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Abstract

Three-dimensional topological semimetals have emerged as strong candidates to probe

new fundamental physical phenomena that could be exploited to develop next generation

electronics. However, many aspects of their electronic properties remain unclear. This thesis

addresses mainly two of them: (i) the interplay between their lattice deformations and charge

carrier dynamics and (ii) the possible origin of their magnetoresistive behaviour. This is done

by investigating the transport properties of microstructures fabricated with the focused ion

beam. The results are presented in three main parts:

In the first part, I describe the development of an apparatus for the controlled application

of strain gradients at cryogenic temperatures. This is achieved by mechanically bending 3D

crystalline cantilevers. A simple sample design aimed at transport characterization under

strain is adopted. The bending apparatus is also fitted to a rotator probe for the simultaneous

application of strain gradients and the rotation with respect to the applied magnetic field.

Strain gradients exceeding 1.3%µm−1 are achieved at a surface strain value of ≈ 0.65%. More-

over, the results establish that the quantum transport characteristics of the cantilevers are

unaltered by the large strain gradients, demonstrating that no plastic deformation is induced.

In the second part, I apply the newly developed technique to explore the effects of strain

gradients on the Dirac semimetal Cd3As2. This material hosts novel electron orbits, called

Weyl orbits, that combine bulk chiral states coming from Landau quantization with Fermi arc

states that are located on the surface. Theoretical models that treat strain gradients in the

framework of pseudo-electromagnetic fields predict that the periodicity of the Weyl orbits is

sensitive to strain gradients. Despite features of the experimental data compatible with some

of the expected effects of pseudo-fields, the results reveal a more complicated experimental

scenario with important aspects that cannot be easily captured by the available simplified

models.

In the final part, I investigate the transport properties of the Dirac nodal arc semimetal PtSn4.

This material is characterized by its extremely large magnetoresistance at low temperatures.

There has been an intense debate on whether such behaviour is connected to its peculiar

electronic structure that contains a short Dirac node line in momentum space associated
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Chapitre 0 Abstract

to graphene-like surface states. By fabricating the first microstructures of this material, I

study the transport behaviour for currents applied along all main crystallographic directions.

While for some directions the usual extremely large magnetoresistance is observed, for one

particular direction the magnetoresistance is suppressed. An inspection of the complex Fermi

surface shows that this suppression is associated to the existence of open orbits in one of the

branches. The presence of the open orbits is very sensitive to the magnetic field orientation.

These results suggest a semi-classical origin for the characteristic large magnetoresistance

observed in this material.

Key words: topological, semimetal, strain, magnetoresistance, micro-fabrication.
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Résumé

Les semi-métaux topologiques tridimensionnels ont émergé comme prometteurs pour exa-

miner de nouveaux phénomènes physiques fondamentaux qui pourraient être exploités pour

développer la génération future de l’électronique. Cependant, de nombreux aspects de leur

propriétés électroniques restent peu claires. Cette thèse en aborde principalement deux : (i)

la relation entre leurs déformations de réseau cristallin et leurs dynamique de porteur de

charge et (ii) l’origine possible de leur comportement magnétorésistif. Ceci est effectué en

investiguant les propriétés de transport de microstructures fabriquées avec la machine à

faisceau d’ions focalisé, focused ion beam (FIB). Les résultats sont présentés en trois parties

principales :

La première partie porte sur le développement de l’appareil pour la soumission contrôlée à

des gradients de déformation à des températures cryogéniques. Ceci est réalisé en fléchissant

mécaniquement des cantilevers cristallins 3D. Un design simple d’échantillon visant la ca-

ractérisation de transport sous déformation est adopté. L’appareil de flexion est également

intégré dans une sonde de rotateur pour la soumission à des gradients de déformation et la

rotation simultanées en relation avec le champ magnétique auquel le cantilever est soumis.

Des gradients de déformation excédant 1.3%µm−1 sont réalisés à une valeur de déformation

de surface de ≈ 0.65%. En outre, les résultats établissent que les caractéristiques du transport

quantique des cantilevers ne sont pas modifiées par les grands gradients de déformation, ce

qui démontre qu’aucune déformation plastique n’est induite.

La deuxième partie porte sur l’application de la technique nouvellement développée pour

explorer les effets de gradients de déformation sur le semi-métal Dirac Cd3As2. Ce matériau

abrite de nouvelles orbites d’électrons qu’on appelle orbites de Weyl. Elles combinent des

états chirals provenant de la quantification de Landau avec des états d’arc Fermi situés sur

la surface. Les modèles théoriques qui traitent de gradients de déformation dans le cadre

de champs pseudo-électromagnétiques prédisent que la périodicité des orbites de Weyl est

sensible aux gradients de déformation. Malgré des aspects de données expérimentales compa-

tibles avec certains des effets attendus des pseudo-champs, les résultats révèlent un scénario

expérimental plus complexe avec des aspects importants qui ne peuvent pas être facilement

saisis par les modèles simplifiés existants.
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Chapter 0 Résumé

La dernière partie examine les propriétés de transport du semi-métal nodal arc Dirac PtSn4. Ce

matériau se caractérise par sa grande magnétorésistance à des températures basses. Il y a eu

des débats intenses sur la question si un tel comportement est lié à sa structure électronique

particulière qui contient une courte ligne nodale Dirac dans l’espace réciproque associée à des

états de surface qui ressemblent au graphène. En fabriquant les premières microstructures de

ce matériau, on étudie le comportement de transport pour les courants appliqués dans toutes

les directions cristallographiques principales. Tandis que pour certaines directions la grande

magnétorésistance habituelle est observée, pour une direction particulière la magnétorésis-

tance est supprimée. L’examen de la surface de Fermi complexe montre que cette suppression

est liée à l’existence d’orbites ouvertes dans l’une des branches. La présence de ces orbites

ouvertes est très sensible à l’orientation du champ magnétique. Ces résultats suggèrent une

origine semi-classique pour la grande magnétorésistance caractéristique observée dans ce

matériau.

Mots clés : topologique, semi-métal, déformation, magnétorésistance, micro-fabrication.
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1 Introduction

The study of novel electronic states of matter using the concepts of topology has proven to

be a very fruitful enterprise in material science. The understanding of phenomena like the

integer quantum Hall effect (IQHE) in terms of a topological invariant [1, 2], the development

of notions of order that go beyond symmetry-breaking considerations [3, 4], and the effort

to classify new quantum states according to their topological character [5] have all become

new paradigms in the search for fundamental organizing principles of matter. Experimentally,

the enterprise has been bolstered significantly by the isolation of graphene and by the realiza-

tion of 2D and 3D topological insulators (TIs). These materials became fertile platforms for

the observation of physical effects characteristic of topologically non-trivial matter, like the

presence of dissipationless edge states, ultrahigh electronic mobilities and extremely large

magneto-resistance (XMR), among others [6, 7]. More recently, another class of topologically

non-trivial materials have received a lot of attention: 3D Topological semimetals (TSMs)

[8–10]. Their electronic band structure can be thought of as a 3D version of graphene and they

have indeed shown some of the same extraordinary behaviour. Furthermore, TSMs exhibit

additional features in their band structures, such as one dimensional nodal rings or tilted

cone-like electronic dispersion, as well as hosting new fermionic excitations, topologically

distinct to those observed in graphene or TIs [11–13]. These characteristics have made this

class of materials very promising candidates for a large variety of electronic applications that

range from quantum computing to magnetic storage and high-efficiency energy conversion

[14, 15].

A key challenge in the field of topological matter is the study of devices at the microscale.

Not only is this scale very relevant for some of the potential technological applications but,

as it is often the case with many newly synthesized materials, clean crystalline samples are

usually available only in micrometer sizes. The exploration of TSMs at the micrometer and

sub-micrometer scale is one of the main objectives in this thesis. The characterization of

samples at these scales also allows for the identification of different transport regimes as the

geometrical dimensions of the samples are reduced and become comparable to some of the

main physically relevant length scales, like the mean free path, phase coherence length or
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cyclotron radius. In the case of 2D materials and thin films, the advancement in the fabrication

processes of transport devices has pushed the field into very high levels of precision down to

the nanometer scale, mainly thanks to sophisticated lithographic and deposition techniques

[16]. These techniques have also been applied to study 1D and 2D TSMs nanostructures like

nanowires and nanoplates. Although they have shown some of the same behaviour as bulk

samples, the nanostructures tend to suffer from a reduction of sample quality, the appearance

of band gaps and limited possibilities of geometrical manipulation [17–19]. Until very recently,

a high level of fabrication precision had been somewhat lacking in the case of 3D materials.

One of the most successful fabrication techniques trying to fill that void is the focused ion

beam (FIB) [20]. As the name indicates, the FIB uses a beam of electromagnetically focused

ions to mill away material locally at any desired position. The beam spot size can range from

tenths of nanometers to several micrometers depending on the settings used. Deposition

can also be done in situ by using ion-assisted chemical deposition [21]. These capabilities

make the FIB an ideal tool for the micromachining of transport devices, as it allows to carve

complex shapes over the target crystal and to deposit materials that can form good electrical

and mechanical contacts. This is particularly well suited for measurements of novel materials,

for which 3D samples can be cut along different crystal directions with dimensions extending

from millimeter down to nanometer scale.

One physical consequences of going to the microscale is the appearance of strain effects

that can become quite significant even in 3D materials. Just like in other solid materials,

the electronic properties of TSMs are intimately related to their lattice degrees of freedom,

making it possible, in principle, to use elastic deformations to explore their electronic band

structure. In this regard, one of the aims of this thesis is to show the possibility of detecting

and manipulating novel electronic states of TSMs by using strain. The use of strain to probe

novel electronic states in quantum materials has become a very powerful strategy in recent

experimental research. For example, unidirectional strain techniques have established them-

selves as a valid way to tune quantum states in many classes of materials, such as electronic

nematics [22], unconventional superconductors [23], or complex magnets [24]. Unidirectional

strain has also been shown to push systems into different topological ground states [25],

for example, by prompting a transition to a fully gapped quantum spin Hall insulator [26],

inducing topologically non-trivial surface states [27] or changing the sign of a band gap [28].

Not only unidirectional strain can couple to topologically non-trivial matter but also strong

strain gradients have been linked to unique phenomena in TSMs. For example, flat Landau

levels with a gap compatible with the emergence of an effective magnetic field of the order of

hundreds of Tesla have been observed in graphene [29] and artificial 2D graphene systems

[30]. The strength of this effective magnetic field is determined by different intrinsic degrees

of freedom, which are able to produce drastic band structure effects similar to those caused

by external electromagnetic fields, while still preserving time-reversal symmetry [31]. In the

case of 3D materials the harnessing of strain gradients to probe topological properties is a

challenging but promising strategy.

The potential of TSMs to exhibit novel topological, strain-sensitive properties at the microscale
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is related to their particular band structure. Weyl semimetals (WSMs) are a class of TSMs

characterized in the bulk by linear dispersion bands that touch at pairs of separate points,

termed Weyl nodes. Near these points, the bands can be described by the Hamiltonian

H = χħvF k ·σ , where vF is the Fermi velocity, σ are the Pauli matrices and k is the wave

vector. Each node is distinguished by a new quantum number called chirality, χ = ±1 ,which

describes whether the spin is locked parallel or anti-parallel to the momentum. This number

is a conserved quantity in these systems and constitutes a new degree of freedom to encode

and process information. Just like semiconductor technology is based on the manipulation

of the charge degree of freedom, or spintronics on the spin degree of freedom, chirality can

be used to produce current channels between regions with imbalances in the number of

electrons of a given chirality. Moreover, chirality conservation protects the electrons against

back-scattering (this would involve a spin flip), making electron mobilities extremely high.

One of the challenges towards the creation of electronic devices that take advantage of this

new degree of freedom is the detection and manipulation of chiral states. Strain can be a

way to probe and control such states since it can couple to the Weyl nodes and alter their

separation in momentum space. Lattice deformations can be modelled by introducing a space

dependant node separation k0 that couples to the nodes of different chirality with an opposite

sign: H = ±ħvF (k±k0) ·σ [32–34]. This is analogous to the coupling of a particle of charge q

and momentum p to a vector potential A: H ∝ (p−qA)2 . Just like we can obtain the magnetic

field through B = ∇×A, we can interpret B5 = ∇×k0 as a pseudo-magnetic field, originated

from the application of strain gradients, that acts on fermions of opposite chirality with an

opposite sign. If similar effects can be observed in 3D TSMs, it would not only mean that

strain can be used to explore chiral degrees of freedom but that in doing so it would manifest

electronic behaviour impossible to access with conventional magnetic field technology.

Due to their topological nature, the conducting states of TSMs are not limited to the bulk

but also extend to the surface. The projections of the nodes on the surface of the Brillouin

zone are connected by states called Fermi arcs. Changes in the separation of the nodes

will also lead to changes in the extension of these surface states. In TSMs under external

magnetic fields electrons can form closed orbits called Weyl orbits, composed of chiral bulk

sections (associated to the zeroth Landau level) and Fermi arc sections on the opposite surfaces

of the material. Since these orbits involve the Fermi arcs, they are susceptible to changes

in the separation of the Weyl nodes coming from strain. Weyl orbits were first confirmed

experimentally by Moll et al [35] on FIB microstructured devices of Cd3As2, where they were

associated to additional frequencies on the frequency spectrum of the quantum oscillations

(QOs). Key factors in this observation were the correct crystallographic alignment of the

devices and the reduction of their thickness to dimensions comparable to the electronic

mean free path (otherwise Weyl orbits would be destroyed by scattering), which highlights

the necessity of precise fabrication capabilities. The finding of these orbits suggests a path

to probe electronic topological states and identify charge transfer through Fermi arcs using

transport measurements.

Another property of 3D TSMs that has attracted a lot of interest is the sensitivity of their

3



Chapter 1 Introduction

transport behaviour to the application of an external magnetic field. In particular, large, non-

saturating transverse magnetoresistance (MR) in the order of 105%-106% at low temperatures

and fields of around 10T has become one of the primary features observed in these materi-

als[10, 12]. Naturally, this drastic change in the resistance could be very useful in different

technological applications such as magnetic field sensors and magnetic data storage. The

origin of such a large MR has been a matter of intense debate but no universal mechanism has

been accepted as ultimately responsible. For some TSMs, it’s been argued that the application

of a magnetic field and its consequent breaking of time-reversal symmetry leads to a sup-

pression of the back scattering protection present at zero field [36]. Interesting information

regarding the large MR behaviour can be obtained from its field dependence. Typically, the

MR of TSMs follows a power law MR ∝ B n , with the exponent n ranging from 1 to 2 [10, 12].

Linear MR has been associated to a classical effect originating from mobility fluctuations in

disordered systems [37] but also to a quantum effect when the quantum limit is reached [38].

Quadratic and sub-quadratic MR have been usually associated to the known semi-classical

mechanism of electron-hole compensation from closed pockets in a two-band system. The

picture is further complicated by the often complex shape of the Fermi surface of some TSMs,

which can lead to additional effects in the MR like the presence of open orbits. The challenge

in this active topic is to disentangle topological from non-topological effects as well as estab-

lishing if the phenomenological similarities observed in many TSMs can be captured within a

single universal mechanism or if material-specific models must be invoked in each case.

The work done in this thesis represents an effort to exploit the fabrication possibilities offered

by FIB microstructuring in order to explore, characterize and manipulate novel electronic

states exhibited in TSMs that would be otherwise impossible to measure using other tech-

niques. The rest of the thesis is organized as follows: chapter 2 describes the main working

principles of the FIB, with particular emphasis on its use for the fabrication of transport de-

vices and the possibilities of sample fabrication under different strain conditions. Chapter 3

describes the principal experimental techniques used for the characterization and measure-

ment of the fabricated samples. Chapter 4 introduces the main theoretical concepts necessary

throughout the thesis for the understanding and interpretation of the main results. In chapter

5 I introduce an experimental set-up for the controlled application of strain gradients by

mechanically bending FIB-machined, 3D crystalline microcantilevers. A simple sample design

tailored for transport characterization under strain at cryogenic temperatures is proposed.

Chapter 6 presents the experimental findings of bending microcantilevers of the TSM Cd3As2.

These results are compared to the predicted presence of strain-induced pseudo-magnetic

fields. Chapter 7 is devoted to the TSM PtSn4. The first ever microstructures of this material

were fabricated and its transport properties are compared to measurements of macroscopic

crystals. Finally, chapter 8 summarizes the main results of the thesis and provides an outlook

for the continuation of research in the field.
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2 Focused ion beam micromachining

2.1 Introduction

Since its development in the 1970’s, and its early use in the integrated circuit industry for

photomask repair, the focused ion beam has become an important tool for microanalysis and

microstructuring in a wide range of technological applications and fields. For example, in

the semiconductor industry it is still commonly used for circuit editing, failure analysis and

rapid prototyping. In material science, a popular use for the FIB is the preparation of thin

samples to be studied by transmission electron microscopy (TEM) and the creation of detailed

3D tomographic models of the specimens of interest thorough the so called "slice and view"

procedure.

More recently, the fabrication and machining capabilities of the FIB have been exploited

to study the electric and magnetic properties, down to the micrometer scale, of novel crys-

talline materials that would be very hard or impossible to investigate using other lithographic

techniques. These materials, typically called quantum materials since they exhibit striking

properties whose origin is quantum mechanical, include, among many others, unconven-

tional supercondutors like Sr2RuO4 [39], heavy fermion compounds like CeIrIn5 [40], and more

importantly for the subject of this thesis, topological materials like the already mentioned

PtSn4 [41] and Cd3As2 [35]. The FIB-machining of 3D microstructures from these compounds

has lead to a new level of precision and sophistication in the design of devices fabricated from

a parent single crystal, previously unreachable by, for example, manual wiring and polishing

of macrocrystals. Although this approach is still in its early stages, it is quickly establishing

itself as the new standard for the creation of high quality samples in the field of 3D quantum

matter. In this chapter I will introduce some of the working principles of the FIB instrument

with an emphasis on how it can be used to fabricate microstructures of quantum materials

designed for the investigation of electrical transport properties.
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2.2 General principles and features of the FIB instrument

Most modern commercially available instruments are dual systems combining both a FIB

and a scanning electron microscope (SEM) sharing a common sample chamber. A schematic

illustration of some of the main components of these systems is presented in figure 2.1,

together with a photograph of the FEI Helios G4 instrument located at the the Interdisciplinary

Centre for Electron Microscopy (CIME) in EPFL. As can be seen there, the electron column

is typically mounted vertically while the ion column is mounted at an angle of around 50◦

(52◦ for the FEI system in figure 2.1 (b)). Naturally, having both columns allows for the

simultaneous SEM imaging of the sample as it is treated with the ion beam, which is not

possible in instruments with a single ion column. The sample is held on a five-axis stage

to enable precise alignment of the selected region at the point of coincidence of the two

beams. The five-axis stage allows for displacement in the (x,y,z) directions of the sample

chamber, as well as compucentric rotation with respect to the vertical axis of the stage, and

tilting of the stage towards the ion beam column. The instrument is also provided with a

gas injection system (GIS) with which to locally deposited metallic or insulating materials

on the target surface via FIB-induced deposition (FIB-ID) (this process will be discussed in

2.2.3). Additionally, many systems are nowadays equipped with a sharp needle, typically

made of tungsten, that serves as an in situ micromanipulator capable of moving in the (x,y,z)

coordinates of the chamber as well as rotating around its own axis. Combined with the

FIB deposition, this micromanipulator allows for the transferring of samples within the FIB,

expanding the mounting and milling possibilities for the fabrication of transport devices.

Modern systems are also typically equipped with a detector for energy dispersive spectroscopy

(EDS) to analyse the characteristic X-ray spectrum from the sample atoms that are excited

by the electron beam. A software is then used to identify and quantify the abundance of

the detected elements, making it possible to quickly study the chemical composition of the

samples.

2.2.1 Ion sources

The shape and overall quality of the focused beam depends on the ion source used. FIB

ion sources are designed to have a small source diameter, a large brightness (defined as

current per unit acceleration bias) and a small energy spread across the ions in the beam.

These parameters influence the beam current and the diameter of the focused beam. The

most common type of source used is the liquid metal ion source (LMIS), which is shown

schematically in figure 2.1 (a). In it, a reservoir containing the source metal, typically Ga,

is connected to a sharp tungsten needle with a radius of just a couple of micrometers. An

induction coil surrounding the reservoir is used to melt the metal, producing a liquid that

wets the needle. Using the extractor electrode, a high voltage of around 10kV is produced that

induces an electrostatic force on the liquid. This force, combined with the surface tension

of the liquid, leads to the formation of a very sharp cone, called Taylor cone, whose tip has a

radius of around 2nm-5nm. Thanks to the electric field provided by the extractor electrode,
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Figure 2.1: Schematic of the basic components of a SEM/FIB dual system. (a) The main
features include the electron and ion column for imagining and milling, respectively, and
the micromanipulator and gas injection system for material deposition. The sketch is based
on [42]. (b) Optical image of the Xe based FEI Helios G4 instrument at the Interdisciplinary
Centre for Electron Microscopy (CIME) in EPFL.

ions are emitted via field ionisation. One big advantage of this design is that the source is

self-sharpening since the shape of the cone is maintained by the reservoir as the ions are

continuously emitted. Although several metals such as Al, In, Au, or Bi (as well as other alloys)

can be used as source material, Ga is usually preferred for a number of reasons: it has a

relatively low melting temperature of around 30 ◦C that is easy to achieve, a relatively high ion

mass, low volatility, low vapour pressure and a long lifetime due to the non-reactivity with the

tungsten tip.

One important limitation of the Ga LMIS is that the maximum attainable current is limited

to approx. 100nA. For larger currents, there is a breakdown of the Taylor cone and due to

spherical aberrations coming primarily from the energy spread of the beam due to space

charge effects, the beam size increases, meaning that the LMIS rapidly becomes less useful as

the current increases. This, in turn, means that the rate of removed material is also limited.

The desire for larger material removal rates with smaller and more stable high-current beams

lead to the development of the inductively coupled plasma (ICP) source in 2006 [43], which is

shown schematically in figure 2.1 (b). This source is formed by a reservoir of an inert gas that

is inductively coupled to a radio frequency (RF) antenna. The electromagnetic field generated

by the antenna accelerates the electrons and creates a dense plasma by ionising the gas. An

extraction electrode is then used to move the resulting ions through an aperture and into the

rest of the FIB column. Typically, xenon is used over other inert gases like argon, given its high

mass and favorable performance parameters such as higher milling rate and lower energy

spread.

The ions beams resulting from these two different sources show some important differences.

In terms of beam profile, the beam from the LMIS, which is mainly limited by spherical

aberrations, produces a wide, flat beam closer to a Gaussian profile, while the ICP source,
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Figure 2.2: Two kinds of ion sources for the FIB. (a) Liquid metal ion source (LMIS). (b) Induc-
tively coupled plasma source (ICP). The sketches are taken from [47] and [48], respectively.

which generates more collimated ions, produces a narrow, sharp beam but with larger beam

tails [44] . In terms of spot size, figure 2.3 shows a comparison between both sources for

the same ion accelerating voltage. For currents smaller than 10nA, the Ga-FIB provides a

stable beam spot smaller than the P-FIB one. However, for bigger currents the Ga-FIB spot

size increases rapidly, resulting in smaller current density and hence smaller rate of material

removal. In this range, the P-FIB clearly outperforms the Ga-FIB and can reach stable currents

of up to 2.5uA with a very high milling rate [45]. With this into consideration, the Ga-FIB is

usually the better option for milling very fine features in a microstructure, while the P-FIB is

more suitable for large scale removal of material. In addition to this, the use of the P-FIB also

has the advantage of avoiding the implantation of Ga ions into the sample and reducing the

extension of the damage layer created by the ion beam (these effects will be discussed in more

detail later in this chapter). At the CIME in EPFL, both a Zeiss AURIGA crossbeam FIB with

a Ga-LMIS and the already mentioned FEI Helios G4 with a Xe-ICP source were used for the

fabrication of the microstructures studied in this thesis.

It is worth mentioning that another kind of source has also been developed recently: the

gas field ionisation source (GFIS)[46] . The basic basic component in this design is a tip

that is sharpen down to a "trimer" of atoms. The tip is positively biased against a counter

electrode and then the source gas, typically He, is made to flow in its vicinity, ionising it via field

ionisation. Very small beam sizes in the sub-nm scale have been achieved with this source,

opening the way to ultra-high imaging and milling. The drawback is the limited maximum

beam current of around 5 pA and the potential higher contamination with the very light He

atoms.
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Figure 2.3: Spot size as a function of beam current for Ga-FIB with a LMIS and a P-FIB with
a ICP source. The spot size d50 indicates the effective central beam diameter containing 50%
of the ion current. Figure based on [43].

2.2.2 Ion-solid interactions

As the beam of accelerated ions hit the target surface and losses its kinetic energy, a number of

physical and chemical processes such as ion backscattering, atomic sputtering and sample

heating can take place (see figure 2.4 (a)) [47, 49–52]. The presence of these processes will

depend on the nature of the interaction between the impinging ions and the target mate-

rial, and can have important consequences when fabricating microstructures for transport

experiments.

The kinetic energy from the ions is transmitted to the target material through both elastic

and inelastic interactions. The elastic interactions are dominated by the transfer of energy

between the incoming ions and the nuclei of the target atoms, triggering a collision cascade

where the atoms in the sample can be displaced and give raise to the creation of interstitial

vacancies and amorphous regions around the area of irradiation. If the energy transferred to

the atoms close to the surface is greater than their binding energy, they get ejected or sputtered

from the material. This is the main mechanism for material removal with the FIB. Additionally,

elastic collisions may result in the ions themselves getting ejected back from the substrate

after one or multiple collisions, in a process referred to as backscattering. On the other hand,

ions can also lose all the energy and remain embedded in the substrate, in a process called

ion implantation. This process is important since it can lead to appreciable changes in the

chemical composition of the surface of the material. Charged ions from the material itself,

named secondary ions (SI) as opposed to the primary ions from the beam, can also be emitted

in the collision cascade and can be in fact used for compositional anaylisis in secondary ion

mass spectrometry.

The inelastic interactions are dominated by the transfer of energy from ions to the electrons in
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Figure 2.4: Ion-solid interactions during FIB processing. (a) Scheme of interactions of
primary ions generating secondary electrons (SE) and a collision cascade of substrate atoms.
(b) SRIM simulations of trajectories in a Si substrate of Xe+ and Ga+ ionic species under
different acceleration voltages, highlighting the interaction volume in each case. Figure taken
from [47].

the sample and leads to the appearance of the so-called secondary electrons (SE) as ionization

products, emission of electromagnetic radiation, and, in the case of metallic materials, in the

creation of plasmons and phonons. As depicted in figure 2.4 (a), SE are usually divided in SE-I

or first order SE if they are generated close to the area of irradiation, and SE-II or second order

SE if they are generated in regions further away, from primary ions that had bed previously

scattered.

Computational simulations of ion-solid interactions are generally performed with a program

called SRIM (Stopping Range of Ions in Matter) [53]. The inbuilt Monte Carlo calculation uses

quantum mechanical models for the ion interactions and statistical algorithms to allow ions

and atoms to hop between successive collisions, thus simulating the collision cascade, and

calculating the changes in energy and trajectory happening at each instance. The final results

are obtained after a large number of instances are simulated. A SRIM simulation requires

incident ion angle, energy and weight, as well as sample depth and constituent material

as input parameters. Important information can then be obtained regarding a number of

processes such as phonon production, ion backscattering, extent of ion implantation and the

collision cascade and sputtering yield. A typical SRIM simulation of the trajectories in a Si

substrate under different acceleration voltages and ionic species is shown in figure 2.4 (b).

As the ion energy increases, both the range and the collision cascade size grow, with heavier

ions having a smaller range, as can be seen in figure 2.4 (b) for the case of the heavier Xe ions

compared to the lighter Ga ions. Sputtering yield is also favored for heavier ions and higher

energies although for too high energies ions can penetrate too deeply to allow the displaced

target atoms to escape.
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Figure 2.5: FIB-assisted deposition process. A precursor gas is injected by the gas injection
system (GIS) and adsorbed on the sample surface. Ion bombardment dissociates the precursor
gas into volatile and nonvolatile components. The volatile fragments are pumped away,
leaving behind the non-volatile conductive matrix as a deposition. Figure taken from [47].

2.2.3 FIB-induced deposition

On of the very useful capabilities of the FIB is to deposit different materials on the desired

target surface. The basic mechanism behind this process is shown in figure 2.5. A precursor

material stored in a reservoir is heated until sublimation and the resulting gas is delivered

to the chamber through a nozzle located close to the target sample. Several precursor gases

are used depending on the material to be deposited (mostly organometallic compounds like

W(CO)6 or CpPtMe3)[21]. Typically, W, Pt and C are used for deposition. Once the precursor

gas is adsorbed on the surface then it is irradiated with the ion beam and the volatile byprod-

ucts are pumped away while the heavier atoms are deposited on the surface. However, the

material deposited is not a pure metal but an amorphous mixture of different components.

Some studies, for example, have reported that for a Ga-FIB deposited layer of Pt the actual

composition is 72% C, 18% Pt and 10% Ga [54]. Furthermore, the deposited layers typically

show resistivities that can be up to three order of magnitude higher than the pure metals. This

limits their use as electrical contacts but, as will be shown in later sections, combined with the

sputtering of a Au layer, deposited strips of Pt, for example, do serve as strong mechanical and

chemically inert bonds for microstructures as well as helping to create good Ohmic contacts.

2.3 Basic control parameters of the FIB

The FIB fabrication process involves adjusting a number of parameters according to the

characteristics of each material and microstructure design. Two main aspects to take into

consideration when using the FIB are the beam size and the way in which we scan the beam

during patterning. The profile and size of the beam depends, among other parameters, on the
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chosen values for the current and accelerating voltage [21]. The characteristics of the beam

affect the sharpness of the cuts and the milling rate during patterning. In the FIB machine, a

pattern is defined by a set of pixels at certain positions. In a single pass, each pixel is exposed

to the beam during a given time interval (know as the dwell time, defined below). Several

passes are required for the completion of a pattern. Some of the main FIB parameters to take

into account during the fabrication process are the following (although there is some variation

from system to system, the same or similar functionalities are typically found in all systems) :

• Current : it quantifies the number of ions delivered per unit of time. The beam diameter

will increase for higher currents but also the milling rate. This is why large currents are

better suited for cutting large, broad features, while small currents are used to cut small,

detailed ones.

• Voltage : it is the voltage used to accelerate the ions along the column. The higher the

voltage, the further the ions penetrate the sample, thus increasing the sputtering yield.

The spot size will tend to decrease for higher voltages.

