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Abstract

In this thesis we study how physical principles imposed on the S-matrix, such as Lorentz

invariance, unitarity, crossing symmetry and analyticity constrain quantum field theories at

the nonperturbative level. We start with a pedagogical introduction to the S-matrix bootstrap

and showcase some basic consequences, such as the Froissart bound on the total cross-section.

We then more carefully revisit and extend old results from 1960s including an interesting

relation between large spin, low energy data and Landau singularities. We revisit the Aks

theorem asserting the necessity of particle production in relativistic scattering in d > 2. We

establish the nonperturbative support for the spectral density, which is needed for a double

dispersive representation of the scattering amplitude (or Mandelstam representation). This is

a result of an extensive Landau and graph-theoretical analysis in which the leading inelastic

Landau curves are determined and in particular an infinite subclass of these curves are

found to accumulate at finite energies. We also consider the scattering of heavier particles

where so-called anomalous thresholds are present. We show that anomalous thresholds are

a consequence of the aforementioned principles and a key extra assumption: analyticity in

the mass. We find a nonperturbative formula for the imaginary part across the anomalous

threshold which, in particular, is shown not to be positive definite. Finally, we add form factors

and spectral densities of local operators to the bootstrap setup, such as the stress-energy

tensor. This let us include information about the UV conformal field theory and allows to

better target certain quantum field theories such as Ising field theory.

Keywords: Quantum field theory, S-matrix, bootstrap, nonperturbative, Landau singularity,

anomalous threshold, form factor, spectral density.
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Résumé

Dans cette thèse, nous étudions comment les principes physiques imposés sur la matrice S, tels

que l’invariance de Lorentz, l’unitarité, la symétrie de croisement et l’analyticité, contraignent

les théories quantiques des champs de manière non perturbative. Nous commençons par

une introduction pédagogique au bootstrap de la matrice S et mettons en évidence quelques

conséquences de base, telles que la borne de Froissart sur la section efficace totale. Nous

revisitons ensuite en détail et étendons d’anciens résultats des années 1960, y compris une

relation intéressante entre le grand spin, les données à basse énergie et les singularités de

Landau. Nous réexaminons le théorème d’Aks qui affirme la nécessité de la production de

particules lors de la diffusion relativiste en d > 2. Nous établissons le support non perturbatif

de la densité spectrale, qui est nécessaire pour une représentation doublement dispersive

de l’amplitude de diffusion (ou représentation de Mandelstam). Ceci est le résultat d’une

Landau-analysis approfondie et de la théorie des graphes dans laquelle les courbes de Lan-

dau inélastiques dominantes sont déterminées et où, en particulier, nous identifions une

sous-classe comprenant une infinité de courbes s’accumulant à des énergies finies. Nous

considérons également la diffusion de particules plus massives où des seuils anormaux sont

présents. Nous montrons que les seuils anormaux sont une conséquence des principes men-

tionnés précédemment et d’une hypothèse clé supplémentaire : l’analyticité de la masse. Nous

derivons une formule non perturbative pour la partie imaginaire à travers le seuil anormal

qui, en particulier, est montrée ne pas être définie positive. Enfin, nous ajoutons des facteurs

de forme et des densités spectrales d’opérateurs locaux à la configuration du bootstrap, tels

que le tenseur énergie-impulsion. Cela nous permet d’inclure des informations sur la théorie

quantique des champs conforme dans les UV et permet de cibler plus précisément certaines

théories quantiques des champs telles que la théorie des champs de Ising.

Mots clés : Théorie quantiques des champs, matrice S, bootstrap, nonperturbative, singularité

de Landau, seuil anormal, facteur de forme, densité spectrale.
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1 Introduction

Smoothness has been a guiding principle for physics as we know it. Fermi used to say “when

in doubt, expand in a power series" [2]. It is a general observation that ‘laws’ of physics can

typically be written in the form of differential equations. However, since the past century we

have been faced with a shift in this paradigm. From the magnetization of a ferromagnet across

its critical temperature to the scattering cross-section of proton-proton collisions at the Large

Hadron Collider (LHC), many physical observables are not smooth. Quantum field theory

(QFT) is a universal framework that lives in the space of distributions and is applicable across

this range of phenomena.

Remarkably, in QFT, smoothness still plays a crucial role - but in the complex momentum plane

- in the form of analyticity. For instance, the total cross-section is related to the discontinuity

of an analytic function: the scattering amplitude. A further consequence of QFT is that the

same analytic function describes distinct scattering processes, a property known as crossing

symmetry, where different physical scattering regions are connected by some analyticity

domain. Furthermore, all the scattering outcomes must add up to one, according to basic

quantum mechanics, which translates into a distribution-valued constraint, unitarity of the

scattering amplitude.

The S-matrix bootstrap aims at finding the space of amplitudes carved out by the constraints

of analyticity, crossing and unitarity. The S-matrix program arose in the 60s as a way to tackle

the problem of the strong interactions. However, imposing all the constraints in a predictive

way proved difficult until, eventually, Quantum Chromodynamics (QCD) rose to prominence

with the observation of deep inelastic scattering and the discovery of asymptotic freedom,

which allowed the use of Feynman perturbation theory at high energies.

Today, nonetheless, our understanding of QFT, especially non-perturbative QFTs like low en-

ergy QCD, is far from complete. Because it’s based on general physical principles, the S-matrix

bootstrap remains a valid tool, worth revisiting with modern analytical and computational

methods.

1



Chapter 1. Introduction

The modern incarnation of the numerical S-matrix bootstrap focus on constraining classes of

QFTs by placing bounds on several observables such as couplings or scattering lengths, which

is particularly relevant in the study of effective field theories (EFTs). Namely, in understanding

which EFTs, such as gravitational theories, admit a UV completion consistent with basic

physical principles, or, conversely, in mapping out the set of EFTs consistent with a certain

expected spectrum or global symmetries coming from an already known UV completion whose

renormalization group flow to the IR is strongly coupled, as is the case of QCD. Considerable

progress has been done in several of these directions - see the recent Snowmass paper [3] for a

more in-depth overview.

We should not proceed without mentioning that in recent years we have witnessed an “on-

shell" revolution where these bootstrap principles have also been put to use in perturbation

theory and have lead to simplifications and considerable progress in our computational ability

when compared to the usual QFT Feynman diagram approach (refer e.g. to [4, 5] for references).

At tree-level or to build the integrand of Feynman integrals, a variety of techniques have been

developed, from recursion relations such as BCFW, to “generalized unitarity" or the double

copy method which makes use of the yet mysterious color-kinematics duality, which for

example relates gravitational and Yang-Mills amplitudes. At loop level, direct integration can

be done numerically and, to a lesser extent, analytically via differential equation methods with

so-called integration by part identities. These techniques have a wide range of applicability

ranging from integrable theories, such as N = 4 Super Yang-Mills, where they have had the

most success, to state-of-the-art real world predictions, e.g. of classical black hole scattering

relevant for gravitational wave astronomy.

In what follows we will introduce the three key bootstrap principles and then showcase

some basic consequences of these principles. First, at the perturbative level we will show

how Newton’s law of universal gravitation arises from bootstrap considerations and then

nonperturbatively - as is the main topic of this thesis - we will show one consequence at

small energies, the necessity of “weird" singularities, so-called Landau curves, and one at

large energies, namely the Froissart bound on total scattering cross-section. We then briefly

summarize and outline the thesis.

1.1 The scattering amplitude: unitarity, analyticity and crossing

symmetry

Let |in〉 be an in-going state in a scattering experiment and |out〉 an out-going state. The

S-matrix operator connects both states:

|out〉 = Ŝ |in〉 (1.1.1)
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1.1 The scattering amplitude: unitarity, analyticity and crossing symmetry

These states are assumed free, momentum eigenstates, or n-particle states.1 We are interested

in studying the case in which the particles interact, i.e. |out〉 ̸= |in〉. So it is natural to separate

Ŝ = 1+ i T̂ (1.1.2)

where T̂ is the interacting part.

Matrix elements of T̂ involving n-particle momentum states will take the form

〈
k⃗1, . . . , k⃗m

∣∣∣ T̂
∣∣p⃗1, . . . , p⃗n

〉= (2π)4δ4

(∑
i

pi −
∑

i
ki

)
Tn→m

(
pi ·p j , pi ·k j ,ki ·k j

)
(1.1.3)

where energy-momentum conservation requires the presence of the delta function and where

the scattering amplitude Tn→m , due to Lorentz invariance, may only depend on dot products

of momenta.

For example, for the scattering of two particles with momenta p⃗1 and p⃗2 going into k⃗1 and k⃗2

we typically write

T (s, t ) ≡ T2→2(s, t ) (1.1.4)

where s and t , known as Mandelstam variables, are related to momenta dot products,

s = (p1 +p2)2, t = (p1 −k1)2, u = (p1 −k2)2, (1.1.5)

with s + t +u =∑
i m2

i , where mi is the mass of particle i .

s and t are related to the center of mass total energy EC M and the scattering angle θ. In the

equal mass case mi = m these read

EC M =p
s, cosθ = 1+ 2t

s −4m2 . (1.1.6)

Note that

EC M ≥ 2m, −1 ≤ cosθ ≤ 1 =⇒ s ≥ 4m2, 4m2 − s ≤ t ≤ 0 (1.1.7)

Scattering amplitudes satisfy the following properties

• Unitarity. Total probability conservation requires the S-matrix to be a unitary operator,

Ŝ†Ŝ = 1 ⇐⇒ 2Im T̂ = T̂ †T̂ (1.1.8)

1We will purposefully avoid rigour in favor of emphasizing the main ideas and tools used in this thesis. Please
refer to the first chapter or standard texts [6] for further details.
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Chapter 1. Introduction

Figure 1.1: Graphical representation of the 2 → 2 scattering amplitude T (s, t ).

Bra-ketting with n-particle states and making use of the identity operator

1=∑∫
n=1

∣∣p⃗1, . . . , p⃗n
〉〈

p⃗1, . . . , p⃗n
∣∣ (1.1.9)

leads to a relation between scattering amplitudes involving different number of particles.

For example, bra-ketting with 2-particle states leads to a relation of the type

2ImT (s, t ) = |T2→1|2δ(s −M 2) + ∑∫
n=2

T ∗
2→n(s, . . . )T2→n(s, . . . )Θ

(p
s −

n∑
i

mi

)
(1.1.10)

where the integration is over the ‘dotted’ variables which are omitted for visual clarity.

The theta-function follows from energy conservation, ensuring support whenever there

is enough center of mass energy
p

s to produce n particles. For n = 1, the delta-function

comes from the trivial fact that a single particle is always at rest in its center of mass.

Figure 1.2: Graphical representation of unitarity, equation (1.1.10). On the left, the imaginary part of
discontinuity of the amplitude. On the right the sum over intermediate processes.

• Analyticity. Scattering amplitudes still make sense when the momenta are taken com-

plex. They are analytic functions of their variables, and this is related to causality. In

fact, in the physical region for scattering where s ≥ (m1+m2)2, where eq. (1.1.10) applies,

we should actually evaluate the amplitude slightly above the real axis,

Tphysical(s, t ) = lim
ϵ→0+ T (s + iϵ, t ). (1.1.11)

This is known as Feynman iϵ-prescription, and the necessity for it will be obvious shortly.

Amplitudes are still real functions, whenever s, t are real (one can think of them as

4



1.1 The scattering amplitude: unitarity, analyticity and crossing symmetry

potentials). This property is preserved in the complex plane as real analyticity, which

for the 2 → 2 amplitude amounts to

T ∗(s, t ) = T (s∗, t∗). (1.1.12)

This implies that ImT (s, t ) = 0 for s, t real, which appears to contradict equation (1.1.10),

unless (1.1.11) prescription is taken, in which case

ImTphysical(s, t ) = DiscsT (s, t ) ≡ lim
ϵ→0+

T (s + iϵ, t )−T (s − iϵ, t )

2i
. (1.1.13)

Unitarity is then an equation for the discontinuity of the amplitude. It implies the

presence of branch cuts, whose branch points are at production thresholds s = (
∑

i mi )2.

We call these branch cuts normal thresholds. At first sight unitarity may seem like a

weird constraint. However, noting that analytic functions are essentially determined

by their analytic structure (via e.g. dispersion relations), then unitarity becomes very

useful because it specifies some of the branch cuts, at least in the s plane. What about

the analytic structure in t?

Figure 1.3: The amplitude is an analytic function of s and t . Here we represent the branch cuts and
poles due to unitarity and their crossing symmetric images. In particular, in the s-channel, for s = M 2

due to the exchange of a single particle of mass M , n = 1 in eq. (1.1.10) and the branch cuts for
multi-particle production for s ≥ 4m2, n ≥ 2 in (1.1.10). The regions for physical scattering are also
represented in red (s-channel), green (t-channel) and blue (u-channel). In particular, region (1.1.7)
for the s-channel, 0 ≤ t ≤ 4m2 − s and s ≥ 4m2 slightly above the cut, according to (1.1.11). The partial
wave decomposition (1.3.2) converges for t in this region but also in the mass gap where 0 < t < M 2.

• Crossing Symmetry. This property is special to quantum field theory. It states that
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Chapter 1. Introduction

scattering amplitudes are permutation invariant in the momenta,

T (s, t ,u) = T (t , s,u) = T (s,u, t ). (1.1.14)

This follows from the fact that the amplitude is the “Fourier transform" of the quantum

field correlator, via the LSZ reduction formula [6],

T (s, t ) =
∫ ∏

i
d 4xi (□+m2

i )〈φ̂(x1)φ̂(x2)φ̂(x3)φ̂(x4)〉e−i p1·x1−i p2·x2+i p3·x3+i p4·x4 (1.1.15)

where the correlator 〈φ̂(x1)φ̂(x2)φ̂(x3)φ̂(x4)〉 is permutation invariant.

More than permutation invariance (1.1.14), crossing is also an analyticity statement:

namely, that the above formula still makes sense in the different physical regions and, in

particular, that there is an analyticity domain connecting them, e.g. from the s-channel

physical region, where s ≥ 4m2, to the t-channel, where s < 0 now corresponds to a

scattering angle.

Crossing symmetry then leads to further branch cuts due to unitarity on the other

physical scattering channels. Assuming that no other singularities are present (which is

an unproven assumption known as maximal analyticity) we end up with the analyticity

domain shown in fig. 1.3.

1.2 Bootstrapping Newton’s law of universal gravitation

We scatter two different particles of masses m and M , with initial momenta p⃗ and P⃗ and final

momenta p⃗ ′ and P⃗ ′, respectively, and let their interaction be mediated by a massless particle,

a ‘graviton’ g .

We want to compute the TmM→mM (s, t) scattering amplitude, and see how Newton’s law of

gravitation is recovered in the non-relativistic limit.

We start by noting that since the graviton is not an external state, it can only appear as

an ‘intermediate’ state in unitarity (1.1.10). For example as a single intermediate graviton

involving a three point coupling T2→g .

Now,

1. Gravity should not change particle type, so the only non-zero three-point amplitudes

can be Tmm→g and TM M→g .

2. Gravity is universal which requires Tmm→g and TM M→g to be related via m ↔ M .

3. No non-trivial Lorentz invariant can be built out of the three momenta (due to momen-

tum conservation), so the three-point amplitudes are constant.
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1.2 Bootstrapping Newton’s law of universal gravitation

4. The three-point amplitudes have dimensions of mass, while the gravitational constant

G has dimensions of mass−2.

These considerations lead to

Tmm→g = m f (Gm2), TM M→g = M f (GM 2), (1.2.1)

for some real function f .

These 3-point amplitudes do not appear in the unitarity equation for mM → mM but they do

appear for the crossing-related process mm → M M . In which case unitarity reads

DiscsTmm→M M (s, t ) = Tmm→g TM M→g δ(s)+ . . . (1.2.2)

Dropping the ‘. . . ’ which we assume to contribute at higher orders in G , and making use of

Disc( 1
s ) =−δ(s), implies

Tmm→M M (s, t ) =−mM f (Gm2) f (GM 2)

s
(1.2.3)

Crossing then implies

TmM→mM (s, t ) = Tmm→M M (t , s) =−mM f (Gm2) f (GM 2)

t
(1.2.4)

Figure 1.4: Diagrammatic representation of equation (1.2.4).

In the non-relativistic limit we have

t = (p −p ′)2 ≈−|⃗k|2, (1.2.5)

where k⃗ = p⃗ − p⃗ ′ is the exchanged momentum (or the graviton’s momentum).

To find the potential we connect with quantum mechanics, where at leading order, i.e. in the

Born approximation, the scattering amplitude is the Fourier transform of the potential. So we
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have

V (⃗r ) = 1

mM

∫
d 3k⃗ e i k⃗ ·⃗r TmM→mM (⃗k), (1.2.6)

up to some numerical factor.2

We find

V (⃗r ) =− f (Gm2) f (GM 2)

|⃗r | = −ℏc
f
(

Gm2

ℏc

)
f
(

GM 2

ℏc

)
|⃗r | (1.2.7)

where in the last step we reinstated factors of ℏ and c. Requiring the final answer to be

independent of either of them leads to f (x) =p
x and we recover Newton’s law

V (⃗r ) =−GMm

|⃗r | . (1.2.8)

To arrive here we have assumed the equivalence principle, encapsulated in assumptions 1.

and 2. These in fact become a necessity if, instead of a scalar, the graviton is taken to have spin

2 [5]. In this case the amplitude (1.2.4) will be different, but the non-relativistic limit derived

here will be the same.

We have also assumed that the extra terms in unitarity are subleading, which should only hold

for sufficiently small coupling G . These corrections can however be systematically taken into

account to iteratively build the amplitude in powers of G [5].

1.3 Large spin bootstrap and the need for Landau singularities

Let us now explore some simple nonperturbative consequences of unitarity, analyticity and

crossing. The strategy will be as follows. Instead of assuming the interaction to be weak, we

will simplify the bootstrap constraints by focusing on specific regions of s and t , which will

allow us to conclude something about the nonperturbative amplitude in these regions.

One basic observation is that for small enough center of mass energy
p

s there should be no

particle production i.e. unitarity should only involve 2 → 2 scattering. In this case, only the

n = 2 eq. (1.1.10) term should have support and we have a closed equation for the amplitude

itself, elastic unitarity:

DiscsT (s, t ) =
∫

d t1d t2 K (t , t1, t2)T ∗(s, t1)T (s, t2) (1.3.1)

where K (t , t1, t2) represents the 2-body phase space kernel whose precise form does not

2The pre-factor of 1/mM ensures the potential has the right mass dimension and it comes e.g. from matching
the cross-section in QM and QFT:

( dσ
dΩ

)
QM ∝ |µṼ (⃗k)|2, where µ = mM

m+M is the reduced mass and Ṽ (⃗k) is the

Fourier transform of V (⃗r ), whereas
( dσ

dΩ

)
QFT ∝|T2→2(s, t )|2/s with s ≈ (m +M)2 in the non-relativistic limit.
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1.3 Large spin bootstrap and the need for Landau singularities

concern us for now.

Eq. (1.3.1) is still a complicated integral equation. We can simplify it by changing variables.

In particular, we can project onto angular momentum eigenstates in which the S-matrix is

expected to be diagonal (owing to rotational invariance). The spin J amplitude, or partial wave

f J (s), is related to the scattering amplitude T (s, t ) in the familiar way

T (s, t ) =
∞∑

J=0
(2J +1) f J (s)P J (z) (1.3.2)

where z is the cosine of the scattering angle given by eq. (1.1.6) and P J is the Legendre

polynomial.

The partial wave decomposition (1.3.2) not only converges in the physical region −1 < z < 1,

or 4m2 − s < t < 0, but also for z > 1 or positive t > 0 until the nearest singularity of T (s, t ), say

a t-channel pole at t = M 2. We call this region the mass gap (see figure 1.3).

In this region the Legendre polynomial will grow exponentially with J ,

P J (z) →λJ (z), J →∞, with λ(z) = z +
√

z2 +1 > 1. (1.3.3)

Therefore, in order for the partial wave decomposition to converge (1.3.2) we must have

exponential decay of the partial wave3

f J (s) ∼ [
λM (s)

]−J , J →∞, with λM (s) ≡λ(
z(s, M 2)

)> 1 (1.3.4)

We therefore see the first hints of the interesting connection

Analytic structure in t ↔ Large spin J behavior (1.3.5)

With this in mind we go back to unitarity. In terms of f J (s), elastic unitarity (1.3.1) simplifies

greatly:

Im f J (s) = | f J (s)|2 (1.3.6)

Making use of (1.3.4) we see that the large spin decay of the imaginary part is much stronger

compared to the real part,

Im f J (s) ∼ [
λM (s)

]−2J , J →∞. (1.3.7)

Owing to (1.3.5), we may now wonder what this stronger spin decay implies for the analytic

structure in t .

3Note that if we also send s →∞ keeping the impact parameter b = Jp
s/2

fixed we find fb ≡ lims→∞ fb
p

s (s) ∼
e−bM which is the expected Yukawa-like decay.
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Namely, the object

DiscsT (s, t ) =
∞∑

J=0
(2J +1)P J (z) Im f J (s) (1.3.8)

should have a large domain of convergence in t . The sum will stop converging once

λ(z)Jλ−2J
M ∼ 1, (1.3.9)

which occurs for

λ(z(s, t )) =λ2
M (s) =⇒ t = tLC (s) = 4M 2

(
s −4m2 +M 2

s −4m2

)
, (1.3.10)

this is a Landau curve.

So, even though T (s, t ) is singular at t = M 2, unitarity implies that the discontinuity DiscsT (s, t )

will be regular at this point and beyond, to only be singular at the Landau curve t = tLC (s) > M 2.

This singularity appears in perturbation theory, for example in the box diagram (see fig. 1.5),

but here we showed that it is a nonperturbative feature of the amplitude.

Figure 1.5: Feynman diagram singular at the Landau curve (1.3.10).

1.4 Unitarity meets the Mass gap: The Froissart bound on the total

cross-section

We have explored a consequence of unitarity, crossing and analyticity at small energies s

where particle production is absent. Let us now constrain the amplitude at large energies,

in particular in the way it grows as s → ∞. This will translate into a bound on the total

cross-section, via unitarity (1.1.10)

σ(s) = 1

s

∑∫
n
|T2→n(s, . . . )|2 = ImT (s,0)

s
. (1.4.1)

This relation is known as the optical theorem.
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Making use of the partial wave decomposition (1.3.2), we have

ImT (s,0) =
∞∑

J=0
(2J +1)Im f J (s) (1.4.2)

and unitarity in terms of f J (s), for any s, can be put into an inequality, as every term in the

RHS of (1.1.10) will contribute positively when written in terms of partial waves,

Im f J (s) ≥ | f J (s)|2 (1.4.3)

This implies that each partial wave cannot be arbitrarily large. Relevant for bounding the total

cross-section from above is the upper bound

Im f J (s) ≤ 1. (1.4.4)

Note however that this upper bound on Im f J (s) by itself does not put an upper bound on

ImT (s,0) in eq. (1.4.2). We can however ally this with the fact that there is a mass gap which

implies the large spin behavior (1.3.7). This in turn implies that the unitarity upper bound

(1.4.4) cannot be saturated at large spins.

Let us now estimate the “critical" spin J = J∗ beyond which the exponential decay dominates

over the unitarity bound in s →∞ limit.

Figure 1.6: Profile in spin J of an amplitude with maximal cross-section. Unitarity (1.4.4) is saturated
until a critical spin J∗, above which the large spin decay ensues (1.3.4). It is still an open problem
whether such a physical amplitude exists.

This requires knowing the large s-dependence of the pre-factor of f J (s) ∼ [
λM (s)

]−J . We will

make the extra assumption of polynomial boundedness, namely that T (s, t)≲ sN , as s →∞,

which in turn puts a bound on the pre-factor4

f J (s) ≲ sN [
λM (s)

]−J , J , s →∞ (1.4.5)

4This follows from sN ≳ ImT (s, t ) =∑∞
J=0(2J +1)P J (z) Im f J (s) > Im f J→∞(s), for t > 0 where P J (z > 1) > 1.
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Now J∗ is defined as

1 ∼ sN [
λM (s)

]−J∗ (1.4.6)

or, qualitatively,

Unitarity ∼ Mass gap×Polynomial boundedness (1.4.7)

which gives

J∗(s) ∼ p
s log s, s →∞ (1.4.8)

and, therefore,

ImT (s,0) =
∞∑

J=0
(2J +1)Im f J (s)≲

J∗(s)∑
J=0

(2J +1)≲ [J∗(s)]2 = s log2(s) (1.4.9)

so we find the Froissart bound on the total cross-section

σ(s →∞)≲ log2(s), s →∞. (1.4.10)

1.5 Outline and executive summary of this thesis

We now briefly outline and summarize the main results of this thesis. Please refer to the initial

section of each chapter for a more in-depth outline.

Chapter 2: An analytical toolkit for the S-matrix bootstrap

In chapter 2 we uncover important analytic results on the nonperturbative S-matrix bootstrap,

and extend them in several directions of current interest. We go further in-depth into what

was already briefly touched upon in the introduction.

Namely, elastic unitarity and its analytic continuation, as originally done by Mandelstam, the

partial wave decomposition and the Froissart-Gribov projection for which the connection

between analyticity in t and large spin J behavior becomes even more apparent.

These tools allow to further leverage unitarity, crossing symmetry and analyticity leading to

many interesting results. For example, the existence of additional Landau curves deeper into

the large t region, the Aks theorem asserting the necessity of particle production in space-

time dimension larger than 2, the fact that the spectral density ρ (double discontinuity of

the amplitude) enjoys some positivity region carved out by a set of Landau curves, and an

interesting connection between large spin (or impact parameter) and low energy data, which

can be directly extracted from experiment (viz. scattering lengths). We put this together in

[7], a work which functions both as a modern review and a beacon for future explorations/im-
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plementations on the numerical bootstrap, having also some relevance for the perturbative

scattering amplitudes community.

Chapter 3: Probing multi-particle unitarity with the Landau equations

As already briefly shown, a non-trivial consequence of the bootstrap constraint is the existence

of additional singularities of the amplitude, Landau singularities. This is made precise in the

elastic regime (see chapter 2) but, so far, not in the multi-particle (MP) regime, due to the

complexity of MP unitarity.

The lowest-lying Landau curves carve out the support for the spectral density of the amplitude,

which is necessary for the Mandelstam representation. In this chapter we uncover the support

of the spectral density in the MP region, by determining the leading MP Landau curves.

Crucially, because Landau singularities are also present in Feynman diagrams, we find them

by solving directly the Landau equations of Feynman diagrams. Solving the Landau equations

is however a non-trivial task, except for the simplest graphs. We start by automating this

procedure in a computationally efficient way.5 Because there are infinitely many graphs, one

still has to understand which graphs could give the leading MP Landau curves. Starting from

all the graphs (for a given number of vertices and vertex degree) we impose several sharp

graph-theoretic constraints based on physical principles, such as limiting the number of

exchanged particles, to identify the leading MP graphs. To solve the problem we have to go to

a considerably large number of vertices (12 vertices).6 About 7 million graphs were analyzed,

from which a few survived. The end result is a seemingly infinite family of Landau curves

accumulating towards the curve

(s −16m2)(t −16m2) = 192m4,

We argue that these accumulations should be even more frequent as one goes deeper into the

MP region. They appear to be a generic feature of QFT.

Chapter 4: Nonperturbative Anomalous Thresholds

Landau curves are singularities on the physical sheet, but in the equal-mass case they always

seem to be hidden by the normal threshold branch cuts, so the analyticity domain remains as

in fig. 1.3.

In the non-equal mass case, however, the situation changes. Feynman diagrams (notably

the triangle diagram) involving heavy enough particles contain branch cuts on the physical

5Our algorithm is implemented on Mathematica. It takes as input a Feynman diagram and outputs the Landau
curve (numerical value). The algorithm takes advantage of several graph-theory tools, such as the incidence matrix
to automate momentum conservation and graph automorphism identification to reduce the system of equations.

6We made use of cutting edge non-isomorphic graph generation (nauty and Traces) and network analysis tools
(igraph).
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sheet - anomalous thresholds - which, unlike normal thresholds and bound-state poles, do

not correspond to any asymptotic n-particle state.

In this chapter we show that anomalous thresholds arise as a consequence of established

S-matrix principles and two reasonable assumptions: unitarity below the physical region and

analyticity in the mass. We find explicit nonperturbative formulas for the discontinuity across

the anomalous threshold in d = 2, and in d = 4, ready to be used in dispersion relations for

bootstrap and phenomenological applications.

Chapter 5: Injecting the UV into the Bootstrap

So far we have been constraining the space of S-matrices consistent with bootstrap principles.

One crucial question however is how to target specific QFTs and one interesting possibility is

to use information about the UV.

A UV complete QFT can be defined non-perturbatively as a conformal field theory (CFT) in

the UV deformed by relevant deformations that trigger a renormalization group (RG) flow

to the IR. We can include information about the UV in the bootstrap by considering states

given by the action of local operators such as the stress-energy tensor. In this way form factors

and spectral densities join the S-matrix in a mixed bootstrap setup.7 Concretely, in d = 2, UV

information can be included via the c-sum rule which relates the spectral density of the trace

of the stress-energy tensor to cUV , the central charge of the UV CFT.

Contrarily to the usual primal bootstrap, which constructs an explicit ansatz for the S-matrix,

we implement a dual approach which can be tackled with SDPB and produces rigorous

bounds at finite numerical truncation (akin to the conformal bootstrap). In chapter 5, we: (1)

find a rigorous lower bound on cUV of a class of Z2 symmetric theories, and (2) target Ising

Field Theory (IFT), which can be thought of as the QFT describing the d = 2 Ising model near

the critical point, i.e. the Ising CFT deformed by both relevant deformations (thermal and

magnetic). By fixing cUV = 1/2 we find the S-matrix and form factor parameter space where

IFT lies inside, for different values of the magnetic field.

7The CFT in the IR is assumed to be empty, such that the QFT has a mass gap and the S-matrix is a well-defined
object.
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2 An analytical toolkit for the S-matrix
bootstrap

2.1 Introduction

The idea of bootstrapping the S-matrix of a unitary, relativistic, gapped theory in d ≥ 3 was

actively pursued in the 60’s. While many interesting results have been derived [8, 9, 10,

11], no nonperturbative physical S-matrices have been computed. The main reason being

that no solid, nonperturbative calculation scheme was ever put forward without relying

on some unreliable approximations. In addition to that, analytic properties of the multi-

point amplitudes were never fully understood. Moreover, even at the level of the two-to-two

scattering amplitude, the region of analyticity that is usually assumed in the bootstrap analysis

has not been rigorously established.

While the problem of analytic properties of multi-point scattering amplitudes is still widely

open, the question of finding a good calculation scheme has recently acquired an interesting

twist with the development of the conformal bootstrap [12, 13]. In this context, by exploring

bounds on the OPE data in the space of solutions to the CFT bootstrap equations, it was found

that sometimes the physical theories of interest saturate the bootstrap bounds [14, 15, 16] and

are in this sense solvable.1 Remarkably, a similar phenomenon was observed for 2d S-matrices

[17, 18, 19, 20], where some previously known two-dimensional scattering amplitudes of

physical theories were found to saturate the bootstrap bounds. We can loosely call such

theories bootstrap-solvable. A fundamental, open question in the S-matrix theory program

therefore is: Are there bootstrap-solvable S-matrices in d ≥ 3?

A distinguishing feature characteristic to scattering in d ≥ 3 dimensions is a remarkable

connection between scattering and particle production. Here, by scattering we mean a non-

trivial 2 → 2 amplitude and by particle production, we mean a non-zero 2 → n amplitude

with n > 2. While scattering without particle production is a commonplace in d = 2 [21], in

d ≥ 3 it is widely believed that scattering implies production [22].2 The underlying reason is

1It is still an open question if the islands observed in the exclusion plots shrink to zero size or not.
2This result is sometimes called the Aks theorem. However, since it relies on some unproven assumptions that

we discuss in detail below, its status is still not completely solid.
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an elegant interplay between analyticity, elastic unitarity and crossing symmetry.

The simplest non-trivial S-matrix element is a 2 → 2 connected scattering amplitude T (s, t ) as

a function of Mandelstam invariants s and t . In a gapped theory, this amplitude is subject to an

exact non-linear equation called elastic unitarity. This equation originates from the fact that

when we scatter the lightest particles in the theory at energies below the first multi-particle

threshold (s0), only two particles can be produced in the final state.3 As a result, unitarity

of the S-matrix becomes a non-linear equation satisfied by T (s, t) for 4m2 < s < s0. It is the

purpose of the present chapter to revisit the implications of elastic unitarity, when combined

with crossing and analyticity, on the structure of the nonperturbative amplitude T (s, t ).

One motivation for our analysis is recent numerical investigations of higher-dimensional

scattering in [1, 23]. In these works elastic unitarity was not imposed and it was observed

that various bootstrap bounds tend to be saturated by purely elastic functions. It is therefore

an interesting, open question how to efficiently implement elastic unitarity and particle

production in the current S-matrix bootstrap program. An obvious way to tackle the problem

is to include higher-point amplitudes in the bootstrap analysis explicitly. However, due to

unknown and complicated analytic properties of higher-dimensional amplitudes it is not clear

if it is feasible in d ≥ 3. Another possible way to make progress, which we will follow in the

present work, is to focus on how to implement structures of the amplitude that are dictated by

elastic unitarity into the current numerical approach of [1, 23]. In this way we hope to be able

to zoom in closer on the physical higher-dimensional S-matrices and, if we are lucky, maybe

eventually solve them. We start by laying out our assumptions that serve as the basis for the

further analytic study.

2.1.1 Assumptions

We assume that in the far past and in the far future states of the system are described by a set

of free particles. The Hilbert space therefore is taken to be the Fock space of free particles.4 For

simplicity we assume that the spectrum contains a single scalar particle of mass m together

with its multi-particle states. Under these conditions it has been rigorously proven that the

amplitude satisfies:

1. Crossing symmetry: for scattering of identical particles we have

T (s, t ) = T (t , s) = T (u, t ) , s + t +u = 4m2 . (2.1.1)

3As such elastic unitarity is absent in theories with massless particles. Similarly, there is no elastic unitarity in
CFTs.

4To the best of our knowledge this assumption, known as asymptotic completeness, does not follow from the
non-zero gap and Wightman axioms, see e.g. [24].
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2. Real analyticity: for scattering of identical particles we have

T (s∗, t∗) = T ∗(s, t ) . (2.1.2)

Our extra assumptions for the connected two-to-two scattering amplitude T (s, t ), which have

not been rigorously established, are the following:

3. Extended analyticity: T (s, t ) is an analytic function for complex s and t in some region

D, except for potential poles in 0 < s < 4m2 and a cut starting at s = 4m2, as well as

images of these singularities under crossing. We will often assume that the region of

analyticity D extends to the full complex s-plane (t-plane) for some finite region in

t-plane (s-plane), but many of our arguments can be adopted to the situation when D

is bounded in both variables simultaneously.5 As usual, T (s, t) stands for the analytic

continuation of the amplitude from the physical regime to the principle sheet – without

going through the multi-particle cuts.

4. Polynomial Boundedness: for fixed t

|T (s, t )| < |s|J0(t ) , |s|→∞ , (s, t ) ∈D . (2.1.3)

The formula above assumes that D includes s =∞ for fixed t . More generally, we will

assume that the amplitude is polynomially bounded on the principal sheet (away from

the bound states poles and multi-particle thresholds).

We also have two extra technical assumptions:

5. Continuity: partial waves f J (s) are real analytic functions in the elastic region 4m2 < s <
s0.6

6. Z2 symmetry and no bound states: for simplicity we assume no bound states in the

spectrum. We also assume that we have a single stable particle of mass m which is odd

under Z2 symmetry. Therefore only an even number of particles can be produced in the

scattering of two particles.

In section 2.2 we review basics of the two-to-two scattering amplitude. We consider scattering

of identical scalar particles and briefly review known analyticity results. We discuss unitarity

and elastic unitarity in terms of T (s, t ). We introduce partial wave expansion and the Froissart-

Gribov formula. We briefly discuss continuity properties of T (s, t ).

5If D =C2 one says that the function is maximally analytic. Maximal analyticity is not necessary for the present
work.

6This is closely related to what is called absence of pathologies a-la A. Martin [25]. We discuss it in more detail
in section 2.2.5.
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Chapter 2. An analytical toolkit for the S-matrix bootstrap

In section 2.3 we consider analytic continuation of elastic unitarity. We first review the deriva-

tion of the Mandelstam equation for the double spectral density ρ(s, t ), or equivalently double

discontinuity of T (s, t ), based on analytic continuation of elastic unitarity in one of the Man-

delstam variables (s or t ). We then discuss its relation to analytic continuation of partial waves

in spin J via the Froissart-Gribov formula. We also consider analytic continuation of elastic

unitarity in energy s. Finally, we exhibit the structure of the Landau-Karplus curves along

which the double spectral density develops a nontrivial support in the elastic region.

We then analyze various implications of elastic unitarity:

• In section 2.4 we discuss positivity properties of double spectral density ρ(s, t). We

review the argument that scattering implies production in d ≥ 3. This result follows

from the combination of crossing symmetry and positivity of ρ(s, t ).

• In section 2.5 we introduce the notion of the threshold expansion for partial waves,

as well as for the first and second discontinuities of the scattering amplitude. The

threshold expansion of partial waves and the discontinuity of the scattering amplitude

is a consequence of elastic unitarity and it describes low-energy or non-relativistic

scattering. The Mandelstam equation then maps it to the expansion of double spectral

density close to the boundary of its nontrivial support, the so-called Kaprlus-Landau

curve.

• In section 2.6 we map the threshold expansion in the t-channel to the large J expansion

of partial wave coefficients in the s-channel. It comes from “inversion” of the threshold

expansion via the Froissart-Gribov formula. Turning to the 1
J corrections we find that

remarkably the computations can be sometimes done exactly in 1
J .

• In section 2.7 we turn the large J results into finite J predictions plus an error estimate.

This error estimate is deducted from a local bound on the discontinuity of the amplitude

in the region s, t > 4m2. No such rigorous bound is known. We discuss natural error

estimates and perform the finite spin, finite energy computations in a simple toy model.

In section 2.8 we consider the modern numerical approach to the S-matrix bootstrap following

[1]. We discuss why and what should be improved in the existing approach. We suggest several

ways in which this approach can be improved. In particular, we discuss various ways to

implement elastic unitarity numerically. In section 2.9 we briefly comment on the relation

between the present analysis and similar ideas in the conformal bootstrap. Finally, in section

2.10 we conclude and present some future directions. Several appendices contain technical

details that should be helpful in understanding the details of our arguments and calculations.
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2.2 Amplitude Basics

2.2 Amplitude Basics

In this section we briefly review the basic kinematics of the two-to-two scattering of identical,

scalar particles to set the conventions for the further analysis. We will repeat some definitions

that were presented in chapter 1 with additional rigor.

As usual we write the S-matrix as

Ŝ ≡ 1̂1+ i T̂ , (2.2.1)

where T̂ is zero in the theory of a free massive scalar. We are interested in the matrix elements

that describe two-to-two scattering

S2,2(p3, p4|p1, p2) ≡ 〈p3, p4|Ŝ|p2, p1〉 , (2.2.2)

where the initial and final states are characterized by the on-shell momenta

p2 = p⃗ 2 − (p0)2 =−m2 , p⃗ 2 =
d−1∑
i=1

(p i )2 , p0 > 0 . (2.2.3)

As in (2.2.1) we can separate the contribution of the disconnected and connected parts of the

S-matrix

S2,2(p3, p4|p1, p2) = S1,1(p3|p1)S1,1(p4|p2)+S1,1(p4|p1)S1,1(p4|p2)+Sc
2,2(p3, p4|p1, p2).

(2.2.4)

The disconnected part is given by an overlap of the one particle states which is uniquely fixed

by Lorentz symmetry

S1,1(p|q) = 111,1(p|q) = 2(2π)d−1
√

p⃗2 +m2 ×δd−1(p⃗ − q⃗) , (2.2.5)

The connected part is the main object of our interest

Sc
2,2(p3, p4|p1, p2) ≡ i 〈p3, p4|T̂ |p2, p1〉 = i (2π)dδd (

p1 +p2 −p3 −p4
)

T (s, t ) . (2.2.6)

In the formula above we introduced Mandelstam invariants

s =−(p1 +p2)2 = 4(m2 + p⃗2) ,

t =−(p1 −p3)2 =−2p⃗2(1−cosθ) ,

u =−(p1 −p4)2 =−2p⃗2(1+cosθ) , (2.2.7)

where in the last equality we wrote their form in the center-of-mass frame, p1 = (m, p⃗), p2 =
(m,−p⃗). Here,

cosθ = 1+ 2t

s −4m2 , (2.2.8)
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Chapter 2. An analytical toolkit for the S-matrix bootstrap

is cosine of the scattering angle. Only two of the Mandelstam invariant are independent while

the third is related to the other two through the relation

s + t +u = 4m2 . (2.2.9)

From above, the dimension of the amplitude is

[T (s, t )] = m4−d . (2.2.10)

2.2.1 Analyticity

In the discussion above scattering matrix elements were defined for physical momenta that

correspond to actual scattering. The starting point of the S-matrix considerations is the

statement that the physical matrix element T (s, t ) is a boundary value of an analytic function

of the relativistic invariants regarded as complex variables

T (s, t ) = lim
ϵ→0

T (s + iϵ, t ) , (2.2.11)

where we assumed s and t to be real and −(s −4m2) < t < 0, 4m2 < s. This corresponds to

scattering in the s-channel 1,2 → 3,4. Using the basic principles of QFT correlation functions,

reduction formulas that relate them to the S-matrix elements, and techniques of analytic

completion one can establish various analytic properties of the scattering amplitudes as

functions of complex s and t , see e.g. [26, 27, 9] for a pedagogical exposition.

The first result of this type is subtracted dispersion relations in s for fixed −t0 < t ≤ 0 in the

physical s-channel region [27, 28]. In this case one has to understand analytic properties

of T (s, t) as a function of complex s. For the case of π0π0 → π0π0 scattering, for which our

treatment applies directly, one can show that T (s, t ) is an analytic function of s with two cuts:

s > 4m2 and u > 4m2, with t0 = 28m2. See Table 1 of [27] for the processes for which a fixed-t

dispersion relation has been proven and the corresponding values of t0.7

Another well-known property, originally due to Lehmann [30], concerns analytic properties

of T (s, t) as a function of t for fixed physical s > 4m2. Lehmann showed that T (s,cosθ) is

analytic inside an ellipse, the so-called Lehmann ellipse, in the cosθ complex plane with

foci at cosθ =±1 and semi-major axis cosθsL > 1 which depends on the details of the theory,

energy and masses of particles, as well as the scattering process. Lehmann also showed that

the absorptive part or discontinuity of the amplitude DiscsT (s,cosθ) is analytic in a larger

ellipse, the so-called large Lehmann ellipse, with a semi-major axis cosθLL = 2cos2θsL −1.

The third class of results concerns analyticity of T (s, t ) when both s and t are complex. Bros,

Epstein and Glaser [31] showed that any point (s,cosθ) in the physical region is surrounded by

7The cases for which a dispersion relation has not been proven, baryon-baryon scattering for instance [27], still
enjoy a domain of analyticity that connects the s- and u-channel cuts. Thus, the property of crossing (see below)
can still be established for these cases [29].
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an analyticity neighborhood whose precise form is not known in general, see e.g. [9] for details.

An explicit domain of simultaneous analyticity in both variables was derived by Lehmann

[32] for elastic processes that obey a fixed-t dispersion relation by continuing the Lehmann

ellipse to complex s. For cases with single variable dispersion relations in all three channels

(as in ππ→ ππ scattering), Mandelstam [33] derived domains of the form |s t | < b for any

complex s and t outside the single variable dispersion relation cuts. For pion scattering the

largest domain occurs for b = 256m4
π. These domains have the drawback that when s →∞ the

Lehmann domain shrinks to the line −t0 < t < 0 and the Mandelstam domain shrinks to the

point t = 0.

Based on the results above, the analyticity domain was further enlarged using unitarity by A.

Martin [34]. The final result is that the amplitude is analytic within |t | < R and s cut-plane. For

scattering of identical particles that we consider in the present chapter R = 4m2. From this

result the standard bounds on high energy behavior of the amplitudes follow. It also follows

that for |t | < 4m2 the scattering amplitude admits fixed t dispersion relations with at most two

subtractions.

Finally, let us introduce the notion of maximal analyticity (or Mandelstam analyticity) which

states that the scattering amplitude is analytic in the (s, t) complex planes with only singu-

larities on the principal sheet being unitarity cuts s, t ,u > 4m2 and bound state poles for

0 < s, t ,u < 4m2. This property is consistent, at least for the scattering of lightest particles in

the theory, with expectations from unitarity and analysis of perturbation theory. However

it is important to keep in mind that it has not been proven. The original attempts to prove

maximal analyticity in perturbation theory [35] were later found to have a loophole [36] which,

to the best of our knowledge, has never been closed even for the scattering of lightest particles.

In this chapter we freely assume analyticity beyond what has been rigorously proven but we

do not assume maximal analyticity.

There are two other properties that we will use. One is crossing

T (s, t ) = T (t , s) = T (u, t ) , (2.2.12)

which states that in particular that scattering in different channels is described by different

boundary values of a single analytic function. For the two-to-two scattering it has been proven

in [29]. Beyond the two-to-two scattering only a partial progress has been achieved [37].

Another property is real analyticity

T (s∗, t∗) = T ∗(s, t ) . (2.2.13)

This was established within axiomatic quantum field theory in [38]. For the S-matrix argument

see e.g. [8].

Finally, let us also mention in a related context the result by A. Martin [39] who showed that

maximal analyticity in the form of the Mandelstam representation together with knowledge
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Chapter 2. An analytical toolkit for the S-matrix bootstrap

of the double spectral density in the elastic region fix the scattering amplitude completely.

Similarly, knowledge of the amplitude at fixed energy in the elastic region as a function of the

scattering angle is believed to fix it almost completely, see e.g. [40].

2.2.2 Unitarity and Elastic Unitarity

In terms of the T -matrix, the unitarity of the S-matrix Ŝ · Ŝ† = 1̂1 reads

1

i
〈p3, p4|T̂ − T̂ †|p2, p1〉 = 〈p3, p4|T̂ · T̂ †|p2, p1〉 (2.2.14)

=
∞∑

n=1

∫
dµ(q1, . . . , q2n)〈p3, p4|T̂ |{qi }2n

i=1〉〈{qi }2n
i=1|T̂ †|p2, p1〉 ,

where in the second line we have inserted a complete basis of asymptotic states and the

Lorentz invariant measure is

dµ(p1, . . . , pn) ≡ 1

n!

n∏
i=1

dµ(pi ) , dµ(p) ≡ 1

(2π)d−1
θ(p0)δ(p2 +m2)d d p . (2.2.15)

Due to the momentum conservation, a 2n-particle intermediate state can only contribute if

s > (2nm)2. Otherwise, there is no enough energy to create an on-shell state with 2n particles.

In particular, for 4m2 < s < 16m2, only two particle states are possible. Hence, in that regime

we can replace the sum in (2.2.14) by the first term and the equation closes on the 2 → 2

transitions only. This is the elastic unitarity regime. Explicitly, we have

2Ts(s, t ) = 1

2

∫
d d−1q⃗ ′

(2π)d−1(2E q⃗ ′)

∫
d d−1q⃗ ′′

(2π)d−1(2E q⃗ ′′)
(2π)dδd (p1 +p2 −q ′−q ′′)T (+)(s, t ′)T (−)(s, t ′′) ,

(2.2.16)

where we have introduced the notations

T (±) ≡ lim
ϵ→0

T (s ± iϵ, t ) , Ts(s, t ) = DiscsT (s, t ) ≡ 1

2i

(
T (+)(s, t )−T (−)(s, t )

)
, (2.2.17)

and t ′ = −(p⃗1 − q⃗ ′)2, t ′′ = −(q⃗ ′′− p⃗4)2. In writing the above we used real analyticity of the

amplitude (2.2.13). Finally, the overall factor of one half is a symmetry factor for identical

bosons.

We will now reduce the integral to an integration over the two scattering angles by performing

all the kinematical integrations explicitly. For that aim, we first go to the center of mass frame

where q⃗ ′ =−q⃗ ′′ ≡ p n⃗, where n⃗ is a unit d −1 vector and p =
p

s −4m2/2. In these variables the

elastic unitarity constraint (2.2.16) becomes

2Ts(s, t ) = pd−2

(2π)d−2(2Ep )2

Ep

4p

∫
d d−2Ωn⃗ T (+)(s, t ′)T (−)(s, t ′′) , (2.2.18)
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where
Ep

2p =
p

s

2
p

s−4m2
is the Jacobian coming from the energy conservation delta-function. The

integrand only depends on the two scatttering angles

z ′ = cosθ′ = p⃗1 · n⃗

|p⃗1|
and z ′′ = cosθ′′ = p⃗3 · n⃗

|p⃗3|
, (2.2.19)

in terms of which we can write the measure as

∫
d d−2Ωn⃗ ≡

1∫
−1

d z ′
1∫

−1

d z ′′Pd (z, z ′, z ′′) where z = cosθ = p⃗1 · p⃗3

|p⃗1||p⃗3|
= 1+ 2t

s −4m2 ,

(2.2.20)

is the cosine of the external scattering angle. We find that (see appendix A.1 for more details)

P3(z, z ′, z ′′) = 2
√

1− z2δ(1− z2 − z ′2 − z ′′2 +2zz ′z ′′) , (2.2.21)

Pd>3(z, z ′, z ′′) = 2π
d−3

2

Γ
(

d−3
2

) (1− z2)
4−d

2
Θ(1− z2 − z ′2 − z ′′2 +2zz ′z ′′)

(1− z2 − z ′2 − z ′′2 +2zz ′z ′′)
5−d

2

.

Using that Ek =p
s/2 , we can write (2.2.18) covariantly as

Ts(s, t ) = (s −4m2)
d−3

2

8(4π)d−2
p

s

1∫
−1

d z ′
1∫

−1

d z ′′Pd (z, z ′, z ′′)T (+)(s, t (z ′))T (−)(s, t (z ′′)) , 4m2 ≤ s ≤ 16m2 ,

(2.2.22)

where t (x) ≡−(s −4m2)(1−x)/2, not to be confused with the external momentum transfer t ,

which is held fixed. The step/delta function in the phase space integration kernel Pd (z, z ′, z ′′)
has a simple geometrical origin, see figure 2.1.

For s > 16m2 and general t the unitarity constraint involves scattering elements with more

than two particles. To get a constraint on the two particle amplitude, we note that T̂ · T̂ † on the

right hand side of (2.2.14) is a positive semi-definite matrix. Hence, for any stateΨwe have

that

〈Ψ|T̂ |{qi }2n
i=1〉〈{qi }2n

i=1|T̂ †|Ψ〉 = |〈Ψ|T̂ |{qi }2n
i=1〉|2 ≥ 0 , (2.2.23)

and hence, if we drop all the contributions with more than two particles in (2.2.14) we get an

inequality for the 2 → 2 scattering matrix

1

i

∫
dµ(p1, p1)dµ(p3, p4)ψ(p1, p2)ψ∗(p3, p4)×〈p3, p4|T̂ − T̂ †|p2, p1〉 (2.2.24)

≥
∫

dµ(p1, p1)dµ(p3, p4)ψ(p1, p2)ψ∗(p3, p4)×
∫

dµ(q1, q2)〈p3, p4|T̂ |q1, q2〉〈q1, q2|T̂ †|p2, p1〉 ≥ 0 .

For example, if we pick a wave function that consists of two particles with a specific momenta

then we have the the amplitude in the forward limit where p3 = p1 and p4 = p2. For this choice
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Figure 2.1: In the elastic strip 4m2 < s < 16m2 the discontinuity of the amplitude comes from two
intermediate particle exchange only. This result in the exact elastic unitarity equation (2.2.22). The
corresponding phase space integration kernel Pd (cosθ,cosθ′,cosθ′′) in (2.2.21) is proportional to
a step/delta function which has a simple geometrical origin. In the center of mass frame we have
three (d −1)-dimensional vectors, p⃗1 =−p⃗2, p⃗3 =−p⃗4, and q⃗ ′ =−q⃗ ′′. The geometrical angles between
these three vectors, {θ,θ′,θ′′} are therefore restricted to the range θ1 +θ2 ≥ θ3, where θ1,2,3 are any
permutation of {θ,θ′,θ′′}.

of wave function, the unitarity constraint (2.2.24) becomes8

Ts(s,0) ≥ (s −4m2)
d−3

2

8(4π)d−2
p

s

1∫
−1

d z ′
1∫

−1

d z ′′Pd (1, z ′, z ′′)T (+)(s, t (z ′))T (−)(s, t (z ′′))

∝
1∫

−1

d z ′(1− z ′2)
d−4

2 |T (+)(s, t (z ′))|2 , s ≥ 16m2 , (2.2.26)

where we used that Pd (1, z ′, z ′′) ∝ δ(z ′− z ′′), see (A.2.7) for the precise formula. We also used

that T (−)(s, t (z ′)) = (
T (+)(s, t (z ′))

)∗
for −1 ≤ z ′ ≤ 1.

2.2.3 Partial Wave Expansion

Unitarity of the S-matrix implies the non-linear integral relations that the 2 → 2 T -matrix has

to satisfy, (2.2.22) and (2.2.24). To simplify these complicated constraints we choose a wave

functionΨ that diagonalizes the T -matrix and therefore also the integral kernel in (2.2.22),

(2.2.24). This can be done using the Lorentz symmetry of the problem. Namely, we decompose

the amplitude T (s, t ) in a complete basis of intermediate states which transform in irreducible

representations of the SO(1,d −1) symmetry. These representations are characterised by their

energy and the little group SO(d −1) angular momentum in the center of mass frame, E and

J . For two particle states the SO(1,d −1) quantum numbers are enough to characterize the

8The unitarity relation in the forward limit is nothing but the optical theorem. In d dimensions it takes the form

Ts (s,0) = Im[T (s,0)] =
√

s(s −4m2)σtot (s) , (2.2.25)

where σtot (s) is the total cross-section, of dimension [σ(s)] = Ld−2.
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states and we have

〈p1, p2|p, J ,m⃗〉∝ δd (p −p1 −p2)Y (d)
J ,m⃗(p̂1) , (2.2.27)

where p2 = E 2, Y (d)
J ,m⃗ are the d-dimensional spherical harmonics, and the energies dependant

pre-factor will not be relevant for us.9 We can now insert a complete basis to these states to

decompose the S-matrix element 〈p3, p4|T̂ |p1, p2〉 in all possible spins. Since the operator T̂

is both, translation and SO(1,d −1) invariant, due to the Wigner-Eckart theorem we have that

f J (p2) ∝ 〈p, J ,m⃗|T̂ |p, J ,m⃗〉
〈p, J ,m⃗|p, J ,m⃗〉 , (2.2.28)

where the convention-dependent proportionality factor is independent of the energy and

and the angular momentum m⃗. These functions are the so-called partial wave coefficients, in

terms of which the amplitude takes the form

T (s, t ) =
∞∑

J=0
n(d)

J f J (s)P (d)
J (cosθ) , (2.2.29)

where the sum runs over all (even) spins and n(d)
J are convention-dependent normalization

factors. Here, P (d)
J (cosθ) are the partial waves. They represents the angular dependence of the

amplitude due to the exchange of all the states with spin J . A simple way of determining these

functions is to go to the center of mass frame and act with the SO(d −1) quadratic Casimir on

the two outgoing particle, while holding the momentum of the two incoming particles fixed.

This equation takes the form[
(1− z2)

4−d
2

d

d z
(1− z2)

d−2
2

d

d z
+ J (J +d −3)

]
P (d)

J (z) = 0 , (2.2.30)

where z = cosθ is cosine of the scattering angle (2.2.20). This second order differential equa-

tion has two independent solutions. Spin J unitary representations are composed of states

with angular momentum in the plane of scattering ranging between −J and J . Hence, the

corresponding solution of (2.2.30) is a degree J polynomial of cosθ that is given by

P (d)
J (z) = 2F1

(
−J , J +d −3,

d −2

2
,

1− z

2

)
. (2.2.31)

The partial wave coefficients can be extracted from the amplitude using the orthogonality

relation of these polynomials

1

2

1∫
−1

d z (1− z2)
d−4

2 P (d)
J (z)P (d)

J̃
(z) = δJ J̃

Nd n(d)
J

. (2.2.32)

9For d = 4 the factor is

√
E p⃗

|p⃗1|E p⃗1 E p⃗2
, see [6] for details.
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Here we have chosen the convention

Nd = (16π)
2−d

2

Γ
(

d−2
2

) , n(d)
J = (4π)

d
2 (d +2J −3)Γ(d + J −3)

πΓ
(

d−2
2

)
Γ(J +1)

, (2.2.33)

for which the unitarity constraint presented below takes a simple form. In this convention we

have

f J (s) = Nd

2

1∫
−1

d z (1− z2)
d−4

2 P (d)
J (z)T (s, t (z)) . (2.2.34)

Because the S-matrix is diagonal in the spin basis, so does the unitary constraint. We consider

first the elastic regime 4m2 < s < 16m2 where this constraints takes the form (2.2.22). Using

(2.2.34), we project both sides to a fixed spin J . On the left hand side we find the discontinuity

of the partial wave coefficient. Real analyticity (2.2.13) of T (s, t ) leads to real analyticity of f J

f J (s∗) = f ∗
J (s) . (2.2.35)

Hence, the discontinuity of the partial wave is equal to the imgionary part 1
2i

(
f J (s + iϵ)− f J (s − iϵ)

)=
Im f J (s). On the right hand side, it is useful to first represent the kernel as a sum over partial

waves of z1, z2 and z. Because this kernel represents the angular integration in (2.2.18), its

partial wave decomposition must also be diagonal in spin. It takes the form (see appendix

A.2).

Pd (z, z ′, z ′′) = (4π)d−2N 2
d (1− z ′2)

d−4
2 (1− z ′′2)

d−4
2

∞∑
J=0

n(d)
J P (d)

J (z)P (d)
J (z ′)P (d)

J (z ′′) , (2.2.36)

Using (2.2.34) for the three integrals and real analyticity (2.2.35), we arrive at the elastic

unitarity constraint

2Im f J (s) = (s −4m2)
d−3

2p
s

| f J (s)|2 , (2.2.37)

or equivalently

|S J (s)| = 1 , with S J (s) ≡ 1+ i
(s −4m2)

d−3
2p

s
f J (s) . (2.2.38)

Here 1 can be traced to back to 1̂1 in (2.2.1). In this way the trivial unitary S-matrix Ŝ = 1̂1

becomes S J = 1 in the partial wave basis.

The solution to this is

f J (s) =
p

s

(s −4m2)
d−3

2

i (1−e2iδJ (s)) , (2.2.39)
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with δJ (s) being real for 4m2 < s < 16m2 and is called the scattering phase.

Similarly to the above, for s > 16m2 we chose ψ(p1, p2) = 〈p1, p2|p, J ,m⃗〉 in (2.2.24). In that

way we arrive at the same equation, but with an inequality instead of an equality

2Im f J (s) ≥ (s −4m2)
d−3

2p
s

| f J (s)|2 . (2.2.40)

or equivalently, |S J (s)| ≤ 1, Im[δJ (s)] ≥ 0.

We close this section with a short discussion on the range of convergence of the partial wave

sum (2.2.29) for fixed physical s as a function of cosθ.10 It is a well-known fact that the

amplitude T (s,cosθ) is analytic inside the small Lehmann-Martin ellipse and its absorptive

part, Ts(s,cosθ) is analytic inside the large Lehmann-Martin ellipse. These ellipses have foci

at cosθ =±1 and semi-major axis zsmall and zlarge. Correspondingly, inside these ellipses the

sum (2.2.29) and its discontinuity converge.

In the case of scattering of identical lightest particles which is our main interest we have

zsmall = 1+ 8m2

s −4m2 , zlarge = 2z2
small −1 = 1+ 32m4

(s −4m2)2 . (2.2.42)

In section 2.4.1 we will see that extended analyticity, elastic unitarity and crossing imply that

the partial wave expansion converges in a larger region.

2.2.4 Froissart-Gribov Formula

The Froissart-Gribov formula is a representation of the partial wave coefficients in terms of

the discontinuity of the amplitude. It has multiple applications and, in particular, it allows us

to analytically continue partial wave coefficients in spin. Correspondingly, in section 2.3.3 we

will use the Froissart-Gribov formula to analytically continue elastic unitarity in spin. It will

also allow us to better understand the analytic structure of the amplitude in the Mandelstam

invariants and relate the threshold expansion, see section 2.5, to the large spin expansion, see

section 2.6.

10 The convergence of the partial wave expansion can be seen using Neumann’s argument [41]. Consider a
function f (z) analytic inside some region C which includes the [−1,1] interval. We can then write

f (z) =
∮
γ

d t

2πi

f (t )

t − z
=

∮
γ

d t

2πi

∞∑
J=0

n(d)
J P (d)

J (z)
(
Nd (t 2 −1)

d−4
2 Q(d)

J (t ) f (t )
)
=

∞∑
J=0

n(d)
J f J P (d)

J (z), (2.2.41)

where γ ∈ C is some contour that wraps the interval [−1,1] counterclockwise and contains z inside the in-
tegration contour. To exchange the summation and integration, we also used that given z, 1

t−z = Nd (t 2 −
1)

d−4
2

∑∞
J=0 n(d)

J P (d)
J (z)Q(d)

J (t) converges uniformly in t as long as t is outside the ellipse with foci at −1 and 1

that passes through z. We also used the relation between Q(d)
J (z) and P (d)

J (z) which will be explained below, see
(2.2.46). Therefore, the partial wave expansion (2.2.41) converges when z is inside the ellipse with foci at −1 and 1
and ∈C . Note therefore that the size of the domain of convergence of the partial wave expansion can be less that
the analyticity domain C .
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Let us introduce the Gegenbauer Q-functions. These are given by the second linearly indepen-

dent solution of the second order Casimir equation (2.2.30). They are uniquely fixed by their

asymptotic behavior

lim
|z|→∞

Q(d)
J (z) =

c(d)
J

z J+d−3
+ . . . , (2.2.43)

where c(d)
J is a normalization constant. The corresponding Q-function is

Q(d)
J (z) =

c(d)
J

z J+d−3 2F1

(
J +d −3

2
,

J +d −2

2
, J + d −1

2
,

1

z2

)
. (2.2.44)

Our convention is

c(d)
J =

p
πΓ(J +1)Γ( d−2

2 )

2J+1Γ(J + d−1
2 )

. (2.2.45)

The Q-function has a cut running between z = −1 and z = 1. The fact that there are only

two independent solutions to the Casimir equation means that the discontinuity of Q can be

expressed in terms of Q and P . The precise relation takes the form

Discz (z2 −1)
d−4

2 Q(d)
J (z) =−π

2
(1− z2)

d−4
2 P (d)

J (z) , z ∈ [−1,1] , (2.2.46)

or equivalently (for integer J )

Q(d)
J (z) = 1

2

1∫
−1

d z ′
(

1− z ′2

z2 −1

) d−4
2 P (d)

J (z ′)
z − z ′ . (2.2.47)

We can then plug (2.2.46) into the partial wave coefficient (2.2.34) as

f J (s) =Nd

∮
[−1,1]

d z

2πi

(
z2 −1

) d−4
2 Q(d)

J (z)T (s, t (z)) , (2.2.48)

where the integral is counterclockwise around the interval z ∈ [−1,1]. By blowing up the

contour, we get two integrals along the t- and the u-channel cuts, see figure 2.2

f J (s) = Nd

π

 ∞∫
z1

d z(z2 −1)
d−4

2 Q(d)
J (z)Tt (s, t (z))+

−z1∫
−∞

d z(z2 −1)
d−4

2 Q(d)
J (z)Tu(s,u(z))

 , (2.2.49)

where

z1 ≡ z|t=4m2 = 1+ 8m2

s −4m2 , (2.2.50)

and we have assumed that s > 4m2, so that the t channel cut runs from z1 = z1 > 1 to infinity.

Here we have dropped the contributions of the arcs at infinity. This is justified for large enough
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2.2 Amplitude Basics

Figure 2.2: a. The partial wave projection integral (2.2.48) is a contour integral (in blue) that circles
around the cut of the Q-function, between t = 0 and t =−(s −4m2), (in red). b. We partially open up
the contour. Sometimes this representation for partial waves is called the truncated Froissart-Gribov
formula. The advantage of this representation is that we only use a finite amount of extended analyticity
that has not been rigorously proven. c. We open the contour all the way to infinity and arrive at the
usual Froissart-Gribov formula (2.2.49) with two integrations of the discontinuity of the amplitude
along the t-channel and u-channel cuts (in black).

spin J > J0(s) using (2.2.43), where J0(s) is the Regge intercept

lim
|t |→∞

|T (s, t )| < |t |J0(s) . (2.2.51)

We can now use crossing to simplify (2.2.49). We change the integration variable for the

u-channel integral from z to −z. Crossing symmetry implies that Tu (s,u(z)) =−Tt (s, t (−z)),

where we have used that z(u) =−z. Under this change of variables

(z2 −1)
d−4

2 → (−1)d−4(z2 −1)
d−4

2 , Q(d)
J (z) →Q(d)

J (−z) = (−1)J+3−dQ(d)
J (z) . (2.2.52)

We get that f J = 0 for odd J . For even J we get

f J (s) = 2Nd

π

∞∫
z1

d z (z2 −1)
d−4

2 Q(d)
J (z)Tt (s, t (z)) , ReJ > J0(s) . (2.2.53)

As opposed to (2.2.34), the Froissart-Gribov representation of the partial waves (2.2.53) is

suitable for analytic continuation in J . It follows from the Carlson theorem that this analytic

continuation is the unique continuation that does not grow too fast at large J . The Froissart-

Gribov integral (2.2.53) converges as long as ReJ > J0(s) thanks to (2) and (2.2.43).
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Chapter 2. An analytical toolkit for the S-matrix bootstrap

This integral is written for s > 4m2. As s approaches the threshold from above s −4m2 → 0+,

the lower end of the integral is pushed to infinity, z1 →∞. To analyze f J (s) in this limit, it is

useful to use (2.2.43) and to switch back to an integral over t . In that way one finds

f J (s) = 2Nd

π
c(d)

J

(
s −4m2

2

)J ∞∫
4m2

d t

t J+1
Tt (4m2, t )

(
1+O

(
(s −4m2)/t

))
. (2.2.54)

This integral should be understood as follows. The large t contribution is finite because

|Imt T (4m4, t)| < |T (4m2, t)| < t J0(4m2) and J > J0(4m2) by assumption. If the integrand di-

verges at some finite t , and in particular as t −4m2 → 0+, then we should step back and write

it as a contour integral of T (4m2, t ) around the cut, which is manifestly finite.

