Q)†H⊤µi (35b)

+
1

4
∥H⊤µi∥2(λI−Q)†+

1

4
∥H⊤µi∥2Q−1︸ ︷︷ ︸

(♦)

−1

4
∥PλH⊤µi∥2Q−1︸ ︷︷ ︸

(⋆)

. (35c)

The terms (♣) in (31a) can be grouped by completing the
squares as

1

4λ

∥∥∥2λξ(i)T +H⊤κi

∥∥∥2
2︸ ︷︷ ︸

(♠)

−λ∥ξ(i)T ∥22 + κ⊤i h , (36)

We remark that the terms marked by (♠) in (36) and (35c)
cancel out, and that the terms marked by (⋆) in (35) can be
factorized as

(2λξ
(i)
T +H⊤κi+H

⊤µi)
⊤Pλ

(
2ξ

(i)
T +

1

λ
H⊤κi−Q−1H⊤µi

)
, (37)

because the cross terms are in the null space of (λI − Q).
The constraint (31b) implies that (37) is zero, so the terms
marked by (⋆) in (35) cancel out. Finally, all remaining
terms besides (♦) in (35c) can be factorized. Hence, the
dual problem (31a) is equal to

min
µi≥0

h⊤(κi−µi) +
1

4
∥H⊤µi∥2Q−1−λ∥ξ(i)T ∥22 (38)

+
1

4

∥∥∥2λξ(i)T +H⊤(κi−µi)
∥∥∥2
(λI−Q)†

,

In general, the right-hand side of (29b) is smaller than
(38), which means that s(i) ≥ (38) implies (29b). Moreover,
if λI − Q ⪰ 0, the problem (38) is a convex and strictly
feasible QP. Strong duality therefore shows that the right-
hand side of (29b) is equal to (38) in this case. Finally,
we replace the upper bound on a minimum by an existence
constraint and perform the change of variable ψi = κi − µi
to rewrite (29b) as

s(i) ≥ h⊤ψi−λ∥ξ(i)T ∥22+
︷ ︷
1

4
µ⊤i HQ

−1H⊤µi

+
1

4

(
2λξ

(i)
T +H⊤ψi

)⊤
(λI−Q)†

(
2λξ

(i)
T +H⊤ψi

)
︸ ︸.

Applying Schur’s lemma to the two terms highlighted with
brackets and with (32), we obtain

R(Q) ≤ inf
λ≥0,µi≥0,
ψi≥−µi

λϵ+
1

N

∑
i∈[N ]

s(i) ,

subject to ,∀i ∈ [N ] :

PλH
⊤µi = 0,s

(i)−h⊤ψi+ 1
4λ

∥∥∥2λξ(i)T +H⊤κi

∥∥∥2
Pλ

+λ∥ξ(i)T ∥22 ⋆ ⋆

2λξ
(i)
T +H⊤ψi 4(λI−Q) ⋆
H⊤µi 0 4Q

⪰0,

where the equality holds when λI − Q ⪰ 0. We highlight
that Pλ = 0 if λI −Q ≻ 0. Moreover, Pλ(2λξ

(i)
T +H⊤κi) =

0 because both PλH
⊤µi and Pλ(2λξ

(i)
T + H⊤ψi) are zero.

Finally, the constraint PλH⊤µi = 0 can be enforced as LMI
using Schur’s complement of α−µ⊤

iH(λI−Q)†H⊤µi with
an arbitrarily large α, which concludes the proof.

F. Proof of Lemma 6

The proof is conducted in three parts. First, we rewrite
the quadratic form Φ⊤DΦ as a matrix Q to obtain linear
constraints. Second, we analyze the suboptimality when Q ≻
0 and show that it vanishes when Q → Φ⊤DΦ. Third and
finally, we rewrite all the constraints as LMIs.

We start by showing that

R(Φ⊤DΦ) = min
Q⪰Φ⊤DΦ

R(Q). (39)

Recall the definition

R(Q) := sup
Q∈Bϵ

EξT∼Q ξ⊤TQξT ,

and note that for any ξT ∈ Ξ, if Q ⪰ Φ⊤DΦ the following
inequality holds

ξ⊤TQξT ≥ ξ⊤TΦ
⊤DΦξT .

Hence, because probability distributions are non-negative and
integrals preserve the order, one has

EξT∼Q
[
ξ⊤TQξT

]
≥ EξT∼Q[ξ

⊤
TΦ

⊤DΦξT ],

for any probability distribution Q and therefore also for
the worst one. Hence, Q ⪰ Φ⊤DΦ implies that R(Q) ≥



R(Φ⊤DΦ). Moreover, the equality is attained because
Φ⊤DΦ ∈ argminQ⪰Φ⊤DΦ R(Q).

The proof continues by showing

R(Φ⊤DΦ) = min
Q⪰Φ⊤DΦ

lim
η→0

R(Q+ |η|I). (40)

Note that R(Q) = R(limη→0Q+ |η|I), where one can take
the limit out of the risk using the inequality

R(Q) + |η| max
ξT∈Ξ

∥ξT ∥22 ≥ R(Q+ |η|I) ≥ R(Q), (41)

which holds if Ξ is bounded. This means that the limit for
η → 0 is squeezed between two values that tend towards
R(Q).

We finish the proof by expressing Q ⪰ Φ⊤DΦ as a Schur
complement. This yields[

Q− ηI Φ⊤D
1
2

D
1
2Φ αI

]
⪰ 0 . (42)

Combining (40) and (42) yields (21), which concludes the
proof.

G. Proof of Lemma 7

Lemma 7 is a direct consequence of applying Proposition
2 to the definition (4). Indeed, with GJ+1 = 0 and gJ+1 = τ ,
one can rewrite (14) as (15) by setting aj = γ−1GjΦ, bj =
γ−1(gj − τ + γτ). This means that (14) is equivalent to

inf
ρ≥0,κij≥0

ρϵ+
1

N

∑
i∈[N ]

s(i) ≤ 0 ,

subject to ,∀i ∈ [N ] ,∀j ∈ [J + 1] :

s(i) ≥ 1

γ
(gj−τ+γτ)−

1

γ
G⊤
j Φξ

(i)
T +

(
Hξ

(i)
T +h

)⊤
κij

+
∥H⊤κij∥22

4ρ
− 1

2ργ
G⊤
j ΦH

⊤κij+
∥Φ⊤Gj∥22
4ργ2

.

One can factorize the last three terms of the constraint and
do the change of variable ζ(i) = s(i)+γ−1τ−τ , which gives

inf
ρ≥0,κij≥0

ρϵ− 1

γ
τ + τ +

1

N

∑
i∈[N ]

ζ(i) ≤ 0 , (43a)

subject to ,∀i ∈ [N ] ,∀j ∈ [J + 1] :

ζ(i) ≥ 1

γ
gj−

1

γ
G⊤
j Φξ

(i)
T +

(
Hξ

(i)
T + h

)⊤
κij (43b)

+
1

4ργ2
(Φ⊤Gj−γH⊤κij)

⊤(Φ⊤Gj−γH⊤κij).

Finally, a zero upper-bound constraint on an infimum is
equivalent to an existence constaint. Moreover, because ρ ≥
0, (43b) can be written as an LMI using Schur’s complement,
which concludes the proof.
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