• Scan type: determines the way in which the beam is scanned over the pattern. There

are two main types:

– Raster: The beam moves from left to right, then it is blanked and goes to the left

again to continue the pattern.

– Serpentine: The beam goes from left to right, then it is blanked and then continues

from right to left in the next line.

• Pattern type:

– Rectangle: this is one of the most commonly used patterns given its versatility.

Whether using the raster or serpentine scanning, the patterning is completed

through several passes that extend over the whole rectangular area. If the cut is

not too deep, the resulting milled region shows a cross section with a flat bottom

surface.

– Regular Cross Section (RCS): this pattern can be scanned using two methods: i)

Multipass: similar to the Rectangle pattern, it processes the whole pattern with

several passes. ii) Stair step: the pattern is created as a compilation of rectangles

with specified overlap between them, resulting in a stair-step cross section cut.

This last scan option is suitable for fast removal of material.

– Cleaning Cross Section (CCS): this pattern is processed line by line in the scan

direction. After one line is milled, the beam advances to the next line without

returning to previous lines, unless it is manually set to do so. This possibility of

repeating a line several times is advantageous when polishing the side walls of the

microstructures without producing excessive redeposition.
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– Line, Circle, Polygon and Bitmap: although less common, these patterns can

also be used for milling and deposition. As will be explained in the next section,

the Polygon pattern is mainly used to remove Au evenly from the top of the Au

coated sample. In the case of Bitmap patterns, they allow to mill more complex

shapes and are useful to label samples. One of the disadvantages of Polygons and

Bitmap patterns is that the scan path will depend strongly on the particular shape

of the pattern. If the shutter is not quick enough to blank the beam, the irregular

scan path can lead to undesired beam trails on parts of the sample that were not

intended to be milled.

• Dwell time : the time the beam spends on a single pixel during the scan of the pattern.

• Refresh time : it is the time that must elapse between consecutive passes of the beam.

This parameter is particularly relevant when using the FIB for deposition since too small

a value can lead to milling instead of deposition.

• Overlap: typically expressed in (%), it sets the beam diameter overlap. It can be positive

or negative depending on a particular application. A higher overlap increases the

irradiation density, favoring more even milling. This can be useful when making highly

polished surfaces.

• Blur and Defocus: Both of these options essentially defocus the ion beam, which can be

beneficial during deposition on large areas, for example.

2.4 FIB artifacts

The interaction of the ion beam with the target material can lead to a number of artifacts or

undesirable effects on the materials surface, potentially altering its physical and chemical

structure. Careful tuning of the beam parameters can help reduce and sometimes eliminate

some of these effects. The following are some of the most common FIB artifacts observed

when fabricating microstructures:

2.4.1 Curtaining

When milling a surface with the FIB, it’s not uncommon to observe the formation of vertical

stripes or ripples indicting an uneven removal of material. This "curtaining" effect is caused

by the spatial variation of the milling rate of the target sample and the resulting modulation of

the current density by forward scattering of the ions. Such a variation is usually related to the

presence of an inhomogenous surface with materials of variable milling rates. For example,

porous samples exhibit particularly deep curtaining effects downward from the pores due to a

higher milling rate attacking the bottom of the pore [56]. In general, the presence of curtaining

depends heavily on the material targeted. There are several ways to reduce curtaining effects,
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Figure 2.6: Basic control parameters and milling patterns of the FEI Helios G4 system . (a)
The ion beam remains at each pixel of the pattern a td wel l amount of time. The pitch refers
to the separation of two beam spots, which depending on the beam diameter will also result
in a given beam overlap (usually expressed in beam percentage). (b) Different scan types
for a given pattern: serpentine and raster. In both cases a time tr e f r esh is elapsed between
consecutive passes of the pattern. (c) Basic patterning types available in the FEI user interface.
See main text for detailed description. The bottom row shows the respective cross section of
the patterns with the orange region representing the volume that is milled away. Figure taken
from [55].
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Figure 2.7: Curtaining effect on a PtSn4 lamella. (a) Even with a Pt capping layer deposited
on top of the lamella, curtaining can still persist. (b) After removing the top of the lamella
(including the deposited layer) a smooth surface can be obtained.

including: polishing the surface with a low current; using a special "rocking stage" where the

sample is moved back and forth while milling; depositing a thick layer of a hard material like Pt

or C before polishing the surface; and finally, removing altogether the rough part of the sample

and then polishing. As an example, the last of these options was used to polish one of the

materials studiend in this thesis: PtSn4. As can be seen in figure 2.7 (a), even after depositing a

thick layer of Pt on top, the polishing of the lamella resulted in pronounced curtaining, Only

after removing completely the top part of the lamella, this artifact could be eliminated and a

smooth surface was obtained (figure 2.7 (b)).

2.4.2 Amorphization and ion implantation

When the ion beam hits the target surface not all the sample atoms are ejected, some of

them are displaced within the material altering its crystallinity and producing an amorphous

layer [57, 58]. This amorphization is limited by the penetration depth of the ions and, as can

be seen in figure 2.8, its size depends, among other factors, on the accelerating voltage and

ion mass. As expected, higher voltages and lighter ion species lead to larger damage layers.

A related effect is the implantation of ions in the target material, already mention in 2.2.2,

which happens when the beam ions get stuck in the sample after losing all their energy in

the ion-sample interaction. In general, the damage layer created by the FIB using typical

settings for the machining of microstrutures extends only a couple of nanometers. Regarding

its influence in the transports properties of the fabricated devices, such a layer can usually

be ignored since its resistance contribution is negligible most of the times (one important

exception is discussed in the next section) and it doesn’t damage the bulk extensively as to,

for example, suppress quantum oscillations from the quantization of the bulk Fermi surface.

More interestingly, the damage layer does not affect the signal from quantum orbits that are

partially extended on the surface of FIB microstrutures [35].
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Figure 2.8: Amorphization damage in Si from both Ga-FIB and P-FIB at different accelerating
voltages. Milling with the heavier Xe+ ion produces less damage than with the lighter Ga+

ion of the same energy. As expected, the amorphous damage decreases considerably with
decreasing accelerating voltage. Figure taken from [58].

2.4.3 Differential sputtering

The sputter rate of different atoms in the material might not be the same, which means that

some elements can be preferentially sputtered in comparison to others. This can lead to

modifications in the chemical composition of the surface. For example, in the mono-arsenide

family (Nb,As)(As,P) it has been shown that FIB irradiation of the crystalline bulk produces a

surrounding amorphous layer rich in Nb (Ta) since As (P) is preferentially sputtered away. This

has very important consequences regarding the transport properties of the irradiated sample

since the amorphous layer actually becomes superconducting at low temperatures [59].

2.4.4 Redeposition

When exposing a surface to the ion beam, not all the target atoms are ejected and pumped

away, some of the atoms that are sputtered can land back on the target surface forming a

region of redeposited material [49]. This effect limits the practical width-to-depth ratio of

the trenches that can be milled. Furthermore, in the microsctructuring of transport devices,

redeposited material can affect the final geometry of the device and also create undesired

shortcuts. One way to mitigate these effects is to run the milling patterns in parallel to evenly

remove the material and then carefully polish the faces of the microstructure with a small

current. In general, the amount of redeposited material depends on the type and geometry of

pattern used as well as the energy on the incoming ions.
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Figure 2.9: Transport device from a parent PtSn4 crystal. SEM images of (a) PtSn4 macrocrys-
tal with its corresponding crystallographic directions and (b) a typical "U" transport device
machined from the extracted lamella (highlighted by the dotted line).

2.5 Fabrication of microstructures for transport measurements

In this section I will describe the main steps necessary to use the FIB to fabricate a transport

device from the material of interest. Given the versatility of the FIB, the procedure to design

and fabricate a device will ultimately depend on the physics that is meant to be explored

with such a device. In this section I will concentrate on the fabrication processes that are

most relevant for the work done in this thesis. The main goal is to take in consideration

the FIB features and characteristics described so far to fabricate a sample according to the

general criteria of functionality of a transport device. These criteria include, amongst others,

the presence of well defined voltage contacts and current paths (for example, by avoiding

shortcuts), the minimization of bulk damage to the sample and the reduction of parasitic

capacitive and/or inductive couplings that could distort the voltage signal from the device.

Thanks to the fabrication precision of the FIB, these criteria can be met to a much larger

degree than with typical preparation methods for 3D quantum materials. Figure 2.9 shows a

usual starting and final point in the FIB fabrication process. Beginning with a parent crystal,

in the case of figure 2.9 (a) it is PtSn4, whose crystallographic directions have been previously

determined, a lamella is extracted and transferred to a suitable substrate. Such a lamella

(highlighted in figure 2.9 (b)) forms the basis of the transport device, which in this case

consists of three pairs of voltage contacts along two different crystallographic directions to

perform four-point measurements. Such a device is typically referred to as a "U" structure

and is designed to measure precisely the resistivity anisotropy along the different directions.

The same kind of measurement would be almost impossible to make using the macrocrystal

and manually-mounted electrical contacts. Notice that Pt patches were deposited on some

contacts to improve electrical connection and low current milling was used to accurately

narrow the voltage contacts and shape the corresponding bars where the device’s current flows.

This makes it possible to greatly reduce the cross-sectional area of the device, which translates

into achieving very high current densities of around 1 MA/m2 (about 100 times larger than

could be obtain with the macrocrystal) and hence very large voltage signals.
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2.5.1 Lamellae preparation from a single crystal

As mentioned before, the first stage common to most FIB processes for the fabrication of trans-

port devices is the cutting of a lamella from the parent crystal. The procedure is very similar to

the one used for the preparation of TEM lamellae and has been applied to a large number of

different quantum materials [20]. The following steps can be performed to successfully carve

a lamella that is suited for device micromachining:

• Placing the parent crystal on the SEM stub: The first step is to have the single crystal of

the desired material mounted on the SEM stub using an adequate conductive adhesive.

For this thesis, two adhesives were typically used for this purpose: Silver Conductive Ad-

hesive 503 (12686-15) from EMS, and 4929N from DuPont. The first one is a conductive

paint that contains high purity silver flakes, shows good adhesion to most substrates

and dries relatively fast; the second one is a viscous paste that needs to be thinned down

to the desired consistency. It also has a high metallic silver content and tends to dry

slightly faster than the EMS paint. Its advantage is that by controlling the amount of

thinner, it is usually possible to obtain very fine droplets or films that are more suitable

for very small crystals. In both cases, the main purpose is to have a firm mechanical

adhesion to the SEM stub to avoid spacial displacements, and to electrically ground

the crystal to avoid undesirable aberrations from the accumulation of charge. Before

mounting the crystal, it is necessary to identify the desired crystallographic directions,

for which X-ray diffraction methods can be used. Ideally, the crystal should be mounted

with the desired crystallographic face as flat as possible on the SEM stub in order to

have the beam of ions striking perpendicularly on its surface (at 52◦ in the case of the

FEI P-FIB sytem). Small angle missalignments, whether from slightly irregular crystal

faces or minute uneven mounting, can still be handled either by using pre-tilted SEM

stubs or by correcting the tilting angle of the stage. However, if the crystal shape is

so irregular that no correction is possible within the limits of the stage movement, it’s

necessary to expose the desired crystallographic face first by using other means. These

could include, for example, mechanical polishing or, as will be discussed later in this

section, preliminary cuts with the FIB.

• Capping layer deposition: Once the crystal is properly mounted and the desired crystal-

lographic face is exposed, it is necessary to choose a region of the crystal from which to

cut the lamella. The aim is to choose a clean, smooth and flat surface with as few defects

or miss growths as possible, thus guaranteeing the best quality for the lamella. Although

it’s not always strictly necessary, it is usually very convenient to deposit a rectangular

capping layer, a couple of micrometers thick, where we aim to carve the lamella in order

to protect the crystal’s surface. By making the top surface more homogeneous, this

can greatly reduce the effects of curtaining and also allow to use higher currents to mill

the material adjacent to where the lamella is located. Carbon and platinum are two

common options but the exact recipe will depend on the material and the dimensions

of the lamella to cut. For deposition, it is usually recommended to use a low accelerating
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FIB voltage, as well as a relatively low dwell time and large refresh time to avoid milling

the crystal instead of depositing the desired capping layer. For the Pt depostion in the

FEI P-FIB system some typical values are 12kV of accelerating voltage, td wel l = 100 ns

and td wel l = 1 ns. A general rule of thumb to choose the appropriate current value I is

I ≈ 4∗area( p A
um2 ). For instance, if the Pt layer to be deposited is 20µmx100µm large, then

the the empirical formula suggests using a beam current of around 8 nA.

• Cutting of the trenches: To cut the lamella we use two RCS patterns delimiting the

deposited capping layer or the region where the lamella will be (see figure 2.10 (a)-(d)).

These two patterns will mill the so-called trenches, between which the lamella stands.

The final result should look like figure 2.10 (d). The milling of the trenches should

be done as quickly as possible by selecting high beam currents. This means that we

have to leave a considerable space between the two patterns delimiting the trenches to

account for the beam diameter. Otherwise, we risk having a lamella that is too thin or

not having a lamella at all. For example, if we use a current of 2.5 µA at 30kV with a beam

radius of approx. 8 µm, we should leave ≈ 26 µm between the patterns to end up with a

lamella that is around 10 µm thick. This leave us with enough material to further polish

the lamella, whose final thickness is typically around 5-6µm. The final thickness will

naturally depend on the desired application but leaving at least 2µm of extra material

on each side of the lamella for polishing is recommended. Both the depth and width

of the RCS pattern and ultimate cut will determine the final depth of the lamella. In

general, the width of the RCS pattern should at least be
p

3x the desired lamella depth.

• Undercut: To liberate the lamella from the crystal we perform an undercut, which is a

cut at as high of an angle as possible with respect to the surface of the crystal (typically

more than 60◦). The schematic of this cut is presented in figure 2.10 (e)-(f). In the case

of the FEI P-FIB, the undercut is done at a tilting angle of -10◦, which is the smallest one

available. Two small bridges on the top of the lamella are left uncut to keep it in place.

When drawing the rectangle patterns for the undercut, it is convenient to make them

overlap at the corners of the lamella, as shown schematically in figure 2.10 (e). In this

way, we make sure that the beam goes through the crystal at these points. The patterns

for the undercut are typically 5µm wide for the bottom pattern and 3µm wide for the

lateral ones and a current of around 15-60 nA is used. Naturally, these values depend on

the final thickness of the lamella, and could be increased if required until a U-shaped

cut in the lower side wall of the trench is visible, indicating that the beam has milled

through the crystal.

• Polishing: after cutting the trenches, the lamella’s cross section is typically trapezoidal

because of the beam profile (especially when using the P-FIB), that is, thicker at the

bottom than at the top, and with rough surfaces due to curtaining. To have smooth and

parallel faces on which to fabricate our device, we use the beam to polish the surface of

the lamella at a tilting angle of 52◦+θ. The value of θ depends on the target material and

the beam settings used. Whatever the kind of FIB, polishing should be done preferably
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with a pattern that allows line by line control. In the case of the FEI systems, the CCS

pattern is the most suitable one (see figure 2.10 (g)-(h)). To find the optimal value of θ,

we begin with a small value of θ, for example, 1◦, and polish one face of the lamella. We

then tilt the stage back to 0◦ to check if it is possible to see the bottom of that face. If it’s

not, then the angle is right and we should only begin to see the bottom of the lamella

when we tilt the stage to around 0.5-1◦. If, on the other hand, we can still see the bottom

at 0◦, then the lamella’s cross section is still trapezoidal and we must increase the angle

θ and repeat the above procedure. 15-60 nA is a good range of currents for polishing.

Before the pattern is finish, it is recommended to repeat the last line 5-10 times to make

sure that the surface is really clean and the bottom of the lamella doesn’t change. When

polishing, having the capping layer on top can be very beneficial to obtain smooth

surfaces. However, as already shown in figure 2.7 (a), in some cases not even that is

enough to guarantee a successful polish. Another possibility is to completely remove

the top of the lamella using a similar stage setting as the undercut. For the material

PtSn4 that was usually the better strategy ( see figure 2.7 (b)). One small disadvantage of

this option is that the top of the lamella typically shows a "bullet" profile instead of a

sharp rectangular edge.

• Cut the bridge: In the final step, one of the small bridges holding the lamella is milled

away and the other one is reduced to about 1µm2 in cross section. The smaller this

bridge, the easier it will be to break and transfer the lamella, however, it shouldn’t be too

small since the lamella could fall off and be lost.

It was mentioned before that in case of irregularly shaped crystals, it is not always possible to

mount the desired crystallographic face flat on the SEM stub and that some other step must

be taken before carving the lamella. In this paragraph I discuss one such case, where the high

milling rate available with the P-FIB is exploited to expose the desired crystallographic faces

of the material. The situation is presented in figure 2.11. The material in question is CoSi, a

topological semi-metal with a cubic crystal structure that was investigated during the course

of this thesis and whose process of crystallographic orientation and FIB-cutting was optimized

for the extraction of lamellae along the crystallographic directions of interest . A SEM image

of a typical as-grown crystal is shown in figure 2.11 (a). The crystals are usually not too big

and the crystal faces tend to grow along the [111] and equivalent directions, as revealed by

X-ray diffraction. However, the directions of interest are the [001] and equivalent. The (111)

faces form an octahedron, while the (001) faces form a cube. An illustration of these two kinds

of crystallographic faces is presented in figure 2.11 (b). Based on that sketch, it is possible to

device a simple procedure to use the P-FIB to cut the crystal at the right angles to expose the

(001) faces. Figure 2.11 (c) shows the angle between the relevant two directions. By taking the

edge of one of the octahedron faces as reference and making a cut at 17◦ + 2◦ tilt, the (001) face

can be exposed. The extra 2◦ were taken to have a more parallel face. The result is shown in

figure 2.11 (d), where a maximum current of 2.5µA at 30kV was used. After this first cut, the

crystal was then mounted with the freshly cut face flat on a substrate. The substrate was then
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Figure 2.10: Lamella extraction process flow using the FIB. (a)-(d) First, two trenches are
milled with the FIB at normal incidence to the crystal. Depending on the material, the
deposition of a capping layer where the lamella will be located can be beneficial. (e)-(f) Next,
the undercut of the lamella is performed, (g)-(h) followed by the polishing of both lamella
surfaces using the beam at grazing angles (a typical value of 53.5◦ is shown). (i)-(j) Finally, a
thin bridge is left behind to hold the lamella to the crystal. Figure taken from [55].
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Figure 2.11: Lamella extraction procedure for the material CoSi . Thanks to the high milling
rate of the P-FIB, it is possible to mill entire faces of as-grown crystal in order to extract lamellae
along the desired crystallographic directions. (a) SEM image of a typical CoSi crystal. CoSi
has a cubic crystal structure and usually the crystal faces grow along the [111] directions.
(b) Schematic illustration of the (111) crystal faces and the (001) faces that are meant to be
exposed. (c) Angle between the normal directions of the aforementioned faces. (d) and (e)
SEM images of the crystal after P-FIB milling. (f) SEM images of the resultant crystal with
lamellae cut along the [001] crystallographic directions.

mounted horizontally on a SEM stub and a second cut was made at 52◦ + 2◦ with the same

beam settings as before. The result is shown in figure 2.11 (e). Next, the substrate is mounted

vertically, thus exposing the (001) face of the crystal flat with respect to the SEM sub. Finally,

the lamellae are cut at 45◦ from the octahedron reference edge, as shown in figure 2.11 (f).

2.5.2 Glue-mounted microstructures

2.5.2.1 Lamella transfer

After polishing the surfaces of the lamella and cutting the bridge, the lamella can be extracted

ex situ from the parent crystal and transferred to a suitable substrate (typically sapphire or

Si/SiO2) with pre-fabricated electrical contacts. The main goal of the transfer procedure is

to safely break off the remaining bridge of the lamella, secure the holding of the lamella, and

transfer it to glue it down to the desired substrate. A set-up used for this purpose is shown

in figure 2.12. It consists of a 3-axis hydraulic micromanipulator with a magnetic base that

can be solidly fixed on a steel base. This is important to reduce any undesired vibrations

that could hinder the transfer process. A wooden pole with a small Kapton tip attached to

it is mounted on the arm of the micromanipulator. The Kapton tip is shaped as a loop with

22



Focused ion beam micromachining Chapter 2

Figure 2.12: Set-up for the transfer of extracted lamellae. The parent crystal is approached
by a small Kaptop tip mounted on a wooden pole. The pole is attached to a 3-axis hydraulic
micromanipulator with a magnetic base that can be fixed on the solid stainless steel base. The
Kapton tip is used to break the bridge and capture the lamella. The SEM stub with the crystal
is surrounded with a clean paper cone in case the lamella disattaches from the Kapton tip.

different diameters available (usually we used one of 20µm). The idea is to carefully approach

the crystal with the Kapton tip and use it to capture the lamella via electrostatic forces. The

crystal is mounted on a SEM stub and is surrounded by a paper cone. This makes finding the

lamella easier in case of loosing it during the transfer process.

The main steps in the ex situ transfer process are shown in figure 2.13. The first step is to use

the micromanipulator to approach the lamella and position the Kaptop tip close to where the

remaining bridge is located (figure 2.13 (b)). With a gentle push, it is possible to break the

bridge, after which the electrostatic forces should be strong enough to secure the lamella to

the tip. It’s likely that the lamella flies away, in which case it is necessary to look for it in the

area surrounding the crystal and the internal surface of the paper cone. It’s also likely that

while approaching the lamella it is attached to the Kapton tip in irregular ways. The optimal

way to attach the lamella to the tip is shown in figure 2.13 (c). It should be attached to the

tip with its short axis as flat as possible and its long axis with a slight tilting downwards, such

that one of the short sides is the lowest point. The next step is to move the lamella to the

center of the substrate. Before lower it down, we must first create a thin film or small droplet

of glue to firmly attach the lamella to the susbtrate. We use the two-component Araldite®

rapid epoxy for the glue, which provides a working time of around five minutes before it starts

to dry. An eyelash attached to a wooden pole or a glass rode with a very fine tip can be used

to produce the glue droplet. The droplet should be big enough to comfortably fit the whole

of the lamella, such that all sides are in contact with glue, but not too big and thick as to risk

sumerging the lamella. It is recommended to flatten the droplet as much as possible to avoid

having a very steep droplet profile, which would make it more difficult to place the lamella flat.
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After creating the droplet we proceed to carefully lower the lamella on top of it. The procedure

to do this is presented in figure 2.13 (d). Once the lamella comes in contact with the epoxy,

the surface tension will pull it into the glue droplet so there is no need to push it too much.

Ideally, the final result should show a fully submerged lamella except for the top surface, with

a smooth transition from the substrate to the edges of the lamella. Figure 2.13 (e) and (f) show

some images of the transfer procedure on an actual lamella. After the lamella is in place, the

epoxy is cured by heating it to 140 ◦C for one hour.

2.5.2.2 Au sputtering and electrical contacting

After transferring the lamella to the substrate, it is necessary to create Ohmic electrical contacts

from the lamella to the pre-defined electrical contacts of the substrate. We achieve this by

sputtering a metallic layer over an area covering the lamella and contacts. The first step in

this process is to create a mask with Kapton tape to expose only the desired area during the

sputtering process. The sputtering recipe typically includes an initial low energy etching of

120 s to clean the surface of the lamella, followed by the deposition of a sticking layer of 3nm of

Ti, and a final layer of 200nm of Au (other metals like Pd were also used in this thesis). Figure

2.14 shows the result of a sputtering step. Having deposited the metallic layer, the next step is

to attach wires to the pre-defined electrical contacts, which are meant to be used as voltage

and current leads for the transport experiments. To this end we use a two-component silver

epoxy (Epotek® EE129-4), which provides very good electrical and mechanical connection. It

requires curing at 150 ◦C for one hour. The DuPont 4929N paint can also be used for contacting

purposes although its mechanical bonding is weaker than the H20E. Usually, the wires used

for electrical contacting are made of high purity silver with with a small diameter (≈ 25 um),

although for particular purposes like high magnetic field measurements, twisted pairs of

copper wires can also be used (see figure 2.14 ). Once the metallic layer is deposited and the

wires are attached, the sample is ready for the final microstructuing in the FIB.

2.5.2.3 FIB microstructuring

In the following I describe the main steps in the microstructuring process taking a "U" shape

device as an example. Figure 2.15 shows a schematic illustration of the process flow.

• Drawing the desired pattern: in this step we design the pattern that we want to mill into

the lamella, leaving some extra space in the design to account for the beam diameter

and the additional polishing step to be carried out later. It is recommended to extend

the cuts well beyond the edges of the lamella to guarantee that we mill all the way

through the material and avoid any possible electrical shortcuts. This is particularly

important on the side of the undercut since the bottom of the lamella could be wider

than the top (due to the slope of the undercut cross section) and remain "hidden" in the

glue. We should try to maximize the are of the contacts, aiming for and area of at least

10µm×10µm.
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Figure 2.13: The lamella ex situ transfer process. (a) Top view of a finished lamella. (b)
With a gentle push, the Kaptop tip is used to break the bridge connecting the lamella to the
parent crystal. Ideally, the lamella should stay electrostatically attached to the tip. (c) Optimal
positioning of the lamella for transferring. (d) Sequence of steps to lower the lamella into
the expoy droplet. It is important to create a smooth transition from the glue droplet to the
top edges of the lamella. (e) Photograph of a Kapton tip approaching a finished lamella. (f)
Photograph of a lamella after it was lowered into the expoxy droplet. (a)-(d) are taken from
[55].
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Figure 2.14: Au coating and placing of the contact wires. After transferring the lamella, a Au
layer is deposited by sputtering and wires are attached with silver epoxy to form electrical
contacts.

• Au removal from top of the lamella: after defining the pattern of the device, we need

to remove the Au from those areas where current will flow, while keeping Au on top of

the contacts. Usually, a polygon pattern is used to create the appropriate pattern shape.

The optimal FIB settings for a smooth removal of Au depend on the target material, but

in most cases it is recommended to use small accelerating voltages and currents. Ideally,

one should observe an even removal of Au over the pattern with a clear contrast change

once the whole layer is depleted. For some materials, including PtSn4 and Cd3As2,

the top irradiation during the Au removal can lead to a roughening of the surface of

the lamella. The avoidance of this effect might require further tuning of the beam

parameters although it might be difficult to eliminite completely.

• Milling the pattern: to mill the final pattern we usually choose small currents but not

so small as to make the pattering excessively long. 30kV and currents in the range of

1nA-7nA are suitable for patterning. Too large a current would mean a large beam

diameter that could remove too much Au from the contacts or mill through undesired

parts of the device, specially if fine features (like the voltage narrow nozzles) are involved.

It is important to check that the milling is done until the glue or substrate beneath the

lamella is clearly visible. The patterns in this step are milled in parallel to minimize

re-deposition.

• Polishing the faces of the microstructure: using the same principle as in the polishing

section, we smooth the faces of our device to achieve homogeneous and well defined

current paths along the parts of the device we are actively measuring. CCS patterns with

small currents are the better option.

• Removing Au to define electrical contacts: to define individual electrical contacts to
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Figure 2.15: Process flow of the FIB microstructuring procedure for glue-mounted samples.
(a) The first step is to create the desired pattern for milling (shown in black), which in this
case is a "U" microstructure. (b) Next, the sputtered Au layer is removed from the parts of the
device where current flows, thus avoiding undesired shortcuts. (c) After this, the pattern from
(a) can be milled. (d) and (e) The sections of the device being measured are polished and the
voltage contacts are narrowed down. (f) Finally, Au is further removed to define the current
and voltage contacts associated to each wire. Figure taken from [55].

the attached wires, we must remove parts of the Au layer. Close to the sample we should

use small currents (4nA) to avoid damaging the microstructure but farther away from it

we can use higher currents to speed up the process (60nA).

• Label the microstructure and measure relevant dimensions: finally, it is important to

clearly label the microstructure by milling its name on the Au layer. For this, a Bitmap

pattern is typically used. The final images of the device should be taken with high

resolution and showing all the relevant dimensions, which are necessary for accurate

resistivity measurements.

2.5.3 Free-standing microstructures

The procedure described in the previous section is a successful way to prepare microstructures

for their physical characterization in transport experiments. However, the use of glue to fix

the lamella to the substrate can have the disadvantage of subjecting the sample to a unknown

strain landscape originating from the differential thermal contraction between the substrate

and the material of interest. This can have important consequences in the transport behaviour

of strain-sensitive materials (see, for example, [40] ), which is particularly relevant for TMSs

given the way in which strain gradients can potentially affect their electronic properties.
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Figure 2.16: SEM image of a PtSn4 free-standing microstructure.The PtSn4 sample is sus-
pended on a thin SiN membrane using FIB-deposited Pt contacts. The dotted line highlight
the are covered by the thin SiN membrane. The meandering cuts are meant to serve as springs
that release the accumulated strain.

In this section I present an alternative way to mount the sample that aims at minimizing

the effects of strain by suspending the microstructure on free space and using a SiN thin

membrane to form spring-like arms to contact the microstructure electrically. This free-

standing mounting was used recently for the strain-sensitive material CsV3Sb5[60] and was

adapted and optimized in this thesis to explore potential strain effects on the TSM PtSn4. A

typical six-point measurement device mounted in this way is presented in figure 2.16. The

SiN membranes used for this design, also known as TEM windows, are commercially available

and consist of a Si substrate with a central window where the thin membrane is located.

Several window sizes and thicknesses are available, with the latter typically ranging from

10nm to 1000nm. The membrane used in figure 2.16 has a window size of 100µm×100µ

m and a thickness of 100nm. These kind of membranes are a standard element in many

applications and have been shown to be chemically inert and mechanically robust. In the

following I present the fabrication details of the free-standing devices, whose process flow is

schematically presented in figure 2.17.

The preparation of the lamella is similar to the one previously described in section 2.5.1,

with two main differences: there is no need to finely polish the lamella and the two bridges

should be left uncut after the undercut. Once the lamella is prepared in this way, we use the

micromanipulator to transfer it in situ to a copper grid or TEM holder (see figure 2.17 (a)).

The first step to do this is to sharpen the tip of the micromanupulator by using relatively high

currents (60nA) and rotating the micromanipulator around its axis to have a well defined

conical tip. Next, we make a CCS pattern (15nA) to have the tip with a side (3µm-5µm long,

for example) that is parallel to the face of the lamella. After this, we can approach the lamella
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and use the FIB-induced deposition to weld it to the tip of the micromanipulator. Typically,

the micromanipulator is attached on the upper left side of the lamella. After welding the

tip, we proceed to cut the bridges and carefully lift the lamella without hitting the trenches.