2.2.5 Further Continuity Assumption

Based on the standard QFT axioms, scattering amplitudes, cross sections and partial waves are

distributions rather than continuous functions. This leads to various subtleties, sometimes

known as pathologies a-la Martin [25]. For example, we can imagine total cross-section having

singularities which are local in energy variable s, that are not detectable by the finite resolution

experiments. As such it is hard to exclude them based on physical grounds. One way to

produce such a singularity is to consider an infinite number of resonances that accumulate on

the real axis, see [25].

To the best of our knowledge there is no known, first principle argument that can exclude

these possibilities. One way to eliminate them is to simply assume that various cross sections

are continuous functions of energy s. We adopt this practical approach add this to the list of

our assumptions. More precisely, we assume that boundary values of T (s, t) (this includes

both single and double discontinuity) are continuous functions. It is common in the literature

to impose the condition that boundary values of T (s, t ) are uniformly continuous or Hölder

continuous, see e.g. [42], but we will not use it in the present analysis.

Another related common assumption is regarding finiteness of scattering lengths which are

commonly measured in the experiments or using the lattice. They are defined as follows, see

(2.2.54),

a J = lim
s→4m2

md−4 f J (s)

( s
4m2 −1)J

≥ 0 , J ≥ 2 . (2.2.55)

We will assume that the scattering lengths are finite for J ≥ 2. Through the Froissart-Gribov

formula these are related to the assumption of finiteness of the discontinuity Tt (4m2, t) at

s = 4m2 as well as convergence of the J = 2 Froissart-Gribov integral (2.2.54).

There is an interesting connection between the continuity of the amplitude and macrocausality

[43, 44]. Macrocausality is a set of statements about scattering amplitudes when particles

grouped according to space and time of interactions and then moved away from each other by
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2.3 Analytic Continuation of Elastic Unitarity

large translation. The notion relevant for the continuity of scattering amplitudes is what is

called strong asymptotic causality in [43] and it has not been proved within the field theory.

2.3 Analytic Continuation of Elastic Unitarity

The elastic unitarity relations (2.2.21) was derived for energies in the elastic region, above

the two particle threshold 4m2 < s < 16m2, and for physical kinematics 4m2 − s < t < 0. In

this section we analytically continue this relation in t , outside of the regime of real scattering

angles. We also consider the double discontinuity of the amplitude and the closely related

analytic continuation of elastic unitarity in spin.

2.3.1 Mandelstam Kernel

The dependence on the scattering angle z = cosθ enters the right-hand side of the elastic

unitarity relation (2.2.22) through the kernels (2.2.21). These kernels contain a delta or a step

functions and are thus not suitable for analytic continuation. To overcome this difficulty, we

use the analyticity of T (±)(s, t (z)) inside the small Lehmann-Martin ellipse to express them as

a counterclockwise Cauchy integral around [−1,1]

T (±)(s, z ′) =
∮

[−1,1]

dη′

2πi

T (±)(s,η′)
η′− z ′ , −1 < z ′ < 1 , T (s, z) ≡ T (s, t (z)) . (2.3.1)

We can now exchange the order on integrations in (2.2.22) and perform the z ′ and z ′′ integrals

explicitly. In this way we arrive at

Ts(s, z) = (s −4m2)(d−3)/2

8(4π)d−2
p

s

∮
[−1,1]

dη′

2πi

∮
[−1,1]

dη′′

2πi
T (+)(s,η′)T (−)(s,η′′)×Kd (z,η′,η′′) , (2.3.2)

where the new kernel is

Kd (z,η′,η′′) ≡
∫

d d−2Ωn⃗

(η′− z ′)(η′′− z ′′)
=

1∫
−1

d z ′
1∫

−1

d z ′′ Pd (z, z ′, z ′′)
(η′− z ′)(η′′− z ′′)

. (2.3.3)

These integrals are evaluated in appendix A.1. For |η′|, |η′′| > 1 the result is

Kd=3(z,η′,η′′) = 2π

η+− z

(
η′√
η′2 −1

+ η′′√
η′′2 −1

)
, (2.3.4)

Kd≥4(z,η′,η′′) = 4π
d−1

2

Γ( d−3
2 )

∞∫
η+

dη

η− z

(η2 −1)
4−d

2

(η−η+)
5−d

2 (η−η−)
5−d

2

.
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where

η±(η′,η′′) ≡ η′η′′±
√
η′2 −1

√
η′′2 −1 . (2.3.5)

The Mandelstam kernel for |η′| < 1 or |η′′| < 1 is obtained from (2.3.4) by analytic continuation.

Note that in (2.3.3) Pd (z, z ′, z ′′) is not analytic in z, see (2.2.21). On the other hand, the Man-

delstam kernel Kd (z,η′,η′′) is analytic in z and therefore is suitable for analytic continuation.

Similarly, the representation of Ts(s, z) in (2.3.2) is now suitable for analytic continuation in t .

That is because t only enters through the Mandelstam kernel that is manifestly analytic in z.

As for the kernel P (d)
J (2.2.36), the Mandelstam kernel (2.3.3) is also diagonal in spin. To

represent it in angular momentum basis, we start from the representation of P (d)
J in (2.2.36)

and plug it into the definition (2.3.3). We then note that the z ′ and z ′′ integration has the effect

of converting the partial waves P (d)
J (z ′) and P (d)

J (z ′′) into Q(d)
J (z ′) and Q(d)

J (z ′′) correspondingly,

(2.2.47). In that way we arrive at

Kd (z,η′,η′′) = 4(4π)d−2N 2
d (η′2 −1)

d−4
2 (η′′2 −1)

d−4
2

∞∑
J=0

n(d)
J P (d)

J (z)Q(d)
J (η′)Q(d)

J (η′′) . (2.3.6)

2.3.2 The Double Spectral Density and Crossing

The combination of elastic unitary with crossing symmetry is very restrictive. In the next

sections we will explore some of its consequences at length. With this aim in mind, we now

represent elastic unitarity in a form that is more suitable for imposing crossing. By taking

another discontinuity of (2.3.2) with respect to t , the left-hand side becomes the double

discontinuity of the amplitude11

ρ(s, t ) ≡−1

4
lim
ϵ→0

[T (s + iϵ, t + iϵ)−T (s − iϵ, t + iϵ)−T (s + iϵ, t − iϵ)+T (s − iϵ, t − iϵ)]

= Disct DiscsT (s, t ) = DiscsDisct T (s, t ) = ρ(t , s) . (2.3.7)

This crossing-symmetric function is known as the double spectral density.

By taking the t discontinuity of (2.3.2) we arrive at

ρ(s, t ) = (s −4m2)
d−3

2

8(4π)d−2
p

s

∮
[−1,1]

dη′

2πi

∮
[−1,1]

dη′′

2πi
T (+)(s,η′)T (−)(s,η′′)×Disct Kd (z,η′,η′′) , (2.3.8)

where 4m2 < s < 16m2. Outside of the elastic region there are additional non-elastic contri-

butions to the double discontinuity that will be considered elsewhere. Next, we deform the

η′ and η′′ integration to wrap the t and u channel cuts of T (±)(s,η). The discontinuity of the

11Stated in words, the double spectral density ρ(s, t ) is defined as a certain combination of boundary values of
the analytic function T (s, t ) unambiguously specified by iϵ in the definition above.
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Figure 2.3: The region of integration in equation (2.3.9). As s or t approaches the Landau curve from
above, the integration region shrinks to zero. As a result, the double spectral density vanishes below the
Landau curve z = 2z2

1 −1.

Mandelstam kernel in (2.3.8) is analytic in η′ and η′′ along the deformation. In that way, we

end with real η′ and η′′ that are positive on the t channel cut and are negative on the u channel

cut. For η′η′′ <−1 the integral in the Mandelstam kernel (2.3.4) starts at η+(η′,η′′) <−1 and

can be chosen to run along the negative real η-axis. This choice make it manifest that the

discontinuity of the kernel for z > 1 and η+(η′,η′′) <−1 is zero. We remain with12

ρ(s, t ) = (s −4m2)
d−3

2

4π2(4π)d−2
p

s

∞∫
z1

dη′
∞∫

z1

dη′′T (+)
t (s,η′)T (−)

t (s,η′′)Discz Kd (z,η′,η′′) , (2.3.9)

where we have mapped the u-channel cut to the t-channel cut using T (±)
u (s,η) =−T (±)

t (s,−η)

and K (z,−η′,−η′′) = K (z,η′,η′′). Here, the lower limit of integration is the point where the t

channel cut starts (2.2.50). The discontinuity of the kernel, for η′η′′ > 0 and z > 1 is given by

Discz K3(z,η′,η′′) = 4π2δ(z −η+)

p
z2 −1

η+−η−
,

Discz Kd≥4(z,η′,η′′) = 4π
d+1

2

Γ( d−3
2 )

Θ(z −η+)
(z2 −1)

4−d
2

(z −η−)
5−d

2 (z −η+)
5−d

2

≥ 0 . (2.3.10)

This formula was first derived by Mandelstam in d = 4 [45]. In appendix A.1 we present the

derivation for any dimension d ≥ 3.

We now discuss the region of support of the double discontinuity ρ(s, t). Because the first

discontinuity has only support for energies above the two particle threshold, so does the

double discontinuity. Looking at (2.3.9), it is clear that the situation is more interesting. The

12The result for z < −1 is obtained by analytic continuation and takes the same form as (2.3.9) with
Discz K (−z,η′,η′′) instead of Discz K (z,η′,η′′).
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Figure 2.4: The double discontinuity of the amplitude ρ(s, t) in the real (s, t) plane. In gray is the
Steinmann shadow region where ρ vanishes. This region extends inside the elastic bands, {(4m2 <
s < 16m2, t), (s,4m2 < t < 16m2)}, and is bounded by the Landau curve t1(s) = 16m2s

s−4m2 (in red) and its

crossed curve t cross
1 (s) = 4m2s

s−16m2 (in blue). These two curves extend out of the elastic bands, where there

are additional multi-particle contributions. They cross at s = t = 20m2.

discontinuities of the amplitude only start at η′,η′′ > z1. At the same time, the Mandelstam

kernel has a non-zero support only for z > η+(η′,η′′). This constraint is an upper bound on

the η′, η′′ limits of integration, see figure 2.3. Hence, the double spectral density in the elastic

region is non-zero only for

z = 1+ 2t

s −4m2 > η+ (z1, z1) = 1+ 32m2s

(s −4m2)2 . (2.3.11)

In terms of s and t , the boundary of this region is known as the Landau or Karplus curve and is

given by (red in figure 2.4)

t = 16m2 s

s −4m2 ≡ t1(s) . (2.3.12)

As t is increased above t1(s), the range of the η′ and η′′ integration opens up. For example, for

any value of t > t1(s), the integral over η′ is bounded in the range

z1 ≤ η′ ≤ zη′′−
√

(z2 −1)(η′′2 −1) ≤ zz1 −
√

(z2 −1)(z2
1 −1) . (2.3.13)

Hence, as we increase t inside the elastic region 4m2 < s < 16m2 (where (2.3.9) is valid), more

and more channels of T (+)
t (s,η′) and T (−)

t (s,η′′) kick in. Their corresponding contributions

to ρ(s, t ) start at other Landau curves in the (s, t ) plane that are above the elastic one (2.3.12),
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see figure 2.4. In section 2.3.5 we present a minimal and complete set of Landau curves in the

elastic region 4m2 < s < 16m2 that appears in the physical S-matrices.

In general, the positions of the Landau curves look somewhat technical. However, they are all

kinematic and therefore have a geometrical origin. For example, the constraint (2.3.11) takes a

simple form in terms of the integral scattering angles η′ = coshθ′, η′′ = coshθ′′, and is given by

θ′+θ′′ ≥ θ . (2.3.14)

In physical kinematics, this constraint follows from a simple geometrical consideration that is

described in figure 2.1. The analytic continuation to the non-physical kinetatical regime of

positive s and t effect the range of the angles, but leaves this geometrical constraint unchanged.

At the technical level, this is because the kinematical constraint only involves the cosines of

the scattering angles.

We end this section with a comment regarding the region below the Landau curve, where the

double discontinuity vanishes (the gray region in figure 2.4). For the two-to-two scattering,

existence of this region is a direct consequence of elastic unitarity continued to s, t > 4m2.

The precise shape of the region depends on the details of the unitarity kernel Kd , as well as

on the analytic structure of the amplitude that enters into the elastic unitarity relation. A

similar phenomenon occurs in the higher-point amplitudes as well. In this case one considers

double discontinuity in the so-called overlapping channels, see e.g. [46] for a detailed defini-

tion. This time it is possible to consider double discontinuity for physical kinematics directly,

as opposed to the two-to-two case which requires continuation in one of the Mandelstam

invariants. It then follows that for physical kinematics the double discontinuity vanishes

for the overlapping channels. These are known as the Steinmann relations [47, 48], and it is

again a direct consequence of the multi-particle unitarity. Steinmann relations are useful

for constraining the analytic structure of amplitudes with six and more particles, see [49] for

a recent discussion. Based on the two-to-two case one can try to analytically continue the

relevant unitarity relations to the unphysical values of the relevant kinematical invariants, and

find the extended region where the double discontinuity vanishes. It would be interesting to

understand the precise shape of this region for the multi-particle case. This would require an-

alytic continuation of multiparticle unitarity kernels, as well as relevant scattering amplitudes,

analogous to the one made above.

2.3.3 Analytic Continuation in Spin

We will now argue that the elastic unitarity relation (2.2.37) holds in the complex J plane,

provided that the partial wave coefficients are analytically continued using the Froissart-

Gribov representation (2.2.53). For that aim, we first rewrite the elastic unitarity condition
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(2.2.37) with the iϵ prescription explicitly

f J (s + iϵ)− f J (s − iϵ) = i
(s −4m2)

d−3
2p

s
f J (s + iϵ) f J (s − iϵ) , 4m2 < s < 16m2 . (2.3.15)

In our previous discussions f J (s) ≡ f J (s + iϵ). For integer J and real s in that range, real

analyticity (2.2.35) leads to (2.2.37). The form (2.3.15) is however more suitable for analytic

continuation.

Originally, (2.3.15) was derived for J being integer and even, however using the Froissart-

Gribov representation we can continue partial waves in spin J

f J (s ± iϵ) = 2Nd

π

∞∫
z1

d z (z2 −1)
d−4

2 Q(d)
J (z)T (±)

t (s, z) , Re[J ] > Re[J0(s)] . (2.3.16)

This representation can in principle be continued to the whole complex J plane, going beyond

the Re[J ] > Re[J0(s)] region. However, the continued partial waves are not guaranteed to

coincide with the physical ones for J < J0. Moreover, it is clear from (2.2.13) and the reality

properties of Q(d)
J (z) (2.3.16), that real analyticity of partial waves (2.2.35) is only guaranteed

to hold for real J > J0.

We can then use (2.3.16) to separately analytically continue the left and right hand sides of

(2.3.15). It follows from the Carlson theorem that these two analytic continuations have to

agree in the whole complex J plane. Namely, the two analytic continuations agree for real

integer J > J0 and do not grow too fast at large |J |, as can be seen from the large J exponential

decay of f J (s), see section 2.6.1 for more details,

f J (s) ∼
(p

s +2mp
s −2m

)−J

. (2.3.17)

Let us relate the analytic continuation in J of (2.3.15) to the Mandelstam equation (2.3.9). To

get the former from the latter we integrate (2.3.9) with
∫ ∞

2z2
1−1 d z(z2 −1)

d−4
2 Q J (z), where Q J (z)

are given in (2.2.47). We then use the following identity (for derivation see appendix A.2)

∞∫
η+

d z (z2 −1)
d−4

2 Q J (z)Discz Kd (z,η′,η′′) = 4πd/2

Γ( d−2
2 )

[
(η′2 −1)

d−4
2 Q(d)

J (η′)
][

(η′′2 −1)
d−4

2 Q(d)
J (η′′)

]
,

(2.3.18)

which is valid for Re[J ] >−1, d ≥ 3 and |η1|, |η2| > 1. In practice, we will use this identity in

(2.3.9), where η′ and η′′ are real and positive.
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Figure 2.5: The analytic continuation of f J (s) to the second sheet through the elastic cut 4m4 < s < 16m2

is denoted by f ⟲J (s).

Finally, we can write

f J (s + iϵ)− f J (s − iϵ) = 2i
2Nd

π

∞∫
2z2

1−1

d z(z2 −1)
d−4

2 Q(d)
J (z)ρ(s, t (z)) , Re[J ] > Re[J0(s)] .

(2.3.19)

By combining (2.3.18) with (2.3.19), it is easy to check that (2.3.9) becomes precisely (2.3.15).

Let us also mention that analytically continued elastic unitarity constrain the possible Regge

limit behavior of the amplitude. In particular, the leading Regge singularity of the amplitude

in the elastic region 4m2 < s < 16m2 cannot we a pole located at some real Regge spin J̃0(s).

We review the derivation of this and a slightly more general result, known as Gribov’s theorem,

in appendix A.4.

2.3.4 Analytic Continuation in s

As s is increased above 16m2 there are new multi-particle cuts contributions to Im f J (s) that

are not captured by (2.2.37). Still, if we denote by f ⟲J (s) the partial wave that was analytically

continued on the second sheet through the elastic cut 4m4 < s < 16m2, see figure 2.5, then the

equation

f J (s)− f ⟲J (s) = i
(s −4m2)

d−3
2p

s
f J (s) f ⟲J (s) (2.3.20)

holds true when analytically continued away from the elastic strip in the full multi-sheet

complex s plane. In that sense, elastic unitarity can be analytically continued in s.

Note that there is a difference in the nature of the two-particle cut between odd and even

dimensions. Due to the power of (s −4m2) in (2.2.38) we get that

S⟲
J (s) ≡ 1+ i

(s −4m2)
d−3

2p
s

f ⟲J (s)×
{

−1 d-even

+1 d-odd
. (2.3.21)

Correspondingly, for even dimension the continued elastic unitarity condition (2.3.20) be-
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comes

S J (s)S⟲
J (s) = 1 , d-even . (2.3.22)

This relation implies that the elastic cut 4m2 < s < 16m2 describes a two-sheeted Riemann

surface in even d . Indeed, continuing (2.3.22) around the elastic cut again we conclude that

S2×⟲
J (s) = S J (s). In odd d , because of the sign difference in (2.3.21), we do not have (2.3.22)

and the elastic cut is not two-sheeted. Similar conclusion holds for T (s, t). As we will see

below, the nature of the elastic unitarity cut is the one of a simple square-root for even d

and is infinitely-sheeted for odd d . It immediately follows from (2.3.22) that a pole of S⟲
J (s)

(resonance) corresponds to a zero of S J (s) in even d . Similarly, in odd d , a pole of S⟲
J (s)

corresponds to a zero of 1− i (s−4m2)
d−3

2p
s

f J (s) on the principal sheet.

2.3.5 Elastic Landau Curves

In this section we further study the kinematical properties of the double spectral density

in the elastic strip. In general, discontinuities of the amplitude result from the exchange of

intermediate on-shell states. Correspondingly, the double discontinuity of the amplitude

receives its support from intermediate on-shell particles exchanged in both channels. As we

have seen in section 2.3.2, the first double discontinuity in the elastic strip starts at the leading

Landau curve (2.3.12). It comes from the exchange of two particle in the s-channel and four

particles in the t-channel. As we increase s or t , more and more processes become accessible.

The curves in the s − t plane where they start to contribute are higher Landau curves. We now

derive an infinite set of higher Landau curves in the elastic strip that are required by elastic

unitarity.

To each of these Landau curves one can associate a Landau diagram. In the elastic strip, all

these diagrams have a simple iterative structure that is plotted in figure 2.6. Correspondingly,

the shape of the curve has a relatively simple geometrical origin, (for the case of the first

Landau curve, see figure 2.1 and the discussion around (2.3.14)). Here instead, we follow a

shortcut and derive their shape directly from the Froissart-Gribov representation and the

elastic unitarity constraint.

The starting point is the kinematical structure of the discontinuity and the double discontinuity

of the amplitude as function of one of the Mandelstam invariants

Disct T (s, t ) = Tt (s, t ) =
∞∑

n=1
Θ(t − (2nm)2)T 2→2n

t (s, t ) , 4m2 − t < s < 0 , (2.3.23)

DiscsDisct T (s, t ) = ρ(s, t ) =∑
i
Θ(t − t (i )(s))ρ(i )(s, t ) , 4m2 < s, t , (2.3.24)

where the functions t (i )(s, t) are the Landau curves we are after. For that aim, we first have

to analytically continue the discontinuities of the amplitudes, T 2→2n
t (s, t), to the regime of
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Figure 2.6: a. The Landau diagrams that contribute to the double spectral density in the elastic strip
4m2 < s < 16m2 and 4m2 < t . In this kinematical regime there can be only two particles in the s-channel.
Hence, the corresponding Landau diagrams have a simple structure of iterative two-particle exchange
in the s-channel and in between, any number of particles exchange in the t-channel. b. Analogously to
figure 2.1, the corresponding Landau curves originate from a simple geometric constraint on physical
kinematics, see discussion after (2.3.14).

positive s and t . As we do so, they develop new thresholds. Because Tt (s, t ) is a real analytic

function, these new thresholds must coincide with the Landau curves t (i )(s). What is important

for us here is that the multi-particle thresholds that are manifest in (2.3.23) are also present in

the non-physical kinematical regime.

To derive the functional shape of the Landau curves in the elastic strip we impose the consis-

tency of (2.3.24) and (analytically continued) (2.3.23) with elastic unitarity. This can be done

by either plugging them into the Mandelstam equation or by imposing elastic unitarity at the

level of the partial waves. Here we follow the latter strategy and in appendix A.5 we present the

former, both leading to the same result.

To impose consistency of (2.3.23) and (2.3.24) with the partial waves elastic unitarity, we plug

them into the Froissart-Gribov projection (2.2.53), that we quote here for convenience

Re f J (s)+ i Im f J (s) = 2Nd

π

∞∫
z1

d z (z2 −1)
d−4

2 Q(d)
J (z)

[
ReTt (s, t (z))+ iρ(s, t (z))

]
. (2.3.25)

Next, we take the large J limit of (2.3.25). Using the large J decay of the Q functions that can

be schematically written as, see section 2.6.1,

Q(d)
J (z) ∼λ−J (z) , λ(z) ≡ z +

√
z2 −1 = eθ , z > 1 , (2.3.26)

as well as the two-particle step function in (2.3.23), we conclude that the leading large J

behavior of Re f J (s) is

Re f J (s) ∼λ−J (z1) . (2.3.27)

Similarly to (2.3.27), the n-particle threshold of Tt (s, t ) and the i ’th Landau curve threshold of

ρ(s, t ) in (2.3.23) result in contributions to Re f J (s) and Im f J (s) that start at large J as

Re f J (s) ∼λ−J (zn) , Im f J (s) ∼ λ−J (z)
∣∣

t=t (i )(s) , (2.3.28)
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where zn ≡ 1+ 8n2m2

s−4m2 . Importantly, (2.3.26) receives only 1/J-power corrections and no non-

perturbative exponential corrections, see appendix A.3. Hence, Im f J (s) does not receive any

exponential large J behavior other than the ones that result from Landau curves thresholds

(2.3.28). Similarly, the exponential large J behavior of Re f J (s) can only come from thresholds

of Tt (s, t ) in (2.3.25), but not from nonperturbative terms in the large J expansion of Q(d)
J (z).

We now plug these set of large J exponential behaviors into elastic unitarity and derive the

minimal set of Landau curves, t (i )(s), that are required to close the equation, together with

new thresholds of Tt (s, t ) that are not present in physical kinematics.

Elastic unitarity (2.2.37) can be written in the following schematic form

Im f J (s) ∝ [Re f J (s)]2 + [Im f J (s)]2 , (2.3.29)

where we omitted the pre-factor because it is irrelevant for the present discussion. First, we

see that the multi-particle threshold exponents of Re f J (s) in (2.3.28) result in the following

exponents in Im f J (s)

Im f J (s) ∼ [λ(zn)λ(zm)]−J , n, m ≥ 1 . (2.3.30)

Using (2.3.28), these then lead to the Landau curves

λ (z)|t=t (n,m)(s) =λ(zn)λ(zm) . (2.3.31)

For example, the leading Landau curve (2.3.12) corresponds to the case where m = n = 1.

This behavior must then also exist in Re f J (s). To see that, recall that Tt (s, t ) is a real analytic

function of t for fixed s > 4m2. Hence, a threshold in the imaginary part of Tt (s, t ), namely in

ρ(s, t ), must be accompanied by a corresponding threshold in ReTt (s, t ).

Having established the presence of the quadratic in λ(zn) terms in the large J expansion of

Re f J (s) and Im f J (s), we now come back to elastic unitarity (2.3.29). The presence of these

terms together with the linear one (2.3.28), now induces higher powers of λ(zn) in the large J

expansion of Im f J (s) and, via real analyticity, of Re f J (s) as well. These take the general form

Re f J (s) ∼ [
λ(zn1 ) · · ·λ(znL )

]−J , ni ≥ 1 , L ≥ 1 , (2.3.32)

Im f J (s) ∼ [
λ(zn1 ) · · ·λ(znL )

]−J , ni ≥ 1 , L ≥ 2 . (2.3.33)

This large J structure implies existence of an infinite set of Landau curves labeled by a set of

integers {N1, N2, N3, . . . } and given by the following equation

λ
(
z(t{N1,N2,N3,... })

)=λN1 (z1)λN2 (z2)λN3 (z3) · · · . (2.3.34)

In terms of the scattering angle, for which z = coshθ and λ= eθ, these Landau curves take the
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form

θ(z) = N1θ1 +N2θ2 +N3θ3 + . . . , (2.3.35)

with θn = arccosh(zn). This form is the generalization of (2.3.14) for all the elastic Landau

curves. In a direct analogy with figure 2.1, it also has a simple geometrical origin that is

discussed in figure 2.6.b. Using that z = 1+ 2t
s−4m2 , we can translate (2.3.34) into polynomial

equations in s and t with real coefficients.13 For example, we have

t{2,0,... } = 16m2s

s −4m2 , t{3,0,... } =
36m2(s + 4m2

3 )2

(s −4m2)2 , t{4,0,... } = 64m2s(s +4m2)2

(s −4m2)3 . (2.3.36)

The Landau curves have the following asymptotic behavior

lim
s→4m2

t{N1,N2,... }(s) ∼ (s −4m2)1−∑∞
j=1 N j , lim

s→∞ t{N1,N2,... }(s) =
(
2m

∞∑
j=1

j N j

)2
. (2.3.37)

These asymptotes are precisely the t-channel normal thresholds (2.3.23). This is evident from

the Landau diagram interpretation of figure 2.6 and it would be interesting to see if it can be

established rigorously.14

2.4 Positivity of ρ and Multi-Particle Production

Drawing an analogy with the conformal bootstrap, one can expect that combining crossing

symmetry of ρ(s, t) with some sort of positivity property leads to nontrivial constraints on

scattering amplitudes.

In this section we show that there is indeed a finite region in the elastic strips of the (s, t )-plane,

where ρ(s, t ) is positive, as noted in [53]. In subsection 2.4.2 we discuss a direct consequence

of this positivity and crossing – the necessity of multi-particle production T2→2n for any n.

2.4.1 Positivity of The Double Spectral Density

To establish positivity, we assume that the integral in the Mandelstam equation for the double

spectral density (2.3.9) converges and study under what conditions the integrand is positive.

Consider first the discontinuity of the Mandelstam kernel Discz Kd (z,η′,η′′) given in (2.3.10).

This function is strictly positive for z > 1, which is the case for any s, t > 4m2. Next we turn our

attention to T (±)
t (s,η′). It is clear that Tt (s,η′) is non-negative in the region where the partial

13In this form they are familiar in the study of perturbative Feynman integrals, see e.g. [8] for more details.
14For the case of two particles in the final state it was done by Mandelstam and we reviewed it in section 2.3.1.

For the multi-particle case some limited results have been obtained [50, 51, 52].
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Figure 2.7: The regime of positivity of the double spectral density ρ(s, t ) in the elastic strip 4m2 < t <
16m2, (dashed region). This is the region above the first Karplus curve s1(t ) (in blue) and below the curve

t = 4m2
p

s+2mp
s−6m

(in green). There is an identical positive region in the crossed strip of 4m2 < s < 16m2,

see (2.4.4).

wave expansion converges15

Tt (s,η′) = Tt (s, t ′) =∑
J

n(d)
J Im f J (t ′)P (d)

J

(
1+ 2s

t ′−4m2

)
, t ′ = η′−1

2
(s −4m2) , (2.4.1)

where t ′ is not to be confused with the external t in (2.3.9). Indeed, unitarity implies that

Im f J (t ′) ≥ 0 and P (d)
J

(
1+ 2s

t ′−4m2

)
is positive for s, t ′ > 4m2. Consider the function g

(
1+ 2s

t ′−4m2

)≡
Tt (s, t ′) for fixed t ′. Provided that g (z) is analytic inside an ellipse in the complex z-plane with

foci at z =±1, it then follows from Neumann’s argument, see footnote 10, that the partial wave

expansion (2.4.1) converges inside that ellipse. Under the assumption of extended analyticity

and for fixed t ′, the first singularity is where Tt (s, t ′) develops a discontinuity with respect to

s. Namely, the partial wave expansion (2.4.1) converges below the first Landau curve, red in

figure 2.4,16

t ′ < t1(s) = 16m2s

s −4m2 or equivalently η′ < 1+ 36m2

(s −4m2)2 , 4m2 < s < 16m2 . (2.4.2)

This region of convergence is called the large s-channel Martin-Lehmann ellipse [34]. Note

that the standard argument of [34] refers to the convergence of (2.3.19) in the crossed region

of s < s1(t ′), 4m2 < t ′ < 16m2 and does not require the extended analyticity assumption. Here,

we are saying that under this assumption, the partial wave expansion (2.4.1) converges in the

union of the t- and s-channel large Martin-Lehmann ellipses.

The maximal value of the η′ integration is given in (2.3.13). Hence, we conclude that the double

15In this region we can drop the (±) subscript of T (±)
t (s,η′) and T (±)

t (s,η′′) in (2.3.9) because both functions are
equal.

16As a consistency check, we can also study the convergence region of (2.4.1) using the large J asymptotics of
the partial wave coefficients. Using (2.3.19) and the shape of the first Landau curve we have arrived at the same
conclusion.
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spectral density is non-negative for

zz1 −
√

(z2 −1)(z2
1 −1) ≤ 1+ 36m2

(s −4m2)2 . (2.4.3)

By solving this condition for t we conclude that

ρ(s, t ) > 0 , 4m2 < s < 16m2 ,
16m2s

s −4m2 < t ≤ 4m2 (3s +4m2)2

(s −4m2)2 . (2.4.4)

where the lower bound comes from (2.3.12), and the upper bound from (2.4.3). This region of

positivity was first derived in [53] and is plotted in figure 2.7.17

Note that at the upper bound of that region ρ(s, t) is strictly positive. Hence, the region of

positivity can always be extended from above. A question to which we do not know the

answer is whether the region of positivity of the double spectral density can be extended to

arbitrary large s and t . Here we only list some known implications of such a scenario. In [54]

A. Martin argued that positivity of the double spectral density for all s and t implies that the

total cross-section at high energies satisfies the following bound

σtot (s) ≤ C

log s
, s →∞ . (2.4.5)

This immediately implies that for theories that saturate the Martin-Froissart bound σtot (s) ∼
log2 s [55, 34], the double spectral density is not positive-definite.

Similarly, in [56] A. W. Martin explored implications of the positive-definite double spectral

density for scattering at finite angles. He showed that amplitudes with positive double spectral

density do not exhibit diffraction peak in the near-forward scattering, which is

Tt (s, t ) ∼ e sb(t )+... , (2.4.6)

where b(t) is a slowly-varying function. Such a diffraction peak is observed, for example, in

the scattering of pions. Therefore, the double spectral density for pion scattering cannot be

positive for arbitrary s and t .

It would be interesting to understand positivity properties of ρ(s, t ) in physical theories more

systematically.

2.4.2 The Aks Theorem and Necessity of Particle Production

We now review an elegant argument for scalar particles by Aks [22].18 It states that scattering

implies particle production. Namely, provided that T2→2 ̸= 0, also T2→n ̸= 0 with n > 2. The

17Note that this is the regime netween the curves t{2,0,... } and t{3,0,... } in (2.3.36).
18For the generalization to the case of spinning particles or particles in nontrivial representations of some global

symmetry, see [57].
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theorem applies to any crossing symmetric scalar scattering amplitude in d ≥ 3 that satisfies

extended analyticity in a finite region above the leading Landau curve.

To derive Aks’s result, let us therefore assume that we have a nontrivial scattering amplitude

T (s, t ), but T2→n are identically zero for n > 2. This implies that elastic unitarity in the form of

Mandelstam (2.3.9) holds for any s ≥ 4m2, whereas in the the theories with particle production

elastic unitarity only holds below the first threshold s0 > s ≥ 4m2. It then follow that ρ(s, t ) = 0

below the first s-channel Landau curve 4m2 < t < t1(s) (2.3.12) for any s, see red curve in figure

2.4. This region however includes the crossed Mahoux-Martin region of positive ρ(s, t) > 0

(2.4.4), s < 4m2 (3t+4m2)2

(t−4m2)2 , see gray region in figure 2.7.19 Therefore, we conclude that our

assumptions of crossing symmetry and scattering without production are not consistent.

Note that in the case of an infinite J = 0 scattering length, the derivation of the positivity

of ρ(s, t) in the Mahoux-Martin region does not always apply. That is because in that case,

the integral in (2.3.9) fails to converge for d ≥ 5. However, when the J = 0 scattering length

is infinite, ρ(s, t) is already non-zero at the leading Landau curve and we reach the same

conclusion that there must be particle production.

A way to relax the assumption of extended analyticity was explained in [58] by exploiting

polynomial boundedness and continuity assumptions. The idea is to use elastic unitarity to

extend the region of analyticity of the amplitude. One starts with fixed t < 4m2 dispersion

relations and then use elastic unitarity to first extend the analyticity domain of Ts and then

use dispersion relations to continue the scattering amplitude itself. The key point being that

assuming no production we can use elastic unitarity to continue the discontinuity at arbitrary

energy, which is necessary if we want to use this inside the dispersion relations.

Note that the argument above also implies that we must have four-particle production. That

is because the crossed region of positivity starts at s1(16m2) = 64
3 m2 < 36m2, it is enough to

assume that T2→4 = 0 to reach a contradiction. One can wonder if having T2→4 is enough to fix

the problem, or T2→2n with n > 2 are also necessary? To address this question, we can then

proceed via crossing.20 By unitarity of the 4 → 4 amplitude, ImT4→4 ∼ |T2→4|2, non-vanishing

T2→4 implies that we have a non-vanishing T4→4 amplitude. Applying crossing this becomes

T2→6. Continuing this recursion we conclude that all T2→2n should be non-zero. Therefore, not

only scattering implies production but it requires all possible production (here we assumed

Z2 symmetry so that only an even number of particles is present in the final state).

An alternative argument that does not use crossing symmetry of higher-point amplitudes was

put forward in [59]. This argument relies on an unproven assumption that Landau curves

can only asymptote to normal thresholds for the scattering of lightest particles, see section

2.3.5. This assumption is consistent with the perturbative analysis of [35, 36] and it would be

interesting to establish it rigorously.

19Recall that positivity of ρ(s, t ) > 0 is a direct consequence of our assumption about nontriviality of scattering.
20Note that crossing has been only rigorously proven within the standard QFT framework for 2 → 2 amplitudes

[29]. For some further progress in the multi-particle case 2 → n see [37].
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Figure 2.8: a. We consider a scattering experiment at fixed impact parameters b. This process is
controlled by the exchanged momentum t ∼ 1

b2 > 0. b. At large impact parameters the amplitude can
be organized as a sum over on-shell particles exchange. The dominant contribution comes from the
exchanged of the lightest on-shell particle.

2.4.3 Bounding Inelasticity

There is another, more intuitive way to think about the result of Aks and necessity of particle

production in higher dimensions. Ideally, one would like to take a discontinuity of the 2 → 4

amplitude that is given by a product of two 2 → 2 amplitudes. For physical kinematics however,

such a discontinuity only exist for the 3 → 3 setup. Instead, let us discuss impact parameter

scattering, which is only possible in d ≥ 3.

As reviewed for example in appendix E of [60], the effect of going to the impact parameter space

is the same as continuing the conjugate momentum invariant to the unphysical kinematics.

It follows that inelasticity in a gapped theory cannot be exactly zero at very large impact

parameters. To see this, decompose the four particles in the final state into a pair of dipoles.

Then consider a scattering in which the two dipoles in the final state, as well as the pair of

incoming particles in the initial state, are separated by a finite distance b in the transverse

space, see figure 2.8.a. Unitarity becomes, in the impact parameter space, the expansion in

Yukawa potential suppressed terms T2→4(s,b) ∼ T 2
2→2 × e−bm + [multi-particle ∼ e−nbm]. At

large separation, this expansion is dominated by the one-particle exchange e−bm , while the

multi-particle corrections are further exponentially suppressed.21 In that way, a non-trivial

(analytically continued) four-point amplitude imply a non-trivial 2 → 4 amplitude. We would

then like to bound the 2 → 4 amplitude from below.

There is a convenient way of bounding the integrated discontinuity of T2→4 in the kinematical

regime of figure 2.8.b from below. It is based on the discussion in the previous sections, see in

particular sections 2.3.2 and 2.4.1, 2.4.2. It also highlights how the crossing of ρ(s, t ) discussed

in the section above works microscopically. Let us start with the the square of T2→4 that

21In terms of partial waves, large impact parameter scattering corresponds to the large spin limit and therefore
we expect to have inelasticity at large spin which will be analyzed in detail in the sections below.
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appears in the discontinuity of the 2 → 2 amplitude, Ts(s, t )

T inel,2→4
s (s, t ) ≡ 1

2

1

4!

∫ 4∏
i=1

d d−1q⃗i

(2π)d−1(2E q⃗i
)

(2π)dδd (p1 +p2 −
4∑

i=1
qi )T (+)

2→4(p1, p2|qi )T (−)
2→4(qi |p3, p4) .

(2.4.7)

By construction, the unitarity integral in the right-hand side of (2.4.7) depends only on s and t .

For physical scattering we consider s > 16m2 and t < 0.

We would like next to analytically continue (2.4.7) to the unphysical Martin-Mahoux region

discussed above

4m2 < t < 16m2 ,
16m2t

t −4m2 < s < 4m2 (3t +4m2)2

(t −4m2)2 . (2.4.8)

We also would like to consider 16m2 < s < 36m2 to focus on the T2→4 amplitude. This condition

together with (2.4.8) imply 36m2

5 < t . For the 2 → 2 case we reviewed the procedure in the

sections above. For the multi-particle case it was discussed in [50, 51, 52].

After taking a discontinuity in t and using crossing symmetry of the double spectral density,

we arrive at the following schematic form22

ρ(s, t ) = (t −4m2)
d−3

2

4π2(4π)d−2
p

t

∞∫
z̄1

dη′
∞∫

z̄1

dη′′ DiscsT
(+)

2→2(t ,η′)DiscsT
(−)

2→2(t ,η′′)×Discz̄ Kd (z̄,η′,η′′)

=
∫

dLIPS4 × Disct T (+)
2→4 Disct T (−)

2→4 ×K 2→4
Mandelstam , (2.4.9)

where in the formula above we switched to z̄ = 1+ 2s
t−4m2 and z̄1 = 1+ 8m2

t−4m2 . Here in the

right-hand side each DiscT2→4 contains a delta-function that puts the exchanged particle in

figure 2.8 on-shell. The phase space integral dLIPS4 should be understood in terms of the

analytic continuation a-la Mandelstam.

Note that since we are in the Mahoux-Martin region, the partial wave expansion of DiscsT
(±)

2→2(t ,η)

converges and both the Mandelstam kernel and the Legendre polynomials that enter into

partial waves are positive. Therefore we can write

Ts(t , s) =
∞∑

J=0
n(d)

J Im f J (s)P J (1+ 2t

s −4m2 ) ≥
J0∑

J=0
n(d)

J Im f J (s)P J (1+ 2t

s −4m2 ) . (2.4.10)

By plugging (2.4.10) into (2.4.9) and using positivity of the Mandelstam kernel Discz̄ Kd (z̄,η′,η′′)
we arrive at the lower bound on the integrated discontinuity Disct T2→4.

While this argument bounds the discontinuity of T2→4 in the unphysical kinematics of figure

22Note that T2→2 is not present in the second line of (2.4.9) since the region 4m2 < t < 16m2, 16m2 < s < 36m2

lies below the leading t-channel Landau curve t = 16m2s/(s −4m2). See Figure 2.4.
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2.8.b, for 36m2

5 ≤ t < 16m2 from below, it does not tell us anything about T2→4 in the physical

kinematics t < 0. Let us however comment why one expects to have T2→4 of the same order

also in the physical kinematics. Schematically, we can write the following representation of

the 2 → 4 impact parameter amplitude

T2→4(s,b) = (T2→2)2e−bm +
∞∫

3m

d Mρ(M)e−Mb . (2.4.11)

We can rewrite this as follows

|T2→4(s,b)− (T2→2)2e−bm | ≤ cMP e−3mb , cMP =
∞∫

3m

d M |ρ(M)|e−(M−3m)b , (2.4.12)

where cMP encodes the contribution of the multi-particle exchanges.

Without extra fine-tuning we expect that in a strongly coupled theory T2→2,cMP ∼O (1) and

therefore the one-particle exchange to dominate for b ≳ 1
m . This would make T2→4 ∼ O(1).

On the other hand, making T2→4 ≪ 1 given T2→2 ∼ O(1) would require a very fine-tuned

cancellation between the exchange of one-particle state and the multi-particle state as well

as cMP ≫ 1. It seems quite possible that such a scenario is not consistent with multi-particle

unitarity, but it is very hard to show it explicitly due to the complexity of the latter.

One scenario in which the regime of single particle dominance can be delayed to arbitrary

large impact parameters is if the theory contains extended objects, such as strings. In such

case we can choose lstring ≫ 1
m , and the one-particle exchange is expected to dominate only

for b ≳ lstring. In this case however, the spectrum is expected to contain particles of mass
1

lstring
≪ m which contradicts our assumption about m being the lightest particle.

In some numerical applications that we discuss in more detail below, see e.g. [1], it was ob-

served that small J partial wave converge very well. Therefore we can set in the formula (2.4.10)

J0 = 2 and then use it in (2.4.9). We can then evaluate the integral above to rigorously bound

from below DiscT2→4 in the Mahoux-Martin kinematical region. In the numerical analysis

when maximizing some couplings, one usually finds Im f0(s) ∼ 1 therefore the formulas (2.4.9),

(2.4.10) will produce DiscT2→4 ∼ 1. It is however still an open problem to translate this fact

into a rigorous statement about T2→4 for physical kinematics.

Independently of the discussion above, in section 2.7 we bound inelasticity using an additional

input about the discontinuity of the 2 → 2 amplitude.

2.5 Threshold Expansion

To further analytically constrain a nonperturbative amplitude a small parameter is needed.

In this section, as well as the next one, we will study the expansions of the amplitude in two
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2.5.1

2.5.2 2.5.3

2.6.1 2.6.2

2.7

2.6

2.5

Figure 2.9: The logical structure of sections 2.5, 2.6 and 2.7. We start in section 2.5 by developing the
idea of the threshold expansion. We solve elastic unitarity for f J (s) close to s = 4m2. This naturally
leads to the threshold expansion both for the discontinuity of the amplitude Ts (s, t) and its double
discontinuity ρ(s, t). In section 2.6 we use the Froissart-Gribov formula and crossing symmetry of
ρ(s, t ) to translate the threshold expansion of discontinuity Ts (s, t ) into the large J expansion of f J (s)
and the threshold expansion of ρ(s, t ) into the large J expansion of Im f J (s) correspondingly. In section
2.7 we give an error bound on these expansion in terms of an extra phenomenological bound on the
discontinuity of the amplitude.

kinematical small parameters, as well as the relation between the two expansions.

One kinematical small parameter that always exists in a gapped theory is the energy distance

from the two-particle thereshold in units of the mass gap,

σs = s

4m2 −1 = p⃗2

m2 , (2.5.1)

where in the last equality we evaluated σs in the center-of-mass frame (2.2.7).

The threshold expansion is, thus, an expansion in powers of σs . The small σs expansion

is known in nuclear physics as the effective range expansion [61]. As we take σs ≪ 1 or,

equivalently, |p⃗|≪ m scattering becomes non-relativistic and we can characterize it by some

effective potential whose properties are captured by the threshold expansion parameters [62].
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In this section we use elastic unitarity, extended analyticity and crossing to argue that both

the discontinuity and the double discontinuity of the scattering amplitude admit a natural

threshold expansion. Importantly, the parameters that enter the threshold expansion are

controlled by the low energy physics which is well-known from the experiments or lattice

simulations, see e.g. [63].

Whenever a theory has a conserved charge, there is a natural small parameter – one over the

charge of states that are being exchanged. In the case at hand, the only symmetry we assume

is Lorentz symmetry. Correspondingly, the only available conserved charge is the spin. Indeed,

in the next section we will show that the partial wave coefficients admit a systematic large J

expansion. Moreover, by combining the Froissart-Gribov formula with crossing we will relate

the threshold expansion to the large spin expansion.

The logical structure and steps of this and following sections is summarized in figure 2.9. We

start by constructing a threshold expansion of the partial wave coefficients that is consistent

with elastic unitarity.

2.5.1 Threshold Expansion of f J (s)

To expand the the partial wave coefficients close to the threshold in a way that is consistent

with elastic unitarity, it is first convenient to solve the latter in a different fashion than (2.2.39).

After dividing by | f J (s)|2, the elastic unitarity condition (2.2.37) takes the form

2Im
1

f J (s)
= 1

i

(
1

f J (s + iϵ)
− 1

f J (s − iϵ)

)
=− (s −4m2)

d−3
2p

s
×

{
1 4m2 < s < 16m2

0 0 < s < 4m2 . (2.5.2)

Hence, 1/ f J has a branch cut at threshold for even d and a logarithmic cut for odd d . The

general solution to (2.5.2) combined with real analaticity (2.2.35) takes the form

1

f J (s + iϵ)
= b J (σs)− i

2

(4m2σs)
d−3

2p
s

×
{

1 d even
i
π [logσs − iπ] d odd

, (2.5.3)

where b J (σs) is a real analytic and single-valued function in some finite neighborhood around

the origin, except for potentially isolated singularity at σs = 0. Note that in writing (2.5.3) we

used the continuity assumption for f J (s), see assumption 5 at the introduction and section

2.2.5.

As we have learned from the Froissart-Gribov representation (see (2.2.54)), as σs → 0+ from

above, f J (s) → a Jσ
J
s (2.2.55). In terms of the function b J (σ), this behavior is

b J (σ) = md−4

a Jσ
J
s

+O (σ1−J
s ) , J ≥ 2 , (2.5.4)

where we have assumed that J0(4m2) < 2. For J = 0 we do not expect the Froissart-Gribov
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representation to hold close to σs = 0. Therefore we do not have a similar prediction. After

factoring out the leading threshold singularity of b J≥2(σ), it has a regular expansion

b J≥2(σs) = md−4

σJ
s

(
1

a J
+

∞∑
i=1

b J ,iσ
i
s

)
and b0(σs) = md−4

σ
J̃0
s

∞∑
i=0

b0,i σ
i
s , (2.5.5)

where J̃0 is an unconstrained integer at this point and a J , b J ,i are real coefficients. Reality

of scattering lengths a J and effective ranges bi ,J follows from real analyticity property of the

partial waves coefficients (2.2.35). For actual values of these parameters in various QCD

processes see e.g. [64].

Similarly, using real analaticity of b J (s), we have the following equations for the imaginary part

of the partial wave in the elastic unitarity region

Im f J (s) = (4m2σs)
d−3

2

2
p

s

[
b2

J (σs)+ (4m2σs)d−3

4s

]−1

d even ,

Im f J (s) = (4m2σs)
d−3

2

2
p

s

(
b J (σs)+ (4m2σs)

d−3
2

2π
p

s
logσs

)2

+ (4m2σs)d−3

4s

−1

d odd . (2.5.6)

To summarize, by plugging (2.5.5) into (2.5.3) and (2.5.6) we have constructed a threshold ex-

pansion of f J (s) and Im f J (s) that automatically solves elastic unitarity for any real coefficients.

Note that the most singular possible threshold behavior is completely fixed by elastic unitarity,

with no free coefficient. It comes from J = 0 and corresponds to setting b0(σs) = 0 in (2.5.3), so

that the partial wave is dominated by the universal term

Im f0(s) = 25−d m4−d

σ
d−3

2
s

×
{

1+ . . . d even
π2

log2σs+π2 + . . . d odd
. (2.5.7)

In particular, this implies that the spin zero scattering length is infinite. In d = 3 the threshold

behavior (2.5.7) is realized in massive φ4 theory [65]. In d = 4 the asymptotic behavior (2.5.7)

appeared in the study of coupling maximization in [1] and corresponds to having a bound

state at s = 4m2.23 For J ≥ 2 ≥ J0(s) the singular behavior (2.5.7) does not occur due to (2.2.54).

Below we will also be interested in the case of finite Im f0(s). In this case, the spin zero

scattering length is finite, namely b0(s) = md−4

a0
, and we get the following leading behavior of

Im f0(s)

Im f0(s) = 2d−5m4−d a2
0σ

d−3
2

s + . . . , d > 3 . (2.5.8)

As a final remark, note that the analysis of this section can also be generalized to non-integer

23By tuning the parameters of the theory it could be possible to reach this situation in QCD as well. We thank
Mattia Bruno and Maxwell Hansen for the discussion.
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spin, see appendix A.6.

2.5.2 Threshold Expansion of Discontinuity

For our purposes we will be interested in a closely related expansion, that of the discontinuity

of the amplitude Ts(s, t ) for t > 4m2 and σs → 0. As we will see, the Froissart-Gribov formula

(2.2.53) relates this expansion to the large J behavior of the partial wave coefficients.

We proceed by considering the s-channel partial wave expansion for the discontinuity of the

amplitude

Ts(s, t ) = n(d)
J=0Im f0(s)+

∞∑
J=2

n(d)
J Im f J (s)P (d)

J

(
1+ 2t

s −4m2

)
. (2.5.9)

For s close to 4m2, the sum over J above converges inside the large s-channel Lehmann ellipse

which is for t < 16m2s
s−4m2 . Given some fixed t , and considering the limit s → 4m2 we stay within

the convergence region.

We can now plug (2.5.6) into (2.5.9) and perform the threshold expansion under the sum. We

get

Ts(s, t ) = n(d)
0 Im f0(s)+n(d)

2 a2
2m4−d

(
t

m2

)2 2d−7(d −1)

(d −2)
σ

2+ d−3
2

s + . . . , (2.5.10)

where we can systematically expand Ts(s, t) using the threshold expansion of partial waves

(2.5.5) which is based on elastic unitarity. Note that the expansion parameter in even dimen-

sions is simply σs , whereas in odd dimensions we have in addition powers of logσs , as well as

inverse powers 1
logσs

, which we do not write here explicitly.

Let us emphasize that in the argument above it was absolutely crucial to consider the disc-

nontinuity of the amplitude Ts(s, t ) and not the amplitude T (s, t ) itself. Indeed, if we were to

try repeating the argument above for T (s, t ) itself, we would run into the following problem.

In (2.5.9) we have partial waves f J (s) ∼ (s −4m2)J and Legendre polynomials behaving as

P (d)
J

(
1+ 2t

s−4m2

)∼ (s −4m2)−J . Therefore the expansion for s → 4m2 requires re-summation of

partial waves of all spins which is beyond our control.

The conclusion is that Ts(s, t ) admits a systematic threshold expansion in terms of the solution

to elastic unitarity in the s-channel. Moreover, the contribution of higher spin partial waves

are suppressed by an additional factor of σJ
s . We expect the threshold expansion converges as

long as we stay below the leading Landau curve, namely for t < 16m2s
s−4m2 . Luckily for us, it is the

discontinuity of the amplitude and not the amplitude itself that enters the Froissart-Gribov

inversion formula. Therefore the results of this section can be readily put to use.
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2.5.3 Threshold Expansion for Double Spectral Density

We now turn to the study the double spectral density (2.3.7) close to the leading Landau curve.

We consider the Mandelstam equation (2.3.9) that is repeated here for convenience

ρ(s, t ) = (s −4m2)
d−3

2

4π2(4π)d−2
p

s

∞∫
z1

dη′
∞∫

z1

dη′′T (+)
t (s,η′)T (−)

t (s,η′′)Discz K (z,η′,η′′) , (2.5.11)

where 4m2 < s < 16m2. The crucial observation is that when we are very close to the leading

Landau curve t = 16m2s
s−4m2 , the integral in (2.5.11) is again controlled by the threshold expansion

of T (+)
t (s,η′) and T (−)

t (s,η′′). The reason for this is that the region of integration starts at the

threshold, η′,η′′ ≥ z1, and ends at the boundary of support of the kernel, η+(η′,η′′) ≤ z. As t

approach the leading Landau curve, this region shrinks close to the threshold for both η′ and

η′′ integrals, see figure 2.3.

A convenient small parameter in the problem is the dimensionless distance from the Landau

curve, see (2.3.11)

δz ≡ z − (2z2
1 −1) ∝ t − 16m2s

s −4m2 . (2.5.12)

We can now plug the threshold expansion of the discontinuity (2.5.5) into (2.5.11) and expand

the result in powers of δz. At any given order in that expansion only finite number of terms in

the threshold expansion of the discontinuity contribute. For even spacetime dimension, the

relevant integrals that appears in the expansion are

Ĩ (d)
n1,n2

(z) ≡
∞∫

z1

dη′
∞∫

z1

dη′′σn1− d−3
2

t (η′) σ
n2− d−3

2
t (η′′) Discz K (z,η′,η′′) . (2.5.13)

To leading order in δz this integral is given by24

Ĩ (d)
n1,n2

(z) = 2
π

d+1
2 (z1 −1)d−3−n1−n2

zn1+n2+1
1 (z2

1 −1)1/2

(
δz

2

)n1+n2+ 5−d
2 Γ(n1 + 5−d

2 )Γ(n2 + 5−d
2 )

Γ(n1 +n2 + 7−d
2 )

(1+O (δz)) .

(2.5.15)

For n1,n2 ≤ d−5
2 the integral (2.5.13) diverges, but this apparent divergence is not physical.

Namely, the integral in (2.5.15) originates from the contour integral that wraps around η′,η′′ =
z1. Therefore, the integral can be safely deformed to a keyhole contour around the dangerous

region, see figure 2.10. The result of the keyhole integration is equivalent to analytically

continuing (2.5.15) in m,n (as long as the final result is finite).

24To derive (2.5.15) it is useful to do the following change of integration variables close to δz = 0

η′ = z1 +
δz

2z1
αx , η′′ = z1 +

δz

2z1
α(1−x) , (2.5.14)

where the integration in (2.5.11) for δz ≪ 1 is restricted to 0 ≤ x and α≤ 1.
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Figure 2.10: The discontinuity of the Mandelstam equation (2.3.9) has been obtained by deforming the
contour of integration in the finite integral (2.3.8). Hence, the result cannot diverge. This means that an
apparent divergence in (2.5.13) that comes from the region of integration close to the threshold should
be understood as a finite keyhole contour integral plotted here.

We see that indeed, higher powers in the threshold expansion result in higher powers of δz.

For odd spacetime dimension, due to the presence of 1
log2σs+π2 in (2.5.6), the relevant integral

is more complicated, but the power suppression in δz is of course the same. We discuss it

more in appendix A.8.2.

The most singular possible behavior close to the Landau curve comes from the corresponding

universal threshold behavior of Im f0(t) in (2.5.7) and corresponds to n1 = n2 = 0 in (2.5.13).

In that case we find

ρ(s, t ) = (25−d n(d)
0 )2 (d −3)π

3−d
2 m4−d (z1 −1)

d−3
2

32(5−d)cos
(
πd
2

)
Γ

(
d−1

2

)
z1(z1 +1)

δz
5−d

2 + . . . , d even . (2.5.16)

On the other hand, for the case where the spin zero scattering length is finite (2.5.8), we have

n1 = n2 = d −3 in (2.5.13) and correspondingly the approach to the Landau curve is much

softer

ρ(s, t ) =
a4

0π
1−d

2 m4−d (z1 −1)
9−3d

2 z5−2d
1 Γ

(
d−1

2

)2
(n(d)

0 )2

512(z1 +1)Γ
(

3d−5
2

) δz
3d−7

2 + . . . . (2.5.17)

2.5.4 Radius of Convergence

Let us briefly discuss the radius of convergence of the threshold expansion introduced above.

As usual the radius of convergence is controlled by the analytic properties of the function at

hand.

Consider first f J (s). It has a normal threshold cut starting at s = 4m2 and multi-particle cuts at

s ≥ 16m2, as well as the u-channel cut for s ≤ 0. In addition to that we can have bound states

and resonances (which correspond to poles on the second sheet). In a given theory, we expect

the singularity that is the closest to s = 4m2 to control the convergence radius of the threshold

expansion of f J (s). In this chapter we assume for simplicity that there are no bound states,

however it should be easy to include them in the analysis.

Consider next Ts(s, t ). In this case, the partial wave expansion (2.5.9) converges below the first
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Landau curve. For 4m2 < s < 16m2 and t > 16m2, that is the regime of σs < 16m2

t−16m2 . Moreover,

if we are to first expand each Im f J (s) close to the threshold under the sum, we will have to

argue that the sum over J and the threshold expansion commute. It is not clear to us how to do

it. Instead below we adopt a different approach. We separate a few low spin partial waves in

(2.5.9) and apply the threshold expansion to them. We then bound the sum over spins without

doing the threshold expansion under the sum over spins.

2.6 Large J Expansion

In this section we map the threshold expansion developed in the previous section to the large

J expansion of the partial waves coefficients f J (s). 25

The basic idea is very simple. The Froissart-Gribov formula (2.2.53) directly maps the thresh-

old expansion of the discontinuity of the amplitude (2.5.10) to the large J expansion of the

partial wave coefficients in the crossed channel.26 Interestingly, once combined with crossing,

the Froissart-Gribov formula allows us to map the low energy threshold expansion, that is

dominated by the low spins, to the large spin behavior of the partial wave coefficients for

any energy and in the same channel. In particular, it automatically predicts the amount of

inelasticity at large J .

In this section we will use the results for the threshold expansion of the double spectral density

and the discontinuity of the amplitude in the crossed t-channel as opposed to the s-channel

threshold expansion of the previous section. We hope this will not cause any confusion. In

sections 2.6.1 and 2.6.2 we work out the leading large J expressions for f J (s) and Im f J (s)

correspondingly. In section 2.6.3 we compute the exact contribution of a given term in the

threshold expansion of the amplitude to the partial waves. This includes infinitely many 1
J

corrections to the results of 2.6.1 and 2.6.2.

Note that in this section we only concern ourselves with the threshold expansion of the

amplitude close to the two-particle threshold. Of course, in addition there are contributions

from multi-particle thresholds. These lead to further nonperturbative in 1
J corrections to the

results of this section and are potentially important if we would like to discuss partial waves at

finite J which is the subject of the next section.

25In d = 4 this was pioneered by Dragt [66], see also [67], and further developed by A. W. Martin in [68]. Here
we consider a slightly more general form of the amplitude, as well as generalize the analysis to any spacetime
dimension.

26This is analogous to the analytic bootstrap in CFTs [69, 70, 71].
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2.6 Large J Expansion

2.6.1 Large Spin Expansion of f J (s)

We start by analyzing the Froissart-Gribov integral (2.2.53) in the large spin limit J ≫ 1. For

convinience, we quoting the integral here

f J (s) = 2Nd

π

∞∫
z1

d z (z2 −1)
d−4

2 Q(d)
J (z)Tt (s, t (z)) , Re[J ] > J0(s) . (2.6.1)

The large J behavior of Q(d)
J (z) is given by27

Q(d)
J (z) = 2d−4pπ

Γ
(

d−2
2

)
J

d−3
2

λ(z)−J

(λ(z)2 −1)
d−3

2

(1+O (1/J )) , (2.6.3)

where

λ(z) ≡ z +
√

z2 −1 = eθ for |z| > 1 , Reθ > 0 . (2.6.4)

Crucially, Q(d)
J (z) decays very fast for fixed z > 1 at large J . The integral is therefore dominated

by the region close to the threshold z1. Explicitly, for J ≫ 1 we have

Q(d)
J

z∗+
√

z2∗−1δz

J

= 2d−4pπ
Γ

(
d−2

2

)
J

d−3
2

λ(z∗)−J

(λ(z∗)2 −1)
d−3

2

e−δz (1+O (1/J )) , (2.6.5)

and therefore the integral in (2.6.1) is controlled by the region of the size ∼ 1
J close to z∗ = z1. In

that way, the large J behavior is controlled by the threshold expansion of Tt (s, t (z)) established

in the previous section in a manifest way.

Next, we explicitly plug the threshold expansion into (2.6.1) and compute the leading large J

behavior of the partial wave coefficients. For that aim, it is convenient to express the integral

27An efficient way to systematically expand Q(d)
J (z) to an arbitrary order in the large J , fixed z expansion is to

start from its representation in terms of the hypergeometric function [72]

Q(d)
J (z) = 2d−4pπ

Γ
(

d−2
2

)
Γ(J +1)

Γ
(

J + d−1
2

) λ(z)−J

(λ(z)2 −1)
d−3

2
2F1

(
1− d−3

2 , d−3
2 ; J + d−1

2 ; 1
1−λ(z)2

)
, (2.6.2)

and then use the series representation for the hypergeometric function as 2F1(a,b;c; x) =∑∞
k=0

(a)k (b)k
k !(c)k

xk . The

spin, J , only enters in the Pochhammer (c)k = (J + d−1
2 )k and therefore the k’th term only contributes at order 1/J k

and higher. Note that for d = 3 there are no 1
J corrections to (2.6.3). More generally, in odd d the large J properties

of Q(d)
J (z) can be made manifest, see appendix A.3.
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as follows

f J (s) ≡ Ndp
π

Γ
(

d−2
2

)
J

d−1
2

(λ(z1)2 −1)
d−3

2

λ(z1)J+d−3
f̂ J (s) , f̂ J (s) =

∞∫
0

dδz Tt (s, t (δz, J ))e−δz (1+O (1/J )) ,

(2.6.6)

where we have28

σt = 1

J

(
z1 +1

z1 −1

)1/2

δz . (2.6.7)

Note that in deriving (2.6.6) we took into account the integration measure (z2 −1)
d−4

2 and the

Jacobian from switching the integration variable to δz.

After performing the crossing transformation s ↔ t , we can now plug the leading threshold

expansion expressions from the previous section (2.5.10) to get the J ≫ 1 limit of f J (s). Let us

start with the universal and most singular case (2.5.7). For this case we get

f̂ J (s) = 25−d n(d)
0 m4−d J

d−3
2

(
z1 −1

z1 +1

) d−3
4

(1+O (1/J ))×
 π2g d−3

2

(
log J

√
z1−1
z1+1

)
d odd

Γ
(

5−d
2

)
d even

,

(2.6.8)

where the explicit form of the slowly-varying function g d−3
2

(log x) is computed in appendix A.8.

If, on the other hand, we consider the situation with a finite spin zero scattering length (2.5.8),

we get

f̂ J (s) = 2d−5n(d)
0 a2

0Γ
(

d−1
2

)
m4−d 1

J
d−3

2

(
z1 +1

z1 −1

) d−3
4

(1+O (1/J )) . (2.6.9)

It is clear that we can systematically include 1
J correction in this expansion. Note that in all

cases, the leading large J result for f J (s) is exponentially small and purely real. In the next

section we compute the leading J contribution to Im f J (s).

2.6.2 Large Spin Expansion of Im f J (s)

We now repeat the analogues large J expansion for Im f J (s) in terms of the threshold expansion

of the double spectral density. In this case, the Froissart-Gribov formula can be written as

Im f J (s) = 2Nd

π

∞∫
z1

d z(z2 −1)
d−4

2 Q(d)
J (z)ρ(s, t (z)) , Re[J ] > J0(s) . (2.6.10)

28Note that δz in (2.6.7) is different from the one used in the previous section.
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2.6 Large J Expansion

It is instructive to separate s into three regions, 4m2 < s < 16m2, 64
3 m2 > s > 16m2 and

s > 64
3 m2.

The Elastic Region 4m2 < s < 16m2

In this elastic strip the double spectral density is zero for t < 16m2 s
s−4m2 or, equivalently, for z <

2z2
1−1, see figure 2.4. The large J limit of Im f J (s) is thus dominated by the expansion of double

spectral density close to the leading Landau curve which we worked out in section 2.5.3. Hence,

we can simply use (2.6.5) with z∗ = 2z2
1 −1, otherwise the consideration is identical to the one

in the previous subsection. Explicitly, we have

Im f J (s) = Ndp
π

Γ
(

d−2
2

)
J

d−1
2

([λ(2z2
1 −1)]2 −1)

d−3
2

[λ(2z2
1 −1)]J+d−3

Im f̂ J (s) , 4m2 < s < 16m2 ,

Im f̂ J (s) =
∞∫

0

dδze−δzρ(s, t (δz, J )) (1+O (1/J )) , (2.6.11)

where

z = (2z2
1 −1)+

2z1

√
z2

1 −1

J
δz , t (δz, J ) = 8m2

(
z1 +1+ z1

J

(
z1 +1

z1 −1

)1/2

δz

)
. (2.6.12)

Therefore, upon making a substitute δz → 2z1

p
z2

1−1
J δz in the formulas of section 2.5.3, we can

directly plug them into (2.6.11). The resulting large J behavior with the universal threshold

expansion (2.5.7) takes the following form

Im f̂ J (s) = 2−5 (d−3)
2

(
n(d)

0 Γ
(

5−d
2

))2
m4−dπ

1−d
2 J

d−5
2 z

3−d
2

1

(
z1 −1

z1 +1

) d−1
4

(1+O (1/J )) , d even ,

(2.6.13)

where again the case of d odd should be considered separately using the results of appendix

A.8.

Turning to the case with a finite spin zero scattering length (2.5.8), we get

Im f̂ J (s) =
2

3d−25
2

(
n(d)

0 a2
0Γ

(
d−1

2

))2

π
d−1

2 md−4 J
3d−7

2

1

z
d−3

2
1

(
z1 +1

z1 −1

) 3d−11
4

(1+O (1/J )) . (2.6.14)

An alternative way to arrive at (2.6.13) and (2.6.14) is to start from the large J expansion of

f J (s) discussed in the previous section (2.6.8) and use elastic unitarity. Indeed, one can check
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that (2.6.8) and (2.6.13), (2.6.14) are consistent with elastic unitarity

log
2Im f J (s)

(s−4m2)
d−3

2p
s

| f J (s)|2
= 0 , 4m2 < s < 16m2 . (2.6.15)

The Inelastic Region 16m2 < s < 64
3 m2

This regime is in the multi-particle part of figure 2.4. To analyze it one should first identify the

leading Landau curve in that segment, which is beyond the scope of this work.

The Inelastic Region s > 64
3 m2

As s increases passed 64m2

3 , we know from crossing that the leading Landau curve is the one of

the dual channel (the blue curve in figure 2.4). A remarkable consequence of this fact is that

crossing allows us to measure the non-zero inelasticity at large spin J .

As before the leading large J behavior of Im f J (s) is controlled by the leading Landau curve

in the relevant kinematics. For s > 64
3 m2 the leading Landau curve is at t = t1(s) = 4m2s

s−16m2 , or

equivalently at

z = z̃1 ≡
4−3z1 + z2

1

5−3z1
. (2.6.16)

See blue curve on figure 2.4.

In this case we get that the Froissart-Gribov integral takes the same form as in (2.6.10) with

z1 → z̃1 , t (δz, J ) = 4m2

 z̃1 −1

z1 −1
+ 1

J

√
z̃2

1 −1

z1 +1
δz

 and s > 64

3
m2 , (2.6.17)

where t (δz, J ) is a definition of δz that we will use below.

The double spectral density close to z̃1 is given by the results of section 2.5.3 upon application

of crossing s ↔ t .29 Considering the amplitudes with the universal threshold expansion (2.5.7)

we get

Im f̂ J (s) =
J

d−5
2

(
n(d)

0 Γ
(

5−d
2

))2

8(2m)d−4(z̃2
1 −1)

d−5
4 π

d−1
2

(z1 −1)
3d−13

2

(1+ z1)(3− z1)(5−3z1)d−6
(1+O (1/J )) , d even .

(2.6.18)

29By taking s → ∞ with x = m3

s3/2 J kept fixed in (2.6.11), (2.6.17) one gets the d-dimensional version of the
Haan-Mütter scaling law [73, 74].
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2.6 Large J Expansion

In odd d the situation is more complicated due to the logarithmic nature of the threshold

singularity. While the leading power dependence on J can be easily computed, we do not give

an explicit form for the dependence on log J that multiplies the leading power.30

For the case of finite spin zero scattering length (2.5.8), we get in any d

Im f̂ J (s) =
(
n(d)

0 a2
0Γ

(
d−1

2

))2

2d+7md−4π
d−1

2

(z̃2
1 −1)

3d−7
4

J
3d−7

2

(5−3z1)3(d−2)(z1 −1)
11−5d

2

(1+ z1)(3− z1)2d−5
(1+O (1/J )) . (2.6.19)

We can use the results above for the leading large J behavior of Im f̂ J (s) for s > 64
3 m2 to estimate

the amount of inelasticity that exists at given s and J . Recall that if the scattering were purely

elastic partial waves would satisfy 2Im f J (s) = (s−4m2)
d−3

2p
s

| f J (s)|2, see (2.6.15).

Using the explicit results of this section we conclude that elastic unitarity together with

crossing lead to the universal inelasticity ratio at large J

r J (s) ≡ log
2Im f J (s)

(s−4m2)
d−3

2p
s

| f J (s)|2
= J log

λ(z1)2

λ(z̃1)
+O(1) , s > 64m2

3
. (2.6.20)

In figure 2.11 we plotted r J (s) as a function of s/m2 for fixed J . We see that r J (s) approaches 0

for s = 20m2 and s =∞. It acquires its maximal value of about 0.47J at s = 40m2.

Figure 2.11: The large spin inelastisity ratio r J (s) in (2.6.20) plotted for s > 64
3 m2. The maximum value

of the ratio is achieved at s = 40m2 for which we get r J (40m2) ≃ 0.473J (1+O (1/J )).

2.6.3 Threshold Expansion in the J-space

In this section we evaluate exactly the contribution of a given term in the threshold expansion

to the partial waves. This generalizes the results above which correspond to the large J limit of

the exact formulas that we present in the current section. For simplicity let us first focus on d

even, when the threshold behavior is of the square-root type.

30It should be possible to use the integral form for ρ(s, t) given in appendix A.8.2 to efficiently evaluate the
integral numerically for given J but we do not pursue it here.
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Consider the threshold expansion of the discontinuity of the amplitude. In the regime where

it converges close to the threshold we can write

Tt (s, t (z)) =
∞∑

n=0
cn(s)

(
z − z1

z1 −1

)n+ 3−d
2 =

∞∑
n=0

cn(s)σ
n+ 3−d

2
t . (2.6.21)

In practice we truncate this expansion at any desired order and plug it into the Froissart-

Gribov formula. Note that the Froissart-Gribov integral goes all the way to infinite z where

the expansion (2.6.21) is no longer valid. However, that regime of integration is exponentially

suppressed in J and therefore only affects the nonperturbative corrections at large J . It turns

out that the relevant integral can be done exactly. It is given by

I (d)
n,J (z1) ≡ 2Nd

π

∞∫
z1

d z(z2 −1)
d−4

2 σ
n+ 3−d

2
t (z) Q(d)

J (z) = 2
5
2Γ(n + 5−d

2 )

2n(8π)
d
2 Γ( 3

2 +n)

(z1 +1)n+ 1
2

(z1 −1)
2−d

2

Q(2n+5)
J−n+ d−5

2

(z1) .

(2.6.22)

This formula is derived in appendix A.7 and holds for arbitrary J , d and n, not necessarily

integer. If we expand both sides at large J , we reproduce the formulas of the previous section.

In this way, we arrive at the explicit expression for the large J expansion of f J (s) in terms of the

coefficients of the threshold expansion in the crossed channel

f J (s) =
∞∑

n=0
cn I (d)

n,J (z1)+ [nonperturbative] . (2.6.23)

Using this expression and the large J expansion of I (d)
n,J (z1)

I (d)
n,J (z1) = 1

J n+1 × 2Γ(n + 5−d
2 )

(8π)
d−1

2 λ(z1)J+ d−3
2

(z1 +1)n+ 1
2

(z1 −1)
2−d

2

(
2λ(z1)

λ2(z1)−1

)n+1

(1+O (1/J )) , (2.6.24)

we see that higher orders in the sum are more suppressed in J . Hence, one can use this repre-

sentation to explicitly and systematically obtain all the coefficients in the large J expansion of

f J (s), the leading 1/J result of course coincides with the previous analysis.

Similarly, we can write down the threshold expansion formula for ρ(s, t ). Based on the previous

discussion we have

ρ(s, t (z)) = 1

(z − (2z2
1 −1))

d−5
2

∞∑
m=0

dm(s)(z − (2z2
1 −1))m . (2.6.25)

The problem of finding dm(s) becomes completely algebraic after we note that (2.6.25) implies

Im f J (s) =
∞∑

m=0
dm(s)I (d)

m+1,J (2z2
1 −1)+ [nonperturbative] , (2.6.26)

where we again performed the Froissart-Gribov integral exactly.
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Elastic unitarity (2.6.15) relates the two expansions, (2.6.23) and (2.6.26). It then allows one to

express the dm(s)’s in terms of the cn(s)’s. This is possible because the dm(s)’s do not depend

on J . Equivalently, we can use (2.5.11) to directly map the threshold expansion of Tt (s, t) to

that of ρ(s, t ) near the Landau curve. The details of this expansion are presented in appendix

A.7.

2.7 Finite J and Finite s

In practice, one is interested in making statements about partial waves at some finite (but

potentially large) spin J and finite energy s. Our ability to make such statements crucially

depends on our ability to estimate an error in the Froissart-Gribov integral produced by the

approximation to the amplitude. To that extent we can think of the discontinuity of the

amplitude as follows

Tt (s, t ) = T approx
t (s, t )+T error

t (s, t ) , (2.7.1)

where T approx
t (s, t) is an approximation to Tt (s, t) based on our knowledge about it. It can

involve expansion coefficients close to various normal thresholds, information about reso-

nances, or about the Regge limit. The more information is available to us, the less we can

make T error
t (s, t ) and therefore the better is our knowledge of f J (s).

Assuming continuity of the amplitude we can try to bound the amplitude as follows. Consider

a given s and let us assume that Tt (s, t) ∼ t J0(s) at large t . Let us consider an integer N >
J0(s)+ d−3

2 and write

T approx
t (s, t ) =

N−1∑
n=0

cn(s)

(
z − z1

z1 −1

)n+ 3−d
2

. (2.7.2)

Continuity of the amplitude then implies that there exists cN (s) such that

∣∣T error
t (s, t )

∣∣< cN (s)

(
z − z1

z1 −1

)N+ 3−d
2

. (2.7.3)

Indeed, this bound matches the neglected term close to the threshold and is also consistent

with the Regge behavior since N > J0(s) + d−3
2 . The minimal value of cN (s) depends on

the behavior of the amplitude at intermediate s. In particular if at some fixed t = t0 the

discontinuity develops a “bump”, see figure 2.12, then cN (s) should be made large enough for

(2.7.3) to hold. A familiar example of such a bump is a resonance and it is due to a singularity

on the second sheet. More generally, we can call such a bump an outlier. Correspondingly, we

call the problem of bounding cN (s) “the problem of outliers.”31

Note that for the integral on (2.7.3) to converge at large z, we need to take J > N +1. Hence, a

31For a similar discussion in the context of the CFT bootstrap see [75].
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Figure 2.12: The error in our approximation for the inelasticity depends on our knowledge about the
discontinuity of the amplitude Tt (s, t ). Here, the discontinuity is plotted for different energy scales (t )
at fixed s. Its structure in the large energy (Regge) and the low energy (threshold) regions are under
relatively good control (solid blue line). At intermediate energy scales the amplitude may develop a
bump. The problem of outliers is the problem of bounding the discontinuity in this regime, and hence
bounding our error for the inelasticity.

better choice of variables to encode our knowledge about the threshold behavior of Tt (s, t)

are ones that do not grow at large z. For example, we can replace (z1 −1) → (z −1) in (2.7.2).

Doing so is necessary if one wants to go to higher orders in the threshold expansion, but we

will not pursue this in the present work. The advantage of using just (z − z1)/(z1 −1) is that the

Froissart-Gribov integral is known explicitly, see (2.6.22).

In a related manner, when deriving the Froissart-Gribov formula we do not have to close the

contour all the way to infinity. We can instead keep arcs in the complex plane at some finite

energy, see figure 2.2.b. This is sometimes called the truncated Froissart-Gribov formula, see

e.g. [74, 76]. The problem of deriving finite s and J formulae then requires bounding the

contribution of the arcs. The advantage of this approach is that we do not have to assume

extended analyticity all the way to t =∞.

Let us proceed with cN (s) in (2.7.3) being our phenomenological parameter and see how

various quantities depend on it. First of all, we can immediately bound the error in f J (s). We

have ∣∣∣∣∣ f J (s)−
N−1∑
n=0

cn I (d)
n,J (z1)

∣∣∣∣∣< cN (s)I (d)
N ,J (z1) . (2.7.4)

where I (d)
n,J (z) is the integral (2.6.22).

Next, we consider Im f J (s). The relevant regime to study is s > 64m2

3 , where we can estimate

inelasticity using our knowledge about the threshold expansion in the crossed channel. In this

62



2.7 Finite J and Finite s

case we can start from

Im f J (s) = 2Nd

π

∞∫
z̃1

d z (z2 −1)
d−4

2 Q(d)
J (z)ρ(s, t (z)) , (2.7.5)

and split the z-integral in two regions, 4m2 < t < 16m2 and t ≥ 16m2.

In the region 4m2 < t < 16m2 we can use the Mandelstam equation to compute ρ(s, t ). It will

involve the terms in the threshold expansion that we worked out above together with an error

term that is controlled by (2.7.2) and (2.7.3). For t ≥ 16m2, since DiscsT approx
t (s, t ) = 0, we have

|ρ(s, t )| = |DiscsT error
t (s, t )| < |T error

t (s, t )| . (2.7.6)

Together with (2.7.2) and (2.7.3), this can be used to estimate the bound on Im f J (s).

If one is not willing to make an assumption of the form (2.7.3) about T error
t (s, t ) then one can

still derive a bound on inelasticity [76], albeit very weak and only asymptotic when s →∞.

2.7.1 A Toy Model Example

We now study a toy model example that is motivated by the numerical analysis of [1]. We

consider four-dimensional spacetime (d = 4) and take T approx
t (s, t) to be given by the first

universal term in the threshold expansion (2.5.7)

T approx
t (s, t ) = 32π

√
z1 −1

z − z1
. (2.7.7)

We assume that the Regge limit is bounded by J0(s) ≤ 1
2 for real s in some region. Hence, for

this case we can take N = 1 in (2.7.3) and bound the error as

|T error
t (s, t )| < δc(s)×32π

√
z − z1

z1 −1
. (2.7.8)

where for convinience we have introduced the notation δc(s) = c1(s)/(32π), (2.7.3).

We will now go through the steps in figure 2.9 and apply them to the toy model (2.7.7). We will

use the bound on the error (2.7.8) to have a finite J and finite s bound on the error at each step.

We start with the error on the partial waves coefficients. Using the Froissart-Gribov formula, it

is given by (2.7.4)∣∣∣ f J (s)− f approx
J (s)

∣∣∣= ∣∣∣ f J (s)−32πI (d=4)
0,J (z1)

∣∣∣< 32πδc(s)I (d=4)
1,J (z1) , (2.7.9)

Note that due to our assumption on the Regge trajectory, the Froissart-Gribov formula is

applicable all the way down to J ≥ 2 for any s ≥ 4m2.
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Figure 2.13: We plot the ratio of the leading and subleading threshold integrals in (2.7.10) as a function

of spin J for s = 40m2. In particular, we get
I (d=4)

1,J (z1)

I (d=4)
0,J (z1)

|s=40m2,J=4 ≃ 0.51, and
I (d=4)

1,J (z1)

I (d=4)
0,J (z1)

|s=40m2,J=20 ≃ 0.08.

To quantify the error in (2.7.9) we take the ratio between the error integral I (d=4)
1,J (z1) to the

approximation one I (d=4)
0,J (z1)

er r J (s) ≡ δc(s)×
I (d=4)

1,J (z1)

I (d=4)
0,J (z1)

= δc(s)

2J

√
z1 +1

z1 −1
(1+O (1/J )) . (2.7.10)

The apprximation for the partial waves is good when this ratio is small. For example, we can

focus on the point s = 40m2, where the large J inelasticity ratio (2.6.20) is maximal. In figure

2.13 we have plotted this ratio for s = 40m2 as a function of spin. For example, we have

er r J=4(40m2) ≃ 0.51δc(40m2) , er r J=20(40m2) ≃ 0.08δc(40m2) . (2.7.11)

Next, we use the Mandelstam equation (2.3.9) to evaluate the double spectral density in the

elastic strip and bound the error there. We get (see appendix A.7.1 for more details)

ρ(s, t ) = 16

π2

√
s −4m2

s
Ĩ (4)

0,0 +ρerror(s, t ) , scross
1 (t ) < s < 16m2 , (2.7.12)

where Ĩ (d)
n1,n2

was defined in (2.5.13), and recall that scross
1 (t ) = 4m2t

t−16m2 .

|ρerror(s, t )| < 16

π2

√
s −4m2

s

(
2δc(s)Ĩ (4)

1,0 +δc2(s)Ĩ (4)
1,1

)
. (2.7.13)

In estimating the error we used the fact that both the Mandelstam kernel Discz K (z,η1,η2),

and T approx
t are non-negative.

Next, we perform crossing transformation to the formulas above to estimate ρ(s, t ) at s > 64m2

3 .

We plug (2.7.12) into the Froissart-Gribov formula and use it to evaluate Im f J (s). As before,
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we focus on the point of maximal large J inelasticity, s = 40m2. At this point, ρ(40m2, t) has

only support for t ≥ t cross
1 (40m2) = 20m2

3 . We then consider the regions 20m2

3 ≤ t < 16m2 and

t > 16m2 separately

Im f J (s) = 2Nd

π

z2∫
z̃1

d z Q(d)
J (z)ρ(s, t (z))+ 2Nd

π

∞∫
z2

d z Q(d)
J (z)ρ(s, t (z)) , (2.7.14)

where z̃1 was defined in (2.6.16) and z2 = 1+ 32m2

s−4m2 .

In the elastic t-strip the double spectral density is given by the crossing of (2.7.13).32 To get a

bound on the integral (2.7.14) in that region, we replace δc(t ) by its maximal value there

δcel = max 20m2

3 <t<16m2δc(t ) . (2.7.15)

Above the elastic strip we use (2.7.6) (|ρ(s, t (z))| ≤ |T error
t (s, t )|) and the positivity of Q(d)

J (z). We

do not have an explicit formula for the integral over this region but we can trivially compute it

numerically for various values of J .

In total, we find that for J = 20 and s = 40m2

λ2J
1 (s)2Im f J (s)

∣∣∣
J=20, s=40m2

= 88.53± [
16.6δcel +0.67δc2

el +0.14δc(40m2)
]

. (2.7.16)

For these values we also get from (2.7.9) that

λ2J
1 (s)

√
s −4m2

s
| f J (s)|2

∣∣∣∣∣∣
J=20, s=40m2

= 0.002±3.5×10−4δc(40m2)+1.46×10−5(δc(40m2))2 .

(2.7.17)

Note that in this case the term ∼ (δc(40m2))2 is sign-definite — the consequence of using

(2.7.9) to bound | f J (s)|2.

Similarly, for J = 2 and s = 40m2 the result takes the form

λ2J
1 (s)2Im f J (s)

∣∣∣
J=2, s=40m2

= 0.389± [
0.19δcel +0.015δc2

el +2.18δc(40m2)
]

λ2J
1 (s)

√
s −4m2

s
| f J (s)|2

∣∣∣∣∣∣
J=2, s=40m2

= 0.14±0.358δc(40m2)+0.228(δc(40m2))2 . (2.7.18)

Let us comment on the origin of the various terms. The error in f J (s) is given by (2.7.9). In

the expression for λ2J
1 2Im f J=20(s = 40m2) the term linear in δcel comes from the error in the

elastic region, and similarly the term linear in δc(40m2) comes from the integral over t > 16m2.

The δc2
el term comes from the error in ρ(s, t ) in the elastic region.

32Note that for s = 40m2 this region is inside the Mahoux-Martin positivity region (2.4.4).
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To summarize, given a bound on our ignorance about Tt (s, t ), specified by δc(s) for the case

at hand, we can explicitly derive a lower bound on the amount of inelasticity that is present

in the toy model. This is of course assuming that the underlying amplitude satisfies elastic

unitarity. It would be also interesting if the analysis above can be improved using more refined

error estimates. For example, a better approach would be to bound the error distributionally,

see section 2.8.3 below.

2.7.2 Elastic Unitarity and Coupling Maximization

In [1] the numerical procedure outlined below in section 2.8.1 has been put forward and

carried out for the problem of maximizing T ( 4m2

3 , 4m2

3 ). It was observed that the low spin

partial waves f J (s), with J = 0 and J = 2, converge very well as a function of Nmax which

characterizes the number of terms used to approximate the amplitude, see section 2.8.1 for

details. Moreover, it was found that that f J=0,2(s) tend to saturate elastic unitarity above

s ≥ 4m2.

It is interesting to apply the finite J and s analysis described above to this case. We find that

the function produced by the numerics fits the toy model approximation we considered above

in section 2.7.1. In particular, the relevant bounds on the the discontinuity of the amplitude

Tt (s, t ) come from the threshold behavior of the amplitude

δc(s) =
Tt (s, t )−32π

√
z1−1
z−z1

32π
√

z−z1
z1−1

∣∣∣
t=4m2

, δcel = δc(16m2) . (2.7.19)

The convergence properties of δc(s) at general s > 4m2 are less clear as they probe the unphys-

ical region. An interesting possibility to avoid the question of their convergence is to add the

bounds on (2.7.19) as extra conditions to the bootstrap algorithm. Note, that in theories that

satisfy elastic unitarity δc(s) does not depend on s since in this case only f0(t) contributes.

Therefore dependence of δc(s) can itself be used as a probe of elastic unitarity.

Nevertheless, we proceed and consider numerics for Nmax = 11 and Jmax = 36 with the leading

threshold behavior fixed to the universal behavior dictated by elastic unitarity. In this case we

find

δcel = 0.67 , δc(40m2) = 1.17 . (2.7.20)

In figure 2.14 we plot the results for the inelasticity ratio r J (40m2) (2.6.20) obtained in the toy

model of the previous section with the parameters taken from the numerics (2.7.20).

As we discuss below, there are several ways to improve the numerical procedure so that the

plots would agree at finite Nmax .
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Figure 2.14: Inelasticity ratio r J (s = 40m2), (2.6.20), as a function of spin J . The region between the red
curves is the analytic prediction for a function that satisfies elastic unitarity and the local error bound
(2.7.8) with parameters (2.7.20) as taken from the numerics. For a function that satisfies elastic unitarity,
the presence of the Steinmann shadow region where ρ(s, t ) = 0, see figure 2.11, gives r J (40m2) ∼ 0.47J
at large J . This is the asymptotic behavior of the red curves. On the other hand, a function that has
ρ(s, t ) ̸= 0 in the Steinmann shadow region is expected to behave as r J (40m2) ∼ logλ(z1)|s=40m2 ∼ 0.65J
this is what numerics produces for any finite Nmax.

2.8 Analytical Methods and Numerical Bootstrap

In this section33 we discuss how some of the analytical methods described before can be

implemented in the numerical approach to the S-matrix bootstrap that has been put forward

in [1].

2.8.1 Review of the Numerical Framework of [1]

Let us briefly review the setup of [1]. The basic idea is to write an ansatz for the expansion of

the scattering amplitude which is linear in unknown real parameters αabc

T (s, t ) = ∑
a,b,c=0

αabcρ
a
s ρ

b
t ρ

c
u +extra

∣∣∣
u=4m2−s−t

, (2.8.1)

where, the function ρs ≡
p

4m2−s0−
p

4m2+sp
4m2−s0+

p
4m2+s

maps the complex s-plane minus the s-channel cut

to the unit circle and the point s0 to the origin. Here, the extra terms may be added to make

some particular properties of the amplitude manifest. Their presence or absence depends

on the particular problem at hand. Crossing symmetry is imposed by demanding that the

coefficients αabc are permutation-invariant. Finally, the relation s + t +u = 4m2 leads to a

redundancy in the basis of coefficients that can be addressed systematically.

33We thank Madalena Lemos for collaboration on this section.
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To approximate an amplitude using the ansatz (2.8.1), the sum is truncated such that

a +b + c ≤ Nmax . (2.8.2)

Given a finite Nmax, unitary in the form

|S J (s)| ≤ 1 , s ≥ 4m2 , J ∈ 2Z+ , (2.8.3)

is imposed over a finite grid of points and for spins that are truncated by some maximal value

J ≤ Jmax(Nmax). As shown in [1], remarkably unitarity in the form of (2.8.3) can be restated as a

semidefiniteness condition as follows. We write for physical J and s

S J (s) = 1+ i α⃗ · f⃗ J (s) , (2.8.4)

where f̂ J (s) are kinematical objects and all the dynamical information is in the coefficients α⃗.

The condition (2.8.3) can be then rewritten as a semi-definitedness condition for the matrix

M ≡
(

1+ α⃗ ·Re f⃗ J (s) 1− α⃗ · Im f⃗ J (s)

1− α⃗ · Im f⃗ J (s) 1− α⃗ ·Re f⃗ J (s)

)
≽ 0 . (2.8.5)

At this point one can maximize numerically some quantity linear in the α-parameters by

imposing unitarity in the form (2.8.5) over the chosen grip in s and for J ≤ Jmax(Nmax). For

example, in [1] the “coupling", T ( 4m2

3 , 4m2

3 ), is maximized. If a certain maximization task

reliably saturates as a function of Nmax we stop the process and trivially extrapolate to Nmax =
∞ to get the actual bound on the space of physical S-matrices.

2.8.2 Why and What Should be Improved

The setup of [1] has several very important and desirable properties:

• It is simple and practical. It is not too hard to implement, manipulate and obtain

bounds.

• The space of functions (2.8.1) is complete inside the ρ unit circle. Hence, any function

analytic inside the circle (except, maybe a finite number of isolated poles which can be

added explicitly) can be expanded in that way.

• Crossing is trivialized and is satisfied exactly.

• At any finite Nmax, (2.8.1) satisfies maximal analaticity.

At the same time, there is some tension and potential issues in applying the procedure above

for exploring physical amplitudes that we list below and comment on how one may improve

on them:
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• Physical amplitudes exhibit a set of normal multi-particle thresholds at s > 4m2. Hence,

the ρ-expansion of such a function is not expected to converge point by point for real

s > 4m2 (|ρs | = 1). On the other hand, in the procedure above unitarity is imposed

point-wise in exactly that regime. Thus, it is unclear if the space of functions that are

probed in this procedure includes among them physical amplitudes, with multi-particle

thresholds. Below we discuss two possible ways of addressing this point. One is to

improve the ansatz and the other is to change the way in which unitarity is imposed.

• The ansatz (2.8.1) has restrictive behavior at s =∞. In particular, the partial waves satisfy

lims→∞ S J (s) = 1. There is no reason to expect this to be a correct property of physical

amplitudes. Hence, similar to multi-particle thresholds, the ρ-expansion is expected

to be a poor approximation in this kinematical regime. One way to fix it is to explicitly

add extra terms to the ansatz. Another way, which we discuss in more detail below, is to

change the way in which unitarity is imposed.

• Elastic unitarity is not satisfied. This is manifest for any finite Nmax – elastic unitarity

implies that ρ(s, t) = 0 in the elastic strips, below the first Landau curve. If one tries

to impose it exactly on the truncated ansatz (2.8.1) then clearly the only solution is

αabc = 0. One may still hope that elastic unitarity will emerge at large Nmax. However,

without extra constraints, we see no reason for that to happen. In practice, there is no

conclusive evidence that the functions that emerge at the boundary of the allowed space

satisfy elastic unitarity within the numerical error.

Imposing elastic unitarity is hard for the simple reason that this condition

|S J (s)|2 = 1 , 4m2 < s < 16m2 , J ∈ 2Z+ , (2.8.6)

is nonlinear in the unknown parameters αabc . Therefore, within the approach of [1],

we can only hope to impose elastic unitarity-type constraints. Namely, constraints that

go beyond (2.8.3), but still include physical amplitudes in the space of functions that

satisfy them. This is important if eventually we want to explore the space of physical

amplitude that in particular do satisfy (2.8.6).

Below, we elaborate on several ways in which elastic unitarity can be pursued within the

numerical approach of [1]. Importantly, each of them is still linear in αabc and therefore

possible to implement using the standard solvers.

2.8.3 How the Numerical Framework Can Be Improved

We now suggest a few ways of addressing the issues identified above within the framework of

[1].
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Distributional Unitarity

Here we address some of the issues identified above, namely the lack of point-wise conver-

gence for real s, or |ρs | = 1, and too restrictive behavior at s =∞ by suggesting a different way

in which unitarity can be imposed numerically.

The basic idea is that even though the truncated expansion of a function with multi-patricle

thresholds does not converge at |ρ| = 1, it can still converge to it as a distribution. Indeed, this

is what is expected for the functions that are polynomially bounded as we approach |ρ| = 1 or

real Mandelstam variables s and t . A relevant mathematical result that addresses this question

is known as Vladimirov’s theorem [77]. It was recently discussed in detail in the context of the

conformal bootstrap in [78] to which we refer the reader for technical details.

Let us consider negative t needed to compute S J (s) starting from the amplitude. For such t ,

it is known that the amplitude is polynomially bounded as |s| →∞. It is also polynomially

bounded for real s, namely as Ims → 0, see e.g. [79]. These facts imply that we can apply

Vladimirov’s theorem to partial waves S J (s) and we expect that partial waves of physical

amplitudes computed using the ansatz (2.8.1) will converge for real s distributionally, namely

after integrating S J (s) against some smooth test function g (s). Note that this includes also

amplitudes that grow with s or t , which can be modeled by (1+ρt )n

(1+ρs )n type terms. Expanding

such terms around ρt = ρs = 0 leads to a series that converges distributionally for |ρs | = 1 as

explained in [78].

Therefore, if we treat the amplitude (and the partial wave coefficients) as a distribution, we

can still approximate it by the ansatz (2.8.1). Given Nmax, however, this approximation is

expected to be good only for test functions that do not resolve the local in s features of the

amplitude/partial waves, or have support for very large s. In other words, given Nmax we can

only hope to have a reliable approximation on average over big enough intervals of s, with the

intervals becoming smaller as we increase Nmax.

Similarly, considering test functions localized at larger s requires taking larger Nmax. This is a

consequence of the accumulation of the multi-particle thresholds at large s, as well as due

to the potential growth of the amplitude as s or t become large. Both effects lead to poor

distributional convergence of the ansatz (2.8.1) at large s, or, equivalently, close to ρs =−1. By

restricting the support of the test functions away from that region we can use the ansatz (2.8.1)

to probe functions that have multi-particle thresholds and grow in the Regge limit.

Given a real, non-negative function g (s), unitarity on average takes the form∣∣∣∣∣∣
∞∫

4m2

d s g (s)S J (s)

∣∣∣∣∣∣≤ 1 ,

∞∫
4m2

d s g (s) = 1 . (2.8.7)

This can be still restated as a semi-definitedness condition and therefore can be implemented

numerically using the same methods. In practice, given Nmax and expected properties of the
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physical amplitude there is a set of test functions g (s, Nmax) that we can use.

To understand what are the reasonable functions to be used let us note that on the boundary

of the circle, truncation of the maximal power in ρn is the same as truncating the Fourier

harmonics of ρ = e iφ. Therefore if we truncate n ≤ Nmax we cannot hope to resolve the

amplitudes on scale δφ< 2π
Nmax

. Through the map ρ(s), this translates into a statement about

the s-plane. We leave the detailed discussion of the test functions g (s, Nmax) for the future.

Distributional convergence puts the numerical S-matrix bootstrap algorithm of [1] on a much

more solid mathematical ground. It justifies imposing distributional unitarity (2.8.7) for the

truncated ansatz (2.8.1).

In practice, for certain types of problems it can happen that a more naive point-wise analysis

of unitarity still leads to correct results. Based on the reasons explained above this is expected

to work if the underlying amplitude does not exhibit multi-particle thresholds and does not

grow in the Regge limit. This expectation agrees with the numerical results observed in [1].

Extended Basis

Another way of addresing the issue of multi-particle thresholds is to extend the ansatz (2.8.1).

This ansatz makes the structure of the two-particle normal threshold manifest. An obvious

extension of the basis which makes the structure of the multi-particle cuts manifest is to add

to it any power of the functions

ρ(n)
s ≡

√
(2n)2m2 − s0 −

√
(2n)2m2 + s√

(2n)2m2 − s0 +
√

(2n)2m2 + s
. (2.8.8)

Such an extension while making the structure of the multi-particle normal thresholds manifest

still has the property that the double spectral density misses the regions where ρ(s, t) = 0

carved out in the (s, t )-plane by the Landau curves.

Ideally, one would like to write down an ansatz which does not only make maximal analyticity

manifest but also has a correct structure of the Landau curves. Such functions are naturally

generated in perturbation theory. We can use them to write down functions that have expected

behavior in the elastic strip. Let us take φ4 in d = 3 and consider the following diagram

Box(s, t ,u) = Box(s, t )+Box(s,u)+Box(t ,u) , (2.8.9)

. (2.8.10)

This function has the property that it is crossing symmetric and has the zero double disconti-

nuity in the expected region.
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We can consider for example the following ansatz

T (s, t ) = Box(s, t ,u)× ∑
a,b,c=0

αabc (ρ(n)
s )a(ρ(n)

t )b(ρ(n)
u )c |u=4m2−s−t +extra , n > 2 . (2.8.11)

By choosing n > 2 we make sure that the normal threshold coming from ρ(n)
s,t ,u starts after

16m2 and the correct analytic structure inside the elastic strip comes from the sum of the

φ4 diagrams. Hence, this ansatz has an advantage of having the built-in analytic structure

consistent with elastic unitarity.

Similarly, other Landau curves can be manifestly incorporated by choosing different perturba-

tive diagrams and dressing them by an appropriate ρ-ansatz. In this way we can hope to have

an ansatz which has more structure of the actual scattering built in. At the same time, linearity

in αabc as well as crossing are still manifest.

That said, without imposing extra constraints that result from elastic unitarity, there is no a

priori reason for the numerics to turn on the αabc ’s that are associated to sub-leading Landau

curves. We turn to such conditions next.

Elastic-type Unitarity at Non-integer J

Another way of injecting constraints from elastic unitarity into the numerical bootstrap is by

imposing unitarity for non-integer spins. As we explained in section 2.3.3, the elastic unitarity

condition (2.8.6) can be analytically continued to complex J as long as ReJ > J0(s), where J0(s)

is the leading Regge trajectory.

Let us consider real J > J0(s). Numerically, we can then impose the following elastic unitarity-

type condition

∣∣∣ 16m2∫
4m2

d s g (s)S J (s)
∣∣∣≤ 1 ,

16m2∫
4m2

d s g (s) = 1 , J > J0(s). (2.8.12)

Imposing this unitarity-type condition numerically for non-integer spin goes beyond (2.8.3),

while keeping the problem linear in the α-coefficients. In this case, the partial waves S J (s) =
1+ i (s−4m2)

d−3
2p

s
f J (s) for non-integer J are computed via the Froissart-Gribov integral (2.2.53).

While physical amplitudes will saturate this bound the condition above still includes them as

a part of the solution however goes beyond the integer spin unitarity conditions. Importantly,

it is still linear in αabc and therefore can be easily implemented numerically.

When imposed in that way, the elastic unitarity-type conditions (2.8.12) are very similar to

the original conditions (2.8.3). Note that the Froissart-Gribov projection probes the regime

of arbitrary large t where the numerics convergence is slower. On the other hand, for integer

spin one normally uses the partial wave projection (2.2.34) that only probes physical t ’s.
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Lower Bound on Inelasticity

As we discussed in section 2.7 an additional knowledge of the behavior of the discontinuity of

the amplitude Tt (s, t ) leads to a more refined prediction about the amount of inelasticity at

finite J and finite s. For example, we can put in some expectation about the Regge behavior

and low energy data on the scattering length, as well as structure of bumps or resonances to

get a relatively accurate estimate of Tt (s, t). Similarly, it can happen that while running the

numerical algorithm one observes that the gross features of Tt (s, t) saturate quickly as one

increases Nmax . In this way one can get an accurate estimate of cN (s) in (2.7.3). This in turn

allows us to put a lower bound on the amount of inelasticity r J (s) (2.6.20) for finite J and finite

s.

The minimal amount of inelasticity can be easily implemented numerically. We can replace

(2.8.5) by a set of modified matrices

M lower
a ≡

(
1+a J (s)α⃗ ·Re f⃗ J (s) 1−a J (s)α⃗ · Im f⃗ J (s)

1−a J (s)α⃗ · Im f⃗ J (s) 1−a J (s)α⃗ ·Re f⃗ J (s)

)
≽ 0 , a J (s) ≥ 1 . (2.8.13)

The corresponding modified positive semi-definetedness condition (2.8.13) is equivalent to

the inequality

2α⃗ · Im f⃗ J (s)

|α⃗ ·Re f⃗ J (s)|2
≥ a J (s) ≥ 1 , (2.8.14)

where in the original problem a J (s) = 1 and more generally a J (s) specifies the minimal amount

of inelasticity at given J and s.

From our discussion in section (2.7) and the large J analysis we know that a J (s) ≫ 1 for large

enough J and s > 64m2

3 , see (2.6.20). Moreover, given a local bound on the discontinuity of the

scattering amplitude of the type (2.7.3), we can derive a set of improved elastic unitarity-type

bounds (2.8.13) at finite J and finite s, see section 2.7. Luckily, a bound of the type (2.7.3) is

again linear in αabc . Hence, the improved bound can be implemented numerically.

CITE [80]

2.8.4 Mahoux-Martin Positivity

As we reviewed in section 2.4 elastic unitarity leads to the positivity property of the double

spectral density in the so-called Mahoux-Martin region, see 2.4.4.

Positivity or more generally non-negativity of the double spectral density is obviously linear in

αabc and therefore is straightforward to implement numerically. We can think of this either

using the improved basis described in section 2.8.3 which directly implements the Steinmann

shadow region where ρ(s, t ) = 0. Alternatively, we can consider the original ansatz (2.8.1) and
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impose the Mahoux-Martin type positivity constraints

ρ(s, t ) ≥ 0 , 4m2 < s < 16m2 , 4m2 ≤ t ≤ 4m2 (3s +4m2)2

(s −4m2)2 . (2.8.15)

The condition (2.8.15) still includes physical amplitudes, which in the elastic strip 4m2 < s <
16m2 satisfy the more restrictive conditions ρ(s,4m2 ≤ t < 16m2s

s−4m2 ) = 0 and ρ(s, 16m2s
s−4m2 < t ≤

4m2 (3s+4m2)2

(s−4m2)2 ) > 0.

2.9 Comments on CFTs

In this work we assumed extended analyticity and we studied the structure of the amplitude

for s, t > 0, where the amplitude develops crossing-symmetric double spectral density ρ(s, t ).

It is interesting to understand what are the analogous statements in CFTs.

Let us list a map between the S-matrix and CFT quantities:

S-matrix elements CFT correlators

T (s, t ) G (u, v)

DiscT (s, t ) dDiscG (u, v)

ρ(s, t ) qDiscG (u, v)

f J (s) c J (∆)

Froissart-Gribov formula (2.2.53) Lorentzian inversion formula [71, 81]

Dispersion relations (2.9.1) CFT Dispersion relations [82]

Elastic unitarity ?

The double discontinuity dDiscG and the quadruple discontinuity qDiscG were introduced in

[71]. It was shown in [71] that crossing symmetry of qDiscG , see also [83, 84], readily implies

the presence of multi-twist operators in the OPE. This is the CFT analog of the Aks theorem

reviewed above.

Elastic unitarity is a consistency condition of the two-particle sector of the S-matrix. In generic

CFTs, the analog of two-particle states in the dual AdS space are double-twist operators [69, 70]

that are defined at large spin J . In large N CFTs the two-particle states in AdS correspond to

double trace operators. Similarly, in AdS QFTs, see e.g. [85], we expect a natural set of operators

corresponding to two-particle states to be present in the spectrum. However unitarity, as

formulated in the CFT language through the OPE, does not admit a truncation analogous to

elastic unitarity that emerges as we take the flat space limit of the theory.

Imposing that the twist spectrum structure of a CFT is the one coming from the light-cone

bootstrap leads to the so-called Polyakov conditions, see e.g. [86] for a recent discussion in

the nonperturbative context. It is interesting to understand to what extent the consequences
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of imposing the Polyakov conditions in AdS are analogous to elastic unitarity in flat space.34

Using this analogy, the exploration of the present chapter suggests that an interplay between

the Polyakov conditions and crossing symmetry of the quadruple discontinuity can lead to

interesting results. It will be interesting to investigate it further.

Let us next comment on extended analyticity. In the context of amplitudes it implies in

particular that the analytic structure of the discontinuity Ts(s, t) is similar to the one of the

scattering amplitudes, modulo interchanging normal thresholds to Landau curves. In the

context of CFTs it would require understanding analytic properties of dDiscG . In general this

is a complicated problem since it requires going to the region of the (u, v) space in which

no OPE channel converges, see e.g. [87] for a detailed, recent discussion. It is however

possible to make progress in 2d CFTs. Indeed, in this case thanks to the Virasoro symmetry

[88], the OPE converges on an arbitrary sheet [89]. One finds that a statement analogous

to Mandelstam analyticity indeed holds, namely the only singularities on an arbitrary sheet

of G (u, v) are branch points at u, v = 0,∞. One does not expect an analogous statement in

higher dimensional CFTs due to a more complicated structure of Lorentzian singularities of

the correlator. However, it would be very interesting to investigate this analytic structure in

more detail.

Finally, let us comment on the validity of the Mandelstam representation in CFTs. Recall, that

to obtain Mandelstam representation in flat space we start with the usual dispersion relation

(we ignore subtractions for simplicity)

T (s, t ) =
∞∫

4m2

d s′

π

Ts(s′, t )

s′− s
+

∞∫
4m2

du′

π

Tu(u′, t )

u′−u
. (2.9.1)

We then write the dispersion relation for the discontinuity of Ts(s′, t )

Ts(s, t ) =
∫

d t ′

π

ρ(s, t ′)
t ′− t

+
∫

du′

π

ρ(s,u′)
u′−u

, (2.9.2)

and plug in the formula above to get

T (s, t ) = 1

π2

∞∫
4m2

d s′d t ′ ρ(s′, t ′)
(s′− s)(t ′− t )

+ 1

π2

∞∫
4m2

du′d t ′ ρ(u′, t ′)
(u′−u)(t ′− t )

+ 1

π2

∞∫
4m2

d s′du′ ρ(s′,u′)
(s′− s)(u′−u)

. (2.9.3)

An important ingredient in this argument, apart from maximal analyticity, is polynomial

boundedness of Ts(s, t ) for arbitrary s.35

Let us now see what is the analogous situation in CFTs. Let us first consider 2d CFTs where

maximal analyticity follows from the Virasoro symmetry as described above. Let us recall what

were the main ingredients in the derivation of CFT dispersion relations in [82]. There it was

34We thank S. Caron-Huot and J. Penedones for discussion on this point.
35This is not expected to be a true property of nonperturbative amplitudes [90].
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shown that given a single-valued G (u, v) analytic in the cut-plane and bounded in the Regge

(and Euclidean OPE) limit one can write a dispersion relation. What happens if as above we

try to write dispersion relations for dDiscG (u, v)? Using the OPE, as described in [89], one can

clearly bound any limit of the correlator or dDiscG (u, v) on any sheet.

Single-valuedness of dDiscG (u, v) is however not obvious using the Virasoro block OPE [88]

and in general we do not expect it to hold. It is easy to check explicitly what happens in the

case of minimal models. For the critical Ising model it is easy to see that dDiscG (u, v) is single-

valued. It therefore satisfies all the necessary properties to write dispersion relations [82]. In

this sense 2d Ising model correlators (somewhat trivially) admit Mandelstam representation.

On the other hand, already in the tricritical Ising case single-valuedness does not hold, so we

cannot apply the dispersion relations of [82].

In higher dimensions the situation is much more complicated due to absence of Virasoro

symmetry. Here again there is no reason to expect single-valuedness of dDiscG (u, v). On

the other hand, single-valuedness is a true property of the double discontinuity in free field

theories, which therefore also admit the CFT analog of Mandelstam representation. One can

wonder if this property continues to hold for the theories with slightly broken higher spin

symmetry, e.g. Chern-Simons vector models in d = 3.

It would be also interesting to understand if there exists some other, more sophisticated

way to think about writing an analog of Mandelstam representation in CFTs. As a different

direction, thinking about some other versions of dispersion relations, see e.g. [91], that do

not rely on single-valuedness of the underlying correlator might very well be useful in certain

applications.

2.10 Discussion

One of the challenges of the modern conformal bootstrap is to efficiently combine analytical

insights with the numerical methods to corner and solve physical theories [83]. Analogously,

in this chapter we revisited analytical techniques for the nonperturbative S-matrix bootstrap.

A natural next step for the S-matrix bootstrap program is to combine them with the existing

[1] or future numerical methods to compute physical amplitudes.

Concretely, in this chapter we studied the implications of elastic unitarity and extended

analyticity for the relativistic, unitary, gapped S-matrix in d ≥ 3. Our goal was to develop

the analytical methods to constrain the nonperturbative scattering amplitude, which can be

further used in the numerical bootstrap approaches.36 The analytic bootstrap was the subject

of active investigation in the 60’s. Most of our ideas and results, when restricted to d = 4,

36Many remarkable structures were recently unraveled in the study of perturbative scattering amplitudes of
both massless [92] and massive [93] particles. In this chapter we have focused on nonperturbative aspects of the
two-to-two massive particle scattering. It would be interesting to see if any of these new insights can be put to use
in the nonperturbative setting.
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are contained in some form in the old works of Dragt [66] and A. W. Martin [68], as well as

more recent chapter of Roy and A. Martin [76]. We believe however that there is some value

in “re-discovering” these methods from the modern perspective and in pushing forward the

current incarnation of the S-matrix bootstrap.

As usual, if one wants to do analytic computations in a nonperturbative setting, a small

parameter is needed. For a nonperturbative S-matrix, there are two expansions in two small

kinematical parameters – the threshold expansion in s−4m2

4m2 , and the large spin expansion in

1/J . These two are related via the Froissart-Gribov formula (2.2.53). Ones combined with

elastic unitarity and crossing symmetry, these two expansions lead to the bootstrap scheme

outline in figure 2.9. The upshot of this analysis is that one can start with the low energy,

low spin data (the threshold expansion), and use it to bootstrap the amplitude away from

this regime. We, however, do not restrict the low energy data. In this sense, the scheme is

analogous to the analytic CFT bootstrap [69, 70, 71].

While the analytic bootstrap methods reveal important structural properties of the amplitude,

by themselves, they are not strong enough to “solve” the problem. Correspondingly, the low

energy data that enters the threshold expansion and the bound on Regge are taken here as

an unconstrained input for the analytic bootstrap scheme. Currently, the only known way of

constraining these parameters systematically is using the numerical bootstrap techniques [1]

or experiment [63]. As we discussed in the present work, the numerical methods should be

improved by implementing the structure that originates from elastic unitarity and extended

analyticity. Indeed, it was observed in the numerical studies that the putative amplitude

functions that saturate bounds tend to saturate unitarity. That seems in tension with the

Aks theorem of section 2.4. The problem with the latter is that it does not provide us with

a finite energy lower bound on particle production that can be implemented numerically.

Provided a local bound on the discontinuity of the amplitude however, one does get a finite

lower bound on particle production. Moreover, it can be implemented numerically as an

extra constraint. Hence, it is instructive to consider the S-matrix bootstrap in a given class of

discontinuity bounded amplitudes. We discussed this in more detail in section 2.7, where an

explicit example is also given. In section 2.8 we suggest various ways in which inelasticity and

other constraints that emerge from elastic unitarity can be implemented.

A related important question is to what extent physics in the elastic regions 4m2 < (s or t ) <
16m2 studied in the present chapter dominates the dynamics of the amplitude? In other words,

under which conditions our ignorance of the multi-particle kinematics at s, t > 16m2 leads to

a small controllable error? As we have seen in section 2.7, when considering the toy model, in

the case where the low energy interaction is strong (infinite scattering length) and the Regge

behavior is relatively soft, the elastic region strongly constrains the behavior of partial waves

at finite s and J . We can easily imagine a different situation, e.g. relevant for pion scattering,

when the low energy interaction is weak. Based on our analysis in this case we do not have a

reason to expect the physics of the partial waves to be dominated by the elastic region (unless

the spin is very large). Correspondingly, in this case the dynamics in the multi-particle region
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is expected to be important. Bootstrapping such an S-matrix would then potentially require a

more detailed understanding of the analytic constraints that result from the physics in the

multi-particle region.

It would be very interesting to extend the current numerical approaches to the S-matrix

bootstrap by implementing structures that originate from elastic unitarity in one of the ways

suggested in this work, and a first big step in this direction has been recently achieved [80]

wherein the elastic support of the double discontinuity was built-in in an iterative scheme that

solves elastic unitarity asymptotically. Moreover, most of the explorations in this chapter were

bounded to the elastic strips, where one of the Mandelstam invariants is between the two-

and the four-particle threshold energies, see figure 2.4. This region is particularly manageable

because in one of the channels it is controlled by two-to-two amplitude only. It is an interesting

and important task to explore the multi-particle region, where the energy is above the four-

particle threshold in two of the channels. Finally, it would be interesting to explore the

landscape S-matrices, other than d = 4 QCD. Ideally, one would like to find an S-matrix in

d ≥ 3 that may play the analogous rule to the one played by the Ising model in the conformal

bootstrap. Whether such “bootstrap-solvable" S-matrices in d ≥ 3 exist or not is yet to be

shown. If it exists, we expect its solution to teach us a lot about nonperturbative QFT in general.

Implementing efficiently the structure of the amplitude that we discuss in the present chapter

would be an important step towards constructing an example. A natural candidate theory to

explore is φ4 theory in d = 3.

There are also a few technical avenues along which our work can be extended. One is relaxing

the Z2 symmetry we assumed, which restricted the spin and the number of particles to be

even. Another related extension is to include single-particle poles. Doing so will affect many

of the details, but will not change the global picture. A more interesting generalization is to

consider particles with spin, see e.g. [94]. Similarly, it is an open problem to implement the

known structure of the UV of the theory, say asymptotic freedom or the CFT data of the UV

fixed point, into the S-matrix bootstrap.

Finally, one can wonder if there is anything to be learned from this analysis for the conformal

bootstrap. In the latter case, the theory is gapless so naively there is no elastic unitarity.

However, CFTs in d > 2 have a twist gap, and multi-twist operators are mapped to the multi-

particle states in the AdS dual theory. Therefore, it would be interesting to understand the AdS

analog of the various aspects of the present chapter more directly.
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3 Probing multi-particle unitarity with
the Landau equations

Implementation of multi-particle unitarity is among the biggest challenges in the nonpertur-

bative S-matrix bootstrap. This chapter explores the “shadow” that multi-particle unitarity

casts on the 2 → 2 amplitude.

It is a well-known fact that scattering amplitudes develop a nontrivial discontinuity along

the normal thresholds. This fact is a direct consequence of unitarity. Once combined with

analyticity, unitarity also predicts the existence of infinitely many curves in the s − t plane

along which the amplitude develops double discontinuity. These so-called Landau curves

are more detailed characteristics of the amplitude’s analytic structure. This chapter explores

the 2 → 2 scattering of identical scalar particles of mass m. The Landau curves found here

should be present in any massive quantum field theory. Relatedly, the support of the double

discontinuity found in the present chapter enters the Mandelstam representation of the

nonperturbative amplitude.

We assume that m is the lightest particle in a theory. For simplicity we also assume that the

theory has Z2-symmetry, such that the scattered particles are Z2-odd.1

We only concern ourselves with the behavior of the amplitude on the physical sheet. This is the

region in the complex s, t planes that is continuously connected to 0 < s, t ,u < 4m2, without

going through the multi-particle normal thresholds.

Let us quickly summarize the state-of-the-art results in this context, see figure 3.1. When

one of the Mandelstam variables is in the elastic region, say 4m2 ≤ s ≤ 16m2, unitarity relates

the 2 → 2 amplitude to itself. Correspondingly, the Landau curves in this regime are known

explicitly [95, 7], see appendix B.2. In figure 3.1 we plot the leading elastic Landau curves and

below, in gray, the region where the double discontinuity is known to be zero.

On the other hand, in the multi-particle regime where both s, t > 16m2, the full non-perturbative

support of the double discontinuity is not known.2 This is directly related to the fact that in

1For example, this applies to the pion scattering in QCD.
2For example, in figure 3.1 one can imagine that there exists a multi-particle Landau curve bulging below both
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Chapter 3. Probing multi-particle unitarity with the Landau equations

Figure 3.1: The Landau curves in the elastic region 4m2 ≤ s, t < 16m2 are known thanks to elastic
unitarity. The first of these are plotted in this figure. In the gray region, the double discontinuity is
equal to zero. The main purpose of the present chapter is to explore the structure of the Landau curves
in the multi-particle region s, t ≥ 16m2.

this regime unitary relates the discontinuities of the 2 → 2 amplitude to amplitudes with four

external particles or more. These are very hard to analyze and only a few results are available

in the literature. In [96], five Landau curves in this region were identified, out of which some

were found explicitly in [96, 97].

Using graph-theoretic tools implemented through a systematic computer search, we find all

the Landau curves that asymptote to both, t = 16m2 at large s and to s = 16m2 at large t .3

Our results are summarized on figure 3.5 and figure 3.4. In particular, we find infinitely many

Landau curves that accumulate towards the curve

(s −16m2)(t −16m2)−192m4 = 0. (3.0.1)

We expect such accumulation points to be a generic characteristic of multi-particle unitarity

and that there are infinitely many of them at higher s, t , on the physical sheet.4

elastic curves. In this chapter we will argue that this does not happen for the scattering of lightest particles.
3When claiming that the set of Landau singularities we find is complete, we will also assume that there are no

bound states. By bound states we mean poles on the physical sheet in the region 0 < s, t ,u < 4m2.
4This is in sharp contrast to the situation in the physical region where in every bounded portion of kinematic

space only a finite number of singularities exists [98]. By the physical region we mean kinematics that can be
directly probed in a scattering experiment.
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(a) (b) (c)

Figure 3.2: A few simplest examples of graphs that represent various singularities of the 2 → 2 scattering
amplitude. a) The bubble diagram represents multi-particle normal thresholds. b) The two-particle
box diagram. It represents a Landau curve along which the scattering amplitude develops double
discontinuity. c) The four-particle box diagram. This diagram corresponds to four-particle scattering
both in the s- and in the t-channel. In this chapter we systematically study the graphs of this type and
the corresponding Landau curves.

The plan of the chapter is as follows. In section 3.1 we review the relation between analytically

continued unitarity and the Landau equations. We also formulate the problem of finding

the leading multi-particle Landau curves addressed in the present chapter. In section 3.2 we

present the solution to the problem. In section 3.3 we collect implications of our results, future

directions, and relation to other works. Many technical details are collected in the appendices.

3.1 Analytically continued unitarity and the Landau equations

The 2 → 2 scattering process is characterized by an analytic function T (s, t ) that depends on

two independent (complex) Mandelstam variables s =−(p1 +p2)2 and t =−(p1 +p4)2, where

pµ

i are the on-shell momenta, p2
i =−m2, of the scattered scalar particles.5

We would like to understand the minimal set of singularities possessed by T (s, t) as a con-

sequence of unitarity and crossing. While the general answer to this question is beyond the

scope of this chapter, here we aim at revealing an infinite subset of singularities associated

with multi-particle unitarity. The simplest singularities of this kind are normal thresholds.

These are branch-point singularities at s, t ,u = (nm)2, with n ≥ 2. Their presence follows

directly from unitarity

DiscsT (s, t ) =∑
n

T2→nT †
2→n , with s ≥ 4m2, 4m2 − s < t < 0, (3.1.1)

and the fact that T2→n = 0 for s < (nm)2, where Disc is the discontinuity defined in eq. (2.2.17).

Here, the integral is over the n-particle phase space. To each term in the sum in (3.1.1) we can

assign the graph in figure 3.2.a.

The vertices in this graph represent the amplitudes T2→n , T †
n→2 and the lines between them

represent the n-particle state.

As we analytically continue (3.1.1) to t > 0, we may encounter discontinuities of DiscsT (s, t ) in

5The results derived in this chapter should equally apply to spinning particles.
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t . For example, consider the term in (3.1.1) with n = 2. Both T2→2(s, t ′) and T †
2→2(s, t ′′) have a

normal 2-particle threshold in the t-channel. These start to contribute to the corresponding

phase space integral in (3.1.1) at a new branch-point that is located at

(s −4m2)(t −16m2)−64m4 = 0 , (3.1.2)

along which the scattering amplitude develops double discontinuity, see [7] for details.

We can assign to this double discontinuity the graph in figure 3.2.b, where again, the lines

represent (on-shell) particles and the vertices represent four-point amplitudes that have been

analytically continued outside the regime of real scattering angles.

As we take s > 16m2 more n’s contribute to (3.1.1) and more singularities are produced by the

corresponding phase space integration. For example, the integration over the four-particle

phase space (n = 4) can produce a cut of DiscsT (s, t) in t that results from the analytically

continued two-particle normal threshold of T2→4 and T †
2→4. A graph that represents such a

contribution to the double discontinuity Disct DiscsT (s, t ) is plotted in figure 3.2.c.

Similarly, for any singularity that follows from multiple iteration of (analytically continued)

unitarity we can associate a corresponding graph. By iteration of unitarity we mean the

double discontinuity of the amplitude that is generated from a singularity of T2→n and another

singularity of T †
2→n , through the analytic continuation of the phase space integration in

(3.1.1) to t > 0. The singularities of T2→n and T †
2→n themselves follows from analytically

continued unitarity in a similar fashion. The graph that we associate to such a contribution to

Disct DiscsT (s, t ) is defined recursively, by gluing together a graph that represents a singularity

of T2→n with a one that represents a singularity T †
2→n with n-lines.

To enumerate all singularities that emerge in this way, we can go in the opposite direction

and first enumerate all graphs that may result in a singularity of the amplitude. Whether

a given graph leads to a singularity of the amplitude in a certain region in the complex s, t

planes is a kinematical question that does not depend on the details of the sub-amplitudes,

represented by the vertices in the graph.6 Hence, to answer this question we can equivalently

take them to be constants. After doing so, it becomes evident that the same singularity, if it

exists, is also generated by the Feynman diagram that coincides with the graph obtained from

unitarity. The relevant singularity of the diagram comes from the region of loop integration

where all propagators go on-shell [99, 100]. Other singularities of Feynman diagrams may

result from a region of the loop integration where only a subset of propagators is on-shell.

Those propagators that remain off-shell at the locus of a given singularity can thus be regarded

as part of an higher point vertex that is not constant. For example, the Feynman diagrams

that correspond to the graph in figure 3.2.a with two lines and the graph in figure 3.2.b, both

6The described way of generating new singularities from old ones involves analytic continuation of the am-
plitudes. It might happen that due to some special properties of the amplitude, the expected singularity is not
there. Here we assume that this does not happens and expect the singularities which follow from unitarity to be
generically present.
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have normal threshold at s = 4m2. Hence, the set of all singularities of a Feynmann diagram

includes the singularities of the corresponding graph and graphs obtained from it by collapsing

some subset of lines into vertices with more legs. This operation is called a contraction.

If a generic diagram has an n-particle cut then it has a normal threshold starting at n2m2 in

s, t or u (depending on which external legs are considered incoming/outgoing). This can be

seen by contracting the rest of the lines into a bubble diagram as in figure 3.2.a, with n legs.7

In this way we immediately conclude that figure 3.2.b has normal thresholds at s = 4m2,

t = 16m2, and figure 3.2.c at s = 16m2, t = 16m2.

To summarize, in spite of their perturbative nature, Feynman integrals have kinematic singular-

ities (normal thresholds and Landau curves) that can be traced back to (analytically-continued)

unitarity, a principle which the non-perturbative amplitude is expected to satisfy. Therefore,

to enumerate the singularities that follow from non-perturbative unitarity we can equally

enumerate the singularities of individual Feynman diagrams.8

In this classification, the Feynman diagrams are only used as a device to study the location of

kinematic singularities of the non-perturbative amplitude.9 For more than two intermediate

particles, we find this tool more practical than directly analyzing the analytic continuation of

the unitarity relation (3.1.1).

The locations of singularities of Feynmann diagrams can be found using the Landau equations.

These are summarized in appendix B.3 and we refer the reader, for example, to [8, 102] for a

detailed review.

The so-called leading singularity of a Feynmann diagram occurs when every internal mo-

mentum goes to the mass-shell. This is precisely the singularity that is described by the

corresponding graph, as defined above through unitarity, where each line represents an

on-shell particle.

Therefore we may restrict our dissection to singularities of this type only. The Landau equa-

tions then read

1. All propagators are on-shell, k2
i = m2, where the index i = 1, . . . ,P labels all the propaga-

tors and ki ’s are complex-valued oriented momenta that flow through them.

2. At each vertex v , the momentum is conserved,
∑

j∈v ±kµi = 0, with + (−) for ingoing

(outgoing) momenta.

7In fact, the set of contractions only leads to a pair of single vertices if each side remains connected after the cut.
In graph-theoretic terms this requires the cut to be minimal [101]. Physically, this is consistent with the fact that
on the RHS of unitarity (3.1.1) only connected S-matrix elements participate.

8Related to that, let us emphasize particles that propagate in these auxillary Feynman graphs are true asymptotic
states. For example, in QCD these are pions and not quarks.

9In particular, note that m is the mass of a particle in the spectrum, which need not be associated with a
fundamental field.
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3. For any loop l , the momenta satisfy∑
j∈l ±α j kµi = 0, with + (−) sign for momenta along (opposite) the orientation of the

loop, and non-zero coefficients, αi ̸= 0.

Two solutions that are related by an overall rescaling of the coefficients corresponds to the

same singularity. We may therefore normalize them such that
∑
αi = 1.

For any solution to these equations we can associate a story in complexified spacetime. In this

story the Feynman parameters, αi , are the proper times of on-shell particles, k2
i = m2

i , that

propagate along the spacetime interval ∆xµi =αi kµi . Every vertex represents a scattering of

these particles that takes place at a point. The spacetime interval between two vertices should

not depend on the path between the vertices. This means that for a closed path (i.e. a loop) we

have
∑

i∈l ∆xµi = 0.

No general answer is known to the question of which parts of the Landau curve lead to

singularities on the physical sheet (which is our main interest here).

With present understanding, answering it requires a careful case-by-case analysis. There is

however a special class of solutions to the Landau equations, called α-positive, for which the

singularity on the physical sheet is sometimes easier to establish.10 These are solutions for

which αi > 0.11 Below we concern ourselves with α-positive solutions only.

The double discontinuity Disct DiscsT (s, t) does not depend on the order in which the two

discontinuities are taken. For example, the graph in figure 3.2.b can equally be interpreted

as a contribution to the double discontinuity that comes about by first considering the four

particle contribution to t-channel unitarity and then plugging in the single-particle pole of

the analytically continuation of T2→4 and T †
2→4 in the s-channel. We can therefore group

the Landau curves into families that are characterized by two integers (ns ,nt ), which are the

maximal number of particles in the s-channel and t-channel unitarity they can be obtained

from.

In this chapter we focus on the (4s ,4t ) family of double discontinuities. These are the ones that

originate from the analytic continuation of unitarity (3.1.1) up until n = 4 in both channels.

Physically, this corresponds to restricting energies to s, t < 36m2.

We expect that all Landau curves in families with (ns ≥ 4,nt > 4) and (ns > 4,nt ≥ 4), which are

not already included in the (4s ,4t ) family, to lay above the (4s ,4t ) family in the s − t plane of

figure 3.1.

10More precisely, this has only been shown for planar Feynman diagrams [103]. We believe that all α-positive
solutions found in this chapter correspond to singularities on the physical sheet. However, we do not prove this for
the non-planar graphs.

11Let us emphasize an important subtlety. In the literature the notion of α-positive graphs typically involves
an extra assumption: all k

µ
i are real, and k0

i > 0. These are the solutions of the Landau equations that capture
singularities of the amplitude in the physical region [104]. On the other hand, the α-positive graphs considered
here are relevant for singularities of the 2 → 2 amplitude on the physical sheet.
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3.2 Graph selection

We now describe our systematic method of finding the α-positive Landau curves in the (4s ,4t ).

A characteristic feature of a graph associated with such a curve is that any of its internal lines

can be taken to be one of the four (or less) particles in the unitarity relation in either the

s-channel or the t-channel. In other words, any leg of the graph should have a 2- or 4-particle

cut in at least one of the channels.

The number of potentially contributing graphs is infinite. We study finitely many graphs with

a fixed number of vertices, V , of fixed maximum vertex-degree D,12 and increase V and D

gradually. As we do so, the number of graphs to be analyzed grows factorially and the problem

rather quickly becomes intractable.13 To overcome this difficulty, we rule out graphs that

a priori cannot possibly have α-positive Landau curve or involve more than four particles

in the s- or t- channel. Importantly, this selection process has a precise graph-theoretic

implementation, so that it can be imposed before solving the Landau equations. Eventually

we find that the number of the relevant graphs stabilizes at a handful number of graphs.

Throughout our analysis we assume Z2 symmetry of the amplitude that restricts the vertex

degree D to be even.

The set of criteria that we use to select the relevant graphs are as follows:

• We look for Landau curves in the (4s ,4t ) family. Correspondingly, we demand that

any leg of a graph should have a four-particle or two-particle cut in at least one of the

channels. Even though this criteria sounds very intuitive, we have not proved it. Instead,

we will see that all the curves that result from graphs that satisfy it pass through the

region 16m2 < s, t < 36m2 and asymptote to 16m2.14

• A graph only admits an α-positive solution to the Landau equations if each of its sub-

graphs admits an α-positive solution to the Landau equations.