The micromanipulator is then retracted and we move the stage to where the TEM grid is

located. There we attach the lamella using FIB deposition one more time and cutting the

tip of the micromanipulator. In this position, we proceed to finely polish the lamella in the

why described in section 2.5.1. Next, take the sample out of the FIB and flip the TEM grid

horizontally to position the lamella for microstricturing (see figure 2.17 (b)). One advantage

of having the sample on the TEM grid is the elimination of redeposition issues since the

milled material is immediately pumped away. It is convenient to mill the edges of the lamella

at a steep angle in order to have a smooth bevelled edge for the Pt deposition necessary in

the later stages. For example, in the P-FIB system, milling at a tilt angle of 7◦ will create a

45◦ bevel. During this step, a small bridge is left uncut to hold the lamella to the TEM grid.

One additional feature to consider when designing the microstrutcture pattern is to leave

small bridges joining the different current and voltage contacts. This is done to secure the

structural integrity of the sample during the transfer process (see figure 2.17 (h) ). After milling

the desired pattern, the lamella is again attached to the micromanipulator following the

same general guidance as in the previous paragraph. It is very important that no part of the

micromanipulator sits at a lower position than the bottom of the lamella. Once the lamella is

welded to the micromanipulator, the bridge holding the lamella to the TEM grid is cut, the

micromanipulator is retracted and we move the stage towards the membrane.

Before placing it into the FIB, a Au layer is deposited over the membrane and contact wires

are attached to the substrate in the same way described in . Once inside the instrument, it

is important to use a higher voltage and current for SEM imaging in order to have a clear

contrast between the Si substrate and the thin membrane. Typical values used were 20kV

and 1.6nA, respectively (compared to the usual 5kV and 0.8nA). These settings are crucial

since the visualization of the membrane is not possible using the FIB but only the SEM. This

requires a high degree of coincidence of both beams to confidently and precisely mill the

patterns at the desired positions. The first of these cuts is shown schematically in figure 2.17

(c). It is a rectangular cut at the edge of the Si substrate that is meant to accommodate the

central part of the six-point device. CCS patterns and currents in the range of 1nA-4nA are

suitable for milling through the membrane. Using the CCS options is important since the

line by line milling avoids having parts of the membrane curl up or potentially breaking away

while milling and landing on undesired parts of the substrate. Once the rectangular cut is

made, we can bring in the sample, carefully lower it down at the desired position and weld it

to the substrate and membrane (see figure 2.17 (d) and (e)). A key point during this step is to

have the lamella transferred as flat as possible onto the substrate. One possible strategy to

help achieve this is to perform the transfer not at a tilting angle of 52◦, where the substrate is

nominally perpendicular to the ion beam, but at an angle a few degrees smaller, for example,

50◦ (the exact values will depend on the particular positions of the lamella and substrate). In

this way, we can see when the part of the lamella farthest from the micromanipulator welding
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Figure 2.17: Main steps in the lamella in situ transfer process to a thin membrane . (a) The
lamella is lifted from the parent crystal and attached to a TEM grid using the micromanipulator.
(b) The TEM grid is placed horizontally and the desired pattern is milled though. After milling,
the lamella is attached horizontally to the micromanipulator. (c) An opening is milled on the
Au-sputtered membrane. (d) The sample is lowered down precisely on top of the opening
milled in the previous step (e) attached to the substrate and membrane using FIB-deposited Pt
contacts. (f) Finally, Au is removed to define current and voltage contacts. (g)-(j) SEM images
of some of the steps described before for a PtSn4 microstructure.
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point first touches the substrate and we can make sure that the gap between lamella and

substrate is gradually closed as we continue to lower the lamella and push it down onto the

substrate. Although it is likely that a small gap remains between some parts of the sample and

the membrane (see figure 2.17 (i)), reducing its size is advantageous to achieve a smooth and

strong Pt depostion to weld down the sample. After having welded all the contacts, we can

mill away the small bridges left for the structural integrity of the sample during transfer. Next,

we can cut the patterns defining the spring-like arms on the membrane and finally, mill away

the Au layer to delineate the electrical contacts (see figure 2.17 (f)).

2.6 Conclusions and outlook

In this chapter I introduced the FIB as a tool for the fabrication of microstructures. The

versatility of this fabrication technique combined with the use of different sample mounting

options as well as sample designs were exploited to address the main experimental questions

explored during this thesis. Working transport devices made from the TSMs of interest were

successfully fabricated and the control parameters of the FIB were optimized to minimize

some of the artifacts associated with FIB machining, like surface curtaining and damage. In

this sense, the work presented in this chapter represents a valuable addition to the class of

materials and sample designs that can be investigated with the FIB, including, for example,

the first ever PtSn4 microstructures.
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3.1 Introduction

From an experimental point of view, the goal of this thesis is to study the electronic proper-

ties of FIB-machined microstructures of TSMs at low temperatures. This chapter provides a

general description of the main experimental methods used to meet such a goal. I begin by

discussing the working principle of the lock-in amplifier technique to perform AC electrical

measurements, followed by a brief presentation of the bath-cryostat systems with supercon-

ducting magnets that were used to reach temperatures down to 1.5 K and magnetic fields up

to 18 Tesla. These are well established techniques in the the field of electrical measurements at

low temperatures and can be readily applied to FIB-machined microstructures. Furthermore,

the use of microstructure provides several significant experimental advantages compared to

typical macroscrystals. For example, by reducing the cross section of the current-carrying path

in the micorstructures, much higher current densities can be reached without using exces-

sively high currents, making higher signal to noise ratios easier to achieve without causing too

much Joule heating (which is proportional to the square of the current). This is particularly

relevant for some TSMs like PtSn4 that are extremely good conductors at low temperatures,

showing resistivites as low as 0.04 µΩ cm [61] . Similarly, the reduced dimensions of the

microstructures make them less vulnerable to spurious effects such as undesired thermal or

magnetic field gradients and eddy currents.

Later in the chapter I discuss the characterization of samples via X-ray diffraction techniques,

including both parent macrocrystals and the lamellae extracted from them for subsequent

micromachining. Here again, the use of the FIB to cut the lamellae along the desired crystal-

lographic directions as well as to mount them for further X-ray screening allows for greater

verification of the cristallinity of the sample, avoiding issues like the presence of flux inclusions

or internal cracks that might not be easily detectable in a macrocrystal. Finally, I introduce

the finite element method as a tool to simulate the electrical and mechanical situation in the

microstructures. This tool has proven to be very helpful to understand the behaviour of the

microstructures in realistic experimental conditions, shining light in aspects like the extend
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of current jetting effects [62] or the role of the epoxy glue used to mount the lamellae to the

substrates [55].

3.2 AC transport measurements

Electrical AC measurements constitute a fundamental characterization technique that can pro-

vide very valuable information about the band structure of a material and different electronic

phenomena, such as scattering mechanisms and quantum oscillations, that are susceptible to

exhibit potential topological-related effects. In this regard, the lock-in amplifier technique

has become a powerful tool to apply AC currents to the sample of interest and detect the

usually very small AC signal that can be buried in the background noise. In the following I

will briefly describe the basic principles of this technique and give some details regarding the

experimental set-up adopted for the electrical characterization of the microstructures.

3.2.1 Working principle of the lock-in amplifier

The lock-in measurement is based on the so called phase sensitive detection (PSD) where

an excitation with a certain reference frequency is used to probe the sample and the lock-in

is synchronized to detect the response of the sample at that exact reference frequency. In

this way, noise signals at frequencies other than the reference one are rejected and do not

affect the measurement. In the context of electrical characterization, the noise comes from

different sources such as the ubiquitous 1/ f electronic noise, thermoelectric voltages and

the external noise created by motors, computer screens, or other electrical equipment in

the vicinity of the experiment. Figure 3.1 shows a schematic depiction of a typical lock-in

amplifier measurement. An sinusoidal excitation voltage signal Vr e f (t ) = Vr e f sin(ωr e f t +θr e f ),

which serves as the reference signal as well, is generated by the lock-in amplifier internal

oscillator (an external source can also be used) and applied to the sample. For resistivity

measurements, a four-point configuration is adopted to avoid unwanted signals from the

current leads mixing with the actual sample’s response. The resultant signal coming form

the sample Vsam(t) =sin(ωsam t +θsam) is first amplified by a differential amplifier and then

multiplied by the reference signal. This is the key point in the PSD step since the resultant

signal VPSD has the following form:

VPSD (t ) =
1

2
VsamVr e f cos([ωr e f −ωsam]+ [θsam −θr e f ])−
1

2
VsamVr e f cos([ωr e f +ωsam]+ [θsam +θr e f ])

(3.1)

The first component depends on the difference in frequency (ωr e f −ωsam) and the second on

the sum (ωr e f +ωsam). Using the condition ωr e f =ωsam the first component represents a DC

component proportional to the signal of interest, while the second component can be filtered
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out by a low pass filter. The filtered output VPSD1 will then be:

VPSD1 =
1

2
VsamVr e f cos(θ) (3.2)

where θ = θsam −θr e f is defined as a phase difference. One way to eliminate the dependency

on this parameter is to add a second mixer using a reference signal that is 90 degrees out of

phase with Vr e f (t ) (i.e. a cosine function). A similar procedure as that leading to equation 3.2

results in:

VPSD2 =
1

2
VsamVr e f si n(θ) (3.3)

By the virtue of knowing the magnitude of Vr e f , one can determine the outputs of two phase

sensitive detectors to obtain the components X = Vsamcos(θ) and Y = Vsamp si n(θ), from

which the magnitude and phase difference of the sample’s signal can be computed as:

R =
√

X 2 +Y 2

θ = ar ct an(
Y

X
)

(3.4)

The X and Y quantities are termed the "in-phase" and quadrature components, respectively.

Notice that R measures the signal amplitude and does not depend on the phase between the

signal and lock-in reference. Ideally, in the filtering step one would expect the filter to have full

transmission only for the DC signal of interest and zero transmission for all other frequencies

(see figure 3.1 (e)). Unfortunately, such idealized filters are impossible to realize in practice.

In reality, all low-pass filters have a certain band of frequencies that are transmitted and are

characterized by some roll-out function in the frequency spectrum. One simple approximation

is the RC filter with the following transfer function [63]:

H(ω) =
1

1+ iωτ
(3.5)

where ω is the frequency, τ = RC is the time constant, R the resistance and C the capacitance.

By increasing the time constant, the bandwidth of the filter decreases and the output DC

signal becomes more steady as fewer higher frequencies affect the measurement. However,

the settling time of the RC filter also increases with increasing τ, which will slow down the

output response. In general, the chosen value of τ is a compromise between obtaining a signal

that is not too noisy and doesn’t take too long to measure.

3.2.2 Electrical set-up for transport measurements of microstructures

In this thesis, the multichannel SynkTek MCL1-540 lock-in amplifier was used to perform

the AC transport measurements. The frequency of the excitation signal was selected to avoid

coupling to the main frequency of nearby power lines (50 Hz in Switzerland). Usual values

chosen were 77 Hz and 177 Hz. These frequencies are located in a clean white noise region
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Figure 3.1: Lock-in amplifier working principle . (a) Schematic depiction of the main ele-
ments in a lock-in amplifier. See the text for further details. (b) An sinusoidal input signal
displayed over time with a frequency of 77 Hz and superimposed noise (which for reasons of
clarity has been chosen to be small in amplitude), and (c) its corresponding FFT. The peak
at negative frequency is just a consequence of expressing a real sinusoidal in terms of com-
plex exponentials. (d) An input signal Vs (black) and a reference signal Vr (red) of the same
frequency. (e) FFT of the resultant signal after mixing (multiplying) the signals displayed in
(d). The amplitude of the original input signal is related to the DC component, while the AC
components must be excluded using filter with a narrow band of fBW around zero. Image
taken from [64].
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above the 1/f noise. A typical time constant of 1s was also chosen with noise levels in the order

of 10−9V/
p

H z commonly obtained. During the experiments, the value of the phase difference

θ was checked to be close to 0◦ (or equivalently 180◦). This is important since a value that

departs too much from zero might indicate that the voltage signal coming from the sample is

not completely resistive in nature but might be affected by spurious inductive or capacitive

couplings.

Lock-in amplifiers can be used directly as a current source by combining its output voltage

signal with a shunt resistor. If the shunt resistor is chosen to be of much higher resistance

than that of the sample plus wiring, the current through the sample is approximately the

ratio of the output voltage and the shunt’s resistance. The model SynkTek MCL1-540 actually

incorporates an output channel designed for current measurement based on this idea [65].

Furthermore, the model also allows for active AC regulation of the current using either a

proportional–integral–derivative (PID) control loop or an exponential approach to the final

value with a selectable weight factor. Figure 3.2 (a) shows the basic electric connections

when using this AC regulation option to maintain a constant current through the sample in a

four-point resistant measurement. This was the most common configuration for the transport

experiments performed for this thesis. However, having an active regulation is not always

the most favourable option. For example, if the sample exhibits big quantum oscillations,

undesired modulations of the current could become prominent. In cases like this one, the

configuration shown in 3.2 (b) was adopted, where an external shunt resistor is added to the

circuit and no active AC regulation is chosen.

One issue that can persist when performing a four-point measurement with the lock-in

technique is the existence of the so-called common mode errors, which come from undesired

voltage signals common to both voltage leads in the four- point configuration. This voltage

is still present in the output of the differential amplifier used to magnify the signal from

the sample and its quantified by the common-mode rejection ratio, CMRR, of the amplifier,

normally expressed in decibels. Typically, a common-mode signal of 100 mV is only cancelled

to 1 part in 105 by a amplifier with a CMRR of 100 dB and so it will appear as if there is still a

1µV differential signal at the input. Common-mode voltages are more prominent when the

sample is very conductive and the wiring to the cryostat is much more resistive. To combat

this situation the configuration presented in figure 3.2 (c) was used. As before, a shunt resistor

is used to regulate the applied current and another channel of the lock-in amplifier is used

to measure the voltage drop across the shunt and calculate the current more accurately. The

shunt is however coupled to the current channel via a transformer. This coupling helps

minimizing the common made errors in the measurements by providing a low impedance

path to ground which prevents unwanted high frequency signals contained in the source

voltage from reaching the transformer secondary.
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Figure 3.2: Schematic diagram of electrical configurations used for transport measurements.
(a) SynkTek MCL1-540 active AC regulation option. (b) Imeas output connected to a highly
resistive shunt resistor for sourcing current. (c) Incorporation of a transformer break-out box
to reduce the effects of common mode errors. Typical values of the resistors were R0= 500 Ω
and RREF = 10 Ω.
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3.3 Low temperature and high magnetic fields

Since Kamerlingh Onnes first liquified helium more than one hundred years ago, the use of low

temperatures has been crucial for the understanding of new ground states in quantum matter,

ranging from superconductivity, to quantum Hall effects and other more recently observed

topologically non-trivial states. Without low temperatures these effects would be smeared

out by the surrounding thermal energy and become unobservable. Similarly, the use of high

magnetic fields to probe many of these exotic states has become key for their understanding

since coupling to electromagnetic fields is one of the ways in which electrons and other charge

carriers can be manipulated. Standard cryogenic technologies are based on cryogenic liquids,

mainly liquid N2 and liquid He3/He4,and can be categorized into three temperature zones:

• Liquid He4 temperature zone, with a base temperature of about 1.5 K that can be reached

by controlling the vapor pressure of the He4.

• Liquid He3 temperature zone, with a base temperature of around 300 mK that can be

reached by controlling the vapor pressure of He3.

• Dilution refrigerator temperature zone, with a base temperature of around 10 mK, that

can be reached through the continuous dilution process of a He3/He4 mixture.

In this thesis, the vast majority of experiments were performed in the first zone, with a few

additional ones performed in the last zone. This is why in the following I will concentrate on

discussing He4 based cryostats with a superconducting magnet, and only briefly mention the

dilution refrigerator set-up later.

3.3.1 Physical properties measurement system (PPMS)

The physical properties measurement system (PPMS) from Quantum Design is a He4-based

instrument with a base temperature of 2K and maximum magnetic field of 14T that is designed

to perform electrical, magnetic and thermal measurements. It combines some automated

features, like temperature and field control, with a considerable degree of flexibility to ac-

commodate the particular needs of any given experiment. Figure 3.3 shows some the main

parts of the instrument, including the Dewar containing the cryogenics and the internal probe

hosting the magnet and the sample. Many of the same design principles for these parts are

applied to the other system used during this thesis (see next section), which is why the PPMS

serves here as a general example. Figure 3.3 (a) shows the schematic cross section of the PPMS

Dewar. It includes an outer jacket of liquid nitrogen, sandwiched between superinsulation

layers and the internal liquid helium He4bath. This nitrogen layer helps to reduce the helium

consumption considerably. The principle for cooling is to continuously pump helium from

the bath through an impedance assembly and into the cooling annulus. The helium vapor

flows through the annulus at rates that are automatically controlled by the Model 6000 PPMS

Controller, which incorporates the main pump, to achieve the desired temperature.
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Figure 3.3 (b) shows a more detailed scheme of the cross section of the PPMS probe with some

of its main components. The innermost region is the sample space contained in the sample

chamber, which is itself surrounded by the cooling annulus. Vacuum and superinsolation

prevent heat exchange between the sample chamber and the helium bath. The vacuum space

between the outer and inner vacuum tubes contains reflective superinsulation to minimize

radiative power loss into the helium bath. At the base of the sample chamber sits the 12-pin

connector that contacts the puck where the sample is mounted. Two thermometers and a

heater are immediately below the sample puck connector for optimal temperature control

and monitoring. With this design and the accompanying software control, temperatures with

a typical accuracy of ±0.5 % can be achieved with very linear behaviour and rates ranging

from 0.05K/min to 8K/min approximately.

The magnet in the PPMS is a superconducting solenoid composed of a niobium–titanium alloy

embedded in copper. It sits on the outside of the probe, so it is always immersed in the liquid

helium. The magnet is connected to a so-called persistent switch. The persistence switch is a

small heater on the magnet wire that drives a section of the magnet non-superconducting.

It allows the magnet controller to drive current through the magnet leads and change the

magnetic field. When the heater is turned off the entire magnet can remain superconductor,

which eliminates the need drive a current during constant field operation and reduce the

boil-off rate of helium. This state is referred to as the persistent mode of the magnet. The PPMS

offers the possibility of using a rotator probe that fits into the PPMS sample chamber to obtain

information about angular dependence on electrical transport in a magnetic field. The samples

are mounted on two special pucks that can be rotated along two different axes, respectively,

perpendicular to the magnetic field. The rotator probe incorporates a thermometer just below

the sample for precise temperature measurement.

3.3.2 Other systems used

Another of the systems used during this thesis was the Oxford Instrument He4 bath cryostat

with a 18T superconducting magnet and a variable temperature insert (VTI) for 1.5K - 300K

operation. The basic principle of operation is the same as in the PPMS although the design of

the cryostat is different in some aspects. For example, instead of an impedance assembly, a

needle valve is used to draw helium from the bath to the VTI. In addition, the system integrates

a so-called lambda-point fridge to cool the magnet down to 2.2K and extend the magnetic

field range. This fridge consists of a needle valve to control the flow of liquid helium and a

chamber with a pumping line to reduce the vapour pressure above the liquid and hence cool

it further down [67]. The liquid is drawn from the main helium bath which is separated from

the lambda fridge by the main magnet support plate. Only a small proportion of the liquid

in the main bath is cooled by the lambda plate, reducing the cost of operation. The Oxford

cryostat also has a rotator probe so angular studies under a magnetic field are possible (along

one axis perpendicular to the axis of the field).
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Figure 3.3: Technical drawing of the PPMS system. (a) Dewar cross section with gas and
vacuum controls (b) Cross section of the probe with some of its major components. Adapted
from [66].

Finally, a couple of experiments were performed in the Bluefors LD250 dilution refrigerator,

which incorporates a 9T magnet. A detailed review of the working principle of a dilution

refrigerator can be found in [68]. The main principle is approximately the following: when a

mixture of He3 and He4 is cooled below a critical temperature, it separates into two phases.

The lighter "concentrated phase" is rich in He3, and the heavier "dilute phase" is rich in He4.

The concentration of He3 in each phase is temperature-dependent. The evaporation of Hem3

from the concentrated phase into the dilute phase is what provides the cooling power. Very

roughly, the concentrated phase of the mixture is pretty much liquid He3 , and the dilute phase

is effectively He3 gas. The evaporation of He3 from the "liquid" phase to the "gas" phase cools

the sample. A very important feature of the system used for this thesis is a two-axis rotator that

was incorporated to the instrument, allowing to determine a 2D map the magnetoresistance

along two different degrees of freedom.

3.4 X ray characterization

As mentioned previously in chapter 2, the alignment of crystalline samples via X ray techniques

is a key preliminary step for the fabrication of microstructures. In this section I will outline the

main procedures used for the X-ray characterization of the materials studied in this thesis.
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3.4.1 MultiWire Laue back-reflection diffractometer

In the Laue back-reflection method a polychromatic X-ray source is used to irradiate a sta-

tionary single crystal and produce the desired diffraction pattern. Different atomic planes

diffract different wavelengths of radiation, allowing multiple diffraction spots to be observed

simultaneously in the Laue pattern and used for subsequent indexing. The great advantage

of the Laue method is that a single pattern, since it is the result of the diffraction of many

planes, clearly reflects the symmetry of the entire crystal and can thus be used to determine

its orientation. The instrument used in this thesis was the MultiWire MWL120 diffractometer

at the Institute of Physics in EPFL (see figure 3.4 (a)). The machine employs a tungsten tube

to produce the polychormatic X-rays, and a collimator to direct them at the sample. After

the X-rays are "back-scattered" from the sample, they are collected by a detector with an

active area of 30cm×30cm. The main working parameters of the machine are the applied

voltage, which determines the emission profile of the tungsten tube; and the applied current,

which determines the number of X-rays produced. A higher voltage might produce more

diffraction spots while a higher current tends to produce better defined patterns, however

too high values of these parameters can also increase the background noise and diminish

the lifetime of the tungsten tube. For this thesis, typical values of 20kV and 35mA (together

with a 0.5 mm pinhole size collimator) were used to obtain diffraction patterns with good

contrast. This instrument is typically operated to screen rather large single crystals that are

fixed on a motorized goniometer using clay or some other glue. However, the single crystals

studied in this thesis were usually too small to be mounted in this way and rotated in situ with

the motorized goniometer since the aligment with the X-ray beam was constantly lost. More

importantly, such a mounting procedure is not optimal when transferring the crystal to the FIB

after the alignment is done. Ideally, the transfer should be made directly from one instrument

to the other without the introduction of ill-defined variables like the thickness and irregularity

of the glue droplet fixing the crystal, which could cause an undesired misalignment when

cutting the crystal with the FIB. To avoid such effects, a manual goniometer was chosen to

hold the sample (see figure 3.4 (b)), which in turn was already placed on the SEM stub used for

the FIB. Figure 3.4 (c) shows an image of a sample mounted in this way, taken with the internal

camera of the system.

Figure 3.5 outlines the typical procedure carried out for the alignment of a crystal, which in

this case is the TSM TaAs. Translating the alignment angles obtained from the X-ray screening

to the position parameters of the FIB stage is a crucial step in the fabrication process. To

this end, a sapphire chip is placed next to the crystal of interest to serve as a clear reference

when cutting the crystal with the FIB. These sapphire chips are also single crystals and their

diffraction patterns can be used to check their orientation. Consequently, the first step in

the alignment procedure is to orient the sapphire chip in a convenient manner, in the case

of figure 3.5 (a) this means with one of its edges aligned horizontally, which is corroborated

by the symmetrical diffraction pattern thus obtained (see figure 3.5 (b)). The TaAs diffraction

pattern at this initial position is shown in figure 3.5 (c). TaAs has a tetragonal crystal structure

and although the crystal are not always very regular, they tend to exhibit larger flat faces
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along the (001) planes and some well defined edges along the [100] ([010]) directions. To take

advantage of these features the crystal in figure 3.5 (a) was mounted with its larger flat faces

parallel to the SEM stub and its straight edge as parallel as manually possible to the edge of

the sapphire chip. The diffraction pattern presented in figure 3.5 (c) is consistent with the

tetragonal structure and the expected rough orientation, showing a 4-fold symmetric pattern

that is not yet completely centered. Figures 3.5 (d) and (e) show successive changes in the

rotation and tilting angle of the goniometer until the crystal is finally oriented. The software

QLaue was also used to analyse the diffraction patterns. This software simulates the scattering

pattern of single crystals based on their lattice parameters. The simulated pattern is moved

until it matches the initial pattern, like the one in figure 3.5 (a), and then it is moved again

until it matches the desired orientation. The corresponding rotation and tilting angles can

be compared to the actual ones obtained with the diffractometer, which typically resulted in

extremely good agreement. These angles are then translated to the position parameters of the

FIB stage using simple trigonometric relations.

3.4.2 SuperNova single crystal diffractometer

As mentioned in the previous section, the Laue back reflection method is not optimal for

the characterization of single crystals that are small, which is commonly the case for many

of the newly synthesised topological materials of interest. Moreover, the use of a polychro-

matic source makes it, in general, unsuitable for quantitative analysis and the determination

of crystal structure and lattice parameters. To measure those properties the approach of

applying a monochromatic source on a rotating crystal to obtain the diffraction patterns is

usually much more advantageous. Taking this into consideration, the SuperNova single crystal

diffractometer from Agilent Technologies (now Rigaku Oxford Diffraction), located at the

Institute of Chemical Sciences and Engineering in EPFL (see figure 3.6 (a)), was also employed

to characterize some of the samples studied in this thesis together with a procedure for sample

mounting and transfer to the FIB that was optimized to achieve the best possible crystal orien-

tation. The SuperNova diffractometer is particularly well suited for screening small crystals

by optimizing, among other things, the production of a very bright and well focused X-ray

beam. It is equipped with both copper (Cu) and molybdenum (Mo) monochromatic sources

exhibiting their characteristic Kα radiation of wavelength λ = 1.54Å and λ = 0.71Å, respectively.

However, the Mo source was always chosen for the crystal studied here since its more energetic

X-rays can penetrate deeper into inorganic materials compared to their softer Cu-generated

counterparts, increasing the sampled volume and facilitating the screening of thicker and/or

strongly absorbing samples.

In the SuperNova diffractometer, the sample (a Cd3As2 crystal in this case) is mounted on

a XRD magnetic holder with a metallic pin, as shown in figure 3.6 (b). As before with the

Laue method, the translation of the orientation information to the FIB stage is of paramount

importance. With this in mind a couple of steps were taken: a costume-made SEM stub with a

small magnet was used to fit the XRD holder directly into the FIB after the X-ray screening,
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Figure 3.4: MWL120 Multiwire back-reflection Laue system. (a) Experimental set-up for
crystal orientation. (b) Goniometer with sample mounted. (c) View of the sample inside the
machine from the system’s camera.
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Figure 3.5: Crystal orientation with the Laue system. (a) As a reference, a sapphire chip is
mounted next to the TaAs crystal to be oriented. (b) Diffraction pattern of the aligend sapphire
chip. (c) Succesive rotations to align the TaAs crystal.

the sample was mounted on the metallic pin using the conductive H20E epoxy to ground it

properly to the FIB stage, and a vertical mark was previously milled into the metallic pin with

the FIB (highlighted in figure 3.6 (b)) to serve as a reference when inserting back the crystal

for final FIB cutting. In the final result of the screening, a total set of 360 frames (one frame

per angle) was obtained showing the different crystallographic directions for every position of

the crystal as it is rotated along the axis of the metallic pin. Figure 3.6 (c) highlights three of

such frames, where the reference mark can also be seen. These "crystal movies" were analysed

with the CrysAlisPr o software, which also displays the crystal structure information. In the

case of the Cd3As2 crystal of figure 3.6 (b) and (c), the results indicated a tetragonal unit cell

with lattice parameters a = 1.26nm and c = 2.53nm consistent with the centrosymmetric space

group I 41/acd , which are in very good agreement with values reported previously for this

compound[69, 70].

After the screening of the crystal is finished, it is taken directly to the FIB to cut the lamellae

along the desired crystallographic directions. The vertical mark is used to translate the relevant

orientation angles to the FIB stage position. In general, unless the position of the crystal in

the metallic pin is very convenient for the desired crystallographic directions, the translation

of these angles can be rather cumbersome and more importantly, after such translation is

made, the final position of the crystal in the FIB might not be ideal for digging and polishing

lamellae. Unfortunately, this problem is made worse by the use of the XRD magnetic holder

inside the FIB since its size limits some of the stage movements to avoid crashing into the
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Figure 3.6: Agilent SuperNova diffractometer system. (a) Experimental set-up with main
components of the instrument. (b) Mounting of a Cd3As2 macrocrystal for the determination
of crystal orientation. (c) Crystal directions identified.

electron and ion columns. The strategy taken to avoid this issue altogether was to expose the

desired crystallographic faces first by cutting large sections of the crystal with the FIB and

then, after taking it out of the FIB, removing the crystal from the metallic pin and mounting it

on a regular SEM stub with the desired face flat on the SEM surface. In this way, the lamellae

can be prepared following the exact procedure described in 2.5.1. Moreover, the cut lamella

can itself be screened to verify its orientation. This is shown in figure 3.7 for a PtSn4 sample.

The lamella is transferred in situ with the FIB to the metallic pin using the micromanipulator

and FIB-induced deposition to attach it to a sharpened copper piece that had previously been

fixed to the top of the pin (see figure 3.7 (a) ). Figure 3.7 (b) shows the results of the screening,

confirming that the lamella was cut along the desired chrystallographic directions and exhibits

the lattice parameters a = 6.42nm, b = 11.36nm and c = 6.38nm, consistent with the expected

orthorhombic structure characteristic of this material [61].

3.5 Finite elements simulations

The finite element method (FEM) is a numerical technique used to find approximate solutions

to boundary value problems for partial differential equations. It’s become a standard tool of

analysis in many fields of science and engineering given its ability to model very complex

shapes to perform structural, thermal and electrical simulations, among many others. In

this section I give a broad overview of the method, more detailed descriptions can be found
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Figure 3.7: X-ray characteritaion of a single crystalline lamella. (a) Mounting of a PtSn4

lamella for the determination of its orientation. (b) Crystal directions identified.

in [71] and [72]. A key step in the FEM is the subdivision of a complicated geometry into

simpler blocks called finite elements (see figure 3.8), which are connected at nodes on their

boundaries.The collection of discretized elements and nodes is called the mesh and the

process of its construction is called meshing. For each finite element an approximate solving

function of to the global differential equation is found, which is dependent on the values held

by the function at the nodes. The relationships between the nodes are then used to assemble

all the elemental solutions into a solution over the whole geometry. The general algebraic

equation to be solved can be written in the form:

{F } = [K ]{u} (3.6)

where [K ] is called the global stiffness matrix, F denotes the load vector and {u} the unknown

vector to be found, for example, the displacement. Most commercial algorithms solve this

equation not by inverting the global stiffness matrix, which is rather computationally inef-

ficient, but by using methods that approximate iteratively the vector {u} like the conjugate

vector gradient method.