According to this criterion, we can discard a graph by identifying that one of its sub-

graphs cannot have an α-positive solution.

• We can discard a graph if a subgraph of it can be contracted without affecting the solu-

tion. That is because the corresponding Landau curve if it exists, is already accounted

for by the contracted graph.

We denote trivial sub-graph a graph that falls into one of the last two categories. We have

12Because of the aforementioned contractions, graphs with higher vertex degree D can arise in theories with a
smaller vertex degree. For example, the graph (c) in Fig. 3.2, which has two degree-6 vertices, gives a Landau curve
in φ4 theory.

13For D = 4 we analyzed all the graphs with V ≤ 12 and for D = 6,8 up to V ≤ 8.
14Conversely, no graph that was left out by this criterion was found to have a curve in this region. This check was

made until V = 8 for D = 4 and until V = 6 for D = 6.
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Chapter 3. Probing multi-particle unitarity with the Landau equations

identified a few families of trivial graphs that involve bubbles, triangles, and boxes.15 They are

discussed in appendix B.4.

Computationally, we found it most efficient to proceed as follows

1. We start by generating all graphs without trivial bubbles, with fixed number of vertices

V that contain at least one vertex of degree D , but no vertices of higher degree.

2. We discarded graphs with trivial sub-triangles.

3. We discarded graphs without 2-particle or 4-particle cuts in at least two channels.

4. We selected the graphs for which all legs can be cut by 2-particle or 4-particle cuts.

5. We discard graphs with trivial sub-boxes.

6. Finally, we select graphs for which an α-positive solution to the Landau equations is

found.

Step 1 was implemented using nauty and Traces [105]. Steps 2-5 were implemented using the

open source network analysis package igraph [106], adapted to mathematica by the igraph/M

package [107]. Step 6 was implemented in mathematica. The details of the implementations

of each step can be found in appendix B.5.

As we increase D , it is harder to satisfy the four-particle constraint and the absence of trivial

sub-graphs. In particular, we did not find any graphs satisfying our criteria with D ≥ 8. In table

3.1, we list the number of graphs at each step for D = 4 and D = 6.

As can be seen from table 3.1, considerable reduction in the number of graphs occurs at step

4 as the number of vertices increases. At this order it becomes an incredibly tight criterion,

but also very computationally expensive. For comparison, given the same set of graphs, we

observe step 3 to be roughly a hundred times faster and step 2 around a thousand times faster.

Step 3 is logically included in step 4. Even though it is not necessary, it reduces total computing

time.

Interestingly, step 2, the elimination of trivial sub-triangles, is essential to observe the quench

in the growth of diagrams. We observe that the number of diagrams with trivial triangles

that survives the criterion imposed by step 4 grows at least exponentially with the number of

vertices.

Let us now summarize our findings. Figures 3.4 and 3.5 depict all the graphs that satisfy

α-positive Landau equations with at most four particles in the s- and t-channels, and figure

3.5 the corresponding Landau curves. The graphs in figure 3.4 and figure 3.5, as well as the

15These are subgraphs with 2, 3, and 4 vertices correspondingly.
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3.2 Graph selection

Quartic graphs (D = 4)

# of vertices (V ) 4 5 6 7 8 9 10 11 12
All graphs (no trivial bubbles) 2 3 23 111 788 5639 46603 410114 3587793

No trivial triangles 2 1 10 33 232 1522 12696 113034 1023415
2- or 4-particle cuts (exist) 2 1 7 25 157 955 7070 54835 429093

2- or 4-particle cuts (all legs) 2 1 4 5 12 7 10 7 9
No trivial boxes 2 1 3 4 9 4 4 3 3

α-positive Landau curves 2 1 2 1 3 1 1 1 1

Quartic & sextic graphs (D = 6) w/ sextic vertex

# of vertices (V ) 4 5 6 7 8
All graphs (no trivial bubbles) 9 109 2678 73918 2477395

No trivial triangles 6 22 553 14714 538309
2- or 4-particle cuts (exist) 1 3 27 476 10356

2- or 4-particle cuts (all legs) 1 0 2 1 3
No trivial boxes 1 0 1 0 0

α-positive Landau curves 1 0 1 0 0

Table 3.1: The number of graphs with vertex degree 4 (top) and vertex degree ≤ 6 with at least one sextic
vertex (bottom). Each column specifies the number of vertices and each row specifies a reduction step.
We show the total number of 2 → 2 graphs without trivial bubbles in the second row. In the third row,
graphs with trivial triangle subgraphs have been discarded. Next, we require that all legs can be put
on-shell with at most 4-particle cuts since we are looking for Landau curves in the (4s ,4t ) family. We
first demand that there exists at least one such cut of the diagram in each channel (fourth row). Next
we demand that every line can be cut with a 2-particle or a 4-particle cut (fifth row). As a next step
we discard the graphs containing a trivial box subgraph (sixth row). The last row has the number of
graphs for which an α-positive solution has been found by numerically solving the Landau equations.
For quartic graphs, this number does not go to zero as the number of vertices is increased. This is due
to an infinite family of diagrams generated by consecutive insertion of triangles (see figure 3.4). The
corresponding Landau curves accumulate at finite s, t , see figure 3.5. Current computational limitation
prevents us from increasing the number of vertices any further, but we believe that all the relevant
diagrams have been identified.
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Chapter 3. Probing multi-particle unitarity with the Landau equations

(a) (b)

Figure 3.3: The planar cross and the non-planar cross (open envelope) graphs. Each of the diagrams is
the first one in an infinite chain of diagrams, see figure 3.4, that generates the Landau curves on the
physical sheet, in the region 16m2 ≤ s, t < 36m2.

a)

b)

Figure 3.4: The planar, a), and non-planar, b), triangle chain graphs. Remarkably, each of the graphs
involves four-particle scattering both in the s- and in the t- channel. As the number of triangles grows,
the corresponding Landau curves quickly accumulate around the locus (3.0.1) on the physical sheet.
Notice that adding a single triangle to each chain increases the number of vertices V by 2. Closely
related diagrams appeared before in [108, 103, 109].

Landau curves in figure 3.5 are the main results of the chapter.16 In appendix B.1 we exhibit

the equations for some of the multi-particle Landau curves depicted in figure 3.5.

Interestingly, we find Landau curves crossing 16m2 ≤ s, t < 36m2 which originate from graphs

with arbitrarily large V . These are depicted in figure 3.4 and their Landau curves (shown in

black on figure 3.5) accumulate to the red curve on figure 3.5. This is a new feature compared

to the elastic region 4m2 ≤ s, t < 16m2, where every bounded region of the kinematic space

contains a finite number of Landau curves. We believe that this feature is characteristic for the

multi-particle region and there are infinitely many accumulation points of the Landau curves

there. We discuss this further below.

16 All the curves that we found cross the region 16m2 < s, t < 36m2. We believe that the presented here list of
curves in this region is complete. Showing this requires proving some further properties of the α-positive Landau
curves which we discuss in the conclusions. It also requires making sure that non α-positive solutions to the
Landau equations do not lead to the singularities on the physical sheet.
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3.2 Graph selection

Figure 3.5: The Landau curves in the 2 → 4 multi-particle region. To each diagram corresponds a pair
of crossing symmetry-related curves. For crossing symmetric diagrams, there is only one curve. The
red curve, given by equation (3.0.1), is an accumulation point of infinitely many Landau curves. The
uppermost curve (black #1) is given by the non-planar cross diagram, figure 3.3 (b), while the planar
cross, figure 3.3 (a), gives the lowermost curve (black #2). The planar triangle chain graphs (#2, #4,
#6,...), figure 3.4 (a), approach the red curve from below while non-planar triangle chain graphs (#1,
#3, #5,...), figure 3.4 (b), approach it from above. As shown in the inset panel, the approach is fast (see
table 3.2). We expect that the Landau curves presented here are all the curves that cross the square
16m2 < s, t < 36m2 on the physical sheet. We collect explicit equations for some of the Landau curves
in appendix B.1.

Triangle chain curves at symmetric point: s = t = xn .

n 1 2 3 4 5 6 7 8 · · · ∞
xn 35.8885 27 30.2385 29.7511 29.8799 29.8504 29.8579 29.8560 · · · 29.8564∣∣ xn−x∞

xn−1−x∞

∣∣ - 0.4735 0.1338 0.2756 0.2235 0.2533 0.2482 0.2547 · · · ?

Table 3.2: Accumulation of Landau curves at finite s and t . The table lists the symmetric point (s = t ) of
the first few Landau curves produced by the infinite set of triangle chain diagrams (depicted in black
in figure 3.5). The curves accumulate towards the red curve in figure 3.5. The last row of the table
indicates that the approach towards the limiting curve is very quick (approximately geometric).
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Chapter 3. Probing multi-particle unitarity with the Landau equations

3.3 Discussion

In this chapter we have analyzed analytic properties of the 2 → 2 scattering amplitude on

the physical sheet. In particular, we have focused on the leading Landau curves in the multi-

particle region which originate from the analytic continuation of four-particle unitarity both in

the s- and t- channels (in our notations (4s ,4t ) curves). Here we discuss various implications

of our results as well as some interesting directions to explore.

3.3.1 Lighest particle maximal analyticity

Eventually we would like to fully understand the analytic properties of the scattering amplitude

on the physical sheet. In the context of perturbation theory a rich structure of singularities

has been discovered already in a 2 → 2 scattering amplitude. These include anomalous thresh-

olds (see next chapter) [110, 111, 112]17, crunodes, acnodes and cusps [115]. No systematic

understanding of these latter singularities exists up to this day.

Nevertheless in the course of these explorations a remarkable hypothesis has emerged. It

concerns the 2 → 2 scattering of the lightest particles in a gapped theory (which is the subject

of the present chapter) and can be stated as follows.

Lighest Particle Maximal Analyticity: The 2 → 2 scattering amplitude of the lightest particles

in the theory, T (s, t ), is analytic on the physical sheet for arbitrary complex s and t , except for

potential bound-state poles, a cut along the real axis starting at s = 4m2 with branch points

associated with production normal thresholds and Landau curves, as well as images of these

singularities under the crossing symmetry transformations.

Establishing this hypothesis even within the framework of perturbation theory is an important,

open problem in S-matrix theory. Assuming lighest particle maximal analyticity (LPMA),

the analytic structure of the 2 → 2 amplitude is concisely encapsulated by the Mandelstam

representation.18 From the point of view of our analysis, the nontrivial fact about LPMA is

that scattering of lightest particles contains infinitely many subgraphs that by themselves do

not respect maximal analyticity. For example, some of the trivial boxes subgraphs depicted in

figure B.13 do not admit the Mandelstam representation [116]. For LPMA to hold, embedding

these subgraphs inside a larger graph that describes scattering of the lightest particles in the

theory should render the complicated singularities of the subgraph harmless on the physical

sheet.19

17Anomalous thresholds do not arise in the 2 → 2 scattering of the lightest particles, see e.g. [103] for a perturba-
tive argument. However they are present in the 3 → 3 (or 2 → 3) scattering, see [113, 114].

18The Mandelstam representation involves an extra assumption that the discontinuity of the amplitude is
polynomially bounded on the physical sheet.

19As an example, the top center box in figure B.13 has an α-positive section of the Landau curve for s < 4m2,
which is associated with a complex singularity and for which the Mandelstam representation does not hold [116].
For the case of scattering of lightest particles, this anomalous box is embedded in the graph in fig. B.5, where
LPMA applies. For this graph we have verified numerically that no α-positive solution exists for s < 4m2. While at
present we cannot rule out the presence of complex singularities in this graph, we see that, at least, there is no

90



3.3 Discussion

We have not studied the mechanism of how this happens, and we leave this important question

for future work.

LPMA is a working assumption in some of the recent explorations of the S-matrix bootstrap,

see e.g. [1, 23, 117, 7]. It is also one of the main reasons we have restricted our study to the

physical sheet.

It would be very interesting to revisit the problem of establishing LPMA in perturbation theory.

For example, showing that all the graphs considered in the present chapter admit Mandelstam

representation might provide a clue as to why it is valid more generally.

3.3.2 Analytic continuation of multi-particle unitarity

As we discussed at the beginning of the chapter, a direct way to see the emergence of double

discontinuity of the amplitude is to analytically continue the unitarity relations (3.1.1) which

involves T2→n scattering amplitude. While for n = 2 this has been done already by Mandelstam

[95], very little work has been done for n > 2. Let us mention that some progress has been made

for n = 3 in the works [118, 119] but the connection between analytically continued multi-

particle unitarity and the multi-particle Landau curves has not been explored systematically.

It could be useful, for example, to better understand the lower bound on particle production

along the lines of [7].

3.3.3 Lightest particleα-positive Landau curves

All the elastic Landau curves [7] and the multi-particle curves discussed in the present chapter

satisfy the following properties:

1. Asymptotic to normal thresholds. As t (or s) goes to infinity, s (or t ) approaches normal

thresholds.

2. Monotonic. For s > 4m2 we have d t
d s < 0.

It is tempting to conjecture that in the context of the lightest particle scattering the properties

above fully capture the nonperturbative analytic structure of the 2 → 2 amplitude on the

physical sheet. Assuming it is true, the Landau curves form a simple hierarchical structure,

where the α-positive curve (if it exists) of a graph with a minimum cut across ns legs in the

s-channel, and a minimum cut across nt legs in the t-channel has support in the region

s > (nsm)2, t > (nt m)2. It then follows that the curves found in the present chapter are

complete in the region 16m2 ≤ s, t < 36m2. This is an extra assumption to which we referred

in the footnote 16.

Even if heavier particles flow in the internal lines, as long as the external states are the lightest

anomalous α-positive real section.
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Chapter 3. Probing multi-particle unitarity with the Landau equations

particles, we expect that the above properties should hold. Clearly, in fig. 3.5 we see diagrams

with 2-particle and 3-particle internal bubbles which are equivalent (i.e. would give the same

Landau curve) to diagrams where these bubbles are replaced by single particles with mass 2m

and 3m, respectively.

However, due to the presence of anomalous thresholds [116], monotonicity of the Landau

curves does not necessarily hold outside lightest particle scattering. See section 3.3.8 for a

discussion on the general external mass case.

3.3.4 Extended elastic unitarity region

The results of this chapter strengthen the picture in which the double discontinuity vanishes

below the first elastic Landau curves

ρ(s, t ) ≡ Disct DiscsT (s, t ) = 0 (3.3.1)

for s, t ≥ 4m2 and
(s −4m2)(t −16m2) < 64m4

(t −4m2)(s −16m2) < 64m4 .

We see that the multi-particle Landau curves do not spoil this relation and, therefore, we

expect it to hold non-perturbatively.

Another outcome of our analysis is an extended region of validity of the analytically continued

elastic unitarity. Let us consider the first multi-particle Landau curve that we encounter as we

enter the region s, t > 16m2. It is the planar cross curve given by the equation [96] (black curve

#2 in figure 3.5)

s3(t −16)+ t 3(s −16)+24 s t (s + t −18)−2s2t 2 = 0. (3.3.2)

Let us call {4m2 < s, t < planar cross} the extended elastic unitarity region. In this region the

double discontinuity ρ(s, t ) satisfies the following relation

Extended elastic unitarity :

ρ(s, t ) = ρel(s, t )+ρel(t , s) , 4m2 < s, t < planar cross, (3.3.3)

where ρel(s, t ) is the double discontinuity given by the Mandelstam equation in the s-channel,

which expresses analytically continued elastic unitarity.

Notice that the equation (3.3.3), on one hand, involves only the 2 → 2 scattering amplitude.

On the other hand, its origin lies in the details of multi-particle unitarity.
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Figure 3.6: A box graph with bridges of size (n1,n2,n3,n4). The Landau curve that is associated to this
graph is expected to be an accumulation curve of infinitely many Landau curves. They correspond to
graphs that are obtained from this one by replacing an ni -bridge with an ni -chain.

3.3.5 Accumulation points of the Landau curves are generic

We believe that the basic mechanism found in the present chapter for the accumulation of the

Landau curves on the physical sheet is generic. For example, we expect that the Landau curves

that originate from the graphs depicted in figure 3.6 are accumulation points of infinitely

many Landau curves on the physical sheet.

The basic mechanism is the one we observed for the triangle chains depicted in figure 3.4. By

exchanging an ni -particle bridge with a chain of ni -particle sub-graphs, an infinite family of

Landau curves is generated. As the length of the chain is increased, it is natural to expect that

the solution of the Landau equations, if it exists, converges to the one of the ni -particle bridge.

In particular, we have already established existence of the α-positive solution to the Landau

equations for a chain of triangles. The triangle chain can now be exchanged with any ni = 3

bridge of a diagram with an α-positive solution to produce an accumulation sequence.20

This scenario leads to a very complicated structure of the Landau curves on the physical sheet.

We will have an infinite number of accumulation points, accumulation points of accumulation

points, etc.

Let us also emphasize that this feature should be present in any interacting gapped theory

with at least one massive particle in the spectrum, with any spin. We also see no reason why

such accumulations would not occur in the general mass case, i.e. with different species being

exchanged. It would be interesting to check this explicitly.

3.3.6 Higher multi-particle Landau curves

Our method is systematic and, given enough computational ability, can be used to find Landau

curves above s, t > 36m2. Graph selection should now involve 6−particle (or heavier) cuts.

20Note that the triangle chain diagrams correspond to embedding 3 → 3 elastic scattering amplitude inside a
2 → 2 process. Similarly, the mechanism for accumulation of the Landau curves described above seems to be
related to the behavior of the n → n multi-particle amplitudes close to the normal multi-particle thresholds. It
would be interesting to study this behavior in more detail (for a related discussion see [109]).
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Chapter 3. Probing multi-particle unitarity with the Landau equations

It is likely, however, that the elimination of trivial bubbles and triangles will no longer be

sufficient to quench the growth of the number of graphs. Unfortunately, the condition for

larger subgraphs to be trivial is not so simple (see appendix B.4 where we identify some trivial

boxes). The problem becomes more complicated the deeper one delves into the multi-particle

region. One may need to discard multiple-loop subgraphs, for example.

Direct use of unitarity may be a viable alternative, as shown in the elastic region. However,

as mentioned earlier, analytic continuation of multi-particle kernels is a difficult task. The

accumulation mechanism discussed here, which should follow from 4-particle unitarity,

indeed does not indicate otherwise.

3.3.7 S-matrix bootstrap applications

Our results have implications for the S-matrix bootstrap program. Indeed, the stumbling block

of the current incarnation of the S-matrix bootstrap in d > 2 is that it was not possible so far to

include the multi-particle amplitudes in the analysis.

Here we took an alternative route, where we tried to understand how the presence of multi-

particle unitarity is reflected on the structure of the 2 → 2 amplitude. In some sense, we can

think of the Landau curves found in the present chapter as seeing multi-particle shadows on

the elastic scattering wall.

Implementing the structure of the few leading Landau curves in the analytic structure of the

amplitude will already be a step forward compared to some of the current explorations of

the S-matrix bootstrap [1, 23, 120, 117]. Indeed, even (3.3.1) has not been realized in this

context.21

Another interesting question is to what extent the detailed analytic structure is relevant for

the low-energy observables, e.g. a few low-energy Wilson coefficients. We do not know the

answer to this question, but recent works [1, 23] suggest that the low-energy observables are

not very sensitive to that. It would be very interesting to better understand the origin of this

phenomenon.

3.3.8 Other future directions

A few other future directions are

• An interesting generalization of our analysis is to relax Z2 symmetry. Effectively it allows

vertices of odd degree D and will lead to new graphs and the corresponding Landau

curves. It would be interesting to understand them in detail. While the Landau curves

found in fig. 3.5 should still be present, these will not be all the curves crossing the

21The fixed point unitarity methods [121] do realize this structure but these have not been implemented in d > 2
yet [122].
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region 16m2 < s, t < 36m2. There will be new curves that asymptote to 9m2 and that

cross this region, similarly to what happens with the elastic curves, which asymptote to

4m2 and also cross 16m2 < s, t < 36m2.

A presumably simpler problem to what we have studied here would be to map out all

the curves in the region 9m2 < s, t < 16m2. Are there accumulations of Landau curves

inside this region? We believe that this is not case since no analog of the triangle chain

depicted in figure 3.4 exists in this case.

• Another possibility is to consider the presence of bound-states, or particles with different

mass. We can think of a couple of difficulties here. One is that the graph selection

procedure is more involved. The simple graph-theoretic rules derived in appendix B.4

for discarding trivial sub-graphs become much more complex in the general mass case,

and a systematic selection as done here might be unfeasible. The other problem, a

more fundamental one, is that the different mass case leads to several new features on

the Landau curves. First, there are anomalous thresholds and Landau curves are in

general non-convex, namely they can bulge below the asymptotic normal threshold.

This could invalidate our cut criteria which discard Landau curves that asymptote to

normal thresholds outside the kinematic region of interest. Surely the curves found in fig.

3.5 should be present in any theory (with at least one massive particle). However, in the

general mass case these won’t very likely be all the curves that cross a given kinematic

region on the physical sheet. Secondly, cusps, acnodes and more generally complex

singularities [116, 8] could appear on the physical sheet. These are not necessarily

associated with α-positive solutions to the Landau equations.

• It would be interesting to apply techniques developed in [123] to better understand the

approach of the Landau curves to the accumulation point, as well as the analysis of [124]

to better understand the nature of multi-sheeted analytic structure of the corresponding

Feynman graphs.

• It would be important to prove that all the curves we have found are indeed present on

the physical sheet. For the planar graphs it is guaranteed, see [103, 125, 102]. For the non-

planar cross in figure 3.3.b, the question was addressed in [126]. For the other non-planar

graphs an extra analysis is required, either by following the analytic continuation of the

corresponding Feymann integral or by directly analyzing the 4-particle unitarity kernel.

It is also important to prove that non α-positive solutions to the Landau equations

do not lead to singularities on the physical sheet. Finally, one would like to show that

there is a unique α-positive solution associated with each nontrivial graph (which we

assumed to be the case in appendix B.3).

• Our results should emerge from the flat space limit of the theory in AdS [127, 85, 128,

129, 130]. In the latter case, one computes the conformal correlators on the boundary

of AdS. The double spectral density of the amplitude corresponds to the quadruple

discontinuity of the corresponding correlator [71]. Complexity of the multi-particle
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scattering in this case translates into the complexity of the n-twist operators with n > 2,

[69, 70].

• For large N confining gauge theories, a new classical description emerges at large

s, t ≫ m2 [131]. Can there also be a universal classical description in this regime for the

non-perturbative amplitude? A crucial step in answering this question seems to be a

better understanding of the analytic structure in this regime. Understanding this regime

is necessary for establishing the Mandelstam representation of the scattering amplitude

non-perturbatively. It is also important for developing possible truncation schemes in

which the complicated multi-particle unitarity structure can be simplified.
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4 Nonperturbative Anomalous Thresh-
olds

Despite the intricate analytic structure of scattering amplitudes most singularities have a clear

on-shell explanation. As mentioned in the previous chapters, a basic consequence of unitarity

is the presence of normal thresholds: branch cuts on the physical sheet starting at energies

where particle production occurs, i.e. where intermediate states can be made on-shell (see

Fig. 1). While rigorous unitarity only holds in the physical scattering region, perturbation

theory indicates that the exchange of states lighter than the physical threshold should still

correspond to singularities, such as the usual simple poles (single particles going on-shell).

These can be accounted for by extended unitarity [132, 133, 134, 113, 8, 135, 136, 137, 138],

which assumes that unitarity remains valid below the physical region (see Fig. 1).

Yet, when going beyond the 2 → 2 scattering of the lightest particle (i.e. 2 → 2 scattering of

heavier particles or generic multi-particle scattering) one typically encounters singularities

in perturbation theory which are not captured by extended unitarity (as defined above). The

prototypical example is the triangle diagram in Fig. 1. When the mass M of the heavier particle

exceeds
p

2 of the mass m of the lightest particle (and remains stable),

2m > M >p
2m, (4.0.1)

the triangle singularity occurs on the physical sheet below the normal thresholds, at s = a,

where

a = 4M 2 −M 4/m2 < 4m2. (4.0.2)

This is known as an anomalous threshold [110, 111, 112, 114].

Anomalous thresholds have a physical interpretation for certain composite objects.1 They are

nonetheless present regardless of compositeness, and they have physical consequences. In

the absence of poles, the anomalous threshold is the closest singularity to the crossed channel

1Namely, for loose bound states, such as the deuteron, whose mass M = 2m −ϵ, with binding energy ϵ≪ m,
satisfies the relation (4.0.1). It follows from non-relativistic quantum mechanics that the anomalous threshold is
related to the spatial extension of the bound state’s wavefunction [139, 140] (see also [141] for a recent treatment).
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Figure 4.1: Complex s-plane for M M → M M . Physical scattering occurs for s ≥ 4M 2 where unitarity
applies. Typically, unitarity is extended below to find further normal thresholds and simple poles, but
not anomalous thresholds [113].

physical region (where s ≤ 0 is a scattering angle, see Fig. 1), and therefore controls the decay

at large impact parameters of the amplitude and the corresponding Froissart bound on the

asymptotic cross-section [141].2

Perturbation theory indicates that anomalous thresholds are not only present in 2 → 2 scatter-

ing of heavy enough particles, but also in generic multi-particle scattering (even of the lightest

particle, say mm → mmm) [113, 114]. The absence of anomalous thresholds (or other exotic

singularities [151, 152, 8]) in Feynman diagrams of 2 → 2 scattering of the lightest particle

(here mm → mm) is quite special and motivates the hypothesis of lightest particle maximal

analyticity (LPMA) [153] which states that the nonperturbative mm → mm amplitude A(s, t ) is

analytic in the double complex plane of s and t apart from normal thresholds and bound-state

poles.3

LPMA has important practical implications: Bounds on physical observables (e.g a cubic

coupling defined as the residue of a pole) can be determined since all branch cuts of the

amplitude are normal thresholds and are directly constrained by unitarity. On the other hand,

the presence of an unconstrained branch cut, such as an anomalous threshold, would make

it impossible to find bounds in general, as the amplitude can oscillate wildly across this cut

(where it is a distribution). Given the renewed interest on the numerical S-matrix bootstrap

understanding whether anomalous thresholds can be constrained, and how, is paramount.

What is then the state of the art on anomalous thresholds beyond perturbation theory? It is

useful to split the discussion in the following way.

• Where is the anomalous threshold? Can we rigorously determine its presence on the

physical sheet?

• How does the amplitude behave at the anomalous branch point? What is the nature of

2The triangle singularity can also affect the direct channel (even in the non-anomalous regime where it is on
the second sheet). It appears to be in the origin of threshold enhancements or resonance-like effects in some
processes involving exotic hadrons [142, 143, 144, 145, 146, 147]. See [148] for a list of processes where the triangle
singularity is suspected to play a role (of note the a1(1420) ‘peak’ [149, 150]).

3LPMA remains unproven in axiomatic quantum field theory [27].
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the singularity?

• What is the discontinuity of the amplitude across the anomalous threshold? Is there an

explicit nonperturbative formula?

The location of the anomalous threshold and, in general, the singularities of a given Feynman

graph can be found via the Landau equations [154], where the so-called α-positive criterion

determines whether they are on the physical sheet or not. Current understanding is that

Landau singularities are a consequence of unitarity [151, 8, 7, 153] (even if this connection

has only been made explicit so far with elastic unitarity [151, 7]), and that they are in fact

singularities of the nonperturbative amplitude. So we expect the anomalous threshold (4.0.2)

derived for the triangle graph to indeed be there nonperturbatively.

Regarding the nature of the anomalous threshold, the triangle singularity is logarithmic in d = 4

and a simple pole in d = 2, by explicit computation. Less is known beyond perturbation theory.

In d = 2, exactly solvable integrable models provide some hints. A remarkable consequence

of the integrable bootstrap [155, 156, 157, 21] is the existence of poles of higher degree in

the integrable S-matrices, known as Coleman-Thun poles [158] which are the incarnation

of anomalous thresholds in d = 2. Depending on the mass of the scattered particles these

Coleman-Thun poles can achieve a very high order. For example, in the E8 Toda field theory

[159, 160, 161] the S-matrix of the second lightest particle has a Coleman-Thun pole of order

2, while the S-matrix of the heaviest particle has two Coleman-Thun poles of order 12 [162]!

These integrable models however involve a very special set of masses and couplings, and it is

hard to say what are the lessons for general theories with particle production. For example,

the mm → M M process, which vanishes identically in integrable models, is expected to have

an anomalous threshold in general.

Finally, on the discontinuity across the anomalous threshold the main reference is in d = 4

due to Mandelstam [132] in which he showed how anomalous thresholds arise in dispersion

relations. The key point is that analytic continuation in the mass M leads to a pinch of

the dispersive integral as M →p
2m, and consequent contour dragging as M >p

2m. The

end result is an extension of the integration contour below the normal threshold, which

is the anomalous threshold contribution. Several generalizations of this idea ensued [163,

164, 165, 166, 167, 168, 169, 170, 171, 172], many of which were implemented and are being

further developed today in various contexts in hadron physics [173, 174, 175, 176, 177, 178,

179, 177, 180, 181].4 These dispersive approaches, however, rely on weak coupling or other

approximations [114] so it is unclear what can rigorously be learned about the discontinuity

across the anomalous threshold. Notable exceptions are the works [184, 185] where the

nonperturbative discontinuity across the anomalous threshold was found via local analytic

continuation of extended unitarity in the mass M . These approaches exploit the simplicity of

4In particular, anomalous thresholds need to be taken into account for the computation of the hadronic light-
by-light contribution to the anomalous magnetic moment of the muon [182, 183] (which is a major source to the
present theoretical uncertainty) since photons can be off-shell [173, 174, 175, 176, 177].
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extended unitarity for the mm → M M process and do not appear to generalize easily beyond

this case. We are not aware of any nonperturbative treatment for M M → M M in the literature.

Two essential ingredients in the aforementioned studies are extended unitarity and analyticity

in the mass. While extended unitarity seems very reasonable to assume (and, in fact, appears

to have been recently established from the flat space limit of AdS/CFT [186]), analyticity

in the mass is harder to justify. Why would the S-matrices of particles of different mass be

related? This can be motivated within quantum field theory, where the S-matrix is defined via

the LSZ formula in terms of a Green’s function that is expected to enjoy some analyticity in

the ‘virtuality’ P 2 (which is then taken on-shell P 2 → M 2) [187]. While we are not aware of a

rigorous nonperturbative proof, analyticity in the mass is verified in perturbation theory, as m2

and M 2 appear on equal footing with Mandelstam invariants s and t in Feynman integrals.5

In this chapter, we assume extended unitarity and analyticity in M 2 to find exact nonperturba-

tive formulas for the discontinuity across the anomalous thresholds (4.0.2) of the mm → M M

and M M → M M processes in d = 2 and d = 4. We describe our setup in section 4.1 and list

our results in section 4.4. We conclude, in section 4.6, where we mention applications and

possible extensions of our results, and end with a discussion on maximal analyticity beyond

lightest particle scattering.

We first show how the anomalous threshold arises in the triangle diagram in d = 2 in section4.2.

The main derivation is in section 4.3, where we find the general nonperturbative solution to

extended unitarity and show how anomalous thresholds arise via continuation in the mass

M . In appendix C.1, we use a simple dispersive argument that generalizes the previous result

nonperturbatively. In appendix C.3 we perform some non-trivial perturbative checks of our

formulas in d = 4 where we reproduce the discontinuity across the anomalous threshold of

the box and double triangle diagrams. In appendix C.5 we collect some details regarding

kinematics, and appendix C.4 provides technical backup to the discussion in section 4.6.

4.1 Setup

We assume a gapped spectrum where m and M are the masses of the lightest particles, with

m < M . We let s, t and u be the usual Mandelstam invariants. We use the following notation

for the amplitudes A(s, t ), B(s, t ) and C (s, t ):

A : mm → mm, B : mm → M M , C : M M → M M .

We define the partial wave A J (s) in the usual way [7],

A J (s) = 1

16π

∫ 1

−1
P J (z) A(s, t (z))d z, (4.1.1)

5For multi-particle scattering of the lightest particle, say mm → mmm, anomalous thresholds should instead
follow from analytic continuation in the ‘sub-energies’, which should be easier to justify on the basis of causality.
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and likewise for B J (s) and C J (s), where P J (z) is the Legendre polynomial and z is the cosine

of the scattering angle (see appendix C.5 for the precise relation between z and t). In d = 4,

due to t −u symmetry the odd J partial waves vanish (note that u(z) = t (−z)). In d = 2, t is not

independent of s given that only forward/backward scattering is allowed, z =±1. We define

the d = 2 amplitude B(s) ≡ B(s, t(s)), with t(s) given by eq. (C.5.3), and likewise for A(s) and

C (s).

We assume the presence of a cubic coupling g between mmM , which we define nonperturba-

tively via the residues of the poles of B(s, t ),

B(s, t ) ⊃− g 2

t −m2 − g 2

u −m2 , (4.1.2)

represented diagrammatically in Fig. 4.2.

Figure 4.2: Graphical representation of eq. (4.1.2).

In terms of the partial waves, extended unitarity (see fig. 4.3) takes the simple form [188, 135, 7]

DiscB J (s) = ρ(s) A J (s)B∗
J (s), (4.1.3)

DiscC J (s) = ρ(s) |B J (s)|2, (4.1.4)

across the cut s ≥ 4m2 (and below the next threshold assumed to be at s = 4M 2)6. The phase

space volume reads

ρ(s) = (s −4m2)
d−3

2

2
p

s
. (4.1.5)

Note that (4.1.3) and (4.1.4) also applies in d = 2 directly for the amplitudes A(s), B(s) and C (s)

(where they are technically the J = 0 partial waves).

Assuming:

1. Analyticity in the mass M ,

2. Extended unitarity, eqs. (4.1.3) and (4.1.4),

6Our results do not depend on the exact location of the next threshold.
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Chapter 4. Nonperturbative Anomalous Thresholds

Figure 4.3: Graphical representation of eqs. (4.1.3) and (4.1.4).

3. The presence of the poles in eq. (4.1.2),

we show that, for M <p
2m there is a singularity on the second sheet of B J (s) and C J (s) at

s = a, given by eq. (4.0.2). As M is increased past M >p
2m, the s = a singularity comes onto

the first sheet by going around the s = 4m2 extended branch point (see Fig. 4.4).7 This is shown

explicitly via a simple dispersive argument in d = 2 for B(s) (see appendix C.1) and, more

generally, via an exact solution to equations (4.1.3) and (4.1.4) (see appendix 4.3, in particular

eqs. (4.3.4), (4.3.5) and (4.3.6) and fig. 4.7).

Figure 4.4: Motion of the s = a singularity from the second sheet where M <p
2m across the extended

unitarity cut s = 4m2 to the physical sheet for M >p
2m. A small imaginary part can be given to M 2 to

see the encircling.

Before we proceed it is useful to introduce ϱ(s) such that ϱ(s+i 0) = iρ(s), for s ≥ 4m2. We have

ϱ(s) =± (4m2 − s)
d−3

2

2
p

s
, (4.1.6)

with (+) sign for d = 2 and (−) sign for d = 4.

We also make use of the mm → mm S-matrix S(s), in d = 2, which is related to the amplitude

A(s) via

S(s + i 0) = 1+2iρ(s)A(s + i 0). (4.1.7)

7We also assume that no other singularity prevents the motion of ’a’, namely that no other branch cut is crossed
during the continuation (besides the extended unitarity cut).
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4.2 Simple perturbative example: Triangle diagram in d = 2

Figure 4.5: Triangle diagram for the process mm → M M . A quartic coupling λ is assumed (together
with the cubic couplings g ).

Here we find the anomalous threshold (Coleman-Thun pole) of the triangle diagram in fig. 4.5.

The Feynman parameter representation of the triangle diagram in d = 2 reads [8]

T (s) = λg 2

2π

∫ 1

0

∫ 1−x

0

d x d y

(sz y +M 2x y +M 2xz −m2)2 (4.2.1)

with z = 1−x − y . The answer reads

T (s) =−λg 2

m2

W (s)−W (a)

s −a
(4.2.2)

with

W (s) ≡ 2M 2 − s

π
√

s(4m2 − s)
arctan

√
s

4m2 − s
(4.2.3)

and a given by eq. (4.0.2).8

Let us look at the analyticity structure of T (s). First, the function W (s) only has a cut for

s ≥ 4m2, as required by unitarity, The role of the ‘arctan’ is to cancel the square-root branch

cut for s ≤ 0 on the physical sheet.

Now, T (s) inherits this singularity structure from W (s) via eq. (4.2.2). Note that T (s) is regular

at s → a because the numerator cancels the pole. In other words, no anomalous threshold

exists for M <p
2m.

The situation changes when going to M >p
2m. In this case, a will go around the branch cut

of the function W (a) (precisely as depicted in Fig. 4.4). So to write T (s) explicitly in this regime

we continue W (a) to the second sheet, i.e. find its monodromy (to the unfamiliar reader, see

dispersive argument below), which is given by

W (a) →W (a)− 2M 2 −a√
a(4m2 −a)

. (4.2.4)

8Note that W (s)/(2M2 − s) is the bubble diagram in d = 2.
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Making use of (4.1.6), i.e. ϱ(a) = 1/
√

a(4m2 −a) we have

T (s) → T (s)−2ϱ(a)
λg 2

m2

2M 2 −a

s −a
(4.2.5)

And we see the appearance of a pole at s → a on the physical sheet, i.e. an anomalous

threshold.

Following Mandelstam [132] we can reproduce the same result directly from a dispersive

representation. Taking a discontinuity of (4.2.2), or using unitarity directly (see next appendix

C.1), we get

DiscT (s) = λg 2

m2

s −2M 2

s −a

Θ(s −4m2)

2
√

s(s −4m2)
(4.2.6)

Identifying the last factor as the phase space volume ρ(s) given by eq. (4.1.5), a dispersion

relation for T (s) reads

T (s) = λg 2

πm2

∫ ∞

4m2

ρ(s′)
s′− s

s′−2M 2

s′−a
d s′. (4.2.7)

It can be checked that performing the integral gives back eq. (4.2.2). Now, from this representa-

tion it is clear that T (s → a) is regular, the pole s′ → a in the integrand is outside the integration

domain s′ ≥ 4m2. However, if we increase M we see that a approaches the integration contour

and forces its deformation for M >p
2m (see Fig. 4.4). So the integral will pick up an extra

term that wraps around a,

T (s) → T (s)+ λg 2

m2

1

π

∮
a

ρ(s′− iϵ)

s′− s

s′−2M 2

s′−a
d s′. (4.2.8)

If a is chosen to approach the contour from above, i.e. M 2 is given a small positive imaginary

part, the contour in (4.2.8) is counter-clockwise (see fig. 4.6). Note, however that ρ(s′) ∝
1/
p

s′−4m2 has a cut for s′ ≤ 4m2, and from fig. 4.6 it is clear that a will be below this cut after

the continuation. So we have ρ(s − iϵ) = iϱ(s) and we recover eq. (4.2.5).9

Figure 4.6: s′ complex plane. In black: integration contour. In green: singularities of the integrand.
Note in particular the presence of a branch cut of ρ(s′) for s′ ≤ 4m2. In red: trajectory of a as M is
increased. At M =p

2, a = 4m2 pinches the integration contour and forces a deformation.

9Note that the direction in which a wraps around the contour does not matter. Say it comes from below, then
the contour would be clockwise but a would end up on top of the branch cut of ρ(s′) instead and the sign difference
would cancel out.
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4.3 Continuation in M 2 of the solution to extended unitarity

In this section we derive the formulas presented in section 4.4. According to the setup laid out

in section 4.1 we take the following procedure:

1. We find the general solution across the extended unitarity cut.

2. We impose the presence of the poles (4.1.2) on the solution.

3. We continue the solution in M , and confirm that anomalous thresholds develop for

M >p
2m.

4. We take the discontinuity of the continued solution across the anomalous threshold to

find the answer.

Omitting the spin label J , unitarity across the s = 4m2 cut reads [171, 135]

Disc A(s) = ρ(s) |A(s)|2 (4.3.1)

DiscB(s) = ρ(s)B(s) A∗(s) (4.3.2)

DiscC (s) = ρ(s) |B(s)|2 (4.3.3)

for 4m2 ≤ s < 4M 2, where ρ(s) is the phase space factor (4.1.5). The general solution to this

system of equations is (see graphical interpretation in Fig. 4.7)

A(s) = α(s)

1−ϱ(s)α(s)
, (4.3.4)

B(s) = β(s)

1−ϱ(s)α(s)
, (4.3.5)

C (s) =σ(s)+ ϱ(s)β2(s)

1−ϱ(s)α(s)
, (4.3.6)

with

Discα(s) = Discβ(s) = Discσ(s) = 0, (4.3.7)

Discϱ(s) = ρ(s), for 4m2 ≤ s < 4M 2 (4.3.8)

In other words, α(s), β(s) and σ(s) are real across the extended unitarity cut, and ϱ(s) is the

analytic continuation of the phase space factor ρ(s) onto the complex plane. It can be checked

that this solution solves extended unitarity.10 A proper derivation is included at the end of the

appendix.

Now, in d = 2, t and u are functions of s (see appendix C.5). The t- and u-channel poles (4.1.2)

10This solution had already been found by Gribov [188] (and partially by Oehme [165]). It also follows from the
‘K-matrix’ solution with the second cut set to zero [189].
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Figure 4.7: Graphical representation of solution to unitarity across the 2m cut, eqs. (4.3.1), (4.3.2),
(4.3.3). The sub-graphs α, β and σ are 2m-irreducible, i.e. do not contain any internal exchange of 2m
(in the s-channel), which is what eq. (4.3.7) means graphically.

lead in fact to a pole at s = a already in the non-anomalous regime,

B(s → a) =−N g 2

s −a
, for M <p

2m, (4.3.9)

with N ≡ 2M 2−a
m2 .

Imposing this pole on the solution (4.3.5) requires β(s) to have a pole itself,

β(s) =−N g 2

s −a
[1−α(a)ϱ(a)]+βreg(s) (4.3.10)

where βreg(s) is regular as s → a.

Upon continuation of M from M < p
2m to M > p

2m, a will cross through the cut of the

function ϱ(a) (see fig. 4.4). Since it is a square root cut, we simply get ϱ(a) → −ϱ(a) after

continuation. So we find

β(s) →βa(s) =−N g 2

s −a
[1+α(a)ϱ(a)]+βreg(s), (4.3.11)

where we assumed that no other cut was crossed in the procedure, so that βreg(s) is unaffected
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by the continuation.11 Therefore, after continuation,

B(s → a) =−N g 2

s −a

1+α(a)ϱ(a)

1−α(a)ϱ(a)

=−N g 2

s −a
[1+2ϱ(s)A(s)], (4.3.12)

where we made use of (4.3.4) to relate α(s) with A(s). This is eq. (4.4.1).

Let us now consider C (s). The point here is that pluggingβ(s) given by (4.3.10) into the solution

for C (s) (4.3.6) will lead to a double pole, which needs to be canceled by σ(s), because C (s) by

assumption should be regular there for M <p
2m. This fixes σ(s) to take the form

σ(s) =−N 2g 4ϱ(a)[1−α(a)ϱ(a)]

(s −a)2 + 2N g 2βreg(a)ϱ(a)

s −a

− N 2g 4[1−α(a)ϱ(a)]2

s −a

d

d a

[
ϱ(a)

1−α(a)ϱ(a)

]
+σreg(s), (4.3.13)

where σreg(s) is regular as s → a.

As before, analytic continuation onto the anomalous regime ϱ(a) →−ϱ(a) in eqs. (4.3.13)

and (4.3.10) no longer leads to cancellation of the poles in C (s). We find that C (s) develops a

double and simple pole given by eq. (4.4.5), where B̄ = βreg

1−αϱ is the regular piece of B (without

the pole (4.3.9)).

Moving onto d = 4 the main difference here is that now the poles (4.1.2) in B(s, t ) will lead to a

left-hand cut for B J (s). The partial wave integral over the poles can be easily done using the

Froissart-Gribov representation (see eq. (C.5.16)). We get (4.1.2)

B poles
J (s) = g 2Q J

(
za(s)

)
4πw(s)

, for even J , (4.3.14)

with w(s) ≡
√

(4m2 − s)(4M 2 − s), za(s) given by (4.4.3) and where Q J (za(s)) is the Legendre

function of the second kind which has a cut for za(s) ∈ [−1,1], or s ∈ (−∞, a]. We now want to

impose the presence of this left cut on the solution to extended unitarity (4.3.5). For this we

make use of the relation (C.5.14), to fix βJ (s),

βJ (s) =− g 2

8π

∫ a

−∞
P J

(
za(s′)

)
[1−αJ (s′)ϱ(s′)]

w(s′)(s′− s)
d s′+βreg

J (s) (4.3.15)

where βreg
J (s) is regular across this particular cut.12 It is easy to see that inserting (4.3.15) into

11For example, βreg(s) = ϱ̄(s)−ϱ̄(a)
s−a is regular at s → a. If ϱ̄(a) is some function with a cut across the path of a

(square-root, say) then ϱ̄(a) →−ϱ̄(a) upon continuation and βreg(s) would now be singular and contribute to the
anomalous threshold. Note that the cut of ϱ̄(s) cannot be the extended unitarity cut s ∈ [4m2,4M2], i.e. ¯ϱ(s) ̸= ϱ(s),
otherwise β(s) would violate (4.3.7).

12Note that β
reg
J (s) can have other left-hand cuts. In writing (4.3.15) we are isolating the contribution coming

from the poles (4.1.2).
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the solution (4.3.5) gives the correct result: DiscB J (s) = DiscB poles
J (s), across the cut s ≤ a.

Now the continuation in the mass M is more interesting. We find that as M increases, a

encircles the 4m2 branch point and the integration contour (4.3.15) will go onto the second

sheet of ϱ(s′). Therefore, as a recedes (see fig. 4.4) the difference between the contours from

a → 4m2 and back from 4m2 → a is nonzero, where on the return trip ϱ(s′) →−ϱ(s′) in (4.3.15).

We find that (4.3.15) gets corrected by13

βJ (s) →βJ (s)+ g 2

4π

∫ 4m2

a

P J
(
za(s′)

)
αJ (s′)ϱ(s′)

w(s′)(s′− s)
(4.3.16)

We see that this extra piece now gives a cut for s ≥ a, i.e. an anomalous threshold. Plugging for

B J (s) into (4.3.5) and taking the Disc we get eq. (4.4.2).

Finally, let us outline the derivation of the anomalous threshold in C J (s). Analogously to the

d = 2 case, insertion of (4.3.15) onto C J (s) in (4.3.6) will lead to a cut for s ≤ a which needs to

be cancelled by σJ (s) such that DiscC J (s) = 0 across this cut. This will fix σJ (s) akin to (4.3.13)

in d = 2. Then, continuation in M is similar to the previous case - the contour enters the

second sheet of ϱ(s′) - and one (patiently) arrives at eq. (4.4.6).

While the results derived here assume no coinciding singularities with the anomalous thresh-

old (e.g. in (4.4.1), S(a) is assumed regular), it is easy to account for these possibilities. One

just has to include those singularities explicitly into β(s) and σ(s) in the solution to extended

unitarity (4.3.5) and (4.3.6). In most cases the answer will be simply corrected by taking the

“principal part". For example, in (4.4.4), A J (s) → Re A J (s), in case A J (s) has a cut overlapping

with the anomalous threshold (coming e.g. from a pole in the t-channel of A(s, t )).

4.4 Results: Nonperturbative discontinuity

4.4.1 Anomalous threshold of mm → M M

Fig, 4.8 represents the nonperturbative cut across the anomalous threshold for the M M → M M

process.

In d = 2, we find that mm → M M develops a simple Coleman-Thun pole whose residue gets

enhanced by the mm → mm process,

B(s → a) =−N
g 2S(a)

s −a
, N ≡ 2M 2 −a

m2 . (4.4.1)

13There is an important subtlety here. Naively, w(s′) ∝
√

4m2 − s′ would also be encircled. However, what is

being integrated over in (4.3.15) is the discontinuity of (4.3.14) which only has a left cut, B J (s) ∝Q J

(
s−2M 2

w(s)

)
/w(s)

is regular across the cut of w(s), as it should. Therefore, in the continuation of (4.3.15) we should keep in mind
that 1/w(s′) is in fact Re[1/w(s′)], even if this detail only plays a role when a is going around 4m2.
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Figure 4.8: Graphical representation of eqs. (4.4.1), (4.4.2) and (4.4.4).

This result is derived in two different ways in appendices C.1 and 4.3.14

In d = 4, we find that the partial wave for the mm → M M process develops an anomalous

threshold of logarithmic nature (note that the monodromy is regular as s → a),

DiscB J (s) =− P J (za(s))

8
√

s(4M 2 − s)
g 2 A J (s), (4.4.2)

for s ∈ [a,4m2), and where P J is the usual Legendre polynomial and

za(s) ≡ s −2M 2√
(4m2 − s)(4M 2 − s)

, (4.4.3)

is such that za(a) =+1 if M <p
2m, or za(a) =−1 if M >p

2m. Mandelstam’s result [132] is

reproduced by taking J = 0 in (4.4.2).

We can invert (4.4.2) back for the amplitude,

DiscsB(s, t (z)) =−g 2
∫ 1
−1 P (z, z ′, za(s)) A(s, t (z ′))d z ′

8π
√

s(4M 2 − s)
, (4.4.4)

for s ∈ [a,4m2], and where z is the cosine of the scattering angle and P is the 2-particle

unitarity kernel (see appendix C.5). Eq. (4.4.4) matches the results from [184, 185].

4.4.2 Anomalous threshold of M M → M M

Fig, 4.9 represents the nonperturbative cut across the anomalous threshold for the M M → M M

process.

In d = 2, the M M → M M amplitude develops a double ‘Coleman-Thun’ pole which takes

contributions from S(a) but also B̄(a), the pole-subtracted amplitude, i.e. B̄(s) ≡ B(s)−B(s →

14Note that even when A(s) → 0, i.e. S(s) → 1, the pole (4.4.1) survives. This is precisely the contribution from
the poles (4.1.2) (in d = 2, t and u depend on s, see eq. (C.5.3)).
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Figure 4.9: Graphical representation of eqs. (4.4.5) and (4.4.6).

a). We find

C (s → a) =−4N ϱ(a)
g 2B̄(a)

s −a
+2N 2ϱ(a)

g 4S(a)

(s −a)2

+2N 2 g 4

s −a

[
dϱ(a)

d s
S(a)−ϱ(a)

dS(a)

d s

1−S(a)

1+S(a)

]
, (4.4.5)

Moving onto d = 4 we find

DiscC J (s) =− P J (za(s))

4
√

s(4M 2 − s)

[
g 2B̄ J (s)

+ g 4

8π
−
∫ a

−∞
P̃ J (s′)
s′− s

1+ϱ(s)A J (s)

1+ϱ(s′)A J (s′)
d s′

− g 4

4π
−
∫ 4m2

a

P̃ J (s′)ϱ(s′)A J (s′)
s′− s

1+ϱ(s)A J (s)

1+ϱ(s′)A J (s′)
d s′

]
, (4.4.6)

a logarithmic branch cut with support on s ∈ [a,4m2) and where

P̃ J (s) ≡ sgnz ′
a(s)√

(4m2 − s)(4M 2 − s)
P J (za(s)) . (4.4.7)

Moreover, in eq. (4.4.6), B̄(s, t ) ≡ B(s, t )− (4.1.2) and −∫ is the principal value integral.

The non-linear dependence on A J (s) makes it hard to express eq. (4.4.6) back in terms of

the amplitudes (the piece dependent on B̄ J (s) can nonetheless be put in the form of (4.4.4)).

This was already expected given that, contrarily to the partial wave C J (s), the anomalous

branch point of the amplitude C (s, t ) may in general depend on t , i.e. be a Landau curve s(t )

[151], which will in general vary diagram by diagram.15 In appendix C.3 we check (4.4.6) in

perturbation theory where we recover the discontinuity across the anomalous threshold of

the box and double triangle diagrams.

15Interestingly, for mm → M M there is a universal branch point at s = a not only for B J (s) but also for the
amplitude B(s, t ). This can be traced back to the fact that the anomalous threshold is always of the ‘triangle’ type
(see Fig. 4.8).
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4.5 Anomalous thresholds in integrable models

The only explicit known nonperturbative S-matrices which we can test our formulas are

integrable models in d = 2. These theories are famously known to have no particle production.

So immediately we see that formula (4.3.9) for the anomalous threshold of the M M → mm

amplitude cannot apply.

What is going on? The advantage of our analysis here is that it is local meaning that we can be

agnostic to the analytic structure away from the anomalous threshold. However, it is entirely

possible that another singularity, say a pole due to a different bound-state than m or M , can

come arbitrarily close and even sit on top of the anomalous threshold for a given value of M .

This sort of singularity cancellation is precisely what happens in the integrable models and

leads to the absence of multi-particle processes.

Let us look explicitly at the E8 integrable model. In units where m = 1, the six lightest particles

(out of eight) in the E8 model are [190]

m = m1 = 1, M = m2 = 2cos
π

5
= 1+p

5

2
≈ 1.618,

m3 = 2cos
π

30
≈ 1.989, m4 = 2m2 cos

7π

30
≈ 2.405,

m5 = 2m2 cos
2π

15
≈ 2.956, m6 = 2m2 cos

π

30
≈ 3.218. (4.5.1)

To describe the S-matrices in integrable models it useful to use the basic CDD building block

which solves elastic unitarity and crossing symmetry in d = 2. Let us define it in an abbreviated

way as

[
µ2]≡ ϱ(µ2)+ϱ(s)

ϱ(µ2)−ϱ(s)
(4.5.2)

where ϱ(s) is the phase space factor in eq. (4.1.6) for mm → mm.16 In the sector of the two

16For the scattering of particles of different mass we have

mm → mm : ϱ(s) = 1

2
√

4m2 − s
p

s
, (4.5.3)

mm → M M : ϱ(s) = 1

2
√

(m +M)2 − s
√

s − (m −M)2
, (4.5.4)

M M → M M : ϱ(s) = 1

2
√

4M2 − s
p

s
(4.5.5)

(4.5.6)
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lightest particles m and M we have [190]

Smm→mm(s) = [
m2] [

M 2] [
m2

3

]
,

SmM→mM (s) = [
m2] [

M 2] [
m2

3

] [
m2

4

]
,

SM M→mm(s) = 1,

SM M→M M (s) = [
m2] [

M 2] [
m2

4

] [
m2

5

] [
m2

6

] [
a
]2. (4.5.7)

This means in particular that mm → mm has three simple poles at m2, M 2 and m2
3 (and their

crossing symmetric images s ↔ 4m2 − s), and likewise that M M → M M has simple poles at

m2, M 2, m2
4, m2

5, m2
6 and a double pole at

a = 4M 2 −M 4/m2, (4.5.8)

which is the anomalous threshold (also known as Coleman-Thun pole). Plugging the numbers

we get
p

a ≈ 1.902 so the anomalous threshold sits between the second and third particles

M <p
a < m3.

4.5.1 Cancellation of the “anomalous" pole in M M → mm

How is it possible that TM M→mm(s) = 0 if TmM→mM (s) ̸= 0? These two objects are related by

crossing symmetry in d > 2 but in d = 2 since t = t (s) and u = u(s) this is not necessarily the

case. Let us see explicitly how TM M→mm(s) = 0 at “tree level". By “tree level" we mean just

looking at how the simple poles cancel each other.

The M M → mm process should be able to exchange the same particles as the “crossing

symmetric” process mM → mM , namely m, M , m3 and m4. Since t = t(s) and u = u(s)

according to eq. (C.5.3) all these exchanges will give rise to poles in s. From eq. (C.5.3) we

have that a pole in t-channel or u-channels at µ2 gives rise to the following pole in s,

t (s) =µ2 or u(s) =µ2 =⇒ s(µ2) =− (m2 −M 2)2

µ2 +2(m2 +M 2)−µ2 (4.5.9)

For the particular values where t (s) =µ= m, M we find

µ= m =⇒ s = a = 4M 2 − M 4

m2 ,

µ= M =⇒ s = b = 4m2 − m4

M 2 , (4.5.10)

The first value is the already studied t-channel and u-channel pole in eq. (4.1.2). As we can see

in figure 4.10, it wraps around the s = 4m2 branch cut as M increases and its residue changes

as a result, i.e. becomes “anomalous” for M >p
2m as argued in the main text. The second

value, on the other hand, does not wrap around s = 4m2 as M increases.
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Both poles will coincide if a = b,

4M 2 − M 4

m2 = 4m2 − m4

M 2 =⇒ M =
(

1+p
5

2

)
m, (4.5.11)

which is precisely the mass of the second bound state in the E8 model.17

1.0 1.2 1.4 1.6 1.8 2.0
M

1

2

3

4

Figure 4.10: In black: the normal thresholds at s = 4m2 and t = 4M 2 − s = (m + M)2. In thick line:
s-channel singularities in the mm → M M process. In dashed line: t-channel singularities in the
M M → M M process. Red and blue are given by s = a and s = b in eq. (4.5.10). Orange is given by
4M 2 − t− with t− in eq. (4.5.42). As M increases a = 4M 2 − M 4 touches the s = 4 branch point at

M =p
2 ≈ 1.41 and comes back. When M = 1+p5

2 ≈ 1.62, b overlaps with a and cancels production of
M M → mm. For the M M → M M the other singularities from the t-channel (in dashed) and contribute
to the anomalous threshold at s → a. In total the 4 singularities contribute to the double pole in the E8

model.

So, in order to have Tmm→M M = 0, the residues coming from these two poles must cancel out.

A proposal for the “anomalous" residue was computed in eq. (4.4.1) where, in the notation of

this section, the amplitude was found to behave as

Tmm→M M (s ∼ a) =−Nm
g 2

mmM Smm→mm(a)

s −a
(4.5.12)

with the relation between the amplitude and the S-matrix being, as usual, S(s) = 1+2ϱ(s)T (s),

and

Nm = 2M 2 −a

m2 =
(

M

m

)4

−2

(
M

m

)2

. (4.5.13)

17There are other solutions to eq. (4.5.11). However, the solution in eq. (4.5.11) is the only one for which M > m.

113



Chapter 4. Nonperturbative Anomalous Thresholds

We now want to compare this with the residue coming from the other pole,

− g 2
mM M

t (s)−M 2 − g 2
mM M

u(s)−M 2 =−g 2
mM M (s −2m2)

M 2(s −b)
(4.5.14)

so when s ∼ b we have

Tmm→M M (s ∼ b) =−NM
g 2

mM M

s −b
, (4.5.15)

with

NM =
( m

M

)4
−2

( m

M

)2
(4.5.16)

For these two to cancel we must have

Nm g 2
mmM Smm→mm(a)+NM g 2

mM M = 0. (4.5.17)

We can now verify that this is indeed the case in the E8 model. We can extract gmmM by looking

at the s-channel exchange of M of the mm → mm process, i.e.

Tmm→mm(s ∼ M 2) =− g 2
mmM

s −M 2 (4.5.18)

which, making use of the S-matrices in eq. (4.5.7), gives

g 2
mmM =p

30

√
4605+2047

p
5+10

p
30

√
14045+6281

p
5 ≈ 742.201 (4.5.19)

taking the values in (4.5.1).

To extract gmM M we look at

TM M→M M (s ∼ m2) =−g 2
mM M

s −m2 (4.5.20)

and find

g 2
mM M = 2

p
15

√
33814455+15122284

p
5+10

p
15

√
1524538572625+681794376542

p
5

≈ 90085.8. (4.5.21)

Likewise, we find

Smm→mm(a) = 13+3
p

5+5

√
15+6

p
5 ≈ 46.3617 (4.5.22)
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and, finally,

Nm = 1+p
5

2
≈ 1.61803, NM = 1−p

5

2
≈−0.618034. (4.5.23)

We then verify that eq. (4.5.17) is exactly satisfied.

We can also verify cancellation of the other singularities. No other anomalous threshold should

exist, as also argued in appendix C.4: Any singularity coming from t (s) =µ2 or u(s) =µ2 only

wraps around the s = 4m2 branch cut if M 2 > µ2 +m2 and none of the other masses M , m3

and m4 satisfy this except m which gives the only anomalous threshold at s = a.18

The presence of m3 and m4 is nonetheless necessary to cancel out the remaining singularities.

In particular, we find

t (s) = m2
3 =⇒ s = M 2, t (s) = m2

4 =⇒ s = m2. (4.5.24)

It is a straightforward exercise to see that the residues also cancel each other.

Finally, the singularities at s = m2
3 and s = m2

4 whose residues are respectively gM Mm3 gmmm3

and gM Mm4 gmmm4 are not present since gM Mm3 = gmmm4 = 0. Notice in eq. (4.5.7) how

mm → mm does not exchange m4 and how M M → M M does not exchange m3.

In summary:

• The t- and u-channel exchanges of m3 cancel the s-channel exchange of M .

• The t- and u-channel exchanges of m4 cancel the s-channel exchange of m.

• There are no s-channel exchanges of m3 and m4, since gM Mm3 = gmmm4 = 0.

• The t- and u-channel exchanges of M cancel the t- and u-channel exchanges of m

whose residue is “anomalous" according to eq. (4.4.1).

4.5.2 The anomalous double pole of M M → M M : Four overlapping singularities

As seen in eq. (4.5.7) the M M → M M S-matrix of the E8 contains a double pole at s = 4M 2 −
M 4/m2. In units of m = 1 its numerical value reads (the exact expressions in terms of radicals

are too extensive to print here)

T E8
M M→M M (s → a) =−2.40930×108

(s −a)2 − 2.78375×108

s −a
(4.5.25)

Can the formula in eq. (4.4.5) reproduce this? Immediately we see that this cannot be the

18In perturbation theory, the condition M2 >µ2 +m2 for the existence of the anomalous threshold follows from
requiring that the solution to the Landau equations of the triangle diagram is ’α-positive’.
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case due to the term B̄(a) = T̄mm→M M (a) which is defined as the “subtracted" mm → M M

amplitude

T̄mm→M M (s) = Tmm→M M (s)−Nm gmmM Smm→mm(a)/(s −a) ∼ 1/(s −b) (4.5.26)

which diverges at the integrable point since b → a, as seen in the previous section.

Indeed, in the derivation of eq. (4.4.5) no overlapping singularities were assumed which

could explain its failure. One can nonetheless account for this extra overlapping singularity at

s ∼ b → a.

In eq. (4.3.6) we have the solution to unitarity across the 2m branch cut (see also Fig. 4.7). In

the notation of this chapter unitarity reads

DiscTmm→mm(s) = ρmm(s) |Tmm→mm(s)|2 (4.5.27)

DiscTmm→M M (s) = ρmm(s)Tmm→M M (s)T ∗
mm→mm(s) (4.5.28)

DiscTM M→M M (s) = ρmm(s) |Tmm→M M (s)|2 (4.5.29)

where ρmm(s) is the phase space factor (4.1.5) with solution

Tmm→mm(s) = α(s)

1−ϱmm(s)α(s)
, (4.5.30)

Tmm→M M (s) = β(s)

1−ϱmm(s)α(s)
, (4.5.31)

TM M→M M (s) =σ(s)+ ϱmm(s)β2(s)

1−ϱmm(s)α(s)
, (4.5.32)

where Discα(s) = Discβ(s) = Discσ(s) = 0 across the 2m cut. The advantage of this representa-

tion is that it isolates the analytic structure around the 2m branch cut (where the anomalous

threshold comes from).

Now, we are interested in the behavior of Tmm→M M (s) around the two singularities s ∼ a and

s ∼ b which will cancel each other at the integrable point. These are the two t-channel poles at

t = m2 and t = M 2 in eq. (4.5.15) and (4.1.2),

Tmm→M M (s) =−Nm
g 2

mmM

s −a
−NM

g 2
mM M

s −b
+ . . . , (4.5.33)

where the ′ . . .′ are regular as s → a,b and can be ignored for our purposes since they will

also go to zero at the integrable point (and regardless will not contribute to the anomalous

threshold).

Looking at eq. (4.5.31) this fixes

β(s) =−Nm
g 2

mmM

s −a
[1−ϱmm(a)α(a)]−NM

g 2
mM M

s −b
[1−ϱmm(b)α(b)] (4.5.34)
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This now must be inserted in eq. (4.5.32) for TM M→M M (s), which in turn fixes

σ(s) =−
[
ϱmm(s)β2(s)

1−ϱmm(s)α(s)

]
s→a

−
[
ϱmm(s)β2(s)

1−ϱmm(s)α(s)

]
s→b

(4.5.35)

However, upon continuation from M <p
2 to M >p

2 the s = a singularity goes around the

2m branch cut and ρmm(a) →−ρmm(a), and σ(s) no longer cancels the singularity at s → a,

giving rise to a double pole on TM M→M M (s): the anomalous threshold.

Letting

M = 1+p
5

2
+ϵ (4.5.36)

carefully expanding in ϵ we find again a formal divergence, as if we had naively used the

original formula (4.4.5),

TM M→M M (s → a) = 1

ϵ

1

s −a

2p
5

g 2
mmM g 2

mM Mρmm(a)

+ 1

(s −a)2 g 2
mmMρmm(a)

[
(3+p

5)g 2
mmM Smm(a)− 8p

5
g 2

mM M

]
+ 1

s −a
g 2

mmM

[
ρ′

mm(a)
(
(3+p

5)g 2
mmM Smm(a)− 8p

5
g 2

mM M

)
+ρmm(a)

(
g 2

mM M

(5
p

5−9

10
− 4S′

mm(a)

1+Smm(a)

)
− g 2

mmM

(
2(1+p

5)Smm(a)+ (3+p
5)S′

mm(a)
1−Smm(a)

1+Smm(a)

))]
(4.5.37)

plugging the values for the E8 model we find numerically

TM M→M M (s → a) = g 2
mmM g 2

mM M

ϵ

0.380423

s −a
− 4.48669×107

(s −a)2 + 1.30302×108

s −a
(4.5.38)

where on the last two terms we replaced the values taken from the E8 model in eq. (4.5.7)

around s → a, namely α(s ∼ a) was related to Tmm→mm(s ∼ a) via eq. (4.3.4), and gmM M and

gmM M were replaced from eqs. (4.5.19) and (4.5.21).

The first term is formally infinite as ϵ → 0. We have not replaced the E8 values to try to

isolate where it comes from. Notice that it does not depend on Tmm→mm and just depends on

the product gmM M gmM M which suggests that this divergent term only comes from the box

diagram with all external legs M , three internal legs with m and one with M .

Is this box diagram infinite when M → 1+p5
2 ? By explicit computation (which we have not

included here) we verify that this is not the case. This suggests that there may be another

overlapping singularity as M → 1+p5
2 , possibly coming from the crossed channel.
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This is indeed the case. The t = (m +M)2 threshold, in terms of s, reads

t-channel mM threshold : t (s) = (m +M)2 =⇒

=⇒ s = 4M 2 − (m +M)2 → a, if M → 1+p
5

2
m. (4.5.39)

And this is not the only singularity from the t-channel that overlaps with s → a! There is one

more. Cutting this box through the mM cut leads to the square of the following tree level

exchange on the t-channel

TM M→mM (t ) =−gmmM gmM M

s̄(t )−m2 − gmmM gmM M

ū(t )−m2 (4.5.40)

=−gmmM gmM M P (t )

(t − t−)(t − t+)
(4.5.41)

with P (t ) = (m2 −3M 2 + t )t/m2 and

t = t± = 3M 2

2
±
p
−4m6M 2 +17m4M 4 −4m2M 6

2m2 (4.5.42)

where we made use d = 2 kinematics for M M → mM scattering to find s̄(t) and ū(t).19 The

motion of the singularity 4M 2 − t+ is plotted in Fig. 4.10. As M → 1+p5
2 m it comes in contact

with the mM threshold and becomes an anomalous threshold for M > 1+p5
2 m.20 So in total

we expect to have 4 singularities contributing at s = a to the E8 model anomalous threshold

(see summary at the end).

Let us now try to account for the latter two nonperturbatively. We write down the unitarity

equations across the mM threshold in the t-channel [191]:

DiscTmM→mM (t ) = ρmM (t ) |TmM→mM (t )|2 (4.5.45)

DiscTM M→mM (t ) = ρmM (t )TM M→mM (t )T ∗
mM→mM (s) (4.5.46)

DiscTM M→M M (t ) = 2ρmM (t ) |TM M→mM (t )|2 (4.5.47)

where the factor of 2 in eq. (4.5.47) comes from the fact that m and M are not identical. In

eqs. (4.5.45) and (4.5.46), TmM→mM is the forward amplitude and the backwards amplitude

19

s̄(t ) = 1

2

(
m2 +3M2 − t +

√
t (t −4M2)

√
m4 + (M2 − t )2 −2m2(M2 + t )

t

)
(4.5.43)

ū(t ) = 1

2

(
m2 +3M2 − t −

√
t (t −4M2)

√
m4 + (M2 − t )2 −2m2(M2 + t )

t

)
(4.5.44)

20In fact, as M → 1+p5
2 m we also have t− → m2 which gets canceled in the E8 model by an s-channel exchange

of m2 of the process M M → mM .

118



4.5 Anomalous thresholds in integrable models

mM → mM is assumed to vanish (which it does in the E8 model) and should not contribute

to the anomalous threshold at s → a.

The solution is

TmM→mM (t ) = ᾱ(t )

1−ϱmM (t )ᾱ(t )
, (4.5.48)

TM M→mM (t ) = β̄(s)

1−ϱmM (t )ᾱ(t )
, (4.5.49)

TM M→M M (t ) = σ̄(s)+ 2ϱmM (t ) β̄2(t )

1−ϱmM (t )ᾱ(t )
, (4.5.50)

where Discᾱ(t ) = Discβ̄(t ) = Discσ̄(t ) = 0 across the mM cut.

Noting eq. (4.5.40) in order to include the singularity at t → t+ in this solution for TM M→mM

we must have

β̄(t ) =−gmmM gmM M P (t )

(t − t−)(t − t+)
[1−ϱmM (t−)ᾱ(t−)]+ . . . (4.5.51)

In turn, to prevent TM M→M M (t ) from having this singularity we must have

σ̄(t ) =−
[

2ϱmM (t ) β̄2(t )

1−ϱmM (t )ᾱ(t )

]
t→t+

(4.5.52)

We now plug this back into (4.5.50), make use of t = 4M 2 − s, let M = 1+p5
2 + ϵ and expand

in ϵ. Since in this limit M → 1+p5
2 the normal threshold at t(s) = (m +M)2 will overlap with

the anomalous threshold s → a from the s-channel we must especially be careful because

TmM→mM (s) will have a branch point and will not be analytic. Therefore it is better to expand

in the variable ᾱ(s) which should be analytic across the normal threshold. The Taylor coeffi-

cents of ᾱ(s) should be seen as “scattering lengths" and “effective ranges" of the amplitude

TmM→mM (s) as defined in [7]. Another important technical point is that in expanding in the

mass αmM generically can lead to two contributions.

dα(a)

d M
= d a

d M

∂α

∂s
(a)+ ∂α

∂M
(a) (4.5.53)

The second contribution depends on how the integrable E8 point is achieved. Such a contri-

bution dropped out from the s-channel computation in eq. (4.5.37) but in the t-channel this

is not the case.
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In the end we find the following contribution from the t-channel to the singularity at s → a:

T t
M M→M M (s → a) =−1

ϵ

1

s −a

4
p

2
√

5+p
5

5

g 2
mmM g 2

mM M

1+SmM (a)
− g 2

mmM g 2
mM M

(s −a)2

√
130+38

p
5

5

+ g 2
mmM g 2

mM M

s −a

(√
373

200
− 229

200
p

5
− 5+p

5

20

∂ᾱ

∂s
(a)+ 1+p

5

20

∂ᾱ

∂M
(a)

)
.

(4.5.54)

Inverting relation (4.5.48) for ᾱ(s),

ᾱ(s) = 1

ϱmM
(
t (s)

) SmM→mM
(
t (s)

)−1

SmM→mM
(
t (s)

)+1
, with t (s) = 4M 2 − s, (4.5.55)

and plugging the E8 S-matrix in eq. (4.5.7) we find

∂ᾱ

∂s
(a) = 12

√
2+ 2p

5
(4.5.56)

using the values for the couplings gmmM and gmM M in eqs. (4.5.19) and (4.5.21) we find

T t
M M→M M (s → a) =−g 2

mmM g 2
mM M

ϵ

0.380423

s −a
− 1.96064×108

(s −a)2 − (4.16099−0.10819∂M ᾱ)×108

s −a
.

(4.5.57)

Unfortunately we still have an unknown term ∂M ā which would require perturbing the E8

model away from the integrable point. ∂M ā represents the first order correction to the “scat-

tering length" of the mM → mM forward scattering process.

Nonetheless, adding eq. (4.5.57) to the s-channel contribution in eq. (4.5.38) we see that the

divergent 1/ϵ terms cancel each other and the double pole contribution add up to exactly

match the double pole residue of the E8 value in eq. (4.5.25).

For the simple poles to match we should have

∂ᾱ

∂M
(a) = 4

√
85−38

p
5 ≈ 0.6860537006 in Ising Field Theory very close to E8. (4.5.58)

4.6 Discussion and outlook

In this work we propose nonperturbative formulas for the discontinuity across anomalous

thresholds. Eqs. (4.4.4) and (4.4.2), for the anomalous threshold of the mm → M M process

in d = 4, which match previous results in the literature [132, 184, 185], and eq. (4.4.1) for

mm → M M in d = 2, and eqs. (4.4.5) and (4.4.6) for M M → M M in d = 2 and the partial wave

in d = 4, respectively, which we believe are novel results.

One natural testing ground for these formulas are integrable models which also possess
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4.6 Discussion and outlook

anomalous thresholds, typically known as Coleman-Thun poles. However, integrable models

are quite particular in that they have fine-tuned spectrum and couplings as to cancel out

particle production and satisfy the Yang-Baxter equations. In particular, the mm → M M

process is zero and therefore the formula (4.4.1), as it is does not apply. In deriving these

formulas we have assumed non-degenerate singularity structure, i.e. that other singularities

(e.g a bound-state pole) do not overlap with the anomalous threshold. Indeed, as shown in

section 4.5 for the E8 model such a cancelation happens which relates the coupling g 2
mM M ∼

g 2
mmM Smm→mm(a). This sort of cancellation has already been advertised before [192] however

here we believe we provide an argument for the first time for the O(1) factor in the relation

g 2
mM M ∼ g 2

mmM Smm→mm(a).

For the M M → M M anomalous threshold in eq. (4.4.5), the situation is far more intricate

when trying to apply it to integrable models. As seen in section 4.5 for the E8 model there are

four overlapping singularities at s = a: two anomalous thresholds (one from s-channel and

other from t-channel), a t-channel exchange of M 2 and a normal threshold in the t-channel

of production t = (m +M)2. These all overlap at the integrable point when M = 1+p5
2 . The

individual contributions to the residues from each channel is singular as M → 1+p5
2 . However,

the sum is finite and we find exact agreement with the double pole residue of the E8 model.

The simple pole residue however depends on how the integrable point is reached, in particular

on the first order correction to the scattering length of the Mm → Mm forward scattering

length away from the integrable E8 point. To have agreement this correction should be an O(1)

number, see eq. (4.5.58). It would be interesting to check if this number is verified in Ising

Field Theory.

We believe that the formulas derived here should directly apply away from the integrable point,

when there are no overlapping and cancellation of singularities and the spectrum is “generic".

It would be great if these formulas could be checked with other nonperturbative methods. For

example, via the LSZ reduction formula (viz. the very concrete numerical implementation of

[193] that makes use of Hamiltonian truncation data), or via the flat space limit of AdS/CFT, as

done e.g. in [129, 194] which so far have only considered the Witten triangle diagram.

We focused on d = 2 and d = 4 but our method should apply to any d . One difference is that in

odd d the 2-particle cut is a logarithm [7] (so the kernel has monodromy ϱ(s) → ϱ(s)+2πi ).

We expect the anomalous threshold to be of square-root nature in odd dimensions.

We have shown that the presence of the t- and u-channel poles (4.1.2) leads to an anomalous

branch point at s = a for M >p
2m. It is natural to ask:

• Besides the poles (4.1.2), can other singularities contribute to the same anomalous

threshold at s = a and change its discontinuity?

• Is s = a the only anomalous branch point in the mm → M M and M M → M M partial

waves, or can there be more?
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Chapter 4. Nonperturbative Anomalous Thresholds

Figure 4.11: Triangle graphs: 1. Has an anomalous threshold coming from the s = 4m2 extended cut
when (4.6.1) is satisfied; 2. Has an anomalous threshold coming from the s = 9m2 extended unitarity
cut, if M >p

3m > 3m/2; 3. Does not have an anomalous threshold for m1 +m2 ≥ 2M , which would
come from a unitarity cut on the physical region s ≥ 4M 2.

Let us address these questions by branch cut, i.e. by the branch cut from which the anomalous

threshold may cross onto the physical sheet. We will separately consider:

1. The extended unitarity cut at s = 4m2. Are there other singularities crossing this cut

onto the physical sheet, besides the one already analyzed?

2. Other potential extended unitarity cuts. Can there be other branch points between

4m2 < s < 4M 2, from which new anomalous thresholds can appear?

3. Usual physical unitarity cuts, i.e. at s ≥ 4M 2. Can anomalous thresholds come onto the

physical sheet via normal thresholds on the physical region?

We start with point 1 (refer to appendix C.4 for supporting technical details). Before anomalous

thresholds arise, we assume LPMA so that there are only the usual simple poles and normal

thresholds. In the s-channel these are ‘static’, e.g. s = m2 or s = M 2, and would not encircle

any branch point as M is increased. Looking at the t- and u-channels, a singularity at t ,u =µ2

leads to a left-hand cut in the partial wave B J (s) (and also in C J (s) in the second sheet, see

appendix 4.3). Now, if

M 2 >µ2 +m2 (4.6.1)

the rightmost branch point of this left-hand cut, given by eq. (C.4.2), will move to the right as

M increases and will encircle the extended unitarity branch point at s = 4m2 and come back

to generate an anomalous threshold (qualitatively as in Fig. 4.4). Note that this is the usual

α-positive condition for the Landau singularity of triangle 1 in Fig. 4.11 to be on the physical

sheet [8], which arises here nonperturbatively from a partial wave analysis.21 From (4.6.1)

we see that, since M < 2m is stable, only µ= m satisfies condition (4.6.1), which corresponds

to the s = a singularity analyzed here coming from the poles (4.1.2) which require a cubic

coupling g between Mmm.22 There should be no other anomalous threshold coming from

21This is not surprising because Landau singularities are intimately connected with unitarity [151, 8, 7, 153],
which is diagonalized by the partial wave decomposition.

22If there were a lighter particle in the spectrum m̄ then µ = 2m̄ could satisfy (4.6.1) via a quartic coupling
Mmm̄m̄. I thank A. Zhiboedov for raising this point.
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the s = 4m2 cut.23

Let us now address point 2. Indeed, other extended unitarity cuts can be present. Namely, the

branch points s = (m +M)2 and s = 9m2 can be between s ∈ [4m2,4M 2), which we chose not

to represent in Fig. 4.1. Note that s = 9m2 is only extended if M > 3m/2. Further extended

cuts cannot exist since M < 2m is stable. From these two additional cuts, new anomalous

thresholds can in fact arise. E.g. the triangle 2 in Fig. 4.11.24 Note however that these are not

present if m is Z2 odd as the intermediate processes are disallowed.

Finally, we come to point 3. Can anomalous thresholds arise from physical unitarity cuts?

Landau analysis indicates that this is not the case. For example, for triangle 3 in Fig. 7 we

see that if the mass of the particles exchanged in the s-channel is larger than the physical

threshold, i.e. m1 +m2 > 2M , then there is no anomalous threshold (no α-positive solution).

Naturally, this question can also be asked for lightest particle scattering mm → mm, where

there are no extended cuts and no anomalous thresholds are seen (as ascertained by LPMA).

This suggests that:

Anomalous thresholds can only arise from extended branch cuts.

We define an extended branch cut as a branch cut with a branch point below the physical

scattering region. This includes extended unitarity cuts, i.e. normal thresholds below the

physical region and, possibly, other already present anomalous thresholds.25

It would be interesting to test this hypothesis beyond the examples in perturbation theory

considered here. Note that this hypothesis implies that, given a fixed particle spectrum there

is only a finite number of extended unitarity cuts which need to be analyzed. Naturally, the

higher the number of extended cuts the harder it is, in general, to find an exact solution to

extended unitarity, which our method relies on (see appendix 4.3).

In summary, we just argued here (see also appendix C.4) that for a theory with two particles m

and M , where m isZ2 odd, there is one extended cut at s = 4m2 from which only the anomalous

threshold at s = a studied here should arise for M >p
2m. In particular, expressions (4.4.1)

and (4.4.5) should suffice to go beyond M >p
2m in the d = 2 numerical S-matrix bootstrap of

[135].26 Let us then close with a challenge for the reader: Is there a 2 → 2 graph in this theory

23We still have to consider crossing symmetry. Namely, the process mM → mM , which is related to mm → M M .
If m is Z2 odd, then mM → mM cannot exchange mm, hence no branch point at s = 4m2 is present. A similar
analysis holds for M M → M M . Here, however, there is the possibility that µ2 is itself an anomalous threshold,
i.e. coming from the crossed channel. In appendix C.4 we argue that this does not lead to further anomalous
thresholds in the direct channel in d = 2 if m is Z2 odd.

24I thank H. Hannesdottir and S. Mizera for pointing out this diagram.
25I thank A. Hebbar for raising this possibility.
26One still has to adapt the non-linear dependence of the residues for semi-definite optimization. It is also

unclear how these poles would affect the bounds as they would overlap with cuts (coming from the crossed
channel) and could get “screened" (see appendix E of [135]). I thank A. Homrich and P. Vieira for discussions on
this.
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Chapter 4. Nonperturbative Anomalous Thresholds

which cannot be drawn in the form of Figs. 4.8 and 4.9 and that has an anomalous threshold?

We dare to say no, but would happily be wrong.
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5 Injecting the UV into the Bootstrap:
Ising Field Theory

Besides the S-matrix bootstrap, which has seen a revival in recent years, other modern tech-

niques include Monte-Carlo simulations of lattice discretizations, Hamiltonian truncation

and tensor networks. The latter techniques typically involve an UV cutoff whose extrapolation

to infinity is a non-trivial computational problem, whereas the S-matrix bootstrap is directly

set up in the continuum, as required by Poincaré invariance.

The primal approach to the S-matrix bootstrap constructs an explicitly analytic and crossing-

symmetric ansatz for the amplitude and then constrains its parameters by imposing unitarity

on the physical scattering region [17, 195, 1, 18, 19, 23, 135, 196, 197, 198, 199, 200, 201, 202,

203, 204, 205]. In practice, the infinite-dimensional space of amplitudes is truncated to finite

dimension N (the number of parameters in the ansatz). By maximizing a given observable (e.g.

the residue of a pole) one directly explores the space of amplitudes from the “inside" with the

true boundary of the allowed space for the observable (presumably) reached asymptotically,

i.e. as N is taken to infinity. This means that the primal approach is incapable of producing

rigorous bounds at finite N .

Conversely, the dual approach, as the name suggests, approaches the boundary of the allowed

space from the “outside" by excluding disallowed regions of parameter-space using a finite

number N of parameters. Therefore, for each N , there is a rigorous bound on the observable.

As N is increased the excluded region becomes larger, and the bound becomes tighter. Dual

formulations of the S-matrix bootstrap were first developed in 70s [206, 207, 208, 209, 210]

and recently revived in d = 2 [20, 211, 212, 213] and in d = 4 [117, 120]. Reference [120], in

particular, showed that the dual approach can be formulated as a linear optimization problem

amenable to implementation in SDPB [214, 215].

The S-matrix, which dictates how asymptotic one-particle states scatter, is an IR observable.

Nonetheless, if the S-matrix originates from a UV complete QFT,1 knowledge of the UV confor-

1A UV complete QFT can be defined non-perturbatively as a CFT in the UV deformed by relevant deformations
that trigger a renormalization group (RG) flow to the IR. The CFT in the IR is assumed to be empty, such that the
QFT has a mass gap and the S-matrix is a well-defined object.
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Chapter 5. Injecting the UV into the Bootstrap: Ising Field Theory

mal field theory (CFT) from which the QFT flows from should further constrain the S-matrix.

This was the idea behind [216] which, besides scattering states, considered states given by the

action of local operators, such as the stress-energy tensor, on the vacuum. Concretely, in d = 2,

UV information can be included via the c-sum rule [217] which relates the spectral density of

the trace of the stress-energy tensor to cUV , the central charge of the UV CFT,

cUV = 12π
∫ ∞

m2 >0

ρ(s)

s2 d s . (5.0.1)

Here, we make the next logical step in this story. We merge these ideas together to develop a

dual bootstrap approach in d = 2 that encompasses S-matrix elements, form factors and spec-

tral densities. Our method, which is described in section 5.1, produces a linear optimization

problem that can be tackled with SDPB and which, moreover, converges appreciably faster

than the primal approach of [216].

With our method we can address the following question: Given a gapped unitary QFT with

no bound states how small can the central charge cUV of the UV CFT be? Our method outputs

c(mi n)
UV = 1/2, the central charge of the Ising CFT, which is the smallest among the unitary

conformal minimal models [218]. Indeed, our optimal S-matrix is given by S(s) =−1 corre-

sponding to a free massive Majorana fermion in the IR, which can originate from the pure

thermal deformation of the Ising CFT.

We can refine the previous question by fixing a parameter Λ in the IR. For example: the

amplitude at the crossing-symmetric point, T (s = 2m2) =−Λ, which plays the role of a ‘quartic

coupling’. In this case we find a minimal cUV for a givenΛ. The result is plotted below in fig.

5.1.

In section 5.2.1, we further refine the previous studies. Following [219], we parameterize the

theory space by (Λ,Λ(2)), whereΛ(2) is the second derivative of the amplitude at the crossing

symmetric point. As in the case above, we assume no cubic coupling, i.e. no poles on the

physical sheet for the amplitude nor for the form factor. In this way, we target a class of Z2

symmetric theories, in which φ4 theory is included. Using the numerical dual approach,

we rigorously bound cUV across the allowed range of couplings (Λ,Λ(2)) generating the 3-

dimensional plots in fig. 5.4. Remarkably, we also found analytical expressions (described in

appendix 5.3) that match the extremal solutions (see e.g. figs. 5.9 to 5.11 for a comparison).

In section 5.2.2 we consider the Ising Field Theory (IFT) which can be thought of as the

QFT describing the d = 2 Ising model near the critical point. Above the critical temperature

T > Tc and for zero magnetic field h = 0 IFT reduces to the theory of a free massive Majorana

fermion. For h > 0 the theory becomes fully interacting making it an appropriate playground

for non-perturbative methods.2

2The parameter space of IFT is very rich (see e.g. [162] for a short review). For T > Tc and as h increases the
number of stable particles goes from 1 to 3 [159, 220, 221], and then jumps to 8 (5 resonances become stable) at
the h →∞ integrable point where IFT becomes equivalent to the E8 affine Toda theory [159, 160, 161]. For T < Tc
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Figure 5.1: Rigorous lower bound on the UV central charge in Z2 symmetric QFTs with a single stable
particle, which is Z2 odd. The parameter Λ is defined as (minus) the value of the amplitude at the
crossing-symmetric point s = 2m2. The lower bound on cUV goes from c(mi n)

UV = 1 atΛ= 0, where the

S-matrix, form factor and spectral density become that of a free massive boson, to c(mi n)
UV = 1/2 at the

other endΛ= 8, where the matrix elements are that of a free massive fermion.

We have at our disposal several pieces of information that we can use to target IFT:

1. The UV central charge of IFT has the value cUV = 1/2 given that IFT is, by definition, a

deformation of the Ising CFT. Specifically, both relevant deformations are turned on,

namely the operators conjugate to the temperature (T −Tc ) and the magnetic field h.

2. At sufficiently low h (but still outside the perturbative regime) there is only one stable

particle in the spectrum [220]. This particle self-interacts via a cubic interaction, mean-

ing that both S-matrix and the two-particle form factor contain a pole at the location of

the particle’s own mass.

3. As shown in [220, 221], the S-matrix has a real zero which slides towards the two-particle

threshold as h is increased.3 The position of the zero provides a non-perturbative IR

handle on the value of the magnetic field h.

We first implement points 2. and 3. and minimize the central charge cUV over a range of

magnetic fields h (parameterized by the position of the zero). We find that the lower bound

on cUV drops below cUV = 1/2 for non-zero h (see fig. 5.12). We then fix cUV = 1/2 and find

the allowed range of cubic coupling and one-particle form factors for a range of values of the

magnetic field. We carve a 3-dimensional ‘pyramid’ in these parameters inside which IFT

the spectrum of IFT consists of a tower of “mesons" [222]. Further interesting phenomena occur when h is taken
to be complex, namely the existence of Lee-Yang edge singularities [223].

3If h is increased past a certain value the zero makes its way across the two-particle branch cut and the associated
pole pops up on the physical sheet, as the second lightest particle becomes stable. See e.g. [221].
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Chapter 5. Injecting the UV into the Bootstrap: Ising Field Theory

must lie (see fig. 5.17). We conclude with section 5.4 where we discuss our results in further

detail and point out some potential future directions.

Let us now briefly outline the remaining appendices. In appendix D.1 we present a further

application of our dual method targeting the Sine-Gordon model where we noticeably improve

on the primal result of [216]. Technical and numerical details regarding the dual optimization

problems are collected in appendices D.2 and D.3. Appendix D.4 contains the perturbative

computations of the one particle form factor and cubic coupling used to place IFT within the

dual bounds (fig. 5.17). Finally, appendices D.5 and D.6 respectively review the c-sum rule and

the normalization of the 2 particle form factor of the stress energy tensor.

5.1 Dual S-matrix and form factor Bootstrap

In this section we develop our setup by recalling some definitions and results from standard

massive QFT. We will be complete but concise, more details can be found in [216, 224].

The first ingredient in our setup is the 2 to 2 scattering amplitude defined by

out
〈

p1p2
∣∣k1k2

〉
i n ≡ (2π)2δ(2)(k1 +k2 −p1 −p2)N2S(s), N2 ≡ 2

p
s
√

s −4m2, (5.1.1)

with s =−(p1 +p2)2. We also define T (s), the interacting part of the scattering amplitude, by

S(s) ≡ 1+ iN −1
2 T (s). (5.1.2)

We are also interested in some scalar local operator O (x), which leads us to consider its n

particles form factors

FO
n (p1, p2, .., pn) ≡out

〈
p1p2...pn

∣∣O (0) |0〉 , (5.1.3)

and its spectral density

2πρO (s) ≡
∫

d 2xe−i px 〈0|O†(x)O (0) |0〉 , (5.1.4)

where we used Lorentz invariance to write ρO = ρO (s =−p2).

We focus on massive QFTs whose Hilbert space H is spanned by asymptotic multi particle

states
∣∣p1, ..., pn

〉
with completeness relation

1H =
∞∑

n=0

1

n!

∫
d p1

(2π)2Ep1

...
d pn

(2π)2Epn

∣∣p1...pn
〉

i n i n
〈

p1...pn
∣∣≡∑∫ ∣∣p1...pn

〉
i n i n

〈
p1...pn

∣∣ ,

(5.1.5)

where Ep ≡
√

p2 +m2 and p is the spatial part of the 2-momentum p. The complete set of

states can be inserted in the two point function (5.1.4) to get the relation between the spectral
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density and the form factors

2πρO (s) =∑∫
(2π)2δ(2)(p −pn)|FO

n |2, (5.1.6)

where pn ≡ p1 + ...+pn is the total momentum of the form factor. Note that the first contribu-

tion is a delta function at s = m2 and the second contribution starts at s = 4m2. Explicitly

ρO (s) = |FO
1 |2δ(s −m2)+ |FO

2 (s)|2
2πN2

θ(s −4m2)+ ... (5.1.7)

In this work we are interested in the trace of the stress energy tensor, so we introduce the

simplified notation

F (s) ≡FΘ
2 (s), ρ(s) ≡ ρΘ(s), (5.1.8)

where the s dependence of the 2 particle form factor comes from Lorentz invariance. The

normalization of the stress energy tensor acting on one particle states implies the following

normalization of the 2 particle form factor (see appendix D.6)

F (s = 0) =−2m2. (5.1.9)

The value of the UV central charge can be computed from the spectral density ofΘ as [216] (in

alternative, see appendix D.5)

cUV = 12π

(
m−4|FΘ

1 |2 +
∫ ∞

4m2
d s
ρ(s)

s2

)
. (5.1.10)

Let us now turn to the analytic structure of these functions depicted on Figure 5.2. Assuming

the existence of only one massive particle of mass m, the scattering amplitude is analytic

except for a pole at s = m2 and a cut starting from the two particles production threshold

s = 4m2, and also crossing symmetric. This can be written through the dispersion relation4

T (s)−T (2m2) =−g 2
(

1

s −m2 + 1

3m2 − s
− 2

m2

)
+

∫ ∞

4m2

d z

π
ImT (z)

(
1

z − s
+ 1

z + s −4m2 − 2

z −2m2

)
.

(5.1.11)

The 2-particle form factor F (s) has a similar analytic structure except that it does not satisfy

4In writing this dispersion relation, we assumed that lim|s|→∞ T (s)
s = 0. Our dual optimization problem will

however not depend on this assumption, i.e. the behavior of the amplitude at infinity is unconstrained. See
equation (5.1.30) and footnote 9.
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crossing. The dispersion relation reads5

F (s)−F (0) =−gF

(
1

s −m2 + 1

m2

)
+

∫ ∞

4m2

d z

π
ImF (z)

(
1

z − s
− 1

z

)
. (5.1.12)

As shown in [216], the form factor residue gF is given by

gF = gFΘ
1 , (5.1.13)

where g is the (square root of the) residue of the scattering amplitude.

-2 0 2 4 6 -2 0 2 4 6

Figure 5.2: Complex planes of the two particles form factor FO
2 (s) (right) and the scattering amplitude

S(s) (left) in the presence of an asymptotic particle of mass m = 1. The red crosses symbolize the
presence of a pole and the red lines represent the branch cuts.

For future convenience, we define the analyticity and crossing constraints for the S-Matrix

and form factor, denoted respectively by AT (s) = 0 and AF (s) = 0, with

AT (s) ≡T (s)−T (2m2)+ g 2
(

1

s −m2 + 1

3m2 − s
− 2

m2

)
−

∫ ∞

4m2

d z

π
ImT (z)

(
1

z − s
+ 1

z + s −4m2 − 2

z −2m2

)
,

AF (s) ≡F (s)−F (0)+ gF

(
1

s −m2 + 1

m2

)
−

∫ ∞

4m2

d z

π
ImF (z)

(
1

z − s
− 1

z

)
.

(5.1.14)

Following [216], the unitarity constraints in presence of local operators such asΘ(x) can be

implemented by defining 3 states

|Ψ1〉 ≡
∣∣p1, p2

〉
i n ,

|Ψ2〉 ≡
∣∣p1, p2

〉
out ,

|Ψ3〉 ≡ m−1
∫

d 2xe i (p1+p2)xΘ(x) |0〉 .

(5.1.15)

We now define a 3×3 matrix by taking inner products between those states and extracting an

5We have used the fact that both functions are real analytic functions, i.e. T ∗(s) =T (s∗) and F∗(s) =F (s∗) ,
which can be traced back to LSZ and CPT invariance [225].
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overall delta function, which reads

Bi j × (2π)2δ(2)(p1 +p2 −p ′
1 −p ′

2) ≡ 〈
Ψ′

i

∣∣Ψ j
〉

. (5.1.16)

Using equations (5.1.1), (5.1.3), (5.1.4) and the definition of B as inner products between states,

the unitarity of the theory imposes the semi positive definite constraint6

B(s) ≡

 1 S∗ m−1ωF∗

S 1 m−1ωF

m−1ωF m−1ωF∗ 2πm−2ρ

≽ 0, ω≡N −1/2
2 . (5.1.17)

The problem we want to solve is the minimization of some parameter, say the central charge

cUV , under the bootstrap constraints which can be implemented via Lagrange multipliers.

More precisely, we write

cUV ≥ inf
T ,F ,ρ

sup
w,Λ≽0

L ≥ sup
w,Λ≽0

inf
T ,F ,ρ

L (5.1.18)

L = cUV (FΘ
1 ,ρ)+

∫ ∞

4m2
d s [wT (s)AT (s)+wF (s)AF (s)−TrΛ(s)B(s)]+ ... (5.1.19)

where AT (s) and AF (s) are the analyticity and crossing constraints, wT and wF are Lagrange

multipliers,Λ is a hermitian and positive semidefinite 3×3 matrix of Lagrange multipliers and

"..." stands for any other constraint we would like to implement (e.g. fixing some parameter).

The positive semidefiniteness of Λ is the direct generalisation of positiveness in the pure S-

Matrix (non-linear) dual problem from [211]. Here we are searching for the lower bound

instead of the upper bound, which accounts for the sign difference in the trace term.

We parametrizeΛ as

Λ≡

λ1 λ4 λ6

λ∗
4 λ2 λ5

λ∗
6 λ∗

5 λ3

 . (5.1.20)

With the dual approach, we will first extremize (5.1.19) over the primal variables T ,F and

ρ analytically to get the dual Lagrangian, and then over the dual variables wT , wF and λi ,

i = 1, ...,8, numerically. The problem being linear in the dual variables can be tackled down

with SDPB [214, 215].

Having the solution for the optimal dual variables we can get optimal primal variables if the

duality gap closes, which is guaranteed because the primal problem is convex.7 Therefore, at

6Here we used the relation i n
〈

p1, p2
∣∣Θ(0) |0〉 = 〈0|Θ†(0)

∣∣p1, p2
〉

out =F∗(s) that comes from CPT invariance
[216].

7Since the primal problem can be implemented in SDPB [214, 215] both the objective and the constraints must
be convex. To ensure strong duality, i.e. that the duality gap closes, we must further require that there exists an
interior point, i.e. a non-optimal primal solution. This is known as Slater’s condition [226] (see appendix A of [211]
for a proof in the S-matrix language). Slater’s condition can be shown to be satisfied by explicitly constructing a
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the optimum we have TrΛ(s)B(s) = 0 and, sinceΛ and B are both semipositive definite, the

product must vanish by itself8

Λ(s)B(s) = 0. (5.1.22)

Solving this equation we get constraints between dual variables

λ5 =λ∗
6 , λ1 =λ2, 2λ1|λ6|2 −λ3λ

2
1 −2Re(λ∗

4λ
2
6)+λ3|λ4|2 = 0. (5.1.23)

We would like to stay with entries that are linear in the dual variables in the matrix Λ, and

therefore we do not use the last constraint to eliminate one of the variables.

Since the duality gap closes we can find the optimal primal solution:

S = λ∗
6λ1 −λ6λ

∗
4

λ6λ1 −λ∗
6λ4

, ωF = |λ4|2 −λ2
1

λ6λ1 −λ∗
6λ4

, 2πρ = (|λ4|2 −λ2
1)2

|λ6λ1 −λ∗
6λ4|2

. (5.1.24)

Note that we automatically saturate the unitarity bounds

|S|2 −1 = 0, 2πρ−|ωF |2 = 0, 2πρ(1−|S|2)−2|ωF |2 +2Re(ω2F 2S∗) = 0. (5.1.25)

Watson’s equation F/F∗ = S follows from using the first equation on the last equation.

5.1.1 Example: Minimization of cUV for fixed quartic couplingΛ

We will now present an explicit and detailed example of a dual linear bootstrap formulation.

We want to find the lower bound on the central charge cUV when there is only one particle

that is Z2 odd and the scattering amplitude obeys T (2) =−Λ. For simplicity we work in units

where m = 1. The Lagrangian reads

L = 12π
∫ ∞

4
d s
ρ(s)

s2 +
∫ ∞

4
d swT (s)

[
T (s)−T (2)−

∫ ∞

4

d z

π
ImT (z)

(
1

z − s
+ 1

z + s −4
− 2

z −2

)]
+

∫ ∞

4
d swF (s)

[
F (s)−F (0)−

∫ ∞

4

d z

π
ImF

(
1

z − s
− 1

z

)]
−

∫ ∞

4
d s TrΛ(s) ·B(s).

(5.1.26)

non-optimal primal solution, as it usually happens in the primal bootstrap at finite N [216]. Physically, moreover,
the existence of such an interior point is guaranteed since we can always have inelastic S-matrices and form factors
which do not saturate unitarity.

8Indeed we have

TrΛ ·B = Tr
p
Λ

†p
Λ ·

p
B
p

B
† = Tr(

p
Λ
p

B)†(
p
Λ
p

B) ≡ ∥
p
Λ
p

B∥F , (5.1.21)

where ∥·∥F is the Frobenius norm. It follows that TrΛ ·B = 0 ⇒ΛB = 0.
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The subtractions are chosen so that we can easily implement the constraint T (2) =−Λ and

the normalization F (0) =−2.

Following [211] we define the dual scattering function

WT (s) ≡
∫ ∞

4

d z

π
wT (z)

(
1

z − s
− 1

z + s −4
+ 2

s −2

)
,

ImWT (s) = wT (s), ReWT (s) =−P
∫ ∞

4

d z

π
wT (z)

(
1

s − z
+ 1

s − (4− z)
− 2

s −2

)
,

(5.1.27)

and the dual form factor function

WF (s) ≡
∫ ∞

4

d z

π
wF (z)

(
1

z − s
+ 1

s

)
. (5.1.28)

The analyticity constraints can then be considerably simplified. We get9

L = 12π
∫ ∞

4
d s
ρ(s)

s2 +
∫ ∞

4
d s [Im(T WT )+ Im(FWF )+2ImWF +Λ ImWT −TrΛ ·B ]

(5.1.30)

We are now ready to eliminate the primal variables. Varying with respect to F ,T and ρ we get

λ4 =−N2

2
WT , λ6 =−i

√
N2

4
WF , λ3 = 6

s2 . (5.1.31)

The dual Lagrangian then reads

L =
∫ ∞

4
d s (−2λ1 +2ImWF −N2 ReWT +Λ ImWT ) . (5.1.32)

All the primal variables are eliminated and we are ready to extremize over dual variables. We

can finally formulate the dual problem that can be implemented in SDPB:

9Eq. (5.1.30) can be derived directly without introducing wT or wF . The analyticity constraint for T (s), say,
can be written as

∮
WT (s)T (s)d s = 0 where WT (s) is an analytic function, for an arbitrary closed cycle enclosing

no singularity. Now, we blow up this contour and, seeing WT (s) as infinitely many Lagrange multipliers (one
for each s), we are free to choose WT (s) so that the contour only picks up the contributions of T (s) we wish to
constrain, which is the unitarity cut s ≥ 4 and the value at T (2) =−Λ. Therefore, we let WT have a cut for s ≥ 4, a
pole at s = 2, and sufficiently fast decay at infinity (faster than T (s)). Blowing up the contour will then lead to

0 =
∮

T WT d s = 4i
∫ ∞

4
Im(T WT )d s −2πi

[
Ress=2WT

]
T (2). (5.1.29)

Note that the residue on the pole is fixed by blowing up 0 = ∮
WT d s = −2πi Ress=2WT + 4i

∫ ∞
4 ImWT d s.

Including crossing symmetry, repeating the argument for the form factor will lead us to eq. (5.1.30).
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Dual Problem (cUV minimization)

Maximize
{λ1,WT ,WF }

[∫ ∞

4
d s (−2λ1 +2ImWF −N2 ReWT +Λ ImWT )

]
(5.1.33)

Subject to 
λ1

N2
2 WT i

p
N2

4 WF

N2
2 W ∗

T
λ1 −i

p
N2

4 W ∗
F

−i
p

N2

4 W ∗
F

i
p

N2

4 WF
6
s2

≽ 0, ∀s ∈ [4,∞). (5.1.34)

The result is given in figure 5.1.

5.2 Numerical bootstrap

5.2.1 Z2 symmetric theories

A first application of our dual formalism is to explore the allowed region in the subspace

spanned by (Λ,Λ(2),cUV ) where cUV is the UV central charge and

Λ≡−T (2), Λ(2) ≡ lim
s→2

∂2

∂s2 T (s). (5.2.1)

Before considering the central charge we look at the space spanned by Λ and Λ(2), which is

commonly called the "leaf", that was already explored using a primal approach in [219] and

also analytically in [227]. Exploring the same region with the dual formalism we get Figure

5.3 on which we also plotted the analytical bounds derived in the appendix 5.3 and given by

(5.3.24) that we repeat here for convenience

Λ(2)
− (Λ) = 1

32
Λ2, Λ(2)

+ (Λ) = 1

32
(16Λ−Λ2), Λ ∈ [0,8], (5.2.2)

whereΛ(2)
+ andΛ(2)− denote respectively the analytical upper and lower bounds forΛ(2) for a

givenΛ. We reproduce these bounds numerically with our dual approach purely applied to

the S-matrix sector (see figure 5.3 below).

We now minimize the UV central charge cUV for a given value of (Λ,Λ(2)) , which we do over the

allowed region. The minimal cUV is represented in color in fig. 5.3 over the allowed parameter

space for (Λ,Λ(2)) and also in 3D in fig. 5.4 below.

On the edge corresponding to the lower bound Λ(2)− , the numerical bounds on the central
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5.2 Numerical bootstrap

Figure 5.3: Allowed region in the (Λ,Λ(2)) plane. The boundary is obtained from the dual bootstrap
problem and matches perfectly the analytical bounds, with the color gradient corresponing to the
value of the minimal central charge discussed below. Using the non linear dual approach given by
eq.(D.2.11) to (D.2.15), the numerics for the points on the boundary were simple enough to be done on
Mathematica with only N = 2 parameters in the Ansatz.

Figure 5.4: Allowed region in the (Λ,Λ(2),cUV ) space from different angles. We used N = 50. We
find perfect agreement with the analytical bootstrap result which assumes that the optimal S-matrix

minimizesΛ(4) = lims→2
∂4

∂s4 T (s) (see appendix 5.3).

charge c(mi n)
UV (Λ,Λ(2)) at the tips are

c(mi n)
UV (0,0) = 0.99999..., c(mi n)

UV (8,2) = 0.49985.., (5.2.3)

corresponding to the central charges of the free boson and free fermion that are respectively

1 and 1/2. We now check that we also recover the scattering amplitudes, form factors and

spectral densities of these theories. The analytical results for the free Majorana fermion can

be found in [228] and those for the free boson can be found in [216]. We repeat them here for
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Chapter 5. Injecting the UV into the Bootstrap: Ising Field Theory

convenience, they are

S(s) = 1, F (s) =−2, ρ(s) = 1

π
p

s
p

s −4
, (free boson),

S(s) =−1, F (s) =−p4− s, ρ(s) =
p

s −4

4π
p

s
, (free fermion).

(5.2.4)

The numerical results for these quantities at the tips of the leaf are plotted on Figure 5.5 (at

Λ= 0) and Figure 5.6 (atΛ= 8). We observe a nice convergence of our numerics toward the

analytical results.
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Figure 5.5: Scattering amplitude S(s) (on the left), form factor F (s) (in the middle) and spectral density
ρ(s) (on the right) at the free boson point (Λ= 0,Λ(2) = 0)). The blue lines are the real parts, the orange
lines are the imaginary parts, and the dashed red line is the analytical solution for the free boson. We
used N = 50.
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Figure 5.6: Scattering amplitude S(s) (on the left), form factor F (s) (in the middle) and spectral density
ρ(s) (on the right) at the free fermion point (Λ= 8,Λ(2) = 2)). The blue lines are the real parts, the orange
lines are the imaginary parts, and the dashed red line is the analytical solution for the free fermion. We
used N = 25.

It is interesting to compute the allowed region with a primal approach and to compare with

the dual bounds. We do it10 in Fig. 5.7, and various sections of this 3D plot are shown on Figs.

5.8. It is reassuring to see that the primal lower bound is always greater than the dual, and that

the two shapes seem to converge toward each other. We believe that the reason for the gap is

the slow convergence of the primal formalism, which we also observe on Figure 5.12, where

the dual reaches the analytical bound.

We now compare our numerical results with the analytical results from the appendix 5.3 where

we assume that cUV minimization for fixed (Λ,Λ(2)) minimizesΛ(4) = lims→2
∂4

∂s4 T (s). For the

10We use the numerical primal setup from [216] and the ansatz for the scattering amplitude given by eq. (4.4)
and (4.5) in [219].
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5.2 Numerical bootstrap

Figure 5.7: Minimal central charge in the (Λ,Λ(2),cUV ) space computed with the dual approach (in
orange) and the primal (in blue). We used N = 50.
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Figure 5.8: Minimal central charge in the (Λ,cUV ) space (left) and in the (Λ(2),cUV ) space (right)
computed with the dual approach (in orange) and the primal (in blue). The value ofΛ(2) is defined by

Λ(2) = 1
5
Λ2

32 + 1
5Λ (left) and on the one ofΛ byΛ= 3.2 (right). We used N = 50.

scattering amplitude on the edges the analytical result is given by (5.3.6) and (5.3.22). The form

factor on the upper edge is given by (5.3.34) and (5.3.35), and on the lower edge by (5.3.27).

Figure 5.9 shows a point on the upper edge of the leaf, Figure 5.10 shows one on the lower

edge and Figure 5.11 shows a point in the middle. The agreement is perfect.

5.2.2 Ising Field Theory

Our second application is to target the Ising Field Theory. We use the fact that the S-Matrix

has a zero whose position varies with the magnetic field

S(m2(1−x)) = 0, x = x(η), η= m

h8/15
. (5.2.5)

The limit x → 0 corresponds to h → 0 and then should give back the free massive Majorana
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Figure 5.9: Comparison of the real part (in blue) and imaginary part (in orange) of the S-Matrix (left)
and the form factor (right) between the numerical (plain line) and analytical (black dashed line) results,
on the upper edge of the leaf with Λ = 2.4. We used N = 50. The numerical and analytical central
charges are c(num,mi n)

UV = 0.514419..., c(an,mi n)
UV = 0.514451...
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Figure 5.10: Comparison of the real part (in blue) and imaginary part (in orange) of the S-Matrix (left)
and the form factor (right) between the numerical (plain line) and analytical (black dashed line) results,
on the lower edge of the leaf with Λ = 2.4. We used N = 50. The numerical and analytical central
charges are c(num,mi n)

UV = 0.993662..., c(an,mi n)
UV = 0.993812...

fermion. When x → 1 we are in the region just before the second lightest particle emerges

from the two particle cut.

Minimization of cUV for fixed magnetic field

The first exercise is to minimize the UV central charge for different values of x and the result is

shown on Figure 5.12. We performed this analysis with both primal11 and dual formulations

and for different N to compare them. We also plotted the analytical central charge given by

(5.3.53) which assumes that optimal S-matrix maximizes the cubic coupling g (and has the

zero (5.2.5)).

As a simple check, when x → 0 the zero cancels the pole, so we are back to asking for the

11We use the primal numerical implementation described in [216]
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Figure 5.11: Comparison of the real part (in blue) and imaginary part (in orange) of the S-Matrix (left)
and the form factor (right) between the numerical (plain line) and analytical (dashed line) results, in
the interior of the leaf with Λ= 4.56 and Λ(2) = 0.85. We used N = 50. The numerical and analytical
central charges are c(num,mi n)

UV = 0.526354..., c(an,mi n)
UV = 0.526591....

minimal cUV for an S-matrix with no poles. With the dual for N = 30 we get

x = 0.01, mincUV = 0.498814..., (5.2.6)

which numerically approaches the result for the free Majorana fermion where cUV = 1/2.

We now compare primal and dual methods in more detail. First, it is clear that the duality

gap closes as N →∞. We also note the difference in the rate of convergence between the two

formalisms. For the primal we parametrize the three functions T ,F and ρ while for the dual

we parametrize λ1,WT and WF . Therefore the number of numerical parameters scales like

3N for both problems and it makes sense to compare them for a given N . Hence we claim that

the rate of convergence for the dual formalism is much better than the one for the primal.

We can now look at the observables. The scattering amplitude, the two particles form factor

and the spectral density are plotted respectively on Figures 5.13,5.14, and 5.15.

We also observe perfect agreement between the dual numerical results and the analytical

results derived in appendix 5.3. They are given by (5.3.40), (5.3.50) and (5.3.53).

There is an interesting observation for the spectral density when x → 1. We know that x = 1 is

exactly the point where the pole associated to the second lightest particle enters the first sheet

and exchanges place with the zero. We also know that the spectral density has delta functions

at the positions of the masses of the stable asymptotic particle states. On the figure we see

a peak forming s = 4m2, which is exactly where the zero and the pole exchange their places.

This is illustrated more precisely in Figure 5.16, where we see the position of the peak moving

toward 4m2.

Note however that the central charge of this theory is cUV ≈ 0.34 and therefore it can not be

the IFT. Nevertheless it is still interesting to see that those two theories share the presence
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Figure 5.12: Lower bound on the UV central charge as function of x, the position of the zero of the
scattering amplitude S(m2(1−x)) = 0. The blue region is allowed. For x = 0.01 and N = 30 with the dual
we obtained c(mi n)

UV = 0.498814.... The black line corresponds to the analytical result (5.3.53) assuming
that the S-matrix has maximal cubic coupling.
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Figure 5.13: Scattering amplitude S(s) for different values of x when there is a zero at S(m2(1−x)). The
imaginary part (in orange) and the real part (in blue) tend toward the free fermion (in dashed gray)
when x → 0. The dashed black line is the analytical result given by (5.3.40). We used N =50.
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Figure 5.14: Two particles form factor FΘ
2 (s) for different values of x when there is a zero at S(m2(1−x)).

The imaginary part (in orange) and the real part (in blue) tend toward the free fermion (in dashed gray)
when x → 0. The dashed black line is the analytical result given by (5.3.50) and (5.3.53). We used N =50.

of the zero in the S-Matrix and also seem to share the resonance associated to an unstable

particle when x → 1.
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Figure 5.15: Spectral density ρΘ(s) for different values of x when there is a zero at S(m2(1− x)). The
bootstrap result (in blue) tends toward the free fermion (in dashed gray) when x → 0. We also observe
the delta function appearing at s = 4m2 when x → 1 which corresponds to the second lightest particle
that will become stable. The dashed black line is the analytical result given by (5.3.50) and (5.3.53) and
the elasticity relation (5.3.1). We used N =50.
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Figure 5.16: Spectral density ρΘ(s) for different values of x when there is a zero at S(m2(1−x)). We used
N =50.

Carving out IFT parameter space: cUV = 1/2

We now target the IFT by fixing the central charge to cUV = 1/2 and explore the allowed region

in the (gFΘ
1 , g 2, x) 3-dimensional space, where we recall

T (s) =− g 2

s −m2 + ..., F (s) =− FΘ
1 g

s −m2 + ... (5.2.7)

We compute the bounds for g 2 and gFΘ
1 for x ∈ (0,1), which corresponds to the range in

magnetic field with only one stable particle. The result is the pyramid shown in Figure 5.17

inside which IFT must lie.

We noticed that the lower edge of the pyramid, corresponding to the lowest bounds on g 2 for

different x, is slightly in-curved toward the negative gFΘ
1 . The effect is tiny and shown on

Figure 5.18.

The slice at x = 1/10 of the pyramid is shown in Figure 5.19, where we also place IFT using
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Figure 5.17: Allowed region (in green) in the (gFΘ
1 , x, g 2) space. The blue line is the perturbative

trajectory for g 2(x) and g (x)FΘ
1 (x) in IFT (computed in appendix D.4), the black lines are the analytical

result (5.3.54) and the dashed red line is the minimal cubic coupling discussed in Figure 5.18.

form factor perturbation theory: the cubic coupling g was computed in [229] and FΘ
1 is an

original computation (both calculations are in appendix D.4).

The figure is generated by first computing the bounds on gFΘ
1 for which we got

gFΘ,(mi n)
1 =−0.0110843..., gFΘ,(max)

1 = 0.0047159..., (5.2.8)

and then computing the bounds on g 2 with fixed values of gFΘ
1 .

Note that the perturbative result for g 2 saturates the higher bound for the cubic coupling

allowed by the bootstrap. The perturbative result for FΘ
1 however does not saturate the bounds

but still is inside the allowed region. At the points where the red and orange lines meet we
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5.2 Numerical bootstrap

Figure 5.18: Lower edge of the pyramid corresponding to the lowest bounds on g 2. This is computed
with N = 70.
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Figure 5.19: Allowed region in the (gFΘ
1 , g 2) plane when the central charge is cUV = 1/2 and there is a

zero in the S-Matrix at x = 1/10. The red and orange dashed line are the values of FΘ
1 and g 2 computed

with perturbation theory. This is computed with N = 70. The black dots are the analytical solutions
(5.3.54).

can compare the optimal scattering amplitude to the one known in perturbation theory from

[229]. This is shown in the figure below. We observe that we match perfectly with the elastic

contribution of the perturbative S-Matrix. This is expected since our bootstrap setup saturates

unitary at all energies and does not account for theories with particle production. Therefore

we are not surprised that inelastic contributions are not obtained.

In Figure 5.20 we perform a convergence study for the upper corners of the triangle with
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respect to the analytical roots given by (5.3.54). The corners of the allowed region coming

from the dual bootstrap approach the analytical roots
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Figure 5.20: Convergence study (on a logarithmic scale) for the upper corners of the triangle approach-
ing the analytical roots g (±)

F .

Since the perturbative result for FΘ
1 does not saturate the bootstrap bounds we can investigate

what happens when the position of the zero (or equivalently the magnetic field) is changed.

We plot the perturbative result and the bootstrap bounds for different magnetic fields in

Figure 5.22. We observe that both perturbation theory and bootstrap bounds scale with x or,

equivalently, with h2, but at a different rate,

g (±)
F =

(
1

2
p

3
− 1

π
± 1p

3π
∓ 1

9

)
x ≈ (−0.1023,+0.0430) x ≈ (−11.7601,+4.9466)h2. (5.2.9)

whereas

g (P.T )
F =− 1

3
p

2

(
15

8
+ 1

2π
−p

3

)
x ≈−0.0712x ≈−8.1857h2. (5.2.10)

These numbers were computed in appendices 5.3 and D.4, respectively.

In Figure 5.23 we show the bounds on g 2 and gFΘ
1 in the strongly interacting regime x = 0.7.

The upper boundary is again saturated by the analytical results (5.3.54) and (5.3.43). In

particular the roots of eq.(5.3.54) correspond to the corners.
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Figure 5.21: Numerical scattering amplitude and form factor on the upper edge of the triangle (in blue)
compared to the analytical result (in dashed). We took the point gFΘ

1 = 0 for reference but the data
looks identical on the whole upper edge. We used N = 50.

0.002 0.004 0.006 0.008 0.010

-0.0010

-0.0005

0.0005

0.002 0.004 0.006 0.008 0.010

-0.10

-0.05

0.05

Figure 5.22: Evolution of the upper boundary of the allowed region (in blue) via the numerical bootstrap
compared to the evolution of the perturbative result (in orange) in the perturbative regime for small
values of x. We observe that the bootstrap bounds and perturbation theory both scale linearly with x,
or quadratically with h. We used N = 70.

5.3 Analytical bootstrap

There are three objects we want to constrain. The 2 → 2 scattering matrix S(s) or amplitude

T (s), the 2-particle form factor F (s) and the spectral density ρ(s). The first two are real

analytic functions,12 and the S-matrix further satisfies crossing symmetry, S(s) = S(4m2 −
s). There is still the constraint of unitarity which relates all of them. We observe from the

12A real analytic function f (s) satisfies f ∗(s) = f (s∗).
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Figure 5.23: Allowed region in the (gF1, g 2) plane when the central charge is cUV = 1/2 and there is a
zero in the S-Matrix at x = 7/10. This is computed with N = 70. The black dots are the analytical roots
(5.3.54).

optimization problem that unitarity is “saturated", eq. (5.1.25), meaning

|S(s)|2 = 1,
F (s)

F∗(s)
= S(s), ρ(s) = |F (s)|2

4π
√

s(s −4m2)
, (5.3.1)

for s ≥ 4m2 slightly above the real axis.

Counting separately for real and imaginary parts we have five variables and three equations,

which implies that there is two-fold freedom left over from eqs. (5.3.1). The general solution

for (5.3.1) should possess this freedom.

We start by solving the first equation of eq. (5.3.1). It will be particularly useful to us here to

exploit a well-known trick used for solving elastic unitarity in d > 2 (see e.g. [7]). We write S(s)

in terms of the amplitude T (s),

S(s) = 1+ T (s)

2
√

s(4m2 − s)
. (5.3.2)

Then, elastic unitarity |S(s)|2 = 1 reads

ImT (s) = |T (s)|2
4
√

s(s −4m2)
. (5.3.3)
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Noting that Im[1/T (s)] =− ImT (s)/ |T (s)|2 we can write the above as

Im

(
1

T (s)

)
=− 1

4
√

s(s −4m2)
(5.3.4)

The general solution to the above is then

1

T (s)
=− 1

4
√

s(4m2 − s)
+ A(s)

4
(5.3.5)

where A(s) is some crossing symmetric real function on the real line.

We then have

T (s) = 4

A(s)−1/
√

(4m2 − s)s
, or S(s) = A(s)

√
(4m2 − s)s +1

A(s)
√

(4m2 − s)s −1
. (5.3.6)

Now, since T (s) is analytic, A(s) must be meromorphic in the physical sheet.

Poles of A(s) translate into zeros of T (s). Note that if A(s) = const the solution for S(s) is

precisely the so-called Castillejo-Dalitz-Dyson (CDD) factor. In fact, any solution to elastic uni-

tarity, crossing and analyticity can be written as a product of CDD factors. It is straightforward

to show that this amounts to (5.3.6) with rational A(s).

The function A(s) encondes the large freedom that the first equation of (5.3.1) allows for. We

may further fix A(s) at certain values if further constraints are involved, e.g. bound-state poles

or zeros.

With solution (5.3.6) in hand we can now try to solve for the form factor using the second

equation in (5.3.1). If we write

F (s) =−2m2B(s)eα(s)−α(0), (5.3.7)

where B(s) is real, Watson’s equation will only fix α(s),

F (s)

F∗(s)
= S(s) =⇒ Imα(s) =− i

2
logS(s + iϵ), for s ≥ 4m2 (5.3.8)

Making use of the solution for the S-matrix (5.3.6) we have

Imα(s) = arccot
(

A(s)
√

(s −4m2)s
)
Θ(s −4m2) (5.3.9)

It is difficult to explicitly find a function which gives such imaginary part for a generic A(s).

We may still find numerically α(s) through a dispersion relation,

α(s)−α(0) = s

π

∫ ∞

4m2

arccot
(

A(s′)
√

(s′−4m2)s′
)

s′(s′− s)
d s′. (5.3.10)
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Note that any analytic function could be added to the right hand side of the above. Such

analytic function would drop out upon taking the imaginary part meaning that eq. (5.3.9)

would still be satisfied. The presence of a non-trivial analytic function,13 i.e. a polynomial,

will lead to an essential singularity for F (s) so we discard this possibility.

The real function B(s) is not fixed by Watson’s equation. It plays a similar role to A(s) in eq.

(5.1.2), i.e. B(s) is analytic in a neighbourhood of the physical region. These properties are of

course fixed by whatever analyticity assumption we may have on F (s). Causality requirements

indicate that B(s) should at most be meromorphic, with poles signalling potential bound-

states.

We now impose the normalization

F (0) =−2m2 =⇒ B(0) = 1. (5.3.11)

With F (s) in hand, via eqs. (5.3.7) and (5.3.10), we can now simply solve for the spectral

density from eq. (5.3.1). The two-fold freedom left over from eq. (5.3.1) is encoded into the

meromorphic functions A(s) and B(s). A(s) can be determined if some coupling is being

extremized over in the S-matrix space, which appears to occur when cUV is minimized. B(s) is

determined by minimizing over cUV explicitly,

cUV = 12π
∫ ∞

4m2

ρ(s)

s2 d s = 12m4
∫ ∞

4m2

B 2(s)e2ᾱ(s)

s2
√

s(s −4m2)
d s, (5.3.12)

where we made use of the relation between ρ(s) and F (s), eq. (5.3.1), and eq. (5.3.7) for F (s),

and where ᾱ(s) is the real part of α(s)−α(0), i.e. the principal value of (5.3.10),

ᾱ(s) = Re[α(s)−α(0)] = s

π
−
∫ ∞

4m2

arccot
(

A(s′)
√

(s′−4m2)s′
)

s′(s′− s)
d s′. (5.3.13)

As we will see in more detail, the polynomial degree of B(s) must be bounded from above

so that the integral (5.3.12) for cUV is convergent. In fact, we will see that for every case

considered here B(s) is at most linear in s (apart from a very special case described in 5.3.2

where it can be quadratic). The constant coefficient in B(s) is fixed by the normalization

F (0) =−2m2, so we only need to minimize cUV over the free linear coefficient, which can be

done analytically.

13By trivial we mean a constant piece which can be simply absorbed into B(s).
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5.3.1 Z2 symmetric theories

Finding the leaf

We are interested in finding the allowed space of the following parameters

Λ≡−T (2), Λ(2) ≡ lim
s→2

∂2

∂s2 T (s). (5.3.14)

where S and T are related by eq. (5.1.2),

S(s) = 1+ T (s)

2
√

s(4m2 − s)
. (5.3.15)

Elastic unitarity for the S-matrix reads

|S(s)|2 = 1, for s ≥ 4m2 ∨ s ≤ 0. (5.3.16)

Crossing symmetry further implies

S(s) = S(4m2 − s). (5.3.17)

Now, we start by assuming that the S-matrix that extremizes the bounds is elastic and has the

minimal number of CDD zeros. We have two parameters that we need to fix,Λ andΛ(2), so we

need at least two CDD factors,

S = Sa−Sa+ , (5.3.18)

with

Sa = a −
√

s(4m2 − s)

a +
√

s(4m2 − s)
. (5.3.19)

Let us now set m = 1 as choice of units. From eqs. (5.3.15) and (5.3.18) we then solve for the

amplitude (5.3.6) to find

A(s) =−
1+ a+a−

s(4−s)

a++a−
, (5.3.20)

We now fix a− and a+ in terms of (5.3.14) (or (5.2.1) in the main text):

a± =−2Λ2 ±8
√
Λ3 −32ΛΛ(2) +64(Λ(2))2

(Λ−16)Λ+32Λ(2)
, (5.3.21)
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so that

A(s) =
(

1

4
− 4

Λ
+ 8

(
Λ(2)

)
Λ2

)
+ 1−32Λ(2)/Λ2

s(4− s)
. (5.3.22)
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Figure 5.24: Allowed space for (Λ,Λ(2)) such that the amplitude (5.3.20) has no poles on the
physical sheet. The blue region corresponds to the case where both CDD zeros are real,

and is given by
(
0 <Λ< 4∧

(
Λ2

32 <Λ(2) ≤ Λ
4 − 1

8

p
4Λ2 −Λ3 ∨ 1

8

p
4Λ2 −Λ3 + Λ

4 ≤Λ(2) < 1
32

(
16Λ−Λ2

)))∨(
4 ≤Λ< 8∧ Λ2

32 <Λ(2) < 1
32

(
16Λ−Λ2

))
. The red region corresponds to the case where the CDD zeros

are complex, and is given by 0 <Λ< 4∧ Λ
4 − 1

8

p
4Λ2 −Λ3 <Λ(2) < 1

8

p
4Λ2 −Λ3 + Λ

4 . Their union is given
by eq. (5.3.24).

What remains to impose is the analyticity constraint. Concretely, for what values of Λ and

Λ(2) does T (s) or S(s) not develop any other singularities on the physical sheet besides the

physical cuts for s ≥ 4m2 and s ≤ 0? We want a− and a+ to be such that the denominator in eq.

(5.1.2) is never zero on the physical sheet, i.e. that no pole develops and that the CDD factors

remain CDD zeros.

Note that the square root function only covers half of the complex plane. On the principal

sheet it covers the right half plane, i.e. the real part of the square root function is always

positive. This means that if

Re a− > 0 and Re a+ > 0 (5.3.23)

we are sure that the denominator of (5.3.6) is never zero. Therefore, imposing (5.3.23) on

(5.3.21) we find the allowed range forΛ andΛ(2).
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So here we can split the problem in two. If the discriminant of (5.3.21) is positive then a± is

real, meaning that if a± > 0 the S-matrix will have two real zeros on the physical sheet. This

region is represented in blue in fig. 5.24.

If the discriminant of (5.3.21) is negative then a± will be complex. However, if Re a± > 0, i.e.

(Λ−16)Λ+32Λ(2) < 0, then the denominator of (5.3.6) will never be zero on the physical sheet.

Instead, the numerator will have (complex) zeros. This region is represented in red in fig. 5.24.

The union of these regions is the leaf in the main text, fig. 5.3. Explicitly, in agreement with

eqs. (A.8) and (A.10) of [204],

0 <Λ< 8 ∧ Λ2

32
<Λ(2) < 16Λ−Λ2

32
(5.3.24)

The optimal amplitude on the lower bound, i.e. whenΛ(2) = Λ2

32 , and on the upper bound, i.e.

whenΛ(2) = 16Λ−Λ2

32 is given by eq. (5.3.20) with, respectively,

Lower bound: A(s) = 1

2

(
1− 8

Λ

)
, Upper bound: A(s) = 2

s(4− s)

(
1− 8

Λ

)
(5.3.25)

It is straightforward to see that multiplying the 2-CDD ansatz (5.3.18) by any further CDD

zero will lead to values ofΛ andΛ(2) inside the leaf, and the same holds true if inelasticity is

considered. So we conclude that the bounds are optimal.

cUV at the edges of the leaf

We can now find the two-particle stress tensor form factor F (s) on the edges of the leaf. We

plug eqs. (5.3.25) for A(s) at the edges of the leaf into eqs. (5.3.7) and (5.3.10).

We want minimize cUV over B(s). First note that B(s) must not have any poles outside the real

cut, as it would be inconsistent with the analyticity assumptions for the form factor F (s). In

principle it may have poles, e.g. at s → 4m2 or somewhere along the real axis, as long as as

the integral (5.3.12) converges, which can only be the case if e2ᾱ(s) cancels such poles. While

we could not find an explicit form for ᾱ(s) for either of the lower or uppers bounds (5.3.25)

we do observe numerically that e2ᾱ(s) is never zero, indicating that B(s) cannot have poles

and therefore be holomorphic, i.e. a polynomial.14 Finally, we can constrain the polynomial

degree of B(s) according to the convergence of the integral (5.3.12).

Lower edge. On the lower edge, we find that, according to eq. (5.3.9), Imα(∞) = arccot(−∞) =
0, meaning that α(s →∞) → const and e2ᾱ(s) → 1. We conclude that the integrand of (5.3.12)

will go as ∼ B 2(s)s−3 and, therefore, B(s) must be a constant. Otherwise, the integral will not

14The only way we could make e2ᾱ(s) have a zero was to have A(s) be zero at some point, making the arccot
function jump by π. However, A(s) is sign definite at the edges of the leaf (5.3.25).
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converge. Since B(0) = 1 we are led to the following unique choice on the lower edge,

Lower edge: B(s) = 1. (5.3.26)

So the form factor is entirely specified by A(s),

F (s) =−2meα(s)−α(0). (5.3.27)

As a simple check we may explicitly compute F (s) and cUV at the tips of the leaf,Λ= 0 and

Λ = 8. In the former case we have A(s) = 1
2

(
1− 8

Λ

) → −∞, for which arccot(−∞) = 0 and

Imα(s) = 0. In this case eq. (5.3.10) gives α(s)−α(0) = 0 and we have F (s) = −2m2 and

cUV = 1.