For this thesis, mechanical and electrical simulations were performed using the FEM software

COMSOL. A typical simulation of the electrical situation of a microstructure in a transport

experiment is presented in figure 3.9. A geometry with the actual dimensions of the the

microstructure is first constructed and a fine mesh is then used to solve the relevant elec-
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Figure 3.8: Finite element method. Discretization of a domain Ω into a partition Ωd with
triangular elements Ωk , including forces and boundary conditions. Image taken from [73].

Figure 3.9: COMSOL simulation of a microstructure (a) A fine mesh is created to discretize
the geometry of the microstructure. (b) Resulting electrostatic potential distribution after
sourcing a current through one of the contacts. (c) Streamlines of the current density for the
same simulation shown in (b), highlighting the uniformity of the current in the central bar og
the microstructure.

tromagnetic equations numerically, given the desired boundary conditions (see figure 3.9

(a)). For example, in figure 3.9 (b), a current of 10 µA is injected from the top of one of the

current contacts, while the other is kept grounded. For the simulations COMSOL allows to

input the required materials’ constants such as elastic moduli, electrical conductivity, thermal

expansion coefficient, etc, or to sweep values of any given parameter like the components of

a conductivity tensor, in case anisotropy studies are desired. From the simulations several

quantities can be obtained like the electric potential distribution (see figure 3.9 (b)) or the

streamlines of the current density (see figure 3.9 (c)), among many others, which can provide

valuable information regarding the design of the microstructure.

48



4 Theoretical background

4.1 Introduction

It is a remarkable fact that the 100-year-old theory of quantum mechanics can still be expanded

in often unexpected ways to explain new phenomena. The inclusion of topological concepts

in the quantum mechanical theory of solids that began in the 1980’s using toy models has been

validated by the discovery of materials like graphene and TIs in the 2000’s. In this chapter I will

introduce some of the main concepts that have been developed to study topologically non-

trivial states of matter, with emphasis on the description of topological effects in the transport

properties of TSMs. After briefly reviewing some fundamental aspects of the band theory of

solids, I will describe the characterization of band crossings using a topological index and

the further classification of these crossings into Weyl and Dirac types. This characterization

already represents an extension to gapless systems of the description initially applied to

gapped systems like TIs. It is worth mentioning that such classifications are a very active field of

research and new aspects in the topological identification of materials are still being explored.

For example, recently the concept of quasi-symmetry was introduced to describe approximate

symmetries that could stabilize band crossings by enforcing finite yet perturbatively small

energy gaps [74]. Later in the chapter I will discuss the basic equations of electron dynamics

under external magnetic fields, the theory of quantum oscillations and Weyl orbits and some of

the transport characteristics of TSMs. The connection of some these phenomena to topology

is particularly important since in an actual material both topologically trivial and non-trivial

effects will be present at the same time and might even lead to similar features in their transport

behaviour, e.g, additional phase factors in the quantum oscillation spectrum. Finally, I will

discuss the concept of pseudo-fields induced by strain gradients in 3D Weyl systems. These

pseudo-fields could provide a very convenient description of many physical effects in TSMs

like the activation of the chiral anomaly or the redistribution of chiral charge, some of which

have been observed in metamaterials but not in actual 3D materials.
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4.2 Band theory fundamentals

At the heart of understanding the electronic properties of solids is a proper description of the

behaviour of electrons inside the electric potential of the nuclei. In 1933 Sommerfeld and

Bethe treated the problem quantum mechanically [75]. The solid was modelled as a potential

well with infinite barriers at the surfaces and the movement of the electron, now treated as

a wave, is determined by solving Schrödinger’s equation. They found that the set of wave

vectors k associated with the electron wave functions forms a discrete set of values called the

k-space or reciprocal space. In this space, the total number of states available for conduction

is temperature dependent and can be calculated using a distribution f (T,E) that computes

how the charge carriers arrange in the available states, and a density of states (DOS)D(E ) that

computes the number of states available per unit energy. In this fashion, the number of charge

carriers per unit volume is given by:

n =
∫ ∞

0
D(E) f (T,E)dE (4.1)

The density of states depends on the dimensionality of the system and the corresponding

dispersion relation, that is, the E (k) functional form. Since the electrons are fermions, subject

to Pauli’s principle, the distribution function is the Fermi-Dirac one:

f (T,E) =
1

e(E−µ)/(kB T ) +1
(4.2)

Within the approximation of free and independent particles, the electrons would fill all the

k-states available up to a certain energy value called the chemical potential µ . At T = 0 this

energy value is called the Fermi energy EF and defines the constant energy surface known

as the Fermi surface (FS), which characterizes the metallic state. Transport phenomena,

including the flow of electric current, are dominated then by two mechanisms: the driving

force of the external fields, like the electric field, and the dissipative effect of the scattering

of carriers by phonons and defects of the crystal. Most of the charge carriers participating in

the transport will be those close to the Fermi energy. When considering the periodicity of the

atoms in a crystal, the overlap of the electrons’ wave functions leads to the formation of energy

bands En(k), where n is the band index. Given the translational symmetry of the Hamiltonian

H(k) describing the system (a consequence of the periodicity of the electric potential of the

atoms), the eigenfunctions can be described by a plane wave modulated by a periodic function

un,k (r), resulting in the so-called Bloch waves: ψn,k (r) = e i k·run,k (r) [76, 77]. The relation En(k)

is also periodic in reciprocal space so we only need to consider the so-called first Brillouin

zone (BZ). Based on the existence or not of an energy gap and the position of the chemical

potential in the structure of En(k), materials can be classified as insulators, semi-conductors

and metals.

As mentioned in chapter one, the novel properties of TSMs are related to their linearly dis-

persive bands and the existence of crossing points or nodes (see figure 4.1). Electrons in
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Figure 4.1: Schematic band structure of a normal metal and Wely and Dirac semimetals.
DSMs can be considered as the superposition of WSMs of opposite chirality, protected from
mixing by crystal symmetries.

a normal metal such as copper move approximately like in free space, with an energy of

E (k) = (ħk)2/2m, where ħk is the momentum and m is the effective mass. If a force is applied,

for example, through the application of an electric field, the electrons populate states of higher

momentum and experience a change in their group velocity, which is proportional to the

slope of the band. This is the typical behaviour of a massive particle. TSMs on the other

hand, by virtue of their linearly dispersive bands, have a fixed slope, which means that even

if subjected to a force, they would still move with the same velocity. This is analogous to the

behaviour of massless particles. Additionally, in regular metals there is no preferred relative

direction between spin and momentum, with bands showing spin up and down degeneracy,

whereas in TMS’s chirality dictates a spin-momentum locking as schematically depicted in

figure 4.1. Furthermore, the linear band structure of 3D TSMs also leads to a DOS D(E) ∝ E 2

instead of the D(E) ∝ E 1/2 characteristic of 3D parabolic bands, which naturally influences

their transport behaviour. The reason why most materials don’t exhibit linear touching bands

is that, in general, bands tend to avoid crossing and open up a gap but gappless structures can

still arise in some materials.

4.3 Band crossings and topological invariants

Under certain conditions there is the possibility of having band crossings in the structure of

En(k), that is, energy degeneracies. In general, Bloch states with the same symmetry cannot

be degenerate at some arbitrary point in the BZ. Usually, when these bands approach each

other, they hybridize and open up gap [78]. However, if there are other symmetries obeyed by

the system’s Hamiltonian, like crystal related symmetries such as rotations and reflections,

these degeneracies can be stable. This is a general result from quantum mechanics, where one

can classify the eigenstates of a given Hamiltonian according to how they transform under

such symmetry operations. In this fashion, one can decompose the Hamiltonian into smaller

representations, each of which corresponds to a given energy value. If those representations

are not one dimensional, then its energy value is degenerate. This degeneracy can happen
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Figure 4.2: Berry phase and paths in the Brillouin zone. (a) Parallel transport of a vector on a
closed path on a sphere rotates the vector by an angle φ. (b) Closed trajectories around a band
crossing showing a non-trivial or trivial Berry phase ΦB depending on whether the trajectories
enclose or not . Adapted from [80].

either as a result of a fine-tuning of some parameter of the Hamiltonian (in which case it is

called and accidental degeneracy) or as a consequence of a larger symmetry not taken into

account. A well known example is the classification of states of the hydrogen atom according to

their angular momentum, which stems form the fact that the potential is centrally symmetric.

In the case of solids, the band structure itself and the classification of states into Bloch waves

is a consequence of the translational symmetry.

4.3.1 Berry phase

The basis to express the topological character of band crossings is the concept of the Berry

phase, which is a general geometrical phase acquired by the wave function when traversing

closed paths in parameter space [79]. To illustrate this phase, let’s consider a closed path ζ on

a sphere, as illustrated in figure 4.2 (a). If we choose a tangential vector and move it along ζ

while keeping it locally parallel to itself, it will be rotated by and angle Φ when completing the

path. This angle will depend on the geometry of the surface on which we move the vector so it

is called a geometrical phase. Analogously, in solids, the Berry phase is a geometrical phase

associated to the evolution of the wave function on a closed path over the BZ.

To define the Berry phase, consider a system described by a Hamiltonian that depends on time

through a set of parameters represented by the vector R(t ), that is, H(R(t )). Let Ei (R) be the

eigenvalues of this Hamiltonian and |ψi (R)〉 its eigenfunctions. When R(t ) undergoes a cyclic

evolution such that R(0) = R(T ) over a certain closed path ζ, the corresponding eigenstate Ψn

will remain an instantaneous eigenstate (this result is called the adiabatic theorem in quantum

mechanics) but might pick up a geometrical phase factor such that its time evolution is given
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by:

Ψn(t ) = eΦB (t )exp[
−i

ħ
∫ t

0
d t ′En(R(t ′))]|ψn(R(t ′))〉 (4.3)

The factor in the exponential is the conventional dynamical phase, while ΦB is called the Berry

phase. It can be shown that the Berry phase is given by following path integral over ζ :

ΦB =
∮
ζ

i
〈
ψR |▽R|ψR

〉
.dR =

∮
ζ

AR.dR (4.4)

Where AR is called the Berry connection. This quantity is analogous to the vector potential

in electromagnetism and one can also define an equivalent magnetic field called the Berry

curvature Ω = ∇R ×AR. Recalling Stokes’ theorem,we can turn the integral into a surface

integral of the Berry curvature:

ΦB =
Ï

Ω.d 2R (4.5)

Using again the analogy with electromagnetism, one can conclude that this quantity is also

gauge invariant. The application of this formalism to the case of solids is immediate: the

eigenfunctions are the Bloch states ψn,k (r) = e i k.run,k (r) and the time dependant parameter

is the momentum k. The surface of integration is taken as the entire BZ, which, given its

translational symmetry can be map to a torus. With this expression for the Berry phase we can

finally define our topological index, which is called the Chern invariant C :

C =
1

2π
ΦB (4.6)

The Chern inavriant is only well defined over the entire BZ for insulators, where there is an

energy gap in the band structure. However, it can also be extended to cases where there is a

degeneracy in the bands. In that case the surface of integration must enclose the correspond-

ing crossing point and is typically taken to coincide with the FS. One can show that in the

case of TSMs, each node is characterized by a Chern number of C = ±1, meaning that they

behave as monopoles of Berry flux with a chirality that is determined by the sign of C [9, 81].

Closed trajectories that enclose the crossing points will then be characterized by a non-trivial

Berry phase that can manifest itself in various magneto-oscillatory effects like in graphene

[80, 82, 83] (see figure 4.2 (b)). Furthermore, as shown by Nielsen and Ninomiya [84], the total

monopole charge in the BZ has to be zero, which implies that the band-crossing points always

come in pairs of opposite chirality.

Different types of TSMs can be distinguished based on some of the characteristics of the band

crossings, such as its degeneracy or co-dimension (whether the band degeneracy is a line or a

point). Another possible classification is based on the nature of the band crossing, whether

it is symmetry enforced or results from a band inversion due to spin-orbit coupling (SOC).

Within this last classification I concentrate on two types of TSMs: Weyl semimetals (WSMs)
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and Dirac (DSMs) semimetals.

4.3.2 Weyl semimetals

In a WSM, two non-degenerate bands cross at discrete points, called Weyl nodes, showing

a linear dispersion relation in all directions. In the simplest case, there can appear two

of these nodes in reciprocal space associated to a different chirality. This new quantum

number describes whether the spin of the fermions is locked parallel or anti-parallel to their

momentum. This number is a conserved quantity in these systems and constitutes a new

degree of freedom to encode and process information. The Hamiltonian describing these

chiral Weyl fermions is

H =χħvFσ ·k =χħvF

[
kz kx − i ky

kx + i ky −kz

]
(4.7)

where χ = ±1 is the chirality, vF is the Fermi velocity and σ are the Pauli matrices. The

existence of WSMs is conditioned by the breaking of either time reversal symmetry (TRS),

H(k, s) = H(−k,−s), where s is the spin and k the crystal momentum; or inversion symmetry

(IS), H(k, s) = H(−k, s)[9, 10, 85]. Otherwise, the energy bands would be doubly degenerate

at each k point, the two Weyl nodes would coincide, and since the corresponding electronic

states would have the same symmetries, they would tend to annihilate each other and open up

a gap [86]. Since one of these symmetries must be broken, Weyl nodes can appear in a generic

point in momentum space, and their existence does not rely on any additional crystalline

symmetry of the system. This means that as long as the nodes are not brought to coincidence

they are topologically stable. Using angle-resolved photoemission spectroscopy (ARPES),

a technique based on the photoelectric effect that can give information on the energy and

momenta of surface electrons, WSMs have been found such as TaAs[87], TaP[88], NbAs[89]

and NbP[90]

4.3.3 Dirac semimetals

DSMs are characterized by the presence of Dirac nodes where two doubly degenerate bands

cross and disperse linearly in all directions. They require the presence of both TRS and IS

and can be considered as the superposition of two Weyl nodes of opposite chirality. Since, in

general, this would lead to the annihilation of the nodes, additional symmetries are needed

to realize a stable Dirac node. In three dimensions, two mechanisms have been identified to

give rise to stable Dirac nodes in solids: firstly, the presence of the so-called non-symmorphic

symmetries (a symmorphic symmetry is one which leaves at least one point of the real space

crystal invariant. They are essentially point group symmetries of the crystal, such as reflection

and rotation), which enforces the occurrence of the Dirac node at a high symmetry point of

the BZ [12]. This type of DSM has not been experimentally observed. The second kind of

mechanism relies on band inversion, induced by SOC, in the presence of an n-fold rotational
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symmetry axis. This happens because the bands crossing each other can be associated to a

different rotation eigenvalue. Along the direction of the the rotational axis, and in the presence

of TRS and IS, all two-fold degenerate bands with different rotational symmetry representation

lead to a stable four-fold Dirac node, which is the case in Cd3As2 [91]. The excitations around

the nodes can be represented by the following Hamiltonian:

H = ħvF

[
σ ·k 0

0 −σ ·k

]
(4.8)

This is analogous to the low energy structure of graphene, which is described by a Dirac

equation in two dimensions. ARPES measurements have also shown the existence of DSMs

such as Na3Bi[92], ZrTe5[93] and most prominently Cd3As2 [94–96].

4.3.4 Bulk-boundary correspondence

The theoretical treatment described before has allowed us to classify different states of matter

based on their topological character and to realise that at the interface of regions with different

topological indexes, there must necessarily exist conducting edge states. This principle is

known as the bulk-boundary correspondence and has been very useful in understanding TIs

and, perhaps most notably, the integer quantum Hall effect and related phenomena [97–99],

where electrons can only conduct along 1D channels at the edge. In the case of TSMs, the

Fermi arcs connecting the nodes of different chirality are those edge states, now present as

2D surface channels as shown schematically in figure 4.3 (a). This relation to the presence

of chiral nodes is what makes them different to other surface states: they are topologically

protected, meaning that they cannot be destroyed through small perturbations or impurities.

The presence of Fermi arcs is one of the hallmarks for experimentally observing TSMs and

they have been confirmed via ARPES in various WSMs such as NbAs, NbP and TaAs (see figure

4.3 (b) ).

4.4 Electronic transport under external fields

In this thesis I am interested in probing the topological character of TSMs through electrical

resistivity measurements, and since in these materials both topological and non-topological

properties cohabit, it is important to review some of the main concepts describing the charge

transport in solids and how they are modified by the presence of topological effects.

4.4.1 Drude model

Close to 1900, before the quantum theory of the solid was developed, Drude described the

metallic conductivity of solids considering the charge carriers as particles of an ideal classical

gas in the solid. Although this idea is an oversimplification of the conduction mechanism, it

still provides a good description for many materials and it is often used to characterize their
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Figure 4.3: Fermi arcs in Weyl semimetals. (a) Fermi arcs can be viewed as the topologically
protected states present between regions of different topological character. They appear as
surface states connecting the projections of two Weyl nodes on the surface BZ. Taken from
[13]. (b) ARPES results showing the existence of Fermi arcs in the WSM TaAs [100].

transport behaviour as a first approximation. For an ideal electron gas in an external electric

field E, the dynamics of the electrons is described by Newton’s equation of motion:

m
dv

d t
= −eE− mvD

τ
(4.9)

the dissipative effect of scattering is taken into account by the friction term mvD /τ, where vD

is called drift-velocity. Since v relaxes exponentially to its final value with a time constant τ

after the external field E is switched off, τ has the meaning of a relaxation or scattering time

and can be considered the mean free time between successive collisions by the electron. For

the stationary, one dimensional case (d v/d t = 0):

vD =
−eτ

m
E (4.10)

so the current density in the direction of the field is:

j = −envD = nνE =
e2nτ

m
E (4.11)

In this model n is the volume density of all free electrons and the mobility is defined as a

proportionality constant between drift velocity and external field. The main result from Drude

is that the electrical conductivity is given by:

σ0 = j /E =
e2nτ

m
(4.12)

and the electron mobility, ν, becomes:

ν =
eτ

m
(4.13)

56



Theoretical background Chapter 4

4.4.2 Semi-classical equations of motion

In the same line of the Drude model, one can write semi-classical equations of motion for

the electrons described by the Bloch waves and whose energies are given by the different

bands of the solid. The main idea is to consider wave packets of Bloch waves that characterize

a localized electron, such that the velocity is the group velocity of the wave packet and the

momentum is the crystal momentum defined by ħk. With these considerations one can write

the following equations of motion in the presence of external electric E and magnetic fields B:

ħk̇ = −eE−ev×B (4.14)

v =
1

ħ∇kEn(k) (4.15)

Remarkably, it’s possible to show that in topological materials the last equation is modified

by adding the following term[81, 101–103] : k̇×Ω, where Ω is the Berry curvature defined in

4.3.1. The form of this term is analogous to the Lorentz force term in equation 4.14 associated

to the presence of a magnetic field B, which further supports the interpretation of the Berry

curvature as a magnetic field in momentum space. The resultant anomalous velocity can

be associated to a number of potential transport phenomena in TSMs, ranging from the

anomalous Hall effect [104, 105], the chiral magnetic effect [106] and the presence of negative

magnetoresistance [107, 108].

By calculating the rate of change of the group velocity and making an analogy with the

classical case, the scalar mass m is formally replaced by an effective mass tensor, which in

the simplest case reduces to m∗ = ħ2/(d 2E/dk2). This is related to the curvature of the band,

which means that m∗ depends on k and that, for example, flat bands represent heavy charge

carriers. Interestingly, one can shown that for linear bands, unlike their parabolic counterparts,

m∗ ∝ E , meaning that as the chemical potential moves away from the band crossing, the mass

of charge carriers increases. Of particular interest for this thesis is the effect of a magnetic field

on the electron’s movement. The corresponding term in the equation of motion is −ev×B,

indicating that the electrons move in a plane perpendicular to the magnetic field and along

trajectories tangential to the the Fermi surface. The period of these trajectories is connected

to the energy dependence of the area, S, enclosed by the orbit in k-space:

Tc =
ħ2

eB

∂S(E ,k)

∂E
(4.16)

This is more commonly written in terms of the cyclotron frequency:

ωc =
2π

Tc
=

eB

m∗ (4.17)

where m∗ is the effective mass.
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4.4.3 Magnetoresistance basics

The term magnetoresistance (MR) refers to the change of electrical resistance when an external

magnetic field is applied. The study of MR effects in metallic materials has a long history and

detailed reviews and textbooks are available on this topic [77, 109–111]. In the following I will

only describe some of the fundamental principles of this phenomenon. In the presence of an

external magnetic field (assumed here along the ẑ direction), the Drude model can be used

to calculate the conductivity of a material with a single charge carrier and a closed FS. Such

conductivity is now described by the following tensor:

σ =σ0


1

1+(ωcτ)2
−ωcτ

1+(ωcτ)2 0
ωcτ

1+(ωcτ)2
1

1+(ωcτ)2 0

0 0 1

 (4.18)

This tensor can be inverted using standard procedures to determine the corresponding resis-

tivity tensor ρ:

ρ = ρ0

 1 ωcτ 0

−ωcτ 1 0

0 0 1

 (4.19)

where ρo = 1/σ0. The off-diagonal element can be shown to simplify to ρx y = −ρy x = B/ne,

which is the familiar expression for the Hall effect. The diagonal elements show no field

dependence, that is, in this model there is no MR. In reality, most metals exhibit some MR,

which typically can be associated to anisotropic FS’s, causing electrons to have varying effective

masses and/or different associated scattering times. In those cases, it is typically found

that for weak magnetic fields, ωcτ << 1, the MR grows proportional to B 2; but for strong

fields, ωcτ>> 1, the MR saturates. Many semimetals like Bi [112, 113], and some TSMs [10,

12], exhibit a non-saturating MR with a quadratic field dependence. A classical model can

reproduce this behaviour by also introducing holes as charge carriers and with the same

density as that of electrons. In this two band model it can be shown that perfect charge

compensation results exactly in a B 2 dependence of the MR. Such behaviour, together with the

connection between MR and FS shape, has been treated numerically by solving the Boltzmann

transport equation [114]. Figure 4.4 (a) shows the numerical results for the isotropic two band

model. The degree of compensation is controlled by the Fermi energy EF . For EF = 0eV , i.e.,

perfect compensation, the dependence MR ∝ B 2 is obtained, while for shifted values of EF

the nearly-compensated system leads to sub-quadratic MR dependence.

The situation changes completely if the FS has 2D or quasi-2D FS sheets capable of hosting

open orbits since the two band model is no longer applicable. The numerical results for

this case are presented in figure 4.4 (b), where an open sheet extending in the ẑ direction is

modelled. When the current is applied along this same direction, the transverse MR exhibits a

non-saturating behaviour for ωcτ>> 1, in stark contrast to the single, closed FS pocket case.

When the current is applied along a direction perpendicular to the open orbit’s direction, for
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Figure 4.4: Magnetoresistance and Fermi surface shape. Numerical results from solving the
Boltzmann transport equation. (a) Isotropic two-band model showing a quadratic field de-
pendence of the MR for perfect compensation and a sub-quadratic dependence for imperfect
compensation. (b) Isotropic open orbit FS showing a non-saturating transverse MR when the
current is applied along the direction of the open orbits; and a small, saturating MR when it is
applied in a direction perpendicular to the open orbits. Image adapted from [114].

example, along the ŷ direction, then a very small, saturating transverse MR is obtained. The

connection between FS shape and MR has been used extensively to help map the FS of many

metals and semimetals, and it’s still an essential factor to consider when studying TSMs and

trying to determine which of their properties can be accounted for using classical explanations

and not more exotic topology-related effects.

4.4.4 Landau quantization

The previous description is not enough to characterize the full effect of magnetic fields on the

quantum states of the electrons. In a magnetic field, the Schrödinger equation is no longer

translational invariant in the directions perpendicular to the field, leanding to the well known

Landau quantization. In the Hamiltonian the canonical momentum p must be replaced by

p+ eA, where A is the vector potential such that B = ∇×A. The components of the vector k

perpendicular to B are no longer good quantum numbers and the whole picture of energy

bands is modified. For a non-relativistic fermion in 3D, with the field applied in the ẑ direction

the new energy levels are those of a harmonic oscillator:

En =

(
n + 1

2

)
ħωc +

ħ2k2
z

2m
(4.20)
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Moreover, the area perpendicular to the field, S⊥, enclosed by the electrons in k-space is

quantized according to the Onsager’s relation [115]:

S⊥(E ,k∥) = (r +γ)
2πBe

h
(4.21)

Where k∥ is the wave vector component parallel to the field, r is an integer and the parameter

γ depends on the form of the dispersion relation. For a parabolic band with E = ħ2k2/2m∗ and

the energy levels given by equation 4.20, one obtains γ = 1/2. Equation (4.21) indicates that for

a constant magnetic field, S⊥ is the same for all values of k∥. This means that the electrons’

states are located on a concentric set Landau tubes, onto which the free electron k-states

condense when a field is turned on. As the size of the orbit changes with field, increasing B

expands these Landau levels (LLs) and they successively leave the Fermi surface at rate given

by:

∆(1/B) =
1

Bn
− 1

Bn+1
=

2πe

hSextr
(4.22)

where only the extremal orbits are taken into account. This, in turn, corresponds to the

frequency:

F =
hSextr

2eπ
(4.23)

As the Landau levels cross the Fermi surface, the DOS oscillates with this frequency, which, in

turn, causes oscillations in all the electronic related properties of the solid, usually referred to

as quantum oscillations (QOs), including magnetization, resistivity, thermal conductivity and

even sample’s length. Since the frequency is related to the cross section of the Fermi surface

perpendicular to the field, these oscillations are essential in understanding the shape of the

Fermi surface.

In the case of TSMs, the Landau energy spectrum is completely different [116]. Choosing the

Landau gauge, A = −B y x̂ for a constant magnetic field B pointing in the ẑ direction and again

replacing p by p+eA, equation 4.7 takes the form:

H =χvF

[
pz (px −eB y)− i py

(px −eB y)+ i py −pz

]
(4.24)

This Hamiltonian acts on a two-component wave vector ψ(r)

ψ(r) =

[
ψ1(r)

ψ2(r)

]
(4.25)

such that Schrödinger equation, Hψ(r) = Eψ(r), results in two equations relating ψ1(r) and

ψ2(r):

χvF (pz )ψ1(r)+χvF [(px −eB y)− i py ]ψ2(r) = Eψ1(r) (4.26)
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χvF [(px −eB y)+ i py ]ψ1(r)−χvF (pz )ψ2(r) = Eψ2(r) (4.27)

Choosing χ = 1 and substituting the second into the first equation above, one can obtain an

expression for ψ1(r) only:

E 2ψ1(r) = {v2
F p2

z + v2
F ((px −eB y)+ i py )((px −eB y)− i py )}ψ1(r)

= {v2
F p2

z + v2
F ((px −eB y)2 − i [(px −eB y), py ])+p2

y )}ψ1(r)

= {v2
F p2

z + v2
F ((px −eB y)2 −ħBe +p2

y )}ψ1(r)

= {v2
F p2

z + v2
F ((px −eB y)2 +p2

y )− v2
FħBe}ψ1(r)

where I have used the canonical commutation relations for the momentum and position

operators. The first two terms multiplying ψ1(r) on the right hand side of the equation are

exactly the same as that of a three dimensional harmonic oscillator centered away from the

origin and with the mass replaced by 1/2v2
F , so that the corresponding energy levels are the

ones given by equation 4.20 (pz commutes with the rest of the Hamiltonian so we can replace

pz by its eigenvalue ħkz ). The final term can be written as −ħωc /2 and effectively shifts in

energy all the Landau levels, guaranteeing that there is now a level crossing E = 0. Combining

all these terms and taking into consideration the equivalent result when taking χ = −1, the

energy spectrum for the LL of a TSMs can be written as:

En = vF sg n(n)
√

2eħ|B ||n|+ħ2k2
z (4.28)

where n = 0,±1,±2,±3. . . . In figure 4.5 some of the main differences between the Landau

quantization between topologically trivial materials and TSMs are shown. Most remarkably,

there exists a field independent zeroth LL (n = 0) that is locked at the band crossing point. As

we shall see below, one of the main consequences of this fact is the manifestation of a new

topological phase factor in quantum oscillations associated to the Berry phase.

4.4.5 Shubnikov-de Haas oscillations

The oscillations in resistivity coming from the Landau quantization are called Shubnikov-de

Haas (SdH) oscillations. They can be described using the Lifshitz-Kosevich (LK) formalism,

which in its simplest case predicts the following expression for the oscillatory part of the

resistivity [117]:

∆ρ/ρ∝ RSRT RD cos[2π(F /B +γ−δ)] (4.29)

where δ is another phase factor that depends on the dimensionality of the system and δ = ±1/8

in the 3D case. The factors RT ,RD and RS are damping factors of the quantum oscillations.

The determination of the phase factor is of particular interest in topological materials since

the Berry phase becomes relevant. Under a magnetic field, the cyclotron motion of the

electrons around the nodes would induce a Berry phase that changes the phase of the quantum
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Figure 4.5: Main differences between the Landau quantization of non-topological (parabolic
band) and topological (linear band) fermions. (a) Landau tubes intersecting a spherical
Fermi surface. Dispersion relation for (b) normal and (c) topological electrons. Landau spectra
for a 2D spinless (c) normal and (f) topological system. Landau dispersion relation for a 3D
spinless (d) normal and (g) topological system with the field applied along the ẑ direction.
Image adapted from [12].
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oscillations. In their original work concerning the accidental degeneracy in the material

LaRhIn5, Sharlai and Mikitic [118] proposed that it was possible to write γ = 1/2−ΦB /2π. For

a linear band around a crossing point, one can show that ΦB = π, thus rendering γ = 0 for

topological materials. However, this has proven to be an oversimplified picture in the case

of 3D TSMs. More recent advances in the theory of band topology[119] have highlighted

that there are additional phase factors coming from the contribution of orbital moments

[120] and the Zeeman effect [121] that can make even topological trivial materials exhibit an

experimental phase of π in their quantum oscillations spectrum.

It is worthwhile to describe in a bit more detail the damping parameters present in the LK

formula. RT describes the thermal broadening of the Fermi-Dirac distribution function as the

temperature is increased. At T ̸= 0 the depopulation of the LLs as they cross the Fermi level

is not sharp but becomes smeared out. This leads to a decrease of the quantum oscillation’s

amplitude according to:

RT =
X

sinh X
(4.30)

where:

X =
2π2kB T

ħωc
≈ 14.69pm∗ T

B
(4.31)

The effective mass m∗ can be obtained from the fit of the temperature dependence of the

oscillation’s amplitude. RD describes the effect of disorder and the corresponding finite

relaxation time. In the presence of impurities, the LLs themselves will be broadened, also

affecting the amplitude of the oscillations.