For Λ = 8 instead we have A(s) = 0−, meaning arccot(0−) = −π
2 . From eq. (5.3.10) it follows

that

α(s)−α(0) = 1

2
log

(
1− s

4m2

)
(5.3.28)

and

F (s) =−m
√

4m2 − s, cUV = 12m4
∫ ∞

4m2

√
s −4m2

s

d s

s2 = 1

2
. (5.3.29)

For 0 <Λ< 8 we perform both integrals (5.3.13) and (5.3.10) numerically. In fig. 5.10 we show

the optimal S(s) and F (s) atΛ= 2.4.

Upper edge. Let us now consider the upper edge of the leaf. In this case we have A(s) =
2

s(4−s)

(
1− 8

Λ

)> 0 across the integration region s > 4m2 in (5.3.10). Now we find that e2ᾱ(s) ∼ s−1

when s →∞ so that the integrand of (5.3.10) goes as ∼ B 2(s)s−4. We see that B(s) can at most

be linear in s to ensure convergence of the integral. Therefore,

Upper edge: B(s) = 1−b s, (5.3.30)

where b is a free real parameter.

Plugging into (5.3.12) we have

cUV (b) = I0 −2b I1 +b2 I2, with In ≡ 12m4
∫ ∞

4m2

sn e2ᾱ(s)

s2
√

s(s −4m2)
d s, (5.3.31)

We now minimize the central charge with respect to b,

dcUV

db
= 0 =⇒ bmi n = I1

I2
, cUV (bmi n) = I0 −

I 2
1

I2
. (5.3.32)

We may again test these expressions for the trivial cases Λ = 0,8. For the former we have

A(s) →∞, for which again Imα(s) = 0 andα(s)−α(0) = 0. In this case I2 →∞ and we’ll trivially
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get bmi n → 0 and cUV (bmi n) = I0 = 1. ForΛ→ 8 we have A(s) → 0+, for which arccot(0+) =+π
2 .

From eq. (5.3.10) it follows that

α(s)−α(0) =−1

2
log

(
1− s

4m2

)
(5.3.33)

and

e2ᾱ(s) =
(
1− s

4m2

)−1
, F (s) =−4m2 1−bsp

4m2 − s
(5.3.34)

Plugging into (5.3.32) we find15

bmi n = 1

4m2 , (5.3.35)

i.e. that the polynomial B(s) softens the singularity of integrand at s → 4m2, and we recover

eqs. (5.3.29).

For 0 <Λ< 8 we find ᾱ(s) numerically eq. (5.3.13). Then, we plug the result into eq. (5.3.32)

and compute the In ’s numerically. In fig. 5.9 we show the optimal S(s) and F (s) forΛ= 2.4.

cUV in the interior of the leaf

To find cUV in the interior of the leaf we have to first find the optimal S-matrix. At the edges of

the leaf the S-matrix is uniquely fixed becauseΛ(2) is either maximal (upper edge) or minimal

(lower edge). In the interior of the leaf we consider extremizing overΛ(4), with

Λ≡−T (2), Λ(2) ≡ lim
s→2

∂2

∂s2 T (s), Λ(4) ≡ lim
s→2

∂4

∂s4 T (s), (5.3.36)

under the hypothesis that cUV minimization for fixed (Λ,Λ(2)) extremizesΛ(4).

We can proceed as in section 5.3.1 and consider three CDD zeros which can be fixed in terms

of the three parameters (Λ,Λ(2),Λ(4)). Then explore the parameter-space for which these zeros

remain zeros and do not turn into poles. Avoiding further technical details we find that

3
(−Λ3 +24Λ2 −128ΛΛ(2) +256(Λ(2))2

)
128(8−Λ)

≤Λ(4) ≤ 3
(−Λ3 +128ΛΛ(2) −256(Λ(2))2

)
128Λ

, (5.3.37)

in agreement with eq. (A.12) of [204] which determined these bounds using the Schwarz-Pick

theorem.

We observe that the optimal amplitude coming from cUV minimization is the one for which

Λ(4) is minimal, whereΛ(4) assumes the lower bound of (5.3.37). The optimal amplitude at the

15Technically, in this limiting case, In does not converge due to the end-point singularity at s → 4m2. However,
upon regulating, the ratio I1/I2 is finite and is given by 1/4m2.
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lower bound is specified by

A(s) =− 4(8−Λ)2

64Λ+Λ2
(
s2 −4s −4

)−32Λ(2)(s −2)2
, (5.3.38)

for which the S-matrix S(s) follows via (5.3.6). For A(s) given by eq. (5.3.38) we have the same

asymptotics of the upper edge of the leaf, e2ᾱ(s) ∼ s−1, so B(s) is at most linear: B(s) = 1−bs.

As in the previous section, the form factor F (s) and the minimal cUV follow from eqs. (5.3.7),

(5.3.10), (5.3.31) and (5.3.32). In fig. 5.11 we compare the analytical result with the output of

dual optimization forΛ= 4.56 andΛ(2) = 0.85.

5.3.2 Ising Field Theory

Here the analyticity assumptions consist of a zero for the S-matrix S(s) at s = m2(1 − x),

where x is related to the magnetic field, and a pole at s = m2, and their crossing-symmetric

counterparts. Similarly, the form factor F (s), has a pole at s = m2.

Minimization of the central charge cUV

The first problem consists of minimizing the central charge cUV ,

cUV = 12π

(
m−4|FΘ

1 |2 +
∫ ∞

4m2
d s
ρ(s)

s2

)
(5.3.39)

where FΘ
1 is the 1-particle form-factor, which is a constant. The residue of the 2-particle form

factor F (s) at s → m2 is given by gFΘ
1 , where g is the cubic coupling, i.e. −g 2 is the residue of

the S-matrix pole at s → m2.

The minimal choice for an S-matrix with the above properties, and which is also purely elastic,

is the product of one CDD pole at s = m2 and one CDD zero at s = m2(1−x),

S±(s) =±m2p(1−x)(3+x)−
√

s(4m2 − s)

m2
p

(1−x)(3+x)+
√

s(4m2 − s)
·
p

3m2 +
√

s(4m2 − s)p
3m2 −

√
s(4m2 − s)

. (5.3.40)

Now, near the pole we must have S(s) ∼− g 2

s−m2 , i.e. S(s) must have a negative residue. Only

S−(s) satisfies this requirement. We again observe that S−(s) matches with the optimal S-

matrix in fig. 5.13 coming from minimizing the central charge.

By writing S−(s) in the form (5.3.6) we find (in units where m = 1)

A(s) =−
p

3−p
(1−x)(x +3)

(s −4)s +p
3(1−x)(x +3)

, (5.3.41)
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From eq. (5.3.6) we see that, near the pole, we have

T (s → m2) ∼− g 2

s −m2 , (5.3.42)

with

g 2 = 4
p

3
(
3−p

3(1−x)(x +3)
)2

x(x +2)
> 0 (5.3.43)

Now, given A(s), the form factor F (s) follows from eqs. (5.3.9) and (5.3.7). The function B(s)

must contain the simple pole of F (s) when s → m2 = 1 but no other singularity. We must

therefore have

B(s) = P (s)

1− s
, (5.3.44)

where P (s) is a polynomial, for which B(0) = 1 implies P (0) = 1. If, furthermore,

F (s → 1) ∼− gF

s −1
, (5.3.45)

where gF ≡ gFΘ
1 , we must have, from (5.3.7),

P (1) =−gF eα(0)−α(1)

2
. (5.3.46)

To constrain further P (s) we consider the central charge,

cUV = 12π
g 2

F

g 2 +12
∫ ∞

4

P 2(s)e2ᾱ(s)

(1− s)2 s2
p

s(s −4)
d s. (5.3.47)

Similarly to the previous section, we see that convergence of the above integral bounds the

degree of P (s). According to eq. (5.3.9), we see that Imα(s →∞) = arccot(0−) =−π
2 meaning

that e2ᾱ(s) ∼ s, when s →∞. The integrand in (5.3.47) will then go like ∼ P 2(s)s−4. In order for

the integral to converge, we see that P (s) must be at most linear,

P (s) = 1−bs (5.3.48)

where b is some real constant parameter, which can be fixed in terms of gF via equation

(5.3.46),

b = 1+ gF eα(0)−α(1)

2
, (5.3.49)

for which the form factor reads,

F (s) =−2eα(s)−α(0) + gF s

1− s
eα(s)−α(1) (5.3.50)
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and the central charge (5.3.47) can be expressed as

cUV = I0 + gF
(
e−ᾱ(1)I1

)+ g 2
F

(
12π

g 2 + e−2ᾱ(1)

4
I2

)
, (5.3.51)

with

In ≡ 12
∫ ∞

4

e2ᾱ(s)

(s −1)n s2−n
p

s(s −4)
d s. (5.3.52)

We now minimize the central charge cUV with respect to gF ,

dcUV

d gF
= 0 =⇒ gF,mi n =− 2I1

I2 e−ᾱ(1) +48πg−2 eᾱ(1)
, cUV ,mi n = I0 −

I 2
1

I2 +48πg−2 e2ᾱ(1)
,

(5.3.53)

with g 2 given by eq. (5.3.43), and ᾱ(s) given by eqs. (5.3.13) and (5.3.41).

Bounds on gF for fixed central charge cUV = 1/2 and maximal g

For a fixed central charge cUV = 1/2 we find two possible roots for gF from eq. (5.3.51),

g (±)
F =

−e−ᾱ(1)I1 ±
√

e−2ᾱ(1)I 2
1 − (48πg−2 +e−2ᾱ(1)I2)(I0 − 1

2 )

2I0 −1
, (5.3.54)

where g 2 is maximal and given by (5.3.43) in terms of the zero x. For x = 1/10 we find

g (−)
F =−0.011028..., g (+)

F = 0.004658.... (5.3.55)

These correspond to the leftmost and rightmost corners in fig. 5.19.

Note that fig. 5.19 seems to indicate that there exists a line of solutions with the maximal

coupling connecting the two extrema (5.3.54), whereas our previous analysis only provides

two isolated points for an S-matrix with maximal coupling. The solution to this apparent

paradox lies in the possibility of having an S-matrix with cubic coupling arbitrarily close to the

maximal one, but with different asymptotics, such that P (s) in (5.3.47) can now be quadratic

with a free parameter, instead of just linear as in (5.3.48).

Take for example

S(s) = S−(s)
a1 +a2 s(4− s)−p

s(4− s)

a1 +a2 s(4− s)+p
s(4− s)

, (5.3.56)

where S−(s) is the maximal S-matrix given by eq. (5.3.40). Now, for a1 →∞ we have S(s) →
S−(s). On the other hand, it is not hard to see that solving for A(s) using eq. (5.3.6) leads to the
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following asymptotics

A(s →∞) →−
p

3−3
p

31/10−1/a2

s2 +O

(
1

s3

)
(5.3.57)

which only depends on a2. In particular, if we take a2 large enough we get back the previous

case, for which A(s →∞) → 0−. Now, however, a2 can be tuned such that A(s →∞) → 0+

while also keeping S(s) free of further poles, i.e. for 0 < a2 < (
p

3−3
p

31/10)−1 ≈ 16.2. In this

case we have Imα(s →∞) = arccot
(
0+) = +π

2 so that e2ᾱ(s) ∼ s−1. The integrand in (5.3.47)

will then go like ∼ P 2(s)s−6, which allows for a quadratic degree polynomial P (s). Two of the

coefficients of P (s) are fixed by the normalization P (0) = 1 and by the residue of the form factor

gF , the remaining coefficient is free, i.e. it allows for a line of solutions with near-maximal

cubic coupling (by letting a1 be arbitrarily large) as observed in fig. 5.19.

Small magnetic field limit h → 0: Bounds on gF and extra zeros

We first find how the analytical gF scales in the small magnetic field limit,

gF (x → 0) = x g̃F . (5.3.58)

We assume this behavior for now, but will then confirm it by explicit computation. We start by

noting that in the limit x → 0, the cubic coupling g 2 (5.3.43) goes as

g 2(x → 0) = 2
p

3x (5.3.59)

Then, the central charge (5.3.47) reads

cUV = 6πp
3

g̃ 2
F x + 12

∫ ∞

4

P 2(s)e2ᾱ(s)

(1− s)2 s2
p

s(s −4)
d s + O(x2). (5.3.60)

We still have to determine the x → 0 limit of P (s) and ᾱ(s). Let us first consider ᾱ(s). From

(5.3.41) we have

A(s) =− x/
p

3

3+ s(s −4)
+O(x2) (5.3.61)

Plugging into (5.3.9) and expanding at small x

Imα(s) =
[
−π

2
+ x

p
s(s −4)/3

3+ s(s −4)
+ O(x2)

]
Θ(s −4) (5.3.62)

We find

α(s)−α(0) = 1

2
log

(
1− s

4

)
+ x

[
α1(s)−α1(0)

] + O(x2) (5.3.63)
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with

α1(s) = β(s)

(s −3)(s −1)
− β(3)

2(s −3)
+ β(1)

2(s −1)
, β(s) =− 2

π

√
s(4− s)

3
arctan

√
s

4− s
. (5.3.64)

Let us now take the limit x → 0 of the polynomial P (s) = 1−bs in (5.3.60), where b is given by

(5.3.49). We have

b = 1 + x
g̃F eα(0)−α(1)

2
+ O(x2) = 1 + x

g̃Fp
3
+ O(x2) (5.3.65)

where we made use of (5.3.63).

We then have

P 2(s)e2ᾱ(s)

(1− s)2 = s −4

4
+ x (s −4)

[ p
3g̃F s

6(s −1)
+ Re[α1(s)−α1(0)]

2

]
+ O(x2). (5.3.66)

Now, replacing the above formulas into (5.3.60) and performing the simple integrals, we find

cUV − 1

2
= x

[
2
p

3π g̃ 2
F + (4

p
3−2π) g̃F − 126−23

p
3π

81
− 2p

3π
It

]
+ O(x2). (5.3.67)

where

It =
∫ ∞

4

s −4

s2
(
s2 −4s +3

) log

(p
s −4+p

s

2

)
d s = 23

648
π2 − 1

3
. (5.3.68)

Notice that setting x = 0 in (5.3.67) leads necessarily to cUV = 1/2, the central charge of the

free fermion. Since we are studying IFT we set cUV = 1/2 regardless, which leads to a quadratic

equation for the rate g̃F with the following roots

g̃ (±)
F = 1

2
p

3
− 1

π
± 1p

3π
∓ 1

9
= (−0.1023000,+0.0430304) (5.3.69)

To express this in terms of the magnetic field h we make use of the relation x = 36
p

3(Fσ
1 )2 h2,

where Fσ
1 = 1.3578, to find the rates,

g (±)
F = x g̃ (±)

F = (−11.7601,+4.9466)h2. (5.3.70)

Extra zeros. Let us now see what we can say about potential extra zeros of the IFT S-matrix in

the small magnetic field limit h → 0.
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For the case of IFT at lowest order in h2 we have [229] (see also eqs. (D.4.51) and (D.4.52))

SIFT(s) =−1− i h2
√

(s −4)s

(
72(Fσ

1 )2

s2 −4s +3
+

∫ ∞

4

(s′−2)σ2→3(s′)d s′

π
p

(s′−4)s′(s′− s)(s + s′−4)

)
+O(h4) (5.3.71)

with σ2→3(s) given by eq. (D.4.54).

Let us now match eq. (5.3.71) with the general nonperturbative solution to unitarity and

crossing symmetry. In d = 2 unitarity reads

|S(s)|2 = 1−σi nel (s) (5.3.72)

where σi nel (s) > 0 is the particle production cross-section. The general solution to this equa-

tion and crossing symmetry S(s) = S(4m2 − s) reads [230, 231, 232]

S(s) = SC DD (s) exp

[∫ ∞

4m2

d s′

2πi
log

(
1−σi nel (s′)

)√ s(s −4m2)

s′(s′−4m2)

(
1

s′− s
+ 1

s′− (4m2 − s)

)]
(5.3.73)

where |SC DD (s)|2 = 1. Now, SC DD (s) can be any product of CDD factors. In particular for IFT, it

should include the CDD pole at s = m2 = 1 and the CDD zero (5.2.5). So we take

SC DD (s) = S−(s)

p
a(4−a)−p

s(4− s)p
a(4−a)+p

s(4− s)

p
b(4−b)−p

s(4− s)p
b(4−b)+p

s(4− s)
· · · (5.3.74)

with S−(s) given by eq. (5.3.40) and the remaining zeros a,b, . . . we wish to constrain as h → 0.

Lettingσi nel = h2σ2→3+O(h4) and expanding (5.3.73) at small h, assuming a = a0h−2+O(h−4),

and likewise for b and etc, we find

S(s)−SIFT(s) = 2h2
√

s(s −4)
(|a0|+ |b0|+ . . .

)+O(h4) (5.3.75)

Since S(s) and SIFT(s) must match at order h2 we see that a0 = b0 = ·· · = 0.

In case the zeros are complex we must have a = b∗ so that SC DD is real. Letting a0 =α+ iβ,

and b0 =α− iβ we have

|a0|+ |b0| =
√

a2
0 +

√
b2

0 =
√
α2 −β2 +2iαβ+

√
α2 −β2 −2iαβ= 2|α| (5.3.76)

Meaning that α= 0, but the imaginary part β of the zeros is unconstrained.

Therefore, the (real part of the) extra zeros must go to infinity at least as ∼ h−4 when h → 0.
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5.4 Discussion

In this work we have merged the primal S-Matrix and form factor bootstrap proposed in [216]

with the dual S-Matrix bootstrap developed in [211]. With our method we can relate UV data,

namely the central charge cUV of the UV CFT, with couplings of the gapped QFT in the IR, and

place rigorous bounds on any of these parameters. We observe a vastly improved numerical

convergence compared to the primal bootstrap of [216].

We established a lower bound on cUV in a class of Z2 symmetric QFTs (fig. 5.4) and also for

QFTs for which the particle self-interacts with a cubic coupling and where the S-matrix has

a real zero (a dial for the magnetic field in IFT) - see fig. 5.12. In all these cases we find that

the optimal S-matrix extremizes some coupling. This allows us to find the optimal S-matrix

via pure analytical S-matrix bootstrap (viz. CDD bootstrap [233]). Then, in appendix 5.3,

we showed how the form factor and the minimal cUV can be obtained analytically if the S-

matrix is known. We find perfect agreement between the dual optimization and the analytical

bootstrap.

To specifically target Ising Field Theory we fix cUV = 1/2 and find the allowed space in cubic

couplings and magnetic field, see fig 5.17. We insert IFT inside this ‘pyramid’ for small magnetic

field - close to the tip of the pyramid - using form factor perturbation theory (see appendix

D.4). For larger magnetic fields we enter the non-perturbative regime of IFT and this is where

our results can be useful: IFT must lie somewhere inside the pyramid.

We know however that IFT cannot lie on the boundary of the pyramid because the boundary

is elastic: the optimal S-matrix does not have inelasticity, and we know that IFT has particle

production [229]. But even for small enough magnetic field h (where particle production is

negligible) IFT is still somewhat away from the boundary, as the bounds on the one particle

form factor go to zero as h2 with a different numerical coefficient than the perturbative form

factor (see fig. 5.22).

We can think of several ways to improve our setup and ‘shrink’ the pyramid wherein IFT must

lie. One way is to include more UV information. So far we are only fixing the value of the central

charge, but we are not ‘telling’ the bootstrap that the RG flow is being triggered by the thermal

and magnetic deformations, ϵ and σ, respectively. The central charge is straightforward to

include in d = 2 due to the c-sum rule which gives an integrated relation over the spectral

density of the trace of the stress energy tensorΘ, and not just via some asymptotic constraint at

s →∞, which is difficult to implement numerically.16 So, can we find similar integral relations

that involve somehow ϵ or σ (besides the combination Θ)? One possibility is the sum rule

derived in Eq. (29) of [192] to fix the scaling dimension of an operator. However, this sum

rule requires knowing the vacuum expectation value of that operator. For the case of σ, its

expectation value should be related to the magnetic field and therefore to the zero of the

S-matrix, but the precise relation is unknown to us. It should be possible to measure it using

16Moreover, the normalization of the two particle form factor ofΘ is fixed (see appendix D.6), which is one less
parameter to vary over in the bootstrap.
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other methods like the lattice or Hamiltonian truncation.

Another possibility is to use the twist property of the order field σ. Twist fields are reviewed

in [234, 235] and references therein. The fact that σ acts as a twist field is derived in [236].

This could be coupled to the input from lattice measurements, for example using tensor

networks. In order to measure the two point function 〈σΘ〉 on the lattice, one needs to map

the continuum stress tensor to the lattice stress tensor. This might be done by generalizing

some ideas developed in [237] and [238]. We plan to explore this direction in the near future.

In addition, we can include more IR information. IFT is known to interpolate between the

free massive Majorana fermion and the E8 Toda theory, which has 8 particles. While we are

studying the region close to the free fermion, where there is only one particle, it is natural

to expect, due to analyticity, that the other particles exist in other ‘sheets’, i.e. as resonances

(corresponding to zeros on the physical sheet). We already impose one zero, which eventually

becomes the second lightest particle as the magnetic field is increased. It is possible that the

other particles imply the presence of further zeros on the physical sheet [221].

If we are feeling brave, we can dial the magnetic field a bit higher and go to the regime where

more particles are stable. If we want to go beyond lightest particle scattering we would

have to import the multiple amplitude bootstrap of [135] and extend it in several directions.

Namely, to dualize it, to include form factors and, on a more fundamental level, to understand

the singularity structure of the scattering amplitude of heavier particles, where anomalous

thresholds are expected (see previous chapter) [158, 239].

In a similar vein, we can also consider multi-particle scattering, i.e. to not only consider

2-particle states but also states of 3- or more particles. In this way we could try target the

inelasticity of IFT. However, a systematic understanding of the analyticity structure of multi-

particle amplitudes remains a big open problem dating back to the 60s.

The latter directions we have mentioned are of course relevant to many other QFTs besides

IFT. We have put a lower bound on the cUV of a class of Z2 symmetric theories but we could

have chosen to be more specific. For example, it would be interesting to target φ4 which has

been the focus of many recent nonperturbative studies [240, 241, 242, 243, 244, 245, 202, 246].

This theory is a deformation of the free massless boson, so we could fix cUV = 1 in our Z2

symmetric setup to target it. Moreover, we could place φ4 inside our bounds, not only using

perturbation theory but also with Hamiltonian truncation data [202].

Finally, it would be interesting to generalize our setup to higher dimensions. A primal approach

incorporating UV input via the a-anomaly was developed in [203]. Can we reproduce these

bounds more rigorously and more efficiently with a dual method?
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6 Conclusion: Past, Present and Future
of the S-matrix Bootstrap

6.1 Pre-Asymptotic freedom period

The original idea of directly constraining the S-matrix can be traced back to Heisenberg’s

paper of 1943 The "Observable Quantities" in the Theory of Elementary Particles [247]. In

view of “the known divergence difficulties in the theory of elementary particles" Heisenberg

calls for an effort to “isolate from the conceptual nature of quantum theory of wave fields

those concepts which will probably not be affected by future modification". Heisenberg focus

on what special relativity and quantum mechanics imply for the general structure of the

S-matrix, emphasizing crucial differences with respect to the non-relavistic case, in particular

the possibility of “emission of particles" and how unitarity becomes a non-trivial constraint.

Heisenberg asserts that “finding the other conditions [on the S-matrix] seems to me to be the

central, as yet completely unresolved problem of the theory of elementary particles".1

The S-matrix program however needed at least another decade to start being considered as

a serious alternative to quantum field theory. With the experimental discoveries of hadrons

in the late 1950s, S-matrix proponents advocated for “nuclear democracy" [2] in that an

understanding of the origin of the strong force may not be required in order to describe the

observed hadronic physics.

I think it is fair to say that the S-matrix theory developed over four main fronts:

1. The approach notably pursued by French researchers of rigorously deriving S-matrix

principles from axiomatic quantum field theory. In particular, how field-theoretic

properties such as micro-causality and CPT invariance lead to the analyticity properties

of the S-matrix (see overview on Chapter 2). The two biggest achievements are arguably

the proof of the Froissart-Martin bound on the total 2-body scattering cross-section [34]

and the proof of crossing symmetry by Bros, Epstein and Glaser [29, 31].

2. The understanding of the analyticity of scattering amplitudes from perturbation theory.

1Translated from German.
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This approach was popularized by the Cambridge group that included Eden, Landshoff,

Olive and Polkinghorne, whose efforts are summarized in their book [8] and have ar-

guably led to limited results.2 But also on the other side of the Iron Curtain, by the likes

of Landau, Gribov, Kolkunov, Okun, Rudik, and many others (see chapter 3 for some of

these works), who focused more on the actual computation of Landau singularities.

3. The more constructive approach that makes use of stronger analyticity assumptions,

such as maximal analyticity, typically together with elastic unitarity and further input

from experiment such as scattering lengths. Spearheaded by Chew and Mandelstam on

the American side, this approach conventionally involves the use of dispersion relations

such as the Mandelstam representation (see [2] for a nice overview). The biggest early

achievement was likely Frazer and Fulco’s prediction of the ρ meson [249].

4. Regge theory and the exploration of the angular momentum complex plane. This

approach gained popularity first with Chew and Frautschi’s realization that mesons

lie on linear Regge trajectories [250, 251] and then with Gribov’s identification of the

pomeron trajectory which could explain the rise of the total scattering cross-section

and the shrinkage of the diffractive cone of the differential cross-section [11].

Naturally this distinction is only true to some extent as many authors worked on and combined

several of these ideas/approaches, as illustrated in chapter 2. One such example, which has

to be mentioned, is of course Veneziano’s construction of a crossing-symmetric and unitary

meromoprhic amplitude whose poles lie on linear Regge trajectories [252]. Many of the

original results of this thesis also came from this fruitful interplay.

6.2 Post-Asymptotic freedom period

Despite the initial promise, imposing all the constraints in a predictive way proved increasingly

difficult and eventually the observation of deep inelastic scattering led to strong support in

favor of the parton model. The ‘killing blow’ came shortly after with the discovery of asymptotic

freedom in ’72 essentially confirming QCD as the underlying field theory and allowing the use

of Feynman perturbation theory at high energies.

A couple of amusing quotes illustrate well the situation at the time.

“Unfortunately to use these assumptions it was necessary to make uncontrolled approxima-

tions, such as the strip approximation, whose mention will bring tears to the eyes of those of

us who are old enough to remember it. By the mid-1960’s it was clear that S-matrix theory had

failed in dealing with the one problem it had tried hardest to solve, that of ππ scattering." -

Weinberg [253].

2Regge’s review [8] illustrates this point: “I am personally unsatisfied by the status of the theory expressed in
chapter 2. My feeling is that chapter 2 will have to be replaced in the future by more advanced techniques borrowed
from algebraic homology [...]. Until that day the best we have is a sort of heuristic theory that becomes rapidly
inadequate for higher-order graphs." [248]
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“Ironically, [the ρ-meson] was one of the very few quantitative predictions the theory ever

produced. Some years later, Sidney Coleman introduced me to give a seminar at Harvard as

Bill Frazer, whose work set back the progress of physics by ten years.” - Frazer [254].

Nonetheless, QCD is not applicable at low energies, and the S-matrix bootstrap methods kept

being applied to the description of hadron scattering. The direction outlined in point 3. is

still an active and useful topic of research today (see brief overview in chapter 4) namely in

the development of partial wave dispersion relations [255] which are able to capture - given

enough low energy data - further resonances beyond the ρ, including the elusive σ meson

[189].

The approach outlined in point 4. naturally evolved in the direction of trying to explain some

aspects of Regge phenomenology with perturbative QCD (see [256] for a review). The most

well-known attempt consists of the BFKL pomeron which resums ladder diagrams but whose

exact relation to the original “soft" pomeron is still unclear.

Another direction (a very famous one!) which stemmed from Regge theory and, in particular,

Veneziano’s seminal work [252] is of course String theory, from the observation that rotating

strings realize linear Regge trajectories (see [257] for an historical perspective on the early days

of String theory).

From points 1. and 2. on the analyticity properties of scattering amplitudes from either ax-

iomatic QFT or perturbation theory, respectively, very little was achieved afterwards. Sommer’s

1970 review on the “Present State of Rigorous Analytic Properties of Scattering Amplitudes"

[27] is still very much “Present". Limited progress can be said to have been achieved on the

perturbation theory side and Regge’s comment still applies to some extent (see footnote 2). Of

worth mentioning is Pham’s work (see [258] for a recent review).

On the other hand, the idea of imposing constraints on the S-matrix at the perturbative level,

unitarity in particular, turned out to be very useful in the 90s and has since led to a revolution

in Feynman diagram computation and simplification (see brief overview in section 1).

Moreover, with the understanding of effective field theories, the use of dispersion relations

regained popularity as the Wilson coefficents could be directly related to the UV amplitude

[259]. This in turns constrains the possible space of EFTs compatible with a physically healthy

UV completion, the so-called positivity bounds.

At the nonperturbative level, the bootstrap idea was shown to be vastly more practical once

applied to physical systems enjoying a higher degree of symmetry: Integrable models in d = 2,

which do not have particle production and satisfy an additional set of constraints known as

Yang-Baxter equations (see [21] for a review); and conformal field theories, starting with the

seminal works of Polyakov [260] and the BPZ paper [261] which paved the way for conformal

bootstrap in d = 2. The conformal bootstrap in d > 2 only came to fruition more than three

decades later where 3D Ising the CFT was unexpectedly found to lie at a ‘kink’ of the allowed
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space giving the best estimate to date of the critical exponents of the 3D Ising model (see [13]

for a recent review).

The success of the conformal bootstrap inspired a return of the more formally oriented high-

energy theory community to the S-matrix bootstrap in the hopes of replicating the success of

the conformal bootstrap for gapped theories and find a QFT at some corner of the allowed

space. Taking the risk of annoying my own community I have to say that this has not turned

out quite right (yet).

6.3 Modern day S-matrix Bootstrap

The present numerical S-matrix bootstrap is essentially based on an explicit decomposition

of the amplitude over a complete set of basis functions on top of which the 2 → 2 bootstrap

constraints are imposed. Then, couplings - values of the amplitude in the Euclidean region -

are extremized. What is found is that optimal amplitudes at the boundary of the allowed space

look purely elastic (up to numerical precision).

In d = 2 these extremal elastic amplitudes can be perfectly healthy as they may correspond

to integrable QFTs. Indeed, had we not known beforehand of the existence of integrable

theories, we could have found them for the first time in this way (and bump into Yang-Baxter!)

[17, 137]. In d > 2, however, purely elastic S-matrices are not allowed (see chapter 2) so it is

unclear as to whether these extremal solutions correspond to any physical theory. It seems

very plausible that the extremal boundary is unphysical and would get entirely excluded by

adding multi-particle constraints.

It is hard to analytically quantify how much inelasticity would be required (as the lower

bound is only at infinite angular momentum). Likewise the numerical amplitudes are hard to

analyze on the physical region as the sum over basis functions is not guaranteed to converge

there. However, this question was recently tackled in the work [80] which showed indeed

the presence of a small bump of inelasticity at finite energies at least in some portion of the

extremal boundary, by explicitly constructing an amplitude satisfying elastic unitarity.

Regardless of the ‘unphysical’ nature of the extremal boundary, the obtained bounds can be

said to be ‘rigorous’ (more on this below) and, in many cases, appear to sit close to physical

theories. For example, it comes to mind the recent work [262] which minimizes the leading

Wilson coefficient that controls the first correction to maximal supergravity which deviates

by ∼ 1% from the unique value coming from M-theory (the difference possibly coming from

inelasticity due to black hole production).

Since the revival papers of 2016 [1, 17] a variety of QFTs have been targeted and compared with

the numerical bootstrap bounds (please refer to [3] for an extensive list) and, it is fair to say,

the general feeling among the S-matrix bootstrap community is that it is getting increasingly

harder to find interesting problems that could be targeted by a bootstrap approach that only
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constrains the 2 → 2 scattering amplitude.

6.4 Have we exhausted the 2 → 2 space of constraints?

I now want to argue that is not the case (yet) and that, in my view, there is still a lot to explore.

Can we put a bound on the cross-section? The most famous result from the bootstrap of the

60s is arguably the Froissart-Martin bound on the total cross-section, which only makes partial

use of the 2 → 2 constraints, namely unitarity and axiomatic analyticity. It is unknown to this

day whether maximal analyticity and crossing-symmetry could improve the Froissart bound.

More generally, can we bound the amplitude on the physical region?

This class of problems seems hard to attack with the current primal formulation of the S-

matrix bootstrap. This is due to two limitations. One is the fact that the truncated ansatz

cannot grow at large energies, and therefore would have trouble in replicating a Froissart-like

growth, and the second is the already mentioned possible lack of convergence of the ansatz

on the physical region which can lead to computational difficulties.

In principle, these two issues could be solved either with a better ansatz or alternatively with

a dual bootstrap formulation as employed in chapter 5. Indeed the central charge is sort of

a ‘cross-section’ as in it takes values over an interval on the physical region, and in this case

the dual formulation really made a difference compared to the previously attempeted primal

approach [136]. A dual formulation in d > 2 that implements maximal analyticity however

still remains at large.

Having a dual formulation would be extremely useful as the coupling space could be carved out

similarly to the conformal bootstrap instead of filled in as with a primal approach. A natural

concern is that the current primal ansatz can only explore a subspace of the full allowed space,

owing to its lack of growth when truncated.

Another avenue continues to be the bootstrap of low energy QCD and making contact with

experiment. Just last year, from the JPAC collaboration: “We highlight the need for the de-

velopment of comprehensive amplitude analysis methods to further our understanding of

hadron spectroscopy. Reaction amplitudes constrained by first principles of S-matrix theory

and by QCD phenomenology are needed to extract robust interpretations of the data from

experiments and from lattice calculations.” [263]

A recent good step in this direction was made in [264] in which the authors made use of the

S-matrix/form factor bootstrap outlined in chapter 5 and included UV information via QCD

sum rules.
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6.5 Some big open problems

Let me now briefly enumerate some of the biggest open problems in S-matrix theory whose

solution should involve some new conceptual insight (no effort will be made in giving a

complete list of references at this point).

• The multi-particle frontier. As already mentioned, being able to bootstrap the multi-

particle amplitude would allow to further constrain the 2 → 2 amplitude, but also

put bounds on other observables such as higher point Wilson coefficents. Here the

challenges are multiple (pun intended), from the analyticity and crossing properties of

multi-point amplitudes to the computational hassle of dealing with unitarity constraints

involving multivariable integrals. Some references on previous attempts can be found

in chapter 3 (see also the recent work [265]).

• Analyticity VS Causality. The relationship between causality and analyticity continues

to be mostly unclear as little to no progress has been made since the original axiomatic

attempts. One recent avenue seems to be the approach of starting from CFT axioms

and take the flat-space limit of AdS [3], but it is still too early to tell what will be rigor-

ously learned. Alternatively, in the spirit of the modern on-shell perspective we should

perhaps rethink of causality not as some statement on the field correlator but on the

scattered ‘wavepacket’ [266].

• IR finite S-matrices. Unfortunately, in the four space-time dimensions that we live

in, there is no concept of a scattering amplitude involving (non-derivatively coupled)

massless particles. Current understanding is that inclusive quantities, such as cross-

sections, are IR finite (at least in QED). Using coherent or ‘dressed’ states we can also

correct for the IR divergence, but it is still unclear what are the physical constraints

obeyed by these objects, and how they can be used in practice for bootstrap purposes.

6.6 Epilogue: The on-shell promise

It is often heard the complaint that the 60s and 70s were a much better period to be a theoretical

physicist given the abundance of experimental discoveries at the time compared to today.

Indeed, LHC only discovered the Higgs boson which had already been predicted five decades

before - with so far no sign of supersymmetry or extra dimensions - and more recently LIGO

with the observation of gravitational waves that is giving even more support to general relativity

while ruling out some of its alternatives.

I find it amazing on the other hand that we were able to make so many predictions out of such

a convoluted and mathematically deficient formalism. The fact that the question "What are

the equations of motion of QFT?" does not have an immediate answer is a symptom of this. At

EPFL, and I imagine the situation is not so different in most places, the vast majority of the

two QFT courses is spent on the free theory and only at the end of the year do students get to
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do some tree-level Compton scattering. Of course quantum field theory is very hard to teach,

not because it is inherently hard but as a result of being phrased in the wrong language.

This is evident once after all the pain of going through archaic canonical quantization, gauge

fixing of the Maxwell field and all the Wick contractions, the final answer for the probability

amplitude of Coulomb scattering is a simple pole in the Lorentz invariant “momentum trans-

fer" t . Could it have been something more complicated, e.g. a double pole? No, otherwise

unitarity (or “factorization") would have been violated.

If Heisenberg and Chew’s original idea of directly constraining the S-matrix to circumvent the

lack of our understanding of the elementary theory of particles did not exactly pan out as they

perhaps envisioned, ironically today the paradigm is somewhat inverted. Our understanding

of QFTs, especially effective field theories, has been greatly improved by the use of the S-matrix

principles.

There is a rising feeling, particularly among the Amplitudes community, that there might be

an on-shell formulation of QFT just around the corner. A framework that makes no mention

to the Lagrangian and is purely based on the S-matrix. In fact, already in the 60s Landau

believed that “the Lagrangian is dead and should be buried with all due honors"[267].3 After

almost three centuries of being a staple in theoretical physics, the Lagrangian appears to start

breaking through the seams. Coincidentally in a period where we lack new experimental

stimuli and can fully focus on finding an appropriate replacement. This seems too big of an

opportunity to miss.

The Lagrangian keeps on limping, but for how long?

3although at that time he was probably referring to the Landau pole of QED.
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A Appendix to Chapter 2

A.1 Derivation of the Mandelstam Kernel

In this appendix we compute the kernels Pd (z, z ′, z ′′) and Kd (z,η′,η′′) defined in (2.2.20) and

(2.3.3) correspondingly.

The kernel Pd (z, z ′, z ′′)Recall that z ′ and z ′′ are cosine of the angles between n⃗ in (2.2.20) and

the vectors p⃗1 and p⃗3, (2.2.19). They are related to the coordinates in the Sudakov decomposi-

tion of the unit vector n⃗

n⃗ =α p⃗1

|p⃗1|
+β p⃗3

|p⃗3|
+ n⃗⊥ , n⃗⊥ · p⃗1 = n⃗⊥ · p⃗3 = 0 (A.1.1)

as

z ′ =α+βz , z ′′ =β+αz , α= z ′− zz ′′

1− z2 , β= z ′′− zz ′

1− z2 . (A.1.2)

In term of these coordinates, the angular integration in (2.2.20) reads∫
d d−2Ωn⃗ = 2

∫
d d−1n⃗δ(n⃗2 −1)

= 2
√

1− z2
∫

dαdβd d−3n⃗⊥δ(n⃗2
⊥+α2 +β2 +2αβz −1)

= 2
√

1− z2
∫

dαdβ
Θ(1−α2 −β2 −2αβz)

(1−α2 −β2 −2αβz)
5−d

2

∫
d d−3n⃗⊥δ(n⃗2

⊥−1),

=
√

1− z2VolSd−4

∫
dαdβ

Θ(1−α2 −β2 −2αβz)

(1−α2 −β2 −2αβz)
5−d

2

, (A.1.3)

where VolSd−4 = 2π(d−3)/2

Γ( d−3
2 )

. The above formula is only true in d ≥ 4. In d = 3 we have

∫
dΩn⃗ = 2

∫
d 2n⃗δ(n⃗2 −1) = 2

√
1− z2

∫
dαdβδ(α2 +β2 +2αβz −1) , (A.1.4)
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which can be also obtained as a distributional limit from (A.1.3) when d → 3. By plugging the

relation (A.1.2) into (A.1.3) and (A.1.4), we arrive at (2.2.21).

The Mandelstam kernel Kd (z,η′,η′′)Instead of plugging the explicit form of Pd (z, z ′, z ′′) into

the definition (2.3.3), we have find it simpler to compute the Mandelstam kernel directly using

the Sudakov decomposition (A.1.1). For |η′|, |η′′| > 1 we have

Kd (z,η′,η′′) =
∫

d d−2Ωn⃗

(η′− z ′)(η′′− z ′′)
=

∫
d d−2Ωn⃗

(η′−α− zβ)(η′′−β− zα)
(A.1.5)

=
√

1− z2VolSd−4

∫
Θ(1−α2 −β2 −2αβz)

(1−α2 −β2 −2αβz)
5−d

2

dαdβ

(η′−α− zβ)(η′′−β− zα)
,

where in the second step we have used (A.1.2) with d ≥ 4 and in the third we have used (A.1.3).

Next, we shift α→α− zβ and after it we rescale β→ βp
1−z2

. In this way we get in d > 3

Kd (z,η′,η′′) = VolSd−4

∫
dαdβ

Θ(1−α2 −β2)

(1−α2 −β2)
5−d

2

1

(η′−α)(η′′−
p

1− z2β− zα)

= VolSd−4

1∫
0

dr

2π∫
0

dφ
r

(1− r 2)
5−d

2

1

(η′− r cosφ)(η′′− r cos
(
φ+θ)

)
, (A.1.6)

where r e iφ =α− iβ. The integral over φ gives

2π∫
0

dφ

(η′− r cosφ)(η′′− r cos
(
φ+θ)

)
= 2π

η′η′′+
√

(η′2 − r 2)(η′′2 − r 2)− zr 2

[
η′√

η′2 − r 2
+ η′′√

η′′− r 2

]
.

(A.1.7)

for |η′|, |η′′| > 1. Otherwise, we analytically continue (A.1.7). Next, we change the r integration

variable to

η≡ 1

r 2

(
η′η′′+

√
(η′2 − r 2)(η′′2 − r 2)

)
. (A.1.8)

In that way we arrive at

Kd≥4(z,η′,η′′) = 2πVolSd−4

∞∫
η+

dη

η− z

(η2 −1)
4−d

2

(η−η+)
5−d

2 (η−η−)
5−d

2

, |η′|, |η′′| > 1 , (A.1.9)

where η± are defined in (2.3.5).
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Similarly, for d = 3 we have

K3(z,η′,η′′) =2
√

1− z2
∫

dαdβ
δ(α2 +β2 +2αβz −1)

(η′−α− zβ)(η′′−2β− zα)
(A.1.10)

=2
∫

dαdβ
δ(α2 +β2 −1)

(η′−α)(η′′−
p

1− z2β− zα)
=

2π∫
0

dφ

(η′− r cosφ)(η′′− r cos
(
φ+θ)

)

= 2π

η+− z

(
η′√
η′2 −1

+ η′′√
η′′2 −1

)
, |η′|, |η′′| > 1 .

Finally, the Mandelstam kernel with |η′| < 1 or |η′′| < 1 is obtained from (A.1.9) and (A.1.10) by

analytically continuation.

A.2 Useful Identities for Gegenbauer P- and Q-functions

As discussed in the main text, due to the SO(1,d −1) symmetry, the elastic unitarity kernel

and the Mandelstam kernel are diagonal in spin. They take the form (2.2.36) and (2.3.6)

correspondingly. In this appendix we derive these forms together with the related integrated

expression (2.3.18).

The literature on the properties and identities of the Gegenbauer functions is extensive [268],

starting with the Gegenbauer addition formula. Better suited for us is the integrated form of

this identity [268] which in our conventions reads

24−d Γ(d −3)

Γ2( d−3
2 )

1∫
−1

d z P (d)
J

(
z1z2 + z

√
1− z2

1

√
1− z2

2

)
(1− z2)

d−5
2 = P (d)

J (z1)P (d)
J (z2) . (A.2.1)

Perhaps the cleanest way to derive the above formula is to use group theoretic techniques. If

z1 and z2 are the cosines of the polar angles of unit vectors n1 and n2 and z is the cosine of the

azimuthal angle difference between n1 and n2, then z1z2+z
√

1− z2
1

√
1− z2

2 = n1 ·n2. One can

then apply a rotation to make n2 aligned along the z-axis, as the vector product is invariant

under this transformation. The relation between P (d)
J

(
z1z2 +x

√
1− z2

1

√
1− z2

2

)
and P (d)

J (z2)

will then involve the SO(d −1) matrix representation of this rotation, the Wigner D-matrix,

which for a specific entry is given up to a factor by P (d)
J (z1). The integration in z will select this

entry and project out the others, so we end up with a closed equation between Gegenbauer

polynomials.

Let us change variable to

y = z1z2 + z
√

1− z2
1

√
1− z2

2 (A.2.2)
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with integration limits

z1z2 −
√

1− z2
1

√
1− z2

2 < y < z1z2 +
√

1− z2
1

√
1− z2

2 , (A.2.3)

or equivalently,

1− z2
1 − z2

2 − y2 +2y z1z2 > 0. (A.2.4)

The Gegenbauer addition formula then becomes

1

2
π

2−d
2 Γ

(
d−2

2

) 1∫
−1

d y Pd (y, z1, z2)(1− y2)
d−4

2 P (d)
J (y) = (1− z2

1)
d−4

2 P (d)
J (z1) (1− z2

2)
d−4

2 P (d)
J (z2) ,

(A.2.5)

with Pd given in (2.2.21).

Multiplying the above by n(d)
J P (d)

J (z) and summing over J allows usage of the Gegenbauer

completeness relation

∞∑
J=0

n(d)
J P (d)

J (y)P (d)
J (z) = 2

Nd
(1− z2)

4−d
2 δ(y − z) , (A.2.6)

with n(d)
J given by (2.2.29). We then arrive at

Pd (z, z ′, z ′′) = (4π)d−2N 2
d (1− z ′2)

d−4
2 (1− z ′′2)

d−4
2

∞∑
J=0

n(d)
J P (d)

J (z)P (d)
J (z ′)P (d)

J (z ′′) . (2.2.36)

When z → 1, we can use (A.2.6) and the kernel localizes to

Pd (1, z1, z2) = 2(4π)d−2Nd (1− z2
1)

d−4
2 δ(z1 − z2) . (A.2.7)

We can get a similar identity to (2.2.36) for the Mandelstam kernel,

Kd (z,η1,η2) ≡
1∫

−1

d z1

1∫
−1

d z2
Pd (z, z1, z2)

(η1 − z1)(η2 − z2)
, (A.2.8)

by using the definition of the Gegenbauer function of the second kind, eq. (2.2.47), to get

(2.3.6).

We can get a hint at the analytic structure of the Mandelstam kernel from (2.3.6). In terms of

η′ and η′′ the kernel shares the [−1,1] branch cut of Q(d)
J . The situation is more interesting in

the z plane. Given that P (d)
J (z) is a polynomial in z, analytic everywhere, Kd (z,η′,η′′) can only

be singular whenever z is such that the sum in J no longer converges. Indeed, when J →∞ we
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have P (d)
J (z) ∼λ(z)J and Q(d)

J (z) ∼λ(z)−J (see appendix A.3), and the series diverges when

λ(z) =λ(η′)λ(η′), or z = η+ , (A.2.9)

which signals the singularity of the kernel as deduced in appendix A.

Representation (2.3.6) makes the symmetries of the kernel manifest. In particular, Kd (z,η′,η′′)
is symmetric in its last two arguments, and further obeys

Kd (−z,η′,η′′) =−Kd (z,−η′,η′′) =−Kd (z,η′,−η′′) , (A.2.10)

where we used Q(d)
J (−z) = (−1)J+d−3Q(d)

J (z) and P (d)
J (−z) = (−1)J P (d)

J (z). This symmetry of the

kernel is responsible for the t −u symmetry of the double spectral density (2.3.9).

Finally, let us derive (2.3.18). We start with integer J and |η1|, |η2| > 1. We take (A.2.5) and

apply to it
1Î

−1

d z1d z2
(η1−z1)(η2−z2) . In this way we get

1

8
π

2−d
2 Γ

(
d−2

2

) 1∫
−1

d y Kd (y,η1,η2)(1− y2)
d−4

2 P (d)
J (y) = (η2

1 −1)
d−4

2 Q(d)
J (η1) (η2

2 −1)
d−4

2 Q(d)
J (η2) ,

(A.2.11)

where we used the definition of Kd in terms of Pd (A.2.8) and definition of Q(d)
J in terms of

P (d)
J (2.2.47). Noting that P (d)

J is related to the discontinuity of Q(d)
J , see (2.2.46), we write the

integral as an anticlockwise contour around [−1,1]

1∫
−1

d y Kd (y,η1,η2)(1− y2)
d−4

2 P (d)
J (y) = 1

πi

∮
[−1,1]

dηKd (η,η1,η2)(η2 −1)
d−4

2 Q(d)
J (η) , (A.2.12)

where we used the fact that for |η1|, |η2| > 1 the kernel is analytic in a finite region around

[−1,1]. We now want to blow up this contour to infinity to pick up the branch cut of the

Mandelstam kernel (A.1.9). At infinity we have Kd (η→∞,η1,η2) ∼ logη
η for d > 3 and ∼ 1

η for

d = 3. Given that Q J (η→∞) ∼ η3−d−J we get that the integrand goes like ∼ η−J−2, which gives

a null contribution to the arc at infinity for ReJ >−1. In this way we arrive at

1

πi

∮
(−1,1)

dηKd (η,η1,η2)(η2 −1)
d−4

2 Q(d)
J (η) = 2

π

∞∫
η+

dηDiscηKd (η,η1,η2)(η2 −1)
d−4

2 Q(d)
J (η) .

(A.2.13)

Note that in the main text we included θ(η−η+) in the discontinuity of the kernel, see (2.3.10).

In the formula above, which is valid for complex (η1,η2), the variable η is integrated from η+
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to ∞ and we can simply use

DiscηKd (η,η1,η2) = 4π
d+1

2

Γ( d−3
2 )

(η2 −1)
4−d

2

(η−η−)
5−d

2 (η−η+)
5−d

2

. (A.2.14)

Plugging (A.2.13) and (A.2.12) back into (A.2.11) yields (2.3.18).

∞∫
η+

dη(η2 −1)
d−4

2 Q(d)
J (η)DiscηKd (η,η1,η2) = 4πd/2

Γ( d−2
2 )

(η2
1 −1)

d−4
2 Q(d)

J (η1) (η2
2 −1)

d−4
2 Q(d)

J (η2) .

(2.3.18)

This is valid for complex η1,η2 satisfying |η1|, |η2| > 1 and integer J . The integral is taken along

the path that does not cross any cuts of the integrand, e.g. arg[η] = arg[η+].

The above equation can be continued in spin. Indeed, note that both sides of (2.3.18) are

manifestly analytic in spin J for Re[J ] >−1 and coincide for positive integer J . To argue that

they coincide for any J we also need to check the growth at infinity. One can check that both

sides of (2.3.18) have a large J asymptotic λ(η+)−J and therefore the conditions of Carlson’s

theorem are satisfied.

A.3 The Q (d)
J (z) Large J Expansion

The large J expansion of the Q-function is given in (2.6.3) and (2.6.2). The aim of this appendix

is to argue that there are no nonperturbative corrections to this expansion of the form λ(z)−αJ ,

with α> 1. This fact is used in section 2.3.5 to derive the Landau curves in the elastic region.

We consider separately the cases when the spacetime dimension is even and when it is odd.

Odd dimensionsIn odd spacetime dimensions the Q-function (2.2.47) takes a simple form

Q(d odd)
J (z) = 2d−4pπΓ( d−2

2 )

λ(z)J (λ(z)2 −1)d−4

Γ(J +1)

Γ(J +d −3)
P d−5

2
(J ,λ(z)2 −1) (A.3.1)

Where Pn(J , x) is a polynomial of degree n in x and J . For example, we have

P−1 = 1

J x
, P0 = 1 , P1 = x(J +3)+2 , P2 = x2(J +5)(J +4)+6x(J +5)+12 . (A.3.2)

This form makes the large J expansion trivial.

Even dimensionsFor even spacetime dimensions, in analogues to (A.3.1), the Q-function takes

the form

Q(d even)
J (z) = (−1)

d
2

2
P (d)

J (z) log
z +1

z −1
+

(
z2

z2 −1

) d−4
2

K
(d)
J−1(z) , (A.3.3)
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where K(d)
n (x) is a polynom of degree n.1 Because the degree of the polynom depends on J ,

this form is not so useful for understanding the large J expansion.

Instead, we consider the exact integral (2.6.22) for any integer n. We observe that on the right

hand side of that equation we have again a Q-function, but now in odd spacetime dimension

instead of an even one. By expanding both sides of that equation at large J (and fixed n)

one can map between the coefficients of the large J expansion of the Q-functions in even

and odd spacetime dimensions. Now supposed Q(d even) had an λ(z)−αJ -type correction.

Assuming no cancellations, such a correction would result in an analogous correction in the

expansion of Q(d odd)(z1) in the right hand side of (2.6.22). From the above however it is clear

that corrections of this type are absent.

A.4 Gribov’s Theorem

It is possible to use elastic unitarity condition continued in spin J (2.3.15) to constrain the

high-energy asymptotic of the discontinuity of the amplitude [269, 270].

Consider the following ansatz for the discontinuity of the amplitude

lim
t→∞Tt (s, t ) = B(s, log t ) tα(s) , α(s) ∈R , 4m2 < s < 16m2. (A.4.1)

where B(s, log t ) is a slowly varying function of t that grows slower than a power, e.g. B(s, log t ) ∼
(log t )q(s).

Gribov’s Theorem: Let us assume the high energy behavior of the discontinuity (A.4.1) in the

elastic region 4m2 < s < 16m2. Elastic unitarity then implies that∫ ∞
d log t B(s, log t ) <∞ . (A.4.2)

Historically, Gribov’s theorem excluded the classical picture of diffraction from a black body

T (+)
t (s, t ) = B(s)t in QFT.

The easiest way to prove Gribov’s theorem is to note that if the integral (A.4.2) diverges f J (s)

develops a singularity on the real axis at J =α(s). Taking J =α(s)+ϵ where 0 < ϵ≪ 1 and real,

we get from the Froissart-Gribov formula

fα(s)+ϵ(s) ∼
∫ ∞

d x B(s, x)e−ϵx . (A.4.3)

1This form can be derived by expanding (1− z′2)
d−4

2 P (d)
J (z′) in (2.2.47) in powers of (z′− z). An explicit way of

fixing K(d)
J−1 from P (d)

J is be demanding that Q(d)
J decays as in (2.2.43). From (A.3.3) we see that the branch-cut

discontinuity in odd d is replaced by a logarithmic one for even d .
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Elastic unitarity close to the leading Regge singularity J =α(s) then takes the schematic form∫ ∞
d x ImB(s, x)e−ϵx ∝

∣∣∣∣∫ ∞
d x B(s, x)e−ϵx

∣∣∣∣2

=
(∫ ∞

d x ReB(s, x)e−ϵx
)2

+
(∫ ∞

d x ImB(s, x)e−ϵx
)2

, (A.4.4)

which can be only consistent if (A.4.2) holds. Indeed, otherwise we get that the singularity in

the RHS of (A.4.4) does not match the singularity in the LHS of (A.4.4).

A simple, and physically natural, way out of the contradiction is to assume that α(s) ∈ C.

Indeed, consider a model, where the leading Regge trajectory is given by a single Regge pole

f J (s) = β(s)

J −α(s)
+ . . . , Im[α(s)] ̸= 0 , 4m2 < s < 16m2 . (A.4.5)

This corresponds to the discontinuity of the amplitude that takes the form Tt (s, t ) =β(s)tα(s).

Let us now impose elastic unitarity (2.3.15) at J =α∗(s). We get that the solution is

β(s) = 2
p

s

(s −4m2)
d−3

2

Imα(s) . (A.4.6)

In d > 3 the consideration above tacitly assumed that Reα(s) >−1. This is related to the fact

that in d > 3, as can be seen explicitly from (2.2.47), Q(d)
J (z) develop a pole at J = −1 and

we run into the same problem as above where the singularities do not match in the elastic

unitarity equation.

It would be interesting to understand better properties of the full nonperturbative leading

Regge trajectory in the complex s plane, see e.g. discussion in [42] for some common as-

sumptions. The properties of the leading Regge trajectory in the planar theory are relatively

well-understood, see e.g. [271, 131].

A.5 Elastic Landau curves from the Mandelstam Equation

The functional shape of the Landau curves in the elastic strip can be derived by impose the

consistency between the positions of the thresholds of Tt (s, t) (2.3.23) and those of ρ(s, t)

(2.3.24) with elastic unitarity. In section 2.3.5 we have done so by imposing elastic unitarity at

the level of the partial waves. In this appendix we use the Mandelstam equation instead to

generate the same curves.

The Mandelstam equation (2.3.9) can be written as

ρ(s, t ) = K[T (+)
t ,T (−)

t ](s, zs(t )) , (A.5.1)
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where we have introduced the functional

K[A,B ](s, z) ≡ (s −4m2)
d−3

2

4π2(4π)d−2
p

s

∞∫
z1

dη′
∞∫

z1

dη′′ A(s,η′)B(s,η′′)Discz K (z,η′,η′′) . (A.5.2)

Permutation symmetry of the Mandelstam kernel, Kz (z,η′,η′′) = Kz (z,η′′,η′), implies symme-

try of the functional K[A,B ] = K[B , A]. Due to real analyticity
[
T (+)

t

]∗ =T (−)
t , it then follows

from (A.5.1) that ρ(s, t ) is real when s, t are real and positive.

The structure of Tt (s, t ) in physical (t-channel) kinematics is given in (2.3.23). As we continue

s out of that region, T 2→2n
t (s, t ) may develop a discontinuity at the Karplus curves. Given that

ρ(s, t ) ≡ DiscsTt (s, t ) = Im sTt (s, t ), we can separate Tt (s, t ) into real and imaginary parts as

T (±)
t (s, t ) = R(s, t )± iρ(s, t ) , (A.5.3)

where for physical s, ρ(s, t) vanishes and R(s, t) is simply given by the normal thresholds of

(2.3.23). It can be written schematically as

R(s, t ) ∼
∞∑

n=1
Θ(z − z|t=2nm2 ) , 4− t < s < 0 . (A.5.4)

By plugging (A.5.3) into (A.5.1) we get that

ρ = K[R,R]+K[ρ,ρ] . (A.5.5)

We now take R to just be given by (A.5.4) as a seed to (A.5.5) and iterate this equation to find

the minimal consistent set of Landau curves in (2.3.24) that is consistent with this equation.

Note that for s > 4m2, R can have additional discontinuities in addition to normal thresholds.

Hence, at each step we correct R with the additional thresholds of ρ that are generated through

the iteration of (A.5.5). In the end we check the iteration procedure converges to a closed set

of Landau curves.

The first contribution to ρ comes from inserting (A.5.4) into (A.5.5)

K[R,R](s, z) ∼
∞∑

n,m=1

∞∫
1

dη′dη′′Θ(η′− zn)Θ(η′′− zm)Θ
(
z −η+(η′,η′′)

)
∼

∞∑
n,m=1

Θ
(
z −η+(zn , zm)

)= ∞∑
n,m

Θ (λ(z)−λ(zn)λ(zm)) . (A.5.6)

We see that normal thresholds generate a first set of Landau curves for ρ(s, t ) given by (2.3.31)

via the K[R,R] term. Including the (A.5.6) Karplus curves into R requires, from consistency
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with (A.5.5), an additional set of “cubic" curves,

K[R,K[R,R]](s, z) ∼
∞∑

n,m,l=1

∞∫
1

dλ′dλ′′Θ(λ′−λ(zn))Θ(λ′′−λ(zm)λ(zl ))

∼
∞∑

n,m,l=1
Θ (λ(z)−λ(zn)λ(zm)λ(zl )) , (A.5.7)

and also “quartic" curves,

K [K [R,R],K [R,R]](s, z) ∼
∞∑

n,m,l ,k=1

∞∫
1

dλ′dλ′′Θ(λ′−λ(zn)λ(zm))Θ(λ′′−λ(zk )λ(zl ))Θ
(
λ(z)−λ′λ′′)

∼
∞∑

n,m,l ,k=1
Θ (λ(z)−λ(zn)λ(zm)λ(zk )λ(zl )) . (A.5.8)

Iterating further, we find that a natural set of Landau curves consistent with (A.5.5) and the

existence of normal thresholds is

R (s, t (z)) ∼
∞∑

L=1

∞∑
{n1,...,nL }

Θ(λ(z)−λ(zn1 ) · · ·λ(znL )) , (A.5.9)

and

ρ (s, t (z)) ∼
∞∑

L=2

∞∑
{n1,...,nL }

Θ(λ(z)−λ(zn1 ) · · ·λ(znL )) , (A.5.10)

where importantly 4m2 < s < 16m2. Note that the difference between the supports of (A.5.9)

and (A.5.10) is precisely (A.5.4).

Below we present the curves that asymptote to t = 16m2, 36m2, 64m2.

t{2,0,... } = 16m2s

s −4m2 , t{3,0,... } =
36m2(s + 4m2

3 )2

(s −4m2)2 , t{4,0,... } = 64m2s(s +4m2)2

(s −4m2)3 , (A.5.11)

t{1,1,0,... } = 20m2s +16m2
√

s(s +12m2)+48m4

s −4m2 , t{0,2,0,... } = 64m2(s +12m2)

s −4m2 , (A.5.12)

t{1,0,1,0,... } = 128m4 +40m2s +24m2
√

s(s +32m2)

s −4m2 ,

t{2,1,0,... } =
16m2

(
s +2m

p
s +2m

p
s +12m2 +

√
s(s +12m2)+8m2

)2

(p
s −2m

)2
(
s +8m

p
s +12m2 +28m2

) . (A.5.13)

The curves are plotted below.
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Figure A.1: Plot of the Landau curves given by equations (A.5.11) to (A.5.13) for m = 1. The curves are
organized by color according to the asymptote at t →∞. Black is the leading curve t{2,0,0,... }. Red curves
obey t{1,1,0,... } < t{3,0,... }. Blue curves obey t{1,0,1,0,... } < t{0,2,0,... } < t{2,1,0,... } < t{4,0,... }.

A.6 Threshold Expansion for Non-Integer J

It is interesting to ask about the continuation of the formula (2.5.3) for the solution to elastic

unitarity to non-integer J . For a related discussion, see e.g. [272].

The starting point is the observation that the Froissart-Gribov formula can be written in the

following form

f J (s)

(s −4m2)J
= 2

(16π)
2−d

2

Γ
(

d−2
2

) ∞∫
z1

d z

π
(z2 −1)

d−4
2

Q(d)
J (z)

(s −4m2)J
Tt (s, t (z)) (A.6.1)

admits a simple analytic continuation to s < 4m2 for real J .

Indeed, Q(d)
J (z) for non-integer J have a branch point at s = 4m2 or, equivalently, z =∞. On

the other hand,
Q (d)

J (z)

(s−4m2)J has only branch cut for z ∈ [−1,1] and satisfies

(z2 −1)
d−4

2

Q(d)
J (z)

(s −4m2)J
=−((−z)2 −1)

d−4
2

Q(d)
J (−z)

(4m2 − s)J
, (A.6.2)

for |z| > 1 as can be easily seen from (2.2.47).

Switching in the RHS of (A.6.1) to the integral
∞∫

4m2

d t we can continue f J (s) to s < 4m2. Together

with the fact that Tt (s, t (z)) is positive and real for 0 < s < 4m2 we conclude that f J (s)
(s−4m2)J is real

analytic function of s with a branch cut starting at s = 4m2. Moreover, f J (s)
(s−4m2)J is positive and

real for 0 < s < 4m2.
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Let us now impose continued in spin elastic unitarity (2.3.15). It is convenient to rewrite it as

follows

1

i

(
(s −4m2)J

f J (s + iϵ)
− (s −4m2)J

f J (s − iϵ)

)
=− (s −4m2)J+ d−3

2p
s

. (A.6.3)

The general solution to it takes the form

f J (s) = (s −4m2)J

b̃ J (s)+ e−iπ(J+ d−3
2 )

sinπ(J+ d−3
2 )

(s−4m2)J+ d−3
2

2
p

s

, s > 4m2, (A.6.4)

where b̃ J (s) are analytic around s = 4m2 and b J (4) ∼ a J > 0 for J ≥ 2.

Few comments are in order. Let us first discuss how the formula above reduces to (2.5.3) when

J is even integer. In even d it is trivial upon identifying b̃ J=2k (s) = (s −4m2)2k b2k (s). In odd d

the situation is more subtle because in this case e−iπ(J+ d−3
2 )

sinπ(J+ d−3
2 )

= e−iπJ

sinπJ which develops a pole for

even J . The residue of this pole (s−4m2)J+ d−3
2

2
p

s
however is analytic around s = 4m2 and therefore

it can be canceled by b̃ J (s) if we impose that

lim
J→2k

b̃ J (s) =− 1

J −2k

(s −4m2)2k+ d−3
2

2π
+ (s −4m2)2k b2k (s)+O(J −2k) , J > Reα(s), d odd,

(A.6.5)

the J 0 term then correctly reproduces (2.5.3).

Secondly, note that when |J | → ∞ the ratio e−iπ(J+ d−3
2 )

sinπ(J+ d−3
2 )

is polynomially bounded which is

consistent with the expected behavior of J J (s) at infinity. This poses a potential problem in

even d for half-integer J and in odd J integer J .