RD = exp(
π

ωcτq
) (4.32)

High quality samples are required to observe QOs, which can be expressed by the condition

that ωcτq >> 1, where τq is called the quantum relaxation time. It is important to distinguish

this relaxation time from the transport relaxation time τ introduced in the Drude model. τ

measures the motion of the particles along the electric field gradient, so it is largely unaffected

by small angle scattering. On the other hand, τq is affected by scattering from all directions,

so it is usually smaller than τ. Finally, RS quantifies the correction due to the phase difference

between the spin up and spin down sub-bands and can be written as:

RS = cos(πg
m∗

mo
) (4.33)

where mo is the free electron mass and g the gyromagnetic ratio defined by the Zeeman

splitting: ∆E = gµB B , µB being the Bohr magneton.
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4.4.6 Weyl Orbits

The presence of symmetry protected nodes close to the Fermi level leads to new signatures in

the transport response of TSMs and the so-called Weyl orbits are one of these signatures [35,

122, 123]. However, it is first necessary to see how these orbits distinguish themselves from

other magneto-transport effects that are also part of the material’s response. As mentioned

before, in a normal metal, the application of a magnetic field B quantizes the orbits of the bulk

electrons, localizing them in the direction perpendicular to the field (see figure 4.6 (a)). For a

given field, the electrons orbit the Fermi surface and, in the most general case, follow a helix

trajectory in real space as they move along the direction of the applied field. Weyl orbits, on

the other hand, not only involve the LLs in the bulk but also the Fermi arcs on the surface,

as depicted schematically in figure 4.6 (b). This is very peculiar, since it’s a combination of

metallic bulk conductive states with Quantum Hall-like states in the surface. Moreover, given

the linearity of the bulk bands and hence the constancy of the velocity (which is proportional

to the slope of the bands), the electrons traversing the bulk experience zero Lorentz force

and their trajectory in space is not a helix but the one show in figure 4.6 (b). Nonetheless,

these orbits are coherent and also lead to modulations of the DOS. For low energies, when the

states are only populated near the nodes of a WSM, the chiral LLs are the ones taking part in

the Weyl orbits. Since the Weyl orbits involve electrons traversing the bulk, the quantization

condition is modified and includes a term that depends on the material’s thickness. With this

consideration, the peaks of these QOs happen at the fields given by:

1

Bn
=

e

k0ħ
[
2πvFħ
µ

(n +γ)−2Lz ] (4.34)

where ko denotes the momentum space separation of the nodes, µ the chemical potential, γ

is a constant of the order unity encoding low-n quantum effects, and Lz the device thickness.

Like regular QOs, the ones coming from the Weyl orbits are periodic in 1/B with a frequency of

µko/πvF . Even though the Weyl oscillations are periodic in 1/B , they violate Onsager relation

and they include a novel thickness dependant term. If the sample thickness is greater than

the mean free path, these QOs will not be observed since quantum coherence will be lost.

If the magnetic field points in the direction of the axis where the nodes are located, they

will also disappear since the projection of the Weyl nodes will be zero. Additional factors

could weaken the signal as well. For example, scattering from impurities and from chiral

and non-chiral LLs (when the chemical potential is not exactly at the nodes). Experimental

evidence for Weyl orbits have been reported. Moll et al [35] measured SdH oscillations on

Cd3As2 FIB prepared microstructures of different thickness, down to 150 nm (see figure 4.6

(c) and (d)). In addition to the frequency of the bulk Fermi surface, they found an additional

frequency of 61.5 T , consistent with the Weyl orbits extension, and whose amplitude decreased

exponentially with increasing thickness. Furthermore, they found that if the sample has a

triangular shape, the additional frequency disappears due to the destructive interference

coming from different thickness-related phases. More recently, Zhang et al [124] measured the

quantum Hall resistance on Cd3As2 wedge shaped samples and found a strong modulation
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Figure 4.6: Quantum oscillations from Weyl orbits. (a) Localized electron orbits in a normal
metal where a magnetic field B is applied in the z direction. (b) Schematic of a Weyl orbit in
mixed real/momentum space and real space [122]. These orbits extend through the material
and also lead to DOS modulations. (c) Microstructures of different thickness investigated by
Moll et al showing (d) conventional bulk QOs and additional, thickness dependant, QOs with
a frequency of 61.5T , which are associated to the Weyl orbits [35].

that can be explained in terms of the edge modes associated to the Weyl orbits.

4.5 Pseudo-magnetic fields induced by strain

Soon after graphene was discovered, it was realized that lattice distortions produced by strain

gradients can couple to the electronic degrees of freedom as a gauge potential, much in the

same way a vector potential is coupled to electric charges in electromagnetism[125]. The

change in the hopping terms coming from a strain gradient in the lattice has the effect of

displacing the Dirac nodes in momentum space, making the electrons behave as if they were in

the presence of an emergent or pseudo magnetic field. A schematic picture of this phenomena

is presented in figure 4.7 (a). This effect has been observed experimentally in the form of

pseudo-Landau levels using scanning-tunneling microscopy, both in real [29] (see figure 4.7

(b)-(d)) and artificial graphene [30].

DSMs and WSMs are expected to show similar effects [126–128], which might open up the door

to new technological applications of these materials requiring high magnetic fields that would

be very difficult or impossible to attain by traditional means. A good review in the description

of pseudo-fields in TSMs can be found in [31]. In this section, I give a brief reminder of this
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Figure 4.7: Pseudo-magnetic fields in graphene. (a) A distortion of the lattice changes the
hopping between bonds. In regions where the distortion has different magnitudes, i.e, where
there’s a strain gradient, the shift of the Dirac nodes leads to a deflection of the electron
trajectories. This is analogous to the effect of a magnetic field. Image taken from [30]. (b) STM
image of a graphene monolayer patch with nanobubbles. (d) Sequence of eight dI/dV spectra
taken in the line across the graphene nanobubble shown in (c). The peaks in dI/dV can be
attributed to pLLs originating from a strain-induced pseudo–magnetic field. (b)-(d) are taken
from [29].
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concept and highlight one of its most consequential statements, as presented in [34]: that

Fermi arcs can be thought of as the n = 0 pseudo-Landau level (pLL) of a pseudo-field confined

to the surface boundary of a WSM. This provides a new way of thinking about topological

surface states, which under the conventional formalism of topological band theory arise as

the necessary edge states between two regions of different topological index[129]. As was

mentioned before, the effect of strain in WSM can be modelled by including in the Hamiltonian

a node separation k0 that is space dependant: H = ±ħvF (k±k0)·σ, where the pseudo-magnetic

field is given by B5 = ∇×k0. Notice that a constant k0 would lead to a null B5. To illustrate

a concrete example, let b(r) = bx (y)x̂. Since b(r) only depends on y , the corresponding B5

points in the ẑ direction. Consider the three profiles of bx (y) presented in the second row of

figure 4.8, where l1 and l2 represent the boundaries of a WSM. The nodes’ separation changes

linearly over a certain distance so that B5 is constant and changes sign as indicated in the

figure. The evolution of the profiles from left to right corresponds to reducing the region of

change of the node’s separation, eventually confining such region to the boundary of the WSM.

The corresponding energy diagram, calculated from a lattice model Hamiltonian for WSMs,

is shown in the first row of figure 4.8. Analogously to equation 4.28, a pseudo-magnetic field

B5 along the ẑ direction produces pLL with energies En = ±vF

√
2eħ|B5||n|+ħ2k2

z and thus

disperses along kz only. This allows us to identify the flat parts of the energy diagrams in figure

4.8 with the pLL. Furthermore, we see that as the node’s variation is confined to the jump

between different boundaries, the n ≥ 1 pLL disappear from the spectrum leaving only the

n = 0 pLL, which is nothing more that the Fermi arc states characteristic of WSMs.

In 3D materials, pseudo-fields have been realized using acoustic and photonic metamaterials

where pressure and light waves exhibit a linear dispersion relation that resembles that of a

WSM [130, 131]. Cold atom systems have also been successful in emulating and manipulating

effective gauge fields [132, 133] and there are proposals for synthetic realizations of axial gauge

fields analogous to B5 [134]. In spite of these tantalizing results, experimental realizations

and transport signatures of pseudo-fields in 3D WSMs remain elusive. Some studies have

suggested that strain gradients near lattice defects and dislocations can be formulated as

pseudo- magnetic fields and possibly result in detectable transport signatures [135, 136].

Other studies have suggested to concentrate on the boundaries between different WSMs,

WSMs and insulators (topological or trivial) and even heterostructures formed from these

interfaces to generate appreciable pseudo-fields [31]. However, no experiment has yet shown

the viability of any of these approaches. The only relevant experimental result in this regard

is the reported observation via scanning tunneling spectroscopy of strain-induced pseudo-

magnetic fields in rippled regions of Re-doped MoTe2 crystals [137]. Those ripples, whose

origin is conjectured to be related to the cleavage of the crystals, remain fixed once the samples

are prepared. In this sense, the main challenge in this kind of experiments is both to generate

global strain gradients that are not confined to small regions of the sample and also to generate

them in such a way that they are capable of fine-tuning in order to adjust the magnitude of

the induced pseudo-fields.
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Figure 4.8: Fermi arc states as the zeroth Landau level of a pseudo magnetic field. Energy
spectra (top row) of a WSM in the presence of a spatially varying node distance, b(r) = bx (y)x̂,
with the profile shown in the second row. The flat regions of the energy curves correspond to
the pseudo Landau levels (pLL)associated to B5. Image taken from [34].
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5.1 Introduction

The identification of novel physical phenomena in TSMs associated to the presence of strain

gradients has prompted the development of new experimental techniques that try to offer

a better control of the strain landscape that can be applied to this kind of materials. Most

approaches to generate sizeable strain and strain gradients focus on 2D materials and thin

films [138]. These approaches include, for example, biaxial strain from lattice mismatch [139],

the use of flexible substrates such as polyimide films [140] and nanoindentation by atomic

force microscopy tips [141]. In the case of the most prominent 2D TSM, graphene, some

approaches are based on transferring the graphene membrane to nanopillars arrays [142]

and precisely shaped nano-dots [143] and anti-dots [144], thus subjecting the membrane to

a nonuniform distribution of strain. These complex strain fields acting on both graphene

sublattices independently have been proposed to induce large and constant pseudo-magnetic

fields [145, 146](see figure 5.1 (a)). The creation of uniform strain gradients has also been

attempted in other kinds of nanostructures, for example, in long micro-wires that are bent

using a glass tip [147] (see figure 5.1 (b)) or micro-fabricated constraining pillars [148]. In spite

this variety of experimental techniques, none of them can be easily extended to apply large

strain gradients in 3D materials. The techniques aimed at 2D materials and thin films rely

fundamentally on having thin membranes as samples, obtained by exfoliation methods or

grown by other processes like molecular beam epitaxy. Most of the time these techniques are

not applicable to the 3D materials of interest and when they are, the resulting nanostructures

tend to suffer from a reduction of sample quality. Similarly, techniques like the bending

of long wires is limited by the availability of crystals that can be grown in this shape. In

the case of 3D macrocrystals, uniaxial strain techniques have been used recently to obtain

considerable strains of up to 0.73%[52]. However, as its name suggests, this technique is aimed

at achieving homogeneous strains and although some strain inhomogeneity usually persists,

the re-purposing of the uniaxial pressure rig for a controlled application of strain gradients

would be practically impossible. Furthermore, the technique also requires relatively large

samples of around 1 mm in length. This imposes an important limitation since large crystals
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Figure 5.1: Different approaches for producing strain gradients. (a) False colour SEM image
of graphene devices suspended from Au contacts. As the devices are cooled down the contrac-
tion of the Au beams is expected to produce the necessary complex strain distribution (shown
in the inset) required for the observation of constant pseudo-magnetic fields. Image adapted
from [146](b) SEM image of bent microwires of the semiconducting material ZnO, showing a
strain gradient through their cross section (highlighted in the inset). Figure taken from [147].
(c) A simple way to generate a strain gradient in 3D samples is by bending. The magnitude of
the gradient will depend on the thickness of the sample and the bending angle.
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cannot sustain high strain gradients before exceeding yield limits and plastically deforming

or breaking. In this sense, any technique aiming at achieving large strain gradients in 3D

crystalline materials must be applied at the micro or smaller scales.

In this chapter I present a technique developed during the course of this thesis to generate

and control strain gradients at the micro and nanoscale in 3D crystalline samples, which are

micro-machined using the FIB. The main idea is shown in figure 5.1 (c): bending a sample

is a simple way to create a strain gradient whose magnitude can be adjusted by changing

either the thickness of the sample or the angle of bending. In addition, by doing this at the

microscale it is possible to apply such gradient in an elastic and reproducible way. I use

the Dirac semimetal Cd3As2 as a test material for the technique given its simple electronic

structure as well as the cleanliness of available crystals. Due to the small dimensions that

are accessible in the FIB fabrication process, the magnitude of the attainable strain gradients

can become quite significant but without resulting in rupture of the sample. The results

conclusively demonstrate that nearly constant strain gradients exceeding 1.3%µm−1 can be

achieved at a surface strain value of ≈ 0.65%. The transport behaviour and quantum oscillation

spectrum of the samples before and after maximum bending remains unchanged, suggesting

that the bending procedure is done elastically, without irreversible structural consequences to

the material itself. In the following section I will describe the sample design and fabrication

process that were tailored for the bending experiments, followed by a presentation of the

apparatus used for bending, which includes a bending without rotation version and a version

fitted to a probe with a mechanical rotator such that the bent samples can be rotated in

presence of a magnetic field. Finally, the section 5.4 presents the main conclusions and

outlook. Many of the results of this chapter have already been published in Diaz et al, Journal

of Physics D: Applied Physics 55 (2022), and some passages have been quoted verbatim from

that reference.

5.2 Sample design and fabrication for bending experiments

The main goal in the design of the samples is to have the possibility of bending them by

using a macroscopic, mechanical piezo-driven positioner and at the same time measure the

resistance of sections of the sample that concentrate the bending and are subjected to the

desired strain gradient. The design of the samples in the form of cantilevers is presented

in figure 5.2 (a). The typical size of Cd3As2 crystals (≈ 1mm) and their often irregular shape

precludes traditional lithography-based cantilever fabrication. Instead, FIB machining is used

to carve lamellae from the parent crystals (as described in chapter 2), which are later used

to fabricate the cantilevers. The cantilever starts with a large scale lamella of Cd3As2 whose

thickness or shortest dimension points along the desired direction of strain gradient. In order

to avoid bending the electrical contacts and the engagement point of the bending apparatus,

a segment of the lamella is thinned down, dividing it into three sections along its long axis.

The first one is composed of four thick platinum electrical contacts that are firmly connected

to the substrate. They are followed by three thin flexures, the two outermost of which act as
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Figure 5.2: Sample design for transport measurements under large strain gradients. (a)
Schematic diagram of a bending cantilever (purple) with electrical contacts that are Pt welded
(blue) to a substrate with a Au layer on top (yellow). (b) Simulated potential distribution and
current density streamlines. (c) Simulated strain εxx distribution for a maximum vertical
displacement of h = 60µm of the free end of the cantilever. (d) Scanning electron microscopy
image of a FIB-fabricated Cd3As2 cantilever welded at the edge of a sapphire substrate.

current and voltage leads, while the central bar is the active part being measured. Finally,

a long and thick free end of the cantilever is used to dock the positioner. A finite elements

(FEM) simulation of the electrical situation for this sample design is presented in figure 5.2(b),

showing the distribution of the electrical potential and the current density streamlines for

Cd3As2 crystalline bars. The current density is approximately uniform in the central flexure

and the thick part of the cantilever can be approximated as an equipotential given its much

larger size. The thin flexures are important for two main reasons: i) the flexures concentrate the

strain, minimizing the radius of curvature and maximizing the strain gradient. To confirm this

statement, FEM simulations of the cantilever were performed applying a vertical displacement

at the free end (see figure 5.2(c)). As expected for a simple beam under bending strain, the

simulations showed that the strain εxx changes from its minimum (negative) value at the

top to its maximum (positive) value at the bottom surface, crossing the neutral plane in the

middle of the flexures; ii) the central active bar thickness must not exceed the mean free

path of the material to maintain coherence of the Weyl orbits (which is about 1 µm in these

Cd3As2 crystals) [35]. Leaving the remaining cantilever thicker than this dimension ensures

that the oscillatory signal from Weyl orbits only originates from the thin central flexure, whose

resistance is the dominant term in the electrical signal. Figure 5.2 (d) shows a false-color SEM
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Figure 5.3: Main steps in the fabrication of cantilevers. (a) Oriented crystal from which
rectangular lamellae are cut along the desired crystallographic directions. (b) The lamella
(purple) is transferred to a grid (brown) where it is then polished. (c) The microstructuring
is done while the lamella is attached to the grid. (d) The patterned cantilever is welded with
platinum (blue) to the edge of a sapphire chip where gold contacts (yellow) are delineated
with the FIB.

image of a finished Cd3As2 cantilever.

Next, I turn to the main stages of the FIB fabrication process, as shown in figure 5.3. Many of

the steps and their corresponding guidelines are similar to the ones described in section 2.5.3

for the fabrication of free-standing microstructures, in particular, those related to handling the

sample with the micromanipulator and transferring it onto a substrate. The devices reported

here were machined using both Ga-ions and Xe-ions beams. From a Cd3As2 bulk crystal,

whose crystallographic directions had been determined by X-ray diffraction, rectangular bars

or lamellae of ≈ 250×70×7 µm3 dimensions were cut along the desired directions (see figures

5.3 (a) and (b)). Throughout the fabrication, a dwell time of 1µs was used. The coarse cuts

were performed with beam currents of 60nA at 30kV. Using the micromanipulator, the lamella

was transferred in situ to a TEM grid, where it was carefully polished to guarantee smooth and

parallel surfaces (see figure 5.3 (b)), and subsequently thinned down to its final dimensions

(including the thinnest region where the flexures were located). This was achieved by using

small currents and refining the tilting angle for polishing. For example, the lamella faces in

figure 5.3 (c) were polished using 4nA while the thinning down of the flexures was done using

300pA. In both instances a tilting angle in the range of 53◦-53.5◦ was chosen.

After polishing, the TEM grid was flipped horizontally and the desired pattern was structured

top-down with a current of 1nA (figure 5.3 (c)). This relatively low current value, as well as

having the sample on the TEM grid, minimizes the redeposition of sputtered material and

allows for the creation of sharp, well defined features. Such structural precision is critical

as the Weyl orbit phase depends on the thickness of the traversed bulk [122]. During this

step, small bridges joining the current and voltage contacts were left uncut to secure the

structural integrity of the sample during the transfer process. Finally, the structured cantilever

was transferred to the edge of a sapphire chip and welded down by ion-assisted deposition
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Devices Thickness (µm)
Sample 1 0.95
Sample 2 0.88
Sample 3 1.92
Sample 4 1.71
Sample 5 1.77

Table 5.1: Devices fabricated and the final thickness of their flexures. These devices were
fabricated using both the Ga-FIB and the P-FIB.

of Pt, forming both electric contacts to Au leads on the sapphire chip and solid mechanical

connections (see figure 5.3 (d)). The small bridges left for structural stability were then cut and

the regions between the four legs that act as electrical contacts were further exposed to the ion

beam (using small currents of around 1nA) to eliminate any possible electrical shortcuts. The

Au leads were made from a Au layer of around 200nm that was previously sputtered on the

sapphire chip after carefully masking it with a Kapton tape. The goal of the masking is to have

Au as close as possible to the edge where the cantilever is mounted. To avoid electrical shorts

from the sputtering step, the edge and corresponding face of the sapphire chip is preemptively

exposed to a large current with the ion beam (>60nA) until a clear, bright insulating surface is

achieved, thus eliminating any possible electrical path. The region close to where the lamella is

meant to be placed is also previously milled with the ion beam to have a well defined "landing"

zone with a sharp Au layer (see figure figure 5.3 (d)). Table 5.1 summarizes the total number of

samples fabricated and the final thickness of their flexures.

5.3 Bending apparatus

5.3.1 Bending without rotation

In this section I will describe the apparatus designed for bending without rotation of the

sample with respect to the applied magnetic field. The main working principle is the following:

a piezo-actuated pusher is used to bend the fabricated cantilevers. The mechanical motion

is provided by an attocube linear nanopositioner with the capability of sub-micrometer

step motion (premium line model ANPz51). Since this component is essential for the here

presented technique, it is worthwhile to briefly review the working mechanism responsible

for the stepping motion, which is based on the stick-slip phenomenon. This is shown in

figure 5.4 (a). The attocube nanopositioners are driven via piezoceramics made from lead

zirconite titanate (PZT) while the other components are made from highly pure titanium as

it is light, nonmagnetic, and has a coefficient of expansion matching the piezo and other

elements of the drive for reliable low temperature performance. The moving table in the

nanopositioner is spring-clamped to a rod that serves as the driving element. The rod is

moved by the piezoelectric ceramic. The clamping force and the coating on both sides of the

frictional contact are carefully tuned for the respective environment. At the initial stage, where
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Figure 5.4: Working mechanism of the attocube nano-positioners. (a) Stepping procedure
during movement, which is based on the stick-slip phenomenon. Resistive encoder reading
using (b) the attocube nano-controller and (c) the lock-in amplifier. Figure (a) is taken from
the attocube datasheet.

no voltage is applied to the piezo, the table is held in place by the friction with the driving

element. In the next stage, a sawtooth shaped pulse is applied to the piezo. The table sticks to

the driving element through friction and is moved over a distance that is proportional to the

applied maximum voltage. Next, by applying a steep drop of the voltage pulse to the piezo,

the driving element is accelerated very rapidly over a short period of time, so that the inertia

of the movable table overcomes friction and slips. In this fashion, the table disengages from

the driving element and remains nearly non-displaced. The net step ∆x is now completed

and the table remains fixed again at zero voltage. The driving of the nanopositioners is

done with an attocube nano-controller where typical values of 20V-30V and 150 Hz-200Hz

were used for the amplitude and frequency of the driving signal, respectively. The nano-

controller can be controlled either directly from the front panel or, alternatively, with the

help of the “DAISY” software provided by attocube. The model ANPz51 is equipped with a

potentiometric encoder to read the platform position with a nominal resolution close to 300

nm at cryogenic temperatures. The standard connection to the nano-controller for the reading

of the encoder is presented in figure 5.4 (b). The measurement is a three-point measurement

of the potentiometer’s resistance, which is determined by the position of the sensor named

So in the figure and is in the kΩ range. The three wire configuration helps reducing the heat

load and complexity in the resistance measurement. During the experiments I also used the

connection shown in figure 5.4 (c) to read the encoder. The principle of the measurement is

the same, but the lock-in amplifier is used instead of the nano-controller to read the voltage,

Vi n , from the potentiometer. In this configuration, a typical output voltage in the lock-in is
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0.01V, and one of the lock-in channels is used to read the corresponding Vi n voltage. The

advantage of this set-up is a better control in the parameters for the measurement of the

potentiometer’s resistance, such that optimizing, for example, the time constant of the lock-in

amplifier one can obtain a less noisy signal and hence a better resolution of the encoder’s

reading. Using this configuration, a resolution closer to 200-250 nm was obtained.

For the bending apparatus presented in this section, the transport measurements were per-

formed in the PPMS coupled to the multi-channel lock-in amplifier. An AC excitation current

of 50 µA at 177.77 Hz was applied to measure the flexure resistance in a four-probe geometry.

The design to accommodate the nanopositioner together with the PPMS resistivity puck is pre-

sented in figure 5.5 (a). It includes two pieces: an external cage to fix the nanopositioner to the

puck (grey), and a mobile top part fixed to the nanopositioner that is to serve as the “pushing”

part (red). Both pieces were made from high purity titanium to match the nanopositioner’s

material. Figure 5.5 (b) shows the final design assembled together, with electrical contact pads

that can be conveniently glued down on the top of the external case. A typical mounting of a

sample is presented in figure 5.5 (c).

Key to obtaining a reliable bending motion of the cantilever is a properly designed mating

piece on the pushing part. With this in mind, a silicon chip with a sharp FIB-carved edge of

around 7 µm width is placed on the pushing part of the apparatus and glued down flat with a

thin layer of GE varnish. In this way, an even, well defined contact line between bending edge

and sample can be achieved. After this step, the pushing part is lowered down to a safe position

and the chip with the bending cantilever is manually placed on the top of the external case at

the necessary distance to the bending chip to guarantee the proper engagement of the sharp

edge and the cantilever during the bending procedure. The chip with the bending cantilever is

usually mounted using a thin layer of either GE varnish or vacuum grease. The latter has the

advantage of not drying up quickly like GE varnish, allowing for a more precise positioning

of the cantilever, but has the risk of evaporating or dispersing and potentially contaminating

the sample. Whether using GE varnish or vacuum grease, it is very important to apply small

amounts to avoid undesired residues from coming out of the sides and, most importantly, the

front of the chip after pressing it down. Once the cantilever is fixed, the bending chip is moved

upwards under the microscope to check for appropriate engagement with the cantilever and to

measure the distance from the touching point to the edge of the sample’s chip (necessary later

to compute the bending angle). This design permits the positioning of the sample far away

from the pusher when piezoactuation is not engaged (see figure 5.5 (d)). This is important to

avoid any unknown strains from differential thermal conduction during temperature sweeps.

In this fashion, the pusher is typically cooled down at a safe distance (> 100µm) below the

cantilever. Once at base temperature, the pusher is slowly moved upwards to mechanically

engage with the cantilever.

Although the main characterization of the Cd3As2 samples is presented in the next chapter, it

is worthwhile to briefly discuss the transport behaviour when no bending is applied to the

cantilevers. Figure 5.6 (a) shows a typical resistance vs temperature curve for the cantilever
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Figure 5.5: Sample holder for the mechanical bending set-up. (a)The external case and the
top part were designed to mount the nanopositioner on the PPMS puck. (b) Assembled sample
holder with contact pads. (c) and (d) show a typical mounting of the sample together with the
bending chip.

samples with no bending. As can be seen there, the resistance decreases with temperature,

signaling a metallic behaviour characteristic of Cd3As2 and consistent with the corresponding

curves obtained for other microstructures of this material fabricated in the course of this

thesis, as well as those reported in literature [35]. With the set-up described in this section, the

magnetic field can only be applied in one direction, namely, in the direction out of the plane

of the sample. The MR at 2K and up to 14T is presented in figure 5.6 (b). Clear SdH oscillations

are visible, which sit on a background that is mostly linear from 2T onward. The MR at 14T,

defined as MR= 100%×[R(B)−R(B = 0)]/R(B = 0), is ≈ 1900%, a value that is consistent with the

high MR characteristic of TSMs and with some reported values for Cd3As2 macrocrystals [149,

150]. To analyse the oscillatory behaviour of the MR curves, the non-oscillatory background

is fitted with a polynomial of up to order six and subtracted from the original curves. The

field range and exact order of the polynomial fit are optimized to avoid spurious oscillatory

components in the signal after the background subtraction. The resulting oscillatory signal

is quantitatively analyzed using a Fast Fourier Transform (FFT) algorithm implemented in a

MATLAB code. Figure 5.6 (c) shows the resulting FFT spectrum using the field range from 5T

to 11T. Two main frequencies are clearly present: one at FBulk = 36T that is consistent with

previous reports corresponding to the bulk Fermi surface; and a second frequency FW e yl = 61T

that agrees well with those reported for the Weyl orbits [35, 151].

To check for the stability with time of the transport properties of the unbent cantilevers, several

77



Chapter 5 Mechanical bending set-up for microstructures

Figure 5.6: Transport behaviour of Cd3As2 cantilevers without bending. (a) Resistance vs
temperature of the cantilevers showing a typical metallic behaviour. (b) Magnetoresistance vs
field at 2K for several consecutive field sweeps taken roughly every hour. The inset highlights
a drift in the curves with time. (c) FFT of the corresponding oscillatory part in (b) after a
background subtraction. The inset highlights the corresponding drift in the peak of FW e yl

with consecutive runs.
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measurements were made consecutively with a waiting time of about one hour between

successive field sweeps. This diagnostic is of the utmost importance to establish a solid

reference and to later differentiate clearly the effects coming from bending and not from other

factors related to the apparatus. Figures 5.6 (b) and (c) show the MR and corresponding FFT

spectrum of the consecutive measurements. The main observation is that a drift in the MR

curves was detected, which translated into a drift of the FW e yl peak in the FFT spectrum from

61T to higher values, eventually saturating around 64T-65T more than 36 hours after the initial

field sweep. It was verified that this drift was not associated to any numerical artifact in the

treatment of the data, for example, during the calculation of the FFT. The FBulk remains almost

unchanged during this time, with less than a 0.5T shift in frequency. Although the origin of this

drift is not clear, several other observations were made trying to shed some light into the matter.

For example, it was observed that after warming up to around 100K-200K and cooling down

again to 2K, one would typically obtain a FW e yl peak closer to 61T, and then the drift to higher

frequencies would start again until saturation. This could, for example, point to a relaxation

process in the mechanical state of the cantilever, which after cooling down transitions slowly

to its final equilibrium state. Another possibility considered had to do with thermal coupling

of the sample in the set-up and the chance of some sort of thermal leakage or local heating. To

test this possibility more Helium gas was released in the sample space at 4K with the aim of

improving the thermal link to the sample. This did have a small effect in reducing the time

for the saturation of FW e yl , although the final value after saturation remained close to 65T.

The current through the sample was also reduced to 5µA in case local current heating was

present but no effect was observed after this change. To have a more definite picture of the

physical situation and the origin of the drift in FW e yl , further investigations are required to

understand what happens microscopically when the cantilever is cooled down. Whatever

the case, based on the observed FW e yl drift, all subsequent measurement strategies using the

bending apparatus always included initial field sweeps well separated in time to make sure

that the final saturation in FW e yl was reached.

A critical point in the technique described here is to detect the moment of contact between

the pusher and the cantilever. This can be done by observing a change in the resistance of

the sample at constant magnetic field. Given the extreme magnetoresistance typical of TSMs

[12], a strong response of the resistance even to small angle changes between the field and

the cantilever is expected. Indeed, a sharp anomaly signals the touching point followed by a

strong decrease of the MR with increasing bending in the Cd3As2 cantilevers (see figure 5.7(b)).

In combination with the displacement readout of the piezo drive, this allows to in situ calibrate

the relative distance between cantilever and pusher.

One issue to be addressed with this experimental set-up is to avoid any kind of twisting of

the cantilever as the nanopositioner moves upwards and bends the sample. To minimize this

undesired effect, several strategies were taken. One of them was to place above the titanium

top piece a sapphire chip with a silver wire of 25 µm in diameter attached along its edge. The

idea was to use the wire as a well defined contact region and given it’s rounded shape, reduce

the effect of any tilting of the chip in the direction perpendicular to the edge. As it was difficult
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Figure 5.7: Approach and bending procedure. (a) Schematic diagram of the cantilever during
bending (b) Approach and bending cycle as monitored via the change in the cantilever’s
magnetoresistance. (c) With this design we can elastically bend the cantilever by more than
20◦. (d) Experimental profile of a bent cantilever, obtained from an optical image, showing the
measured radius of curvature and corresponding bending angle.
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to place the silver wire completely flat and straight, some tilting might have persisted. A second

strategy was to fabricate a cantilever with a triangular end instead of a rectangular one. In

this fashion, the contact with the cantilever would be at a very small point, making any tilting

effects negligible. The risk in this case is to make the cantilever too flexible at the “paddle”

section so that the bending is not confined to the thinner legs. In the end, the approach taken

was to use a silicon chip with a very sharp FIB cut edge of around 7 µm in width to bend the

cantilever. In this way, a flat, well defined contact point can be achieved. Although a torsional

motion is difficult to eliminate completely, this approach produced very good results both

with rectangular and triangular shaped samples.

The bending angle θ is approximated by solving a numerical equation: tan(θ) = (h+t/cos(θ))/b,

where h is the nanopositioner’s height from the touching point, t is the thickness of the free

end of the cantilever and b is the distance from the edge of the sapphire chip to the pushing

part (figure 5.7(a)) . One may approximate the mechanical situation using the simple relation

from beam theory under bending strain: 1/ρ = θ/d , where ρ is the radius of curvature and

d is the length of the sample’s central flexure [152]. This leads to a radius of curvature of

ρ ≈ 79µm and a bending angle of θ = 21.7◦ for the maximum nanopositioner’s height used,

h ≈ 60µm. These values are in good agreement with a direct analysis of the optical image of

a bent cantilever with a similar h (figure 5.7(d)), from which we obtain a bending angle of

θ ≈ 20.6◦ and a radius of curvature of ρ ≈ 85µm. Using the expression for the strain on a thin

beam εxx = z/ρ, one estimates the value of the strain gradient as dεxx /d z = 1/ρ ≈ 1.3%µm−1.

The value of the the surface strain is then calculated to be εxx = 0.65%, which compares well

with the value obtained in the finite element simulations (figure 5.2(c)). These simulations

also suggest a rather uniform strain distribution on the flexures surfaces.

It is important to check for possible plastic deformation of the cantilever, especially given

the substantial bending angles in the experiment. A first indication is given by a comparison

of the MR at zero bending before and after bending to a large angle, θ = 21.7◦ (figure 5.8(a)).

Indeed, the curves overlap both in the low-field region, indicating an unchanged residual

resistivity, as well as in the high-field region, supporting an unchanged value of ωcτ (ωc :

cyclotron frequency, τ: quasiparticle lifetime). This strongly suggests an unchanged defect

landscape and, hence, an unchanged τ. The presence of quantum oscillations further provides

insights into the quantum transport (figure 5.8(b)). The results of figure 5.8 were taken at

4K with an increased amount of Helium gas in the sample space and after making sure that

no drift in FW e yl was observed. As before, the oscillations are analyzed using the FFT in the

field range from 5T to 11T, after subtracting a sixth-order polynomial background to remove

the non-oscillatory part of the MR. No resolvable change in FBulk nor FW e yl is observed after

bending, suggesting that no effects like increase of quantum scattering time nor remnant

deformation of the Fermi surface are produced by the application of the strain gradients. There

is a subtle difference in the amplitude of FW e yl peak that is compatible with differences in the

subtracted polynomial background. These signatures together paint a consistent picture of

elastic bending without plastic deformation. Under strong bending, the Weyl oscillation shifts

to higher frequencies at reduced amplitude, while the bulk remains unchanged. It is intriguing
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Figure 5.8: Quantum oscillations before and after maximum bending.. (a) Resistance vs
magnetic field at 4K and (b) the corresponding FFT spectrum after background subtraction.
The inset in (a) shows the ratio between the magnetoresistance after and before maximum
bending. The magnetic field direction is the same as the one depicted in figure 5.7(a).

to note that the direction of the frequency increase is compatible with theoretical predictions

of pseudo-field effects in Cd3As2 [33]. These results will be discussed in more detail in the next

chapter.

5.3.2 Probe for bending and rotation

The rotation of samples with respect to the applied magnetic field has become a standard

capability in experimental set-ups given its importance in characterizing different physical

phenomena like the change in shape and dimensionality of Fermi surfaces, the evolution of

magnetoresistance or the identification of finite-size effects in nanostructures. In the context

of pseudo-fields this capability is particularly pertinent since the change in the magnetic field

direction with respect to the sample can lead to an amplitude modulation and a frequency

variation of the Weyl orbits that is similar to the one predicted for the existence of strain-

induced pseudo-fields [35]. Technically, this imposes the challenge of having a set-up with

the capability to rotate and bend the samples at the same time, in contrast to the previous

set-up where the magnetic field direction is kept fixed. To this end a probe with a mechanical

rotator was fitted to accommodate a nanopositioner with which to perform the mechanical

bending (see figure 5.9). This probe was built to be used with one of the available cryostats in

the laboratory I. Given the space constraints of the new probe, it was not possible to have a

resistive encoder together with the nanopositioner to read its displacement during bending

(the model ANPz30/HV was used, which is the smallest one manufactured by attocube).

IDr. Carsten Putzke, a postdoctoral member of the QMAT laboratory, was responsible for building the probe
described in this sub-section
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Figure 5.9: Probe with mechanical rotator and attocube nanopositioner to perform bending
experiments. The probe is also equipped with a thermometer and a Hall sensor. Given
the space constraints, it’s not possible to have a nanopositioner with an encoder to read its
position.

To quantify such a displacement I used a piezo-resistive cantilever from a torque magnetome-

try chip (see figure 5.10 (a)). The chip was cut to have only the longest available cantilever on

the chip extending from the edge (see figure 5.10 (b)). Using a wire bonding machine, suitable

electrical leads were attached to the contact pads to perform a resistance measurement. The

idea is to use the cantilever as a displacement sensor by measuring the change in MR (at fixed

temperature and magnetic field) when bending is done with a known vertical displacement.

Such a measurement was done with the bending set-up described in the previous section,

with which the calibration curve shown in figure 5.10 (c) was obtained. The approach adopted

here was to use the torque cantilever as displacement sensor by mounting it together with the

sample, as shown schematically in figure 5.10 (d), with the aim of engaging with both every

time the bending procedure is initiated.

The final mounting and bending procedure carried out when using the rotator probe is

presented in figure 5.11. The sample shown in figure 5.11 (a), referred to as Sample 2, is a

different Cd3As2 sample to the one used for the previous case of bending without rotation. As

in that case, a silicon chip is used to have a well defined edge to engage with both cantilevers

(like before, the edge used to bend the sample has been sharpen with the FIB). A key point and

one of the main difficulties with this approach is that the bending chip should touch first the

piezo-resistive cantilever and then the sample, such that the full bending angle of the latter

can be accounted for. To this end the torque cantilever had to be mounted upside down on

a sapphire chip of the same kind used to mount the sample, so that both are roughly at the

same height. After mounting, the bending chip is moved upwards under the microscope to

check that it touches first the torque cantilever and then the sample.
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Figure 5.10: Piezo-resistive cantilever from torque magnetometry chip.(a) Original chip
from NANOSENSORT M . (b) SEM image of the cantilever used as a displacement sensor. (c)
Measured magnetoresistance vs displacement calibration curve of the torque cantilever at
2K and 12T. (d) Schematic diagram of the final mounting on the rotator probe including both
torque and bending cantilevers.
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Figure 5.11: Bending and rotation mounting and bending procedure.(a) Mounting of the
sample together with the torque cantilever. (b) Schematic diagram of the cantilever during
bending and definition of the rotation angle ϕ. (c) Magnetoresistance vs ϕ for both cantilever
and Hall sensor at 5T, highlighting the directions perpendicular, B⊥, and parallel, B∥, to the
sample.(d) Approaching and bending procedure for both sample and torque cantilever. (e)
Magnetoresistance vs field for the unbent (thick lines) and bent (thinner lines) sample at
different rotation angles in steps of 10 degrees from B∥ to B⊥.
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The general procedure to approach the sample is exactly the same as in the bending without

rotation case, with the additional step that first the right direction of the magnetic field must

be determined, that is, the field must be perpendicular to the plane of the unbent sample. This

is accomplished by a rotation under fixed field, as shown in figure 5.11 (b). The maximum and

minimum in the MR of the sample, as well as the signal from the Hall sensor, clearly indicate

when the field points in the directions perpendicular (denoted B⊥) and parallel (denoted

B∥) to the unbent sample’s plane, respectively (naturally, the MR of the sample is minimum

when the field is parallel to the the applied current). Once the B⊥ direction is determined, the

approach is done with this field configuration (see figure 5.11 (c)). As in the bending without

rotation case case, the change in MR at low temperatures indicates the touching point with

the bending chip, which in the experiment shown in figure 5.11 (c) clearly engages first with

the torque cantilever and then with the sample. The figure also suggests that the bending

is done reversibly since the torque cantilever and sample’s resistances return to their initial

unbent values after lowering the bending chip to disengage with both. One thing to notice

in figure 5.11 (c) is that the MR of the torque cantilever increases with bending, in contrast

to figure 5.10 (c) where it decreases. This is due to the fact that the cantilever is mounted

upside down in the case of figure 5.11, as was mentioned before. The assumption here is that

the MR behaves symmetrically with respect to the unbent value. With this consideration and

from the MR value of the torque cantilever at the touching point of the sample and at the

bent plateau shown in figure 5.11 (c), a vertical displacement of 13.3µm was estimated for the

sample, which translates to a bending angle of θ ≈ 5◦.

Regarding the sample’s behaviour, figure 5.11 (c) shows a slightly increasing MR with bending,

instead of a decreasing one as exhibited by the sample used in the previous bending without

rotation case case. Although the exact reason for this is not clear, it’s likely that in this case it

happened due to a small angle missmatch when approaching the actual B⊥ direction during

the bending procedure. This is consistent with the resistance value in the unbent state of

the sample in figure 5.11 (c) being slightly lower than the corresponding one shown in figure

5.11 (d), ≈85.2Ω vs ≈86.5Ω, respectively. That figure shows the field dependence of the MR

for both the unbent (thin lines) and bent (thick lines) cases at different values of the rotation

angle ϕ. Such a missmacth could originate from the mechanical backlash associated to every

mechanical rotator, although in all the experiments carried out with this probe (including

the results presented in figure 5.11) the rotation angles were always changed monotonically,

either in an increasing or decreasing way, to avoid the rotator backlash when changing the

direction of change. In general, whether the MR increases or decreases with bending during

the approach procedure will depend on the exact shape of the MR vs rotation angle at the

chosen values of field and temperature. In other words, it will depend on whether the MR

decreases monotonically with respect to the rotation angle around the B⊥ direction or whether

the MR value at B⊥ is not actually an absolute maximum. This last option is particularly likely

if, for example, the amplitude of the quantum oscillations is relatively big around B⊥. Such

a situation is more clearly observed in figure 5.12, where the results for an additional test

sample (Sample 3) are presented. Figure 5.12 (a) shows the MR vs rotation angle at 5T for both

86



Mechanical bending set-up for microstructures Chapter 5

Figure 5.12: Rotation and bending for sample 3.(a) Magnetoresistance vs ϕ for both bent and
unbent case. The bending angle for the bent case was θ ≈ 25.5◦ (b) Magnetoresistance vs field
for the unbent (thick lines) and bent (thinner lines) sample. The inset highlights the behaviour
at medium field range where there are field values for which the MR can be smaller or bigger
for the bent case compared to the unbent case.

bent and unbent states. The bending angle for the case shown in that figure was estimated to

be θ ≈ 25.5◦. As can be seen in figure 5.12 (a) the curve for the unbent state doesn’t have an

absolute maximum at the B⊥ direction. The corresponding curve for the bent case remains

very similar in shape to the unbent one only that it’s shifted down in angle around 13.5◦. This

results in angle ranges where the MR is expected to increase with respect to the unbent case,

for example, from ϕ = 78◦ to ϕ = 96◦, and others where it is expected to decrease, for example,

from ϕ = 100◦ to ϕ = 177◦. This behaviour is highlighted in the inset of figure 5.12 (b), where

the field dependence of the MR for both the unbent (thin lines) and bent (thick lines) cases at

different values of the rotation angle ϕ are shown (although the temperatures in figures 5.12

(a) and (b) are different, the MR doesn’t vary much at low temperatures). As can be seen there,

there are some field values, especially in the medium to low field range, for which the MR in

the bent state is actually larger than in the unbent case. At higher field values, however, the

tendency is to have a smaller MR with with bending, as exhibited by both samples 2 and 3. The

main point to take away from the results of figures 5.11 and 5.12 is that the set-up for bending

and rotation works well and that the results obtained for the test samples are consistent with

what was presented in the previous section for the bending without rotation case. The focus

in this section is on showing the feasibility of the set-up and not on the detailed analysis of the

MR and quantum oscillations in the context of pseudo-fields, which will be done in the next

chapter.

Although in the experiment shown in figure 5.11 (c) it was possible to bend the torque can-

tilever first and then the sample, this was not always the case in other experiments where

different samples where used, including the one presented in figure 5.12. This in spite the

check done under the microscope at room temperature. The reasons for such behaviour are
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Figure 5.13: Nanopositioner step size characterization.(a) Magnetoresistance and current of
the torque cantilever vs time during the bending procedure. Each bending step can be clearly
observed as plateaus in the current curve. (b) Resistance values corresponding to each current
plateau in (a) vs step number. The line is a linear fit from which a ratio of resistance change
per step can be determined.

not entirely clear but it highlights the necessity to have a very precise control in the relative

positioning of the torque cantilever and sample, which can be seen as the main challenge with

this approach and one of the aspects to optimize in future applications. An alternative way to

estimate the vertical displacement without the necessity to rely on the precise engagement

of the bending chip is to characterize the step size of the nanopositioner in the conditions of

field and temperature used during the bending process. This is shown in figure 5.13, where

the same torque cantilever is bent in the probe at 2K and B⊥ = 12T and using 177Hz and 30V

for the control parameters of the nanopositioner. This time the torque cantilever was not

mounted upside down but with the same configuration shown in figure 5.10 (c), which is

why the MR decreases with increase bending. The main observation in figure 5.13 (a) is that

it is possible to clearly resolve each step of the nanopositioner in the plateaus exhibited by

the current applied to the torque cantilever as it is bent upwards. During this measurement

no current regulation option in the lock-in amplifier was used since that would make the

observations of the current plateaus more difficult. Such plateaus were not so clearly resolved

in the resistance and because of that the current plateaus were used to associate each bending

step with a resistance value. With this procedure the plot shown in figure 5.13 (b) was obtained,

where using a linear fit a ratio of resistance change per step can be determined. Combined

with a similar linear fit of the decreasing MR with increasing vertical displacement shown in

figure 5.10 (c), this ratio can be used to finally obtain an estimation of 0.25 µm per step taken.

This value compares well with the nominal step size for the nanopositioner model, as claimed

by attocube. In figure 5.10 (c), 50 steps were taken to bend the sample, which translates to

12.5 µm of vertical displacement, a value that is also reasonably close to the one reported in

the previous paragraph for sample 2. In the case of Sample 3, 200 steps upwards were taken,

which translates to the aforementioned θ ≈ 25.5◦ of bending angle.
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5.4 Conclusions and outlook

I have presented a set-up for the controlled application of large strain gradients on crystalline

FIB-microstructured cantilevers of 3D TSMs that have been designed for transport measure-

ments down to cryogenic temperatures. Despite the large deformation, transport evidences

this to be well within the elastic limit. This experimental methodology and apparatus presents

a first, crucial step towards the creation of pseudo-magnetic fields in 3D TSMs. Yet the versatil-

ity of the fabrication technique allows to apply this approach to a large variety of crystalline

materials beyond the direct scope of effective magnetic fields. For example, strain gradients

may tune further topological phenomena such as topological phase transitions and high

order topological phases [153–157]. Furthermore, if strain gradients can produce additional

effects beyond changing the position of the Weyl points, such as creating tilt gradients of

the Weyl cones, it is possible that additional physical phenomena can be accessed [158, 159].

Current theoretical models assume weak strain gradients and that the overall shape of the

strained objects remains almost unchanged. The results presented here clearly call for further

theoretical studies of quantum states in TSMs under strong strain gradients that significantly

distort the shape of the physical crystal. Thanks to the fabrication possibilities accessible with

the FIB, other approaches for the application of strain to microstructures are also possible.

For example, in the QMAT laboratory samples have been fabricated with a design similar to

the one presented in this chapter but where a voltage is applied between the "paddle" section

and a Au contact underneath it. The principle is to produce a mechanical bending from the

associated capacitive force between the the paddle section and the Au contact. Preliminary

results have shown that such bending is actually feasible, which could potentially simplify

the apparatus necessary to attain large strain gradients. Not only strain gradients through

bending could be explored, test microstructures with a small rectangular section subjected to

a torsional deformation have also been fabricated. With strong strain gradient fields now con-

trollably available in 3D solids, new ideas to create and control distorted quantum materials

can be realized in the future.
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6 Mechanical bending of Cd3As2 can-
tilevers

6.1 Introduction

This chapter summarizes my efforts to detect pseudo-fields in bent Cd3As2 cantilevers. These

challenging experiments uncover that much is left to understand in the Landau quantization

of crystals under strong lattice gradients. The complexity of this problem ultimately prevented

an unambiguous identification of pseudo-field predictions based on simplified toy models

applied to the complex data. These results, however, are very encouraging to advance the

subject on both the theoretical and experimental side. In the following, I lay out the rationale

that brought me to this conclusion.

The existence of pseudo-electromagnetic fields in 3D WSMs is predicted to give rise to a

number of physical phenomena such as the enhancement of longitudinal conductivity [34,

160], collapse of pseudo-Landau levels [161], emergence of chiral magnetic waves [162], flow

of quasi-1D currents circulating along dislocation lines [135, 163], magnetic focusing of chiral

Weyl fermions at different spatial locations [164] and zero magnetic field quantum oscillations

[165], among many others. In spite of this rich predicted phenomenology, the experimental

verification of pseudo-electromagnetic fields in 3D WSMs remains elusive. In this chapter

I investigate experimentally the model proposed by Pikulin and Ilan [33] to detect pseudo-

magnetic fields by exploring their effect on the QOs coming from the Weyl orbits. The basic

idea is depicted in figure 6.1. In the presence of both B and B5, the particles in the bulk move

according to the total effective magnetic field acting on the Weyl nodes, which includes both

the external and the strain-induced one: Bχ = B+χB5, where χ = ±1 denotes the chirality of the

node. For example, for a strain profile such that the Weyl node separation is k0(z) = (b0−B5z)ŷ ,

a homogeoneous pseudo-magnetic field results, B5 = ∇×k0 = B5x̂. Assuming B along the z

direction (see figure 6.1), the effective length of the bulk part of the Weyl orbit increases from

2L to Le f f = 2L
√

1+ (B5/B)2 and the energy levels of the system are given by:

εn =
2πvFħ(n +γ)−k0µ0l 2

Bħ
Le f f +k0l 2

B

(6.1)
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Figure 6.1: Effect of pseudo-magnetic fields on the Weyl orbits. When a magnetic field B is
applied in the z direction and a strain-induced pseudo field B5 is generated in the x direction,
the top and bottom Fermi arcs change lengths and the bulk trajectories are tilted. The strain
caused by bending the sample is a way to generate these pseudo-fields. Image adapted from
[33].

where lB = ħ/eB is the magnetic length, and µ0 is a chemical potential offset that takes into

account the variation of the Fermi arcs’ length at finite chemical potential µ if the bulk FS

projection takes up part of it [123]. Equation 6.1 dictates that under a varying magnetic field

B , the nth energy level crosses the chemical potential and gives rise to peaks in the den-

sity of states, i.e, quantum oscillations, at fields Bn given by the condition εn(Bn) = µ. The

most important consequence of this is that the Weyl orbits’ oscillations are not necessarily

periodic in 1/B but the separation between the peaks, ∆(1/B), can become field, pseudo-

field and thickness dependent. In the case of a small B5, the resultant peak separation is

∆(1/B) = 2πe/(Sk +µeLB5
2/B vF ), where Sk = k0(µ+µ0)/vF is the momentum space area en-

closed by the Fermi arc section of the Weyl orbits. These oscillations are clearly not periodic in

1/B . In the opposite case of B5 >> B , the peak separation is ∆(1/B) = 2πe/(Sk +2µeLB5/vF ),

making the oscillations periodic in 1/B but with a higher frequency that scales with B5. Ex-

perimentally, one way to produce and detect pseudo-fields is by bending the sample in the

presence of a varying external magnetic field B, as shown schematically in figure 6.1. As

already described in the previous chapter, bending causes compressive and tensile stresses

that lead to strain gradients across the sample. By controlling how much the sample is bent,

it is possible, in principle, to tune B5. In this fashion, transport measurements could reveal

the effect of B5 on the oscillatory signature of the Weyl orbits. A key point in this regard is

the characteristic strength of the pseudo-magnetic field, which has been predicted to range

from B5 ≈ 0.3T for a twisted nanowire of Cd3As2 [160] to B5 ≈ 15T for a thin film of the same

material [165]. The numerical model presented in [165] is actually pertinent for the experi-

mental set-up proposed in this thesis and can be used to calculate the predicted B5 magnitude

under bending. The situation described in the model is presented in figure 6.2. Following

the pseudo-field formalism, the effect of the induced strain gradient is to modify the electron

tunneling amplitudes in the model, which is treated by the introduction of a gauge potential, A,
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Figure 6.2: Pseudo-magnetic field B5 created in a bent slab of a WSM or DSM. The corre-
sponding numerical model suggests a magnitude of up to B5 ≈ 8.6T for an bending angle of
θ ≈ 30◦ . Image adapted from [165].

whose components depend on the displacement field created by the bending (schematically

depicted in figure 6.2). After inserting the relevant numerical constants for Cd3As2, the final

magnitude of B5 = ∇×A is estimated to be:

B5 = (246T )2θt/L (6.2)

where t is the thickness of the the sample, L its length and θ is the bending angle. For the

bending angles available experimentally, up to θ ≈ 30◦, equation 6.2 predicts B5 ≈ 8.6T ,

which should be large enough to appreciably modify the Weyl orbits’ extension, yet it would

not necessarily become the dominant field scale (as in the limiting case B5 >> B) for the

experimentally available external fields of up to 18T.

Having established the technique for the mechanical bending of FIB-fabricated cantilevers in

the previous chapter, in this chapter I concentrate on the experimental findings of bending

Cd3As2 cantilevers and discuss the potential presence of strain-induced pseudo-magnetic

fields. In begin by describing in the next section the known electronic properties of the

material Cd3As2. The following section presents the main experimental results, starting with

the angle dependence of the quantum oscillations from the cantilevers under zero strain,

followed by the static bending experiments and finally the results for simultaneous bending

and rotation. I end the chapter presenting the main conclusions and giving an outlook.

6.2 Cd3As2 material characteristics

In addition to the existence of the nodes, the observation of transport properties of TSMs,

such as electrical and thermal conductivities, requires that the Fermi level be near such nodes,

making the search for this kind of materials non trivial. After the theoretical predictions by

Wang et al [91] that Cd3As2 might host 3D Dirac-like nodes at its Fermi level, there was a
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renewed interest in the electronic characterization of this material. It had been studied in the

past mostly because its high mobility of electrons: more than 104cm2/V s at room temperature

and 106cm2/V s at low temperatures. The crystal structure of Cd3As2 is rather complex and

the exact details are still a matter of research. Currently, it is believed to have a tetragonal unit

cell of a = b ≈ 1.26nm and c ≈ 2.54nm, showing no structural transition at lower temperatures

[69]. This cell contains a total of 160 atoms, 96 Cd and 64 As (see figure. 6.3 (a)). Most evidence

suggests a centrosymmetric space group: I 41/acd . This observation, and the fact that Cd3As2

doesn’t show any kind of permanent magnetism, guarantees the presence of both time reversal

and inversion symmetry, ensuring that the Dirac nodes are not split into Weyl nodes. The

theoretical predictions suggest a band structure like the one sketched in figure. 6.3 (b) and

(c). Two 3D Dirac nodes are located on the tetragonal c axis, equidistant from the Brillouin

zone center Γ at positions ±kD , and protected from gapping by the C4 rotational symmetry of

the crystal. Data collected by ARPES has shown clear evidence of conical bulk valence and

conduction bands in Cd3As2, as can be seen in figure 6.3 (d) and (e) [94–96, 166]. The measured

values of ED , the maximum energy distance between the bands (see figure. 6.3 (b)), are in the

order of a hundred meV . This means that the bands are linearly dispersive only in a rather

small energy window, making the appearance of topological effects susceptible to changes in

the Fermi level due to defects or impurities. The Fermi surface of Cd3As2 consists of two small,

almost spherical ellipsoids centred at the nodes[167, 168]. These measurements also reveal a

large, non-saturating, linear MR [150, 169]. In general, the application of a magnetic field in

transport measurements breaks time reversal symmetry, making the the Dirac nodes split into

two Weyl nodes of different chirality.

6.3 Experimental results

6.3.1 Angle dependence of quantum oscillations without bending

In this section I present the results of the angle dependence measurements of MR under zero

strain. The purpose of these experiments is twofold: first, to further characterize the samples

by mapping the corresponding Fermi surface and identify any possible effect of the cantilever

design and dimensions on the transport properties of Cd3As2; and second, to later compare

the effect on the Weyl orbit’s frequency of changing the direction of the external magnetic field

versus that of increasing the magnitude of the strain-induced pseudo-magnetic fields. Both of

them can lead to similar experimental features.

6.3.1.1 In-plane rotation

First, the results of the rotation studies where the field direction is changed in the plane of the

large surfaces of the sample, that is, from the crystallographic [001] to the [100] direction, are

considered. No Weyl orbits are expected nor observed in this field configuration due to the

shape of the cantilever. Instead, the results form a baseline of bulk quantization and semi-
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Figure 6.3: Crystal structure and electronic characteristics of Cd3As2.(a) Tetragonal unit cell
[170]. (b) Schematic view of the two 3D Dirac cones located on the tetragonal axis (z axis in
this figure). (c) Band structure calculations along high symmetry directions across the Brilioun
zone, which is shown in (d)[69]. The band crossing can be seen close to the Γ point. ARPES
results showing conical valence bands (e) [166] and conduction bands (f)[94] .
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classical transport effects. Current is applied along the [001] direction. The first cantilever,

sample 1, is shown in figure 6.4 (a). Figure. 6.4 (b) displays the resistance for different values

of the rotation angle φ (defined in the inset of the same figure). The resistance shows a

tendency to decrease as the field is changed from the [001] to the [100] direction. At 12

T, the resistance for φ = 90◦ (B ⊥ I) is about half of that one for φ = 0◦ (B ∥ I). The MR, as

quantified by 100%× [R(B)−R(B = 0)]/R(B = 0), is positive for fields greater than 1 T, reaching

at 14T MR= 186% and MR= 83% for φ = 0◦ and φ = 90◦, respectively. For fields smaller than 1

T, the MR shows a broad peak that is followed by a region of negative MR. This feature was

previously reported for the thin Cd3As2 microstructures studied in [35], where it was associated

to the so-called Knudsen effect that originates from the enhanced boundary scattering of

strongly confined ballistic electrons [171]. Early calculations based on the free electron model

[172] indicate that at the field value, Bmax , where the MR maximum is located, the thickness

of the device scales with the cyclotron radius, rc , according to t/rc = LeBmax /vF m∗ = 0.55.

This theoretical relation has described quite well the behaviour of quantum GaAs/AlGaAs

heterostructure wires [173]. Using such relation with Bmax ≈ 0.1T and the experimentally

determined parameters for the current microstructure, it’s possible to estimate a thickness of

t ≈ 1.2µm.

Regarding the oscillatory behaviour of the signal, figure 6.4 (c) shows ∆ρ/ρ as a function of

1/B after the background subtraction of a polynomial of order six. These curves exhibit clear,

single frequency QOs associated to the bulk Landau quantization, which is further confirmed

by their FFT spectra. This is consistent with the expectation that for fields applied in the

plane of the cantilever, no signal from the Weyl orbits should be observed. When the field

points in the [100] direction, the projections of the Dirac nodes are located on the surfaces

separated by the width of the central leg, which is about 10 µm. This distance between

nodes’ projections is already too large for the formation of Weyl orbits, and grows further

upon increasing the angle φ. The corresponding angle dependence of the bulk frequency

is shown in figure 6.4 (d) and its variation suggests an ellipsoidal Fermi surface, albeit an

almost spherical one. Applying Onsager’s relation and assuming a spherical cross section,

one can calculate kF,mi n =
√

2eFbulk,mi n/ħ = 3.21×108m−1. Similarly, assuming an ellipsoidal

cross section one can calculate kF,max = 2eFbulk,max /ħkF,mi n = 3.59×108m−1, from which one

obtains kF,mi n ≈ 0.89kF,max .

To determine the effective mass of the charge carriers, I studied the change of the QOs ampli-

tude with temperature for the field direction B ∥ [100]. The MR curves for different tempera-

tures are shown in figure 6.5 (a). As expected, the MR increases with temperature, although

only slightly, and the amplitude of the QOs decreases. This last observation is more evident in

figure. 6.5 (b) and (c), where the oscillatory components and its corresponding FFT spectra are

respectively shown for different temperatures. Figure 6.5 (d) displays the change in the ampli-

tude of the FFT peak centered at Fbulk = 37.3T with temperature, which follows very well the

LK formalism (equation 4.30). The procedure to perform the fit is to choose as the value of B

in equation 4.31 the inverse of the 1/B average between the two limits of the field interval used

to calculate the FFT, that is, Bave = [(1/B)ave ]−1 = [(1/2)(1/B1 +1/B2)]−1, where B2 and B1are
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Figure 6.4: Quantum oscillations of Sample 1 for in-plane rotation. (a) SEM image of Sample
1. (b) Magnetoresistance at T=2K for different values of the rotation angle φ. The inset shows
the definition of φ. (c) Oscillatory component ∆ρ/ρ vs 1/B for different rotation angles. (d)
Angular dependence of the bulk oscillation frequency Fbulk . Error bars are the HWHM of the
FFT peaks.
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Figure 6.5: Quantum oscillations at different temperatures for the field direction B ∥ [100]. (a)
Magnetoresistance and (c) oscillatory component ∆ρ/ρ vs 1/B for the temperatures indicated
in (a). (c) Temperature dependence of the FFT spectra of the SdH oscillations. (d) Temperature
dependence of the corresponding FFT peak amplitude at Fbulk = 37.2T . The fitting with the
LK formula is denoted by the solid line.

the upper and lower fields used for the FFT. This procedure is justified as 1/B is not rapidly

changing in the high field window chosen for the analysis. From this fit, an effective mass of

m∗ = (0.031±0.001)me is obtained, which is consistent with reports in literature [35, 168, 174].