Let us consider even d first. In this case e−iπ(J+ d−3
2 )

sinπ(J+ d−3
2 )

=−i e−iπJ

cosπJ develops a pole at odd J which

corresponds to zero of f J (s). Therefore unless there is a cancellation between the two terms in

the denominator of (2.5.3) we have that f 1
2+Z = 0. If this is the case via Carlson theorem we

then conclude that f J (s) = 0 identically. Therefore, an infinite number of poles should cancel

with the corresponding poles in b̃ J (s). In this way we get

lim
J→k− 1

2

b̃ J (s) =− 1

J − (k − 1
2 )

(s −4m2)k+ d−4
2

2π
+ . . . , J > Reα(s), d even. (A.6.6)

Note again that in even d (s −4m2)k+ d−4
2 is analytic at s = 4m2 which is consistent with the

predicted property of b̃ J (s).
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Finally, in odd d for odd integer J we get the following cancellation condition

lim
J→2k−1

b̃ J (s) =− 1

J − (2k −1)

(s −4m2)2k+ d−5
2

2π
+ . . . , J > Reα(s) d odd. (A.6.7)

A.7 Threshold expansion in J-space: Technical Details

In this appendix we collect various results and technical details that are relevant to the in-

version of the threshold expansion using the Froissart-Gribov formula performed in section

2.6.3.

We start with the derivation of (2.6.22). Consider first d to be even. We would like to evaluate

the following integral

I (d)
n,J (z1) ≡ 2Nd

π

∞∫
z1

d z(z2 −1)
d−4

2 Q(d)
J (z)

(z1 −1)
d−3

2 −n

(z − z1)
d−3

2 −n
= 2Nd

π
(z1 −1)

d−3
2 −n I (d ,n, z1),

I (d ,n, z1) ≡
∞∫

z1

d z(z2 −1)
d−4

2 Q(d)
J (z)

1

(z − z1)
d−3

2 −n
, n ∈Z , n ≥ 0 . (A.7.1)

We would like to do the integral for general J . The strategy is to do the integral first for integer

J exactly and then analytically continue it to arbitrary J .

As a first step we note that the integrand can be interepreted as a discontinuity of some simple

function

Disct
1

sinπ( d−3
2 −n)

1

(z1 − z)
d−3

2 −n
= 1

(z − z1)
d−3

2 −n
. (A.7.2)

For integer n and d this only holds for even d , where the power is half-integer and therefore

we have a square-root type discontinuity.

Therefore if we interpret the integrand as a discontinuity Tt (s, t ) = 1

(z−z1)
d−3

2 −n
of the amplitude

T (s, t ) = 1
sinπ( d−3

2 −n)
1

(z1−z)
d−3

2 −n
then (A.7.1) is nothing but the Froissart-Gribov integral for this

amplitude! In this way we can immediately rewrite it as follows

I (d ,n, z1) = π

2

(−1)n

sinπd−3
2

1∫
−1

d z(z2 −1)
d−4

2 P (d)
J (z)

1

(z1 − z)
d−3

2 −n
. (A.7.3)

Here we used that J is integer and dropped the contour at infinity which requires J > n − d−3
2 .
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We note that the integral (A.7.1) satisfies a very simple recursion relation based on the identity

∂z1 I (d ,n, z1) =−(n − d −3

2
)I (d ,n −1, z1). (A.7.4)

Therefore we can first compute the integral for n = 0 and then use this differential equation to

compute the integral for n > 0.

Let us now find explicitly I (d ,0, z1). To do this let us do the following change of variable

1

t
=λ(z1) ≡ z1 +

√
z2

1 −1. (A.7.5)

We can then write

1

(z1 − z)
d−3

2

= 1

(2t )
3−d

2

1

(1−2t z + t 2)
d−3

2

= 1

(2t )
d−3

2

∞∑
J=0

C
( d−3

2 )
J (z)t J

= 1

(2t )
3−d

2

∞∑
J=0

Γ(d −3)Γ(J +1)

Γ(d + J −3)
P (d)

J (z)t J , (A.7.6)

where we used the relation between P (d)
J (z) and the Gegenbauer polynomials C

( d−3
2 )

J (z)

P (d)
J (z) = Γ(d + J −3)

Γ(d −3)Γ(J +1)
C

( d−3
2 )

J (z). (A.7.7)

Using the orthogonality property of P (d)
J (z) we immediately get

I (d ,0, z1) = π

2

1

sinπd−3
2

1

(2t )
3−d

2

2

Nd n(d)
J

Γ(d + J −3)

Γ(d −3)Γ(J +1)
t J =

= π

sin πd
2

2
3d−11

2 Γ( d−2
2 )2

(2J +d −3)Γ(d −3)
λ(z1)−(J+ d−3

2 ). (A.7.8)

The rest we can get trivially using (A.7.4). Note that the final result holds in any d and for any J .

The basic integral is the following∫
d z1λ(z1)−c = 1

2

(
λ−1−c

c +1
− λ1−c

c −1

)
. (A.7.9)

Therefore, it is clear that we get the following result for the integral

I (d ,n, z1) = π

sin πd
2

2
3d−11

2 Γ( d−2
2 )2

(2J +d −3)Γ(d −3)
λ(z1)n−(J+ d−3

2 )
n∑

k=0
ck,nλ(z1)−2k , (A.7.10)

where ck,n can be explicitly found.
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We have c0,0 = 1. It is then easy to check that we have the following result

I (d ,n, z1) = 2
3d−13

2 Γ( d−2
2 )2Γ( d−3

2 )Γ(n + 5−d
2 )

Γ(d −3)
λ(z1)n−(J+ d−3

2 )

×2−n
n∑

k=0

(
n

k

)
(−1)k∏n

j=0(J +k − j + d−3
2 )

λ(z1)−2k . (A.7.11)

Also note that when J →∞, the denominator ∼ J n+1 factors out and the sum becomes New-

ton’s binomial. We get

lim
J→∞

I (d ,n, z1) = 2
3d−13

2 Γ( d−2
2 )2Γ( d−3

2 )Γ(n + 5−d
2 )

J n+1Γ(d −3)
(z2

1 −1)
n
2 λ(z1)−(J+ d−3

2 ) (A.7.12)

where we used λ(z1)−λ−1(z1) = 2z2
1 −2.

From the above we conclude

lim
J→∞

I (d ,n +1, z1)

I (d ,n, z1)
=

√
z2

1 −1

(
n + 5−d

2

)
1

J
. (A.7.13)

This is the essence of why a threshold expansion maps to a systematic large J expansion

through the Froissart-Gribov integral: Consecutive terms in the threshold expansion are

roughly suppressed by ∼ 1
J with respect to one another.

Note that the original integral I (d ,0, z1) looks divergent in even d ≥ 6, whereas the final result

(A.7.8) is finite. The resolution to this apparent contradiction is that when we changed the

contour and wrote the integral as (A.7.3) we implicitly used that the original integral was

defined via the keyhole prescription. Therefore, the result (A.7.11) is correct.

Formula (A.7.11) can be rewritten as follows

I (d ,n, z1) =− 1

π

2
3d−12

2 Γ( d−2
2 )2Γ( d−3

2 )Γ(n + 5−d
2 )

Γ(d −3)
λ(z1)n−(J+ d−3

2 )2−n cos
π(d +2J )

2
Ĩ

Ĩ ≡
n∑

k=0

(
n

k

)
(−1)kΓ(

3−d

2
− J −k)Γ(

d −3

2
+ J +k −n)λ(z1)−2k . (A.7.14)

We now note that we can write

Ĩ = Γ(
3−d −2J

2
)Γ(

2J −2n +d −3

2
) 2F1(

d −3

2
+ J −n,−n, J + d −1

2
,

1

λ1(z)2 ), (A.7.15)

which we can now analytically continue away from integer n. Using the formula (2.6.3) for

Q(d)
J (z) we finally get (2.6.22) which can be now checked to hold for arbitrary J , d and n.
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Odd d

In odd dimensions we are also interested in the following integral

Il og (d ,n, z1,ci ) =
∞∫

z1

d z(z2 −1)
d−4

2 Q(d)
J (z)

(z − z1)n− d−3
2

log2(z − z1)+ c1 log(z − z1)+ c2
. (A.7.16)

This comes from plugging the threshold expansion into the Froissart-Gribov integral. In this

case we note that

(∂2
n + c1∂n + c2)Ilog (d ,n, z1,ci ) = I (d ,n, z1), (A.7.17)

where I (d ,n, z1) was computed in the subsection above. It is easy to write a general solution

to this differential equation, which should suffice for doing the integrals numerically for given

J . We have not pursued this further in the present paper.

A.7.1 Higher Order Corrections to ρ(s, t )

Here we present some details for computing the double spectral density that comes from

plugging cn1 cn2

(η′−z1)n1− d−3
2

(z1−1)n1− d−3
2

(η′′−z1)n2− d−3
2

(z1−1)n2− d−3
2

for the square of discontinuity of the amplitude in the

Mandelstam equation (2.3.9). We denote the result of this integration by ρn1,n2 (s, t (z)).

It admits the following expansion close to the leading Landau curve

ρ(s, t (z)) = ∑
n1,n2

cn1 cn2ρn1,n2 (s, t (z)) , ρn1,n2 (s, t (z)) ≡ (s −4m2)
d−3

2

4π2(4π)d−2
p

s
Ĩ (d)

n1,n2
(z) , (A.7.18)

where Ĩ (d)
n1,n2

(z) was defined in (2.5.13). This can be expanded close to the leading Landau

curve

ρn1,n2 (s, t (z)) = 1

(z1 −1)n1+n2−(d−3)

(z − (2z2
1 −1))n1+n2

(z − (2z2
1 −1))

d−5
2

∞∑
m=0

dn1,n2;m(s)(z − (2z2
1 −1))m ,

(A.7.19)

where dn1,n2;m(s) are the coefficients that we would like to compute.

Instead of computing the integral (2.3.9) we can use (A.7.1) to get Im f J (s) and then extract

dn1,n2;m(s) by imposing elastic unitarity order by order in 1
J . The result takes the following

form

dn1,n2;0(s) = 2
d−3

2
Ndp
π

(s −4m2)
d−3

2p
s

λ
2+n1+n2
1 (λ2

1 −1)n1+n2

(λ4
1 −1)n1+n2+1

Γ( d−2
2 )Γ(n1 + 5−d

2 )Γ(n2 + 5−d
2 )

Γ(n1 +n2 + 7−d
2 )

,

(A.7.20)
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where λ1 ≡λ(z1).

Proceeding to higher orders we get

dn1,n2;m(s)

dn1,n2;0(s)
= Γ(n1 +1+m)

Γ(n1 +1)

Γ(n2 +1+m)

Γ(n2 +1)

λ2m
1

(λ4
1 −1)2m

Γ(n1 +n2 + 7−d
2 )

Γ(n1 +n2 + 7−d
2 +m)

(−1)m2m

Γ(m +1)
polym ,

(A.7.21)

where polym does not depend on d and takes the form

polym =
2m∑
i=0

λ2i
1 ci ,m . (A.7.22)

We quote here some results on the properties of the polynomial polym

c0,m = c2m,m = 1 , ci ,m = c2m−i ,m ,

c1,m =−m

(
n2

n1 +1
+ n1

n2 +1

)
,

c2,m = m2 + m(m −1)

2

(
n2(n2 −1)

(n1 +1)(n1 +2)
+ n1(n1 −1)

(n2 +1)(n2 +2)

)
(A.7.23)

We can also write down an explicit result for n1 = n2 = 0

ci ,m = 1+ (−1)i

2

(
m
i
2

)2

, (A.7.24)

so that

polym = 2F1(−m,−m,1,λ4
1) , n1 = n2 = 0. (A.7.25)

For n1 = n2 = 1 and n1 = 0,n2 = 1 we get

ci ,m = (−1)i

(
m

[ i
2 ]

)(
m

[ i+1
2 ]

)

= (−1)i

(
1+ (−1)i

2

(
m
i
2

)2

+ 1− (−1)i

2

(
m
i−1

2

)(
m
i+1

2

))
, (A.7.26)

where [x] stands for the integer part of x. Similarly one can write an explicit result for polym in

terms of hypergeometric functions.

Note that the threshold expansion of the double spectral density (A.7.19) does not reflect

the behavior of ρn1,n2 (s, t(z)) at large z ≫ 1. Indeed, one can check that it takes the form

ρn1,n2 (s, t (z)) ∼ zmax[n1,n2]− d−3
2 (1+δn1,n2 log z).2

2The fact that n1 = n2 term acquires an extra log z is closely related to Gribov’s theorem which constrains the
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A. W. Martin [68] found an elegant closed expression for ρn1,n2 (s, t(z)) in d = 4. It takes the

following form

ρ(d=4)
n1,n2

(s, t ) = dn1,n2;0

(z1 −1)n1+n2−1

(δz)n1+n2+ 1
2(

1+ 2δzλ2
1

(λ2
1−1)2

) 1
2

×
∞∑

p,q,r=0

Γ(n1 +n2 + 3
2 )Γ(n2 +2p + r + 1

2 )Γ(n1 +2q + r + 1
2 )

p !q !r !Γ(n1 + 1
2 )Γ(n2 + 1

2 )Γ(n1 +n2 +p +q + r + 3
2 )

(A.7.27)

×
(

δz

4(z −1)z2
1

)p+q (
−zδz

2(z −1)z2
1

)r

,

where δz ≡ z − (2z2
1 −1). The advantage of the formula above is that by performing the sum

over r it makes the large z limit of ρ(s, t ) manifest.

Similarly, in d = 3 the correction to the double spectral density takes the following form

ρ(d=3)
n1,n2

= 1

8π
p

s

arccosh z−arccosh z1∫
arccosh z1

dθ1
(coshθ1 − z1)n1

(z1 −1)n1

(cosh(arccosh z −θ1)− z1)n2

(z1 −1)n2
, (A.7.28)

which can be explicitly evaluated for given n1, n2.

The representations above are particularly useful if one would like to perform computations at

finite J and finite s, see section 2.7. Indeed, plugging the threshold expansion formula in the

Froissart-Gribov integral becomes dangerous at high enough order because the integral goes

all the way to z →∞. Martin’s formula (A.7.27) does not have this problem after performing

the r resummation. The same holds true for the d = 3 result (A.7.28). These formulae make

both the threshold and the large δz behavior of ρ(s, t ) manifest. We discuss the generalization

of the formulae above to other dimensions below.

Mandelstam Integral for ρ(s, t )

In solving elastic unitarity (2.5.11) within the threshold expansion we sometimes want to

compute the following integral

J (d)
n1,n2

(s, t ) ≡ (z2 −1)
d−4

2

∞∫
z1

dη′

π

∞∫
z1

dη′′

π
(η′− z1)n1− d−3

2 (η′′− z1)n2− d−3
2 Discz K (z,η′,η′′) . (A.7.29)

Above we discussed the results in case of d = 3 and d = 4 as well as the threshold expansion in

general d . Here we would like to note that in other dimensions the integral can be evaluated

possible leading Regge behavior of the scattering amplitude in the elastic region, see appendix A.4.
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recursively by noting that

∂δz J (d)
n1,n2

(δz) =−(d −5)
(
(1− z2

1 −δz)J (d−2)
n1−1,n2−1 + J (d−2)

n1,n2
+ z1(J (d−2)

n1,n2−1 + J (d−2)
n1−1,n2

)
)

. (A.7.30)

This recursion can be used in even d and in odd d ≥ 7. The case of d = 5 can be treated

explicitly similarly to the case of d = 3 in the previous section.

A.7.2 More General Integral

Above we obtained the following result

I (d ,n, z1) =
∞∫

z1

d z(z2 −1)
d−4

2

Q(d)
J (z)

(z − z1)
d−3

2 −n
= Γ( d

2 −1)Γ(n + 5−d
2 )

2n− d−5
2 Γ( 3

2 +n)
(z2

1 −1)n+ 1
2 Q(2n+5)

J−n+ d−5
2

(z1) .

(A.7.31)

Let us consider a slightly more general integral

I (d ,n,m, z1) ≡
∞∫

z1

d z(z2 −1)
d−4

2 Q(d)
J (z)

1

(z − z1)
d−3

2

(z − z1)n

(z −1)m , n,m ≥ 0 . (A.7.32)

The advantage of this integral is that for m = n this a natural threshold expansion in terms of
z−z1
z−1 which does not grow for z →∞. For m = 0 we get (A.7.31).

We can rewrite this integral as follows

1

(z −1)m = 1

(z − z1 + [z1 −1])m (A.7.33)

= 1

Γ(m)

i∞∫
−i∞

dα

2πi
Γ(m +α)Γ(−α)

(z1 −1)α

(z − z1)m+α , −m < Re α< 0 .

In this way we immediately get

I (d ,n,m, z1) = 1

Γ(m)

i∞∫
−i∞

dα

2πi
Γ(m +α)Γ(−α)

I (d ,n −m −α, z1)

(z1 −1)m+α , (A.7.34)

where the large z convergence requires ReJ > n −m −Re α− d−3
2 . Next we can use the Mellin

representation for the hypergeometric function

2F1(a,b,c, z) = Γ(c)

Γ(a)Γ(b)

∫
d s

2πi

Γ(a + s)Γ(b + s)Γ(−s)

Γ(c + s)
(−z)s . (A.7.35)
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To use straight contour we would like to have Re[a,b,c] > 0. For the case above this becomes

n −m <α< 1−m +n . (A.7.36)

Therefore to apply the formula for n = m we need to deform the contour across α= 0 pole and

pick the residue. We then perform the α integration.

Let us for simplicity present the result for d = 4 and m = n

I (4,n,n, z1)
p

2πλ
−J− 1

2
1

= 1

2J +1
−

√
λ1 −1

λ1 +1

∞∑
k=0

1

(λ2
1 −1)k

Γ(1+ J )Γ(n + 1
2 )Γ(k + 1

2 )

Γ( 1
2 −k)Γ(k +1)Γ(J +k + 3

2 )Γ(n)
(A.7.37)

× 3F2(1+ J ,k + 1

2
,n + 1

2
;

3

2
,

1

2
−k,

λ1 −1

λ1 +1
)

+ 2p
π

λ1 −1

λ1 +1

∞∑
k=0

(
4

(1+λ1)2

)2k Γ(k +n +1)Γ(k + 1
2 )

Γ(n)Γ(2k +3)

× 3F2(
3

2
+ J +k,2k +1,n +k +1;k + 3

2
,k +2,

λ1 −1

λ1 +1
) .

For given n this can be quite easily expanded at large J . Important property of this expansion is

that higher terms in k have an extra suppression in 1
J . Using this formula one can in principle

repeat the analysis of section 2.6 up to an arbitrary high order in z−z1
z−1 without spoiling the

Regge behavior of the amplitude.

A.8 Keyhole Integrals in Odd d

In this appendix we collect some of the useful integrals in odd d . They appear both in the large

J expansion of partial waves, and in the threshold expansion of the double spectral density.

A key difference compared to even d is appearance of powers of both logarithm and inverse

logarithm of the threshold expansion parameter σt .

A.8.1 Partial Wave

In the discussion of the large J expansion we encountered the integral (2.6.6), and in odd d we

introduced a function gn(J ) in (2.6.8) that controls the large J asymptotic behavior of partial

waves. Let us compute it explicitly.

For the universal threshold asymptotic in odd d , see (2.5.7), the relevant integral takes the

following form

gn(log J ) = 1

2i

∮
keyhole

d z

zn

1

log z
J − iπ

e−z , n = 0,1,2, . . . . (A.8.1)

In our problem n = d−3
2 . The keyhole contour is depicted in figure 2.10 and it naturally appears
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when deriving the Froissart-Gribov formula.

For n = 0,1 (d = 3 and d = 5) it is not necessary to keep the keyhole since the integral (A.8.1)

converges and we can simply write

gn=0,1(log J ) =
∞∫

0

d z

zn

1

log2 z
J +π2

e−z . (A.8.2)

To compute n ≥ 2 it is convenient to slightly modify the integral and use the following recursion

relation

gn(log J ,α) = 1

2i

∮
keyhole

d z

zn

1

log z
J − iπ

e−αz ,

∂αgn(log J ,α) =−gn−1(J ,α) , (A.8.3)

with the starting point given by g0(log J ,α) which does not require regularization and can be

efficiently computed numerically, see (A.8.2). We also note that

lim
J→∞

gn(log J ,α) = 0 , (A.8.4)

which allows us to fix the integration constant in the differential equation (A.8.3). The original

integral (A.8.2) is recovered by setting α= 1.

Let us start with n = 0. It is convenient to rewrite the n = 0 integral as follows

g0(J ) = Γ(1−∂log J )
1

(log J )2 +π2 = 1

log2 J
+ . . . . (A.8.5)

A slight advantage of writing Γ(1−∂log J ) is that to generate the large J expansion we can treat

∂log J in the argument of gamma-function as a small parameter.

To derive (A.8.5) we can write more generally

Γ(1−∂log J )g (log J ) ≡
∞∫

0

d te−t t−∂log J g (log J ) =
∞∫

0

d te−t g (log
J

t
) = JL [g (− log t )](J ) , (A.8.6)

where we used that e−a∂x g (x) = g (x −a).

By solving the recursion we then then get

g1(J ) = Γ(1−∂log J )
i

2π
log

1− iπ
log J

1+ iπ
log J

= 1

log J
+ . . . ,

gn(J ) = (−1)n−1

Γ(n) log J
+ . . . . (A.8.7)
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More generally, we can write

gn(log J ) = Γ(1−∂log J )ĝn(log J ) = JL [ĝn(− log t )](J ) , (A.8.8)

where a few of the ĝn ’s were listed above in (A.8.7). Note that (A.8.7) can be easily computed

numerically for finite J using (A.8.6). This is an advantage compared to the original integral

(A.8.1) which requires a keyhole regularization.

The leading large J asymptotic of partial waves in odd d therefore takes the form

f̂ J (s) = 25−d n(d)
0 m4−d J

d−3
2

(
z1 −1

z1 +1

) d−3
4

π2g d−3
2

(
log J

√
z1 −1

z1 +1

)

= 25−d n(d)
0 m4−d J

d−3
2

(
z1 −1

z1 +1

) d−3
4

π2 JL [ĝ d−3
2

(− log

√
z1 +1

z1 −1
δz)](J ) . (A.8.9)

A.8.2 Double Spectral Density

We next consider the problem of computing of ρ(s, t ) close to the threshold in odd d for the

universal threshold asymptotic (2.5.7). The idea is to use the result of the previous subsection

together with elastic unitarity.

Recall that due to elastic unitarity for 4m2 < s < 16m2 we have, see (2.6.11) and (2.6.12),

Im f̂ J (s) = 2− d+5
2 J

1−d
2 md−4π

1−d
2 z

3−d
2

1

(
z1 −1

z1 +1

) 5−d
4 | f̂ J (s)|2 . (A.8.10)

Using the results of the previous subsection we can immediately read off the large J expansion

of Im f̂ J (s). The latter is related to ρ(s, t ) as follows, see (2.6.11),

Im f̂ J (s) = JL [ρ(s, t (δz))](J ) = J

∞∫
0

dδze−Jδzρ(s, t (δz)) ,

t (δz, J ) = 8m2

(
z1 +1+ z1

(
z1 +1

z1 −1

)1/2

δz

)
, (A.8.11)

where the integral in the first line should be defined via the keyhole contour whenever it is

divergent. For the universal threshold behavior in odd d this happens for d ≥ 9.

Let us limit ourselves to the situations when the integral (A.8.11) does not require the keyhole

regularization, namely d < 9. In this case the elastc unitarity takes the form

L [ρ(s, t (δz))](J ) = 2− 5
2 (d−3)md−4(n(d)

0 )2π
9−d

2 z
3−d

2
1

(
z1 −1

z1 +1

) d−1
4

J
d−3

2

(
L [ĝ d−3

2
(− log

√
z1 +1

z1 −1
δz)](J )

)2

.

(A.8.12)
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Using the basic properties of the Laplace transform we can rewrite this as follows

ρ(s, t (δz)) = 2− 5
2 (d−3)md−4(n(d)

0 )2π
9−d

2 z
3−d

2
1

(
z1 −1

z1 +1

) d−1
4

(−1)
d−3

2 ∂
d−3

2

δz

δz∫
0

dδz ′ĝ d−3
2

(− log

√
z1 +1

z1 −1
δz ′)ĝ d−3

2
(− log

√
z1 +1

z1 −1
[δz −δz ′]) . (A.8.13)

Together with the result of the previous subsection it allows us to compute the leading thresh-

old contribution to the double spectral density.

Let us analyze in a little bit more detail the case of d = 3. In this case we get

ρ(s, t (δz)) = (n(d)
0 )2mπ3

(
z1 −1

z1 +1

) 1
2
δz∫

0

dδz ′ 1

[log
(

z1+1
z1−1

) 1
2
δz ′]2 +π2

1

[log
(

z1+1
z1−1

) 1
2

(δz −δz ′)]2 +π2

= (n(d)
0 )2mπ3

(
z1 −1

z1 +1

) 1
2

δz

1∫
0

d x
1

[log
(

z1+1
z1−1

) 1
2
δzx]2 +π2

1

[log
(

z1+1
z1−1

) 1
2
δz(1−x)]2 +π2

= (n(d)
0 )2mπ3

(
z1 −1

z1 +1

) 1
2 δz(

log
(

z1+1
z1−1

) 1
2
δz

)4

1+ 4

log
(

z1+1
z1−1

) 1
2
δz

+ 20− 8
3π

2

log2
(

z1+1
z1−1

) 1
2
δz

+ . . .

 .

(A.8.14)

One can easily check that the leading order result agrees with the formulas in the main body.
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B.1 Analytical multi-particle Landau curves

Here we collect explicit equations for some of the multi-particle Landau curves discussed in

the paper. For convenience we set the mass m = 1. We refer to the various diagrams by their

colors as depicted on figure 3.5.

Red curve (the accumulation curve)

(s −16)(t −16)−192 = 0. (B.1.1)

Planar cross (see figure 3.3.a, and [96])

s3(t −16)+ t 3(s −16)+24st (s + t −18)−2s2t 2 = 0. (B.1.2)

Non-planar cross (see figure 3.3.b, and [96])

1

3
s3t 3u3 −48s3t 3u2 +768s3t 3u −4096s3t 3 +4096s3

+8512s2t 2u2 −503808s2t 2 −36864
(
s2t + st 2)

+138240
(
s3t 2 + s2t 3)−790528stu + (cyclic) = 0, (B.1.3)

where s + t +u = 4. Curiously in the region 0 < s, t ,u < 4 this curve can be written as

[273]

( s

16

) 1
3 +

(
t

16

) 1
3 +

( u

16

) 1
3 = 1. (B.1.4)

Green curve

s2t 2 −16s2t −32st 2 +224st +256(t −1)2 = 0. (B.1.5)
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Blue curve

(s −16)3t 2 + (s −4)(s −16)3t −16((s −10)s +32)2 = 0. (B.1.6)

Curves (B.1.1), (B.1.5) and (B.1.6) were found using the 2-particle kernel. See appendix B.2.

B.2 Multi-particle Landau curves from 2-particle unitarity

As explained in section 3.1, we can assign graphs to singularities that follow from continuation

of unitarity. They represent how unitarity integrals relate singularities of sub-graphs to singu-

larities of the bigger graph. In this appendix we demonstrate such explicit relation directly at

the level of the Landau curves, without using the Landau equations. It follows from a detailed

analysis of the two-particle unitarity integral – the so-called Mandelstam kernel, see [7] for

details.

Figure B.1: The Landau curve of a graph AB that has a 2-particle cut is related to the singularities of
sub-graphs A and B. The numbers indicate the mass of “on-shell" particles as integer multiples of m.

Consider a graph AB that can be split into two sub-graphs, A and B, by a 2-particle cut as

illustrated in figure B.1. In this case, the Landau curve of AB (tAB(s)) can be determined in

terms of the curves of A (tA(s)) and B (tB(s)) from the following equation

λn, j (s, tAB(s)) =λn,k (s, tA(s))×λk, j (s, tB(s)) , (B.2.1)

where

λn, j (s, t ) = zn, j (s, t )+
√

zn, j (s, t )2 −1, (B.2.2)

and

zn, j (s, t ) = s −2(n m)2 −2( j m)2 +2t√
s −4(n m)2

√
s −4( j m)2

, (B.2.3)

is the cosine of the scattering angle between incoming particles of mass n m and outgoing

particles of mass j m.

To illustrate (B.2.1) consider the leading elastic Landau curve that is plotted in gray in figure 3.5.

It is represented by the graph on figure B.2 and has a single 2-particle cut along the s-channel.

Since either sub-diagram has a normal threshold at t = 4m2 and all legs have the same mass
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Figure B.2: Diagrams with a single s-channel cut which splits each diagram into a pair of t-channel
bubbles. The Landau curves of these diagrams follows from the singularities of the bubbles, which
are simple normal thresholds. The Landau curve of the diagram on the left (gray curve in figure 3.5)
is given by equation (B.2.4) while the diagram on the right (red curve in figure 3.5) has Landau curve
given by equation (B.2.7).

m, the corresponding Landau curve is given by

λ1,1(s, tgray(s)) =
(
λ1,1(s,4m2)

)2
, (B.2.4)

which in polynomial form reads

(s −4m2)(t −16m2)−64m4 = 0. (B.2.5)

Swapping s ↔ t leads to the leading elastic curve that follows from t-channel unitarity. Both

are represented in gray in figure 3.5.

Note that equation (B.2.1) can be iterated. By gluing AB to a new diagram C one can express

the Landau curve of ABC as

λn, j (s, tABC(s)) = (B.2.6)

λn,k (s, tA(s))×λk,l (s, tB(s))×λl , j (s, tC(s)) .

One may further iterate (B.2.6) by gluing more sub-diagrams. If all sub-diagrams A, B, C,

... are taken to be t-channel bubbles then the full graph ABC· · · becomes a ladder diagram.

Every Landau curve belonging to the elastic region 4m2 < s < 16m2 is represented by a ladder

diagram, and every elastic curve can be computed accordingly (see section 3.5 of [7]).

Interestingly, the 2-particle kernel may also be used to determine some of the Landau curves

in the multi-particle regime s, t > 16m2. This is because a bubble diagram with n legs of mass

m is indistinguishable from a graph where this bubble is replaced by a single on-shell particle

of mass nm (see appendix B.4). We may therefore use equation (B.2.1) to determine the red

Landau curve in figure 3.5 whose diagram and cut is represented in figure B.2

λ1,1(s, tred(s)) =λ1,2(s,m2)λ2,1(s,9m2) . (B.2.7)

Similarly, we may use equation (B.2.6) to compute the blue and green Landau curves in figure
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3.5, according to the slicing in figure B.3.

Figure B.3: Slicing of multi-particle graphs with 2-particle cuts where each cut bubble corresponds to
a particle of mass 2m. equation (B.2.6) may be used to find the Landau curves represented by these
diagrams. Green is given by equation (B.2.8) and blue follows from eqs. (B.2.9) and (B.2.10).

The green Landau curve reads

λ(s, tgreen(s)) =λ1,2(s,m2)λ2,2(s,4m2)λ2,1(s,m2) , (B.2.8)

which, in polynomial form, is given by equation (B.1.5).

The blue Landau curve can be expressed in terms of the Landau curve t∗(s) of the sub-diagram

in the middle (see figure B.4),

λ(s, tblue(s)) =λ1,2(s,m2)λ2,2(s, t∗(s))λ2,1(s,m2) . (B.2.9)

We can now relate t∗(s) to the Landau curve of a simple box diagram by crossing s- and

u-channels.

Figure B.4: Crossing s ↔ u channels relates the Landau curve of the middle sub-graph of (Blue) in figure
B.3 with the curve of a simple box diagram. To each external vertex a bubble is connected, which is
equivalent to considering 2 → 2 scattering of particles with mass 2m.

Using (B.2.1) we can find the Landau curve of the box diagram and t∗(s) is the solution of

λ2,2(u, t∗(s)) =λ2,1(u,m2)λ1,2(u,m2) , (B.2.10)

where in the formula above we set u = 16m2 − s − t∗(s). Plugging t∗(s) back into (B.2.9) leads

to the blue curve in figure 3.5, which is expressed in polynomial form in (B.1.6).

For the graphs in this section, we have explicitly checked that the obtained Landau curves

correspond to the α-positive solutions of the Landau equations. However, this is not always

the case. For example, the graph in figure B.5 does not admit an α-positive solution. Applying

to it the procedure described in this section produces a Landau curve which we believe is on
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the second sheet.

Figure B.5: A graph whose Landau curve (more precisely, its leading singularity) can be found using the
method described in this section. The Landau curve sits between the blue and red curves in figure 3.5.
Given that it is not α-positive, we do not expect it to be on the physical sheet. In the graph selection
procedure, this graph was discarded by identification of a trivial box (see figure B.13).

B.3 Landau equations and automorphisms

Here we briefly review the standard derivation of the Landau equations for the Feynman

diagrams, see for example [8] and [102] for a recent review. A generic Feynman integral with

trivial numerators takes the form

F =
∫ L∏

j=1
d d k j

1∫
0

P∏
i=1

dαi
δ(1−∑

i αi )

ψP
, (B.3.1)

where L are the number of loops, P the number of internal lines and the denominator reads

ψ=
P∑

j=1
α j (k2

j −m2
j ) , (B.3.2)

where the k j>L momenta depend linearly on the loop momenta k j≤L , due to momentum

conservation at each vertex.

The integration over the loop momentum can then be readily done and yields

F =
1∫

0

P∏
j=1

dα j

δ(1−∑P
j=1α j )C P−2L−2

DP−2L
, (B.3.3)

with

C = det ai j , D = det

(
ai j −b j

−b j c

)
, (B.3.4)

where i , j = 1, . . . ,L and

ai j = 1

2

∂2ψ

∂ki∂k j

∣∣∣∣
k=0

, b j = 1

2

∂ψ

∂k j

∣∣∣∣
k=0

, c = ψ
∣∣
k=0 . (B.3.5)

As the integral is analytically continued in the Mandelstam variables, the contour of integration
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may be smoothly deformed to avoid the singularities. The integral becomes singular when the

contour is pinched by singularities of the integrand.

The so-called leading singularities occur whenever two (or more) zeros of the denominator

coincide.1

These can be found by solving
∂ψ

∂αi
= 0 ,

∂ψ

∂k j
= 0. (B.3.6)

The first condition puts all internal legs on-shell, k2
i = m2

i , while the third condition relates

momenta belonging to the same loop, l , as∑
i∈l
αi ki = 0. (B.3.7)

An equivalent form of the Landau equations is obtained for representation (B.3.3),

D = 0 ,
∂D

∂αi
= 0. (B.3.8)

Note that since D ∝αi
∂D
∂αi

is homogeneous, D = 0 is automatically satisfied.

There are P +2 variables, s, t and the α parameters, and P +1 Landau equations, which are the

P pinch conditions (B.3.8) supplemented by the normalization

P∑
i=1

αi = 1. (B.3.9)

These equations may be solved for αi (s) and t (s), the Landau curve.

In this work we made use of the form (B.3.6) to discard trivial subgraphs (see appendix B.4),

while (B.3.8) is used for numerical computation of the Landau curves (see appendix B.5) since

D is an explicit function of s and t .

As discussed in section 3.1, we restricted ourselves to the α-positive solutions because these

occur on the undistorted contour of integration of (B.3.1) and (B.3.3), and are therefore likely

to be on the physical sheet.10

We observe that non-trivial graphs (see section 3.2) have a unique α-positive solution, cor-

responding to the Landau curve represented by that graph. We assume that it is always the

case.

Under this assumption, one can derive an important result which allows for dramatic simplifi-

1There are also end-point singularities, corresponding to pinches at end-points of the integration contour.
However, in the context of Feynman integrals, these are also leading singularities of contractions of the original
graph [8].
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cation of the Landau equations in the search for α-positive solutions.

Symmetries of a graph translate into symmetries of the corresponding Landau equations.

Concretely, if a transformation mapping edge i → i ′ is an automorphism [101] (which also

leaves (s, t ) invariant) then the change αi →αi ′ is a symmetry of the Landau equations (B.3.8).

Therefore, if αi is a solution, then αi ′ is a solution to (B.3.8) as well.

Now, under the assumption that the α-positive solution is unique we see that the automor-

phism i → i ′ has to map the α-positive solution to itself. Hence,

αi =αi ′ . (B.3.10)

This property can be used to reduce the system of Landau equations, if one identifes the

automorphisms that leave the Mandelstam invariants unchanged. Note that (s, t) are left

invariant if the external legs are swapped in pairs or, trivially, if they remain still.2 If there

are also automorphisms that map s ↔ t , the Landau curve is crossing-symmetric and further

reduction is possible at the point s = t .

Given a graph, the exact expression for D and the graph automorphisms can be found auto-

matically using graph-theoretic tools. See appendix B.5 for the precise implementation.

B.4 Trivial subgraphs

As discussed in the main text, a trivial sub-graph is a sub-graph that either do not have an α-

positive solution or can be contracted without affecting the solution to the Landau equations.

In this appendix we identify a few families of trivial sub-graphs that are composed from

bubbles, triangles and boxes.

Bubbles

A bubble sub-graph is a set of n > 1 legs connecting the same two vertices, see figure B.6. When

solving the associated Landau equations, we attach to them parameters αi and momenta ki ,

that are all taken to point towards the same vertex.

Each pair of these legs, (i , j ), form a loop and the associated Landau equation reads

αi ki =α j k j . (B.4.1)

Using the on-shell condition k2
i = m2 and requiring the α’s to be positive leads to αi = α j .

2The latter case includes permutations between legs belonging to the same bubble. This implies that the
corresponding parameters αi have the same value, as derived in appendix B.4.
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Figure B.6: A bubble sub-graph with n internal lines. Each line is associated with an on-shell mo-
mentum k2

i = m2 and a Feynman parameter αi . The Landau equation forces them all to be the same,
making the buble equivalent to a single line of mass n ×m.

Plugging this back into (B.4.1) leads to ki = k j .

Since all momenta are equal, the bubble diagram is indistinguishable from a single leg with

mass n ×m.

Figure B.7: A sub-graph made of a chain of two bubbles with n and ñ lines correspondingly. The Landau
equation forces n = ñ, making the chain equivalent to a single bubble and hence, a trivial sub-graph.

Consider now a chain of two bubbles, one with n lines and the other with ñ lines, connected

through a single vertex, see figure B.7. Using momentum conservation at that vertex we

conclude that in order to have a solution, ñ must be equal to n. In this case however, having

two bubbles instead of one impose no further constraints on the external momenta. Hence,

the Landau equations for the pair of bubbles are equivalent to the ones of a single bubble.

We conclude that a bubble is trivial if to one of its vertices another bubble is connected.

Triangles

Figure B.8: A trangle sub-graph with three independent masses m2
i . For p2

1 = (m2 ±m3)2 the triangle is
trivial.

A triangle sub-graph consists of three vertices conected by three lines, (see figure B.8). To each

line i = 1,2,3 we associate an independent mass mi , Feynman parameter αi , and momentum

ki that is oriented anti-clockwise around the loop. To each vertex we associate an incoming

momentum pi , with p3 = k1 −k2, etc. The associated Landau equation reads
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α1 k1 +α2 k2 +α3 k3 = 0. (B.4.2)

By dotting this equation with ki=1,2,3, we may express it as a condition on the Gram matrix m2
1 k1 ·k2 k1 ·k3

k1 ·k2 m2
2 k2 ·k3

k1 ·k3 k2 ·k3 m2
3


α1

α2

α3

= 0. (B.4.3)

Using momentum conservation, we express the Lorentz invariants in terms of the external

momenta as

k1 ·k2 =
m2

1 +m2
2 −p2

3

2
, (B.4.4)

and similarly for k1 ·k3 and k2 ·k3.

The solutions to the Landau equations (B.4.3) can be classified into three types.

1. If one of the external momenta, say p1, satisfies

p2
1 = (m2 ±m3)2 , (B.4.5)

but p2 and p3 do not satisfy an analogous relation then the only possible solution is

with α1 = 0. This is not an α-positive solution.

2. Suppose two of the external momenta satisfy conditions equivalent to (B.4.5). To have

a solution with αi ̸= 0 also the third momenta has to obey a condition equivalent to

(B.4.5) such that the product of signs in (B.4.5) is equal to −1. In that case, there is a line

of solutions given by the relation

±α1m1 ±α2m2 ±α3m3 = 0, (B.4.6)

where the signs in (B.4.6) are dictated by the corresponding signs in (B.4.5). Requiring

that αi > 0 selects a line of solutions with one minus and two pluses in (B.4.6).

3. Finally, there are other solutions which are not of type (a), or (b) above, in which the

triangle may be non-trivial.

While in principle a sub-triangle of type (b) may be non-trivial, we observed that until V = 8

for quartic graphs and V = 5 for sextic graphs, all such cases do not lead to a new curve. Two

examples of this are given in figures B.9 and B.10. We assumed that this is general. Namely,

that any type (b) sub-triangle belonging to a graph in the (4s ,4t ) family does not lead to a new

Landau curve. Under this assumption, if at least one of the external momenta satisfies (B.4.5)

then the triangle is trivial.

Let us now translate this condition into a graph-theoretic criterion. A generic triangle will
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Figure B.9: An example of a sub-triangle (left) that is equivalent to a 3-particle bubble (right). The top
right vertex of the triangle obeys condition (B.4.5) with a (−) sign while the top left vertex obeys this
condition with a (+) sign. Therefore, in order for an α-positive solution to be possible, the momenta p
entering the bottom vertex must satisfy (B.4.5) with a (+) sign, i.e. p2 = (m +2m)2 = 9m2, which makes
the triangle equivalent to the bubble with three legs on the right.

Figure B.10: The trivial “acnode" graph (left) and the accumulation graph (right) have the same Landau
curve. Note that the acnode graph has two trivial triangles (top right and bottom left vertices satisfy
(B.4.5), or equivalently (B.4.7)). No obvious graph-theoretic operation relates the graphs. It is also
not clear to us how the Landau equations of the two are related, except by looking at the α-positive
solutions.

have bubbles as internal edges, (see figure B.11). As shown previously, a bubble is equivalent

to single leg of mass ni m, where ni is the number of bubble legs.

Suppose that we further attach an external bubble to one of the vertices of the triangle, say the

vertex where p3 in figure B.8 enters. Condition (B.4.5) for a triangle to be trivial then reads

N3 = |n1 ±n2| , (B.4.7)

where N3 is the number of legs in the external bubble and n1 and n2 are the number of legs in

internal bubbles that are attached to the vertex.

Figure B.11: A triangle is trivial if two of its internal bubbles, with n1 and n2 legs, are connected to an
external bubble with |n1 ±n2| legs.
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Figure B.12: Box graph. Besides the “masses" p2
i there are also Mandelstam invariants s = (p1 +p2)2

and t = (p1 +p3)2 that participate in the Landau equations. This makes it hard to find a generic graph-
theoretic condition for the box graph to be trivial.

Boxes

A box sub-graph consists of four vertices, such that each vertex is connected to two other

vertices, see figure B.12. For the box graph there are 4 external momenta pi that flow into each

vertex. Now, the kinematical invariants are not only the ’masses’ p2
i but also the Mandelstam

invariants s =−(p1 +p2)2 and t =−(p1 +p3)2.

Because the Landau equations now involve s and t , a generic graph-theoretic condition for the

box graph to be trivial is harder to find. However, for our purposes we do not need to discard

trivial sub-boxes to quench the growth of graphs (identification of trivial triangles and bubbles

allied with requiring all legs to be cut by 4-particle cuts is enough, see table 3.1.). Rather, after

step 4 of the graph selection procedure described in section 3.2 there are still trivial graphs

remaining. We were able to roughly discard half of them by identifying a trivial sub-box (see

table 3.1). The remainder was eliminated by numerical search for an α-positive solution (see

appendix B.5).

In figure B.13 we present the boxes that were found to be trivial by explicitly solving the

Landau equations (see [8]). Let us emphasize once again, that we call them trivial because the

corresponding Landau equations do not admit an α-positive solution. It does not mean that

these boxes do not have a nontrivial double discontinuity.

Figure B.13: A few examples of trivial boxes. We have explicitly checked that the presented graphs do
not admit an α-positive solution to the Landau equations.
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B.5 Graph-theoretic implementation

In this appendix we describe how the graph selection procedure outlined in section 3.2 is

implemented in detail.

Graph generation (step 1)

To obtain all graphs with V vertices and a certain maximal vertex degree, we start by generating

all vacuum bubbles with V +1 vertices and the same maximal degree. We then remove a quartic

vertex. The four legs that were connected to it become the external legs of the scattering graph

(see figure B.14).

Figure B.14: Excision of a quartic vertex from a vacuum bubble (left) leads to a graph with 4 external
legs (right).

To generate vacuum bubbles we make use of nauty and Traces [105], in particular the geng and

multig commands. The nauty/geng command generates all simple non-isomorphic graphs

with a given number of vertices V and minimum and maximum vertex degrees ds and Ds .3

The nauty/multig command takes a simple graph and turns each edge into a bubble (or

multi-edge), according to maximum vertex degrees Dm and maximum edge multiplicity M .

It outputs all possible graphs with bubbles out of that simple graph. See the documentation

[105] for more information.

Finally, the output of nauty/multig (the adjacency matrix [101] of each graph) is inserted into

mathematica. Using the package igraph/M [106, 107] and default tools we remove a quartic

vertex from the vacuum bubble to obtain a graph with 4 external legs. This procedure is

exemplified for the accumulation graph in figure B.15.

We now describe how the physical graph selection criteria described in 3.2 constrains the

parameters Ds , d and Dm and M that enter into geng and multig, respectively.

• Ds = Dm = D. It is clear that if we are looking for graphs with 4 external legs with

maximum vertex degree D then we can choose Ds = Dm = D as long as D ≥ 4 (so that

there is a quartic vertex that can be removed from the vacuum bubble to generate the

graph with 4 external legs). This condition is guaranteed because we are interested in

D = 4,6,8, ....

3A simple graph is a graph without bubbles, only single edges [101], (see figure B.15).

206



B.5 Graph-theoretic implementation

Figure B.15: Simple vacuum bubbles are generated using nauty/geng (left). Single lines are then
replaced by bubbles in all possible ways using nauty/multig (center). Removal of quartic vertices (using
Mathematica) leads to graphs with 4 external legs (right).

• ds = 3. Since we are only interested in vacuum bubbles it is clear that ds > 1. Taking

ds = 2 will generate quadratic simple vertices which, when run through multig, will give

rise to bubble chains (see figure B.16) which are trivial sub-graphs (see appendix B.4).

Thus, we should take ds = 3. Indeed, in figure B.15 we see that the accumulation graph

comes from a simple graph with cubic and quartic vertices (left).

Figure B.16: Simple quadratic vertices (left) give rise to bubble chains (right).

• M = 3. M is the maximum number of internal lines that a bubble can have. Since we are

only interested in graphs with 4-particle cuts it is clear that M ≤ 4 suffices. Taking M = 4

will generate 4-legged bubbles, which can be cut by a 4-particle cut, however for such

graphs there will be no cut on any other channel (see figure B.17).

Figure B.17: A graph with a 4-legged bubble has a 4-particle cut on one channel. However, there is no
space left for a cut on the other channel.

We import the vacuum bubbles generated by multig into mathematica and keep the ones

with even degree vertices.

Finally, we discard graphs which only have a cut in one of the channels. This can be done at

this stage without explicitly performing the cuts in the following way.

First, we require all graphs to be bi-connected [101]. A bi-connected graph can only be discon-

nected by removing two vertices. A non-bi-connected graph can be disconnected by removing

a single vertex. Contracting the bubble in figure B.17 leads to a generic non-bi-connected
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graph with arbitrary ‘gray blobs’ connected by a single vertex. Similarly to the original graph,

it only has a cut in one of the channels.

Second, we require that the quartic vertex that is excised from the vacuum bubble does not

have any bubble incident to it. This avoids the scenario represented in figure B.18 where two

external legs, which were originally part of a bubble, become incident to the same vertex. Such

graphs also only have a cut in one of the channels. In practice, we can avoid generating such

graphs by only excising vertices which were also quartic vertices in the original simple vacuum

bubble.4

Figure B.18: Excising quartic vertices which are incident to bubbles (left) leads to graphs with cuts
on only one single channel (right). Note that a quartic vertex which is incident to a bubble is a cubic
simple vertex.

Graph selection (steps 2-5)

Here we describe how steps 2-5 of the graph selection procedure described in section 3.2 are

implemented in detail. We make use of mathematica and the package igraph/M [106, 107].

Trvial subgraphs

The function IGTriangles finds all triangles contained within any graph. Once the triangles are

identified we select the cubic simple vertices (the vertices which can have an external bubble

attached to it). Then, the incidence list [101] lists all incident edges to a given vertex. From

this we can explicitly check condition (B.4.7). If any of the vertices satisfies (B.4.7) we have

identified a trivial triangle and the graph is discarded.

A similar approach is taken to find boxes, except that there is no dedicated command to find

boxes. We make use of FindCycle to find 4-cycles (i.e. boxes). We then compare the boxes with

any of the trivial boxes in figure B.13 using IGIsomorphic. In fact, given the handful amount of

graphs after step 4 (see table 3.1) one can just identify the trivial boxes by visual inspection.

4For example, in figure B.15 we have 3 quartic vertices on the vacuum bubble in the center. However, only the
central vertex leads to a graph with cuts on both channels. It is also the only quartic vertex in the simple vacuum
bubble (left).
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Cuts

We are interested in minimal7 cuts that separate external legs in pairs. There are three possible

arrangements between pairs of external legs, corresponding to s-, t- and u-channels. To

explicitly find these cuts for a given graph we apply the following procedure (depicted in figure

B.19).

1. Identify the 4 vertices to which the external legs are incident. We call these external

vertices.

2. Connect the external vertices in pairs, in all three possible ways (s, t and u-channels).

3. Find the source-to-sink [101, 274] minimal cuts which separate a connected pair of

external vertices (source) from the other pair of external vertices (sink). Here we use

IGMinimumCutValue or IGFindMinimalCuts (see below).

4. The cuts of the original graph can then be obtained by matching the cut legs found in

the previous step.

In step 3 of the graph selection procedure we only ask if there is a 2 or 4-particle cut in at least

two channels. For this we make use of the fast IGMinimumCutValue which gives the size of

the smallest cut.

In step 4 we ask if all legs can be cut by a 2 or 4-particle cut. Here, we make use of IGFindMini-

malCuts and select the cuts of size up to 4. If every internal leg is contained in (the union of)

these cuts we select that graph.

Figure B.19: A cut can be found by connecting external vertices (represented in black) in pairs. Each pair
turns into two vertices, source and sink, and the cut separating external legs becomes a source-to-sink
cut [101] which can be found using graph-theoretic algorithms [274].

Numerical search for α-positive solutions (step 6)

Here, we describe how the final step of the graph selection procedure is implemented in

practice. At this stage no more than a handful number of graphs exists (see table 3.1). Explicit

numerical search for a solution to the Landau equations is therefore feasible.

We implement this step in mathematica (with the package igraph/M [106, 107]). We are given

as input a graph, and the output is an α-positive solution (if found) of the Landau equations at

some fixed value of s. We in particular searched along the s = t line point due to the existence
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of enhanced symmetry and consequent reduction of the Landau equations for some graphs

(see appendix B.3). We also set m = 1 without loss of generality.

The algorithm is as follows.

1. Each bubble of n internal legs is replaced by a single line with mass n. The graph

becomes a simple graph.

2. A random direction is assigned to the internal edges of the graph, the corresponding

incidence matrix [101] is found and momentum conservation at each vertex follows (see

below for more details).

3. The momentum conservation equations are solved in terms of a set of independent

momenta (the loop momenta). Then, the on-shell action ψ as defined in eq. (B.3.2) is

computed and from there the discriminant D is found from eqs. (B.3.4) and (B.3.5).

4. The Landau equations follow from (B.3.8). Since we are searching for the α-positive

solution under the assumption that it is unique. We can relate different αi =αi ′ if the

graph is automorphic under the map i → i ′ (see appendix B.3). The automorphisms are

found using GraphAutomorphismGroup.

5. To solve the Landau equations numerically, we square the LHS of (B.3.8) and sum over i

(after the reduction described in the previous step is performed). The solutions to the

Landau equations will be the minima of
∑

i

(
∂D
∂αi

)2 = 0. We perform a random search

using FindMinimum with random starting points αi ∈ (0,1) and s ∈ (−1000,1000). The

search stops when an α-positive solution is found. A maximum of 1000 attempts was

set.

Naturally, as the number of vertices increases, the system of equations becomes bigger, and

the search for solutions becomes slower. Fortunately, at step 6 of the graph selection (see table

3.1), the majority of graphs for which this procedure was implemented enjoy some degree of

symmetry, which drastically reduces the computing time. For example, Z2 symmetry roughly

halves the number of independent αi ’s in the Landau equations of a generic large graph.

For V > 8 all quartic graphs after elimination of trivial boxes (step 5) consist of triangle chains

depicted in figure 3.4 and slight variations. For one particular variation (see figure B.20) there

is no automorphism relating different αi . For graphs with V ≥ 8 belonging to this family we

were not able to perform 1000 attempts . However, we believe that any graph belonging to this

family is trivial given that for V = 4,5,6 this can be proven analytically (identification of trivial

triangle or box) and for V = 7 no solution was found in 1000 attempts.

Incidence matrix and momentum conservation

The incidence matrix ai j is defined as ai j =±1 if edge j is incident and directed into (+) or

out of (−) vertex i , and ai j = 0 if edge j and vertex i are not incident (see figure B.21).
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Figure B.20: Asymmetric variation of the triangle chain represented in figure 3.4. It is obtained by
expanding into a bubble one of the vertices connecting to an external leg. This variation exists for both
planar and non-planar iterations (represented by the gray vertex). For the first three iterations one
can prove analytically that such graphs are trivial. For the fourth iteration, no solution was found in
1000 attempts. For the succeeding iterations we do not have a numerical argument for the absence of
α-positive solution.

Figure B.21: A graph can be represented in terms of the incidence matrix defined above.

It is instructive to consider a particular example. Consider the generic box graph in figure B.22.

Its incidence matrix is written in table B.1.

A few comments are in order. Note that for internal legs, the entries in the corresponding

column add up to 0, while for an external legs we get +1 or −1 if the leg is incoming or outgoing,

respectively.

The degree of a vertex is given by summing over the absolute value of the entry of the corre-

sponding row. For the box graph we confirm that all vertices are cubic.

Importantly, the incidence matrix directly encodes momentum conservation at each vertex.

If we multiply each column of the incidence matrix by the momentum that flows on the

corresponding edge and sum over each line we obtain momentum conservation on that

vertex.

Momentum conservation at i :
∑

j
ai j q j = 0, (B.5.1)

Figure B.22: Directed box graph.
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ai j p1 p2 p3 p4 k1 k2 k3 k4

1 +1 0 0 0 −1 0 0 +1
2 0 +1 0 0 0 0 +1 −1
3 0 0 +1 0 +1 −1 0 0
4 0 0 0 +1 0 +1 −1 0

Table B.1: The incidence matrix ai j of the box graph in figure B.22. The columns are labelled according
to momentum flowing on the corresponding edge, while the vertex i is labelled according to the
incoming external momentum pi .

where q j is the momentum flowing on edge j .

Applying equation (B.5.1) to the incidence matrix (given in table B.1) we find the expected

relations

p1 −k1 +k4 = 0 , p2 +k3 −k4 = 0,

p3 +k1 −k2 = 0 , p4 +k2 −k3 = 0.
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C.1 Simple nonperturbative dispersive argument

Here we will implement the setup described in section 4.1 via an explicit dispersion relation

for B(s). A first point to note is that in d = 2 the t- and u- channel poles (4.1.2) will actually

lead to a pole at s → a already in the non-anomalous regime M <p
2m. This is due to d = 2

kinematics (see appendix C.5). Concretely,

− g 2

t (s)−m2 − g 2

u(s)−m2 = s −2M 2

m2

g 2

s −a
(C.1.1)

with t(s) and u(s) given by eqs. (C.5.3) and (C.5.4). Let us emphasize that (C.1.1) is not an

anomalous threshold.

A dispersion relation for B(s) will then take the form

B(s) =−N g 2

s −a
+ 1

π

∫ 4M 2

4m2

DiscB(s′)
s′− s

d s′+ . . . (C.1.2)

with N given by eq. (4.4.1), and where the ‘. . . ’ include the remaining contributions to the

dispersion relation (arcs, poles, etc...), which are assumed not to be affected by the motion of

the pole a as M 2 is increased.

Plugging extended unitarity (4.1.3) into (C.1.2) we find

B(s) =−N g 2

s −a
+ 1

π

∫ 4M 2

4m2

ρ(s′)A(s′)B∗(s′)
s′− s

d s′ (C.1.3)

where the extra contributions ‘. . . ’ were omitted.
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Figure C.1: Graphical representation of solution to unitarity across the 2m cut, eqs. (4.3.1), (4.3.2),
(4.3.3). The sub-graphs α, β and σ are 2m-irreducible, i.e. do not contain any internal exchange of 2m
(in the s-channel), this is what eq. (4.3.7) means graphically.

Now this is a coupled integral equation for B(s). Iterating it once gives

B(s) =−N g 2

s −a
− N g 2

π

∫ 4M 2

4m2

ρ(s′)A(s′)
(s′− s)(s′−a)

d s′ (C.1.4)

+ 1

π2

∫ 4M 2

4m2
d s′

∫ 4M 2

4m2
d s′′

ρ(s′)A(s′)ρ(s′′)A(s′′)B∗(s′′)
(s′− s)(s′′− s′)

Now, as M is increased, the pole at s′ = a in the first integral will come into contact with the

integration contour and force its deformation. After M >p
2m, a will recede and carry along a

piece of the integration contour.1 So we find that B(s) will shift by

B(s) → B(s)−N g 2 2i

2πi

∮
a

d s′
ρ(s′)A(s′)

(s′− s)(s′−a)

= B(s)−N g 2 2ϱ(a)A(a)

s −a
(C.1.5)

and we reproduce eq. (4.4.1).

Note that for the triangle diagram A(s) =λ we recover eq. (4.2.5).

1Similar dragging will happen in the second integral but only in the s′′ contour so no anomalous contribution
comes from the second integral.
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C.2 Derivation of the general solution to extended unitarity

We will solve extended unitarity in sequence. First for A(s), then for B(s), and finally for C (s).

Starting with A(s):

DiscA = ρ|A|2 ⇔ Disc

(
1

A
+ϱ

)
= 0 (C.2.1)

meaning

1

A
+ϱ= 1

α
, with Discα= 0 (C.2.2)

except for possible poles of α. This is the usual ‘inverse amplitude’ trick [165, 7, 275].

Now, moving onto B(s), we use the notation B±= B(s ± iϵ),

DiscB = ρB A∗ ⇔ B+−B−
2i

= ρB+α
1−αϱ−

⇔ (C.2.3)

B+
[
1−α(ϱ−+2iρ)

]−B−
[
1−αϱ−

]= 0 ⇔ (C.2.4)

B+
[
1−αϱ+

]−B−
[
1−αϱ−

]= 0 ⇔ (C.2.5)

Disc
[
B(1−αϱ)

]= 0 ⇔ B(1−αϱ) =β (C.2.6)

with Discβ= 0.

Finally, we go to C (s):

DiscC = ρ|B |2 ⇔ DiscC = ρβ2

|1−αϱ|2 (C.2.7)

⇔ DiscC = Disc

[
ϱβ2

1−αϱ
]

(C.2.8)

⇔C =σ+
[
ϱβ2

1−αϱ
]

, with Discσ= 0, (C.2.9)

where we made use of

Disc

[
ϱ

1−αϱ
]
= 1

2i

[
ϱ+

1−αϱ+
− ϱ−

1−αϱ−

]
= (C.2.10)

= ϱ+(1−αϱ−)−ϱ−(1−αϱ+)

2i (1−αϱ+)(1−αϱ−)
(C.2.11)

= (ϱ+−ϱ−)/2i

(1−αϱ+)(1−αϱ−)
= ρ

|1−αϱ|2 . (C.2.12)
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C.3 Box and double triangle diagrams in d = 4

In this appendix we test expression (4.4.6) in perturbation theory. We will find the anomalous

thresholds of the box and double triangle diagrams (fig. C.2).

Figure C.2: Box and double triangle diagrams.

At lowest order in perturbation theory we have

A(s, t ) = B̄(s, t ) = 0, (C.3.1)

meaning that A J (s) = B̄ J (s) = 0. Eq. (4.4.6) then reads

DiscC J (s) =− g 4P J (za(s))

32π
√

s(4M 2 − s)
−
∫ a

−∞
P̃ J (s′)
s′− s

d s′ (C.3.2)

First, we note the identity

DiscsQ J (za(s)) =

= Q J (za(s)+ iϵz ′
a(s))−Q J (za(s)− iϵz ′

a(s))

2i

= sgnz ′
a(s)Discza Q J (za(s)) (C.3.3)

Now,

P J (za(s))

2
√

s(4M 2 − s)
=−ϱ(s)P J (za(s))

w(s)
=

=−2ϱ(s)

π
Discs

(
Q J (za(s))

w(s)

)
(C.3.4)

with w(s) ≡
p

4m2 − s
p

4M 2 − s and phase space volume ϱ(s) given by eq. (4.1.6), where

we also made use of z ′
a(s) < 0 for a < s < 4m2 in the anomalous regime M > p

2m and eq.

(C.5.14).2

Making use of the definition of P̃ J (s′), eq. (4.4.7), the relation between P J (z) and Q J (z), eq.

2We are also abusing the notation in going from the first to the second line of eq. (C.3.4). The discontinuity
should be seen as the monodromy (which is a function, not a distribution).
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(C.5.14), and the identity (C.3.3) we have

−
∫ a

−∞
P̃ J (s′)
s′− s

d s′ =− 2

π
−
∫ a

−∞

Discs

(
Q J (za (s′))

w(s′)

)
s′− s

d s′

=−2Re

[
Q J (za(s))

w(s)

]
. (C.3.5)

Plugging (C.3.4) and (C.3.5) into (C.3.2) we find

DiscC J (s) =−g 4ϱ(s)

4π2 Disc

[
Q J (za(s))

w(s)

]
Re

[
Q J (za(s))

w(s)

]
=−g 4ϱ(s)

8π2 Disc

[
Q J (za(s))

w(s)

]2

, s ∈ [a,4m2). (C.3.6)

We can see that this is already the discontinuity across the anomalous threshold of the partial

wave of the box. Concretely, consider partial wave unitarity eq. (4.1.4) and for B J (s) plug the

partial wave of the t- and u-channel poles (4.1.2), which is given by eq. (4.3.14). We find

DiscC J (s) = g 4ρ(s)

16π2

[
Q J (za(s))

w(s)

]2

, s ∈ [4m2,∞) (C.3.7)

with ρ(s) given by eq. (4.1.5).

We now plug this expression into a dispersion relation, and continue in the mass M (see

appendices 4.2 and C.1). Akin to Fig. 4.6 the cut of Q J (za(s)), which is for s ≤ a will wrap

around the branch point at s = 4m2 for M >p
2m. This will force a deformation of the contour

below the normal threshold, i.e. will lead to an anomalous threshold whose discontinuity is

given by (C.3.6). Notice how the discontinuity ‘switches’ from ρ(s) = Discϱ(s) in the normal

threshold (C.3.7) to the Legendre function in the anomalous threshold (C.3.6). The factor of

(−2) difference is related to the wrapping of the contour.

Fortunately, expression (C.3.6) is simple enough to be inverted back for the amplitude C (s, t ).

Summing over (2J +1)P J (z) on both sides of eq. (C.3.6), and using the PQQ identity (C.5.17)

gives

DiscsC (s, t ) =− g 4

4π2

DiscsK
(
z(t ), za(s), za(s)

)√
s(4m2 − s) (4M 2 − s)

(C.3.8)

where K (z, z ′, z ′′) is the Mandelstam kernel given by eq. (C.5.12)

As seen from eq. (C.5.12), the Mandelstam kernel is singular for z = z+(za(s), za(s)) = 2z2
a(s)−1.

In terms of s and t this is

s(t ) = 4[M 4 +m2(t −4M 2)]

t −4m2 , (C.3.9)

which is the Landau curve of the box diagram.
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Similarly to the previous analysis for the partial waves, starting with unitarity for s ≥ 4m2,

eq. (C.5.9), inserting the poles (4.1.2), plugging the answer into a dispersion relation and

continuing in M will lead to a discontinuity across an anomalous threshold (C.3.8) for M >p
2m. Note, however, that the branch point will be different for each t , i.e. it will be determined

by the Landau curve (C.3.9) that now appears below the normal threshold on the physical

sheet (as a simple Landau analysis of the box diagram yields).

Let us now move to the case where3

B̄(s, t ) = 0, A(s, t ) =λ≪ 1. (C.3.10)

Note that A(s, t) = λ =⇒ A J (s) = λδJ ,0. Plugging into (4.4.6) we find that only J = 0 survives,

and at linear order in λ we have

DiscC0(s) =− λg 4

16π
√

s(4M 2 − s)
×[

1

2
−
∫ a

−∞
P̃0(s′)
s′− s

[ρ(s)−ρ(s′)]d s′−−
∫ 4m2

a

P̃0(s′)
s′− s

ρ(s′)d s′
]

. (C.3.11)

Let us now match this result from the double triangle diagram. The double triangle diagram is

given by the square of the triangle diagram. The single triangle diagram BT (s) (see Fig. 4.5)

can be computed by unitarity

DiscBT (s) =λδJ ,0ρ(s)B poles
J (s + i 0)Θ(s −4m2) (C.3.12)

wtih B poles
J (s + i 0) given by eq. (4.3.14). And we have

BT (s) = λg 2

4π2

∫ ∞

4m2

ρ(s′)Q0(za(s′))

w(s′)(s′− s)
d s′ (C.3.13)

The double triangle will be given by B 2
T (s) (where we also divided by the extra factor of λ)

CT (s) = λg 4

16π4

[∫ ∞

4m2

ρ(s′)Q0(za(s′))

(s′− s)w(s′)
d s′

]2

. (C.3.14)

Let us now continue this expression in M to find the anomalous threshold. It is useful to first

rewrap the contour around the cut of Q0(za(s′)) and the pole 1
s′−s . We have

CT (s) = λg 4

16π2

[
1

2

∫ a

−∞
P̃0(s′)
s′− s

[ϱ(s′)−ϱ(s)]d s′
]2

(C.3.15)

3Note that taking B̄(s, t) ̸= 0 would lead to a ‘triangle’ type singularity no different than for the mm → M M
process as already inverted for the amplitude by eq. (4.4.4), so we will not analyze this case.
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with P̃0(s) given by eq. (4.4.7). We now continue past M >p
2m to find

CT (s) = λg 4

16π2

[
1

2

∫ a

−∞
P̃0(s′)
s′− s

[ϱ(s′)−ϱ(s)]d s′

+
∫ 4m2

a

P̃0(s′)
s′− s

ϱ(s′)d s′
]2

(C.3.16)

Taking the discontinuity of this expression, making use of the relation Disc f 2 = 2Re f Disc f ,

and eqs. (4.1.5) and (4.4.7) we recover eq. (C.3.11).

C.4 Supporting appendix to the discussion on the global existence

of anomalous thresholds

Let us first analyze what the presence of t− and u− channel singularities in B(s, t ) imply for

B J (s). A branch cut for t ,u ≥µ2 implies the following contribution to B J (s) (making use of the

Froissart-Gribov formula (C.5.16))

B J (s) ⊃ 1

8π2

∫ ∞

z(µ2)
Q J (z)Discz B(s, t (z))d z

= 1

8π2
p

s −4m2
p

s −4M 2

∫ ∞

µ2
Q J (z(t ))Disct B(s, t )d t (C.4.1)

where we made use of t −u symmetry, i.e. B(s, t(z)) = B(s, t(−z)), and where z(t) is given by

eq. (C.5.5).

Now, the Legendre function Q J (z(t)) has a branch cut for z(t) ∈ [−1,1], and, given that t is

being integrated over t ≥ µ2, we see that this implies a branch cut on B J (s) via the relation

(C.5.5). It is easy to see that the endpoint of the integral in t is what defines the rightmost

branch point in s, which is given by plugging z =±1 and t =µ2 in (C.5.5),

sµ = [(m −µ)2 −M 2][(m +µ)2 −M 2]

µ2 (C.4.2)

and we conclude that B J (s) has a left hand cut for s ≤ sµ. A nice property of this function is that

sµ ≤ 4m2, so this left-handed branch cut will never overlap with the right-handed extended cut.

It can nonetheless wrap around it for certain values of (µ, M). This relation can be determined

by imposing

sµ = 4m2 =⇒ M 2 =µ2 +m2 (C.4.3)

so we see µ ̸= M , i.e. exchange of M will not lead to an anomalous threshold. Moreover, since

M < 2m is stable we find that sµ will only wrap around 4m2 for

µ≤p
3m < 2m (C.4.4)
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So only the single particle exchange µ= m satisfies this condition (assuming of course that m

and M are the lightest particles). This case corresponds to the already analyzed poles (4.1.2).

As a simple check, plugging µ= m into (C.4.3) leads to M =p
2m and into (C.4.3) leads to eq.

(4.0.2).

Repeating the same analysis for the M M → M M partial wave C J (s) amounts to taking m →
M in eq. (C.4.2), which implies sµ = 4M 2 −µ2. We see that for µ independent of M , sµ is

monotonic in M 2 and will not wrap around 4m2, and likewise for any normal threshold

µ= n1m +n2M , with n1 and n2 integers.4

What remains to consider is the possibility that µ2 itself is an anomalous threshold. Let us

first consider mm → M M . Can an anomalous threshold appear in the crossed channel, i.e.

in the mM → mM process? If we assume m to be Z2 odd, mM → mM cannot exchange

mm and therefore does not have an extended unitarity cut, so we discard the possibility of it

having anomalous thresholds. Conversely, the M M → M M process relates to itself by crossing

symmetry. From the previous analysis we see that there is only the anomalous threshold at

s = a. In d > 2 we still have to relate this anomalous threshold in C J (s) to the amplitude C (s, t ),

which can in general depend on t itself (see appendix C.3). So, for simplicity, let us assume

d = 2, where both objects coincide. In this case t = 4M 2 − s, so t(a) = M 4/m2. Plugging this

value for µ2 in eq. (C.4.2) leads to

st (a) = m2 +2M 2 + 2m4

M 2 − M 4

m2 − m6

M 4 . (C.4.5)

Now we have to analyze its trajectory for
p

2m < M < 2m (note that we have to start at

M =p
2m because that is when t = a comes on the physical sheet). It is easy to see that (C.4.5)

for this range of M will not go around 4m2, and therefore will not give rise to any further

anomalous threshold.

C.5 Kinematics, unitarity and Legendre functions in the unequal

mass case

Here we collect several technical details regarding kinematics, unitarity and Legendre func-

tions.

4We see that
d sµ
d M = 0 has solution M = n1n2

4−n2
2

m2, which for m < M < 2m requires n2 = 1 and n1 = 4,5. For

these cases sµ will have minimum at sµ =−64m2/3,−100m2/3 way below 4m2. It is however possible that these
singularities come onto the physical sheet by crossing an already present left-hand cut. It is hard to say without
further analysis if these would correspond to anomalous thresholds on the amplitude.
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Scattering angle

Let us relate t and u with the cosine of the scattering angle in the center of mass frame. We

let p⃗ and Ep be the momentum and energy of a particle of mass M and k⃗ and Ek be the

momentum and energy of a particle of mass m. Then, the cosine of the scattering angle is

z ≡ p⃗ · k⃗

|p⃗||⃗k|
. (C.5.1)

For the scattering mm → M M , in the center of mass we have Ep = Ek =p
s/2. Further using

|p⃗| =
√

E 2
p −M 2 and |⃗k| =

√
E 2

k −m2 we get

t (z) = (p −k)2 = M 2 +m2 −2Ep Ek +2|p⃗||⃗k|z

= m2 +M 2 + −s + z
p

s −4m2
p

s −4M 2

2
, (C.5.2)

where, also, u(z) = t (−z).

Now, in d = 2 there is only forward or backward scattering, i.e. z =±1, so t = t (s) and u = u(s)

are fixed in terms of s,

t (s) = m2 +M 2 + −s +
p

s −4m2
p

s −4M 2

2
, (C.5.3)

u(s) = m2 +M 2 + −s −
p

s −4m2
p

s −4M 2

2
. (C.5.4)

Relation (C.5.2) inverts to

z(t ) = s −2m2 −2M 2 +2tp
s −4m2

p
s −4M 2

. (C.5.5)

Extended unitarity for the amplitudes

In terms of the amplitudes, unitarity across the 2m cut reads [7], for the mm → M M process,

DiscsB(s, t ) = 1

8(4π)2

√
s −4m2

s

×
Ï 1

−1
d z ′d z ′′P (z, z ′, z ′′)A(s, t (z ′))B∗(s, t (z ′′)) (C.5.6)

where z and z ′′, scattering angles of mm → M M , are related to t (z) and t (z ′′) via (C.5.5) and

z ′ = 1+ 2t (z ′)
s−4m2 is the usual relation for the scattering angle of mm → mm.
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Likewise, for the M M → M M process,

DiscsC (s, t ) = 1

8(4π)2

√
s −4m2

s

×
Ï 1

−1
d z ′d z ′′P (z, z ′, z ′′)B(s, t (z ′))B∗(s, t (z ′′)), (C.5.7)

where z = 1+ 2t (z)
s−4M 2 is the usual relation for the scattering angle of M M → M M and z ′ and z ′′,

scattering angles of mm → M M are related to t (z ′) and t (z ′′) via eq. (C.5.5).

The 2-particle kernel reads (following conventions of [7])

P (z, z ′, z ′′) = 2Θ(1− z2 − z ′2 − z ′′2 +2zz ′z ′′)p
1− z2 − z ′2 − z ′′2 +2zz ′z ′′ (C.5.8)

Eqs. (C.5.6) and (C.5.7), because of the theta function in (C.5.8) only hold for real t in the

scattering angle region −1 < z < 1. These equations can however be continued in t [151, 7]

and be expressed in manifestly analytic form. Say for M M → M M ,

DiscsC (s, t ) = 1

8(4π)2

√
s −4m2

s

(
1

2πi

)2

×
∮ 1

−1
d z ′

∮ 1

−1
d z ′′K (z, z ′, z ′′)B(s, t (z ′))B∗(s, t (z ′′)), (C.5.9)

with Mandelstam kernel K (z, z ′, z ′′) which has discontinuity [7]

Discz K (z, z ′, z ′′) = 4π2 Θ(z − z+(z ′, z ′′))√
(z − z+(z ′, z ′′))(z − z−(z ′, z ′′))

(C.5.10)

with

z±(z ′, z ′′) = z ′z ′′±
√

(z ′2 −1)(z ′′2 −1). (C.5.11)

Equation (C.5.10) can be integrated to give

K (z, z ′, z ′′) = 8πp
(z+− z)(z − z−)

arctan

√
z − z−
z+− z

. (C.5.12)

Note that K (z, z ′, z ′′), as a function of z, has the same analyticity structure as the ‘bubble’

diagram W (s), in eq. (4.2.3), as a function of s.
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Partial waves and Legendre functions

The partial wave decomposition of the amplitude B(s, t ) reads [7]

B(s, t ) = 16π
∞∑

J=0
(1+2J )P J (z(t ))B J (s) (C.5.13)

where P J (z) is the Legendre polynomial and z(t) the cosine of the scattering angle given by

(C.5.5). Analogous expressions hold for A(s, t ) and C (s, t ).

Now, eq. (C.5.13) can be inverted for the partial wave in the usual way via eq. (4.1.1). Alterna-

tively, we can exploit analyticity in t by considering the Legendre function of the second kind

Q J (z). These two functions are related by

DiscQ J (z) =−π
2

P J (z)Θ(1− z2) (C.5.14)

This turns eq. (4.1.1) into the so-called Froissart-Gribov representation [7]:

B J (s) = 1

16π

∮
[−1,1]

d z

2πi
Q J (z)B(s, t (z)) (C.5.15)

where the contour is counter-clockwise. Using eq. (C.5.5) we have instead

B J (s) = 1

8π
p

s −4m2
p

s −4M 2

×
∮

d t

2πi
Q J (z(t ))B(s, t ) (C.5.16)

Now, the partial wave decomposition diagonalizes unitarity, as can be seen from eqs. (4.1.3)

and (4.1.4). This is made explicit by an interesting identity between the 2-particle kernels P

and K and the Legendre functions. In particular, for the latter [7]:

K (z, z ′, z ′′) = 4π
∞∑

J=0
(2J +1)P J (z)Q J (z ′)Q J (z ′′) (C.5.17)

Plugging (C.5.17) into (C.5.9) leads to (4.1.4) and likewise for A(s, t ) and B(s, t ).
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D Appendix to Chapter 5

D.1 Dual Bootstrap of the Sine-Gordon model

In this appendix we reproduce one of the results of [216], namely the one presented on their

Figure 3, but with the dual setup. The assumed spectrum consists of 2 particles of mass m1 = 1

and m2 =
p

3 to target the Sine-Gordon theory. Only one pole in the scattering amplitude is

assumed, the one corresponding to an exchange of the particle m2. This residue g is fixed and

the central charge is minimized, which leads to Figure D.1.

0 5 10 15 20

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Figure D.1: Lower bound on the central charge of the UV CFT for different values of the cubic coupling
g between two particles of mass m1 = 1 and one particle of mass m2 =

p
3. We used N = 50 and the

bound extends until g 2 = 12
p

3 after which the problem is unfeasible. The red line at cUV = 1/2 is
added for convenience.

The maximal value of g 2 for which the problem is feasible and the corresponding minimal

central charge are

g 2 = 12
p

3, cUV = 0.808823... (D.1.1)

and they correspond to the cubic coupling and the contribution to the central charge of the

Sine-Gordon model from the particle m2 and states with two particles m1.
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The advantage of our dual setup is that the bound on cUV is more accurate than what was

presented in [216]. Indeed at g = 0 we have for sure the free Majorana fermion that is allowed

and the corresponding central charge of 1/2 should not be excluded. This is in agreement with

our bound.

The optimal scattering amplitude and form factor are presented on Figure D.2, and correspond

also to the analytical solutions in the Sine-Gordon model.

5 10 15 20

-1.0

-0.5

0.5

1.0
5 10 15 20

-1.0

-0.8

-0.6

-0.4

-0.2

Figure D.2: Scattering amplitude (on the left) and form factor (on the right) for the optimal cUV

when g 2 = 12
p

3. The blue lines are the real parts and the orange lines are the imaginary parts. They
correspond to the analytical solutions of the Sine-Gordon model with m1 = 1 and m2 =

p
3, that are

plotted in dashed lines and given by eq. (4.18) and (4.19) in [216]. We used N = 50.

D.2 Dual optimization problems

In this appendix we derive various generalizations of the example in section 5.1 and present

the dual optimization problems.

D.2.1 Z2 symmetric theories

Here the goal is to minimize the central charge on top of the leaf parametrized by (5.2.2). We

do not assume any pole in the S-matrix and form factor. We have

L = 12π
∫ ∞

4
d s
ρ(s)

s2 +
∫ ∞

4
d swT (s)

[
T (s)+Λ−

∫ ∞

4

d z

π
ImT (z)

(
1

z − s
+ 1

z + s −4
− 2

z −2

)]
+

∫ ∞

4
d swF (s)

[
F (s)−F (0)−

∫ ∞

4

d z

π
ImF

(
1

z − s
− 1

z

)]
+

∫ ∞

4
d s TrΛ(s) ·B(s)+b

(∫ ∞

4

d z

π
ImT (z)

4

(z −2)3 −Λ(2)
)

(D.2.1)
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The dual scattering function is defined

WT (s) ≡
∫ ∞

4

d z

π
wT (z)

(
1

z − s
− 1

z + s −4
+ 2

s −2

)
,

ImWT (s) = wT (s), ReWT (s) =−P
∫ ∞

4

d z

π
wT (z)

(
1

s − z
+ 1

s − (4− z)
− 2

s −2

)
,

(D.2.2)

where the last term is not eliminated as in the example in section 5.1 since we do not extremize

over the primal variable T (2) which is fixed to be −Λ.

The elimination of the primal variable T constrains the dual variables to obey

λ4 = N2

2

(
WT + 4b

π(s −2)3

)
. (D.2.3)

We therefore get

Dual Problem (Minimization of the central charge on top of the leaf)

Maximize
{λ1,WT ,WF ,b}

[∫ ∞

4
d s (2λ1 +2ImWF +N2 ReWT +Λ ImWT )+ (1−Λ(2))b

]
(D.2.4)

Constrained by
λ1

N2
2 WT + 2N2b

π(s−2)3 i
p

N2

4 WF

N2
2 W ∗

T
+ 2N2b
π(s−2)3 λ1 −i

p
N2

4 W ∗
F

−i
p

N2

4 W ∗
F

i
p

N2

4 WF − 6
s2

≼ 0, ∀s ∈ [4,∞), (D.2.5)

whereΛ≼ 0 means −Λ≽ 0.

Non-Linear dual forZ2 symmetric theories

In the pure S-Matrix context the dual problem is simpler and in particular we can get the leaf

by computing the extreme values forΛ(2) ≡T ′′(2) and then the extreme values forΛ≡T (2)

with fixedΛ(2) within the allowed range.

For the first problem the lagrangian is

L =
∫ ∞

4

d z

π
ImT (z)

4

(z −2)3 +
∫ ∞

4
d s (λ(s)U (s)+w(s)A (s)) , (D.2.6)

where w and λ ≥ 0 are Lagrange multipliers and A is the usual analyticity and crossing

constraint for the scattering amplitude and

U (s) ≡ 2ImT (s)− |T (s)|2
N2(s)

(D.2.7)
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is the unitarity constraint in the pure S-Matrix setup. Using the equations of motion for T to

eliminate it, we get the dual problem

L =
∫ ∞

4
d sN2(s)

√
(ImW (s))2 +

(
ReW (s)+ 4

π(s −2)3

)2

+ReW (s)+ 4

π(s −2)3

 . (D.2.8)

For the second problem we start with the lagrangian

L =T (2)+b

(
Λ(2) −

∫ ∞

4

d z

π
ImT (z)

4

(z −2)3

)
+

∫ ∞

4
d s (λ(s)U (s)+w(s)A (s)) . (D.2.9)

Eliminating the primal variable T we get

L =T (2)

(
1−

∫ ∞

4
d s ImW (s)

)
+bΛ(2)

+
∫ ∞

4
d sN2(s)

√
(ImW (s))2 +

(
ReW (s)− 4b

π(s −2)3

)2

+ReW (s)− 4b

π(s −2)3

 (D.2.10)

To summarize we have

Dual Problem (Λ(2) maximization)

Minimize
{W (s)}

∫ ∞

4
d sN2(s)

√
(ImW (s))2 +

(
ReW (s)− 4

π(s −2)3

)2

+ReW (s)− 4

π(s −2)3

]) (D.2.11)

Dual Problem (Λ(2) minimization)

Minimize
{W (s)}

∫ ∞

4
d sN2(s)

−
√

(ImW (s))2 +
(
ReW (s)− 4

π(s −2)3

)2

+ReW (s)− 4

π(s −2)3

]) (D.2.12)

Dual Problem (Λmaximization with fixedΛ(2))

Minimize
{b,W (s)}

bΛ(2) +
∫ ∞

4
d sN2(s)

√
(ImW (s))2 +

(
ReW (s)− 4b

π(s −2)3

)2

+ReW (s)− 4b

π(s −2)3

]) (D.2.13)
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Constrained by ∫ ∞

4
d s ImW (s) = 1 (D.2.14)

Dual Problem (Λminimization with fixedΛ(2))

Minimize
{b,W (s)}

bΛ(2) +
∫ ∞

4
d sN2(s)

−
√

(ImW (s))2 +
(
ReW (s)− 4b

π(s −2)3

)2

+ReW (s)− 4b

π(s −2)3

]) (D.2.15)

Constrained by ∫ ∞

4
d s ImW (s) = 1 (D.2.16)

Following [211], for theΛ(2) maximization we use the ansatz

W (s) = 1

s(4− s)

N∑
n=0

an
(
ρn(s,2)−ρn(4− s,2)

)
, (D.2.17)

and for theΛmaximization we use

W (s) = 1

s(4− s)

(
8

π(s −2)
+

N∑
n=0

an
(
ρn(s,2)−ρn(4− s,2)

))
, (D.2.18)

with ρ(s, s0) defined by (D.3.1).

D.2.2 Ising Field Theory

Zero in the S-Matrix at s = 1−x

To implement the zero in the S-matrix we can use the subtraction

T (s)−T (1−x) =−g 2
(

1

s −1
+ 1

3− s
− 1

1−x −1
− 1

3− (1−x)

)
−

∫ ∞

4

d z

π
ImT (z)

(
1

z − s
+ 1

z + s −4
− 1

z −1+x
− 1

z +1−x −4

)
,

(D.2.19)

and we will fix T (1−x) = iN2(1−x) so that S(1−x) = 0. The dual scattering function is now

defined as

WT (s) =
∫ ∞

4

d z

π
wT (z)

(
1

z − s
− 1

z + s −4
+ 1

s +x −1
+ 1

s −x −3

)
. (D.2.20)

Its ansatz therefore needs to have poles at s = 1−x and s = 3+x with residues
∫

ImWT /π and

to be odd under crossing. To moreover satisfy the fact that the objective must be integrable we
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can make the ansatz1

WT (s) = a

s(4− s)

(
1

s +x −1
+ 1

s −x −3

)
+ 1

s(4− s)

N∑
n=1

fn(ρ(s,2)n −ρ(4− s,2)n), (D.2.23)

where the second term is the ansatz that we make when we don’t impose the zero, defined by

(D.3.2).

The only modification to the lagrangian induced from the addition of the zero comes from the

subtraction of T (1−x) which gives the new term

L ⊃
∫ ∞

4
d swT (s) (−T (1−x)) =−iN2(1−x)

∫ ∞

4
ImWT . (D.2.24)

In summary to implement the zero in the S-Matrix, it suffices to derive the problem without

the zero and at the end we modify the lagrangian as

L →L − iN2(1−x)
∫ ∞

4
ImWT , (D.2.25)

and use (D.2.23) for WT .

Minimization of the central charge

An interesting problem is the minimization of the UV central charge when there is the zero in

the S-Matrix. We start with the lagrangian

L = 12π

(
g 2

F

g 2 +
∫ ∞

4

ρ

s2

)
+

∫ ∞

4
(AT wT +AF wF +TrΛB), (D.2.26)

and primal variables T , F and ρ are eliminated as before. It remains to eliminate gF and g 2.

For the former, a functional variation with respect to gF yields

gF =−WF (1)

24
g 2. (D.2.27)

Then, variation of g 2 yields the constraint

48WT (1) =WF (1)2. (D.2.28)

1In principle the coefficient a should be fixed by the constraint on the residues. A direct computation gives

1

π

∫ ∞

4
ImWT = a

1

4

(
1

3+x
+ 1

1−x

)
= a

(3+x)(1−x)
. (D.2.21)

On the other hand the residue is given by

ResWT (s)
s=1−x

= a

(1−x)(4−1+x)
, (D.2.22)

and the constraint is therefore satisfied for all a that can be a free parameter.
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It was appearing in the lagrangian as g 2(WT (1)−WF (1)2/48), with positive g 2, and we are

minimizing over the primal variables g 2, so it can be implemented linearly with the positive

semidefinite constraint (
WT (1) WF (1)

WF (1) 48

)
≽ 0. (D.2.29)

Therefore

Dual Problem (Minimization of the central charge cUV with a zero S(1−x) = 0)

Maximize
{λ1,WT ,WF }

[∫ ∞

4
d s (2λ1 +2ImWF +N2 ReWT − iN2(1−x) ImWT )

]
(D.2.30)

Constrained by
λ1

N2
2 WT i

p
N2

4 WF

N2
2 W ∗

T
λ1 −i

p
N2

4 W ∗
F

−i
p

N2

4 W ∗
F

i
p

N2

4 WF − 6
s2

≼ 0, ∀s ∈ [4,∞),

(
WT (1) WF (1)

WF (1) 48

)
≽ 0.

(D.2.31)

Bounds in the (g 2, gFΘ
1 ) plane

We will know derive the problem to get bounds on gF ≡ gFΘ
1 and g 2. We start by getting

absolute bounds on gF and then we optimize g 2 for fixed values of gF . We will impose the

zero in the S-Matrix at the end.

The lagrangian can be written

L = gF +
∫ ∞

4
d swT (s)

[
T (s)−T (2)+ g 2

(
1

s −1
+ 1

3− s
−2

)
−

∫ ∞

4

d z

π
ImT (z)

(
1

z − s
+ 1

z + s −4
− 2

z −2

)]
+

∫ ∞

4
d swF (s)

[
F (s)−F (0)+ gF

(
1

s −1
+1

)
−

∫ ∞

4

d z

π
ImF

(
1

z − s
− 1

z

)]
+

∫ ∞

4
d s TrΛ(s) ·B(s)

+ cρ

[
12π

(
g 2

F

g 2 +
∫ ∞

4
d s
ρ(s)

s2

)
− cUV

]
,

(D.2.32)

where the last term constrains the UV central charge to be cUV . The extremization over the

primal variable T (2) already gives ∫ ∞

4
d swT (s) = 0. (D.2.33)
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We can now define the dual scattering function

WT (s) ≡
∫ ∞

4

d z

π
wT (z)

(
1

z − s
− 1

z + s −4

)
, (D.2.34)

and the dual form factor function

WF (s) ≡
∫ ∞

4

d z

π
wF (z)

(
1

z − s
+ 1

s

)
. (D.2.35)

The analyticity constraints can then considerably be simplified. We get

L = gF +
∫ ∞

4
d s (Im(T WT )+ Im(FWF )+2ImWF +TrΛ(s) ·B(s))

+ cρ

[
12π

(
g 2

F

g 2 +
∫ ∞

4
d s
ρ(s)

s2

)
− cUV

]
+πg 2WT (1)+πgF WF (1)

(D.2.36)

We are now ready to eliminate the primal variables. Varying with respect to F ,T and ρ we get

λ4 = N2

2
WT , λ6 = i

√
N2

4
WF , λ3 =−6Cρ

s2 . (D.2.37)

The lagrangian is reduced to

L = gF +
∫ ∞

4
d s (2λ1 +2ImWF +N2 ReWT )+ cρ

(
12π

g 2
F

g 2 − cUV

)
+πg 2WT (1)+πgF WF (1).

(D.2.38)

To finalize the elimination of primal variables we need to do variations over gF and g 2. The

former gives the equation

gF =− g 2

24πCρ
(1+πWF (1)), (D.2.39)

that yields the lagrangian

L =− g 2

48πCρ
(1+πWF (1))2 +

∫ ∞

4
d s (2λ1 +2ImWF +N2 ReWT )− cUV Cρ+πg 2WT (1).

(D.2.40)

Now extremizing over g 2 we get the constraint

Cρ = (1+πWF (1))2

48π2WT (1)
. (D.2.41)

Therefore the lagrangian becomes

L =
∫ ∞

4
d s (2λ1 +2ImWF +N2 ReWT )− cUV

(1+πWF (1))2

48π2WT (1)
. (D.2.42)
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All the primal variables are eliminated and we’re ready to extremize over dual variables. The

last term is not linear in those variables, and it’s convenient to introduce a new variable u such

that (
−u 1+πWF (1)

1+πWF (1) −48π2WT (1)

)
≽ 0. (D.2.43)

We can finally add the zero in the scattering amplitude as described above and formulate the

dual problem that can be implemented in SDPB :

Dual Problem (gF maximization and S(m2(1−x)) = 0)

Minimize
{λ1,WT ,WF ,u}

[∫ ∞

4
d s (2λ1 +2ImWF +N2 ReWT − iN2(1−x) ImWT )− cUV u

]
(D.2.44)

Constrained by
λ1

N2
2 WT i

p
N2

4 WF

N2
2 W ∗

T
λ1 −i

p
N2

4 W ∗
F

−i
p

N2

4 W ∗
F

i
p

N2

4 WF −6u
s2

≽ 0, ∀s ∈ [4,∞),

(
−u 1+πWF (1)

1+πWF (1) −48π2WT (1)

)
≽ 0,

(D.2.45)

and ∫ ∞

4
d sWT (s) = 0. (D.2.46)

The minimization is similar, we just have to maximize the dual objective instead of minimizing

and adjust the constraint on u so that it becomes the correct form when the dual objective is

maximized. The dual matrixΛ(s) needs also to be negative instead of positive, or equivalently

−Λ is positive. We get

Dual Problem (gF minimization and S(m2(1−x)) = 0)

Maximize
{λ1,WT ,WF ,u}

[∫ ∞

4
d s (2λ1 +2ImWF +N2 ReWT − iN2(1−x) ImWT )− cUV u

]
(D.2.47)

Constrained by
λ1

N2
2 WT i

p
N2

4 WF

N2
2 W ∗

T
λ1 −i

p
N2

4 W ∗
F

−i
p

N2

4 W ∗
F

i
p

N2

4 WF −6u
s2

≼ 0, ∀s ∈ [4,∞),

(
u 1+πWF (1)

1+πWF (1) 48π2WT (1)

)
≽ 0,

(D.2.48)

and ∫ ∞

4
d sWT (s) = 0. (D.2.49)
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Now we have to maximize the cubic coupling g 2 with fixed gF and we start with the lagrangian

L = g 2 +
∫ ∞

4
d swT (s)

[
T (s)−T (2)+ g 2

(
1

s −1
+ 1

3− s
−2

)
−

∫ ∞

4

d z

π
ImT (z)

(
1

z − s
+ 1

z + s −4
− 2

z −2

)]
+

∫ ∞

4
d swF (s)

[
F (s)−F (0)+ gF

(
1

s −1
+1

)
−

∫ ∞

4

d z

π
ImF

(
1

z − s
− 1

z

)]
+

∫ ∞

4
d s TrΛ(s) ·B(s)

+ cρ

[
12π

(
g 2

F

g 2 +
∫ ∞

4
d s
ρ(s)

s2

)
− cUV

]
+Cg (gF − g∗

F ).

(D.2.50)

The primal variables are eliminated as before, and we arrive at

L = g 2 +
∫ ∞

4
d s (2λ1 +2ImWF +N2 ReWT )+ cρ

(
12π

g 2
F

g 2 − cUV

)
+πg 2WT (1)+πgF WF (1)+Cg (gF − g∗

F ).

(D.2.51)

The variations with respect to gF and then g 2 give

gF =− g 2

24πCρ

(
πWF (1)+Cg

)
, Cρ =

(πWF (1)+Cg )2

48π+48π2WT (1)
. (D.2.52)

Introducing a new variable u to linearize the objective as before, we get

Dual Problem (g 2 maximization with fixed gF = g∗
F and S(m2(1−x)) = 0)

Minimize
{λ1,WT ,WF ,Cg ,u}

[∫ ∞

4
d s (2λ1 +2ImWF +N2 ReWT − iN2(1−x) ImWT )− cUV u −Cg g∗

F

]
(D.2.53)

Constrained by
λ1

N2
2 WT i

p
N2

4 WF

N2
2 W ∗

T
λ1 −i

p
N2

4 W ∗
F

−i
p

N2

4 W ∗
F

i
p

N2

4 WF −6u
s2

≽ 0, ∀s ∈ [4,∞), (D.2.54)

(
−u πWF (1)+Cg

πWF (1)+Cg −48π−48π2WT (1)

)
≽ 0, (D.2.55)
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and ∫ ∞

4
d sWT (s) = 0. (D.2.56)

Again the minimization is similar and we get

Dual Problem (g 2
T minimization with fixed gF = g∗

F and S(m2(1−x)) = 0)

Maximize
{λ1,WT ,WF ,Cg ,u}

[∫ ∞

4
d s (2λ1 +2ImWF +N2 ReWT − iN2(1−x) ImWT )− cUV u −Cg g∗

F

]
(D.2.57)

Constrained by
−λ1 −N2

2 WT −i
p

N2

4 WF

−N2
2 W ∗

T
−λ1 i

p
N2

4 W ∗
F

i
p

N2

4 W ∗
F

−i
p

N2

4 WF
6u
s2

≽ 0, ∀s ∈ [4,∞), (D.2.58)

(
u πWF (1)+Cg

πWF (1)+Cg 48π+48π2WT (1)

)
≽ 0, (D.2.59)

and ∫ ∞

4
d sWT (s) = 0. (D.2.60)

D.2.3 Two poles : minimization of the central charge

We now consider the case with two particles having masses m1 = 1 and m2 =
p

3. There is only

one pole in the scattering amplitude and in the form factor corresponding to an exchange of

the second particle between two of the lightest particles. The pole terms in the dispersion

relations are slightly modified and read

T (s)−T (2) =−g 2
112

(
1

s −3
+ 1

1− s
+2

)
+

∫ ∞

4

d z

π
ImT (z)

(
1

z − s
+ 1

z + s −4
− 2

z −2

)
,

F (s)−F (0) =−gF

(
1

s −3
+ 1

3

)
+

∫ ∞

4

d z

π
ImF

(
1

z − s
− 1

z

)
.

(D.2.61)
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We therefore have the lagrangian

L = 12π

(
g 2

F

9g 2
112

+
∫ ∞

4
d s
ρ(s)

s2

)

+
∫ ∞

4
d swT (s)

[
T (s)−T (2)+ g 2

112

(
1

s −1
+ 1

3− s
−2

)
−

∫ ∞

4

d z

π
ImT (z)

(
1

z − s
+ 1

z + s −4
− 2

z −2

)]
+

∫ ∞

4
d swF (s)

[
F (s)−F (0)+ gF

(
1

s −1
+1

)
−

∫ ∞

4

d z

π
ImF

(
1

z − s
− 1

z

)]
+

∫ ∞

4
d s TrΛ(s) ·B(s).

(D.2.62)

Again the steps are similar and we obtain the dual problem

Dual Problem (cUV minimization with m1 = 1,m2 =
p

3 and g112 fixed)

Maximize
{λ1,WT ,WF ,u}

[∫ ∞

4
d s (2λ1 +2ImWF +N2 ReWT )−3

g 2
112

16π
u +πg 2

T WT (3)

]
(D.2.63)

Constrained by
λ1

N2
2 WT i

p
N2

4 WF

N2
2 W ∗

T
λ1 −i

p
N2

4 W ∗
F

−i
p

N2

4 W ∗
F

i
p

N2

4 WF −6u
s2

≼ 0, ∀s ∈ [4,∞), (D.2.64)

(
1 πWF (3)

πWF (3) u

)
≽ 0, (D.2.65)

and ∫ ∞

4
d sWT (s) = 0. (D.2.66)

D.3 Numerical implementation

We are now almost ready to use our linear dual formulation to get non perturbative bounds

on different quantities. The last step is to implement the dual problem numerically. The dual

functions WT and WF have branch cuts on the segment [4,∞) and it is therefore useful to use

the new variable

ρ(s, s0) ≡
p

4− s0 +
p

4− sp
4− s0 −

p
4− s

(D.3.1)
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that maps the s complex plane in the unit disk with the cut mapped on the boundary and that

we depict on Figure D.3 for s0 = 2. Then any function that is analytic apart for some poles and

cuts starting at s = 4 can be expressed as the sum of the pole terms to which we add a Taylor

series in the variable ρ.

Figure D.3: Map ρ(s) from the s complex plane to the unit disk given in eq.(D.3.1). Figure taken from
[1].

Accounting for the fact that WT is odd under crossing and N2 ReWT must be integrable, we

make the ansatz

WT (s) = 1

s(4− s)

N∑
n=1

fn(ρ(s,2)n −ρ(4− s,2)n). (D.3.2)

In the case of Z2 odd theories, WT also has a pole as can be seen from eq.(5.1.27). To account

for this singularity and match the residue, the ansatz is modified as

WT (s) =− 8

πs(s −2)(s −4)
+ 1

s(4− s)

N∑
n=1

fn(ρ(s,2)n −ρ(4− s,2)n). (D.3.3)

As derived in (D.2.2) when there is a zero in the scattering amplitude at s = 1− x the ansatz

becomes

WT (s) = f0

s(4− s)

(
1

s +x −1
+ 1

s −x −3

)
+ 1

s(4− s)

N∑
n=1

fn(ρ(s,2)n −ρ(4− s,2)n). (D.3.4)

The second dual function WF must have an integrable imaginary part, and the definition

((5.1.28) implies the existence of a pole at s = 0 with residue
∫

ImWF /π. We therefore propose

the ansatz

WF (s) = 1

s −4

N∑
n=0

gnρ(s,0)n +h0 + 1

πs

∫ ∞

4
d s ImWF (s)

=
N∑

n=0
gn

(
ρ(s,0)n

s −4
− (−1)n

s

)
+h0,

(D.3.5)
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where we were careful to include the contribution of the pole term in the imaginary part

1

4− s
= 1

4− s̄ − iϵ
= PV

1

4− s̄
+ iπδ(s̄ −4), (D.3.6)

where we wrote explicitely s = s̄ + iϵ, s̄ ∈ R. Finally the remaining dual variable λ1 is a real

function that needs to be integrable. We use the ansatz

λ1(s) = 1

s
p

s −4

(
1∑

n=0
an
ρ(s,0)n +ρ(s,0)n,∗

2
+

N∑
n=1

bn
ρ(s,0)n −ρ(s,0)n,∗

2i

)
. (D.3.7)

In some cases we observed the numerical convergence is improved if the ansatz for λ1 is

modified as

λ̃1(s) =λ1(s)+ 1

s2

10∑
n=1

cn
ρ(s,0)n −ρ(s,0)n,∗

2i
. (D.3.8)

In this work we use (D.3.4) and (D.3.8) in section 5.2.1, and (D.3.2) and (D.3.7) in section 5.2.2 .

To implement the semipositive definite constraint on the interval [4m2,∞), we discretize

it on a Chebyshev grid with 200 points. We also checked, without rigorous analysis, that

increasing this number does not change the results. Then we optimize numerically over the

free parameters an ,bn , fn , gn ,h0 and eventually cn using SDPB to solve the dual optimization

problem.

D.4 Form factor perturbation theory

In this appendix we present our perturbative calculation for the one particle form factor FΘ
1

and then we review Zamolodchikov’s result for the perturbative scattering amplitude [229].2

The Ising Field Theory has been extensively studied e.g. in [220, 222, 229] for non integrable

directions. The starting point for perturbation theory will be the action

S I F T = S(c=1/2)
C F T + m

2π

∫
d 2xϵ(x)+h

∫
d 2xσ(x), (D.4.1)

where the scaling dimensions of the operators ϵ and σ are respectively

∆ϵ = 1, ∆σ = 1

8
. (D.4.2)

2Form factor perturbation theory was first proposed in [276] and was applied in different contexts (see e.g.
[277, 278]).
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D.4.1 Perturbation theory for FΘ
1

In the interacting theory the trace of the stress energy tensor can be deduced from (D.4.1) and

(D.4.2) and takes the form3

Θ(x) = m

2π
ϵ(x)+ 15h

8
σ(x). (D.4.5)

We can split the IFT action in the thermal deformation part S0 and treat the magnetic defor-

mation as a perturbation, which reads

S = S0 +h
∫

d 2xσ(x). (D.4.6)

First approach

Our goal is now to use the two point function of the trace of the stress energy tensor to extract

the one particle form factor FΘ
1 . To this end we can use the Euclidean spectral decomposition

〈Θ(x)Θ(0)〉c =
∫ ∞

0
d sρΘ(s)∆E (x, s)

= |FΘ
1 |2∆E (x,m2)+O (e−2mx ),

(D.4.7)

where we used to explicit form of the Euclidean propagator and its asymptotic form

∆E (x,m2) = 1

2π
K0(mx) ∼

x→∞
1

2π

√
π

2mx
e−mx . (D.4.8)

On the other hand the two point function (D.4.7) can be written as a path integral

〈Θ(x)Θ(0)〉 = 1

Z

∫
[Dφ]e−S0

(
1−h

∫
d 2 yσ(y)+ h2

2

∫
d 2 yd 2zσ(y)σ(z)+O (h3)

)
Θ(x)Θ(0).

(D.4.9)

We can therefore get a perturbative expression for this two point function in terms of correla-

3When h = 0, one can check that the normalization for Θ is compatible with FΘ
2 (s = 0) =−2m2 and the CFT

normalization of the operator ϵ. On the one hand, we have

〈Θ(x)Θ(0)〉0 =
( m

2π

)2 〈ϵ(x)ϵ(0)〉 −−−→
x→0

( m

2π

)2 1

|x|2 . (D.4.3)

On the other hand, using that only the n = 2 form factor FΘ
2 = i m

√
s −4m2 is non vanishing when h = 0 we also

have

〈Θ(x)Θ(0)〉0 =
∫ ∞

4m2
d s

|FΘ
2 (s)|2

4π
√

s(s −4m2)
∆E (x, s) −−−→

x→0

( m

2π

)2 1

|x|2 , (D.4.4)

showing that the normalizations are compatible.
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tion functions in the theory with h = 0, which we denote as 〈...〉0. We get

〈Θ(x)Θ(0)〉c =
( m

2π

)2
〈ϵ(x)ϵ(0)〉0 +

(
15h

8

)2

〈σ(x)σ(0)〉0

− 15mh2

8π

∫
d 2 y〈ϵ(x)σ(0)σ(y)〉0

+
(

m2h2

8π2

)∫
d 2 yd 2z〈ϵ(x)ϵ(0)σ(y)σ(z)〉0 +O (h3).

(D.4.10)

Comparing (D.4.7) and (D.4.10), the one particle form factor can be computed as

|FΘ
1 |2 = h2

[(
15

8

)2

G (2) − 15m

8π
G (3) + m2

8π2 G (4)
]
+O (h3), (D.4.11)

where the coefficients G (i ) are defined as

G (2) ≡ lim
|x|→∞

1

∆E (x,m2)
〈σ(x)σ(0)〉0,

G (3) ≡ lim
x→∞

1

∆E (x,m2)

∫
d 2 y〈ϵ(x)σ(0)σ(y)〉0,

G (3) ≡ lim
x→∞

1

∆E (x,m2)

∫
d 2 yd 2z〈ϵ(x)ϵ(0)σ(y)σ(z)〉0.

(D.4.12)

The two point function contribution is immediately obtained by using again the spectral

representation

G (2) = lim
x→∞

1

∆E (x,m2)

∫ ∞

0
ρσ(s)∆E (x, s) = |Fσ

1 |2. (D.4.13)

To evaluate the 3 and 4 point functions in the thermal deformation we can use the known

form factors [228, 279]

F ϵ
2 (p1, p2) =−2π

√
4m2 − s12,

Fσ
3 (p1, p2, p3) = 2Fσ

1

√
4m2 − s12

s12

√
4m2 − s13

s13

√
4m2 − s23

s23
,

Fσ
1 = 21/12e−1/8m1/8 A3/2

G ≈ 1.3578...,

(D.4.14)

where AG is the Glaisher’s constant and we use the s Mandelstam variable defined as

s12 ≡−(p1 +p2)2 = 2m2 +2(Ep1 Ep2 −p1p2). (D.4.15)

We will also need the parity reversed 2-momentum p̃ and the rest frame 2-momentum k̄

defined as

p ≡
(

Ep

p

)
, p̃ ≡

(
Ep

−p

)
, k̄ ≡

(
m

0

)
. (D.4.16)

We can evaluate the correlation functions written as a time ordered vacuum correlator. With-
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out loss of generality, we choose x to be pointing in the Euclidean time direction and we

parametrize y as

x =
(
|x|
0

)
, y =

(
y1

y2

)
. (D.4.17)

Then, we can write∫
d 2 y〈ϵ(x)σ(0)σ(y)〉0 =

∫
d y2

∫ 0

−∞
d y1 〈0|ϵ(x)σ(0)σ(y) |0〉

+
∫

d y2
∫ |x|

0
d y1 〈0|ϵ(x)σ(y)σ(0) |0〉

+
∫

d y2
∫ ∞

|x|
d y1 〈0|σ(y)ϵ(x)σ(0) |0〉 .

(D.4.18)

Using that the operators can be translated as 4

O (y) = eP1 y1−i P2 y2
O (0)e−P1 y1+i P2 y2

, (D.4.19)

the first term in (D.4.18) reads

G (3)
1 ≡

∫
d y2

∫ 0

−∞
d y1 〈0|ϵ(x)σ(0)σ(y) |0〉

=
∫

d y2
∫ 0

−∞
d y1

∫
dΦ12dΦ3 〈0|ϵ(0)

∣∣p1, p2
〉

i n i n
〈

p1, p2
∣∣σ(0)

∣∣p3
〉

out out
〈

p3
∣∣σ(0) |0〉

× e−|x|(Ep1+Ep2 )e y1Ep3 e−i y2p3 +O (e−2m|x|)

=
∫

dΦ12
1

4m2 e−|x|(Ep1+Ep2 )F ϵ
2 (p1, p2)Fσ,∗

3 (k̄,−p1,−p2)Fσ
1 +O (e−2m|x|) =O (e−2m|x|).

(D.4.20)

In the first line we inserted a complete set of states between each operator, using (5.1.5) and

the notation

dΦ12...n = 1

n!

d p1

(2π)2Ep1

. . .
d pn

(2π)2Epn

. (D.4.21)

Between ϵ(x) and σ(0) only two particle states can contribute because ϵ can only create two

particles from the vacuum. Between σ(0) and σ(y), there are many states that contribute to

the correlator but only the single particle state can hope to survive the limit (D.4.12). In the

second line we integrated over y2 to get a spatial delta function that we used to integrate over

p3, and we also integrated over y1. We also used [216]

out
〈

p1, . . . , pn
∣∣O (0) |k1, . . . ,km〉i n =FO

m+n(p1, . . . , pn ,−k1, . . . ,−km) , (D.4.22)

for hermitian operators O . This contribution does not survive the limit (D.4.12).

4With these conventions, P1 is the hamiltonian and P2 is the spatial momentum and both are hermitian
operators on the physical Hilbert space.
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We now treat the second term in (D.4.18) that reads

G (3)
2 ≡

∫
d y2

∫ |x|

0
d y1 〈0|ϵ(x)σ(y)σ(0) |0〉

=
∫

d y2
∫ |x|

0
d y1

∫
dΦ12dΦ3 〈0|ϵ(0)

∣∣p1, p2
〉

i n i n
〈

p1, p2
∣∣σ(0)

∣∣p3
〉

out out
〈

p3
∣∣σ(0) |0〉

× e−|x|(Ep1+Ep2 )e y1(Ep1+Ep2−Ep3 )e−i y2(p1+p2−p3) +O (e−2m|x|)

=
∫

dΦ12
1

2Ep1+p2

1

Ep1 +Ep2 −Ep1+p2

e−|x|Ep1+p2 F ϵ
2 (p1, p2)Fσ,∗

3 (p3,−p1,−p2)Fσ
1

+O (e−2m|x|).

(D.4.23)

where p3 = (Ep1+p2 , p1 + p2). The steps are identical as above and we now get a non-zero

contribution to the limit (D.4.12). A similar calculation shows that the third term (D.4.18) is

G (3)
3 ≡

∫
d y2

∫ ∞

|x|
d y1 〈0|σ(y)ϵ(x)σ(0) |0〉 =

∫
dΦ1

1

2m2 e−Ep1 |x|(Fσ
1 )2F ϵ,∗

2 (p1,−k̄) (D.4.24)

To evaluate the x →∞ limit we can use that the x dependence in the integrand only comes

from the exponential. If the integral is only over p we have

lim
x→∞

1

∆E (x,m2)

∫
d p f (p)e−|x|Ep =

= lim
x→∞

1

∆E (x,m2)

∫
d pp|x| f

(
pp|x|

)
e−|x|(m+p2/(2m|x|))+O (p3/

p|x|) = 4π f (0), (D.4.25)

where we rescaled the integration variable by 1/
p|x| and expanded the energy with its Taylor

series. When we have an integral over p1 and p2 and the exponential damping contains Ep1+p2 ,

we get

lim
x→∞

1

∆E (x,m2)

∫
d p1d p2 f (p1, p2)e−|x|Ep1+p2 = 4π

∫
d p f (p ,−p). (D.4.26)

This result is obtained by first changing variables to p1 +p2 and p1 −p2 and then rescaling as

above.

Using these results we can take the limit (D.4.12) and get the contribution of the 3 point

function that reads

G (3) = 4π
1

8πm3 F ϵ,∗
2 (k̄,−k̄)(Fσ

1 )2

−4πi
∫

d p
1

2(2π2Ep )2

1

2m

1

2Ep −m
F ϵ

2 (p, p̃)Fσ
1 Fσ,∗

3 (k̄,−p,−p̃)
(D.4.27)
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The contributions from the 4 point function are similar. We have∫
d 2 yd 2z〈ϵ(x)ϵ(0)σ(y)σ(z)〉0 = 2

∫
d y2d z2

∫ ∞

−∞
d y1

∫ y1

−∞
d z1〈ϵ(x)ϵ(0)σ(y)σ(z)〉0. (D.4.28)

Splitting up the integrals in time-ordered correlators, we get four contributing terms

G (4)
1 ≡

∫
d y2d z2

∫ |x|

0
d y1

∫ 0

−∞
d z1 〈0|ϵ(x)σ(y)ϵ(0)σ(z) |0〉

=
∫

dΦ2
1

2m2

1

Ep1 +Ep2 −Ep1+p2

e−|x|(Ep1+p2 )F ϵ
2 (p1, p2)Fσ,∗

3 (p1, p2,−p3)Fσ
1 F ϵ

2 (−p3, k̄),

(D.4.29)

where p3 = (Ep1+p2 , p1 +p2),

G (4)
2 ≡

∫
d y2d z2

∫ |x|

0
d y1

∫ y1

0
d z1 〈0|ϵ(x)σ(y)σ(z)ϵ(0) |0〉

=
∫

dΦ2dΦ′
2

1

2Ep1+p2

1

Ep1 +Ep2 −Ep1+p2

1

Ep1 +Ep2 −Ep ′
1+p ′

2

e−|x|(Ep1+p2 )

(2π)δ(p1 +p2 −p ′
1 −p ′

2) × F ϵ
2 (p1, p2)F ϵ,∗

2 (p ′
1, p ′

2)Fσ
3 (p ′

1, p ′
2,−p ′

3)Fσ,∗
3 (p1, p2,−p3),

(D.4.30)

where p3 = (Ep1+p2 , p1 +p2) and p ′
3 = (Ep ′

1+p ′
2
, p ′

1 +p ′
2),

G (4)
3 ≡

∫
d y2d z2

∫ ∞

|x|
d y1

∫ 0

−∞
d z1 〈0|σ(y)ϵ(x)ϵ(0)σ(z) |0〉

=
∫

dΦ1
1

4m2 e−|x|Ep1 (Fσ
1 )2|F ϵ

2 (−p1, k̄)|2,

(D.4.31)

and finally

G (4)
4 ≡

∫
d y2d z2

∫ ∞

|x|
d y1

∫ |x|

0
d z1 〈0|σ(y)ϵ(x)σ(z)ϵ(0) |0〉

=
∫

dΦ2
1

2m2

1

Ep1 +Ep2 −Ep1+p2

e−|x|(Ep1+p2 )F ϵ
2 (p1, p2)Fσ,∗

3 (p1, p2,−p3)Fσ
1 F ϵ

2 (−p3, k̄)

=G (4)
1 ,

(D.4.32)

where p3 = (Ep1+p2 , p1 +p2). We can take the |x| →∞ limit and we get for the total 4 point
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function contribution

G (4) = 32π
∫

d p
1

2(2π2Ep )2

1

4m3

1

2Ep −2m
F ϵ

2 (p, p̃)Fσ,∗
3 (p, p̃,−k̄)F ϵ

2 (−k̄, k̄)Fσ
1

+16π
∫

d p1d p2
1

2(2π2Ep1 )2

1

2(2π2Ep2 )2

1

2m

1

2Ep1 −m

1

2Ep2 −m
(2π)

× F ϵ
2 (p1, p̃1)F ϵ,∗

2 (p2, p̃2)Fσ
3 (p2, p̃2,−k̄)Fσ,∗

3 (p1, p̃1,−k̄)

+16π
1

2π2m

(Fσ
1 )2

4m4 |F ϵ
2 (−k̄, k̄)|2.

(D.4.33)

The integrals in (D.4.27)) and (D.4.33) can be evaluated and we find

G (3) = |Fσ
1 |2

(
2π+2(

p
3−1)π−1

)
,

G (4) = 2|Fσ
1 |2

[(
2(
p

3−1)π−1
)2 +8π

(
(
p

3−1)π− 1

2

)
+4π2

]
.

(D.4.34)

Plugging those results in (D.4.11) we obtain

|FΘ
1 | = h|Fσ

1 |
√(

15

8
−p

3+ 1

2π

)2

+O (h2)

= h|Fσ
1 |×0.302104...+O (h2)

(D.4.35)

Second approach

This computation can be verified by doing an independent derivation. Our strategy is to follow

the lines of perturbative quantum mechanics and generalize them to quantum field theory.

We split the total hamiltonian as

H = H0 +hV , V =
∫

d xσ(x), (D.4.36)

where H0 is the hamiltonian of the free Majorana fermion described by the theory at h = 0.

We denote by
∣∣ψ〉

the eigenstates of the full hamiltonian H with eigenvalues E that can be

expanded as ∣∣ψ〉= ∣∣ψ〉(0) +h
∣∣ψ〉(1) +O (h2), E = E (0) +hE (1) +O (h2), (D.4.37)

where
∣∣ψ〉(0) is an eigenstate of H0 with eigenvalue E (0). In QFT a convenient basis for those

states are the multi-particle states
∣∣p1...pn

〉
. The form factor FΘ

1 reads

FΘ
1 =out

〈
p

∣∣Θ(0) |0〉i n =
(

(0)
out

〈
p

∣∣+(1)
out

〈
p

∣∣h
)(

m

2π
ϵ(0)+ 15h

8
σ(0)

)(
|0〉(0)

i n +h |0〉(1)
i n

)
+O (h2)

= h

[
m

2π

(
(0)
out

〈
p

∣∣ϵ(0) |0〉(1)
i n +(1)

out

〈
p

∣∣ϵ(0) |0〉(0)
i n

)
+ 15

8
Fσ

1

]
+O (h2).

(D.4.38)
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The problem we need to solve is now to compute the first correction to the energy eigenstates∣∣p〉(1) and |0〉(1). For this we expand the Schrödinger equation

H
∣∣ψ〉= E

∣∣ψ〉 =⇒ (H0 −E (0))
∣∣ψ〉(1) = (E (1) −V )

∣∣ψ〉(0) , (D.4.39)

where the implication follows by comparing terms in first order in h. Multiplying the equation

by (0)
〈
ψ

∣∣ and using that the form factors of σ are zero for an even number of particles we get

E (1) = 0. Inserting the identity (5.1.5) we get

∑∫ ∣∣p1...pn
〉

(E (0)
n −E (0))

〈
p1...pn

∣∣ψ〉(1) =−∑∫ ∣∣p1...pn
〉〈n|V ∣∣ψ〉(0) , (D.4.40)

where En ≡ Ep1 +...+Epn . Here we are already at order h so we can consider the states
∣∣p1...pn

〉
as eigenstates of H0. We need to be careful with degeneracies. For our problem

∣∣ψ〉(0) will

either be a one particle state or the vacuum. Due to Lorentz invariance we can set p = k̄ = (m,0)

so that E (0)
p = m will never be degenerate. The vacuum is assumed to have zero energy and is

also never degenerate. If
∣∣p1...pn

〉 ̸= ∣∣ψ〉(0), we can then invert (D.4.40) to get

〈
p1...pn

∣∣ψ〉(1) =−
〈

p1...pn
∣∣V

∣∣ψ〉(0)

E (0)
n −E (0)

. (D.4.41)

This gives all the components of
∣∣ψ〉(1) except along

∣∣ψ〉(0). Assuming that the norm is con-

served, ie
〈
ψ

∣∣ψ〉=(0)
〈
ψ

∣∣ψ〉(0) we get (0)
〈
ψ

∣∣ψ〉(1) = 0. Therefore we found

∣∣ψ〉(1) =∑∫
n ̸=ψ

∣∣p1...pn
〉 〈

p1...pn
∣∣V

∣∣ψ〉(0)

E (0) −E (0)
n

, (D.4.42)

where we defined

∑∫
n ̸=ψ

∣∣p1...pn
〉≡∑∫ ∣∣p1...pn

〉− ∣∣ψ〉(0)

(0)
〈
ψ

∣∣ψ〉(0)
such that (0) 〈ψ∣∣∑∫

n ̸=ψ

∣∣p1...pn
〉= 0. (D.4.43)

The result (D.4.42) is the direct generalization of the familiar quantum mechanical result. We

can now proceed to the evaluation of the matrix elements in (D.4.38). First we have

(0)
out

〈
k̄
∣∣ϵ(0) |0〉(1)

i n =−
∫

d p1

(2π)2Ep1

out
〈

k̄
∣∣ϵ(0)

∣∣p1
〉

i nt
i n

〈
p1

∣∣V |0〉out

Ep1

, (D.4.44)

where we dropped the 0 superscripts in the RHS because everything is in the free theory sector

and we used that ϵ only interpolates between free particles and |0〉i n = |0〉out in free theory. To

continue we compute

〈
p1

∣∣V |0〉out =
∫

d xe−i x p1Fσ
1 = (2π)δ(p1)Fσ

1 , (D.4.45)
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where we used the time independence of the Hamiltonian to set t = 0 inσ(t , x) and Fσ,∗
1 =Fσ

1 .

Using this spatial delta function to perform the integral we get

(0)
out

〈
k̄
∣∣ϵ(0) |0〉(1)

i n =− 1

2m2 F ϵ
2 (k̄,−k̄)Fσ

1 = 2π

m
Fσ

1 . (D.4.46)

The second term in (D.4.38) is computed by similar methods and we get

(1)
out

〈
k̄
∣∣ϵ(0) |0〉(0)

i n =−1

2

∫
d p1

(2π)2Ep1

1

2Ep1

1

2Ep1 −m
Fσ,∗

3 (p1, p̃1,−k̄)F ϵ
2 (p1, p̃1)

=
(
1−2π(

p
3−1)

)
Fσ

1 .

(D.4.47)

Plugging those results back in (D.4.38) we get

FΘ
1 = hFσ

1

(
15

8
−p

3+ 1

2π

)
, (D.4.48)

which is identical to our previous result (D.4.35).

D.4.2 Perturbation theory for S(s)

The first order correction to the scattering amplitude in presence of a small magnetic field was

computed in [229]. More precisely they derived the term S(1)(s) in

S(s) =−1+h2S(1)(s)+O (h4). (D.4.49)

We introduce the change of variables

s 7→ w(s) ≡ s(s −4m2)

4m4 , w 7→ s(w) ≡ 2m2(1+p
1+w). (D.4.50)

The correction S(1) can then be written

S(1)(s) =− i A(w(s))p
w(s)

, (D.4.51)

where

A(w) = r w

w + 3
4

+w
∫ ∞

45/4

d v

2π

σ2→3(s(v))

(v −w)
p

v
, (D.4.52)

where σ2→3 is the part of the inelastic cross section giving the total probability to scatter

2 particles and end up with 3 particles, and s(v) is the function defined in (D.4.50). The

numerator of the pole term is given by

r = 36|Fσ
1 |2, (D.4.53)
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and the inelastic scattering cross section can be written as

σ2→3(s) = B(s)I (s)

B(s) = 4|Fσ
1 |2
π

(
p

s +2)
5
2 (2

p
s −1)4(

p
s −3)3

(
p

s −2)
3
2 (
p

s +1)(
p

s −1)
5
2 (
p

s +3)
3
2 s

3
2

I (s) =
∫ 1

−1
d t

(
1−µt 2

1−νt 2

)2 p
1− t 2

(1−λt 2)
5
2

λ= (
p

s +1)(
p

s −3)3

(
p

s −1)(
p

s +3)3
, µ= (

p
s −2)(2

p
s +1)2

(
p

s +2)(2
p

s −1)2
λ, ν=

p
s +2p
s −2

λ.

(D.4.54)

From this result we can find out a perturbative expression for the residue g 2 of the scattering

amplitude

T (s) =− g 2

s −m2 + ... =⇒ S(s) =− i

N2

g 2

s −m2 + ... (D.4.55)

where the dots denote all terms that are not the pole term. Using (D.4.50) we have N2 = 4
p

w .

Therefore we get

S(s) =− i h2 A(w(s))p
w(s)

+ ... =−i h2r
4

N2

s(s −4m2)

s(s −4m2)+3m4 + ...

=⇒ g 2

s −m2 + ... = 4h2r

(
1− 3

s(s −4m2)+3m4

)
+ ... = 12h2r

1

(s −m2)(s −3m2)
+ ...

= 6h2r

s −m2 + ...

(D.4.56)

Therefore we have

g 2 = 6r h2 +O (h4). (D.4.57)

We can also get a relation between h2 and the position of the zero in the S-matrix parametrized

by x. Indeed setting S(m2(1−x)) = 0 we get

−1−4m4i h2 A(s = m2(1−x))√
m2(1−x)

√
m2(1−x)−4m2

= 0, (D.4.58)

where we abused the notation by setting A(s) ≡ A(w(s)). Solving for h2 we have

h2 =−1

2

p
1−x

p
3+x

1

A(s = m2(1−x))
. (D.4.59)

If x is sufficiently small we can expand around x = 0 to get

h ≈ 3−1/4

6Fσ
1

p
x. (D.4.60)
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D.5 Integral representation for cUV : c-sum rule

Here we review the argument from [217] to derive a sum rule relating the two point function

of the trace of the stress energy tensor to the central charge of the UV CFT.

In Euclidean space and complex coordinates the conservation of the stress energy tensor

becomes

∂̄T + π

2
∂Θ= 0, (D.5.1)

where we defined T (z, z̄) ≡ 2πTzz (z, z̄) and T̄ (z, z̄) ≡ 2πTz̄ z̄ (z, z̄). This gives the following

relations between two point functions

〈∂̄T (z, z̄)T (0,0)〉 =−π
2
〈∂Θ(z, z̄)T (0,0)〉, 〈∂̄T (z, z̄)Θ(0,0)〉 =−π

2
〈∂Θ(z, z̄)Θ(0,0)〉. (D.5.2)

On the other hand we know how T and T̄ transform under rotations, and it constrains the two

point functions to take the form

〈T (z, z̄)T (0,0)〉 = F (zz̄)

z4 , 〈T (z, z̄)Θ(0,0)〉 = G(zz̄)

z3 z̄
, 〈Θ(z, z̄)Θ(0,0)〉 = H(zz̄)

z2 z̄2 , (D.5.3)

where F , G and H are unknown functions that do not transform under rotations. Furthermore

invariance under translations also gives

〈T (z, z̄)Θ(0,0)〉 = 〈Θ(z, z̄)T (0,0)〉. (D.5.4)

Comparing (D.5.2) and (D.5.3) we get that the functions F,G and H must obey

zz̄F ′+ π

2
(zz̄G ′−3G) = 0, zz̄G ′−G + π

2
(zz̄H ′−2H) = 0. (D.5.5)

We now define the C function by

C ≡ 2F −2πG − 3π2

2
H . (D.5.6)

Taking a derivative and multiplying by zz̄, a direct comparison with (D.5.5) gives

zz̄C ′(zz̄) =−3π2H . (D.5.7)

In the UV CFT the OPE of the stress tensor takes the form

T (z)T (w) = c/2

(z −w)4 +2
T (w)

(z −w)2 + ∂T (w)

z −w
+ ... , (D.5.8)

where the coefficient c of the most singular term is called the central charge of the 2D CFT.

With this OPE in hands it is a simple task to compute the two point functions in (D.5.3) in the
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UV CFT, or equivalently in the short distance asymptotic regime zz̄ → 0. We get

FUV = c

2
, GUV = HUV = 0, (D.5.9)

where we usedΘ= 0 in the CFT, as follows from invariance under global scale transformations.

Going back to Euclidean cartesian coordinates we therefore have∫ ∞

0
dr 2C ′(r 2) =C (∞)−C (0) =C I R −CUV = cI R − cUV , (D.5.10)

where in the last equality we used the definition of C (D.5.6) and the expressions of F ,G and H

in the CFT (D.5.9). If we assume a massive theory the IR CFT is trivial and we have cI R = 0. We

can therefore use (D.5.7) and the last expression to get

cUV =−
∫ ∞

0
dr 2C ′(r 2) =

∫ ∞

0
2r dr 3π2 H(r 2)

r 2 = 3π
∫

d 2xx2〈Θ(x)Θ(0)〉. (D.5.11)

Then using the Euclidean spectral representation we get∫
d 2xx2〈Θ(x)Θ(0)〉 =

∫ ∞

0
d s

∫
d 2xx2ρ(s)

∫
d 2p

(2π)2 e i p·x 1

p2 + s
. (D.5.12)

The x integral can be easily evaluated by using∫
d 2xx2e i px =−(2π)2∇2

pδ
(2)(p), (D.5.13)

and then we integrate by parts two times to perform the p integral. We get∫
d 2p

1

p2 + s
∇2

pδ
(2)(p) =∇2

p
1

p2 + s

∣∣∣∣
p=0

=− 4

s2 . (D.5.14)

This finally yields the sum-rule for the central charge of the UV CFT in terms of the spectral

density of the trace of the stress energy tensor

cUV = 12π

(
m−4|FΘ

1 |2 +
∫ ∞

4m2
d s
ρ(s)

s2

)
, (D.5.15)

where we used (5.1.7) to integrate the delta function contribution to the spectral density.

D.6 Normalization of the stress energy tensor form factors

Here we derive a normalization condition that needs to be satisfied by FΘ
2 (s). We follow

closely [216]. Because of Lorentz invariance the most general expression for the 2 particle

form factor of the full stress tensor is

F T µν

2 (p1, p2) = a1pµpν+a2qµqν+a3pµqν+a4pνqµ+a5η
µν, (D.6.1)
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where p ≡ p1 + p2 and q ≡ p1 − p2. The symmetry condition T µν = T νµ gives a3 = a4 and

conservation gives

∂µT µν = 0 =⇒ (p1 +p2)µF
T µν

2 (p1, p2) = 0, (D.6.2)

which yields a1p2 =−a5 and a3 = 0. Therefore the most general form for the form factor of

the stress tensor is

F T µν

2 (p1, p2) = A(s)(pµpν−p2ηµν)+B(s)qµqν, (D.6.3)

where A and B are Lorentz invariant. However the two terms in (D.6.3) are linearly dependent

as it can be seen for example by going to the center of mass frame and writing the two terms

explicitly. Therefore there is no loss of generality in setting A(s) = 0, which leads to

F T µν

2 (s) = B(s)qµqν, FΘ
2 (s) = (s −4m2)B(s), (D.6.4)

where we used q2 = s −4m2.

On the other hand the stress energy tensor is normalized when acting on one particle states

such that

Pµ
∣∣p〉= ∫

d xT 0µ(x)
∣∣p〉= pµ

∣∣p〉
. (D.6.5)

Hence we get〈
p1

∣∣Pµ
∣∣p2

〉= pµ
2 (2π)2Ep2δ(p2 −p1)

=F T 0µ

2 (p1,−p2)
∫

d xe i x·(p1−p2) =F T 0µ

2 (p1,−p2)(2π)δ(p1 −p2),
(D.6.6)

where in the last equality the exponential with time components simply gives 1 because the

particles have the same mass.

Analytic continuing (D.6.4) we have

F T 0µ

2 (p1,−p2) = B(s −4m2)(Ep1 +Ep2 )(pµ
1 +pµ

2 ). (D.6.7)

Subtracting the expressions multiplying the spatial delta function in the first and second line

of (D.6.6) we get (
B(s −4m2)(pµ

1 +pµ
2 )−pµ

2

)
δ(p1 −p2) = 0, (D.6.8)

where we used (D.6.7). Evaluating this for µ= 0 at s = 4m2 yields

B(s = 0) = 1

2
. (D.6.9)

Combining (D.6.4) and (D.6.9) we therefore derived the implication of the normalization of

the stress tensor on the 2 particle form factor of the trace, which reads

FΘ
2 (s = 0) =−2m2. (D.6.10)
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