Furthermore, such a low effective mass consistently shows that the Fermi level is effectively

close to the node since in a TSM the effective mass is actually energy dependant. One can see

this by re-writing equation 4.16 for the effective mass as m∗ =
ħ2

2π

∂S(E ,k)

∂E
. In the case of a TSM

with a Fermi energy EF = ħvF kF and a circular cross sectional area S(EF ,kF ) =πk2
F =πE 2

F /ħ2v2
F ,

it follows that m∗ = EF /v2
F , so that lower masses are expected as EF is closer to the position of

the nodes. This famous result has been well established in the 2D DSM graphene [125].

With the information obtained form the previous experiments it is possible to quantify some

parameters characterizing the transport properties of the device (see table 6.1). Assuming

an average bulk frequency of 〈Fbulk〉 = 36T and a spherical Fermi surface with extremal area

S =πk2
F , one can use Onsager’s relation to calculate kF =

√
2e〈Fbulk〉/ħ = 3.31×108m−1. From

this, the Fermi velocity results in vF = ħkF /m∗ = 1.25×106ms−1. The Fermi energy above the

Dirac point is given by EF = ħvF kF ≈ 272meV . The bulk carrier density can also be calculated
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Devices 〈Fbulk〉 (T) vF (m/s) m* (me ) n(1017cm−3) EF (eV) ν(m2/Vs)
Sample 1 36 1.25×106 0.031 24.5 272 4
Sample 3 17 1.22×106 0.023 8.1 184 5.5

Table 6.1: Main parameters of the two principal samples discussed. me is the bare electron
mass. 〈Fbulk〉 refers to the average. The values of Sample 3 were measured previous to its
thinning down. m* was measured for fields B ∥ [100].

using n = 2k3
F /3π2 = 2.45×1018cm−3, which is very similar to values reported in literature

[35, 167, 168]. From the the geometrical dimensions of the device and the extrapolated

value of the MR at low fields excluding the Knudsen peak, the low temperature resistivity

is calculated to be ρ0 ≈ 65µΩcm. Within the Drude model, the corresponding value of the

mobility is ν = 1/ρ0ne = 4 m2/Vs. All these values are consistent with those typically reported

in literature for Cd3As2. From the mobility, one can estimate the bulk transport mean free

path, l = νm∗vF /e ≈ 0.9µm, which is in agreement with the value reported in [35] and the fact

that this sample clearly exhibits Weyl oscillations.

6.3.1.2 c-axis rotation

Next, the field is rotated from the [001] to the [010] direction, as depicted in the inset of figure

6.6 (a). This rotation is much richer in physics, as we do expect the Weyl orbits to dominate

the spectrum for magnetic fields perpendicular to the cantilever. Compared to the in-plane

results of the previous section, the MR clearly grows much larger for fields tending to the [010]

direction (ϕ = 90◦). At 14T, MR=1793% for ϕ = 90◦, about 20 times larger than the MR for ϕ = 0◦.

Like the in the in-plane case, a Knudsen peak is observed for fields lower than 1T but it quickly

disappears with increasing angle and forϕ>≈ 6◦ the MR becomes positive over the whole field

window. As the field is tilted from the [001] to the [010] direction, the motion of the electrons

in the plane perpendicular to the field is less affected by the small thickness of the channel and

the scattering is again dominated by bulk scattering, resulting in the usual large MR observed

in bulk crystals. The FFT of the oscillatory component of the MR is presented in figure 6.6

(b). For values of ϕ close to 90◦ the amplitude of the FW e yl peak becomes comparable to

the amplitude of Fbulk . The angle dependence of Fbulk and its corresponding amplitude are

presented in figure 6.6 (c). The variation of Fbulk confirms the ellipsoidal shape identified

in the in-plane rotation. Figure 6.6 (d) shows the angle dependence of FW e yl and its FFT

amplitude. FW e yl shrinks in amplitude relatively quickly and it’s only appreciable in the range

80◦ <ϕ< 105◦ following the expected 1/cos(ϕ) dependence around ϕ = 90◦ (1/sin(ϕ) in this

case according to how the angle ϕ was defined).

Overall, the results presented in this and the previous section suggest that the transport

characteristics exhibited by the cantilevers, including quasi-spherical Fermi surfaces, small

effective mass of charge carriers, energy dependent effective mass and no apparent gap

opening for magnetic fields tilted away for the [001] direction, are all consistent with the

known properties of bulk and previously measured microstructures of Cd3As2. Furthermore,
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Figure 6.6: Quantum oscillations of Sample 1 for c-axis rotation. (a) Sample 1 magnetoresis-
tance at T=2K for different values of the rotation angle ϕ. The inset shows the definition of ϕ.
(b) FFT spectra of the SdH oscillations obtained from (a) after the background subtraction.
(c) Angular dependence of the bulk oscillation frequency Fbulk and its amplitude and (d) the
same for the surface oscillation frequency FW e yl . Error bars are the HWHM of the FFT peaks.
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Figure 6.7: Quantum oscillations of Sample 1 during static bending.(a) Magnetoresistance at
4K for different values of the bending angle θ. (b) oscillatory component ∆ρ/ρ vs 1/B for the
same values of θ as in (a).

the size-dependent features in the MR of the cantilevers can also be associated to known

phenomena, namely the Knudsen effect and, most importantly for this thesis, the Weyl orbits.

6.3.2 Bending without rotation

Having established the field and angle dependence of the MR, the results of bending without

rotation are discussed next. The promising results clearly demonstrate that Landau quanti-

zation is quite exotic and indeed compatible with pseudo-fields, yet the quantum system is

extremely complex and at present alternative explanations for the data cannot be excluded,

preventing the unambiguous identification of pseudo-fields at this point. Figure 6.7 (a) dis-

plays the field dependence of the resistance for different bending angles θ. Clear QOs are

visible, which sit on a background that is mostly linear from 1T onward. This agrees well with

the reports of large an linear MR in Cd3As2, which is hypothesized to arise from chemical

potential disorder [37, 175]. This linearity doesn’t seem to be altered by bending. The weak

decrease of MR with increasing bending angle, used to detect the touching point, is also clearly

visible.

The oscillatory components ∆ρ/ρ of the MR curves (see figure 6.7 (b)) suggest the presence

of at least two different oscillations, as it’s expected for this cantilever configuration, a lower

frequency one associated to Fbulk and a higher frequency one associated to FW e yl . A windowed

FFT analysis reveals that the oscillations with Fbulk are more dominant at lower fields whereas

FW e yl becomes more prominent at higher fields. This is self-consistently confirmed by fitting

the data to the LK form. As shown in figure 6.8 (a), at zero bending a good LK fit can be found

using only a single frequency Fbulk = 36.8T for fields up to ≈ 4.5T. Similar fits, even including a

second frequency, get much worse as the field range is increased to include higher fields. One

has to note here how non-trivial this is. The full LK fitting takes into account all phenomena

usually arising in Landau quantized metals, hence its failure is pointing to unusual physics.
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Figure 6.8: LK fitting of quantum oscillations for unbent and bent Sample 1. ∆ρ/ρ vs 1/B
and its corresponding LK fitting for (a) θ = 0◦ and (b) θ = 12.7◦. Good LK fittings are typically
obtained only in the low magnetic field region, up to approx. B=5T.

Figure 6.8 (b) shows a similar procedure for the ∆ρ/ρ curve with a bending angle θ = 12.7◦. In

this case again, a good LK at low fields was found using two main frequencies, Fbulk = 36.8T

and FW e yl = 66.5T but, as before, no such fit is satisfactory for the whole field range. This

situation is not entirely surprising since the LK formalism describes the oscillations that result

from the bulk quantization of the FS without considering any contribution from surface states

nor mixing of bulk and surface states, which are the constituents of the Weyl orbits. One

might consider to subtract the low-field LK fits from the entire field range, in an attempt

to reduce the complexity by removing known bulk physics from the data. These attempts

were unsuccessful, which is not surprising given the bulk/surface nature of the Weyl process.

The self-consistent quantum mechanical solution combines them together, such that the

coexistence of unaffected bulk oscillations with the Weyl process is an unlikely, oversimplified

scenario.

This unusual field-dependence was investigated by restricted window FFT analyses. Figure

6.9 shows the FFT for two different field windows: (a) (3T - 14T) and (b) (5T - 11T). In both

cases the two main peaks associated to Fbulk and FW e yl are clearly resolved. However, while

Fbulk remains fixed for all bending angles at around 37T using both windows, FW e yl evolves

differently in each case: it remains virtually fixed at around 67T for the first window but

consistently shifts to higher frequencies with increasing bending angle when using the second

window, which, as mentioned in the previous paragraph, sits on a field range where the

Weyl orbits are more prominent. In a usual metal, the electronic spectrum itself is field

independent, and the sole role of the magnetic field is to Landau-quantize the spectrum. Its

failure here shows that the magnetic field itself does alter the electronic spectrum, which can

arise from multiple mechanisms, some associated with topology and some with pseudo-fields.

First, the presence of pseudo-fields necessarily causes non-periodic quantization. B5 sets

an intrinsic field scale, separating a low field (B ≫ B5) and a high field (B ≪ B5) region. In

the cross-over region, B ≃ B5, the Landau level positions are necessarily non-periodic in

102



Mechanical bending of Cd3As2 cantilevers Chapter 6

Figure 6.9: FFT of quantum oscillations for static bending experiments. FFT of the oscillatory
part ∆ρ/ρ of the MR for different bending angles, using a FFT window of (a) (3T, 14T) and (b)
(5T,11T).

1/B . Alternatively, a second mechanism for deviations from ideal 1/B periodicity in the Weyl

orbits’ oscillations has been linked to so-called non-adiabatic corrections originating from

the field-induced tunneling between Fermi arc states and bulk states as the quasi-particles

approach the Weyl nodes [35]. These corrections are related to a magnetic breakdown not

captured by the LK formalism and lead to a shift to lower frequencies in the spectral weight

of the main FW e yl peak. This results in a broader, asymmetric peak with further additional

structure at lower frequencies. Similar features are also observed in figure 6.9 (a) for Sample

1. Further mechanisms for field-dependence include strain from magneto-striction, the

field-dependence of the chemical potential as we are close to the quantum limit, and field-

dependent effective masses given the linear Dirac spectrum. While the results are compatible

with pseudo-fields, the complexity of the experimental situation and the possibility of these

other bending-induced frequency shifts precludes me from making this identification.

The increase of FW e yl with bending is a promising observation predicted by pseudo-fields,

however the real situation deviates significantly from the idealized strain profile theoretically

considered. The large gradients that are necessary come with a significant distortion of the

cantilever upon bending. At high angles, it is not a straight beam anymore, and the local

variation of the magnetic field angle w.r.t. the bent cantilever section is important since FW e yl

is expected to change according to the 1/cos(θ′) relation, where θ′ is the angle between the

magnetic field and surface normal. Increasing the bending angle θ also increases the angle

between the magnetic field and the different sections of the bent part of the lamella, which

necessarily contributes to any change in the observed evolution of the FW e yl peak. Figure

6.10 contrasts the variation of FW e yl from rotation alone in the unbent state to that of the

pure bending state without any change in nominal field angle. Figure 6.10 (a) shows the

proportional change in FW e yl for both experiments using the FFT window of (5T - 11T), where

∆FW e yl = FW e yl (θ′)−FW e yl ,0, with FW e yl (θ′ = 0◦) ≡ FW e yl ,0 and θ′ is either the rotation or
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Figure 6.10: Comparison of the FW e yl change from static bending and rotation. Angular
dependence of the amplitude of FW e yl (a) and of the relative change of FW e yl (b) for the static
bending and the c-axis rotation experiment, where ∆FW e yl = FW e yl (θ′)−FW e yl (θ′ = 0◦) and
FW e yl (θ′ = 0◦) ≡ FW e yl ,0. The variable θ′ refers to either the rotation or bending angle. A FFT
window of (5T - 11T) was used.

bending angle.

This similarity may cause the impression that the entire bending dependence of FW e yl may

be explained solely by the inherent variation of field angle. However, a quantitative analysis

suggests a more nuanced picture. To model the impact of angle variation the basic assumption

is that each infinitesimal part of the sample exhibits a Weyl orbit whose frequency is associated

with the angle θ′ between the magnetic field (whose direction is kept fixed) and the surface

normal to that particular part of the sample (see figure.6.11 (a)). Each infinitesimal part

would then exhibit an oscillatory process at FW e yl (θ′). The final response f of the sample is

calculated as a simple angle average:

f =
1

θ′max −θ′mi n

∫ θ′max

θ′mi n

A(θ′)G(FW e yl (θ′))dθ′ (6.3)

The frequency shift and amplitude decrease of the FW e yl peak is taken from the experimental

fits presented in figure 6.10 for the c-axis experiments . Each peak is modelled as a Gaussian G
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Figure 6.11: A simple model for the evolution of FW e yl during bending. (a) Sample during
bending where each infinitesimal section has a normal surface vector at an angle θ′ with
respect to the magnetic field B . (b) Simulated Gaussian FW e yl peaks for different values of
θ′, whose evolution in amplitude and frequency is taken from the experimental fit from the
rotation experiments (figure 6.10 ). (c) Results of the model described in equation 6.3 for
different values of θ′max , which is equivalent to the bending angle θ, and θ′mi n , which is always
taken as zero.

with an angle dependent amplitude A(θ′) and peak center FW e yl (θ′) . Figure 6.11 (b) shows

the isolated peaks following this evolution for different values of the angle θ′. The result of

the integration for several values of maximum bending angle θ′max (which is equivalent to the

bending angle θ used in the bending experiments) is shown in figure 6.11 (c) (θ′mi n is always

taken as zero) . As can be seen there, the final Weyl peak position is very similar to that of

the θ′ = 0◦ peak. This is a consequence of the fact that only the peaks around θ′ = 0◦ have an

appreciable amplitude, and those corresponding to higher angles die away quickly, making

their influence almost negligible. The final maximum amplitude is also shown to decrease

as the peak profile is made broader. In this fashion, one could think about the influence of

the rotation effect on the Weyl orbits during the bending of the sample as extending only to

a very small angle range around the θ′ = 0◦ peak. This picture suggests that the clear shift in

FW e yl observed during the bending experiments is not primarily affected by the pure rotation

contribution. Essentially, the amplitude suppression under bending is much weaker than one

would expect from rotation alone. It is clear that the segments at high effective angle (large θ′)
under bending similarly will have a negligible impact on the transport. The key difference,

however, is that the bending gradient is present even close to the base of the cantilever, at

θ′ ∼ 0. The modification of the spectrum there must be at the origin of the observed peak shift.

6.3.3 Bending and rotation

To further probe the relation of bending and rotation, a miniaturized version of the bender was

constructed that is compatible with an in situ rotator. Unfortunately, Sample 1 degraded over

time and could not be remeasured. In view of this, and for the sake of reproducibility, I fabri-

cated additional devices from different crystals using the same design and crystallographic

orientation as Sample 1. Figure 6.12 shows the results for the device referred to as Sample 3.
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Figure 6.12: Thinning down of Sample 3. (a)-(b) SEM images of Sample 3 after thinning it
down with the FIB using top irradiation with a very small current. (c) Resistance vs temperature
for Sample 3 before and after thinning, including a comparison of the normalized curves using
the resistances at room temperature as references.

Initially, the thickness of Sample 3 was not optimal to clearly resolve the FW e yl peak. Thanks

to the versatility of the FIB micro-fabrication technique, this issue can be addressed quickly by

thinning the sample down using a very small current and carefully irradiating the central leg

from the top. The result of this procedure is shown in figures 6.12 (a) and (b). The resistance vs

temperature before and after thinning is shown in figure 6.12 (c). The thinned-down sample

exhibits a higher resistance, as expected, but the behaviour is still metallic with a similar

overall shape of the curve before thinning. The normalized curves also show a comparatively

higher resistance for the thinned-down case, especially at lower temperatures, a result that is

consistent with the observed behaviour of other thinned-down TSMs [59]. Prior to thinning,

Sample 3 was characterized and some of its main parameters are presented in table 6.1.

The rotation studies under zero bending for the thinned- down Sample 3 are presented in

figure 6.13. The sample was rotated 30◦ around the B⊥ (B ∥ [010]) direction as indicated in

the inset of figure 6.13 (a) (same experimental configuration as the one described already in

section 5.3.2). Similar to the results of section 6.3.1.2, the background MR is very close to linear,

over which the QOs are superimposed, and it tends to decrease as the field is tilted away from

the B⊥ direction. The oscillatory components ∆ρ/ρ are presented in figure 6.13 (b). They

clearly contain several frequencies and, like before, can be better fitted by the LK formalism

with two main frequencies in lower field ranges. This range actually shrinks as the the field

is tilted away from the B⊥ direction and the onset of the non-LK region is pushed to lower

fields. The corresponding FFT for each ∆ρ/ρ curve is shown in figure 6.13 (c) using a window

of (2.5T - 6T). One of the main FFT peaks sits at around 45T for B ∥ B⊥ and is consistent with

the expected evolution of the FW e yl peak with rotation angle (see figure 6.13 (d)). The value of
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Figure 6.13: Quantum oscillations of the thinned down sample 3 at zero bending. (a) Magne-
toresistance at T=5K for no bending the indicated values of the rotation angle ϕ. The inset
shows the definition of ϕ and the bending angle θ (same as depicted already in chapter five).
(b) Oscillatory component ∆ρ/ρ vs 1/B for different rotation angles and (c) the corresponding
FFT spectra. (d) Angular dependence of FW e yl .

FW e yl ≈ 45T also compares well with the expected one for Sample 3 of FW e yl ≈ 40T , obtained

from the relation FW e yl = µk0/πevF , where the chemical potential µ = 184meV determined

for sample 3 before thinning has been used. Similar observations to the ones discussed above

are also obtained when using a larger FFT window of (2.5T - 15T).

The rotation studies for a bending angle of θ = 25◦ are presented in figure 6.14. The overall

behaviour of the ∆ρ/ρ set of curves is very similar to the zero bending case, with the only

difference that it is symmetric not around the B⊥ field direction (ϕ = 90◦) but around ϕ ≈
75◦−80◦. This is consistent with the results of figure 5.12 (a) showing the angle dependency

of the MR at a fixed field B=5T for this very same bending angle. Figure 6.14 (b) highlights

the FW e yl evolution with rotation angle extracted from the FFT of the curves in figure 6.14

(a). Once again, the general behaviour is comparable to the zero bending case, showing also

a relatively flat angular region around which FW e yl ≈ 46T , which is only slightly higher than

the FW e yl ≈ 45T for zero bending. This result is at odds with the expected behaviour deduced
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Figure 6.14: Quantum oscillations of the thinned down sample 3 with a bending angle
θ = 25◦. (a) Oscillatory component ∆ρ/ρ vs 1/B for different rotation angles and (b) angular
dependence of FW e yl from its FFT peak.

from the simple model discussed in figure 6.11. That model suggests that the dominant FW e yl

comes from the cantilever section whose surface normal is parallel to the field, for any given

rotation angle ϕ of the field. Assuming that the Weyl orbits are affected uniformly by the strain

gradients along the bent section of the cantilever, one should then expect a fixed FW e yl peak

for all rotation angles. The experimental results, however, point to a FW e yl evolution similar

to the 1/cos(ϕ) dependence observed in the zero bending case. To avoid any spurious effect

coming from the use of the FFT, whose FW e yl peak is susceptible to changes depending on the

chosen window, figure 6.15 shows for three different bending angles the ∆ρ/ρ curves around

which the corresponding set of curves is symmetrical (like the one at ϕ≈ 75◦ in figure 6.14

(a)). There, it is evident that the frequency content is the same for all bending angles and that,

apart from a very small change in the phase of the quantum oscillations, all the curves overlap

almost perfectly.

6.4 Conclusions and outlook

In the work presented in this chapter I have applied large bending strain gradients on FIB-

fabricated cantilevers of the DSM Cd3As2 and studied the evolution of Weyl orbits in search for

experimental signatures of the theorized pseudo-magnetic fields. Although some features of

the complex data are consistent with the existence of such fields, the application of the basic

theoretical models available doesn’t seem to reproduce important aspects of the experimental

situation and corresponding data, making it difficult to unambiguously assert the presence of

strain-induced pseudo-magnetic fields. Furthermore, even within the available models, simple

alterations in some of the numerical parameters needed can lead to significant reductions

of up to 1/30 of the initially calculated magnitude of B5 [165], suggesting that their effect

in the periodicity of Weyl orbits could be almost negligible. Additionally, the modification

due to strain gradients of other band parameters, like the Fermi velocity, might have a bigger
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Figure 6.15: Quantum oscillations of thinned down sample 3 for different bending and
rotation angles. The ∆ρ/ρ curves correspond to the rotation angle around which the corre-
sponding set of curves looked more symmetrical.

influence than previously thought. One possible way forwards is to look for other materials

with more favorable parameters for the creation of B5 where Weyl orbits can also be clearly

resolved. Unfortunately, as of today, Cd3As2 is the only material where unequivocal evidence

of Weyl orbits has been reported, although tantalizing results also suggest the existence of

these orbits in nanoribbons of WTe2[176] and thin films of SrRuO3[177]. In the search for

Weyl orbits’ signatures from additional materials, during this thesis I attempted to use the

the Ga-FIB to thin-down samples of NbAs to dimensions comparable with its mean free path

(≈ 100nm). Although working devices were fabricated, they were heavily affected by the known

differential sputtering phenomenon in this material [59], as well as potential Ga implantation,

both of which significantly alter the surface of the sample.

Another important lesson to extract from the experiments here presented is the necessity to

better understand the Weyl orbits themselves and to devise a formalism akin to the LK one

for bulk quantum oscillations. In particular, the evolution of the Weyl orbits in high magnetic

fields is of great interest since it could provide information on the theorized localization of the

orbits on the surface of the sample from a certain critical value of the field called the mixing

field [122]. The sensitivity of this field to strain gradients might be a way to detect pseudo-

fields. During this thesis I prepared some preliminary samples for high field experiments but

unfortunately such measurements had to be cancelled due to the Covid-19 pandemic.
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7 Transport measurements in PtSn4

microstructures

7.1 Introduction

With the material challenges posed by Cd3As2, the next step was to look for other topological

materials that may host Weyl orbits. The main requirement is a high mobility and high cleanli-

ness. The Dirac semimetal PtSn4 appeared as a promising candidate as both Dirac bulk nodes

as well as a Dirac node line associated to surface states were recently uncovered by ARPES

[41]. Some studies have supported the topological nature of this material by, for example,

determining a nontrivial Berry phase from dHvA quantum oscillations [178], and observing

the existence of the giant planar Hall effect induced by the chiral anomaly [179]. While it

turned out that PtSn4 is too strongly dominated by bulk bands to show appreciable transport

signatures of Weyl orbits, the microstructure measurements solved a long-standing puzzle

about the nature of its extreme magnetoresistance. The fine field-angle studies presented here

were able to unambiguously identify a semi-classical origin for its MR.

One of the most interesting characteristics of topologically non-trivial matter is its response

to magnetic fields, with non-magnetic materials like Cd3As2[36], WTe2[180], ZrSiS [181], and

NbSb2[182] often exhibiting extremely large magnetoresistrance (XMR) in the order of 105%-

106% at helium temperatures. Before its topological character was discovered, PtSn4 had

already been of great interest precisely because of its XMR of ≈ 5x105% with no appreciable

saturation up to 14T at 1.8K [61]. These values of XMR are very rare for high carrier-density

metals like PtSn4 and are considerable larger than those associated to the well-known phe-

nomena of colossal magnetoresistance (CMR) in transition-metal oxides [183] and giant

magnetoresistance (GMR) in ferromagnetic heterostructures [184, 185], and hence have great

potential for technological applications like magnetic field sensors and magnetic data storage.

It’s worth mentioning that such a strong response to magnetic fields is not expected to happen

in most metallic materials, where typical values of MR are in the few percent, and whose

origin can usually be understood by semi-classical models of transport considering deviations

of a simple free electron gas. In contrast, the microscopic origin of the XMR observed in

topological materials is still an intense field of research, with several mechanisms proposed as
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potentially responsible. Electron-hole compensation is a known semi-classical mechanism,

particularly relevant in semimetals like WTe2[180], that can give rise to non-saturating MR

in two-band systems due to the vanishing of their Hall fields and the resultant back-flow

of charge carriers [111]. In materials with strong spin-orbit coupling, magnetic-field driven

changes of the Fermi surface form another class of mechanisms. These will be particularly

effective if a band-structure anomaly such as a van-Hove singularity [186] or a topological

band-crossing point exist close to the Fermi surface [181]. Especially in Dirac systems, the

loss of time-reversal symmetry in magnetic fields necessitates a transition into a Weyl mate-

rial, which has been argued to suppress a topological back-scattering protection [36]. Even

more exotic ideas are discussed in interacting systems, such as the field-induced formation of

excitonic insulators[187, 188] or parallel conductance in topological surface states [189]. In

the case of PtSn4, more recent studies have reported somewhat contrasting results, claiming,

on the one hand, that neither carrier compensation nor the Dirac arc node surface states are

the primary source of XMR [190], while, on the other hand, suggesting that a combination of

carrier compensation and a mixture of d-p orbital texture are the originis of the XMR [191].

In this chapter, I explore the transport properties of the first FIB-machined microsctructures of

the material PtSn4, with particular emphasis on their magnetoresistive behaviour. As already

mentioned in previous chapters, the use of the FIB allows for a much better signal to noise

ratio thanks to the reduction in cross section of the fabricated microstructures. This is a

significant advantage for an extremely good conductor like PtSn4 whose voltage signal might

be difficult to measure without inducing Joule heating via large applied currents. Furthermore,

the FIB also offers excellent control over the fabrication of devices of precise dimensions and

along the desired crystallographic axes, which can be a key factor when investigating the

origin of MR. The results presented here highlight the role of the Fermi surface shape in the

measured MR for currents applied along the main crystallographic axes. In particular, the

observation of saturated transverse MR points to the formation of open orbits on specific

branches of the FS. This consequently suggests a semi-classical mechanism like imperfect

electron-hole compensation as a likely candidate for the origin of the XMR typically observed

in PtSn4. In the next section I briefly discuss the known electronic properties of the material

PtSn4. Next, in section 7.3 I present the main experimental results, including the observation

of both sub-quadratic field dependence of the MR as well as MR saturation depending on

the direction of the applied current. An additional magneto-oscillatory effect known as

Sondheimer oscillations (SO) is also reported, a phenomenon never observed before in PtSn4

macrocrystals. Finally, section 7.4 summarizes the work.

7.2 PtSn4 material characteristics

PtSn4 crystallizes in an orthorhombic structure with lattice parameters a = 6.418Å, b = 11.366Å

and and c = 6.384Å and with the Sn-Pt-Sn layers stacked along the b axis (see figure 7.1(a))

[192, 193]. This layer structure is visible in the single crystals, which typically exhibit large

flake-like features extending on the ac plane and stacked along the b axis, as shown in figure
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Figure 7.1: Crystal structure and electronic characteristics of PtSn4. (a) Orthorhombic unit
cell. (b) Typical layer structure of the crystals [196]. (c) Calculated Fermi surface [194].

7.1 (b). The electronic behaviour is characterized by a very complex Fermi surface (see figure

7.1 (c)), excellent conduction at low temperature (ρ(2K ) ∼ 0.04 µΩ.cm), extreme purity with

residual-resistivity ratios (RRR= ρ(300K )/ρ(2K )) of around 1000 and an estimated mean free

path of around 3 µm at 2K [61]. Hall voltage measurements suggests the presence of highly

mobile electron-like and hole-like charge carriers, with the former dominating the conduction

at low temperatures. PtSn4 also exhibits a largely suppressed thermal conductivity under an

applied magnetic field along the b axis [194], which is attributed to the different transport

behaviour of both charge carriers under a magnetic field. The crystals used in this chapter

were grown out of a Sn-rich binary melt as described in [195] and were provided by the group

of prof. Paul Canfield from the Ames National Laboratory at Iowa State University.

7.3 Experimental results

7.3.1 Magnetoresistance and Kohler scaling

Figure 7.2 (a) shows the initial microstructure fabricated with two sets of voltage probes along

the c crystallographic direction. The sample was made using lamellae extracted with the

P-FIB from aligned single crystals, whose crystallographic directions were determined by

XRD (following the procedure already described in sections 2.5 and 3.4 ). For this particular

sample the sputtered layer was made from Pd since its chemical similarity to Pt was thought to

improve the contact resistance. Subsequent samples were fabricated using the more common

option of Au for the sputtered layer, obtaining in both cases contact resistances in the order or

a couple of Ohms. Initially, some surface roughness appeared when removing the Pd layer with

the Ga-FIB but this artifact was later avoided by using smaller voltage and current parameters

during the sputtered-layer removal step (around 5kV and 200pA). Figure 7.2 (b) shows the

measured resistivity as a function of temperature for both available voltage channels. The

signals from both channels are almost identical and the values and overall behaviour of the

measured resistivities match very well those reported for macroscopic single crystals [61].

However, the RRR values obtained, while still suggesting a very clean system, are not as high
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Figure 7.2: Glue-mounted PtSn4 microstructure. (a) SEM image of the fabricated sample.
(b) Resistivity vs temperature for both voltage channels available. The inset highlights the
resistivity at low temperatures.

as those reported for macroscopic single crystals. The difference comes mainly from the low

temperature resistivity values, which are systematically larger in the microstructures. This

is not surprising since the geometrical dimensions of the microstrcuture are comparable to

the reported mean free path (≈ 3 µm [61]) so additional boundary scattering is expected to

appear.

The transverse MR (as defined as MR= 100× [R(B)−R(B = 0)]/R(B = 0)) of the microstructure

at different temperatures and along the field directions B ∥ a and B ∥ b is presented in figure

7.3. Once again, the overall behaviour matches well the observed one in macrocrystals. For

all field and temperature ranges measured, an unsaturated XMR was obtained. At 1.5K and

14T, an XMR of ≈ 1.1x105% and ≈ 7.2x104% was observed for B ∥ a and B ∥ b, respectively.

This is consistent with the fact that at high fields the cyclotron radius shrinks well below the

dimensions of the microstructure so the bulk behaviour is recovered. The MR falls quickly with

temperature, dropping to ≈ 378% and ≈ 430% at 40K and 14T for B ∥ a and B ∥ b, respectively.

The MR at different temperatures is typically analyzed using Kohler’s rule, which states that

it should exhibit a scaling behaviour of the form MR= f (B/ρ0), where ρ0 = ρ(T,B = 0) and

f is usually a power law . It can be shown that B/ρ0 ∝ l/r = ωcτ, where l is the mean free

path, r the cyclotron radius, ωc the cyclotron frequency and τ the scattering time. B/ρ0 then

quantifies how many orbits the charge carriers can make before being scattered. The physical

content of the Kohler’s scaling is that the MR can be fully explained by orbital effects with a field-

independent scattering time, in which case the MR vs B/ρ0 curves at different temperatures

should overlap with each other. The corresponding Kohler plots for the microstructure for

field directions B ∥ a and B ∥ b are shown in figures 7.3 (c) and (d), respectively. In both cases

the MR data seems to collapse into a single curve, which exhibits a sigmoidal shape similar to

the one reported previously for both PtSn4[61] and its isostructural compound PdSn4 [190].

The high field/low temperature region appears as well characterized by a power law with

MR∝ (B/ρ0)1.8 and MR ∝ (B/ρ0)1.7 for B ∥ a and B ∥ b, respectively. In [190], it is argued that
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Figure 7.3: Transverse magnetoresistance as a function of temperature and field magnitude
and direction. MR for (a) B ∥ a and (b) B ∥ b at the indicated temperatures. The insets (a) and
(b) show the MR at higher temperatures. Kohler plots of the MR for for (c) B ∥ a and (d) B ∥ b.
The insets (c) and (d) show the Kohler scaling at higher temperatures.

the beginning of the low field/high temperature region signals the transition from theωcτ>> 1

condition to the ωcτ << 1 one and that the collapse of the MR data into this "generalized"

Kohler scaling points to the same underlying physics for both regimes.

The high quality of the microstructure is also evident in the clear SdH oscillations observed

in the MR curves. The corresponding oscillatory components and their FFT are presented

in figure 7.4 (a) and (b) for B ∥ a and B ∥ b, respectively . The complexity of the FS is once

again revealed in the considerable number of resolved FFT peaks. Although a mapping of

the FS is not the main purpose of this work, some of the main peaks and their corresponding

effective masses m∗ are reported in table 7.1. The peaks and their associated effective masses

are consistent with previously reported ones [61, 197] originating from closed electron and

hole pockets.

7.3.2 Resistivity anisotropy

Given the flake-like structure of PtSn4, with the thinnest dimension along the b crystallo-

graphic axis, measurements of the resistivity along this direction are difficult to perform in
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Figure 7.4: Shubnikov-de Haas oscillations for two different field directions. FFT spectra of
the SdH oscillations at 1.5K for (a) B ∥ a and (b) B ∥ b, with some of the main FFT peaks high-
lighted. The insets (a) and (b) show the oscillatory components of the MR after background
subtraction.

I//c I//a
B//a B//b B//c

Freq. (T) m*/me Freq. (T) m*/me Freq. (T) m*/me

F1 276 0.27 F1 98 0.24 F1 95 0.21
F2 330 0.37 F2 192 0.23 F2 108 0.21
F3 660 0.51 F3 293 0.05 F3 264 0.27
F4 900 0.40 F4 340 0.26 F4 288 0.32
F5 912 0.39 F5 390 0.26 F5 514 0.27
F6 1750 0.94 F6 1560 F6 1023 0.39

F7 2552

Table 7.1: Main experimental SdH frequencies and corresponding cyclotron effective masses.
me is the bare electron mass. The case I ∥ a, B ∥ c is taken from the measurements of the sample
presented in figure 7.10.
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Figure 7.5: Temperature dependence of the resistivity along different crystallographic
directions. (a) SEM image of the fabricated sample. (b) Resistivity vs temperature for cur-
rents applied along all three main crystal axes. ρa was measured in the microstructure pre-
sented in figure presented in figure 7.10. The inset in (b) shows the normalized resistivities
ρ(T )/ρ(300K ).

macrocrystals. In fact, the only report of this measurement that I am aware of claims a value

of ρb ≈ 3800µΩcm at room temperature, about 10 times larger than the values of ρa and ρc

reported in the same study [198]. The values of ρa and ρc reported in that study are themselves

around 10 times larger than the ones typically found in the literature, which might point to

defective samples or experimental flaws. In any case, the question of whether such a large

anistropy actually exists remains relevant since it would have important consequences for the

general transport behaviour of PtSn4. To tackle this question a so called "U" microstructure

was fabricated using the P-FIB featuring voltage probes along the b and c crystallographic

directions (see figure 7.2 (a) ). Figure 7.2 (b) shows the measured resistivity as a function of

temperature for all main three crystal axes, where the one associated to axis a was measured

using an additional free-standing microstructure to be discussed in the next section. The

values of the different resistivities suggest that the electronic behaviour of PtSn4 is rather

isotropic, in spite of its layered structure and complex FS branches. The resistivities do show

some differences, specially in the higher temperature range, but still compare well with the

values typically reported in literature (≈ 30µΩcm −40µΩcm for currents applied in the ab

plane). Furthermore, the normalized resistivity curves ρ(T )/ρ(300K ) overlap almost perfectly,

indicating a consistent and unified metallic behaviour. The origin of the high temperature

discrepancies remains unclear but factors like strain might be at play, with some studies sug-

gesting a sensitivity of room temperature resistivity to pressure in the isostructural compound

PdSn4[199].

The transverse MR of the channels with I ∥ b has a similar behaviour to the one of the channels

with I ∥ c(a), namely, a background MR ∝≈ B 1.8 with clear superimposed SdH oscillations

whose frequency content is consistent with the results for the other current directions with
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Figure 7.6: Magnetoresistance as a function of field magnitude and direction from the
"U" structure at 2K. (a) Transverse MR for B ∥ a and B ∥ c. The inset shows the FFT of the
corresponding oscillatory part of the MR. (b) Longitudinal MR for I ∥ b and I ∥ c.

same field configuration (see figure 7.6 (a)). The longitudinal MR for both I ∥ c and I ∥ b is

presented in figure 7.6 (b), where clear regions of negative MR can be observed at low fields.

The shape of the longitudinal MR curves has some similarities with the ones reported for

other materials like ZrSiS [181] and GdPtBi [200] where it was associated to the presence of

the chiral anomaly. However, such a curve could also be interpreted based on the Knudsen

effect originating from the enhanced boundary scattering of strongly confined electrons in

very clean systems [171].

7.3.3 Sondheimer oscillations

In addition to the 1/B-periodic SdH oscillations, another kind of magneto-oscillatory be-

haviour was also observed in all the PtSn4 microstructures studied in this work, namely,

B-periodic oscillations known as Sondheimer oscillations [201, 202]. Figure 7.7 (a) shows

the MR in the low field regime of the "U" microstructure after a background subtraction

was performed using a second degree polynomial. Clearly resolved B-periodic oscillations

appear in all the channels measured. SOs were detected in longitudinal voltage channels as

well as in Hall-voltage channels (when available in the microstructure). The physical origin

of the SO is schematically depicted in figure 7.7(b). Unlike the space localized, quantum

coherent electron states that give rise to the SdH oscillations, the states responsible for the

SO move in semi-classical helical trajectories with a net velocity along the magnetic field

B . The magnitude of B determines the helical radius and hence how many revolutions the

electron completes while moving from one surface to the other in the microstructure. For

certain values of B , the movement is commensurate with the distance between surfaces, that

is, there will be an integer number of revolutions. In that case, the charge carrier performs no

net motion along the channel, and hence is semi-classically localized. However, if the number

of revolutions is non-integer, a net motion exists, de-localizing the carriers and resulting in
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Figure 7.7: Sondheimer oscillations in a PtSn4 microstructure.(a) B-periodic oscillations in
the low field regime of the "U" microstructure MR curves at 2K after a background subtraction.
(b) Schematic depiction of the Sondheimer effect. Image adapted from [203].

oscillatory longitudinal and transverse magnetotransport behaviour[203].

The period of the SOs can be determined by calculating the ratio of two quantities: the time it

takes to travel the thickness d of the microstucture, td = d/v∥; and the time it takes to complete

one full cyclotron revolution, τc = 2π/ωc = 2πm∗/eB , where v∥ is the velocity component

parallel to the magnetic field. For some field values, an integer number n of revolutions is

completed within the channel, td /τc = n , which happens periodically with a period ∆B of:

∆B =
2πm∗v∥

ed
(7.1)

this expression establishes one of the main characteristic of the SOs, namely, a linear de-

pendency of the oscillation frequency and the thickness of the device perpendicular to the

magnetic field.

SOs can be used to extract information about the relevant scattering mechanisms in the

microscopic conduction process, in particular, they can be used to extract a value of the

transport mean free path and identify the appropriate conduction regime. Recently, this

has been done very successfully in the material WP2 [203], where the SOs were used as a

quantitative probe of the inelastic scattering mean free path and the identification of the

relevant FS parts contributing states to the SOs. Although this FS identification is more

complicated in the case of PtSn4, given its complexity, it is still interesting to probe the

scattering mechanisms in such a clean material. Unlike QOs from bulk quantization, SOs

do not depend on self-interference of electron waves and therefore do not require quantum

coherence. They persist up to higher temperatures, limited only by the bulk transport mean

free path l (instead of the quantum one). As l decreases with increasing temperature, it can be

shown that the amplitude of SO diminishes as e−d/l [204], which can be used to determined l :

1

l
= − 1

d
ln

A(T )

A(0)
(7.2)

where, A(T ) is the SO amplitude at temperature T and A(0) is determined by extrapolation.
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To probe the SOs in PtSn4 and the linear dependence of their frequency on the device thickness,

a "staircase" microstructure with several sections of different thickness was fabricated (see

figure 7.8(a) and (b)). This design allows for the simultaneous measurement of each section

using both Hall and longitudinal voltage contacts. I present the preliminary results obtained

from this sample as its behaviour regarding SOs exemplifies and encapsulates the behaviour

of the other microstructures fabricated for this work. Figure 7.8 (c) shows the measured MR

from the longitudinal contacts after a background subtraction and for different angles of the

applied magnetic field. B-periodic oscillations are clearly observed, which extend only for a

narrow angle range of ≈ 5◦ around the perpendicular field configuration B ∥ c (θ = 90◦). At high

fields, the curves also exhibit the onset of conventional SdH oscillations. Figure 7.8 (d) shows

the FFT of the curves in figure 7.8 (c) at B ∥ c. The extracted SOs frequency F = 1/∆B is plotted

against the channel thickness in figure 7.8 (c), clearly revealing a linear dependency.

Figure 7.9 (a) shows the temperature dependence of the SOs. From the FFT peak, the corre-

sponding amplitude suppression with temperature is presented in figure 7.9 (b). The data is

fitted with an expression of the form A(T ) = A1/(1+exp( T−c1
c2

)), which describes the data very

well and from which the extrapolated amplitude value A(0) can be determined. Following

equation 7.2, the bulk mean free path is then calculated for each section of different thickness

and plotted against temperature in figure 7.9 (c). Although some differences exist in the values

of l associated to each thickness, a decent match and similar overall behaviour is observed,

especially for higher temperatures. The value of l ≈ 40µm at 2K is considerably larger than the

reported value of l ≈ 3 µm at the same temperature determined for macrocrystals using the

expression l = ħ(3π2/n2)1/3/e2ρ0, where n is the charge carrier concentration and ρ0 the resis-

tivity at low temperatures [61, 205]. At 12K, the estimated l ≈ 2µm is much smaller than the

l ≈ 30 µm reported in [196] at 13K, which was estimated from the resistivities vs temperature

curves at fixed magnetic fields.

7.3.4 Suppression of magnetoresistance

As already mentioned before, a free-standing microstructure of PtSn4 was fabricated to account

for potential strain effects (see figure 7.10 (a)). This microstructure was fabricated following

the procedure already described in section 2.5.3 and incorporates voltage probes along the

crystallographic a direction. The resistivity vs temperature curves are presented in figure 7.10

(b), showing a metallic behaviour consistent with the behaviour of macrocrystals and the

other microstructures already presented in this work, and the high crystalline quality of the

devices as reflected in the RRR values.

The transverse MR behaviour of the free-standing microstructure is presented in figure 7.11.

Figure 7.11 (a) shows the temperature dependence of the resistivity for B ∥ c and field mag-

nitudes of B =0T, 4T, 8T and 14T. Once again, the overall behaviour is consistent with what

has been reported for macrocrystals. Above 50K the resistivity shows a weak dependence on

magnetic fields. Between 50K and 10K, ρ(T ) increases rather rapidly and below 10K, where
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Figure 7.8: Staircase structure designed for SOs experiments. (a) Schematic representation
of the sample’s design and the rotation of the magnetic field. (b) SEM image of the fabricated
sample.(c) Oscillatory component of the low field signals coming from the sections of different
thicknesses d = 4.1µm,2.6µm and 1.6µm. (d) FFT of the curves in (c) for the field configuration
B ∥ c. (e) Dependence of the SOs frequency on the channel thickness d . The solid line indicates
a linear fit.
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Figure 7.9: Mean free paths extracted from Sondheimer oscillations. (a) FFTs of the SOs
at different temperatures for thicknesses d = 4.1µm,2.6µm and 1.6µm. (b) Temperature
dependence of the SOs amplitude for the indicated thicknesses. The dashed lines are fits used
to extrapolate to the amplitude at zero temperature A(0). (c) Mean free paths calculated for
the same thicknesses shown in (b) using equation 7.2.

Figure 7.10: Free-standing microstructure. (a) SEM image of the fabricated sample and
magnetic field configuration in the experiment. (b) Resistivity vs temperature for both voltage
channels available. The insets in (b) show the resistivity at low temperatures.
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Figure 7.11: Magnetoresistance as a function of field magnitude and direction for the free-
standing microstructure. Temperature-dependent resistivity for fixed fields applied along (a)
B ∥ c and (b) B ∥ b. The insets (a) and (b) show the same data in a log-log scale. Magnetoresis-
tance field dependency at 2K for fields fields applied along (c) B ∥ c and (d) B ∥ b. The insets (c)
and (d) highlight the SdH oscillations. (e) and (f) FFT spectra from the oscillatory components
of (c) and (d), respectively.

ρ(T ) saturates at zero field, it also saturates to a constant value. Similarly, the field dependence

of the MR for B ∥ c behaves as expected (see figure 7.11 (c)): the background MR grows quickly

in a nearly quadratic fashion, with superimposed SOs as well as SdH oscillations, whose

frequency content matches well the observed one for the other microstructures.

Contrarily, the behaviour for B ∥ b is remarkably different to what’s been reported so far for

PtSn4. Figure 7.11 (b) shows the temperature dependence of the resistivity for B ∥ b and field

magnitudes of B =0T, 4T, 8T and 14T. As for the B ∥ c case, above 50K the resistivity increases

only slightly with field but, unlike before, there is no region of rapid increase in resistivity

at low temperatures, instead, ρ(T ) saturates below 10K without ever reaching large values

of MR. This behaviour is also observed in the field dependence of the MR (see figure 7.11

(d)). Instead of the expected MR ∝≈ B 1.8 growth, we observe an initial small increase up to
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≈ 1T, followed by a plateau that extends to around 12T where the MR saturates to an almost

field-independent value of ≈ 175. For higher fields, the MR increases in a step-wise fashion,

and the SdH oscillations start to become appreciable. At 14T, MR≈ 300, less than 400 times

what’s been reported in previous studies for the same B ∥ b field direction [61].

To further explore the observed suppression of the MR when B ∥ b, figure 7.12 (a) shows the

transverse MR at fixed fields as a function of rotation angle θ. In the experiment, the field

always remains in the bc plane, i.e., in the transverse configuration. The MR exhibits two

clear dips, a small one when B ∥ c and a much more pronounced one when B ∥ b, around

which the MR quickly grows as the field is increased. When this kind of MR is presented in a

polar plot, it exhibits a characteristic butterfly shape that has also been reported in materials

like PdSn4 [206] and ZrSiS [207]. The field dependence of the MR for field directions close

to B ∥ b is presented in figure 7.12 (b). For fields up to ≈ 1T, all the curves coalesce and show

the same initial small surge but as the field increases they begin to diverge significantly. Only

the curves within a very narrow angle range of less that 2◦ around the B ∥ b direction exhibit

MR suppression, while the others grow quickly and in a manner closer to the previously

observed sub-quadratic behaviour. This sensitivity to field orientation is one of the reasons

why MR suppression was not observed before in PtSn4 macrocrystals, although in [196], for

example, the resistivity vs temperature curves at fixed values of the magnetic field, applied

along the b axis, already showed a much smaller low temperature MR than in other studies

(albeit in crystals of poorer quality, RRR ≈ 70). Similarly, the analogous resistivity curves for

the compound PdSn4 reported in [206] also showed a very weak dependence on the applied

magnetic field.

For higher field values, the MR curves of figure 7.12 (b) start to show appreciable SdH oscilla-

tions, whose FFT is presented in figure 7.12 (c). The same curves that exhibit a suppressed MR,

also exhibit two dominant peaks: F1 ≈ 1480T and F2 ≈ 1590T. The amplitudes of these peaks

quickly diminishes as the field is tilted away from the B ∥ b direction, as indicated in figure 7.12

(d) where such amplitudes are plotted as a function of the MR value at 17T. It’s important to

mention that a frequency around F ≈ 1590T was identified in macrocrystals of PtSn4 through

dHvA oscillations and associated to an extremal orbit from a closed FS branch centered in

the BZ [197]. This orbit persists for fields tilted away from the B ∥ b direction, which strongly

suggests that it can’t be the origin of the quickly vanishing frequencies F1 and F2.

To investigate the potential existence of suppressed MR in a macrocrystal and rule out a

possible finite-size-related cause, I prepared a single crystal for transport measurements in the

traditional four-point configuration with manually attached wires and current applied along

the ac plane (see figure figure 7.13 (a)). The crystal has the typical flake-like shape of PtSn4,

with its shortest dimension along the b axis (thickness of around 100µm). It was cut with the

P-FIB from a larger crystal that had two sharp, almost perpendicular edges, assumed to be the

a and c directions. To ensure the best possible orientation with respect to the magnetic field

in the transport experiments, the crystal is mounted in a two-axis rotator incorporated in the

Bluefors LD250 dilution refrigerator (see figure 7.13 (b)).
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Figure 7.12: Magnetoresistance around B∥ b. (a) MR vs rotation angle at fixed field. The
rotation angle is defined in figure 7.10 (a). (b) MR around B ∥ b. The inset shows the MR at
low fields. (c) Corresponding FFT spectra from the oscillatory components of (b). (d) FFT
amplitude of the main two frequencies highlighted in (c) as a function of the MR value at 17T.
(I ∥ a always)
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Figure 7.13: Two-axis rotation study of a PtSn4 macrocrystal. (a) Electrical contacts and
mounting of the crystal. (b) Atto-cube two axis rotation probe in the Bluefors LD250 dilution
refrigerator.

The results of the measurements at 0.5K are presented in figure 7.14. Figure 7.14 (a) shows

the MR vs the rotation angle ϕ at fixed values of B=5T and θ = 90◦. The MR curve clearly

shows a considerable dip when B ∥ b, similar to what had been observed before in the previous

microstructure but no as pronounced in magnitude, and has the same overall butterfly shape.

Analogous curves of the MR for fixed θ and scanning ϕ are combined to obtain the two

dimensional mapping of the MR presented in figure 7.14(b). Such figure clearly shows a

persistent minimum in the MR when B ∥ b, no matter the value of θ. For some angles the MR

map shows asymmetries around this minimum that could be due to the influence of Hall-like

voltages. Similarly, MR turns negative for configurations close to the B ∥ I condition, which was

also observed before for microstructures but clearly is dominated by current inhomogeneity

effects known as current jetting [208, 209].

The phenomenon of MR suppression was not only observed in the free-standing microstruc-

ture but also in the "staircase" microstructure originally designed for studying SO (figure see

figure 7.8). Figure 7.15 (a) shows the transverse MR angle dependence at low temperature and

fixed field of B=5T, revealing once more the huge drop in MR when B ∥ b for all the sections of

different thickness. The corresponding field dependence of the MR for such field configuration

is presented in figure 7.15 (b). The suppression of MR is observed in all measured sections,

with the curves exhibiting the same overall features described before for the free standing

microstructure. In particular, the plateau of almost constant MR is manifest in all cases. The

evolution with temperature of the MR is also shown in figure 7.15 (b). As the temperature

grows, the initial step feature and the following plateau are turned into monotonously increas-

ing curves. This evolution, specially for temperatures below ≈ 20K, is clearly incompatible
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Figure 7.14: Angular dependence of the magnetoresistance at 0.5K of a PtSn4 macrocrystal.
(a) MR vs rotation angle ϕ at fixed θ. The inset shows the definition of both ration angles ϕ
and θ. (b) 2-d map of the MR at 5T.

with any kind of Kohler scaling, which suggests a completely different physical mechanism as

the origin of the observed MR curves at low temperatures.

To look into the possible origin of the observed MR suppression, the band and FS structure

was investigated. The calculations are presented in figure 7.16 and were performed by the col-

laborating post-doctoral researcher Dr. Qun Yang from the Max Planck institute for chemical

physics of solids, in Dresden, Germany. Consistent with previous studies, the complexity of

the FS and the multiple sheets of both electron and hole type that cross the Fermi level are

revealed. Regarding the FS branches, one located at the boundary of the BZ stands out, as it

connects to the next zone and effectively extends across both along the c axis. This branch

is highlighted in figure 7.16 (c). It has the shape of a deformed cylinder-like tube and for the

field direction B ∥ b it can actually host open orbits (also highlighted in figure 7.16 (c)). In

contrast to closed ones, in open orbits the charge carriers cannot complete any revolution on

the the FS so they do not give rise to quantum oscillations as no frequency can be associated

with them. The orbits shown in figure 7.16 (c) are the only open orbits on this complex Fermi

surface. Furthermore, the corresponding FS branch has two narrow necks on the kz =π/c and

kz = 0 planes of the BZ, which act as pinhole-collimators in k−space (see figures 7.16 (d) and

(e)). This means that only for field configurations very close to B ∥ b the open orbits exist, as

any other field orientation closes them when they miss the constrictions. We associate this

very selective physical mechanism to the observed behaviour in the MR for fields close to

B ∥ b.

The effect of open orbits on the MR can be understood qualitatively in the following way: for

open orbits extending along the z axis in the presence of a magnetic field parallel to the y axis,

only the average velocity vx remains appreciable and constant when ωcτ>> 1. This means

that the corresponding resistivity tensor component ρxx saturates and leads to a suppressed

MR for currents applied along that direction. On the other hand, it can be shown that the very
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Figure 7.15: Magnetoresistance as a function of temperature and field magnitude and
direction for the staircase microstructure. (a) MR vs rotation angle at 5T and 2K. (b) Resistivity
vs field for the indicated temperatures along the field direction B ∥ b (I ∥ a always).
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Figure 7.16: Band structure and Fermi surface of PtSn4.(a) Band dispersion along high
symmetry directions highlighting the different bands crossing the Fermi level. (b) Calculated
Fermi surface. (c) FS branch extending along the BZ and capable of hosting the delineated
open orbits. (d) Top view of the BZ highlighting the two narrow neck sections of the FS branch.
(e) Open and closed orbits from different magnetic field directions. Only fields within a small
angle range around B ∥ b lead to open orbits.
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small average velocity vz results in a significant resistivity component ρxx , which increases

quadratically with magnetic field for currents applied along the same direction [110]. In PtSn4,

the condition ωcτ >> 1 is already reached at small magnetic fields, and the lack of closed

orbital motion for B ∥ b then leads to a saturation of the transverse MR, as these states are

unaffected by further increases of the magnetic field. The saturation of the transverse MR for

currents not running along the direction of the open orbits is a well known phenomenon [110]

and has been nicely reproduced in recent numerical models based on the Boltzmann transport

theory [114], as discussed in section 4.4.3 and shown in the corresponding figure 4.4. This

mechanism also explains why the MR suppression was not observed in the microstructure

presented in figure 7.2 since in that case the current was applied along the c axis, that is,

parallel to the direction of the open orbits, a configuration that is not conducive to transverse

MR saturation. This could also explain why the MR suppression observed in the macrocrystal

of figure 7.14 is not as sharp as the one of the free standing microstructure, since the condition

I ∥ a is satisfied to a much higher degree (thanks to the FIB microfabrication) in the latter.

7.4 Conclusions and outlook

In this chapter I have investigated the transport properties of FIB-fabricated microstructures

as well as macrocrystals of the TSM PtSn4. There are two main conclusions that change the

way we think about charge transport in this material. First, the experiments presented in this

chapter unequivocally demonstrate semi-classical effects at the origin of the unusually large

and non-saturating magnetoresistance. No exotic correlated or topological features have to

be invoked to explain it. This problem bears resemblance to the magic angles in elementary

metals such as Ag or Cu, for which MR is lost. Similarly, the conditions for these angles arise

from the open orbits defined by the touching points of their otherwise free-electron like Fermi

surfaces. The real physical question is why such a complex crystal, with such a complex Fermi

surface, is so clean as to show ωcτ>> 1 physics at such low magnetic fields. The observation

of Sondheimer oscillations in the microstructures is fully consistent with this physics. Second,

PtSn4 is clearly identified as a hidden 2D system, yet with the two-dimensionality rotated by

90◦ compared to the crystallographic Pt planes. Naively, one might expect a 2D, cylinder like

Fermi surface arising from these planes, yet that is not the case. Instead, a cylindrical Fermi

surface is formed in the (ac)-plane, perpendicular to the natural layers of the crystal. This

serves as a most interesting reminder that in densely packed intermetallic crystals, physical

"layers" can be highly misleading when the electronic spectrum is considered.

130



8 Summary and outlook

In this chapter I present a brief summary of the results obtained during the course of this

thesis and provide an outlook on the possible next research directions.

The first point I would like to emphasize is the coming of age of the focused ion beam as

a microfabrication technique for novel 3D quantum materials. As the pool of materials

investigated by this technique grows and its advantages and limitations become clearer, the

enormous potential of FIB-machining is steadily being harnessed to reveal valuable physical

insights and fabricate technologically relevant prototype devices. Part of this potential stems

from the compatibility of the FIB approach with many other techniques and experimental

tools, which can be exploited to explore electrical transport (and other properties) under

previously unattainable regimes.

In chapter 5 I take advantage of this compatibility to design an experimental set-up aimed at

applying strain gradients to FIB-machined, 3D crystalline cantilevers while simultaneously

measuring their transport properties. The strain gradients are created by bending the can-

tilevers with a mechanical nano-positioner whose vertical displacement can be controlled

to tune the desired magnitude of the strain gradients. The results conclusively show that

strain gradients of 1.3%µm−1 can be easily attained without inducing elastic deformations

and while maintaining quantum coherence. The set-up is applicable to any material that can

be microfabricated with the FIB. Furthermore, the sample design is compatible with other

fixed bending mountings, for example, by using a small diameter wire on a chip as a bending

edge. In this way, and since the bent section of the sample remains exposed, other techniques

like angle-resolved photo-emission spectroscopy (ARPES) or scanning tunnelling microscopy

(STM) could, in principle, be applied to the same sample that is characterized by transport

measurements. One of the aspects to investigate further in the presented experimental set-up

has to do with the microscopic state of the sample while bending at low temperatures. Consid-

ering that the set-up is compatible with any conventional cryostat, optical cryostats with a

transparent window suited for direct optical inspection and spectroscopic instrumentation

can be a promising way forwards. The approach of combining commercially available nano-

positioners with FIB-fabricated samples opens up new ways to explore other strain gradient
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configurations by, for example, twisting the sample. In this sense, I hope that the results of

chapter 5 are only the beginning of a promising experimental strategy.

The experiments discussed in chapter 6 explore the effects of bending on cantilevers of the

Dirac semimetal Cd3As2. This set of experiments represent an initial step in the investigation

of transport properties of 3D TSMs under Landau quantization and large strain gradients.

The theorized strain-induced pseudo-magnetic fields and their influence on the Weyl orbits’

frequency are investigated. The difficulty in interpreting the complex experimental data

within the available models for the combined presence of bulk quantization, Weyl orbits

and presumably pseudo-fields prevents me from clearly identifying certain experimental

features with the existence of strain-induced pseudo-fields, and points to a richer underlying

physics that is not yet understood completely. Important aspects to consider are the possible

refinement of the coupling constants used in the the numerical models for Cd3As2, which

might be overestimating the magnitude of the pseudo-fields, as well as the inclusion of other

experimentally relevant aspects like a varying direction of the magnetic field on the strained

sample, which might affect the spatial extension of the Weyl orbits on different parts of the

sample and potentially alter their constructive interference and overall signal. In this sense,

it is also important to recognize that further understanding of the Weyl orbits themselves

is necessary as there are still several open questions regarding their behaviour and proper

theoretical description. For example, one of these questions is related to the influence of

the chemical potential µ in the value of FW e yl . In principle, it should vary according to

FW e yl = µk0/πvF e, However, there is no systematic study of this relation and some results

reported in [151] on nanoplates of Cd3As2 of low charge carrier density seem to deviate from

it. Manipulating the chemical potential by gating, as it has been done in Cd3As2 nanowires

[210] could be a way forwards in this regard.

Chapter 7 focuses on the magneto-transport properties of the Dirac nodal arc semimetal

PtSn4. This material stands out as a multi-band, high carrier density semimetal that exhibits

a extremely large magnetoresistance (XMR) whose microscopic origin has been object of

considerable debate. The applicability of the FIB microfabrication technique to this material

is soundly established in the chapter as the overall transport behaviour of the microstructures

is consistent with the bulk behaviour of macroscopic samples and indicates no significant loss

of crystalline quality nor chemical contamination. With the help of the FIB, microstructures

with active channels along all the main crystallographic directions are fabricated. This makes

it possible to identify principal field directions for which a transverse MR with sub-quadratic

field dependence and Kohler-like scaling is observed. Similarly, a field direction displaying a

suppressed transverse MR with no Kohler-like scaling is also identified. From examinations

of the Fermi surface (FS), this suppression of MR is explained by the existence of singular

open electronic orbits on sheets of the FS. Such orbits can be formed only within a small angle

interval of the identified field configuration. This mechanism points to a semi-classical origin

for the observed XMR in this material without the need of invoking more exotic topological or

correlated electron theories.
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The research on topological semimetals continues to expand in exciting ways and although

many challenges remain in this field, ranging from better material realizations to deeper

understanding of their fundamental properties, a growing number of theoretical and experi-

mental approaches have emerged in response. In this regard, I hope that the work presented

in this thesis serves as a modest encouragement to meet such challenges and hopefully drive

the field in fruitful directions.
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